
QuRVe: Query Refinement for View
Recommendation in Visual Data

Exploration

Humaira Ehsan1(B), Mohamed A. Sharaf2, and Gianluca Demartini1

1 The University of Queensland, Brisbane, QLD, Australia
humairaehsan@gmail.com

2 United Arab Emirates University, Al Ain, Abu Dhabi, UAE
msharaf@uaeu.ac.ae

Abstract. The need for efficient and effective data exploration has
resulted in several solutions that automatically recommend interesting
visualizations. The main idea underlying those solutions is to automati-
cally generate all possible views of data, and recommend the top-k inter-
esting views. However, those solutions assume that the analyst is able to
formulate a well-defined query that selects a subset of data, which con-
tains insights. Meanwhile, in reality, it is typically a challenging task to
pose an exploratory query, which can immediately reveal some insights.
To address that challenge, this paper proposes to automatically refine the
analyst’s input query to discover such valuable insights. However, a naive
query refinement, in addition to generating a prohibitively large search
space, also raises other problems such as deviating from the user’s pref-
erence and recommending statistically insignificant views. In this paper,
we address those problems and propose the novel QuRVe scheme, which
efficiently navigates the refined queries search space to recommend the
top-k insights that meet all of the analysts’s pre-specified criteria.

1 Introduction

Visual data exploration is the rudiment of deriving insights from large datsets.
Typically, it involves an analyst performing the following steps: 1) selecting a
subset of data, 2) generating different visualizations of that subset of data, and 3)
sifting through those visualizations for the ones which reveal interesting insights.
Based on the outcome of the last step, the analyst might have to refine their
initial selection of data so that the new subset would show more interesting
insights. This is clearly an iterative and time-consuming process, in which each
selection of data (i.e., exploratory input query) is a springboard to the next one.

Motivated by the need for an efficient and effective visual data exploration
process, several solutions have been proposed towards automatically finding and
recommending interesting data visualizations (i.e., steps 2 and 3 above) (e.g., [6–
8,14,17]). The main idea underlying those solutions is to automatically generate
all possible views of the explored data, and recommend the top-k interesting
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 154–165, 2020.
https://doi.org/10.1007/978-3-030-54623-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_14

QuRVe 155

Fig. 1. View on input query Q

views, where the interestingness of a view is quantified according to some utility
function. Recent work provides strong evidence that a deviation-based formu-
lation of utility is able to provide analysts with interesting visualizations that
highlight some of the particular trends of the analyzed datasets [8,14,17,19]. In
particular, the deviation-based metric measures the distance between the prob-
ability distribution of a visualization over the analyzed dataset (i.e., target view)
and that same visualization when generated from a comparison dataset (i.e.,
comparison view), where the comparison dataset is typically the entire database.
The underlying premise is that a visualizations that results in a higher deviation
is expected to reveal insights that are very particular to the analyzed dataset.

Existing solutions have been shown to be effective in recommending interest-
ing views under the assumption that the analyst is “precise” in selecting their
analyzed data. That is, the analyst is able to formulate a well-defined exploratory
query, which selects a subset of data that contains interesting insights to be
revealed by the recommended visualizations. However, such assumption is clearly
impractical and extremely limits the applicability of those solutions. In reality,
it is typically a challenging task for an analyst to select a subset of data that
has the potential of revealing interesting insights. Hence, it is a continuous pro-
cess of trial and error, in which the analyst keeps refining their selection of data
manually and iteratively until some interesting insights are revealed. Therefore,
in this work we argue that, in addition to the existing solutions for automati-
cally recommending interesting views, there is an equal need for solutions that
can also automatically select subsets of data that would potentially provide such
interesting views. Hence, our goal in this work is not only to recommend inter-
esting views, but also to recommend exploratory queries that lead to such views.
To further illustrate the need for such solution, consider the following example.

