
Dynamic Modeling and Econometrics in 
Economics and Finance 25

Josef L. Haunschmied
Raimund M. Kovacevic
Willi Semmler
Vladimir M. Veliov   Editors

Dynamic Economic 
Problems with 
Regime Switches



Dynamic Modeling and Econometrics
in Economics and Finance

Volume 25

Series Editors

Stefan Mittnik
Department of Statistics
Ludwig Maximilian University of Munich
München, Germany

Willi Semmler
New School for Social Research
Bielefeld University
Germany
and
New School for Social Research
New York, NY, USA



More information about this series at http://www.springer.com/series/5859

http://www.springer.com/series/5859


Josef L. Haunschmied •

Raimund M. Kovacevic •

Willi Semmler • Vladimir M. Veliov
Editors

Dynamic Economic
Problems with
Regime Switches

123



Editors
Josef L. Haunschmied
Operations Research and Control
Systems, Institute of Statistics and
Mathematical Methods in Economics
Vienna University of Technology
Wien, Austria

Willi Semmler
Department of Economics
The New School for Social Research
New York, NY, USA

Raimund M. Kovacevic
Operations Research and Control
Systems, Institute of Statistics and
Mathematical Methods in Economics
Vienna University of Technology
Wien, Austria

Vladimir M. Veliov
Operations Research and Control
Systems, Institute of Statistics and
Mathematical Methods in Economics
Vienna University of Technology
Wien, Austria

ISSN 1566-0419 ISSN 2363-8370 (electronic)
Dynamic Modeling and Econometrics in Economics and Finance
ISBN 978-3-030-54575-8 ISBN 978-3-030-54576-5 (eBook)
https://doi.org/10.1007/978-3-030-54576-5

Mathematics Subject Classification: 91-06, 91Bxx, 90-06, 93Exx, 49-06

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-54576-5


Preface

This book is about instantaneous (or relatively fast) changes of the regime of
operation of controlled dynamical systems with a focus on models arising in eco-
nomics. The dynamics is described by deterministic or stochastic ordinary differ-
ential equations and regime changes mean switches from one to another dynamics
with possible change of the state space as well as of the objective function. Regime
switches may be caused by several reasons:

(i) Exogenous changes in the dynamics (for example, due to sudden environ-
mental disasters or social/political reform);

(ii) Unintended internally driven changes in the dynamics (e.g., disasters caused
by human activities or bankruptcy of firms);

(iii) Intended (controlled) shifts to new dynamics (technological innovations,
merge of firms, immergence of backstop technologies, etc.);

(iv) Changes of preferences/objectives (involving environmental concerns,
shifting from individual to cooperative objective, etc.).

Several of the above triggers of switches may be present in a single model.
A typical example is provided by the so-called multistage (or multi-phase) models,
where every stage may have its own dynamics and its own objectives.

While exogenous changes are an important subject even without considering
optimal decisions—which is, e.g., shown by many econometric papers on Markov–
and hidden Markov models, Threshold Autoregressive (TAR) models, and Smooth
Transition Autoregressive (STAR) models—the focus of this book remains on
optimization and control of dynamics. Still, type (i) plays an important role in
control theory. This is particularly true in stochastic control and related financial
applications, where the term “regime switch” usually refers exactly to exogenous
changes.

The development of the theory of regime changes in control problems was
originally driven by numerous engineering applications. This theory addresses the
so-called switching (or switched) systems, and is a part of the hybrid system theory,
with the specific feature that the discrete event sub-models reduce to relatively
simple laws for switching from one dynamics to another. In parallel to points (i)–(iii)
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above, the times of switch and the law of instantaneous state transition at the
switching times can be internally or externally driven. In the former, the switch of the
dynamics occurs “automatically” when the trajectory of the system crosses the
boundary between exogenously given domains in the time-state space. In the latter
case, the switching times and the transition laws are partly or entirely controlled, that
is, they depend on external decisions.

The theory of switched systems related to engineering applications is developed
from many perspectives: controllability, stabilization, optimality conditions,
dynamic programming, Hamilton–Jacobi–Bellman equations, etc. On the other
hand, models arising in economics, utilization of resources, population dynamics,
and social sciences pose a number of problems involving regime switches which go
beyond the traditional engineering applications. Many models in these areas require
investigation of infinite horizon, multiple solutions, periodic optimal behavior,
chattering, etc. The respective theoretical tools are still under development, often
restricted to particular narrow classes of problems with switches. Even more, in all
scientific areas mentioned above, consideration with more than one decision-maker
naturally arise. Thus, the field of differential games for systems with switches in the
dynamics becomes a hot topic, in particular in economics. As also seen in this book,
even switches from a differential game to optimal control and vice versa are of
interest.

With the aim of promoting and facilitating the development of optimal control
and dynamic games and their applications in economics, the Vienna University of
Technology initiated a conference series originally named “Viennese Workshop on
Optimal Control, Dynamic Games and Nonlinear Dynamics” called nowadays
“Viennese Conference on Optimal Control and Dynamic Games” (VC). The pur-
pose was to bring together specialists in optimal control, dynamic games, and
dynamical systems theory, with economists, demographers, and social scientists.
The research presented at the 14 VCs organized to date covers all areas of the
modern theory of optimal control and differential games with applications that
range from “optimal wine consumption” and “dynamics of extra-marital affairs” to
mean field games and PDE constrained optimization. The decision to publish a
book on dynamic economic problems with regime switches was made at the 14th
VC held in Vienna in July 2018, in which many contributors to this book partic-
ipated. Additional chapters are included here by invited distinguished specialists in
the area.

About the Content of the Book

Each chapter of the book has its own abstract, therefore the present editorial notes
are structured in accordance with subjects, drivers of the switches, and mathe-
matical techniques, rather than chapters. Referring to chapters we use the chapter
number and the name of the first author.
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The book begins with a review paper by N. Van Long, which gives a broad view
on the problematic of regime switch in economic models and provides a survey in
the area, emphasizing the techniques of optimal control and dynamic games.
Thematically, the contributions in the book address a variety of subjects: capital
accumulation, Chaps. 3 (Kovacevic), 10 (Dawid), 11 (Lambertini), 12
(Palokangas); innovations, Chaps. 7 (Yegorov), 10 (Dawid); cash flow optimiza-
tion in finance, Chap. 13 (Savku); population economics, Chaps. 2 (Feichtinger), 5
(Orlov), 12 (Palokangas); economics of pollution and climate change, Chaps. 6
(Semmler), 9 (Boucekkine), 12 (Palokangas); institutional change, Chap. 2
(Feichtinger); dynamics of addiction, Chap. 4 (Kuhn).

The chapters of the book cover most of the drivers for switches as described at the
beginning:

(i) Exogenous switches: switches driven by sudden environmental changes
appear in Chap. 3 (Kovacevic); exogenous change of parameters may lead to
abrupt change of strategies for maximizing biological fitness, Chap. 5
(Orlov); introduction of new control mechanisms (involving green bonds) at
exogenously given times in a climate change integrated assessment model,
Chap. 6 (Semmler); regime switches are generated by a Markov chain in a
general stochastic optimal control model with applications for maximization
of utility from cash flow, Chap. 13 (Savku).

(ii) Unintended internally driven changes in the dynamics: shift from
non-addicted to addicted use of drugs, depending on the accumulated
addictive stock, Chap. 4 (Kuhn); jump of model parameters due to reaching a
threshold manifold in the state space, Chap. 8 (Bondarev); population growth
and capital accumulation, as state variables, may trigger environmental
disasters, Chap. 12 (Palokangas).

(iii) Controlled shifts of the dynamics: in Chap. 2 (Feichtinger) the time of switch
from dictatorship economy to emigration of the dictator’s elite is a decision
variable; switch in climate policies, Chap. 6 (Semmler); switching from one
to another type of scientific carrier aiming at maximal scientific output,
Chap. 7 (Yegorov); switching from competition to cooperation in a polluting
industry, Chap. 9 (Boucekkinne); shift to a new dynamics in a game between
two firms as a result of the decision of one of the players to introduce a new
product, Chap. 10 (Dawid).

(iv) Change of objectives: multistage models in which the driver of the change is
the objective appear in Chap. 9 (Boucekkinne), where the objectives of two
players (polluting firms) change from noncooperative to cooperative. Change
of objectives is present in almost all chapters, but there it is more a result
of the changed dynamics than a driving force of the switch.

The models investigated in this book are mostly deterministic. Stochastic consid-
erations are involved in Chaps. 3 (Kovacevic) and 12 (Palokangas), where
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exogenous stochasticity only influences the switches and not the dynamics of
otherwise deterministic models. Only Chap. 13 (Savku) involves fully stochastic
dynamics with exogenous switches generated by Markov chains and belongs to the
extensive literature on stochastic regime switching in finance and econometrics.

About the Order of Chapters in the Book

Half of the chapters after the survey paper by Van Long in Chap. 1, namely Chaps.
2–7, concern problems of optimal control, the remaining Chaps. 8–13 deal with
differential games. In each of the two groups, the chapters are alphabetically
ordered with respect to the first author’s name.

Vienna, Austria Josef L. Haunschmied
April 2020 Raimund M. Kovacevic

Willi Semmler
Vladimir M. Veliov
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Chapter 1
Managing, Inducing, and Preventing
Regime Shifts: A Review of the Literature

Ngo Van Long

JEL Codes: P48 · Q28 · Q58

1.1 Introduction

Many significant changes that occur to human societies, both at themacro-level and at
the micro-level, are often associated with “sudden” shifts in the regimes or the modes
of operations.1 Examples of regime shifts in economics include the introduction of
a new technology which makes the old mode of production obsolete [37], changes
in the property rights regime (such as the enclosure process which created a landless
working class in England), the emancipation of slave labor, revolutions (see, e.g.,
Campante and Chor [21], Lang and De Sterck [65], Boucekkine et al. [16], Michaeli
and Spiro [92], for models related to the Arab Spring), the transfers of power from
a colonial regime to a democratic regime, and human-induced climatic changes
that can wipe out a large number of species. At the individual level, regime shifts
include sudden events which change one’s activities and consumption patterns, such
as retirement, divorce, serious illness, or conversion to a new faith.

1From an historical perspective, what is termed “sudden” can correspond to hundred of years. For
example, in England, the change in property right regime brought about by the “enclosure” move-
ment tookmore than 300years. Between 1605 and 1914, over 5000 “inclosure acts” were passed by
Parliament, which transferred to private owners’ land that was previously common properties. The
general question as to whether most changes occur as discrete jumps or in a continuous fashion is a
matter of debate, which to some extent hinges onwhat onemeanswhenwords such as continuity and
suddenness are used. For example, the theory of punctuated equilibrium, put forward by Eldredge
and Gould [38] as a “better description” of the evolutionary process than Darwin’s gradualism, has
been opposed by Dawkins [32] on the ground that it was wrong to interpret gradualism as “constant
speedism”.

N. V. Long (B)
McGill University, Montreal, Canada
e-mail: ngo.long@mcgill.ca
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2 N. V. Long

Another source of regime shift is changes in preferences. Kemp and Long [57]
analyzed the consequences of a shift in preferences of a decision-making body: a
peaceful transfer of power anticipated by a colonial administration that plans to hand
over the administration of a colony to a democratic government to be elected by local
residents. Nkuiya andCostello [94] argued that a society’s environmental preferences
may change in the future when the citizens become more acutely aware of costs and
benefits of conservation. These preference changes may themselves be triggered by
a series of events. The authors wrote that “The modern environmental movement
in the United States, where the Environmental Protection Agency, the Clean Water
Act, and the National Environmental Policy Act were all formed over a relatively
short period of time, is thought to have been triggered by a series of environmental
disasters that raised the environmental profile sufficiently to incite public action”
(p. 194). Related works on change in preferences or uncertain future preferences
include Le Kama [69], Beltrati et al. [10], Le Kama and Schubert [70], Leonard and
Long [75], and Itaya and Tsoukis [54].

Regime shifts can occur in the natural environment even in the absence of human
activities. For example, lakesmay shift fromoligotrophic conditions (i.e., exhibiting a
deficiency of plant nutrients, such that the water is very clear) to eutrophic conditions
(displaying an abundance of nutrients), impacting fish populations and water quality
[20, 22, 23, 104]. Coral reef systems can undergo changes from coral-dominated
state to algal-dominated states. Forested land can become grassland. A biological
invasion canwipe outwild anddomestic animals andplants [96].Adisease can spread
and become persistent after crossing an epidemiological threshold. For analyses of
thresholds in epidemic diseases, see Veliov [124], Sims et al. [106], among others.

From an economic view point, regime shifts are often caused by a desire for
changes on the part of some powerful coalitions of economic agents in order to
further their interests. Throughout human history, many conflicts between nations
or between social classes within a nation (e.g., the “elite” versus the “citizens”) are
attributable to attempts of possession or expropriation of natural resources. (See, for
example, Long [80] on the nationalization of mines; Acemoglu and Robinson [2, 3]
on class conflicts; van der Ploeg [120, 122] on resource wars; and Long [84] for a
review of the theory of contests).2 Smith [109] pointed out that the desire to possess
more natural resources was one of the motives behind the European conquest of the
NewWorld and the establishment of colonies around the globe, someofwhich thrived
on the systematic large-scaled exploitation of slave labor. Many changes that occur
in our natural environment (such as climate change, with possible tipping points) can
be attributed to the race among industrialized nations to become a dominant actor
in the world scene.3 Conflicts often arise because of lack of well-defined property
rights in the exploitation of resources. In fact, the word “rivals” were derived from the

2The Arab Spring, which undoubtedly has many facets, is not unrelated to the contests for rents
between the elite and the citizens.
3To be fair, humans are also one of nature’s most cooperative species. See, for example, Seabright
[105], Grafton et al. [42], and Roemer’s book, “How We Cooperate: A Theory of Kantian Opti-
mization”, (2019, Yale University Press).
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Latin word “rivales” which designated people who drew water from the same stream
(rivus).4 Indeed, Couttenier and Soubeyran [26, 27] found that natural resources
played a key role in causing civil conflicts and documented the empirical relationship
between water shortage on civil wars in Sub-Saharan Africa.

How do economic agents manage expected shifts in regimes? How do they try
to influence or prevent the arrival of such shifts? This chapter provides a selective
survey of the analysis of regime shifts from an economic view point, with particular
emphasis on the use of the techniques of optimal control theory and differential
games.

This paper is organized as follows. Section1.2 gives an overview of the concepts
of regime shifts, thresholds, and tipping points. Section1.3 shows how unknown
tipping points affect the optimal current policy of decision-makers, with or without
ambiguity aversion. Focus of Section1.4 is on political regime shifts in a two-class
economy, where we review models of revolution and of how the elite may try to
prevent revolution by using policy instruments such as repression, redistribution, and
gradual democratization. Section1.5 reviews models of dynamic games in resource
exploitation involving regime shifts and thresholds. Section1.6 reviews some studies
of regime shifts in industrial organization theory, with focus onR&D races, including
efforts to sabotage rivals in order to prevent entry. Section1.7 reviews games of
regime shifts when players can manage a Big Push. Section1.8 discusses some
directions for future research.

1.2 Regime Shifts, Thresholds, and Tipping Points

In this section, we briefly introduce the concepts of regime shift, threshold, and
tipping point and give a brief overview of the literature on these topics. More detailed
discussions will be provided in later sections.

1.2.1 Regime Shifts

A regime shift is a discrete break in a dynamic system: at the regime-switching
time, there is a discrete change in either the objective function or the transition
dynamics. Regime shifts can be anticipated to some extent, and such anticipation
affects the behavior of economic agents prior to the actual occurrence of the shifts.
A prototype model of optimal response to anticipated regime shifts (in the form of
an anticipated machine failure) was developed by Kamien and Schwartz [55]. This
model predates models of responses to threat of environmental collapses [28, 100].
Along the same vein, Long [80] showed that a monopolist mine owner that expects
the nationalization of the mine to occur at some unknown date in the future would

4Dictionnaire LE ROBERT, Société du Nouveau Littré, Paris: 1979.



4 N. V. Long

hasten his extraction rate. Another early contribution to themodelization of responses
to anticipated regime shifts was done by Kemp and Long [57]. They formulated an
optimal control problem with several state variables to show how economic agents
would alter their optimal plans if a regime shift is anticipated to take place at some
known future date. They mentioned two classes of shifts: a shift in preferences and a
shift in technology. In the case of preference shifts, they supposed that a first economic
actor (an individual or a group) cares not only about its own present happiness but also
about the future happiness of the second individual or groups whose preferences may
differ substantially from those of the first actor. As an example of preference shift,
they considered the task of an imperial power committed to the eventual independence
of its colony. Another example of optimal actions under an anticipated technology
shift is that a firm knows that at some future point in time a patent will expire and a
new process becomes available to it.

In Kemp and Long [57], at each regime-shift time ti, there are H inequality
constraints involving the n state variables:

Si
h(x1(ti), . . . , xn(ti)) ≥ 0, h = 1, 2, . . . ,H .

They proved that the co-state variables are continuous at the time of the shift, unless
one of the constraints (say Si

h∗ ) is binding, in which case the co-state associated with
the state variable xj will jump downward if and only if ∂Si

h∗/∂xj(ti) ≥ 0. In the case
of a parent who expects to transfer the family business to an offspring, Kemp and
Long [57] showed that prior to the shift time, the consumption path may be non-
monotone. They also considered the case of a mining firm that expects a discrete
shift in the price. Anticipation of the price shift makes the firm modify its current
extraction plan. This result has implications to what is now known as the Green
Paradox: announcing policies that are intended to mitigate climate changes (e.g.,
policies that institute future sharp rises in carbon tax) may worsen the climate, as the
anticipation of the future tax hike induces coal and oil producers to quickly exhaust
their stocks of fossil fuels, resulting in the unintended consequence of hastening the
rise in global temperature [87, 107].

A related work on regime shifts is Hillman and Long [52], who considered an
economy that owns a small stock of exhaustible resource (say oil) which competes
in the domestic market with imported perfect substitutes. The shift in question is
change from the free-trade regime to an embargo regime, in which the economy is
subject to a trade embargo by, say, a foreign oil cartel. Unlike Kemp and Long [57]
who assumed a known date of regime shift, Hillman and Long [52] supposed that
the date when a foreign embargo will be imposed on the home country is a stochastic
variable. They proved that the planner of the economy that anticipates the threat
of embargo will extract its oil more conservatively. Interestingly, if the economy’s
resource stock is exploited by perfectly competitive domestic firms, these firms will
replicate the planner’s conservationist solution, because they anticipate an upward
jump in domestic oil price as soon as the embargo occurs. A striking result is that if
the domestic stock is exploited by a single firm, then the embargo threat will cause
this firm to overextract the resource in the pre-embargo phase, in anticipation that
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it will become a monopolist in the domestic market immediately after the embargo
takes place. This overextraction prior to the embargo can be explained intuitively:
the monopolist’s profit under the embargo regime is higher, the lower is its stock at
the time of the regime shift. Interestingly, in this scenario, Robert Solow’s dictum
(that the monopolist is the conservationist’s best friend) fails to hold.

In both Kemp and Long [57] and Hillman and Long [52], it was assumed that
the date of regime shift, whether known or stochastic, is outside the control of the
planner. The case of where a regime shift date can be chosen by the planner was
considered by Hung et al. [53] using a model of transition from fossil energy to
a non-exhaustible substitute (such as solar energy). The date of transition, tT , is
optimally chosen to maximize the discounted stream of social welfare, by balancing
the cost of investment with the discounted future stream of benefits derived from
consuming the clean substitute. At the date of transition, a lumpy cost K must be
incurred. The authors show that the transition date is determined by the condition that
the current-value Hamiltonian immediately before the transition, H (t−T ), is smaller
than that the Hamiltonian immediately after the transition,H (t+T ), by the amount rK ,
where r is the interest rate. This implies that the equilibrium price path of energy has
a discrete downward jump at the time of regime shift. As expected, the regime-shift
decision involves a trade-off, since adopting a new regime brings immediate costs as
well as future benefits. The result of the paper by Hung et al. [53] is consistent with
the multi-stage optimization analysis of regime switching by Tomiyama [110] and
Amit [4] which also endogenously determine switching times.

The analysis of dynamic responses to regime shifts can be conducted using two
approaches: the optimal control theory/dynamic programming approach (where a
single decision-maker decides how to cope with an anticipated regime shift), and
the dynamic games approach, where multiple agents plan their responses in a non-
cooperative way, while strategically reacting to one another. The first approach is
clearly simpler, but it misses out some important strategic considerations. Repre-
sentative papers using the first approach include Tsur and Zemel [114, 115], Ren
and Polasky [98], Nkuiya and Costello [94], and Lemoine and Traeger [73], among
others. Papers using the dynamic games approach include Tornell [111], Maler et al.
[90], Doraszelski [29, 37, 86]. A paper that does not include differential games but
does take into account game-theoretic considerations is Nakuiya et al. [93], where
the threat of regime shift occurs only in the first period. They found that countries are
more likely to ratify a climate change today when they face endogenous uncertainty
about a possible future upward shift in damage costs.

1.2.2 Thresholds and Tipping Points

Quite often, a regime shift occurs when a certain endogenous variable crosses some
thresholds, the exact value of which may, or may not, be known to a decision-maker.
One may make a distinction between two types of thresholds in the state variable
of a dynamic system. The first type of threshold, once crossed, induces a discrete
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change in the differential equation (or difference equation) that describes the state
dynamics, or in the preferences of the decision-makers. The second type of threshold
(as in the case of the shallow lake problem that will be discussed in Sect. 1.5.2) only
involves, upon crossing it, a change in the basin of attraction, or a substantial change
in the qualitative properties of the optimal policy. Thresholds play an important role
in economic models of social change. The proverbial “last straw that breaks the
back of the donkey” is a case in point. In an interesting article on racial segregation,
Schelling [103] showed that a small change in the initial mixture of blacks andwhites
in a neighborhood may eventually lead to a complete segregation. If there is a limit
to how small a minority the members of either color are willing to be, for example, a
25% minority, then “initial mixtures ranging from 25 to 75% will survive but initial
mixtures more extreme than that will lose their minority members and become all of
one color” (p. 148). His models contributed to the explanation of the phenomenon
called “ neighborhood tipping”, which occurs “when a recognizable new minority
enters a neighborhood in sufficient numbers to cause the earlier residents to begin
evacuating” (p. 181).

Another early interesting work on threshold is that of Azariadis and Drazen [7].
They show that the success or failure of a developing economy depends on whether
it manages to pass a certain threshold level of externalities. Similarly, in the context
of the tragedy of the commons, Lasserre and Soubeyran [67] found that a small
amelioration of institutions can move an economy to a superior equilibrium. Along
the same vein, Leonard and Long [74] demonstrated how a strengthening of the
enforcement of property rights, financed by taxation supported by a self-interested
electorate, could move the economy to an efficient steady state. These papers assume
that economic agents care only about their material well-being. As a counterpoint,
Long [85] offers a model where economic agents care also about their self-image.
Long assumes that economic agents feel bad if their action falls short of the Kantian
ideal. Using an overlapping generations model in which pro-social attitudes evolve
across generations Long [85] shows that there is a threshold level of pro-socialness
beyond which the economy will converge to a steady state with a high level of both
pro-socialness and material prosperity, while below the threshold, society’s level of
pro-socialness will eventually vanish, and the economy will end up in poverty.

Quite often while the decision-maker is aware of the possibility of thresholds and
tipping points, there is considerable uncertainty as to the exact location of the tipping
points. This is a particularly relevant issue in the analysis of optimal responses to
climate change. Heal [51] and Tsur and Zemel [114] assume that the decision-maker
has imperfect knowledge of the underlying climate threshold. Keller et al. [56] study
optimal economic growth under uncertain climate thresholds.WhileKeller et al. [56],
Gjerde et al. [41], and Lontzek et al. [88] model climate tipping points as directly
reducing output or utility, Lemoine and Traeger [72, 73] and van der Ploeg [121]
model tipping points as a shift in the dynamics of the climate system.

The use of optimal control theory enriches the analysis of thresholds. Skiba [108]
showed that if an optimal control problem exhibits two steady states that are locally
stable in the saddle-point sense, then there exists in the state space a threshold that
separates the two basins of attraction. Later authors call such a threshold a “Skiba
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point.”There is a large literature on Skiba points (see, e.g., Feichtinger andWirl [39],
Wagener [125], Hartl et al. [49], Wirl and Feichtinger [126], Wirl [127], Yanase and
Long [129]).

A key feature of a Skiba point is that at such a point, the decision-maker is
indifferent between two trajectories, each converging to a different steady state. For
example, Hartl and Kort [48] show that a firm facing an emission tax may choose
between achieving a steady state with a high capital stock which is compatible with
efficient abatement efforts or a low capital stock with no abatement efforts. The firm
has to invest more to reach the high capital stock equilibrium. This implies that there
is a discontinuity of the policy function at the Skiba point kS . Immediately to the
right of kS , the firm invests a great deal more than to the left of kS . Discontinuity,
however, is not a generic feature of Skiba point. Wirl and Feichtinger [126] show the
existence of a Skiba point with a continuous policy function. This requires that the
unstable steady state is a node (rather than a focus). Hartl et al. [49] give a complete
classification of Skiba points near unstable steady states: focus, continuous node,
and discontinuous node. These papers assume that there is a single decision-maker.
When there are several decision-makers interacting in a dynamic game, the study of
Skiba points becomes much more complicated. See Sect. 1.6 for details.

1.3 Unknown Tipping Points: The Hazard Rate Function
Approach

The precise points at which tipping may occur are typically unknown, because of
lack of scientific information [72]. A standard approach to model unknown tipping
points is to use the hazard function approach [25, 33, 41, 115]. For example, in the
context of risks of abrupt climate change that are associated with the stock of green
house gases (GHG), one could imagine that an adverse climatic event may occur
at some unknown time T in the future that would inflict severe economic damages.
A convenient formulation is to suppose that the distribution of the random occurrence
date T is related to a hazard rate function h(X ) where X (s) ≥ 0 is the stock of GHG
at date s, with h(X ) > 0 for X > 0. Given that the adverse climatic event has not
occurred at or before time t0, for any given t > t0 the probability that T will occur
after time t is specified as follows:

Pr (T > t| T > t0) = e− ∫ t
t0
h(X (s))ds

.

The conditional probability that the adverse event occurs before some time t > t0 is

F (t| t0) = 1 − e− ∫ t
t0
h(X (s))ds

. Notice that this formulation implies that, assuming that h(X ) is strictly positive, the
event is definitely going to take place at some time in the future:
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lim
t→∞F (t| t0) = 1.

The corresponding conditional density function is

f (t| t0) = F ′(t| t0) = h(X (t))e− ∫ t
t0
h(X (s))ds

.

Thus, at time t0, the conditional probability that the adverse event will occur at some
time during the time interval (t0, t0 + �t) is approximately

h(X (t0)) × �t

provided that �t is sufficiently small.
In general, the event need not be a climatic event, and the state variable X need

not refer to the stock of GHG. Thus, X could refer to, say, the stock of fish in a
fishing ground, and the event could be a collapse of the fish stock or a change in its
growth function, G(X ). Or X could simply be time, as in the nationalization model
of Long [80]. While it is usually assumed that the hazard rate depends only on the
state variable, some authors have allowed the hazard rate to depend on both a state
variable and a control variable, under the assumption that the feedback control rule
is continuous in the state variable. See, for example, Doraszelski [37, p. 22], van der
Ploeg [122] and Haurie et al. [50].

The hazard rate approach can be applied to a single occurence or to recurrent
events. See Tsur and Zemel [115] for the distinction. For an analysis of recurrent
environmental catastrophes, see Tsur and Zemel [118], where increased GHG con-
centration implies higher frequencyof occurrence. They focus on long-runproperties,
using techniques developed in Tsur and Zemel [119].

