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Abstract. We consider the problem of answering temporal queries on
RDF stores, in the presence of time-agnostic RDFS domain ontologies,
of relational data sources that include temporal information, and of rules
that map the domain information in the source into the target ontology.
Our proposed solution consists of two rule-based domain-independent
algorithms. The first algorithm materializes target RDF data via a ver-
sion of data exchange that enriches the data and the ontology with tem-
poral information from the sources. The second algorithm accepts as
inputs temporal queries expressed in terms of the domain ontology, using
SPARQL supplemented with time annotations. The algorithm translates
the queries into the standard SPARQL form that respects the structure of
the temporal RDF information while preserving the question semantics.
We present the algorithms, report on their implementation and experi-
mental results for two application domains, and discuss future.
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1 Introduction

In application domains that span industry, government, science, and global
health, data are often collected independently by different teams over time. As
the needs of the various data-collecting entities evolve, it is often the case that
data from multiple sources must be put together under a unified target for-
mat (exchanged [1]), using expert-developed source-to-target (s-t) rules. In many
applications, the target data formats also have to be aligned with the standard
domain vocabularies called ontologies. Our exposition will focus on a common
real-life scenario, in which ontologies and ontology-compliant data are expressed
using the RDF/S capabilities – those of the Resource Description Framework
(RDF) data model [2] enriched with additional RDFS specifications [3], – and
are queried using SPARQL [4], while the source data are relational.

In applications conforming to this relational-to-RDF/S data-exchange sce-
nario, e.g., in studies of antimicrobial resistance (AMR), the source data may
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contain important temporal information, while the applicable target domain
ontologies lack temporal components. (In AMR this is the case with the Antibi-
otic Resistance Ontology ARO). Existing relational-to-RDF/S data-exchange
solutions do not directly apply here, as they do not incorporate temporal seman-
tics of the data in easy-to-use ways. As a result, temporal information from the
sources can be lost in the exchange process, making it hard or even impossible for
domain scientists to efficiently obtain correct answers to temporal queries posed
on the contents of the source data in terms of the target ontologies. Custom
solutions developed on a case-by-case basis [5] would delegate to data analysts
or domain scientists the nontrivial task of temporally enhancing the originally
time-agnostic domain ontologies, such as ARO. In addition, to correctly for-
mulate temporal queries, domain analysts would need to be aware of how the
temporal information is modeled and represented in the resulting systems.

Contributions. In this paper, in the context of relational-to-RDF/S data
exchange, we consider the scenario in which domain analysts are interested in
obtaining answers to temporal queries formulated in terms of the given time-
agnostic target domain ontology, with the expectation that the temporal infor-
mation in the query answers would come from the data sources. We assume that
the analysts (users) are familiar with formulating SPARQL queries using the
given RDFS ontology, and that they provide the s-t rules that map the domain
information in the source schemas into the time-agnostic target ontology, using
tools such as that of [11]. In this scenario, we propose a declarative domain-
independent approach that enables users to formulate SPARQL-based temporal
queries and returns to them answers to the queries, using the domain informa-
tion enabled in the target by the s-t rules, with the temporal dimension of that
information coming from the sources via temporal enrichment.

Our approach focuses on separating temporal semantics from the domain
semantics, and comprises two algorithms. The first algorithm materializes tar-
get RDF data via a version of data exchange that builds on the given s-t rules to
enrich the target data and ontology with temporal information from the sources.
The second algorithm accepts as inputs temporal queries expressed in terms of
the ontology, using SPARQL supplemented with a lightweight formalism for time
annotations and comparisons. The algorithm translates queries into the standard
SPARQL form that respects the structure of the temporal RDF information
while preserving the question semantics, thus ensuring successful evaluation of
the queries on the materialized temporally-enriched RDF data. In this paper we
present the algorithms (Sect. 2–3), report on their implementation and exper-
imental results for two application domains (Sect. 4), and discuss future work
(Sect. 5). Please see the full version of the paper [18] for the details.

