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Abstract Water resource is the most precious resource for a human being that it is
necessary to make the water resource to be clean and also non-toxic. Recently, water
pollution becomes one of the most serious global issues, especially, water pollutions
that contaminate various types of organic compounds, including pharmaceuticals
and personal care products (PPCPs), persistent organic pollutants (POPs), and
organic dyes. Photocatalysis as one of the advanced oxidation processes using
reactive oxidative radicals or species to remediate the organic pollutants has drawn
much attention recently.

Photocatalysis is a process which a chemical reaction is accelerated in the
presence of a catalyst on exposure to light. The possibility to utilize solar energy
as a free energy from nature to solve the environmental problems is the key
significance of photocatalysis. Homogeneous photocatalysis has many advantages,
e.g., high oxidation properties. It is, however, not popular in various photocatalytic
applications, because it is difficult to separate the photocatalysts from the solution,
the photocatalysts have low potential to reuse, purification of products is necessary,
and almost homogeneous photocatalysts absorb narrowly light within the solar
spectrum. It has been proven that heterogeneous photocatalysis is one of the most
potential methods for treatment of organic pollutants in water. Anyhow, relatively
large band gap energy causes some limitations of metal oxide-based heterogeneous
photocatalysts. Modifications of the electronic band can be achieved by doping and
composites of semiconductors. Another modification technique in heterogeneous
photocatalysts is the utilization of electrical potential in photocatalysis. The coated
semiconductor photocatalysts are used as photoelectrodes in photo-electrocatalytic
applications. In addition, the photocatalytic reactor configuration for wastewater
treatment by heterogeneous photocatalysis can be classified as two main groups,
including fixed bed reactor and slurry type reactor. Apart from the conventional
photocatalytic reactors, the combination of photocatalysis with another treatment
process has also been developed to overcome the specific obstacles in each case,
such as a photocatalytic membrane reactor.

Keywords Photocatalysis · Photocatalysts · Organic pollutants · Personal care
products · Persistent organic pollutants · Organic dyes · Remediation · Ozonation ·
Fenton · Metal oxide

1.1 Introduction

Water resource is the most precious resource for a human being that it is necessary to
make the water resource to be clean and also non-toxic. Anyway, due to urbaniza-
tion, industrialization, and lack of people awareness to consider water as a crucial
commodity, people in many countries are now facing problems related to water
supply and security (Jayaswal et. al 2018; Meenakshisundaram 2019). Presently,
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water pollution becomes one of the most serious global issues, especially, water
pollutions that contaminate various types of organic compounds
(Meenakshisundaram 2019), including pharmaceuticals and personal care products,
persistent organic pollutants, and organic dyes.

In recent years, many researchers have developed the remediation techniques of
organic pollutants in water. Photocatalysis, as one of the advanced oxidation pro-
cesses (AOPs) using reactive oxidative radicals or species, particularly hydroxyl
radicals, to remediate the organic pollutants, has drawn much attention recently.
Various types of photocatalysis can be considered to be a green and effective
strategy for solving global environmental and energy problems. The possibility to
utilize solar energy as a free energy from nature to solve the environmental problems
is the key significance of photocatalysis. In this chapter, the basic concept of
photocatalysis, various organic pollutants in water, photocatalytic remediation of
organic pollutants in water, and modifications of heterogeneous photocatalysts are
discussed. Recent developments of photocatalytic reactors for remediation of
organic pollutants are presented briefly.

1.2 Photocatalysis

Photocatalysis is a type of catalysis which a chemical reaction is accelerated in the
presence of a catalyst (so-called photocatalyst) on exposure to light which is mostly
described in term of photon (hν) – an elementary particle of light, where the
photocatalyst participates in the chemical reaction without being consumed.
Photocatalysis can be also defined as the acceleration of a photoreaction (e.g.,
photolysis) in the presence of a catalyst.

1.2.1 Type of Photocatalysis

Photocatalysis could be classified to be two types, i.e., homogeneous and heteroge-
neous photocatalysis, on the basis of appearances of the physical state of reactants.

Homogenous Photocatalysis

Homogeneous photocatalysis is the process that the photocatalyst is in the same
phase (i.e., gas, solid, or liquid) with the reactant. The process of homogenous
photocatalysis is driven under exposure to light which a molecular photocatalyst is
promoted to the excited state (strong reductant and oxidant). Almost homogeneous
photocatalysts can drive full redox reactions which most researchers use in water
splitting to hydrogen and oxygen.

1 Photocatalytic Remediation of Organic Pollutants in Water 3



In homogeneous photocatalysis, the free radicals are produced by illumination of
light over the homogeneous molecules of oxidizing agents such as hydrogen perox-
ide (H2O2) and ozone (O3), which are dissolved in water or another medium (Stan
et al. 2012). The commonly known processes are ozonation (UV/O3), photo-Fenton
processes (Fe2+ and Fe2+/H2O2), UV/H2O2, and UV/H2O2/O3.

Ozonation

Ozone, an unstable gas composed of three oxygen atoms (O3) that is a strong
greenhouse gas and variable in the troposphere, becomes one of the most powerful
oxidants with an oxidation potential of 2.07 V (North 2015). Ozone is often used in
water and wastewater treatments, municipal and industrial treatments, agriculture,
chemical synthesis, drinking water disinfection, and food and beverage (Ikehata and
Li 2018; Loeb et al. 2012). Ozone can be generated by promoting potential energy,
e.g., ultraviolet irradiation or electric discharge, to gaseous oxygen molecules. In
terms of the process of ozone, it can react and decompose into various oxidative
species, e.g., hydroxyl radical (HO•) and hydrogen peroxide (H2O2), leading to
the ozonation process.

Ozonation is the oxidation method which ozone involves in the process. It is
extremely used for water treatment that enormous contaminants (e.g., color sub-
stances and heavy metals) contained in the water sources. Furthermore, outgrowths
of ozonation are bacteria disinfection, odorous removal, taste generation, inorganic
component conversions, and cutting of hardly biodegradable organic compounds
(Arvanitoyannis and Kassaveti 2008). Ozonation can be more effective with UV
radiation and oxidizing agents that increase radical formations.

UV/Ozone (UV/O3) is one of the well-studied ozonation. Dissolved ozone
molecules can absorb UV light (wavelength ~260 nm) by photolysis reaction,
leading to the occurrence of hydrogen peroxide molecules (Eq. 1.1). Afterward,
each mole of H2O2 will turn to absorb UV or react with O3, resulting in the generation
of HO• as expressed in Eqs. (1.2) and (1.3) (Gong et al. 2008; Ikehata and Li 2018).

O3 þ H2Oþ hv ! H2O2 ð1:1Þ

H2O2 þ hv ! 2HO • ð1:2Þ

2O3 þ H2O2 ! HO • þ 3O2 ð1:3Þ

Ozonation has various advantages, such as the short half-life (~10 min) leading to
the rapid reaction for degradation of organic molecules (Table 1.1). Anyway, unless
at pH 10, the half-life of ozone in solution is less than 1 min that makes ozonation
extensively consumes energy. The efficiency of this process depends on many
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variables such as UV light intensity, reactant constituent, the presence of scavenger
species, pH, temperature, and type of organic target pollutants.

Photo-Fenton Process

H2O2 is usually used as oxidizing agents because of its environmentally benign
and uncomplicated characters. Various metal ions and their oxidative forms, such as
Fe2+, Fe3+, Cu+, Cu2+, Ti3+, Ti4+, Cr2+, and Cr3+, can be used as a catalyst in H2O2-
based processes. Notwithstanding, Fe2+ and Fe3+ are most frequently used, because
other metal ions are toxic and relatively unavailable. Fenton is one of several
processes that can enhance the oxidative potential of H2O2 which can be used for
the degradation of organic compounds. Fenton uses Fe2+ [ferrous ions or iron (II)] as
a catalyst under acidic conditions according to Eqs. (1.4)–(1.9) (Ameta et al. 2018a).

Fe2þ þ H2O2 ! Fe3þ þ HO� þ HO • ð1:4Þ

HO • þ H2O2 ! HO •
2 þ H2O ð1:5Þ

Fe2þþ •OH ! Fe3þ þ OH� ð1:6Þ

Fe3þ þ HO •
2 ! Fe2þ þ O2 þ Hþ ð1:7Þ

HO • þ HO • ! H2O2 ð1:8Þ

Organic compoundsþ HO • ! Degraded products ð1:9Þ

In Fenton reactions, hydroxyl radicals (HO•) and hydroxide anions (HO�), the
oxidizing and extremely powerful species, can be generated to discharge one
electron from an electron-rich organic substrates or any other species present in
the medium to form hydroxide anions. HO• produced from the reactions can also
attack and degrade a wide range of organic compounds. The efficiency of Fenton

Table 1.1 Advantages and disadvantages of ozonation

Advantage Disadvantage

Efficient organic, inorganic, color, taste, and odor removals High costs

Rapid reaction for degradation of organic molecules Toxicity

No chemical contamination and residual effect High-energy consumption
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oxidation depends on pH, concentrations of the pollutants and hydrogen peroxide,
amount of ferrous ions, and temperature (Zheng et al. 2013; Ameta et al. 2018a).

In term of photocatalysis, photo-Fenton process is a combination of Fenton
reactions and irradiation with light of suitable wavelength (180–400 nm) which
can accelerate the formation of hydroxyl radicals and also increases the rate of
degradation of organic pollutants. The continuous cycles of photo-Fenton process
are shown in Eqs. (1.10)–(1.12). Fe2+ is generated through photoreduction of ferric
ions (Fe3+). The generated Fe2+ will turn to react with H2O2 resulting in more HO•

formation.

Fe3þ þ H2Oþ hυ ! Fe2þ þ HO • þ Hþ ð1:10Þ

Fe3þ þ H2O2 þ hυ ! Fe2þ þ HO2
• þ Hþ ð1:11Þ

Fe2þ þ H2O2 ! Fe3þ þ HO • þ OH� ð1:12Þ

The efficiency of photo-Fenton process depends on pH, especially at pH 3, due to
the soluble of hydroxy-Fe3+ complexes and Fe(OH)2+ leading to high catalytic
activity (Ameta et al. 2018b).

