
Jérôme Darmont
Boris Novikov
Robert Wrembel (Eds.)

ADBIS 2020 Short Papers
Lyon, France, August 25–27, 2020
Proceedings

New Trends in Databases
and Information Systems

Communications in Computer and Information Science 1259

Communications
in Computer and Information Science 1259

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Jérôme Darmont • Boris Novikov •

Robert Wrembel (Eds.)

New Trends in Databases
and Information Systems
ADBIS 2020 Short Papers
Lyon, France, August 25–27, 2020
Proceedings

123

Editors
Jérôme Darmont
Université Lumière Lyon 2
Lyon, France

Boris Novikov
National Research University
Higher School of Economics
St. Petersburg, RussiaRobert Wrembel

Poznań University of Technology
Poznań, Poland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-54622-9 ISBN 978-3-030-54623-6 (eBook)
https://doi.org/10.1007/978-3-030-54623-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1491-384X
https://orcid.org/0000-0003-4657-0757
https://orcid.org/0000-0001-6037-5718
https://doi.org/10.1007/978-3-030-54623-6

Preface

The 24th European Conference on Advances in Databases and Information Systems
(ADBIS 2020) was set to be held in Lyon, France, during August 25–28, 2020, in
conjunction with the 24th International Conference on Theory and Practice of Digital
Libraries (TPDL 2020) and the 16th EDA days on Business Intelligence & Big Data
(EDA 2020). However, because of the worldwide COVID-19 crisis, ADBIS, TPDL,
and EDA had to take place online during August 25–27, 2020. Yet, the three con-
ferences joined their forces to propose common keynotes, workshops, and a Doctoral
Consortium.

ADBIS established itself as a highly recognized conference in Europe. It aims at
providing an international forum for exchanging research achievements on databases
and data engineering, both from practical and theoretical perspectives. ADBIS also
aims at promoting the interaction and collaboration of the database and data engi-
neering as well as information systems research communities worldwide.

Previous ADBIS conferences were held in Saint Petersburg (1997), Poznan (1998),
Maribor (1999), Prague (2000), Vilnius (2001), Bratislava (2002), Dresden (2003),
Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna (2007), Pori (2008), Riga
(2009), Novi Sad (2010), Vienna (2011), Poznan (2012), Genoa (2013), Ohrid (2014),
Poitiers (2015), Prague (2016), Nicosia (2017), Budapest (2018), and Bled (2019).

ADBIS 2020 attracted 82 paper submissions, which were reviewed by an Interna-
tional Program Committee constituted of members from 28 countries. The Program
Committee selected 13 long and 18 short research papers, which yields acceptance
rates of 16% and 26%, respectively. The selected short papers span a wide spectrum of
topics related to the ADBIS conference from different areas of research in database and
information systems, including database performance, security, business intelligence,
semantic technologies, social media analysis, and classification.

Finally, we would like to express our sincere gratitude to everyone who contributed
to make ADBIS 2020 successful:

– authors, for submitting their research papers to the conference;
– keynote speakers who honored us with their talks at ADBIS 2020;
– members of the Program Committee and external reviewers, for dedicating their

time and expertise to build a high-quality program;
– members of the ADBIS Steering Committee for their trust and support, and espe-

cially its chair Yannis Manolopoulos;
– our academic and private sponsors and partners: the Universities of Lyon 2 and

Lyon 3, IDEXLYON, the ERIC laboratory, OnlyLyon, Springer for publishing
these proceedings, the Coalition for Networked Information, as well as our PCO
Insight Outside;

– last but not least, all members of the Organizing Committee, who had to switch
from a physical organization to an online organization in troubled times.

June 2020 Jérôme Darmont
Boris Novikov

Robert Wrembel

vi Preface

Organization

General Chair

Jérôme Darmont Université Lyon 2, France

Steering Committee Chair

Yannis Manolopoulos Open University of Cyprus, Cyprus

Steering Committee

Ladjel Bellatreche ENSMA Poitiers, France
Andras Benczur Eötvös Loránd University, Hungary
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Barbara Catania University of Genoa, Italy
Jérôme Darmont Université Lyon 2, France
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Theo Haerder Technical University Kaiserslautern, Germany
Mirjana Ivanović University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland
Marite Kirikova Riga Technical University, Latvia
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Tadeusz Morzy Poznan University of Technology, Poland
Boris Novikov National Research University, Higher School

of Economics in Saint Petersburg, Russia
George Papadopoulos University of Cyprus, Cyprus
Jaroslav Pokorný Charles University in Prague, Czech Republic
Boris Rachev Technical University of Varna, Bulgaria
Sherif Sakr University of Tartu, Estonia
Bernhard Thalheim Christian Albrechts University, Germany
Goce Trajcevski Iowa State University, USA
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Tatjana Welzer University of Maribor, Slovenia
Robert Wrembel Poznan Unviersity of Technology, Poland
Ester Zumpano University of Calabria, Italy

Program Committee Chairs

Boris Novikov National Research University, Higher School
of Economics in Saint Petersburg, Russia

Robert Wrembel Poznan University of Technology, Poland

Program Committee

Alberto Abelló Universitat Politècnica de Catalunya, Spain
Bernd Amann Sorbonne Université, France
Andreas Behrend University of Bonn, Germany
Ladjel Bellatreche ENSMA Poitiers, France
András Benczúr Eötvös Loránd University, Hungary
Fadila Bentayeb Université Lyon 2, France
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Sandro Bimonte IRSTEA Clermont-Ferrand, France
Miklos Biro Software Competence Center Hagenberg, Austria
Pawel Boiński Poznan University of Technology, Poland
Omar Boussaid Université Lyon 2, France
Drazen Brdjanin University of Banja Luka, Serbia
Albertas Caplinskas Vilnius University, Lithuania
Barbara Catania University of Genoa, Italy
Tania Cerquitelli Politecnico di Torino, Italy
Ajantha Dahanayake Lappeenranta University of Technology, Finland
Jérôme Darmont Université Lyon 2, France
Christos Doulkeridis University of Piraeus, Greece
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Markus Endres University of Passau, Germany
Werner Esswein Technische Universität Dresden, Germany
Georgios Evangelidis University of Macedonia, Greece
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Johann Gamper Free University of Bozen-Bolzano, Italy
Matteo Golfarelli University of Bologna, Italy
Marcin Gorawski Silesian University of Technology, Poland
Jānis Grabis Riga Technical University, Latvia
Le Gruenwald The University of Oklahoma, USA
Francesco Guerra Università di Modena e Reggio Emilia, Italy
Giancarlo Guizzardi Federal University of Espirito Santo, Brazil
Hele-Mai Haav Tallinn University of Technology, Estonia
Tomas Horvath Eötvös Loránd University, Hungary
Theo Härder Technical University Kaiserslautern, Germany
Marko Hölbl University of Maribor, Slovenia
Mirjana Ivanović University of Novi Sad, Serbia
Hannu Jaakkola University of Tampere, Finland

viii Organization

Stefan Jablonski University of Bayreuth, Germany
Aida Kamišalić Latifić Universtiy of Maribor, Slovenia
Dimitris Karagiannis University of Vienna, Austria
Zoubida Kedad University of Versailles, France
Attila Kiss Eötvös Loránd University, Hungary
Michal Krátký Technical University of Ostrava, Czech Republic
Julius Köpke Alpen Adria Universität Klagenfurt, Austria
Dejan Lavbič University of Ljubljana, Slovenia
Wolfgang Lehner Technical University Dresden, Germany
Daniel Lemire Université du Québec à Montréal, Canada
Sebastian Link The University of Auckland, New Zealand
Yurii Litvinov Saint Petersburg State University, Russia
Federica Mandreoli University of Modena, Italy
Yannis Manolopoulos Open University of Cyprus, Cyprus
Manuk Manukyan Yerevan State University, Armenia
Patrick Marcel Université de Tours, France
Bálint Molnár Eötvös University of Budapest, Hungary
Angelo Montanari University of Udine, Italy
Tadeusz Morzy Poznan University of Technology, Poland
Martin Nečaský Charles University, Czech Republic
Boris Novikov National Research University, Higher School

of Economics in Saint Petersburg, Russia
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Andreas Oberweis Karlsruhe Institute of Technology, Germany
Carlos Ordonez University of Houston, USA
George Papadopoulos University of Cyprus, Cyprus
András Pataricza Budapest University of Technology and Economics,

Hungary
Jaroslav Pokorný Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Alvaro E. Prieto University of Extremadura, Spain
Miloš Radovanović University of Novi Sad, Serbia
Heri Ramampiaro Norwegian University of Science and Technology,

Norway
Franck Ravat Université de Toulouse, France
Stefano Rizzi University of Bologna, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Gunter Saake University of Magdeburg, Germany
Kai-Uwe Sattler Technical University Ilmenau, Germany
Milos Savic University of Novi Sad, Serbia
Patrick Schäfer Humboldt Universität zu Berlin, Germany
Timos Sellis Swinburne University of Technology, Australia
Bela Stantic Griffith University, Australia
Kostas Stefanidis University of Tampere, Finland
Sergey Stupnikov Russian Academy of Sciences, Russia

Organization ix

Olivier Teste Université de Toulouse, France
Bernhard Thalheim Christian Albrechts University Kiel, Germany
Goce Trajcevski Iowa State University, USA
Raquel Trillo-Lado Universidad de Zaragoza, Spain
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Goran Velinov UKIM, North Macedonia
Isabelle Wattiau ESSEC, CNAM, France
Tatjana Welzer University of Maribor, Slovenia
Marek Wojciechowski Poznan University of Technology, Poland
Robert Wrembel Poznan University of Technology, Poland
Anna Yarygina Saint Petersburg State University, Russia
Vladimir Zadorozhny University of Pittsburgh, USA
Jaroslav Zendulka Brno University of Technology, Czech Republic

Additional Reviewers

Andrea Brunello
Alexandre Chanson
Stefano Cirillo
Vincenzo Deufemia
Senén González
Anna Gorawska
Sergio Ilarri
Igor Kuralenok
Petar Jovanovic
Nicolas Labroche
Christos Mettouris
Sergi Nadal
Demetris Paschalides
Oszkár Semeráth
Jakub Ševcech
Artem Trofimov
Willeme Verdeaux
Alexandros Yeratziotis

Proceeding Chairs

Fadila Bentayeb Université Lyon 2, France
Elöd Egyed-Zsigmond INSA Lyon, France
Nadia Kabachi Université Lyon 1, France

Workshop Chairs

Ladjel Bellatreche ENSMA Poitiers, France
Mária Bieliková Slovak University of Technology, Slovakia

x Organization

Christos Papatheodorou Ionian University, Greece
Guilaine Talens Université Lyon 3, France

Doctoral Consortium Chairs

Barbara Catania University of Genoa, Italy
Elena Demidova L3S Research Center, Germany
Oscar Romero Universitat Politècnica de Catalunya, Spain
Maja Zumer University of Ljubljana, Slovenia

Journal Special Issue Chair

Ladjel Bellatreche ENSMA Poitiers, France

Publicity Chair

Selma Khouri ESI Alger, Algeria

Organizing Committee

Fadila Bentayeb Université Lyon 2, France
Omar Boussaïd Université Lyon 2, France
Jérôme Darmont Université Lyon 2, France
Fabien Duchateau Université Lyon 1, France
Elöd Egyed-Zsigmond INSA Lyon, France
Mihaela Juganaru-Mathieu École des Mines de Saint-Étienne, France
Nadia Kabachi Université Lyon 1, France
Omar Larouk ENSSIB Lyon, France
Fabrice Muhlenbach Université de Saint-Étienne, France
Habiba Osman Université Lyon 2, France
Muriel Perez Université de Saint-Étienne, France
Pegdwendé Sawadogo Université Lyon 2, France
Guilaine Talens Université Lyon 3, France
Caroline Wintergerst Université Lyon 3, France

Organization xi

Contents

Data Access and Database Performance

ARTful Skyline Computation for In-Memory Database Systems 3
Maximilian E. Schüle, Alex Kulikov, Alfons Kemper,
and Thomas Neumann

Quantum Computation and Its Effects in Database Systems 13
Szabolcs Jóczik and Attila Kiss

Machine Learning

Dynamic k-NN Classification Based on Region Homogeneity. 27
Stefanos Ougiaroglou, Georgios Evangelidis,
and Konstantinos I. Diamantaras

Contextualisation of Datasets for Better Classification Models:
Application to Airbus Helicopters Flight Data. 38

Marie Le Guilly, Nassia Daouayry, Pierre-Loic Maisonneuve,
Ammar Mechouche, Jean-Marc Petit, and Vasile-Marian Scuturici

Query Intent Detection from the SEO Perspective . 49
Samin Mohammadi, Mathieu Chapon, and Arthur Frémond

Fast and Accurate Group Outlier Detection for Trajectory Data. 60
Youcef Djenouri, Kjetil Nørvåg, Heri Ramampiaro,
and Jerry Chun-Wei Li

Data Processing

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 73
Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

Self-service Business Intelligence over On-Demand IoT Data:
A New Design Methodology Based on Rapid Prototyping 84

Julian Eduardo Plazas, Sandro Bimonte, Michel Schneider,
Christophe de Vaulx, and Juan Carlos Corrales

Semantic Web

Consistency and Certain Answers in Relational to RDF Data Exchange
with Shape Constraints . 97

Iovka Boneva, Sławek Staworko, and Jose Lozano

OWL-T for a Semantic Description of IoT . 108
Zakaria Maamar, Noura Faci, Ejub Kajan, Muhammad Asim,
and Ayesha Qamar

OffStreamNG: Partial Stream Hybrid Graph Edge Partitioning Based
on Neighborhood Expansion and Greedy Heuristic 118

Tewodros Ayall, Hancong Duan, Changhong Liu, Fantahun Gereme,
and Mesay Deleli

Temporal Enrichment and Querying of Ontology-Compliant Data 129
Jing Ao, Zehui Cheng, Rada Chirkova, and Phokion G. Kolaitis

Data Analytics

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 143
Lies Hooft van Huijsduijnen, Thom Hoogmoed, Geertje Keulers,
Edmar Langendoen, Sanne Langendoen, Tim Vos,
Frederik Hogenboom, Flavius Frasincar, and Tarmo Robal

QuRVe: Query Refinement for View Recommendation in Visual
Data Exploration . 154

Humaira Ehsan, Mohamed A. Sharaf, and Gianluca Demartini

A Bloom Filter-Based Framework for Interactive Exploration of Large
Scale Research Data . 166

Gajendra Doniparthi, Timo Mühlhaus, and Stefan Deßloch

Analyzing Twitter Data with Preferences . 177
Lena Rudenko, Christian Haas, and Markus Endres

S-APIR: News-Based Business Sentiment Index . 189
Kazuhiro Seki and Yusuke Ikuta

Towards an Inference Detection System Against Multi-database Attacks 199
Paul Lachat, Veronika Rehn-Sonigo, and Nadia Bennani

Author Index . 211

xiv Contents

Data Access and Database Performance

ARTful Skyline Computation
for In-Memory Database Systems

Maximilian E. Schüle(B), Alex Kulikov, Alfons Kemper,
and Thomas Neumann

Technical University of Munich, Munich, Germany
{m.schuele,alex.kulikov,alfons.kemper,thomas.neumann}@tum.de

Abstract. Skyline operators compute the Pareto-optimum on multi-
dimensional data inside disk-based database systems. With the arising
trend of main-memory database systems, pipelines process tuples in par-
allel and in-memory index structures, such as the adaptive radix tree,
reduce the space consumption and accelerate query execution.

We argue that modern database systems are well suited to progressive
skyline operators. In addition, space-efficient index structures together
with tree-based skyline algorithms improve the overall performance on
categorical input data. In this work, we parallelise skyline algorithms,
reduce their memory consumption and allow their integration into the
main-memory database system HyPer. In our evaluation, we show that
our parallelisation techniques scale linearly with every additional worker,
and that the adaptive radix tree reduces memory consumption in com-
parison to existing tree-based approaches for skyline computation.

Keywords: Skyline operator · In-Memory DBMS · Adaptive radix
tree

1 Introduction

The skyline algorithm finds interesting tuples within multi-dimensional data sets.
Specifically, these tuples form the Pareto-optimal set that contains only the best
tuples regarding all criteria. Formally, the output set is defined as all tuples that
are not dominated by any other tuple of the input set.

From a theoretical point of view, computing the skyline of a set of tuples
corresponds to the mathematical problem of finding the maxima of a set of
vectors [8]. A vector p ∈ R

n dominates another vector q ∈ R
n if p is at least as

good as q in every dimension, and superior in at least one:

p � q ⇔ ∀i ∈ [n].p[i] � q[i] ∧ ∃j ∈ [n].p[j] � q[j]. (1)

Börzsönyi et al. [2] provided the first skyline implementations and an SQL
extension (see Listing 1.1). Their work compared the algorithm to a sky-
line formed out of skyscrapers: only those are visible which are either closer
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-54623-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_1

4 M. E. Schüle et al.

(regarding the distance) or higher than any other to a specific viewing point.
Even though SQL-92 is capable of expressing skyline queries (see Listing 1.2),
the authors proposed an integration as an operator that executes optimised sky-
line algorithms within the database system.

SELECT ∗ FROM i n p u t t a b l e i WHERE . . . GROUP BY . . . HAVING . . .
SKYLINE OF [DISTINCT] d1 [MIN | MAX] , . . . , dn [MIN | MAX]
ORDER BY . . .

Listing 1.1. Skyline extension of SQL: d1, ... , dn are the dimensions; MIN and MAX
specify whether each dimension has to be minimised or maximised.

SELECT ∗ FROM i n p u t t a b l e q WHERE NOT EXISTS (
SELECT ∗ FROM i n p u t t a b l e p WHERE p . d1 <= q . d1 AND . . . AND p . dn<=q . dn

AND (p . d1 < q . d1 OR . . . OR p . dn<q . dn))

Listing 1.2. Skyline query in SQL on a table inputtable with attributes d1, ... , dn.

We argue that integrated skyline operators can benefit from modern database
systems that offer in-memory index structures as well as pipelined tuple process-
ing. In the following, we integrate the naive-nested-loops skyline algorithm as an
operator into the main-memory database system HyPer [6]. As a native oper-
ator, it supports code-generation according to the producer-consumer concept,
that pushes tuples towards the parent operator in parallel pipelines. This enables
the parallelisation of progressive skyline algorithms that continuously produce
output. Furthermore, we optimise the space requirements for trie-based skyline
algorithms and parallelise all introduced implementations for multi-threaded exe-
cution. In summary, this work’s contributions are:

– the integration of a skyline operator into the main-memory database system
HyPer following the producer-consumer model,

– a memory reduction for trie-based skyline computation on categorical data
due to the usage of the adaptive radix tree,

– the parallelisation of naive-nested-loops as well as tree-based skyline algo-
rithms within the context of database systems,

– and an evaluation in terms of run time, memory usage and scalability that
compares naive-nested-loops to tree-based skyline algorithms.

This work is organised as follows: First, we give an overview of the underly-
ing main-memory database system with its adaptive radix tree and existing sky-
line algorithms. Hereafter, this paper proposes a novel skyline algorithm called
SARTS, which uses the adaptive radix tree for dominance checks. Afterwards,
parallelisation techniques are first explained and then applied to the given sky-
line algorithms. For the evaluation, we vary the number of input tuples as well
as the number of available threads.

2 Related Work

As this work combines main-memory database systems with skyline algorithms,
this section introduces the underlying operator concepts within modern database
systems and common skyline algorithms.

ARTful Skyline Computation for In-Memory Database Systems 5

2.1 Main-Memory Database Systems

HyPer [6,13,14] is an in-memory database system that introduced code-
generation according to the producer-consumer model. Instead of traditional
Volcano-style query execution [4], where the topmost operator iteratively
demands the underlying ones to return tuples, operators in HyPer push tuples
towards the parent operator. Two functions, produce() and consume(), gener-
ate the corresponding code using the LLVM compiler framework. During code-
generation, produce() is called recursively from top to bottom, then each call
evokes a consume() call on the parent node. This generates the code for process-
ing tuples in parallel pipelines. We later integrate skyline as an operator that
initiates parallel pipelines.

The adaptive radix tree (ART) [9] is the in-memory index-structure used in
HyPer to retrieve tuples by their identifier. In contrast to a radix tree, the node’s
size is adaptive in order to reduce the memory consumption and improve the
caching performance. The ART offers four different node types for either four,
16, 48 or 256 keys and can replace various tries such as prefix-trees represented
by radix trees.

2.2 Skyline Algorithms

The naive-nested-loops (NNL) algorithm from the original paper [2] forms the
basis for our in-database implementation A nested loop compares each tuple
to each other one whether it is not dominated and therefore forms part of the
return set. To reduce the number of disk accesses, the block-nested-loops (BNL)
algorithm maintains a window in main-memory of all tuples considered for the
skyline to that point. The divide-and-conquer (DNC) algorithm partitions [16]
the tuples recursively and performs dominance checks when merging partitions.

Since its invention, skyline algorithms have been based on different data
structures and hardware [5]. This work mainly incorporates research on the
parallelisation of skyline algorithms [7,10,15,17] that produce progressive out-
put [11]. This facilitates the integration into database systems according to the
producer-consumer model.

Sorting-based algorithms such as Sort-Filter-Skyline (SFS) [3] or SaLSa [1]
pre-sort the input first before computing the skyline. Pre-sorted input allows
elements to be pruned which are worse. The skyline-using-tree-sorting (ST-S)
algorithm [12] is tuned for binary attribute values, as it stores tuples in a radix
tree called N-tree to perform dominance checks. In this work, we extend the
algorithm to support categorical data and replace the N-tree with the ART.

3 SARTS

This section presents SARTS (Skyline using ART Sorting-based), a novel sky-
line algorithm for categorical attributes. It improves the core concepts of ST-S
by implementing a more efficient indexing structure for dominance checks—the

6 M. E. Schüle et al.

ART. As our proposed SARTS algorithm is based on the ST-S algorithm, we
first explain the extension of ST-S for categorical attributes, before we proceed
with the integration of the adaptive radix tree.

3.1 ST-S for Categorical Attributes

Every inner node of the N-tree in the ST-S algorithm, including the root, has
an array, which can hold as many children as there are possible attribute values.
Each path taken from the root to a leaf represents a tuple, which is assigned
a score. The score of a particular tuple t with n attributes is determined by a
scoring function with t[i] as the i-th attribute of the tuple:

score(t) :=
i<n∑

i=0

2n−i · t[i]. (2)

In each inner node, minScore and maxScore mark the boundaries for the tuple’s
possible score within branches descending from this node.
At the beginning, a monotonic function minC() or maxC() defines an order:

minC(t) :=
(

min
0≤i<n

(t[i]),
i<n∑

i=0

t[i]
)
. (3)

It consists of two components: a main comparison attribute, which is the smallest
value of all tuple’s attributes, and a tie-breaker that is the sum of all the tuple’s
attribute values. The ST-S algorithm (Algorithm 1) works as follows:

1. The tuples are presorted with minC() (line 1).
2. The threshold tuple tstop, undefined at the beginning, is later updated (lines

11–12) with knowledge of tuples that are part of the skyline.
3. The first tuple t0 from the presorted data set is always part of the skyline. It

gets inserted into the tree and is put out as part of the skyline (lines 3–5).
4. The following loop checks for every input tuple t whether it is dominated by

any tuple already in the skyline (line 8). The checks are carried out with the
help of the tree, which holds all the skyline tuples to date.

5. If a tuple t is dominated by some other tuple in the skyline, it is no longer
considered (line 8). Otherwise, it is inserted into the tree (line 9), so that it
is able to eliminate future, dominated tuples.

6. If the maximum attribute value of the new skyline tuple t is smaller than the
maximum attribute value of the threshold tstop, then the threshold is updated
(line 12), and now holds the value of t, until the next update occurs.

7. The algorithm stops as soon as all tuples left in the data set are a priori
dominated by the threshold (line 7).

8. If the maximum attribute value of the threshold tuple tstop is less than or
equal to the minimum attribute value of the current tuple t, then none of the
remaining, sorted tuples are part of the skyline.

Both the insert() and is dominated() operations have been slightly modified
from the original paper to deal with categorical attributes rather than binary
ones.

ARTful Skyline Computation for In-Memory Database Systems 7

Algorithm 1. ST-S Algorithm
Input: Tuple List T , Tree tree
Output: Skyline skyline

1: Sort T in-place using a monotonic function minC()

2: t0 ← first element of T
3: tstop ← t0
4: insert(t0, tree.root, 0)
5: Add t0 to skyline // t0 always part of skyline due to presorting
6: for each tuple t ∈ T\{t0} do
7: if max(tstop)≤ min(t) and tstop �= t then return

8: if not is dominated(t, tree.root, 0, score(t)) then
9: insert(t, tree.root, 0)

10: Add t to skyline
11: if max(t) < max(tstop) then
12: tstop ← t

3.2 ART for Skyline

The interface of the ART has been kept similar to that of the N-Tree in ST-S.
This enables the very straightforward integration of the ART into the algorithm,
because the insert() and is dominated() operations still have the same signa-
ture as in ST-S. While insert() is slightly different from the original variant, the
is dominated() operation is almost identical to the one in ST-S. The insert()
operation for SARTS differs from the ST-S variant in this both finding the cor-
rect child to the current node and creating a new child are outsourced into two
separate functions: findChild() and newChild(). In addition to that, before a
new child can be created, the current node might first need to grow() to the
next-bigger type, in order to create space for the new child. The pseudo-code to
the insert() operation is given in Algorithm 2.

The main difference within the is dominated() operation is, similarly to
insert(), that it uses findChild() to determine the correct child for further
traversal.

In addition to that, just like the nodes of the N-Tree, the inner nodes of
the ART have to be extended by a minScore and a maxScore, and the leaf
nodes by the score attribute and an array of tupleIDs. This enables the faster
traversing of the tree during dominance checks, by skipping tree regions that
cannot dominate the current tuple.

4 Parallelisation

The following section presents the parallelisation approaches for traditional sky-
line algorithms, such as NNL and DNC1, as well as for two of the newer algo-
rithms: ST-S and SARTS2. The corresponding source-code is publicly available.
1 https://gitlab.db.in.tum.de/alex kulikov/skyline-computation.
2 https://gitlab.db.in.tum.de/alex kulikov/skyline-categorical.

https://gitlab.db.in.tum.de/alex_kulikov/skyline-computation
https://gitlab.db.in.tum.de/alex_kulikov/skyline-categorical

8 M. E. Schüle et al.

Algorithm 2. INSERT Operation for SARTS
Input: Tuple t, Node parent Node current, Level level, Attributes atts

1: if level = 0 then
2: node.minScore ← 0
3: node.maxScore ← ∑t.size − 1

i = 0 (2t.size − i · max(atts))
4: else if level != t.size then
5: node.minScore ← ∑level − 1

i = 0 (2t.size − i · t[i])

6: node.maxScore ← node.minScore +
∑t.size − 1

i = level (2t.size − i · max(atts))

7: if level = t.size then
8: node.score ← score(t)
9: Append t.tupleID to node.tupleIDs

10: else
11: child ← findChild(current, t[level])
12: if child is None then
13: if current.size != 256 then
14: grow(parent, current, t[level − 1])

15: child ← newChild(current, t[level])

16: insert(t, current, child, level + 1)

4.1 Naive-/Block-Nested-Loops

Algorithm 3. Parallel NNL
Input: Tuple List T
Output: Skyline skyline

1: parallel for each tuple t ∈ T do
2: is not dominated ←True
3: for each tuple d ∈ T\{t} do
4: if dominates(d, t) then
5: is not dominated ←False
6: break
7: if is not dominated then
8: Add t to skyline

The main idea when parallelising the
naive-nested-loops algorithm is to use
the parallel for construct for the
outer loop of the algorithm. The inner
loop could also be taken for this pur-
pose, but then the code, which finds
itself in the outer loop but not in the
inner one would be running sequen-
tially, thus reducing the benefit of par-
allelising the code in the first place.
The pseudo-code notation of the par-
allelised version of naive-nested-loops
is given in Algorithm 3.

4.2 Divide-and-Conquer

Two different parallelisation techniques were applied to the divide-and-conquer
algorithm. Instead of applying a sequential sorting algorithm, parallel sort
sorts the elements using several worker threads simultaneously, and thus pro-
duces the result significantly faster than sequential functions for large data sets.
parallel sort is applied in two places within the DNC algorithm:

1. Finding the median. After sorting the tuples, the median of the data set is
taken to be the element located exactly in the middle of the sorted set.

ARTful Skyline Computation for In-Memory Database Systems 9

2. Determining the minimum for two dimensions. The skyline can be computed
by finding the minimum of the first subset and comparing it to all elements
of the second subset.

4.3 SARTS and ST-S

The parallelising of the ST-S and SARTS algorithms results in almost identical
implementations. As the interfaces of both trees are technically the same, the
algorithms were also parallelised via the same approach.

The main idea is to divide the original data set into as many partitions
as there are threads on the machine. One thread for each partition computes
the skyline of its tuples. Every thread receives its own tree structure to store
the tuples that are part of the skyline and to perform dominance checks. In
other words, the sequential version of SARTS (resp. ST-S) is simultaneously
applied to each of the partitions. As soon as the skyline of every partition has
been computed, the resulting skylines are merged to produce the final one. The
skylines of all partitions combined are much smaller than the original data set.
Therefore, the final merge does not take as much time as computing the entire
skyline from scratch.

In addition to the main parallelisation approach, presorting the tuples also
happens in parallel before the actual algorithm begins. As the original data set
tends to be very large in real-world applications, sorting it in parallel leads to a
very significant efficiency boost.

The skyline is computed similarly to the non-parallelised version, with one
major difference. Whenever a tuple that is definitely part of the skyline is stored,
it is not merely appended to some list of skyline tuples. Instead, it is stored into
a common sub results array, to which all skyline threads share access.

5 Evaluation

This section discusses the evaluation of the following algorithms: naive-nested-
loops (NNL), block-nested-loops (BNL), divide-and-conquer (DNC), ST-S and
SARTS. All the tests were conducted on a Linux Mint 18.2 machine offering an
Intel Core i7-5500U CPU with a 4096 KB cache and 8 GB DDR3L of main-
memory. As the tree-based skyline algorithms, such as ST-S and SARTS, are
restricted to categorical attributes, tests that include the algorithms ST-S and
SARTS were conducted using a limited set of integers as categories, ranging from
0 to 255. All other tests were performed with continuous attributes, represented
as double values.

5.1 Non-progressive Algorithms

The non-progressive skyline types included in this work are the block-nested-
loops and the divide-and-conquer algorithms. In all three of the conducted tests,
BNL scales significantly better than DNC. It shows overall better performance

10 M. E. Schüle et al.

with an increasing number of tuples, dimensions and also threads (Fig. 1). Here-
with, the results are similar to the ones produced in the original paper [2], which
introduced BNL and DNC.

0 50 100 150 200
0
5

10
15

Number of Dimensions

R
un

T
im

e
in

s BNL BNL

1 · 1065 · 106 1 · 107
0

500

1,000

Number of Tuples

BNL DNC

1 2 3 4
0

5

10

Number of Threads

BNL DNC

Fig. 1. Run time of non-progressive algorithms by number of tuples (default: 5 dimen-
sions, 256 categories, 4 threads and 10,000 input tuples).

5.2 Progressive Algorithms

Naive-nested-loops can be both progressive and parallelisable and therefore com-
pared to the two newer algorithms ST-S and SARTS. As expected, for a rising
number of tuples, both ST-S and SARTS perform extremely well. As shown in
Fig. 2, they significantly outperform naive-nested-loops with larger input. This
is not surprising, as ST-S and SARTS were specifically developed for large cat-
egorical data sets. It is due to the efficient nature of the tree structures used
that dominance checks can be conducted very efficiently, and depend less on the
number of tuples than on the dimensionality of the data set.

0 20 40 60 80100
0

10

20

Number of Dimensions

R
un

T
im

e
in

s NNL STS SARTS

1 · 1065 · 106 1 · 107
0

0.5
1

·106

Number of Tuples

NNL STS SARTS

1 2 3 4
1
2
3
4

Number of Threads

NNL STS SARTS

Fig. 2. Run time of progressive algorithms by number of tuples (default: 5 dimensions,
256 categories, 4 threads and 10,000 input tuples).

When looking at the results of scaling with dimensionality, the naive-
nested-loops algorithm significantly outperforms both parallelised and sequen-
tial versions of ST-S and SARTS. The reason for this is that radix-based tree
structures—N-Tree and ART—generally scale badly with longer keys. This is
the trade-off they have to accept for very efficient scaling with the number of
inserted elements. The longer the keys of the data set are, the higher the tree

ARTful Skyline Computation for In-Memory Database Systems 11

gets, and the longer it takes to traverse the tree from top to bottom. In the
application area of skyline computation, the length of a key corresponds to the
dimensionality of a tuple. Hence, the more dimensions the tuples of a data set
have, the less efficient tree-based dominance checks become.

A comparison of progressive algorithms depending on the number of threads
available shows that both ST-S as well as SARTS outperform naive-nested-
loops. As expected, all parallelised algorithms scale with the number of available
threads.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Number of Dimensions

M
em

or
y
in

M
B ART N-Tree

0 5 · 105 1 · 106
0
2
4
6

Number of Tuples

ART N-Tree

Fig. 3. Memory usage of ART and N-Tree by dimensionality and tuples (256 categories,
4 threads; left: 1000 input tuples, right: 5 dimensions).

Memory Usage. The last two tests compare the main-memory usage of the
ART to that of the N-Tree. Figure 3 shows that the ART significantly consumes
less space than the N-Tree. The memory consumption is similar when using
multiple dimensions: While the ART already performs better than the N-Tree
for low number of dimensions, it generally scales much more efficiently with
high dimensionality. Thus, it can be concluded that the SARTS algorithm is
significantly more memory-efficient than ST-S due to the usage of the ART.

6 Conclusion

This work has integrated skyline algorithms as an operator inside the main-
memory database system HyPer according to the producer-consumer model.
As in-memory index structures improve look-up performance in main-memory
database systems, we replaced traditional radix trees by the adaptive radix tree
for fast skyline computation on categorical data. This called SARTS algorithm
displayed the same lookup performance as its ancestor algorithm, ST-S, but
was superior with regard to space consumption, due to adaptive nodes. We suc-
cessfully parallelised naive-nested-loops, divide-and-conquer and the tree-based
algorithms to allow scaling to multiple cores.

References

1. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM
Trans. Database Syst. 33(4) (2008). https://doi.org/10.1145/1412331.1412343

https://doi.org/10.1145/1412331.1412343

12 M. E. Schüle et al.

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, Heidel-
berg, Germany, 2–6 April 2001. IEEE Computer Society (2001). https://doi.org/
10.1109/ICDE.2001.914855

3. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
Bangalore, India, 5–8 March 2003. IEEE Computer Society (2003). https://doi.
org/10.1109/ICDE.2003.1260846

4. Graefe, G.: Encapsulation of parallelism in the volcano query processing system. In:
SIGMOD, Atlantic City, NJ, USA, 23–25 May 1990. ACM Press (1990). https://
doi.org/10.1145/93597.98720

5. Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed envi-
ronments. VLDB J. 21(3) (2012). https://doi.org/10.1007/s00778-011-0246-6

6. Hubig, N., Passing, L., Schüle, M.E., Vorona, D., Kemper, A., Neumann, T.:
HyPerInsight: data exploration deep inside hyper. In: CIKM, Singapore, 06–10
November 2017 (2017). https://doi.org/10.1145/3132847.3133167

7. Köhler, H., Yang, J., Zhou, X.: Efficient parallel skyline processing using hyper-
plane projections. In: SIGMOD, Athens, Greece, 12–16 June 2011. ACM (2011).
https://doi.org/10.1145/1989323.1989333

8. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4) (1975). https://doi.org/10.1145/321906.321910

9. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for
main-memory databases. In: ICDE, Brisbane, Australia, 8–12 April 2013. IEEE
Computer Society (2013). https://doi.org/10.1109/ICDE.2013.6544812

10. Liknes, S., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: APSkyline: improved skyline
computation for multicore architectures. In: DASFAA, Bali, Indonesia, 21–24 April
2014 (2014). https://doi.org/10.1007/978-3-319-05810-8 21

11. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for
skyline queries. In: SIGMOD, San Diego, California, USA, 9–12 June 2003. ACM
(2003). https://doi.org/10.1145/872757.872814

12. Rahman, M.F., Asudeh, A., Koudas, N., Das, G.: Efficient computation of subspace
skyline over categorical domains. In: CIKM, Singapore, 06–10 November 2017.
ACM (2017). https://doi.org/10.1145/3132847.3133012

13. Schüle, M., Bungeroth, M., Vorona, D., Kemper, A., Günnemann, S., Neumann,
T.: ML2SQL - compiling a declarative machine learning language to SQL and
python. In: EDBT, Lisbon, Portugal, 26–29 March 2019 (2019). https://doi.org/
10.5441/002/edbt.2019.56

14. Schüle, M., et al.: The power of SQL lambda functions. In: EDBT, Lisbon, Portu-
gal, 26–29 March 2019 (2019). https://doi.org/10.5441/002/edbt.2019.49

15. Tang, M., Yu, Y., Aref, W.G., Malluhi, Q.M., Ouzzani, M.: Efficient parallel skyline
query processing for high-dimensional data. In: ICDE, Macao, China, 8–11 April
2019. IEEE (2019). https://doi.org/10.1109/ICDE.2019.00251

16. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for effi-
cient parallel skyline computation. In: SIGMOD, Vancouver, BC, Canada, 10–12
June 2008. ACM (2008). https://doi.org/10.1145/1376616.1376642

17. Zois, V., Gupta, D., Tsotras, V.J., Najjar, W.A., Roy, J.: Massively parallel skyline
computation for processing-in-memory architectures. In: PACT, Limassol, Cyprus,
01–04 November 2018. ACM (2018). https://doi.org/10.1145/3243176.3243187

https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2003.1260846
https://doi.org/10.1109/ICDE.2003.1260846
https://doi.org/10.1145/93597.98720
https://doi.org/10.1145/93597.98720
https://doi.org/10.1007/s00778-011-0246-6
https://doi.org/10.1145/3132847.3133167
https://doi.org/10.1145/1989323.1989333
https://doi.org/10.1145/321906.321910
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1007/978-3-319-05810-8_21
https://doi.org/10.1145/872757.872814
https://doi.org/10.1145/3132847.3133012
https://doi.org/10.5441/002/edbt.2019.56
https://doi.org/10.5441/002/edbt.2019.56
https://doi.org/10.5441/002/edbt.2019.49
https://doi.org/10.1109/ICDE.2019.00251
https://doi.org/10.1145/1376616.1376642
https://doi.org/10.1145/3243176.3243187

Quantum Computation and Its Effects
in Database Systems

Szabolcs Jóczik and Attila Kiss(B)

Faculty of Informatics, Eötvös Loránd University, Budapest 1117, Hungary
{joczikszabi,kiss}@inf.elte.hu

https://www.elte.hu/en/faculties/informatics

Abstract. Classically, searching an unsorted database requires a linear
search, which is O(n) in time. Using Grover’s quantum search algorithm,
it is possible to do it in O(

√
n) time which is a quadratic speedup com-

pared to its classical counterpart. The aim of this research is to exploit
this speedup and find other applications in different algorithms com-
monly used in database systems.

Keywords: Quantum computing · Grover’s algorithm · Database
operations

1 Introduction

Today’s computers—both in theory (Turing machines) and practice (PCs, lap-
tops, tablets, smartphones, . . .)—are based on classical physics. They are limited
by locality therefore. A quantum system can be in a superposition of many differ-
ent states at the same time, and can exhibit interference effects during the course
of its evolution. Moreover, spatially separated quantum systems may be entan-
gled with each other and operations may have “non-local” effects because of this.
Quantum computation is the field that investigates the computational power
and other properties of computers based on quantum-mechanical principles. An
important objective is to find quantum algorithms that are significantly faster
than any classical algorithm solving the same problem [1]. Section 3 delivers a
basic introduction to Grover’s search algorithm and provides insight into how it
can be used in the later chapters for database set operations. Section 4–7 pro-
poses new algorithms that could be alternatively used in database systems. More
specifically we propose a quantum algorithm for each of the following database
set operations (Intersection, Set difference, Union, Projection). The majority
of these algorithms are built upon the intersection operation using Grover’s
search algorithm. The validation is evaluated on both classical and quantum
computers using IBM-Q in Sect. 8. Lastly in Sect. 9 we summarise the results we
gathered using the proposed algorithms and make notes on some possible future
improvements.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 13–23, 2020.
https://doi.org/10.1007/978-3-030-54623-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_2

14 S. Jóczik and A. Kiss

2 Related Works

Applications of existing quantum algorithms in different fields of researches have
been a center of attention for many years now. Researchers have been working
on developing new algorithms and finding interesting applications of them that
could replace their classical counterparts in the future. There are many examples
like Shor’s algorithm [2] in the field of prime factorization or Grover’s quantum
search algorithm [3] that has applications in cryptography [5], collision problems
[6] and many more [7,8].

The motivation in this research paper was to find new applications of Grover’s
algorithm in database systems for basic set operations. Set operations such as
intersection, difference, union, projection are fundamental building blocks in
database queries that require fast and efficient algorithms. In this paper we
are proposing four quantum algorithms for each of the previously mentioned
operations that could possibly help in working with queries consisting of multiple
operations. First we develop an algorithm for the intersection operation, then
we use that algorithm to design the algorithms for set difference, union and
projection. A similar work has been done before by Pang, C. Y., Zhou, R. G.,
Ding, C. B., and Hu, B. Q. [4]. They presented a quantum algorithm for the
intersection operation with a running time of O(

√|A| × |B| × |C|, where C =
A ∩ B. The algorithm they developed is a combination of Grover’s algorithm,
classical memory and classical iterative computation that could be used as a
starting point to develop algorithms for the other set operations as well but they
were not presented in the paper. In another related work by Salman, T., and
Baram, Y. [9] a similar approach was used in developing a quantum algorithm
for the intersection operation.

3 Unstructured Database Search with Grover’s
Algorithm

Using Grover’s search algorithm it is possible to find a specific item within a
randomly ordered database of n items using O(

√
n) operations (with probability

> 1
2). By contrast, a classical computer would require O(n) operations to achieve

this, therefore, Grover’s algorithm provides a quadratic speedup over an optimal
classical algorithm and a good starting point to find applications in unstructured
database systems.

3.1 Problem Definition

Suppose there’s an unstructured database of n items that we map to the set
{0, 1, . . . , n − 1}. Among these items there is one item with a unique property
ω that we wish to locate. A common way to encode such a list is in terms of a
function f : {0, 1}N −→ {0, 1}, where n = 2N defined as

f(x) =

{
1 if x = ω

0 if x �= ω,

Quantum Computation and Its Effects in Database Systems 15

To use a quantum computer for this problem, we encode the function into a
unitary matrix called an oracle. First we choose a binary encoding of the items
x, ω ∈ {0, 1}N , thus we can represent each item using N qubits on a quantum
computer. We then define the oracle matrix Uω to act on any of the simple,
standard basis states |x〉 by Uω |x〉 = (−1)f(x) |x〉.

We see that if x is an unmarked item, the oracle leaves the state unaffected.
However, when we apply the oracle to the basis state |ω〉, it maps Uω |ω〉 = − |ω〉.

3.2 Algorithm

The initialization is carried out by applying a Hadamard transform on the system
to achieve a uniform superposition of all states as follows

|0〉⊗N |1〉 −→
⎛

⎝ 1√
2N

2N−1∑

x=0

|x〉
⎞

⎠ |0〉 − |1〉√
2

The second step is the Grover Iteration, which is repeated �π
4

√
n	 times to

achieve optimal probability. The iteration consists of the following two steps:

1.) Apply the oracle operator Uω.
2.) Apply the Grover diffusion operator

G = 2 |ψ〉 〈ψ| − I

In the last step a classical measurement is performed to determine the result.
Since all proposed algorithms are inherited from Grover’s algorithm, the optimal
number of iterations in all cases equal to �π

4

√
n	.

We’ll be also using the following function implicitly throughout the rest of
the paper. Let f : A −→ [0, . . . , n − 1] be an indexing function that maps the
elements of A to the set {0, . . . , n − 1}. Now we can define a natural bijection
between the subsets X ⊂ A and the set of bitstrings with length n as follows

P(A) −→ {0, 1}n

X �−→ [h(f−1(0)), h(f−1(1)), . . . , h(f−1(n − 1))],

where

h(x) =
{

1 x ∈ X
0 x �∈ X.

4 Set Operation: Intersection

The intersection operator takes the results of two queries and returns only those
records that appear in both result sets. A straightforward classical algorithm
would be to go through each element of one of the sets and check whether it is
in the second set or not. This algorithm would give us a O(nm) efficiency.

In this paper we assume that the given sets are unstructured and using sorting
algorithms or hash tables is not allowed or computationally not worth it. With
these assumptions and the help of Grover’s algorithm, it is possible to find A∩B
in O(

√
2N) computational time using the following proposed quantum.

16 S. Jóczik and A. Kiss

4.1 Quantum Algorithm

Let A and B be two sets and let’s assume that n = |A| ≤ |B|. The intersection of
A and B must be in the power set of A, thus A∩B ⊂ P(A), where |P(A)| = 2n.
Therefore we can use exactly n bits to represent all of the subsets of A, where
in this case every element of A is represented by one qubit.

Now we can make use of Grover’s search algorithm to search through the
subsets X ⊂ A and find A ∩ B with an appropriate Oracle function Of , such as

Of (X) =
{

1 X = A ∩ B
0 X �= A ∩ B,

4.2 Implementation

As an example let A = {1, 2, 3}, B = {2, 3, 4} and f defined as follows

f(1) = 0 f(2) = 1 f(3) = 2

We’ll be using this definition of f for the rest of the paper. In this case the
bitstring that represents A ∩ B is 011. The oracle function Of needs to flag the
value 011 and leave all other values unaltered. The implementation of the full
algorithm including the oracle function can be seen on Fig. 1.

Fig. 1. Finding the intersection of A and B

5 Set Operation: Difference

The next set operation that we look at is the set difference which takes the results
of the two queries and returns only those records of entries that appear only in the
first query result. Although set difference operation by itself is required by only a
few number of queries (i.e. except), it will be useful for the implementation of the
set union operation in the next section. Similarly to the intersection operation,
a straightforward classical algorithm would be to go through each element of the
first query and check whether it is in the second set or not. If an element is not
in the second query, then it is in A\B, otherwise it’s not. This algorithm would
give us a O(nm) computational time, which is also the worst case.

Using the proposed quantum algorithm with the help of Grover’s algorithm,
we can reach an O(

√
2n) efficiency on a quantum computer, assuming that no

sorting algorithms were used.

Quantum Computation and Its Effects in Database Systems 17

5.1 Quantum Algorithm

It is possible to obtain A\B using the intersection algorithm by simplifying
the problem as A\B = A\(A ∩ B), where A\(A ∩ B) can be viewed as the
complement set of (A ∩ B) relative to A. Therefore the elements of A\B are
going to be represented by those bits exactly that have zero values in the bitstring
representation of A ∩ B. Thus by flipping each of the bits’ values, which can be
achieved by applying X gates as the last step, we can get A\B from A ∩ B
(Fig. 2).

Fig. 2. Finding the difference of A and B

6 Set Operation: Union

6.1 Quantum Algorithm

First we need to find a partition of A ∪ B, thus decomposing it into a union of
distinct sets

A ∪ B = (A\B) ∪ B,

then concatenating the two distinct sets afterwards. Since concatenation can be
done efficiently on a classical computer, the speed up comes from calculating
A\B, which we already proposed an algorithm for. The elements of A\B and B
are distinct and their union forms A ∪ B, therefore it is convenient to use the
sets A\B and B to construct A ∪ B.

6.2 Implementation

The implementation is the same as for the set difference with an additional
concatenation since A ∪ B is constructed using partition sets (A\B) ∪ B.

7 Set Operation: Projection

Database projection can be viewed as a function that takes a relation and a list
of attributes of that relation as input and returns a relation containing only the
specified list of attributes, thus the duplicate instances are removed. Therefore
we need to deal with the following two independent problems.

18 S. Jóczik and A. Kiss

7.1 Problem 1: Converting Multiset to Set

Since projection does not return duplicate attributes, we need to convert our
resulting multiset into a set. Let’s assume that the resulting multiset is

A = {a
m(a1)
1 , a

m(a2)
2 , . . . , am(an)

n }.

We can further assume that the elements of A can be mapped to the set

X = {0, 1, . . . , n − 1} for some n ∈ N

Finding the distinct elements of A is equivalent to finding X ∩ A.

7.2 Problem 2: Projection

The second problem is to acquire the elements of the specific column that we are
looking for. First we use a binary coding of the table column name with length
N , where n = 2N . In this case n represents the number of columns. Let Bi be
the i.th column and Ai the corresponding set of attributes that belong to that
column, where |Ai| = m = 2M (Table 1).

Table 1. General database table

B0 B1 B2 · · · Bn

a00 a01 a02 · · · a0n

a10 a11 a12 · · · a1n

a20 a21 a22 · · · a2n

...
...

...
. . .

...

am0 am1 am2 · · · amn

The idea is to encode each element in the following state |aik|bi〉 so we can
use an oracle function to find exactly those particular elements that have the
specific column encoded in its state. In order to do this we need to transform
the elements into a superposition and use Grover’s search algorithm for multiple
entries as follows

1√
2M+N

∑

i

∑

k

|aik〉 |bi〉,

Quantum Computation and Its Effects in Database Systems 19

where we assume that the number of records equal to 2M+N . Next we define the
oracle function to flag all elements that belong to Bi, the column that we are
looking for

f(|x〉 |bj〉) =

{
1 ha j = i

0 ha j �= i.

In the example below, there are four columns in the database system encoded
as 00, 01, 10 and 11 where each column has four elements, thus N = M = 2 and
the total number of records in the table is 16.

As an example a record is referenced as |01〉 |11〉 = |0111〉, where |01〉 is the
encoded record and |11〉 is the corresponding column. The number of iterations

needed for an optimal solution in this case is
⌊

π
4

√
16
4

⌋
= 1.

The circuit below implements Grover’s algorithm for multiple solution that
flags all elements in the 01 column (Fig. 3).

Fig. 3. Making a projection to the column 01 with multiple elements as a solution

8 Evaluation on IBM’s Quantum Computers

The proposed algorithms were evaluated and tested on existing quantum com-
puters where the computers’ properties such as accuracy and computational
time were compared using five publicly available processors. The evaluation was
made on IBM’s 5-qubit quantum computers where each computer has a different
topology and error rate. For reference the algorithms were also tested on the sim-
ulator as well which assumes no error rate. The quantum circuits were created
using Qiskit which is an open-source quantum computing Python framework.

8.1 Intersection1

As seen on Table 2 below, the deployed quantum computers are still working
with relatively high error rates (the best result has less than 50% probability).

1 https://github.com/joczikszabi/ADBIS2020/blob/master/Intersection.ipynb.

https://github.com/joczikszabi/ADBIS2020/blob/master/Intersection.ipynb

20 S. Jóczik and A. Kiss

Table 2. Results of intersection using IBM quantum computers.

Backend Result Computational time Total runtime

ibmq simulator 94% 5 ms 15.8 s

ibmq london 10% 10.3 s 54.1 s

ibmq burlington 31% 9.6 s 1m 23.5 s

ibmq vigo 38% 8.1 s 30m 45.4 s

ibmqx2 41% 7.4 s 3m 36 s

ibmq oursense 44% 8.3 s 3 m 3.1 s

8.2 Set Difference2

In case of the set difference operation, we are negating the results from the
previous run using X gates in the end. This seems to be increasing the resulting
probabilities in almost every case (except on ibmq burlington). An explanation
for this could be that adding X gates to the circuit leads to an overall different
transpiled circuit which has a lower error rate thus implying a better result
(Table 3).

Table 3. Results of difference using IBM quantum computers.

Backend Result Computational time Total runtime

ibmq simulator 95% 4 ms 29.2 s

ibmq london 12% 10.3 s 38.5 s

ibmq burlington 25% 10.5 s 30.5 s

ibmq vigo 40% 8.5 s 28m 56.2 s

ibmq oursense 46% 8.4 s 12m 25.1 s

ibmqx2 53% 7.5 s 2m 14.2 s

8.3 Union

Our proposed algorithm for the set union consists of a set difference operation
in order to obtain the pairwise disjunct sets A\B and B and the concatenation
of these two sets. Therefore the results in this case are equivalent to the ones for
the set difference algorithm above.

8.4 Projection3

Using the example from the previous section, there were a total of 16 records
where 4 of them were marked and searched. Below you can find two tables
2 https://github.com/joczikszabi/ADBIS2020/blob/master/Difference.ipynb.
3 https://github.com/joczikszabi/ADBIS2020/blob/master/Projection.ipynb.

https://github.com/joczikszabi/ADBIS2020/blob/master/Difference.ipynb
https://github.com/joczikszabi/ADBIS2020/blob/master/Projection.ipynb

Quantum Computation and Its Effects in Database Systems 21

where Table 4 describes the computational time as before and Table 5 shows the
resulting probabilities for each marked item after the run.

Table 4. Results of projection using IBM quantum computers.

Backend Result Computational time Total runtime

ibmq simulator 25% 3 ms 4.1 s

ibmq vigo 5% 9.8 s 43 m 28.1 s

ibmq burlington 5% 12.4 s 1 m 9.8 s

ibmq oursense 6% 8.5 s 1 m 58.6 s

ibmqx2 7% 7.7 s 15.4 s

ibmq london 6% 10 s 54 s

Table 5. Probability results of each marked states

Backend |0001〉 |0101〉 |0101〉 |1101〉
ibmq simulator 25% 24% 25% 25%

ibmq vigo 4% 6% 6% 5%

ibmq burlington 6% 5% 6% 6%

ibmq oursense 6% 6% 6% 6%

ibmqx2 7% 5% 7% 7%

ibmq london 6% 5% 8% 7%

As seen above, using Grover’s algorithm with multiple marked items leads to
lower probabilities than the expected results. It is also notable that the results
tend to be around the average on every used backends and none of the computers
seem to have exceptionally high probabilities unlike in the previous evaluation.

The implementation follows the one found in the work of Strömberg, P., &
Blomkvist Karlsson [10].

9 Conclusion and Future Work

The evaluation of the proposed algorithms in this paper using different IBM-
Q Experience platforms allows some statement on how suitable their settings
are for the implementation. IBM-Q has five 5-qubit quantum computers which
differ in the topology of the qubits and the error rate. Based on the acquired
results, quantum computers are still working with relatively high errors and are
not efficient for practical use.

22 S. Jóczik and A. Kiss

Since the resulting probabilities are so low, it’d be challenging to effectively
use the proposed algorithms as of now. Reducing the error rates is necessary for
the algorithms to properly work and have useful applications in the future. In
fact, the presented work has to be seen as an attempt to build a theoretical foun-
dation for future quantum-based database algorithms. Nevertheless improve-
ments can be made for future experimentation. Possible improvements would
include creating different circuit designs for the algorithms to reduce the error
that is inherited by the different circuits’ hardware realization.

The presented set based operations are built upon the intersection operation
which exploits the fact that the resulting set is a subset of the power set of
the smaller input relation A. The approach is then to enumerate the 2n sets of
the power set and checking all these for containment in the second relation B.
Since the number of elements that we need to go through in this case is 2n, this
results in O(

√
2n) = O(2n/2) computational time. Therefore using the proposed

algorithms in case only a single operation is needed is not suggested since the
computational time could be improved using other existing quantum algorithms.
But since all proposed operations are inherited from an implementation of set
intersection using the well-known Grover’s algorithm, this approach would allow
for achieving a combined performance gain due to the quantum effects in case
of evaluating a combination of multiple set operations as one.

Many different useful operations have been left out of this paper that could
be implemented in the future to allow the use of the proposed algorithms for
more practical purposes. These operations could include different types of join
operations, cross-product and the composition of SQL operations. This imple-
mentation then would allow the use of SPJ queries which is crucial for any
database systems. However there are many other operations that need to be
implemented aswell in order for a database system to work properly such as
transactions, concurrence, logging, etc. [11]. Furthermore there are still discus-
sions and significant concerns regarding the applicability of Grover’s algorithm
for real-life databases whether it could be practical for use or not [12].

