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Abstract. Farm detection using low resolution satellite images is an important
part of digital agriculture applications such as crop yield monitoring. However, it
has not received enough attention compared to high-resolution images. Although
high resolution images are more efficient for detection of land cover components,
the analysis of low-resolution images are yet important due to the low-resolution
repositories of the past satellite images used for timeseries analysis, free availabil-
ity and economic concerns. In this paper, semantic segmentation of farm areas is
addressed using low resolution satellite images. The segmentation is performed in
two stages; First, local patches or Regions of Interest (ROI) that include farm areas
are detected. Next, deep semantic segmentation strategies are employed to detect
the farmpixels. For patch classification, two previously developed local patch clas-
sification strategies are employed; a two-step semi-supervised methodology using
hand-crafted features and Support Vector Machine (SVM) modelling and transfer
learning using the pretrained Convolutional Neural Networks (CNNs). For the
latter, the high-level features learnt from the massive filter banks of deep Visual
Geometry Group Network (VGG-16) are utilized. After classifying the image
patches that contain farm areas, the DeepLabv3+ model is used for semantic seg-
mentation of farm pixels. Four different pretrained networks, resnet18, resnet50,
resnet101 and mobilenetv2, are used to transfer their learnt features for the new
farm segmentation problem. The first step results show the superiority of the trans-
fer learning compared to hand-crafted features for classification of patches. The
second step results show that the model trained based on resnet50 achieved the
highest semantic segmentation accuracy.
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1 Introduction

Satellite image analysis is an important topic in land cover classification and remote
sensing domain. In digital agriculture, farm detection is a key factor for different agri-
cultural applications such as diagnosis of diseases and welfare-impairments, crop yield
monitoring and surveillance and control of micro-environmental conditions [1–4].
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While new high-resolution satellites are launched every day, it is still important to
study and use Low-resolution satellite imagery that is being used since more than 30
years. That is due to the fact that the increased resolution offered by new sensors improve
the accuracy and precision, yet the continuity of the existing low-resolution systems data
is crucial for time series analysis. One important application of time series investiga-
tion is change detection, that requires comparison with low resolution images of the
old databases [5, 6]. Another example of using low-resolution satellite images for crop
monitoring and yield forecasting is [7], that uses Landsat imagery in order to expand the
used operational systems. Furthermore, the processing time and cost of analyzing high
resolution satellite images is more [8], while the variations in sensor angle and increase
in shadows might influence the accuracy when using high resolution sensors [8]. Such
factors challenge the precision of spatial rectification. Then, a compromise between accu-
racy and cost should be considered for the resolution of the satellite images depending
on the application. Therefore, for land cover classification and semantic segmentation
of large features such as farms, low resolution satellite images for instance, Landsat are
appropriate [3].

Image segmentation methods address the problem of finding objects boundaries in
images. This leads to assigning multiple sets of pixels in an image into different classes
or objects [9].

There is a long history for land cover classification and semantic segmentation of
meaningful objects from the scene. In early works, when pixels were bigger than ground
features due to very low resolution [10, 11], pixels, sub-pixel or object level analysis
were carried out using unsupervised and supervised techniques such as Neural Networks
(NN), decision trees and nearest neighbors and hybrid classification [12–17]. Then, due
to the significant increase in spatial resolution of images, objects include several pixels.
Therefore,Object-Based ImageAnalysis (OBIA)was developed for the improved spatial
resolution of images [11] to deal with complex classes [18]. OBIA assigns groups of
pixels into shapes with a meaningful representation of objects [10]. For this aim, usually
image segmentation is performed followed by feature extraction and classification. The
segmentation step is more critical and influences the overall accuracy [19, 20].

In many cases software and computational tools such as ERDAS and Khoros 2.2
were used [17]. eCognition and ArcGIS softwares are recent examples in this case [8,
21]; Traditional hand-crafted feature extraction and discrimination techniques for object
classification in remote sensing was reviewed in [22].When using low resolution images
such as Landsat 8, appropriate choice of training samples, segmentation parameters and
modelling strategy is important. That is a challenge in using software-based strategies and
limit their accuracy [21]. An example in this case is selection of a suitable segmentation
scale to avoid over and under segmentation in Object Based Image Analysis OBIA.
Although there are several reports of superior performance on different landscapes, due
to the segmentation scale issue and lower resolution, OBIA is not very ideal for Landsat
data [21].