UV/H2O2

Normally, UV radiation can work simultaneously as a disinfectant, by physical
inactivation of microorganisms (Mierzwa et al. 2018). UV radiation can be also
used in UV/H2O2 system for hemolytic cleavage of O-O bonds of H2O2 molecules,
resulting in the production of hydroxyl radicals (HO•). The most application of
UV/H2O2 is uses for water and wastewater treatments.

UV/H2O2 has three main reaction mechanisms of HO• production and recombi-
nation, which are initiation, propagation, and termination as shown in Eqs. (1.13)–
(1.18). One mole of H2O2 theoretically produces two moles of HO•. The rate of HO•

production strongly depends on the amount of H2O2 added, UV absorptivity of
H2O2, and characteristics of wastewater (Jamil et al. 2017; Mierzwa et al. 2018).

Initiation : H2O2 þ hυ ! 2 HO • ð1:13Þ

Propagation : H2O2 þ HO • ! H2Oþ HO2
• ð1:14Þ
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HO2
• þ H2O2 ! H2Oþ O2 þ HO • ð1:15Þ

Termination : HO • þ HO • ! H2O2 ð1:16Þ

HO • þ HO2
• ! H2Oþ O2 ð1:17Þ

HO2
• þ HO2

• ! H2O2 þ O2 ð1:18Þ

H2O2 molecules can act as a scavenger to consume HO• and subsequently pro-
duces oxygen and water molecules according to Eq. (1.19), so the demand concen-
tration of H2O2 must be high to generate a sufficiently high concentration of HO• for
decomposition and mineralization of organic target pollutants.

2HO • þ 3H2O2 ! 4H2Oþ 2O2 ð1:19Þ

UV/H2O2/O3

From ozonation discussed above, although UV absorptivity of O3 is much higher
than H2O2, the self-decay rate of O3 is approximately 1000 times higher than that of
H2O2. This limitation can be overcome by the addition of H2O2 into UV/O3 process
for enhancement of the decomposition of O3, which is called “UV/H2O2/O3”

process.
Even though homogeneous photocatalysis has many advantages, e.g., high oxi-

dation properties, it is, however, not popular in various photocatalytic applications.
This is because it is difficult to separate the photocatalysts from the solution; the
photocatalysts have a low potential to reuse; purification of products is necessary;
and almost homogeneous photocatalysts absorb narrowly light within the solar
spectrum (Karimian et al. 2015; Zhu andWang 2017). In addition, the photocatalytic
activity and stability of homogeneous photocatalysts are limited due to the instability
inherent to the molecular nature of their structures (Limburg et al. 2016; Ye et al.
2016).

Heterogeneous Photocatalysis

Many years ago, heterogeneous photocatalysis was found by Fujishima and Honda
due to an electrochemical photocatalysis of water at a semiconductor electrode. In
heterogeneous photocatalysis, the catalyst is totally separate from the reactants. It
occurs by emerging materials with supremacy properties (Klavarioti et al. 2009). On
the basis of band gap energy – the differential energy between the valence band (the

1 Photocatalytic Remediation of Organic Pollutants in Water 7



highest occupied molecular orbital, HOMO) and the conduction band (the lowest
unoccupied molecular orbital, LUMO) – the materials are classified into three basic
categories (Fig. 1.1). Normally, heterogeneous photocatalysts are semiconductor
materials (i.e., metal oxides), because semiconductor can absorb light to activate
the movement of electrons, which causes the generation of the reactive species. The
reactive species in heterogeneous photocatalysis is used in a different way compared
with those in heterogeneous photocatalysts (Wu and Chang 2006). Heterogeneous
photocatalysis occurs with several reactions, e.g., oxidation, dehydrogenation, metal
deposition, water detoxification, and gaseous pollutant removals. Figure 1.2 shows
an example of heterogeneous photocatalysis for hydrogen production from water.

Heterogeneous photocatalysis is generally carried out by utilizations of metal
oxides as photocatalysts in the form of suspended phase or immobilized state
(on other solid substrates). The illumination of light over the heterogeneous
photocatalyst by photons with energy at least equal to its band gap energy can
generate the electron–hole pairs. The photo-activated electrons are transferred from
the valence band to the conduction band, leaving the positive holes in the valence
band. Subsequently, the photo-activated electrons and holes can migrate from bulk
to the surface of photocatalyst and react with some adsorbed substances on the
surface to generate the free radicals (Srisasiwimon et al. 2018). Table 1.2 shows
typical photocatalysts which are normally nanosized semiconductor materials with
wide band gap energies (e.g., TiO2, ZnO, and SnO2,) (Bensebaa 2013; Yemmireddy
and Hung 2017).

Fig. 1.1 Three basic categories of materials on the basis of band gap energy. In an insulator, there
exists a large forbidden gap or band gap between the conduction band and valence band, so
electrons cannot jump from the valence band to the conduction band. While the band gap in a
semiconductor is narrower, so the energy provided at room temperature is sufficient to lift the
electrons to the conduction band. In a metal or a conductor, there is no band gap, so the electrons can
easily move in the space between the atoms
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Oxidative Reactions

Typical photocatalysts, i.e., metal oxides (MO), such as oxides of titanium, zinc,
tungsten, vanadium, chromium, and vanadium, can absorb photons to generate the
photo-excited electrons and positive holes as expressed in Eq. (1.20). In the presence
of water molecules, hydroxyl radicals (HO•) are produced by a reaction between
positive holes and H2O according to Eq. (1.21) (Fig. 1.3). Furthermore, H2O2 is
possibly formed through the oxidative pathway, leading to the HO• generation from
the cleavage of H2O2 under photolysis as shown in Eqs. (1.22)–(1.23) (Li et al.
2014).

Photocatalystþ hυ ! Photocatalyst e� CBð Þ þ hþ VBð Þð Þ ð1:20Þ

H2Oþ hþ ! Hþ þ HO • ð1:21Þ

Fig. 1.2 Hydrogen
production from water using
heterogeneous powder
photocatalysts. The
photocatalysts are dispersed
in a reactor with water. Sun
or light shines at the
dispersed photocatalysts,
and then hydrogen is
obtained (modified after
(Kudo and Miseki 2009))

Table 1.2 Typical
photocatalysts for
photocatalysis

Photocatalyst Band gap (eV) Spectral region

ZnS 3.80 UV

SnO2 3.80 UV

TiO2 (anatase) 3.24 UV

ZnO 3.20 UV

TiO2 (rutile) 3.02 UV and Visible

CdS 2.40 UV and Visible

Cu2O 2.20 UV and Visible
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2hþ þ 2H2O ! 2Hþ þ H2O2 ð1:22Þ

H2O2 þ hυ ! HO • þ HO • ð1:23Þ

Reductive Reaction

The monovalent reduction of dissolved oxygen molecules which are adsorbed on the
surface of photocatalyst can generate the short-lived free radicals in the form of
superoxide anion radicals (O2

•�). Subsequently, the uncharged hydroperoxyl radi-
cals (HO2

•) can be produced through protonation of O2
•�. Hydrogen peroxide

(H2O2) is feasibly formed by protonation and reduction of HO2
•. Ultimately, the

homolytic cleavage of H2O2 is also able to form more hydroxyl radicals (HO•)
according to Eqs. (1.24–1.27) (Nosaka et al. 2002).

e� þ O2 ! O2
•� ð1:24Þ

O2
•� þ Hþ $ HO2

• ð1:25Þ

Fig. 1.3 Basic model of heterogeneous photocatalysis. The photocatalysts can absorb photons to
generate the photo-excited electrons and positive holes. In the oxidation side, hydroxyl radicals
(HO•) are produced by a reaction between the positive holes and water molecules. In the reduction
side, the dissolved oxygen molecules can generate the short-lived superoxide anion radicals (O2

•�).
HO• can be more generated from the other subsequently oxidation and reduction pathways. The
radicals generated in photocatalysis are the key species to react with organic molecules in the
photocatalytic applications
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HO2
• þ e� þ Hþ ! H2O2 ð1:26Þ

H2O2 þ hυ ! HO • þ HO • ð1:27Þ

1.2.2 Photocatalytic Process

Photocatalytic process is normally described by heterogeneous photocatalysis. The
process could be divided into four steps (Fig. 1.4): (I) light absorption for generation
of electron–hole pair; (II) charge separation and migration of photogenerated car-
riers; (III) formation of hydroxyl radicals and superoxide ions via redox reactions;
and (IV) photodecomposition of organic compounds via reaction with active species
on the catalyst surface (Bensebaa 2013; Kudo and Miseki 2009).

For the first step (generation of electron–hole pair) as written above, the energy
for photocatalysis reaction must be equal or exceed the band gap of photocatalysts
(Nakata and Fujishima 2012). An electron (e�) is activated to conduction band after
the light absorption, so holes (h+) are generated in the valence band.

For charge separation and migration of photogenerated carriers, this step strongly
depends on the crystal structure, crystallinity, and particle size of photocatalysts.
Low crystallinity leads to the increase of the amount of defects which operates as a
trapping and a recombination center between photogenerated electrons and holes,
causing a decrease in the photocatalytic activity. In addition, a small particle size
creates the distance between photogenerated electrons (e�) and holes (h+) that

Fig. 1.4 Four steps of photocatalytic process: (I) light absorption for the generation of electron–
hole pair; (II) charge separation and migration of photogenerated carriers; (III) formation of
hydroxyl radicals and superoxide ions via redox reactions; and (IV) photodecomposition of organic
compounds via reaction with active species on the catalyst surface
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migrate to reaction sites on the surface, leading to decrease in the recombination
probability.

For formation of hydroxyl radicals and superoxide ions via redox reactions,
the oxidative reaction between holes and water molecules or other organic com-
pounds leads to generation of HO• and H+ (which can further form H2O2), while
the reductive reaction between electron and O2 molecules leads to generation of
superoxide ions (O2

•-) (which can further form HO2
•, H2O2, and HO•) (Sirelkhatim

et al. 2015). However, this step is the surface chemical reactions, where the
photogenerated electrons and holes can recombine with each other if the active
sites for redox reactions do not exist on the surface, which depends on the surface
character and surface area.