Related Work. RDFS [3] is a language used in practice for describing ontolo-
gies. Existing works have focused on representing and reasoning with temporal
RDF data [6], querying such data [7], and inferring temporal properties in tem-
poral RDFS ontologies [8]. At the same time, the temporal aspect is usually
not included in the practical development of domain ontologies; our proposed
approach in this paper is designed to bridge this gap.
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Relational data exchange has been studied extensively [1]. For relational-
to-RDF data exchange, see [10,11]. To the best of our knowledge, temporal
data exchange between relational schemas and ontologies has not been studied
formally. The only formal work on temporal relational data exchange is in [12].
We use the results of [12] in the experimental validation of our approach.

2 Temporal Enrichment of Ontologies and Data

Fig. 1. The RDF (lower) level of this Figure shows two “subject-predicate-object”
(s,p,o) triples, with names (URIs) of resources (e.g., Farm A), and predicate names
(e.g., livesIn). At the RDFS level, the classes of the entities are related to each other
through the domains and ranges of the predicates. Class Antibiotic Drug is shown to be
a subclassOf Antimicrobial Drug. The two layers are connected via type statements.

The first problem that we consider is enrichment of time-agnostic RDFS ontolo-
gies and of the resulting materialized RDF data with temporal information from
the relational sources. Our domain-independent rule-based Algorithm 1, which
addresses the problem, accepts three inputs. The first input comprises relational
data sources with temporal information. We assume that temporal information
in a relation, if present, is expressed via a single marked column whose val-
ues are time intervals. (Specifically, we assume concrete representation of valid
time [13].) The second input is the target time-agnostic RDFS domain ontol-
ogy. The final input is a set of source-to-target tuple-generating dependencies
(s-t tgds) expressing the rules by which the source domain data can be materi-
alized (exchanged) in the format conforming to the target ontology. We assume
that each rule is a GLAV s-t tgd [1] with up to one temporal variable, which
(if present ) occurs once on the left-hand side (LHS) [12]. For s-t tgds to make
sense in the relational-to-RDF/S scenario, we represent each RDF/S triple on
the right-hand side (RHS) of the tgds, of the form “subject-predicate-object,”
or (s, p, o), as a relational atom of the form p(s, o).

Algorithm 1 is based on straightforward domain-independent pattern-based
rules, and can be viewed as consisting of three conceptually distinct stages. In
the first stage, the algorithm adds “temporal-enrichment atom patterns” to the
RHS of the input s-t tgds. For the patterns, we use the temporal structures
of [6], which, essentially, reify [14] RDF triples with their relevant temporal
adornments, see the RDF level of Fig. 2 for an illustration. (We use the structural
patterns of [6] to allow use of graph DBMSs without any special features for
storing the RDF results of materializing temporal data from the sources.) In
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Algorithm 1: Temporally enriching ontologies, s-t tgds, and RDF data
Data: Relational data sources D, RDFS ontology O, and set M of s-t tgds.
Result: Temporally enriched OT , MT , and target RDF data set FT .
begin

MT ← M; OT ← O; // initialization

for each atom p(s, o) on the right-hand side of each M ∈ M do
if p(s, o) is in the temporal-enrichment scope of M then

MT ← temporally enrich p(s, o) in M ; // first stage

OT ← temporally enrich the p-related part of OT ; // second stage

FT ← materialize D into RDF via data exchange using MT ; // third

stage

return OT , MT , and FT ;

the second stage, the input time-agnostic ontology is augmented with RDFS-
level specifications of the temporal-enrichment structures that enriched the s-t
tgds. In the third stage, the resulting s-t tgds can be used to exchange the
input (temporally aware) data sources into the temporally aware RDF format
consistent with the (now) temporally aware output ontology. (We assume that
all of the materialized RDF data conform to the enriched ontology).

Consider an example in the AMR domain. Suppose a data source has a
relation DrugUsage (Farm, Animal, AMR-Drug, Drug-Administration-Time) for
recording the temporal history of AMR drug usage for animals in farms. Let the
relation have a single tuple (‘Farm A’,‘P1’,‘Ampicillin’, [1/1/2019,1/5/2019]).
Suppose that analysts would like to obtain answers to temporal queries posed
using the ontology terminology shown at the RDFS (top) level of Fig. 1. As the
ontology is time agnostic, the best way to exchange data from the DrugUsage
source to a target consistent with the ontology would be to use the s-t tgd.