Example 1. Consider an analyst wants to explore and find interesting insights
in the U.S. Census income dataset [1], which is stored in table C. Her intu-
ition is that analyzing the subset of data of those who have achieved a high
level of education might reveal some interesting insights. Therefore, she selects
that particular subset in which everyone has completed their 12th year of edu-
cation (i.e., graduated high school) via the query: Q: SELECT * FROM C WHERE
education ≥ 12. To find the top-k visualizations, she might use one of the
existing approaches (e.g., [8,17]), in which all the target and comparison aggre-

156 H. Ehsan et al.

gate views are generated and their deviation is computed by using a distance
function (e.g., Euclidean distance). Figure 1 shows the top-k visualization recom-
mended by such approaches. Particularly, the figure shows a bar chart in which
the x-axis is the dimension Hours per week, and the y-axis is the probability
distribution of the aggregate function COUNT. Such visualization is equivalent to
plotting the probability distributions of the target view Vt and the comparison
View Vc, which are expressed in SQL in Fig. 1. Hence, the deviation value shown
in Fig. 1 is the Euclidean distance between the probability distribution of Vt

and Vc. However, Fig. 1 clearly shows that the target and comparison views are
almost the same, which is also reflected by the low-deviation value of 0.0459.
However, such visualization would still be recommended by existing approaches
because it achieves the maximum deviation among all the views generated over
the data subset selected by query Q.

The previous example illustrates a clear need for a query refinement solu-
tion that is able to automatically modify the analyst’s initial input query and
recommend a new query, which selects a subset of data that includes inter-
esting insights. To that end, one straightforward and simple approach would
involve generating all the possible subsets of data by automatically refining the
predicates of the input query. Consequently, for each subset of data selected
by each query refinement, generate all possible aggregate views (i.e., visualiza-
tions). In addition to the obvious challenge of a prohibitively large search space
of query refinements, that naive approach would also lead to visualizations that
might appear to be visually interesting but they are irrelevant from the ana-
lyst’s perspective. Particularly, there are two issues with that approach, and in
turn the recommended visualization; 1) similarity-oblivious: a blind automated
refinement that is oblivious to the analyst’s preferences might result in a refined
query that is significantly dissimilar from the input query, and 2) statistical
insignificance: the subset selected by the refined query can be too small and as a
result the target views generated from that subset will miss a number of values
for the dimension attribute. This leads to views with high deviation values but
statistically insignificant.

The two issues mentioned above highlight the need for automatic refinement
solutions that are guided by the user’s preference and statistical significance,
which is the focus of this work. In particular, we propose a novel scheme QuRVe,
which is particularly optimized to leverage the specific features of the problem
for pruning that large search space, as explained in the next sections.

2 Preliminaries

2.1 View Recommendation

Similar to the recent data visualization platforms [8,17], we are given a multi-
dimensional dataset D(A,M), where A is the set of dimension attributes, M

is the set of measure attributes, and F is the set of possible aggregate func-
tions over the measure attributes M. In a typical visual data exploration session

QuRVe 157

the user chooses a subset DS of the dataset D by issuing an input query Q.
For instance, consider the query . In Q, T
specifies a combination of predicates, which selects DS for visual analysis (e.g.,
education ≥ 12 in Ex. 1). A visual representation of Q is basically the process
of generating an aggregate view Vi of its result (i.e., DS), which is then plotted
using some visualization methods such as bar charts, scatter plots, etc. There-
fore, an aggregate view Vi over DS is represented by a tuple (A,M,F, b) where
A ∈ A, M ∈ M, F ∈ F and b is the number of bins in case A is numeric. That
is, DS is grouped by dimension attribute A and aggregated by function F on
measure attribute M . For instance, the tuple
represents the aggregate view shown in Fig. 1.

