
OffStreamNG: Partial Stream Hybrid
Graph Edge Partitioning Based on

Neighborhood Expansion and Greedy
Heuristic

Tewodros Ayall1, Hancong Duan1(B), Changhong Liu1, Fantahun Gereme2,
and Mesay Deleli3

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China
meettedy2123@gmail.com, duanhancong@uestc.edu.cn, 314979677@qq.com

2 Institute of Fundamental and Frontier Sciences,
University of Electronic Science and Technology of China, Chengdu, China

fantishb@gmail.com
3 School of Information Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, China
mesay adinew@yahoo.com

Abstract. Recently, graph edge partitioning has shown better parti-
tioning quality than the vertex graph partitioning for the skewed degree
distribution of real-world graph data. Graph edge partitioning can be
classified as stream and offline. The stream edge partitioning approach
supports a big graph partitioning; however, it has lower partitioning
quality, is affected by stream order, and it has taken much time to make
partitioning compared with the offline edge partitioning. Conversely, the
offline edge partitioning approach has better partitioning quality than
stream edge partitioning; however, it does not support big graph par-
titioning. In this study, we propose partial stream hybrid graph edge
partitioning OffStreamNG, which leverages the advantage of both offline
and stream edge partitioning approaches by interconnecting via saved
partition state layer. The OffStreamNG holds vertex and load states as
partition state, while the offline component is partitioning using neigh-
borhood expansion heuristic. And it is transferring this partition state
to the online component of Greedy heuristic with minor modification of
both algorithms. Experimental results show that OffStreamNG achieves
attractive results in terms of replication factor, load balance, and total
partitioning time.

Keywords: Edge partitioning · Stream approach · Offline approach ·
Distributed graph computing · Hybrid edge partitioning · Saved
partition state

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 118–128, 2020.
https://doi.org/10.1007/978-3-030-54623-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_11

OffStreamNG 119

1 Introduction

Computing big graph data is nontrivial on a single machine, because of the
memory constraint and requires much time to compute the whole input graph.
Hence, the best way to process big graphs is using distributed graph process-
ing systems such as Powerlyra [4], Powergraph [5] and Pregel [9]. In all cases,
graph partitioning is one of the main component. To computing a big graph in
a distributed environment, a graph should be partitioned and distributed into
different clusters.

Graph partitioning is a technique to divide a big graph into smaller subgraphs
based on different partitioning methods. It is a well-known NP-hard problem [2]
to get an optimal solution because it is nontrivial to achieve a minimum cut ratio
and maximum load balance. In general, graph partitioning is categorized into
two groups, vertex and edge partitioning. Vertex partitioning is also known as
edge cut. It divides a big graph into a smaller subgraph by assigning a vertex into
the different partition set while considering a minimum edge cut and maximum
load balance. These cut edges can act as a bridge to communicate with other
partitions. Metis [6], and LDG [12] are some examples of vertex partitioners.
Edge partitioning is also known as vertex cut. It divides a big graph into smaller
subgraphs by assigning the edge into the different partition set while considering
a minimum vertex cut and maximum load balance. These cut vertices can act as
a bridge communicator between the partitions. Edge partitioners include Greedy
[5], HDRF [11], DBH [13], and NE [15]. The edge partitioners have shown better
partitioning quality than vertex partitioners for power-law graph [5], which very
few vertices have higher degree, and many vertices have lower degree. Both
partitioning methods can further be classified into two as stream and offline
approaches.

Stanton and Kliot [12] proposed a stream-based approach for big graph par-
titioning. The stream-based partitioners ingest vertices or edges as a stream. It
applies partitioning decisions on the fly based on partial knowledge of the input
graph. The graph data may arrives to the partitioners in Random, Depth First
Search (DFS), or Breadth First Search (BFS) order. These arrival orders affect
the performance of the stream partitioners [1,3]. Offline partitioners sequentially
scan the graph data and store to memory before it makes partitioning.