1.3.1 The Ambiguous Effect of Anticipation of Regime Shifts

How does the possibility of a regime shift influence the behavior of the decision-
maker? In general, the answer to this question is ambiguous. We can illustrate this
ambiguity by considering a model of a fishery where the regime shift takes the form
of a change in the natural growth rate of the stock, from G1(.) to G2(.), where
G2(X ) < G1(X ) for all X ≥ 0. The special case where G2(X ) is identically zero
corresponds to a stock collapse (i.e., the fish stock X suddenly becomes zero at a
random date T ). Let us consider the fishery model of Polasky et al. [97], where
an analytical solution can be obtained thanks to the authors’ assumption that the
instantaneous payoff function is linear in the harvesting rate, y. Before the regime
shift, taking into account human’s exploitation of the fish stock, the net rate of growth
of the fish stock is

Ẋ = G1(X ) − y.
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Let us first consider the optimal harvest policy if the decision-maker is certain that
there will never be a regime change. Let r > 0 be the rate of discount. The decision-
maker’s objective is to maximize

∫ ∞

0
e−rtpy(t)dt,

where p > 0 is a constant. Assume that G(.) is hump-shaped, with G(0) = 0,
G ′(0) > r,G ′′ < 0, andG ′ (X

) = 0 for someX > 0. Assume that 0 ≤ y ≤ ym where
ym is an exogenous upper bound on y, with ym > G

(
X

)
. As an example, one can

assume that

Gi(X ) = X

(

1 − X

Ki

)

,

where Ki > 0 is called the carrying capacity. Under these assumptions, it is well
known that, with no threat of regime shift, the decision-maker will aim at a steady-
state stock X ∗ such that G ′(X ∗) = r, and that the optimal y is equal to zero for
X < X ∗, and is equal to ym for X > X ∗ (see Clark [24]).

What happens if there is a threat of a regime shift from G1(.) to G2(.) as specified
above? Assume that the hazard rate function is h(X ) ≥ 0, with h′(X ) ≤ 0 (i.e., the
risk is lower when the stock is larger).5 What would be the steady-state stock that
the decision-maker aims at? Let us call this stock X1. Is X1 greater than or smaller
than X ∗? Polasky et al. [97] show that the answer is ambiguous if G2(X ) ≡ 0, unless
additional assumptions are made. To understand this ambiguity, recall that the HJB
equation when the system is in regime 1 is given by

rV1(X ) = max
0≤y≤ym

[
py + V ′

1(X )(G1(X ) − y)
] + h(X ) [V2(X ) − V1(X )] , (1.1)

where Vi(.) is the value function under the ith regime.6 (See, e.g., Dockner et al. [35]
for a general formulation of this type of regime shifts).

If the system is in regime 1, when one maximizes the right-hand side of the HJB
equation with respect to y, the optimal harvesting effort is y = 0 for all X such
that V ′

1(X ) > p and y = ym if V ′
1(X ) < p (with y indeterminate if V ′(X ) = p). One

searches for a value X1 < K1 such that y = 0 for X < X1 and y = ym for X > X1.
Then Eq. (1.1) yields

0 = V ′
1(X )G1(X ) + h(X )V ′

2(X ) − [r + h(X )]V1(X ) for X < X1 (1.2)

0 = pym + V ′
1(X )(G1(X ) − ym) + h(X )V ′

2(X ) − [r + h(X )]V1(X ) for X > X1.

(1.3)
Assuming that V ′

1(X ) is continuous at X1, the two Eqs. (1.2) and (1.3) yield

5Polasky et al. [97, p. 233] assume that h′(X ) = 0 at X = K1.
6Note that in writing the above HJB equation, it is assumed that V ′

1(X ) is defined for all X > 0.
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V ′
1(X1) = p and V1(X1) = pG(X1) + h(X1)V2(X1)

r + h(X1)
. (1.4)

Furthermore, assume that V ′′
1 (X ) exists. Then differentiating Eqs. (1.2) and (1.3)

with respect X , one obtains

G1(X )V ′′
1 (X ) = φ(X ) if X < X1

and [
G1(X ) − ym

]
V ′′
1 (X ) = φ(X ) if X > X1,

where

φ(X ) ≡ [
r + h(X ) − G ′

1(X )
]
V ′
1(X ) − h(X )V ′

2(X ) + h′(X ) [V1(X ) − V2(X )] .

Under the assumption that V ′′
1 (X1) ≤ 0, one can see that φ(X ) is negative to the

left of X1 and positive to the right. The assumed continuity of V ′
1 and V

′
2 then implies

that φ(X1) = 0. This equation and (1.4) taken together imply that

G ′
1(X1) = r + h(X1)

[

1 − V ′
2(X1)

p

]

+ h′(X1)

r + h(X1)

[

G1(X1) − r

p
V2(X1)

]

. (1.5)

Equation (1.5) shows that, in general, one cannot determinewhether the (regime 1)
steady-state stockX1 exceeds or falls short of the steady-state stockX ∗ (which applies
if there is no threat of regime shift). To see this ambiguity, consider the case where
G2(X ) = 0 identically (i.e., the stock collapses immediately after the adverse event
occurs), so that V2(X ) = 0 identically. Consider two benchmark subcases. First,
the subcase where h(X ) = λ, a positive constant. Then Eq. (1.5) gives G ′

1(X1) =
r + λ > r = G ′

1(X
∗). That is, under the threat of an exogenous regime shift, the

planner’s exploitation is less conservationist than under the no-threat scenario. (This
is reminiscent of the result of Long [80]: the threat of nationalization leads to more
aggressive extraction of the mine.) Second, the subcase where h′(X ) < 0. Then Eq.
(1.5) gives

G ′
1(X1) = r + h(X1) +

{
h′(X1)G1(X1)

r + h(X1)

}

.

Since the term inside the curly bracket is negative for X1 < X , we can no longer
be sure that G ′

1(X1) > r. Thus, it is possible that X1 > X ∗, i.e., the decision-maker’s
exploitation is more conservationist, because she wants to achieve a lower hazard
rate at the steady state of regime 1.

The above “ambiguity result” is in line with previous works for the cases of
threats of forest fire and fishery collapse [99, 100], nuclear power risks [8, 91], and
environmental threats [25, 116, 117].
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1.3.2 Knightian Uncertainty: Decision-Making Under
Ambiguity About Tipping Points

In many real-world problems, such as climate change, our knowledge is so thin that it
may not be appropriate to use models that assume a known distribution of stochastic
shocks. The terms “Knightian uncertainty” or “deep uncertainty” and “ambigui-
ty” have been used interchangeably to refer to situations in which the underlying
probabilities are not known. A number of studies have explored the implications
of Knightian uncertainty in the context of climate change. Lange and Treich [66]
use a two-period model to show that ambiguity aversion about damages induces the
decision-maker to opt for lower emissions. A number of authors use aversion to
Knightian uncertainty to motivate the robust control approach to abatement policies
[5, 76].

Lemoine and Traeger [73] analyze the effect of ambiguity aversion on optimal
policy in the face of an unknown tipping point. Their point of departure is a model
of rational behavior under deep uncertainty that was axiomatized in Traeger [113],
which is closely related to the recursive smooth ambiguity model of Klibano et
al. [59, 60]. In Lemoine and Traeger [73], the vector of state variables is denoted
by St . This vector can include the capital stock, temperature level, carbon dioxide,
and time. The vector of control variables is denoted by xt . In each period, there is a
deterministic utility flow ut = u(xt, St). The decision-maker maximizes the expected
intertemporal payoff over the infinite horizon. There are two value functions, V0(S)

and V1(S), which apply to the pre-tipping world and the post-tipping world. The
system dynamics are described by St+1 = G0(xt, St) for the pre-tipping world and
St+1 = G1(xt, St) for the post-tipping world.7 In the absence of ambiguity, V0(S) is
related to V1(S) through the Bellman equation:

V0(St) = max
xt

{
u(xt, St) + β

[
(1 − h(St, St+1))V0(St+1) + h(St,St+1)V1(St+1)

]}

(1.6)
subject to

St+1 = G0(xt,St),

where β ∈ (0, 1) is the discount factor and h(St, St+1) is the hazard rate function
which gives the probability of the tipping that occurs in period t + 1.

In the context of climate change, Lemoine and Traeger [73] define ambiguity as
the decision-maker’s lack of confidence in the hazard rate function h(St, St+1). They
propose to capture this lack of confidence by introducing into the recursive utility
model a concave function, which I denote by �(.), such that the Bellman equation
is modified as follows:

7In their formulation, they also add a random variable εt that represents stochastic shocks with a
known distribution (these shocks are not ambiguous). For simplicity of exposition, I have omitted
this variable.
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V0(St) = max
xt

{
u(xt, St) + β�−1 [

(1 − h(St, St+1))�(V0(St+1)) + h(St,St+1)�(V1(St+1))
]}

.

(1.7)
Since themodel cannot be solved analytically, Lemoine and Traeger resort to numeri-
cal simulations. To facilitate the simulations, they assume that the function� contains
two parameters, η ≥ 0 and γ ≥ 0, where η is a measure of aversion to risk and γ
takes into account the decision-maker’s aversion to ambiguity.

They consider two different classses of models. In the first class of models, when
a tipping point is crossed, there is a sudden increase in the climate feedbacks that
amplify global warming. This type of tipping points increases the effects of emissions
on temperature.8 In the second class of models, a tipping point triggers an increase in
the decay rate of CO2, i.e., a weakening of the carbon sinks.9 Numerical simulations
show that in either class ofmodel, an increase in ambiguity aversion (an increase in γ)
will increase the optimal carbon tax and reduce the peak level ofCO2 along an optimal
path. The authors decompose the total effect of an increase in γ into two effects: (a)
the marginal hazard rate effect (MHE), which reflects the awareness that present
policies influence on the chance of tipping, and (b) the differential welfare impact
(DWI), which compares the effects of abatement on pre-tipping welfare and on
post-tipping welfare. The sign of DWI is ambiguous. In the numerical calculations,
aversion to Knightian uncertainty increases the contribution of MHE to the carbon
tax, but tends to reduce the carbon tax via theDWI effect. However, the overall effect
of aversion to Knightian uncertainty is to increase the carbon tax.

1.4 Preventing Regime Shifts: The Role of Repression,
Redistribution, and Education in a Two-Class Economy

There is a large literature on the threat of revolution that an autocratic regime faces.
The early theoretical models of revolutions [43, 64] abstract from strategic consid-
erations.10 More recent works, such as Acemoglu and Robinson [1–3], offer models
on interaction between the ruling elite and the citizens, where coups and revolutions
can occur in response to exogenous economic shocks. In Acemoglu and Robinson
[2], there are two groups of agents, the poor and the elite. Each group consists of
infinitely lived individuals. The elite has more capital than the poor. The majority
of people are poor, and initially it is the elite that has the political power. The poor
can attempt a revolution at any time, but revolution is costly (a fraction of national

8In the standard DICE model of Nordhaus [95] without tipping points, there is a parameter called
“climate sensitivity,”defined as the equilibriumwarming fromdoubling the stock ofGHGs. Lemoine
and Traeger [73] introduce Knightian uncertainty about a climate-feedback tipping point that
increases this parameter from its pre-tipping value of 3 ◦C to, say, 5 ◦C.
9The authors assume that when the unknown tipping point is crossed, there is a sudden decrease in
the rate of transfer of CO2 out of the atmosphere.
10The non-strategic approach is also taken in a recent interesting paper by Michaeli and Spiro [92],
where they show a number of interesting results, including a demonstration of how the implemen-
tation of popular policies, such as Perestroika, can trigger a revolution.
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income is destroyed). If a revolution is successful, a fraction of assets of the elite is
expropriated. The elite can avoid a revolution by embarking on a process of democ-
ratization. The productivity of capital is a random variable, which is revealed at the
beginning of each period: it can be low or high. This random variable affects the
opportunity costs of revolution in a nondemocracy as well as the elite’s opportunity
costs of mounting a coup to overthrow a democracy. These models typically assume
that the elites are killed or evicted during or after a successful revolution.

In contrast, Boucekkine et al. [16] assume that after the elites are removed from
power, they co-exist with the citizens and share access to the country’s stock of
resources. Boucekkine et al. [16, p. 189] argue that this is consistent with what hap-
pened in countries such as Tunisia, where “the Arab Spring events have successfully
overthrown the ruling dynasty but have failed to renew the political and economic
life to a large extent.” Their paper models the efforts of the elite to prolong their
regime as much as possible. The elite has two policy instruments: repression and
redistribution.11 The model is solved in two stages. In the post-revolution stage, the
elite and the citizens have equal access to the country’s resources, and they solve a
differential game of resource exploitation in the manner postulated by Tornell and
Lane [112]. In the pre-revolution stage, the authors assume a Stackelberg model of
differential game. In this game, the elite (the Stackelberg leader) is able to commit to
a redistribution parameter, 1 − uE , and a repression parameter rE , while the citizens,
taking these parameters as given, choose the date T at which they start a revolution.12

Revolution is costly: it destroys a fixed amount, χ, of the country’s capital stock, and
on top of that, the citizens must incur a direct switching cost (DSC), ψ. This cost
is an increasing and concave function of the level of repression, rE . It is found that
the date T is increasing in 1 − uE and in χ, and decreasing in the economy’s initial
resource stock. Knowing how the citizens’ choice of revolution time depends on the
redistribution parameter and the repression parameter, the elite sets these parameters
to maximize their own payoffs. This is a deterministic optimal control problem. The
authors show that if the vulnerability of the economy is high, the revolution will
occur in finite time. However, if the vulnerability is intermediate, in equilibrium the
dictatorship survives.

The model by Boucekkine et al. [16] allows the ruling class to resort only to two
policy instruments: repression and redistribution. In a follow-up paper, Boucekkine
et al. [17] consider a third policy instrument that can help the elite prevent a violent
revolution: education of the mass that eventually leads to a peaceful handover of
power. They develop a dynamic optimization model that portrays the ruling class’s
policy choice to copewith the threat of revolution. In this model, the elite may choose
between (a) keeping the population largely uneducated, while redistributing income
just enough to avert a revolution, and (b) embarking on a path of education and devel-
opment and eventually relinquishing autocratic power, ensuring a smooth democratic

11In themodel of Boucekkline et al. [16], these are parameters that the elite chooses at the beginning
of the program; they are not control variables in the standard sense of being piece-wise continuous
functions of time.
12The fraction of national income that is distributed to the citizens is 1 − uE .
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transition. In their model, from the point of view of the elite ruling class, education of
the oppressed class has two opposing effects. On the one hand, the life-satisfaction
threshold above which the population would not revolt is increasing in education,
i.e., a more educated mass tends to demand higher life prospects at the expense of
the elite. On the other hand, education contributes to economic development and is
conducive to a political culture of negotiation and a recognition of the merit of trying
to achieve a compromise [9, 18, 78, 79].

In Boucekkine et al. [17], the ruling class derives income from natural resources
(available in a fixed quantity, R, per period). The working class’s income consists of
wage income, wH , and a transfer � from the government. Here, H is the level of
human capital, which accumulates as a result of education, E, that the ruling class
provides. If the sum wH + � is below a certain threshold, a revolution will take
place. This threshold is increasing in the level of human capital. By choosing � and
by influencing H through education expenditure, the elite can avoid a revolution and
stay in power forever. However, it may be to the elite’s advantage to relinquish power
at some planned dateT through a process of democratization, if the anticipated payoff
to the elite at the time of handover, S(H (T )), is sufficiently attractive. Boucekkine
et al. [17] assume that this payoff is increasing in H (T ). The elite class chooses
consumption, C(t), redistribution, �(t), education expenditure, E(t), and a terminal
time, T , to maximize its intertemporal welfare, subject to the no-revolt constraint.
Their intertemporal welfare is

U =
∫ T

0
e−ρtu(C(t))dt + e−ρT S(H (T )).

This is a standard optimal control problem. The authors show that, depending
on parameter values, the optimal solution may be one of three possible varieties: (i)
permanent dictatorship with no education, regardless of the initialH0, (ii) education-
driven democratization, with a finite time for power handover, also regardless of the
initial H0, and (iii) human-capital poverty trap: there exists a threshold level H such
that if H0 < H then permanent dictatorship is optimal for the elite, and if H0 > H
then democratization through education is optimal.

1.5 Dynamic Games Involving Natural Resources with
Threat of Regime Shifts and Thresholds

In this section,we review somedynamic gamemodels of natural resource exploitation
that feature either a threat of regime shift or a threshold.



1 Managing, Inducing, and Preventing Regime Shifts: A Review of the Literature 15

1.5.1 Extraction of an Exhaustible Resource Under Threat of
Regime Shift

Laurent-Lucchetti and Santugini [68] study a dynamic game model of common
property exhaustible resources under uncertainty about full or partial expropriation,
generalizing the nationalization model of Long [80]. Consider a host country that
allows two firms to exploit a common resource stock under a contract that requires
each firm to pay the host country a fraction τ of its profit. Under the initial agreement,
τ = τL. However, there is uncertainty about how long the agreement will last. The
host country can legislate a change in τ to a higher value, τH . It can also evict one
of the firm. The probability that these changes occur is exogenous. Formulating the
problem as a dynamic game between the two firms, in which the risk of expropriation
is exogenous and the identity of the firm to be expropriated is unknown ex ante, the
authors find that weak property rights have an ambiguous effect on present extraction.
Their theoretical finding is consistent with the empirical evidence provided by in
Bohn and Deacon [15].

Howdoes the threat of being removed fromoffice influence a government’s extrac-
tion path of an exhaustible resource stock and its exploration efforts? A recent paper
by van der Ploeg [122] offers three related models that shed light on this question. In
Model 1, an incumbent faces the threat of removal from office (for ever) by a rival
faction. This model is related to the model of the effects of political uncertainty about
nationalization [15, 61, 68, 80]. The author assumes that the incumbent government
(player A) faces the risk of being overthrown by a rival faction (player B). The hazard
rate is a constant, h > 0. Once player A is removed from office, it receives a smaller
share of the resource rent. Under this scenario, it is found that resource extraction by
the incumbent is more voracious. Furthermore, the incumbent tends to invest less in
the exploration for the resources, because of the holdup problem.

In Model 2, van der Ploeg [122] considers the scenario of ongoing political
resource conflict cycles between two political factions. Once a faction is in office, it
faces a hazard rate h of being removed by the other factions. After being removed,
the faction can regain office, also with the hazard rate h. The author assumes that
both factions are obliged to share equally the resource rents, but the faction that is in
office enjoys utility more. This is captured by introducing a multiplicative partisan
in-office bias, β > 1, in line with Aguiar and Amador [6]. The author shows that with
perennial ongoing political cycles, resource depletion is rapacious especially if the
partisan in-office bias is large (high β) and there are frequent changes of government
(high h).

In Model 3, the author endogenizes the hazard rate. Again, there are two factions,
A and B. If faction A is the incumbent, it faces the hazard rate hA of being removed
from office. Being in office, it can choose the resource extraction rate RA, and obtains
the resource rents π(RA), of which a fraction τ < 0.5 must be transferred to the other
faction (according to some constitutional convention).

Assume that hA is a function of A’s defence effort, f A, and of B’s attack effort,
f B∗. Using the common formulation of the rent-seeking literature, assume that
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hA = H
(f B

∗
)φ

(
f A

)φ + (f B∗
)φ

and hB = H
(f A

∗
)φ

(
f B

)φ + (f A∗
)φ

, where H is a constant and φ ∈ (0, 1). Each faction has a maximum of N units of
efforts, and the income derived from N − f is w(N − f ), where w > 0 is the wage
rate. Let S denote the stock of the exhaustible resource. LetVA(S) andVA∗(S) denote,
respectively, faction A’s value function when it is the incumbent and when it is not
the incumbent. Then the HJB equations for A are

rVA(S) = max
f A,RA

{
β(1 − τ )π(RA) + w(N − f A) − VA

S (S)RA + hA
[
VA∗

(S) − VA(S)
]}

rV A∗
(S) = max

f A∗

{
τπ(RB) + w(N − f A

∗
) − VA∗

S (S)RB − hB
[
VA∗(S) − VA(S)

]}
.

Faction B is in a similar situation. Assuming that the function π(R) is iso-elastic,
the value functions can be solved analytically. It is found that dynamic resource wars
are more intense if S is high and w is low. Depletion of the reserves is less rapid if τ
is closer to 0.5, and if the government’s stability is high (a low H ). An increase in
the partisan in-office bias parameter β leads to more rapacious extraction.

1.5.2 Dynamic Games Involving Natural Resources with
Thresholds and Non-linear Dynamics

Examples of dynamic games involving natural resource stocks with non-linear
dynamics include fishery games and lake-pollution games. Most fishery models
assume that the transition equation is concave in the state variable. Even so, multiple
steady-state equilibria can exist in concave optimal control fishery problems (see
Long [81], where it is found that there are three steady-state equilibria, of which the
middle one is unstable). Limit cycles can also be optimal [82, 83], pp. 294–295; [58].
The lake-pollution game model is another interesting example of multiple equilibria,
where the transition equation is neither concave nor convex in the state variable.
This implies that there are potentially several steady states. We describe below a
lake-pollution model based on Maler et al. [90].

The state variable, s(t), denotes the amount of phosphorus sequestered in algae.
There are n players. Player i discharges ci(t) ≥ 0 units of phosphorus to the lake.
The transition equation is

ds

dt
= −δs(t) +

[
s2(t)

s2(t) + 1

]

+
∑n

i=1
ci(t), x(0) = x0 ≥ 0,

where δ > 0 and s(t) ≥ 0. The term inside the square brackets is the internal release
of phosphorus that has been sequestered in sediments and in submerged vegetation;
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this term is bounded above by 1. Thus, for any given constant aggregate discharge

C ≡
∑n

i=1
ci, the steady-state stock of pollution is bounded above by (C + 1)/δ.

The transition equation can be re-arranged to yield

(s2 + 1)
ds

dt
= −δs3 + (1 + C)s2 − δs + C ≡ h(s;C, δ).

Since h(0;C, δ) = C > 0 and h(∞;C, δ) = −∞, there exists at least one positive
steady state.

Suppose ci is constant. Then it can be shown that, provided 0 < δ < 3
√
0.375,

there exists a certain range of ci such that there are three steady states, denoted by
sL, sM , and sH where sL < sM < sH , where sM is unstable, and sL and sH are locally
stable. (In the lake-pollution literature, sL is usually referred to as the oligotrophic
state, and sH is the eutrophic state.)

Suppose initially the system is at the low steady state sL. Consider a temporarily
sustained increase in ci. If this increase crosses a threshold level, there will be a
sudden flip to sH . This is called a tipping point. If δ ≤ 1/2, the flip is irreversible,
since ci cannot be negative.13 In what follows, we assume 1/2 < δ < 3

√
0.375,

Suppose that the net benefit function of player i is

Bi = ln ci − ωs2,

where ω > 0. Player i’s overall payoff is

∫ ∞

0
e−ρt

[
ln ci − ωs2

]
dt.

Let us compare the open-loop Nash equilibrium with the Markov-perfect Nash
equilibrium of this game.

Under open-loop behavior, the Hamiltonian for player i is

Hi = ln ci − ωs2 + ψi

[
s2(t)

s2(t) + 1
− δs + ci + (n − 1)cj

]

.

Assuming a symmetric Nash equilibrium, so that ci = cj = c, and defining C =
nc, the necessary conditions are

1

ci
+ ψi = 0

ṡ = s2(t)

s2(t) + 1
− δs + C, s(0) = s0,

13With δ = 1/2 and C = 0, one obtains h(s; 0, 1/2) = −(s/2)(s2 − 2s + 1). Then h = 0 at sL = 0
and sM = sH = 1.
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ψ̇i =
[

δ + ρ − 2s
(
s2 + 1

)2

]

ψi + 2ωs.

The transversality condition is limt→∞ e−ρtψi(t) = 0.
The symmetric open-loopNash equilibrium is the solution of the following system

of differential equations:

ṡ = s2(t)

s2(t) + 1
− δs + C, s(0) = s0,

Ċ

C
= −

[

δ + ρ − 2s
(
s2 + 1

)2

]

+ 2ωsC

n
,

with the transversality condition limt→∞ e−ρt(n/C) = 0. This system may possess
multiple steady states, depending on parameter values.

It is useful to compare the open-loop Nash equilibrium and the social optimum.
In the latter case, assume that a social planner maximizes the sum of the welfare of
the n regions. This leads to the a different system of differential equations:

ṡ = s2(t)

s2(t) + 1
− δs + C, s(0) = s0,

Ċ

C
= −

[

δ + ρ − 2s
(
s2 + 1

)2

]

+ 2ωsC,

where we can see that the evolution of aggregate discharge is independent of the
number of regions, n.

Comparing the two sets of differential equations, we notice that an open-loop
Nash equilibrium with pollution damage parameter ω can be found by solving the
optimization problem of a social planner who happens to have a lower damage
parameter, say ω′, where ω′ = ω/n.14

To illustrate, consider the following parameter values: δ = 0.6,ω = 1, ρ = 0.03.
Then the social planner’s solution has a unique steady state, s = 0.353. It is stable
in the saddle-point sense. It can be shown that the social planner’s optimal path of C
is non-monotone when the initial level of pollution is large: C at first declines, then
increases again, approaching the steady-state level of discharge from below. On the
other hand, when players do not cooperate, the open-loop Nash equilibrium has three
steady states: an unstable one with a medium level of pollution, situated in between
two saddle-point stable ones, sL = 0.398 and sH = 1.58.

14This property is crucially dependent on the special structure of the model, and on the assumed
functional forms, e.g., logarithmic utility.
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Suppose that it is socially desirable to achieve the oligotrophic steady state. Then,
as expected, a time-dependent tax rate per unit of discharge can guide the open-loop
players to achieve the socially optimal rate of discharge. Maler et al. [90] considered
the restriction that the tax rate must be time-independent. They found for n ≤ 7,
under a suitably chosen time-independent tax rate, the phase diagram for the open-
loop Nash equilibrium is qualitatively similar to the phase diagram under a social
planner, and the optimal steady state can be achieved, though welfare along the path
toward the steady state will generally fall short of the welfare level that would be
achieved under central control. However, for n > 7, the phase diagram for the open-
loop Nash equilibrium under a fixed tax rate can be quite irregular, such that it may
not be possible to guide the system to the socially optimal steady state.

We now turn to the symmetric Markov-perfect Nash equilibrium. The HJB equa-
tion for player i is

ρVi(s) = max
ci

{

ln ci − ωs2 + V ′
i (s)

[
s2

s2 + 1
− δs + ci − (n − 1)cj(s)

]}

.

Using symmetry, the equilibrium feedback strategy must satisfy

ci(s) = − 1

V ′(s)
≡ c(s).

Then, the HJB equation yields the identity

ρV (s) = ln c(s) − ωs2 − 1

c(s)

[
s2

s2 + 1
− δs + nc(s)

]

for all s.

Differentiating this identity, we obtain the following differential equation:

[

δs − c(s) − s2

s2 + 1

]

c′(s)

=
(

ρ + δ − 2ωs − 2s
(
s2 + 1

)2

)

c(s).

Since a closed-form solution cannot be obtained, numerical solutions can be com-
puted after specifying parameter values.15 With δ = 0.6,ω = 1 and ρ = 0.03, it is
found that the locus of possible steady states (in the space (s, c)) is non-monotone.
As in the model of Dockner and Long [34], there is a continuum of steady states,
each corresponding to a feedback Nash equilibrium strategy. To each steady-state
stock s∗, the corresponding individual emission level is

c∗ = δs∗ − (s∗)2

(s∗)2 + 1
.

15For details, see Kossioris et al. [62].
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The steady state s = 0.38 is of particular interest, because it can be reached only
from s0 > 0.38. It is also found that if s0 ∈ (0.17, 0.38), then strategies that start
just a little above the point (s0, δs0 − s20/(s

2
0 + 1)) will result in a state trajectory

that converges to a steady state to the right. Steady-state pollution stocks that are
smaller than 0.17 are unstable. The important point is that pre-play communications
allow the choice among feedback strategies, bringing the pollution stock closer to
the social optimal one (0.38 is close enough to 0.353).