For the last step (photodecomposition of organic compounds via reaction with
active species on the catalyst surface), radicals, ions, or molecules (HO•, O2

•-, OH�,
and H2O2) obtained from the reactions are key reactive oxygen species (ROS) in the
initiation of other photocatalytic reactions which can react with the target organic
compounds to degrade or otherwise convert them into harmless by-products or
value-added chemicals or fuels (Payormhorm et al. 2017a; Payormhorm et al.
2017b). Recently, several catalysts have been progressed to produce good quality
of photocatalysts like photoconversion processes such as solar to electricity, light to
hydrogen, and light to mechanical works.

1.3 Organic Pollutants in Water

There are various types of pollutants in wastewater (e.g., organic pollutants, inor-
ganic pollutants, pathogens, and radioactive pollutants). Organic pollutants are a
main part of environmental pollution, which may cause an adverse effect on aquatic
organisms even at low levels of exposure (Mao et al. 2017; Ahmad et al. 2018; Yu
et al. 2019). Organic pollutants are found in various wastewater sources, e.g.,
domestic, industrial, and agricultural sectors.

Many kinds of organic pollutants, such as pharmaceuticals and personal care
products (PPCPs), textile, food, beverage, persistent organic pollutants (POPs),
insecticide, pesticide, oil, fertilizers, and chemical, are included in wastewater.

1.3.1 Sources of Organic Pollutants in Wastewater

Organic pollutants are found in three main wastewater sources which are domestic,
industrial, and agricultural sectors. The examples of organic pollutants in wastewater
from these three sectors are shown in Table 1.3.
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Domestic Wastewater

Domestic wastewater is water derived from daily human activities in the residences,
institutions, office buildings, commercial buildings, as well as healthcare and per-
sonal care facilities. Wastewater quantities from individual residences commonly
depend on the water consumption rate per capita and population density. On the
other hand, wastewater quantities from commercial sources are typically based on
the land-use area or the number of guests (Metcalf and Eddy 1981). The domestic
wastewater can be characterized by constituents of wastewater into four classes,
which are grey water, yellow water, brown water, and black water.

Grey water is wastewater with small amounts of nutrients, pathogens, and
suspended solids contamination, excluding toilet wastewater. It was called “grey
water” because the color of wastewater will be gradually changed to grey during
storage. The grey water is discharged from daily activities such as showering, hand
washing, clothes washing, and dishwashing (Wang et al. 2010). General composi-
tion of grey water depends on lifestyles, personal hygiene of human, as well as
climatic conditions. Showering wastewater is usually composed of soaps, dental
cares, shampoos, cosmetics, hair color, and other personal care products. Clothes
washing wastewater contains a group of nutrients (sodium, phosphorus, and

Table 1.3 Example list of organic pollutants in wastewater from different sources

Example of organic pollutant

Domestic sector Industrial sector Agricultural sector

Human pharmaceuticals Textile Pesticides

Human feces Organic dye-stuff Herbicides

Human urine Glue and adhesives Organic fertilizers

Human hormones Cellulose and paper Crop residues

Toilet paper Leather and bleaching agents Veterinary drugs

Soaps Biocides Animal manure

Cosmetics Petroleum Animal urine

Dental cares Food (e.g., carbohydrate, protein, lipid) Animal hormones

Shampoos Fermentation residues (e.g., brewers) Animal feeds

Hair colors Grains, winery waste

Cleansing foams Breweries liquid waste

Deodorants Distilleries liquid waste

Fabric softener Cleaning agents

Cooking oil Polychlorinated biphenyls (PCBs)

Food residues Pharmaceuticals

Energy drinks Soaps

Insect repellents Cosmetics

Cleaning agents Cooking oil

Organic nutrients Organic nutrients

Herbicides

Pesticides

1 Photocatalytic Remediation of Organic Pollutants in Water 13



nitrogen), surfactants, foams, suspended solids, oil and greases, bacteria, and many
others. Dishwashing and cooking wastewater generally consist of discarded food,
nutrients, cooking oil, dishwashing soaps or liquids, and bacteria.

Yellow water contains human urine with or without flush water, which is
presented in domestic wastewater approximately 1% by volume. Urine is a natural
source of macronutrients. The presence of nitrogen, phosphorus, and potassium in
conventional domestic wastewater mostly originates from urine.

Brown water is human feces, which may be included flush water and toilet
papers. The significant constituents of brown water are organic matters, phosphorus,
and infectious agents (Balkaya and Guneysu 2019). Furthermore, human feces and
urine are also important sources of both metabolized and non-metabolized pharma-
ceutical residues after absorption and metabolization from human bodies.

Black water is a combination of yellow and brown waters; thus it is composed of
human feces, urine, toilet papers, and flush water.

Industrial Wastewater

Apart from domestic wastewater, one of the important organic pollutant sources is
industrial wastewater, such as textile, chemical, food, and beverage, which is a high
concentration of various organic pollutants. Presently, a huge amount of industrial
wastewater from several industries was released into rivers, lakes, and coastal areas.
The results of this problem lead to be a serious pollution problem in water with
negative effects to the ecosystem.

Nowadays, there are many types of organic pollutants in industrial wastewater
based on different industries, such as leather, textile, metal processing, brewery and
fermentation, food, pharmaceuticals, oil refining, cosmetics, soaps, pesticides, her-
bicides, cellulose and paper manufacturing, glue, and adhesives industries. The main
source of organic pollutants in industrial wastewaters is produced from the chemical
industry using organic substances for chemical reactions.

Agricultural Wastewater

Agricultural sector is also identified as one of the important sources for organic
pollutants in wastewater that can affect ecology and the environment. Agricultural
wastewater principally comes from by-products of anthropogenic activities in the
agricultural area such as farmland, fertilizer, animal manure, and agrichemicals.
Agricultural wastewater has been recognized as non-point source pollution, which
is released from different agricultural activities. All types of agricultural activities
produce a large number of organic pollutants (e.g., pesticides or herbicides), which
subsequently discharge into surface water and penetrate to groundwater. Most
agricultural wastewater is composed of sediment, nutrients, microorganism, and
chemical, which is difficult to control because these substances usually discharge
into surrounding natural water bodies during rainfall (Neumann et al. 2002).
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Moreover, agricultural wastewater with a high content of nutrients, especially
nitrogen and phosphorus, can lead to eutrophication of water bodies.

Finally, organic pollutants from various wastewater sources can contaminate into
the environment by both direct and indirect pathways. Figure 1.5 shows general
pathways of organic contamination in the environment.

1.3.2 Major Groups of Organic Pollutants in Wastewater

Pharmaceuticals and Personal Care Products

Pharmaceuticals and personal care products are intentionally synthetic compounds
with specific properties for human or animal healthcare and medical purposes. The
molecular weight of pharmaceuticals and personal care products are typically rang-
ing from 150 to 1000 Daltons (Awfa et al. 2018). Pharmaceuticals are the chemicals
used in human and veterinary medicine, including antibiotics, hormones, stimulant
drugs, beta-blockers, anti-inflammatories, antiarrhythmic agents, blood–lipid lower-
ing agents, cancer therapeutics, diuretics, and many others (Chen et al. 2016; Fent
et al. 2006). Pharmaceuticals and their metabolites can be released into the environ-
ment after incomplete absorption and excretion from the body of consumer, which
are mainly presented in the dissolved phase (Prasad et al. 2019). Personal care
products are products used for beauty and hygiene to enhance the quality of daily
life, such as sunscreen, skincare products, body lotion, moisturizers, soaps, sham-
poo, dental care, lipstick, perfume, as well as mosquito repellent lotion and spray
(Cizmas et al. 2015). The daily washing activities of human appear to be the main
pathway to release the personal care products from the human body into sewerage

Fig. 1.5 General pathways of organic contamination in the environment. Note that organic
pollutants from various wastewater sources can contaminate into the environment by both direct
and indirect pathways
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systems and aquatic environments. Furthermore, recreation activities such as swim-
ming and other water sports can also contribute the personal care products’ contam-
ination in water (Yang et al. 2017). Example list of pharmaceuticals and personal
care products with their physical and chemical properties is shown in Table 1.4.

The environmental contamination of pharmaceuticals and personal care products
is caused by both intentional and unintentional discharge from many sources,
including households, industries, hospitals, sewage treatment plants, livestock
farms, and landfill leachate. The effluent discharge from sewage treatment plants
and industries is identified to be the predominant sources (Awfa et al. 2018).
Pharmaceuticals and personal care products are usually synthesized to be persistent,
high chemical stability, and low biodegradability, which cannot be completely
removed by conventional treatment processes. Although the occurrence of pharma-
ceuticals and personal care products in surface water, groundwater, tap water, as well
as drinking water is frequently detected at a trace concentration (ranging from ng/L
up to μg/L), the continuous exposure to these compounds can significantly lead to
adverse effects on aquatic living organisms, terrestrial organisms, and balance of
ecosystem (Jamil et al. 2017).

Many pharmaceuticals and personal care products behave as antimicrobial
agents; thus the biological degradation processes that use microorganisms to break
down organic pollutants in water seem to be ineffective to remove them. Physical
treatment processes such as adsorption and membrane filtration can only transfer
pharmaceuticals and personal care products from one medium to another medium
without the destruction of them, leading to the formation of secondary contaminants
in the form of spent adsorbents and concentrated water, respectively (Awfa et al.
2018). Nowadays, the chemical oxidation processes especially advanced oxidation
processes, involving photo-Fenton, ozonation, UV/H2O2, and semiconductor
photocatalysis, are accepted as the most promising potential treatment method for
removals of pharmaceuticals and personal care products. Unfortunately, degradation
of pharmaceuticals and personal care products by photo-Fenton and ozonation can
form toxic by-products (Wang and Wang 2016). The low UV absorbance of
hydrogen peroxide and scavenging effects of •OH by H2O2 are the main drawbacks,
leading to high operating costs in the UV/H2O2 process (Guo et al. 2018). Semi-
conductor photocatalysis has been accepted as a cost-effective process for degrada-
tion and mineralization of pharmaceuticals and personal care products in water
because this process can be operated at ambient condition by using low-cost
available semiconductor photocatalysts and their modified forms, which can be
activated by UV light, visible light, as well as natural sunlight. Furthermore, the
immobilization of semiconductor photocatalysts on support material has been
proved as a promising way to enhance the recycling ability of them, resulting in
effective operating and maintenance cost (Klavarioti et al. 2009).
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Persistent Organic Pollutants

Persistent organic pollutants are a group of toxic organic chemicals with long half-
lives and persistence in the environment. Persistent organic pollutants have been
mentioned to toxic and harmful to human health and the environment. The com-
monly encountered persistent organic pollutants are organochlorine pesticides from
agricultural discharge such as DDT, industrial chemicals such as polychlorinated
biphenyls (PCBs), and industrial by-products, especially polychlorinated
dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) as known as
dioxins. These pollutants are classified into three categories based on Stockholm
Convention (Stockholm Convention 2019) as shown in Table 1.5.