References

1. De Wolf, R.: Quantum computing: lecture notes. arXiv preprint arXiv:1907.09415
(2019)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

4. Pang, C.Y., Zhou, R.G., Ding, C.B., Hu, B.Q.: Quantum search algorithm for set
operation. Quantum Inf. Process. 12(1), 481–492 (2013)

5. Sakhi, Z., Kabil, R., Tragha, A., Bennai, M.: Quantum cryptography based on
Grover’s algorithm. In: Second International Conference on the Innovative Com-
puting Technology, pp. 33–37. IEEE, INTECH (2012)

6. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997)

http://arxiv.org/abs/1907.09415

Quantum Computation and Its Effects in Database Systems 23

7. Lavor, C., Liberti, L., Maculan, N.: Grover’s algorithm applied to the molecular
distance geometry problem. In: Proceedings of the VII Brazilian Congress of Neural
Networks, Natal, Brazil (2005)

8. Baritompa, W.P., Bulger, D.W., Wood, G.R.: Grover’s quantum algorithm applied
to global optimization. SIAM J. Optim. 15(4), 1170–1184 (2005)

9. Salman, T., Baram, Y.: Quantum set intersection and its application to associative
memory. J. Mach. Learn. Res. 13, 3177–3206 (2012)

10. Strömberg, P., Blomkvist Karlsson, V.: 4-qubit Grover’s algorithm implemented
for the ibmqx5 architecture (2018)

11. Roy, S., Kot, L., Koch, C.: Quantum databases. In: Proceedings of the CIDR (No.
CONF) (2013)

12. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Is quantum search practical? Comput.
Sci. Eng. 7(3), 62–70 (2005)

Machine Learning

Dynamic k-NN Classification Based
on Region Homogeneity

Stefanos Ougiaroglou1(B), Georgios Evangelidis2,
and Konstantinos I. Diamantaras1

1 Department of Information and Electronic Engineering,
International Hellenic University, 57400 Sindos, Thessaloniki, Greece

{stoug,kdiamant}@ihu.gr
2 Department of Applied Informatics, School of Information Sciences,

University of Macedonia, 54636 Thessaloniki, Greece
gevan@uom.gr

Abstract. The effectiveness of the k-NN classifier is highly depen-
dent on the value of the parameter k that is chosen in advance and
is fixed during classification. Different values are appropriate for differ-
ent datasets and parameter tuning is usually inevitable. A dataset may
include simultaneously well-separated and not well-separated classes as
well as noise in certain regions of the metric space. Thus, a different k
value should be employed depending on the region where the unclassified
instance lies. The paper proposes a new algorithm with five heuristics for
dynamic k determination. The heuristics are based on a fast clustering
pre-processing procedure that builds an auxiliary data structure. The lat-
ter provides information about the region where the unclassified instance
lies. The heuristics exploit the information and dynamically determine
how many neighbours will be examined. The data structure construction
and the heuristics do not involve any input parameters. The proposed
heuristics are tested on several datasets. The experimental results illus-
trate that in many cases they can achieve higher classification accuracy
than the k-NN classifier that uses the best tuned k value.

Keywords: k-NN classification · Dynamic k parameter
determination · Homogeneous clustering · Heuristics

1 Introduction

The k-NN classifier [4] predicts the class of an instance x by searching in the
training set and retrieving the k nearest instances to x. The nearest instances are
called neighbours. Then, x is classified to the majority class among the classes
that the k nearest neighbours belong to. The majority class is determined via a
procedure known as the nearest neighbours voting.

Classification accuracy highly depends on the selection of k. The value of k
that achieves the highest accuracy depends on the training set used. Usually,

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 27–37, 2020.
https://doi.org/10.1007/978-3-030-54623-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_3

28 S. Ougiaroglou et al.

tedious cross-validation tasks are performed to determine the “best” k value.
That value is unique and constant for all instances that need to be classified.
Although the determination of k can not follow any general rule and the “best”
k may be completely different for different training sets, large k values examine
larger neighbourhoods and, thus, they have to be used when the classes are not
well separated and when the training set contains noise. Therefore, large k values
render the classifier more noise tolerant. Small k values render the classifier noise
sensitive and should be used on training sets with well-separated classes.

Even the “best” k value can not be optimal. Real-life datasets may have
quite different structure in different regions of the metric space. For example, a
training set may contain simultaneously well-separated and not well-separated
classes as well as noise only in certain regions. In such cases, a classifier that uses
a fixed k value may be less accurate than a classifier that utilizes a different k
value for each instance that needs to be classified depending on the region where
the latter lies. This observation triggered the motivation of the present work.

The contribution of this work is the development of a parameter free k-NN
classifier in the sense that it uses a dynamic k value depending on nature of the
region where the instance to be classified lies. We call the proposed classifier
Region Homogeneity based Dynamic k-NN classifier (rhd-kNN). The rhd-kNN
classifier utilizes heuristics that dynamically adjust the k value. The paper intro-
duces five heuristics. All of them are based on a same data structure that is
constructed by a fast and parameter-free k-means clustering pre-processing task
that builds homogeneous clusters. The data structure holds the cluster centroids
as well as information about the area that each cluster centroid represents. In
effect, when a new instance x needs to be classified, the nearest centroid c from
the data structure is retrieved. Then based on c, k is appropriately adjusted and
x is classified by searching the k nearest neighbours in the training set.

Section 2 briefly reviews related work. Section 3 presents in detail the rhd-
kNN classifier and the five heuristics. The experimental study is presented in
Sect. 4. Section 5 concludes the paper and gives directions for future work.

2 Related Work

In [9] three heuristics for dynamic k value determination are proposed. The three
heuristics introduce parameters that should be tuned. In [3] a clustering based
method for dynamic k value selection is proposed, but involves various param-
eters. An interesting proposal to dynamically adjust k is presented in [2]. For
each unclassified instance, the algorithm determines the k value by construct-
ing a hypersphere around it to capture the local distribution of the surrounding
training instances. In [6], Johansson et al. propose a k-NN classifier that adopts
the concept of “Spheres of Confidence” to determine k for each unclassified
instance. The work presented in [7] introduced two Adaptive k-NN classifiers.
They are code named Ada-kNN1 and Ada-kNN2. Ada-kNN1 uses the density
and distribution of the neighborhood of each unclassified instance and learns a
suitable k for it by using an artificial neural network. Ada-kNN2 uses a heuristic

Dynamic k-NN Classification Based on Region Homogeneity 29

method guided by an indicator of the local density of the unclassified instance
and information about its neighboring training instances.

3 Region Homogeneity Based Dynamic k-NN

The rhd-kNN classifier is based on a k-means clustering procedure that builds
homogeneous clusters and keeps their centroids. The result of the procedure is
a data structure, which we call Structure of Homogeneous Clusters (SHC). The
concept of homogeneous clustering was first presented in [8] for the purpose of
developing a prototype generation data reduction technique. Here, we adopt the
same methodology to automatically adjust k for each instance that needs to be
classified depending on the nature of the region where the instance lies.

SHC is build by applying the following algorithm: Initially, the training set
is considered as a non-homogeneous cluster and a mean instance for each class
is computed. Then, k-means is applied using the class means as initial means.
The result is the creation of as many clusters as the number of distinct class
labels in the cluster. This clustering process is applied recursively for all non-
homogeneous clusters, and in the end, all clusters become homogeneous. Each
homogeneous cluster centroid is stored in SHC along with a number indicating
the recursion depth, i.e., how many recursive calls were necessary to determine
that homogeneous cluster.

Figure 1 presents an example. Assume that the training set has 26 instances
that can be either “squares” or “circles”. The SHC construction algorithm com-
putes a mean for the class “square” and a mean for the class “circle” (see
Fig. 1(b)). Then, k-means is executed by using the class means as initial means
and produces two clusters (Fig. 1(c)). Cluster A is non-homogeneous and cluster
B is homogeneous. The algorithm stores the centroid of cluster B to SHC along
with the number d = 1, denoting that the homogeneous cluster was produced
at recursion depth 1. For cluster A, the class means in the cluster are computed
(Fig. 1(d)), k-means is executed and discovers clusters C and D. Both are homo-
geneous and their centroids are placed in SHC along with the number d = 2
since both were produced at recursion depth 2 (Fig. 1(f)).

The aforementioned example can be illustrated as a tree of clusters (see
Fig. 2). The root is the whole training set. The first level of the tree holds clus-
ters A and B. Since cluster B is homogeneous, it becomes a leaf. Cluster A
becomes parent of clusters C and D. Since C and D are homogeneous, they also
become leaves. Obviously, for large regions that include instances of only one
class label, the SHC construction algorithm discovers large homogeneous clus-
ters at a relatively low recursion depth. These clusters are leaves and are placed
not far away from the root. For close class border or noisy regions, the algorithm
identifies small homogeneous clusters at higher recursion depths. Those clusters
are placed far away from the root. Hence, the cluster centroids hold information
about the region they represent in the form of the recursion depth d.

The rhd-kNN classifier utilizes SHC to determine the k value to be used
for each individual instance that needs to be classified. The SHC construction

30 S. Ougiaroglou et al.

(a) initial data (b) initial class means (c) k-means on initial
data

(d) Cluster centroid
and class means

(e) k-means on a non-
homogeneous cluster

(f) final set of cluster
centroids

Fig. 1. Data generation through recursive k-means clustering

Fig. 2. Tree representation of SHC

algorithm runs only once as a pre-processing step. Then, when a new instance
x needs to be classified, rhd-kNN finds the 1-nearest centroid c in SHC and its
corresponding d. Then, one of the heuristics is employed to determine k based
on d. Finally, rhd-kNN classifies x by finding the k nearest neighbours in the
training set. The five proposed heuristics are summarized below:

– k = d: It just defines k to be equal to the depth of the 1-nearest centroid
in SHC. This heuristic is used as a baseline since often a larger number of
neighbours is more appropriate.

– k = 2d: This heuristic tends to examine an extremely large number of nearest
neighbours, especially when d is greater than 9. Thus, in our experiments, we
manually set k = 29 when d > 9.

– k = d2: This heuristic is a trade-off between the above two heuristics.
– k = (d × (d + 1))/2 or k =

∑d
i=1 d: This heuristic determines k by mapping

values of d to the following arithmetic sequence: 1, 3, 6, 10, 15, 21, 28,
– k = �e

√
d�: This is a more conservative heuristic than the previous one. It

uses the 2, 4, 5, 7, 9, 11, 14, . . . sequence for determining k.

Dynamic k-NN Classification Based on Region Homogeneity 31

We expect that our classifier will outperform the k-NN classifiers that use
fixed k parameter values for datasets that contain a mixture of well-separated
and not well-separated classes, like the well-known iris dataset. The SHC con-
struction algorithm will build only one homogeneous cluster for the region con-
taining the well-separated class (in our case iris-setosa). Thus, the proposed
heuristics will consider a very small k value for each instance lying closer to
that cluster centroid. For unclassified instances close to cluster centroids in the
regions of the other two classes the algorithm will use larger k values.

4 Performance Evaluation

4.1 Experimental Setup

The rhd-kNN classifier was evaluated on fourteen datasets. Table 1 summarizes
their characteristics. They are distributed by the KEEL dataset repository1 [1].
We used the Euclidean distance as the distance metric. The datasets were nor-
malized within the range [0, 1].

We wanted to test the performance of rhd-kNN on datasets with noise. Thus,
for some of the datasets, we built two additional “noisy” versions by adding
10% and 30% random uniform noise. The noise was added by setting the class
label of the 10% or 30% of the instances to a randomly chosen different class
label. The datasets on which we artificially added noise are code-named by their
abbreviation plus the level of added noise (e.g., txr30).

We compared the performance of rhd-kNN against the conventional k-NN
classifiers that use fixed k values. We divided each dataset into a training set
and a testing set. We added noise only in the training portions. Possible ties
during the majority class voting were resolved using the 1-nearest neighbour
rule. We built six conventional k-NN classifiers with constant k parameter value.
The first three classifiers are: the widely used 1-NN classifier, the 5-NN classifier
(5 is the default value for the implementation of k-NN classifier in Python’s
scikit-learn library) and the 10-NN classifier. The fourth and fifth conventional

k-NN classifiers used are those with k =
√
N [2,5] and k =

√
N
2 where N is the

number of instances in the training set. They are common rule-of-thumb (RoT)
approaches that are often utilized in the literature. The last conventional k-NN
classifier used is that with the “best” k parameter value.

“Best k” was estimated by applying a 5-fold cross validation schema. We
divided each training set into five portions. Then, we ran the k-NN classifier five
times. Each time, a different portion was the validation set. Each instance of
the validation set was classified by applying the k-NN classifier that searches for
nearest neighbours into the union of the rest four portions. The result was the
average accuracy of the five executions. We applied the aforementioned proce-
dure fifty times by varying k from 1 to 50. Then, we kept the k parameter value
that achieved the highest accuracy, and this is the so called “best” k. Obviously,

1 http://sci2s.ugr.es/keel/datasets.php.

http://sci2s.ugr.es/keel/datasets.php

32 S. Ougiaroglou et al.

Table 1. Dataset description

Dataset Size Attributes Classes

Balance (bl) 625 4 3

Banana (bn) 5300 2 2

Ecoli (ecl) 336 7 8

Iris 120 4 3

Letter Recognition (lir) 20000 16 26

Landsat Satellite (ls) 6435 36 6

Magic G. Telescope (mgt) 19020 10 2

Pen-Digits (pd) 10992 16 10

Phoneme (ph) 5404 5 2

Pima (pm) 615 8 2

Shuttle (sh) 58000 9 7

Twonorm (tn) 7400 20 2

Texture (txr) 5500 40 11

Yeast (ys) 1484 8 10

the accuracy achieved by the k-NN classifier that uses the “best” k is derived by
classifying the instances of the initial testing set. For the datasets with artificially
added noise, we estimated the “best” k value by using validation sets without
noise. To achieve this, the noise was added in a copy of the original training set.
Then, the original training set and the “noisy” copy were divided into five folds.
Then, we kept the five “noisy” training sets from the “noisy” copy and the five
validation sets from the original training set.

The Nearest cluster centroid classifier that assigns an instance to the class
of the nearest cluster centroid in SHC is identical to RHC [8]. In effect, RHC
generates the cluster centroids (prototypes) that then are used as training data
for the k-NN classifier. Like other condensing and prototype generation algo-
rithms, RHC aims to reduce the data as much as possible without significant
loss of accuracy. As presented in [8], RHC and other relevant algorithms cannot
achieve higher accuracy than the conventional k-NN classifier. Therefore, we did
not include RHC in the present experimental study.

We conducted the experiments without prior knowledge about the datasets.
We believe that rhd-kNN could be more accurate than the “best” k-NN classi-
fier only when the datasets include simultaneously well-separated and not well-
separated classes as well as noise in certain regions. However, we conducted
experiments by using datasets that may not belong to such dataset categories.

Apart from the accuracy, we estimated three computational cost measure-
ments in terms of distance computations. The first one concerns the cost of the
k-NN classifier. The k value does not influence that cost when brute force is
used to retrieve the nearest neighbours. Thus, rhd-kNN and conventional k-NN

Dynamic k-NN Classification Based on Region Homogeneity 33

classifiers need to compute that number of distances. The second measurement
concerns the cost overhead for searching for the nearest cluster centroid in SHC
and it concerns exclusively rhd-kNN. The last cost measurement is the pre-
processing cost required for the SHC construction.

4.2 Experimental Results

Table 2 presents the computational cost measurements. The last column lists
the number of distances computed for SHC construction, which obviously is
a computationally “cheap” algorithm. Considering that the SHC construction
algorithm runs only once as a pre-processing step, the computational cost is
insignificant. The computational cost of cross-validation needed for parameter
tuning in the case of “best k” is not reported. Bear in mind that it is considerably
higher than the computational cost of the SHC construction algorithm.

The other two columns present the distance computations for the classifi-
cation step. All the classifiers of the experimental study have to compute the
distances listed in column “NN search over TS”. The rhd-kNN classifiers, in
addition, have to compute the distances that concern the search of the nearest
cluster centroid in SHC, listed in column “NN search over SHC”.

Table 3 presents the accuracy measurements. Almost in all cases an rhd-
kNN classifier can achieve higher accuracy than the accuracy achieved by the

conventional k-NN classifiers with k = 1, k = 5, k = 10, k =
√
N and k =

√
N
2 .

The 10-NN performs quite well on the specific suite of datasets, since a large
number of them contain noise. Notice, though, that rhd-kNN classifiers in many
cases clearly beat all versions of kNN with fixed k (excluding best k-NN). This
is demonstrated in the bl, bl10, ecl30, iris, ph30, pm10, txr30 and ys datasets.
Finally, rhd-kNN classifiers almost always outperform RoT classifiers. This is
the reason that in Table 3 we indicate with boldface only the winners among
best k-NN and the rhd-kNN classifiers.

The comparison between the best k-NN and rhd-kNN reveals noteworthy
performance for rhd-kNN. At least one of the rhd-kNN classifiers can achieve
higher accuracy than that of the best k-NN classifier in 18 datasets, while in two
datasets, a rhd-kNN approach is as accurate as the best k-NN classifier. Contrary
to the best k-NN classifier, rhd-kNN achieves that performance without the need
of any input parameter and tedious and costly parameter tuning procedures.

The k = (d × (d + 1))/2 heuristic seems to be an ideal approach since it
achieves high accuracy even when the dataset contains noise. In nine datasets it
is more accurate than best k-NN classifier. The simple k = d heuristic performs
well on datasets that in their original form do not include noise (e.g., lir, pd, sh,
txr). The k = 2d, k = d2 and k = �e

√
d� heuristics all achieve accuracies that

are close to those of the best k-NN classifier and, in some cases, even better.
The comparison between shd-kNN and best k-NN on “noisy” versions of the

datasets does not reveal any useful insights on which classifier is more accurate
on “noisy” conditions. The noise leads to smaller clusters with high d values.

34 S. Ougiaroglou et al.

Table 2. Computational cost in terms of distance computations

Dataset NN search over TS NN search over SHC Construction of SHC

bl 62,500 12,500 59,159

bl10 62,500 21,125 45,104

bl30 62,500 30,250 52,568

bn 4,494,400 940,220 592,642

ecl 18,023 6,030 41,592

ecl10 18,023 6,901 38,263

ecl30 18,023 12,596 43,200

iris 3,600 390 3,826

lir 64,000,000 7,476,000 37,168,151

ls 6,625,476 679,536 1,751,252

ls10 6,625,476 1,537,965 1,945,468

ls30 6,625,476 2,626,767 1,968,248

mgt 57,881,664 12,035,856 3,830,966

mgt10 57,881,664 17,296,788 3,918,354

pd 19,329,212 655,004 2,593,601

pd10 19,329,212 5,303,774 4,231,769

pd30 19,329,212 10,132,780 4,298,161

ph 4,669,920 886,680 639,564

ph10 4,669,920 1,710,720 693,068

ph30 4,669,920 2,494,800 766,212

pm 94,095 27,846 59,688

pm10 94,095 35,343 58,802

pm30 94,095 36,261 65,418

sh 538,193,600 1,774,647 10,977,178

tn 8,761,600 307,840 1,564,256

tn10 8,761,600 1,147,000 1,590,280

tn30 8,761,600 1,863,320 1,793,078

txr 4,840,000 257,400 2,623,438

txr10 4,840,000 1,250,700 3,403,100

txr30 4,840,000 2,523,400 3,521,357

ys 351,648 176,712 431,125

ys10 351,648 204,832 581,014

ys30 351,648 256,336 390,432

Thus, all heuristics use a high k. Accordingly, the cross-validation tuning process
reveals a high k value for the best k-NN classifier.

Dynamic k-NN Classification Based on Region Homogeneity 35

Table 3. k-NN classification with fixed and dynamic k parameter values

Data Best Best 1-NN 5-NN 10-NN RoT RoT rhd-kNN

k value k-NN k =
√
N k =

√
N
2 k = d k = 2d k = d2 k = (d×

(d + 1))/2

k = �e
√

d�

bl 42 89.60 79.20 86.40 89.60 89.60 89.60 84.80 88.80 89.60 90.40 89.60

bl10 43 88.80 68.80 86.40 87.20 89.60 89.60 88.00 91.20 89.60 90.40 87.20

bl30 32 88.00 59.20 69.60 79.20 83.20 83.20 73.60 83.20 87.20 82.40 76.80

bn 29 90.66 87.26 89.81 90.19 90.57 90.47 89.81 88.68 90.38 90.28 90.47

ecl 6 91.05 83.58 89.55 92.54 86.57 92.54 88.06 88.06 86.57 86.57 89.55

ecl10 6 89.55 77.61 88.06 92.54 88.06 89.55 86.57 91.05 92.54 91.05 91.05

ecl30 14 85.08 61.19 82.09 85.08 85.08 85.08 76.12 85.08 88.06 88.06 85.08

iris 11 93.33 90.00 93.33 93.33 93.33 93.33 93.33 93.33 93.33 96.67 93.33

lir 4 95.78 95.70 95.40 95.03 81.05 84.20 95.65 95.28 93.83 95.05 95.43

ls 8 91.53 89.98 91.53 91.14 86.09 87.34 91.22 90.68 89.59 90.99 90.83

ls10 8 91.30 81.66 90.52 90.99 86.09 87.10 90.75 90.37 89.90 89.98 90.75

ls30 13 88.27 61.23 82.21 89.04 86.25 86.79 82.98 88.58 89.36 88.81 87.72

mgt 10 83.57 80.13 82.97 83.57 80.97 81.65 83.36 78.97 80.86 81.86 83.39

mgt10 20 83.10 73.32 80.97 82.76 81.13 81.55 82.89 78.68 80.81 81.84 82.99

pd 1 99.05 99.05 99.09 98.73 95.04 96.13 99.09 98.59 98.32 98.54 98.91

pd10 8 98.86 89.40 98.95 98.73 95.13 96.36 98.91 98.73 98.36 98.64 98.91

pd30 12 98.68 69.75 94.18 98.45 94.90 96.36 92.58 98.04 98.23 98.41 97.59

ph 1 88.70 88.70 86.94 86.30 82.04 83.52 85.74 78.98 81.30 81.94 84.44

ph10 8 86.67 81.39 86.02 86.02 81.76 83.89 84.35 78.80 81.11 81.48 84.26

ph30 48 80.19 65.46 72.32 75.28 80.93 80.65 77.96 79.07 80.28 80.93 79.44

pm 48 76.47 77.12 78.43 81.05 75.16 77.78 80.39 72.55 74.51 73.86 82.35

pm10 18 78.43 72.55 76.47 78.43 75.16 78.43 75.82 77.12 77.78 79.09 77.78

pm30 47 73.86 64.05 64.71 69.94 71.90 71.24 71.24 73.86 71.90 73.20 76.47

sh 1 99.96 99.96 99.91 99.86 99.44 99.36 99.89 99.72 99.67 99.83 99.85

tn 49 97.97 95.54 97.70 97.77 97.77 98.04 97.77 98.11 97.70 97.91 98.04

tn10 47 97.77 84.39 95.47 97.10 97.57 97.50 97.10 97.91 97.43 97.70 97.70

tn30 50 97.77 67.23 79.19 86.08 97.43 97.57 86.69 97.77 97.03 97.57 94.73

txr 1 98.73 98.73 98.09 97.82 94.73 95.82 98.36 98.09 97.55 98.00 98.09

txr10 5 97.91 90.55 97.91 97.82 94.55 95.55 98.09 97.73 97.46 97.64 97.73

txr30 10 97.55 69.73 93.55 97.55 94.82 94.91 91.09 96.55 97.00 97.55 96.64

ys 14 58.45 49.32 57.10 59.12 61.15 60.14 55.41 61.15 60.14 61.49 57.43

ys10 13 58.45 44.93 52.37 58.11 60.14 58.11 51.01 59.46 59.80 57.43 57.43

ys30 14 56.76 36.82 45.61 55.41 58.78 59.46 44.26 50.00 57.77 56.08 48.99

AVG: 19.42 87.63 76.77 84.33 86.72 85.33 86.15 84.63 86.19 86.82 87.02 86.70

Table 4 gives an insight on the determination of k based on d. For each
dataset, we report the number of testing instances whose 1-nearest cluster cen-
troid in SHC is at a given recursion depth. In general the number of instances
follow the normal distribution for almost all datasets. There are some exceptions,
like the ph dataset, where a large number of instances are assigned to a small
depth. Also, in many datasets the distribution is left-skewed. As expected, we
observe shifted to the right distributions (larger d values) for noisy datasets.

36 S. Ougiaroglou et al.

Table 4. Number of instances whose 1-nearest cluster centroid in SHC was at depth i

Dataset Recursion depth of the 1-nearest cluster centroid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

bl 0 11 14 27 61 12 0 0 0 0 0 0 0 0 0 0 0 0

bl10 0 0 1 22 49 46 6 1 0 0 0 0 0 0 0 0 0 0

bl30 0 0 0 18 70 33 3 1 0 0 0 0 0 0 0 0 0 0

bn 0 0 0 0 42 143 124 146 110 140 183 120 51 1 0 0 0 0

ecl 0 18 11 17 14 6 1 0 0 0 0 0 0 0 0 0 0 0

ecl10 0 10 31 19 7 0 0 0 0 0 0 0 0 0 0 0 0 0

ecl30 0 8 27 24 7 1 0 0 0 0 0 0 0 0 0 0 0 0

iris 10 7 6 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0

lir 101 737 1595 1157 343 62 5 0 0 0 0 0 0 0 0 0 0 0

ls 98 103 53 338 229 235 189 41 1 0 0 0 0 0 0 0 0 0

ls10 0 4 26 362 656 226 13 0 0 0 0 0 0 0 0 0 0 0

ls30 0 0 5 229 768 274 11 0 0 0 0 0 0 0 0 0 0 0

mgt 0 0 0 0 29 52 46 74 108 321 600 915 926 509 175 48 1 0

mgt10 0 0 0 0 0 0 5 21 54 169 437 870 1016 680 388 132 30 2

pd 303 706 713 343 120 13 0 0 0 0 0 0 0 0 0 0 0 0

pd10 0 0 180 888 794 273 59 3 1 0 0 0 0 0 0 0 0 0

pd30 0 0 58 903 1036 180 20 1 0 0 0 0 0 0 0 0 0 0

ph 0 106 29 37 69 217 163 156 167 99 32 1 4 0 0 0 0 0

ph10 0 0 0 0 0 2 17 26 93 169 267 206 190 61 42 1 6 0

ph30 0 0 0 0 0 2 13 79 132 220 262 192 119 49 12 0 0

pm 0 0 0 0 0 23 44 41 38 6 1 0 0 0 0 0 0 0

pm10 0 0 0 0 4 8 25 45 43 12 16 0 0 0 0 0 0 0

pm30 0 0 0 0 3 8 27 34 29 40 12 0 0 0 0 0 0 0

sh 0 1808 2390 2998 1223 1673 605 613 197 69 23 0 0 0 0 0 0 0

tn 0 0 0 74 130 203 281 315 337 114 26 0 0 0 0 0 0 0

tn10 0 0 0 0 0 0 33 133 476 595 211 32 0 0 0 0 0 0

tn30 0 0 0 0 0 0 0 4 152 661 572 88 3 0 0 0 0 0

txr 168 170 331 341 75 15 0 0 0 0 0 0 0 0 0 0 0 0

txr10 0 7 256 556 244 34 3 0 0 0 0 0 0 0 0 0 0 0

txr30 0 1 136 713 221 27 2 0 0 0 0 0 0 0 0 0 0 0

ys 0 6 18 91 133 36 7 5 0 0 0 0 0 0 0 0 0 0

ys10 0 5 45 137 76 29 4 0 0 0 0 0 0 0 0 0 0 0

ys30 0 3 74 168 49 2 0 0 0 0 0 0 0 0 0 0 0 0

5 Conclusions

We propose the rhd-kNN classifier, a parameter free k-NN classifier that heuris-
tically determines how many neighbours will be examined for each unclassified
instance. Hence, a different k value is employed depending on the region where
the instance lies. The classifier uses a pre-processing step that builds an auxiliary
data structure (SHC). The latter holds the centroids of homogeneous clusters
obtained via a k-Means clustering task together with their depth (a number indi-
cating the recursion depth when the clusters were formed). When an instance
needs to be classified, SHC provides information about the region where the
instance lies, in effect, whether the instance is in a noisy region in terms of class
labels or not. Then the heuristic used exploits the information and dynamically

Dynamic k-NN Classification Based on Region Homogeneity 37

determines how many neighbours will be examined. The proposed heuristics are
tested on several datasets. The results show that in many cases they can achieve
higher accuracy than the k-NN classifier that uses the best tuned k value.

We plan to further explore dynamic k parameter determination. We plan
to develop heuristics that take into consideration additional metrics about the
region such as the number of instances the centroid represents and the number
of distinct class labels that exist in the immediate neighborhood of the instance.

References

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: data set repository, integration of algorithms and experimental
analysis framework. Mult. Valued Log. Soft Comput. 17(2–3), 255–287 (2011)

2. Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: Test point specific k estimation
for kNN classifier. In: Proceedings of the 2014 22nd International Conference on
Pattern Recognition, ICPR 2014, USA, pp. 1478–1483. IEEE Computer Society
(2014). https://doi.org/10.1109/ICPR.2014.263

3. Bulut, F., Amasyali, M.F.: Locally adaptive k parameter selection for nearest
neighbor classifier: one nearest cluster. Pattern Anal. Appl. 20(2), 415–425 (2015).
https://doi.org/10.1007/s10044-015-0504-0

4. Dasarathy, B.V.: Nearest neighbor. NN pattern classification techniques. IEEE
Computer Society Press, NN norms (1991)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Hobo-
ken (2000)

6. Johansson, U., Boström, H., König, R.: Extending nearest neighbor classification
with spheres of confidence. In: Wilson, D., Lane, H.C. (eds.) Proceedings of the
Twenty-First International Florida Artificial Intelligence Research Society Confer-
ence, Coconut Grove, Florida, USA, 15–17 May 2008, pp. 282–287. AAAI Press
(2008). http://www.aaai.org/Library/FLAIRS/2008/flairs08-070.php

7. Mullick, S.S., Datta, S., Das, S.: Adaptive learning-based k -nearest neighbor clas-
sifiers with resilience to class imbalance. IEEE Trans. Neural Networks Learn. Syst.
29(11), 5713–5725 (2018). https://doi.org/10.1109/TNNLS.2018.2812279

8. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduc-
tion for efficient k-NN classification. Pattern Anal. Appl. 19(1), 93–109 (2014).
https://doi.org/10.1007/s10044-014-0393-7

9. Ougiaroglou, S., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y., Welzer-
Druzovec, T.: Adaptive k -nearest-neighbor classification using a dynamic number
of nearest neighbors. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 66–82. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75185-4 7

https://doi.org/10.1109/ICPR.2014.263
https://doi.org/10.1007/s10044-015-0504-0
http://www.aaai.org/Library/FLAIRS/2008/flairs08-070.php
https://doi.org/10.1109/TNNLS.2018.2812279
https://doi.org/10.1007/s10044-014-0393-7
https://doi.org/10.1007/978-3-540-75185-4_7
https://doi.org/10.1007/978-3-540-75185-4_7

Contextualisation of Datasets for Better
Classification Models: Application to

Airbus Helicopters Flight Data

Marie Le Guilly1(B), Nassia Daouayry1,2, Pierre-Loic Maisonneuve2,
Ammar Mechouche2, Jean-Marc Petit1, and Vasile-Marian Scuturici1

1 Univ Lyon, INSA Lyon, LIRIS (UMR 5205 CNRS), Villeurbanne, France
{marie.le-guilly,jean-marc.petit,marian.scuturici}@insa-lyon.fr

2 Airbus Helicopters, Marignane, France
{nassia.daouayry,pierre-loic.maisonneuve,ammar.mechouche}@airbus.com

Abstract. For helicopters, anticipating failures is crucial. To this end,
the analysis of flight data allows to develop predictive maintenance
approaches, for which Airbus Helicopters (AH) has proposed several
solutions, some based on machine learning using predictive models. One
recurrent problem in this setting is the contextualization of the data,
that is to identify the data better fitting the phenomenon being mod-
eled. Indeed, helicopters are complex systems going through different
flight phases. Experts therefore have to identify the adequate ones, in
which the selected flight parameters are stable and consistent with the
studied problem. In this paper, we propose a generic solution to con-
textualize classification data, and present an experimental study on AH
flight data: the results are encouraging and allow to keep domain experts
involved the process.

Keywords: Data contextualization · Failure anticipation ·
Classification

1 Introduction

In the helicopters industry, predictive maintenance is crucial and Airbus Heli-
copters (AH) seeks to anticipate failure as soon as possible. One solution is to
analyze flight data, as most helicopters are equipped with flight recorders for
hundreds of parameters. Such an amount of data makes it possible to analyse
“low-level signals” over longer periods of time, and to detect failures earlier. In
this context, AH has gathered data on hundreds of thousands flight hours: to
face such a huge amount of data, a Big Data platform has been deployed at AH
to enable the storing and processing of large quantities of data [9].

Using this platform, digital twins have been devised to identify as soon as
possible small variations on core physical sensors. They are mainly based on
physical models and expert knowledge, but AH combines these with machine

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 38–48, 2020.
https://doi.org/10.1007/978-3-030-54623-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_4

Contextualization of Classification Datasets 39

learning techniques to build predictive models from the data. To build such
models, AH faces generic and recurrent issues that are well-known in machine
learning, such as data cleaning, accuracy, or explainability. But in addition to
these classic issues, AH also seeks to build models corresponding to the normal
behavior of the system, and has to use data fitting the behavior algorithms
have to model. Indeed, an important filtering step is performed to identify the
data that is adequate to deal with the considered problem: complex systems
such as helicopters go through many different phases, and only a subset of the
data is relevant for a given model, as they are the only one for which the laws
of normal behavior of the system apply. It is therefore necessary to identify the
correct context for the considered task, which is the subset of data corresponding
to the desired phases on which the model is applied. We define this problem as
contextualization, according to the term used by AH experts. Thus, it consists in
determining the flight phases where considered parameters have lesser variability
and are less subject to pilot maneuvers and external parameters not recorded by
the system. At AH, this crucial step is dealt with by relying on experts knowledge
who specify how to filter flight data.

The contextualization problem can seem as a simple problem at first hand
(mainly data selection), but turns out to be a nightmare in practice. Identifying
the appropriate data is clearly not an easy task, and depends on the final objec-
tive for the classification model. In addition, contexts are tightly linked with the
application they concern, so solutions are often specific to one given situation.
For systems such as helicopters, contextualization is also important as they are
systems governed by physical laws, that apply only in specific contexts: the pur-
pose of classification models is therefore to produce outputs coherent with these
laws. To this end, these models have to be trained on data consistent with the
physical model they represent.

In this paper, we propose our ongoing work to address the contextualization
challenge. We seek to identify the appropriate context for a classification task,
by identifying the subset of data more likely to capture the normal behavior. To
do so, we seek the data favoring the existence of a function between the features
and the class to predict. As the correct context should follow some underlying
function the model seeks to define, we propose to remove the regions of the data
preventing the existence of that function, and to only keep the data more likely
to correspond to a normal behavior. We then show how this approach can be
applied to AH classification datasets.

Based on these considerations, we made the following contributions: (1)
Proposing a generic solution for contextualization, in order to define filters that
can be used to reduce the dataset to a given context; (2) Experiments on AH
data showing how identifying context elements can improve the accuracy of clas-
sifiers; (3) Confronting a contextualization proposed by AH experts to additional
context elements proposed by our method.

Section 2 introduces the preliminaries. In Sect. 3, we propose our approach
to better contextualize datasets, and in Sect. 4, we focus on AH’s data, to show
how we built a context for the considered dataset, and develop the lessons drawn

40 M. Le Guilly et al.

from this collaboration based on the experimentations that have been conducted.
Finally Sect. 5 presents the related work before concluding in Sect. 6.

2 Preliminaries

2.1 Functional Dependencies

We first recall basic notations and definitions (see [8]). Let U be a set of
attributes. A relation schema R is a name associated with attributes of U , i.e.
R ⊆ U . A database schema R is a set of relation schemas. Let D be a set of
constants, A ∈ U and R a relation schema. The domain of A is denoted by
dom(A) ⊆ D. A tuple t over R is a function from R to D. A relation r over R is
a set of tuples over R. If X ⊆ U , and if t is a tuple over U , then we denote the
restriction of t to X by t[X]. If r is a relation over U , then r[X] = {t[X], t ∈ R}.

Definition 1. Let R be a relation schema, X ⊆ R and C ⊆ R\X. A FD on R
is an expression of the form R : X → C (or simply X → C when R is clear
from context)

Definition 2. Let r be a relation over R and X → C a functional dependency
on R. X → C is satisfied in r, denoted by r |= X → C, if and only if for all
t1, t2 ∈ r, if t1[X] = t2[X] then t1[C] = t2[C].

2.2 Supervised Classification in Machine Learning

Let’s consider a set of N training samples {(x1, y1), ..., (xN , yN)} where xi is
the feature vector of the i-th example and yi its label (or class). The number
of different labels K, is limited and much smaller than the number of samples.
Given this, classification is the task of learning a target function g (a classifier)
that maps each example x to one of the k classes, with the lowest error rate. It is
possible to express a classification problem using relational databases notations.
In the sequel, we will therefore consider a relation r0(A1, . . . , An, C) with N
tuples, where for any tuple ti, ti[A1 . . . An] = xi and ti[C] = yi. In addition, we
consider that traditional feature selection methods (see [1]) have been applied
and consider the subset X ⊆ {A1 . . . An} of selected features.

To evaluate the performances of an algorithm, we use accuracy, which is the
proportion of samples that are correctly classified by a model. This score lies
between 0 and 1, and ideally should get as close as possible to 1. Given a model
M over a relation r, accuracy is defined as follows:

accuracy(M, r) =
of correct predictions

|r|

Contextualization of Classification Datasets 41

2.3 Existence Versus Determination of a Function

We use the link between FDs and classification, developed in [7]. We only under-
line here it relies on the notion of function, as classifier seeks to define a function
from the features to the class, while the FD X → C can say whether or not
such a function exists or not: the FD X → C is satisfied if and only if there
exists a function from X to C. If the FD is not satisfied, it means some pairs
of tuples have the same value on X, but different classes. Such tuples are called
counterexamples:

Definition 3. Let r be a relation over R and X → C a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → C) and defined as follows:

CE(X → C, r) = {(t1, t2)|t1, t2 ∈ r, t1[X] = t2[X] and t1[C] �= t2[C]}
Counterexamples are important as they identify pairs of tuples for which the

classifier cannot perform correctly, as for the same input, it always predicts the
same output. The proportion of counterexamples therefore directly impacts the
quality of the classification: it can be evaluated using measure G3, and contrary
to [5] that presents this measure as an error, we propose it as follows:

G3(X → C, r) =
max({|s||s ⊆ r, s |= X → C})

|r|
Measure G3 is of crucial importance for the classification problem, as in the

subset s defined for G3, there exists a function between the left and right hand
side of the dependency. For classification, measure G3 is therefore a way to bound
the accuracy a classifier can reach on the considered dataset, as it is necessary
limited by the existence of counterexamples. As a result, the following result
holds, for which the details and proof are given in [7]:

Proposition 1. Let X ⊆ R be a set of features, C ∈ R the class to be predicted,
r a relation over R, and M a classifier from X to C. Then:

accuracy(M, r) ≤ G3(X → C, r)

In the setting of contextualization, G3 can be seen as a way to identify
whether or not a dataset follows a function, and to identify zones that are there-
fore more likely to correspond to a normal behavior of the system.

3 Contextualization of a Classification Dataset

The objective is to propose a methodology for the contextualization of classi-
fication datasets. The proposed solution considers there should be a function
between the features and the class to predict. The idea is to identify the regions
in the initial dataset in which a function is likely to exist, and therefore in which
the FD features → class is likely to be satisfied. On the opposite, regions with a

42 M. Le Guilly et al.

high proportion of counterexamples should be removed, as they are likely regions
where the model hypothesis are not verified.

To contextualize a dataset, we propose an iterative approach, that is sum-
marized on Fig. 1. The process starts with an initial classification dataset. It
is then discretized, to smooth the data variability and to better identify coun-
terexamples. Then, G3 is computed, and a classifier is trained and tested, to
obtain an accuracy measure. Measure G3 allows to evaluate the existence of a
function, while the accuracy guaranties the performances of the model. These
two measures are taken into account to determine the next step in the process.
If the domain experts are not satisfied with the measures, the counterexamples
are enumerated, to identify filters to remove the tuples that cause too many
counterexamples. The key is to find balance between removing regions of the
data while keeping as many tuples as possible. The filters can take different
forms: here, we propose to define filters in the form of conjunctions of conditions
allowing to remove groups of tuples. To identify such groups, visualizations are
proposed, to observe what tuples are the most involved in counterexamples.
Once the filters are determined, based on these visualizations and in collabo-
ration with domain experts, tuples are removed, providing a new dataset. This
process is repeated until satisfaction.

Fig. 1. Overview of the solution proposed to contextualize a classification dataset

3.1 From Counterexamples to Context-Aware Data Selection

When the proposed contextualization is not satisfying, solutions have to be pro-
posed to refine it, and to therefore remove tuples from the dataset. The challenge
is to determine what are the tuples to remove and why. We therefore propose to
determine filters that can be applied to the dataset, to remove tuples and lower

Contextualization of Classification Datasets 43

the number of counterexamples in the dataset. Such filter should ideally remove
as few tuples as possible, while removing as many counterexamples as possible.
Indeed, one tuple might be involved in many counterexamples: in this case, it
should be removed.

Many solutions can be considered for the filters: one solution from example is
too order the tuples by the number of counterexamples they are involved in, and
to set a threshold to remove all the tuples involved in more counterexamples than
this threshold. But it does not explain what are the characteristics of the removed
tuples: if a domain expert wishes to understand why a tuples is removed, she
has to manually check each counterexample. In this paper, we propose to define
filters in the form of conjunction of conditions applied to the dataset, making
the overall process explainable. These filters define, in simple terms, regions
of the dataset containing more counterexamples than others, while concerning
only a few tuples. This can be performed using visualizations proposing, for each
feature, histograms showing the distribution of values among counterexamples,
and the number of tuples taking a given value. The histograms can then be
used to identify values having, on a given feature, few tuples involved in many
counterexamples. The filters then integrate a condition removing such values
from the dataset. Such filters are interpretable by domain experts, who can
analyze whether or not these filters make sense with the desired context.

0 10 20 30 40 50
0

2

4

6

8

·10−2

Removed by
contextuali-

zation

Feature A

P
ro
po

rt
io
n
of

co
un

te
re
xa

m
pl
es

(%
)

(a) Counterexamples proportion for each
value of a given feature

0 10 20 30 40 50
0

2

4

6

·105

Feature A

N
um

be
r
of

tu
pl
es

(b) Histogram of values frequency for a
given feature

Fig. 2. Toy example for filter design

Example 1. Figure 2 presents visualizations used to define filters. For a given
feature A, Fig. 2a shows for each value taken by this feature, the proportion of
tuples involved in counterexamples, and therefore how much they contribute to
the value of G3. Figure 2b is an histogram of values for the considered feature.
By comparing these two visualizations, it appears there is a zone that does not

44 M. Le Guilly et al.

contain many tuples, but many counterexamples. As a result, one condition for
a contextualization filter could be to remove all tuples for which A ≥ 15 and
A ≤ 25. This gives an interpretable filter, removing a few tuples and improving
measure G3. Similar work can be performed for each feature of the dataset,
creating a filter that is a conjunction of conditions over all features.

4 Application to AH Flight Data

4.1 AH Classification Datasets

Using helicopters flight data, AH is developing tools such as virtual sensors, that
aim at monitoring the aircraft health and usage. They use the historical flight
data to learn a predictive model for a given parameter. The predicted value is
compared to the one given by the physical sensor: an alert is raised if the dif-
ference between the two values is too high. An example of such a virtual sensor
has been proposed by AH for the oil pressure of the helicopter Main Gear Box
(MGB) [2]. We reuse the data from this study to perform the experiments of
this paper. As a first contextualization had been done by AH domain experts,
we used and compared two datasets, with 10 attributes selected and discretized
by AH experts: the raw dataset corresponds to the flight data without any
contextualisation, for a given period of time, randomly mixing tuples from sev-
eral flights; the expert-Contextualized dataset is a subset of the raw one
containing tuples filtered by AH experts (around 50% of the raw data).

4.2 Comparison of AH Datasets

The impact of contextualization was analyzed, by comparing accuracy for a
random forest algorithm (baseline column of Table 1). The accuracy for the
expert-contextualized dataset is much higher than for the raw one, confirming
the expert contextualization pertinence. Moreover, G3 = 95.53% for raw dataset
and G3 = 95.51% for expert-contextualized one. The proportion of counterex-
amples is therefore reasonable and the two datasets have similar G3 values. The
contextualization seems to have preserved the proportion of counterexamples:
they have decreased in absolute number, but not with respect to the size of the
dataset. New contextualization might therefore increase the model’s accuracy.

Table 1. Accuracy of random forest models on the oil pressure datasets

Dataset Baseline Filter 1 Filter 2

tuples Accuracy # tuples Accuracy # tuples Accuracy

Raw 1969533 53.97% 607248 57.28% 468630 61.71%

Expert-contextualized 541342 73.94% 281947 76.02% 100165 78.61%

Contextualization of Classification Datasets 45

4.3 Additional Contextualization Using G3

We applied our methodology from Fig. 1 to the two datasets, but first verified
that the counterexamples were evenly distributed among the flights. Figure 3
shows a histogram of the percentage of counterexamples among flights: most
flights have a very low rate of counterexamples, so any removal of counterexam-
ples affects a large number of flights, avoiding the model to overfit on a subpart
of the flights. We then analyzed the two plots made for each feature such as
Fig. 4a and b for the pressure. Low pressure values have more counterexam-
ples, while containing an important number of tuples. It can also be noted that
the domain contextualization removes a significant part of counterexamples, but
other regions could be cleaned further from counterexamples with additional
contextualization, for example for pressure values over 5.6 bar.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

Proportion of counterexamples

N
um

be
r
of

fli
gh

ts

Fig. 3. Distribution of flights for each proportion of counterexamples

A first filter was designed (Filter 1 in Table 1). For the pressure, this filter
removes all the data for which it is below 3.2 bar and above 6.4 bar, as these
regions have few tuples but many counterexample (see Fig. 4). Similar rules
were applied for the other features of the dataset. The results in Table 1 show
the positive effect of this filter on classifier’s accuracy. It was decided to improve
again the contextualization, so we obtained filter 2 by adding additional rules to
the ones from filter 1. Table 1 shows that accuracy is improved by filter 2. After
this second iteration, the obtained contextualization was considered satisfying.

Finally, it should be noted from Table 1 that there is a significant gap between
the highest accuracy on the raw dataset and the lowest accuracy for the expert-
contextualized one. Even with the best filter, it is not possible to reach the
result obtained using expert knowledge: the best approach consists in taking the
valuable domain expert knowledge into account, before refining it using tools
such as counterexamples and G3.

4.4 Take Away Lessons

These experimentation showed how contextualization can be used to improve the
accuracy of classifiers for AH virtual sensors. Contextualization is an important
problem, but it is not easy to address because the proposed solutions are often

46 M. Le Guilly et al.

domain-specific, or included in the “data preparation” steps that our left to
data scientists judgment: our solution could in comparison be applied for other
types of application and involves domain experts in the loop. There is also a
qualitative aspect to this approach, that aims at taking a step back from the
model, to understand what is being done, and understand the limitations. This is
directly related to the explicability of the model, a crucial notion in aeronautics:
the prediction of what can be seen as a simple classification algorithm output
can put into question human lives getting back into an aircraft or not.

0 2 4 6
0

0.2

0.4 Data selected
after filter 1

pressure

P
ro
po

rt
io
n
of

co
un

te
re
xa

m
pl
es

(a) Raw: counterexamples propor-
tion against pressure

0 2 4 6
0

2

4

·105

pressure

N
um

be
r
of

tu
pl
es

(b) Raw: histogram of pressure val-
ues

0 2 4 6
0

0.2

0.4

pressure

P
ro
po

rt
io
n
of

co
un

te
re
xa

m
pl
es

(c) Expert-contextualized: coun-
terexamples proportion against
pressure

0 2 4 6
0

2

4

·105

pressure

N
um

be
r
of

tu
pl
es

(d) Expert-contextualized: his-
togram of pressure values

Fig. 4. Counterexamples and distribution for pressure values

5 Related Work

We applied our contextualization technique in the context of predictive main-
tenance for helicopters, a growing topic in the industry. Virtual sensors such
as the ones used for the experiments of this paper [2] are interesting solutions
in this context. Similarly, [3] proposes a virtual sensor to anticipate failures on
photo-voltaic systems. Additionally, [11] presents a failure anticipation approach

Contextualization of Classification Datasets 47

for aircraft systems. In this case, the learning is done only on flight phases pre-
defined by experts. More generally, in most works developed in the industry,
data is always combined with domain knowledge in order to speed-up accurate
predictive models development. However, this combination still is often not opti-
mal, and we believe this is a lever for improving accuracy of predictive models
developed in the industry.

Functional dependencies are of high interest for data cleaning, a necessary
prerequisite for data contextualization. The authors from [6] showed that if there
is a functional dependency between features, it is likely to affect the classifier
negatively. Specific dependencies have been proposed to identify inconsisten-
cies in a dataset, and eventually repair it. Matching dependencies [4] for data
repairing uses matching rules to relax the equality on functional dependencies
and assign values for data repairing. In Holoclean [10], dependencies are used to
clean automatically a dataset.

6 Conclusion

In this paper, we addressed the problem of contextualization of classification
datasets, applied to the flight data of AH. This problem is crucial, and appears
in many data science industrial applications, but has yet not been addressed
as massively as other traditional machine learning problems. We proposed a
methodology, and conducted experiments on data from a virtual sensor devel-
oped by AH, and showed how our method could improve the contextualization
and, as a consequence, the accuracy of the datasets.

References

1. Arauzo-Azofra, A., Aznarte, J.L., Beńıtez, J.M.: Empirical study of feature selec-
tion methods based on individual feature evaluation for classification problems.
Expert. Syst. Appl. 38(7), 8170–8177 (2011)

2. Daouayry, N., Mechouche, A., Maisonneuve, P.L., Petit, J.M., Scuturici, M.: Data-
centric helicopter failure anticipation: the MGB oil pressure virtual sensor case.
In: International Conference on Big Data, p. 10 pages. IEEE (2019)

3. De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., Vasilakos, A.: Anomaly
detection and predictive maintenance for photovoltaic systems. Neurocomputing
310, 59–68 (2018)

4. Fan, W.: Dependencies revisited for improving data quality. In: Proceedings of the
Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 159–170. ACM (2008)

5. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theor. Comput. Sci. 149(1), 129–149 (1995)

6. Kwon, O., Sim, J.M.: Effects of data set features on the performances of classifi-
cation algorithms. Expert. Syst. Appl. 40(5), 1847–1857 (2013). https://doi.org/
10.1016/j.eswa.2012.09.017

7. Le Guilly, M., Petit, J.M., Scuturici, V.M.: Evaluating classification feasability
over datasets using functional dependencies. In: BDA 2019 35ème conférence sur la
Gestion de Données: Principes, Technologies et Applications. Lyon, France (2019)

https://doi.org/10.1016/j.eswa.2012.09.017
https://doi.org/10.1016/j.eswa.2012.09.017

48 M. Le Guilly et al.

8. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.
Springer, New York (2012)

9. Mechouche, A., Daouayry, N., Camerini, V.: Helicopter big data processing and
predictive analytics: Feedback and perspectives. In: Proceedings of the 45th Euro-
pean Rotorcraft Forum, Warsaw, Poland, p. 7 pages (2019)

10. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: holistic data repairs with
probabilistic inference. Proc. VLDB Endow. 10(11), 1190–1201 (2017)

11. Sundareswara, R., Betz, F.D., Lu, T.C.: Interpretable unsupervised feature extrac-
tion and learning of abnormal system state transitions in aircraft sensor data. In:
Proceedings of the Annual Conference of the PHM Society, vol. 10 (2018)

Query Intent Detection from the SEO
Perspective

Samin Mohammadi(B), Mathieu Chapon, and Arthur Frémond

Search ForeSight, 68 rue Marjolin, 92300 Levallois Perret, France
{samin.mohammadi,mathieu.chapon,arthur.fremond}@search-foresight.com

Abstract. Google users have different intents from their queries such
as acquiring information, buying products, comparing or simulating ser-
vices, looking for products and so on. Understanding the right intention
of users helps to provide i) better content on web pages from the Search
Engine Optimization (SEO) (Search engine optimization is the process
of increasing the quality and quantity of website traffic by increasing
the visibility of a website [1]) perspective and ii) more user-satisfying
results from the search engine perspective. In this study, we aim to iden-
tify the user query’s intent by taking advantage of Google results and
machine learning methods. Our proposed approach is a clustering model
that exploits some features to detect query’s intent. A list of keywords
extracted from the clustered queries is used to identify the intent of a
new given query. Comparing the clustering results with the intents pre-
dicted by filtered keywords show the efficiency of the extracted keywords
for detecting intents.

Keywords: Google search engine · Query intention · Search engine
optimization

1 Introduction

Search engines try to predict users’ intentions from their queries to provide the
most accurate results. In the concept of search engines, intent detection gener-
ally is a classification problem aiming to find the intention of input data which is
mainly in the format of text. Intent detection has different applications in Nat-
ural Language Processing (NLP) tasks such as question answering, chatbots,
and search engines. In the tasks like question answering, the intent is normally
one or several words selected from the question. While in the context of search
engines, user queries are mainly divided into three groups in terms of their intent
including Informational, Navigational, and Transactional. Informational queries
are the most searched ones where the user’s goal is looking for certain informa-
tion by asking questions or searching for the keywords, for example “who is the
CEO of Apple?”. The user’s intent from the navigational queries is to redirect
to a specific website, for example “Apple”. Transactional queries intend to do a
transaction such as a purchase, for example “buy an iPhone”.
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 49–59, 2020.
https://doi.org/10.1007/978-3-030-54623-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_5

50 S. Mohammadi et al.

Understanding the right intent of the user’s query will help search engines to
present the most related results which finally leads to higher user satisfaction.
Plenty of researches have been done to identify query’s intent [2,3]. Different
types of models are proposed using machine learning [3,4] and natural language
processing (NLP) models [5,6].

In this study, we look at the intent detection problem from the perspective of
SEO which is different than a search engine’s perspective. The main goal here is
to identify the user’s intent from what a search engine, such as Google, provides
to users in response to their query. Identifying user’s intent from this point of
view will help the SEO to suggest better content for the websites. The suggested
content will be aligned with what the search engine expects for a given query.
It is finally speeding up and facilitating the semantic analysis from the SEO
processing. The model’s outputs are some set of keywords to filter the queries
and label their intent easier and faster. The proposed model consists of five
tasks 1) writing a scrapper and crawling the Google results from 2) extracting
features 3) clustering queries against the extracted features, 4) characterizing
clusters and find out their representing keywords, 5) comparing the results with
manually annotated intents. The contributions of our model are as follows:

– Our crawler is able to scrape Google’s results without getting blocked.
– It detects some intents which are different from the conventional intents.
– It can automatically detect the intent of a given query using keywords

extracted from the clustering.

This paper is organized to present related works in Sect. 2, methodology and
feature extraction in Sect. 3. We discuss the experiments in Sect. 4 and finally
Sect. 5 concludes this study, its findings and discusses future works.

2 Related Works

Intent Detection: Intent detection generally is a classification problem aiming to
find the intention of input data which is usually in the format of text. The models
which are designed to identify intents base-on machine learning models can be
divided into two groups [2] in terms of exploiting hand-crafted features [3,7]
versus embedding features [5]. In the first group, researchers must extract some
features which are important to identify query intent. Hand-crafted features can
be derived from: i) Query tokens ii) Search Engine Results Pages (SERP) type
and content tokens iii) interaction features (tracking user behavior including
clicks log and queries log in a session).

In a study done by Sappelli [8], a dataset of user queries is collected with the
features of the topic, action type, expected result type (image, video, map, etc.),
location sensitivity and so on. They studied the distributions of queries per each
feature as well as the correlations between different features. Authors in [9] took
a transaction log from Dogpile into account to extract the required features
such as query term, user id, time of day to train their clustering algorithm.

Query Intent Detection from the SEO Perspective 51

They finally characterized the identified clusters as informational, transactional
and navigational and demonstrated the most frequent words for each category.