Note that the result of Dockner and Long [34], that the best feedback equilibrium
steady state is arbitrarily close to the social optimal one if the discount rate tends
to zero, carries over to the lake-pollution model. Nevertheless, we should not forget
that there is a distinction between welfare at a steady state, and total welfare, which
takes into account the welfare flows along the path to the steady state.

Given the feedback information structure, it is natural to consider the design of
efficiency-inducing taxation where the tax rate on emissions is made dependent only
on the state variable: τ = τ (s). This issue was considered by Benchekroun and Long
[11] in the context of a polluting oligopoly. They found that there exists a feedback
tax scheme that ensures that the oligopolists replicate the socially optimal path. In
the context of lake pollution, where the transition dynamics is more complicated,
Kossioris et al. [63] focus on polynomial functional forms for the tax rate τ (s). They
found that it is not possible to completely mimic the social optimal path when the
polynomial is of low order.

1.6 Dynamic Games Involving Potential Regime Shifts and
Skiba Point: R&D Races and Sabotage to Prevent Entry

In industrial organization theory, R&D races between firms have been a subject
of intensive study. The winner of a race becomes a monopolist, so that there is a
regime shift from, say, duopoly, to limit-pricing monopoly. Early models of R&D
races assume that the time of a successful innovation is exponentially distributed:
past investments in R&D have no strategic implications because the accumulated
knowledge has no value [71, 89, 102]. This is because of the memorylessness of the
exponential distribution, under which, if the event has not occurred, the future always
looks the same, regardless of past levels of R&D. The resulting races cannot feature
history dependence. The idea of a firm being ahead of another firm cannot be formu-
lated under the assumption of exponential distribution. To capture the idea of history
dependence, some authors propose multistage race models: to win a race, a firmmust
be the first to complete all stages of an R&D project. Thus, at any point of time, a firm
may be ahead of another one. Several papers consider only deterministic multistage
race models [40, 45, 46]. In such models, the equilibrium result is drastic: once a
firm has a slight advantage, the other firm drops out immediately. This is called the ε
pre-emption property. To avoid this unrealistic feature, one could add the assumption
that the stage-to-stage transition is probabilistic [44, 47, 77]. However, these authors
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continue to assume that the time to completion for each stage is distributed exponen-
tially. This implies that at each stage, firms’ investment in R&D is independent of
past investments. In these models, the laggard firm (that has completed fewer stages
than its rival) will find it optimal to invest less than the industry leader, and conse-
quently one observes that if a firm is behind, it tends to remain behind. This is not
consistent with real-world observations: there are instances of laggards’ catching-up
behavior. To capture this catching-up feature, Doraszelski [37] formulates a model
in which the hazard rate depends on both the state variable and the control variable.

Consider two firms. The stock of knowledge of firm i is denoted by ki(t), and its
current R&D effort (a control variable) is denoted by Ii(t). Doraszelski [37] assumes
that

k̇i(t) = Ii(t) − δki(t),

where δ > 0 is the rate of depreciation of knowledge. The conditional probability
that firm 1 makes a breakthrough over the interval of time (t, t + �), given that it
has not been successful prior to time t, is h1(I1(t), k1(t)) × �, where the hazard rate
function h1 is specified as follows:

h1(I1, k1) = λI1 + γkψ
1 ,

with λ ≥ 0, γ ≥ 0, and ψ > 0. Here, the hazard function h1(I1, k1) is additive and
increasing in both the current effort, I1, and the past efforts, as represented by k1.
(A multiplicative specification, e.g., h1 = Iα

1 k
β
1 , could be an interesting alternative,

as Doraszelski [37, p. 40] points out.) In the special case where γ = 0, past efforts
do not influence the hazard rate, and we would obtain the memorylessness of the
models of Reinganum [101, 102]. The function h1 is concave, linear, or convex in
the state variable k1 according to whether ψ is smaller than, equal to, or greater than
1. The cost of exerting effort I1 is denoted by c(I1). This cost function is assumed to
take the form

c(I1) = 1

η
Iη
1 where η > 1.

Assume that as soon as one firm makes a breakthrough, the game ends, at which
point the successful firm wins a big prize, P > 0, and the other firm wins a small
prize, P < P. The interpretation of these prizes is as follows. The high prize, P, is the
present value of future profits of the successful firm. The other firm can imitate the
discovery after the patent has expired, and P is the present value of future profits of
the imitating firm. The case where P = 0 means that the innovating firm has perfect
patent protection. In general, the ratio P/P is a measure of patent protection. When
this ratio is zero, the patent protection is perfect.

Denote the equilibrium strategies by I1 = φ1(k1, k2) and I2 = φ2(k2, k1). Then
the HJB equation for firm 1 is
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rW 1(k1, k2) = max
I1

{[
P − W 1(k1, k2)

]
h1(I1, k1) + [

P − W 1(k1, k2)
]
h2(φ2, k2)

−c1(I1) + ∂W 1

∂k1
[I1 − δk1] + ∂W 1

∂k2
[φ2 − δk2]

}

.

The first-order condition for I1 is

[
P − W 1(k1, k2)

]
λ + ∂W 1

∂k1
= c′

1(I1) = Iη−1
1 .

It follows that firm 1’s strategy is

φ1(k1, k2) =
{
[
P − W 1(k1, k2)

]
λ + ∂W 1

∂k1

} 1
η−1

.

Focusing on symmetric equilibrium, we can omit the subscript in the strategy func-
tions φ1 and φ2 and the superscript in the value functions, W 1 and W 2, and thus we
have

I∗
1 = φ(k1, k2) and I2 = φ(k2, k1).

It follows that

φ(k1, k2) =
{
[
P − W (k1, k2)

]
λ + ∂W (k1, k2)

∂k1

} 1
η−1

φ(k2, k1) =
{
[
P − W (k2, k1)

]
λ + ∂W (k2, k1)

∂k2

} 1
η−1

and the HJB equation can be written as the operator equation

N (W ) = 0,

where

N (W )(k1,k2) =
(
λφ(k1, k2) + γkψ

1

)
P +

(
λφ(k2, k1) + γkψ

2

)
P

− φ(k1, k2)
η

η
−

(
r + λφ(k1, k2) + γkψ

1 + λφ(k2, k1) + γkψ
2

)
W (k1, k2)

+ ∂W (k1, k2)

∂k1
[φ(k1, k2) − δk1] + ∂W (k1, k2)

∂k2
[φ(k2, k1) − δk2] .

This is a non-linear first-order partial differential equation. Since a closed-form solu-
tion is not available, one must resort to numerical methods. Doraszelski [37] reports
the following numerical results.
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(i) For the case where γ = 0 (i.e., the hazard rate is a function of current R&D effort
only), the equilibrium R&D efforts are constant, independent of the knowledge
stocks k1 and k2. The value functionW is then a constant (independent of k1 and
k2). This corresponds to the memoryless R&D race models [101, 102].

(ii) When γ > 0, the accumulated knowledge stocks k1 and k2 matter. One can show
that for any given finite k2, limk1→∞ W (k1, k2) = P, and for any given finite k1,
limk2→∞ W (k1, k2) = P. With γ > 0, if λ = 0 (i.e., current R&D effort does not
contribute directly to the hazard rate), the optimal R&D expenditure I1 falls as
the knowledge stock k1 increases. That is, thanks to the “pure knowledge effect”
on the hazard rate, the firm “can afford to scale back its investment in R&D as
its knowledge stock increases” (p. 28).

(iii) When ψ > 1 so that h1 is strictly convex and increasing in k1, the increasing
return to knowledge accumulation gives the firm a strong incentive to increase
I1 as k1 rises from its low initial levels.16 In particular, if firm 1 is a laggard
(i.e., k1 < k2), it will try to catch up with firm 2 (i.e., investing more than firm 2)
provided the gap between the two stocks is not too large. This catching-up feature
is consistent with real-world experience. Doraszelski [37, p. 20] presented some
evidence of catching up:

Casual observation suggests that the laggard strives to catch up with the leader. When Trans-
meta unveiled its power-stingy Intel-compatible Crusoe chip in 2000, Intel pledged to intro-
duce a version of its Pentium III processor that matched Crusoe’s power consumption in the
first half of 2001 and announced a new set of technologies for 2002 or 2003 that would give
it the lead over Transmeta. Similarly, after Celera Genomics in 1998 challenged the Human
Genome Project to be the first to sequence the human genome, the Human Genome Project
announced that it would move up its target date from 2005 to 2003 and indeed dramatically
stepped up its own pace during 1999. And yet, although Celera Genomics started the race
as the underdog, it completed a draft of the human genome in 2000 and beat the Human
Genome Project.

Doraszelski [37] relied on the (ex ante) symmetry between firms. Also, he did not
attempt to explore the possibility of multiplicity of steady states and of Skiba points.
As we have pointed out, the analysis of optimal control problems with multiple
steady states involves the identification of a Skiba point. Skiba points can occur also
in dynamic games. Dockner and Wagener [36] give an example of Skiba point in
a differential game involving two symmetric players and a single capital stock. An
interesting question is whether a Skiba point can exist when players are asymmetric.
The paper by Dawid et al. [30] presents a dynamic game model which exhibits the
Skiba point property with two asymmetric players and one capital stock.

Dawid et al. [30] pointed out that, in general, it is unlikely to have a Skiba point
when players are asymmetric, because it would require the existence of a point
at which two asymmetric players are indifferent between two courses of actions.
Generically, it is impossible in an asymmetric game to have a single point where
for each player, the two local value functions intersect. It follows that without very
specific assumptions, it is unlikely that an MPE exhibiting Skiba points can exist.

16However, eventually when k1 is large enough, I1 begins to fall.
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To illustrate this argument, consider an example discussed in Dawid et al. [30].
Suppose there are two firms, each investing in its own capital stock. Assume the
firms produce goods that are perfect substitutes and they compete as Cournot rivals.
Each firm would prefer that its rival invests less, because a low aggregate capital
stock implies low aggregate output, which raises the price.Given the strategy of firm
2, suppose that a Skiba point, say kS1 , exists for firm 1’s optimal control problem.
Then firm 2’s value function would jump down as its rival’s capital stock k1 reaches
kS1 from below. Firm 2, therefore, has an incentive to prevent firm 1’s capital stock
to get close to kS1 , and thus it would want to “overinvest” (to deviate from the given
candidate strategy) in order to induce firm 1 to invest less. Such optimal behavior by
firm 2 would then imply that firm 1 would invest less even for values of k1(0) that are
slightly above kS1 , i.e., k

S
1 cannot be a Skiba point. While this argument is intuitively

plausible, nevertheless a formal analysis of a two-state-variable differential game
between two asymmetric players that would establish the existence, or impossibility
of existence, of a Skiba point is unfortunately unavailable.

Dawid et al. [30] choose to work with a simpler model with two asymmetric
players. They assume that there is only one stock of capital. There are two firms.
The authors assume that firm 1, the incumbent firm, does not invest in R&D, and
firm 2 is seeking to enter the market. Firm 2 can enter the market only if it is able
to make a technological breakthrough. In order to make a breakthrough, firm 2 must
invest in its stock of knowledge, k. If a breakthrough has not occurred at time t, the
probability that it will occur during the time interval (t, t + dt) is given by h(k(t))dt.
The function h(k) is called the hazard rate. Dawid et al. [30] assume that

h(k) = αk2, α > 0.

This implies that there is increasing return to capital (in terms of probability of a
breakthrough). They specify the following state dynamic equation:

k̇(t) = I2(t) − λI1(t) − δk(t),

where δ is the rate of depreciation, I2(t) ≥ 0 is firm 2’s investment (R&D efforts),
and I1(t) ≥ 0 is firm 1’s sabotage effort. The positive parameter λ is a measure of
the effectiveness of sabotage. The cost of Ii is ci(Ii) = βiIi + (γi/2)I2i , with βi ≥ 0
and γi ≥ 0.

A breakthrough by firm 2 implies a regime shift, from monopoly (under firm 1)
to duopoly. Under duopoly, firm i earns a profit of πd

i at each point of time. Under
monopoly, π1 = πm

1 > 0 and π2 = 0. Assume that πm
1 > πd

1 , so that firm 1 has an
incentive to sabotage firm 2’s R&D efforts.

In order to establish the existence of a Skiba point, Dawid et al. [30] find it
necessary to assume that there is an exogenous upper bound, denoted by I , on Ii,
i = 1, 2. This implies an upper bound on k: k ≤ k = (1/δ)I . The upper bound on
investment is a crucial assumption, which results in a special property of the model:
the value function of the incumbent is discontinuous at the Skiba point. The upper
bound on sabotage makes it impossible for the incumbent to move the state variable
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k from the lower branch of its value function to the upper branch. (If the upper bound
on the control was removed, so that any player couldmove the state in both directions,
then the value function of each player would be continuous under the equilibrium
profile.)

Formally, the dynamic game considered by Dawid et al. [30] is a multi-mode
game with two modes, m1 (before entry) and m2 (after entry), with π1(m1) = πm

1 ,
π2(m1) = 0,π1(m2) = πd

1 , andπ2(m2) = πd
2 . (Dockner et al. [35] refer to suchmulti-

mode games as piece-wise deterministic game.) Firm i’s objective is to maximize

Ji = E

[∫ ∞

0
e−rt [πi(m(t)) − ci(Ii(t))] dt

]

subject to k̇(t) = I2(t) − λI1(t) − δk(t) and subject to the mode process

lim
�→0

Pr {m(t + �) = m2| m(t) = m1}
�

= h(k(t)),

with m(0) = m1 and k(0) = k0. Both firms set Ii = 0 in mode 2, while in mode 1
they use feedback strategies Ii = φi(k).

Clearly, in mode 2, the value functions are independent of k:

Vi(m2) = (1/r)πd
i .

Denote firm i’s value function inmode 1 byWi(k). Then, inmode 1, theHJB equation
for firm 1 is

rW1(k) = αk2
[
(1/r)πd1 − W1(k)

]
+ max

I1

[
πm1 − c1(I1) + W ′

1(k) (φ2(k) − λI1 − δk)
]

and the HJB equation for firm 2 is

rW2(k) = αk2
[
(1/r)πd

2 − W2(k)
] + max

I2

[−c2(I2) + W ′
2(k) (I2 − λφ1(k) − δk)

]
.

Then the first-order condition for firm 1 is

β1 + γ1I1 = −λW ′
1(k) if I1 ∈ (

0, I
)

and, for firm 2,
β2 + γ2I2 = W ′

2(k) if I2 ∈ (
0, I

)
.

Assuming that the equilibriumstrategies are almost everywhere continuous on
[
0, k

]
,

and writing

φ1(k) = −λW ′
1(k)

γ1
− β1

γ1
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φ2(k) = W ′
2(k)

γ2
− β2

γ2

one obtains a system of two first-order differential equations for W1(.) and W2(.).
Unfortunately, no closed-form solution is available. The authors, therefore, resort
to numerical methods. They use the homotopy method (see Vedenov and Miranda
[123] for a discrete-time model and Dawid et al. [31] for a continuous time model).17

In the model, an increase in k has two qualitatively different and countervailing
effects on the payoff of each player. First, since h(k) = αk2 is strictly convex and
increasing, the effect of a marginal increase in k is more substantial at high levels of
k. Therefore, a high k means a much greater chance of a regime switch. Second, a
high k means the expected arrival time is closer to the present, which has the effect
of reducing the impact of an increase in k on the expected future payoff stream of
both players (bearing in mind that the size of k is irrelevant in mode 2, after entry).
These opposing considerations suggest that equilibrium steady states with high and
low investments for both players may co-exist.

Indeed, numerical calculations show that there are two locally stable steady states,
one with high investment (or sabotage) by both players and one with low activities
by both. The steady states are k∗ = 0 and k∗∗ = 0.556. There exists a Skiba point at
kS < 0.556.

1.7 Dynamic Games of Inducing Regime Shifts by a Big
Push

Tornell [111] presented a model of economic growth that declines with endoge-
nous switches in property-right regimes when rival fractions incur a lumpy cost to
overthrow an existing regime. In his model, two groups of infinitely lived agents
solve a dynamic game over the choice of property rights regime. He sought to find
a possible equilibrium of the game involving multiple switching of regimes. Tornell
allowed each group’s share of aggregate capital to change after a switch takes place
and introduced a once-off lump sum cost at switching time. Specifically, Tornell
[111] specified three property rights regimes: common property, private property,
and leader-follower. Under common property, both players have equal access to the
aggregate capital stock. When one player incurs the once-off cost, it can convert the
whole common property to its private property unless the other player is willing to
incur the same cost. In the latter case, the result is the private property regime, where
each player has access only to its own capital stock. In contrast, starting from the
private property regime, if both players simultaneously incur each the once-off cost,

17This method yields polynomial approximations of value functions. One shortcoming is that such
polynomial approximation gives continuous and smooth value functions, which may be incorrect.
To deal with this issue, Dawid et al. [30] combine the homotopy method with another method that
yields local value functions (each around a stable steady state).
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the regimewill revert back to common property. If one player incurs the once-off cost
while the other does not, the former becomes the leader and has exclusive access to
the economy’s capital stock. Tornell [111] restricted the maximum number of regime
switches to two. This simplifying assumption allows closed-form solutions. A key
parameter in this game is σ, the elasticity of intertemporal substitution. The model
generates a hump-shaped pattern of growth even though the underlying technology
is linear and preferences exhibit a constant elasticity of intertemporal substitution. If
σ ≤ 1, the common property regime may last forever. (Alternatively, if the economy
starts with the private property regime, this institution may also last for ever.) In
contrast, if σ > 1, the economy exhibits a cycle: a switch from the common property
regime to the private property regime, and later on, a re-switching back to common
property. There is no equilibrium which involves a switch to the leader-follower
regime.

While Tornell [111] assumed that the two players are symmetric, Long et al. [86]
consider amodel of regime-shift-inducing lumpy investments by asymmetric players.
Each player can switch from one exploitation technology to another. They consider
an economy that can operate under four possible regimes, denoted by I ,N1,N2, and
B. There are two players in this game, denoted by 1 and 2. Each player can make a
big push only once during the game. Initially, the economy operates under regime I
(where I stands for “initial”). Player 1 (he) can make a big push to switch the regime
from I to N1 which is to his advantage. However, player 2 (she) can pre-empt the
rival’s move by making a big push beforehand, thus switching the regime from I to
N2, to her advantage. In the case where both players make a big push at the same
time, the economy’s regime is switched from I to B (where B stands for “both”).
Once the economy is in regime B, no further switch is possible. Regime B can also
become operative after two consecutive big pushes, one by each player.

Let S denote the set of possible regimes, i.e.,

S ≡ {I ,N1,N2,B} .

Let Si be the subset of regimes of S from which player i can make a big push. Then
S1 = {I ,N2} and S2 = {I ,N1}.

There is a continuous state variable, denoted by a vector x ∈ R
m+. For example, x

is the economy’s capital stock. To simplify the exposition, the authors set m = 1. In
addition to a big push, each player also has a piece-wise continuous control variable
ci, with ci ∈ R

n. The instantaneous payoff ui(t) to player i at time t when the system
is in regime s ∈ S is a differentiable function of the two control variables and the
continuous state variable, and is, in general, different across regimes:

ui(t) = Us
i (ci(t), c−i(t), x(t)).

If player i, i = 1, 2, takes a regime change action at time ti ∈ R+, he/she incurs a
lumpy cost Ki(x(ti)). If 0 < t1 < t2 < ∞, the total payoff for player 1 is
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∫ t1

0
UI

1 (c1, c2, x)e
−rtdt +

∫ t2

t1

UN1
1 (c1, c2, x)e

−rtdt

+
∫ ∞

t2

UB
1 (c1, c2, x)e

−rtdt − K1(x(t1))e
−rt1

with r > 0 is the discount rate.
The differential equation describing the evolution of the state variable x in regime

s is
ẋ = Gs(c1, c2, x),

where, for each regime s, the function Gs is twice differentiable in the triplet
(c1, c2, x).

For expositional purposes, Longat al. [86] focus on a specific sequenceof regimes:
I , N1, and B. A natural way to proceed, for determining a MPE of this game, is to
solve the problem recursively, starting from regime B, the last regime of the system.
Recall that each player has two types of controls, a piece-wise continuous control
variable ci, and a big-push date, ti. A Markovian strategy consists of a control policy
and a big-push rule at every possible state of the system, (x, s) ∈ R+ × S. The control
policy of player i is a mapping ηi(.) from the state space R+ × S to the set Rn. To
get an idea of a Big-Push rule, consider the following situation. Suppose player 1
thinks that if player 2 finds herself in regime N1 at date t, she will make a big push at
a date t2 ≥ t. Then player 1 conjectures that the interval of time between the current
period and the switching date, t2 − t, is a function of the state of the system. More
generally, define player i’s time-to-go (before making a big push), given that s ∈ Si,
as a mapping �2(.) from R+ × S to R+ ∪ {∞}. For example, from the state (x,N1),
the real number �2(x,N1) is the length of time that must elapse before player 2 makes
her big push. If �2(x,N1) = ∞ for all x, this would mean that she does not want to
make a big push if she finds herself under regime N1.

Long et al. [86] introduce the concept of piece-wise feedback Nash equilibrium
(PFBNE), defined as follows:

(i) A strategy vector of player i is a pair χi ≡ (ηi, �i).
(ii) A strategy profile (χ1,χ2) is a piece-wise feedback Nash equilibrium (PFBNE)

if starting at any time t and any state (x, s), the remaining lifetime payoff of
player i is maximized by χi, given χ−i.

As an application, Long et al. [86] consider a game of exploitation of exhaustible
resources. There are two players. Each can choose a date at which she introduces a
more efficient extraction technology. They find that the player with low investment
cost is the first player to adopt a new harvesting technology. She faces two counter-
vailing incentives: on the one hand, an early switch to a more efficient technology
enables her to exploit the resources more cheaply; on the other hand, by inducing
the regime change, which tends to result in a faster depletion, she might give her
opponent an incentive to hasten the date of his technology adoption, if the opponent
investment cost decreases as the stock decreases. As a consequence, in an equilib-
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rium, the balance of these strategic considerations may make the low-cost player
delay technology adoption even if her fixed cost of adoption is zero, contrary to what
she would do (namely, immediate adoption) if she were the sole player.

Let us now contrast the big-push class of models (as considered in Tornell [111]
and Long et al. [86]), with the other polar cases where a regime shift can occur
only with gradual investments. For illustration, we review the model of Itaya and
Tsoukis [54], who analyzed differential games involving symmetric agents who
want to change their preferences away from envy-driven consumption. Itaya and
Tsoukis [54] considered a community consisting of n infinitely lived agents who
may contribute to the accumulation of a stock of “social capital”, denoted by S.
The higher is the stock, the lower is each individual’s incentive to “out-do others” in
terms of relative consumption. This incentive is captured by the term (1 − θi(S)) ≥ 0,
where θi(.) is an increasing function of S, with the property that 0 ≤ θi(S) ≤ 1 for
all S ≥ 0. The function θi(.) is the same for all i. Each individual i has 1 unit of
time at each t. A fraction ai of time is devoted to building up social capital (e.g., by
spending time to socialize with other members of the community). The remaining
fraction, 1 − ai, is used to produce a consumption good, under the constant returns
to scale technology ci = 1 − ai. Production of ci yields the utility of consumption,
ln ci, from which the disutility of effort, βci, must be subtracted. The utility flow at
time t is

ln ci(t) − βci(t) + (1 − θi(S(t))) ln

[
ci(t)

C(t)/n

]

,

where C/n is the community’s average consumption. While everyone knows that

ln
[

ci
C/n

]
= ln(1) = 0 in a symmetric equilibrium, it remains true that as long as

(1 − θi(S)) > 0, each individual has an incentive to try to “out-do” others in terms
of consumption, by spending a lot of time in production activities. This is the well-
known “rat race” which reduces welfare. There is also an incentive to eliminate the
rat race. If S is built up to the level S where (1 − θi(S)) = 0 and maintained at that
level for ever, the rat race will be completely eliminated.

The authors assume that

Ṡ =
(

n∑

i=1

ai

)

S − δS,

where δ is the rate of depreciation of S.
The authors describe the set of Markov-perfect equilibria (MPEs) of this game.

They show that there are a continuum ofMPEs, which can either involve a monotone
decreasing path S(t), ending up at S = 0, or a amonotone increasing path S(t), ending
up at S = S. There is no stable equilibrium path that converges to an interior stock
S ∈ (

0, S
)
.
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1.8 Directions for Future Research

The literature on regime shifts has contributedmuch to our understanding of the com-
plexity of the problems that decision-makers face in a world where state dynamics
are not immutable. We have learned from this literature that decision-makers should
be very cautious when they face uncertainty about tipping points. Development plan-
ning should take account of threshold externalities, and foreign aids could be more
useful if donor countries can coordinate on a big push. Analysis of political changes
can benefit from models of how discontent might build up. While the literature on
regime shifts is indeed very rich, there are a number of issues that deserve greater
scrutiny.

The first issue concerns the analysis of changes in preferences. While the exist-
ing literature acknowledges that preferences may change, typically such changes are
either assumed to be exogenous (e.g., Kemp and Long [57]), or triggered when an
environmental threshold is crossed (e.g., Nkuiya and Costello [94]), or contemplated
by infinitely lived agents, as in Itaya and Tsoukis [54]. However, a more important
class of actions should be considered: how to influence the preferences of the future
citizens so that environmental thresholds can be managed more efficiently. The lit-
erature on social investments that affect preferences of future generations is sparse.
For models of intergenerational transmissions of preferences, see Bisin and Verdier
[12–14] on the selection of traits, and Long [85] on the moral education to encourage
pro-social behavior, switching players’ preferences from Nashian to Kantian.18 As
Bowles [19] points out, a “moral economy” is more effective than an incentive-based
economy in mitigating externalities and promoting investments in public goods.

The second issue concerns alternative paradigms for the analysis of regime shifts.
Admittedly, the dominant paradigm in economic analysis is based on rational,
forward-looking behavior. However, evolutionary game theory has been success-
fully used to explain many phenomena.19 It would be interesting to model regime
shifts in human societies from an evolutionary perspective.

Acknowledgements I would like to thank two anonymous reviewers for their careful reading of
the paper and for their very helpful comments and suggestions.
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Chapter 2
Institutional Change, Education,
and Population Growth: Lessons
from Dynamic Modelling

Gustav Feichtinger, Andreas Novak, and Franz Wirl

2.1 Introduction

This is one of the first papers that links population growth, education (one of the
key factors affecting population growth, in particular, the education of girls), and
institutional change (which is more specific than conflicts) within dynamic optimiza-
tion models. It is motivated by political events like the Arab Spring and by papers
(and presentations) of Raouf Boucekkine with different co-authors, in particular,
Boucekkine et al. [7, 8]. Although the proposed models are far from trivial involving
two (and more) states and in some cases two stages, we are able to characterize
the inter-temporal policies. Therefore, our theoretical analysis is complementary to
recent empirical papers like Acemoglu et al. [1] on population growth and conflict,
and Boucekkine et al. [9] on education and illiberalism.