DrugUsage(f, a, d, t) → livesIn(a, f) ∧ usedOn(d, a). (1)

Here, t is a temporal variable for the temporal attribute. Using this s-t tgd on
the DrugUsage relation would result in the data shown at the RDF level of Fig. 1.
Clearly, AMR scientists cannot get from these data a correct (nonempty) answer
to the query “return the farms that used antibiotic drugs on their animals in the
year 2019,” as there is no temporal information in the stored data of Fig. 1.

This problem can be solved by applying Algorithm 1 to the above ontology,
data source, and s-t tgd inputs. The algorithm will yield the enriched s-t tgd.

DrugUsage(f, a, d, t) → livesIn(a, f) ∧ usedOn(d, a) ∧ tsubj(c1, d)
∧ tpred(c1, usedOn) ∧ tobj(c1, a) ∧ temporal(c1, c2)
∧ interval(c2, c3) ∧ validFor(c3, t).

(2)

The RHS of Eq. (2) exhibits the temporal structure of [6] applied to the RDF
triple represented by the atom usedOn(d, a). c1 (c2, c3, resp.) stands for unique
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Fig. 2. An adornment of the Ampicillin-[is]-usedOn-P1 RDF triple of Fig. 1 with a
temporal structure of [6]. The RDFS layer shows the metadata of [6], including a
Statement class and a TNode (temporal-node) class. The TNode is characterized by an
interval-value class. The RDF level shows instantiations of these RDFS metadata.

new URIs generated for the temporal structure of [6] with the RDF triples
being materialized; e.g., s, tn, and ti are generated for the triple Ampicillin-
[is]-usedOn-P1 in Fig. 2. The top half of Fig. 2 shows the time-enriched ontology
information that results from applying Algorithm1 to the inputs of the example.

3 Querying the Materialized Temporally Enriched Data

Fig. 3. Query QT
am asking for the farms that used antimicrobial drugs in 2019, as (a)

the original temporally-annotated SPARQL version, (b) the result of its rewriting by
the 1st stage of Algorithm 2, and (c) the result of the expansion of version (b) by the
2nd stage of Algorithm 2. (In (c), initialDate and finalDate are shorthand for SPARQL
functions for extracting the start/end points from the time-interval values bound to
?t.) Unlike (a)–(b), version (c) is directly executable by standard SPARQL processors.

Suppose that Algorithm1 has been applied to the given relational data sources
D, time-agnostic target ontology O, and s-t tgds M. As a result, we obtain
an RDF/S data set (FT ,OT ) that materializes source information, including
temporal characterizations of the source data. Now the RDF query language
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SPARQL [4] can be used to formulate, with respect to (w.r.t.) (FT ,OT ), tem-
poral queries such as QT

am: “Return farms that used antimicrobial drugs in the
year 2019,” see Fig. 3(c). This temporal query can be processed directly on the
data set (FT ,OT ) by a standard SPARQL processor, with a nonempty answer
successfully returned on the data coming from the DrugUsage relation.

As illustrated in Fig. 3(c), direct temporal querying of temporal RDF/S
data sets is already enabled by our approach of Sect. 2. At the same time, our
additional objective is to allow domain analysts to concentrate on the domain-
ontology part of formulating such temporal queries, while keeping the tempo-
ral part of the queries as easy to write as possible. For this purpose, we offer
domain experts an opportunity to formulate their temporal queries via a tem-
poral user interface (temporal UI) that we provide for SPARQL. In the UI,
standard SPARQL constructs are supplemented with temporal annotations on
RDF/S triple patterns in the queries, using the notation that we borrow from
the query format of [8], as well as with constructs for temporal comparisons, such
as during, which are known as Allen’s interval relations [9]. See Fig. 3(a) for an
illustration, with temporal annotation ?t. We will be referring to temporal-UI
versions of SPARQL queries as temporally annotated SPARQL queries.