In a different study [7] Guo et al. investigated fine-grained user interac-
tions with the search results to identify user intent. According to this study,
although considering all features together provides 97% accuracy, features related
to SERPs content are identified as the most important ones contributing to the
classification. Transactional queries are identified by CURL in [10]. Authors in
[11] trained a classifier to label queries with the intents extracted from user
reviews. In [12] query-specific features, such as bag-of-words, length, recognized
named entity, noun phrase, question and so on, are exploited to build three
multi-class classifiers.

In the second group, the models are using embedding features automatically
derived from mainly neural networks. For example, a convolutional neural net-
work model is designed in [13] to extract the query embedding and use them
to train the intent classifier. In an improved model of using word embedding,
authors in [14] proposed a deep learning-based platform using Bi-directional
Long-Short Term Memory (BDLSTM). They have used word embedding from
GloVe [15] model and enriched them by bringing the synonyms and related
words closer to each other in the vector space and moving the antonymous words
away from each other. An automatic intent labeling model is introduced in [5]
using Recurrent and Convolutional Neural Networks (RNN, CNN). The model is
trained against ground truth and some heuristic rules to perform a multi-intent
prediction for unlabeled queries. One of the latest models for intent detection is
Zero-shot User Intent Detection via Capsule Neural Networks [16]. This model
considers new and not-seen intentions also.

Two applications can benefit from intent detection researches, Search engines
and SEO. Most of the mentioned researches that tried to detect the intent of a
search query looking for solutions from the search engine perspective. Although
SEOs can take advantage of those studies, dedicated research investigating the
intent of queries from the SEO perspective is missing in the literature. Our pro-
posed model uses hand-crafted features extracted from SERPs to cluster queries
for the sake of SEO. Although some studies investigated SERPs’ correlation to
the query to identify the query’s intent, no research has studied this problem
from the SEO perspective.

Annotated Dataset : To build and train an intent detection model, a manually
labeled dataset is needed. The model learns how to identify the intention of
new data after getting trained by labeled data. According to [17], there are sev-
eral difficulties in the intent detection task. The most important one is the lack
of annotated datasets. Labeling the intent of queries is usually done manually.
Besides the dataset, the intention of the user is not always explicit. The ambi-
guity and implicit intention make this problem more complicated and difficult.

In [5], almost 2k queries are manually labeled including both test and train
datasets. Later, authors automatically labeled the rest of their data by a clas-
sifier trained on the ground truth labeled dataset. A big dataset of 30k queries

52 S. Mohammadi et al.

randomly selected from AOL web queries is manually annotated in [12]. We use
the last-mentioned dataset. We will discuss it in detail in Sect. 3.4.

3 Methodology

Early, we reviewed the previous studies on detecting the intent of queries. How-
ever, our research is different from past studies due to the following reasons:

1. It targets the features that have never been investigated in the literature.
2. Not only it will not rely on the manually annotated tags, (what most of the

studies use them to design their classifiers) but also it will take advantage of
a clustering model to verify the human-annotation of queries.

3. The Majority of the previous studies have addressed intent detection from the
search engine’s perspective. While this study looks at this problem from the
perspective of SEO. Both are providing an automated method to identify the
intent, but the second group provides additional advice to SEO to manage
the content types which should be uploaded to the websites.

This subsection describes in detail how we take advantage of Google’s search
results to build a model for intent detection.

3.1 Data Scrapper

Data Scrapper is a python application, developed by our team, uses different
techniques to send a query as a request to Google and Collects the results pro-
vided by Google. The script is written by Python and reads the queries from a
public dataset provided in [12] to request them from Google and collect the pro-
vided results. The major challenge of Scrapper is not getting blocked by Google.
When Scrapper requests so many queries from Google, it is faced by a captcha.
The captcha should be filled by a human. Therefore, our solution is using a proxy
to request queries from different IPs.

Scrapper collects different kinds of information from Google results shown
in Table 1. This table shows each item with its description. To capture these
features, Scrapper parses the HTML of the first page of the results. The results
are saved in JSON files and then are processed to extract the final features. We
will use that information in feature extraction and clustering processes.

3.2 Feature Extraction

Feature extraction is done after collecting Google results. We searched in the
provided results for different types of results such as images, videos, featured
snippets, rich snippets, knowledge graphs, direct answers, “people also ask” and
so on. We consider each of those result types as a feature and extracted their title,
number, and position. The idea behind this is to find what kind of information
Google recognizes to show for each keyword. As the aim of SEO is to increase
the visibility of a website and consequently a brand, thus, SEO consultants could

Query Intent Detection from the SEO Perspective 53

easily decide what kind of content should be presented in the clients’ website to
get easily visible by Google. Understanding Google’s methodology will lead to
providing greater consultation for related and proper content on the website.

Table 1. Google’s results types

Features Description

Knowledge graph It is a box that Google loads in the information
related to each identified entity existing in the query
from different sources

Calculator It appears to answer directly the calculation-related
queries

Direct answer A box to respond a query that Google knows the
answer

Map Direct answer to map related questions

Local result It shows the possibility of local access to the
searched term

Commercial-sponsored All the results showing the price

Twitter If Google finds any tweets related to the searched
term

Top stories Google finds the recent news articles talking about
the query

Videos Very recent videos indicating the searched terms

Images Categorized and recent images related to the query

Content navigation bar Google provides a navigation bar of mainly objects
such as movies, books on top of the search results

Featured snippet It is a selected search result that answers the user’s
query right away. It can be a video, image, text, and
so on

Rich snippets Results in the form of cards having ratings and
reviews

People also asked A list of Questions similar to the searched query

Similar entity A list of related entities to the searched entity

Google translator Representing the meaning or translation

Top-button ads Links with “Ad” next to their link

Natural results Natural blue links on the first page (organic links)

Partners block Links to Google’s partners to search on their websites

Other cards Boxes similar to the twitter block, such as popular
products

As mentioned, features are extracted from different types of Google results.
Our goal is to identify some groups of queries and consequently some keywords
for which Google expects the websites to provide content in special formats.

54 S. Mohammadi et al.

3.3 Clustering

After feature extraction, now we need to apply a clustering model to find Infor-
mational, Transactional, and Navigational groups of keywords. As we pointed
out before, there is a possibility that we end up in different categories than those
three. To do clustering, we choose the KMeans algorithm [18]. The most proper
number of clusters is found by the Elbow method to be 3.

3.4 Datasets

As we discussed in the state-of-the-art section, almost all the researches in this
area use manually labeled data. Due to using clustering technique, our method
does not need any labeled data. However, we use the labeled dataset to build an
opportunity to compare the clustering results against the human-labeled tags.
We use the public labeled dataset introduced in [12]. Table 2 shows the character-
istics of the dataset used in our study. Majority of the queries in the selected-AOL
dataset are informational.

Table 2. The dataset characteristics

Dataset name #Queries Manual-labels

Informational Navigational Transactional

Selected-AOL [12] 30k 23700 4574 1678

The Scrapper application crawls the public dataset’s queries from Google
and saves the results. It is worth mentioning that Google’s SERPs are very user-
dependent and its results are different from user to user. To have organic results,
we run the scrapper on a server with neither search history nor logged in user.
After crawling, we divided the dataset into the train and test sets with 90% and
10% population, respectively.

4 Clustering Experiments

Before running clustering, we investigated the correlation of features to exclude
the tightly correlated ones. Due to not founded any correlated features, we run
the KMeans model with 19 features and K = 3. Characterizing clusters is ended
up with very interesting clusters which are different from three predefined classes
(including Informational, Navigational, and Transactional). Table 3 shows the
distribution of queries and their tags in clusters. As an initial step to characterize
the clusters, we study the value of the features for each cluster. We divided
features into two groups, features with binary and numeric values. Figure 1a and
b show the binary and numeric feature values for each cluster, respectively.

We first go through the binary features’ plot. Each value in the plot refers
to the percentage of the True values of each feature.

Query Intent Detection from the SEO Perspective 55

Table 3. Distribution of queries into clusters

Cluster name #Queries Informational Transactional Navigational

Cluster0 11582 9581 530 1471

Cluster1 5771 4392 472 907

Cluster2 9603 7339 529 1735

– Cluster0 has a noticeable higher value of featured snippets as well as a slightly
higher value in the navigation bar feature. While the other two clusters have
a very small value of featured snippet. It can be a piece of initial evidence for
cluster0 of being information seeking queries.

– The only feature that has a higher value in cluster1 is images!
– Where two clusters 0 and 2 have almost the same values for commercial, this

value for cluster1 is noticeably low. It shows low relation of queries in cluster1
with shopping intent.

– Cluster2 has a significantly high value of local results, knowledge results and
somehow partners block, which is more likely to include queries having Enti-
ties1 identified by Google and local information. Accompanying these two
types of results can be interpreted as the queries that are looking for local
special places. Later, looking at the words of queries will give more informa-
tion about their exact intent.

Binary features value for each cluster
Numeric features value for each cluster

Fig. 1. Features values

In the numeric features’ plot, the values indicate the mean value of features
for each cluster. It also shows interesting points:

1 The Google’s Knowledge Graph has millions of entries that describe real-world enti-
ties like people, places, and things. These entities form the nodes of the graph, and
are called Knowledge Graph Entities [19].

56 S. Mohammadi et al.

1. While the mean value of PAA is near to 0 for cluster1 and cluster2, clus-
ter0’s queries have an average value of 5. This observation strengthens the
probability of cluster0 to be an informational cluster of queries.

2. In Fig. 1b, the related searches value for cluster1 is almost 0 which is strange!
While for the other two clusters is almost 8 which is the regular number
of suggestions by Google. To discover the reason, we have to look at the
vocabulary of the queries in this cluster.

So far, from the observations of the features’ values, we found cluster0 to
include more informational (questions with a direct answer), and cluster2 more
local queries. To find out more about the clusters, we plot the distribution of the
words2 of the queries in each cluster. In Fig. 2a, the bigger size of the vocabularies
indicates more repetition. Big words such as {new, best, americans} shows that
they get repeated more than other words in the queries of this cluster. Looking
at the other less big words such as {tax, business, car, education, health, house,
college, university} and putting them besides the most frequent ones lead to
a representation of queries which mainly are searched to acquire information.
Relying on the results so far discovers that Google tries to show featured snippet
and PAA for this kind of general informational queries. In Fig. 2b, it is observable
that the most frequent words are {black, sex, women, nude, lyrics}. Putting
these words next to the other words in this group generates some sexual or
racist phrases. The most highlighted feature of this cluster in our analysis from
the previous section is almost zero number of keywords related to the query. The
zero number of this feature for the queries of cluster1 illustrates that Google may
not show similar keywords and queries to its users when their query carries a
sexual or racist intent to may stop users from searching these kinds of queries.

Cluster0 Cluster1 Cluster2

Fig. 2. Wordcloud distribution per cluster

Finally, in Fig. 2c, the most frequent vocabularies are {center, school, park,
beach, island, club, hotel, sale}. Almost all of these words refer to locations.
Based on our feature analysis, the dominant features of this cluster are local
result, knowledge graph and partners block. The observations convey that cluster2
is mainly a collection of queries that are looking for local information including
places (such as schools, hotels, islands, beaches, parks, and so on).
2 https://www.jasondavies.com/wordcloud/.

https://www.jasondavies.com/wordcloud/

Query Intent Detection from the SEO Perspective 57

Our model identified some intents (consisting of general qualitative informa-
tion, racist/sexual intent, and local/place information) different than the conven-
tional intents. The conventional intents are important for search engines. While
the intents identified by our model is mainly for SEO. In a nutshell, the method
is concluded to three clusters, i) Cluster0: general informative and qualitative
queries, ii) Cluster1: queries with sexual and racist intent, iii) Cluster2: local
and places information.

Although, all the queries grouped in different clusters are not exactly from
the same context, the wordcloud representation of clusters can help us to extract
some keywords to automatically tag the intent of a given query to be in one of
the above clusters.

We processed the frequent words to exclude common, unrelated, and ambigu-
ous words for each intent. To test the functionality of the extracted keywords,
we automatically labeled the intent of the test queries based on their words. The
test set with a 10% population is used for this experiment. In case of an equal
number of words, we consider the maximum priority for Informational and the
minimum priority for Sexual/Racism intents. From the other side, the queries
inside the test dataset are scrapped from Google and the designed clustering
model is applied on this dataset. The labels out of the clustering are compared
to the labels out of the automatic labeling (vocabularies-filtering). Table 4 shows
the results. Total number of queries is almost 3k with 2.4k Informational, 460
Navigational, and 150 Transactional intents.

Table 4. Clustering vs. vocabulary-based intent tagging results

Vocabulary-based intents (predicted)

Informational Local/Place

information

Sexual/Racism Precision Recall

Clustering

intents

(Actual)

Informational 1232 54 25 0.46% 0.94%

Local/Place

information

904 141 26 0.64% 0.13%

Sexual/Racism 519 25 70 0.58% 0.11%

In Table 4, the labels on the left side and the top are the outputs of clus-
tering and vocabulary-based labeling, respectively. We consider the outputs of
the clustering as the actual labels and compare them with the outputs of the
vocabulary-based labeling as the predicted labels. Recall indicates the percent-
age of the queries in each intent which are predicted correctly inside that intent.
According to the results, 94% of informational queries are correctly predicted
as informational. While in the other intents, the low percentage of recall shows
that most of their queries are assigned to some intents different than their intent.
Two possible reasons can cause this low percentage, low accuracy of clustering
and low efficiency of the extracted keywords. As we can not manually check the
intent of each query, we will not be able to judge the accuracy of the clustering.

58 S. Mohammadi et al.

While investigating the second reason, we computed the precision values. High
precision values for Local information and Sexual/Racism clusters indicate the
efficiency of the keywords on identifying the right queries for those two intents.
It means that the keywords are chosen precisely in such a way that they hardly
misidentify the queries (with other intents) inside these two intents.

As a result, as we mentioned earlier, although some frequent keywords are
representing each cluster, there remain some queries in each cluster that have
none of their words in the representative keywords. Those queries are mislabeled
in the Informational cluster using the vocabulary-based labeling. Consequently,
the vocabulary-based method has a limitation which constraints it to label only
the queries in which there are at least one of the selected keywords. This limita-
tion persuades us to strengthen our model by taking other methods into account.
As future work, we will take advantage of manual labels and Google’s BERT
model to identify the intents.

5 Conclusion

In this study, we have proposed and developed a model to identify the intent
of user queries. The presented approach has the novelty of i) crawling Google
SERPs results, ii) using new features (which have never been studied before),
iii) identifying new and more detailed intents, iv) and finally, studying intent
detection problem from the SEO perspective. Although Google has previously
provided very few words for each identified intents, without any solid method to
extend those words, our clustering model can provide three sets of keywords to
automatically identify the query’s intent.

As a future work, we will study the semantic and NLP relation between the
query and those features that have text, such as featured snippets, PAA, and
knowledge graph. We will use as well the fine-tuned BERT model to identify the
intention of user queries and compare the results with the baseline methods.

References

1. Search engine optimization. https://en.wikipedia.org/wiki/Search engine
optimization

2. Zhou, S., Cheng, K., Men, L.: The survey of large-scale query classification. In:
AIP Conference Proceedings, vol. 1834, no. 1, p. 040045. AIP Publishing (2017)

3. Jansen, B.J., Booth, D.L., Spink, A.: Determining the user intent of web search
engine queries. In: Proceedings of the 16th International Conference on World Wide
Web, pp. 1149–1150. ACM (2007)

4. Ashkan, A., Clarke, C.L.A., Agichtein, E., Guo, Q.: Classifying and characterizing
query intent. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.)
ECIR 2009. LNCS, vol. 5478, pp. 578–586. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00958-7 53

5. P̂ırvu, M.C., Anghel, A., Borodescu, C., Constantin, A.: Predicting user intent
from search queries using both CNNs and RNNs. arXiv:1812.07324 (2018)

https://en.wikipedia.org/wiki/Search_engine_optimization
https://en.wikipedia.org/wiki/Search_engine_optimization
https://doi.org/10.1007/978-3-642-00958-7_53
https://doi.org/10.1007/978-3-642-00958-7_53
http://arxiv.org/abs/1812.07324

Query Intent Detection from the SEO Perspective 59

6. Meng, L., Huang, M.: Dialogue intent classification with long short-term memory
networks. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC
2017. LNCS (LNAI), vol. 10619, pp. 42–50. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73618-1 4

7. Guo, Q., Agichtein, E.: Ready to buy or just browsing?: detecting web searcher
goals from interaction data. In: Proceedings of the 33rd International ACM SIGIR,
pp. 130–137. ACM (2010)

8. Sappelli, M., Verberne, S., Heijden, M.v.d., Hinne, M., Kraaij, W.: Collection and
analysis of ground truth data for query intent (2012)

9. Kathuria, A., Jansen, B.J., Hafernik, C., Spink, A.: Classifying the user intent of
web queries using k-means clustering. Internet Research (2010)

10. Sun, Y., Loparo, K.: A clicked-URL feature for transactional query identification.
In: 43rd Annual Computer Software and Applications Conference. IEEE (2019)

11. Boteanu, A., Dutile, E., Kiezun, A., Artzi, S.: Subjective search intent predictions
using customer reviews (2020)

12. Figueroa, A.: Exploring effective features for recognizing the user intent behind
web queries. Comput. Ind. 68, 162–169 (2015)

13. Hashemi, H.B., Asiaee, A., Kraft, R.: Query intent detection using convolutional
neural networks. In: International Conference on Web Search and Data Mining,
Workshop on Query Understanding (2016)

14. Sreelakshmi, K., Rafeeque, P., Sreetha, S., Gayathri, E.: Deep bi-directional lstm
network for query intent detection. Procedia Comput. Sci. 143, 939–946 (2018)

15. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

16. Xia, C., Zhang, C., Yan, X., Chang, Y., Yu, P.S.: Zero-shot user intent detection
via capsule neural networks. arXiv preprint arXiv:1809.00385 (2018)

17. Liu, J., Li, Y., Lin, M.: Review of intent detection methods in the human-machine
dialogue system. J. Phys. Conf. Ser. 1267(1), 012059 (2019)

18. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, no. 14, pp. 281–297 (1967)

19. Define and refine search using knowledge graph entities. https://support.google.
com/customsearch/answer/9350760?hl=en

https://doi.org/10.1007/978-3-319-73618-1_4
https://doi.org/10.1007/978-3-319-73618-1_4
http://arxiv.org/abs/1809.00385
https://support.google.com/customsearch/answer/9350760?hl=en
https://support.google.com/customsearch/answer/9350760?hl=en

Fast and Accurate Group Outlier
Detection for Trajectory Data

Youcef Djenouri1(B), Kjetil Nørv̊ag2, Heri Ramampiaro2,
and Jerry Chun-Wei Li3

1 Department of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway
youcef.djenouri@sintef.no

2 Department of Computer Science, NTNU, Trondheim, Norway
{noervaag,heri}@ntnu.no

3 Department of Computer Science, Electrical Engineering and Mathematical
Sciences, Western Norway University of Applied Sciences, Bergen, Norway

jerrylin@ieee.org

Abstract. Previous approaches to solve the trajectory outlier detec-
tion problem exclusively examine single outliers. However, anomalies
in trajectory data may often occur in groups. This paper introduces
a new problem, group trajectory outlier detection (GTOD) and proposes
a novel algorithm, named, CDkNN-GTOD (Closed DBSCAN kNearest
Neighbors for Group Trajectory Outlier Detection). The process starts
by determining micro clusters using the DBSCAN algorithm. Next, a
pruning strategy using kNN is performed for each micro cluster. Finally,
an efficient pattern mining algorithm is applied to the resulting subsets of
group of trajectory candidates to determine the group of trajectory out-
liers. We performed a comparative study using real trajectory databases
to evaluate the proposed approach. The results have shown the efficiency
and effectiveness of CDkNN-GTOD.

Keywords: Group Trajectory Outlier Detection · Pattern mining ·
Clustering

1 Introduction

The proliferation of GPS devices has resulted in countless of sequence points
representing trajectories being generated, stored, and analyzed in the context
of urban data [4]. Without loss of generality, in the context of intelligent trans-
portation, the data analyst is faced with a myriad of trajectories derived from
the mobility of people, cars, buses, taxis, among others. Previous approaches to
solve the trajectory outlier detection have solely considered individual outliers. In
real-world applications, however, trajectory outliers often appear in groups, e.g.,
a group of bikes that deviates to the usual trajectory due to the maintenance of
streets. This paper presents a new problem of trajectory outlier detection called
Group Trajectory Outlier Detection (GTOD), which the goal is to identify group
of anomalous behaviours from trajectory data.
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 60–70, 2020.
https://doi.org/10.1007/978-3-030-54623-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_6

Fast and Accurate Group Outlier Detection for Trajectory Data 61

Motivation and Idea. Consider the example of taxi trajectories, each trajec-
tory is mapped to the road map network. Traditional trajectory outlier detection
algorithms, e.g., [1], may detect individual outliers. However, these algorithms
cannot identify outliers, where a group of taxis deviate from the usual trajec-
tory. Detecting such trajectory outliers, could help (taxi) planners to study the
different correlations between these trajectories to deduce useful information.
For example, a group of taxi trajectory outliers could indicate that the taxis are
partners in a taxi fraud. However, by observing only individual deviations, such
a possible fraud would be hard to reveal. Motivated by the limitation of solely
identifying individual outliers, we focus on studying, and determining group of
trajectory outliers. To do so, we first define a new problem called Group Tra-
jectory Outlier Detection, and then propose a novel approach for finding these
kind of anomalies. The process starts by determining the micro clusters, using
DBSCAN, each micro cluster is considered as a candidate group of trajectory
outliers. Each group contains several individual trajectory outliers that are close
to each other. Note that the groups may contain normal trajectories as well. Such
trajectories can generally be considered as noises. To remove such noises, the set
of group of trajectory outliers are pruned using the kNN algorithm. Finally, we
run a pattern mining algorithm to explore the correlation among the pruned
groups of trajectory outliers. The discovered frequent patterns are thereafter
considered as the final groups of trajectory outliers.

Contribution. This paper presents a new problem called Group Trajectory
Outlier Detection (GTOD for short), which allows to identify groups of tra-
jectory outliers. The main contributions of the presented work can be summa-
rized as follows. i) We introduce and formulate a new problem called GTOD:
Group Trajectory Outlier Detection to enable to identify group of trajectory out-
liers. ii) We propose a new technique, named CDkNN-GTOD (Closed DBSCAN
kNearest Neighbors for Group Trajectory Outlier Detection), which explores
the DBSCAN algorithm for determining candidate outliers represented as micro
clusters, kNN algorithm for pruning the micro clusters, and a pattern mining
process for discovering the group of trajectory outliers. iii) We demonstrate the
performance of the proposed algorithm using different real trajectory databases.
The results of experiments reveal that CDkNN-GTOD outperforms the baseline
algorithms for group outlier detection.

2 Related Work

Chalapathy et al. [2] proposed the deep generative model to find out the group
outliers on various image applications. The outlierness for each group in the
input data was then estimated by group reference function using the backprop-
agation algorithm. Liang et al. [12] developed a flexible genre model to find
specific group outliers. Their main idea was to characterize data groups at both
point and group level to detect various types of anomalous groups. Das et al. [3]
explored the different correlations between data outliers to detect anomalous
patterns using Bayesian network anomaly detection and conditional anomaly

62 Y. Djenouri et al.

detection. Xiong et al. [11] proposed a group outlier detection approach by defin-
ing a mixture of Gaussian mixture model. It adopted the likelihood of each
group, the marginal likelihood of each observation within a group, and the max-
imum likelihood estimation to learn the hyperparameters of the mixture model.
Soleimani et al. [9] developed a supervised learning approach that groups anoma-
lous patterns when memberships are previously unknown. The salient features
were extracted from an appropriate training set with discrete data inputs. Li
et al. [7] assigned feature weights on each group outlier, and computed chain
rule entropy to determine correlation between different feature groups. Toth
et al. [10] reviewed both static, and dynamic group anomaly detection solutions.
The static group anomaly detection is the process of identifying groups that are
not consistent with regular group patterns, while dynamic group change detec-
tion assesses significant differences in the state of a group over a period of time.
In contrast to this, in this study, we are interested in dealing with static group
anomaly detection on the trajectory data. From this brief review, we can con-
clude that approaches to group outlier detection algorithms are mainly based on
some known distributions to find group outliers. In real scenarios, it is hard to fit
the data to such distributions. In this paper, we introduce a new problem called
group of trajectory outlier detection and propose a new data mining approach,
which do not need to know the distribution of the input data to determine the
group of trajectory outliers.

3 Problem Statement

Definition 1 (Trajectory Database). We define a trajectory database T =
{T1, T2...Tm}, where each raw trajectory Ti is a sequence of spatial location points
(pi1, pi2...pin), obtained by localization techniques such as GPS. Each point is
represented by the latitude, and the longitude values, respectively.

Definition 2 (Mapped Trajectory Database). We define a mapped trajec-
tory database Λ = {Λ1, Λ2...Λm}, where each mapped trajectory Λi is a sequence
of spatial location regions (Ri1, Ri2...Rin), obtained by mapping each point in Ti

to the closest region Ri. We note R = {R1, R2...R|R|}, by the set of all regions.

Definition 3 (Trajectory Dissimilarity). We define the distance between
two trajectories d(Λi, Λj) by the number of all regions minus the number of shared
regions between the two trajectories Λi, and Λj, as

d(Λi, Λj) = n − |{(Ril, Rjl)|Ril = Rjl,∀l ∈ [1..n]}| (1)

Definition 4 (Group Trajectory Candidate). We define a group of trajec-
tory candidate G by the set of individual trajectory outliers retrieved from the set
of individual trajectory outliers ITO, i.e.,

G = {Λi|Λi ∈ ITO} (2)

Fast and Accurate Group Outlier Detection for Trajectory Data 63

Definition 5 (Density Group). We define the density of the candidate group
trajectory outliers G as

Density(G) =
|G|

|{Rj |Λi ∈ G, Rj ∈ Λi}| (3)

To normalize the density function, we divide the result by the density of the group
having maximum density value, this ensures to obtain values ranged from 0 to
1. We call this function NormalizedDensity.

Definition 6 (Group Trajectory Outlier). A set of trajectories G is called
a Group Trajectory Outlier if and only if,

{G ⊆ ITO
NormalizedDensity(G) ≥ γ

(4)

Note that γ is the density threshold varied from [0 . . . 1].

Definition 7 (Non-Redundant Group Trajectory Outlier). A group of
trajectory outliers G is called a Non-Redundant Group Trajectory Outlier if it
has no superset of G, that is a group of trajectory outlier.

Definition 8 (Group Trajectory Outlier Detection Problem). Group
Trajectory Outlier Detection Problem aims to discover from the set of all mapped
trajectories, the set of all non-redundant groups of trajectory outliers, denoted
by G∗.

4 CDkNN-GTOD Algorithm

This section presents our algorithm CDkNN-GTOD, (Closed DBSCAN k Near-
est Neighbors for Group Trajectory Outlier Detection). Our main goal is to
efficiently explore the enumeration tree of the trajectory candidates to deter-
mine the group of trajectory outliers. In this work, we inspire by the cluster-
ing, the neighborhood computation, and the pattern mining algorithms to accu-
rately prune the search space and find the group of trajectory outliers. The
process starts by finding the micro clusters using DBSCAN algorithm, the prun-
ing strategy is performed for each micro cluster using the kNN principle. An
efficient pattern mining algorithm is then explored on the resulted subset of
group of trajectory candidates to determine the groups of trajectory outliers.
In the remaining of this section, we show how to use all these concepts in the
CDkNN-GTOD framework.

4.1 Clustering

Before presenting the clustering step, we need formally define some basic
concepts.

64 Y. Djenouri et al.

Definition 9 (Trajectory Neighborhoods). We define the neighborhoods of
a trajectory Λi, NΛi

, for a given threshold ε by

NΛi
= {Λj |d(ΛiΛj) ≤ ε ∨ j �= i} (5)

Definition 10 (Core Trajectory). A trajectory Λi is called core trajectory
if there is at least a minimum number of trajectories MinPts such that |NΛi

| ≥
MinPts

Definition 11 (Micro Cluster). A cluster of trajectories Ci is called a micro
cluster if and only if 0 < |Ci| ≤ μ, where μ is a user threshold.

This section presents how to use DBSCAN algorithm to identify micro clusters,
each micro cluster is considered as group of trajectory outlier candidates. The
ε-neighborhood of each trajectory is computed using Definition 9. The core tra-
jectories are determined using Definition 10. DBSCAN then iteratively collects
density-reachable trajectories from these core trajectories directly, which may
involve merging a few density-reachable clusters. The process terminates when
no new trajectories can be added to any cluster. Initially, the set of trajectories
are grouped using DBSCAN. This generates several clusters with different sizes.
Each micro cluster (see Definition 11) is considered as group candidates. As a
result, sets of groups trajectory candidates called {G+

i } are generated.

4.2 Pruning Strategy

The clustering step returns micro clusters, where each micro cluster forms the
groups of trajectory candidates. These groups contain individual trajectory out-
liers close to each other. However, they may contain normal trajectories. To well
prune the groups trajectory candidates, we develop an efficient pruning strategy
based on kNN principle. Before presenting the pruning step, we need formally
define some basic concepts.

Definition 12 (kNN of a trajectory). We define kNN of a trajectory Λi,
denoted by kNN(Λi) as

kNN(Λi) = {Λj ∈ Λ \ {Λi}|d(Λi, Λj) ≤ kdist(Λi)} (6)

kdist(Λi) = d(Λi, Λl) is the k-distance of the trajectory Λi defined such as it exists
k trajectories Λ′ ∈ Λ, it holds that d(Λi, Λl) ≥ d(Λi, Λ

′)

Definition 13 (Outlierness degree of a Trajectory). We define the out-
lierness degree of a given trajectory Λi, denoted by δ(Λi) as

δ(Λi) = |{Λj |j �= i ∨ Λj ∈ (kNN(Λi) ∩ G+)}| (7)

In the following, we present an adapted kNN algorithm for pruning the
candidate trajectory outliers. The algorithm considers as input the sets of all
trajectory candidate G+. The process aims to reduce the number of candidate

Fast and Accurate Group Outlier Detection for Trajectory Data 65

trajectory outliers on each micro cluster. For each micro cluster, it first adds
the trajectory outlier with highest outlierness degree, Λ+

1 , to the set of candi-
date trajectory outliers labeled by Λ+

1 , and denoted by G+
1 . It then generates all

potential candidates from Λ+
1 . A trajectory t is a potential candidate from Λ+

1 ,
if and only if, t ∈ G+

1 ∨ t ∈ kNN(Λ+
1). The same process is recursively applied

for all potential candidates added to G+
1 , and the overall process is repeated for

all micro clusters.

4.3 Pattern Mining

Consider GTOD problem <R,G+,G∗, NormalizedDensity(•), γ>, it could be
fit to the pattern mining problem [6] represented by the set of all transactions
D, the set of items I, the support function Support, the minimum support
minsup, and the set of all returned patterns P , as follows,

D = R, I = G+, Support(•) = NormalizedDensity(•),minsup = γ,G∗ = P

Each region is viewed as a transaction, and each trajectory candidate is viewed
as an item. A pattern is a subset from G+ already pruned. The support of the
pattern p is equal to the density of the group of trajectories of p. The min-
imum threshold will be γ threshold. A pattern mining process is applied on
the set of transactions D, and the set of items I, with the support function
NormalizedDensity(•), and with the minimum support set to γ. Each frequent
pattern discovered is considered as a set of group of trajectory outliers. By def-
inition, GTOD problem aims to identify non-redundant group of trajectory
outliers. If we apply classical pattern mining algorithm [5], redundant patterns
may be extracted. To deal with this issue, we aim to discover closed patterns, this
ensures non-redundant group of trajectory outliers are derived. In our implemen-
tation, we used Closet algorithm [8] to find out the closed patterns. It proceeds
in two steps. Initially, all closed frequent patterns of size 1 are mined. Then, new
patterns are generated by directly working on the closed frequent patterns of
size 1, without mining additional frequent patterns. It used sparse two efficient
data structures id-lists and vertical id-lists for fast counting the support of closed
frequent patterns and one-step technique to prune the search space and check
the closure property.

5 Performance Evaluation

Extensive experiments have been carried out to compare the CDkNN-GTOD
algorithm with the state-of-the art group outlier detection algorithms. The eval-
uation is performed using ROCAUC, which is common measure for the evalua-
tion of outlier detection methods. We perform the experiments using well-known
trajectory databases, retrieved from different repositories, consisting of the

66 Y. Djenouri et al.

following: Geolife1, Manhattan2, ECML PKDD 2015 competition3, and big taxi
trajectories: taxi 13-1, taxi 13-2, and taxi 15 [13].

5.1 Parameter Settings

The first part of this experiment focuses on tuning the parameters of different
stages of CDkNN-GTOD algorithm. It is performed on two parts, the first one

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

Geolife
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

Manhattan
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

ECML PKDD 2015 Competition
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

Taxi13-1
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

Taxi13-2
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

2 3 4 5 6 7 8 9 10

mu threshold

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

R
O

C
A

U
C

Taxi15
DBSCAN(0.2, 2)
DBSCAN(0.5, 2)
DBSCAN(1.0, 2)

DBSCAN(0.2, 5)
DBSCAN(0.5, 5)
DBSCAN(1.0, 5)

DBSCAN(0.2, 10)
DBSCAN(0.5, 10)
DBSCAN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.75

0.8

0.85

0.9

0.95

R
O

C
A

U
C

Geolife
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.75

0.8

0.85

0.9

0.95

R
O

C
A

U
C

Manhattan
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

R
O

C
A

U
C

ECML PKDD 2015 Competition
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.8

0.85

0.9

0.95

R
O

C
A

U
C

Taxi13-1
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

R
O

C
A

U
C

Taxi13-2
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

10 20 30 40 50 60 70 80 90 100

minimum support(%)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

R
O

C
A

U
C

Taxi15
kNN(0.2, 2)
kNN(0.5, 2)
kNN(1.0, 2)

kNN(0.2, 5)
kNN(0.5, 5)
kNN(1.0, 5)

kNN(0.2, 10)
kNN(0.5, 10)
kNN(1.0, 10)

Fig. 1. The parameter setting of the CDkNN-GTOD

is to tune the parameters of the clustering step represented by the DBSCAN
parameters (ε, and MinPts), μ for determining the micro clusters, the second one
is to tune the parameters of kNN represented by the number of neighborhood,

1 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-data-
set-user-guide/.

2 https://lab-work.github.io/data/.
3 http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-data-set-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-data-set-user-guide/
https://lab-work.github.io/data/
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

Fast and Accurate Group Outlier Detection for Trajectory Data 67

k, and the density threshold γ, and the parameter of the pattern mining step
represented by the minimum support threshold, minsup. Figure 1 shows the first
part of the parameters setting, by considering the micro clusters retrieved in
the clustering step as group of trajectory outliers, and ignoring the pruning and
the pattern mining processes. Several tests have been performed using different
trajectory databases by varying the DBSCAN parameters, ε from 0.2 to 1.0,
and MinPts from 2 to 10, the μ parameter for determining the micro clusters
from 2 to 10. Whatever the trajectory database used as input, the accuracy
determined by the ROCAUC value exceeds 0.72, however does not go up 0.75.
These results are explained by the fact that the idea of the micro clusters is able
to identify the group of trajectory outliers but not in an optimal way. Therefore,
in the next experimentation, we tune the parameters of the pruning and the
pattern mining processes, by fixing the best parameters of the clustering step
for each trajectory database found in this part. The results of the second part
is highlighted in Fig. 1, we varied the number of neighborhood from 2 to 10, the
density threshold values from 0.2 to 1.0, and the minimum support values from
10% to 99%. The results reveal that the pruning and the pattern mining steps
improve the accuracy of the proposed algorithm. This is explained by the fact
that kNN strategy allows to prune the search and keep only the most neighbors
of trajectory outliers in the micro clusters. Moreover, the pattern mining process
further reduces the search space by exploring the frequent patterns among the
group of trajectory outliers in the micro clusters. Table 1 summarizes the best
parameters values of the CDkNN-GTOD algorithm, which will be used in the
remaining of the experiments.

Table 1. Best parameters of CDkNN-GTOD.

Database ε MinPts μ k γ Minsup

Geolife 0.2 5 10 10 0.2 50

Manhattan 0.5 10 8 5 0.2 50

ECML PKDD 2015 competition 1.0 10 8 10 0.5 99

Taxi13-1 0.5 10 3 10 0.5 75

Taxi13-2 0.5 5 3 10 0.5 99

Taxi15 0.5 10 10 10 1.0 75

68 Y. Djenouri et al.

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.75

0.8

0.85

0.9

0.95

A
ve

ra
ge

 R
O

C
A

U
C

Geolife
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.86

0.88

0.9

0.92

0.94

0.96

0.98

A
ve

ra
ge

 R
O

C
A

U
C

Manhattan
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

A
ve

ra
ge

 R
O

C
A

U
C

ECML PKDD 2015 Competition
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

A
ve

ra
ge

 R
O

C
A

U
C

Taxi13-1
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

A
ve

ra
ge

 R
O

C
A

U
C

Taxi13-2
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

Injected Trajectory Outliers

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

A
ve

ra
ge

 R
O

C
A

U
C

Taxi15
CDkNN-GTOD DGM WATCH

Fig. 2. CDkNN-GTOD vs. state-of-the-art group outlier detection algorithms: accu-
racy

5.2 CDkNN-GTOD Vs State-of-the-Art Group Detection
Algorithms

The aim of this experiment is to compare CDkNN-GTOD with the baseline algo-
rithms in terms of accuracy and processing time. To the best of our knowledge,
this is the first work which investigates the group outlier detection in trajec-
tory data. Therefore, we adopt two baseline group outlier detection algorithms
(DGM [2], and WATCH [7]) to trajectory data for comparison with CDkNN-
GTOD. Figure 2 presents the average ROCAUC value of the proposed algorithm
CDkNN-GTOD, and the baseline group outlier detection algorithms (DGM
and WATCH), using several trajectory databases, and with different number
of injected outliers. By varying the number of injected trajectories from 10 to
1000, the CDkNN-GTOD outperforms the other algorithms for almost of cases.
Among 36 cases shown, CDkNN-GTOD is the best for 22 cases, DGM for 8 cases,
and WATCH for 6 cases. Moreover, when increasing the number of injected tra-
jectory outliers, the accuracy of the CDkNN-GTOD stabilizes and do not go
under 0.87, whereas, the accuracy of the baseline algorithm goes under 0.80.
This comes from the fact that our approach uses more advanced and recent
strategies, based on clustering, neighborhoods, and pattern mining, while the
baseline approaches use less advanced concepts of outlier detection based on
data distribution. Regarding processing speed, as shown in Fig. 3, our approach
is very competitive compared to the baseline approaches. This is explained the
way we combined the efficient data mining techniques – clustering, kNN, and
pattern mining, for finding the groups of trajectory candidates.

Fast and Accurate Group Outlier Detection for Trajectory Data 69

Geo
life

M
an

ha
tta

n

ECM
L.

Tax
i13

-1

Tax
i13

-2

Tax
i15

Trajectory Databases

0

500

1000

1500

2000

R
un

tim
e(

se
c)

CDkNN-GTOD DGM WATCH

Fig. 3. CDkNN-GTOD vs. state-of-the-art group outlier detection algorithms: runtime

6 Conclusion

In this paper, we introduced a new problem that aims at discovering group of
trajectory outliers. To solve this problem we proposed to combine clustering,
pruning, and pattern mining. More specifically, our approach consisted of three
main steps: (1) determination of micro clusters using the DBSCAN algorithm,
(2) identification of potential group of trajectory candidates from the micro
clusters with kNN, and (3) pruning of the candidates using density computa-
tion/pattern mining. Each of these steps are executed in an iterative manner,
allowing to extract the group of trajectory outliers in an effective and efficient
manner. To evaluate our approach, we performed our comparative experiments
on different real trajectory databases. The experiments showed that our app-
roach achieved good results in terms of both accuracy and processing speed.
Overall, the proposed approach is indeed capable of effectively and efficiently
solving the GTOD problem, and that it outperforms traditional methods which
are based on data distribution. Nevertheless, the combination of the advanced
techniques requires high expertise not only in trajectory analysis or outlier detec-
tion, but in other sophisticated data mining techniques. In our future work, we
will investigate and target new applications of GTOD, such as climate change
analysis, e.g., finding a group of hurricane trajectories that deviates from the
normal hurricane ones. This would allow to early identify other cities that could
be affected.

References

1. Belhadi, A., Djenouri, Y., Lin, J.C.W.: Comparative study on trajectory outlier
detection algorithms. In: 2019 International Conference on Data Mining Workshops
(ICDMW), pp. 415–423. IEEE (2019)

2. Chalapathy, R., Toth, E., Chawla, S.: Group anomaly detection using deep gen-
erative models. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G.
(eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 173–189. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-10925-7 11

https://doi.org/10.1007/978-3-030-10925-7_11

70 Y. Djenouri et al.

3. Das, K., Schneider, J., Neill, D.B.: Anomaly pattern detection in categorical
datasets. In: Proceedings of the 14th ACM SIGKDD, pp. 169–176 (2008)

4. Djenouri, Y., Belhadi, A., Lin, J.C.W., Djenouri, D., Cano, A.: A survey on urban
traffic anomalies detection algorithms. IEEE Access 7, 12192–12205 (2019)

5. Djenouri, Y., Djenouri, D., Lin, J.C.W., Belhadi, A.: Frequent itemset mining in
big data with effective single scan algorithms. IEEE Access 6, 68013–68026 (2018)

6. Djenouri, Y., Lin, J.C.W., Nørv̊ag, K., Ramampiaro, H.: Highly efficient pattern
mining based on transaction decomposition. In: 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pp. 1646–1649. IEEE (2019)

7. Li, J., Zhang, J., Pang, N., Qin, X.: Weighted outlier detection of high-dimensional
categorical data using feature grouping. IEEE Trans. Syst. Man Cybern. Syst. 99,
1–14 (2018)

8. Pei, J., Han, J., Mao, R., et al.: CLOSET: an efficient algorithm for mining frequent
closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, vol. 4, pp. 21–30 (2000)

9. Soleimani, H., Miller, D.J.: ATD: anomalous topic discovery in high dimensional
discrete data. IEEE Trans. Knowl. Data Eng. 28(9), 2267–2280 (2016)

10. Toth, E., Chawla, S.: Group deviation detection methods: a survey. ACM Comput.
Surv. (CSUR) 51(4), 77 (2018)

11. Xiong, L., Póczos, B., Schneider, J., Connolly, A., VanderPlas, J.: Hierarchical
probabilistic models for group anomaly detection. In: Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics, pp. 789–
797 (2011)

12. Xiong, L., Póczos, B., Schneider, J.G.: Group anomaly detection using flexible
genre models. In: Advances in Neural Information Processing Systems, pp. 1071–
1079 (2011)

13. Zhang, D., Li, N., Zhou, Z.H., Chen, C., Sun, L., Li, S.: iBAT: detecting anoma-
lous taxi trajectories from GPS traces. In: Proceedings of the 13th International
Conference on Ubiquitous Computing, pp. 99–108 (2011)

Data Processing

On the Performance Impact of Using
JSON, Beyond Impedance Mismatch

Moditha Hewasinghage(B), Sergi Nadal, and Alberto Abelló

Universitat Politècnica de Catalunya (BarcelonaTech), Barcelona, Spain
{moditha,snadal,aabello}@essi.upc.edu

Abstract. NOSQL database management systems adopt semi-struc-
tured data models, such as JSON, to easily accommodate schema evolution
and overcome the overhead generated from transforming internal struc-
tures to tabular data (i.e., impedance mismatch). There exist multiple, and
equivalent, ways to physically represent semi-structured data, but there is
a lack of evidence about the potential impact on space and query perfor-
mance. In this paper, we embark on the task of quantifying that, precisely
for document stores. We empirically compare multiple ways of represent-
ing semi-structured data, which allows us to derive a set of guidelines for
efficient physical database design considering both JSON and relational
options in the same palette.

1 Introduction

The relational model was defined as an abstraction level to gain independence
of the file system and any internal storage structure [6]. Thus, we could gain
flexibility and interoperability without losing efficiency by following a tabular
representation and some normal forms. Indeed, the first normal form (1NF)
established that attribute domains had to be atomic (i.e., they could be neither
compound-complex structures nor arrays). However, a rigid tabular structure
is not adequate in modern agile software development, where the schema is
under continuous evolution. Moreover, a well-known problem of RDBMS is the
impedance mismatch, defined as the overhead generated by transformations from
internal structures to tables, and then into programming structures [3].

The development of NOSQL systems, which adopt more flexible data repre-
sentations, allowed to overcome the impedance mismatch [14]. Such data formats
(e.g., JSON), are directly mapped from disk to memory. This is additionally
achieved by breaking 1NF, allowing typical programming nested structures and
arrays in the attribute values (e.g., MongoDB encourages denormalization1).
Furthermore, such semi-structured formats, also allow to skip schema declara-
tion, which is beneficial in highly evolving applications [13]. Nevertheless, it is
not clear whether denormalization and schemaless is a conscious design choice,

1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2.

Partly funded by the European Commission through the programme “EM IT4BI-DC”.
We thank Braulio Blanco for assisting on the first version of the experiments.

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 73–83, 2020.
https://doi.org/10.1007/978-3-030-54623-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_7&domain=pdf
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2
https://doi.org/10.1007/978-3-030-54623-6_7

74 M. Hewasinghage et al.

or merely a paradigm imposed by the limitations of NOSQL systems. Yet, the
flexibility offered by NOSQL comes at a price, where each one of the associated
design choices may widely change their physical representation, and thus pro-
foundly impact performance. Practitioners have ignored this, and today make
binary design decisions based on rules, and programming needs with no over-
all view of the system needs [12]. Thus, it is vital to consider the benefits and
drawbacks posed by these different alternatives during the design process [5].
Relational and semi-structured data models, are not a simple binary choice, but
a continuum of options with different degrees of (de)normalization.

In this paper, we quantify the performance impact of physical database design
choices on NOSQL systems, focusing on the JSON data model. To this end, dif-
ferent design choices (i.e., equivalent representational differences) related to both
metadata (i.e., schema), such as attribute embedding or optionality, and data,
such as nested objects or arrays, are quantitatively scrutinized. We acknowledge
that many DBMS features can affect performance (i.e., concurrency control and
recoverability mechanism, distribution and parallelism management, connection
pools and setup, etc.). Nevertheless, we only study the impact of design deci-
sions on a semi-structured data model, being agnostic of the technological choice.
Our main contributions are as follows: (1) We identify the main physical design
characteristics of semi-structured data and compare them to their structured
counterpart. (2) We empirically quantify the impact of design choices in semi-
structured data. (3) We evaluate the different designs in a relational and NOSQL
DBMS.

The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 presents design differences. Section 4 shows experimental results.
Sections 5 and 6 discuss the experimental findings and conclude the paper.

2 Related Work

[4] abstracts and homogenizes the modeling commonalities of NOSQL systems.
It considers databases as sets of collections, which in turn are sets of blocks,
finally represented by sets of entries. Similarly, [9] proposes a subject-oriented
methodology to design NOSQL databases. A conceptual model of the system is
converted into an equivalent hypergraph representation, such that hyperedges
identify specializations or aggregations among entities. For each hyperedge, an
specific data model, either relational or co-relational. [7] proposes a method to
generate NOSQL databases from a high-level conceptual model automatically.
The authors propose the UML-like Generic Data Metamodel, integrating struc-
tural and data access patterns. Then, a set of transformation rules generate the
specific constructs for the target model (e.g., document or column-family).

Regarding performance, [8] benchmarks PostgreSQL and MongoDB. An
OLAP-like workload is evaluated in both systems on real-world data from
Github. The benchmark concludes that PostgreSQL yields higher performance
results, but different design alternatives are not explored. [11] explores the impact
of normalized collections w.r.t. embedded objects in MongoDB, and empirically

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 75

shows that querying embedded objects is orders of magnitude faster than their
normalized counterpart using joins. Similarly, [15] benchmarks systems in the
NOSQL realm (i.e., MongoDB and CouchDB) as well as RDBMSs with built-
in JSON support (i.e., PostgreSQL and MySQL). This work differs from our
setting, as it focuses on CRUD transactions for a simple document structure.

3 Representational Differences

The term semi-structured describes data that have some structure but is neither
regular nor known a priori [1]. For example, a JSON document consists of a
nested hierarchy of key-value pairs with a single root. Child documents are an
unordered sequence list of pairs with optional presence. Hence, JSON documents
are self-descriptive, and do not require a schema declaration, despite a known
structure facilitates storage and encourages queries [2]. Conversely, a structured
database distinguishes schema and instances. The former is a set of attributes,
each with a concrete domain, while the later is a tuple of values that belong to the
corresponding domain in the previously declared schema. Hence, here, we present
representational differences between semi-structured and structured data (i.e.,
equivalent alternatives to represent some datum exploiting the characteristics
offered by each of both models), and discuss their potential impact on storage
size, data insertion, and query performance. For each representational difference,
we present patterns used in the empirical validation in Sect. 4.

3.1 Schema Variability

A common schema is defined for all instances in structured databases, but in
JSON, there may exist potentially different document schemata inside the same
collection. Here, we focus on comparing alternative ways to represent the schema.

3.1.1 Metadata Representation
Representing different schemata across JSON documents entails embedding their
metadata into each instance (Fig. 1). This clearly impacts negatively the size
of the database and consequently query performance. The more attributes are
present, the more metadata (i.e., attribute names) will be embedded into each
document. Additionally, the ratio between the size of data and metadata is
clearly an important factor to consider (i.e., attribute name length w.r.t. its
values). Thus, we need to consider (a) the absolute amount of metadata by
analysing different number of attributes (from 1 to n), and (b) the relative
amount of metadata by analysing different ratios (by increasing the value length
from 1 to m, while at the same time that decreases the attribute name length
in the same number of characters).

76 M. Hewasinghage et al.

Fig. 1. Alternative representations of Metadata

3.1.2 Attribute Optionality
Another feature of the semi-structured data model is the possibility to skip the
representation on an attribute in the absence of its value (as the case of J-Abs,
Fig. 2). However, it also supports to, either use a special value outside the domain
(as in J-NULL) or use a specific value inside the attribute domain (as in J-666).
Notice that in a relational representation, as the schema is fixed and common to
all instances, only the last two options are possible (as in T-NULL and T-666,
respectively). The impact on space and performance of these representations will
vary depending on the percentage of absent/present values for the attribute.

Fig. 2. Alternative representations for optional attributes

3.2 Schema Declaration

In order to benefit from Schema declaration and validation in semi-structured
databases, one must adopt additional constructs. JSONSchema is a JSON-based
schema language that allows to constrain the shape, types and values of JSON
documents. Here, we will evaluate the impact of both structure plus data type
declaration, and integrity constraint (IC) validation separately.

3.2.1 Structure and Data Types
To validate structure and data types, JSONSchema uses the properties key.
For each attribute, it is possible to specify its data type, which can be either
a primitive or complex object. Furthermore, the required key represents an
array enumerating the list of expected attributes. Figure 3 depicts the exem-
plary document patterns considered. Clearly, this declaration has no impact on
database size, since it does not grow with instances. However, it has a cost on
insertion, corresponding to validating presence and domain, and on the other
hand, it could potentially benefit query time by saving an explicit casting and
type conversion.

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 77

Fig. 3. Alternative representations of structure and data type validation

Fig. 4. Alternative representations of Integrity Constraints (IC) validation

3.2.2 Integrity Constraints
Besides the data type validation mechanisms, JSONSchema also offers means to
represent integrity constraints for attributes. Here, as depicted in Fig. 4, we focus
on enforcing ranges of values. In relational databases, this is achieved via CHECK
constraints. As above, this has no impact on the size of the database but will
have some on the insertion since it has to be checked before accepting the data.
Despite this, it might also be used to perform some semantic optimization at
query time; we consider this is technology-specific (i.e., not directly dependent
on the data representation) and will not be evaluated in Sect. 4.

3.3 Structure Complexity

An RDBMS conforms to 1NF, yet a semi-structured one relaxes such restriction,
which allows storing nested and multi-valued data. Here, we study the impact
of different complexity degrees on data according to that.

3.3.1 Nested Structures
Documents allow to explicit into a data structure conceptually independent
objects, which are accessed using dot notation. Yet, it is unclear what is the impact
regarding size (i.e., with an increasing number of brackets in the document), and
on querying such structures. To explore this, we will experiment with a range of
levels and attributes (Nest-one and Nest-all in Fig. 5). Precisely, we will evaluate
(a) increasing document sizes (i.e., Nest-one), and (b) constant document sizes
(i.e.,Nest-all); both w.r.t. the number of nesting levels.Nest-1 indicates that there
is only one attribute in the lowest level, while Nest-all contains less attributes the
more levels we have. For instance, with 32 nesting levels, Nest-one has only A33,
while Nest-all has attributes A33 to A64. Thus, in the latter, for every level we
add together with the required extra characters (i.e., :, {, and }), we remove an
attribute. Consequently, the overall size remains constant in terms of document
length, but not in physical storage space due to the encoding of integer values
being used.

78 M. Hewasinghage et al.

Fig. 5. Representations of nesting structures and multi-valued attributes

3.3.2 Multi-valued Attributes
Only modern object-relational DBMSs have adopted variable-length multidi-
mensional arrays as data type, an aspect present in JSON by definition. Yet,
it is unclear what is the impact of managing such types. On bounded arrays,
one could argue that it might be better to store each position as an indepen-
dent attribute, as depicted in Fig. 5, where we distinguish, for both JSON and
tuples, array and multi-attribute alternatives. Multi-valued attributes could also
be stored in a separate normalized table, however such independent structure
would compete for resources, heavily impacting insertion and query [10]. We
consider such eviction policies are technology-specific, thus they will not be
evaluated.

4 Experimental Evaluation

We conducted experiments to evaluate the choices discussed in Sect. 3, using
PostgreSQL v12 (which supports native JSON storage) to compare the differ-
ences between relational and JSON alternatives. We also used MongoDB v4.2
(nowadays, the most popular document store) to validate the consistency of
results. Note our objective is not to perform a technological comparison, but
to evaluate the impact of document design choices. No specific tuning was per-
formed for any system, using the default parameters. We disabled compression in
MongoDB to facilitate its comparison with PostgreSQL, and cleared the oper-
ating system cache and restarted the DBMS between each execution to clear
caches. We got three metrics: (a) storage size in MB; (b) overall runtime of
insertions in seconds; and (c) median runtime to aggregate a numeric attribute
in seconds over 20 repetitions. To store JSON in PostgreSQL, we created a table
with two attributes: a CHAR(24) to store the ID (equivalent to Object ID in Mon-
goDB) and a JSONB to store the document. Then, we generated 1 million random
documents according to each schema pattern in Sect. 3, over an exponentially
increasing parameter, which were inserted in 100 batches of 10 K documents.
Due to space limits, we omit the individual figures2. To minimise impedance
mismatch, queries return a single value aggregating numerical attributes. Note
that MongoDB stores 32-bits integers3, while PostgreSQL uses 64-bits4, which
in the end causes differences on storage size and consequently in insertion and
query performance.
2

Source code and all graphs available at https://github.com/dtim-upc/MongoDBTests.
3

https://docs.mongodb.com/manual/reference/bson-types.
4

https://www.postgresql.org/docs/12/datatype-json.html.

https://github.com/dtim-upc/MongoDBTests
https://docs.mongodb.com/manual/reference/bson-types
https://www.postgresql.org/docs/12/datatype-json.html

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 79

4.1 Schema Variability

For schema variability, we conducted three experiments overall because we
already had two patterns regarding metadata embedding (Sect. 3.1.1): (i) change
the number of numeric attributes in a document; and (ii) change the data-
metadata ratio, keeping a fixed number of attributes.

Varying Document Size. According to our experiments JSON always requires
more space than tuples, due to metadata being replicated in every document.
We can observe the same trend in insertion times. However, although storage
space for a tuple is smaller in all cases, insertion time is shorter only for few
(i.e., four) attributes. Beyond that, JSON insertion is faster (due to no type
checking, as shown later in Sect. 4.2). At query time the runtime increases with
the number of attributes. However, oppositely to insertion, tuples perform faster
(since they benefit from the work done at insertion time). In all cases, we can
see that PostgreSQL and MongoDB follow the same trend on storing JSON.
They only differ in the physical format, which requires less space in the latter
(64-bit vs. 32-bit integers). Thus, MongoDB generates less I/O (roughly half),
improving insertion and query time.