Towards automated visual data exploration, recent approaches have been
proposed for recommending interesting visualizations based on deviation based
metric (e.g., [8,17]). In particular, it measures the deviation between the aggre-
gate view Vi generated from the subset data DS vs. that generated from the
entire database D, where Vi(DS) is denoted as target view, whereas Vi(D) is
denoted as comparison view. To ensure that all views have the same scale, each
target view Vi(DS) and comparison view Vi(D) is normalized into a probability
distribution P [Vi(DS)] and P [Vi(D)] and it is bounded by the maximum devi-
ation value DM . Accordingly, the deviation D(Vi), provided by a view Vi, is
defined as the normalized distance between those two probability distributions.

D(Vi) =
dist(P [Vi(DS)], P [Vi(D)])

DM
(1)

Then, the deviation D(Vi) of each possible view Vi is computed, and the k
views with the highest deviation are recommended (i.e., top-k) [8,9,17,19]. How-
ever, to ensure that those top-k recommended views reveal interesting insights,
we propose utilizing query refinement techniques, which are explained next.

2.2 Query Refinement

Automatic query refinement is a widely used technique for DBMS testing, infor-
mation retrieval and data exploration. In a nutshell, in this technique the user
provides an initial query and then it is progressively refined to meet a particu-
lar objective [13,16,18,20]. In this work, we propose to automatically refine an
input exploratory query for the objective of view recommendation. Particularly,
as mentioned in Sect. 2.1, the user provides an input query Q, which is progres-
sively refined by automatically enumerating all combinations of predicates for
the objective of generating interesting views.

Particularly, we consider queries having selection predicates with range
(<,≤, >,≥) operators. These predicates are defined on a set of numeric dimen-
sion attributes denoted as P. The number of predicates is p, such that |P| = p.
Each of this range predicate is in the form li ≤ Pi ≤ ui where Pi ∈ P and li and
ui are the lower and upper limits of query Q along predicate Pi. The domain
of predicate Pi is limited by a Lower bound Li and upper bound Ui. A refined
query Qj is generated by modifying the lower and/or upper limits for some of

158 H. Ehsan et al.

the predicates in Q. That is, for a predicate li ≤ Pi ≤ ui in query Q, a refined
predicate in Qj takes the form l′i ≤ Pi ≤ u′

i. Similar to [2,13], we convert a range
predicate into two single-sided predicates. Therefore, li ≤ Pi ≤ ui is converted
to two predicates: Pi ≤ ui

∧−Pi ≤ −li. This allows refinement of one or both
sides of the range predicates and this results in the total number of single sided
predicates to be 2p. The set of all of the refined queries is denoted as Q.

A refined query Qj is obtained by changing one or more predicates Pi ∈ T to
P ′
i , which naturally makes the refined query Qj different from the input query

Q. However, a refined query that is significantly dissimilar from its counterpart
input query would result in loss of user preference and might be deemed irrelevant
to the analysis. Hence, to quantify the change made to transform Q into the
refined query Qj , we define a similarity measure S(Q,Qj) in terms of the distance
between Qj and Q (i.e., s(Q,Qj)).

S(Q,Qj) = 1 − s(Q,Qj) (2)

While the exact specification of s(Q,Qj) is deferred to Sect. 4, it is worth
pointing out the impact of query refinement on the deviation computation
defined in Eq. 1. Particularly, when utilizing refinement, a view Vi can be either
generated from the input query, or a refined one. To associate each view with
its underlying query, we denote a view as Vi,Qj

to specify the ith view generated
over the result of query Qj . Accordingly, Eq. 1 is modified to define the deviation
D(Vi,Qj

) of a view Vi,Qj
, as:

D(Vi,Qj
) =

dist(P [Vi(DQj
)], P [Vi(D)])

DM
(3)

2.3 Hypothesis Testing

In visual data exploration, it is often the case that an observed high-deviation is
actually statistically insignificant. This problem leads to misleading ranking of
such views, and in turn inaccurate recommendations [3,4,21]. For instance, in
our recent work on the MuVE scheme [8,9], we made the following observations:

1. Some of the recommended top-k target views have very few underlying tuples,
which lead to higher deviation values. Consequently, such views receive higher
rank despite of the lack of real insight.