Utilization of saliency maps for pixel level classification of high-resolution satellite
images was performed based on spectral domain analysis such as Fourier and wavelet
transforms for creation of local and global saliency maps [23, 24]. In another work based
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on saliency analysis low level SIFT descriptors, middle-level features using locality-
constrained linear coding (LLC) and high level features using deep Boltzmann machine
(DBM) were combined [25].

In addition, the state of the art CNNs have been used recently for classification of
satellite images [26–28]. Due to the limited effectiveness of manual low-level feature
extraction methods in highly varying and complex images such as diverse range of land
coverage in satellite images, deep feature learning strategies have been applied recently
for ground coverage detection problems. One of the effective deep learning strategies
is the deep CNNs due to its bank of convolutional filters that enables quantification of
massive high-level spectral and spatial features. For semantic segmentation problems, the
most recently developed methods are based on deep learning techniques [29]. Examples
of such techniques are fully convolutional network (FCN) [30–33], encoder-decoder
architectures such as Unet [34] and other similar architectures such as an subsample-
upsample architecture in [35], LinkNet [36], ResNet [37], AD-LinkNet [29]. Recently.
deepLabv3 [38] and deepLabv3+ [39] methods based on atrous convolution have been
developed for semantic segmentation.

In this paper, the problem of farm detection and segmentation using low resolution
satellite images is addressed. In our previous contribution, a farm detection strategy was
developed at patch level [40]. The analysis include two different strategies; the first one
was a semi-supervised strategybasedonhand-crafted features combinedbyclassification
modeling similar to [40–43]. The developed algorithm consists of an unsupervised pixel-
based segmentation of vegetation area using Normalized Difference Moisture Index
(NDMI), followed by a supervised step for texture area classification and farm detection;
GLCM and 2-D DCT features are used in an SVM framework for texture classification
and then, object-based morphological features were extracted from the textured areas
for farm detection. The second one was a CNN-based transfer learning strategy that uses
the pre-trained VGGNet16 for local patch classification.

The main contribution of this paper is segmentation of farm areas semantically at
pixel level. The analysis strategy consists of twomain stages; first similar to our previous
work [40], local image patches or ROIs that include farm areas are detected. Then, having
found the local ROIs consisting the farm areas, in the next step, semantic segmentation
of farm regions in the ROIs is performed using deepLabv3+ modelling strategy [39].
Based on transfer learning concept, labelled ROIs including farms are used together with
four different pretrained networks, resnet18, resnet50, resnet101 and mobilenet and the
transferred models results are compared.

The rest of paper is organized as follows; Sect. 2 is about data description. Section 3
describes the both classification strategies. The experimental results are presented in
Sect. 4 and we finally conclude in Sect. 5.

2 Dara Description

Landsat 8 is the latest earth imaging satellite of the Landsat Program operated by the
EROS Data Centre of United States Geological Survey (USGS), in collaboration with
NASA. The spatial resolution of the images is 30 m. Landsat 8 captures more than 700
scenes per day. The instruments Operational Land Imager (OLI) and Thermal Infrared
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Sensor (TIRS) in Landsat 8 have improved Signal to Noise Ratio (SNR). The products
downloaded are 16-bit images (55,000 grey levels) [3, 44]. There are 11 bands out of
which, the visible and infrared (IR) bands are used in this paper. The data set consist
Landsat 8 image of an area near Tendales, Ecuador (See Fig. 1). In this work, different
combinations of band are used for calculating vegetation and moisture indices used in
estimation of vegetation green areas as well as visible RGB bands for classification
analysis.

Fig. 1. Landsat 8 RGB image of Tendales, Ecuador. (Color Figure Online)

3 Methodology

In this section the procedures used for classification of farm patches and segmentation
of farm areas in the detected patch are described. Figure 2 shows the overall analysis
strategy in this work.

Classification of lo-
cal farm patches (ROI) 

Semantic segmentation 
of farm area in the ROI 

Fig. 2. Overall analysis strategy of this paper.