Constant Document Size. Aiming to stabilise the overall size of the docu-
ment, we keep constant the sum of characters between attribute name and value.
Thus, we have one numerical attribute for the queries and consider nine other
string attributes, changing at once their data to metadata ratio by changing the
length of attribute name and value keeping a constant of 64 characters for both
together. The number is chosen based on PostgreSQL having a limit of 63 char-
acters for attribute names, so the attribute name length ranges from 1 to 63 and
the value length from 63 to 1. Since attribute name is only stored once, indepen-
dently of the number of tuples, the storage space taken by the tuples decreases
with the growth of the attribute name length. Oppositely, attribute names are
redundantly stored in all documents in JSON, so the overall size remains con-
stant except for 63 characters, seemingly due to the presence of a step function
in physical storage allocation. This is confirmed in MongoDB, where the grad-
ual growth in space is more apparent. Interestingly, PostgreSQL and MongoDB
storage size for JSON is much closer in this experiment as most of the attributes
are strings instead of integers. Insertion and query times follow the same trend
as the attribute length grows indicating I/O is always the dominant factor.

Optional Attributes. Regarding attribute optionality, we consider five alter-
natives to represent the absence of values in the attributes (Sect. 3.1.2). Thus,
the pattern consists of 64 integer attributes (potentially removed all at once),
and one fixed-length string of size 64 to guarantee a minimal document size
when the former are removed. Thus, we varied the percentage of documents
without value for their integer attributes. Regarding storage space, the worst
option to represent absence of data is using a value inside the domain (i.e., T-
666 and J-666), which keeps a constant size. In both tuples and JSON, we can
use a null special value (i.e., T-NULL and J-NULL), which clearly saves space
as attribute values disappear. However, the complete absence of the attribute in

80 M. Hewasinghage et al.

JSON (namely J-Abs), reduces the storage space the most due to the saving also
in the metadata. As before, storage space in MongoDB follows the same trend as
in PostgreSQL, but with smaller values due to the different encoding of integers.
Regarding insertion time, the trend coincides with that of the storage used for
JSON in both systems. However, tuples in PostgreSQL keep a constant insertion
time, because the dominant factor is not I/O, but validation and formatting of
data, which is not even compensated by the saving in metadata storage. When
querying the data, we tested both summing and counting their presence with
similar results. In all cases, the dominant factor of the query time is I/O, and
consequently follows the trends and proportions of storage space.

4.2 Schema Declaration

As discussed, schema declaration does neither affect the overall storage size nor
query time. Thus, we measure insertion time for both data types and ICs.

Type and Constraint Validation. Regarding type and IC checking
(Sects. 3.2.1 and 3.2.2), we generated documents with 64 attributes and declared
type and ICs in an incremental manner (from 1 to 64). To enforce JSON schema
declaration in PostgreSQL, we used the postgres-json-schema5 extension. In
MongoDB, this is a built-in feature that can be simply enabled with the operator
$jsonSchema, which is provided at creation time of the collection. In tuples, all
data types must always be declared, leading to constant insertion time. Oppo-
sitely, when inserting JSON, time increases with data types declaration, con-
firming the consequent overhead. Checking concrete ICs on top of data types,
substantially increases the overhead. Both systems confirm trends, the only dif-
ference being that built-in mechanism of MongoDB being faster.

4.3 Structure Complexity

Finally, we analyse the impact of breaking first normal form by either nesting
documents (Sect. 3.3.1) or storing multi-valued attributes (Sect. 3.3.2). Notice
that only the latter is available in relational implementations.

Nested Structures. The storage size of nesting one attribute increases the
document size with the increasing number of levels. MongoDB slightly increases
the physical storage when the number of levels increases, even with constant
document size. The integer encoding difference (64-bits vs. 32-bits) explains this
opposite behavior. The insertion time follows the same trend of the storage
size. We noticed an extra overhead in MongoDB beyond that of purely I/O.
PostgreSQL performs better than MongoDB (despite having higher I/O), and
MongoDB have a clear upward trend with the increasing number nesting levels
as opposed to constant runtime in PostgreSQL confirms the overhead nesting
generates in MongoDB.

5
https://github.com/gavinwahl/postgres-json-schema.

https://github.com/gavinwahl/postgres-json-schema

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 81

Multi-valued Attributes. Regarding the storage of multi-valued attributes
(Sect. 3.3.2), we generated documents with the number of values per attribute
ranging from 2 to 64 for the different options. For tuples, we used either Post-
greSQL native array storage or separate attributes for each value, and similarly
for JSON either as an array in the document, or as separate attributes. Regard-
ing storage size, both systems take more space for JSON than tuples, because of
the saving of tuples on metadata replication. While in tuples both options use the
same space, in JSON arrays are clearly more efficient, since separate attributes
require more characters (the same behavior is confirmed in MongoDB, but mit-
igated by its smaller encoding of integers). Despite insertion time in JSON is
dominated by I/O, in tuples inserting to an array is faster than inserting multiple
attributes, due to the overhead of parsing and validating independent attributes
in front of one single array. Nevertheless, the extra processing at insertion time
pays off at query time, where processing the independent attributes is faster than
digging inside the array. For JSON, we appreciate the same benefit of querying
independent attributes in PostgreSQL, but surprisingly the opposite behavior in
MongoDB, where processing the array is systematically faster. When summin
indivudual attributes, MongoDB has a built-in function that sums the content
of the array, which is more efficient, and on the contrary, PostgreSQL needs to
unwind the array in order to calculate the sum, which is more expensive.

5 Discussion

Figure 6 summarizes all results with regard to storage space, load time, and query
time. For this, we calculated the average of all measurements per representational
difference for each of the three options (i.e., Tuples, and JSON in both systems).
Since data follows different patterns in each case, we separately min-normalize
per case (e.g., divide the minimum of the three averages for nested data by the
average for Tuples) and plot them all in the corresponding radar chart. This
means values further away from the center of the radar are better than the ones
closer, and the bigger the area of the polygon, the better the system performs.

Fig. 6. Multidimensional view of experimental results

82 M. Hewasinghage et al.

According to Fig. 6a storing tuples takes the least amount of space in all
cases except metadata representation. On interpreting this, we acknowledge the
impact of the ratio between metadata and data, which is fixed to be relatively
high in all experiments. Thus, attribute names should always be encoded in
JSON to shorten them as much as possible and improve that ratio. Obviously,
this is more relevant, for example, if values are numeric than if they are strings
(the former requiring less space, in general). Within JSON, PostgreSQL storage
size is much larger than MongoDB in all the cases, due to the different encoding
of integers (64-bits vs. 32-bits).

According to Fig. 6b it is clear looking at PostgreSQL that loading JSON
is faster than tuples, except for data type and integrity constraint validations.
However, it is important to note that the validation of JSON was carried out
through a third-party plugin, which definitely impacts the results. MongoDB
being a native document store, has a clear advantage over PostgreSQL JSON
storage in loading data (at the end of the day, JSON is stored as a column in
a PostgreSQL table), beating even tuple storage in the validation dimensions.
This, however, can come not only from using JSON format but from other DBMS
characteristics (e.g., lack of ACID transactional support).

Finally, Fig. 6c depicts that tuples, in general, perform better in queries.
This is so because they use less space, in general, and benefit from validation at
insertion time. Thus, we can see that when the space-saving is lost depending
on the data-metadata ratio, so the benefit is mostly lost at query time, as well.
Nonetheless, JSON representation is at a disadvantage, as each of the documents
needs to be parsed and processed on demand. Consequently, we should consider
the trade-off between the pressure of fast ingestion and the long term benefit of
recurring queries. It is also interesting to see that even though the storage size of
JSON is larger in PostgreSQL, this is still faster than MongoDB. We believe this
fact results from the differences in how query engines handle the calculations.
PostgreSQL benefits here from the well-optimized aggregation operations in the
relational engine, which data stored in JSON format also have access to.

6 Conclusions and Future Work

In this paper, we studied the impact of physical design choices for NOSQL
databases according to six different characteristics. We conclude that there is no
ace of spades, when designing JSON documents. However, we identified a crucial
trade-off between insertion and query performance. Nowadays, organizations are
shifting their data repositories to flexible representations following a schema-on-
read approach, but we have empirically shown that such an approach might have
several shortcomings in front of query-intensive workloads. As future work, we
aim to extend our experiments taking into account more features from the DBMS
in use. This involves considering caching mechanisms or indexing structures.

On the Performance Impact of Using JSON, Beyond Impedance Mismatch 83

References

1. Abiteboul, S.: Querying semi-structured data. In: ICDT (1997)
2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web - From Relations to

Semistructured Data and XML. Morgan Kaufmann, Burlington (2000)
3. Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software

Developer. Wiley, Hoboken (2003)
4. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL

world. Comput. Stand. Interfaces 67, 103149 (2020)
5. Badia, A., Lemire, D.: A call to arms: revisiting database design. SIGMOD Rec.

40(3), 61–69 (2011)
6. Codd, E.F.: A relational model of data for large shared data banks. Commun.

ACM 13(6), 377–387 (1970)
7. de la Vega, A., Garćıa-Saiz, D., Blanco, C., Zorrilla, M.E., Sánchez, P.: Mortadelo:

automatic generation of NoSQL stores from platform-independent data models.
Future Gener. Comput. Syst. 105, 455–474 (2020)

8. Hernández, A., etal.: Performance Benchmark PostgreSQL/MongoDB (Technical
report) (2019)

9. Herrero, V., Abelló, A., Romero, O.: NOSQL design for analytical workloads: vari-
ability matters. In: ER (2016)

10. Hewasinghage, M., Abelló, A., Varga, J., Zimányi, E.: DocDesign: cost-based
database design for document stores. In: SSDBM (2020)

11. Kanade, A., Gopal, A., Kanade, S.: A study of normalization and embedding in
MongoDB. In: IACC (2014)

12. Mohan, C.: History repeats itself: sensible and NonsenSQL aspects of the NoSQL
hoopla. In: EDBT (2013)

13. Scherzinger, S., Sidortschuck, S.: An empirical study on the design and evolution
of NoSQL database schemas. CoRR, abs/2003.00054 (2020)

14. Sadalage, P., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional, Boston (2012)

15. Truica, C., Radulescu, F., Boicea, A., Bucur, I.: Performance evaluation for CRUD
operations in asynchronously replicated document oriented database. In: CSCS
(2015)

Self-service Business Intelligence over
On-Demand IoT Data: A New Design

Methodology Based on Rapid
Prototyping

Julian Eduardo Plazas1,3(B) , Sandro Bimonte2 , Michel Schneider3,
Christophe de Vaulx3 , and Juan Carlos Corrales1

1 GIT, Universidad del Cauca, Calle 5 No 4-70, 190003 Popayán, Cauca, Colombia
{jeplazas,jcorral}@unicauca.edu.co

2 TSCF, INRAE Clermont-Ferrand, Université Clermont Auvergne,
63178 Aubière, France

sandro.bimonte@inrae.fr
3 LIMOS, Campus des Cézeaux, Université Clermont Auvergne,

63178 Aubière, France
michel.schneider@isima.fr, christophe.de vaulx@uca.fr

Abstract. Data Warehouse (DW) and OLAP systems are acknowl-
edged as first citizens of Business Intelligence (BI) technologies, allowing
the on-line analysis of huge volumes of data. However, traditional data-
driven BI might not be enough to compete in the context of Industry
4.0, since the collection and analysis of data from the Internet of Things
(IoT) requires a more responsive approach. Therefore, in this work, we
present a new design methodology for Self-Service DW with On-Demand
IoT Data, which is accompanied by a new UML profile for Stream Data
Warehouses based on IoT data.

Keywords: Business Intelligence · Internet of Things · Conceptual
modelling · Design methodology · UML profile

1 Introduction

The acquisition and analysis of Big Data coming from the Internet of Things
(IoT) are key competitive aspects for any enterprise and organisation. Indeed,
they allow decision-makers to be aware of the present and possible future situa-
tions [17]. However, properly acquiring, analysing and exploiting IoT-generated
Big Data are complex tasks. Hence, different types of experts are involved in
the design and use of such applications: IoT experts for the IoT implementation
and data acquisition; Data scientists for Big Data Analytics and Business Intelli-
gence (BI) implementation (i.e. BI experts in our case); and Domain experts and
decision-makers (i.e. business users) for information exploitation [15]. Tradition-
ally, business users interact only with the data scientist to define the required
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 84–93, 2020.
https://doi.org/10.1007/978-3-030-54623-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_8&domain=pdf
http://orcid.org/0000-0001-6621-0498
http://orcid.org/0000-0003-1727-6954
http://orcid.org/0000-0003-3459-8568
http://orcid.org/0000-0002-5608-9097
https://doi.org/10.1007/978-3-030-54623-6_8

Self-service Business Intelligence over On-Demand IoT Data 85

analysis over already-existing and -deployed IoT data. IoT experts have little or
no interaction with the other actors, and the IoT data is by default.

This approach is usually known as data-driven. Nevertheless, with the advent
of IoT and Industry 4.0, data-driven BI seems inefficient and ineffective. The
available data is not always appropriate for decision-making, which causes sig-
nificant delays in the analysis of information [3,9]. Therefore, traditional data-
driven BI is evolving in two main aspects: i) reducing the dependence on Informa-
tion Technologies (IT) experts (IoT and BI) through self-service BI [9]. And ii)
improving the pertinence of the acquired data considering the business require-
ments through BI with on-demand data [3].

Consequently, in this work, we propose a new vision where the Big Data
Analytics (BI) paradigm will shift from a data-driven approach to a requirement-
driven one: self-service BI with on-demand data (SSBI-ODD). In this
paradigm, data are collected on-demand from the IoT, and BI analysis are easy
to run according to the business needs. Thus, business users define both the col-
lection and analysis without completely relying on IoT and BI experts. In this
way, a design methodology for our vision of SSBI-ODD rises some new impor-
tant open issues: (i) Few experts have knowledge of both IoT and BI systems.
Thereby, it is necessary to constitute teams with different experts, which usually
drives to increased development time and reduced capacity for meeting the orig-
inal requirements [2,12]. And (ii) SSBI-ODD systems will be highly complex.
So, even a conceptual model approach [8] for SSBI-ODD system must provide
support for IoT and stream or classical BI data at the same time, and thus it
could represent a challenge for anyone trying to understand it as a whole.

To address these issues, we base our new design methodology for SSBI-ODD
on the ProtOLAP methodology [3]. In particular, this methodology focuses on
Data Warehouse (DW) and OLAP systems, the two main technologies of BI that
analyse huge volumes of multidimensional data. ProtOLAP follows the main
DW design principles: high involvement of business users, focus on conceptual
modelling and rapid prototyping [8]. Consequently, our new design methodology
allows all actors (BI and IoT experts, and business users) to discuss and define
the analysis requirements for classical and on-demand IoT data, and develop
prototypes rapidly and automatically for evaluation and deployment. Moreover,
we investigate different possible scenarios to achieve the integration of IoT and
classical data at the conceptual level. In particular, we propose a new UML
profile for Stream Data Warehouses (SDW) representing the IoT data as SDW
facts.

2 Related Work

Different authors have proposed model-driven methodologies and architectures
for the development of IoT applications. All of these works consider the impor-
tance of using IoT-generated data into Big Data Analytics systems to extract
value. For example, [1] defines an architecture for integrating IoT data into Big
Data systems for advanced manufacturing. [11] defines a methodology for the

86 J. E. Plazas et al.

design of smart IoT-based applications, separating the concepts and roles for
processes, semantics and Big Data management. And [13] defines a methodol-
ogy for developing IoT applications considering four different roles besides the
domain experts. However, to the best of our knowledge, most of these method-
ologies focus only on the IoT part of the system, without providing clear steps
or models for the data integration.

Moreover, regarding conceptual models for BI and their automatic imple-
mentation, some works propose to use model-driven approaches in the context
of Data Warehouse [16], data mining [7], and spatial analytics, amongst other
topics. However, to the best of our knowledge, only [2] defines a UML profile for
representing BI indicators focusing on stream data for DW. Nevertheless, this
UML profile does not represent how the stream is generated.

Regarding IoT (i.e. the stream generation part), we have found no evidence
of approaches providing rapid prototyping tools from a data representation.
Firstly, works proposing meta-models for representing IoT data cannot help
in the firmware development process [10,14]. Secondly, several works proposes
different approaches for generating firmware from models [5,6,12,13], yet such
models have little or no focus on data.

Consequently, to the best of our knowledge, existing works do not consider
the multidimensional analysis of on-demand IoT data, neither they allow for a
complete modelling and development process of IoT-based BI applications. We
thereby conclude that there are no conceptual models or methodologies enabling
SSBI-ODD, which constitutes our proposal in a first approach on the subject.

3 Our Methodology

In this section, we present our methodology for SSBI-ODD, focusing on DW
and IoT (Fig. 1), which is an extension of the ProtOLAP methodology [3].
ProtOLAP is a methodology that allows for rapid prototyping of DW. It is
mainly based on: (i) the automatic implementation of DW schema models from
UML models; (ii) validation of decision-makers requirements via visualization
of simulated warehoused data by means of OLAP clients (right part of Fig. 1).
Full details of ProtOLAP are thoroughly explained in [3]. In particular, we have
added a new set of steps in the methodology that allows for the definition of the
IoT data acquisition system. In this way, it complements the goal of [3] with the
direct integration of a different and complex data source. Figure 1 represents the
steps from ProtOLAP that remain the same with an orange frame and the new
steps with a green frame.

Our methodology (Fig. 1) is composed by six phases:
In the Requirement Elicitation step, the Business Users state their anal-

ysis needs in natural language (i.e. an informal definition). Throughout the dis-
cussion with the BI and IoT experts, these analysis needs are defined in terms
of indicators (e.g. measures and aggregations). This step is quite similar to one
proposed in [3], but here the business users must also express their needs in
terms of data collected by the IoT (i.e. what, when, and where).

Self-service Business Intelligence over On-Demand IoT Data 87

Fig. 1. Methodology for self-service DW over on-demand IoT data. (Color figure online)

Then, in the Conceptual Design step, the experts in both IoT and BI areas
define the best way to formalise the indicators as an Application UML model.
The IoT and BI experts can then use this model to explain the technological
solution to the business users, discuss with them, and refine the application
design. Once the Application UML model is complete and appropriate enough
for the three roles (i.e. IoT and BI experts, and business users), the IoT experts
start working on the data-centric design of the IoT part (IoT UML model), while
the BI experts work on the data-centric design of the BI part (DW UML model)
as defined in [3]. Both models have to be compliant and integrated in only one
common model.

In the Logical Design and Deployment step, the models for the IoT part
(IoT UML model) and the BI part (DW UML model) are automatically trans-
formed into Firmware and Database (DB) scripts respectively. The Firmware
allows programming the IoT devices, while the DB scripts define the relational
schema and metadata of the DW as described in [3]. In this phase, automatic
transformation from the conceptual models is a key feature that significantly
reduce the implementation effort allowing for rapid prototyping. Therefore,
we suggest the use of model-driven approaches such as [4], though different
approaches might also be valid.

For the next step, Domain Testing, IoT and BI experts work together
again. Firstly, the IoT experts prepare some IoT devices for gathering data in
a test environment (Laboratory sensing). Secondly, the BI experts prepare an
initial deployment of the DW capable of receiving data (Data feeding) as defined
in [3]. Finally, they integrate the two experimental subsystems (Integration).

88 J. E. Plazas et al.

This integration sub-step is done manually since it depends on the particular
application needs as discussed in Sect. 5. In this phase, IoT and BI experts must
verify the appropriate data collection, delivery, reception and analysis; an thus
it outputs an operative prototype of the IoT-based BI system.

In the Validation step, the business users check the prototype of the system
with a common OLAP visualisation tool. By exploring the data and analysis pro-
vided by such prototype, they can validate if the system (and thus the underlying
conceptual model) correctly provides the defined indicators. If the prototype is
not appropriate, the business users return to the discussion with the experts on
IoT and BI, further refining the Application UML model.

Otherwise, if the prototype is deemed appropriate, the process advances to
the sixth and final phase: Final deployment. This phase consists in deploying
the sensor devices and finalising the ETL procedures to receive and load their
data into the DW.

The following sections provide deeper details and examples of the most impor-
tant (early) steps of our methodology, which enable SSBI-ODD. Specifically,
Sect. 4 provide insights in the IoT UML Model definition and the consequent
automatic generation of IoT Firmware; while Sect. 5 describes three different
scenarios for integrating IoT and DW models and systems.

4 Conceptual Design and Logical Design and Deployment
of IoT Data

In this section, we describe the conceptual model for the IoT part and its auto-
matic implementation. The data-centric UML profile for IoT (Fig. 2-A) allows
the IoT and BI experts to define the IoT in terms of the required data. The
instantiated data models (e.g. Fig. 2-B) are very simple and readable, and are
thereby useful for discussing with the business users; enabling an effective refine-
ment process.

This profile (Fig. 2-A) is composed by six Stereotypes, four Tagged Values
and two Enumeration data types. The main Stereotype is Sensor DataStream,
which describes the data that is available from the IoT in a Class. The Sensed

WeatherConditions Class in Fig. 2-B applies this Stereotype. This Class is
contained into the Sensor Package, which applies the Sensor Stereotype.

Besides, the Sensor Variable Property Stereotype describes the variables
that the IoT senses and delivers without any computation, such as timeStamp in
the example. Moreover, the Sensor AggregatedVariable Property Stereotype
describes those variables that have a previous temporal aggregation inside the
IoT, like TemperatureSum and AvgTemperature in the example. Besides, this
Stereotype defines the Aggregation Tag related to the Sensor Aggregation
Enumeration in order to state the aggregation operation affecting each variable.

Finally, the Sensor TupleDelivery and Sensor TimeDelivery Operation
Stereotypes describe how the IoT operates and delivers its data to the BI system.
Firstly, the Period defines how often IoT is delivering the sensed data to the BI.
This Period represents a number of tuples or samples in Sensor TupleDelivery,

Self-service Business Intelligence over On-Demand IoT Data 89

Fig. 2. Data-centric UML profile for IoT (A) and data model example (B).

Fig. 3. Fragment of example firmware code generated with the automatic transforma-
tion tool.

and an amount of time in Sensor TimeDelivery, which also includes the
Granule Tag in relation with the Sensor TimeGranularity Enumeration to
set an unit for time. Secondly, WindowSize represents the amount of data aggre-
gated before delivering. In Sensor TupleDelivery it represents the number of
tuples or samples operated, while in Sensor Time-Delivery it represents a time
window before the delivery that is also associated to the Granule. For example,
the IoT represented in Fig. 2-B delivers its data every 1 min, and calculates the
aggregates (i.e. Sum and Average) with the data collected during that minute.

After the data model of IoT is complete, refined, and agreed by all the roles,
the IoT experts can proceed to the Logical Design and Deployment. In this phase,
the IoT experts must select an implementation IoT device, and define some
physical features of the application: device address, device identifier, sensing
probes, sensing period, internal data operations and delivery interface.

Once the IoT experts set these features, the IoT experts can use an automatic
model-to-code transformation tool. Such a tool takes as input the XMI (XML
Metadata Interchange) file of the IoT data model, the physical features set by the
IoT experts and the characteristics of the selected IoT device in order to generate
the firmware. For example, Fig. 3 shows a fragment of firmware expressed in C
code for delivering the IoT data through the Transceiver interface of the device.
This firmware is then compiled and loaded into the IoT hardware, which starts
providing the required data.

90 J. E. Plazas et al.

5 Conceptual Integration of IoT Data in BI

After both the IoT and the DW are implemented in their first separated proto-
type (Domain Testing phase), their integration should be as simple as defining
a gateway that connects the output interface of the IoT and the input interface
of the BI. The data acquisition (IoT) and reception (DW) processes must be
compatible from the design of the system. Thereby, in this section, we describe
three different approaches for providing a unified and complete data model of
IoT-based BI applications. These approaches corresponds to different analysis
needs expressed by business users. We present it using the agriculture example
introduced in the previous sections.

The naive approach considers that: the IoT and the DW are represented in
two different data models; the DW Fact has equivalent attributes with the IoT
Sensor DataStream (i.e. there is no need for ETL or any transformation on the
IoT data); and the two models can be related through a one-to-many association.
This approach allows OLAP analysis over IoT data that are permanently stored
in the DW without requiring any transformation.

The ETL approach is similar than the Naive one, it still considers that the
IoT and the DW are represented in two different data models and the two models
can be related through a one-to-many association. However, the attributes in the
DW Fact are different than that of the IoT Sensor DataStream and thus they
require a transformation process (i.e. ETL) before being loaded into the DW.
This approach allows OLAP analysis over IoT data that are permanently stored
in the DW with some previous transformations that cannot be achieved directly
inside the IoT. Indeed, sometimes sensors have not enough computational or
battery resources to provide any kind of transformation. Therefore, they must
be executed outside of the IoT.

Recent works propose to provide OLAP queries over data streams. Lever-
aging this interesting idea, we can use our IoT UML profile to represent the
stream data-source of a Stream DW, allowing for a continuous OLAP analysis
over streamed IoT data without requiring additional transformations or perma-
nent storage. This approach is different from existing ones since it models the
whole IoT-based BI application in a single model using a single profile. More pre-
cisely, we propose to use the UML profile for Stream Data Warehouses (SDW)
of [2]. This work extends the [4] profile for classical data with a Stream Fact
and a Window Dimension. The Stream Fact allows representing temporally-
constrained data (i.e. stream), while the Window Dimension defines for how
long the SDW will keep the data to run the required analysis.

Figure 4 shows how we have further extended the [2] profile to use our
Sensor DataStream of IoT as a StreamFact for SDW. Our extensions are high-
lighted with blue dotted frames. Firstly, Fig. 4-A shows the resumed SDW pro-
file for the HypercubeStream Package, which replaced the classical Hypercube
Package. To extend this part of the profile, we define the AbstractStreamFact
Abstract Class Stereotype as a generalisation of StreamFact, associating it
to the HypercubeStream and the TimestampAggLevel. Then, we add our
Sensor DataStream as one of the specifications of AbstractStreamFact, which

Self-service Business Intelligence over On-Demand IoT Data 91

Fig. 4. Extension of the Stream Data Warehouse profile.

Fig. 5. Example data model of a Stream Data Warehouse using IoT data.

allows us to analyse IoT data in the different dimensions. Secondly, Fig.
4-B shows the relationship between the Measures of the StreamFact (e.g.
NumericalMeasure) and the Sensor Variable of the Sensor DataStream.
In this part of the profile, we add our Sensor Variable (and thus the
Sensor AggregatedVariable) as one of the specifications of SMDAttribute, the
generalisation of Measure. Note that these representations (Fig. 4) are resumed,
i.e. do not exhibit all the depth of the profiles. Therefore, their understanding
must be complemented with the original SDW profile [2] and the IoT profile
(Sec. 4). Nevertheless, we provide an example in the agriculture domain using
our extended profile for IoT-based BI applications (Fig. 5).

This model (Fig. 5) presents a HypercubeStream named FarmCondi

tionsDataStream to analyse the weather conditions on a farm over different
Time Windows regarding the Crops and the Location (i.e. dimensions). The
observation Time Windows can last one minute, one hour or one day. The Crops

can be analysed by each individual Crop or grouped by CropType . Besides, data

92 J. E. Plazas et al.

can also be analysed at the level of Sensors , Plots , or for the whole Farm . Fur-
thermore, the Weather Conditions are sensed through an IoT device, which
every minute loads into the SDW the accumulated (TemperatureSum) and aver-
age (AvgTemperature) air temperature values from the last minute. In this way,
this model could answer queries such as: “Which Plot is currently presenting the
hourly minimum average temperature?” Or “List all the plots with avocado with
a total accumulated temperature under 500 during this hour”.

6 Conclusion and Future Works

In the context of the fourth industrial revolution, enterprises face new chal-
lenges that decision-support technologies like BI must help to overcome. How-
ever, the collection and analysis of classical data are no longer enough for effective
decision-making. Indeed, these technologies must evolve to collect and analyse
contextual data from the IoT. We have thereby presented our vision for SSBI-
ODD, which empower the business users to define the most relevant data and
analysis needs according to the business goals, and allows supplying such needs
with reduced effort from IT experts. We support our vision with a new design
methodology and a UML profile for self-service DW over on-demand IoT data.
Our proposal exhibits two main principles: (i) the participation of all the roles
in the design process through formal yet readable models. (ii) Rapid prototyp-
ing based on model-driven approaches and model-transformation tools. Con-
sequently, it allows efficiently developing effective SSBI-ODD applications for
improved decision-making. Finally, our on-going works are the evaluation of our
methodology in a real scenario, the extension of our IoT data profile with IoT-
specific ETL functions, and the definition of a rapid-prototyping approach for
the gateway between the IoT and the DW.

Acknowledgements. This work was partially supported by French ANR projects
VGI4Bio (ANR-17-CE04-0012) and “Investissements d’ Avenir” through the IDEX-
ISITE initiative CAP 20–25 (ANR-16-IDEX-0001), and the Colombian project
IoT-Agro of Universidad del Cauca (VRI ID4633). We also thank COLCIENCIAS
(Colombia) for the PhD scholarship granted to Julián Eduardo Plazas.

References

1. Arantes, M., Bonnard, R., Mattei, A.P., De Saqui-Sannes, P.: General architecture
for data analysis in industry 4.0 using SYSML and model based system engineering.
In: 2018 annual IEEE international systems conference (SysCon), pp. 1–6. IEEE
(2018)

2. Bimonte, S., Boussaid, O., Schneider, M., Ruelle, F.: Design and implementation
of active stream data warehouses. Int. J. Data Warehouse. Min. (IJDWM) 15(2),
1–21 (2019)

3. Bimonte, S., Edoh-Alove, É., Nazih, H., Kang, M.A., Rizzi, S.: Protolap: rapid
olap prototyping with on-demand data supply. In: Proceedings of the sixteenth
international workshop on Data warehousing and OLAP, pp. 61–66 (2013)

https://www.iot-agro.com/

Self-service Business Intelligence over On-Demand IoT Data 93

4. Boulil, K., Bimonte, S., Pinet, F.: Conceptual model for spatial data cubes: a UML
profile and its automatic implementation. Comput. Stand. Interfaces 38, 113–132
(2015)

5. Cai, H., Gu, Y., Vasilakos, A.V., Xu, B., Zhou, J.: Model-driven development
patterns for mobile services in cloud of things. IEEE Trans. Cloud Comput. 6(3),
771–784 (2016)

6. Ciccozzi, F., Spalazzese, R.: MDE4IoT: supporting the internet of things with
model-driven engineering. IDC 2016. SCI, vol. 678, pp. 67–76. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-48829-5 7

7. Cuzzocrea, A., Mazón, J.N., Trujillo, J., Zubcoff, J., et al.: Model-driven data min-
ing engineering: from solution-driven implementations to ‘composable’ conceptual
data mining models. Int. J. Data Min. Model. Manag. 3(3), 217–251 (2011)

8. Golfarelli, M., Rizzi, S., Turricchia, E.: Modern software engineering methodologies
meet data warehouse design: 4WD. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2011. LNCS, vol. 6862, pp. 66–79. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23544-3 6

9. Lennerholt, C., van Laere, J., Söderström, E.: Implementation challenges of self
service business intelligence: a literature review. In: 51st Hawaii International Con-
ference on System Sciences, Hilton Waikoloa Village, Hawaii, USA, 3–6 January
2018, vol. 51, pp. 5055–5063. IEEE Computer Society (2018)

10. Marouane, H., Makni, A., Bouaziz, R., Duvallet, C., Sadeg, B.: Definition of design
patterns for advanced driver assistance systems. In: Proceedings of the 10th Trav-
elling Conference on Pattern Languages of Programs, p. 3. ACM (2016)

11. Mezghani, E., Exposito, E., Drira, K.: A model-driven methodology for the design
of autonomic and cognitive iot-based systems: Application to healthcare. IEEE
Trans. Emerg. Top. Comput. Intell. 1(3), 224–234 (2017)

12. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: Frasad: a framework for model-
driven IoT application development. In: 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT), pp. 387–392. IEEE (2015)

13. Patel, P., Cassou, D.: Enabling high-level application development for the internet
of things. J. Syst. Softw. 103, 62–84 (2015)

14. Plazas, J.E., Bimonte, S., De Sousa, G., Corrales, J.C.: Data-centric UML profile
for wireless sensors: application to smart farming. Int. J. Agri. Environ. Inf. Syst.
(IJAEIS) 10(2), 21–48 (2019)

15. Saggi, M.K., Jain, S.: A survey towards an integration of big data analytics to big
insights for value-creation. Inf. Process. Manag. 54(5), 758–790 (2018)

16. Taktak, S., Alshomrani, S., Feki, J., Zurfluh, G.: The power of a model-driven
approach to handle evolving data warehouse requirements. In: 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD 2017), pp. 169–181. SciTePress (2017)

17. Thramboulidis, K., Christoulakis, F.: Uml4iot–a UML-based approach to exploit
iot in cyber-physical manufacturing systems. Comput. Ind. 82, 259–272 (2016)

https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-642-23544-3_6
https://doi.org/10.1007/978-3-642-23544-3_6

Semantic Web

Consistency and Certain Answers in
Relational to RDF Data Exchange with

Shape Constraints

Iovka Boneva, Sławek Staworko, and Jose Lozano(B)

Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche
en Informatique Signal et Automatique de Lille, 59000 Lille, France

jose-martin.lozano-aparicio@univ-lille.fr

Abstract. We investigate the data exchange from relational databases
to RDF graphs inspired by R2RML with the addition of target shape
schemas capturing fragments of SHACL and ShEx. We study the prob-
lems of consistency i.e., checking that every source instance admits a
solution, and certain query answering i.e., finding answers present in
every solution. We identify the class of constructive relational to RDF
data exchange that uses IRI constructors and full tgds (with no existen-
tial variables) in its source to target dependencies. We show that the
consistency problem is coNP-complete. We introduce the notion of uni-
versal simulation solution that allows to compute certain query answers
to any class of queries that is robust under simulation. One such class are
nested regular expressions (NREs) that are forward i.e., do not use the
inverse operation. Using universal simulation solution renders tractable
the computation of certain answers to forward NREs (data-complexity).

1 Introduction

The recent decade has seen RDF raise to the task of interchanging data between
Web applications [25]. In many applications the data is stored in a relational
database and only exported as RDF, as evidenced by the proliferation of lan-
guages for mapping relational databases to RDF, such as R2RML [18], Direct
Mapping [4] or YARRRML [20]. As an example, consider the following R2RML
mapping, itself in RDF format presented in Turtle syntax

<#EmpMap>

rr:logicalTable [rr:sqlQuery "SELECT id, name, email FROM Emp NATURAL JOIN Email"];

rr:subjectMap [rr:template "emp:{id}"; rdf:type :TEmp];

rr:predicateObjectMap [rr:predicate :name; rr:objectMap [rr:column "name"]];

rr:predicateObjectMap [rr:predicate :email; rr:objectMap [rr:column "email"]].

It exports the join of two relations Emp(id ,name) and Email(id ,name) into a set
of triples. For every employee it creates a dedicated Internationalized Resource
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 97–107, 2020.
https://doi.org/10.1007/978-3-030-54623-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_9

98 I. Boneva et al.

Identifier (IRI) consisting of the prefix emp: and the employee identifier. More
importantly, the class (rdf:type) of each employee IRI is declared as :TEmp.

RDF has been originally proposed schema-less to promote its adoption but
the need for schema languages for RDF has been since identified and deemed
particularly important in the context of exchange of data between applica-
tions [23,32].

One family of proposed schema formalisms for RDF is based on shape con-
straints and this class includes shape constraint language (SHACL) [17,22] and
shape expressions schemas (ShEx) [11,27,28]. The two languages allow to define
a set of types that impose structural constraints on nodes and their immediate
neighborhood in an RDF graph. For instance, the type :TEmp may be defined
as

:TEmp { :name xsd:string; :email xsd:string?; :works @:TDept+ }

Essentially, an employee IRI must have a single :name property, an optional :email
property that are both strings, and at least one :works property each leading to
an IRI of type :TDept.

In the present paper we formalize the process of exporting a relational
database to RDF as data exchange, and study two of its fundamental problems:
consistency and certain query answering. In data exchange the mappings from
the source database to the target database are modeled with source-to-target
tuple-generating dependencies (st-tgds). For mappings defined with R2RML we
propose a class of full constructive st-tgds, which use IRI constructors to map
entities from the relational database to IRIs in the RDF. For instance, the
R2RML mapping presented before can be expressed with the following st-tgd

Emp(id ,name) ∧ Email(id , email) ⇒ Triple(emp2iri(id), :name,name) ∧
Triple(emp2iri(id), :email, email) ∧
TEmp(emp2iri(id)),

where emp2iri is an IRI constructor that generates an IRI for each employee. To
isolate the concerns, in our analysis of the st-tgds we refrain form inspecting the
definitions of IRI constructors and require only that they are non-overlapping,
i.e. no two IRI constructors are allowed to output the same IRI. We call the
above setting constructive relational to RDF data exchange. We report that in
this setting all 4 use cases of R2RML [6] can be expressed. Furthermore, we can
cover 38 out of 54 test cases for R2RML implementations [31]. Among the non-
covered test cases, 9 use pattern-based function to transform data values and 7
use SQL statements with aggregation functions. In fact, our assessment is that
the proposed framework allows to fully address all but one out of the 11 core
functional requirements for R2RML [6], namely the Apply a Function before
Mapping. Finally, in our investigation we consider a class of shape schemas that
are at the intersection of SHACL and ShEx. They are known to have desir-
able computational properties while remaining practical, and furthermore, they
posses a sought-after feature of having an equivalent graphical representation
(in the form of shape graphs) [29].

Consistency and Certain Answers in Relational to RDF Data Exchange 99

For a given source relational instance, a solution to data exchange is a target
database (an RDF graph in our case) that satisfies the given set of st-tgds and the
target schema (a shape schema in our case). The number of solutions may vary
from none to infinitely many. The problem of consistency is motivated by the
need for static verification tools that aim to identify potentially erroneous data
exchange settings that are inconsistent i.e., admit no solution for some source
database instance. In general, a consistent data exchange setting may yield many
solutions to a given source instance and it is commonplace to apply the possible
world semantics [21] to evaluate queries: a certain answer is an answer returned
in every solution. It is standard practice to construct a solution that allows to
easily compute certain answers. In the case of relational data exchange, universal
solutions have been identified and allow to easily compute certain answers to
conjunctive queries, or any class of queries preserved under homomorphism for
that matter [19]. Unfortunately, for relational to RDF data exchange with target
shape schema, a finite universal solution might not exists, even if the setting
is consistent and admits solutions. Also, the class of conjunctive queries, while
adequate for expressing queries for relational databases, is less so for RDF. Query
languages, like SPARQL, allowing regular path expressions with nesting have
been proposed to better suit the needs of querying RDF [26].

Our contributions are as follows. We formalize the framework of relational
to RDF data exchange with target shape schema and IRI constructors, and
we identify the class of constructive relational to RDF data exchange that uses
shape schemas and full constructive source-to-target dependencies. We provide
an effective characterization of consistency of constructive relational to RDF
data exchange settings and show that the problem is coNP-complete. We pro-
pose a novel notion of universal simulation solution, that can be constructed for
any consistent constructive relational to RDF data exchange setting, and use
it to show tractability of computing certain answers to forward nested regular
expressions. In an extended version of the present paper [14] we present full
details and study further a number of extensions of our framework and show
each time negative computational consequences.

2 Preliminaries

In this section we recall the standard notions of logic and databases [1,24].

Relational Databases. A relational schema is a pair R = (R, Σfd) where R is a
set of relation names and Σfd is a set of functional dependencies. Each relation
name has a fixed arity and a set of attribute names. A functional dependency is
written as usual R : X → Y where R is a relation name and X and Y are two
sets of attributes of R. An instance I of R is a function that maps every relation
name of R to a set of tuples over a set Lit of constants (also called literal values).
The instance I is consistent if it satisfies all functional dependencies Σfd. In the
sequel, we often view an instance as a relational structure over the signature R.

100 I. Boneva et al.

Graphs. An RDF graph G is a labeled graph whose nodes are divided into two
kinds: literal nodes (Lit) and non-literal (Iri) nodes with only the latter allowed
to have outgoing edges. Every node is labeled and we adopt the unique name
assumption (UNA) i.e., no two node have the same label. Consequently, we
equate nodes with their labels and by nodes(G) we denote the set of labels of
nodes of G. Also, each edge is labeled with a predicate name, which is a non-null
resource name Pred. As a result of using chase some nodes may be labeled with
names nulls.

Shape Schemas. A shapes schema is a pair S = (T , δ), where T is a finite set
of type names and δ : T × Pred → (T ∪ {Literal}) × {1, ?, *, +} defines shape
constraints. A shape constraint δ(T, p) = (S, μ), often presented as δ(T, p) = Sµ,
reads as follows: if a node has type T , then every neighbor reached with an
outgoing p-edge must have type S and the number of such neighbors must be
within the bounds of μ: precisely one if μ = 1, at most one if μ = ?, at least one
if μ = +, and arbitrarily many if μ = *. Whenever μ = 1 or μ = ? we say that
the predicate p is functional for type T .

Dependencies. We employ the standard syntax of first-order logic (cf. [24]).
In the sequel, we shall view graphs as relational structures using the ternary

predicate Triple and monadic predicates in T ∪{Literal} to indicate the types of
nodes. Furthermore, in formulas we use the edge labels Pred as constant symbols.
Later on, we additionally introduce functions that allow to map the values in
relational databases to resource names used in RDF graphs, and we allow the
use of function names in formulas but without nesting.

Now, a dependency is a formula of the form ∀x̄.ϕ ⇒ ∃ȳ.ψ, where ϕ is called
the body and ψ the head of the dependency, and we typically omit the univer-
sally quantified variables and write simply ϕ ⇒ ∃ȳ.ψ. A dependency is equality-
generating (egd) if its body is a clause and its head consists of an equality
condition x = y on a pair of variables. A tuple-generating dependency (tgd) uses
clauses in both its head and its body. A tgd is full if it has no existentially
quantified variables.

A number of previously introduced concepts can be expressed with dependen-
cies. Any functional dependency is in fact an equality-generating dependency.
Interestingly, any deterministic shape schema S can be expressed with a set
ΣS of equality- and tuple-generating dependencies. More precisely, whenever
δ(T, p) = Sµ the set ΣS contains:

(TP) the type propagation rule: T (x) ∧ Triple(x, p, y) ⇒ S(y),
(PF) the predicate functionality rule if μ = 1 or μ = ?:

T (x) ∧ Triple(x, p, y1) ∧ Triple(x, p, y2) ⇒ y1 = y2,
(PE) the predicate existence rule if μ = 1 or μ = +: T (x) ⇒ ∃y. Triple(x, p, y).

3 Constructive Relational to RDF Data Exchange

An n-ary IRI constructor is a function f : Litn → Iri that maps an n-tuple of
database constants to an RDF resource name. A IRI constructor library is a

Consistency and Certain Answers in Relational to RDF Data Exchange 101

pair F = (F , F), where F is a set of IRI constructor names and F is their
interpretation. F is non-overlapping if all its IRI constructors have pairwise
disjoint ranges.

Definition 1. A relational to RDF data exchange setting with fixed IRI con-
structors is a tuple E = (R,S, Σst,F), where R = (R, Σfd) is a source relational
schema, S = (T , δ) is a target shape constraint schema, F = (F , F) is an IRI
constructor library, and Σst is a set of source-to-target tuple generating depen-
dencies (st-tgds) whose bodies are formulas over R and heads are formulas over
F ∪ T ∪ {Literal} without nesting of function symbols in F . E is constructive
if the library of IRI constructors is non-overlapping and the st-tgds Σst are full
tgds. A typed graph J is a solution to E for a source instance I of R, iff J
satisfies S and I ∪ J ∪ F |= Σst. By solE (I) we denote the set of all solutions for
I to E . �	

In the reminder we fix a constructive data exchange setting E , and in partic-
ular, we assume a fixed library of IRI constructors F. Since we work only with
constructive data exchange settings, w.l.o.g. we can assume that the heads of all
st-tgds consist of one atom only. We point out that while a constructive data
exchange setting does not use egds, our constructions need to accommodate egds
and tgds coming from the shapes schema.

The standard chase procedure allows to construct a solution to E for a source
instance I. However, such solution might not exist either because the chase fails
due to an unsatisfiable egd, or because it never terminates. The core pre-solution
for I to E is the result J0 of chase on I with the st-tgds Σst and all TP rules
of S. In essence J0 is obtained by exporting the relational data to RDF triples
with Σst and then propagating any missing types according to S but without
creating any new nodes with PE rules. This process does not introduce any null
values and always terminates yielding a unique result. Naturally, J0 is included
in any solution J ∈ solE (I).

4 Consistency

Recall that a data exchange setting E is consistent if every consistent source
instance I of R admits a solution to E .1 Throughout this section we fix a data
exchange setting E = (R,S, Σst,F) and study its consistency.

Note that only predicate functionality egds can bring inconsistency. We show
that E is inconsistent if and only if there is a source instance I and a predicate
functionality egd T (x)∧Triple(x, p, y)∧Triple(x, p, y′) ⇒ y = y′ in E such that
all solutions to E for I need to satisfy the body of the above rule but y and y′ are
not equatable. We distinguish two situations, that together provide a necessary
and sufficient condition for E to be (in-)consistent.

1 This was called absolute consistency in [9].

102 I. Boneva et al.

– value inconsistency when y and y′ are different constants (see Sect. 4),
– node kind inconsistency when one among y, y′ is a literal and the other is not

(see Sect. 4).

Value Consistency. Let ΣPF
S be the set of predicate functionality rules from ΣS

as defined in Sect. 3.
An instance I of R is called value inconsistent if J �|= ΣPF

S , where J is the core
pre-solution for I to E . The data exchange setting E is called value inconsistent
if there exists a consistent instance I of R that is value inconsistent.

We now sketch a decision procedure value-inconsistent(E) that tests whether
E is value inconsistent by constructing a value inconsistent source instance when-
ever such exists. It is illustrated on the following example data exchange setting.
The relational signature contains symbols R,S both of arity two, and the IRI
constructors are {g0, g, f} all of arity one. The shapes schema S is given by
δ(U0, r) = U*, δ(U, q) = T *, δ(T, p) = Literal1, and the st-tgds are:

(σ1) R(x0, x1) ⇒ U0(g0(x1)) R(x, z) ∧ S(x, y′) ⇒ Triple(f(x), p, y′) (σ)
(σ2) R(x1, x2) ⇒ Triple(g0(x1), r, g(x2)) S(x, y) ⇒ Triple(f(x), p, y) (σ′)
(σ3) R(x2, x) ⇒ Triple(g(x2), q, f(x))

Using that IRI constructors have pairwise disjoint ranges, it follows from the
definition that a source instance is value inconsistent iff its core pre-solution con-
tains a triple of facts of the form {T (f(x)),Triple(f(x), p, b),Triple(f(x), p, b′)}
for some function symbol f , and such that x and y �= y′ are constants and the
predicate p is functional for type T in S. We call such triple of facts a violation
and (T, p, f) its sort. There is a finite number of possible violation sorts for E .
On the example, the possible violation sorts are (T, p, f), (T, p, g0) and (T, p, g),
as the unique functional predicate rule is for type T and predicate p. The pro-
cedure value-inconsistent(E) enumerates all violation sorts and for each of them
tries to build a value inconsistent instance.

So consider the violation sort (T, p, f). Although none of the st-tgds heads
contains a fact of the form T (f(_)), we remark that such fact can be
obtained using type propagation rules. Indeed, consider the source instance
I ′ = {R(x0, x1), R(x1, x2), R(x2, x)} obtained as the union of the bodies of
st-tgds (σ1), (σ2) and (σ3), where variables are used as constants. Apply-
ing on I ′ the st-tgds (σ1), (σ2) and (σ3) together with the type prop-
agation rules for U0, r and U, q yields the target instance J ′ = I ′ ∪
{U0(g0(x1)),Triple(g0(x1), r, g(x2)), U(g(x2)),Triple(g(x2), q, f(x)), T (f(x))}
which does contain a fact T (f(x)) as required. We show that for given T and f , a
fact of the form T (f(_)) exists in some core pre-solution w.r.t. E if and only if E
contains an appropriate finite and elementary (i.e. without repetitions) sequence
of st-tgds such as (σ1), (σ2), (σ3) above that, combined with type propagation
rules, allows to obtain T (f(_)).

Now we need to add facts of the forms Triple(f(x), p, y) and
Triple(f(x), p, y′). This is done using the st-tgds (σ) and (σ′), called con-
tentious for f and p. So consider I = I ′ ∪ {S(x, y), R(x, z), S(x, y′)}
obtained by adding the bodies of (σ) and (σ′) to I ′. Its core pre-solution is

Consistency and Certain Answers in Relational to RDF Data Exchange 103

J = J ′ ∪ {Triple(f(x), p, y),Triple(f(x′), p, y′), Literal(y),Literal(y′)} and it
contains a violation of sort (T, p, f) whenever y �= y′.

Thus, I is an instance over the source signature that is value inconsistent.
This does not imply yet that E is inconsistent, as I might not be consistent
w.r.t the source functional dependencies. If the first attribute of S is a primary
key, then y = y′, I is not value inconsistent and we can actually show that the
example data exchange setting E is consistent. Otherwise, I is value inconsistent,
and so is E .

Here is a NP procedure that checks value inconsistency by guessing an incon-
sistent source instance:
– guess a violation sort (T, p, f) of E ,
– guess an elementary sequence of st-tgds σ1, . . . , σn that allows to generate a

fact T (f(_)),
– guess two st-tgds σ, σ′ contentious for f and p,
– construct in PTIME a source instance I as the union of the bodies of

σ1, . . . , σn, σ, σ′ (after appropriate renaming of variables),
– show in PTIME that I satisfies the source functional dependencies.

Theorem 1. Value consistency of a data exchange setting is in coNP.

Node Kind Consistency. Node kind inconsistency is specific to relational to
RDF data exchange due to the presence of two types of values, namely IRIs
and literals. It corresponds to situations in which two values are equated by
a predicate functionality rule while one of them is a literal (that is, has type
Literal) but the other is not (that is, has a type T ∈ T). Therefore we identify
node kind inconsistency with the fact that a node has both types Literal and
T �= Literal .

For a typed graph J and a node n ∈ nodes(J), let typesJ(n) = {T ∈ T ∪
{Literal} | T (n) ∈ J}. For a source instance I, define its sets of co-occurring types
as CoTypes(I) = {typesJ(n) | J ∈ solE (I), n ∈ nodes(J)}. Let CoTypes(E) =⋃

I instance of R CoTypes(I).
A source instance I is called node kind inconsistent if CoTypes(I) contains

a set X s.t. {Literal , T} ⊆ X for some T in T . The data exchange setting E is
called node kind inconsistent if there is a node kind inconsistent instance I of
R.

We show that E is node kind inconsistent iff CoTypes(E) contains a set X
such that {Literal , T} ⊆ X for some T in T . Furthermore, for any X ⊆ T ∪
{Literal}, we can test in PTIME whether X belongs to CoTypes(E). Therefore,

Proposition 1. Checking node kind inconsistency of E is in NP.
The central claim of this section is Theorems 2 below. The lower bound is

shown using a reduction to the complement of SAT.

Theorem 2. A constructive relational to RDF data exchange setting E is con-
sistent iff it is value consistent and node kind consistent. Checking consistency
of a constructive relational to data exchange setting is decidable and coNP-
complete.

104 I. Boneva et al.

5 Certain Query Answering

In this section we investigate computing certain answers to Boolean queries
focusing on a subclass of nested regular expressions (NREs). In [14] we show
that our results extend to non-Boolean queries but also that handling the full
class of NREs leads to an increase in computational complexity.

Throughout this section we fix a constructive data exchange setting E =
(R,S, Σst,F) and assume E is consistent. We recall that for a Boolean graph
query Q, true is the certain answer to Q in I w.r.t. E iff true is the answer to
Q in every solution to E for I.

The standard approach to computing certain answers is to construct a uni-
versal solution with the chase and evaluate the query against it (and to drop any
answers with null values) [19]. However, in our case a finite universal solution
may not exist because the chase may enter an infinite loop due to PE rules when
the shape schema is strongly-recursive i.e., it has a cycle with multiplicities of 1
and +. Infinite chase corresponds to an attempt to unravel such cycles by invent-
ing new nodes ad infinitum. Instead, we construct a solution where a new node
is invented only if one satisfying precisely the same types has not been invented
before. Such a solution is not universal, but interestingly, it has a different fla-
vor of universality, one that can be captured with the standard notion of graph
simulation: any solution can be simulated in it. We also show that this notion
of universality is good enough for classes of queries that are robust under sim-
ulation, and we identify a practical class of forward nested regular expressions
with this property. This yields a practical class of queries with tractable certain
answers.

Nested Regular Expressions. In this paper we work with the class of nested
regular expressions (NREs) that have been proposed as the navigational core of
SPARQL [26]. In essence, NREs are regular expressions that use concatenation ·,
union +, Kleene’s closure ∗, inverse −, and permit nesting and testing node and
edge labels. We refer the reader to [14] for detailed definition.

We point out that NREs are incompatible with conjunctive queries but even
forward NREs capture the subclass of acyclic conjunctive queries. Also, forward
NREs properly capture regular path queries.

Graph Simulation and Robust Query Classes. We adapt the classic notion of
graph simulation to account for null values. Formally, a simulation of a graph
G by a graph H is a relation R ⊆ nodes(G) × nodes(H) such that for any
(n,m) ∈ R, we have 1) n is a literal node if and only if m is a literal node, 2) if
n is not null, then m is not null and n = m, and 3) for any outgoing edge from
n with label p that leads to n′ there is a corresponding outgoing edge from m
with label p that leads to m′ such that (n′,m′) ∈ R. The set of simulations is
closed under union, and consequently, there is always one maximal simulation,
and if (n,m) is contained in it, we say that n is simulated by m.

Also, we say that G is simulated by H if every node of G is simulated by a
node of H. We are interested in simulations because they capture the essence of
exploring a graph by means of following outgoing edges only.

Consistency and Certain Answers in Relational to RDF Data Exchange 105

Definition 2. A class Q of Boolean queries on graphs is robust under simulation
iff for any query Q ∈ Q and any two graph G and H such that G is simulated
by H, if Q is true in G, then Q is true in H. �	
Naturally, the class of forward NREs has this very property.

Lemma 1. The class of forward nested regular expressions is robust under sim-
ulation.

Universal Simulation Solution. When dealing with classes of queries that are
robust under simulation we employ simulation instead of homomorphism to
define a solution that allows to find all certain answers.

Definition 3. A typed graph U is a universal simulation solution to E for I
iff U is simulated by every solution J to E for I. �	
And indeed, a universal simulation solution does allow us to capture certain
answers for queries from classes robust under simulation.

Theorem 3. Let Q be a class of Boolean graph queries robust under simulation.
For any query Q ∈ Q and any consistent instance I of R, true is the certain
answer to Q in I w.r.t. E if and only if true is the answer to Q in a universal
simulation solution to E for I.

The main challenge is in constructing a universal simulation solution. The
precise construction is presented in [14] and we outline it roughly. First we begin
with the core pre-solution that is obtained from the source instance I with the
the st-tgds Σst and the TP rules for S that propagate the types according to
the shape schema. Then, we add fresh null values that ensure satisfaction of the
schema, as required by the PE rules for S. We point out that each null node
corresponds to a subset of types of S that it needs to satisfy, which bounds
their number by 2|S|, and furthermore, using the Chinese reminder theorem we
show that this bound is tight. To ensure that the produced universal simulation
solution has the smallest size, we employ the standard technique of quotient by
bisimulation of the obtained graph [30].

Theorem 4. For an instance I of R, we can construct a size-minimal universal
simulation solution U0 in time polynomial in the size of I and exponential in
the size of S. The size of U is bounded by a polynomial in the size of I and an
exponential function in the size of S.

Complexity. We can now characterize the data complexity of certain query
answering. Recall that data complexity assumes the query and the data exchange
setting to be fixed, and thus of fixed size, and only the source instance is
given on the input. Consequently, the size of universal simulation solution U0 is
polynomially-bounded by the size of I. Since the data complexity of evaluating
NREs is know to be PTIME [26], we get the following result.

Theorem 5. The data complexity of computing certain answers to forward
nested regular expressions w.r.t. constructive relational to RDF data exchange
setting is in PTIME.