Of the different explanations of an uprising, we mention here two complementary
ones. Kuran’s theory of preference falsification, e.g., in Kuran [14], the decisions of
individuals are addressed: Individuals hide their true preference for the opposition
if this is individually opportune and any uprising or revolution requires that the
support for the opposition surpasses a critical threshold. This theory can explain that
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revolutions and the subsequent changes of political leaders are often an event that
surprises even the experts. Examples abound, from the French to the Russian and
the Islamic (in Iran) revolution, the collapse of socialism in 1989 and more recently
the Arab Spring in 2011 of which some (e.g., [11]) predict a second coming, e.g.,
with reference to the ongoing protests in Algeria. Although this is a very important
and plausible explanation, we depart from a second and complementary approach
that addresses the issue of revolutions from the perspective of a ruling elite and
its possible voluntary power handover with theoretical reference to the American
sociologist Lipset and a recent book of Albertus and Menaldo [5]. This second route
has been proposed in Boucekkine et al. [7, 8]. They assume that an elite has access
to a rent from selling abroad a resource and also at home by providing a vital input
for domestic production in order to explain events like the Arab Spring that started in
Tunisia in 2011 and are continuing until today inAlgeria. Other potential applications
are to past regime changes in South Africa, Chile (of Pinochet), maybe Russia, and
the recent changes that Muhammad bin Salman, clearly a member of the ruling elite,
initiated in Saudi Arabia.

The papers, Boucekkine et al. [7, 8], are our starting point. Both consider an econ-
omy with constant capital stock and population ruled by an elite. The elite has access
to the revenues from selling a resource, at home and abroad. Gross domestic prod-
uct is the output of two variable inputs (aside from constant capital and labour): the
domestic resource use (a flow) and human capital (a stock build up by investment into
education). Although the elite’s concern is its own level of consumption, it invests
into human capital, which expands output, raises wages, and also the population’s
demand for its share of the resource rent. A central assumption is that the elite can
determine the transition and can retain some stakes under the future (democratic?)
regime. Arithmetically, the elite solves an optimal control problem, possibly involv-
ing two stages before and after the handover. Although we follow this approach too,
the role of elites is seen differently by different authors. It is not entirely different
from Acemoglu and Robinson [3] who argue that “democracy consolidates when
elites do not have strong incentive to overthrow it”. Recently, Guriev and Treis-
man [13] argue that an informed elite is in opposition and constrains the actions of
recently emerging autocrats within formal democracies. Similarly, Boucekkine et al.
[9] observe that rising educational levels are incompatible with illiberalism and thus
increase the probability of a regime change.

Our first extension is to address how population growth affects and constrains
an elite’s policies. This extension is crucial from an applied perspective, because
population growth is a major force and even a threat to any elite. The reason is that
many young people, in particular, too many 3rd and 4th sons without any economic
and social perspective are prone to revolt. Acemoglu et al. (in press) is an empiri-
cal confirmation on how the drop in morbidity since 1940 (due to breakthroughs in
medicine, hygiene, and fights against malaria, which are all exogenous for develop-
ing countries) led to population growth, which in turn had sizeable effect on civic
conflicts. While population declines in the industrialized countries, it grows dramat-
ically in most Sub-Saharan (doubling within a few decades) and Arab countries of
which Jordan, Oman, Kuwait, Bahrain, United Arab Emirates, and Qatar have the
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world’s highest population growth for 2010 over 2005 (of course, the huge annual
growth rates of 12 and 13% per annum for the latter two includes migration). Indeed,
the ignorance of population growth is, according to Lianos [15], ‘the elephant in the
living room’ in economics (in his case, in environmental context, but we think much
beyond that). The second is the modification of the optimistic assumption that the
resource is used as a productive input for domestic production. Instead, its use is
by and large in the form of cheap, actually absurdly cheap, petrol, which will lead
to enormous political problems when prices must be raised eventually as the recent
revolts in Ecuador (following increasing petrol prices to still moderate levels, $ 2.39
per gallon, see The Economist [21]) and in Iran (but from absurdly low levels below
the price of bottled water) document. Even accounting for refining, petrochemicals,
and the many airlines in the Gulf, we doubt that these industries deliver a profit based
on a genuine comparative advantage because of the need for hiring foreign personnel
(engineers from the West, workers from the Indian subcontinent, cabin crews and
pilots from all over the world, etc.). Instead, they just benefit from the cheap input
(natural gas, oil, and kerosene) which were presumably better sold abroad, compare
Ghoddusi et al. [12].

The paper consists of a sequence of models, some of them only briefly sketched.
The upshot of our analysis is that the elite’s inter-temporal optimization prob-
lems do not have a long-run solution (i.e., the canonical equations implied by the,
also sufficient, first-order optimality conditions do not lead to a saddle-point sta-
ble steady state) in most cases, including variants close to the ones suggested in
Boucekkine et al. [7, 8]. The extension considered in this paper, population growth,
renders (optimal) control by the elite in the long run even less possible unless the
elite heavily penalizes population. Therefore, it is implicitly necessary to account for
a second stage after the elite hands the power over to the ‘people’ unless one sub-
scribes to the cynical description of the elite just in the above sentence. The elite can
choose the time when to hand over to a future government and/or leaves the country.
Given the impossibility that any kind of ruling, by elites or kings, can survive under
the assumed constraints, it is crucial as to what are their stakes in a future govern-
ment or in exile? Therefore, an elite facing the constraints addressed in this paper
will only provide for a handover if it has an ‘after life’ after the handover. However,
it is questionable nowadays whether an elite can accumulate resources outside the
country for the exile. For example, The Economist (Africa’s money launderers, 12
October 2019, p38) reports that anti-corruption campaigners make the stashing of
illicit wealth, such as exercised by Sani Abacha of Nigeria and Bokassa of Central
Africa, much harder nowadays. This can have unintended consequences as dictators
and elites have only the option to ‘take the money and run’ as Adelman hypothesized
about OPEC rulers. Or formulated positively, the elite chooses to behave well if that
allows it to retain some benefits after a negotiated handover. According to Guriev
and Treisman [13] describing how ‘human’ autocrats became in the recent decade
(political killings and the number of political prisoners declined substantially), it is
the elite (the informed ones, say in Russia) that opposes the autocrats and limits their
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actions. However, given the formal setup of an inter-temporal optimization problem,
our models are, at least to some extent, also applicable to a ruler facing an informed
elite.

The model departing from Boucekkine et al. [7, 8] and its extensions and variants
are introduced and analysed in Sect. 2.2. The importance and even the necessity of
a second stage arises due to the lack of (saddle-point) stable long-run solutions.
Therefore, Sect. 2.3 analyses a two-stage problem: The elite rules during the first
phase, uses a resource rent for consumption, investment (into education), and the
build-up of foreign assets. In the second phase, the elite lives in exile from the assets
transferred abroad during the period of ruling.

2.2 Models and Implications

2.2.1 No Population Growth

The papers Boucekkine et al. [7, 8] consider an elite having access to the revenues
from resource sale. The elite uses the revenues from sales (export, domestic) for
own consumption, for financing education, for subsidizing the domestic use of the
resource, and directly for transfers to the population (e.g., including little or no
taxes). Gross domestic product (Y ) is the output of the inputs of physical and human
capitals and of the domestic resource use. Our first modification is a simplification
that ignores the contribution of domestic resource use for economic activity, because
driving large SUVs through the desert provides little value added. Therefore, total
output (Y ) is given by the production function F with only the two inputs of physical
(K ) and human (H) capitals,

Y = F (K , H) = P f (k, h) .

Introducing per capita terms, P denoting the population (capital letters refer to aggre-
gate and small letters to per capita values),

k := K

P
, h := H

P
; (2.1)

and fixing per capita capital k (as implicitly in Boucekkine et al. [8] and [7]) yields:

y = Y

P
= f (k, h) = aϕ (h) = ahα, a := Ak1−α.

Assuming, α = 1 (i.e., ah-technology in analogy to the AK -framework, see Rebelo
[17]), the equilibrium wage is

w = y. (2.2)
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El-Mattrawy and Semmler [10] find a large Solow residual for Egypt and find that a
substantial (but not the entire part) can be explained by human capital.

Elite and rulers own a resource that gives the elite access to the revenues R, e.g.,
oil revenues. However, also aid from governments and NGOs could be the source of
the elite’s rent, which broadens the applicability of the model. Indeed many rulers
and their elite turned into kleptocrats pocketing aid money instead of using it for
development, e.g., Acemoglu et al. [2] mention Democratic Republic of the Congo
(Zaire) under Mobutu Sese Seko, the Dominican Republic under Rafael Trujillo,
Haiti under the Duvaliers, Nicaragua under the Somozas, Uganda under Idi Amin,
Liberia under Charles Taylor, and the Philippines under Ferdinand Marcos, not to
forget Jean-Bedel Bokassa of Central Africa who “would slip his guest diamonds to
thank him for France’s support” according to The Economist [20].

The elite spends the rent R for own consumption C , the maximization of which is
its objective (using the constant discount rate,ρ > 0, and for concreteness logarithmic
utility),

max

∞∫

0

exp (−ρt) lnC (t) dt, (2.3)

for transfers to the workers � and θ := �/P per capita, and for education E ,
e := E/P per capita,

R = C + � + E . (2.4)

Human capital (H) follows the standard capital accumulation rule (also used in
Boucekkine et al. [7, 8]),

Ḣ = βE − δH, H (0) = H0 given, H ≥ 0 (2.5)

because workers (=domestic population except for the elite) cannot invest in educa-
tion. However, they are not entirely passive, because they will revolt if their income,
consisting of theirwage (w)plus the handout θ, is considered to be too low.Therefore,
in order to deter a revolt, the following inequality,

w + θ ≥ z + τ (h) , τ ′ > 0, (2.6)

must be satisfied; z denotes the subsistence level and τ (h) a threshold, which is
increasing with respect to education because it fosters awareness (as also Guriev and
Treisman [13] and Boucekkine et al. [9] stress). Therefore, the inequality (2.6) must
hold as long as the elite is in charge and the rent R must be sufficiently large, at least
R > zP , to allow for positive consumption at all, C > 0. In the most simple version
of a linear endogenous threshold level (again as in Boucekkine et al. [7, 8]),

τ (h) = bh,
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and assuming an ah-technology, the constraint (2.6) becomes in terms of theminimal
per capita handout,

θ ≥ z + (b − a) h, b > a. (2.7)

This above-assumed inequality states that the elite has to surrender some of its rent
and that this amount per capita is increasing with human capital.

Remark 2.1 If b < a, the elite could extract taxes after investing into education in
order to finance its consumption, hence the assumption, b > a. This possibility that
the elite can tax its people, i.e., θ < 0, arises also for a concave τ (h) if investments
into education render human capital sufficiently productive and at the same time the
population relatively docile, h > ĥ : z + τ (h) − ah = 0, a situation that may apply
to China’s elite today. In fact, we wanted to rule this possibility out a priori, because
we do not think that China’s unique experience (e.g., decades of a one-child policy)
applies to the countries we have in mind. Furthermore, if taxation became feasible,
the elite would prefer a higher population.

Remark 2.2 As mentioned in the introduction and due to our point of departure
from Boucekkine et al. [7, 8], we refer to the elite as the decision maker although it
could be a much smaller set of an autocrat (to use the term of Guriev and Treisman
[13]) and his inner circle.

Proposition 2.1 Considering this slightly simplified version of Boucekkine et al. [7,
8], and still a constant population, P is constant, no long-run interior solution exists
for the elite’s inter-temporal optimization problem (2.3)–(2.7), i.e., the canonical
equations implied by the (also sufficient) first-order conditions do not converge to
an interior steady state.

The economic intuition explaining this lack of a sustainable rule by the elite is
that the long-run objective, i.e., substituting the steady-state value of human capital,
H = βE/δ, and accounting for the budget constraint, i.e., (2.7), yields a strictly
concave objective,

max
E

U (E) := ln

(
R − (b − a)

β

δ
E − E − zP

)
,

but one, which has no generic interior solution since the corresponding first-order
condition (foc), U ′ = 0, cannot be met since U ′ < 0 at E = 0 and U ′ is declining.

2.2.2 Population Growth

The first extension is the account for exogenous population growth (at the constant
rate g). Given a finite rent and a growing population, it is a no-brainer that this process
cannot go on forever and that the elite can at best enjoy its rent for a limited time.
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Indeed, the elite’s optimal policy is to not invest into education and to offer only
the transfers (as long as feasible), R > � = zP + (b − a) H, that just avoid and
thereby delay the revolution. There are examples, e.g., ‘Tsarist Russia’ and the elites
in some developing countries enjoy a luxury life but spend little for education, e.g.,
Mobuto Sese Seko and some of the others mentioned in the introduction.

The second addition is that education lowers population growth (g denotes the
population growth rate),

Ṗ = g (h) P, P (0) = P0, g′ < 0, P ≥ 0, (2.8)

g (h) = γ − πh, γ > 0, h̄ := γ

π
. (2.9)

This link between population growth and education is not only an assumption but an
empirical regularity, in particular, educating girls lowers fertility rates, even drasti-
cally in some countries. The assumption of a linear relation is chosen for reasons of
simplicity. It implies a stationary population at a unique level of individual education
denoted by h̄ in (2.9). As a consequence, the elite has to pass between Scilla (an uned-
ucated and growing population which cannot be fed from some future point onwards
from the constant rent R) and Charybdis (educating the population sufficiently in
order to achieve a stationary population but which will demand larger individual
handouts).

Given the exogenous rent R, then P̄ is the maximum level of population that can
be educated, which is further diminished to P̂ if accounting for the need for transfers
according to (2.7),

P̂ := βπR

βπz + γ (β (b − a) + δ)
< P̄ := βπR

δγ
.

Of course, only initial conditions below P̂ make sense.
One possibility is to add a soft constraint: the elite values the subjective welfare of

its people (their income minus their education-dependent demands), or respectively,
accounts for the costs from demonstrations, uprisings, and the risk of a revolution of
an unhappy population. However, we bypass this (anyway also not allowing for an
interior long-run solution) and replace the constraint in (2.7) about avoiding uprisings
or revolutions with equality. This yields the objective,

max
e(t)≥0

∞∫

0

exp (−ρt) ln(R − (b − a) H − eP − zP)dt, (2.10)

with the single control, per capita expenditures for education (e), and the two states
H and P . Even this problem does not allow for an optimal long-run rule by the elite:
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Proposition 2.2 No steady state exists for the optimal long-run interior solution,
e > 0, for the optimal control problem with the objective (2.10) and the state differ-
ential equations (2.5) and (2.8).

Proof Setting up

H = ln(R − (b − a) H − eP − zP) + λ (βeP − δH) + μ (γP − πH) (2.11)

the first-order conditions are

He = βλP − P

R − (b − a) H − eP − zP
=⇒

e∗ = max

{
R − (b − a) H − zP

P
− 1

βλP
, 0

}
, (2.12)

λ̇ = (ρ + δ)λ + πμ + b − a

R − (b − a) H − eP − zP
, (2.13)

μ̇ = (ρ − γ) μ + z + e

R − (b − a) H − eP − zP
− eβλ. (2.14)

Note thatHee < 0 for both solutions in (2.12). Assuming (indirectly) an interior solu-
tion of e∗ and substituting it into the state and costate equations yields the canonical
equation system,

Ḣ = β (R − (b − a) H − zP) − 1

λ
− δH, (2.15)

Ṗ = γP − πH, (2.16)

λ̇ = (ρ + δ + β (b − a)) λ + πμ, (2.17)

μ̇ = (ρ − γ) μ + βzλ. (2.18)

Solving first for steady states of the costates yields for the linear equation system
(2.17) and (2.18),

λ = μ = 0, (2.19)

as the unique solution. This rules out the interior solution and thus implies e∗ = 0 in
the long run. �

Remark 2.3 This finding extends to a concave threshold, e.g., τ (h) = b̃
√
h, as well

as to a convex specification of τ . The reasons, at least the arithmetical ones, are (i)
τ appears only as a negative element in consumption and (ii) utility is logarithmic.
Therefore, the specification of τ affects the above interior solution of e∗ only indi-
rectly (a different term is subtracted from consumption), but plays no role in the
adjoint equations after substituting the optimal control. Thus, it allows again only
for the trivial solution (2.19) for the steady states of the costate differential equation
system and thus implies the boundary solution, e∗ = 0 in the long run.
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Why is it uneconomical (from the elite’s perspective) to sustain education in the
long run given thismore or less straightforward optimal controlmodel with a concave
objective? The reason is that the implied static/stationary objective (replacing H by
its steady-state value conditional on P , however, the same holds for carrying out the
analysis with respect to H ),

max
P

U (P) := ln

(
R − (b − a)

γ

π
P − γδ

βπ
P − zP

)
, (2.20)

does not allow for an interior solution with the choice of population P ≥ 0, as
instrument, because

U ′ = − β ((b − a) γ + zπ) + δγ

βπR − β ((b − a) γ + zπ) P − γδP
< 0

since U ′ is declining (U (P) is a concave objective) and U ′ (0) < 0. Now what is
optimal in the long run? The boundary solution, e∗ = 0, implies the state dynamics,

Ḣ = −δH,

Ṗ = γP − πH,

which have the origin as the only steady state. This steady state is a saddle point (the
eigenvalues are γ and −δ), which is reached along the saddle, H = (γ + δ) P/π.
Therefore, the following policy results from joining the interior and the boundary
ones.

Proposition 2.3 Given a feasible solution, i.e., a sufficient rent and a not too large
initial population, the objective of the interior policy e∗ > 0 from (2.12) is to drive
the states to the saddle, H = (γ + δ) P/π, at which the decline of both states starts
and continues, H → 0 and P → 0, until the elite can spend the entire rent on own
consumption.

This confirms the above finding from the analysis of the elite’s stationary objective
(2.20), namely, that the elite’s objective is to drive the size of its population down to
zero in order to keep the entire, then also uncontested, rent. Investment into education
is only an instrument to achieve this. Of course this drastic policy stresses first,
admittedly, the limits of our model. Secondly, it highlights again why the papers of
Boucekkine et al. [7, 8] have to rely on a theory of a handover by the elite. Thirdly,
our extension for population growth hardens this task, and maybe, also the hearts of
the elite.
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2.2.3 Optimal Timing of Abdication

Since there need not be either a feasible nor an optimal solution running up to infinity,
the elite has to, and therefore will, exercise the option to quit in finite time (T ) in
particular if facing unstoppable population growth. From the above we know that
quitting will be definitely optimal if population exceeds P̂ introduced above since
there is nothing then left for the elite for consumption. The following optimization
problem captures this decision problem of an elite that considers quitting if the going
gets rough and too little is left for consumption,

max
e(t)≥0,T

T∫

0

exp (−ρt) ln(R − (b − a) H − eP − zP)dt, (2.21)

Ḣ = βeP − δH, H (0) = H0, H (T ) free, (2.22)

Ṗ = g (h) P, P (0) = P0, P (T ) free. (2.23)

The change to finite and optional terminal time changes nothing in terms of the
first-order condition (2.11)–(2.14) except for adding the boundary conditions to the
costates,

λ (T ) = 0,

μ (T ) = 0,

which imply immediately that the boundary policy must apply for t → T , i.e., no
investment into education, e∗ (t) = 0 for t → T . Assuming the boundary strategy
and applying the transversality conditions, the condition for optimal stopping,

H = ln(R − (b − a) H − eP − zP) + λ (βeP − δH) + μ (γP − πH) ,

H (T ) = ln(R − (b − a) H (T ) − zP (T )) = 0,

i.e., terminal consumption utility is zero.

Proposition 2.4 Even allowing for optimal stopping does not allow for an interior
optimal policy at least close to the optimal termination date. Therefore, the optimal
policy of the elite is no investment into education for t → T and to leave when
utility from consumption turns zero due to the necessary transfers to the growing
population.

Apparently, this outcome seems to be the reason why a salvage value (in current
value terms), S = σH (T ), is introduced in the papers of Boucekkine with different
co-authors. This means economically and politically that the elite must have some
stakes in the future regime in order to invest in at least some development, here
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human capital. Accounting for population suggests that less remains for the elite if
handing over to a larger population, e.g.,

S = σ
H

P
, (2.24)

is the simplest version of such a salvage function. This extension changes only the
objective in (2.21)–(2.23),

max
e(t)≥0,T

T∫

0

exp (−ρt) ln(R − (b − a) H − eP − zP)dt + exp (−ρT )σ
H (T )

P (T )
.

(2.25)
However, we skip this analysis because we consider an explicit two-stage framework
in the next section.

2.2.4 Penalizing Larger Population

In order to allow long-run ruling by the elite (and to apply standard techniques), we
(have to) subtract a penalty, e.g., κP , from the elite’s objective,

max
e(t)≥0

∞∫

0

exp (−ρt) [ln(R − (b − a) H − eP − zP) − κP] dt. (2.26)

This penalty is not only introduced for the above formal reason but also in order to
account for conceivable economic and political constraints: a larger population is
more difficult and also more costly to contain and to suppress by any elite.

Proposition 2.5 Low discount rates, more precisely, discount rates below the max-
imal population growth rates, ρ < γ, ensure a stable long-run policy. Even higher
discount rates, ρ > γ, allow for stable outcomes and positive population but only
for large rents R. Comparative statics are as expected: a higher penalty (κ) lowers
population (for ρ < γ) while higher rents (R) as well as a higher productivity (a,
at least for γ > ρ) allow for a larger stationary population. The effect of higher
discounting is negative (as expected) iff

β(b − a) + δ + 2ρ − γ > 0.

The qualitative implications on human capital are the same since H∞ = γP∞/π.
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Proof Setting up the Hamiltonian (again using the symbol H),

H = ln(R − (b − a) H − eP − zP) − κP + λ (βeP − δH) + μg (H/P) P,

(2.27)
and deriving the first-order optimality conditions, the optimal control remains as in
(2.12), and the costate equations are

λ̇ = (ρ + δ) λ + πμ + b − a

R − (b − a) H − eP − zP
,

μ̇ = (ρ − γ) μ + κ + z + e

R − (b − a) H − eP − zP
− eβλ.

The following canonical equation system is derived for an interior solution, e∗ > 0
from (2.12),

Ḣ = β (R − (b − a) H − zP) − 1

λ
− δH, (2.28)

Ṗ = γP − πH, (2.29)

λ̇ = (ρ + δ + β (b − a)) λ + πμ, (2.30)

μ̇ = κ + (ρ − γ) μ + βzλ. (2.31)

This system has a unique steady state,

H∞ = (γ − ρ) (ρ + δ + β (b − a)) + βπ (κR + z)

(γ (δ + β (b − a)) + βπz)κ

γ

π
, (2.32)

P∞ = (γ − ρ) (ρ + δ + β (b − a)) + βπ (κR + z)

(γ (δ + β (b − a)) + βπz)κ
, (2.33)

λ∞ = − κπ

(γ − ρ) (ρ + δ + β (b − a)) + βπz
, (2.34)

μ∞ = κ (ρ + δ + β (b − a))

(γ − ρ) (ρ + δ + β (b − a)) + βπz
. (2.35)

Therefore, positive steady states, P∞ > 0 and H∞ > 0, result if either γ > ρ such
that the shadow price of human capital is negative (λ∞ < 0), or also if ρ > γ but
then only if βκπR is sufficiently large.

The comparative static properties of the stationary population (and thus stationary
human capital) follow from elementary partial differentiation of (2.33), for example,
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∂P∞
∂κ

= − (ρ + δ) (γ − ρ) + β ((b − a) (γ − ρ) + zπ)

κ2 (δγ + β (γ (b − a) + πz))
< 0 for γ > ρ,

∂P∞
∂R

= βπ

γ (δ + β (b − a)) + βπz
> 0,

∂P∞
∂ρ

= − β (b − a) + (δ + 2ρ − γ)

(δγ + β (γ (b − a) + πz))κ
< 0 unless γ > β (b − a) + δ + 2ρ,

∂P∞
∂a

= (γρ (γ − ρ) + βπ (ρz + γκR)) β

κ (γδ + β (γ (b − a) + πz))2
> 0 at least for γ > ρ.

The Jacobian,

J =

⎛
⎜⎜⎝

−β (b − a) − δ −βz 1/λ2∞ 0
−π γ 0 0
0 0 β (b − a) + ρ + δ π
0 0 βz (ρ − γ)

⎞
⎟⎟⎠ , (2.36)

has the (four) eigenvalues,

ev12 = 1

2

(
−ξ ±

√
ξ2 + 4ζ

)
,

ev34 = 1

2

(
2ρ + ξ ±

√
ξ2 + 4ζ

)
,

in which

ξ := β(b − a) + δ − γ, ζ := δγ + β ((b − a)γ + zπ) > 0.

Saddle-point stability results if two and only two of the four eigenvalues are negative.
The first and the third eigenvalues must be positive. The second is for sure negative
(even if ξ < 0), and the fourth iff,

(2ρ + ξ)2 < ξ2 + 4ζ ⇐⇒ ρ2 + ρξ < ζ

⇐⇒ (ρ − γ) (ρ + δ + β(b − a)) < βzπ

Assuming ρ < γ then the unique steady state1 must be a saddle point (the second and
fourth eigenvalues are negative and the other two are positive). The case of ρ > γ
still allows for stability, but only if the coverage of the subsistence level is sufficiently
large, more precisely,

z >
(ρ − γ) (β(b − a) + δ + ρ)

βπ
.

1Of course, in order to be meaningful, the steady states of population and human capital must be
positive. The stability properties extend arithmetically to negative but meaningless solutions.
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If this condition is not met, the unique steady state turns unstable that can be only
reached along a one-dimensional manifold in the state space. �

The stability finding in Proposition 2.5 is surprising in the light of Proposition 2.2:
the implicit penalty for population of (zP) subtracting from the elite’s consumption
in order to cover subsistence consumption of the population does not lead to a
stationary outcome. However, the minor addition of an explicit and linear penalty
renders a long-run stable outcome, and this for sure for discount rates below the
maximal growth rate of population. At least arithmetically, we can explain this. The
penalty parameter κ appears now in the costate equation (2.31) which allows for
steady states of the costates different from zero and therefore for a long-run interior
policy.

Therefore, an elite, which is not too impatient but sufficiently cynical about its own
population, is able to stir its course towards a stationary population and keep thereby
its rule. Indeed, the assumption that the elite accounts for endogenous population
growth as in (2.8) stipulates implicitly a far-sighted elite. However, this assumption
may be not applicable tomany resource-dependent countries as the ruling elites ‘must
take the money and run’, as Adelman quipped about OPEC countries (see also Wirl
[22] about positive objectives of OPEC politicians).

2.3 Adding a Second Stage: Going Abroad

Given the difficulties or even the infeasibility of keeping the power in the long run
and the difficulties to obtain at least some stakes in the future (democratic) regime,
dictators and a small part of the elite have the option, and almost always use it, to
amass money abroad (A) and to leave if the going gets rough. For example, the
Iranian revolution in 1978 led many people linked to the Shah regime to emigrate
and not only the Shah but also his family left Iran. Idi Amin of Uganda did the same
when leaving for exile in Saudi Arabia.

After leaving the country with no stakes left at ‘home’, the elite or the ruler
exercises a standard Ramsey program:

V (A0) := max
c

∞∫

0

e−ρt lnCdt, (2.37)

subject to the budget constraint (A denotes the assets held in foreign accounts), the
initial condition, and the no-Ponzi-game condition

Ȧ = r A − C, A (0) = A0, lim
t→∞ A (t) e−r t ≥ 0, (2.38)

inwhich r < ρ is the exogenously given interest rate earned in capital markets and A0

themoney accumulated outside the country during the periods of ruling. The solution
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is well known (see, e.g., Barro and Salai-Martin [6]), A → 0 and C → 0 (thus the
corresponding costate ν → ∞) all asymptotically given the canonical equations of
the second stage,

Ȧ = r A − 1

ν
,

ν̇ = (ρ − r) ν.

Therefore,

A (t) = A0e
(r−ρ)t , C (t) = ρA0e

(r−ρ)t , ν (0) = 1

A0ρ
, (2.39)

inwhich the initial levels of consumption, state, and costate are determined by the no-
Ponzi game condition. This explicit solution allows to determine the value function
by integrating over the net present value of future utility,

V (A0) =
∞∫

0

e−ρt ln (C (t)) dt =
∞∫

0

e−ρt ln
(
ρA0e

(r−ρ)t
)
dt = ln (ρA0)

ρ
+ r − ρ

ρ2
.