Stream-based edge partitioners assign a single edge at a time to the par-
titions based on different techniques. Hashing randomly allocates edges to the
partitions based on its hash values. DBH [13] assigns the incoming edges based
on the degree information of vertex. It compares the degree of the paired value
of edge vertices and gives a hash value of the vertex with a smaller degree to the
edge. Greedy partitioning algorithm [5] assigns the incoming edges by checking
previously allocated partition state and considering a minimum load balance
among each partition. Higher degree replicated first (HDRF) [11] is an edge
partitioning algorithm that leverages the advantage of Greedy and adds degree
information. It replicates the higher degree first and assigns the incoming edge
based on a maximize HDRF computing value. Among stream edge partition-
ers, Hashing and DBH have a very fast running time; however, they have lower

120 T. Ayall et al.

partitioning quality. On the other hand, Greedy and HDRF have a good par-
tition quality in terms of replication factor and load balance compared with
Hashing and DBH; however, they have more running time and are affected by
stream order. In general, stream edge partitioners support a big graph partition-
ing. However, they have lower partitioning quality; require much time to make
partitioning and are affected by stream orders compared with offline edge parti-
tioning [15]. NE [15] is an offline edge partitioning and stores all input graph data
to memory, then it is iteratively partitioning based on neighborhood relations.
It has the best partitioning quality than the stream edge partitioners in terms
of replication factor and total partitioning time; however, it does not support a
big graph partitioning [15]. In this study, we propose a hybrid graph edge par-
titioning to improve partitioning quality and reduce the effect of stream order
by taking benefits of both stream and offline partitioning approaches via stored
partition state. The contributions of this work are as follows:

– We propose partial stream graph edge partitioning OffStreamNG, which uses
neighborhood expansion (NE) and Greedy heuristic algorithms for the offline
and stream approaches, respectively.

– We introduce the concept of holding and transferring partition state from the
offline to stream partitioner with a minor modification of both algorithms.

– We experimentally check the proposed method replication factor, load balance
and total partitioning time on real-world graph datasets.

This paper is organized as follows: Section 2 defines graph edge partitioning (ver-
tex cut) problem and Sect. 3 presents the proposed method. Section 4 describes
the experimental analysis and results. The conclusion is presented in Sect. 5.

2 The Graph Edge Partitioning (Vertex Cut) Problem

A given undirected graph G defined as G = (V,E), where V is the set of vertices
and E is the set of edges, and the size of V and E denoted as |V | = nv and |E| =
ne, respectively. Balanced p−way edge graph partitioning problem is defined as,
graph G is partitioned into p partitions. Each partition has an edge set Ek(k ∈
{1, 2, ...p}). The edge set of each partition is not duplicated, i.e, Ei ∩ Ej = ∅,
where (i, j ∈ {1, 2, ...p}, i �= j).

The graph edge partitioning problem considers two factors: (i) The number
of replicas (copy) vertex across partitions are minimized. (ii) The number of
edges across the partitions are balanced. Let P (v) be the set of partitions that
each vertex v ∈ V is replicated. Therefore, |P (v)| is size of partitions that stores
v. The optimization problem of p−way edge partition is defined by Eq. 1.

min
P

1
nv

∑

v∈V

|P (v)| . s.t. max
k∈p

|Ek| < ε
ne

|p| . (1)

where |Ek| and |p| are the size of the edge set of the partition and the number
of partitions, respectively. And ε ≥ 1 is imbalance factor. The performance of

OffStreamNG 121

graph edge partitioning can be measured in terms of replication factor (RF), load
balance and total partitioning time. Replication factor is an average of vertex
replicated in each partition, as given by Eq. 2a. Load balance indicates how fairly
edges are distributed in each partition and can be measured by Load relative
standard deviation (LRSD), as given by Eq. 2b. Total Partitioning Time (TPT)
is the summation of the ingress time (loading time of the input graph) and the
running time (the time required for partitioning) of the algorithm.

(a) RF =
1
nv

∑

i ∈ p

|Pi(v)|. (b) LRSD =

√
(
∑p

k=1
|Ek|
ne
|p|

− 1)2 1
|p|

ne

|p|
. (2)

3 The Proposed Method

We propose partial stream graph edge partitioning based on neighborhood
expansion (NE) and Greedy heuristic with minor modification of both algo-
rithms, and it is called OffStreamNG. The OffStreamNG is the hybrid of NE
and Greedy algorithms via stored partition state. Figure 1 shows the architecture
of the model. The OffStreamNG model has four sub-components, Modified-NE
for offline component, Modified-Greedy for online component, partition state
which contains vertex and load states, and input graph splitter. Initially, the
input graph is randomly split into two equal parts and is fed into the individual
components. While the Modified-NE component is partitioning its input graph
data, it is holding the partition state as vertex and load states. On the other
hand, the Modified-Greedy component is accepting the other half of the graph
data and the partition state as an input to start partitioning. The partition
state is continuously accessed and updated by Modified-Greedy to allocate the
incoming edges. This partition state is meant to help improve the partitioning
quality of the OffStreamNG partitioner.