Algorithm 2: Temporal querying of temporally enriched RDF/S data
Data: RDFS ontology OT , RDF data set FT , temporally annotated SPARQL

query Q.
Result: Answer set A to a SPARQL reformulation of Q on FT .
begin

R ← {Q}; // will reformulate Q into R that is executable on FT

for each triple pattern P in R do
if there is a hierarchy H in OT that applies to P then

R ← rewrite P in R in all ways using H; // 1st stage: rewriting

for each temporal annotation T in R do
R ← expand T in R into triple patterns; // 2nd stage: expansion

A ← ∅; // initializing set of answers to R on RDF data set FT

for each SPARQL query R in R do
A ← use SPARQL processor to add to A the result of processing R on
FT ;

return A;

We now present a domain-independent approach for reformulating tempo-
rally annotated SPARQL queries into (standard) SPARQL queries that respect
the structure of the temporal RDF information while preserving the semantics
of the questions. Acting on top of a SPARQL processor, our Algorithm 2 ensures
successful evaluation of temporally annotated SPARQL queries on the materi-
alized temporally-enriched RDF/S data generated by Algorithm 1 (Sect. 2).

Algorithm 2 accepts as inputs RDF/S data sets (FT ,OT ) and temporally
annotated SPARQL queries Q expressed in terms of the domain-ontology part
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of OT . The algorithm reformulates each given Q into a set R of SPARQL queries
conforming to the ontology OT , and then uses the SPARQL processor to obtain
the answer to Q, by processing all the queries in R on the data set (FT ,OT ).

The reformulation part of Algorithm2 works in two stages, rewriting (1st
stage) and expansion (2nd stage). In the 1st stage, the algorithm uses domain-
independent pattern-based rules to repeatedly “unfold,” in the queries being
rewritten, :subClassOf and :subPropertyOf hierarchies w.r.t. the RDFS ontol-
ogy OT using entailment rules, see, e.g., [14]. As a result, the input query Q is
turned into a set R of temporally annotated SPARQL queries that would be
directly executable on the data set FT but for their temporal annotations. This
process would transform the query of Fig. 3(a) into the query of Fig. 3(b). The
2nd, expansion, stage of the query-reformulation process in Algorithm2 uses
domain-independent pattern-based rules to replace the temporal annotations in
the queries R with standard RDF/S constructs. Specifically, all the temporal
annotations of individual triple patterns in R are replaced with their structural
counterparts of [6] (as in, e.g., Fig. 2), and all the Allen’s interval relations (e.g.,
during) are replaced with built-in comparisons on the endpoints of the time
intervals involved. (This process would transform the query of Fig. 3(b) into the
query of Fig. 3(c).) The resulting SPARQL queries are submitted by the algo-
rithm to the SPARQL processor to obtain the answers to the input query.

4 Implementation and Experimental Results

We have implemented Algorithms 1–2 on top of Java 1.8, PostgreSQL 11, and
RDF4J 3.0.1, using the Llunatic [15] rule interpreter for reformulating tem-
porally annotated queries into standard executable SPARQL queries. For the
experiments, we used data environments in two application domains, AMR and
TPC-BiH [17]. Each environment included a relational source schema, a time-
agnostic target RDFS domain ontology and, for translating the schema into the
ontology, a set of GLAV s-t tgds each with at most one temporal variable, which,
if present, would occur exactly once on the LHS. Each data environment also
included relational source data generated with DataFiller [16] at multiple scale
factors, as well as temporal queries defined in terms of the domain ontologies.

The experiments were designed around two properties of the outcomes of
applying to the AMR and TPC-BiH environments the approach of Algorithms 1–
2 for temporal RDF/S enrichment and querying: (1) degree of preservation in
the target of the temporal information from the sources, see Fig. 4; and (2)
degree of correctness of the answers to temporal queries on the target, w.r.t. the
answers obtained in the baseline relational-to-relational approach supported by
the formal results of [12], see Fig. 5. We evaluated the latter property both for
queries that required rewriting w.r.t. :subClassOf and :subPropertyOf hierar-
chies in the given ontologies (1st stage of Algorithm 2), and for queries that did
not require such rewriting. (See [18] for the details of our methodology.) We also
evaluated the efficiency of our implementation, see Fig. 6.
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As a high-level summary of our experimental results, for each data environ-
ment used in the experiments, with each selected scale factor, and for each tem-
poral query that was considered, the experimental results were identical between
our relational-to-RDFS setting and the baseline relational-to-relational setting.
(The formal correctness of the outcomes in the latter setting is supported by the
results of [12].) We conclude that all these results experimentally validate the
correctness of the proposed approach.