(2.40)
Accounting for the value obtainable from the second stage yields the optimal

control problem,

max
e≥0,I,T

∫ T

0
exp (−ρt) ln(R − (b − a) H − eP − zP − I )dt

+ exp (−ρT ) V (A (T )) , (2.41)

Ḣ = βeP − δH, H (0) = H0, (2.42)

Ṗ = g

(
H

P

)
P, P (0) = P0, (2.43)

Ȧ = r A + I, A (0) = 0, (2.44)

and all terminal values of the states are free.While expenditures for educationmust be
non-negative, investment can be positive or negative. If I > 0, the rulersmovemoney
abroad if I < 0, then they draw on their foreign account or take foreign credits. That
is, from the very beginning, the rulers must take into account their definite finite and
often rather short time of ruling. Therefore, they start transferring money subject to
the political constraint of avoiding an uprising. Given population growth, the elite
will presumably transfer money to its foreign accounts from the beginning and may
be even larger at the beginning given a growing population.

Proposition 2.6 Assuming a feasible solution, the elite’s optimal policy is

(i) to stop investing into education (presumably long) before leaving (e∗ = 0 for
t → T ),
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(ii) to stay as long as the resource rent R contributes to pay for the elite’s con-
sumption (i.e., as long as R > �) and leaves when this contribution vanishes
(R − � → 0 for t → T ),

(iii) to enjoy continuity in consumption across the two stages, which means that the
consumption towards the end is financed from revenues abroad, and,

(iv) but already an implication from (iii), to stop investing abroad (long) before
leaving, i.e., negative investment, more precisely, I (T ) = −C (T ).

Proof Defining the Hamiltonian,

H = ln(R − (b − a) H − eP − zP − I ) + λ (βeP − δH)

+μ (γP − πH) + ν (r A + I ) , (2.45)

the first-order conditions for solutions are as follows: The Hamiltonian maximizing
condition for the expenditures for education,

e∗ = max

{
R − (b − a) H − zP − I

P
− 1

βλP
, 0

}
, (2.46)

is similar to (2.12). It is for the second control investment (I )with the optimal level,

HI = − 1

R − (b − a) H − eP − zP − I
+ ν = 0

=⇒ I ∗ = R − (b − a) H − eP − zP − 1

ν
. (2.47)

The costates evolve according to,

λ̇ = (ρ + δ)λ + μπ + b − a

R − (b − a) H − e∗P − zP − I
, (2.48)

μ̇ = (ρ − γ) μ + e∗ + z

R − (b − a) H − e∗P − zP − I
− βλe∗, (2.49)

ν̇ = (ρ − r) ν, (2.50)

(using e∗ as shortcut for the optimal control from (2.46)), and finally for optimal
stopping they require,

H = ρV = ln (ρA) + r − ρ

ρ
at t = T . (2.51)

Defining with

MU = 1

C
= 1

R − (b − a) H − eP − zP − I
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the elite’s marginal utility of consumption (i.e., the benefit from being able to spend
an additional $ for own consumption given the logarithmic utility), then

MU = βλ ∧ MU = ν.

Starting with the second equation, the elite is indifferent between spending or saving
(foreign assets, of course) this incremental $. The first condition equates marginal
utility to the marginal benefit from larger human capital (λ) multiplied by the effi-
ciency of education investments (β). As a consequence, ν = βλ, i.e., the two costates
differ only by the efficiency of investment into education. However, this characteri-
zation holds only along the interior solution, i.e., e∗ > 0.

Given our assumption that the elite has access to all its assets transferred abroad,
we can apply the theory of two-stage dynamic optimization, Makris [16], see also
Tomiyama [18], Tomiyama and Rosanna [19], in which the two stages are linked by
continuity conditions, value matching, and smooth pasting. These conditions apply
only to the state carried forward, namely the assets,

ν (T ) = V ′ (A (T )) = 1

ρA (T )
,

and simplifies the boundary conditions of the other costates in stage 1,

λ (T ) = 0 ∧ μ (T ) = 0.

They imply immediately that the elite spends again nothing on education before
leaving,

e∗ (t) = 0, t → T .

Therefore, reductions in educational investments are a strong signal that elite con-
siders leaving. The continuity conditions are

ν1 (T ) = ν2 (T ) , (2.52)

H1 (T ) = H2 (T ) , (2.53)

in which the subscripts (which can be dropped for the costate ν due to the above)
refer to the two stages:

H1 (T ) = ln(C (T−)) + ν (T ) (r A (T ) + I (T )) ,

C (T−) = R − (b − a) H (T ) − zP (T ) ,

H2 (T ) = ln(C (T+)) + ν (T ) (r A (T ) − C (T+)) .
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Applying the ‘smooth pasting’ condition (2.52) implies C (T+) = C (T−) and thus

I (T ) = −C (T ) , (2.54)

due to ‘value matching’ (2.53). �

The optimal stopping conditions imply that the elite stays as long as the rent R can
contribute to its consumption. However, it has to rely increasingly on foreign assets to
pay for its consumption (negative investments, I < 0 for t → T ). Furthermore, it will
smooth its consumption level across the two stages, because otherwise an arbitrage
opportunity would arise. Therefore not only lacking investment in education, but
increasing reliance on money from abroad signal that an elite considers leaving.

The property of continuous consumption depends crucially on some of the
assumptions. It is eliminated for switching costs, since the elite’s exodus is for sure
costly, so that the elite will face a discontinuous drop in consumption. Furthermore,
with international banks not anymore protecting accounts fed from stolen money,
the above-derived strategy becomes risky as mentioned in the introduction (e.g., the
quoted article in The Economist reports that the auction revenues of $ 27 millions
from sports cars seized from Mr. Obiang, the son of the president of Equatorial
Guinea, were returned). Indeed, this exit option is only possible for rulers retaining
some goodwill when leaving, i.e., what is called a golden handshake in the case of
managers. Let V (A) again denote the value function of the above Ramsey program
and p (H, P, A) the probability (or share) that the former rulers expect to keep after
the revolution and when leaving. Therefore define with

�(H, P, A) : = p (H, P, A) V (A) ,

�H > 0, �P < 0, pA < 0 yet �A > 0

the expected net present value payoff of the ruler at the moment going into exile. The
assumption�A > 0 is for sure violated for large values of A, but accumulating large
amounts such that the expected benefit declines is clearly suboptimal. This change in
assumptions, does not change the above state and costate equations in their dynamics
but affects the boundary conditions,

λ (T ) = �H > 0,

μ (T ) = �P < 0,

ν (T ) = �A > 0,

in which case the elite may continue investing in education until the very end but
consumption need not remain continuous.
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2.4 Concluding Remarks

Departing from the interesting papers ofBoucekkine et al. [7, 8] on howan elitemight
run a resource exporting economy, this paper introduced a fewmodifications. Firstly,
we question the productive use of the resource in domestic industry and secondly, we
account for population growth, which seems crucial formany countries towhich such
socio-politico-economic scenarios are applicable. The major upshot of the different
setups considered in this paper is that an elite will have a hard time in most cases to
survive. Only a far-sighted and cynical elite with negative concerns about a larger
population will be able to sustain its rule in the long run and only if it can stabilize
its population.

Offering the elite some stakes in the future government could induce them to
take domestic issues, here modelled as investing into education, into account. In this
sense, the opportunities offered in the second stage, the after life of the elite, can
cast an important and positive shadow over the first phase when it rules but that is
not granted, or put the other way round. Only an elite that is sufficiently far-sighted,
patient, and has some stakes in the country’s future could lead to a peaceful handover.
However, our analysis indicates that this mitigation policy of an elite is difficult and
impossible in some cases in our framework.

Partially to our own surprise, we are able to characterize the elite’s optimal inter-
temporal policies. The policies derived from our models reveal the ‘bare bone’ and
thus drastic intentions of a greedy elite, which are presumably masked and miti-
gated by additional considerations or further constraints. Therefore, extensions and
improvements are not only possible but necessary in order to understand such top-
ical political events. Obvious candidates are: broader objectives that include social
benefits (however, this is more likely for autocrats worrying about their remem-
brance in the future books of history than for a diffuse elite); a threshold function
(i.e., a well-educated and also relatively rich population raises less demands) that
could explain the transition, in particular, in oil exporting countries from subsidies to
taxes; accounting for strategic issues applying (dynamic) game theory (Boucekkine
et al. [7] include a cooperative handover which is ultimately reduced to endogenize
the salvage value); for uncertainty, e.g., using Ito processes, possibly combined with
jumps, instead of deterministic differential equations. The dramatic drop in oil prices
inMarch 2020 to almost $20 per barrel (for Brent) from above $60 inDecember 2019
is a very recent reminder of the uncertainty associated with resource revenues and
also for the need for taxation in oil exporting countries. In addition, an integration
of the objectives and possibilities of individuals as addressed in Kuran [14] should
be part of such an analysis.
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Chapter 3
Poverty Traps and Disaster Insurance in
a Bi-level Decision Framework

Raimund M. Kovacevic and Willi Semmler

JEL Classification: C 61 · C 63 · L 10 · L 11 · L 13

3.1 Introduction

There is a long tradition of economic literature where it is argued that economic
agents can be driven into long-lasting poverty traps—or even into ruin—as a result
of large negative shocks or disaster events. This often involves random catastrophic
losses, leading into absorbing states fromwhich an escape is not possible. Large neg-
ative shocks can result from large income or wealth contractions, such as economic
and financial melt-downs, from disasters such as earthquakes and climate-related
disasters. In each case, a significant percentage of GDP, public and private capital,
essential infrastructure, as well as regional damages and life losses are occurring.

As to the economic strand of literature that has studied the likelihood of countries
and regions to fall into poverty traps recently, the new growth theory1 has redirected

1One approach of the new growth theory views persistent economic growth arising from learning by
doing, externalities in investment and increasing returns to scale. This idea had been formalized by
Arrow [1] and rediscovered by Romer [29], who argues that externalities—arising from learning by
doing and knowledge spillover—positively affect the productivity of labor and thus the aggregate
level of incomeof an economy.Lucas [22],whosemodel goes back toUzawa [36], stresses education
and the creation of human capital, Romer [29] focus on the creation of new technological knowledge
as important sources of economic growth. And others emphasize productive public capital and
investment in public infrastructure. For a more extensive survey, see Greiner et al. [10].
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our attention to important mechanisms that can generate multiple equilibria, and
among them an attractor which has been called a poverty trap. Those could arise
from externalities and increasing returns to scale, constraints in the financial and
credit markets, as well as from population movements after disaster shocks that, in
the long run, can give rise to diverse per capita incomes across regions and countries.
Such mechanisms may be able to explain the forces that bring about a twin-peak
distribution of per capita income in the long run, namely the convergence of the size
distribution to countries and regions of small per capita income and countries with
large per capita income, predicting some twin-peak distribution.2

Financial studies have focused on large negative shocks that can result from large
income or wealth shocks and contractions, with effects on credit markets, income
flow, consumption and investment. In particular financialmelt-downs and the destruc-
tion of capital as well as jumps in risk premia after rare large economic and financial
crises are investigated in great detail. For example, Rietz [28] studies rare market
crashes and their effect on equity risk premia. Barro [5] uses as disaster measure the
decline of GDP growth, while Barro and Ursua [6] and Gabaix [9] investigate the
decline of consumption spending due to large financial and economic disasters.

Climate change and weather extremes studies explore disaster effects from large
scale floods, storms, landslides, heat waves and droughts, and forest fires. This lit-
erature also stresses nonlinearitites and tipping points, leading to the phase shift,
and long period lock-ins. This work goes back to extreme event studies initiated by
Gumbel [13, 14]. Recent important contributions are the one by Burke et al. [7, 8],
Hochrainer et al. [15], Hochrainer-Stigler et al. [16], Independent Evaluation of the
Asian Development Bank [17], Yumashev et al. [37], and Mittnik et al. [20]. Much
research work published in the IPCC assessment reports since 1988 have elaborated
on those issues.

A further strand of literature is the insurance work on this topic. Here the question
is pursued whether and for which type of shocks, insurance against large random
shocks can aid to reduce the risk of large capital and income losses leading to dynam-
ics to fall below the poverty trap. An overview of those models is given in and in
Kovacevic and Pflug [18]. In the latter work a critical level of capital is introduced
that can dampen the losses. Above the critical level, which depends on the frac-
tion covered by insurance, the expansion of capital is feasible after a disaster shock.
On the other hand, close to a critical point—at some cliff—insurance might be too
expensive, because it disturbs the deterministic growth.

Our paper is related to the above literature. Our deterministic dynamics also has
three equilibria: the outer two are stable while the middle one is unstable. The deter-
ministic dynamics is driven by optimizing behavior, similar as in dynamic growth
models, as in Semmler and Ofori [32]. As many recent growth models do, we start
with a capital accumulation model with a mechanism that gives rise to multiple

2An early theoretical study of this problem can be found in Skiba [34]. Further theoretical modeling
is in Azariadis and Drazen [3], Azariadis [2] and Aziaridis and Stachurski [4]. For recent empirical
studies see, for example, Quah [27] and Kremer et al. [19]. A more recent study on this issue is
Semmler and Ofori [32] where also empirical evidence is provided.
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equilibria. It represents a basic model of the dynamic decision problem of countries
where the capital stock is the state variable and investment is the decision variable.
We explore mechanisms that may lead to thresholds and the separation of domain of
attractions, predicting a twin-peak distribution of per capita income in the long run.
We show that only countries that have passed certain thresholds may enjoy a rise of
per capita income.3

The deterministic dynamics is overlayed by random dynamics, modeling thewait-
ing times between catastrophic events. In this setup, the possibility of insurance is
analyzed. While Kovacevic and Pflug [18] consider only the possibility of a fixed
retention rate (respectively, a fixed proportion of insured capital), we allow a change
of the retention rate after each catastrophic event. The search for an optimal process
of retention rates gives rise to a bi-level decision problem. In our context of finite
upper equilibria of the deterministic dynamics it turns out that it is not meaningful
to concentrate on the trapping probability of falling below the cliff (which was the
approach in Kovacevic and Pflug [18], where the upper equilibrium was infinite). It
turns out that this probability is always one—that is in the long run ruin happens for
sure. Therefore we aim at maximizing the expected discounted capital after the next
jump and develop a numerical algorithm in order to analyze the optimal retention
rate depending on the starting capital.

The remainder of the paper is organized as follows. Section3.2 presents a deter-
ministicmodelwith stable outer equilibria and an unstablemiddle equilibrium.More-
over, the economic mechanisms that make such thresholds plausible are discussed.
Section3.3 introduces the stochastic process of catastrophic events, stylized by a
Poisson process for the number of events and a beta distribution for the propor-
tion of destroyed capital. Moreover, insurance is introduced in this part. In Sect. 3.4,
we analyze the long-term trapping probability. Section3.5 describes the numerical
procedure used to calculate optimal decisions in the expected capital framework.
Moreover, we present numerical results and implications for a stylized example.
Section3.6 concludes the paper. In the appendix, we sketch the numerical solution
procedure.

3.2 The Deterministic Dynamic Model

The basic economic mechanisms to explain poverty traps frequently refer to techno-
logical traps. The idea of a technological trap is based on the work by Rosenstein-
Rodan [30, 31], Singer [33], Nurske [24] and others. The starting point is a modified
production function that has both increasing and decreasing returns to scale. Increas-
ing returns can only be realized if a country is capable to build up a capital stock that
is above a certain threshold. If this threshold is passed, and sufficient externalities are

3Theworking of the abovemechanisms are then empirically explored by applying a kernel estimator
and Markov transition matrices to an empirical data set of per capita income across countries, see
Semmler and Ofori [32].
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generated, the production function exhibits increasing returns. Countries converge to
a higher steady state as compared to countries that have fallen short of the threshold.
With reference to the technological trap the so-called “Big Push Theory” proceeds
from the idea that industrial countries had in their past a massive capital inflow and,
therefore, can converge to a steady state with a high income level. In contrast, less
developed countries have a shortage of such massive capital inflow and accordingly
stagnate at a low income level.

A related explanation is given by Myrdal [21] who points out that a tendency
toward automatic stabilization in social systems does not exist and that any process
which causes an increase or decrease of interdependent economic factors including
income, demand, investment, and production will lead to a circular interdependence.
Thus this would lead to a cumulative dynamic development that strengthens the
effects of up—or downward movement. On this ground poor countries are in a
vicious circle, becoming poorer. This is in contrast to rich countries who will profit
by a positive feedback effect, the so-called “Backwash Effects” arising from capital
movement and migration to get richer.4

3.2.1 The Deterministic Model

As previously mentioned, the idea of externalities and increasing returns to scale
has been extensively employed in growth theory recently. It is shown that a variety
of positive externalities arising from scale economies, learning by using, increasing
returns to information and skills are set in motion if a country enjoys, for example,
by historical accident, a “big push” and take-off advantages.

Our proposed variant of a model of dynamic investment decisions of coun-
tries builds on locally increasing returns to scale arising from externalities. Locally
increasing returns due to positive externalities may be approximated by a convex–
concave production function as proposed by Skiba [34] to illustrate those effects.

To present this idea of a convex–concave production function resulting from exter-
nalities and locally increasing returns to scale we use a model similar to Azariadis
and Drazen [3].5 With capital stock denoted by k, we can write a production function
such as

y(k(t)) = ak(t)αk (t) (3.1)

αk(t) =
{

αk if k(t) > k(t)

αk otherwise,

4Scitovsky’swork in the 1950s is another example predicting poverty traps, thresholds and take-offs,
see Scitovsky [40].
5See furthermore, Azariadis [2] and Azariadis and Stachurski [4].
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Fig. 3.1 Increasing and decreasing returns

where the coefficients αk(t), vary with the underlying state (k) and the quantity k(t)
is the threshold for the capital.

We consider an optimal control problem

V (k) = Max
{u(t)}

T∫
0

e−ρt((y(t)u(t))(1−σ)/(1 − σ))dt (3.2)

k̇(t) = y(t)(1 − u(t)) − δk(t), k(0) = k, (3.3)

which describes the economy based on the optimal allocation of income between
consumption and investment. The control is the consumed fraction of income u(t).

Equation (3.2) represents the related value function and Eq. (3.3) the evolution
of capital stock, whereby the first term y(t)(1 − u(t)) is gross investment and the
second term δk(t) is the depreciation of capital which will be augmented by the loss
of capital due to the insurance premium. Finally, σ is the parameter of risk aversion
of the economic agents which is in the literature assumed to be between 0.5 and 4
(We want to assume the risk aversion on the low side, so the dynamics are not much
impacted by this parameter itself.6).

One can show, using Dechert and Nishimura [39] that if αk < 1 in Eq. (3.1) holds
forever, the marginal product of capital, y′(k) would approach the line given by the
discount rate ρ plus capital depreciation, δ, if depreciation is allowed, from above or
below, see case (1) in Fig. 3.1.

6Population growth could also be included, requiring a slight modification of the model.
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On the other hand, presuming that the parameterαk is state dependent and approx-
imating the convex–concave production function by a smooth function one obtains
the case 2 in Fig. 3.1.

For locally increasing returns to scale, case 2, the return on capital y′(k) will first
approach ρ + δ from below, thenmove above this line and eventually decrease again.
In the first case, the return on capital below ρ + δ, because of externalities, too small
a capital stock will generate a too low return for the economy so that the capital stock
will shrink.

Thus the case 2 has three equilibria, one unstable equilibriumwhere the horizontal
axis ρ + δ intersectswith the case 2 curve, and the other two equilibria are somewhere
above and below the ρ + δ line.

As Fig. 3.1 demonstrates, increasing returns can be assumed to hold, as Greiner
et al. [10, Chap. 3] show only up to a certain level of the capital stock. A region of
a concave production function may be dominant thereafter where y′(k) might start
falling again.

If we compute the investment strategy for a model variant with a convex–concave
production function as suggested above, the convex–concave production function is
for our numerical purpose specified as a logistic function of k

y(k) = a0 exp(a1k)

exp(a1k) + a2
− a0

1 + a2
. (3.4)

This convex–concave production function specifies the production function y(k)
in Eq. (3.1).We refer to themodel (3.2)–(3.4) as the “deterministic dynamicsDP(δ)”

Fig. 3.2 Deterministic dynamics for several starting points
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in order to emphasize the dependence on the depreciation rate, which later will be
augmented by the insurance premium per unit of capital.

For the numerical computation of the solution of model (3.1)–(3.4) we employed
the NMPC procedure of Gruene et al. [12], which is sketched in the appendix of this
paper.

In a stylized numerical example, we use parameter values a0 = 2500, a1 =
0.0034, a2 = 500. for the production function and set δ = 0.05 and σ = 0.5.
Figure3.2 shows that there are indeed three equilibria, the middle one is unstable
and the lower and upper equilibria are stable ones.

3.3 Stochastic Shocks and Insurance

Weassumenow that the capital normally evolves according to the dynamics described
in the previous section, but is reduced at random points in time by shocks of random
size. Such catastrophic eventsmay imply substantial damages to the economy, but can
be considered as rare events. Because of this rareness, we assume that all economic
decisions by economic agents are made without accounting for the possibility of
catastrophic events by the economic decision-makers.

Figure3.3 provides an example of such dynamics, based on the numerical setup.
A detailed description will be given below. Yet, we can already observe that even
shocks far away from the poverty trap (the middle unstable equilibrium) can lead to
dynamics ending up in the poverty trap.

Next, a second layer of decisions is added at this point:Governments, e.g.,might be
well aware of the possibility of catastrophic losses. One way to deal with such events
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Fig. 3.3 Stochastic dynamics without insurance (η = 1)
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Fig. 3.4 Dependence of equilibrium values on the retention rate η

is the introduction of a mandatory insurance scheme. Hereby the economic agents
would pay insurance premium (maybe as an additional tax) and receive insurance
benefits in the form of a reduction of the capital loss, in case of a catastrophic event.
We use the terminus “insurance” here, although the “insurance premium” might be
also implemented as some kind of earmarked tax and the “insurance benefits” might
be just payments of the government in case of catastrophic events.

The insurance premium per unit of capital depends on the retention rate η, i.e.,
the proportion of capital that is not insured7 and is added to the deterministic model
in form of additional capital depreciation. This slows down capital growth and shifts
the equilibrium points of the deterministic dynamics, see Fig. 3.4. On the other hand,
some capital is recovered after each event. In viewof this tradeoffwe ask the question,
how much insurance—or which retention rate—is “optimal” depending on the start
capital.

Dependence of η on capital size is critical, because insensitive introduction of
insurance premium (η > 0 fixed) has the unwanted effect that small start capital
just above the unstable middle equilibrium (Skiba point) without insurance would be
below the Skiba point after introduction of insurance. This leads to a deterministically
shrinking capital exposed to random shocks, hence accelerated extinction. This effect
was observed for simpler dynamics in Kovacevic and Pflug [18].

The overall decision problem has the form of a bi-level optimization problem.
The upper-level decision (insured fraction of capital) is taken by the government,
whereas the lower level decisions (the solution of the control problem) are taken by
the economic agents in view of the prescribed amount of premium payments. While

7If the capital is not insured at all, the retention rate equals one, if the whole capital is insured, the
retention rate equals zero.
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bi-level problems are generally difficult to solve, in the present context the task is
facilitated by the fact that the control problem has unique solutions.

In the present paper, we take the size of the insurance premium (per insured
unit of capital) as dependent on the loss distribution but exogenously given for the
agents.Questions of exact financingof the insurance systemandof adequate premium
amounts are left to future research. We here concentrate on proportional insurance,
which is the simplest insurance scheme.

3.3.1 Catastrophic Events, Insurance and the Modified
Deterministic Dynamics

The catastrophic events happen at random points in time Ti. We assume that the
relatedwaiting times τi = Ti − Ti−1 are i.i.d. according to anExponential distribution
with (constant) parameter λ > 0. This means that the probability density of each τi
is gτ (t) = λe−λt and the expected waiting time is given by 1

λ
. Therefore, the number

of events up to time t follows a homogeneous Poisson process.
In the stochastic model, we denote capital by K(·). When a catastrophic event i

happens, the instantaneous capital K(T−
i ) before the jump is reduced by a random

fraction Zi such that the Zi are i.i.d. distributed according to a cumulative distribution
function GZ(·) and probability density gZ(·), hence

K(Ti) = (1 − Zi)K(T−
i ), (3.5)

where K(T−
i ) denotes the capital immediately before the event.

If GZ(·) is differentiable, we denote the related probability density by gZ(·). The
support of the loss distribution is the interval [0, 1]. In addition, it is assumed that
the Zi are jointly independent of the waiting times τi.

With insurance, (3.5) is adjusted in the following way

K(Ti) = (1 − ηZi)K(T−
i ), (3.6)

where the retention rate 0 ≤ η ≤ 1 is the proportion of damage beared by the insured
entity.

Using the expectation premium calculation principle (see, e.g., Mikosch [23]),
the insurance premium per capital unit, c(η), then can be expressed as

c(η) = λ(1 + γ)(1 − η)E[Z1]. (3.7)

Here γ > 0 is some risk loading parameter. Recall that the cession rate 1 − η is the
proportion of damage beared by the insurer.

The distribution parameter λ, and the expectation E[Z1] are assumed to be known
throughout the paper. In real-world applications they have to be estimated from data.
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The risk adjustment parameter γ is also given exogenously in the present paper.
Basically, it has to be chosen, e.g., by an insurance company taking into account the
riskiness of the loss distribution. Finally the retention rate η has to be decided by the
government.

We assume that a new value of η can be chosen after each catastrophic event,
dependent on the remaining capital K(Ti). This justifies the notation ηi = η(K(Ti)).

After each jump, the capital starts with a value of K(Ti). We assume T0 = 0 and
so

K(0) = k (3.8)

is the start value of the whole process. Between two events i − 1 and i, capital k(t)
develops according to the solution of the deterministic control problem (3.2)–(3.3),
but the original depreciation rate δ is replaced by δ + c(η)—which we denote by
DP(δ + c(η)). In consequence, we may write

K(t) = F(t − Ti−1,K(Ti−1); η) if Ti−1 < t < Ti, (3.9)

where F denotes the optimal state k(·) for the deterministic problem DP(δ + c(η))

with k(0) = K(Ti−1) and call the resulting control problem themodifieddeterministic
problem DP(δ + c(η)). In order to shorten notation, we may write F(t − Ti,XTi ),
when the dependence on η is not in the focus.

Altogether, K(t) is a piecewise deterministic Markov process. The stochastic
evolution of capital is described by the distribution assumptions on waiting times
and proportional jump size, the premium principle (3.7) together with the resulting
modification of the deterministic dynamics (3.2)–(3.3) and the defining equations
(3.8), (3.6), and (3.9).

In the modified problem all the equilibria depend on the retention rate.With k̃η we
denote the unstable equilibrium of the dynamics as described above and k̂η denotes
the stable upper stationary equilibria of the modified deterministic system. It turns
out that the upper equilibrium increases with the retention rate, whereas the Skiba
point decreases with increasing retention rate, see Fig. 3.4.

The lowest Skiba point k̃ = k̃1 is the boundary between amounts of capital for
which growth is possible with appropriately chosen η, and the region where capital
shrinks for any η without a chance for recovery. We also will consider the largest
upper equilibrium k̂ = k̂1. In principle the upper equilibriumof somedynamicsmight
not exist, i.e., k̂η = +∞. This was, e.g., the case for the dynamics used in Kovacevic
and Pflug [18]. However, the deterministic problemDP(δ + c(η)) definitely leads to
finite upper equilibria.

For the deterministic part of our stylized example, we set the parameter of the
exponential distribution (waiting times) to λ = 0.1. The parameters of the Beta dis-
tribution (proportional loss given a catastrophic event) are α = 1.92 and β = 3.39.
Moreover, we use γ = 0.05 for the risk adjustment parameter. These values were
already used for producing Fig. 3.3.
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3.3.2 The Remaining Capital and Its Transition Distribution

In order to simplify notation we introduce the random variables Vi = 1 − ηZi (which
are also i.i.d.), taking values in [0, 1]. They have cumulative distribution function

H (v; η) = 1 − GZ

(
1 − v

η

)
,

and probability density

h(v; η) = 1

η
gZ

(
1 − v

η

)
.