106 I. Boneva et al.

6 Related Work and Conclusions

R2RML is a W3C standard language for defining custom relational to RDF
mappings [18], other languages such as YARRRML [20] are compiled to R2RML
but they do not consider target constraints. Data exchange has been considered
for graph databases with varying expressive power of mapping formalisms such as
NREs [7,10], which is however incomparable with shape schemas. In [12] we have
considered consistency for fully-typed constructive data exchange settings. In
[13] we have demonstrated a graphical tool for defining constructive relational to
RDF mappings. Our results do not follow from the exists results on the standard
relational data exchange [19], which are either too limited in their expressive
power [15,19] or come with a significant complexity penalty [2,3,5,8,9,16].

We have presented a data exchange framework for modeling R2RML scripts,
we have studied the problems of consistency and certain query answering, and
characterized their complexity. In [14] we also show that extending the framework
in a number of natural directions generally leads to an increase of complexity.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Amano, S., David, C., Libkin, L., Murlak, F.: XML schema mappings: data
exchange and metadata management. J. ACM 61(2), 12:1–12:48 (2014)

3. Arenas, M., Barceló, P., Reutter, J.L.: Query languages for data exchange: beyond
unions of conjunctive queries. Theory Comput. Syst. 49(2), 489–564 (2011)

4. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of
relational data to RDF. W3C Recomm. 27, 1–11 (2012)

5. Arenas, M., Libkin, L.: XML data exchange: consistency and query answering. J.
ACM 55(2), 7:1–7:72 (2008)

6. Auer, S., Feigenbaum, L., Miranker, D., Fogarolli, A., Sequeda, J.: Use cases and
requirements for mapping relational databases to RDF, W3C (2010)

7. Barceló, P., Pérez, J., Reutter, J.L.: Schema mappings and data exchange for graph
databases. In: International Conference on Database Theory (ICDT), pp. 189–200
(2013)

8. Bienvenu, M., Ortiz, M., Simkus, M.: Regular path queries in lightweight descrip-
tion logics: complexity and algorithms. J. Artif. Intell. Res. 53, 315–374 (2015)

9. Bojańczyk, M., Kołodziejczyk, L.A., Murlak, F.: Solutions in XML data exchange.
J. Comput. Syst. Sci. 79(6), 785–815 (2013)

10. Boneva, I., Bonifati, A., Ciucanu, R.: Graph data exchange with target constraints.
In: EDBT/ICDT Workshops (GraphQ), pp. 171–176 (2015)

11. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of
shapes schemas for RDF. In: International Semantic Web Conference (ISWC), pp.
104–120 (2017)

12. Boneva, I., Lozano, J., Staworko, S.: Relational to RDF data exchange in pres-
ence of a shape expression schema. In: Alberto Mendelzon International Workshop
(AMW) (2018)

13. Boneva, I., Lozano, J., Staworko, S.: ShERML: mapping relational data to RDF.
In: ISWC Satellite Tracks, pp. 213–216 (2019)

Consistency and Certain Answers in Relational to RDF Data Exchange 107

14. Boneva, I., Staworko, S., Lozano, J.: Consistency and certain answers in relational
to RDF data exchange with shape constraints. Technical report. arXiv:2003.13831,
April 2020

15. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

16. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237, 12–55 (2014)

17. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive
SHACL. In: International Semantic Web Conference, pp. 318–336 (2018)

18. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C Recomm. (2011). https://www.w3.org/TR/r2rml/

19. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoret. Comput. Sci. 336, 89–124 (2005)

20. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for Linked
Data generation at your fingertips! In: The Semantic Web: ESWC Satellite Events,
pp. 213–217, June 2018

21. Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

22. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C
Recomm. (2017). https://www.w3.org/TR/shacl/

23. Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validating
RDF Data. Synthesis Lectures on the Semantic Web: Theory and Technology
(2017)

24. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

25. Michel, F., Montagnat, J., Faron Zucker, C.: A survey of RDB to RDF translation
approaches and tools. Technical report, University Sophia Antipolis (2013)

26. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: a navigational language for RDF.
J. Web Semant. 8(4), 255–270 (2010)

27. Prud’hommeaux, E., Boneva, I., Emilio, J.L.G., Kellogg, G.: Shape expressions
language 2.1. W3C Draft (2018)

28. Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Sol-
brig, H.R.: Complexity and expressiveness of ShEx for RDF. In: International
Conference on Database Theory (ICDT), pp. 195–211 (2015)

29. Staworko, S., Wieczorek, P.: Containment of shape expression schemas for RDF.
In: ACM Symposium on Principles of Database Systems (PODS), pp. 303–319
(2019)

30. Tzitzikas, Y., Lantzaki, C., Zeginis, D.: Blank node matching and RDF/S compar-
ison functions. In: International Semantic Web Conference (ISWC), pp. 591–607
(2012)

31. Villazón, B., Hausenblas, M.: R2RML and direct mapping test cases. W3C (2012)
32. W3C: RDF validation workshop report: practical assurances for quality RDF data

(2013)

http://arxiv.org/abs/2003.13831
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

OWL-T for a Semantic Description of IoT

Zakaria Maamar1(B), Noura Faci2, Ejub Kajan3, Muhammad Asim4,
and Ayesha Qamar4

1 Zayed University, Dubai, UAE
zakaria.maamar@zu.ac.ae

2 Université Claude Bernard, Lyon, France
3 State University of Novi Pazar, Novi Pazar, Serbia

4 National University of Computer and Emerging Sciences, Islamabad, Pakistan

Abstract. This paper discusses the steps for developing a semantic
description of things in the context of Internet-of-Things (IoT). This
description is deemed necessary to discover things prior to confirming
their participation in complex business scenarios. Existing approaches
provide a restrictive view of how things should be semantically described
overlooking the fact that things operate in a complex IoT ecosystem
in which they have capabilities to offer and need resources to consume
and peers to interact with. To address this restrictive view, Ontology
Web Language for Things (OWL-T) is put forward in this paper. OWL-T
revolves around 3 dimensions known as interaction, operation, and con-
sumption. Each dimension encompasses abstract conceptual areas that
are instantiated using concrete areas, which allows to produce a dedi-
cated IoT ontology.

Keywords: Internet of Things · Semantics · Ontology · OWL

1 Introduction

Internet-of-Things (IoT), the branch of ubiquitous computing that helps peo-
ple identify and locate things in real-time, real-world environments, has rapidly
become the backbone of many smart initiatives that promote better govern-
ments, industries, cities, to cite just a few. Gartner mentions that 6.4 billion
connected things were in use in 2016, up 3% from 2015, and will reach 20.8 billion
by 2020 (www.gartner.com/newsroom/id/3165317). This ever-growing number
of things that will, for sure, surpass the number of people on earth, are unfortu-
nately running into the same concerns that other technologies like Web services,
had to deal with in the past. Concerns include description, discovery, composi-
tion, cognition, vetting, and many others. In this work we examine the semantic
description of things in preparation for their discovery and then, composition
into complex business scenarios. We resort to the well-defined standard Ontol-
ogy Web Language for Services (OWL-S) to develop our Ontology Web Language
for Things (OWL-T).

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 108–117, 2020.
https://doi.org/10.1007/978-3-030-54623-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_10&domain=pdf
www.gartner.com/newsroom/id/3165317
https://doi.org/10.1007/978-3-030-54623-6_10

OWL-T for a Semantic Description of IoT 109

Contrarily to OWL-S that semantically describes a service from 3 conceptual
areas known as profile, process model, and grounding, OWL-T adopts a semantic
description of a thing from 3 dimensions that we refer to as interaction, con-
sumption, and operation. Then, OWL-T refines each dimension into conceptual
areas allowing to answer 5 questions related to thing discovery: with whom does
a thing interact, what resources does a thing consume, what does a thing do, how
does a thing work, and how is a thing invoked? This way of categorizing OWL-T
into dimensions and then, areas allows to capture IoT’s intrinsic features such
as reduced size, restricted connectivity, continuous mobility, limited energy, and
constrained storage. Akshay Uttama Nambi et al. talk about similar features
that characterize resource-constrained devices that may be unreachable due to
intermittent connectivity, mobility, and/or energy constraints [2]. The rest of
this paper is organized as follows. Section 2 is an overview of OWL-S and some
existing works on semantic IoT. Section 3 defines OWL-T foundations. Finally,
Sect. 4 concludes the paper.

2 Background

This section provides an overview of OWL-S basics and then, presents some
works on semantic IoT along with highlighting some pending concerns.

2.1 OWL-S in Brief

Martin et al. discuss how OWL-S that aims at injecting semantics into service
computing and thus, allowing for instance to address the limitations of Web
services syntax discovery [8]. Thanks to OWL-S, a Web service description is
unambiguous making it machine understandable in many contexts like enterprise
application integration. On top of Web services discovery, OWL-S supports other
tasks like invocation, composition, and execution monitoring.

OWL-S’s building blocks are 3 capturing what a service does, how a service
works, and how to access a service. Service profile describes a service in terms
of provider, functional properties (i.e., inputs/outputs and pre/post conditions),
and non-functional properties (e.g., provided QoS and location). Service model
describes what happens when the service is carried out. Finally, Service ground-
ing provides details about how to interact with the service, via messages, like
communication protocol, message formats, and port numbers for binding.

2.2 Related Work on Semantic IoT

In [1], Agarwal et al. propose an ontology to address the lack of semantic interop-
erability among IoT heterogeneous testbeds. The ontology leverages a number of
core concepts from some existing ontologies and taxonomies like Semantic Sen-
sor Network (SSN), M3-lite, and IoT-lite. The core concepts of Agarwal et al.’s
ontology are: physical entity, resource, virtual entity, and IoT service. While we

110 Z. Maamar et al.

agree on the role of some of these concepts like resource in defining an IoT ontol-
ogy, we are more concerned with describing things semantically than achieving
the interoperability of IoT testbeds for joint operations.

In [9], Seydoux et al. consider semantic interoperability as another challenge
for IoT that we add to our own list of challenges in [6] like diversity and mul-
tiplicity of things’ development and communication technologies and limited
IoT-platform interoperability. The authors propose IoT-O (O for ontology) to
describe devices and their relations and how these devices are strongly bound
to the cyber-physical surroundings. Key concepts in IoT-O are, but not limited
to, device, software agent, sensor, actuator, service, energy, and lifecycle. While
we agree with some IoT-O concepts, we treat sensor and actuator as duties and
hence, properties of things and not as things. Moreover, reasoning over thing
description for semantic interoperability requires different details than for ser-
vice discovery and composition.

In [4], Li and Jiang consider that IoT services are different from traditional
services because IoT services are directly related to the cyber-physical world.
The authors present a context-based approach for IoT service composition and
use OWL to develop an IoT context ontology. Context refers to end-user-end
QoS properties, computational environment including devices, networks, operat-
ing systems, and physical environment (location, time). By satisfying particular
contextual constraints, composition meets users’ needs expressed as predefined
services to run. Particularly, Li and Jiang’s work divides service selection into
computational context to select the appropriate services and QoS to select the
best services according to users’ needs. Compared to our work, the authors
assume that services are already predefined and, thus, narrow down the service
composition problem to selecting services under some contextual constraints.

In [11], Wang et al. develop an ontology to represent knowledge in IoT. They
argue that semantic modeling is critical due to the distributed and heterogeneous
nature of things exposed as a set of services in compliance with service-oriented
computing principles. Their ontology contains 7 building blocks, namely, IoT ser-
vices, service test, Quality-of-Service (QoS) and Quality of Information (QoI),
deployment, system and platform, observation and measurement, IoT resources,
and entity of interest and physical locations. Compared to Wang et al.’s work,
we do not expose things as services nor adopt QoS. We associate things with
duties having each a set of non-functional properties that constitute the Quality-
of-Thing (QoT) model of a thing [10]. However, we agree with Wang et al. on
the importance of considering resources during IoT semantic modeling.

In [3], Cassar et al. use service-oriented architecture to enable access to IoT-
compliant smart devices. The authors note that existing techniques for service
discovery are not appropriate for IoT resources due to their limited computation
capabilities and operation in dynamic and constrained physical environments.
Thus a semantic IoT service representation model needs to be lightweight. Cas-
sar et al. consider sensor, actuator, and other mobile devices as resources that
they wrap into Web services referred to as IoT services. We proceed differently

OWL-T for a Semantic Description of IoT 111

by first, separating devices from resources and second, considering sensing and
actuating as duties and not things.

3 OWL-T’s Three Dimensions

This section provides an overview of OWL-T language and then, details the
3 dimensions that OWL-T encompasses.

3.1 Overview

In Fig. 1, we suggest a high-level representation of OWL-T that revolves around
3 dimensions that are interaction, consumption, and operation. Each dimension
includes one to many conceptual areas depending on the expected use of this
dimension in the context of semantic description of things. Finally, each con-
ceptual area is instantiated using concrete areas that become effective during
the completion of specific thing-related operations like discovery and composi-
tion. In the subsequent sections, we detail each dimension in terms of rationale,
specification, conceptual areas, properties, etc.

Fig. 1. OWL-T high-level representation

112 Z. Maamar et al.

3.2 Interaction Dimension

The rationale of the interaction dimension is to shed light on the stakehold-
ers that form a thing’s ecosystem and hence, will engage in interactions with
the thing. To establish these stakeholders, the interaction dimension includes
one conceptual area referred to as thingNode. It is refined into 3 concrete areas
that are cloud, fog, and peer meaning that a thing could interact with cloud
platforms (c), fog platforms (f), and other things (t, i.e., peers).

Figure 2 is the OWL-T representation of the interaction dimension featur-
ing one superclass, node, that would encompass any “element” (or stakeholder)
residing in a thing’s ecosystem. In this figure, the sub-class thingNode to super-
class node captures the different types of nodes that a thing could interact with.
These nodes are represented with 3 sub-classes referred to as peer, fog, and
cloud. Each thingNode has 3 data type properties that are nodeName, textDe-
scription, and nodeCloseness. The last property permits to differentiate if the
interaction with a thing is either direct (nodeCloseness is equal to 1) or indirect
(nodeCloseness is greater to 1).

Fig. 2. OWL-T interaction representation

3.3 Operation Dimension

The rationale of the operation dimension is to shed light on the capabilities
of things in terms of what they do, how they do what they do, and how they
are deployed. To capture these capabilities, the operation dimension includes
3 conceptual areas referred to as thingProfile, thingModel, and thingGrounding.
thingProfile is associated with 2 concrete areas that are public and private mean-
ing that a thing controls its level of exposure to the ecosystem’s stakeholders.
thingModel is associated with 2 concrete areas that are atomic and composite
meaning that a thing executes operations that are captured as either atomic
duties or composite duties to offer to these stakeholders. Finally, thingGrounding
is associated with 1 concrete area that is technology meaning that a thing runs
according to a specific technical specification (hardware and software).

OWL-T for a Semantic Description of IoT 113

thingModel. In a previous work [5], we captured things’ operations with 3 atomic
duties that are sensing (s), actuating (a), and communicating (c). These
duties are either enabled or disabled depending on IoT applications’ require-
ments ((0,1) in Fig. 3). Simply put, a thing senses the cyber-physical sur-
rounding so that it generates data; a thing actuates data including those that
are sensed; and a thing communicates with the cyber-physical surrounding
the data that are sensed and/or actuated.

Fig. 3. Representation of a thing’s atomic duties

A thing’s atomic duties can be put together allowing to form composite duties
as per these illustrative cases: sac (sensed data are passed on to actuating;
and the data that result from actuating are passed on to communicating for
sharing); sa (sensed data are passed on to actuating; and the data that result
from actuating are finals); sc (sensed data are passed on to communicating
for sharing); and, ac (data that result from actuating are passed on to com-
municating for sharing).

Fig. 4 is the OWL-T representation of the operation dimension with focus
on thingModel conceptual area. This representation refers to one super-class,
model, that would encompass any “lement” supporting the definition of a
thing’s model. In this representation as well, the sub-class thingModel to
super-class model captures all operations that a thing is expected to perform.
These operations correspond to duty class that is specialized into 2 sub-classes
referred to as atomic and composite. Both are also specialized into other sub-
classes along an object property, chronology, that is associated with the sub-
class composite.

thingProfile. In a previous work [10], we developed a Quality-of-Things (QoT
(by analogy to Quality-of-Service (QoS)) model to capture a thing’s non-
functional properties. QoT parameters for sensing include, but not limited to:

– Frequency of sensing (e.g., continuous versus intermittent).
– Quality of sensed outcome that determines for instance, the accuracy and

validity of the outcome (e.g., high versus low accuracy; high-accuracy
outcome would not require any further verification).

QoT properties for actuating include, but not limited to:
– Quality of actuated outcome that determines for instance, the accuracy

and validity of the outcome.

114 Z. Maamar et al.

– Resource (e.g., energy, CPU, and storage) consumption during actuating
(e.g., high versus low energy).

Finally, QoT properties for communicating include, but not limited to:
– Reception rate of sensed and/or actuated outcome (incoming flow) that

determines for instance, data loss, data volume with respect to a band-
width, etc.

– Delivery rate of sensed and/or actuated outcome (outgoing flow) that
determines data loss, data volume with respect to a bandwidth, etc.

– Resource (e.g., energy and bandwidth) consumption during communicat-
ing (e.g., high versus low bandwidth).

Fig. 4. OWL-T model representation

Fig. 5 is the OWL-T representation of the operation dimension with focus on
thingProfile conceptual area. This representation refers to one super-class, pro-
file, that would encompass any “element” supporting the definition of a thing’s

Fig. 5. OWL-T profile representation

OWL-T for a Semantic Description of IoT 115

profile. In this representation as well, the sub-class thingProfile to super-class
profile is specialized into 2 sub-classes, private and public, and has an object
property, duty, that exposes a thing’s profile through a set of QoT properties.
These latter are represented as an object property, qualityOfThing, that has
2 data type properties, textDescription and QoTCategory.

thingGrounding. It refers to the technical specification of a thing in terms of
hardware and software. Wireless sensor networks and RFID could be examples
of technologies for implementing things.

Fig. 6 is the OWL-T representation of the operation dimension with focus on
thingGrounding conceptual area. This representation refers to one super-class,
grounding, that would encompass any “element” supporting the deployment
of a thing. In this representation as well, the sub-class thingGrounding to
super-class grounding has an object property, iotTechnology that captures the
different deployment technologies for actuating, sensing, and communicating.
These technologies are respectively with 3 sub-classes, actuator, sensor, and
communicator, to iotTechnology.

Fig. 6. OWL-T grounding representation

3.4 Consumption Dimension

The rationale of the consumption dimension is to shed light on the resources
that a thing requires so that the thing functions with respect to the respective
needs of the interaction and operation dimensions. To capture these resources,
the consumption dimension includes one conceptual area referred to as thin-
gResource. This latter is associated with 2 concrete areas that are logical and
physical meaning that a thing could consume logical resources (rl, e.g., solar
energy) and/or physical resources (rp, e.g., electric battery).

Building upon our previous work on resource management in business envi-
ronments [7], the consumption of logical resources does not impact their levels
of use (remain the same). The opposite happens to physical resources that see

116 Z. Maamar et al.

their levels of use decrease until they become sometimes unusable. We bind the
availability of a resource to potential (sometimes concurrent) consumers to one
of the below 3 cases that are limited (availability means that the consumption
of a resource is restricted to a particular quantity and/or time period), renew-
able (availability means that the consumption of a resource continues to happen
because the time period has been extended and/or an additional quantity has
been provided), and non-shareable (availability means that the concurrent con-
sumption of a resource must be coordinated (e.g., one at a time)).

To ensure a complete semantic description of things in the context of resource
consumption, we also consider price of a resource whose values would fall into
3 categories referred to as saver, flex, and flex+. Each category promotes a
different refund and change policy prior to initiating the resource consumption.
It is worth noting that a price category (e.g., saver) for a resource might not be
available or sold-out at the discretion of this resource’s provider. Briefly, saver
is the lowest price due to no refund and no change, flex+ is the highest price
due to refund and change with no fee, and flex is between saver and flex+ prices
due to refund and change with a fee.

Figure 7 is the OWL-T representation of the consumption dimension fea-
turing one superclass, resource, that would encompass any “element” associated
with consuming resources in a thing’s ecosystem. In this figure, the sub-class
thingResource to super-class resource captures the different types of resources
that a thing could consume. These resources are represented with 2 sub-classes
referred to as logical and physical. Each thingResource has 2 data type properties,
textDescription and resourceName, and 3 object properties, currentState, price,
and consumptionProperty. The rest of details like types of prices and types of
consumption properties are all represented as sub-classes and either as data type
properties or as object properties in Fig. 7.

Fig. 7. OWL-T consumption representation

OWL-T for a Semantic Description of IoT 117

4 Conclusion

This paper presented a novel way for injecting semantics into things. Confined
into silos, things cannot participate in complex business scenarios due to differ-
ent restrictions such as lack of semantic description that would support their
discovery. To address this restriction, we resorted to the well-defined standard
OWL-S (Ontology Web Language for Services) to develop our OWL-T (Ontology
Web Language for Things). OWL-T describes a thing from interaction, con-
sumption, and operation dimensions. They provide a comprehensive description
of things in terms of with whom they interact, what resources they consume,
what they do, and how they are invoked. As future work, we would like to tech-
nically demonstrate OWL-T through a case study and examine OWL-T-based
thing composition in compliance with the interaction dimension.

References

1. Agarwal, R., et al.: Unified IoT ontology to enable interoperability and federation
of testbeds. In: Proceedings of WF-IoT 2016, Reston, VA, USA (2016)

2. Akshay Uttama Nambi, S.N., Sarkar, C., Venkatesha Prasad, R., Abdur Rahim
Biswas, A.R.: A unified semantic knowledge base for IoT. In: Proceedings of IEEE
WF-IoT 2014, Seoul, South Korea (2014)

3. Cassar, G., Barnaghi, P.M., Wang, W., Moessner, K.: A hybrid semantic match-
maker for IoT services. In: Proceedings of GreenCom 2012, Besancon, France
(2012)

4. Li, K., Jiang, L.: The research of web services composition based on context in
Internet of Things. In: Proceedings of CSAE 2012, Shanghai, China (2012)

5. Maamar, Z., Baker, T., Sellami, M., Asim, M., Ugljanin, E., Faci, N.: Cloud versus
edge: who serves the Internet-of-Things better? Internet Technol. Lett. 1(5) (2018)

6. Maamar, Z., Faci, N., Boukadi, K., Ugljanin, E., Sellami, M., Baker, T., Angarita,
R.: How to agentify the Internet-of-Things? In: Proceedings of RCIS 2018, Rennes,
France (2018)

7. Maamar, Z., Faci, N., Sakr, S., Boukhebouze, M., Barnawi, A.: Network-based
social coordination of business processes. Inf. Syst. 58, 56–74 (2016)

8. Martin, D.L., et al.: Bringing semantics to web services with OWL-S. World Wide
Web 10(3), 243–277 (2007)

9. Nicolas Seydoux, N., Khalil Drira, K., Nathalie Hernandez, N., Thierry Monteil,
T.: IoT-O, a core-domain IoT ontology to represent connected devices networks.
In: Proceedings of EKA 2016, Bologna, Italy (2016)

10. Qamar, A., Muhammad, A., Maamar, Z., Baker, T., Saeed, S.: A quality-of-
things model for assessing the Internet-of-Thing’s non-functional properties. Trans.
Emerg. Telecommun. Technol. (2019, forthcoming)

11. Wang, W., De, S., Tönjes, R., Reetz, E.S., Moessner, K.: A comprehensive ontol-
ogy for knowledge representation in the Internet of Things. In: Proceedings of
TrustCom 2012, Liverpool, United Kingdom (2012)

OffStreamNG: Partial Stream Hybrid
Graph Edge Partitioning Based on

Neighborhood Expansion and Greedy
Heuristic

Tewodros Ayall1, Hancong Duan1(B), Changhong Liu1, Fantahun Gereme2,
and Mesay Deleli3

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China
meettedy2123@gmail.com, duanhancong@uestc.edu.cn, 314979677@qq.com

2 Institute of Fundamental and Frontier Sciences,
University of Electronic Science and Technology of China, Chengdu, China

fantishb@gmail.com
3 School of Information Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, China
mesay adinew@yahoo.com

Abstract. Recently, graph edge partitioning has shown better parti-
tioning quality than the vertex graph partitioning for the skewed degree
distribution of real-world graph data. Graph edge partitioning can be
classified as stream and offline. The stream edge partitioning approach
supports a big graph partitioning; however, it has lower partitioning
quality, is affected by stream order, and it has taken much time to make
partitioning compared with the offline edge partitioning. Conversely, the
offline edge partitioning approach has better partitioning quality than
stream edge partitioning; however, it does not support big graph par-
titioning. In this study, we propose partial stream hybrid graph edge
partitioning OffStreamNG, which leverages the advantage of both offline
and stream edge partitioning approaches by interconnecting via saved
partition state layer. The OffStreamNG holds vertex and load states as
partition state, while the offline component is partitioning using neigh-
borhood expansion heuristic. And it is transferring this partition state
to the online component of Greedy heuristic with minor modification of
both algorithms. Experimental results show that OffStreamNG achieves
attractive results in terms of replication factor, load balance, and total
partitioning time.

Keywords: Edge partitioning · Stream approach · Offline approach ·
Distributed graph computing · Hybrid edge partitioning · Saved
partition state

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 118–128, 2020.
https://doi.org/10.1007/978-3-030-54623-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_11

OffStreamNG 119

1 Introduction

Computing big graph data is nontrivial on a single machine, because of the
memory constraint and requires much time to compute the whole input graph.
Hence, the best way to process big graphs is using distributed graph process-
ing systems such as Powerlyra [4], Powergraph [5] and Pregel [9]. In all cases,
graph partitioning is one of the main component. To computing a big graph in
a distributed environment, a graph should be partitioned and distributed into
different clusters.

Graph partitioning is a technique to divide a big graph into smaller subgraphs
based on different partitioning methods. It is a well-known NP-hard problem [2]
to get an optimal solution because it is nontrivial to achieve a minimum cut ratio
and maximum load balance. In general, graph partitioning is categorized into
two groups, vertex and edge partitioning. Vertex partitioning is also known as
edge cut. It divides a big graph into a smaller subgraph by assigning a vertex into
the different partition set while considering a minimum edge cut and maximum
load balance. These cut edges can act as a bridge to communicate with other
partitions. Metis [6], and LDG [12] are some examples of vertex partitioners.
Edge partitioning is also known as vertex cut. It divides a big graph into smaller
subgraphs by assigning the edge into the different partition set while considering
a minimum vertex cut and maximum load balance. These cut vertices can act as
a bridge communicator between the partitions. Edge partitioners include Greedy
[5], HDRF [11], DBH [13], and NE [15]. The edge partitioners have shown better
partitioning quality than vertex partitioners for power-law graph [5], which very
few vertices have higher degree, and many vertices have lower degree. Both
partitioning methods can further be classified into two as stream and offline
approaches.

Stanton and Kliot [12] proposed a stream-based approach for big graph par-
titioning. The stream-based partitioners ingest vertices or edges as a stream. It
applies partitioning decisions on the fly based on partial knowledge of the input
graph. The graph data may arrives to the partitioners in Random, Depth First
Search (DFS), or Breadth First Search (BFS) order. These arrival orders affect
the performance of the stream partitioners [1,3]. Offline partitioners sequentially
scan the graph data and store to memory before it makes partitioning.

Stream-based edge partitioners assign a single edge at a time to the par-
titions based on different techniques. Hashing randomly allocates edges to the
partitions based on its hash values. DBH [13] assigns the incoming edges based
on the degree information of vertex. It compares the degree of the paired value
of edge vertices and gives a hash value of the vertex with a smaller degree to the
edge. Greedy partitioning algorithm [5] assigns the incoming edges by checking
previously allocated partition state and considering a minimum load balance
among each partition. Higher degree replicated first (HDRF) [11] is an edge
partitioning algorithm that leverages the advantage of Greedy and adds degree
information. It replicates the higher degree first and assigns the incoming edge
based on a maximize HDRF computing value. Among stream edge partition-
ers, Hashing and DBH have a very fast running time; however, they have lower

120 T. Ayall et al.

partitioning quality. On the other hand, Greedy and HDRF have a good par-
tition quality in terms of replication factor and load balance compared with
Hashing and DBH; however, they have more running time and are affected by
stream order. In general, stream edge partitioners support a big graph partition-
ing. However, they have lower partitioning quality; require much time to make
partitioning and are affected by stream orders compared with offline edge parti-
tioning [15]. NE [15] is an offline edge partitioning and stores all input graph data
to memory, then it is iteratively partitioning based on neighborhood relations.
It has the best partitioning quality than the stream edge partitioners in terms
of replication factor and total partitioning time; however, it does not support a
big graph partitioning [15]. In this study, we propose a hybrid graph edge par-
titioning to improve partitioning quality and reduce the effect of stream order
by taking benefits of both stream and offline partitioning approaches via stored
partition state. The contributions of this work are as follows:

– We propose partial stream graph edge partitioning OffStreamNG, which uses
neighborhood expansion (NE) and Greedy heuristic algorithms for the offline
and stream approaches, respectively.

– We introduce the concept of holding and transferring partition state from the
offline to stream partitioner with a minor modification of both algorithms.

– We experimentally check the proposed method replication factor, load balance
and total partitioning time on real-world graph datasets.

This paper is organized as follows: Section 2 defines graph edge partitioning (ver-
tex cut) problem and Sect. 3 presents the proposed method. Section 4 describes
the experimental analysis and results. The conclusion is presented in Sect. 5.

2 The Graph Edge Partitioning (Vertex Cut) Problem

A given undirected graph G defined as G = (V,E), where V is the set of vertices
and E is the set of edges, and the size of V and E denoted as |V | = nv and |E| =
ne, respectively. Balanced p−way edge graph partitioning problem is defined as,
graph G is partitioned into p partitions. Each partition has an edge set Ek(k ∈
{1, 2, ...p}). The edge set of each partition is not duplicated, i.e, Ei ∩ Ej = ∅,
where (i, j ∈ {1, 2, ...p}, i �= j).

The graph edge partitioning problem considers two factors: (i) The number
of replicas (copy) vertex across partitions are minimized. (ii) The number of
edges across the partitions are balanced. Let P (v) be the set of partitions that
each vertex v ∈ V is replicated. Therefore, |P (v)| is size of partitions that stores
v. The optimization problem of p−way edge partition is defined by Eq. 1.

min
P

1
nv

∑

v∈V

|P (v)| . s.t. max
k∈p

|Ek| < ε
ne

|p| . (1)

where |Ek| and |p| are the size of the edge set of the partition and the number
of partitions, respectively. And ε ≥ 1 is imbalance factor. The performance of

OffStreamNG 121

graph edge partitioning can be measured in terms of replication factor (RF), load
balance and total partitioning time. Replication factor is an average of vertex
replicated in each partition, as given by Eq. 2a. Load balance indicates how fairly
edges are distributed in each partition and can be measured by Load relative
standard deviation (LRSD), as given by Eq. 2b. Total Partitioning Time (TPT)
is the summation of the ingress time (loading time of the input graph) and the
running time (the time required for partitioning) of the algorithm.

(a) RF =
1
nv

∑

i ∈ p

|Pi(v)|. (b) LRSD =

√
(
∑p

k=1
|Ek|
ne
|p|

− 1)2 1
|p|

ne

|p|
. (2)

3 The Proposed Method

We propose partial stream graph edge partitioning based on neighborhood
expansion (NE) and Greedy heuristic with minor modification of both algo-
rithms, and it is called OffStreamNG. The OffStreamNG is the hybrid of NE
and Greedy algorithms via stored partition state. Figure 1 shows the architecture
of the model. The OffStreamNG model has four sub-components, Modified-NE
for offline component, Modified-Greedy for online component, partition state
which contains vertex and load states, and input graph splitter. Initially, the
input graph is randomly split into two equal parts and is fed into the individual
components. While the Modified-NE component is partitioning its input graph
data, it is holding the partition state as vertex and load states. On the other
hand, the Modified-Greedy component is accepting the other half of the graph
data and the partition state as an input to start partitioning. The partition
state is continuously accessed and updated by Modified-Greedy to allocate the
incoming edges. This partition state is meant to help improve the partitioning
quality of the OffStreamNG partitioner.

Fig. 1. Architecture of the OffStreamNG model.

122 T. Ayall et al.

3.1 Partition State

A proposed partition state is an intermediate layer of the OffStreamNG parti-
tioner. It is recorded, while the offline component is partitioned its input graph.
This partition state is stored in the main memory and accessed by the online
partitioner. The partition state gives additional information to the online par-
titioner to identify appropriate partitions to allocate the incoming edges. The
partition state has two states, vertex state, and load state, as depicted in Fig. 2.
Figure 2a depicts the vertex state, which holds vertex-ids and partition set (con-
tains all partitions in which a vertex is replicated). Figure 2b shows Load-state,
which contains partition-ids and its load balance.

(a) Vertex state. (b) Load state.

Fig. 2. Data structure of partition state: (a) vertex state holds vertex-ids and partition-
sets. (b) load state contains partition-ids and its load balance.

3.2 The Offline Component of OffStreamNG Model

The OffStreamNG model has an offline component. This offline component uses
Modified-NE and accepts half part of the input graph data. This input graph is
partitioned and the partition state is saved by using Modified-NE algorithm. NE
[15] is an offline edge partitioning based on neighborhood expansion heuristic. It
stores all input graph data to memory and is iteratively partitioning it by growing
the core set of vertices via the neighborhood relations. The NE algorithm has got
two-component algorithms, edge generation, and edge allocation. In this work,
we used the edge generation algorithm as described Algorithm1 as it is while
we have modified the edge allocation algorithm as described in Algorithm2. The
primary purpose of the modification is to enable the algorithm to hold vertex
and load states to be used by the online component of our model.

The NE algorithm is iteratively partitioning the graph in p round. In each
round k, edge set Ek is selected from the graph. Initially, it is empty edge set.
Thus, Ek is expanded in steps until |Ek| ≥ εne

p . In each round, one vertex y
is randomly picked based on neighborhood expansion. The adjacent edges of y
is added to Ek and y added to core set Cs. Boundary set Bs = V (Ek), where
V (Ek) is the vertex set covered by Ek.

The main objective is to minimize the number of y added into a boundary
set based on neighborhood expansion. If Bs\Cs = ∅ then y is randomly selected
from V \Cs. Otherwise it is chose based on Eq. 3.

y = argmin
v∈Bs \Cs

| N(v) \Bs | . (3)

OffStreamNG 123

where |N(v)\Bs| is the number of vertices that will be allocated to the partition
k, if y is chose as Cs and its adjacent edges added to Ek.

Algorithm 1. Generate one edge partition Ek.
1: Input: E = E/2, p
2: Output: E is allocated to p
3: procedure Expand(E, η) � η = εne

p

4: Cs, Bs, Ek ← ∅
5: while |Ek| ≤ η do
6: if Bs \ Cs = ∅ then
7: y is randomly selected in V \ Cs

8: else
9: y ← argminv∈Bs \Cs

| N(v) \Bs |
10: end if
11: ASSIGNEDGE(Cs, Bs, Ek, y)
12: end while
13: end procedure

3.3 The Online Component of OffStreamNG

The offline and online components of our model receive their corresponding
graph data portions from the input graph splitter. While the offline component
is partitioning its portion, it also is saving vertex and load states which is fed
to the online component. We use the Greedy algorithm to build up the online
component of our OffStreamNG model with minor modification on it. Greedy [5]
is an online edge partitioning algorithm which improves the randomly allocated
edges partition based on a heuristic. It is a Greedy sequential heuristic that
places the incoming edge to the partitions based on the previously allocated
partition state to minimize the expected replication factor.

Let Pvs and Pls are vertex state and load state of the partitions, respectively.
And minLoad(Pvs(V)) method returns the minimum loaded partition id from
the set of Pvs(V), where e = (u, v)| u, v ∈ V . This algorithm assigns the edge e
based on the following rules:

Rule 1: If Pvs(u) ∩ Pvs(v) �= ∅, then the edge should be allocated to a
partition with a minimum load in Pvs(u) ∩ Pvs(v).

Rule 2: If Pvs(u) ∩ Pvs(v) = ∅ and Pvs(u) ∪ Pvs(v) �= ∅, then the edge
should be allocated to one of the partition with a minimum load in Pvs(u) ∪
Pvs(v).

124 T. Ayall et al.

Algorithm 2. Modified-Edge Allocation
1: Pls, Pvs ← ∅
2: procedure AssignEdge(Cs, Bs, Ek, y)
3: Cs ← Cs ∪ {y}, Bs ← Bs ∪ {y}
4: for a ∈ N(y) \ Bs do
5: Bs ← Bs ∪ {a}
6: for b ∈ N(a) ∩ Bs do
7: Ek = Ek ∪ {eb,a}
8: E ← E \ Ek � Holding partition state
9: u = e.b, v = e.a

10: Pvs.addV ertexState(u, k)
11: Pvs.addV ertexState(v, k)
12: if |Ek| > η then
13: Pls.addLoadState(|Ek|)
14: return
15: end if
16: end for
17: end for
18: end procedure
19: procedure getVertexState()
20: return Pvs

21: end procedure
22: procedure GetLoadState()
23: return Pls

24: end procedure

Rule 3: If only one of the two end edge vertices already has been allocated,
then select a partition from the allocated vertex with minimum Pls.

Rule 4: If neither u nor v have been allocated, then the edge is assigned in
the partition with the least load of Pls.

However, while the partition state information is very important for the
Greedy algorithm to make a decision, it has minimal information at the begin-
ning, which makes the partition quality relatively weak. In this work, we have
made a minor modification on the Greedy algorithm. The Modified-Greedy
describes in Algorithm refalgo:phasetwo, which takes rich partition state informa-
tion from Modified-NE algorithm. By getting more partition state information
from the offline component, the online component gets sharpened in decision
making.

OffStreamNG 125

Algorithm 3. Modified-Greedy
1: Input:E = E/2, p
2: Output: Generate a partition Id where E to be allocated.
3: Pvs ← GETV ERTEXSTATE() � Accessing the partition state
4: Pls ← GETLOADSTATE()
5: procedure getPartitionId(e, p, Pvs, Pls)
6: u = e.u, v = e.v
7: if Pvs(u) ∩ Pvs(v) �= ∅ then
8: partition Id = minLoad(Pvs(u) ∩ Pvs(v))
9: else if Pvs(u) ∩ Pvs(v) = ∅ && Pvs(u) ∪ Pvs(v) �= ∅ then

10: partition Id = minLoad(Pvs(u) ∪ Pvs(v))
11: else if Pvs(u) = ∅ && Pvs(v) �= ∅ then
12: partition Id = minLoad(Pvs(v))
13: else if Pvs(u) �= ∅ && Pvs(v) = ∅ then
14: partition Id = minLoad(Pvs(u))
15: else if Pvs(u) = ∅ && Pvs(v) = ∅ then
16: partition Id = minLoad(Pls)
17: end if
18: return partition Id
19: end procedure

4 Experimental Analysis and Results

We implemented OffStreamNG partitioner in an 8 core CPU Ubuntu machine
with 64 GB memory. For comparison purpose, we used open-source implemen-
tation of edgepart1 and VGP2 for NE and stream(Hashing, DBH, Greedy, and
HDRF), respectively. We used imbalance factor ε = 1.1 and for HDRF λ = 1.1.
We used real-world edge list graph datasets, com-Livejournal from SNAP [8] and
Orkut from KONECT [7]. These datasets are randomly ordered. Table 1 shows
the characteristics of datasets.

Table 1. Real world graph datasets.

Dataset nv ne

Com-Livejournal [14] 5,203,764 48,708,948

Orkut [10] 3,072,441 117,184,899

4.1 Experimental Results

Series of experiments were conducted, and results were carefully recorded. Com-
parative result analysis is made using the evaluation metrics. Figure 3 shows the
replication factor and Fig. 4 shows load balance of com-Livejournal and Orkut
datasets.
1 https://github.com/ansrlab/edgepart.
2 https://github.com/fabiopetroni/VGP.

https://github.com/ansrlab/edgepart
https://github.com/fabiopetroni/VGP

126 T. Ayall et al.

(a) Boundedness of RF value. (b) Com-Livejournal. (c) Orkut.

Fig. 3. Replication factor against the number of target partitions (log-log scale) on
real-world graph datasets. (a) it shows boundedeness of RF value in Com-Livejournal
dataset.

(a) TPT. (b) Com-Livejournal. (c) Orkut.

Fig. 4. Total partitioning time (TPT) and load balance against the number of target
partitions (log-log scale). (a) it shows TPT of com-Livejournal. (b) and (c) show load
balance.

4.2 Discussion

We evaluate the performance of OffStreamNG by measuring the following met-
rics:

Replication Factor (RF): RF value is calculated using Eq. 2a and is
depicted in Fig. 3. We compared the performance of our OffStreamNG in terms
of RF among online edge partitioners such as DBH, Greedy, and HDRF. And
also with offline edge partitioner, NE, on real-world graph datasets with a set
of target partitions [4, 8, 16, 32, 64, 128, 256]. We calculated average RF from
individual RF values on each partition and further averaged these values for all
datasets considered. Comparing the calculated average RF values, OffStreamNG
performed 62% lower than Hashing, 46% lower than DBH, 20% smaller than
Greedy, 18% smaller than HDRF. The RF value showed that OffStreamNG
performed far better than the stream edge partitioner. The RF value of Off-
StreamNG is smaller than other algorithms because it gets more partition state

OffStreamNG 127

from the offline component to make a better decision. Generally, Fig. 3a shows
that the replication factor (RF) of OffStreamNG bounds between the pure offline
and online partitioners.

Load balance: We measured the load balance by LRSD as given by Eq. 2b.
The load balance is illustrated in Fig. 4b and Fig. 4c for Com-Livejournal and
Orkut, respectively. The curves show that HDRF, Greedy, NE and OffStreamNG
performed best as the number of partition grows. Hashing and DBH are the worst
performers as load skew grows as the number of target partitions grows.

Total Partitioning Time: We compared OffStreamNG among the stream
edge partitioners and the offline NE as shown Fig. 4a on Com-LiveJournal
dataset with the number of partitions ranging 4 to 256. The result shows that our
OffStreamNG partitioner scored an average TPT improvement of 20% smaller
than DBH, 23% smaller than Hashing, 38% smaller than Greedy and 43% smaller
than HDRF. Expectedly, NE has smaller TPT than our hybrid partitioners
because OffStreamNG is partial streaming. The overall results showed that Off-
StreamNG scored lower TPT compared with the state of the art stream based
partitioners.

5 Conclusion

Graph edge partitioning has dramatically determined the performance of dis-
tributed graph processing systems in terms of communication and work-
load costs. In this study, we proposed partial stream graph edge partition-
ing OffStreamNG by leveraging both the offline and stream edge partitioning
approaches by introducing the concept of holding partition state from the offline
and transferring this state to the online partitioner. The OffStreamNG uses
neighborhood expansion (NE) and Greedy heuristic for the offline and online
components with minor modification of both algorithms, respectively. We com-
pared OffStreamNG with edge partitioners, which OffStreamNG scores dimin-
ished value of the replication factor, the optimum load balance, and good total
partitioning time.

References

1. Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an
experimental study. Proc. VLDB Endow. 11(11), 1590–1603 (2018)

2. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006). https://doi.org/10.1007/s00224-006-1350-7

3. Ayall, T., Duan, H., Liu, C.: Edge property based stream order reduce the perfor-
mance of stream edge graph partition. J. Phys. Conf. Ser. 1395, 012010 (2019).
IOP Publishing

4. Chen, R., Shi, J., Chen, Y., Zang, B., Guan, H., Chen, H.: PowerLyra: differenti-
ated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput. (TOPC) 5(3), 13 (2019)

https://doi.org/10.1007/s00224-006-1350-7

128 T. Ayall et al.

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: Presented as part of
the 10th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 12), pp. 17–30 (2012)

6. Karypis, G.: METIS: unstructured graph partitioning and sparse matrix ordering
system. Technical report (1997)

7. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web. pp. 1343–1350. ACM (2013)

8. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

9. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, pp. 135–146. ACM (2010)

10. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM conference on Internet Measurement, pp. 29–42. ACM (2007)

11. Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-
based partitioning for power-law graphs. In: Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management, pp. 243–252.
ACM (2015)

12. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1222–1230. ACM (2012)

13. Xie, C., Yan, L., Li, W.J., Zhang, Z.: Distributed power-law graph computing:
theoretical and empirical analysis. In: Advances in Neural Information Processing
Systems, pp. 1673–1681 (2014)

14. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/
s10115-013-0693-z

15. Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z.: Graph edge partitioning via neigh-
borhood heuristic. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 605–614. ACM (2017)

http://snap.stanford.edu/data
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z

Temporal Enrichment and Querying of
Ontology-Compliant Data

Jing Ao1(B), Zehui Cheng2, Rada Chirkova1, and Phokion G. Kolaitis2

1 NC State University, Raleigh, NC 27695, USA
{jao,rychirko}@ncsu.edu

2 UC Santa Cruz, Santa Cruz, CA 95064, USA
{zecheng,kolaitis}@ucsc.edu

Abstract. We consider the problem of answering temporal queries on
RDF stores, in the presence of time-agnostic RDFS domain ontologies,
of relational data sources that include temporal information, and of rules
that map the domain information in the source into the target ontology.
Our proposed solution consists of two rule-based domain-independent
algorithms. The first algorithm materializes target RDF data via a ver-
sion of data exchange that enriches the data and the ontology with tem-
poral information from the sources. The second algorithm accepts as
inputs temporal queries expressed in terms of the domain ontology, using
SPARQL supplemented with time annotations. The algorithm translates
the queries into the standard SPARQL form that respects the structure of
the temporal RDF information while preserving the question semantics.
We present the algorithms, report on their implementation and experi-
mental results for two application domains, and discuss future.

Keywords: Data-intensive sciences and databases · Temporal
databases · Data exchange · RDF/RDFS/SPARQL

1 Introduction

In application domains that span industry, government, science, and global
health, data are often collected independently by different teams over time. As
the needs of the various data-collecting entities evolve, it is often the case that
data from multiple sources must be put together under a unified target for-
mat (exchanged [1]), using expert-developed source-to-target (s-t) rules. In many
applications, the target data formats also have to be aligned with the standard
domain vocabularies called ontologies. Our exposition will focus on a common
real-life scenario, in which ontologies and ontology-compliant data are expressed
using the RDF/S capabilities – those of the Resource Description Framework
(RDF) data model [2] enriched with additional RDFS specifications [3], – and
are queried using SPARQL [4], while the source data are relational.

In applications conforming to this relational-to-RDF/S data-exchange sce-
nario, e.g., in studies of antimicrobial resistance (AMR), the source data may
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 129–139, 2020.
https://doi.org/10.1007/978-3-030-54623-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_12

130 J. Ao et al.

contain important temporal information, while the applicable target domain
ontologies lack temporal components. (In AMR this is the case with the Antibi-
otic Resistance Ontology ARO). Existing relational-to-RDF/S data-exchange
solutions do not directly apply here, as they do not incorporate temporal seman-
tics of the data in easy-to-use ways. As a result, temporal information from the
sources can be lost in the exchange process, making it hard or even impossible for
domain scientists to efficiently obtain correct answers to temporal queries posed
on the contents of the source data in terms of the target ontologies. Custom
solutions developed on a case-by-case basis [5] would delegate to data analysts
or domain scientists the nontrivial task of temporally enhancing the originally
time-agnostic domain ontologies, such as ARO. In addition, to correctly for-
mulate temporal queries, domain analysts would need to be aware of how the
temporal information is modeled and represented in the resulting systems.

Contributions. In this paper, in the context of relational-to-RDF/S data
exchange, we consider the scenario in which domain analysts are interested in
obtaining answers to temporal queries formulated in terms of the given time-
agnostic target domain ontology, with the expectation that the temporal infor-
mation in the query answers would come from the data sources. We assume that
the analysts (users) are familiar with formulating SPARQL queries using the
given RDFS ontology, and that they provide the s-t rules that map the domain
information in the source schemas into the time-agnostic target ontology, using
tools such as that of [11]. In this scenario, we propose a declarative domain-
independent approach that enables users to formulate SPARQL-based temporal
queries and returns to them answers to the queries, using the domain informa-
tion enabled in the target by the s-t rules, with the temporal dimension of that
information coming from the sources via temporal enrichment.

Our approach focuses on separating temporal semantics from the domain
semantics, and comprises two algorithms. The first algorithm materializes tar-
get RDF data via a version of data exchange that builds on the given s-t rules to
enrich the target data and ontology with temporal information from the sources.
The second algorithm accepts as inputs temporal queries expressed in terms of
the ontology, using SPARQL supplemented with a lightweight formalism for time
annotations and comparisons. The algorithm translates queries into the standard
SPARQL form that respects the structure of the temporal RDF information
while preserving the question semantics, thus ensuring successful evaluation of
the queries on the materialized temporally-enriched RDF data. In this paper we
present the algorithms (Sect. 2–3), report on their implementation and exper-
imental results for two application domains (Sect. 4), and discuss future work
(Sect. 5). Please see the full version of the paper [18] for the details.

Related Work. RDFS [3] is a language used in practice for describing ontolo-
gies. Existing works have focused on representing and reasoning with temporal
RDF data [6], querying such data [7], and inferring temporal properties in tem-
poral RDFS ontologies [8]. At the same time, the temporal aspect is usually
not included in the practical development of domain ontologies; our proposed
approach in this paper is designed to bridge this gap.

Temporal Enrichment and Querying of Ontology-Compliant Data 131

Relational data exchange has been studied extensively [1]. For relational-
to-RDF data exchange, see [10,11]. To the best of our knowledge, temporal
data exchange between relational schemas and ontologies has not been studied
formally. The only formal work on temporal relational data exchange is in [12].
We use the results of [12] in the experimental validation of our approach.

2 Temporal Enrichment of Ontologies and Data

Fig. 1. The RDF (lower) level of this Figure shows two “subject-predicate-object”
(s,p,o) triples, with names (URIs) of resources (e.g., Farm A), and predicate names
(e.g., livesIn). At the RDFS level, the classes of the entities are related to each other
through the domains and ranges of the predicates. Class Antibiotic Drug is shown to be
a subclassOf Antimicrobial Drug. The two layers are connected via type statements.

The first problem that we consider is enrichment of time-agnostic RDFS ontolo-
gies and of the resulting materialized RDF data with temporal information from
the relational sources. Our domain-independent rule-based Algorithm 1, which
addresses the problem, accepts three inputs. The first input comprises relational
data sources with temporal information. We assume that temporal information
in a relation, if present, is expressed via a single marked column whose val-
ues are time intervals. (Specifically, we assume concrete representation of valid
time [13].) The second input is the target time-agnostic RDFS domain ontol-
ogy. The final input is a set of source-to-target tuple-generating dependencies
(s-t tgds) expressing the rules by which the source domain data can be materi-
alized (exchanged) in the format conforming to the target ontology. We assume
that each rule is a GLAV s-t tgd [1] with up to one temporal variable, which
(if present) occurs once on the left-hand side (LHS) [12]. For s-t tgds to make
sense in the relational-to-RDF/S scenario, we represent each RDF/S triple on
the right-hand side (RHS) of the tgds, of the form “subject-predicate-object,”
or (s, p, o), as a relational atom of the form p(s, o).

Algorithm 1 is based on straightforward domain-independent pattern-based
rules, and can be viewed as consisting of three conceptually distinct stages. In
the first stage, the algorithm adds “temporal-enrichment atom patterns” to the
RHS of the input s-t tgds. For the patterns, we use the temporal structures
of [6], which, essentially, reify [14] RDF triples with their relevant temporal
adornments, see the RDF level of Fig. 2 for an illustration. (We use the structural
patterns of [6] to allow use of graph DBMSs without any special features for
storing the RDF results of materializing temporal data from the sources.) In

132 J. Ao et al.

Algorithm 1: Temporally enriching ontologies, s-t tgds, and RDF data
Data: Relational data sources D, RDFS ontology O, and set M of s-t tgds.
Result: Temporally enriched OT , MT , and target RDF data set FT .
begin

MT ← M; OT ← O; // initialization

for each atom p(s, o) on the right-hand side of each M ∈ M do
if p(s, o) is in the temporal-enrichment scope of M then

MT ← temporally enrich p(s, o) in M ; // first stage

OT ← temporally enrich the p-related part of OT ; // second stage

FT ← materialize D into RDF via data exchange using MT ; // third

stage

return OT , MT , and FT ;

the second stage, the input time-agnostic ontology is augmented with RDFS-
level specifications of the temporal-enrichment structures that enriched the s-t
tgds. In the third stage, the resulting s-t tgds can be used to exchange the
input (temporally aware) data sources into the temporally aware RDF format
consistent with the (now) temporally aware output ontology. (We assume that
all of the materialized RDF data conform to the enriched ontology).

Consider an example in the AMR domain. Suppose a data source has a
relation DrugUsage (Farm, Animal, AMR-Drug, Drug-Administration-Time) for
recording the temporal history of AMR drug usage for animals in farms. Let the
relation have a single tuple (‘Farm A’,‘P1’,‘Ampicillin’, [1/1/2019,1/5/2019]).
Suppose that analysts would like to obtain answers to temporal queries posed
using the ontology terminology shown at the RDFS (top) level of Fig. 1. As the
ontology is time agnostic, the best way to exchange data from the DrugUsage
source to a target consistent with the ontology would be to use the s-t tgd.

DrugUsage(f, a, d, t) → livesIn(a, f) ∧ usedOn(d, a). (1)

Here, t is a temporal variable for the temporal attribute. Using this s-t tgd on
the DrugUsage relation would result in the data shown at the RDF level of Fig. 1.
Clearly, AMR scientists cannot get from these data a correct (nonempty) answer
to the query “return the farms that used antibiotic drugs on their animals in the
year 2019,” as there is no temporal information in the stored data of Fig. 1.

This problem can be solved by applying Algorithm 1 to the above ontology,
data source, and s-t tgd inputs. The algorithm will yield the enriched s-t tgd.

DrugUsage(f, a, d, t) → livesIn(a, f) ∧ usedOn(d, a) ∧ tsubj(c1, d)
∧ tpred(c1, usedOn) ∧ tobj(c1, a) ∧ temporal(c1, c2)
∧ interval(c2, c3) ∧ validFor(c3, t).

(2)

The RHS of Eq. (2) exhibits the temporal structure of [6] applied to the RDF
triple represented by the atom usedOn(d, a). c1 (c2, c3, resp.) stands for unique

Temporal Enrichment and Querying of Ontology-Compliant Data 133

Fig. 2. An adornment of the Ampicillin-[is]-usedOn-P1 RDF triple of Fig. 1 with a
temporal structure of [6]. The RDFS layer shows the metadata of [6], including a
Statement class and a TNode (temporal-node) class. The TNode is characterized by an
interval-value class. The RDF level shows instantiations of these RDFS metadata.

new URIs generated for the temporal structure of [6] with the RDF triples
being materialized; e.g., s, tn, and ti are generated for the triple Ampicillin-
[is]-usedOn-P1 in Fig. 2. The top half of Fig. 2 shows the time-enriched ontology
information that results from applying Algorithm1 to the inputs of the example.

3 Querying the Materialized Temporally Enriched Data

Fig. 3. Query QT
am asking for the farms that used antimicrobial drugs in 2019, as (a)

the original temporally-annotated SPARQL version, (b) the result of its rewriting by
the 1st stage of Algorithm 2, and (c) the result of the expansion of version (b) by the
2nd stage of Algorithm 2. (In (c), initialDate and finalDate are shorthand for SPARQL
functions for extracting the start/end points from the time-interval values bound to
?t.) Unlike (a)–(b), version (c) is directly executable by standard SPARQL processors.

Suppose that Algorithm1 has been applied to the given relational data sources
D, time-agnostic target ontology O, and s-t tgds M. As a result, we obtain
an RDF/S data set (FT ,OT) that materializes source information, including
temporal characterizations of the source data. Now the RDF query language

134 J. Ao et al.

SPARQL [4] can be used to formulate, with respect to (w.r.t.) (FT ,OT), tem-
poral queries such as QT

am: “Return farms that used antimicrobial drugs in the
year 2019,” see Fig. 3(c). This temporal query can be processed directly on the
data set (FT ,OT) by a standard SPARQL processor, with a nonempty answer
successfully returned on the data coming from the DrugUsage relation.

As illustrated in Fig. 3(c), direct temporal querying of temporal RDF/S
data sets is already enabled by our approach of Sect. 2. At the same time, our
additional objective is to allow domain analysts to concentrate on the domain-
ontology part of formulating such temporal queries, while keeping the tempo-
ral part of the queries as easy to write as possible. For this purpose, we offer
domain experts an opportunity to formulate their temporal queries via a tem-
poral user interface (temporal UI) that we provide for SPARQL. In the UI,
standard SPARQL constructs are supplemented with temporal annotations on
RDF/S triple patterns in the queries, using the notation that we borrow from
the query format of [8], as well as with constructs for temporal comparisons, such
as during, which are known as Allen’s interval relations [9]. See Fig. 3(a) for an
illustration, with temporal annotation ?t. We will be referring to temporal-UI
versions of SPARQL queries as temporally annotated SPARQL queries.