2. Often the data selected by the exploratory query result in only low-deviation
views. Consequently, the top-k recommend views will exhibit low-deviation, as
shown in Ex. 1. However, such top-k recommendations are clearly statistically
insignificant.

To determine whether the observed difference is statistically significant, we
employ the widely used approach hypothesis testing. Hypothesis testing deter-
mines if there is enough evidence for inferring that a difference exists between
two compared samples or between a sample and population. A difference is called

QuRVe 159

statistically significant if it is unlikely to have occurred by chance [3]. Hypothe-
sis testing involves testing a null hypothesis by comparing it with an alternate
hypothesis. The hypothesis to be tested is called the null hypothesis, denoted as
H0. The null hypothesis states that there is no difference between the population
and the sample data. The null hypothesis is tested against an alternate hypoth-
esis, denoted as H1, which is what we have observed in the sample data. For
instance, in Fig. 1 of Ex. 1, the hypothesis is that “high school graduates work
different number of hours per week (Hours worked is divided into two categories)
as compared to the population”, and this becomes H1. The corresponding H0 is
that no such difference exits. Likewise, each possible view Vi from each refined
query become a H1, which is to be tested for significance before recommendation.

Depending on the nature of the statistical test and the underlying hypothesis,
different null hypothesis statistical tests have been developed, e.g., chi-square test
for categorical dimension attributes. Furthermore, after stating H0 and H1, the
chosen statistical test returns p-value. The p-value is the probability of obtain-
ing a statistic at least as extreme as the one that was actually observed, given
H0 is true. Specifically, the p-value is compared against a priori chosen signif-
icance level α, where the conventionally used significance level is 0.05. Hence,
if pvalue(Vi) ≤ α, then H0 must be rejected, which means the Vi is statisti-
cally significant. Clearly, due to the nature of the statistical test involved, the
acceptance or rejection of H0 can never be free of error. If the test incorrectly
rejects or accepts H0, then an error has occurred. Hypothesis testing can incur
the following two types of error: 1) If H0 is rejected, while it was true, it is called
Type-I error and 2) If H0 is accepted, while H1 was true, it is called Type-II error.
Type-II error is critical in our case because we do not want to reject views that
might be interesting. The probability of Type-II error is specified by a parameter
β, which normally has a value 0.10 − 0.20. An alternate term is power, which is
the probability of rejecting a false H0, therefore, power = 1 − β. A priori power
analysis is employed to determine the minimum sample size that is necessary to
obtain the required power. By setting an effect size (ω), significance level (α),
and power level (β), the sample size to meet specification can be determined [5].

3 Query Refinement for View Recommendation

In a nutshell, the goal of this work is to recommend the top-k bar chart visualiza-
tions of the results of query Q and all its corresponding refined queries Qj ∈ Q,
according to some utility function. However, that simple notion of utility falls
short in capturing the impact of refinement on the input query. In particular,
automatic refinement introduces additional factors that impact the level of inter-
estingness, and in turn utility of the recommended views. Accordingly, in our
proposed scheme, we employ a weighted multi-objective utility function and con-
straints to integrate such factors. In particular, for each view Vi,Qj

, we evaluate
the following components:

1. Interestingness: Is the ability of view Vi,Qj
to reveal some insights about the

data, which is measured using the deviation-based metric D(Vi,Qj
) (Eq. 3).

160 H. Ehsan et al.

2. Similarity: Is the similarity between the input query Q, and the refined query
Qj underlying the view Vi,Qj

, which is measured as S(Q,Qj) (Eq. 2).
3. Statistical Significance: Is the ability of the refined query Qj and the view Vi,Qj

to generate a statistically significant result, which is captured by checking that
the size of the subset selected by Qj satisfies the constraint power(Qj), and the
significance of the view Vi,Qj

satisfies the constraint pvalue(Vi,Qj
).