Vi models the remaining fraction of capital after event i occurred and the insurer
already repaid the insured sum. Equation (3.5) can be rewritten as

K(Ti) = ViK(T−
i ).

In order to analyze the remaining capital after the jumps, we may consider the
discrete-time process

Ki = K(Ti),

by sampling immediately after the occurrence times of catastrophic events. This is
also a Markov process and given the above specification it is possible to characterize
the related transition density p(k1, k0; η), i.e., the conditional probability density for
reaching capital level k1 after the next catastrophic event, when the process starts
with capital level k0 after the last event. If a remaining capital Ki = k0 is observed,
it is possible to neglect all previous observations when calculating the density of
capital Ki+1 = k1 (after the next jump). Because ηi is reconsidered after each jump,
it will never be chosen such that the new Skiba point would be below the start capital
Ki, because this would lead to a decreasing deterministic dynamics. Therefore, it
suffices to consider the case k0 > k̃η .

When Vi = v is given, then the capital after the next loss fulfills

Ki+1 = k1 = vF(τ , k0; η),

which means that the waiting time τ until the next event can be calculated as a
function of k0, k1, v by

τ = F−1

(
k1
v

, k0

)
,

where F−1(·, k0; η) is the inverse function of F(·, y0η) with respect to the first argu-
ment. Inversion is possible because F(·, y0) is strictly increasing (recall the assump-
tion k0 > k̃η). Note also that we have F : [0,∞) → [k0, k̂η) and F−1 : [k0, k̂η) →
[0,∞). Calculating the derivative leads to
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∂τ

∂y1
= 1

vF1(τ , k0)
> 0.

3.3.3 Transition Densities

Knowing the density of τ , it is possible to calculate the conditional density of Ki+1

given Ki = k0 and V = v by using density transformation. Taking expectation with
respect to the c.d.f. H (·; η) of the random variable V leads to the transition density.

p(k1, k0; η) = λ

1∫
k1
k̂η

e
−λF−1

(
k1
v ,k0.η

)

v F1
(
F−1

( k1
v , k0; η

)
, k0; η

) 1

η
gZ

(
1 − v

η

)
dv. (3.10)

The integration boundary follows from the domain of F−1 together with the fact
that 0 ≤ V ≤ 1.

From this result one can also derive the related conditional distribution function

P(k1, k0; η) = P (Ki = k1|Ki−1 = k0) (3.11)

=
1∫

k1
x̂η

[
1 − e

−λF−1
(

k1
v ,k0.η

)]
1

η
gZ

(
1 − v

η

)
dv,

which may be used in order to simulate realizations of the process Ki.

3.4 Aiming at the Trapping Probability

Based on the optimal dynamics ofDP(δ + c(η)) and using waiting times and propor-
tional losses as described above, we aim at “optimal” retention rates η. One possible
objective consists in minimizing the probability that the capital reaches or falls below
the trapping point x̃—the smallest possible Skiba point (which results from setting
η = 1). If this happens, then there is no chance for escaping from the lower stable
equilibrium in the long run, because already the deterministic dynamics leads to
decreasing capital, and all jumps decrease the capital further. We refer to this proba-
bility as the trapping probability in the following. Such an approach was suggested
in Kovacevic and Pflug [18] for a simpler dynamics with a trapping point, without
using an underlying optimal control problem and without the possibility to change
the retention rate η after a catastrophic event.

In such a setup, one searches for a (point-wise) minimal trapping probability
Q(k), defined on (k̃, k̂], where k̃ = k̃1 is the smallest Skiba point and k̂ = k̂1—the
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largest upper equilibrium. This is the probability of eventually reaching k̃ or any point
below at some point in time, after starting with a capital of k > x̃. Again it is assumed
that fraction η of noninsured capital can be readjusted after each catastrophic event,
hence η = η(k) can be considered as a function of the starting capital. The function
Q fulfills the functional equation

Q(k) = min
η

⎡
⎢⎣

k̃∫
0

p(y, k; η) dy +
k̂η∫
k̃

Q(y)p(y, k; η) dy

⎤
⎥⎦ , (3.12)

and the function defined by the argmin, η(k), describes the optimal fraction of unin-
sured capital for each starting capital x. Basically, the trapping probability equals the
probability of falling below the poverty line immediately after the next jump plus
the expectation (with respect to the transition densities) of the trapping probabilities
for capital values above the poverty line. We assume thatQ(x) is a bounded function
0 ≤ Q(·) ≤ 1 and denote the set of such functions by B. Because of these bounds
Q(y) is integrable w.r.t. any probability density p(y, k; η), hence the right-hand side
of (3.12) is well defined. This integrability property also ensures a bounded min-
imum. With T we denote the operator, defined by the right-hand side, which is a
mapping B → B, because p is a probability density for all possible values of η. Any
solution of (3.12) is a fixed point of T .

It should be noted that Q(k) ≡ 1 is always a (trivial) solution of (3.12), which
shows the existence of a fixed point. However, basically we seek for a nontrivial
solution that is smaller than one for at least some amounts of capital. Unfortunately,
classical contraction arguments (e.g., applications of the Banach fixed point theo-
rems) can not be applied, because they lead to unique fixed points.

However, let (B,≤) denote the vector spaceB together with the point-wise partial
order, i.e., Q1 ≤ Q2 when Q1(k) ≤ Q2(k) for all x ∈ (k̃, k̂]. Then we can show the
following:

Proposition 1 The operator T has a smallest and a largest fixed point, Q∗ and Q∗in
(B,≤), which can be obtained by

Q∗ = sup {Q ∈ B : TQ ≥ Q} (3.13)

Q∗ = inf {Q ∈ B : TQ ≤ Q} . (3.14)

Here the infimum has to be understood in the point-wise sense, induced by the
point-wise order ≤.

Proof The operator T is monotone: assume Q1 ≤ Q2 and define

η2(k) = argmin
η

⎡
⎢⎣

k̃∫
0

p(y, k; η) dy +
k̂η∫
k̃

Q2(y)p(x, k; η) dy

⎤
⎥⎦ ,
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then we have for any x.

(TQ1) (k) = min
η

⎡
⎢⎣

k̃∫
0

p(y, k; η) dy +
k̂η∫
k̃

Q1(y)p(y, k; η) dy

⎤
⎥⎦

≤
k̃∫

0

p(y, k; η2(x)) dy +
k̂η2(x)∫
k̃

Q1(y)p(y, k; η2(x)) dy

≤
k̃∫

0

p(y, k; η2(x)) dy +
k̂η2(x)∫
k̃

Q2(y)p(x, y; η2(x)) dy

= min
η

⎡
⎢⎣

k̃∫
0

p(y, k; η) dy +
k̂η∫
k̃

Q2(y)p(x, k; η) dy

⎤
⎥⎦ = (TQ2) (k).

Now (B,≤) is a complete lattice with smallest element Q(x) ≡ 0 and largest
element Q(x) ≡ 1 and we can apply the Knaster–Tarski theorem, see Tarski [35],
in order to show the existence of a largest and a smallest fixed point together with
properties (3.13)–(3.14). The smallest fixed point is found by startingwithQ0(x) ≡ 0
and applying the operator T until some stopping criterion is fulfilled. �

Based on the proposition, it is clear that the smallest trapping function Q is given by
the smallest fixed point of (3.13), and can be obtained by (3.13). It is also a simple
fact that the constant function Q(x) = 1 is in B and fulfills the functional equation.
So this constant function is the largest element of B and hence also the largest fixed
point of the operator T .

While Proposition 1 may lead to useful algorithms in case of infinite upper equi-
libria k̂ = +∞, unfortunately it is not applicable when x̂ is finite as for our optimal
dynamics F . It can even be shown that in this caseQ(k) ≡ 1 is the only solution (and
fixed point) of (3.12).

Proposition 2 If k̂ < +∞ and the support of the random variable k̂V contains the
value k̃ then Q(k) = 1 for any k ∈ (k̃, k̂].
Proof Higher starting capital leads to a smaller ruin probability. Therefore, we have

Q(k) ≥ Q(k̂)

= min
η

⎡
⎢⎣

k̃∫
0

p(y, k̂; η) dy +
k̂η∫
k̃

Q(y)p(y, k̂; η) dy

⎤
⎥⎦
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=
k̃∫

0

p(y, k̂; η∗) dy +
k̂∗∫
k̃

Q(y)p(y, k̂; η∗) dy

≥
k̃∫

0

p(y, k̂; η∗) dy + Q(k̂)

k̂∗∫
k̃

p(y, k̂; η∗) dy.

Here η∗ is the optimal solution of the second line.
This leads to

Q(k̂) ≥ P + (1 − P)Q(k̂)

or—after reordering and dividing by P—to

Q(k̂) ≥ 1,

and hence
Q(k) ≥ 1.

Here P > 0 is ensured by the condition on the support of k̂V , which ensures that
regions below or at k̃ can be reached with positive probability after starting at k̂.
Because Q is a probability, it is possible to conclude

Q(k) = 1.
�

With a sure transition below the Skiba point in the long run, it is not meaningful
to use the trapping probability as a measure of success in a meaningful way. An
alternative would be to aim at expected first passage times (trapping times), i.e., the

expectation of the random variable inf
{
t : K(t) ≤ k̃

}
. Unfortunately first passage

times are difficult to treat and in particular to optimize. For arbitrary processes it
is already difficult to calculate first passage times using, e.g., recursive algorithms
of Laplace transforms (see Nyberg et al. [25])). Applying such results in a situation
where already the transition densities can be computed only in a numerically costly
way and an important parameter of the process should change over time in an optimal
way is not tractable with reasonable computational effort.

3.5 Optimizing the Expected Capital After Jumps

Observe now that starting with larger capital always must be better than starting with
lower capital if decisions on the retention rate can be taken after catastrophic jumps.
This is true whichever objective should be optimized (as long as larger capital is
counted as better than smaller capital).
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Fact 3 Consider two processes Ki and K ′
i as described in Sect.3.3, and controlled

by processes with retention rates ηi, η
′
i chosen by a decision-maker. If K0 ≥ K ′

0 (i.e.,
process K starts at the higher capital level), then setting ηi = η′

i for all i ∈ N0 implies

Ki ≥ K ′
i for all i ∈ N0.

Proof Assume that after jump j the capital of the first process is not smaller than the
capital of the second process, i.e., Kj ≥ K ′

j . Then

F(t − Tj,Kj; η′) ≥ F(t − Tj,K
′
j ; η′)

until the next jump, because of continuity: F(t − Tj,Kj; η′) < F(t − Tj,K ′
j ; η′) can

only happen if
F(t1 − Tj,Kj; η′) = F(t1 − Tj,K

′
j ; η′)

at some t1, but this would imply

F(t − Tj,Kj; η′) = F(t − t1,F(t1 − Tj,Kj; η′); η′) = F(t − Tj,K
′
j ; η′)

for t ≥ t1until the next jump. So

K(T−
j+1) ≥ K ′(T−

j+1)

and hence
K(Tj+1) = Vj+1K(T−

t+1) ≥ Vj+1K
′(T−

j+1) = K ′(Tj+1).

Therefore, because K0 ≥ K ′
0 by assumption, the assertion Ki ≥ K ′

i follows by
induction. �

In consequence, a choice of η(Ki) maximizing Ki+1 given Kj in each step would
maximize the trapping time. This is not possible, because of the random jumps and
event times. However, in the following we will analyze a strategy that maximizes
the discounted expectation E

[
e−ρτKj+1

]
when Kj is known, which is motivated by

discussed fact. The expectation can be replaced by other relevant acceptability mea-
sures in order to take into account the risk dimension of the problem in a better way.
Moreover, it is possible to extend this approach to a fully dynamic decision problem.
We leave such extensions for future research and stick to the myopic formulation in
the present work.

The decision problem can be formulated as the bi-level problem

max
η

Eτ ,V
[
e−ρτV (η)F(τ ,K; η)

]
s.t.F(·, ·; η) is the optimal dynamics of DP(δ + c(η))

for retention rate η, see (3.5).
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Because already DP(δ + c(η)) can be solved only numerically, the same is true for
the overall bi-level problem. Because solutions ofDP(δ + c(η)) are unique for given
parametrization, in a numerical setup the task simplifies considerably: it is possible to
calculate approximations of the function F already in advance, such that the bi-level
problem reduces to an optimization problem without constraints.

3.5.1 Interpolating the Function F

If the function values of F are calculated on a grid T × K × E , where T contains
(finitely many) points in time, K contains values for the start capital and E contains
possible values for η, this information can be used to interpolate the function F over
the relevant domain—at least if T ,K, and E are chosen sufficiently fine. It should be
ensured that E contains values in the interval [0, 1]. Moreover, K should include the
value zero and sufficiently many possible capital values up to a level that contains
the largest upper equilibrium x̂.

It would be a very slow approach to calculate F(t,K; η) for such a large grid by
fully solving DP(δ + c(η)) for all start values K and retention rates η over a large
time range. Therefore we start with the derivative

f (K, η) = F1(t,K; η). (3.15)

Note that it does depend on t only viaK (as the closed loop control u also depends on
K). We calculate an estimate f̂ by applying the NMPC procedure (see the appendix)
with given η and start value K over a small time horizon [0,�] with step size δt and
plug the resulting optimal control value u0 (i.e., the optimal control at time t = 0,
calculated by the NMPC procedure, see the appendix) into the right-hand side of
equation (3.3) for t = 0. This leads to an estimate f̂ (K, η) for all pairs (K, η) ∈ K ×
E . In further calculations we use the function f̂I (K, η), which takes values f̂ (K, η) for
(K, η) ∈ K × E and else interpolates by cubic splines (if (K, η) is at least in the range
of K × E). For our standard parametrization, the interpolating function f̂I (K, η) is
shown in Fig. 3.5. Using the estimated derivatives then gives a very convenient way to
calculate the equilibrium points of the deterministic dynamics for any relevant start
value K . These can be found by searching for stationary points Ks, i.e., by finding
the solutions of the equations

f̂I (K
s, η) = 0,

separately for all η ∈ E . By interpolation, we find estimates k̃I
η
, k̂I

η
for the unstable

middle and the stable upper equilibrium given the retention rate for any η ∈ [0, 1].
The results for our standard parametrization were already shown in Fig. 3.4.

In the next step, the interpolated time derivatives f̂i are used to reconstruct the
paths of the deterministic dynamics for any η ∈ [0, 1], i.e., the function F . Let now
ε > 0 be a small real number. We define a function
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Fig. 3.5 The interpolating function f̂I (K, η) of derivatives for the standard parametrization

F̃(t, η) =

⎧⎪⎨
⎪⎩
k̃η
I + ε t = 0

F̃(t−, η) + f̂I (F̃(t−, η), η) (t − t−) for any other t ∈ T

and t− = max {d ∈ T : d < t}

on T × E and its interpolated version F̃I (t, η). Figure3.6 shows the interpolated
function F̃I (t, η) for our standard parametrization.

Finally, we get an estimate F̂(t,K; η) for the function F(t,K; η) which describes
the optimal dynamics of the modified deterministic problem with start capital K
and retention rate η. Because of the autonomous nature of the control problem, the
trajectory for any start value K ≥ k̃η

I + ε can be reconstructed from the trajectory
with start value k̃η

I + ε using the relation

F̂(t,K, η) = F̂I (F̂
−1
I (K, η) + t, η),

where F̂−1
I (·, η) denotes the inverse function of FI with respect to the first argument

and with η fixed.
In this way it can be avoided to apply the full NMPC procedure for each possible

starting capital over the full planning horizon, which is considerably faster. Due
to some random test instances, the loss in accuracy compared to the full NMPC
procedure turned out to be very minor. On the other hand, the substantial gain in
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Fig. 3.6 The interpolating function F̂I (t, η) of deterministic trajectories with retention rate η and
start capital k̃η

I

speed makes it possible to use the deterministic control problem for simulation and
optimization of expected capital values after the jumps, as described below.

3.5.2 Simulation of Capital Values and Optimization of the
Remaining Capital

If the aim is to maximize the expected value of remaining capital after the next
catastrophic event, different approaches are possible to calculate the expectation.
One may plug the interpolating functions f̂I , F̂I into Eq. (3.10) for F1,F and use the
resulting interpolating estimate of the transition density p in order to calculate the
relevant expectations dependent on η as integrals. However, already calculation of the
estimated densities affords integration, so the calculations become numerically very
involved, especially when the final aim is to optimize over the resulting expectations.

Therefore, in this study the expectations for any relevant retention rate η are
calculated by simple Monte Carlo simulation: the expectation for given start capital
K0 and retention rate η, i.e.,

μ(K0, η) =
∞∫
0

x̂η∫
0

λe−(ρ+λ)typ(y,K0; η) dy dt,

is estimated by the mean
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μ̂(K0, η) = 1

n

n∑
i=1

e−ρτiViF̂I (τi,K0, η).

Here Vi, τi are (independent) pseudo-random sequences, obtained from the distribu-
tion functions of fractional losses and waiting times, H and Gτ . We used the simple
inversion method, see Press et al. [26, p. 27].

For the given start capitalK0 it is then possible to calculate μ̂(K0, η) for η ∈ E and
to use a spline-interpolated (in the second argument) version μ̂I (K0, η) for finding
the optimal retention rate

η̂∗(K0) = argmin
η

{
μ̂I (K0, η) : 0 ≤ η ≤ 1

}
for K0 ∈ K.

Assuming a singular optimizer in the interval [0, 1], golden section search (see,
e.g., Press et al. [26], Sect. 10.2) was used to find η∗(K0) in an efficient way.

Figure3.7 demonstrates the approach and the resulting optimal strategy for our
standard example. The upper part gives an overview for the whole range of start
capital values, while the lower part analyzes the situation for smaller start capital, in
particular start capital near the trapping point k̃. In both pictures, the colors indicate
the approximate size of the expected present value μ̂(K0, η) of capital after the next
catastrophic event. Lighter colors are related to higher values according to the color
codes shown at the right margin. In addition the contour lines show points (K0, η)

with constant values μ̂(K0, η) = c.
The violet regions have special interpretations. The violet region at the right side

of the upper picture contains combinations of start capital K0 and retention rate
η where the stable upper equilibrium k̂η lies below the start capital. This leads to a
decreasing deterministic dynamics and, therefore, can not be optimalwhen compared
with η chosen such that the upper equilibrium equals the starting capital. The violet
region to the left (of both pictures) is related to points (K0, η)whereK0 ≤ k̃η, i.e., the
start capital is below the trapping point of the deterministic dynamics with retention
rate η. Here again already the deterministic dynamics leads to a decrease in capital,
and η cannot be optimal (e.g., compared with η chosen such that the start capital lies
already below the resulting trapping point).

The red line shows (in both pictures) the optimal retention rate η∗(K0) for each
relevant start capital. One can see (lower picture) that near the trapping point k̃, in a
region where the contour lines are strict monotone decreasing, it is optimal to require
no insurance at all (η∗ = 1). The costs of insurance lead to a braked deterministic
dynamics, which is especially dangerous near the unstable equilibria. Stated in a
different way, near the lower boundary any insurance premium costs more in terms
of growth than what the related claims payments could replace in average.

There is also a region, where the contour lines are not unequivocally curved in one
direction. Here the optimal η∗(K0) decreases almost linearly from η = 1 to η = 0,
i.e., from no insurance to full insurance. In the (largest) third regions (see the upper
picture) the contour lines are curved to the right, hence here it is optimal to choose
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Fig. 3.7 Contour plots of expected discounted capital (EPV), i.e., μ̂(K0, η) after the next catas-
trophic event dependent on start capitalK0 and retention rate η. Lighter regions are related to higher
values of EPV. The red line indicates the optimal retention rate η∗(K0). The dashed blue line shows
combinations of K0 and η where the EPV equals K0 and separates regions with EPV > K0 (indi-
cated by +) from regions with EPV < K0 (indicated by −). Upper picture: full range of possible
start capital, lower picture: start capital in the range [1264.7, 2127.5]
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the retention rate as low as possible without starting below the upper equilibrium
(and therefore inducing negative growth).

Finally, the dashed blue line separates (in both pictures) regions where the
expected discounted capital μ̂(K0, η) after the next jump is below (indicated by +),
respectively, above (indicated by +) the start capital K0. It can be seen that near the
lower bound the strategy of denying any insurance leads to a positive effect. When
the optimal retention rate decreases, we pass through a region where the optimal
amount of insurance leads to a discounted expectation smaller than the start capital,
which means that it is hard to pass through this region when repeating the selection
of optimal retention rates after several successive events. In some sense this region
separates the poor from the wealthy: With still decreasing optimal retention rate the
blue line is passed again and the optimal strategy leads to the expectation of increased
discounted capital. Finally, for very high capital values (upper picture) the optimal
strategy again leads to the expectation of decreased discounted capital due to the
effects of a finite stable upper equilibrium in the deterministic dynamics and the
negative dynamics above this boundary.

3.6 Conclusions/Discussion

Given the recent rise in frequency of climate-related disasters, severely affecting
countries and regions, the issue of recovering lost asset by an insurance scheme has
become an important issue. As we show there are mechanisms after disaster shocks
that enhance the likelihood of falling into a poverty trap, even with insurance—if
the retention rate is chosen too small. Though we start with a stylized deterministic
dynamic model, with possibly generating multiple equilibria paths, the deterministic
dynamics is then overlayed by random dynamics where catastrophic events happen
at random points of time. The number of catastrophic events follows a homogeneous
Poisson process and the proportional size of the disasters are modeled by a beta
distribution. Our approach represents a bi-level decision model which is hard to
compute analytically. Based on the NMPC procedure, we, therefore, apply a new
algorithm that helps to compute numerical results. Even if a fraction of capital loss
is insured and an optimal insurance premium, including possibly an appropriate risk
loading, can be computed, falling into a poverty trap is still feasible. The expected
discounted capital after the next catastrophic event, if a certain fraction of capital is
insured, is computed in dependence of the (changing) initial size of capital. As also
shown insurance against disaster shocks close to the cliff might not pay-off, thus
other policies are needed in this case, see Mittnik et al. [20]. However, for larger start
capital insurance is a valuable strategy for reducing the probability of falling off the
cliff. This feature that the optimal insurance premium of insuring a certain fraction
of assets may be also a helpful device to compute state-dependent credit cost and to
assess risk premia and creditworthiness of borrowers when a sequence of shocks at
uncertain times and of uncertain size is expected.
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Yet, further research is needed. In particular, the underlying economic control
problem can be enhanced. So far, only the capital is taken into consideration. How-
ever, certain types of severe disasters may also have an impact on the workforce,
which per se cannot be insured. Insurance of the capital stock might be even more
attractive in such a setup because it can partially compensate for the decreasingwork-
force and may mitigate the effects on production.8 In order to develop the general
algorithmic approach, in the present Paper, we have restricted the analysis to expected
values, which neglects risk. Therefore, the effect of optimizing risk-sensitive func-
tionals instead of the expected value has to be analyzed next. An important step
forward will be the introduction of the funds generated by the premium payments
into the deterministic model as an additional state variable. This allows to optimize
the risk loading (which was assumed as given in the present paper) in addition to the
insured fraction of capital. In such amanner, it will be possible to explore risk loading
drivers in its interaction with macroeconomic effects. Finally, despite the fact that
one falls off the cliff for sure as shown, it is possible to analyze the time until falling
below the cliff. Optimizing the acceptability of this first passage time will lead back
from the myopic optimization to a dynamic approach for the upper-level problem.
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Appendix: Numerical Solution Procedure (NMPC)

For the numerical solution of the deterministic model presented in Sect. 3.2, and used
further in the next sections, we do not apply here the dynamic programming (DP)
approach as presented in Grüne and Semmler [11] and as used in the original paper
of Semmler and Ofori [32]. Though DP method also can find the global solution to
an optimal growth model with multiple equilibria by using a fine grid for the control
as well state variables but its numerical effort typically grows exponentially with the
dimension of the state variable. Thus, even for moderate state dimensions it may be
impossible to compute a solution with reasonable accuracy.

Instead computing the solution at each grid point asDP dowe here use a procedure
that is easier to implement. We are using what is called nonlinear model predictive
control (NMPC) as proposed in Gruene and Pannek [38] and Gruene et al. [12].
Instead of computing the optimal solution and value function for all possible initial
states, NMPC only computes single (approximate) optimal trajectories at a time. To
describe the NMPC procedure we can write the optimal decision problem as

maximize

∞∫
0

e−ρt�(x(t), u(t))dt, (3.16)

8The authors thank an anonymous referee for pointing out this possibility.
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where x(t) satisfies

ẋ(t) = g(x(t), u(t)), x(0) = x0. (3.17)

By discretizing this problem in time, we obtain an approximate discrete-time
problem of the form

maximize
∞∑
i=0

βi�(xi, ui), (3.18)

where the maximization is now performed over a sequence ui of control values and
the sequence xi that satisfies xi+1 = �(h, xi, ui). Hereby h > 0 is the discretization
time step. For details and references where the error of this discretization is analyzed
we refer to Grüne et al. [12].

The procedure of NMPC consists in replacing the maximization of the infinite
horizon functional (3) by the iterative maximization of finite horizon functionals

maximize
N∑

k=0

βi�(xk,i, uk,i), (3.19)

for a truncated finite horizon N ∈ N with xk+1,i = �(h, xk,i, uk,i). Hereby the index
i indicates the number of iterations. Note that neither β nor � nor � changes when
passing from (3.18) to (3.19). The procedure works by moving ahead with a receding
horizon.

The decision problem (3.19) is solved numerically by converting it into a
static nonlinear program and solving it by efficient NLP solvers, see Gruene
and Pannek [38]. In our simulations, we have used a modification of NMPC, as
developed by Gruene and Pannek [38], in their routine nmpc.m, available from
www.nmpc-book.com, which uses MATLAB’s fmincon NLP solver in order
to solve the static optimization problem. Our modification employs a discounted
variant of the NMPC MATLAB version, see [12].

Given an initial value x0, an approximate solution of the system (3.16)–(3.17)
can be obtained by iteratively solving (3.19) such that for i = 1, 2, 3, that solves
for the initial value initial value x0,i := xi the resulting optimal control sequence
by u∗

k,i, but uses only the first control ui := u∗
0,i and iterates forward the dynamics

xi+1 := �(h, xi, ui) by employing only the first control. Thus, the algorithm yields
a trajectory xi, i = 1, 2, 3, . . . whose control sequence ui consists of all the first
elements u∗

0,i of the optimal control sequences of the finite horizon problem (3.19).
Under appropriate assumptions on the problem, it can be shown that the solution
(xi, ui),which depends on the choice ofN in (3.19), converges to the optimal solution
of (3.16) as N → ∞, see [12].

Figure3.8 illustrates the working of the algorithm. The upper black line represents
the solution at the step i = 1with the decision horizon N = 4. This is iterated forward 6
times, thus we have i = 1…6. The lower red line is the outer envelop of the piecewise
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Fig. 3.8 Receding horizon solution

solutions using the horizon N = 4 multiple times, in our case 6 times. The figure A1
shows the solution for 6 iterations.

While the algorithm can be used to solve for optimal trajectories of x and u, it can
also be applied for estimating time derivatives ẋ(t): This is achieved by plugging the
optimal decision u0 into the differential equation (3.17). Using this estimate, avoids
tedious recalculation of trajectories throughout the present paper.