3.1 Classification of Patches (ROIs)

Two strategies are used and compared in this paper for classification of local patches of
satellite image into farm and non-farm. They are described in the following.

Hand-Crafted Features for Classification of Farm Patches. First, the vegetation
area is segmented using the NDMI image. Next, local patches are generated automati-
cally, from the segmented green area. Then, textured areas including farms or any other
pattern are classified by applying SVM on the extracted features using GLCM and 2-
D DCT. Finally, the farm areas are detected by morphological analysis of the textured
patches and SVMmodelling.MATLAB 2018was used for all implementations. Figure 3
shows the block diagram of the analysis strategy.
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GLCM-DCT- SVM 

Green area segmenta-
tion 

(NDMI-Un sup.) 

Step 1.  
Tex. Vs. Flat 
Feature Ext. 

Step 2.  
Tex. Vs. Farm 
Feature Ext. 

Morph. - SVM 

Fig. 3. Block diagram showing the overall classification process based on hand-crafted features.

Vegetation Segmentation. There are two standard indexes for segmentation of green
vegetation area. They are Normalized Difference Vegetation Index (NDVI) [45] and
NDMI [46]. The pixels are segmented using spectral bands; the Near Infra-Red (NIR)
in 851–879 nm range and Shortwave NIR (SWIR) in 1566–1651 nm range. However,
NDMI [46] is a more suitable technique because it considers the moisture content of
the soil and plants instead of the leaf chlorophyll content or leaf area. There are also
similar works like [47], which have used NDMI and tasseled cap transformations on
30 m resolution Landsat images for estimating soil moisture. Hence, the farm areas that
went undetected by NDVI are well detected by thresholded NDMI strategy. NDMI uses
two near-infrared bands (one channel of 1.24-μm that was never used previously for
vegetation indices) to identify the soil moisture content. It is employed in forestry and
agriculture applications [48]. This index has been used in this paper for the estimation of
total vegetation including the agricultural lands and farms. For Lands imagery, NDMI
is calculated as:

NDMI = NIR − SWIR

NIR + SWIR
(1)

NDMI is always in the range [−1, +1]. It is reported that NDMI values more than 0.10–
0.20 indicate very wet or moist soil surfaces [46]. Then, based on this study, cultivable
land is extracted for further classification.

Texture Area Detection. The detected green areas from the previous step are mapped on
the RGB band images. Farm areas are part of the green areas of the image; therefore, the
detected green areas are divided into small patches of 200 × 200 pixels. Then, feature
extraction is performed for each patch of image to detect the textured patches. Patches
with flat patterns do not include a farm area.

GLCM - One of the feature extraction techniques employed for texture areas is the
GLCM that is widely used for texture analysis [49]. The GLCM studies the spatial
correlation of the pixel grayscale and spatial relationship between the pixels separated
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by somedistance in the image. It looks for regional consistency considering the extent and
direction of grey level variation. Considering the characteristics of the flat regions and the
textured regions (non-farm or farm) as shown in Fig. 4. GLCM is used for discrimination.
Mathematically, the spatial relation of pixels in image matrix is quantified by computing
how often different combinations of grey levels co-occur in the image or a section of
the image. For example, how often a pixel with intensity or tone value i occurs either
horizontally, vertically, or diagonally to another pixel at distance d with the value j
(see Fig. 5-a). Depending on the range of intensities in an image, a number of scales
are defined and a GLCM square matrix of the same dimensional size is formed. Then,
image pixels are quantized based on the discrete scales and the GLCM matrix is filled
for each direction. Figure 5-b shows the formation process of a GLCM matrix based on
horizontal occurrences at d = 1. The grayscales are between 1 to maximums 8 in this
case.

(a) (b) (c) 

Fig. 4. Examples of (a) Flat (b) Textured-farm (c) Textured non-farm patches [40].

(a) (b) 

Pixel of interest 

GLCM 

Fig. 5. (a) Illustration of forming GLCM matrices in four directions i.e., 0
◦
, 45

◦
, 90

◦
, 135

◦
. (b)

Computation of GLCM matrix based on horizontal occurrences at d = 1 for an image [50].