Fig. 4. Evaluating information loss in data exchange with temporal RDF/S enrichment
vs. baseline outcomes. The X-axis shows the names of the s-t tgds and the source-
data sizes for the environments tested; the (logarithmic) Y-axis shows the number of
resulting data tuples. The [A/B] notation on top of the target data-size bars shows the
relative number of unmatched tuples between the two sets.

Figure 4 reports our results, in the AMR and TPC-BiH data environments,
for the degree of preservation in the target of the temporal information from the
sources, as enabled by Algorithm 1. For all the results, we got A = B = 0; that
is, in each experiment we obtained the same sets of tuples in the target temporal
data as in the baseline case. We conclude that the results experimentally validate
the correctness of our temporal-enrichment Algorithm 1.

Figure 5 reports our results, in the AMR and TPC-BiH data environments,
for the degree of correctness of the answers to temporal queries on the RDF/S
target (Algorithm 2) w.r.t. the relational answers that would be obtained in the
baseline approach. All the input queries were temporally annotated SPARQL
queries of the form illustrated in Fig. 3(a), which were then reformulated into
standard SPARQL queries via Algorithm2, as illustrated in Fig. 3(c). We used
the certain-answer semantics [1] in processing all the queries. Given that A =
B = 0 in all cases, we conclude that our results for the degree of correctness of
the answers to temporal queries on the RDF/S target experimentally validate
the correctness of the proposed query-reformulation Algorithm 2.

Figure 6 reports the results for the runtime overhead of our implementation of
the query-reformulation part of Algorithm2, as part of the overall response times
for the queries tested. The response times were measured both for queries that
did not require rewriting w.r.t. RDFS hierarchies (1st stage of Algorithm2), see
Fig. 6(a), and for queries requiring such rewriting, see Fig. 6(b). Not surprisingly,
in all the cases tested, the overhead of Algorithm 2 depended only on the size
of the input query, rather than on the size of the stored data processed by
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Fig. 5. Evaluating information loss in answers to temporal queries vs expected baseline
outcomes. The X-axes show the names of the AMR and TPC-BiH queries tested. The
(logarithmic) Y-axes show query-answer sizes in tuples. The [A/B] notation on top of
the bars shows the relative number of unmatched tuples between the two sets.

Fig. 6. Measuring the time overhead of reformulating temporally annotated queries
into executable SPARQL. The X-axes show the names of the queries tested. The (loga-
rithmic) Y-axes show the 10-runtime averaged overall response times in ms. The values
in square brackets show the difference, for each query, between the processing time with
the reformulation overhead included (left bar) and excluded (right bar).

the query, or on the size of the query answer. As a result, even for queries
whose runtimes were over 16 sec after the reformulation part of Algorithm2,
the overhead of applying Algorithm2 was under 821 ms; this value is below the
user-tolerance time threshold for interactive systems [19]. We conclude that the
runtime overhead of Algorithm 2 in the reformulation of temporally annotated
SPARQL queries is sufficiently small to be tolerated by users.

5 Conclusions and Future Work

In this paper we considered the scenario in which domain analysts and scien-
tists are interested in obtaining answers to temporal queries formulated in terms
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of the given time-agnostic RDFS domain ontology, in the presence of tempo-
ral information in relational data sources and of source-to-target (s-t) rules for
mapping domain information between the sources and the target ontology. We
presented our declarative domain-independent algorithmic approach to address-
ing the temporal-enrichment and query-answering problems in this scenario. In
our report on the approach, we described the algorithms and their implementa-
tion, and presented our experimental results for two application domains.

Providing formal proofs of correctness of our proposed approach is an imme-
diate direction of future work. Other directions of future formal and practical
work on the topics discussed in this paper include incorporation into the frame-
work of richer ontology formalisms such as OWL, as well as of data-exchange
dependencies that are more expressive in their temporal aspect than those of
[12]. Another promising direction of research lies in designing and developing
user interfaces that would make it easier for domain scientists that are not com-
puter experts to query their temporal data in terms of domain ontologies.
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