The main requirement in these assumptions is the existence of an optimal equilib-
rium for the infinite horizon problem (3.19)–(3.17). If this equilibrium is known, it
can be used as an additional constraint in (3.19), in order to improve the convergence
properties. In our solution of the model in Sect. 3.2, and further on, we did not use the
terminal condition to solve the model but moved forward with a receding horizon to
find the (approximate optimal) trajectories. Thus, without a priory knowledge of this
equilibrium this convergence can also be ensured. Though the proofs in earlier work
were undertaken for an undiscounted NMPC procedure, however, the main proofs
carry over to the discounted case, details of which can be found in Gruene et al. [12].
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Chapter 4
Rationally Risking Addiction:
A Two-Stage Approach

Michael Kuhn and Stefan Wrzaczek

4.1 Introduction

The seminal rational addiction model by Becker and Murphy [2] assumes that indi-
viduals enter a state of addiction (even with a very low level of addictive capital) right
from the beginning of the time horizon. This is in contrast with empirical evidence
(see Volkow et al. [23]) according to which the typical addiction dynamics typically
set in only after the addictive good has been consumed over a certain time horizon
and/or after it has been consumed in excess of a certain quantity.1 In other words,
typically a threshold needs to be crossed from the recreational to the compulsive
consumption of a substance that characterizes addiction. Moreover, empirical data
shows that many people underestimate their potential for addiction, i.e. they start
consuming the addictive good without knowing when they might get addicted (see
e.g. Auld and Matheson [1]).

To address these two points we extend the rational addiction model to explicitly
involve two stages: Upon first consumption of the addictive good the individual
enters a first stage in which it is not yet addicted but accumulates addictive capital
(accumulated through the past consumption of the addictive good subject to some
depreciation). It may subsequently move into a second stage, in which it is addicted
in the sense of being subject to the three typical mechanisms of addiction (see e.g.
Orphanides and Zervos [17], Cawley and Ruhm [5], Strulik [20]): reinforcement (by

1Indeed, Volkow et al. [23] liken the onset of addiction to the onset of a chronic brain disease and
provide evidence on some of the factors that affect susceptibility to acquiring “addiction”.
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which the marginal utility of consumption of the addictive good increases with the
stock of addiction), tolerance (by which individuals can compensate an increasingly
negative impact from the stock of addiction only by consuming larger quantities of the
addictive good) and withdrawal (by which the short-run utility loss from abstinence
increases with the stock of addiction).2

The timing of the onset of addiction (i.e. entry into the second stage) is subject
to a random process, which is shaped by the stock of addictive capital (i.e. with
the cumulative consumption of the addictive good so far), where a higher stock of
addictive capital implies a higher probability of becoming addicted. The randomness
itself reflects a certain element of chance in the neurological processes that govern
the entry into addiction, as well as the individual’s ignorance about its own addiction
threshold. Finally, we assume that addiction is an absorbing state in the following
sense: While individuals may shed the addiction by stopping the consumption of
the addictive good and subsequently running down their stock of addictive capital,
we assume that they remain sensitive to the consumption of even minute quantities
of the addictive good in the sense that in this case, the addiction dynamics set in
immediately (in fact, akin to the original model by Becker and Murphy [2]).3

Explicitly considering a two-stagemodel of rational addictionwith a pre-addiction
stage and a random transition into addiction, we contribute insights on a number of
aspects that so far have received only insufficient attention in the literature. First, our
model allows to study in an explicit way the behaviour that is leading into addiction.
Importantly, while such behaviour involves risk-taking, it is not yet subject to the
neurological processes that drive addiction. The clear distinction between the two
lifecycle stages before and after the onset of addiction allows us to study how the
behaviours and outcomes the individual rationally anticipates after the onset of addic-
tion affects risky behaviour and, vice versa, how risky (or precautionary) behaviours
affect the course and outcomes of addiction. Second, we study how different pat-
terns of addiction (involving escalation towards permanent high-level addiction or
quitting) may arise depending on the states (addictive capital and financial assets) at
the onset of addiction.

From a mathematical perspective, our analysis marries two innovative fields
of applied modelling: First, in order to analyze the random transition between a
first lifecycle stage in which the individual engages in the recreational consump-
tion of an addictive good and accumulates addictive capital, and in the second
stage involving addiction, we apply a novel transformation method developed by
Wrzaczek et al. [24]. Specifically, the transformation of the underlying two-stage
optimal control model with a random switching time into an age-structured optimal
control model allows us to study the dynamics of addictive and non-addictive con-
sumption, as well as of the stock of addiction and financial assets in a unified way,

2See Volkow et al. [23] for how these mechanisms are grounded in neurobiological changes within
the brain’s stimulus-and-reward system.
3Koob [15] argues that long-term neurological changes aimed at maintaining the stability of the
stress-and-reward system in the presence of addiction may ultimately be responsible for a former
addict’s permanent vulnerability to relapse.
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showing how pre- and post-addiction behaviours and outcomes link into each other.
Furthermore, the transformation allows us to employ the well-established numerical
methods by Veliov [21] to study a numerical example.

Second, we extend the analysis of Skiba points4 within a model of rational addic-
tion by studying how their emergence is shaped by the pre-addiction stage. Intuitively,
a Skiba point means a specific value of the state variable (addictive capital), where
two different trajectories (leading to different long-run solutions, e.g. transition into
long-run addiction as opposed to quitting) imply the same value of the objective
function (see Grass et al. [11]). In the context of the Becker-Murphy model the pres-
ence of a Skiba point would mean that for a specific value of the initial addiction
capital, the individual is indifferent to different trajectories of addiction (see Caulkins
et al. [4]). But, given that the addictive capital is the accumulated (and discounted)
past consumption of the addictive good, its initial value should always be zero. This,
in turn, would imply that a Skiba point is irrelevant. In contrast, the concept becomes
meaningful in our framework, where addiction sets in only after a random time span
during which addictive capital is accumulated. The Skiba point then turns out to
be crucial as it separates the basin of attraction of two different optimal long-run
solutions.

Our paper builds on and adopts many core features of the classical model of ratio-
nal addiction, as pioneered by Becker andMurphy [2] with further analysis presented
in, e.g. Caputo [3] and Ferguson [9].5 The model has been subsequently adapted to
study addiction cycles (Dockner and Feichtinger [7]), the role of imperfect informa-
tion on addiction thresholds (Orphanides and Zervos [17]), myopia and hyperbolic
discounting (Orphanides and Zervos [18], Gruber and Köszegi [12]), multiple equi-
libria (Orphanides and Zervos [17], Gavrila et al. [10], Caulkins et al. [4]) and
the nexus between addiction and more conventional health behaviours as drivers of
health and longevity (Strulik [20], Jones et al [14]).

By expressly focussing on the role of a prior “experimentation” stage with addic-
tive consumption, our model is most closely related to Orphanides and Zervos [17]
who, to our knowledge, are the only authors who explicitly incorporate this impor-
tant stage into a model of rational addiction. While their model also involves a Skiba
point, where the long-run outcome of addiction depends on the level of addictive
capital, their emphasis is on a learning process, where individuals are able to infer
their type from whether or not they suffer from symptoms of addiction after con-
suming the addictive good. Thus, the Skiba point turns out to be relevant when the
individual first observes an outcome that reveals its propensity to become an addict.
If at that point the stock of addictive capital is too high, which is the case if discovery
is too late, the individual becomes rationally addicted. One distinguishing feature to
our model is that in Orphanides and Zervos [17] individuals observe symptoms of
addiction in random order and can escape addiction if they observe mild symptoms.

4In other contributions Skiba points are also referred to as Dechert-Nishimura-Skiba (DNS),
Dechert-Nishimura-Sethi-Skiba (DNSS) or Sethi-Skiba points.
5For an overview of the economic modelling of addiction see Melberg and Rogeberg [16] or Auld
and Matheson [1].
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This implies that addiction is to some extent reversible. In contrast, following the
medical evidence, addiction is an absorbing state in our model. Another distinction
lies in the definition of the switching time, and thus, the point at which the Skiba
property may become relevant. While in our model, the switching point is defined by
the (clinical) onset of addiction and the differences in the “neurological” rules that
govern behaviour, in Orphanides and Zervos [17] it is defined by the point in time
at which the individual becomes aware of its addiction. Finally, while omitting the
learning issue, our approach allows for a more explicit and richer characterization
of the optimal allocation. In studying the structure of multiple equilibria, our model
also relates to Gavrila et al. [10] and Caulkins et al. [4], the key difference here being
our consideration of the first pre-addiction stage of the lifecycle.

The remainder of the paper is structured as follows. The following section intro-
duces the model while Sect. 4.3 derives the optimal allocation and dynamics of the
model. Section4.4 proceeds to determine the steady states as well as the conditions
for a Skiba point. Section4.5 illustrates the model by way of a numerical analysis,
and Sect. 4.6 concludes.

4.2 The Model

In this section,wepresent an extension of the classicalBecker-Murphy rational addic-
tion model (from now on BM is used as an abbreviation for Becker-Murphy). The
time horizon is assumed to be separated into two stages, which can be characterized
as follows:

First stage (no addiction): The individual enjoys utility from the consumption of
two goods, ofwhich one is addictive and contributes to the accumulation of a stock
of addictive capital. However, at this stage, the individual has not yet built up a
level of the stock that is large enough to trigger the typical effects of addiction, i.e.
addictive capital does not yet influence the individual’s utility and productivity.
The individual is not addicted.

Second stage (addiction): The stock of addictive capital enters utility, as it does
in the BM-model, and triggers the mechanisms of reinforcement, tolerance and
withdrawal. Moreover, it is assumed that addiction reduces labour productivity,
resulting in a loss of earnings. The individual is addicted.

We assume that the individual does not know when it gets addicted, but that it
is aware of the rate of becoming addicted (from now on referred to as ’switching
rate’), which is influenced by the stock of S1(t) of “addictive capital” (modelled
as a state variable).6 In mathematical terms this means that the model is separated
into two stages at the switching time s ∈ [0,∞), which is a non-negative random
variable. Let ([0,∞),�,P) be a probability space andF the cumulative probability
function (with corresponding density F ′(t)) that the model has switched by t . Then

6Note that state and control variables corresponding to stage i (i = 1, 2) are denoted by subscript i .
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the switching rate, which is assumed to depend on the first stage stock of addictive
capital, can be defined as

η(S1(t)) = F ′(t)
1 − F(t)

. (4.1)

The two stages are defined as follows:

First stage (no addiction):

During the first stage the individual enjoys utility from consuming a quantity c1(t)
of an addictive good that contributes to the accumulation of addictive capital S1(t)
at t , and from consuming a quantity y1(t) of a non-addictive good that does not con-
tribute to the accumulation of S1(t). We assume non-negative addictive consumption
and a minimal level y0 ≥ 0 for non-addictive consumption. The stock S1(t) evolves
according to

Ṡ1(t) = c1(t) − δS1(t), S1(0) = 0, (4.2)

where δ ≥ 0 denotes depreciation. Following Becker andMurphy [2] (page 678), we
do notmodel investments aimed at reducing the stock of addiction. The intertemporal
budget constraint (originally introduced as integral equation, see equation (4) on page
677 in Becker and Murphy [2]), is formulated as a classical state equation,

Ȧ1(t) = r A1(t) + w1 − pc1(t) − y1(t), A1(0) = 0, lim
t→∞ A1(t) = 0, (4.3)

where the state variable A1(t) denotes assets at t, where w1 is the wage rate in the
absence of addiction, and where p is the price of the addictive good, with the non
addictive good acting as numeraire. Generally, w1 and p could depend on time, but
for simplicity they are assumed to be constant. Note that the assumption of zero
assets in the long-run limit is both necessary for obtaining a unique solution and
intuitive as it reflects that individuals will not reckon to be infinitely alive in a set-up,
for instance, where the discount rate incorporates a (constant) risk of mortality.

The objective function is the aggregated utility over time discounted at a rate ρ.
The function u1(y1(t), c1(t)) denotes the instantaneous utility from consumption of
the non-addictive and addictive goods. Since the individual is not addicted in the
first stage, it does not suffer any (dis-)utility from S1(t). Moreover we assume u1(·)
to be concave with respect to both consumption goods and to be additive separable
between them. The time horizon s ∈ [0,∞) of the first stage is a random variable,
where the switching rate η(S(t)) is known. This implies that the value of the second
period has to be included in the optimization problem in the spirit of a salvage value.
Altogether the optimization problem of the first stage reads

max
y1(t)≥y0
c1(t)≥0

Es

[ ∫ s

0
e−ρt u1(y1(t), c1(t)) dt + e−ρsV ∗(S1(s), A1(s), s)

]

s.t. Ṡ1(t) = c1(t) − δS1(t), S1(0) = 0

Ȧ1(t) = r A1(t) + w1 − pc1(t) − y1(t)

A1(0) = 0, lim
t→∞ A1(t) = 0. (4.4)
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where V ∗(S1(s), A1(s), s) denotes the value function of stage 2. To put it differently,
the individual optimizes the expected value of the first stage including the optimal
behaviour of the second stage (depending on the stock of addiction and assets at the
switching time).

Second stage (addiction):

At the switching time s, the individual gets addicted. Thus, the second stage is
represented by the classical BM-model. Utility is now given by u2(y2(t, s), c2(t, s),
S2(t, s)) and depends on both consumption goods (again in an additive separable
form) and on the stock of addiction. More specifically, we assume that

∂u2

∂y2
> 0,

∂2u2

∂y22
< 0,

∂u2

∂c2
> 0,

∂2u2

∂c22
< 0,

∂u2

∂S2
< 0,

∂2u2

∂S22
< 0,

∂2u2

∂S2∂c2
> 0.

(4.5)
In particular, this implies that while addictive capital, S2, lowers utility (implying
tolerance, where we focus, without loss of generality, on harmful addiction), it raises
the marginal utility of addictive consumption, c2 (implying reinforcement and with-
drawal). The dynamics of the state variables are the same as in the first stage. Since
the second-stage allocation depends on the switching time (entering the stage by the
initial conditions for the states), the state and control variables are not only indexed
by t but also by the switching time s. Moreover, we assume that, as a consequence
of addiction, the wage rate during the second stage does not exceed the first stage
wage and may well fall short, i.e. w2 ≤ w1.

Since we do not consider the possibility that the individual is cured from addiction
and reverts to stage 1, the time horizon is set to infinity.7 The optimal control model
of the second stage is then represented by

max
y2(t,s)≥y0
c2(t,s)≥0

∫ ∞

s
e−ρt u2(y2(t, s), c2(t, s), S2(t, s)) dt

s.t. Ṡ2(t, s) = c2(t, s) − δS2(t, s), S2(s, s) = lim
t→s− S1(t)

Ȧ2(t, s) = r A2(t, s) + w2 − pc2(t, s) − y2(t, s),

A2(s, s) = lim
t→s− A1(t), lim

t→∞ A2(t, s) = 0. (4.6)

The optimized value of the objective function of the above second-stage problem
is denoted by V ∗(S1(s), A1(s), s) and enters the optimization problem of the first
stage.

Altogether, the model (4.4) s.t. (4.6), is a two-stage optimal control model with
random switching time, which will be transformed into an age-structured optimal

7This is in line with the typical observation that individuals who have shed their addiction will
typically refrain from any (future) consumption of the addictive good, such that c2 ≡ 0 from some
point onward. Any small amount c2 > 0 would immediately retrigger addiction, implying that,
technically speaking, such an individual remains in stage 2 even if c2 ≡ 0 and S2 = 0 from some
point. As we will see below, our model allows for such an allocation.
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control model. This approach offers certain advantages such as an improved ana-
lytical representation, the scope for a numerical solution and new ways of present-
ing results, e.g. in relation to the duration of addiction t − s (see Veliov [22] and
Wrzaczek et al. [24] for details).

Full model:

From now on, we use the age-structured representation of the above multistage
optimal control model with random switching time, which has been obtained by
using the transformation proposed in Wrzaczek et al. [24]:

max
y1(t),y2(t,s)≥y0
c2(t),c2(t,s)≥0

∫ ∞
0

e−ρt
(
z(t)u1

(
y1(t), c1(t)

) + Q(t)
)

dt

s.t. Ṡ1(t) = c1(t) − δS1(t), S1(t) = 0,

Ȧ1(t) = r A1(t) + w1 − pc1(t) − y1(t), A1(0) = 0, lim
t→∞ A1(t) = 0,

ż1(t) = −η(S1(t))z1(t), z(0) = 1,
dS2(t, s)

dt
= c2(t, s) − δS2(t, s), t ≥ s,

S2(s, s) = S1(s), ∀s ≥ 0,
dz2(t, s)

dt
= 0, t ≥ s,

z2(s, s) = z1(s)η(S1(s)), ∀s ≥ 0,
d A2(t, s)

dt
= r A2(t, s) + w2 − pc2(t, s) − y2(t, s),

A2(s, s) = A1(s), lim
t→∞ A2(t, s) = 0 ∀s ≥ 0,

Q(t) =
∫ t

0
z2(t, s)u

2(c2(t, s), y2(t, s), S2(t, s)) ds. (4.7)

To give an intuitive understanding for the transformation, consider that at every
t the individual might get addicted at a rate η. Here, the onset of addiction is tan-
tamount to a switch to a different life-regime featuring in our model a change to
the utility function and the wage rate and implying a different optimal behaviour.
By the transformation, the individual considers these possible switches (including
the corresponding lifetime trajectory) and includes them into the optimization in the
following way. Remaining non-addicted is weighted by probability z1(t). To account
for the possibility of being already addicted at t , Q(t) is included in the objective
function, which aggregates the utilities (weighted correspondingly) that are realized
if addiction has set in before t .

From a mathematical viewpoint, one advantage of the transformation to an age-
structured form is that the two-stage model (with stochastic switch) can be repre-
sented by a single deterministic model, for which all influences (dependence of the
switch on the stock of addictive capital, dependence of utility on second-stage deci-
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sions, inter-dependence between the first and second stage) can be glanced in a direct
and intuitive way from the first order conditions, the shadow prices, as well as the
stage-1 and stage-2 dynamics.

4.3 Optimal Allocation and Dynamics

To obtain the optimality conditions and the adjoint equations for problem (4.7),
we apply the Maximum Principle for age-structured optimal control models (see
Feichtinger et al. [8]). The Hamiltonian is given by

H(t, s,�,�,�) = z1u + Q +
λS(c1 − δS1) + λA(r A1 + w − pc1 − y1) + λz(−ηz1) +
ξS(c2 − δS2) + ξz · 0 + ξA(r A2 + w̄ − pc2 − y2) (4.8)

where �, � and � are vectors of the control, state and adjoint variables respectively,
andwhereλk (for k = {S, A, z} ) and ξk (for k = {S, A, z}) denote the adjoint variable
of the states S, A and z corresponding to stages 1 and 2, respectively.

The first order conditions for inner solutions read (t and s are surpressend)

∂H
∂y1

= z1u
1
y1 − λA = 0, (4.9)

∂H
∂c1

= z1u
1
c1 + λS − λA p = 0, (4.10)

∂H
∂y2

= z2u
2
y2 − ξA = 0, (4.11)

∂H
∂c2

= z2u
2
c2 + ξS − ξA p = 0. (4.12)

If the above equation cannot be solved (i.e. if there are no inner solutions), the controls
are equal to the boundary. For the adjoint equations, we obtain

λ̇S = (ρ + δ)λS + ηS1λz z1 − ξS(t, t) − ξz(t, t)z1ηS1 ,

λ̇A = (ρ − r)λA − ξA(t, t),

λ̇z = (ρ + η)λz − u1 − ξz(t, t)η,

dξS

dt
= (ρ + δ)ξS − z2u

2
S2 ,

dξz

dt
= ρξz − u2,

dξA

dt
= (ρ − r)ξA. (4.13)
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with the following transversality conditions

lim
t→∞ e−ρtλi (t) = 0, i ∈ {S, A, z},
lim
t→∞ e−ρtξi (t, s) = 0, ∀s, i ∈ {S, A, z}. (4.14)

Note that all characteristic lines of model (4.7) are isolated. Thus, the transver-
sality conditions for (time-dependent) optimal control models can be applied (see
Grass et al. [11]) for every characteristic line.

Recalling our assumption of additive separability between the two consumption
goods (as is in line with Becker and Murphy [2] ), we obtain from (4.9) and (4.11)
the Euler equations with respect to consumption of the non-addictive good

ẏ1 = − u1y1
u1y1 y1

[
r − ρ − η

u1y1 − u2y2
u1y1

]
, (4.15)

dy2
dt

= − u2y2
u2y2 y2

(r − ρ) . (4.16)

While the stage-2 consumption dynamics correspond in a standard manner to the gap
between interest rate and subjective discount rate, the stage-1 dynamics contain an
additional effect. To the extent that at the point of becoming addicted, the marginal
utility from conventional consumption drops below the value in the absence of addic-
tion, i.e. to the extent that u1y1 > u2y2 , the individual tends to advance conventional
consumption in line with the risk of becoming addicted. A reduction in the marginal
utility of conventional consumptionmay arise due to a general numbing of the brain’s
reward system to both drug and non-drug related stimuli (see Volkow et al. [23]). The
converse is true for u1y1 < u2y2 , which may arise, for instance, if the individual suffers
a sharp drop in earnings due to its addiction. In this case, the individual accumulates
precautionary savings which are then dissolved over time, as long as addiction does
not set in.

The dynamics of addictive consumption are as follows:

ċ1 = − u1c1
u1c1c1

⎡
⎢⎢⎢⎢⎢⎣

[
(r − ρ) + η

u2y2
u1y1

]
u1y1
u1c1

p

︸ ︷︷ ︸
(i.1)

+ (ρ + δ)
λS

z1u1c1
− ξS

z1u1c1
+ ηS1

λz − ξz

u1c1︸ ︷︷ ︸
(i i.1)

+ (−η)︸︷︷︸
(i i i.1)

⎤
⎥⎥⎥⎥⎥⎦

, (4.17)

dc2
dt

= − u2c2
u2c2c2

⎡
⎢⎢⎢⎢⎣

(r − ρ)
u2y2
u2c2

p

︸ ︷︷ ︸
(i.2)

+ (ρ + δ)
ξS

z2u2c2
− u2S2

u2c2︸ ︷︷ ︸
(i i.2)

+ u2c2S2
u2c2

(c2 − δS2)

︸ ︷︷ ︸
(i i i.2)

⎤
⎥⎥⎥⎥⎦

. (4.18)

Stage 1—noaddiction: According to (4.17), the consumption dynamics of the addic-
tive good in the absence of addiction are driven by three forces:
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(i.1) The typical Euler dynamics plus the expected stage-2 value of wealth condi-

tional on transition into addiction. Both are weighted by a factor
u1y1
u1c1

p, which equals

1 in a setting in which the stock of addictive capital does not matter (λS = 0). In this
case, c1 is chosen just like a non-addictive good. Using (4.9) it is possible to eliminate

λA from (4.10), which implies
u1y1
u1c1

p < 1 if λS < 0, i.e. if the sotck of addictive cap-

ital has a negative value. This suggests a stifling of dynamics for harmful addictive
goods. The converse applies for λS > 0.

(ii.1) A collection of effects relating to the dynamics of the value of addictive
capital,8

λS (t) =
∫ ∞

t
e−(ρ+δ)(τ−t)

[
ξS(τ , τ ) + z1(τ )ηS1 (ξz(τ , τ ) − λz(τ ))

]
dτ ,

during stage 1. Assuming that the stock of addictive capital has a negative value
in both stages 1 and 2, such that both λS < 0 and ξS < 0, the first two terms in
(ii.i) imply an ambiguous effect. On the one hand, addictive consumption tends to
be advanced in the presence of strong discounting of the future stock of addictive
capital in stage 1; on the other hand, it tends to be postponed in a precautionary way
if the stock of addiction carries a high negative value in stage 2. Finally, if the rate
of addiction increases in the stock of addictive capital, ηS1 > 0, this tends to imply
a precautionary postponement of consumption if the value of remaining without
addiction,9

λz(t) =
∫ ∞

t
e−ρ(τ−t) z1(τ )

z1(t)

(
u1 + η

∫ ∞

τ

e−ρ(τ ′−τ )u2dτ ′
)
dτ ,

exceeds the value of being addicted,10

ξz(t, s) =
∫ ∞

t
e−ρ(τ−t)u2dτ ,

evaluated at the time of transition into addiction, s = t .
(iii.1) Finally, the risk of moving into addiction itself tends to lead to an advance-

ment of addictive consumption. This effect may appear somewhat counterintuitive

8The value of addictive capital at time t within the pre-addiction stage 1 consists of the discounted
stream of (i) the stage-2 value of addictive capital, ξS(τ , τ ) if the transition occurs at τ plus (ii) the
expected change in the value of the addictive capital for an incrase in the switching rate, ηS1 > 0,
due to the accumulation of addictive capital in period τ .
9The value of remaining without addiction at time t consists of the discounted stream of (i) the value
of pre-addiction utility, u1, within period τ of the expected remaining lifetime without addiction
plus (ii) the expected discounted stream of continuation utility in addiction, u2, should a switch
occur in period τ .
10Intuitively, the value of being addicted at some time t ≥ s consists of the discounted stream of
stage-2 utility over the remaining lifetime (within addiction).
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given that individuals might rather defer addictive consumption for precautionary
reasons. Note, however, that this motivation is captured under the effects contained
in (ii). The present effect is thus reflecting a direct effect, where the individual seeks to
advance consumption in line with the risk that the present life-stage may end. Which
of the effects, precautionary deferral or advancement of consumption, dominates is
an empirical question.

Stage 2—addiction: According to (4.18), the consumption dynamics of the addictive
good under addiction are driven by the following forces:

(i.2) The Euler dynamics, which are dampened to the extent that the stock of
addictive capital carries a negative value, ξS < 0.

(ii.2) The dynamics of the value of addictive capital, ξS, under addiction. As is
readily shown, we have that11

ξS(t, s) = z1(s)η(S1(s))
∫ ∞

t
e−(ρ+δ)(τ−t)u2S2 dτ < 0

for u2S2 < 0. We then have a tendency towards advanced consumption due to dis-
counting and a tendency towards postponement of consumption in order to lower
the direct disutility from being addicted, u2S2 < 0. Both effects relate to the extent
of tolerance, as measured by u2S2 . While strong discounting of the future discomfort
associated with tolerance speaks for an advancement of addictive consumption, the
converse is true in respect to the prevention of tolerance.

(iii.2) An increase in consumption over time that comes with the increase in the
marginal utility of the addictive good, when addictive capital is accumulated, such
that dS2(t,s)

dt = c2 − δS2 > 0. This is the reinforcement effect of addiction.
Assuming for the moment that r = ρ so that consumption would remain constant

according to the conventional Euler dynamics (i.2), we see that an increase in addic-
tive consumption occurs if and only if the stock of addictive capital is increasing,
dS2(t,s)

dt > 0, while, at the same time, its value, ξS, is increasing (i.e. getting less
negative) or not decreasing by too much.

4.4 Steady-State Analysis and Skiba Points

As is standard for rational addiction models, we assume an infinite time horizon.
Therefore, the long-run optimal solution approaches a steady state of the canonical
system. This implies that we need to study the steady states for the dynamics of both
stages, irrespective of the age-structured representation of our model.

11The value of addictive capital at time t, conditional on a transition into addiction at s ≤ t, consists
of the discounted stream of the utility loss from addcitive capital, u2S < 0, over the remaining
lifetime [t,∞) , weighted with the unconditional/ex-ante probability z1(s)η(S1(s)) of having had
a transition into addiction at time s.
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In order to establish an explicit solution of the steady state, fromnowonwe assume
r = ρ and employ specific functions for the switching rate and utility. Specifically,
we assume a linear function for the switching rate

η(S1) = aS1,

with a > 0.
In line with our previous assumption, the utility functions for both stages are sepa-

rable in both consumption goods. Thus, for the second-stage utility (under addiction)

we assume a sub-utility of non-addictive consumption y1−σ
2
1−σ

(increasing and concave
if 0 < σ < 1), and a sub-utility for the addictive good that is akin to the one in Becker
and Murphy [2]. Overall, we have

u2(y2, c2, S2) = y1−σ
2

1 − σ
+ αcc2 − αcc

2
c22 − αS S2 − αSS

2
S22 + αcSc2S2,

with σ ∈ [0, 1] and αc,αcc,αS,αSS,αcS > 0. Note that the utility should also
decrease in S (i.e. u2S < 0), which is not fullfilled for all possible choices of S and c.
However, in our numerical example u2S < 0 holds along the optimal paths in stage 2.