To capture the factors and constraints mentioned above, we employ a weighted
multi-objective utility function, which is defined as follows:

U(Vi,Qj
) = αS × S(Q,Qj) + αD × D(Vi,Qj

) (4)

Parameters αS and αD specify the weights assigned to each objective in our
hybrid utility function, such that αS+αD = 1. Those weights can be user-defined
so that to reflect the user’s preference between interestingness and similarity.
Also, notice that all objectives are normalized in the range [0, 1].

To fully define the similarity component of our utility function, we revisit
Eq. 2 which quantifies the distance between Q and Qj . In literature, a number of
methods have been proposed to measure the distance between two range queries
[11,15,16]. Similar to [2,18], we calculate the distance in terms of absolute change
in predicate values (Eq. 5). This method provides a reasonable approximation of
the change in data selected by the refined query at a negligible cost. Additionally,
we normalize it by predicate bounds to accommodate the different scales of
various predicates.

s(Q,Qj) =
1
p

p∑

i=1

|lQj

i − lQi | + |uQj

i − uQ
i |

2|Ui − Li| (5)

Definition: Query Refinement for View Recommendation: G iven a user-
specified query Q on a database D, a multi-objective utility function U , a signif-
icance level α, statistical power 1 − β and a positive integer k. Find k aggregate
views that have the highest utility values, from all of the refined queries Qj ∈ Q

such that pvalue(Vi,Qj
) ≤ α and power(Qj) > 1 − β.

In short, the premise is that a view is of high utility for the user, if it satisfies
the specified constraints, shows high-deviation, and is based on a refined query
that is highly similar to the user specified query.

4 Search Schemes

For an input query Q, each possible query refinement of Q can be represented
as a point in p-dimensional space, where |P| = p (please see Sect. 2.2 for more
details). Clearly, one of the points in that space is the input query Q itself,
and the remaining points belong to the set of refined queries Q. Our high-level
goal is to: 1) generate the set Q, 2) compute the utility of all the aggregate
views generated from each query in Q, and 3) recommend the top-k views after
ranking them based on their achieved utility. To that end, clearly the large size

QuRVe 161

of Q and the corresponding aggregate views, together with the complexity of
evaluating the statistical significance and utility function of each view, makes
the problem highly challenging. Hence, in this section, we put forward various
search strategies for finding the top-k views for recommendation.

4.1 The Linear Scheme

Clearly, a naive way to identify the top-k objects is to score all objects based on
a scoring function, sort, and return the top-k objects. Accordingly, the Linear
scheme is basically an exhaustive and brute force strategy, in which views from all
refined queries are generated and ranked according to their utility. As we consider
predicates on continuous dimensions, infinite possible values can be assigned to
predicates in those refined queries. Therefore, each dimension is discretized with
a user specified parameter γ. This divides the range of dimension attribute into
1/γ equi-width intervals. In this scheme, irrespective of Q, iteratively all refined
queries are generated using all combinations of Predicates P1, P2...Pp.

For each query Qj ∈ Q, to check the constraint power(Qj) < 1 − β, a
function powerTest(Qj , ω, β, α) is defined, which returns true value if the con-
straint is satisfied, else it returns false. The cost of checking this constraint is
one database probe, where a COUNT query with predicates of Qj is executed
to get the sample size of Qj . Moreover, for the queries that satisfy the statis-
tical power constraint, all views are generated. Then for each view Vi,Qj

the
constraint pV alue(Vi,Qj

) < α is checked. Specifically, for this purpose, another
function significanceTest(Vi,Qj

, α) is defined, which returns a true value if p-
value < α . Consequently, for each view Vi,Qj

that satisfies the constraint, its
utility value U(Vi,Qj

) is computed, and finally the top-k views are returned.