Nowadays, the scientists, governments, and non-governmental organizations
(NGOs) are very concerned about these pollutants because of their long persistence
in the environment, long range transportability, high toxicity even at a low level of
concentration, and accumulation in fatty tissues due to their high lipophilicity.
Persistent organic pollutants are widely contaminated in air, water, soil, and migra-
tory species which move across international regions. Moreover, persistent organic
pollutants are found in even non-chemical areas such as the arctic regions (Teran
et al. 2012). The resistance property of persistent organic pollutants under biological
degradation is the main reason, causing bioaccumulation into animal bodies through
food chains. The exposure of persistent organic pollutants creates various serious
health problems such as cancer, allergies and hypersensitivity, hormone disruption,
cardiovascular diseases, reproductive disorders, learning disabilities, and disruption
of the immune system.

Therefore, it is very important to develop methods for mitigation and elimination
of persistent organic pollutants. The existing remediation techniques include
coagulation–flocculation–sedimentation, adsorption, membrane filtration, ozona-
tion, and advanced oxidation processes (Kumari et al. 2020). Photocatalytic process
is one solution to reduce these pollutants in the environment because of the high
efficiency and fast degradation. However, a challenge of the elimination of persistent
organic pollutants by-products should be concerned.

Organic Dyes

The industries in this century, whether they are the textile, paper, rubber, printing,
plastics, cosmetics, dye intermediates, and so forth. All industries used dye as a
component in the production to the desired color product. Nowadays, the organic
dyes could be classified by two types which are natural and synthetic dyes. Firstly,
the natural organic dyes are dyes extracted from organic compounds (contain
carbon) which form the animal, minerals, and vegetable resources such as annatto
(yellow to orange colors), henna plant (brown color), and tomatoes (orange or
reddish colors). All of these dyes occur by natural which means they have no side
effect from dyes and also can degrade by itself. Notwithstanding, natural dyes are not

1 Photocatalytic Remediation of Organic Pollutants in Water 19



Table 1.5 List of persistent organic pollutants in the Stockholm Convention (summarized from
Stockholm Convention 2019)

Annex Persistent organic pollutant Group

A (Elimination: elimination of produc-
tion and use)

Aldrin Pesticide

Chlordane Pesticide

Chlordecone Pesticide

Endrin Pesticide

Dieldrin Pesticide

Heptachlor Pesticide

Lindane Pesticide

Mirex Pesticide

Toxaphene Pesticide

Alpha hexachlorocyclohexane Pesticide

Beta hexachlorocyclohexane Pesticide

Pentachlorophenol and its salts
and esters

Pesticide

Technical endosulfan and its
related isomers

Pesticide

Hexachlorobenzene Pesticide and
industrial chemical

Pentachlorobenzene Pesticide and
industrial chemical

Decabromodiphenyl ether Industrial chemical

Hexabromobiphenyl Industrial chemical

Hexabromocyclododecane Industrial chemical

Hexabromodiphenyl ether Industrial chemical

Heptabromodiphenyl ether Industrial chemical

Hexachlorobutadiene Industrial chemical

Polychlorinated biphenyls Industrial chemical

Polychlorinated naphthalenes Industrial chemical

Short chain chlorinated paraffins Industrial chemical

Tetrabromodiphenyl ether Industrial chemical

Pentabromodiphenyl ether Industrial chemical

B (Restriction: restriction in production
and use)

Dichlorodiphenyltrichloroethane Pesticide

Perfluorooctane sulfonic acid
and its salts

Pesticide & Indus-
trial chemical

Perfluorooctane sulfonyl
fluoride

Pesticide & Indus-
trial chemical

C (Unintentional production: reduction
of unintentional release)

Hexachlorobenzene Unintentional
production

Hexachlorobutadiene Unintentional
production

Pentachlorobenzene Unintentional
production

Polychlorinated biphenyls Unintentional
production

(continued)
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very in demand because of unendurability. Therefore, another type of dye which is
synthetic organic dye became popular because of its lasting color pay-off and wide
range of colors. Table 1.6 shows the examples of synthetic organic dyes. Synthetic
organic dyes are manufactured from organic molecules. The resources for the syn-
thesis of these dyes are chemicals, by-products of petroleum, and earth minerals
(Ziarani et al. 2018).

Nevertheless, the disadvantage of dyes is not all of the dyes are eco-friendly,
especially, synthetic organic dyes. Most of these dyes are very complex molecules,
extremely toxic, chemical stability, and slow degradation (Reddy and Mohan 2016).
Therefore, the discharge of organic dye containing in water is troublesome the
environment, not only bad vision because of their color but also reduction of sunlight
transmission (Crini and Badot 2008; Dinçer et al. 2007; Zhou et al. 2019). Moreover,
these organic dyes also come with a risk substance, for instance, heavy metal (Zn,
Pb, Cu, Cd, Co), amines, and aromatic compound (Zollinger 2003; Zhou et al.
2019). Therefore, these organic dyes are not only harmful to aquatic life but also
mutagenic to humans. The health problems related to organic dyes are skin irritation,
sneezing, sore eyes, carcinogenicity, dysfunction, and mutagenicity, including the
brain, liver, kidney, central nervous and reproductive system, and others (Zhou et al.
2019).

Presently, many researchers have been found and develop the solutions to treat
organic dyes in water, for example, advanced oxidation processes (Andreozzi et al.
1999; Ikehata et al. 2008), adsorption (Wu et al. 2001; Noll 1991), electro-oxidation
(Särkkä et al. 2015; Recio et al. 2011), and reverse osmosis (Bodalo-Santoyo et al.
2003; Agenson et al. 2003). The solutions to treat these dyes are a challenging issue
due to their high solubility and high persistence in the environment. Photocatalytic
process is one of the interesting solutions for wastewater treatment because this
process is non-toxic and it does not affect human life. Homogeneous or heteroge-
neous catalysts can be used as photocatalysts for the treatment of organic dyes in
water (Mao et al. 2017; Bodson et al. 2016; Zhang et al. 2017; Mudassir et al. 2018;
Qu et al. 2017).

Table 1.5 (continued)

Annex Persistent organic pollutant Group

Polychlorinated dibenzo-p-
dioxins

Unintentional
production

Polychlorinated dibenzofurans Unintentional
production

Polychlorinated naphthalenes Unintentional
production
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Table 1.6 Examples of synthetic organic dyes

Synthetic organic dye Chemical structure

Anthraquinone dye

Crystal violet

Fluorene

Methylene blue
Thiazine dye

Methyl orange

Reactive orange 16

(continued)
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1.4 Photocatalytic Remediation of Organic Pollutants
in Water

In this section, photocatalytic organic pollutant treatments in water are categorized
into two groups based on types of photocatalysis, i.e., homogenous and
heterogeneous ones.

1.4.1 Homogeneous Photocatalysis

Homogeneous photocatalysis has attracted numerous attentions as a promising
technology for remediation of organic pollutants in water.

Treatments of Pharmaceuticals and Personal Care Products

The combination of UV and hydrogen peroxide (UV/H2O2), ozonation (UV/O3),
and photo-Fenton has demonstrated their effectiveness in the degradation of phar-
maceuticals and personal care products with initial concentration ranging from μg/L
to ng/L as low as the commonly found levels in the environment. The completed
removal of pharmaceuticals and personal care products, such as sulfamethoxazole,
trimethoprim, bezafibrate, diclofenac, naproxen, ketoprofen, atenolol, metoprolol,
propranolol, diazepam, carbamazepine, primidone (Kim et al. 2009), ofloxacin,
ciprofloxacin, gemfibrozil, ibuprofen, sotalol, triclosan (De la Cruz et al. 2012),
tylosin (He and Hua 2013), and enoxacin (Santoke et al. 2015) from water by
UV/H2O2, has been reported by many researchers.

In the recent decade, the removal of some pharmaceuticals and personal care
products, such as ketoprofen (Illés et al. 2014), caffeine, diethyltoluamide, cyclo-
phosphamide (Kim and Tanaka 2010), mefenamic acid (Chang et al. 2012), and
berberine (Qin et al. 2015), by UV/O3 process, was performed. The degradation of
pharmaceuticals and personal care products by UV/O3 process has not been widely

Table 1.6 (continued)

Synthetic organic dye Chemical structure

Rhodamine
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applied in the large scale compared with other treatment methods in homogeneous
photocatalysis, because of its high-energy requirement for both ozone generator and
UV lamps (Kim and Tanaka 2011), resulting in higher operating costs. The removal
efficiencies of pharmaceuticals and personal care products by different conditions of
photo-Fenton systems have been reviewed (Wang and Wang 2016). Tetracycline
with the initial concentration as high as 24 mg/L can be completely removed by
photo-Fenton process. Moreover, bezafibrate, ibuprofen, and diclofenac with the
trace initial concentration of millimolar level can also be completely removed by this
process (Wang and Wang 2016).

Treatments of Persistent Organic Pollutants

Persistent organic pollutants, a group of hazardous pollutants, such as pesticides that
are often found in agricultural wastewater, also continuously increased the environ-
mental risks, so it is a challenge to solve this problem. A number of physical and
chemical methods have been developed to treat persistent organic pollutants.

Degradation of persistent organic pollutants can be carried out by ozonation
process. Atrazine has been reported to be degraded by catalytic ozonation with
iron scraps (Li and Zhou 2019). Pesticide wastewater (Solís et al. 2019) and
organophosphorus pesticide in water (Aimer et al. 2019) can be treated by ozonation.