Two order statistical parameters: Contrast, Correlation, Energy and Homogeneity
samples are used to define texture features in the vegetation. Considering a grey co-
occurrence matrix p, they are defined as:

Contrast =
∑

i,j

|i − j|2p(i, j) (2)

Correlation =
∑

i,j

(i − μi)
(
j − μj

)
p(i, j)

σiσj
(3)
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Energy =
∑

i,j

p(i, j)2 (4)

Homogenity =
∑

i,j

p(i, j)

1 + |i − j| (5)

where, i, j denote row and column number, μi, μj, σi, σj are the means and standard
deviations of px and py, so that, px(i) = ∑G−1

j=0 p(i, j) and py(j) = ∑G−1
i=0 p(i, j). G is

the number of intensity scales, used for GLCM matrix formation.
Further detailed information can be found in [51]. The GLCM features are calculated

in directions 0°, 45°, 90°, and 135° as shown in Fig. 2-a. The calculatedGLCMfeatures in
the four directions are averaged for each parameter and used as input to the classification
model GLCM = [

Contav,Corrav,Engav,Homav
]
.

2D DCT - DCT sorts the spatial frequency of an image in ascending order and in the
form of cosine coefficients. Most significant coefficients lie in the lower order, cor-
responding to the main components of the image, while the higher order coefficients
correspond to high variation in images. Since the variation in a textured patch is higher
than a flat one, the DCT map can help to distinguish them. For this aim, the original
image patch Iorg is transformed into DCT domain IDCT and a hard threshold is applied
to the DCT coefficients to remove the high order coefficients IDCT (th). Then, the inverse
2D-DCT of the thresholded image IiDCT is computed. In both original and DCT domain,
the reduction in the entropy of the textured patches is more significant than the flat areas
representing smooth variations. Therefore, the ratio of coefficients’ entropy before and

after thresholding
[

ent(IDCT )

ent(IDCT (th))
,

ent(Iorg)
ent(IiDCT )

]
are calculated in both domains. For textured

patches the entropy ratios are greater compared to flat patches due to the significant drop
in entropy after thresholding the large amount of high frequency information.

Morphological Features. To recognize if a detected textured patch contains farm areas,
first the patch image is converted to grayscale image. Then, the Sobel edge detection
followed by morphological opening and closing by reconstruction are performed. This
highlights the farm areas, keeping the boundaries and shapes in the image undisturbed.
Next, the regional maxima were found to extract only the areas of maximum intensity
(or the highlighted foreground regions). Further, the small stray blobs, disconnected or
isolated pixels, and pixels having low contrast with the background in their neighborhood
are discarded. This is because there is a contrast between the farm regions (marked as
foreground) and their surrounding boundary pixels. The same procedure is performed
for a non-farm sample. The area of the foreground as well as the entropy for a patch
including farm is higher compared to a non-farm due to the higher number of connected
foreground pixels.

SVM Modelling. SVM classifiers are trained using the four GLCM and the two DCT
features at step 1 andmorphological features at step 2. The first model is capable to detect
textured versus the flat patches and the second one detects the patches including farms
from the textured patches with no farm areas. The LibSVM [52] is used. In this paper, the
5-fold cross-validation [53], is used to find the optimum kernel and the corresponding
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parameters. It helps to avoid over-fitting or under-fitting. The choice of kernel based on
cross validation allows classifying data sets with both linear and non-linear behaviour.
SVM was used for remote-sensing and hyperspectral image data analysis previously
[54].

Transfer Learning Strategy for VGGNet16. CNN is a popular classification method
based on deep learning of different levels of both spectral and special features using the
stack of filter banks at several convolutional layers. However, training a CNN requires
large data sets and heavy time-consuming computations and is prone to over-fitting
using small data sets. A versatile approach in this case is transfer learning; The high-
level deep features learnt over several layers of convolution, pooling and RELU using
million images of massive ranges of scenes and objects are kept. That is based on the
fact that the weighted combination of these activation maps of high-level features are
the underlying building blocks of different objects of the scenes. While, the end layers
called fully connected layers (FC) should be re-trained using hundreds of new training
images. These layers are used to evaluate the strong correlation of the previous layers
high-level features to particular classes of the task (in training images) and calculate the
appropriate weights giving high probabilities for correct classifications. Figure 6 shows
the transfer learning concept.