4.2 The QuRVe Scheme

Clearly, the linear search scheme, visits every possible view, therefore, it is very
expensive in terms of execution time. In this section, we present the QuRVe
scheme, which reduces cost by pruning a large number of views. Notice that our
problem of finding top-k views is similar to the problem of top-k query processing,
which is extensively studied in various settings [12]. Generally in these settings
objects are evaluated by multiple objectives that contribute to the overall score
of each object. In terms of efficiency, the best performing techniques for various
top-k problem settings are based on the threshold algorithm (TA) [10,12]. TA
generates sorted lists of objects on partial scores for every objective, visits the
lists in round robin fashion and merges objects from different lists to compute
the aggregated scores. Typically, it early terminates the search as soon as it has
the top-k objects.

In our settings, we have a similar configuration i.e., we have two partial
scores of a view Vi,Qj

, namely: 1) Similarity score S(Q,Qj), 2) Deviation score
D(Vi,Qj

). These are stored in Slist and Dlist. Conversely, we also have some
key differences: 1) for any view Vi,Qj

the values of S(Q,Qj) and D(Vi,Qj
) are

not physically stored and are computed on demand, 2) calculating D(Vi,Qj
) for

162 H. Ehsan et al.

a view is an expensive operation, and 3) the size of the view search space is
prohibitively large and potentially infinite.

Obviously, a forthright implementation of TA is infeasible to our problem due
to the limitations mentioned before. However, recall that the similarity objec-
tive S(Q,Qj) is the comparison of predicates of Qj with Q and involves no
database probes. Hence, a sorted list Slist can be easily generated at a negli-
gible cost. However, populating the Dlist in a similar fashion is not possible,
as it involves expensive database probes. Therefore, to minimize the number
of probes and efficiently populate Dlist, the Sorted-Random (SR) model of the
TA algorithm [12] is employed. In the SR model the sorted list (S) provides
initial list of candidates and the random list (R) is probed only when required.
Accordingly, QuRVe provides Slist as the initial list of candidate views, by incre-
mentally generating refined queries in decreasing order of similarity and popu-
lating the Slist. The views in Slist have their partial scores, the final scores are
only calculated for the views for which the Dlist is also accessed. To achieve
this, QuRVe maintains the variables UUnseen: Stores the maximum utility of
the views that are not probed yet and USeen: Stores the kth highest utility
of a view seen so far. Specifically, to calculate UUnseen, the upper bound on
deviation is used. Particularly, consider Vi,Qj

as the next view in Slist and let
the upper bound on its deviation be Du(Vi,Qj

). Moreover, let the upper bound
on deviation from all views be Du then Du = Max[Du(Vi,Qj

)]. Consequently,
UUnseen = αS × S(Q,Qj) + (1 − αS) × Du. As the D(Vi,Qj

) is the normalized
deviation, hence theoretically Du = Max[Du(Vi,Qj

)] = 1.
In detail, QuRVe starts with initializations as: (i) there are no views generated

yet, therefore USeen = 0, (ii) UUnseen = Du, and (iii) Q has the highest similarity
i.e., S(Q,Q) = 1, therefore, Q is added to Qlist as the first member. Then, the
power of the currently under consideration query Qj is checked by the function
powerTest(Qj , ω, β, α). Next, the corresponding views are generated by the
function generateViews(Qj) and the statistical significance test is performed on
each view by the function significanceTest(Vi,Qj

, α). The Utility of the views
that pass the test is computed. Accordingly, the list topk is updated. The utility
of kth highest view is copied into USeen, to maintain the bound on the seen
utility values. This completes processing the currently under consideration query
Qj . Later, the next set of neighboring queries are generated. In next iteration,
another query Qj is taken from the Qlist in order of the similarity objective
value and accordingly the value of UUnseen is updated. The iteration continue,
until either there are no more queries to process, or the utility of the remaining
queries will be less than the already seen utility (i.e., UUnseen > USeen is false). If
QuRVe terminates because of the first condition that means its cost is the same
as Linear search, as the optimization did not get a chance to step in. However,
often QuRVe terminates because of the second condition (i.e., UUnseen > USeen is
false) and achieves early termination. The most efficient performance of QuRVe
is expected when UUnseen decreases quickly during search and early termination
can be triggered.