Fenton or photo-Fenton is one of the alternative ways for remediation of persis-
tent organic pollutants. FeIII(OH)2+ under UV irradiation has been revealed to
generate OH radicals which can further degrade 4-cholorophenol and other Cr
(VI) phenolic compounds (e.g., 4-bromophenol, 4-nitrophenol, and phenol) (Kim
et al. 2019). Among the typical iron salts, iron (III) nitrate can generate iron aquo
complexes in aqueous and organic solutions, which are highly efficient and selective
homogenous photocatalyst for degradation of cyclohexane into cyclohexanol and
cyclohexanone up to 80 and nearly 100%, respectively (Iqbal et al. 2018). Fipronil, a
pesticide, can be degraded via photo-Fenton catalysis (Singh et al. 2019). It has been
found that the catalysis exhibited the highest degradation efficiency of 88.71% at
pH 3 with an H2O2 concentration of 10mM and the amount of catalyst of 1.5 g/L for
120min reaction time (Singh et al. 2019). These show photo-Fenton is a promising
technique due to the fast regeneration of Fe2+ and the less formation of iron sludge
compared with the conventional Fenton process. Carbendazim can be degraded
with a degradation efficiency of 96% within 15 min by Fenton process (da Costa
et al. 2019). Moreover, modified Fenton processes (e.g., electro-Fenton) have been
introduced (Méndez-Torres et al. 2019) with potential uses for degradations or
removals of pesticide mixtures (Rosa Barbosa et al. 2018), organochlorine pesticide
lindane (Dominguez et al. 2018), chlordimeform insecticide (Rezgui et al. 2018),
and methoxychlor (Huang et al. 2018). It should be noted that the modified Fenton
processes that use solid-state materials as the ferrous sources may also be considered
as heterogeneous photocatalysis.

Normally, heterogeneous photocatalytic degradation of pesticides is a promising
method because of the short time of treatment. However, it also needs more technical
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and economic developments, because the main source of the system (UV irradiation)
often requires a large amount of the electrical energy and the use of UV with ozone
or hydrogen peroxide causes relatively high costs of the processes.

Treatments of Organic Dyes

Homogeneous photocatalysis has proved to be sufficiently effective alternatives for
remediation of organic dyes in water, even though it has some limitations.

A few works have recently focused on the degradation of organic dyes by
ozonation. For example, degradation of reactive red 24 from aqueous solution
(Van et al. 2019), removal of methylene blue in wastewater (Ikhlaq et al. 2019),
organic dye removals with acid-treated clay catalysts (Boudissa et al. 2019), and
degradation of azo dyes (El Hassani et al. 2019; Pérez et al. 2019; Pandian et al.
2018) have been reported with ozonation relations.

Azo dyes (Wang et al. 2019b; Innocenzi et al. 2019), acid orange 7 (AO7) (Wang
et al. 2019b), reactive black 5 (RB5) (Wang et al. 2019b), reactive red 24 (Van et al.
2019), rhodamine B (Wang et al. 2019a), and methylene blue (Anantharaman et al.
2019; Ikhlaq et al. 2019) have been studied to be decolorized by Fenton or photo-
Fenton processes.

UV/H2O2 is an alternative way that is often found for photocatalytic remediation
of organic dyes (e.g., methylene blue (Malvestiti et al. 2019), brilliant green
(Rehman et al. 2018), and rhodamine B (Changchao et al. 2018)) in water.

In a comparison of Fenton and UV/H2O2 for dye degradation, increasing con-
centration of ferrous ions (that catalyze the Fenton reaction) can increase the gener-
ation of OH radicals from hydrogen peroxide up to an optimum level, while in
UV/H2O2, the hydroxyl radicals generated are less due to the presence of photo-
stable organic UV absorbers (ultimately, it reduces the efficiency of UV/H2O2

oxidation).

1.4.2 Heterogeneous Photocatalysis

Photocatalysts used in heterogeneous photocatalysis can be used as (1) powder and
suspension forms and (2) coated forms on supporters or substrates.

Powder and Suspension Forms of Photocatalysts

Suspension of the small size photocatalysts, such as microparticles, nanoparticles,
and other nanomaterials in other forms, in wastewater, is the traditional way to
remove the organic contaminants via heterogeneous photocatalysis.
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Treatments of Pharmaceuticals and Personal Care Products

Among various photocatalysts, photocatalytic removal of pharmaceuticals and per-
sonal care products in water using titanium dioxide (TiO2) powder or nanoparticles,
especially Degussa P25 – a commercially available TiO2 – has been extensively
investigated. Effects of photocatalyst amount, light source, and pH of the solution
have also been studied to determine the optimum conditions for pharmaceuticals and
personal care products removal over powder suspension in water. The examples are
photocatalytic removal of crotamiton, clofibric acid, and sulfamethoxazole using
TiO2 under UV irradiation. Crotamiton is an antipruritic frequently detected in
Japanese rivers. The removal efficiency of crotamiton is not affected by the initial
pH of the solution in the range of 3–9, whereas the removal efficiencies of clofibric
acid and sulfamethoxazole are significantly decreased when the initial pH is adjusted
higher than 6.5, because of repulsive force between TiO2 particle and these pollut-
ants (Fukahori et al. 2012). Photocatalytic removal of ibuprofen, which is the
common nonsteroidal anti-inflammatory drugs (NSAID) in the presence of TiO2

powder suspended in the wastewater under UV/visible light irradiation is another
example. Ibuprofen can be rapidly mineralized over TiO2. However, small amounts
of intermediates in the form of oligomeric species can be detected during the
photocatalytic reaction, leading to catalyst deactivation (Choina et al. 2013). The
utilization of solar light, replacing an expensive and bio-hazardous UV light, as a
light source is receiving considerable attention for photocatalytic removals of phar-
maceuticals and personal care products, such as photocatalytic removals of amoxi-
cillin over tungsten trioxide (WO3) (Nguyen et al. 2019) and photocatalytic
removals of caffeine over titanium dioxide (TiO2) and zinc oxide (ZnO)
nanoparticles (Ghosh et al. 2019).

Treatments of Persistent Organic Pollutants

In the case of elimination of persistent organic pollutants in water, photocatalysis
using powder photocatalysts can be successfully applied for various target pollut-
ants, such as diuron, alachlor, isoproturon, atrazine (Cruz et al. 2017), chlorpyrifos,
cypermethrin, chlorothalonil (Affam and Chaudhuri 2013), rhodamine B, aldicarb,
norfloxacin (Li et al. 2013), and perfluorooctanoic acid (Zhao et al. 2012).
Photocatalytic mineralization of the representatives of aqueous persistent organic
pollutants was performed, e.g., rhodamine B, aldicarb, and norfloxacin as represen-
tatives of color substances, pesticides, and antibiotics, respectively (Li et al. 2013).
Under simulated sunlight irradiation, rhodamine B and norfloxacin can be
decomposed, while aldicarb is difficult to be decomposed (Li et al. 2013).
Perfluorooctanoic acid is a recent-found hazardous persistent organic pollutant.
The shorter chain compounds of perfluorooctanoic acid are less bioaccumulative
and produce a low level of environmental pollution; therefore photocatalytic degra-
dation of perfluorooctanoic acid is increasingly interested as one of the alternative
treatment processes. Photocatalytic degradation of perfluorooctanoic acid using
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β-Ga2O3 photocatalyst powder suspended in perfluorooctanoic acid aqueous solu-
tion exhibited the degradation efficiency as high as 98.8% (Zhao et al. 2012).

Treatments of Organic Dyes

Photocatalytic degradation of dyes is the typical way to investigate the
photocatalytic activity of synthesized photocatalysts. Before utilizations of the
catalysts in other applications, the photocatalytic degradations of model dyes, e.g.,
methylene blue or methyl orange, are commonly done. Therefore, there are a large
number of publications reported on this issue.

Powder suspension of titanium dioxide (TiO2), zinc oxide (ZnO), and others has
been extensively performed for photocatalytic removal of industrial organic pollut-
ants in wastewater, especially dye-containing wastewater. Photocatalytic activity of
ZnO nanoparticles for the decomposition of rhodamine B dye under UV illumination
has been investigated. It was found that ZnO nanoparticles could degrade rhodamine
B dye to 95% within 70 min. Photocatalytic degradation of azo dye in aqueous
solutions under UV irradiation using nanostructured strontium titanate (Sr2TiO3)
showed high photocatalytic activity compared with that of TiO2 (Karimi et al. 2014).
In addition, in photocatalytic degradation of dimethyl phthalate (DMP) (Jing et al.
2018) by TiO2 particles, it was found that the photodegradation occurs at the surface
of the photocatalysts more than in the homogenous phase.

Graphene–oxide hydrogel (zeolitic imidazolate framework) shows photocatalytic
dye degradation ability with multiple cycles of uses because of its hydrophobic
properties and high specific surface area (Mao et al. 2017). Amorphous
photocatalysts of Zn-Al layered double hydroxide can be used for photocatalytic
decoloration of methyl orange (Qu et al. 2017). SrSn(OH)6 can be used for the deg-
radation of rhodamine B (Luo et al. 2016). At low pH, SrSn(OH)6 shows a good
photocatalytic activity compared with commercial TiO2 (P25), because the hexago-
nal phase of hydroxide stannate can create hydroxyl groups for degradation of
rhodamine B. Many modifications of metal oxides, e.g., Ag/TiO2 nanoparticles
(Abdel Messih et al. 2017) and Nd2Sn2O7 (Zinatloo-Ajabshir et al. 2019), have
been developed for degradation various organic dyes. Some details of the modifica-
tions will be discussed in another session.

Even though the suspension of photocatalysts in wastewater is the efficient form
for photocatalytic treatments of organic pollutants in water because of high surface
contacts between the surface of heterogeneous photocatalysts and organic pollutants
in water, the suspension form has major concerns about the recovery and reuse of the
suspended materials and also the leak possibility to the environment of the
photocatalysts. Therefore, the reuse strategies and leakage protections of the cata-
lysts are ones of the challenges.
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Coated Photocatalysts on Supporters or Substrates

Coating of a photocatalyst as a thin layer on supporting materials is an effective
strategy to overcome the limitation of nanostructured photocatalyst powders involv-
ing the post-separation of slurry catalysts from the treated wastewater. Recent
approaches for treatments of organic pollutants are as follows.