Fig. 1. Architecture of the OffStreamNG model.

122 T. Ayall et al.

3.1 Partition State

A proposed partition state is an intermediate layer of the OffStreamNG parti-
tioner. It is recorded, while the offline component is partitioned its input graph.
This partition state is stored in the main memory and accessed by the online
partitioner. The partition state gives additional information to the online par-
titioner to identify appropriate partitions to allocate the incoming edges. The
partition state has two states, vertex state, and load state, as depicted in Fig. 2.
Figure 2a depicts the vertex state, which holds vertex-ids and partition set (con-
tains all partitions in which a vertex is replicated). Figure 2b shows Load-state,
which contains partition-ids and its load balance.

(a) Vertex state. (b) Load state.

Fig. 2. Data structure of partition state: (a) vertex state holds vertex-ids and partition-
sets. (b) load state contains partition-ids and its load balance.

3.2 The Offline Component of OffStreamNG Model

The OffStreamNG model has an offline component. This offline component uses
Modified-NE and accepts half part of the input graph data. This input graph is
partitioned and the partition state is saved by using Modified-NE algorithm. NE
[15] is an offline edge partitioning based on neighborhood expansion heuristic. It
stores all input graph data to memory and is iteratively partitioning it by growing
the core set of vertices via the neighborhood relations. The NE algorithm has got
two-component algorithms, edge generation, and edge allocation. In this work,
we used the edge generation algorithm as described Algorithm1 as it is while
we have modified the edge allocation algorithm as described in Algorithm2. The
primary purpose of the modification is to enable the algorithm to hold vertex
and load states to be used by the online component of our model.

The NE algorithm is iteratively partitioning the graph in p round. In each
round k, edge set Ek is selected from the graph. Initially, it is empty edge set.
Thus, Ek is expanded in steps until |Ek| ≥ εne

p . In each round, one vertex y
is randomly picked based on neighborhood expansion. The adjacent edges of y
is added to Ek and y added to core set Cs. Boundary set Bs = V (Ek), where
V (Ek) is the vertex set covered by Ek.

The main objective is to minimize the number of y added into a boundary
set based on neighborhood expansion. If Bs\Cs = ∅ then y is randomly selected
from V \Cs. Otherwise it is chose based on Eq. 3.

y = argmin
v∈Bs \Cs

| N(v) \Bs | . (3)

OffStreamNG 123

where |N(v)\Bs| is the number of vertices that will be allocated to the partition
k, if y is chose as Cs and its adjacent edges added to Ek.

Algorithm 1. Generate one edge partition Ek.
1: Input: E = E/2, p
2: Output: E is allocated to p
3: procedure Expand(E, η) � η = εne

p

4: Cs, Bs, Ek ← ∅
5: while |Ek| ≤ η do
6: if Bs \ Cs = ∅ then
7: y is randomly selected in V \ Cs

8: else
9: y ← argminv∈Bs \Cs

| N(v) \Bs |
10: end if
11: ASSIGNEDGE(Cs, Bs, Ek, y)
12: end while
13: end procedure

3.3 The Online Component of OffStreamNG

The offline and online components of our model receive their corresponding
graph data portions from the input graph splitter. While the offline component
is partitioning its portion, it also is saving vertex and load states which is fed
to the online component. We use the Greedy algorithm to build up the online
component of our OffStreamNG model with minor modification on it. Greedy [5]
is an online edge partitioning algorithm which improves the randomly allocated
edges partition based on a heuristic. It is a Greedy sequential heuristic that
places the incoming edge to the partitions based on the previously allocated
partition state to minimize the expected replication factor.

Let Pvs and Pls are vertex state and load state of the partitions, respectively.
And minLoad(Pvs(V)) method returns the minimum loaded partition id from
the set of Pvs(V), where e = (u, v)| u, v ∈ V . This algorithm assigns the edge e
based on the following rules:

Rule 1: If Pvs(u) ∩ Pvs(v) �= ∅, then the edge should be allocated to a
partition with a minimum load in Pvs(u) ∩ Pvs(v).

Rule 2: If Pvs(u) ∩ Pvs(v) = ∅ and Pvs(u) ∪ Pvs(v) �= ∅, then the edge
should be allocated to one of the partition with a minimum load in Pvs(u) ∪
Pvs(v).