New layers
Using new data 

Replace Final Layer 

… 

Fewer classes (10s), 
 less data (100s) 

Early layers 
Last layers

Task specific feat. 

Pre-trained network  

… 

1000s classes, 
Millions of images 

Test Images

New trained net

Trained Net 

Improved Net 

Fig. 6. Block diagram showing the transfer learning strategy [40].

The recent works on utilization of this technique [55, 56] shows suitability of trans-
ference of the learnt activation vectors for a new image classification task. Therefore,
new patches of satellite images are used to retrain the final FC layers of VGG-16 CNN.

VGG-16 Network. The VGG-16 network is a pretrained network using more than a
million images from the ImageNet database [57]. There are 16 deep layers and 1000 dif-
ferent classes of objects, e.g. keyboard, mouse, pencil, and many animals. This network
has learned rich high-level feature representing wide ranges of objects. The size of input
image is 224 × 224 × 3 where the three color layers are RGB bands. The last three FC
layers are trained for classification of 1000 classes. As explained, these three layers are
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retrained using our satellite image patches of the same size for farm classification while
all other layers are kept.

3.2 Semantic Segmentation of Farm Area Using DeepLabv3+

As described in Introduction Section, after classifying the local patches, the pixels that
include farm area are segmented. For this aim DeepLabv3+ model is used that utilizes
an Encoder-Decoder architecture with atrous Convolution [39]. They are used in both
DeepLabv3 and DeepLabv3+. They address two main challenges of semantic segmen-
tation with deep CNN models, (1) the reduced feature resolution caused by consecutive
pooling operations or convolution striding and (2) existence of objects at multiple scales
[38].

The first challenge causes to learn increasingly abstract feature representations and
invariance to local image transformation that makes issues in prediction tasks [38]. That
is due to the loss of detailed spatial features that influences the prediction performance.
To overcome this problem, atrous convolution also known as dilated convolution is used
in both DeepLabv3 and DeepLabv3+ architecture. The resolution of extracted deep
features can be controlled explicitly using atrous convolution (see Fig. 7). Given a two-
dimensional image, for each location i on the output feature map y and a convolution
filter w, atrous convolution is applied over the input feature map x according to the
following equation:

y[i] =
∑

k
x[i + rk]w[k]

where the atrous rate r determines the stride used to sample the input signal. If r = 1, it
is the standard convolution.

 

r=1 

Conv. kernel 3x3 for r=1 

Feature Map 

r=6 

Conv. kernel 3x3 for r=6 

Feature Map 
r=24 

Conv. kernel 3x3 for r=24 

Feature Map 

Fig. 7. Illustration of atrous convolution concept, with kernel size 3 × 3 and different rates.
Standard convolution corresponds to atrous convolution with r = 1, while with higher atrous
rates, the model’s field-of-view enlarges and allows multi-scale feature extraction.

Using atrous also allows, adjusting the filter’s field-of-view in order to capture multi-
scale information which addresses the second challenge. Reviewing recent literatures
shows that several methods have been proposed to address the issue with objects at
multiple scales [58–61]. In DeepLabv3+, the spatial pyramid pooling is embedded into
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an encoder-decoder architecture as shown in Fig. 8. While the early layers include con-
volution and down-sampling operations (similar to Deep CNN), the down sampling
operations are removed from the last few layers and instead, up-sampling of the corre-
sponding filter kernels is performed andmultiple parallel atrous convolutions are applied
in different rates. This results in denser feature maps and capturing context at several
ranges compared to Deep CNN (see Fig. 8).

As stated above, DeepLabv3+ utilizes an encoder-decoder structure. The encoder-
decoder networks have been successfully used for different computer vision problems
including semantic segmentation for example in [61, 62]. There are two main modules
in encoder-decoder networks structure (1) an encoder module that gradually extracts
semantic features and reduces the feature maps, and (2) a decoder module that gradually
recovers the spatial information [39]. The encoder module that includes the spatial pyra-
mid pooling has been described above. The last feature map in the top left side of Fig. 8
is the encoder output. The encoder features from DeepLabv3 [38] are usually computed
with output stride= 16 and the features are then bilinearly up-sampled by a factor of 16.
That is described as a naive decoding module and may not successfully recover object
segmentation details [39]. Therefore, in DeepLabv3+, a simple yet effective decoder
module is proposed as shown in Fig. 8 right side modules. Instead of up-sampling
directly by a factor of 16, the encoder features are first bilinearly up-sampled by a factor
of 4 and then concatenated with the corresponding low-level features from the left side
encoder module that have the same spatial resolution. Then, few 3 × 3 convolutions fol-
lowed by another simple bilinear up-sampling by a factor of 4 is performed. For further
details, we refer to [39].