Treatments of Pharmaceuticals and Personal Care Products

Photocatalytic removal of pharmaceuticals and personal care products in water using
photocatalysts coated on various support materials has been investigated, e.g.,
removal of salicylic acid, naproxen, diclofenac, and ibuprofen by TiO2 (P25)/
tetraethyl orthosilicate coated on glazed ceramics (Zhang et al. 2015); removal of
ibuprofen by micro-TiO2 on coated glass rings (Czech and Tyszczuk-Rotko 2018);
and removal of a wide variety of pharmaceuticals and personal care products and
their metabolites [i.e., pharmaceuticals (carbamazepine, venlafaxine, fluoxetine,
atenolol, sulfamethoxazole, ibuprofen, atorvastatin, and naproxen) and personal
care products (triclosan and triclocarban)] by TiO2 coated on quartz fiber filters
(Arlos et al. 2016). Dip-coating technique is mostly used for the photocatalyst
coatings in wide areas.

Treatments of Persistent Organic Pollutants

Photocatalytic removal of persistent organic pollutants in water is widely carried out
using photocatalysts coated on solid substrates, especially glass substrates. The
commercial TiO2-coated glass microrods were applied to degrade phenol in water.
The adherence of TiO2 to glass microrods was proved to be good. The powder
suspension of TiO2 in bulk solution was not observed after experimental runs
(Medina-Valtierra et al. 2006). Glass tubes and glass beads were used as supporting
materials of TiO2 thin film for degradation of paraquat in water. In the case of glass
tubes, the photocatalytic activity of three different types of TiO2 was compared,
including commercial TiO2 (P25), TiO2 synthesized by hydrothermal method, and
TiO2 synthesized by sol–gel method. It was found that TiO2 synthesized by hydro-
thermal method exhibited the highest paraquat herbicide removal efficiency (99%),
followed by commercial TiO2 (75%) and TiO2 synthesized by sol–gel method
(65%), respectively. The reason was that anatase phase of TiO2 transformed to rutile
phase during sol–gel preparation method with heat treatment above 400 �C (Lee
et al. 2002). In the case of glass beads, paraquat can be efficiently degraded by N, S
codoped TiO2-coated glass beads under sunlight and visible light irradiation. The
paraquat removal efficiencies could maintain after ten consecutive runs (Zahedi et al.
2015). Furthermore, photocatalytic removal of mixed pesticides (methyl parathion,
dichlorvos, and lindane) in water using TiO2-coated glass plates is presented in the
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literature. All of the pesticides were completely removed, when the TiO2 coated
glass plates were used as a baffle wall of the reactor under solar light irradiation
(Senthilnathan and Philip 2012).

Treatments of Organic Dyes

Photocatalyst-coated substrates can also be applied for degradation the organic dyes
in water, which can form reactive oxygen species to individual or combination
treatments. These coated substrates can be prepared by traditional coating tech-
niques, such as pulsed laser deposition, spin coating, electron beam evaporation,
spray pyrolysis, chemical bath deposition, sol–gel, dip-coating, and doctor blade.
For instance, titanium dioxide-coated glass, ceramic tile, and stainless steel sheets
can decolorize methylene blue and industrial dye wastewater up to 93% and can
reuse up to 20 times with the same efficiencies (Sirirerkratana et al. 2019). TiO2

layers immobilized on glass substrates by dip-coating technique for degradation of
methyl orange were reported (Bouarioua and Zerdaoui 2017). It was found that three
layers of TiO2 are the best condition for the test with good adhesion and reproduc-
ibility. Besides, they claimed that immobilized TiO2 can replace the suspension
mode and eliminate the costly separation process of the catalysts (Bouarioua and
Zerdaoui 2017). Other examples of photocatalyst-coated substrates for organic dye
degradation are carbon-coated tungsten oxide (Tong et al. 2019), nebulizer spray-
coated BiVO4 thin films (Dhas et al. 2019), Fe ion-doped polyaniline film on
tin-doped indium oxide (ITO)-coated glass substrate (Haspulat et al. 2013), and
P-doped TiO2 nanoparticles film coated on a ground glass substrate (Lv et al. 2011).

1.5 Modifications of Heterogeneous Photocatalysts

It has been proven that heterogeneous photocatalysis is one of the most potential
methods for the treatment of organic pollutants in water. Relatively large band gap
energy is a limitation of metal oxide-based heterogeneous photocatalysts, causing
the requirement of UV light for activation. In addition, electron–hole recombination
can also occur after the charge separation and migration of photogenerated carriers,
resulting in the unsatisfactory photocatalytic activity to treat the target pollutants.
The electronic band structure modifications and charge separation improvements of
metal oxide-based photocatalysts have attracted significant attentions in the field of
environmental treatments. Modifications of electronic band can be achieved by
doping and composites of semiconductors. These enhance the photocatalytic activity
of photocatalysts and shift the light absorption range toward visible region.

Another modification technique in heterogeneous photocatalysts is the utilization
of electrical potential in photocatalysis. The coated semiconductor photocatalysts are
used as the photoelectrodes in photo-electrocatalytic applications.
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Tables 1.7, 1.8 and 1.9 conclude several modification strategies for remediation
of pharmaceuticals and personal care products, persistent organic pollutants, and
organic dyes in water.

1.5.1 Doping

Doping of semiconductor photocatalysts with one or more foreign ions is one of the
promising modification strategies to enhance the photocatalytic activity of
photocatalyst under UV irradiation and shift the absorption wavelength to visible
light. Metal doping displays a successful approach for modifications of
photocatalysts with improved photonic efficiencies (Coronado et al. 2013). Metal-
doped photocatalysts, such as Fe-doped TiO2, Bi-doped TiO2, Ni-doped TiO2,
Pt-doped ZnO, Ag-doped ZnO, and Au-doped ZnO, were published in the recent
years (Lin et al. 2017; Bhatia and Dhir 2016; Vaiano et al. 2019). The nonmetal-
doped photocatalysts are also available in the literature such as N-doped TiO2

(Shetty et al. 2017) and S-doped TiO2 (Yi et al. 2019). Doping can be done by

Table 1.7 Photocatalytic removal of pharmaceuticals and personal care products in water using
modified photocatalysts

Modification
strategy Photocatalyst Organic pollutant Reference

Doping Fe-doped TiO2 Carbamazepine Lin et al. (2017)

Ibuprofen

Sulfamethoxazole

Bi-doped TiO2 Ibuprofen Bhatia and Dhir
(2016)Ni-doped TiO2

N-doped TiO2 Ciprofloxacin Shetty et al. (2017)

Naproxen

Paracetamol

S-doped TiO2 Diclofenac Yi et al. (2019)

Pt-doped ZnO Caffeine Vaiano et al. (2019)

Ag-doped ZnO

Au-doped ZnO

Composite Mg-ZnO-Al2O3 Caffeine Elhalil et al. (2018)

TiO2/reduced graphene oxide Carbamazepine Lin et al. (2017)

Ibuprofen

Sulfamethoxazole

Multi-walled carbon nanotubes-
TiO2-SiO2

Acetaminophen Czech and Tyszczuk-
Rotko (2018)

ZnO-zeolite Benzophenone
caffeine

Jagannatha et al.
(2019)

Photoelectrode TiO2 nanopore array Tetracycline Liu et al. (2009)

TiO2/SiO2/Fe3O4 Diclofenac Hu et al. (2011)
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several methods, such as impregnation, coprecipitation, ion implantation, and in situ
synthesis methods (e.g., sol–gel, hydrothermal, and solvothermal).

Table 1.8 Photocatalytic removal of persistent organic pollutants in water using modified
photocatalysts

Modification
strategy Photocatalyst Organic pollutant Reference

Doping Cu-doped TiO2 Organophosphorus
pesticide

Manga Raju et al.
(2019)

Fe-doped TiO2 Diazinon pesticide Phuong et al.
(2019)

C-doped TiO2 Paraoxon pesticides Rasoulnezhad
et al. (2017)Parathion

pesticides

Fe-doped TiO2 Diazinon Tabasideh et al.
(2017)

Pd-doped In2O3 Atrazine Aazam et al.
(2018)

Br-doped diamond Methomyl pesticide Costa et al.
(2017)

Br-doped diamond Insecticide
propoxur

Guelfi et al.
(2017)

Composite Polyaniline/FeZSM-5 Herbicide
glyphosate

Milojević-Rakić
et al. (2018)

MIL(Fe)/Fe-SPC composite Thiamethoxam Wei et al. (2018)

Pd/ZnWO4 nanocomposite Methylene blue Chen et al.
(2019a)

TiO2/Fe2O3 nanocomposite Diazinon Mirmasoomi
et al. (2017)

ZnO nanorod/carboxylic graphene/
polyaniline composite

Diuron Anirudhan et al.
(2018)

Fe3O4/metal–organic framework
nanocomposite

Diazinon Sajjadi et al.
(2019)

TiO2/ZrO2 nanocomposite Herbicide
chloridazon

Mbiri et al.
(2018)

Ag-ZnO composite Imidacloprid Kanwal et al.
(2018)

In, S-TiO2/reduced graphene oxide
nanocomposite

Pesticide atrazine Khavar et al.
(2018)

Photoelectrode TiO2/Ni photoelectrode Dipterex pesticide Fang et al. (2012)

Porous coral-like WO3/W
photoelectrode

Perfluorooctanoic
acid

Pan et al. (2019)

Fluorine-doped tin oxide/WO3/
BiVO4 photoelectrodes

Phenol Chatchai et al.
(2009)
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Table 1.9 Photocatalytic removal of organic dyes in water using modified photocatalysts

Modification
strategy Photocatalyst Organic pollutant Reference

Doping M-doped TiO2

nanoparticles (M¼Cu,
Zn)

Methyl orange Khairy and
Zakaria (2014)

Fe-doped ZnO Methyl orange Saleh and Djaja
(2014)

Sr-doped NaTaO3 Methylene blue An et al. (2018)

P- and Ag-doped TiO2 p-Nitrophenol Bodson et al.
(2016)

Fe3+Cr3+-codoped
BaTiO3

Azo dyes Amaechi et al.
(2019)

Mg-doped ZnO Methylene blue Paula et al.
(2019)

GO-doped TiO2 Rhodamine B Zhang et al.
(2017)

Codoped or tri-doped
g-C3N4

Rhodamine B methylene blue Hasija et al.
(2019)

Composite NiO–ZnO–Ag
nanocomposites

Methylene blue Aydoghmish
et al. (2019)