124 T. Ayall et al.

Algorithm 2. Modified-Edge Allocation
1: Pls, Pvs ← ∅
2: procedure AssignEdge(Cs, Bs, Ek, y)
3: Cs ← Cs ∪ {y}, Bs ← Bs ∪ {y}
4: for a ∈ N(y) \ Bs do
5: Bs ← Bs ∪ {a}
6: for b ∈ N(a) ∩ Bs do
7: Ek = Ek ∪ {eb,a}
8: E ← E \ Ek � Holding partition state
9: u = e.b, v = e.a

10: Pvs.addV ertexState(u, k)
11: Pvs.addV ertexState(v, k)
12: if |Ek| > η then
13: Pls.addLoadState(|Ek|)
14: return
15: end if
16: end for
17: end for
18: end procedure
19: procedure getVertexState()
20: return Pvs

21: end procedure
22: procedure GetLoadState()
23: return Pls

24: end procedure

Rule 3: If only one of the two end edge vertices already has been allocated,
then select a partition from the allocated vertex with minimum Pls.

Rule 4: If neither u nor v have been allocated, then the edge is assigned in
the partition with the least load of Pls.

However, while the partition state information is very important for the
Greedy algorithm to make a decision, it has minimal information at the begin-
ning, which makes the partition quality relatively weak. In this work, we have
made a minor modification on the Greedy algorithm. The Modified-Greedy
describes in Algorithm refalgo:phasetwo, which takes rich partition state informa-
tion from Modified-NE algorithm. By getting more partition state information
from the offline component, the online component gets sharpened in decision
making.

OffStreamNG 125

Algorithm 3. Modified-Greedy
1: Input:E = E/2, p
2: Output: Generate a partition Id where E to be allocated.
3: Pvs ← GETV ERTEXSTATE() � Accessing the partition state
4: Pls ← GETLOADSTATE()
5: procedure getPartitionId(e, p, Pvs, Pls)
6: u = e.u, v = e.v
7: if Pvs(u) ∩ Pvs(v) �= ∅ then
8: partition Id = minLoad(Pvs(u) ∩ Pvs(v))
9: else if Pvs(u) ∩ Pvs(v) = ∅ && Pvs(u) ∪ Pvs(v) �= ∅ then

10: partition Id = minLoad(Pvs(u) ∪ Pvs(v))
11: else if Pvs(u) = ∅ && Pvs(v) �= ∅ then
12: partition Id = minLoad(Pvs(v))
13: else if Pvs(u) �= ∅ && Pvs(v) = ∅ then
14: partition Id = minLoad(Pvs(u))
15: else if Pvs(u) = ∅ && Pvs(v) = ∅ then
16: partition Id = minLoad(Pls)
17: end if
18: return partition Id
19: end procedure

4 Experimental Analysis and Results

We implemented OffStreamNG partitioner in an 8 core CPU Ubuntu machine
with 64 GB memory. For comparison purpose, we used open-source implemen-
tation of edgepart1 and VGP2 for NE and stream(Hashing, DBH, Greedy, and
HDRF), respectively. We used imbalance factor ε = 1.1 and for HDRF λ = 1.1.
We used real-world edge list graph datasets, com-Livejournal from SNAP [8] and
Orkut from KONECT [7]. These datasets are randomly ordered. Table 1 shows
the characteristics of datasets.

Table 1. Real world graph datasets.

Dataset nv ne

Com-Livejournal [14] 5,203,764 48,708,948

Orkut [10] 3,072,441 117,184,899

4.1 Experimental Results

Series of experiments were conducted, and results were carefully recorded. Com-
parative result analysis is made using the evaluation metrics. Figure 3 shows the
replication factor and Fig. 4 shows load balance of com-Livejournal and Orkut
datasets.
1 https://github.com/ansrlab/edgepart.
2 https://github.com/fabiopetroni/VGP.

https://github.com/ansrlab/edgepart
https://github.com/fabiopetroni/VGP

126 T. Ayall et al.

(a) Boundedness of RF value. (b) Com-Livejournal. (c) Orkut.

Fig. 3. Replication factor against the number of target partitions (log-log scale) on
real-world graph datasets. (a) it shows boundedeness of RF value in Com-Livejournal
dataset.

(a) TPT. (b) Com-Livejournal. (c) Orkut.

Fig. 4. Total partitioning time (TPT) and load balance against the number of target
partitions (log-log scale). (a) it shows TPT of com-Livejournal. (b) and (c) show load
balance.