Algorithm 2: Temporal querying of temporally enriched RDF/S data
Data: RDFS ontology OT , RDF data set FT , temporally annotated SPARQL

query Q.
Result: Answer set A to a SPARQL reformulation of Q on FT .
begin

R ← {Q}; // will reformulate Q into R that is executable on FT

for each triple pattern P in R do
if there is a hierarchy H in OT that applies to P then

R ← rewrite P in R in all ways using H; // 1st stage: rewriting

for each temporal annotation T in R do
R ← expand T in R into triple patterns; // 2nd stage: expansion

A ← ∅; // initializing set of answers to R on RDF data set FT

for each SPARQL query R in R do
A ← use SPARQL processor to add to A the result of processing R on
FT ;

return A;

We now present a domain-independent approach for reformulating tempo-
rally annotated SPARQL queries into (standard) SPARQL queries that respect
the structure of the temporal RDF information while preserving the semantics
of the questions. Acting on top of a SPARQL processor, our Algorithm 2 ensures
successful evaluation of temporally annotated SPARQL queries on the materi-
alized temporally-enriched RDF/S data generated by Algorithm 1 (Sect. 2).

Algorithm 2 accepts as inputs RDF/S data sets (FT ,OT) and temporally
annotated SPARQL queries Q expressed in terms of the domain-ontology part

Temporal Enrichment and Querying of Ontology-Compliant Data 135

of OT . The algorithm reformulates each given Q into a set R of SPARQL queries
conforming to the ontology OT , and then uses the SPARQL processor to obtain
the answer to Q, by processing all the queries in R on the data set (FT ,OT).

The reformulation part of Algorithm2 works in two stages, rewriting (1st
stage) and expansion (2nd stage). In the 1st stage, the algorithm uses domain-
independent pattern-based rules to repeatedly “unfold,” in the queries being
rewritten, :subClassOf and :subPropertyOf hierarchies w.r.t. the RDFS ontol-
ogy OT using entailment rules, see, e.g., [14]. As a result, the input query Q is
turned into a set R of temporally annotated SPARQL queries that would be
directly executable on the data set FT but for their temporal annotations. This
process would transform the query of Fig. 3(a) into the query of Fig. 3(b). The
2nd, expansion, stage of the query-reformulation process in Algorithm2 uses
domain-independent pattern-based rules to replace the temporal annotations in
the queries R with standard RDF/S constructs. Specifically, all the temporal
annotations of individual triple patterns in R are replaced with their structural
counterparts of [6] (as in, e.g., Fig. 2), and all the Allen’s interval relations (e.g.,
during) are replaced with built-in comparisons on the endpoints of the time
intervals involved. (This process would transform the query of Fig. 3(b) into the
query of Fig. 3(c).) The resulting SPARQL queries are submitted by the algo-
rithm to the SPARQL processor to obtain the answers to the input query.

4 Implementation and Experimental Results

We have implemented Algorithms 1–2 on top of Java 1.8, PostgreSQL 11, and
RDF4J 3.0.1, using the Llunatic [15] rule interpreter for reformulating tem-
porally annotated queries into standard executable SPARQL queries. For the
experiments, we used data environments in two application domains, AMR and
TPC-BiH [17]. Each environment included a relational source schema, a time-
agnostic target RDFS domain ontology and, for translating the schema into the
ontology, a set of GLAV s-t tgds each with at most one temporal variable, which,
if present, would occur exactly once on the LHS. Each data environment also
included relational source data generated with DataFiller [16] at multiple scale
factors, as well as temporal queries defined in terms of the domain ontologies.

The experiments were designed around two properties of the outcomes of
applying to the AMR and TPC-BiH environments the approach of Algorithms 1–
2 for temporal RDF/S enrichment and querying: (1) degree of preservation in
the target of the temporal information from the sources, see Fig. 4; and (2)
degree of correctness of the answers to temporal queries on the target, w.r.t. the
answers obtained in the baseline relational-to-relational approach supported by
the formal results of [12], see Fig. 5. We evaluated the latter property both for
queries that required rewriting w.r.t. :subClassOf and :subPropertyOf hierar-
chies in the given ontologies (1st stage of Algorithm 2), and for queries that did
not require such rewriting. (See [18] for the details of our methodology.) We also
evaluated the efficiency of our implementation, see Fig. 6.

136 J. Ao et al.

As a high-level summary of our experimental results, for each data environ-
ment used in the experiments, with each selected scale factor, and for each tem-
poral query that was considered, the experimental results were identical between
our relational-to-RDFS setting and the baseline relational-to-relational setting.
(The formal correctness of the outcomes in the latter setting is supported by the
results of [12].) We conclude that all these results experimentally validate the
correctness of the proposed approach.

Fig. 4. Evaluating information loss in data exchange with temporal RDF/S enrichment
vs. baseline outcomes. The X-axis shows the names of the s-t tgds and the source-
data sizes for the environments tested; the (logarithmic) Y-axis shows the number of
resulting data tuples. The [A/B] notation on top of the target data-size bars shows the
relative number of unmatched tuples between the two sets.

Figure 4 reports our results, in the AMR and TPC-BiH data environments,
for the degree of preservation in the target of the temporal information from the
sources, as enabled by Algorithm 1. For all the results, we got A = B = 0; that
is, in each experiment we obtained the same sets of tuples in the target temporal
data as in the baseline case. We conclude that the results experimentally validate
the correctness of our temporal-enrichment Algorithm 1.

Figure 5 reports our results, in the AMR and TPC-BiH data environments,
for the degree of correctness of the answers to temporal queries on the RDF/S
target (Algorithm 2) w.r.t. the relational answers that would be obtained in the
baseline approach. All the input queries were temporally annotated SPARQL
queries of the form illustrated in Fig. 3(a), which were then reformulated into
standard SPARQL queries via Algorithm2, as illustrated in Fig. 3(c). We used
the certain-answer semantics [1] in processing all the queries. Given that A =
B = 0 in all cases, we conclude that our results for the degree of correctness of
the answers to temporal queries on the RDF/S target experimentally validate
the correctness of the proposed query-reformulation Algorithm 2.

Figure 6 reports the results for the runtime overhead of our implementation of
the query-reformulation part of Algorithm2, as part of the overall response times
for the queries tested. The response times were measured both for queries that
did not require rewriting w.r.t. RDFS hierarchies (1st stage of Algorithm2), see
Fig. 6(a), and for queries requiring such rewriting, see Fig. 6(b). Not surprisingly,
in all the cases tested, the overhead of Algorithm 2 depended only on the size
of the input query, rather than on the size of the stored data processed by

Temporal Enrichment and Querying of Ontology-Compliant Data 137

Fig. 5. Evaluating information loss in answers to temporal queries vs expected baseline
outcomes. The X-axes show the names of the AMR and TPC-BiH queries tested. The
(logarithmic) Y-axes show query-answer sizes in tuples. The [A/B] notation on top of
the bars shows the relative number of unmatched tuples between the two sets.

Fig. 6. Measuring the time overhead of reformulating temporally annotated queries
into executable SPARQL. The X-axes show the names of the queries tested. The (loga-
rithmic) Y-axes show the 10-runtime averaged overall response times in ms. The values
in square brackets show the difference, for each query, between the processing time with
the reformulation overhead included (left bar) and excluded (right bar).

the query, or on the size of the query answer. As a result, even for queries
whose runtimes were over 16 sec after the reformulation part of Algorithm2,
the overhead of applying Algorithm2 was under 821 ms; this value is below the
user-tolerance time threshold for interactive systems [19]. We conclude that the
runtime overhead of Algorithm 2 in the reformulation of temporally annotated
SPARQL queries is sufficiently small to be tolerated by users.

5 Conclusions and Future Work

In this paper we considered the scenario in which domain analysts and scien-
tists are interested in obtaining answers to temporal queries formulated in terms

138 J. Ao et al.

of the given time-agnostic RDFS domain ontology, in the presence of tempo-
ral information in relational data sources and of source-to-target (s-t) rules for
mapping domain information between the sources and the target ontology. We
presented our declarative domain-independent algorithmic approach to address-
ing the temporal-enrichment and query-answering problems in this scenario. In
our report on the approach, we described the algorithms and their implementa-
tion, and presented our experimental results for two application domains.

Providing formal proofs of correctness of our proposed approach is an imme-
diate direction of future work. Other directions of future formal and practical
work on the topics discussed in this paper include incorporation into the frame-
work of richer ontology formalisms such as OWL, as well as of data-exchange
dependencies that are more expressive in their temporal aspect than those of
[12]. Another promising direction of research lies in designing and developing
user interfaces that would make it easier for domain scientists that are not com-
puter experts to query their temporal data in terms of domain ontologies.

References

1. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Cambridge University Press, Cambridge (2014)

2. Hayes, P. (ed.) RDF Semantics: W3C Recommendation (2004). https://www.w3.
org/TR/2004/REC-rdf-mt-20040210/

3. Brickley, D., Guha, R.V. (eds.) RDF Vocabulary Description Language: RDF
Schema (2014). https://www.w3.org/TR/rdf-schema/

4. SPARQL query language for RDF. https://www.w3.org/TR/rdf-sparql-query/
5. Michel, F., Montagnat, J., Zucker, C.F.: A survey of RDB to RDF translation

approaches and tools, Rapport de Recherche ISRN I3S/RR 2013–04-FR (2014)
6. Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE

Trans. Knowl. Data Eng. 19(2), 207–218 (2007)
7. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of

RDF data with SPARQL. In: Proceedings of the ESWC, pp. 308–322 (2009)
8. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for

representing, reasoning and querying with annotated Semantic Web data. J. Web
Semant. 11, 72–95 (2012)

9. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26, 832–843
(1983)

10. Boneva, I., Lozano, J., Staworko, S.: Relational to RDF data exchange in presence
of a Shape Expression Schema. arXiv preprint arXiv:1804.11052 (2018)

11. Boneva, I., Dusart, J., Fernández-Álvarez, D., Gayo, J.E.L.: Shape designer for
ShEx and SHACL constraints. In: Proceedings ISWC Satellite Tracks, pp. 269–
272 (2019)

12. Golshanara, L., Chomicki, J.: Temporal data exchange. Inf. Syst. 87, 101414 (2020)
13. Snodgrass, R.T.: Temporal databases. In: Frank, A.U., Campari, I., Formentini, U.

(eds.) GIS 1992. LNCS, vol. 639, pp. 22–64. Springer, Heidelberg (1992). https://
doi.org/10.1016/S1574-6526(05)80016-1

14. Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of Semantic
Web databases. J. Comput. Syst. Sci. 77(3), 520–541 (2011)

https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/ rdf-sparql-query/
http://arxiv.org/abs/1804.11052
https://doi.org/10.1016/S1574-6526(05)80016-1
https://doi.org/10.1016/S1574-6526(05)80016-1

Temporal Enrichment and Querying of Ontology-Compliant Data 139

15. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Cleaning data with Llunatic.
VLDBJ (2019). https://doi.org/10.1007/s00778-019-00586-5

16. Coelho, F.: DataFiller - generate random data from database schema (2014).
https://www.cri.ensmp.fr/people/coelho/datafiller.html

17. Kaufmann, M., Fischer, P.M., May, N., Tonder, A., Kossmann, D.: TPC-BiH: a
benchmark for bitemporal databases. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04936-6 2

18. Ao, J., et al.: Temporal Enrichment and Querying of Ontology-Compliant Data
(Technical report TR-2020-3). https://www.csc.ncsu.edu/research/tech/reports.
php

19. Nielsen, J.: Usability Engineering. Morgan Kaufmann, Burlington (1993)

https://doi.org/10.1007/s00778-019-00586-5
https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://doi.org/10.1007/978-3-319-04936-6_2
https://doi.org/10.1007/978-3-319-04936-6_2
https://www.csc.ncsu.edu/research/tech/reports.php
https://www.csc.ncsu.edu/research/tech/reports.php

Data Analytics

Bing-CSF-IDF+: A Semantics-Driven
Recommender System for News

Lies Hooft van Huijsduijnen1, Thom Hoogmoed1, Geertje Keulers1,
Edmar Langendoen1, Sanne Langendoen1, Tim Vos1, Frederik Hogenboom1,

Flavius Frasincar1 , and Tarmo Robal2(B)

1 Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam,
The Netherlands

lieshooft@gmail.com, misterthom@gmail.com, geertje-k@gmail.com,

e langendoen@gmail.com, sannelangendoen@gmail.com, timokt93@gmail.com,

{fhogenboom,frasincar}@ese.eur.nl
2 Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

tarmo.robal@ttu.ee

Abstract. This work proposes the Bing-CSF-IDF+ recommender – a
content-based recommender that makes use of semantic relationships,
and combines the best features of our earlier introduced Bing-SF-IDF+
and CF-IDF+ systems. First, we make use of concepts and concept rela-
tionships from a domain ontology. Next, Bing-CSF-IDF+ employs the
synsets and synset relationships from a semantic lexicon that have not
been previously captured by the domain ontology. Last, named entities
and their frequencies as provided by Bing – not present in the semantic
lexicon and domain ontology – are utilized. Our experiments show that
Bing-CSF-IDF+ significantly outperforms Bing-SF-IDF+ and CF-IDF+
on F1-scores and Kappa statistics based on a news data set.

1 Introduction

The introduction of the World Wide Web at the end of the 20th century has
resulted in a widely accessible knowledge source with enormous growth potential.
According to estimates, the digital world almost doubles every two years in size,
emerging in the prodigious scale of 44 trillion gigabytes in 2020 [20]. Hence, the
challenge today is not to increase the amount of data, but to retrieve patterns
of interest in this data.

Applications that deal with these problems and help to structure the overload
of data are recommender systems (RS) [17]. RS are employed in various fields
(e.g., news items, movies, books, etc.) to distinguish certain data based upon
user’s preferences which are captured in so-called user profiles, e.g., by using
domain models [18]. The focus in this research is on the recommendation of
news items. The large amounts of data available on every single news event does
not facilitate search for users to find the items of their interest. News Web sites
often categorize news items, however, these are not ordered according to the
individual needs of a user. Therefore, users can strongly benefit from RS.
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 143–153, 2020.
https://doi.org/10.1007/978-3-030-54623-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_13&domain=pdf
http://orcid.org/0000-0002-8031-758X
http://orcid.org/0000-0002-7396-8843
https://doi.org/10.1007/978-3-030-54623-6_13

144 L. H. van Huijsduijnen et al.

There are three main types of RS that can be used for this: collaborative
RS, which provide recommendations based on similarities between preferences
of one user and preferences of others, content-based RS, which recommend items
according to their content, and hybrid RS, which are combinations of the former
two approaches [3]. Here, our focus will be on content-based RS for news rec-
ommendation, as these enable a better understanding of the news item content,
and are able to deal with the cold-item problems. We do not consider hybrid RS
as we assume not to have a lot of information on users and their preferences.

The difficulty that arises in content-based recommendation is that machines
are not able to understand the meaning of the text. This is, however, a necessary
condition in order to provide suitable recommendations for the interests of a
particular user. Therefore the words in the text need to be semantically analyzed,
and the correct sense for each word determined by word sense disambiguation,
enabled by using a semantic lexicon, e.g. WordNet [8]. Existing approaches such
as (Bing-)CF-IDF+ [2,7] and (Bing-)SF-IDF+ [6,15] have used only subsets of
these features, i.e., concepts and their relations for CF-IDF+, and synsets and
their relations for SF-IDF+, and named entities for the Bing variant.

In this paper, we aim to make use of a larger set of features by combining
those of the previously mentioned RS, and propose the Bing-CSF-IDF+ recom-
mender. This content-based approach incorporates both the concepts found in
the news item and their domain-specific related concepts, as well as the iden-
tified synsets and their related synsets using semantic relations from WordNet
for mapping a user’s preference. Moreover, named entities that are not present
in WordNet or a domain ontology are considered. To find (related) concepts,
a domain-specific ontology is used as knowledge base. We hypothesize that the
proposed method, which combines different features of state-of-the-art recom-
mendation methods, yields an improvement in news recommendation compared
to existing RS. The performance of the Bing-CSF-IDF+ recommender will be
measured by means of statistics, e.g., the F1-measure and Kappa statistic.

The remainder of this paper is organized as follows. Section 2 discusses related
work on content-based RS. Sections 3 and 4 provide a description of the proposed
recommender, and present an evaluation against other recommenders as bench-
mark, respectively Section 5 discusses conclusions drawn from the conducted
research and provides some directions for future work.

2 Related Work

Let us start with an overview of existing content-based RS, and consider tradi-
tional Vector Space Models (VSM) TF-IDF, CF-IDF, and SF-IDF, where TF-
IDF is the oldest recommendation approach. The TF-IDF method is of interest
as SF-IDF and CF-IDF build on the mathematical concept provided by TF-IDF.
The Term Frequency - Inverse Document Frequency (TF-IDF) [19] recommender
consists of two parts. The term frequency indicates how often a term occurs in a
given news item. Higher frequencies are linked to higher relevancies. The inverse
document frequency captures the importance of a term in a set of news items.

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 145

Frequent terms are considered to be common and less important. TF-IDF rep-
resents news items as term vectors containing scores, which can be compared to
user vectors (aggregation of vectors corresponding to items previously consumed
by the user) using similarity functions (e.g., cosine similarity). The TF-IDF score
is large for terms that occur frequently in a particular news item but not often in
all other news items. A certain specified threshold decides whether a news item
and the user’s interest are considered similar. The Synset Frequency - Inverse
Document Frequency (SF-IDF) [5] VSM is a variation of TF-IDF, which in
addition to all terms looks at synonyms and ambiguous terms using a semantic
lexicon (WordNet). Terms having the same meaning will be subsumed in one sin-
gle concept, and therefore, word sense disambiguation is needed. For terms with
multiple meanings, corresponding word senses are to be counted separately. The
Concept Frequency - Inverse Document Frequency (CF-IDF) [10] recommenda-
tion approach is another variant of TF-IDF, deviating from SF-IDF by using
key ontological concepts instead of all synsets in a news item. CF-IDF consid-
ers news items as a weighted vector of concepts. A domain ontology linked to
WordNet captures the most salient concepts of a domain.

The Semantic Relationship Vector Space Models extend the traditional VSM
by taking semantic relationships into account. SF-IDF+ [15] extends the SF-
IDF [5] method, by combining synsets with their synsets related using seman-
tic relationships, such as WordNet hypernyms. The vector representation is
extended by adding the related synsets from the synset of a news item to the
vector representation, enabling better vector representation of news items. Bing-
SF-IDF+ [6] is an extension of SF-IDF+, which in addition to words in the
semantic lexicon also considers the similarity between named entities frequently
occurring on the Web. The Bing similarity is based on the number of page counts
originating from the Bing search engine. Each news item has an SF-IDF+ simi-
larity value and a Bing similarity value with a user profile. A weighted average is
used to compute the Bing-SF-IDF+ similarity value for a news item with a user
profile, using the Point-Wise Mutual Information (PMI) [1] measure. The CF-
IDF+ [7] recommender is an extension of CF-IDF [10], which also processes the
news items into a concept vector representation but extends the model by con-
sidering related ontology concepts – direct super- and subclasses, and domain-
specific related concepts, and their relationships. Only the related concepts not
yet in the vector representation are taken into account, or if the related concept
has a higher CF-IDF+ value than the previous value.

Lastly, for historical reasons we discuss two semantic similarity RS: SS and
Bing-SS as both of these have been outperformed by Bing-SF-IDF+ [6] and CF-
IDF+ [7]. The Semantic Similarity (SS) recommender [5] filters all possible user
profile and news item synset pairs for words that do not have the same part-
of-speech. Similarity scores are computed for the remaining pairs using various
measures, e.g., Jiang and Conrath [12], Leacock and Chodorow [13], Lin [14],
Resnik [16], and Wu and Palmer [21]. These similarity measures capture the
distance between two synsets in a semantic graph (e.g., WordNet). Finally, the
score for the unread news items is found by taking the average over the similarity

146 L. H. van Huijsduijnen et al.

scores for all pairs of synsets. Bing-SS [4] is an extension of the SS recommender.
Similar to Bing-SF-IDF+, it additionally takes into account named entities in
its computations for those synset pairs that have the highest similarity scores.

3 Bing-CSF-IDF+

The Bing-CSF-IDF+ recommender combines information from found named
entities, concepts and their relationships, and synsets and their relationships
by using the Bing, the CF-IDF+, and the SF-IDF+ similarity values for news
items. As the previous recommenders, it also relies on the Hermes framework.

Hermes is a framework for indexing, querying, and recommending news items
using a knowledge base [9]. It allows to construct the knowledge base from RSS
(Really Simple Syndication) feeds, advantaging from the meta-data, e.g., the
title, category, and publication date of the news items available in these feeds,
and enables collecting news items from multiple news sources. Hermes also stores
the user profile (created by collecting the concepts of interest from previously
read news) containing information about the news items and subjects a user finds
interesting. Last, Hermes uses a domain ontology (created by domain experts and
defines relationships between different concepts pertinent to a certain domain),
which enables semantic-based news indexing and querying. Using the content
and the meta-data of the news items in the knowledge base (the instance) and
the domain ontology (the schema), the news items are pre-processed into vector
space models before being run through the recommenders. The implementation
of the Hermes uses a Natural Language Processing (NLP) engine to pre-process
the news articles and employs linguistic techniques such as lemmatization, word
sense disambiguation, tokenization, sentence-splitting, and concept detection to
find which concepts are described in the text. The latest description of the Her-
mes framework and recommender implementations can be found in [2].

The Bing-CSF-IDF+ recommender assumes a certain order of steps taken.
First, a news item is analyzed on the presence of words which trigger concepts
from the ontology. The words found to trigger concepts from the ontology are no
longer considered in the next step, which is looking for named entities by means
of the Bing method. These found named entities will now no longer be considered
for the last step, which analyzes the remainder of the news item by means of the
SF-IDF+ recommender. We have considered this order of processing steps as we
assume that the ontology, followed by named entities, and then synsets provide
for the most specific, and thus the most useful information when analyzing news.

The Bing-CSF-IDF+ similarity measure is calculated by linearly combining
the weighted averages of the similarity values between a user profile and an
unread news item found for the CF-IDF+ recommender, the Bing method, and
the SF-IDF+ recommender:

simBing-CSF-IDF+(du, dr) = α × simBing(du, dr)
+ β × simCF-IDF+(du, dr)
+ (1 − α − β) × simSF-IDF+(du, dr), (1)

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 147

where dr is the vector representation of the user’s interest, du the vector repre-
sentation of unread news items, and α, β predefined values (like with Bing-SF-
IDF+ [6]), which can be optimized by means of a genetic algorithm to obtain
the best performance of the Bing-CSF-IDF+ recommender on a validation data
set. As with existing RS, unread news items for which the normalized similarity
measure exceeds a predefined cut-off value are recommended.

4 Evaluation

The evaluation of the newly proposed recommender will be discussed through
the set-up of the experiment, the optimization of the weights used in the recom-
mender, and the results obtained for Bing-CSF-IDF+ and the existing RS.

4.1 Setup

The evaluation setup is similar to setups in existing literature on news rec-
ommendation [6,7]. The used data set consists of 100 different news articles,
originating from a Reuters RSS feed. All these articles are concerned with finan-
cial news on technology companies. Next, 8 different user profiles are contained
in this data set. Each user profile is linked to a specific topic. The topics are:
“Asia”, “Financial markets”, “Google and its competitors”, “Internet of Web
services”, “Microsoft and its competitors”, “National economies”, “Technology”,
and “United States”. The user profiles were created by 3 researchers (experts
in news analytics) from the Erasmus University Rotterdam by rating a news
article as either interesting or not for a certain profile. Articles are considered
to be interesting based on the principle of majority voting. Table 1 reports the
user profile topics with their inter-annotator agreements (IAA), and the number
of interesting (I+) and non-interesting (I−) news items as given by the experts.

Table 1. Number of interesting (I+) and non-interesting (I−) news items, and the
inter-annotator agreement (IAA)

Topic I+ I− IAA

Asia or its countries 21 79 99%

Financial markets 24 76 72%

Google or its rivals 26 74 97%

Web services 26 74 94%

Microsoft or its rivals 29 71 98%

National economies 33 67 90%

Technology 29 71 87%

United States 45 55 85%

148 L. H. van Huijsduijnen et al.

To test the performance of the recommenders, the complete data set of 100
news articles is split into smaller subsets – a training set (30%), a validation set
(30%), and a test set (40%), keeping the proportions of relevant/non-relevant
news items for each of the considered sets (we have 8 such divisions, one for each
user profile). The training set is used for learning the user profile. The validation
set is used for finding the optimal weights used in the recommender.

The recommender uses the knowledge about the user learned from the train-
ing and validation set to predict whether an article from the test set is interesting
or not. An unread article is marked as interesting if the similarity value between
the user profile and the article is higher than a predefined cut-off value. The
news items classified by RS as interesting for the user, will be recommended.

4.2 Optimizing Weights

The optimization of the weights for the recommender is done using a Genetic
Algorithm. The Genetic Algorithm works with sets of solutions, called popu-
lations. In each iteration of the algorithm, the previous population is adapted
such that one navigates through the parameter space to the (local) optimum.
For the Bing-CSF-IDF+ recommender there are 32 weights which need to be
optimized, namely weights for 27 SF-IDF+ relations, 3 CF-IDF+ relations, and
α and β. The optimization is done on the Lisa system from SURFsara1. The
Lisa system is a computer cluster consisting of several hundreds of multi-core
nodes and is meant for researchers who need large computing capacities. As the
nodes of the Lisa system contain multiple cores, each computer can run multiple
jobs in parallel. We want to find the optimal weights for several cut-off values.
The optimization for different cut-off values does not depend on each other, so
these jobs can be independently parallelized.

Note, as the genetic algorithm is a heuristic algorithm, the algorithm might
not be able to find the optimal weights, but we were able to search large parame-
ter spaces due to the fact that we had the computing power of the Lisa system at
our disposal. This makes it likely that the optimized weights are nearly optimal.

4.3 Results

The following results for the considered recommenders were obtained on exactly
the same splits of the data set. Note that these splits are different from the ones
considered in the previous works [6,7].

First, the results for the F1-measure are presented for the Bing-CSF-IDF+,
Bing-SF-IDF+, and CF-IDF+ recommenders. These are the recommenders that
are the most interesting for this research, as previous research showed that
Bing-SF-IDF+ and CF-IDF+ recommenders gave the best results. Figure 1 out-
lines that the CF-IDF+ recommender seems to perform well for low cut-off
values (i.e., in situations where low precision is tolerated in favor of high recall).
From a cut-off value of about 0.3, both the Bing-CSF-IDF+ and Bing-SF-IDF+

1 SURFsara: The Lisa System, https://userinfo.surfsara.nl/systems/lisa.

https://userinfo.surfsara.nl/systems/lisa

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 149

recommender perform notably better than the CF-IDF+ recommender. This is
an indication that Bing-CSF-IDF+ and Bing-SF-IDF+ boast a high precision
and are able to pull a higher recall in more strict recommendation contexts.
The most important result that can be deduced from Fig. 1 is that the Bing-
CSF-IDF+ recommender seems to perform at least as well as the other two rec-
ommenders for almost all cut-off values. Especially for the cut-off values which
range from 0.05 to 0.4, the combination of both the CF-IDF+ recommender and
the Bing-SF-IDF+ recommender for the Bing-CSF-IDF+ recommender, seems
to be useful.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
1

Cut-off

 Bing-CSF-IDF+

 Bing-SF-IDF+

 CF-IDF+

Fig. 1. F1-measures for several recommenders

The observations made from Fig. 1 are confirmed by the Student-t test which
was used to determine whether one recommender was statistically better than
the other recommenders. The Student-t test was used for testing whether two
recommenders had significantly different average F1-measures. The p-values of
this test can be found in Table 2. The performance of the recommenders from
worst to best is CF-IDF+, Bing-SF-IDF+, and then Bing-CSF-IDF+. All results
were found to be significant on a 5% significance level.

Also the Cohen’s Kappa statistic was determined for each of the cut-off values
and each of the recommenders. The Cohen’s Kappa statistic measures the inter-
rater agreement between the classifications and the actual interestingness of news
articles (by taking into account the agreement by chance). Figure 2 shows the
results for the Cohen’s Kappa statistic. The Bing-SF-IDF+ recommender seems
to perform notably worse than the other two recommenders for low cut-off values.
The Bing-SF-IDF+ recommender, however, improves in relative performance for
larger cut-off values. Again, the Bing-CSF-IDF+ recommender seems to perform
at least as well as the other recommenders for almost all cut-off values.

150 L. H. van Huijsduijnen et al.

Table 2. One-tailed two-sample Student-t test p-values for the F1-measure (H0:
μcolumn = μrow, H1: μcolumn > μrow, α = 0.05)

CF-IDF+ Bing-SF-IDF+ Bing-CSF-IDF+

CF-IDF+ – 0.00 0.00

Bing-SF-IDF+ 1.00 – 0.00

Bing-CSF-IDF+ 1.00 1.00 –

Once again, the observations made from Fig. 2 are confirmed by statistical
tests. A Student-t test was performed on the average Kappa statistic for each
of the recommenders (Table 3). This time it was found that the recommenders
could be ordered from worst to best in the order of Bing-SF-IDF+, CF-IDF+,
and Bing-CSF-IDF+. Again, all results are significant on a 5% significance level.
So from both the F1-measure and the Kappa statistic, we can conclude that the
Bing-CSF-IDF+ recommender performs the best.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K
ap

pa

Cut-off

 Bing-CSF-IDF+

 Bing-SF-IDF+

 CF-IDF+

Fig. 2. Kappa statistics for several recommenders

The optimized weights for the different recommenders, while considering the
optimal cut-off (with respect to F1) for each recommender, have notable dif-
ferences. For CF-IDF+, for the cut-off value of 0.06, each relationship is almost
equally informative. For the cut-off value of 0.22, the Bing-SF-IDF+ α parameter
has an optimized weight of 0.14220, indicating that the SF-IDF+ recommender
contributes the most information. Last, for Bing-CSF-IDF+, α and β are opti-
mized to 0.20268 and 0.50435, respectively, at a cut-off value of 0.28. Thus,

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 151

Table 3. One-tailed two-sample Student-t test p-values for the Kappa statistic (H0:
μcolumn = μrow, H1: μcolumn > μrow, α = 0.05)

CF-IDF+ Bing-SF-IDF+ Bing-CSF-IDF+

CF-IDF+ – 1.00 0.00

Bing-SF-IDF+ 0.00 – 0.00

Bing-CSF-IDF+ 1.00 1.00 –

CF-IDF+ contributes about half the information, Bing contributes about 20%
of the information and SF-IDF+ contributes the rest of the remaining 30%.

Looking at Fig. 1, the resulting weights for the Bing-CSF-IDF+ recommender
make sense. For the cut-off value of 0.28 the CF-IDF+ recommender clearly
performs better than the Bing-SF-IDF+, hence why the assigned weight is larger.

5 Conclusion

We have proposed a new semantics-driven Bing-CSF-IDF+ recommender com-
bining the best features of the existing CF-IDF+ and Bing-SF-IDF+ recom-
menders. We have shown that the newly proposed Bing-CSF-IDF+ recommender
outperforms the already existing recommenders. For almost each cut off value,
both the F1-measure and the Kappa statistic of the Bing-CSF-IDF+ recom-
mender are at least as high as the other recommenders, meeting our expecta-
tions, as the Bing-CSF-IDF+ recommender could be transformed to both a pure
CF-IDF+ as well as a Bing-SF-IDF+ recommender by choosing the appropriate
values for the weights α and β. The occasions that the values of these statistics
are higher for the existing recommenders can be explained by the fact that the
genetic algorithm is used for optimizing all the weights simultaneously. As this
algorithm is only a heuristic, it does not need to find the optimal weights.

We envision various possible opportunities and directions for future work.
It would be interesting to compare the proposed method to graph embedding
based recommendation [11]. Also, one could look for better heuristic algorithms
to optimize the weights for the Bing-CSF-IDF+ recommender, for example, an
Ant Colony Optimization algorithm. This algorithm might find better weights,
which will improve the performance of the recommender.

Another improvement might be made by only taking the most similar named
entities into account (as performed in the Bing-SS recommender), or by using
machine learning algorithms (e.g., SVMs) to learn the recommender model using
all the available features. Moreover, using WordNet relations also for concepts
(if concepts have a synset associated) could possibly lead to a better perfor-
mance of the recommender. Finally, the results could be improved by using a
more extensive domain ontology for the CF-IDF+ values, to discover additional
important concepts in the news articles that might influence the classification of
an article as interesting or not.

152 L. H. van Huijsduijnen et al.

References

1. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
In: Biennial GSCL Conference 2009 (GSCL 2009), pp. 31–40. Gunter Narr Verlag
Tübingen (2009)

2. Brocken, E., et al.: Bing-CF-IDF+: a semantics-driven news recommender sys-
tem. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 32–47.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2 3

3. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User
Model. User-Adap. Inter 12(4), 331–370 (2002). https://doi.org/10.1023/A:
1021240730564

4. Capelle, M., Hogenboom, F., Hogenboom, A., Frasincar, F.: Semantic news rec-
ommendation using wordnet and bing similarities. In: 28th Symposium on Applied
Computing (SAC 2013), The Semantic Web and its Application Track, pp. 296–
302. ACM (2013)

5. Capelle, M., Moerland, M., Frasincar, F., Hogenboom, F.: Semantics-based news
recommendation. In: 2nd International Conference on Web Intelligence, Mining
and Semantics (WIMS 2012). ACM (2012)

6. Capelle, M., Moerland, M., Hogenboom, F., Frasincar, F., Vandic, D.: Bing-SF-
IDF+: a hybrid semantics-driven news recommender. In: 30th Symposium on
Applied Computing (SAC 2015), Web Technologies Track, pp. 732–739. ACM
(2015)

7. de Koning, E., Hogenboom, F., Frasincar, F.: News recommendation with CF-
IDF+. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp.
170–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0 11

8. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

9. Frasincar, F., Borsje, J., Hogenboom, F.: Personalizing news services using seman-
tic web technologies. In: Lee, I. (ed.) E-Business Applications for Product Devel-
opment and Competitive Growth: Emerging Technologies, Chap. 13, pp. 261–289.
IGI Global, Pennsylvania (2011)

10. Goossen, F., IJntema, W., Frasincar, F., Hogenboom, F., Kaymak, U.: News per-
sonalization using the CF-IDF semantic recommender. In: International Confer-
ence on Web Intelligence, Mining and Semantics (WIMS 2011). ACM (2011)

11. Grad-Gyenge, L., Kiss, A., Filzmoser, P.: Graph embedding based recommendation
techniques on the knowledge graph. In: Adjunct Publication of the 25th Conference
on User Modeling, Adaptation and Personalization (UMAP 2017), pp. 354–359.
ACM (2017)

12. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. In: 10th International Conference on Research in Computational
Linguistics (ROCLING 1997), pp. 19–33. ACLCLP (1997)

13. Leacock, C., Chodorow, M.: WordNet: An Electronic Lexical Database, Chap.
Combining Local Context and WordNet Similarity for Word Sense Identification,
pp. 265–283. MIT Press, Cambridge (1998)

14. Lin, D.: An information-theoretic definition of similarity. In: 15th International
Conference on Machine Learning (ICML 1998), pp. 296–304. Morgan Kaufmann,
Burlington (1998)

15. Moerland, M., Hogenboom, F., Capelle, M., Frasincar, F.: Semantics-based news
recommendation with SF-IDF+. In: 3rd International Conference on Web Intelli-
gence, Mining and Semantics (WIMS 2013). ACM (2013)

https://doi.org/10.1007/978-3-030-21290-2_3
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1007/978-3-319-91563-0_11

Bing-CSF-IDF+: A Semantics-Driven Recommender System for News 153

16. Resnik, P.: Using information content to evaluate semantic similarity in a tax-
onomy. In: 14th International Joint Conference on Artificial Intelligence (IJCAI
1995), pp. 448–453. Morgan Kaufmann, Burlington (1995)

17. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and chal-
lenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Hand-
book, pp. 1–34. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-
7637-6 1

18. Robal, T., Haav, H.-M., Kalja, A.: Making web users’ domain models explicit by
applying ontologies. In: Hainaut, J.-L., et al. (eds.) ER 2007. LNCS, vol. 4802, pp.
170–179. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76292-
8 20

19. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

20. Turner, V., Gantz, J.F., Reinsel, D., Minton, S.: The digital universe of opportu-
nities: rich data and the increasing value of the internet of things. International
Data Corporation, White Paper, IDC 1672 (2014)

21. Wu, Z., Palmer, M.S.: Verb semantics and lexical selection. In: 32nd Annual Meet-
ing of the Association for Computational Linguistics (ACL 1994), pp. 133–138.
ACL (1994)

https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-3-540-76292-8_20
https://doi.org/10.1007/978-3-540-76292-8_20

QuRVe: Query Refinement for View
Recommendation in Visual Data

Exploration

Humaira Ehsan1(B), Mohamed A. Sharaf2, and Gianluca Demartini1

1 The University of Queensland, Brisbane, QLD, Australia
humairaehsan@gmail.com

2 United Arab Emirates University, Al Ain, Abu Dhabi, UAE
msharaf@uaeu.ac.ae

Abstract. The need for efficient and effective data exploration has
resulted in several solutions that automatically recommend interesting
visualizations. The main idea underlying those solutions is to automati-
cally generate all possible views of data, and recommend the top-k inter-
esting views. However, those solutions assume that the analyst is able to
formulate a well-defined query that selects a subset of data, which con-
tains insights. Meanwhile, in reality, it is typically a challenging task to
pose an exploratory query, which can immediately reveal some insights.
To address that challenge, this paper proposes to automatically refine the
analyst’s input query to discover such valuable insights. However, a naive
query refinement, in addition to generating a prohibitively large search
space, also raises other problems such as deviating from the user’s pref-
erence and recommending statistically insignificant views. In this paper,
we address those problems and propose the novel QuRVe scheme, which
efficiently navigates the refined queries search space to recommend the
top-k insights that meet all of the analysts’s pre-specified criteria.

1 Introduction

Visual data exploration is the rudiment of deriving insights from large datsets.
Typically, it involves an analyst performing the following steps: 1) selecting a
subset of data, 2) generating different visualizations of that subset of data, and 3)
sifting through those visualizations for the ones which reveal interesting insights.
Based on the outcome of the last step, the analyst might have to refine their
initial selection of data so that the new subset would show more interesting
insights. This is clearly an iterative and time-consuming process, in which each
selection of data (i.e., exploratory input query) is a springboard to the next one.

Motivated by the need for an efficient and effective visual data exploration
process, several solutions have been proposed towards automatically finding and
recommending interesting data visualizations (i.e., steps 2 and 3 above) (e.g., [6–
8,14,17]). The main idea underlying those solutions is to automatically generate
all possible views of the explored data, and recommend the top-k interesting
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 154–165, 2020.
https://doi.org/10.1007/978-3-030-54623-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_14

QuRVe 155

Fig. 1. View on input query Q

views, where the interestingness of a view is quantified according to some utility
function. Recent work provides strong evidence that a deviation-based formu-
lation of utility is able to provide analysts with interesting visualizations that
highlight some of the particular trends of the analyzed datasets [8,14,17,19]. In
particular, the deviation-based metric measures the distance between the prob-
ability distribution of a visualization over the analyzed dataset (i.e., target view)
and that same visualization when generated from a comparison dataset (i.e.,
comparison view), where the comparison dataset is typically the entire database.
The underlying premise is that a visualizations that results in a higher deviation
is expected to reveal insights that are very particular to the analyzed dataset.

Existing solutions have been shown to be effective in recommending interest-
ing views under the assumption that the analyst is “precise” in selecting their
analyzed data. That is, the analyst is able to formulate a well-defined exploratory
query, which selects a subset of data that contains interesting insights to be
revealed by the recommended visualizations. However, such assumption is clearly
impractical and extremely limits the applicability of those solutions. In reality,
it is typically a challenging task for an analyst to select a subset of data that
has the potential of revealing interesting insights. Hence, it is a continuous pro-
cess of trial and error, in which the analyst keeps refining their selection of data
manually and iteratively until some interesting insights are revealed. Therefore,
in this work we argue that, in addition to the existing solutions for automati-
cally recommending interesting views, there is an equal need for solutions that
can also automatically select subsets of data that would potentially provide such
interesting views. Hence, our goal in this work is not only to recommend inter-
esting views, but also to recommend exploratory queries that lead to such views.
To further illustrate the need for such solution, consider the following example.

Example 1. Consider an analyst wants to explore and find interesting insights
in the U.S. Census income dataset [1], which is stored in table C. Her intu-
ition is that analyzing the subset of data of those who have achieved a high
level of education might reveal some interesting insights. Therefore, she selects
that particular subset in which everyone has completed their 12th year of edu-
cation (i.e., graduated high school) via the query: Q: SELECT * FROM C WHERE
education ≥ 12. To find the top-k visualizations, she might use one of the
existing approaches (e.g., [8,17]), in which all the target and comparison aggre-

156 H. Ehsan et al.

gate views are generated and their deviation is computed by using a distance
function (e.g., Euclidean distance). Figure 1 shows the top-k visualization recom-
mended by such approaches. Particularly, the figure shows a bar chart in which
the x-axis is the dimension Hours per week, and the y-axis is the probability
distribution of the aggregate function COUNT. Such visualization is equivalent to
plotting the probability distributions of the target view Vt and the comparison
View Vc, which are expressed in SQL in Fig. 1. Hence, the deviation value shown
in Fig. 1 is the Euclidean distance between the probability distribution of Vt

and Vc. However, Fig. 1 clearly shows that the target and comparison views are
almost the same, which is also reflected by the low-deviation value of 0.0459.
However, such visualization would still be recommended by existing approaches
because it achieves the maximum deviation among all the views generated over
the data subset selected by query Q.

The previous example illustrates a clear need for a query refinement solu-
tion that is able to automatically modify the analyst’s initial input query and
recommend a new query, which selects a subset of data that includes inter-
esting insights. To that end, one straightforward and simple approach would
involve generating all the possible subsets of data by automatically refining the
predicates of the input query. Consequently, for each subset of data selected
by each query refinement, generate all possible aggregate views (i.e., visualiza-
tions). In addition to the obvious challenge of a prohibitively large search space
of query refinements, that naive approach would also lead to visualizations that
might appear to be visually interesting but they are irrelevant from the ana-
lyst’s perspective. Particularly, there are two issues with that approach, and in
turn the recommended visualization; 1) similarity-oblivious: a blind automated
refinement that is oblivious to the analyst’s preferences might result in a refined
query that is significantly dissimilar from the input query, and 2) statistical
insignificance: the subset selected by the refined query can be too small and as a
result the target views generated from that subset will miss a number of values
for the dimension attribute. This leads to views with high deviation values but
statistically insignificant.

The two issues mentioned above highlight the need for automatic refinement
solutions that are guided by the user’s preference and statistical significance,
which is the focus of this work. In particular, we propose a novel scheme QuRVe,
which is particularly optimized to leverage the specific features of the problem
for pruning that large search space, as explained in the next sections.

2 Preliminaries

2.1 View Recommendation

Similar to the recent data visualization platforms [8,17], we are given a multi-
dimensional dataset D(A,M), where A is the set of dimension attributes, M

is the set of measure attributes, and F is the set of possible aggregate func-
tions over the measure attributes M. In a typical visual data exploration session

QuRVe 157

the user chooses a subset DS of the dataset D by issuing an input query Q.
For instance, consider the query . In Q, T
specifies a combination of predicates, which selects DS for visual analysis (e.g.,
education ≥ 12 in Ex. 1). A visual representation of Q is basically the process
of generating an aggregate view Vi of its result (i.e., DS), which is then plotted
using some visualization methods such as bar charts, scatter plots, etc. There-
fore, an aggregate view Vi over DS is represented by a tuple (A,M,F, b) where
A ∈ A, M ∈ M, F ∈ F and b is the number of bins in case A is numeric. That
is, DS is grouped by dimension attribute A and aggregated by function F on
measure attribute M . For instance, the tuple
represents the aggregate view shown in Fig. 1.

Towards automated visual data exploration, recent approaches have been
proposed for recommending interesting visualizations based on deviation based
metric (e.g., [8,17]). In particular, it measures the deviation between the aggre-
gate view Vi generated from the subset data DS vs. that generated from the
entire database D, where Vi(DS) is denoted as target view, whereas Vi(D) is
denoted as comparison view. To ensure that all views have the same scale, each
target view Vi(DS) and comparison view Vi(D) is normalized into a probability
distribution P [Vi(DS)] and P [Vi(D)] and it is bounded by the maximum devi-
ation value DM . Accordingly, the deviation D(Vi), provided by a view Vi, is
defined as the normalized distance between those two probability distributions.

D(Vi) =
dist(P [Vi(DS)], P [Vi(D)])

DM
(1)

Then, the deviation D(Vi) of each possible view Vi is computed, and the k
views with the highest deviation are recommended (i.e., top-k) [8,9,17,19]. How-
ever, to ensure that those top-k recommended views reveal interesting insights,
we propose utilizing query refinement techniques, which are explained next.

2.2 Query Refinement

Automatic query refinement is a widely used technique for DBMS testing, infor-
mation retrieval and data exploration. In a nutshell, in this technique the user
provides an initial query and then it is progressively refined to meet a particu-
lar objective [13,16,18,20]. In this work, we propose to automatically refine an
input exploratory query for the objective of view recommendation. Particularly,
as mentioned in Sect. 2.1, the user provides an input query Q, which is progres-
sively refined by automatically enumerating all combinations of predicates for
the objective of generating interesting views.

Particularly, we consider queries having selection predicates with range
(<,≤, >,≥) operators. These predicates are defined on a set of numeric dimen-
sion attributes denoted as P. The number of predicates is p, such that |P| = p.
Each of this range predicate is in the form li ≤ Pi ≤ ui where Pi ∈ P and li and
ui are the lower and upper limits of query Q along predicate Pi. The domain
of predicate Pi is limited by a Lower bound Li and upper bound Ui. A refined
query Qj is generated by modifying the lower and/or upper limits for some of

158 H. Ehsan et al.

the predicates in Q. That is, for a predicate li ≤ Pi ≤ ui in query Q, a refined
predicate in Qj takes the form l′i ≤ Pi ≤ u′

i. Similar to [2,13], we convert a range
predicate into two single-sided predicates. Therefore, li ≤ Pi ≤ ui is converted
to two predicates: Pi ≤ ui

∧−Pi ≤ −li. This allows refinement of one or both
sides of the range predicates and this results in the total number of single sided
predicates to be 2p. The set of all of the refined queries is denoted as Q.

A refined query Qj is obtained by changing one or more predicates Pi ∈ T to
P ′
i , which naturally makes the refined query Qj different from the input query

Q. However, a refined query that is significantly dissimilar from its counterpart
input query would result in loss of user preference and might be deemed irrelevant
to the analysis. Hence, to quantify the change made to transform Q into the
refined query Qj , we define a similarity measure S(Q,Qj) in terms of the distance
between Qj and Q (i.e., s(Q,Qj)).

S(Q,Qj) = 1 − s(Q,Qj) (2)

While the exact specification of s(Q,Qj) is deferred to Sect. 4, it is worth
pointing out the impact of query refinement on the deviation computation
defined in Eq. 1. Particularly, when utilizing refinement, a view Vi can be either
generated from the input query, or a refined one. To associate each view with
its underlying query, we denote a view as Vi,Qj

to specify the ith view generated
over the result of query Qj . Accordingly, Eq. 1 is modified to define the deviation
D(Vi,Qj

) of a view Vi,Qj
, as:

D(Vi,Qj
) =

dist(P [Vi(DQj
)], P [Vi(D)])

DM
(3)

2.3 Hypothesis Testing

In visual data exploration, it is often the case that an observed high-deviation is
actually statistically insignificant. This problem leads to misleading ranking of
such views, and in turn inaccurate recommendations [3,4,21]. For instance, in
our recent work on the MuVE scheme [8,9], we made the following observations:

1. Some of the recommended top-k target views have very few underlying tuples,
which lead to higher deviation values. Consequently, such views receive higher
rank despite of the lack of real insight.

2. Often the data selected by the exploratory query result in only low-deviation
views. Consequently, the top-k recommend views will exhibit low-deviation, as
shown in Ex. 1. However, such top-k recommendations are clearly statistically
insignificant.

To determine whether the observed difference is statistically significant, we
employ the widely used approach hypothesis testing. Hypothesis testing deter-
mines if there is enough evidence for inferring that a difference exists between
two compared samples or between a sample and population. A difference is called

QuRVe 159

statistically significant if it is unlikely to have occurred by chance [3]. Hypothe-
sis testing involves testing a null hypothesis by comparing it with an alternate
hypothesis. The hypothesis to be tested is called the null hypothesis, denoted as
H0. The null hypothesis states that there is no difference between the population
and the sample data. The null hypothesis is tested against an alternate hypoth-
esis, denoted as H1, which is what we have observed in the sample data. For
instance, in Fig. 1 of Ex. 1, the hypothesis is that “high school graduates work
different number of hours per week (Hours worked is divided into two categories)
as compared to the population”, and this becomes H1. The corresponding H0 is
that no such difference exits. Likewise, each possible view Vi from each refined
query become a H1, which is to be tested for significance before recommendation.

Depending on the nature of the statistical test and the underlying hypothesis,
different null hypothesis statistical tests have been developed, e.g., chi-square test
for categorical dimension attributes. Furthermore, after stating H0 and H1, the
chosen statistical test returns p-value. The p-value is the probability of obtain-
ing a statistic at least as extreme as the one that was actually observed, given
H0 is true. Specifically, the p-value is compared against a priori chosen signif-
icance level α, where the conventionally used significance level is 0.05. Hence,
if pvalue(Vi) ≤ α, then H0 must be rejected, which means the Vi is statisti-
cally significant. Clearly, due to the nature of the statistical test involved, the
acceptance or rejection of H0 can never be free of error. If the test incorrectly
rejects or accepts H0, then an error has occurred. Hypothesis testing can incur
the following two types of error: 1) If H0 is rejected, while it was true, it is called
Type-I error and 2) If H0 is accepted, while H1 was true, it is called Type-II error.
Type-II error is critical in our case because we do not want to reject views that
might be interesting. The probability of Type-II error is specified by a parameter
β, which normally has a value 0.10 − 0.20. An alternate term is power, which is
the probability of rejecting a false H0, therefore, power = 1 − β. A priori power
analysis is employed to determine the minimum sample size that is necessary to
obtain the required power. By setting an effect size (ω), significance level (α),
and power level (β), the sample size to meet specification can be determined [5].

3 Query Refinement for View Recommendation

In a nutshell, the goal of this work is to recommend the top-k bar chart visualiza-
tions of the results of query Q and all its corresponding refined queries Qj ∈ Q,
according to some utility function. However, that simple notion of utility falls
short in capturing the impact of refinement on the input query. In particular,
automatic refinement introduces additional factors that impact the level of inter-
estingness, and in turn utility of the recommended views. Accordingly, in our
proposed scheme, we employ a weighted multi-objective utility function and con-
straints to integrate such factors. In particular, for each view Vi,Qj

, we evaluate
the following components:

1. Interestingness: Is the ability of view Vi,Qj
to reveal some insights about the

data, which is measured using the deviation-based metric D(Vi,Qj
) (Eq. 3).

160 H. Ehsan et al.

2. Similarity: Is the similarity between the input query Q, and the refined query
Qj underlying the view Vi,Qj

, which is measured as S(Q,Qj) (Eq. 2).
3. Statistical Significance: Is the ability of the refined query Qj and the view Vi,Qj

to generate a statistically significant result, which is captured by checking that
the size of the subset selected by Qj satisfies the constraint power(Qj), and the
significance of the view Vi,Qj

satisfies the constraint pvalue(Vi,Qj
).

To capture the factors and constraints mentioned above, we employ a weighted
multi-objective utility function, which is defined as follows:

U(Vi,Qj
) = αS × S(Q,Qj) + αD × D(Vi,Qj

) (4)

Parameters αS and αD specify the weights assigned to each objective in our
hybrid utility function, such that αS+αD = 1. Those weights can be user-defined
so that to reflect the user’s preference between interestingness and similarity.
Also, notice that all objectives are normalized in the range [0, 1].

To fully define the similarity component of our utility function, we revisit
Eq. 2 which quantifies the distance between Q and Qj . In literature, a number of
methods have been proposed to measure the distance between two range queries
[11,15,16]. Similar to [2,18], we calculate the distance in terms of absolute change
in predicate values (Eq. 5). This method provides a reasonable approximation of
the change in data selected by the refined query at a negligible cost. Additionally,
we normalize it by predicate bounds to accommodate the different scales of
various predicates.

s(Q,Qj) =
1
p

p∑

i=1

|lQj

i − lQi | + |uQj

i − uQ
i |

2|Ui − Li| (5)

Definition: Query Refinement for View Recommendation: G iven a user-
specified query Q on a database D, a multi-objective utility function U , a signif-
icance level α, statistical power 1 − β and a positive integer k. Find k aggregate
views that have the highest utility values, from all of the refined queries Qj ∈ Q

such that pvalue(Vi,Qj
) ≤ α and power(Qj) > 1 − β.

In short, the premise is that a view is of high utility for the user, if it satisfies
the specified constraints, shows high-deviation, and is based on a refined query
that is highly similar to the user specified query.

4 Search Schemes

For an input query Q, each possible query refinement of Q can be represented
as a point in p-dimensional space, where |P| = p (please see Sect. 2.2 for more
details). Clearly, one of the points in that space is the input query Q itself,
and the remaining points belong to the set of refined queries Q. Our high-level
goal is to: 1) generate the set Q, 2) compute the utility of all the aggregate
views generated from each query in Q, and 3) recommend the top-k views after
ranking them based on their achieved utility. To that end, clearly the large size

QuRVe 161

of Q and the corresponding aggregate views, together with the complexity of
evaluating the statistical significance and utility function of each view, makes
the problem highly challenging. Hence, in this section, we put forward various
search strategies for finding the top-k views for recommendation.

4.1 The Linear Scheme

Clearly, a naive way to identify the top-k objects is to score all objects based on
a scoring function, sort, and return the top-k objects. Accordingly, the Linear
scheme is basically an exhaustive and brute force strategy, in which views from all
refined queries are generated and ranked according to their utility. As we consider
predicates on continuous dimensions, infinite possible values can be assigned to
predicates in those refined queries. Therefore, each dimension is discretized with
a user specified parameter γ. This divides the range of dimension attribute into
1/γ equi-width intervals. In this scheme, irrespective of Q, iteratively all refined
queries are generated using all combinations of Predicates P1, P2...Pp.

For each query Qj ∈ Q, to check the constraint power(Qj) < 1 − β, a
function powerTest(Qj , ω, β, α) is defined, which returns true value if the con-
straint is satisfied, else it returns false. The cost of checking this constraint is
one database probe, where a COUNT query with predicates of Qj is executed
to get the sample size of Qj . Moreover, for the queries that satisfy the statis-
tical power constraint, all views are generated. Then for each view Vi,Qj

the
constraint pV alue(Vi,Qj

) < α is checked. Specifically, for this purpose, another
function significanceTest(Vi,Qj

, α) is defined, which returns a true value if p-
value < α . Consequently, for each view Vi,Qj

that satisfies the constraint, its
utility value U(Vi,Qj

) is computed, and finally the top-k views are returned.

4.2 The QuRVe Scheme

Clearly, the linear search scheme, visits every possible view, therefore, it is very
expensive in terms of execution time. In this section, we present the QuRVe
scheme, which reduces cost by pruning a large number of views. Notice that our
problem of finding top-k views is similar to the problem of top-k query processing,
which is extensively studied in various settings [12]. Generally in these settings
objects are evaluated by multiple objectives that contribute to the overall score
of each object. In terms of efficiency, the best performing techniques for various
top-k problem settings are based on the threshold algorithm (TA) [10,12]. TA
generates sorted lists of objects on partial scores for every objective, visits the
lists in round robin fashion and merges objects from different lists to compute
the aggregated scores. Typically, it early terminates the search as soon as it has
the top-k objects.