Fig. 8. The DeepLabv3+ encoder-decoder structure. The encoder module encodes multi-scale
contextual information by applying atrous convolution at multiple scales, while the simple yet
effective decoder module refines the segmentation results along object boundaries [39].

In this paper, four different pretrained networks, resnet18, resnet50, resnet101 and
mobilenetv2, are used to transfer their learnt features into a DeepLabv3+ structure and
train a new network for farm segmentation problem.
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4 Experimental Results

In this section first the ROI classification results obtained from the both applied tech-
niques, hand-crafted features and transfer learning using VGGNet16 will be presented.
Then, the results of semantic segmentation of farm areas will be shown.

4.1 Hand-Crafted Features and Classification Modelling Results

Figure 9 shows the result of vegetation green area detection using NDMI. This image
was further utilized for making patches (from green areas) that are used for the two-step
classification framework.

Fig. 9. (a) Landsat 8 image of Tendales, Ecuador (b) Result of thresholding using NDMI [40].
(Color Figure Online)

The number of training patches of both classes (textured verses flat and farm verses
non- farm) were almost balanced at both feature extraction step and classification with
SVM step. That is to avoid discriminative hyperplanes found by SVM that favores the
more populated class. Totally from total patches, around 75% was used for training and
the rest were kept as unseen data for test. In the first classification, 111 samples were
used for training and 15 samples for test. In the second classification, there were 83
training samples and 22 test samples.

First, the four GLCM features and two DCT features were extracted from patches
and combined. Figure 10 visualizes the 2D DCTmaps of a flat and textured patch before
thresholding the higher frequencies coefficients and after thresholding. As can be seen,
the textured patch has high energies in both low frequencies as well as high frequencies,

while in the flat patch DCT map, only low coefficients show high energy values.
Therefore, the thresholded DCT map of the textured patch shows significant drop of
energies in high frequencies. This influences the entropy ratios. Table 1 presents the
average of the GLCM and DCT features over 20 patches for textured and flat classes.
All the classified textured patches from this step were used to extract the morphology
features at the second step, as shown in Fig. 11.
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(b)  (a) 

(c)  (d)  

Fig. 10. DCT map before thresholding (a) flat patch, (b) textured patch. After thresholding (c)
flat patch (d) textured patch [40].

Table 1. GLCM and one of the DCT features used for classification of Flat and Textured Areas.
(values shown are averaged over 20 samples) [40].

Class Cont. Eng. Hom. Ent. DCT Ent. Ratio

Flat 0.0041 0.991 0.9979 3.014 0.1202

Tex. 0.067 0.847 0.9671 4.761 0.3337

(b)  (a) 

(c)  (d)  

Fig. 11. (a) Grayscale image of a farm patch (b) Result of Sobel edge detection (c) Detected farm
area by morphological foreground detection (d) Detected area of a textured non-farm patch shown
in Fig. 4-c [40].
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Theperformanceof classifiers is evaluatedbasedon the number of correctly classified
samples. Results are presented in Table 2. As can be seen, the first texture classification
step is very robust. However, the performance is reduced for the second farm classifier
based on morphology features.

Table 2. Accuracy results of the two-step hand-crafted features and classification modelling
strategy for farm detection [40].

Classification step Train accuracy (%) Test accuracy (%)

1 96.39 (107/111) 93.33 (14/15)

2 83.1325 (69/83) 81.8182 (18/22)

4.2 Transfer Learning Strategy Results

In order to retrain the three FC layers of VGG-16 net, hundreds of images are required.
Then, further number of patches were used compared to the hand-crafted features and
modelling strategy to fulfil the requirements of the second patch classification strategy.
Transfer learning was performed using three different sets of more than 300 patches.