4.2 Discussion

We evaluate the performance of OffStreamNG by measuring the following met-
rics:

Replication Factor (RF): RF value is calculated using Eq. 2a and is
depicted in Fig. 3. We compared the performance of our OffStreamNG in terms
of RF among online edge partitioners such as DBH, Greedy, and HDRF. And
also with offline edge partitioner, NE, on real-world graph datasets with a set
of target partitions [4, 8, 16, 32, 64, 128, 256]. We calculated average RF from
individual RF values on each partition and further averaged these values for all
datasets considered. Comparing the calculated average RF values, OffStreamNG
performed 62% lower than Hashing, 46% lower than DBH, 20% smaller than
Greedy, 18% smaller than HDRF. The RF value showed that OffStreamNG
performed far better than the stream edge partitioner. The RF value of Off-
StreamNG is smaller than other algorithms because it gets more partition state

OffStreamNG 127

from the offline component to make a better decision. Generally, Fig. 3a shows
that the replication factor (RF) of OffStreamNG bounds between the pure offline
and online partitioners.

Load balance: We measured the load balance by LRSD as given by Eq. 2b.
The load balance is illustrated in Fig. 4b and Fig. 4c for Com-Livejournal and
Orkut, respectively. The curves show that HDRF, Greedy, NE and OffStreamNG
performed best as the number of partition grows. Hashing and DBH are the worst
performers as load skew grows as the number of target partitions grows.

Total Partitioning Time: We compared OffStreamNG among the stream
edge partitioners and the offline NE as shown Fig. 4a on Com-LiveJournal
dataset with the number of partitions ranging 4 to 256. The result shows that our
OffStreamNG partitioner scored an average TPT improvement of 20% smaller
than DBH, 23% smaller than Hashing, 38% smaller than Greedy and 43% smaller
than HDRF. Expectedly, NE has smaller TPT than our hybrid partitioners
because OffStreamNG is partial streaming. The overall results showed that Off-
StreamNG scored lower TPT compared with the state of the art stream based
partitioners.

5 Conclusion

Graph edge partitioning has dramatically determined the performance of dis-
tributed graph processing systems in terms of communication and work-
load costs. In this study, we proposed partial stream graph edge partition-
ing OffStreamNG by leveraging both the offline and stream edge partitioning
approaches by introducing the concept of holding partition state from the offline
and transferring this state to the online partitioner. The OffStreamNG uses
neighborhood expansion (NE) and Greedy heuristic for the offline and online
components with minor modification of both algorithms, respectively. We com-
pared OffStreamNG with edge partitioners, which OffStreamNG scores dimin-
ished value of the replication factor, the optimum load balance, and good total
partitioning time.

References

1. Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an
experimental study. Proc. VLDB Endow. 11(11), 1590–1603 (2018)

2. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006). https://doi.org/10.1007/s00224-006-1350-7

3. Ayall, T., Duan, H., Liu, C.: Edge property based stream order reduce the perfor-
mance of stream edge graph partition. J. Phys. Conf. Ser. 1395, 012010 (2019).
IOP Publishing

4. Chen, R., Shi, J., Chen, Y., Zang, B., Guan, H., Chen, H.: PowerLyra: differenti-
ated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput. (TOPC) 5(3), 13 (2019)

https://doi.org/10.1007/s00224-006-1350-7

128 T. Ayall et al.

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: Presented as part of
the 10th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 12), pp. 17–30 (2012)

6. Karypis, G.: METIS: unstructured graph partitioning and sparse matrix ordering
system. Technical report (1997)

7. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web. pp. 1343–1350. ACM (2013)

8. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

9. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, pp. 135–146. ACM (2010)

10. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM conference on Internet Measurement, pp. 29–42. ACM (2007)

11. Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-
based partitioning for power-law graphs. In: Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management, pp. 243–252.
ACM (2015)

12. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1222–1230. ACM (2012)

13. Xie, C., Yan, L., Li, W.J., Zhang, Z.: Distributed power-law graph computing:
theoretical and empirical analysis. In: Advances in Neural Information Processing
Systems, pp. 1673–1681 (2014)

14. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/
s10115-013-0693-z

15. Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z.: Graph edge partitioning via neigh-
borhood heuristic. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 605–614. ACM (2017)

http://snap.stanford.edu/data
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z

	OffStreamNG: Partial Stream Hybrid Graph Edge Partitioning Based on Neighborhood Expansion and Greedy Heuristic
	1 Introduction
	2 The Graph Edge Partitioning (Vertex Cut) Problem
	3 The Proposed Method
	3.1 Partition State
	3.2 The Offline Component of OffStreamNG Model
	3.3 The Online Component of OffStreamNG

	4 Experimental Analysis and Results
	4.1 Experimental Results
	4.2 Discussion

	5 Conclusion
	References