In our settings, we have a similar configuration i.e., we have two partial
scores of a view Vi,Qj

, namely: 1) Similarity score S(Q,Qj), 2) Deviation score
D(Vi,Qj

). These are stored in Slist and Dlist. Conversely, we also have some
key differences: 1) for any view Vi,Qj

the values of S(Q,Qj) and D(Vi,Qj
) are

not physically stored and are computed on demand, 2) calculating D(Vi,Qj
) for

162 H. Ehsan et al.

a view is an expensive operation, and 3) the size of the view search space is
prohibitively large and potentially infinite.

Obviously, a forthright implementation of TA is infeasible to our problem due
to the limitations mentioned before. However, recall that the similarity objec-
tive S(Q,Qj) is the comparison of predicates of Qj with Q and involves no
database probes. Hence, a sorted list Slist can be easily generated at a negli-
gible cost. However, populating the Dlist in a similar fashion is not possible,
as it involves expensive database probes. Therefore, to minimize the number
of probes and efficiently populate Dlist, the Sorted-Random (SR) model of the
TA algorithm [12] is employed. In the SR model the sorted list (S) provides
initial list of candidates and the random list (R) is probed only when required.
Accordingly, QuRVe provides Slist as the initial list of candidate views, by incre-
mentally generating refined queries in decreasing order of similarity and popu-
lating the Slist. The views in Slist have their partial scores, the final scores are
only calculated for the views for which the Dlist is also accessed. To achieve
this, QuRVe maintains the variables UUnseen: Stores the maximum utility of
the views that are not probed yet and USeen: Stores the kth highest utility
of a view seen so far. Specifically, to calculate UUnseen, the upper bound on
deviation is used. Particularly, consider Vi,Qj

as the next view in Slist and let
the upper bound on its deviation be Du(Vi,Qj

). Moreover, let the upper bound
on deviation from all views be Du then Du = Max[Du(Vi,Qj

)]. Consequently,
UUnseen = αS × S(Q,Qj) + (1 − αS) × Du. As the D(Vi,Qj

) is the normalized
deviation, hence theoretically Du = Max[Du(Vi,Qj

)] = 1.
In detail, QuRVe starts with initializations as: (i) there are no views generated

yet, therefore USeen = 0, (ii) UUnseen = Du, and (iii) Q has the highest similarity
i.e., S(Q,Q) = 1, therefore, Q is added to Qlist as the first member. Then, the
power of the currently under consideration query Qj is checked by the function
powerTest(Qj , ω, β, α). Next, the corresponding views are generated by the
function generateViews(Qj) and the statistical significance test is performed on
each view by the function significanceTest(Vi,Qj

, α). The Utility of the views
that pass the test is computed. Accordingly, the list topk is updated. The utility
of kth highest view is copied into USeen, to maintain the bound on the seen
utility values. This completes processing the currently under consideration query
Qj . Later, the next set of neighboring queries are generated. In next iteration,
another query Qj is taken from the Qlist in order of the similarity objective
value and accordingly the value of UUnseen is updated. The iteration continue,
until either there are no more queries to process, or the utility of the remaining
queries will be less than the already seen utility (i.e., UUnseen > USeen is false). If
QuRVe terminates because of the first condition that means its cost is the same
as Linear search, as the optimization did not get a chance to step in. However,
often QuRVe terminates because of the second condition (i.e., UUnseen > USeen is
false) and achieves early termination. The most efficient performance of QuRVe
is expected when UUnseen decreases quickly during search and early termination
can be triggered.

QuRVe 163

Fig. 2. Impact of αS and
αD on cost

Fig. 3. Impact of k, αS =
0.6

Fig. 4. Impact of dimen-
sions

5 Experimental Evaluation

We perform extensive experimental evaluation to measure both the efficiency
and effectiveness of out proposed schemes for top-k view recommendation.

Data Analysis: We assume a data exploration setting in which multi-dimensional
datasets are analyzed. We use CENSUS: the census income dataset [1]. The
dataset has 14 attributes and 48,842 tuples. The independent categorical
attributes of the dataset are used as dimensions (e.g., occupation, work class,
hours per week, sex, etc.), whereas the observation attributes are used as mea-
sures (capital gain, etc.) and the numerical independent attributes are used for
predicates (e.g., education, age, etc.). The aggregate functions used are SUM,
AVG and COUNT. In the analysis, all the αS is in the range [0 − 1], where
αS + αD = 1. In default settings αS = 0.5, k = 10 and γ = 1

23 . For the purpose
of statistical significance in experiments we use chi-square goodness of fit test.

Performance: We evaluate the efficiency and effectiveness of the different recom-
mendations strategies in terms of the cost incurred. As mentioned in Sect. 3, the
cost of a strategy is the total cost incurred in processing all the candidate views.
We use the total views probed as the cost metric. Each experiment is performed
with 10 randomly generated input queries, spread around the search space, then
average of the cost is taken.

Impact of the α Parameters (Fig. 2): In this experiment, we measure the impact
of the α values on cost. Figure 2 shows how the cost of Linear and QuRVe
schemes are affected by changing the values of αS . In Fig. 2, αS is increasing
while αD is implicitly decreasing. Notice that the Linear scheme has the same
cost for all values of αS , which is as expected since it performs exhaustive search
over all views. Therefore, its cost depends on the number of all combinations,
irrespective of α. Figure 2 also shows that QuRVe has almost the same cost as
Linear for αS = 0 and αS = 0.1, but outperforms it as the value of αS increases.
This is because in QuRVe, the upper bound on deviation is set to the theoretical
maximum bound i.e., Du = 1 and when αS = 0, UUnseen = 0 × S + 1 × Du = 1,
consequently early termination is not possible. On the contrary, as αS increases,
chances of applying early termination based on the similarity value becomes
possible. Hence, this prunes many database probes.

164 H. Ehsan et al.

Impact of k (Fig. 3): Figure 3 shows that Linear is insensitive to the increase in
the value of k, because it visits all views and sorts them according to their utility
irrespective of the value of k. For αS = 0.6, QuRVe performs better than Linear
for all values of k, due to the early termination feature of QuRVe scheme.

Scalability (Fig. 4): The search space of our problem depends on p, γ, |A|, |M | and
|F |. Increasing any of these factors explodes the search space. Consequently, the
cost of all schemes increases as there are more views that are visited in search
for the top-k views. Figure 4 shows the impact of number of the dimensions
on cost. Particularly for this experiment the number of dimensions (|A|) are
increased from 1 to 9. Figure 4 shows that the increase in the cost of Linear is
linear with the increase in |A|. However, for QuRVe the increase in the cost is
slow. Particularly, the cost of QuRVe increases as the number of dimension are
increased from 1 to 3, because the schemes search from more views to generate
top-k views. But for |A| = 5 the cost decreases this is because a new dimension
is added which had views with high deviation and that resulted in increasing
the value of USeen and triggering early termination.

6 Conclusions

Motivated by the need for view recommendation that lead to interesting dis-
coveries and avoid common pitfalls such as random or false discoveries. In this
paper we formulated the problem of query refinement for view recommendation
and proposed QuRVe scheme. QuRVe refines the original query in search for
more interesting views. It efficiently navigates the refined queries search space
to maximize utility and reduce the overall cost. Our experimental results show
employing the QuRVe scheme offer significant reduction in cost.

Acknowledgement. This work is partially supported by UAE University grant
G00003352.

References

1. https://archive.ics.uci.edu/ml/datasets/adult
2. Albarrak, A., Sharaf, M.A., Zhou, X.: SAQR: an efficient scheme for similarity-

aware query refinement. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee,
M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8421, pp.
110–125. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05810-8 8

3. Bay, S.D., Pazzani, M.J.: Detecting group differences: mining contrast sets. Data
Min. Knowl. Disc. 5(3), 213–246 (2001). https://doi.org/10.1023/A:1011429418057

4. Chung, Y., et al.: Towards quantifying uncertainty in data analysis & exploration.
IEEE Data Eng. Bull. 41(3), 15–27 (2018)

5. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, revised edn.
Academic Press, Cambridge (1977)

6. Demiralp, Ç., et al.: Foresight: recommending visual insights. PVLDB 10(12),
1937–1940 (2017)

https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.1007/978-3-319-05810-8_8
https://doi.org/10.1023/A:1011429418057

QuRVe 165

7. Ding, R., et al.: Quickinsights: quick and automatic discovery of insights from
multi-dimensional data. In: SIGMOD, pp. 317–332 (2019)

8. Ehsan, H., et al.: MuVE: efficient multi-objective view recommendation for visual
data exploration. In: ICDE, pp. 731–742 (2016)

9. Ehsan, H., et al.: Efficient recommendation of aggregate data visualizations. IEEE
Trans. Knowl. Data Eng. 30(2), 263–277 (2018)

10. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

11. Kadlag, A., Wanjari, A.V., Freire, J., Haritsa, J.R.: Supporting exploratory queries
in databases. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24571-1 54

12. Marian, A., et al.: Evaluating top- k queries over web-accessible databases. ACM
Trans. Database Syst. 29(2), 319–362 (2004)

13. Mishra, C., Koudas, N.: Interactive query refinement. In: EDBT (2009)
14. Sellam, T., et al.: Ziggy: characterizing query results for data explorers. PVLDB

9(13), 1473–1476 (2016)
15. Telang, A., et al.: One size does not fit all: toward user and query dependent ranking

for web databases. IEEE Trans. Knowl. Data Eng. 24(9), 1671–1685 (2012)
16. Tran, Q.T., et al.: How to conquer why-not questions. In: SIGMOD (2010)
17. Vartak, M., et al.: SEEDB: efficient data-driven visualization recommendations to

support visual analytics. PVLDB 8(13), 2182–2193 (2015)
18. Vartak, M., et al.: Refinement driven processing of aggregation constrained queries.

In: EDBT (2016)
19. Wang, C., et al.: Efficient attribute recommendation with probabilistic guarantee.

In: KDD, pp. 2387–2396 (2018)
20. Wu, E., et al.: Scorpion: explaining away outliers in aggregate queries. PVLDB

6(8), 553–564 (2013)
21. Zhao, Z., et al.: Controlling false discoveries during interactive data exploration.

In: SIGMOD (2017)

https://doi.org/10.1007/978-3-540-24571-1_54
https://doi.org/10.1007/978-3-540-24571-1_54

A Bloom Filter-Based Framework for
Interactive Exploration of Large Scale

Research Data

Gajendra Doniparthi1(B), Timo Mühlhaus2, and Stefan Deßloch1

1 Heterogeneous Information Systems Group, University of Kaiserslautern,
Kaiserslautern, Germany

doniparthi@informatik.uni-kl.de, muehlhaus@bio.uni-kl.de
2 Computational Systems Biology, University of Kaiserslautern,

Kaiserslautern, Germany
dessloch@informatik.uni-kl.de

Abstract. We present a novel RDBMS-based framework for interac-
tively querying and exploring large-scale bio-science research data. We
focus on the interactive exploration model and its evaluation support
using Bloom filter indexing techniques for Boolean containment expres-
sions. In particular, our framework helps explore structured research
data augmented with schema-less contextual information. Our exper-
iments show significant improvements over traditional indexing tech-
niques, enabling scientists to move from batch-oriented to interactive
exploration of research data.

Keywords: Interactive data exploration · Relational JSON ·
Cross-omics · Bloom filter indices · Research data management

1 Introduction

With the advances in scientific research and big data processing, scientists now
have access to large amounts of heterogeneous research data thus opening up
opportunities for integrated exploration to create new and meaningful scientific
knowledge. In particular, the standard frameworks for bio-science experiments
follow hierarchical models [6] which makes them trivial to implement and main-
tain using conventional relational databases. However, augmented data such as
instrument parameters, contextual information, etc., is schema-less and does
not blend well with the n-ary storage model of the relational approach. The
sparsity and the volume of the attribute-value format data make it difficult to
design data management systems that allow analysts to interactively explore the
research data at acceptable latencies [7]. Although traditional RDBMS systems
offer data types such as JSON for schema-less development, the indexing support
is still not extensive [5] and the typical one-shot database querying approach is
not suitable for interactive exploration. In this paper, we introduce a vertically-
scalable interactive exploration framework that uses a simple relational model
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 166–176, 2020.
https://doi.org/10.1007/978-3-030-54623-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_15

A Bloom Filter-Based Framework for Interactive Exploration 167

plus JSON and a fast, scalable, and space-efficient Bloom filter-based indexing
technique, specifically built for exploratory data analysis. We discard the typical
one-shot database queries approach and instead allow data analysts to explore
research data progressively while interactively evaluating Boolean containment
filter conditions on huge volumes of contextual information, all in-memory. We
designed our framework keeping in mind the typical research data management
applications where writes and reads are frequent but updates and deletes are
negligible.

1.1 Motivating Example

The data snippet in Fig. 1 shows acclimation reactions on a set of plant samples
through varying temperature and light. In the study, the abundance of proteins
from each sample is found by measuring the peptide instances under various
experimental conditions. For simplicity, the contextual parameters and values
per each instance are shown as attributes P1, P2, ..., Pn. Different Boolean com-
binations of these contextual parameters form the Modification Patterns, say,
((Pm ∪ Pn) ∩ Pk), (Pm > 1.8 ∪ Pk = high) etc. To find the list of Samples
and corresponding Instances containing a given modification pattern requires
relational join and the containment predicate condition evaluated on the JSON
column. However, in typical bio-science data analysis, the modification patterns
are not known in advance and they are constructed at the time of analysis.
Moreover, the modification patterns are varied and applied on the same data
set to extract multiple result sets which are fed to the subsequent computation
workflows, thus, making the one-shot querying approach time consuming and
impractical for large databases. Hence, in our framework, we leverage Bloom
filters to memorize the query result for each attribute beforehand and let the
analysts compose and evaluate the modification patterns interactively during
analysis.

Control_0A_0D_R1

Cold_180A_0D_R1

Cold_15A_0D_R1

HiLight_15A_0D_R1

HiLight_180A_0D_R1

Cold_15A_0D_R1

Cold_15A_0D_R1

Control_0A_0D_R1

Cold_180A_0D_R1

Cold_15A_0D_R1

Cold_180A_0D_R1

Cold_180A_0D_R1

Cold_15A_0D_R1

AT3G26650.1

AT1G42970.1

AT1G24360.1

AT1G24360.1

AT5G48300.1

AT1G42970.1

AT3G26650.1

AT1G24360.1

Peptide

Peptide

Peptide

Peptide

Peptide

Peptide

Peptide

Peptide

0.76538981

0.664623548

0.839070002

0.604167075

0.644000732

0.587155655

0.70467738

0.684514579

Cold_180A_0D_R1 AT5G48300.1 Peptide 0.54030751

{P2, P5, P6}

{P1, P3}

{P1, P3, P6}

{P4, P6, P8}

{P2}

{P5, P6, P9}

{P4}

{P2, P4, P6, P9}

{P1}

Fig. 1. Relational+JSON to capture both structured research data and schema-less
contextual information. Highlighted tuples for the Modification Pattern ((P2 ∪ P5) ∩
P6).

168 G. Doniparthi et al.

1.2 Problem Statement and Outline

We developed the problem statement for this paper out of the requirements we
gathered from our Computational Biology group who are actively working on
integration and exploration of large scale cross-omics1 research data. Consider
a database D with a set of relations {R1, R2, ..., Rn}, each with a JSON col-
umn to store an array of attribute-values from known vocabularies. The JSON
data adhere to a predefined application schema. Given that the relations fol-
low a hierarchical model R1 → R2 → ... → Rn through primary key-foreign
key relationships, we want to design a framework that can help data analysts
perform exploratory operations on large scale data sets interactively. The frame-
work should allow for progressive filtering of data from the relations of interest
while evaluating Boolean predicate expressions on the respective JSON data
and let the analyst download a snapshot of the filtered data at any stage of the
exploration.

We discuss the related work in the next section and later present our frame-
work with the set of exploration operations that address the given user require-
ments. We describe in detail our indexing approach for massive sets of attribute-
value pairs using Bloom filters, the limitations, and our segmentation approach to
overcome those limitations. In our experiments, we compare interactive latencies
when using Bloom filter indices with inverted indices and vertical partitioning
and conclude by summarizing our experiment results.

2 Related Work and Preliminaries

Decomposed Storage Model (DSM) [2] is one of the early solutions proposed
to handle sparse attribute-value format data. Also, extensions of DSM such as
Dynamic Tables [3] were used to avoid a large number of relational joins at
the time of querying, unlike PIVOT/UNPIVOT operators. The introduction
of JSON data types in RDBMS platforms has enabled a document-object-store
model by storing JSON data natively without the need for flattening it into rela-
tional format [5]. However, the schema-less JSON data can only be considered as
text documents for indexing. Typically, a generalized inverted index over JSON
data indexes both keywords and hierarchical path structures in a document to
provide ad-hoc search capabilities.

Controlled vocabularies play a key role in keeping track of predefined and
standardized parameter names. Particularly in bio-science experiments, they add
semantics, standard syntax, and formalism to the terms used by scientists to
represent them as intended. The finite number of known sets of attributes from
the vocabularies combined with the requirement for Boolean containment queries
makes Bloom filters the best choice for indexing these huge volumes of contextual
data in attribute-value format.

1 omics - an informal reference to a field of study in biology ending in -omics, such as
Genomics, Proteomics, Metabolomics etc.

A Bloom Filter-Based Framework for Interactive Exploration 169

2.1 Bloom Filters

A Bloom filter [1] is an array of m bits for representing a set S =
{x1, x2, x3, ..., xn} . To begin with, the bit array is initialized to zero. The idea
is to use a set of k uniform hash functions, hi(x), 1 ≤ i ≤ k to map elements
x ∈ S to random numbers uniform in the range 1..m. The basic operations on
Bloom filters include adding an element to the set and querying the element
membership from the set. To add an element x to the set, it is fed to the k
hash-functions and the bits of the returned positions are set to 1. To test if an
element is a member of the set, the element is fed to the k hash functions to
receive k array positions. The element is not a member of the set if any of the
bits at those k positions is 0. This way, the Bloom filter guarantees that there
exists no false negatives, but it can return false positives because of possible hash
collisions. Assuming that the hash functions are perfectly random, it is possible
to estimate the probability of false positives.

Fig. 2. Bloom filters set union

Bloom filters can also be used
to perform basic set operations such
as union and intersection. Assume
that the Bloom filters BF (S1) and
BF (S2) represents two separate sets
S1 and S2 respectively.

Definition 1. Set Union: Consider-
ing the same bit array size m and the
same number of hash functions k is
used in the Bloom filters BF (S1) and
BF (S2), then BF (S1 ∪ S2) = BF (S1) ∪ BF (S2) is represented by a logical
OR operation of the two bit arrays. The merged filter BF (S1 ∪ S2) will report
any element belonging to set S1 or S2. Also, the false positive probability of
BF (S1) ∪ BF (S2) is not less than that of BF (S1) and BF (S2) [4].

Figure 2 depicts the set union operation. The bit-wise logical OR of the
respective Bloom filter arrays of the sets S1 and S2 is sufficient approximation
of union that still maintains the original querying property of never returning
false negatives.

3 Framework

Within an active user session, each analysis task in our web/client-based frame-
work begins with defining the search space. The framework offers a set of oper-
ations with certain semantic constraints to aid data analysts with each step of
the interactive analysis. A typical interactive analysis task includes:

1. Defining the search space.
2. Initializing the search space by loading the signatures of the data tuples into

the main memory.

170 G. Doniparthi et al.

3. Filtering the data tuple signatures progressively. Allow for interactive predi-
cate construction and evaluation of Boolean predicates.

4. Lazy materialization of the snapshot of the search space at any stage of
interactive exploration.

Search Space Definition: The first step of the analysis task is defining the
search space which is an imaginary two-dimensional space in main memory.
Any relation within the hierarchy can be defined as one of its dimensions or
axes. An initial selection predicate can be attached to the dimension definition
which gets evaluated at the time of loading the data tuple signatures into the
memory. This helps in initializing the search space data structure with the set
of data tuples we are interested in. A dimension is formally defined as Ddim =
{R,S, Pi} where R is the relation from the hierarchy which is mandatory, S is
the signature definition for each data tuple of the relation and Pi is the initial
predicate expression. Both signature definition and initial predicate expressions
are optional. By default, the id of each data tuple of the relation is considered
to be its signature.

Initialization: The Search Space data structure is formally defined as Ω =
{Dx,Dy, Px, Py} where Dx and Dy are the dimension definitions. The framework
automatically aligns the dimensions to follow the strict parent-child relation
from the hierarchy (not necessarily an immediate parent-child). For example,
we cannot have both the dimensions of the search space with the same Samples
relation for exploration. Px and Py are to keep track of sets of attributes in the
form of Boolean expressions evaluated on respective attribute-value JSON data.
They are initialized to null and subsequently updated after each interactive
operation. At the time of initialization, the framework joins the two relations
of the hierarchy and projects only the ids of the respective data tuples which
satisfy the given initial predicate expressions in the dimension definitions. Once
the search space is initialized, the analyst can execute a range of exploration
operations and view the updated search space after every action. The set of
operations which can be performed are: update, mockupdate, merge, save, load
and delete.

Exploration and Progressive Filtering: The update operation takes a
dimension name and a set of contextual attributes as its parameters and updates
the search space by retaining the signatures of data tuples from the respective
dimension containing any of those given attributes. The idea is to use member-
ship queries on the Bloom filter indices and filter out the signatures which do
not satisfy the Boolean predicate condition. Consider the initialized search space
Ssp = {Dx,Dy, Px = ∅, Py = ∅}. The operation update(Ssp,Dy, [a1, a2, ..., an])
would evaluate the Boolean predicate expression a1 ∪ a2 ∪ ... ∪ an on the dimen-
sion Dy and prune the signatures from the search space accordingly, resulting
in Ssp = {Dx,Dy, Px = (∅), Py = (a1 ∪ a2 ∪ ... ∪ an)}. Subsequent update

A Bloom Filter-Based Framework for Interactive Exploration 171

operations performed on the search space narrow down the list of signatures
to those satisfying the respective Boolean conditions. In summary, the Boolean
predicate expressions of subsequent update operations on the same search space
are equivalent to the logical AND of individual sets of OR-ed attributes. The
merge operation performs the logical OR on all the signatures from the two
search spaces and updates the predicate expressions for each dimension respec-
tively. The mockupdate operation works same as update operation except that
the search space is not updated. It simply returns the summary of the opera-
tion result such that the analyst could foresee the result of the update operation
without actually updating the search space.

Lazy Materialization: One important feature of the framework is the flexibil-
ity offered in materializing data tuples and contextual information offline. Upon
user command, the full set of data tuples are retrieved from the database using
the signatures from the search space and downloaded to disk in the chosen data
format, say, CSV, Tab-delimited, JSON, etc. The data analyst can even mate-
rialize and download the search space after each exploration operation such as
update or merge.

4 Indexing Using Bloom Filters

Apart from basic set operations, we can also use Bloom filters to query the
subsets of elements from the given set of elements. Consider three sets S =
{x1, x2, x3, ..., xn}, T = {xi : Φ1(x), i ∈ 1..n} and Q = {xj : Φ2(x), j ∈ 1..n}
where T ⊆ S and Q ⊆ S. The set T is the result set of elements that satisfy
a predicate expression Φ1(x) and Q is the result set of elements that satisfy a
predicate expression Φ2(x). Also, the Bloom filters BF (T) and BF (Q) are of
same bit array sizes and created using the same number of hash functions. Here,
we ignore the false positives for simplicity.

Definition 2. Simple Query: Checking the membership for all elements of set
S on BF (T) is equivalent to querying the subset of elements from set S which
satisfy the predicate expression Φ(x).

Definition 3. Union Query: By Definition 1 of Set Union, the merged filter
BF (T ∪ Q) reports any element belonging to set T or set Q. Checking the mem-
bership for all elements of set S on BF (T ∪Q) is equivalent to querying the subset
of elements from the set S which satisfy the predicate expression Φ1(x) ∪ Φ2(x).

4.1 Limitations of Bloom Filter Indexing

In addition to false positives, there are a few other limitations of using Bloom
filters for set operations. Firstly, when using Bloom filters to query a subset from
the given set of elements, we have to test the membership for all elements in the
given set. Even though the Bloom filter can answer membership queries in O(k)

172 G. Doniparthi et al.

time for a given bit vector size, the execution time will be proportional to the
number of elements to be checked. Secondly, the need for estimating the number
of elements in the set beforehand and initialize the bit array. Also, with the
growing size of the set, there is a need for periodically testing the false positive
rate and the complex task of dynamically re-sizing the filter. Lastly, Bloom
filters cannot handle the deletion of elements from sets in general. However,
querying subsets of elements from a given set will not have any effect on the result
due to deletions. Our indexing approach overcomes these limitations through
segmentation and hence not only avoids the need to run through all tuple ids in
the relation to evaluate the membership query but also can compute the Bloom
filter size for a fixed false positive rate.

4.2 Segmentation Approach

Through segmentation, we divide the data tuples in the relation into non-
overlapping subsets using a monotonically increasing primary key/tuple iden-
tifier. The Bloom filters are created and maintained per segment and attribute
as shown in Fig. 3. They are serialized and persisted in secondary storage. Con-
sider a database relation R with a monotonically increasing integer primary
key p and a set of attributes a1, a2, ..., ak. Let t1, t2, ..., tn be the tuples in
the relation R with respective keys p1, p2, ..., pn. A segment Si is a subset of
tuples with keys ranging from pi, pi+1, ..., pi+x in monotonically increasing order
where x is the segment size. The first segment S1 contains the tuples with keys
ranging from p1, p2, ..., px. The segments are ordered disjoint sets of keys i.e.
S1 ∩ S2 ∩ ... ∩ Sn = ∅ and S1 ∪ S2 ∪ ... ∪ Sn = R. The segment size x can be
optimized. However, it is fixed to a constant size before building the Bloom filter
indices since any changes to the segment size requires re-building the indices. We
recommend having the segment size multiple folds larger than the total number
of attributes to be indexed. This reduces the total number of Bloom filters and
retrievals would be faster. However, setting the segment size to a very large num-
ber would result in maintaining large-sized Bloom filters. To achieve a fixed bit

Fig. 3. The segmentation approach

A Bloom Filter-Based Framework for Interactive Exploration 173

vector size, two other parameters, which can be tuned but have to be set before
building the indices are, the number of hash functions and the false positive rate.
The segmentation approach is vertically-scalable and as such does not limit the
number of attributes to be indexed or the number of data tuples in the relation.

5 Experiments

We compare our Bloom filter indexing with other methods such as Inverted
Indices and Vertical Partitioning to evaluate our framework and investigate the
following aspects:

1. How fast are interactive response times when Bloom filter indices are used to
evaluate Boolean predicate expressions on attribute-value format data?

2. What is the average time taken to perform an end-to-end analysis task?
3. What are the storage space requirements across the three different methods?
4. What is the overall impact of false positives?

We address each of the above points with three databases of varying sizes, say,
Small ≈ 50 GB, Moderate ≈ 104 GB, and Large ≈ 520 GB. We use PostgreSQL
version 11.7 as the database for all of our experiments performed on a server
running Ubuntu 18.04.3 LTS 64 bit. The server hardware configuration is given
as 2 × 6 Core Intel Xeon Bronze 3104 CPU @ 1.70 GHz, 128 GB RAM, and
3TB HDD. The application layer along with the front-end is developed in Spring
Boot Framework 2.1.6 and also deployed in the same server.

Data: To simulate a real-world environment, we use uniformly distributed syn-
thetic research data for our evaluation. The test databases for our experiments
are created with a simplified hierarchical data model where we only consider
two levels of the standardized bio-science research data hierarchy with 8 dif-
ferent types of bio-instances i.e. lipid, peptide, gene, etc. We generate a total
of 500 Bio-Instance data tuples for each Bio-Sample of any type. Similarly,
each Bio-Instance is enriched with 300 randomly chosen attributes from the
test vocabulary containing a total of 2550 unique attributes. For example, the
Large database contains a total of 95 000 Bio-Samples, 47.5 million related Bio-
Instances, and a total count of 14.2 billion attribute-value pairs as contextual
information. Similarly, the Small and Moderate databases contain a total of
1.3 and 2.7 billion attribute-value pairs respectively. We use the segmentation
approach for both inverted indices and Bloom filters with a fixed segment size
of 215 = 32 768. The Bloom filters are created with an optimal bit vector size
of 314 084 and a total of 7 hash functions to achieve a fixed false positive rate
of 1%. For Vertical Partitioning, we create separate relations for each attribute
with the ids of Bio-Instance tuples containing that attribute as part of its JSON
data i.e. a total of 2550 single-column tables, each for one attribute.

174 G. Doniparthi et al.

Fig. 4. Latencies measured per iteration Fig. 5. Index sizes

Fig. 6. Cumulative latencies Fig. 7. False positives

Results: We simulated Modification Patterns by evaluating our experimental
analysis tasks with 8 interactive update operations per task evaluated on a set of
5 contextual attributes. The attributes for the experiments are selected randomly
out of the test vocabulary and all the analysis tasks are repeated for each bio-
instance type (peptide, metabolite etc.) and the results are averaged for each
database. The average number of signatures per each bio-instance type loaded
into the memory i.e. the Search Space are 0.5 million, 1.1 million and 6 million for
databases Small, Moderate and Large respectively. Figure 4 shows the latencies
measured at the application layer at the end of each update operation with
Moderate and Large databases. We notice a similar pattern with Small database
as well. When using inverted indices, the early set of update operations take more
time due to list operations such as sorting, merging, etc. However, as the number
of signatures is reduced after each subsequent iteration, the latencies improve.
In contrast, irrespective of the size of the search space, Bloom filter indices are
much faster with nearly the same latency per each iteration. Figure 6 shows
the average cumulative latencies of the interactive operations. We use vertical
partitioning as a baseline where we let the database engine perform the union and
intersection of ids. Here too, using Bloom filter indices proves to be much faster
than both the baseline and the inverted indices. It only takes less than 2 min
when using Bloom filters to perform all 8 interactive operations on the large
search space of 6 million signatures compared to the vertical partitioning and

A Bloom Filter-Based Framework for Interactive Exploration 175

the inverted indices, which take nearly 8 min and more than 20 min respectively.
Figure 5 shows the index sizes in GB across different databases measured with
the segment size 32 768 to create Bloom filter and inverted indices. Since we used
2550 unique attributes, Vertical Partitioning of ids generated the same number
of relations. We observe that the inverted indices used less storage space than
Bloom filters i.e. ≈10% of the data size vs. ≈17%. However, as expected, Vertical
Partitioning required ≈91%. When search space is left with a relatively small
number of filtered signatures, the false positives are expected to be near zero.
We noticed a similar trend in our experiments and the number of false positives
decreased relatively with each update operation almost reducing the search space
by 50%. Figure 7 shows the decreasing trend of false positives per each iteration
with different database sizes.

6 Conclusion and Future Work

In this work, we presented an RDBMS-based vertically-scalable novel framework
to interactively explore combined relational and attribute-valued data. We used
Bloom filter indices to speed up the interactive response times, particularly,
when evaluating Boolean containment queries on a large volume of schema-
less data. We demonstrated through our experiments that using Bloom filter
indices is many folds faster than the traditional inverted indices while the storage
space requirements for the Bloom filter indices are much lower compared to the
decomposed storage of the attribute-valued data modeled in JSON format.

As an avenue of future work, we extend the framework for equality and
complex predicates such as arbitrary range queries on the attribute-value data.
The overall execution times can further be improved by adding a caching layer
and implementing the Bloom filter index on JSON datatype within the database
layer.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.362692

2. Copeland, G.P., Khoshafian, S.: A decomposition storage model. In: Navathe, S.B.
(ed.) Proceedings of the 1985 ACM SIGMOD International Conference on Man-
agement of Data, Austin, Texas, USA, 28–31 May 1985. pp. 268–279. ACM Press
(1985). https://doi.org/10.1145/318898.318923

3. Corwin, J., Silberschatz, A., Miller, P.L., Marenco, L.N.: Application of information
technology: dynamic tables: an architecture for managing evolving, heterogeneous
biomedical data in relational database management systems. JAMIA 14(1), 86–93
(2007). https://doi.org/10.1197/jamia.M2189

4. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng. 22(1), 120–133 (2010). https://doi.org/10.1109/TKDE.
2009.57

https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/318898.318923
https://doi.org/10.1197/jamia.M2189
https://doi.org/10.1109/TKDE.2009.57
https://doi.org/10.1109/TKDE.2009.57

176 G. Doniparthi et al.

5. Liu, Z.H., Hammerschmidt, B.C., McMahon, D.: JSON data management: support-
ing schema-less development in RDBMS. In: Dyreson, C.E., Li, F., Özsu, M.T.
(eds.) International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, 22–27 June 2014. pp. 1247–1258. ACM (2014). https://doi.org/10.1145/
2588555.2595628

6. Sansone, S.A., Rocca-Serra, P., Field, D., Maguire, E., Taylor, C., et al.: Toward
interoperable bioscience data. Nat. Genet. 44(2), 121–126 (2012). https://www.
nature.com/articles/ng.1054

7. Wang, X., Williams, C., Liu, Z.H., Croghan, J.: Big data management challenges
in health research - a literature review. Briefings Bioinform. 20(1), 156–167 (2019).
https://doi.org/10.1093/bib/bbx086

https://doi.org/10.1145/2588555.2595628
https://doi.org/10.1145/2588555.2595628
https://www.nature.com/articles/ng.1054
https://www.nature.com/articles/ng.1054
https://doi.org/10.1093/bib/bbx086

Analyzing Twitter Data with Preferences

Lena Rudenko1(B), Christian Haas1, and Markus Endres2

1 University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany
lena.rudenko@informatik.uni-augsburg.de,

christian.michael.haas@student.uni-augsburg.de
2 University of Passau, Innstr. 43, 94032 Passau, Germany

markus.endres@uni-passau.de

Abstract. Today Twitter is one of the most important sources for infor-
mation distribution. But finding useful and interesting tweets on a spe-
cific topic is a non-trivial task, because there are thousands of new posts
every minute. In this paper, we describe our preference-based search app-
roach on Twitter messages, which allows users to get the best possible
results. For this, we introduce a new CONTAINS preference constructor to
search on full-text data, use NLP techniques to handle natural language
mistakes, and present experiments.

Keywords: Preferences · Twitter · NLP

1 Introduction

Today, social networks and particularly Twitter spread information faster than
usual traditional media. The paradigms are changing: first there was the tele-
graph, then radio and television. Today it is the turn of internet and social
networks. They are the fastest way to spread information. For example, the first
message about the emergency landing of the flight AWE 1549 in the Hudson
River appeared on Twitter less than 5 min after the actual event (see Fig. 1).
On Twitter you get the information fast and firsthand. Why watch CNN when
you can follow Donald Trump’s Twitter? However, it’s not Mr. Trump alone,
who makes Twitter alive. The emergency landing in Hudson River was reported
by the ordinary users with a dozen followers. Every second, about 8.8 thousand
messages1 are posted by Twitter users. Thus, having a source of almost unlimited
information, we face the task of finding relevant and interesting content.

On Twitter you can follow the other users and tweets posted by them will
show up in your feed automatically. It also allows to browse all tweets using
keywords or hashtags, and quite complex expressions are possible too. This is a
great support for users looking for tweets outside the followed accounts, but with
one big drawback - if no perfect search matches exist, the user gets no result.
An alternative to hard constraints are soft constraints based on user preferences.

1 Tweets per second: internetlivestats.com/one-second/.

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 177–188, 2020.
https://doi.org/10.1007/978-3-030-54623-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_16&domain=pdf
https://www.internetlivestats.com/one-second/
https://doi.org/10.1007/978-3-030-54623-6_16

178 L. Rudenko et al.

Fig. 1. The first tweet about “Miracle on the Hudson”.

Preference-based queries allow the user to specify most preferred and alternative
values. However, the challenge in a preference-based text analysis mainly has two
aspects: (1) Literally anything can appear in the text. A tweet is limited only by
the number of characters. (2) Tweets are very special texts with typing errors,
abbreviations, various spelling forms and other special language constructs.

Therefore, it is not surprising that tweet analysis is a popular topic among
scientists. One of the research directions, for example, is the analysis of user
sentiment and publics’ feelings towards certain brand, business, event, etc., cp.
[11,15]. A content analysis of tweets on various topics is also often in the focus,
cp. [1,2,16]. But none of them deal with Twitter analysis using user preferences
and NLP techniques to handle natural language mistakes as we present in this
paper.

Our goal is to develop an approach that makes it possible to search for
interesting and relevant information among all posted tweets using preference-
based queries with the guarantee to get no empty result set if perfect hits do
not exist. With the expression text CONTAINS ((′figure skating′), (′isu′)), for
example, the user is looking for all tweets including the term figure skating. If
no such tweets exist, the messages including isu should be returned. But looking
for “figure skating”, we want to find also tweets with abbreviations or misspelled
terms. Some methods from the field of Natural Language Processing could be
helpful. To keep the effort of the work within reasonable limits, we only focus on
nouns in tweets in English for now. The nouns are also expected as input terms
for the CONTAINS preference.

The rest of this paper is organized as follows: Sect. 2 recapitulates essential
concepts of our preference model and tweet as a text message. In Sect. 3 we intro-
duce the developed CONTAINS preference. Our results on perliminary experiments
are shown in Sect. 4. Section 5 contains a summary and outlook.

2 Background

2.1 Preference Model

Preference modeling have been in focus for some time, leading to diverse
approaches, cp. [3,5,6]. These works have in common the treatment of the dif-
ferentiated user wishes, which prefer some results to the others. We use the
approach of [7] that models preferences as strict partial order with intuitiv
interpretation “I like A more than B”. A preference is defined as P = (A,<P)

Preference-Based Twitter Analytics 179

on the domain of A. Thus <P is irreflexive and transitive. Some values are con-
sidered to be better than some others and the term x <P y can be interpreted
as “y is preferred over x”. If two values cannot be ordered by the strict partial
order <P , they are called indifferent, i.e. x ∼P y ⇔ ¬(x <P y) ∧ ¬(y <p x).

The maximal objects of a preference P = (A,<P) on an input dataset R are
all tuples that are not dominated by any other tuple w.r.t. the preference. These
objects are computed by the preference selection operator σ[P](R). It finds all
best matching tuples t w.r.t. the preference P : σ[P](R) := {t ∈ R|¬∃t′ ∈ R :
t <P t′}. The evaluation follows a Best-Matches-Only (BMO) query model that
retrieves exact matches if such objects exist and best alternatives else.

2.2 Preference Constructors

To express simple preferences targeting one attribute diverse base preference
constructors are defined. There are base preference constructors for numerical,
categorical, temporal, and spatial domains, cp. [7]. In this work we focus on the
categorical preferences. We want to perform a preference-based search on tweets
that exist as text and thus belong to the categorical attributes.

There exist the following categorical preferences: LAYERED, POS/POS,
POS/NEG, POS, NEG. All categorical base preferences are sub-constructors of
LAYEREDm (cp. Fig. 2), which divides the domain into m + 1 disjunct sets. Each
set consists of i values, where i >= 1 and can be different in different sets. The
values in one set are considered as substitutable. The different sets have different
satisfaction levels, whereby the values in the set with m = 0 are the perfect ones.
To be sure that all domain values are covered by the preference constructor, one
of the sets may be named others.

LAYEREDm

POS/POS POS/NEG

NEGPOS

Fig. 2. Taxonomy of categorical base preference constructors

The existing constructors for the categorical attributes work quite well if the
domains values are finite, such as book titles, country names, animal species or
car colors. A preference query
will return all objects that have a value white in the attribute color. If no such
objects exist, objects of any color are returned. This approach will obviously not
work with free text attributes, such as comment, note or tweet.

2.3 Tweets

A tweet in general is a complex object with many other attributes besides the
actual text, such as language of the user profile, number of responses received

180 L. Rudenko et al.

by the message and so on. A complete list of all tweet attributes can be found
on the Twitter developer website2. In this paper, when we use the term tweet,
we mean a text message only. The numerous attributes that each tweet object
includes are not used in this work.

Tweets are short messages with the maximum length of 280 characters, which
can contain not only words but also links, special characters (e.g. emojis), ref-
erences to other user accounts and hashtags (keywords or phrases, which help
users to find relevant topics). All this is very typical for tweets, which is not sur-
prising when you consider that 83%3 of all users are those who use the mobile
Twitter application and post fast without distracting from other activities.

Not only the content diversity of the tweets, but also various forms of their
terms (e.g., its, it is or it’s as variants of the same expression) do not allow
the existing categorical preferences to provide acceptable results on these text
messages. However, based on the existing preference constructors, we decided
to develop an additional one that will be able to find the tweets taking user
preferences into account.

3 CONTAINS Preference

In this chapter we describe our new CONTAINS preference and discuss some tech-
niques from the field of Natural Language Processing we apply to the tweets
during the preprocessing phase before CONTAINS preference can be applied.

3.1 CONTAINS Constructor

Our new CONTAINS preference has a similar structure as LAYERED. For CONTAINS
preference a user defines some levels, each with a set of words or terms he would
like to see in the result set. The general idea is as follows: if the text message
contains some term from one of the levels, it gets a number value corresponding
to the level number of the term. The smaller the value, the more preferred the
tweet is. Finally, the tweets with the smallest values belong to the evaluation
result set.

Let L = (L1, ..., Lm) with m > 0 be an ordered list of m sets with terms ti
defined by a user as those he wants to see in the resulted set. Additionally there
is also another level with the set called others. All terms that will be found in
tweets but are not listed in the sets of levels 1, ...,m belong to the others-set.
All sets are disjunct, each term ti belongs to one set only. The terms within a
set are indifferent. Assume x and y are two terms from a set of all terms that
occur in tweets. Thus the following applies:

xi <P yj , xi ∈ Li, yj ∈ Lj , j < i for i, j ∈ {1, ...m + 1} (1)
xi /∈ L1, ..., Lm ⇒ xi ∈ others (2)

x ∧ y ∈ Li ⇔ (x ∼P y) (3)
2 Twitter Developer Website: www.developer.twitter.com.
3 Statista:de.statista.com/statistik/daten/studie/541918/umfrage/anteil-der-mobilen

-monatlich-aktive-nutzer-von-twitter-weltweit/.

www.developer.twitter.com
https://www.bit.ly/3b1TXF0
https://www.bit.ly/3b1TXF0

Preference-Based Twitter Analytics 181

For each considered tweet a score value is calculated. The lower the score value
for a message, the more preferred it is. A tweet can contain terms belonging to
different levels.

Definition 1. Score Function
Let t1, ..., tn, (n > 0) be terms in some tweet t that belong to some different
levels L1,...,m+1. The score function is defined as:

f(t) = min({i − 1 | i = 1, ...,m + 1})

Example 1. The score value for the following tweet t := “After @FSUfigure started
their campaign against ISU’s unfair judging, @olympicchannel removed TES score-
board from the figure skating live broadcast at the Youth Olympics” should be calc-
ulated. Regarding the preference ,
t has the score value f(t) = 0, even though the text includes terms from levels L1,
L2 and from others (here L3).

3.2 Natural Language Processing

As mentioned in Sect. 2.3, tweets are short text messages with a high percentage
of typing errors, abbreviations and other language features. The new CONTAINS
preference should be able to find the tweets where the searched terms are written
incorrectly or differently. For this we will use some techniques from the field of
Natural Language Processing in a preprocessing step.

The following steps are applied to a text before a score value can be calcu-
lated with regard to the preference: the tweet text is normalized, segmented into
sentences, which are further divided into single words. For these words, a part of
speech is determined and the nouns are sorted out of the whole set. The nouns
will be stemmed in the last step. A graphic sequence of this process as a pipeline
can be seen in Fig. 3.

stemmed nouns

Normalization Segmentation
into sentences

English tweets single sentences

Determination of
POS tags

normalized tweets

si
ng

le
 w

or
ds

gniretliF
of nouns

tagged wordsnouns
Stemming

Segmentation
into words

Fig. 3. Pipeline of tweets preprocessing steps.

Let us take a closer look at the individual steps:

1. Normalization. In this step, emojis, links, retweet-shortcut (RT at the begin-
ning, if the tweet is a retweet) and the @username mentions are removed from
the tweet text. In addition, each hashtag term is cleared of the hash character
#.

182 L. Rudenko et al.

2. Segmentation into sentences. After normalization, the text is divided into
individual sentences. Although tweets usually contain very few sentences, this
segmentation is still important because the POS Tagger determines the word
types of the individual words based on the sentence structure.

3. Segmentation into words. In this step the sentences are segmented into
individual words and passed on to part-of-speech tagger.

4. Determination of POS tags. Each input word is assigned to its part of
speech with a part-of-speech tagger. Most POS taggers are trained on the data
where each word has already been tagged. The trained tagger then assigns
a new input word the tag that has the highest probability in the context
(cp. [8]). In our implementation we use a Penn Treebank Tagset for English
language [9].

5. Filtering of nouns. Penn Treebank Tagger distinguishes general nouns and
proper nouns in singular and plural. We need all four groups, because, for
example, both “Trump” and “president” can be used in the CONTAINS pref-
erence. In this step the filtered nouns are additionally cleared of unnecessary
characters (e.g. points and apostrophes), which make stemming problematic.

6. Stemming. It will be ensured that the word is in lower case and then a
stemming will be performed. Stemming shortens a word back to a word stem
common to all morphed forms [14]. Stemming often creates an unnatural
common form, but we still use it because it takes no account of the meaning
of the word. Since stemming create the unnatural form anyway, it is possible
to stem the misspelled words too. The most common stemmer for the English
language, which we also use in our work, was published in [13] by M. Porter.

3.3 Edit Distance

The stemmed nouns from the tweets should now be compared with the nouns
specified by the user in the CONTAINS preference. The latter are also stemmed by
the same procedure to enable a fair comparison. Ideally, the word (stem) from
a tweet is exactly the same as the word (stem) from a preference. But in order
to allow comparison of the misspelled nouns, we calculate the distance between
an input stem and a stem from the tweet. The terms with the distance below a
certain value are regarded as equal.

In this work we use the Damerau-Levenshtein algorithm that works over
an edit distance. Edit distance between two words is defined as number of changes
in one word that have to be made to get from that word to another one. Note that
the distance in our work is determined not for the original words, but for their
stemmed variants. Changes include inserting and deleting of a character, replac-
ing of a character with another one, and swapping the positions of two characters
that cover the most common spelling mistakes. Damerau [4] and Peterson [12]
independently found out that about 80% of all spelling mistakes belong to one
of the four groups: (1) swap of two adjacent characters (huose instead of house)
(2) one letter false (dok instead of dog) (3) one letter missing (aple instead of
apple) and (4) one letter to many (informaition instead of information).

Preference-Based Twitter Analytics 183

The extended variant of Damerau-Levenshtein algorithm has a threshold
value. The calculation is aborted if the distance between two words is too big
and the threshold value is exceeded. Aborting the distance calculation is pos-
sible because we are interested in very similar words. This results in runtime
advantages.

To define the term similar words we consider three possible scenarios (we used
the work of Norvig [10] to decide, which words to consider as short, medium
or long):

1. The input word t is short: |t| ≤ 4. The allowed distance d between the short
input word and the word from tweets to consider them as equal has to be
d = 0, so they must be identical. Otherwise, there is a risk to identify e.g.,
“cat” and “cap” as identical.

2. The input word t has medium length: 4 < |t| < 8. For these words the
distance of d = 1 is allowed. That means that one change is enough to make
the input word and tweet word exactly equal. In the words of medium length
the probability of making a mistake is much higher than in the short words.
At the same time, it is rather improbable to form an existing correct word
by making only one change.

3. The input word t is long: |t| ≥ 8. For this group we allow the distance of
d = 2. It is easy to make a mistake in a long (and often complicated) word.
Because of the generally low number of long words, the danger of finding two
of them within the distance of d = 2 is also low.

To summarize this section: the CONTAINS preference allows the user to list the
terms that he would like to see in the tweets. A certain deviation in spelling or
form, as well as possible errors should be taken into account as much as possible.
The texts from the tweets are preprocessed using some methods from Natural
Language Processing. Then, both the input terms and the terms from the tweet
are stemmed. Finally, the build stems are compared, and if they are equal (which
is defined differently for terms of different lengths), the tweet belongs to the result
set.

4 Experiments

In this section we describe preliminary test results. These tests should give us
the impression of how efficient the developed approach is (runtime) and what
quality the delivered results have (do the results correspond to the query and
whether something remains undiscovered).

For comparison we have implemented another method (further called sim-
pleC) of score calculation for CONTAINS preference. For this, there is no complex
natural language tweet preprocessing (but stemming for the preference terms
is done anyway). We use a pre-implemented case insensitive function contains
from the Apache Commons Lang 3.9 library that checks if one term is contained
in another one. For each term in each of preference set it is checked whether
it occurs in the tweet and if this is the case, the number of the term’s level is

184 L. Rudenko et al.

assigned to the tweet. The total tweet’s score is then the minimum of all assigned
level numbers (cp. Definition 1).

Thus, prefC (our approach) compares stemmed preference terms with the
stemmed tweet’s nouns. simpleC, which we use as a reference point, compares
the stemmed preference terms to all original written tweet’s words. This decision
has to do with the plural form of some English nouns. The word ending -y in
singular changes into -ies in plural, e.g., study and studies. Thus, when searching
for the word study in the tweet text, studies will not be considered as a hit and
vice versa. Spelling mistakes are not taken into account in this method and only
the correctly spelled words are regarded as hits.

4.1 Quality Tests

To test the quality of the returned results, 10 000 completely random tweet
objects were saved to a text file. As input terms, we used both words that changed
their form after stemming and those that remained unchanged. In addition, we
selected words of different lengths to be able to test whether wrong spelled
words will be found (cp. Sect. 3.3). The two methods are applied to the tweets
that we have stored. Table 1 shows the number of hits (tweets containing the
corresponding term) as well as the same results expressed in terms of Precision
(P) - the percentage of retrieved documents that are relevant to the query - and
Recall (R) - the percentage of the relevant documents that are successfully
retrieved.

Table 1. Number of hits, Precision (P) and Recall (R) for two different methods.

Term Stem prefC simpleC P prefC P simpleC R prefC R simpleC

sandwich sandwich 1 2 100% 100% 50% 100%

housing hous 35 93 100% 39% 97% 100%

skating skate 25 1 4% 50% 100% 100%

decision decis 7 7 100% 100% 100% 100%

connection connect 8 20 87.5% 40% 78% 89%

replacement replac 10 15 40% 27% 100% 100%

development develop 13 19 100% 74% 93% 100%

independence independ 6 8 50% 37.5% 100% 100%

forest forest 6 7 100% 100% 85.7% 100%

bear bear 6 20 100% 30% 100% 100%

The number of hits in Table 1 for the simpleC is for most terms higher than
that of the prefC. There is only one exception for the term skating, which we
will explain later. Recall of simpleC is almost everywhere 100%, i.e. all relevant
tweets have been found. The only exception we observe for the term connection.

Preference-Based Twitter Analytics 185

One of the relevant tweets includes its misspelled form (konnection) and will not
be found by simpleC, but will be present in the results of prefC. prefC shows
slightly worse recall results, but the difference doesn’t exceed 15%, except for
the term sandwich. This term will be foud by simpleC in two tweets, while prefC
returns only one relevant tweet.

The reason for this is that our approach takes into account only a very
small number of hashtags. They can be almost any - complex, non-existent,
invented. Obviously, that stem sandwich is found in the hashtag #tunasandwich
by simpleC but not by prefC, which can not split this complex term into its
components. This is also the case for stem forest (cp. Table 1): the seventh
hit of simpleC is a tweet with the hashtag #UgandasForests, which remains
undetected by prefC.

Besides the “good” results, simpleC also detects the “bad” ones in this
way: the tweets with hashtags #clubhousegh and #DaquansPlayHouse are,
e.g., returned when the user is looking for housing. The tweets delivered by
prefC (our approach) contain the words: house, housing, House, house’s, which
all make sense. In the tweets delivered with simpleC, we find other terms
besides those already mentioned, e.g., houswife, penthouse, thousand. Also the
proper names (Whitney Houston, Amy Winehouse), hashtags (#ukhousing,
#clubhousegh, #DaquansPlayHouse) and account names (@RachaelLHous,
@AlertHouston etc.) are included. The result is understandable, because all
listed words contain stem hous. But it is not what we wanted.

Another reason for the larger result of simpleC are verbs, adjectives and
other nouns with the corresponding stem (e.g., to connect and connected
while searching for connect ion; beary , to bear or beard - for bear).

The returned non-relevant results have a great effect on the precision values,
which we can see in Table 1 for the simpleC very well. Precision values of simpleC
are almost always worse, sometimes very clearly than those of prefC. The only
exception is the term skating (see Table 1). The reason is the allowed deviation
of the correct spelling/error correction. The original term skating is stemmed
to skate. It has a length of 5, so there is a distance of 1 between skate and the
stemmed nouns from the tweet allowed (cp. Sect. 3.3). So, e.g., skate and state,
as well as skate and Kate (the approach is case insensitive) are considered as
similar.

Our approach has also found a tweet with a misspelled term konnection
(instead of connection). Unfortunately, the number of incorrectly returned tweets
is too high with this correction. So we need to revise this step of our approach.
We can increase the length of the words for which correction is allowed. The
implementation would be very simple, but we cannot guarantee that even with
the longer words, a very similar but completely different term will not appear
at the distance of one change.

Another option is to create some kind of lexicon where the most common
(spelling) variations of the words are collected. A big advantage of this approach
is that we do not have to limit ourself to 4 most common spelling mistakes
(cp. Sect. 3.3), but can also include the very popular abbreviations (e.g. prof

186 L. Rudenko et al.

for professor). A big disadvantage in return is the effort required to create this
lexicon.

In general, we can say that the quality of results delivered with prefC is
higher compared to simpleC. But spelling mistake correction/different spelling
part must clearly be rethought and reimplemented.

4.2 Runtime Tests

We also conducted some runtime tests and compared the time for prefC vs. sim-
pleC to evaluate one tweet. The tests were performed on Intel R© Xeon R© Scalable
Processor “Skylake” Silver 4110 with 2.10 GHz, 192 GB DDR4 and 2x 4TB
SATA3-HDD. An installed softwaresystem is Ubuntu Linux 18.04 LTS 64 bit.

For the tests we collected real tweets. Each file contains a different number
of tweets The tweets were collected live and are different in each file. All tweets
in each file were evaluated with respect to two preferences:

and
using prefC and simpleC. The results

can be found in Table 2. The measured time includes both the tweets prepro-
cessing and the actual score calculation.

Table 2. Runtime of two different methods per tweet in microseconds (µs) for P1 and
P2.

File Tweets number prefC P1 simpleC P1 prefC P2 simpleC P2

f1 120 277 374.09 108.07 374.40 110.65

f2 133 278 446.79 116.80 449.62 119.62

f3 268 231 438.76 115.39 441.18 118.32

f4 317 816 443.53 116.13 447.05 118.79

f5 399 929 369.35 106.42 370.80 109.17

f6 599 275 365.10 105.30 365.71 107.85

f7 931 027 431.88 113.99 434.53 116.06

f8 1 160 599 435.99 114.41 438.24 117.31

f9 1 307 764 362.31 104.46 362.58 106.48

f10 3 592 899 348.25 104.30 349.26 105.66

As you can see, the runtime of simpleC is always significantly better com-
pared to prefC. But let us not forget that our approach (prefA) requires much
more complex preprocessing and score calculation. The other thing that stands
out in the results is that regardless of a preference, the runtime for both methods
remains very stable and do not depend on the file size (number of tweets).

Preference-Based Twitter Analytics 187

5 Conclusion

In this paper we described a preference-based approach to analyze tweets. We
developed and implemented a new preference constructor named CONTAINS that
allows users to specify the terms that are preferred in the result set. We have
also considered the recognition of misspelled words, because spelling mistakes are
very typical for tweets. Our experiments show good precision and recall values in
most cases. We already have some thoughts about improving the runtime while
implementing our approach, but the experiments have shown that there is still
a lot of work to be done in this direction.

In summary, we believe that the proposed approach has a lot of potential
to analyze Twitter data, which we will extend and improve extensively in the
future.