QuRVe 163

Fig. 2. Impact of αS and
αD on cost

Fig. 3. Impact of k, αS =
0.6

Fig. 4. Impact of dimen-
sions

5 Experimental Evaluation

We perform extensive experimental evaluation to measure both the efficiency
and effectiveness of out proposed schemes for top-k view recommendation.

Data Analysis: We assume a data exploration setting in which multi-dimensional
datasets are analyzed. We use CENSUS: the census income dataset [1]. The
dataset has 14 attributes and 48,842 tuples. The independent categorical
attributes of the dataset are used as dimensions (e.g., occupation, work class,
hours per week, sex, etc.), whereas the observation attributes are used as mea-
sures (capital gain, etc.) and the numerical independent attributes are used for
predicates (e.g., education, age, etc.). The aggregate functions used are SUM,
AVG and COUNT. In the analysis, all the αS is in the range [0 − 1], where
αS + αD = 1. In default settings αS = 0.5, k = 10 and γ = 1

23 . For the purpose
of statistical significance in experiments we use chi-square goodness of fit test.

Performance: We evaluate the efficiency and effectiveness of the different recom-
mendations strategies in terms of the cost incurred. As mentioned in Sect. 3, the
cost of a strategy is the total cost incurred in processing all the candidate views.
We use the total views probed as the cost metric. Each experiment is performed
with 10 randomly generated input queries, spread around the search space, then
average of the cost is taken.

Impact of the α Parameters (Fig. 2): In this experiment, we measure the impact
of the α values on cost. Figure 2 shows how the cost of Linear and QuRVe
schemes are affected by changing the values of αS . In Fig. 2, αS is increasing
while αD is implicitly decreasing. Notice that the Linear scheme has the same
cost for all values of αS , which is as expected since it performs exhaustive search
over all views. Therefore, its cost depends on the number of all combinations,
irrespective of α. Figure 2 also shows that QuRVe has almost the same cost as
Linear for αS = 0 and αS = 0.1, but outperforms it as the value of αS increases.
This is because in QuRVe, the upper bound on deviation is set to the theoretical
maximum bound i.e., Du = 1 and when αS = 0, UUnseen = 0 × S + 1 × Du = 1,
consequently early termination is not possible. On the contrary, as αS increases,
chances of applying early termination based on the similarity value becomes
possible. Hence, this prunes many database probes.

164 H. Ehsan et al.

Impact of k (Fig. 3): Figure 3 shows that Linear is insensitive to the increase in
the value of k, because it visits all views and sorts them according to their utility
irrespective of the value of k. For αS = 0.6, QuRVe performs better than Linear
for all values of k, due to the early termination feature of QuRVe scheme.

Scalability (Fig. 4): The search space of our problem depends on p, γ, |A|, |M | and
|F |. Increasing any of these factors explodes the search space. Consequently, the
cost of all schemes increases as there are more views that are visited in search
for the top-k views. Figure 4 shows the impact of number of the dimensions
on cost. Particularly for this experiment the number of dimensions (|A|) are
increased from 1 to 9. Figure 4 shows that the increase in the cost of Linear is
linear with the increase in |A|. However, for QuRVe the increase in the cost is
slow. Particularly, the cost of QuRVe increases as the number of dimension are
increased from 1 to 3, because the schemes search from more views to generate
top-k views. But for |A| = 5 the cost decreases this is because a new dimension
is added which had views with high deviation and that resulted in increasing
the value of USeen and triggering early termination.