• The first set includes image patches from any general area of the satellite image,
including ocean patches, mountains, residential areas, green flat and textured areas
and farms. The last three FC layers of VGG-16 were retrained for the two-class farm
detection problem.

• In the second set, the same number of patches were used excluding the non-green
areas based on NDMI. This means the patches can include one of the flat green area,
green textured non-farm area or a farm area.

• Finally, in the third set of the same size, only green textured non-farm patches as well
as farm ones were used.

In all three cases, 75% of patches were used for training and the remaining was used
as the test unseen data. Therewere 72 farm patches and the rest were non-farm in all three
sets. Due to random selection, the number of patches of each class are different in the
generated sets. The average and standard deviation of the results over 5 randomly gener-
ated train and test sets are reported in Table 3. As expected, no significant difference can
be seen between the results of the three studies. That is, the high-level features acquired
from the stack of filter banks include all those spectral, special, structural and color
features extracted using the manual feature extraction strategy. Due to inclusive level of
features extracted using the deep convolutional layers, the CNN results outperform the
two-step feature extraction strategy.
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Table 3. Average and standard deviation of the training and test accuracy of the CNN using
transfer learning on the three different sets of patches [40].

Classification type Train accuracy (%) Test accuracy (%)

Farm vs. general areas 99.55 ± 0.64 96.76 ± 2.26

Farm vs. green areas 99.37 ± 0.76 95.95 ± 2.87

Farm vs. green tex. area 98.91 ± 0.52 96.76 ± 2.80

Figure 12 shows the confusion matrix of one of the five test sets results using the
transferred CNNmodels. The first experiment data set, that classifies farm patches from
anygeneral patchwasused.As shown, only onegeneral non-farmpatchwasmisclassified
as a farm patch.

Fig. 12. The confusionmatrix of one of the five test sets results from thefirst data set (classification
of farm patches from any general patch) [40].

4.3 Semantic Segmentation of Farm Regions Results

In order to apply the semantic segmentation based on DeepLabv3+ the patch images
pixels need to be labelled. That is due to the fact that it is supervised strategy and
requires a label for every pixel of the image patch. For this aim, 72 local image patches
that include farm areas in some parts were manually labelled. Totally seven different
objects could be seen in the patch images and labelled accordingly. We refer to this data
set as Tendales_farm. As we are only interested on farm area segmentation in this paper,
all labels apart from farm are merged in this work and only two labels namely farm and
non-farm are considered. Figure 13 shows sample patches and the corresponding labels.

In order to do semantic segmentation, the data set is divided into training (70%),
validation (15%) and test sets (15%). Then DeepLabv+ network is considered using the
four different pretrained networks, resnet18, resnet50, resnet101 and mobilenetv2. The
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Fig. 13. Sample patches in Tendales_farm (top), the corresponding farm, non-farm labeled areas
(down).

pixel classification layer was replaced based on farm classification problem classes and
retrained using the training and validation images and their corresponding label sets. To
compensate for class imbalance, the farm and non-farm classes weights are calculated.
First the number of pixels in each class is calculated and divided by the total number of
pixels, yielding 0.4029 and 0.5971 for the farm and non-farm classes. Then, the median
of these frequencies is divided by the individual frequencies yielding the weights 1.2411,
0.8373 corresponding to the farm and non-farm classes. These weights are used in the
cross entropy loss function that is used in the pixel classification layer. The Stochastic
Gradient Descend with Momentum (SGDM) with piecewise learning rate was used for
training. The number of epochs varied between 30 to 50 for the four models, and the
training stopped afterwards due to no further improvements and to avoid overfitting.

In order to evaluate the performance of the models different metric factors are cal-
culated. The first factor is accuracy. It is calculated for each class, based on the ratio
of correctly classified pixels to the total number of pixels in that class, according to the
ground truth. Given the number of True Positives (TP), False Positives (FP) and False
Negatives (FN) as shown in Fig. 14, accuracy is calculated as follows:

Accuracy score = TP/(TP + FN ) (6)

It indicates how well each class correctly identifies pixels. Besides that, the global
accuracy is calculated which is the ratio of correctly classified pixels, to the total number
of pixels regardless of their class. Thismetric is computationally less expensive compared
to each class accuracies.