Niobium oxides and dif-
ferent polymer matrices

Methylene blue Heitmann et al.
(2019)

Tetraphenylporphyrin/
WO3/exfoliated graphite

Acid blue 25 (AB-25) Malefane et al.
(2019)

Reduced graphene oxide-
ZrO2 composite

Crystal violet Ali et al. (2019)

TiO2/Bi2O3 Orange II Ayekoe et al.
(2016)

WO3/TiO2/carbon fiber Orange II Balta et al.
(2019)

Zn3(PO4)2/BiPO4 Rhodamine B Naciri et al.
(2019)

BiFeWO6/α-AgVO3 Rhodamine B Senthil et al.
(2019)

Graphene/ZnO Methyl orange Wang et al.
(2019c)

Nb/TiO2 Rhodamine B Ravishankar
et al. (2019)

BiOBr/BiOI/cellulose Rhodamine B Du et al. (2019)

CdS/g-C3N4/metal–
organic framework

Rhodamine B Chen et al.
(2019b)

g-C3N4/TiO2 Rhodamine B Monga and Basu
(2019)

N-doped TiO2/resin Rhodamine B Louangsouphom
et al. (2019)

CuS-CdS Methylene blue Mahanthappa
et al. (2019)

Methyl orange Sun et al. (2019)

(continued)
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Treatments of Pharmaceuticals and Personal Care Products

The concentration of dopants is an important factor affecting removal efficiencies of
pharmaceuticals and personal care products. One example is ibuprofen removal over
transition metal-doped ZnO under solar light irradiation (Bhatia and Dhir 2016). The
concentration of transition metal dopant was varied from 0.25% to 1% by weight.
The 0.25 wt% Bi-doped TiO2 exhibited the maximum removal efficiency, and the
removal efficiencies decreased with increasing Bi content. On the other hand, the
maximum removal efficiency over Ni-doped TiO2 was observed at Ni content of
0.5 wt%, and the removal efficiencies decreased when Ni content was higher or
lower than 0.5 wt%. Consequently, the optimum content of dopants should be
considered case by case.

Treatments of Persistent Organic Pollutants

P-doped and Ag-doped TiO2 photocatalysts for photocatalytic degradation of p-
nitrophenol under UV light (Bodson et al. 2016), copper-doped anatase/brookite
TiO2 nanohybrids (Manga Raju et al. (2019), Fe-TiO2/Bent-Fe photocatalyst for
removal of diazinon pesticide (Phuong et al. 2019), degradation of paraoxon and
parathion pesticides on carbon-doped TiO2 nanorod thin films (Rasoulnezhad et al.
2017), degradation of diazinon by iron-doped TiO2 nanoparticles (Tabasideh et al.
2017), Pd-doped In2O3 nanocomposites to degradation of atrazine (Aazam et al.

Table 1.9 (continued)

Modification
strategy Photocatalyst Organic pollutant Reference

MFe2O4-Ag2O (M ¼ Zn,
Co, Ni)

CdS/reduced graphene
oxide

Methylene blue Chen et al.
(2019a)

CeO2/sugarcane bagasse Methylene blue Channei et al.
(2017)

BiVO4-GO-PTFE Remazol brilliant blue R
methylene blue Rhodamine B

Dowla et al.
(2017)

ZnO/PMMA Methylene blue Di Mauro et al.
(2017)

Poly(methyl methacry-
late)-TiO2

Methylene blue Mirhoseini and
Salabat (2015)

Fe2O3-loaded activated
carbon fiber/polymer

Methylene blue Kadirova et al.
(2017)

Photoelectrode Ag2Mn8O16 nanocrystals/
TiO2 nanotubes

Rhodamine B Thabit et al.
(2018)

RuO2/TiO2

photoelectrode
Reactive brilliant red X-3B Fang et al. (2013)
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2018), degradation of methomyl pesticide boron-doped diamond electrode (Costa
et al. 2017), and degradation of the insecticide propoxur by boron-doped diamond/
air-diffusion cell (Guelfi et al. 2017) have been reported.

Treatments of Organic Dyes

Cu-doped and Zn-doped TiO2 nanoparticles synthesized by sol–gel method were
applied for methyl orange degradation (Khairy and Zakaria 2014). The small
crystallite size and doping were found to cause an increase in the adsorption edge
wavelength with decrease in band gap energy. Cu-doped TiO2 showed the optimum
photocatalytic activity for methyl orange degradation.

Magnesium- and iron-doped ZnO nanoparticles were fabricated to use for deg-
radation of methyl orange and/or methylene blue under UV irradiation (Paula et al.
2019; Saleh and Djaja 2014). It was found that the various parameters, i.e., pH,
dopant concentrations, and photocatalytic dosage, affected the photocatalytic activ-
ity, especially dopant concentration is the most important factor.

NaTaO3 photocatalysts were synthesized with doping of Sr cations through
crystallization in molten NaCl flux, resulting in an increase in the population of
excited electrons. However, the reaction rate of the obtained photocatalysts showed
less enhancement compared with the increase in electron population, which ascribed
to a limited fraction of electrons overriding the energy gradient and returning back to
the surface (An et al. 2018).

Doping of graphitic carbon nitride (g-C3N4) by various types of metals (Na, K,
transition metals, and rare earth metals) and nonmetal materials (phosphorus, sulfur,
oxygen, nitrogen, carbon, boron, and halogen) for photocatalytic remediation of
organic dyes in water was reviewed (Hasija et al. 2019). It was shown that the
photocatalytic activity for degradation of organic pollutants (rhodamine B and
methylene blue) of the doped materials was successfully enhanced up to 50%
compared with the bare ones, because of changes of band gaps of the materials.

Co-doing of two metal dopants or a metal ion with a nonmetal dopant for
synergistic photocatalytic effects, i.e., the working together of two things to produce
an effect greater than the sum of their individual effects, of the dopants is an
alternative way to modify metal oxide photocatalysts (Sanitnon et al. 2019). For
an example, ferroelectric Fe3+Cr3+ codoped BaTiO3 nanopowders for the
photocatalytic oxidation of azo dyes were fabricated (Amaechi et al. 2019). The
photocatalytic activity of the powders was found to be maintained after three cycle
uses, and the powders could be reused without generating any secondary residue.

1.5.2 Composite of Semiconductors

Composite (also called coupling) of two or more semiconductors is considered as an
effective method for modification of photocatalysts, because the separation of photo-
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excited electrons and holes was accelerated, resulting in improved photocatalytic
performances.

Treatments of Pharmaceuticals and Personal Care Products

A large number of semiconductor composites have been developed as photocatalyst
for the removal of pharmaceuticals and personal care products in water, such as
Mg-ZnO-Al2O3 (Elhalil et al. 2018), TiO2/reduced graphene oxide (Lin et al. 2017),
MWCNT-TiO2-SiO2 (Czech and Tyszczuk-Rotko 2018), and ZnO-zeolite
(Jagannatha et al. 2019).

Presently, the visible light-responsive photocatalytic removal of pharmaceuticals
and personal care products by carbon–oxygen–titanium linkages in the composite
system has attracted significant attention. Photocatalytic removal of 29 different
pharmaceuticals and personal care products over carbonaceous TiO2 composites was
summarized (Awfa et al. 2018). The main carbonaceous materials included activated
carbon, carbon nanotubes, and graphene. These materials can enhance the
photocatalytic removal efficiency of pharmaceuticals and personal care products
due to their high specific surface area and large electron storage capacity. Moreover,
the carbonaceous materials can behave as a sensitizer to provide electrons for TiO2

which can subsequently be activated by photons with suitable energy leading to
higher photocatalytic performance (Awfa et al. 2018).

Treatments of Persistent Organic Pollutants

Highly photoactive metal oxides could be achieved by composite with two or more
different materials of TiO2, ZnO, SnO2, SrTiO2, WO3, Cu2O, and Fe2O3 with
nonmetal elements such as N, S, C, and F for photocatalytic remediation of persistent
organic pollutants. For example, a development of polyaniline/FeZSM-5 composites
for the degradation of herbicide glyphosate was reported (Milojević-Rakić et al.
2018). The composites showed efficient green catalytic degradation of pesticide/
herbicide pollutants in environmental remediation systems.

MIL(Fe)/Fe-doped nanospongy porous biocarbon (MIL(Fe)/Fe-SPC) composites
were used for the degradation of thiamethoxam, pesticides, and other environmental
pollutants (Wei et al. 2018).

Semiconductor composites with unique selective adsorption properties, such as
Pd/ZnWO4 nanocomposite (Chen et al. 2019a), TiO2/Fe2O3 nanocomposite
(Mirmasoomi et al. 2017), zinc oxide nanorod-incorporated carboxylic graphene/
polyaniline composite (Anirudhan et al. 2018), Fe3O4/metal–organic framework
nanocomposite (Sajjadi et al. 2019), TiO2/ZrO2 nanocomposite (Mbiri et al. 2018),
Ag-ZnO composite (Kanwal et al. 2018), and In-S-TiO2/reduced graphene oxide
nanocomposite (Khavar et al. 2018) for degradation and detoxification of pesticides,
were reported. High crystallinity, small particle size, high surface area, and well-
defined porosity are important parameters to provide active sites for adsorption of
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pollutants and facilitate the diffusions of pollutants and products away from the
photoactive centers that assisted the effective performances of the photocatalysts.

Treatments of Organic Dyes

Many researchers have studied the photocatalytic remediation of organic dyes in
water by composite materials. Degradation of methylene blue, methyl orange, acid
blue 25 (AB-25), crystal violet dye, orange II azo dye, rhodamine B by NiO-ZnO-Ag
nanocomposites (Aydoghmish et al. 2019), tetraphenylporphyrin/WO3/exfoliated
graphite nanocomposite (Malefane et al. 2019), reduced graphene oxide-ZrO2 com-
posite (Ali et al. 2019), WO3/TiO2/carbon fiber composite (Balta et al. 2019),
Zn3(PO4)2/BiPO4 composite (Naciri et al. 2019), BiFeWO6/α-AgVO3 composite
(Senthil et al. 2019), graphene/ZnO composite (Wang et al. 2019c), Nb/TiO2

composite (Ravishankar et al. 2019), BiOBr/BiOI/cellulose composite (Du et al.
2019), CdS/g-C3N4/metal–organic framework composite (Chen et al. 2019b),
g-C3N4/TiO2 composite (Monga and Basu 2019), CuS-CdS composite
(Mahanthappa et al. 2019), MFe2O4-Ag2O composite (M ¼ Zn, Co, & Ni) (Sun
et al. 2019), Cds/reduced graphene oxide composite (Chen et al. 2019a), and CeO2/
sugarcane bagasse composite (Channei et al. 2017) was developed and reported.