References

1. Ayers, J.W., et al.: Why do people use electronic nicotine delivery systems (elec-
tronic cigarettes)? A content analysis of Twitter, 2012–2015. PLoS ONE 12(3),
1–8 (2017)

2. Cavazos-Rehg, P., et al.: A content analysis of depression-related Tweets. Comput.
Hum. Behav. 54, 351–357 (2016)

3. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD
42(3), 6–18 (2013)

4. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. ACM 7(3), 171–176 (1964)

5. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: a system for the effi-
cient execution of multi-parametric ranked queries. SIGMOD Rec. 30(2), 259–270
(2001)

6. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Trade-Offs. Cambridge University Press, Cambridge (1993)

7. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of
VLDB 2002, Hong Kong SAR, China, pp. 311–322. VLDB Endowment (2002)

8. Linckels, S., Meinel, C.: Natural language processing. In: E-Librarian Service, pp.
61–79. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17743-9 4

9. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of English: the Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993)

10. Norvig, P.: English Letter Frequency Counts: Mayzner Revisited or ETAOIN
SRHLDCU (2013)

11. Pagolu, V.S., Reddy, K.N., Panda, G., Majhi, B.: Sentiment analysis of Twitter
data for predicting stock market movements. In: International Conference on Signal
Processing, Communication, Power and Embedded System (SCOPES), pp. 1345–
1350, October 2016

12. Peterson, J.L.: A note on undetected typing errors. ACM 29(7), 633–637 (1986)
13. Porter, M.F.: An algorithm for suffix stripping. Program 40, 211–218 (1980)
14. Samir, A., Lahbib, Z.: Stemming and lemmatization for information retrieval sys-

tems in Amazigh language. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N.
(eds.) BDCA 2018. CCIS, vol. 872, pp. 222–233. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96292-4 18

https://doi.org/10.1007/978-3-642-17743-9_4
https://doi.org/10.1007/978-3-319-96292-4_18
https://doi.org/10.1007/978-3-319-96292-4_18

188 L. Rudenko et al.

15. Subramaniyaswamy, V., Logesh, R., Abejith, M., Umasankar, S., Umamakeswari,
A.: Sentiment analysis of tweets for estimating criticality and security of events. J.
Organ. End User Comput. 29, 51–71 (2017)

16. Sutton, J., et al.: Lung cancer messages on Twitter: content analysis and evalua-
tion. J. Am. Coll. Radiol. 15, 210–217 (2017)

S-APIR: News-Based Business
Sentiment Index

Kazuhiro Seki1(B) and Yusuke Ikuta2

1 Konan University, Hyogo, Japan
seki@konan-u.ac.jp

2 Osaka Sangyo University, Osaka, Japan

Abstract. This paper describes our work on developing a new business
sentiment index using daily newspaper articles. We adopt a recurrent
neural network (RNN) with Gated Recurrent Units to predict the busi-
ness sentiment score of a given text and aggregate the scores to define an
index, named S-APIR. An RNN is initially trained on EconomyWatchers
Survey and then fine-tuned on news texts for domain adaptation. Also,
a one-class support vector machine is applied to filter out texts irrel-
evant to business sentiment. Moreover, we propose a simple yet useful
approach to temporally analyzing how much and when any given factor
influences the predicted business sentiment. The validity and utility of
the proposed approach are empirically demonstrated through a series of
experiments on Nikkei Newspaper articles published from 2013 to 2018.

Keywords: Deep learning · Sentiment analysis · Text analytics

1 Introduction

There exist business sentiment indices computed through surveys, such as Econ-
omy Watchers Survey1 and Short-term Economic Survey of Principal Enterprise2

in the case of Japan. These diffusion indices (DI) play a crucial role in decision
making for governmental/monetary policies, industrial production planning, and
institutional/private investment. However, these DI’s rely on traditional surveys,
which are costly and time-consuming to conduct.

For example, Economy Watchers Survey is carried out in 12 regions of Japan,
where 2,050 preselected respondents who can observe the regional business and
economic conditions (e.g., store owners and taxi drivers) fill out a questionnaire
and then an investigative organization in each region aggregates the surveys and
calculates a DI. As the survey and subsequent processing take time, the DI is
published only monthly.

On the other hand, so-called alternative data, including merchandise sales,
news, microblogs, query logs, GPS location information, and satellite images,

1 https://www5.cao.go.jp/keizai3/watcher-e/index-e.html.
2 https://www.boj.or.jp/en/statistics/tk/long syu/index.htm/.

c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 189–198, 2020.
https://doi.org/10.1007/978-3-030-54623-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_17&domain=pdf
https://www5.cao.go.jp/keizai3/watcher-e/index-e.html
https://www.boj.or.jp/en/statistics/tk/long_syu/index.htm/
https://doi.org/10.1007/978-3-030-54623-6_17

190 K. Seki and Y. Ikuta

are constantly generated and accumulated. The availability of such data has
accelerated the use of data-driven machine learning techniques represented by
deep learning for forecasting economic and financial indices [10]. For example,
point of sales (POS) data have been used for estimating consumer price index
(CPI) [16], financial and economic reports for business sentiment [17], newspaper
for grain market prices, stock prices, and economic indices [5,15,18] and social
media for stock prices [3,11].

This work focuses on textual data and uses daily newspaper articles to
develop a new business sentiment index, named S-APIR index. In addition, using
the computed index, we propose a simple approach to temporally analyzing any
given factors that may influence the business sentiment index.

2 Related Work

In the economic and financial domains, there are abundant textual data, such
as newspaper articles and financial reports in addition to many numerical data.
These texts are intended to be read by people, who also consider other sources of
information and make decisions on investment, financial policies, and so on. How-
ever, it is difficult even for experts to read and grasp all the available information
in a limited time. Therefore, there has been much research on computing eco-
nomical/financial indices from textual data. In the following, we summarize the
representative work in business sentiment prediction, which is the main theme
of this paper.

Economy Watchers Survey introduced in Sect. 1 publishes not only the busi-
ness sentiment index (hereafter called EWDI for short) but also individual survey
responses on which EWDI is based. The survey responses contain a pair of an
economic condition on a five-point scale and a statement of the reasons in natural
language why the respondent chose a particular economic condition.

Based on the responses, EWDI is computed by first computing the composi-
tion ratios of the five economic conditions (×, �, �, ©, �) and then taking their
weighted sum. EWDI ranges from 0 to 100 with 50 being the middle (50 means
that economic condition is neither positive or negative).

Yamamoto et al. [17] used as training data around 200,000 pairs of an eco-
nomic condition and its statement of the reasons to learn a regression model so
as to predict the business sentiment of a given text. As a regression model, they
used a bidirectional Recurrent Neural Network with Long Short Term Memory
(LSTM) [9]. Then, monthly economic reports were fed to the learned model to
compute a business sentiment index. It is reported that the computed index
was positively correlated with both EWDI and Short-term Economic Survey of
Principal Enterprise in Japan. Similarly, Aiba et al. [1] used the same model to
compute a business sentiment index from microblogs (tweets). Goshima et al. [8]
adopted a convolutional neural network and used Reuters news articles as input
to compute a business sentiment index.

S-APIR: News-Based Business Sentiment Index 191

3 S-APIR and Its Application to Word-Level Analysis

As described in Sect. 2, Economy Watchers Survey contains pairs of an eco-
nomic condition and a statement of the reasons. They are filled out manually
by respondents and thus are quality and valuable resources for machine learn-
ing. In the present work, we focus on news articles as with Goshima et al. [8]
to compute a business sentiment index named S-APIR. However, in contrast to
Goshima et al. who fed all the available news texts to the learned model, we
attempt to filter out irrelevant news texts and then to apply domain adaptation
as described shortly in Sect. 3.1.

In addition, Sect. 3.2 discusses an application of the S-APIR index to tempo-
rally analyze any given factors that may/may not influence business sentiment.
Business sentiment is formed by many factors including monetary policies, stock
prices, exchange rates, unemployment rate, wages, overseas situations, etc. How-
ever, those factors do not equally influence business sentiment and it is helpful
for business economists if they could understand what factors have a more/less
effect to improve or decline business sentiment in a particular period. To this
end, we propose a simple approach to analyzing when, how much, and what
factors contributed to S-APIR based on the predicted business sentiment.

3.1 S-APIR Index

This section describes three major components of our framework to predict busi-
ness sentiment from a news sentence. The first component is a regression model
that takes a sentence and predicts the sentiment of the input. The second is a
classifier to filter out texts irrelevant to the economy/business. Lastly, the third
is domain adaptation to update the parameters of an initial regression model to
make them more suitable for news texts.

Regression Model. For text classification and regression, it has been com-
monly done to treat each word as an independent variable, where an input text
is represented as a Bag of Words (BoW) disregarding the context [13]. However,
it is desirable to capture the differences of word meanings in different contexts
and word dependencies so as to properly represent the meaning of the text.

In recent years, RNN, combined with LSTM, has been popularly used to
represent text to consider the context. This study also uses RNN but with Gated
Recurrent Unit (GRU) [6], which can be seen as a variant of LSTM. Following
the related work, we also use Economy Watchers Survey to train the model,
where the five-point-scale economic conditions {×, �, �, ©, �} are converted to
{−2,−1, 0, 1, 2}, respectively.

Note that other models including bidirectional LSTM-RNN, bidirectional
GRU-RNN, and Bidirectional Encoder Representations from Transformers
(BERT) [7] with fine-tuning could be used for prediction. In fact, we tested
these models but the simple, one-directional GRU-RNN generally yielded better
results for this task and we will omit the results of the other models in Sect. 4.

192 K. Seki and Y. Ikuta

Filtering. The regression model described in the previous section can be used
to predict business sentiment for any input text. However, news texts we focus
on in this study are in many genres (e.g., sports) which may be irrelevant to
the economy. Using irrelevant sources would be harmful in computing a business
sentiment index. Therefore, we attempt to filter out such irrelevant news texts
by treating them as outliers.

For this purpose, we adopt a one-class support vector machine (SVM) [12]. In
contrast to an ordinal SVM used for binary classification, a one-class SVM can
be learned on documents in only one class and detect documents dissimilar to the
training documents as outliers. We use Economy Watchers Survey (specifically,
statements of the reasons) as the training data for one-class SVM and filter out
news text dissimilar to the statements.

For text representation, the one-class SVM uses the traditional BoW with
term frequency-inverted document frequency (tf-idf) term weighting [13]. One
could use an output of an RNN or other sentence embeddings [4,14] so that
the context could be better represented. However, our preliminary experiment
showed that they resulted in detecting all news texts as outliers and were not
used in the present work.

Domain Adaptation. The Economy Watchers Survey responses to be used
for training a GRU-RNN are different from news texts to be used for computing
S-APIR in terms of their writing styles, vocabularies, and expressions (here col-
lectively called “domains”). Such differences between training and testing would
have a negative effect on the resulting performance, and adapting the domain
of the learned model to the target domain would benefit business sentiment
prediction.

To this end, we explore domain adaptation by automatically creating new
training data from news texts. To be precise, we feed news articles to an ini-
tial regression model (denoted as M) and predict the business sentiment of
each sentence. Then, we assume that sentences with higher absolute sentiment
scores would better represent economic conditions either positively or negatively.
We set predefined positive and negative thresholds and treat the sentences with
higher/lower sentiment scores than the thresholds as positive and negative exam-
ples, respectively.

We use the training data to fine-tune the initial model M to acquire a
fine-tuned model M ′. More specific experimental settings (e.g., thresholds) are
described in Sect. 4.

3.2 Word-Level Temporal Analysis

Business sentiment is formed by various factors including monetary policies,
trade, military conflicts, an outbreak of pandemic diseases, and so on. We propose
a simple approach to analyzing which factor influenced business sentiment when
and to what degree. Specifically, we define the influence of word w during time
period t, denoted as pt,w, using the predicted business sentiment.

S-APIR: News-Based Business Sentiment Index 193

We first assume that the sentiment ps of a sentence s is the sum of the
sentiments of words (w) appearing in s as follows:

ps =
∑

w∈s

fs,w · ps,w (1)

where fs,w is the number of occurrences of word w in s, ps,w is the sentiment of w
in s. We further assume that all the words, w ∈ s, equally influence the sentiment
of s, that is, ps,w = ps/|s|, where |s| is the number of words composing s. Here, let
St denote the set of news sentences published during t. Using St, we define pt,w as
the sum of ps,w over St, divided by the number of sentences |St|, that is,

pt,w =
1

|St|
∑

s∈St

fs,w · ps|s| . (2)

Intuitively, S-APIR during t can be interpreted as the sum of the influences of
all the words appearing in texts published during t.

4 Evaluation

4.1 Experimental Settings

For learning an RNN and a one-class SVM, we downloaded the Economy Watch-
ers Survey data from the web page of the Cabinet Office3 in October 2018. The
number of the pairs of an economic condition and a statement of the reasons
was 216,741 in total, of which randomly selected 90% were used for training
(and validation) and the rest were used for testing. Note that because Japanese
text does not have explicit word boundaries (such as spaces for English), the
statements of the reasons were processed by a morphological analyzer, MeCab4,
to be split into words.

The parameters of a GRU-RNN were set as follows based on a preliminary
experiment on the Economy Watchers Survey data: the number of GRU units
per layer = 512, the number of hidden layers = 2, and the size of the vocabulary
= 40,000. Each word was represented as a word embedding vector with 300
dimensions pretrained on Wikipedia [2].

To compute the S-APIR index, we used the titles and body texts of news
articles from the Nikkei Newspaper from 2013 to 2018. For domain adaptation,
we used separate Nikkei Newspaper published in 2010. Each article was split
into sentences based on the Japanese period “ ” and each sentence was fed to
the learned model to predict its sentiment.

4.2 Evaluation on Economy Watchers Survey

First, we evaluated the initial GRU-RNN on the held-out test data (i.e., 10% of
Economy Watchers Survey) in mean squared error (MSE). For comparison, we
3 http://www5.cao.go.jp/keizai3/watcher/watcher menu.html.
4 http://taku910.github.io/mecab/.

http://www5.cao.go.jp/keizai3/watcher/watcher_menu.html
http://taku910.github.io/mecab/

194 K. Seki and Y. Ikuta

also applied a ridge regression model with the classic BoW representation with
tf-idf term weighting. MSE was found to be 0.351 for GRU-RNN and 0.509 for
ridge regression, which confirms that our model, GRU-RNN, predicted economic
conditions more accurately than the ridge regression. This result is similar to
the one reported in the related work [17].

Fig. 1. Comparison between S-APIR and EWDI (r = 0.546) (left) and between S-
APIR and EWDI after domain adaptation (r = 0.701) (right).

4.3 Evaluation of S-APIR

This section compares our business sentiment index, S-APIR, and existing busi-
ness sentiment index, namely EWDI. However, it should be emphasized that
S-APIR is not intended to replace EWDI, but rather to be a new index using
newspaper as the source of information. There is no ground truth for a business
sentiment index and EWDI is also one of possible indices, which is calculated
based on the limited, 2,050 respondents. Nevertheless, we make the compari-
son (a) to ensure that S-APIR generally has a similar trend to the established,
existing index and (b) to investigate the characteristics of S-APIR when the two
indices diverge.

Results. Using the initial GRU-RNN learned as described in Sect. 4.2, we first
computed S-APIR on Nikkei Newspaper from 2013 to 2018. Note that as business
sentiment is predicted for each sentence, they were aggregated monthly by taking
the average so that S-APIR could be directly compared with EWDI. Figure 1
(left) shows the computed S-APIR and EWDI for comparison. We can observe
that the two indices show roughly similar movements. In effect, they were found
to be positively correlated (r = 0.546).

Next, we applied the one-class SVM to detect and filter out outliers and
recomputed S-APIR by using only the texts relevant to the economy. Overall,
S-APIR exhibited a more similar trend to EWDI and their correlation coefficient
significantly increased from 0.546 to 0.686 (their plots are not shown due to the
page limit). The result confirms the effectiveness of the filtering process by the
one-class SVM.

S-APIR: News-Based Business Sentiment Index 195

As shown above, the GRU-RNN learned on Economy Watchers Survey (state-
ments of the reasons) can be used to compute the business sentiment index based
on news texts. However, statements of the reasons and news texts have differ-
ent characteristics and the model learned on the former may not be suitable for
the latter. Thus, we applied domain adaptation as described in Sect. 3.1. To be
precise, we took the following procedure:

1. Extracted titles and body texts of news articles from Nikkei Newspaper 2010
and split them into sentences and then into words.

2. Applied the one-class SVM and filtered out outliers.
3. Applied the GRU-RNN to predict the sentiment of each sentence.
4. Identified the sentences with sentiment scores greater (lower) than a predefined

threshold thigh (tlow). To determine the thresholds, we looked at the histogram
of the sentiment scores and experimentally set thigh = 0.8 and tlow = −1.0. As
a result, we obtained 18,947 positive instances and 10,868 negative instances.
We gave the former “2” as their labels, and the latter “−2”.

5. Used the generated training data to fine-tune the initial GRU-RNN.

Then, we used the fine-tuned model to recompute S-APIR after filtering. The
result is shown in Fig. 1 (right). The correlation coefficient further but marginally
increased to 0.701.

Inspecting the resulting plots in Fig. 1, we observed that EWDI dropped
sharply in April 2014, where there is a large deviation from the S-APIR index.
This is when sales tax was increased from 5% to 8% in Japan and it is inter-
esting to find that the S-APIR index is much less affected by the tax increase.
We conjectured that this may be due to the fact that 70% of the respondents
of Economy Watchers Survey had occupations related to households. Therefore,
factors that have more influence on households (e.g., tax increase) may have more
influence on EWDI as well. To verify the intuition, we compared S-APIR and a
variant of EWDI computed based on responses only from those who have occu-
pations related to industries. As a result, the correlation coefficient significantly
increased from 0.701 to 0.819. This result implies a property of the S-APIR
index computed from Nikkei Newspaper that it reflects business sentiment in
industries more strongly.

Effect of Domain Adaptation. The previous section empirically showed that
domain adaptation increased the correlation between S-APIR and EWDI but
only marginally. Here, we look into the models before/after domain adaptation
to investigate how the model changed. Specifically, we fed single words as inputs
to each model and predict the sentiments of the individual words.

Table 1 compares ten words with higher sentiment for each model on descend-
ing order of the sentiment scores, where words with “↑” indicate those went
up after domain adaptation and those with “↓” indicate went down. While
the rankings of “ (good condition)”, “ (to enjoy)”, “ (recovery)”,
and others went up, those of “ (best)”, “ (best condition)”, and
“ (to grow)” went down.

196 K. Seki and Y. Ikuta

Table 1. Business sentiment of top 10 positive words before/after domain adaptation.

Similarly, we compared ten words with lower sentiment scores (the resulting
table is not shown due to the page limit). In both cases, we observed that words
that would be more often used in news text went up and those used more often
in survey responses went down after domain adaptation.

Notice that while we predicted business sentiments of individual words to
investigate how the model changed after domain adaptation, resulting business
sentiment scores can be seen as business sentiment polarities of the words. That
is, the results can be used as a sentiment dictionary in the economic/financial
domain.

4.4 Temporal Analysis of Words

Lastly, we temporally analyzed the influence of a given factor (word) on S-
APIR as described in Sect. 3.2. While our proposed approach can analyze any
given words, here we focused on a few representative examples. Specifically, we
computed the influence of “ (China)” and “ (trade)” for example. The
results are shown in Fig. 2, where the upper plots show S-APIR from Fig. 1
(right) for reference.

Fig. 2. Temporal influence of “ (China)” on S-APIR (left) and that of “
(trade)” on S-APIR (right).

S-APIR: News-Based Business Sentiment Index 197

In Fig. 2 (left), S-APIR and the influence of China generally have similar
movements and thus situations about China appear to be one of the major factors
influencing the business sentiment index in Japan. Especially, from the middle of
2015 to the beginning of 2016, the influence of China is strongly negative, which
is pushing down the business sentiment in Japan. This period is a time when the
Chinese economy deteriorated rapidly due to the crash of China’s stock market.

Then, looking into Fig. 2 (right), we can observe that “trade” did not have
much influence from 2013 to the beginning of 2018, whereas the situation has
changed thereafter and started to show a strong negative influence on business
sentiment. This reflects the US-China trade dispute that began in late 2018.

5 Conclusions

This paper reported on our ongoing work to develop a new business sentiment
index, called S-APIR, based on news texts and to use the index to temporally
analyze the factors that influence business sentiment. We used a one-class SVM
to identify news texts related to the economy and fed them to a GRU-RNN
regression model to predict the business sentiment of input news text. The GRU-
RNN was initially trained on Economy Watchers Survey and then fine-tuned on
news texts for domain adaptation. Through our evaluation using Nikkei Newspa-
per articles, it was demonstrated that S-APIR has a positive correlation with an
existing business sentiment index and that the correlation becomes even higher
when compared to the index calculated only from responses in industries. This
result indicates that S-APIR is a business sentiment index reflecting that of
industries more strongly. Moreover, by dividing sentence sentiment into word
sentiments and summing over sentences, it was shown that any given factor
that may/may not have an influence on business sentiment can be temporally
analyzed and visualized.

Acknowledgments. This work was conducted partly as a research project “develop-
ment and application of new business sentiment index based on textual data” at APIR
and was partially supported by JSPS KAKENHI #JP18K11558 and MEXT, Japan.
We thank Hideo Miyahara, Hiroshi Iwano, Yuzo Honda, Yoshihisa Inada, Yoichi Mat-
subayashi, and Akira Nakayama for their support. The Nikkei data were provided by
APIR.

References

1. Aiba, Y., Yamamoto, H.: Data science and new financial engineering. Bus. Observ.
81(2), 30–41 (2018). (in Japanese)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput.
Sci. 2(1), 1–8 (2011)

4. Cer, D., et al.: Universal sentence encoder for English. In: Proceedings of the 2018
EMNLP, pp. 169–174 (2018)

198 K. Seki and Y. Ikuta

5. Chakraborty, S., Venkataraman, A., Jagabathula, S., Subramanian, L.: Predicting
socio-economic indicators using news events. In: Proceedings of the 22nd ACM
SIGKDD, pp. 1455–1464 (2016)

6. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: Encoder-decoder approaches. In: Proceedings of the
8th Workshop on Syntax, Semantics and Structure in Statistical Translation, pp.
103–111 (2014)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
NAACL-HLT, pp. 4171–4186 (2019)

8. Goshima, K., Takahashi, D., Yamada, T.: Construction of business news index by
natural language processing and its application to volatility prediction. Finan. Res.
38(3), 1–41 (2019). (In Japanese)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Kapetanios, G., Papailias, F.: Big data & macroeconomic nowcasting: Methodolog-
ical review. Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE) (2018)

11. Levenberg, A., Pulman, S., Moilanen, K., Simpson, E., Roberts, S.: Predicting
economic indicators from web text using sentiment composition. Int. J. Comput.
Commun. Eng. 3(2), 109–115 (2014)

12. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach.
Learn. Res. 2, 139–154 (2002)

13. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

14. Pagliardini, M., Gupta, P., Jaggi, M.: Unsupervised learning of sentence embed-
dings using compositional n-gram features. In: Proceedings of the 16th NAACL,
pp. 528–540 (2018)

15. Shapiro, A.H., Sudhof, M., Wilson, D.: Measuring news sentiment. Federal Reserve
Bank of San Francisco Working Paper 2017–01, Federal Reserve Bank of San Fran-
cisco (2017)

16. Watanabe, K., Watanabe, T.: Estimating daily inflation using scanner data: A
progress report. In: CARF Working Paper Series. No. CARF-F-342 (2014)

17. Yamamoto, Y., Matsuo, Y.: Sentiment summarization of financial reports by LSTM
RNN model with the Japan economic watcher survey data. In: Proceedings of the
30th JSAI (2016). (In Japanese)

18. Yoshihara, A., Seki, K., Uehara, K.: Leveraging temporal properties of news events
for stock market prediction. Artif. Intell. Res. 5(1), 103–110 (2016)

Towards an Inference Detection System
Against Multi-database Attacks

Paul Lachat2,3(B), Veronika Rehn-Sonigo1(B), and Nadia Bennani2(B)

1 University of Bourgogne Franche-Comte, FEMTO-ST Institute, CNRS,
Besançon, France

veronika.sonigo@femto-st.fr
2 University of Lyon, CNRS, INSA Lyon, LIRIS, Lyon, France

{paul.lachat,nadia.bennani}@insa-lyon.fr
3 Department of Distributed and Multimedia Information Systems,

University of Passau, Passau, Germany

Abstract. Nowadays, users are permanently prompted to create web
accounts when they buy online goods. This collected data gives an
insight on the user, sometimes beyond the application scope. Inference
attacks on databases represent an issue for data controllers when mali-
cious processors attempt to guess sensitive data - to which they haven’t
access - by inferring them using legally accessed data. Several inference
attack detection systems address this problem in case of a single targeted
database. But the issue remains unsolved in case of several databases to
which the same users might have submitted their data. In this paper, we
propose a global model and its associated graph representation named
Global Instance Graph (GIG) representing the probabilistic and semantic
dependencies inside each database, enriched by the dependencies between
the different databases. The graph is obtained using privacy-preserving
record linkage techniques and serves as a knowledge input to the infer-
ence attack detection system. We validate the GIG creation feasibility
thanks to a proof of concept. Despite the quadratic creation time, the
performances when data is queried from the databases are not affected
since the GIG creation is performed offline.

Keywords: Inference detection · Multi-database attacks · Data
privacy · Privacy-preserving record linkage

1 Introduction

We are assisting an era with almost unlimited data storage capacities thanks to
the constant increase in data centers’ offers. As a consequence, online applica-
tions do not hesitate to store huge amounts of raw data concerning their users’
habits and behaviors. Moreover, users are permanently prompted to disclose
more information including their personal data. But sometimes, this collected
data gives an insight on the user beyond the application scope. This could benefit
to external stakeholders with the objective to learn more about the user, which
c© Springer Nature Switzerland AG 2020
J. Darmont et al. (Eds.): ADBIS 2020, CCIS 1259, pp. 199–209, 2020.
https://doi.org/10.1007/978-3-030-54623-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54623-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-54623-6_18

200 P. Lachat et al.

could harm the user’s privacy. New regulations are now emerging to protect
the user privacy, among them the General Data Protection Regulation (GDPR)
which is intended to regulate the way EU citizens’ personal data should be con-
sumed (according to user’s consent) by data controllers and data processors.
Moreover the GDPR is not only a theoretic regulation: Ongoing research works
on concrete implementations, e.g. [6]. In fact, user’s privacy can be disclosed via
inference attacks where malicious processors and controllers exploit the possi-
bility to indirectly infer sensitive data to which they haven’t access thanks to
legally accessed data. This problem can be locally solved using inference systems
proposed in the literature [1–3,7,10]. However these solutions are not suitable
in case of inference attempts where several databases are implied.

Let us consider the following scenario in which a user u registers on two online
applications: Train to buy train tickets and Flight for flight tickets. For each
application, u gives a set of her personal data to validate the registration process.
At this stage, Train and Flight have the ability to protect the user data thanks
to: the implemented access control policies and a locally implemented inference
attack detection system. Moreover each application is allowed to share with other
controllers and processors, with the consent of u, a part of her collected personal
data. In this scenario, we could imagine a common processor Service which
gather and process travel information coming from several tour operators (e.g.,
Flight and Train). In this case, Service has legal access to subsets of personal
data coming from both operators (among them u’s personal data subset Fu

and Tu from Flight and Train respectively). This creates possible inference
opportunities: a part of Fu could be exploited by Service in order to reveal
u’s sensitive personal data in Tu while bypassing the local inference detection
system of Train. This scenario highlights the exploitation of inference channels
targeting multiple databases through legal access by the same entity. Inference
attacks exploiting these inference channels rely on the distributed dependency
strategy [12]. We will refer to them in the remainder of the paper as Multiple
Database Inference Attack (MDIA).

Inference attacks happen either in a non-interactive setting (e.g. dump from
a database, log files, etc.) or in an interactive setting (e.g. by means of Web
browser, localization systems, database queries, and so on). In this paper we
focus on the later and thus we give a brief description of the related proposals
in the scientific literature. Staddon [10] presents a solution where keys are given
to the users in order to generate the required tokens to query the objects in an
inference channel and thus prevent its full exploitation. The solution presented
by Biskup [1] relies on dynamically adapting policies preventing malicious users
to fully exploit inference channels in a logic-oriented information system. The
system presented by Brodsky et al. [2] models the functional dependencies of a
database to compute the disclosed knowledge each time a query is issued. Then,
based on the query log of the issuing user, the system either denies the answer or
returns a fake one. Guarnieri et al. [7] propose a system where one module acts as
a policy decision point whereas the other checks inference attempts. The latter
relies on the security policy defining the inference threshold of the sensitive

Towards an Inference Detection System Against Multi-database Attacks 201

information and the attacker model describing the user’s a priori knowledge.
Then, based on the inference detection results, the first module decides to deliver
or not the query answer. Chen et al. [3] propose to tackle inference attacks by
building first a Semantic Inference Model (SIM) representing the probability of
attributes to influence others. Then based on the SIM dependencies, a Semantic
Instance Graph (SIG) reflecting these dependencies at the instances’ level in the
database is generated and enrolled to detect the inference attacks. All these works
present solutions capable of preventing inference attacks on single databases, but
they are not adapted for inference attacks when multiple databases are involved.

In this paper we propose an extension of the work of Chen et al. [3] to
address the MDIA issue. Our proposal consists in building a Global Instance
Graph (GIG) by discovering similarities between instances in the SIGs from the
concerned databases in order to model inference channels that could be exploited
by MDIAs. Moreover, to avoid honest-but-curious behavior, the SIGs are first
anonymised. The faced challenge is to discover these similarities on anonymised
data. This paper presents the following contributions: (i) The GIG creation
algorithm based on a set of SIGs, using Bloom Filters [8] to discover instance
similarities while preserving the users’ data privacy. (ii) An architecture that
manages the MDIAs for a set of implied databases.

2 Inference Detection in Case of a Single Database

In this section we briefly review the approach of Chen which is based on the cre-
ation of a Semantic Inference Model (SIM). For more details please refer to the
original paper. The purpose of the SIM is to represent the inference channels of
a database at schema level. It extends the Probabilistic Relational Model (PRM)
which is based on Bayesian networks. According to [5], the PRM “[...] allows the
properties of an object to depend probabilistically both on other properties of
that object and on properties of related objects”. It is made up of two parts: a
skeleton and the parameter. The skeleton represents the relations between each
attribute and his parents which have a direct influence on it. The parameter
is the Conditional Probability Distribution (CPD) between an attribute and his
parents. The CPD is computed for a given database and thus represents the dis-
tribution of the data at the time of computation. The SIM is composed of three
types of links: (i) dependency links: which are the dependencies related to the
skeleton of the PRM (ii) schema links: which connect primary keys and foreign
keys in the databases tables and (iii) semantic links: which represent depen-
dencies that can be provided by an operator with domain specific knowledge
or by analyzing queries issued to the database. The SIM is instantiated with
the instances of the database into a Semantic Instance Graph (SIG) in order
to represent the dependencies at the instance-level. Thus, the nodes in a SIG
represent the attribute values of a specific instance in a database. To protect
data against inference attacks, sensitive attributes are identified and their infer-
ence thresholds assigned. An inference attack is detected once the percentage
of confidence about the value of a sensitive attribute exceeds his corresponding

202 P. Lachat et al.

threshold. A Bayesian network is instantiated from the SIG for each user in order
to keep track of the knowledge she has about the database.

Fig. 1. Workflow of the Chen et al. solution.

The following example, extracted from [3], illustrates the overall workflow of
their architecture and the inference attacks detection process. The white steps
(i.e., ① to ④) in Fig. 1 are made once offline. They represent the SIM and the
SIG computing. Whereas the black steps (i.e., ❺ to ❼) are executed whenever
a query is submitted to the system. The example represents a chunk of a SIG
related to three instances in the database: LAX, R1 and C5. For clarity, each
attribute instance in the SIG is prefixed with the name of the instance to which
it belongs. Thus, multiple occurrences of the attribute RUNWAY WIDTH could
be related to different instances. The example assumes that the attribute TAKE-
OFF LANDING CAPACITY (TLC) is defined as a sensitive attribute and his
inference threshold is set to 70%. If a user knows that the instance C5 is able to
land on R1 from LAX and that the instance attributes C5 MIN LAND DIST
and C5 MIN RUNWAY WIDTH have long and wide values respectively. Then
the user can infer the value for TLC with a confidence of 58.3%. If the same user
succeeds to obtain the value of the instance attribute LAX PARKING SQ FT
(which is large), then she can infer the value ‘large’ for the instance attribute
TLC with a confidence of 71.5% which is above the inference threshold of TLC.
Therefore, answering the last query will lead to an inference attack. This solu-
tion works well when the queries target the same protected database. However
it does not prevent malicious users to query the data required to infer sensitive
values both from the protected database and from an external source. This latter
scenario is not detected by such a system.

3 Extension to a Multi-database Protection: A Step
Ahead

Multi Database Inference Attacks (MDIA) occur due to the fact that personal
information is scattered among several databases and sensitive data can then

Towards an Inference Detection System Against Multi-database Attacks 203

be inferred using the knowledge obtained from each database separately. Thus,
traditional inference detection systems like [1–3,7,10] are not able to catch such
attacks since they only model the inference channels present in a single database.
To tackle this issue, our approach proposes to aggregate data controllers’ SIGs
into one global model called the Global Instance Graph (GIG) to be able to
represent both inference channels within each database and those implied by
the access to several databases. Solving the MDIA issue is not an easy task, we
make the following set of hypothesis that remain realistic: (i) We assume that
each data controller interested in protecting its users’ privacy subscribes to a
provider that proposes such a solution and collaborates with it. (ii) The data
controllers do not send in clear user data to the inference detection module.
(iii) The proposed inference detection module is centralized in order to reuse
the inference detection algorithm of Chen by replacing the input SIGs with the
GIG. (iv) The inference detection module does not collude with any of the data
controllers that subscribe to use its service, but we assume that is could have
an honest-but-curious behavior. (v) The databases managed by data controllers
are not subject to updates. (vi) The data processors do not collude.

To compute the GIG, one must identify similar instances present in differ-
ent SIGs. Instances are said to be similar if they represent the same real world
entity. For example the instances: (Alice, Thing, 1992-07-12) and (Alice Thing,
12/7/1992) have different formats but represent the same real world entity. As
a consequence, the GIG must represent those relations of similarity by adding
a new kind of links, the similarity links, between nodes of similar instances in
different SIGs. Adding such links allows to model the propagation of a user
knowledge beyond the SIG of the queried database to the other SIGs. In other
words, if in the GIG, the nodes n1 and n2 from different SIGs are both linked
with a similarity link, then if a user queries the value of n1 her knowledge of
this attribute value is set to 100% thus the probabilistic propagation will set the
percentage of knowledge of the n2 value to 100%. Therefore, the main challenge
of computing the similarity links is related to the data format heterogeneity
among databases. As demonstrated in [8] Bloom Filter (BF) is the most com-
monly used structure when calculating similarity scores (e.g., based on the Dice
coefficient). The second challenge to respect hypothesis (ii) is to anonymize data
in the SIG before sending it to the inference detection module. To keep the sim-
ilarity calculation possible, the anonymization function used on each SIG must
be the same. The BF must also preserve the privacy of the encoded instances.
Encoding techniques such as the one demonstrated in [8] are sensible to attacks,
based on frequency accounting or bit pattern, aiming to re-identify data encoded
within the BF structure. Such an attack is presented in [4] where the following
recommendations to use BF for preserving-privacy computing is proposed: (i) use
record-level1 BF encoding (like the CLK approach proposed in [9]), (ii) employ
different hash mechanisms, and, (iii) use advanced techniques (random hashing,
adding random bits, etc.).

1 Record-level mean that each field (i.e., attribute) of an instance are encoded into a
single BF whereas field-level mean that each field is encoded into a separated BF.

204 P. Lachat et al.

Computing the GIG. Our global graph is initialized by computing the disjoint
union of the SIGs issued by the set of data controllers participating to the
inference detection solution. Then the GIG computation is completed by linking
semantically corresponding nodes related to similar instances from different SIGs
with similarity links. The naive approach is to first encode instances of each SIG
into a BF and proceed to a pairwise similarity score computation. The nodes
related to a couple of similar instances are then linked together with a similarity
link in the GIG. But computing this score for each couple of BFs is expensive.
To reduce this cost, we propose to guide the similarity discovery process by
beforehand applying schema matching techniques, such as [11], among the SIMs.
In fact, a SIM represent dependencies at the schema-level in a database thus by
identifying the semantically related attributes in different databases, one can
restrict the pairwise similarity score computation to the instances related by a
schema matching relation.

Algorithm 1: Computation of the Global Instance Graph (GIG)
Inputs: SIG: Set of the data controllers’ SIG. SML: Set of schema matching

relations between the SIMs. BF : Set of BFs related to instances in the
SIGs. st: Similarity threshold.

Outputs: M : Set of pairs of nodes related to semantically similar instances.
GIG: SIGs’ linkage based on the instances similarity.

1 Function instance matching(SIGi, SIGj , SMLij , BFij , st)
2 M ←− ∅
3 foreach l ∈ SMLij do
4 foreach (ni, nj) related by l, ni ∈ SIGi, nj ∈ SIGj do

// Get the Bloom Filter of a node’s instance

5 bfi, bfj ←− get(BFij , ni), get(BFij , nj)
6 if Dice Coefficient(bfi, bfj) > st then
7 M ←− M ∪ (ni, nj)

8 return M

9 Function gig computation(SIG, SML, BF, st)
10 GIG ←− disjoint union of the SIGs in SIG
11 foreach (SIGi, SIGj) ∈ SIG, i < j, SMLij ∈ SML, BFij ∈ BF do
12 M ←− instance matching(SIGi, SIGj , SMLij , BFij , st)
13 foreach (nk, nl) ∈ M do
14 GIG ←− Add a similarity link between nk and nl in GIG

15 return GIG

In the following, we present our algorithm for the GIG creation. Algorithm 1
is composed of two functions: (i) instance matching filters pairs of nodes of
different SIGs based on the related schema matching relations (SML); computes
the similarity score of each candidate pair based on Bloom Filters (BFs); then
collects the pairs of nodes of similar instances based on the similarity threshold,
and (ii) gig computation which initialises the GIG with the disjoint union of all

Towards an Inference Detection System Against Multi-database Attacks 205

the SIGs; processes pairwisely the SIGs to compute the pairs of similar instances;
and links nodes related to similar instances with a similarity link in the GIG.

The time complexity of Algorithm 1 is related to the number of calls to the
Dice Coefficient function which computes the similarity score between two
BFs (i.e., two instances). In the worst case, for the function instance matching
all pairs of nodes (ni, nj) are related to each semantic matching link l. A sim-
ilarity score is thus computed for each pair of nodes which leads to a com-
plexity of O(|SMLij | · |SIGi| · |SIGj |) where |.| denotes either the cardinality
of the set of schema matching relations or the number of instances in a SIG.
For readability purposes, the complexity of instance matching is abbreviated as
O(im). Then the function gig computation goes through all the combinations
of pairs of SIGs without repetition and, in the worst case, calls the function
instance matching for each pair. With |SIG| being the number of SIGs, the com-
plexity of gig computation is O(|SIG|2 · im) since instance matching is called for
each combination of SIGs.

Fig. 2. (a) Overall workflow of our solution. (b) GIG computation time growth.

Workflow. In our architecture, to achieve the privacy preservation of data
controller’s information, the values of the attributes in the SIGs and the BFs
are anonimized by the data controllers themselves so that there is no need to
trust the centralized system. As depicted in Fig. 2a, after collecting data from the
users ① each data controller must compute its own: SIM, anonymised SIG, and
record-level BFs of the instances in the SIG and then sends ② these information
to the knowledge module. The GIG is built ③ relying on a schema matching
technique, such as [11], which processes the set of SIMs from each data controller
(i.e., SIM1, ..., SIMn denoted by SIMn

1). Then Algorithm 1 takes as input the
computed schema matching relations, the set of SIGs, the related BFs, and

206 P. Lachat et al.

the similarity thresholds in order to compute the similarity links between the
SIGs and therefore create the GIG. Once computed, for each incoming query
from a data processor p ❹, the related data controller sends the anonymized
answer of the query to the inference detection module ❺. Which, as explained in
Sect. 2, relies on the knowledge module to query the Bayesian network instance
of the GIG assigned to the data processor p issuing the query (i.e., GIGp) ❻.
Once GIGp is retrieved, the inference detection module operates the probabilistic
propagation for the dependency links as in Chen and manages the similarity links
as presented in Sect. 3.

4 Experimentation and Validation

In this section we have focused on validating and experimenting the GIG cre-
ation step as it represents the novel part of our proposal. The project is hosted
at: https://gitlab.com/plht/prototype. Since the system proposed by Chen has
not been implemented during this experimentation, several programs have been
implemented in order to simulate the processing block of the data controllers
which build the anonymised SIG and record-level BFs as depicted in Fig. 2a.

Dataset. The requirements that we want for the dataset are: (i) it must con-
tain at least two databases with more than one table to have dependencies
between attributes within a table and between different tables (ii) the two schema
must have semantically matching attributes (iii) both databases must contain
instances that are similar. We did not find a dataset that matches all three
requirements. Thus we have adapted the Northix dataset2 designed for schema
matching benchmark in data integration problems. It contains a total of 115
attributes distributed in two databases called Sakila and Northwind, modeling
an online DVD rental store and a fictitious food company respectively. Those
databases are often used as samples for learning purposes and experimentation
in scientific publications.

The resulting schema matching leads to 110 and 28 relations, between
attributes within the same database and between attributes of different
databases respectively. In our case, the drawback of this dataset is that it does
not contain any similar instances between the two databases. Thus, we have
implemented a program which creates either duplicates of customer instances
from one database to the other or create pairs of randomly generated similar
customer instances in both databases.

Settings & Results. To measure the efficiency of the GIG computation, we
choose to focus only on customer instances matching since they represent the
type of instances that interests potentially an attacker in a realistic MDIA.
The two SIMs3 used for the experimentation have been created manually. We
have been careful to represent semantically realistic dependencies between the
2 https://archive.ics.uci.edu/ml/datasets/Northix.
3 https://gitlab.com/plht/prototype/-/tree/master/model#experimentation.

https://gitlab.com/plht/prototype
https://archive.ics.uci.edu/ml/datasets/Northix
https://gitlab.com/plht/prototype/-/tree/master/model#experimentation

Towards an Inference Detection System Against Multi-database Attacks 207

Fig. 3. GIG with four pairs of similar customer instances.

attributes. We have chosen to vary the number of pairs of similar instances from
0 up to 104 pairs by inserting 100 new pairs at each step. All points of measure
has been repeated 10 times and the median of each repetition is used in the
plot. Finally, the measures have been performed in a Docker container hosted on
Ubuntu 14.04.6 and running on an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60
GHz with 46 GiB of RAM.

Figure 2b depicts the measure of the GIG computation time growth depend-
ing on the number of pairs of similar instances between the two databases of the
Northix dataset. The quadratic growth matches the theoretical time complexity
of Sect. 3 and is the result of processing pairwisely the SIGs (line 11 in Algo-
rithm 1) in order to compute the matching instances. Nevertheless, the GIG can
be computed offline by processing the white steps in Fig. 2a before being used
online and the performances when data is queried from the databases are not
affected during the black steps.

Figure 3 shows an example of a small GIG with 4 similarity links related to
the schema matching relation (postal code, postalCode) and 4 others related to
(first name, contactName). In the zoomed sub-graph the two customer instances
are linked together by a similarity link. Therefore, when a query is issued to
Sakila to get the value of first name, then during the probability propagation
phase of the Bayesian network instance specific to the user issuing the query, the
inference detection algorithm will update the knowledge of first name to 100%
since the user now knows the value of this attribute. Next the similarity link will
be processed by setting the same percentage of knowledge to the node at the
other end (i.e., contactName). This knowledge propagation through similarity
links allows the centralised system to detect knowledge queried on one database
which can be used to infer sensitive values on other related databases.

The experimental part of our work highlights several issues linked to the use
of BF in our solution: first of all the BF limitations in handling heterogene-
ity among database schemas to identify similarities4. On the other hand, the
similarity is stated between two instances based on a fixed threshold.

4 https://gitlab.com/plht/prototype/-/tree/master/dataset#sakila.

https://gitlab.com/plht/prototype/-/tree/master/dataset#sakila

208 P. Lachat et al.

5 Conclusion

We have proposed the design of a Multi Database Inference Attack (MDIA)
detection system. Our approach extends an existing solution by using schema
matching and privacy-preserving record linkage techniques in order to detect
inference channels between databases. With respect to our hypothesis, we are
able to build a Global Instance Graph which represents the inference channels
within each (and among) database(s). It allows the detection of MDIA that the
usual inference detection systems are not able to identify. This is a first step
towards the development of a distributed and fully featured MDIA detection
system. In addition, data and schema updates could be integrated in our solution
by removing hypothesis (v). In fact, this will affect the models used by the system
and requires to propose efficient mechanisms to keep them up-to-date with the
concern of maintaining data availability and a good inference detection level.

References

1. Biskup, J.: Dynamic policy adaptation for inference control of queries to a propo-
sitional information system. J. Comput. Secur. 20(5), 509–546 (2012)

2. Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: constraints, inference chan-
nels, and monitoring disclosures. IEEE Trans. Knowl. Data Eng. 12(6), 900–919
(2000)

3. Chen, Y., Chu, W.W.: Database security protection via inference detection. In:
Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI
2006. LNCS, vol. 3975, pp. 452–458. Springer, Heidelberg (2006). https://doi.org/
10.1007/11760146 40

4. Christen, P., Ranbaduge, T., Vatsalan, D., Schnell, R.: Precise and fast cryptanal-
ysis for bloom filter based privacy-preserving record linkage. IEEE Trans. Knowl.
Data Eng. 31(11), 2164–2177 (2019)

5. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence, vol. 2, pp. 1300–1307. Stockholm Sweden (1999)

6. Gerl, A., Bennani, N., Kosch, H., Brunie, L.: LPL, towards a GDPR-compliant pri-
vacy language: formal definition and usage. In: Hameurlain, A., Wagner, R. (eds.)
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXVII.
LNCS, vol. 10940, pp. 41–80. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-57932-9 2

7. Guarnieri, M., Marinovic, S., Basin, D.: Securing databases from probabilistic infer-
ence. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp.
343–359 (2017)

8. Randall, S.M., Ferrante, A.M., Boyd, J.H., Bauer, J.K., Semmens, J.B.: Privacy-
preserving record linkage on large real world datasets. J. Biomed. Inform. 50,
205–212 (2014)

9. Schnell, R., Borgs, C.: Randomized response and balanced bloom filters for privacy
preserving record linkage. In: 2016 IEEE 16th International Conference on Data
Mining Workshops (ICDMW), pp. 218–224 (2016)

10. Staddon, J.: Dynamic inference control. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (2003)

https://doi.org/10.1007/11760146_40
https://doi.org/10.1007/11760146_40
https://doi.org/10.1007/978-3-662-57932-9_2
https://doi.org/10.1007/978-3-662-57932-9_2

Towards an Inference Detection System Against Multi-database Attacks 209

11. Villányi, B., Martinek, P.: DIPROM: DIstance PROportional Matcher exploiting
neighbor-levels and related terms. Periodica Polytechnica Electr. Eng. Comput.
Sci. 61(1), 1–11 (2017)

12. Woodall, P., Brereton, P.: A systematic literature review of inference strategies.
Int. J. Inf. Comput. Secur. 4(2), 99–117 (2010)

Author Index

Abelló, Alberto 73
Ao, Jing 129
Asim, Muhammad 108
Ayall, Tewodros 118

Bennani, Nadia 199
Bimonte, Sandro 84
Boneva, Iovka 97

Chapon, Mathieu 49
Cheng, Zehui 129
Chirkova, Rada 129
Corrales, Juan Carlos 84

Daouayry, Nassia 38
de Vaulx, Christophe 84
Deleli, Mesay 118
Demartini, Gianluca 154
Deßloch, Stefan 166
Diamantaras, Konstantinos I. 27
Djenouri, Youcef 60
Doniparthi, Gajendra 166
Duan, Hancong 118

Ehsan, Humaira 154
Endres, Markus 177
Evangelidis, Georgios 27

Faci, Noura 108
Frasincar, Flavius 143
Frémond, Arthur 49

Gereme, Fantahun 118

Haas, Christian 177
Hewasinghage, Moditha 73
Hogenboom, Frederik 143
Hoogmoed, Thom 143

Ikuta, Yusuke 189

Jóczik, Szabolcs 13

Kajan, Ejub 108
Kemper, Alfons 3

Keulers, Geertje 143
Kiss, Attila 13
Kolaitis, Phokion G. 129
Kulikov, Alex 3

Lachat, Paul 199
Langendoen, Edmar 143
Langendoen, Sanne 143
Le Guilly, Marie 38
Li, Jerry Chun-Wei 60
Liu, Changhong 118
Lozano, Jose 97

Maamar, Zakaria 108
Maisonneuve, Pierre-Loic 38
Mechouche, Ammar 38
Mohammadi, Samin 49
Mühlhaus, Timo 166

Nadal, Sergi 73
Neumann, Thomas 3
Nørvåg, Kjetil 60

Ougiaroglou, Stefanos 27

Petit, Jean-Marc 38
Plazas, Julian Eduardo 84

Qamar, Ayesha 108

Ramampiaro, Heri 60
Rehn-Sonigo, Veronika 199
Robal, Tarmo 143
Rudenko, Lena 177

Schneider, Michel 84
Schüle, Maximilian E. 3
Scuturici, Vasile-Marian 38
Seki, Kazuhiro 189
Sharaf, Mohamed A. 154
Staworko, Sławek 97

van Huijsduijnen, Lies Hooft 143
Vos, Tim 143

	Preface
	Organization
	Contents
	I Data Access and Database Performance
	ARTful Skyline Computation for In-Memory Database Systems
	1 Introduction
	2 Related Work
	2.1 Main-Memory Database Systems
	2.2 Skyline Algorithms

	3 SARTS
	3.1 ST-S for Categorical Attributes
	3.2 ART for Skyline

	4 Parallelisation
	4.1 Naive-/Block-Nested-Loops
	4.2 Divide-and-Conquer
	4.3 SARTS and ST-S

	5 Evaluation
	5.1 Non-progressive Algorithms
	5.2 Progressive Algorithms

	6 Conclusion
	References

	Quantum Computation and Its Effects in Database Systems
	1 Introduction
	2 Related Works
	3 Unstructured Database Search with Grover's Algorithm
	3.1 Problem Definition
	3.2 Algorithm

	4 Set Operation: Intersection
	4.1 Quantum Algorithm
	4.2 Implementation

	5 Set Operation: Difference
	5.1 Quantum Algorithm

	6 Set Operation: Union
	6.1 Quantum Algorithm
	6.2 Implementation

	7 Set Operation: Projection
	7.1 Problem 1: Converting Multiset to Set
	7.2 Problem 2: Projection

	8 Evaluation on IBM's Quantum Computers
	8.1 Intersection
	8.2 Set Difference
	8.3 Union
	8.4 Projection

	9 Conclusion and Future Work
	References

	I Machine Learning
	Dynamic k-NN Classification Based on Region Homogeneity
	1 Introduction
	2 Related Work
	3 Region Homogeneity Based Dynamic k-NN
	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

	Contextualisation of Datasets for Better Classification Models: Application to Airbus Helicopters Flight Data
	1 Introduction
	2 Preliminaries
	2.1 Functional Dependencies
	2.2 Supervised Classification in Machine Learning
	2.3 Existence Versus Determination of a Function

	3 Contextualization of a Classification Dataset
	3.1 From Counterexamples to Context-Aware Data Selection

	4 Application to AH Flight Data
	4.1 AH Classification Datasets
	4.2 Comparison of AH Datasets
	4.3 Additional Contextualization Using G3
	4.4 Take Away Lessons

	5 Related Work
	6 Conclusion
	References

	Query Intent Detection from the SEO Perspective
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Data Scrapper
	3.2 Feature Extraction
	3.3 Clustering
	3.4 Datasets

	4 Clustering Experiments
	5 Conclusion
	References

	Fast and Accurate Group Outlier Detection for Trajectory Data
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 CDkNN-GTOD Algorithm
	4.1 Clustering
	4.2 Pruning Strategy
	4.3 Pattern Mining

	5 Performance Evaluation
	5.1 Parameter Settings
	5.2 CDkNN-GTOD Vs State-of-the-Art Group Detection Algorithms

	6 Conclusion
	References

	I Data Processing
	On the Performance Impact of Using JSON, Beyond Impedance Mismatch
	1 Introduction
	2 Related Work
	3 Representational Differences
	3.1 Schema Variability
	3.2 Schema Declaration
	3.3 Structure Complexity

	4 Experimental Evaluation
	4.1 Schema Variability
	4.2 Schema Declaration
	4.3 Structure Complexity

	5 Discussion
	6 Conclusions and Future Work
	References

	Self-service Business Intelligence over On-Demand IoT Data: A New Design Methodology Based on Rapid Prototyping
	1 Introduction
	2 Related Work
	3 Our Methodology
	4 Conceptual Design and Logical Design and Deployment of IoT Data
	5 Conceptual Integration of IoT Data in BI
	6 Conclusion and Future Works
	References

	I Semantic Web
	Consistency and Certain Answers in Relational to RDF Data Exchange with Shape Constraints
	1 Introduction
	2 Preliminaries
	3 Constructive Relational to RDF Data Exchange
	4 Consistency
	5 Certain Query Answering
	6 Related Work and Conclusions
	References

	OWL-T for a Semantic Description of IoT
	1 Introduction
	2 Background
	2.1 OWL-S in Brief
	2.2 Related Work on Semantic IoT

	3 OWL-T's Three Dimensions
	3.1 Overview
	3.2 Interaction Dimension
	3.3 Operation Dimension
	3.4 Consumption Dimension

	4 Conclusion
	References

	OffStreamNG: Partial Stream Hybrid Graph Edge Partitioning Based on Neighborhood Expansion and Greedy Heuristic
	1 Introduction
	2 The Graph Edge Partitioning (Vertex Cut) Problem
	3 The Proposed Method
	3.1 Partition State
	3.2 The Offline Component of OffStreamNG Model
	3.3 The Online Component of OffStreamNG

	4 Experimental Analysis and Results
	4.1 Experimental Results
	4.2 Discussion

	5 Conclusion
	References

	Temporal Enrichment and Querying of Ontology-Compliant Data
	1 Introduction
	2 Temporal Enrichment of Ontologies and Data
	3 Querying the Materialized Temporally Enriched Data
	4 Implementation and Experimental Results
	5 Conclusions and Future Work
	References

	I Data Analytics
	Bing-CSF-IDF+: A Semantics-Driven Recommender System for News
	1 Introduction
	2 Related Work
	3 Bing-CSF-IDF+
	4 Evaluation
	4.1 Setup
	4.2 Optimizing Weights
	4.3 Results

	5 Conclusion
	References

	QuRVe: Query Refinement for View Recommendation in Visual Data Exploration
	1 Introduction
	2 Preliminaries
	2.1 View Recommendation
	2.2 Query Refinement
	2.3 Hypothesis Testing

	3 Query Refinement for View Recommendation
	4 Search Schemes
	4.1 The Linear Scheme
	4.2 The QuRVe Scheme

	5 Experimental Evaluation
	6 Conclusions
	References

	A Bloom Filter-Based Framework for Interactive Exploration of Large Scale Research Data
	1 Introduction
	1.1 Motivating Example
	1.2 Problem Statement and Outline

	2 Related Work and Preliminaries
	2.1 Bloom Filters

	3 Framework
	4 Indexing Using Bloom Filters
	4.1 Limitations of Bloom Filter Indexing
	4.2 Segmentation Approach

	5 Experiments
	6 Conclusion and Future Work
	References

	Analyzing Twitter Data with Preferences
	1 Introduction
	2 Background
	2.1 Preference Model
	2.2 Preference Constructors
	2.3 Tweets

	3 CONTAINS Preference
	3.1 CONTAINS Constructor
	3.2 Natural Language Processing
	3.3 Edit Distance

	4 Experiments
	4.1 Quality Tests
	4.2 Runtime Tests

	5 Conclusion
	References

	S-APIR: News-Based Business Sentiment Index
	1 Introduction
	2 Related Work
	3 S-APIR and Its Application to Word-Level Analysis
	3.1 S-APIR Index
	3.2 Word-Level Temporal Analysis

	4 Evaluation
	4.1 Experimental Settings
	4.2 Evaluation on Economy Watchers Survey
	4.3 Evaluation of S-APIR
	4.4 Temporal Analysis of Words

	5 Conclusions
	References

	Towards an Inference Detection System Against Multi-database Attacks
	1 Introduction
	2 Inference Detection in Case of a Single Database
	3 Extension to a Multi-database Protection: A Step Ahead
	4 Experimentation and Validation
	5 Conclusion
	References

	Author Index