6 Conclusions

Motivated by the need for view recommendation that lead to interesting dis-
coveries and avoid common pitfalls such as random or false discoveries. In this
paper we formulated the problem of query refinement for view recommendation
and proposed QuRVe scheme. QuRVe refines the original query in search for
more interesting views. It efficiently navigates the refined queries search space
to maximize utility and reduce the overall cost. Our experimental results show
employing the QuRVe scheme offer significant reduction in cost.

Acknowledgement. This work is partially supported by UAE University grant
G00003352.

References

1. https://archive.ics.uci.edu/ml/datasets/adult
2. Albarrak, A., Sharaf, M.A., Zhou, X.: SAQR: an efficient scheme for similarity-

aware query refinement. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee,
M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8421, pp.
110–125. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05810-8 8

3. Bay, S.D., Pazzani, M.J.: Detecting group differences: mining contrast sets. Data
Min. Knowl. Disc. 5(3), 213–246 (2001). https://doi.org/10.1023/A:1011429418057

4. Chung, Y., et al.: Towards quantifying uncertainty in data analysis & exploration.
IEEE Data Eng. Bull. 41(3), 15–27 (2018)

5. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, revised edn.
Academic Press, Cambridge (1977)

6. Demiralp, Ç., et al.: Foresight: recommending visual insights. PVLDB 10(12),
1937–1940 (2017)

https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.1007/978-3-319-05810-8_8
https://doi.org/10.1023/A:1011429418057

QuRVe 165

7. Ding, R., et al.: Quickinsights: quick and automatic discovery of insights from
multi-dimensional data. In: SIGMOD, pp. 317–332 (2019)

8. Ehsan, H., et al.: MuVE: efficient multi-objective view recommendation for visual
data exploration. In: ICDE, pp. 731–742 (2016)

9. Ehsan, H., et al.: Efficient recommendation of aggregate data visualizations. IEEE
Trans. Knowl. Data Eng. 30(2), 263–277 (2018)

10. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

11. Kadlag, A., Wanjari, A.V., Freire, J., Haritsa, J.R.: Supporting exploratory queries
in databases. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24571-1 54

12. Marian, A., et al.: Evaluating top- k queries over web-accessible databases. ACM
Trans. Database Syst. 29(2), 319–362 (2004)

13. Mishra, C., Koudas, N.: Interactive query refinement. In: EDBT (2009)
14. Sellam, T., et al.: Ziggy: characterizing query results for data explorers. PVLDB

9(13), 1473–1476 (2016)
15. Telang, A., et al.: One size does not fit all: toward user and query dependent ranking

for web databases. IEEE Trans. Knowl. Data Eng. 24(9), 1671–1685 (2012)
16. Tran, Q.T., et al.: How to conquer why-not questions. In: SIGMOD (2010)
17. Vartak, M., et al.: SEEDB: efficient data-driven visualization recommendations to

support visual analytics. PVLDB 8(13), 2182–2193 (2015)
18. Vartak, M., et al.: Refinement driven processing of aggregation constrained queries.

In: EDBT (2016)
19. Wang, C., et al.: Efficient attribute recommendation with probabilistic guarantee.

In: KDD, pp. 2387–2396 (2018)
20. Wu, E., et al.: Scorpion: explaining away outliers in aggregate queries. PVLDB

6(8), 553–564 (2013)
21. Zhao, Z., et al.: Controlling false discoveries during interactive data exploration.

In: SIGMOD (2017)

https://doi.org/10.1007/978-3-540-24571-1_54
https://doi.org/10.1007/978-3-540-24571-1_54

	QuRVe: Query Refinement for View Recommendation in Visual Data Exploration
	1 Introduction
	2 Preliminaries
	2.1 View Recommendation
	2.2 Query Refinement
	2.3 Hypothesis Testing

	3 Query Refinement for View Recommendation
	4 Search Schemes
	4.1 The Linear Scheme
	4.2 The QuRVe Scheme

	5 Experimental Evaluation
	6 Conclusions
	References