Carbon–metal oxide composites are another interesting photocatalysts. For exam-
ple, graphene oxide-doped mesoporous TiO2 photocatalysts for rhodamine B deg-
radation were reported (Zhang et al. 2017). The obtained photocatalysts showed
photodegradation efficiency up to 81% under visible light irradiation. In addition,
the well dispersion of graphene oxide and mesoporous TiO2 nanoparticles leads the
good influences on the photocatalytic performance of the photocatalysts.

Additionally, semiconductors composited with polymers were also developed.
For example, modification of niobium oxides and different polymer matrices, e.g.,
polypropylene (PP), poly(3-hydroxibutyrate) (PHB), and polyurethane (WPU), were
proposed (Heitmann et al. 2019). Nano-/micro-scaled TiO2/polyacrylamide beads
for efficient photodegradation of organic dyes were reported (Mudassir et al. 2018).
Nanoscale feature and high surface area of the TiO2/polyacrylamide beads showed
the superior degradation of organic dyes and enhanced rate constant of the reactions.
The composite beads also showed interesting properties of efficient disinfections of
E.coli and S. aureus under photocatalytic applications (Mudassir et al. 2018). Other
several semiconductor/polymer composites for photocatalytic dye degradations are
BiVO4-GO-PTFE (Dowla et al. 2017), ZnO/PMMA (Di Mauro et al. 2017), poly
(methyl methacrylate)/TiO2 (Mirhoseini and Salabat 2015), and Fe2O3-loaded acti-
vated carbon fiber/polymer [polyester fiber or polyethylene pulp) (Kadirova et al.
2017).
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1.5.3 Photoelectrodes in Photo-Electrocatalytic Process

Photo-electrocatalysis has become an attractive way to increase the catalytic effi-
ciency of photocatalysis. Photo-electrocatalytic degradation of organic pollutants in
water using photocatalyst-coated substrates as photoelectrodes has been developed.

Treatments of Pharmaceuticals and Personal Care Products

TiO2 nanopore array for photo-electrocatalytic removal of tetracycline was reported
(Liu et al. 2009). A comparative removal of diclofenac by magnetically attached
TiO2/SiO2/Fe3O4 coated on graphite under UV irradiation with and without electric
potential was performed by Hu et al. (2011). In the presence of +0.8 V, the removal
efficiency of diclofenac was significantly higher than that of the conventional
photocatalysis (Hu et al. 2011).

Treatments of Persistent Organic Pollutants

Photo-electrocatalytic remediation of persistent organic pollutants using TiO2/Ni
photoelectrode showed the reduction of chemical oxygen demand (COD) of water
up to 82.6% (Fang et al. 2012). This method is more efficient than typical
photocatalysis and typical electrochemical oxidations. A study of coral-like porous
WO3/W photoelectrode for degradation of perfluorooctanoic acid, a highly toxic
persistent organic pollutant, was reported (Pan et al. 2019). The uniqueness of this
research is the porous coral-like structure that has a suitable energy band position
and strong oxidation ability, leading to a strong ability for photo-electrocatalytic
degradation of perfluorooctanoic acid. Another example is the use of fluorine-doped
tin oxide/WO3/BiVO4 photoelectrodes that showed that mixing of metal oxides on
the BiVO4 photocatalysts could enhance the charge separation (Chatchai et al.
2009). In the study of efficient photocatalytic degradation of phenol as a persistent
organic pollutant substrate over Co3O4/BiVO4 composite, the key factor for the high
photocatalytic activity is the sequence of WO3 and BiVO4 layers (Long et al. 2006).

Treatments of Organic Dyes

Photoelectrodes made of Ag2Mn8O16 nanocrystals/TiO2 nanotubes were fabricated
via anodization and annihilation methods and used for photocatalytic degradation of
rhodamine B under solar-simulated light irradiation (Thabit et al. 2018). RuO2/TiO2

photoelectrodes for degradation of reactive brilliant red (X-3B) were also reported
(Fang et al. 2013).
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1.6 Photocatalytic Reactors for Remediation of Organic
Pollutants

Photocatalytic reactor design is the major challenge in photocatalytic remediation of
organic pollutants in water. The important key in photocatalytic reactor design
consideration is that the large area of photocatalysts has to be illuminated efficiently.
In general, the photocatalytic reactor configuration for wastewater treatment can be
classified as two main groups, including fixed bed reactor and slurry type reactor
(Ibhadon and Fitzpatrick 2013). Apart from the conventional photocatalytic reactor,
the combination of photocatalysis with another treatment process has also been
developed to overcome the specific obstacles in each case, such as a photocatalytic
membrane reactor.

A wide variety of reactor configurations for removals of pharmaceuticals and
personal care products have been reported in the literature. For example, removal of
amoxicillin in water by a conventional slurry photocatalytic reactor under simulated
solar light irradiation was performed (Nguyen et al. 2019). The optimal conditions
for that study are an initial amoxicillin concentration of 1.0 μM, a photocatalyst
amount of 0.104 g/L, and a pH of 4 (Nguyen et al. 2019). The continuous fixed bed
photocatalytic reactor for the removal of paracetamol was developed (Borges et al.
2015). The reactor consists of TiO2-coated glass spheres placed in the glass tube.
The synthetic wastewater was recirculated along with the system by a peristaltic
pump during the irradiation of the simulated solar light. A submerged ceramic
membrane photocatalytic reactor for amoxicillin removal was designed and reported
(Li et al. 2019). The system is composed of two stainless steel rectangular tanks with
the ceramic membrane fixed inside the tanks. The air compressor was connected to
the top of the membrane for backwashing. The aeration pipe was installed at the
bottom of the tanks to prevent the accumulating of photocatalyst powder on the
membrane surface (Li et al. 2019).

A combination of conventional slurry or fixed bed photocatalytic reactors and
membrane filtration for remediation of persistent organic pollutants in water has
attracted considerable attention from researchers since the last decade. For example,
a slurry bed photocatalytic membrane reactor for the removal of 32 different persis-
tent organic pollutants was developed. The system is composed of a pre-filter unit,
an irradiation unit with 32 UV lamps, and a photocatalyst recovery unit. A ceramic
microfiltration membrane was used to separate photocatalysts (Benotti et al. 2009).

For organic dyes, a number of reactors (apart from conventional slurry-type ones)
for remediation of organics dye in water have been created. A slurry-type reactor
combined with an air sparging unit for degradation of methylene blue in water was
reported (Abdellah et al. 2018). A fixed bed photocatalytic membrane reactor for
degradation of 4BS dye was designed. N-doped TiO2 was immobilized on a ceramic
membrane, and then the membrane was installed between a reaction chamber and a
separation chamber. A xenon lamp was used as a light source. The dye-containing
aqueous solution was fed by a diaphragm pump (Wang et al. 2016). A photocatalytic
reactor consisted of a UVA or UVC light source installed on the top of a chamber
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was designed to decolorization of a synthetic (methylene blue-contained) wastewater
and an actual (reactive purple-contained) dye wastewater. A pump was used to
circulate the water on the 15� tiled TiO2-coated substrates, i.e., glass, ceramic tile,
and stainless steel sheets (Sirirerkratana et al. 2019). Two reactors – a batch
reactor and a continuous reactor – were designed for degradation of acid violet
7 dye (AV7) using ZnO/polypyrrole powder photocatalysts. In the batch reactor, the
powder photocatalysts were fixed on a rectangular glass plate, and the fixed glass
was immersed in the dye solution. In a continuous annular reactor, the powders were
supported on the inner wall of an external quartz ring that covered a UV lamp quartz
tube (González-Casamachin et al. 2019).

1.7 Conclusions

Photocatalysis is a process which a chemical reaction is accelerated in the presence
of a catalyst on exposure to light. Photocatalysis could be classified to be two types,
i.e., homogeneous and heterogeneous photocatalysis, on the basis of appearances of
the physical state of reactants. Ozonation (UV/O3), photo-Fenton processes (Fe2+

and Fe2+/H2O2), UV/H2O2, and UV/H2O2/O3 are examples of homogeneous
photocatalysis, while photocatalysts in heterogeneous photocatalysis are typically
semiconductor materials (i.e., metal oxides) which can be used in powder and
suspension forms or coated forms on other substrates. Both homogeneous and
heterogeneous photocatalytic processes have been utilized as alternative technolo-
gies for remediation of organic pollutants in water, including (i) pharmaceuticals and
personal care products (synthetic compounds with specific properties for human or
animal healthcare and medical purposes); (ii) persistent organic pollutants (organo-
chlorine pesticides and industrial chemicals with long half-lives and persistence in
the environment); and (iii) organic dyes (synthetic organic substances for colorants).
Homogeneous photocatalysis has many advantages, e.g., high oxidation properties.
It is, however, not popular in various photocatalytic applications, because it is
difficult to separate the photocatalysts from the solution, the photocatalysts have
low potential to reuse, purification of products is necessary, and almost homoge-
neous photocatalysts absorb narrowly light within the solar spectrum. It has been
proven that heterogeneous photocatalysis is one of the most potential methods for
the treatment of organic pollutants in water. Anyhow, relatively large band gap
energy causes some limitations of metal oxide-based heterogeneous photocatalysts.
Modifications of the electronic band can be achieved by doping and composites of
semiconductors. Another modification technique in heterogeneous photocatalysts is
the utilization of electrical potential in photocatalysis. The coated semiconductor
photocatalysts are used as photoelectrodes in photo-electrocatalytic applications. In
addition, the photocatalytic reactor configuration for wastewater treatment by het-
erogeneous photocatalysis can be classified as two main groups, including fixed bed
reactor and slurry-type reactor. Apart from the conventional photocatalytic reactors,
the combination of photocatalysis with another treatment process has also been
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developed to overcome the specific obstacles in each case, such as a photocatalytic
membrane reactor.
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