Anothermetric is IntersectionOverUnion (IoU), that is also called Jaccard similarity
coefficient. It is a statistical accuracy measurement that penalizes false positives and is
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Predicted pixels in class

(including true and false)FP  TP FN
Ground truth pixels in class

(including correctly and 

wrongly classified)

Fig. 14. Illustration of the relationship between TP, FP and FN.

commonly used. For each class, IoU is the ratio of correctly classified pixels to the total
number of ground truth and predicted pixels in that class. Then, an IoU equal to one
shows a perfect segmentation while an IoU smaller than one shows an increase in FP or
FN.

IoU score = TP/(TP + FP + FN ) (7)

The training and test results obtained for the four different models are presented in
Table 4 and 5. The most successful models in terms of global and class accuracy as well
as the IoU factor are resnet18 and resnet50.

Table 4. Comparison of the four semantic segmentation models results on train set.

Train set Class accuracy Global accuracy IoU

Farm Non-farm Farm Non-farm

resnet18 0.9411 0.8461 0.8854 0.7726 0.8123

resnet50 0.9413 0.8774 0.9038 0.8019 0.8425

resnet101 0.8942 0.8067 0.8429 0.7019 0.7507

mobilenetv2 0.8998 0.7972 0.8396 0.6989 0.7445

Table 5. Comparison of the four semantic segmentation models results on test set.

Test set Class accuracy Global accuracy IoU

Farm Non-farm Farm Non-farm

resnet18 0.8631 0.7905 0.82594 0.7077 0.6991

resnet50 0.8430 0.8145 0.8284 0.7059 0.7084

resnet101 0.8591 0.7040 0.7797 0.6557 0.6205

mobilenetv2 0.8520 0.6968 0.7726 0.6466 0.6106

In Fig. 15, two training and test labelled images together with the prediction result is
illustrated using the resnet50 transferred network. Some of the prominent misclassified
nan-farm pixels as farms (FN) are the rivers and residential areas. The misclassified river
can be seen in the test image. The rivers are very similar to the sharp edges connecting
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several farms and the tiny connected components as residential areas were segmented
as farm areas. In addition, in the local patches, there are also parts of green areas that
show some sharp corners similar to farms but different in color compared to the majority
adjacent farms. They might be farms left uncultivated for some time and caused uncer-
tainties in labeling stage and can also influence the accuracy of the models. That can be
considered as one of the limitations low resolution images for appropriate labeling.

Fig. 15. From left to right, a ground truth labeled image for a training sample and the predicted
labels, then a ground truth labeled image for a test sample and the predicted labels.

5 Conclusions

This paper is focused on farm detection using low resolution satellite images. The overall
frame work consists of local patch or Region of Interest (ROI) classification followed
by semantic segmentation of detected farm patches in order to find farm pixels. Two
main patch classification strategies were employed in the first stage of the frame work;
first a traditional hand-crafted feature extraction and modelling strategy was developed.
In this method, unsupervised thresholding using Normalized Difference Moisture Index
(NDMI) was used for green area detection. Then, a two-step algorithm was developed
usingGrey Level Co-occurrenceMatrix (GLCM), 2DDiscrete Cosine Transform (DCT)
and morphological features as well as Support Vector Machine (SVM) modelling to dis-
criminate the farms patches from other patches (non-textured or textured) that do not
include any farm. The second patch classification strategy is based on deep high-level
features learnt from the pre-trained Visual Geometry Group Network (VGG-16) net-
works. In order to use these features for farm classification, transfer learning strategies
were employed. Then in the second stage of the framework, farm pixels were seman-
tically segmented from the local patches. For this aim, the Tendales_farm data set was
created by manual labelling of the images. The deepLabv3+ semantic segmentation
modelling strategy based on transfer learning was employed. Four different pretrained
networks, resnet18, resnet50, resnet101 and mobilenet together with labelled patches
were used to retrain the networks. Experimental results showed that for the first stage of
the framework, Convolutional Neural Networks (CNN) models are superior in terms of
patch classification accuracy (99.55% and 96.76% for train and test respectively). For
the second stage of the frame work, the resnet50 achieved the highest global accuracy
for semantic segmentation (90.38% and 82.84% for train and test respectively).
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