The utility function of the first stage is analogous to the second-stage one, with
the exception that the parameters related to S1 are zero, i.e. αS = αSS = αcS = 0.
Thus,

u1(y1, c1) = y1−σ
1

1 − σ
+ αcc1 − αcc

2
c21,

where σ, αc and αcc are the same as for the second stage.
The following two subsections develop the steady states and their stability for the

two stages.

4.4.1 Long-Run Allocation in Stage 1

Within this subsection, we derive the steady states for the first stage.

Interior steady state I-1:

Consider an inner solution in the steady state for both controls. A positive steady state
value ĉ1 implies a positive steady state value for Ŝ1, and therefore, (by the dynamics
of z1) ẑ1 = 0.12 The dynamics of S1 and A1 then yield Ŝ1 and ŷ1 as a function of ĉ1.
Moreover, λ̇S = 0 implies (by using ẑ1) λ̂S = 0.

From the first order condition for addictive consumption we obtain the following
equation for ĉ1,

12Steady state values are denoted by a hat.
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αc − αccĉ1
p

= (w1 − pĉ1)
−σ, (4.19)

which can be solved numerically. The expressions for the control and state variables
can be found in Table4.1.

The analysis of the Eigenvalues of the Jacobian reveals that the steady state is
always a saddle point (two negative, three positive and one zero Eigenvalues).

Boundary steady state NAC-1 (no addictive consumption):

Here, we assume that the addictive consumption is on the lower boundary, i.e. ĉ1 = 0.
The dynamics of the stock of addictive capital then implies Ŝ1 = 0. The dynamics of
z1 is negative for positive S1 and zero otherwise. Thus, the steady state value of z1 is
not unique and lies in the interval [0, 1]. The dynamics of A1, λz and λS , as well as
the first order condition for non-addictive consumption, imply the steady state values
of the remaining control and state variables, which are summarized in Table4.1.

NAC-1 is feasible only if the first order condition with respect to addictive con-

sumption is non-positive, i.e. only if ∂H
∂c1

∣∣∣
c1=0

≤ 0. After some manipulation, the

condition reads (for a detailed derivation we refer to Appendix A)

αc ≤
a

(
(w1)1−σ

1−σ
− (w2)1−σ

1−σ

)

ρ(ρ + δ)
+ (w1)−σ p. (4.20)

According to this condition, the marginal utility of the first unit of addictive con-
sumption in stage 1 must fall short of the sum of (i) the marginal utility of the
consumption of the non-addictive good that would be foregone in stage 1 and (ii)
the value of maintaining a zero probability of getting addicted. Here, the valuation
corresponds to the difference between the steady-state utility in the non-addiction as
opposed to the addiction stage, the latter conditional on having shed the addiction in
the steady state. Note here that for the (unlikely) onset of addiction from an (almost)
zero addictive stock implies it can be shed (almost) instantaneously.

The analysis of the Jacobian (on the boundary) shows a saddle path property
independent of the parameters.

Boundary steady state MNC-1 (minimal non-addictive consumption):

Analogously toNAC-1,we nowassume aminimal non-addictive consumption steady
state, i.e. ŷ1 = y0. Consequently, the asset dynamics implies a maximal long-term
steady state value for the addictive consumption ĉ1 = c̄1 := w1−y0

p . By the dynamics
of S1 and z1 we are able to derive the steady state values of the remaining state and
control variables, which are again listed in Table4.1.

The feasibility condition for this steady state is obtained by the first order condition

for addictive consumption (i.e. ∂H
∂c1

∣∣∣
c1=c̄1

≥ 0), and turns out to be fulfilled for all

parameter values.
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Table 4.1 Steady states of the first stage (pre-addiction)

Steady state States Controls

Ŝ1 Â1 ẑ1 ŷ1 ĉ1

I-1 ĉ1
δ 0 0 w1 − pĉ1 Solve (4.19)

NAC-1 0 0 ẑ1 ∈ [0, 1] w1 0

MNC-1 c̄1
δ 0 0 y0 c̄1

The Eigenvalues of the Jacobian (on the boundary) show that the equilibrium is
always a saddle point independent of the parameters.

Summary of steady states of stage 1:

In contrast to the boundary steady states, which can be derived analytically, the
interior steady state can only be derived numerically (solution of (4.19)). For fixed
σ, p and w1 the value of ĉ1 only depends on the parameters αc and αcc of the utility
function. In the numerical example considered in Sect. 4.5, we adopt the parameters
from Caulkins et al. [4].

4.4.2 Long-Run Allocation in Stage 2

Within this subsection, we derive the steady states of the second stage given that the
individual became addicted at s. This implies the initial conditions S2(t, t) = S1(t),
A2(t, t) = A1(t), and z2(t, t) = z1(t)aS1(t).

Interior steady state I-2:

Here, we assume interior solutions for both controls, implying a positive stock of
addiction.

The assumption r = ρ and the adjoint equation for ξA imply ξA(t, s) = ξA(s, s) for
t ≥ s. Using this within the first order condition for non-addictive consumption, we
obtain constant y2(t, s) = y2(s, s) for t ≥ s, i.e. constant non-addictive consumption
during the second stage in the interior region. From the adjoint equation for ξS
together with the dynamics of S2 and A2, as well as from the first order condition
for non-addictive consumption, we obtain ŷ2, ĉ2, as functions of Ŝ2, as reported in
Table4.2. From the first order condition for c2 we then get the following equation
for Ŝ2,

0 = 1

ρ + δ

(
−αS − αSS Ŝ2 + αcSδ Ŝ2

)
− p

(
w2 − pδ Ŝ2

)−σ

+
(
αc − αccδ Ŝ2 + αcS Ŝ2

)
, (4.21)

which can be solved numerically.
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Under the assumption r = ρ the four-dimensional canonical system can be
reduced to a two-dimensional one. Analysis of the Eigenvalues of this system then
implies that the steady state exhibits the following stability properties,13

ρ2 − 4a + 4b < 0 : unstable focus,
ρ2 > ρ2 − 4a + 4b > 0 : unstable node,

ρ2 − 4a + 4b > ρ2 : saddle point, (4.22)

where

a = −δ(ρ + δ), (4.23)

b = αSS

αcc
− (2δ + ρ)

αcS

αcc
. (4.24)

Boundary steady state NAC-2 (no addictive consumption):

For this steady state we assume no addictive consumption, i.e. ĉ2 = 0. From the
dynamics of the stock of addiction we obtain Ŝ2 = 0 and from the asset dynamics
ŷ2 = w2. All steady state values are listed in Table4.2.

This boundary steady state is only feasibly if the first order condition for c2 is

non-positive (i.e. ∂H
∂c2

∣∣∣
c2=0

≤ 0). This implies (the proof is similar to that of (4.20) in

Appendix A)

0 ≥ − αS

ρ + δ
− (w2)−σ p + αc. (4.25)

The Eigenvalues of the Jacobian (on the boundary) prove that this steady state is
always a saddle point.

Boundary steady state MNC-2 (minimal non-addictive consumption):

In contrast to NAC-2, we now consider minimal non-addictive consumption, i.e.
ŷ2 = y0. Consequently the long-term value of addictive consumption is maximal, i.e.
c̄2 := 1

p (w
2 − y0). From the dynamics for S2 and the adjoint equations, the steady

state values for the state variables can be obtained (listed in Table4.2).
From the first order condition for c2, we obtain the feasibility condition

( ∂H
∂c2

∣∣∣
c2=c̄2

≥ 0), which is (the proof is similar to that of (4.20) in Appendix A)

0 ≤ 1

ρ + δ

(
−αS − αSS

c̄2
δ

+ αcSc̄2

)
− py−σ

0 +
(

αc − αccc̄2 + αcS
c̄2
δ

)
. (4.26)

13The Eigenvalue corresponding to dξA
dt is always equal to zero (since the dynamics is always zero).

Since A2 does not enter the equations for dS2
dt and dξS

dt , the Eigenvalue corresponding to d A2
dt can

be isolated as r = ρ.
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Table 4.2 Steady states of the second stage (addiction)

Steady state States Controls

Ŝ2 Â2 ŷ2 ĉ2

I-2 Solve (4.21) 0 w2 − pδ Ŝ2 δ Ŝ2
NAC-2 0 0 w2 0

MNC-2 c̄2
δ 0 y0 c̄2

The Eigenvalues of the Jacobian (on the boundary) prove that the steady state is
always a saddle point.

Summary of steady states of stage 2:

Analogously to the first stage, the boundary steady states can be derived analytically,
whereas for the interior one it is necessary to solve an equation numerically. The
Eigenvalues of the interior steady states show that it is unstable (node or focus) rather
than a saddle point if b < a holds (obtained by manipulation of (4.22)). Employing
(4.23) and (4.24) one can show that

b < a ⇔ αcS >
αSS

2δ + ρ
+ δ(δ + ρ)

2δ + ρ
αcc,

which equals the condition that has been found in Caulkins et al. [4]. In similarity
to the BM-model, this implies that the reinforcement effect (as captured by αcS) be
sufficiently strong relative to the tolerance effect (as captured by αSS and αcc) or, put
differently, that there is sufficient adjacent complementarity in the spirit of Ryder
and Heal [19].

The boundary steady states exist depending on conditions (4.25) and (4.26). This
is the classical case for a Skiba point to occur in an optimal control model (see
Grass et al. [11]). For the rational addiction model this has been found, e.g. by
Caulkins et al. [4] for an easier version of the BM-model without non-addictive
consumption and an intertemporal budget constraint. Nevertheless, the model shows
for certain parameter constellations that Skiba points exist as part of the optimal
solution. If Skiba points govern the optimal solution of the second stage, this has to
be included in the optimization of the first stage. This becomes obvious from the first
stage Euler equations with respect to non-addictive consumption (4.15) and addictive
consumption (4.17).

In the next section the Skiba property of the second stage will be discussed in
more detail.

4.4.3 Skiba Property in Stage 2

A Skiba point of an optimal control model is defined as an initial point (i.e. specific
values for the initial conditions) forwhich twodifferent optimal solutions exist,where
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the indifference point property implies that the two solutions yield the same value
for the optimal control problem, and where the threshold point property implies that,
in a small neighbourhood of the Skiba point, the two solutions converge to different
limit sets. For a detailed definition see Grass et al. [11].

The classical case of a Skiba point involves an unstable steady state (i.e. unstable
focus or node) with two saddle points that can be reached by a single unstable
manifold of the unstable steady state. The I-2 steady state of the second stage of our
model is an unstable focus or node if b < a holds. The two boundary steady states are
always saddle points. The above definition then implies that a Skiba point satisfies
the following condition

V N AC2(S, A) = V MNC2(S, A), (4.27)

where VN AC2(S, A) and VMNC2(S, A) are the value functions corresponding to the
NAC-2 and the MNC-2 steady state, respectively. Both depend on (S, A), the ini-
tial conditions of stage 2, i.e. the values of S and A at the switching time from the
first to the second stage. Due to autonomy there is no explicit dependence on the
initial time (see Grass et al. [11]), i.e. the switching time in our context. Both value
functions consist of the utility accumulated within the inner region and of the util-
ity on the boundary. Defining V N AC2

I (S, A) and V N AC2
B (S2(τ1)) as the parts of the

NAC-2 value function corresponding to the inner region and the boundary steady
state, respectively, we have

V N AC2(S, A) = V N AC2
I (S, A) + e−ρτ1V N AC2

B (S2(τ1))

with

V N AC2
I (S, A) = ŷ1−σ

2 (1 − e−ρτ1)

(1 − σ)ρ

+
∫ τ1

0
e−ρt

(
αcc2(t) − αcc

2
(c2(t))

2 − αS S2(t) (4.28)

−αSS

2
(S2(t))

2 + αcSc2(t)S2(t)
)

dt

V N AC2
B (S2(τ1)) = 1

ρ

[
(w2)1−σ

1 − σ
− ραS

ρ + δ
S2(τ1) − ραSS

2(ρ + 2δ)
(S2(τ1))

2

]
.

Here, V N AC2
I (S, A) consists of the present value of the utility stream enjoyed along

the (optimal) unstable manifold approaching the boundary c2 = 0, with c2(t) and
S2(t) being the control and state paths in the interval t ∈ [0, τ1). The time at which the
boundary is reached, τ1, now refering to the time since the onset of addiction is deter-
mined by the condition A2(τ1) = 0, where switching at another value would contra-
dict the condition limt→∞ A2(t) = 0. An analytic derivation of this case is tedious
(if possible at all) and would not give further insight due to very long expressions.
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The value V N AC2
B (S2(τ1)) denotes the present value of the utility stream enjoyed for

the boundary c2 = 0. Noting that it can be derived analytically, it is easy to see that it
only depends on S2(τ1), which is the value of the stock of addiction when the optimal
trajectory hits the boundary.

Analogously we can define the value function of stage 2 corresponding to the
MNC2 steady state.

V MNC2(S, A) = V MNC2
I (S, A) + e−ρτ2V B

MNC2(S2(τ2))

with

V MNC2
I (S, A) = ŷ1−σ

2 (1 − e−ρτ2)

(1 − σ)ρ

+
∫ τ2

0
e−ρt

(
αcc2(t) − αcc

2
(c2(t))

2 − αS S2(t) −
αSS

2
(S2(t))

2 + αcSc2(t)S2(t)
)

dt

V MNC2
B (S2(τ2)) = 1

ρ

[ y1−σ
0

1 − σ
+

(
αc − αS

ρ + δ

)
c̄2 −

(
αcc

2
+ αSS

(ρ + δ)(ρ + 2δ)

)
c̄22

− ραS

ρ + δ
S2(τ2) − ραSS

2(ρ + 2δ)
(S2(τ2))

2 +
(

αcS − ραSS

(ρ + δ)(ρ + 2δ)

)
c̄2S2(τ2)

]
. (4.29)

In general, condition (4.27) cannot be solved analytically but only numerically. It
is possible, however, for the special case of a static budget constraint wi − pci (·) −
y2(·) = 0 for i = 1, 2, which we obtain by setting Ȧi (·) = Ai (·) ≡ 0, i = 1, 2 in
(4.4) and (4.6), respectively. Without the asset state, one control can be directly
expressed as a function of the other. This simplification corresponds to the model
that has been used byFerguson [9], to provide a profound interpretation of the rational
addiction model. Ferguson [9] does not consider the Skiba property, however, but is
more interested in the impact of price variations. Caulkins et al. [4] consider another
version of the rational addiction model without any budget constraint, neither static
nor dynamic. This implies a different condition for the Skiba point. The equilibrium
properties of the modified second stage model are given in the following Proposition.

Proposition 1 Consider the optimal control model of the second stage (4.6) with-
out assets, such that w2 = c2(t)p + y2(t) holds for ∀t , and let 0 > δ(ρ + δ) +
∂c
∂S

(
αSS
αcS

− ρ
)
, such that the interior steady state is no saddle point. The following

holds. If β1β2 > 0 where
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β1 = y1−σ
0

1 − σ
− (w2)1−σ

1 − σ
+ c̄2

(
αc − αS

ρ + δ

)
− c̄22

(
αcc

2
+ αSS

(ρ + δ)(ρ + 2δ)

)

β2 = c̄2

(
αcS − ραSS

(ρ + δ)(ρ + 2δ)

)
, (4.30)

a Skiba point S∗ does not exist. If β1 > 0 (β1 < 0) MNC-2 dominates (is dominated
by) NAC-2. If β1β2 < 0, S∗ exists and is given by

S∗ = −β1

β2
. (4.31)

Proof 0 > δ(ρ + δ) + ∂c
∂S

(
αSS
αcS

− ρ
)
( ∂c
∂S > 0 canbederived explicitely) implies that

the interior steady state is unstable (node or focus). It is obtained by evaluating the
Eigenvalues of the Jacobian of the inner equilibrium of the second stage model with-
out dynamic budget constraint. Since this derivation is quite standard, it is omitted.

A static budget constraint equals the case of A = 0, which is equivalent to case
τ1 = τ2 = 0. Therefore, (4.27) can be reduced to V N AC2

B (S) = V MNC2
B (S). After

some manipulation we obtain a linear function �(S) = β1 + β2S (β1 and β2 are
given in the Proposition). Solving � = 0 gives the expression for S∗.

If β1 > 0 and β2 > 0 holds no solution can be found and MNC-2 dominates
NAC-2. If, on the other hand, β1 < 0 and β2 < 0 holds, NAC-2 dominates
MNC-2. �

The explicit condition contained in the proposition is a particular convenience
of our modelling framework and is accessible to intuition. Noting that for Ȧ2(·) =
A2(·) ≡ 0, any switch to addiction will immediately lead to the boundary allocation
such that τ1 = τ2 = 0 and the condition for a Skiba point reads , V N AC2

B (S, 0) =
V MNC2
B (S, 0). It can be checked then that β1 = V MNC2

B (0, 0) − V N AC2
B (0, 0) gives

the net benefit of continued addictive consumption in the (hypothetical) absence of
addictive capital, while β2 denotes the marginal net benefit from having an addictive
stock of capital S ≥ 0 at the point of entering addiction and continuing addictive
consumption. Note that β2 > (< 0) if reinforcement effects play a more prominent
role than tolerance. It is then immediate that if both β1 < (>) 0 and β2 < (>) 0
it never (always) pays to remain in addiction. More interestingly, for β1 > 0 > β2

the individual would prefer the continued consumption of the addictive good but
only at low levels of addictive capital, to begin with, suggesting that the NAC-2
boundary, i.e. abstinence, is reached if and only if S is sufficiently high at the point
of switching. In contrast, for β1 < 0 < β2 the individual would prefer to give up
addictive consumption when addictive capital plays little role but may be drawn into
permanent addiction in the presence of a high stock of addictive capital to begin with.
Here, the NAC-2 boundary is reached if and only if S is sufficiently low at entry into
addiction.
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4.5 Numerical Example

In this section, we solve the model with the parameters listed in Table4.3. For our
example, we employ the same parameter values that were used by Caulkins et al. [4]
with the exception of (i)σ,w1 andw2,whichwere not used previously and, therefore,
have been fixed by us; and (ii) αS and αcS , which in Caulkins et al. [4], were used
as bifurcation parameters to analyze the different scenarios concerning the Skiba
property of the model. Before turning to the results of the numerical example, two
remarks are in order:

No calibration: The numerics employed here are meant to illustrate the qualita-
tive behaviour of a two-stage approach to the BM-rational addiction model, in
particular with respect to uncertainty, with the exception of Orphanides and Zer-
vos [17], has been neglected so far. It is not our intention within the scope of
this exercise to provide a quantitatively realistic calibration, which would need to
relate to specific addictive goods. We reserve this for future research.

No bifurcation analysis: Wedonot provide abifurcation analysis either.Although
interesting from a mathematical point of view, this is beyond the scope of this
article, and again, will be the focus of another paper.

In the following, we discuss the results of the numerical example point by point:

Non-addictive consumption (Fig. 4.1 left panel): Consumption of the non-addictive
good during the pre-addiction stage 1 takes off from a low level and subsequently
converges towards its steady state. From theEuler equation ( 4.15), it canbeglanced
that under our assumption r = ρ, the reason for this lies with the drop in income,
and thus, in the consumption level should the individual become addicted.14 In
order to cushion this, the individual initially engages in precautionary savingwhich
is gradually reduced over time allowing for increasing levels of consumption when
addiction does not set in. Note that such adjustment behaviour is not possible if
we consider addictive consumption alone (e.g. Caulkins et al. [4]) and/or a static
budget constraint (e.g. Ferguson [9]). Consumption of the non-addictive good
during the addiction stage 2 is not plotted, as it is merely reflecting the pattern
of addictive consumption after the onset of addiction. In any of the scenarios, the
individual then consumes the steady state level ŷ2 . As we will see below, the
parameter constellation we employ implies the presence of a Skiba point. It then
follows that whenever the stock of addiction is sufficiently low, as is the case for
early enough transitions (see left panel of Fig. 4.2), the individual switches to the
maximum (NAC-2) level of non-addictive consumption, whereas it switches to
minimal (MNC-2) consumption for late transitions at a high stock of addiction.

Addictive consumption (Fig. 4.1 right panel): Consumption of the addictive good
during the pre-addiction stage 1 is declining over time towards a steady state.
Inspection of the Euler equation (4.17), shows that the forces pulling towards
an advancement of consumption, in particular, the increasing risk of becoming

14Formally, this implies that u2y > u1y in (4.15).
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addicted dominate the forces pushing towards a delay, in particular, the tendency
to lower precautionary saving. What role is played by the change in the shadow
price of addictive capital is ambiguous without further analysis. For the addiction
stage 2, the Skiba property can be observed. Here, the particular parametrization
of our model implies that a MNC-2 steady state with permanent high-level con-
sumption of the addictive good is reached if and only if the stock of addictive
capital upon entry into addiction is sufficiently high. Given the ongoing accumu-
lation of addictive capital during the pre-addiction stage, this implies that if the
individual gets addicted quite early (approximately up to t = 35), it is optimal to
follow NAC-2, i.e. to stop the consumption of the addictive good. If the addiction
sets in later, the individual has to “pay up for the gamble” during the first stage,
i.e. it is optimal to become heavily addicted and to follow MNC-2. The optimal
consumption paths towards the respective boundary are depicted by dashed lines,
whereas the boundary steady states are depicted by solid lines. The times, τ1 and
τ2, at which the boundary steady state is reached can be glanced immediately. It
turns out that for our parametrization the time span to shed an addiction (i.e. to
reachNAC-2) is somewhat longer than the time span towards becomingmaximally
addicted (i.e. to reach MNC-2). Furthermore, the speed of approaching either of
the boundary steady states is moderately increasing with a later onset of addiction.
Thus, the duration of, as one could say perhaps, “moderate” addiction is declining
for those individuals who get addicted at a late stage. Interestingly the difference
between the levels of both steady states is quite considerable. Going to the NAC-2
steady state (possible in finite time), is near the ’cold turckey’-behaviour, which
means that the consumption of the addictive good has to be stopped immediately.

Addictive capital (Fig. 4.2 left panel): Ongoing consumption of the addictive good
implies an increasing stock of addictive capital which in the absence of a switch
to addiction approaches a steady-state level. The figure also illustrates that it is
optimal to shed an addiction if and only if the addiction stock is sufficiently low at
the switch,which due to the ongoing accumulation of addictive capital during stage
1 implies that individuals who acquire an addiction early onwill subsequently shed
it, whereas individuals who acquire an addiction at a late stage will continue to
build up addictive capital at an even higher rate.

Assets (Fig. 4.2 right panel): The shape of the assets illustrates the early accumula-
tion of precautionary savings and their subsequent running down.While this holds
true even for the case in which the individual remains without addiction, the onset
of addictionwill induce a fastmelt-down of assets and, indeed, the accumulation of
some debt regardless of whether or not an addicted individual sheds the addiction.
The course of addiction, however, bears on the use of the assets. While individ-
uals who are shedding their addiction employ the assets to increasingly support
their non-addictive consumption despite a reduction in their earnings; individuals
who are moving to become long-term addicts require funding for their increasing
levels of addictive consumption. The figure also shows that the accumulation of
debt depends on the timing of addiction. Individuals who fall into addiction at a
relatively late stage are more prone to accumulate debt. Notably, however, this is
not due to the fact that they are more prone to turn out long-term addicts but rather
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Table 4.3 Parameters employed for the numerical example

ρ = r 0.05 σ 1.5

a 0.1 αc 5

pc 1 αcc 10

δ 0.1 αS 1

w1 3 αSS 0.16

w2 1.5 αcS 1.6
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Fig. 4.1 Non-addictive and addictive consumption over time

down to the fact that by the time they become addicted, they have already run-
down their assets. In the data, this would suggest a spurious correlation between
becoming indebted and the propensity to become a long-run addict.

Probability of remaining without addiction over time (Fig. 4.3): The probability
of staying remaining without addiction is a decreasing function over time, which is
trivial as long as the addiction stock does not diminish over time. As we have seen,
the probability of becoming addicted acts as an additional discount factorwithin the
pre-addiction stage. Indeed, this is reflected in the adjoint Eq. (4.13), for z1 , where
η enters in the same way as ρ. As the propensity to remain without addiction is
driven by the level of the addiction stock, however, this part of the discount factor
is endogenous, and indeed, increasing over time. At this point, it is well worth
cautioning that we are not claiming our parametrization to be representative of
any particular setting or type of addiction. Thus, it is quite possible, for instance,
that for certain addictive goods, a declining pattern of consumption, such as we
observe in Fig. 4.1, ultimately leads to a decline in the stock of addictive capital,
and thus, to a positive probability never acquiring an addition. Naturally, such a
scenario is then also prone to lead to very different dynamics and Skiba properties
with respect to the other variables.
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Fig. 4.2 Addictive capital and assets over time

Fig. 4.3 Probability of
remaining without addiction
over time
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4.6 Conclusions

In this contribution, we have proposed an extension to the classical Becker and
Murphy [2]model of rational addictionwhich introduces a pre-addiction stage during
which the individual consumes the addictive good at an increasing risk of becoming
addicted but is not yet subject to the pathology of addiction. In modelling addic-
tion akin to a non-communicable disease, the onset of which is random but to some
extent preventable, we follow the gist of current neurological research on addiction
(see Volkow et al. [23]). Our modelling allows us to study the interaction between
the behavioural patterns of addicted individuals, the timing of the onset of addiction
and the risky consumption, as well as other behaviours before the set-on of addiction.
The mathematical modelling of such a set-up poses challenges in that it involves a
two-stage optimal control model with endogenous and random switching. We apply
a novel transformation to an age-structured optimal control model byWrzaczek et al.
[24], to provide a solution to the model that allows us to depict in a compact and
coherent way how the consumption patterns (and other model dynamics) are linked
across the two stages. A final contribution lies in an analysis of how the emergence of
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divergent optimal behaviour (towards either the termination of addictive consump-
tion or long-run high-level addictive consumption) in the presence of a Skiba point
depends on the behavioural patterns before the onset of addiction. For a simple set-
up with a static budget constraint we are, thus, able to provide precise conditions
showing which path is followed, depending on the stock of addictive capital at the
switching point which can then be linked to pre-addictive behaviours. A numerical
analysis illustrates this link, where for the parameters under consideration an early
transition into addiction (with a relatively low stock of addictive capital) induces the
individual to terminate it in finite time,whereas a late transition (with a relatively high
stock of addictive capital) induces the individual to stick and reinforce its addictive
habit up to a point of maximal addictive consumption.

Such a behavioural pattern is not inconsistent with the gateway theory according
to which unchecked recreational consumption of cannabis consumption may open
the way into addiction from stronger drugs such as opiates (see e.g. Hall [13] and
Curran et al. [6]). We should caution, however, that for the moment one should
mostly take our findings for their illustrative character. Whether or not there is a
positive correlation between a later onset of addiction and a tendency for it to progress
into permanent and heavy addiction is testable, in principle. Before confronting this
result against the evidence, however, we would need to ascertain its robustness both
in light of the assumption that there is no asset accumulation and in light of the
specific parametrization. In future research, we intend to apply the framework to
study behavioural patterns before and after the onset of addiction, based on a more
careful calibration of themodel to data on the habits andoutcomes related to particular
addictive substances. We will also explore the underlying incentives and how they
can be shaped by policymaking. In so doing, one particular focus will be on the role
of policymaking with respect to the prevention of risky behaviours. This sets our
work apart from most of the previous research based on the Becker and Murphy
model, which implicitly or explicitly assumes the immediate presence of addiction,
and thus, does not allow for a proper conception of the idea of “prevention”.

Acknowledgements The authors are grateful for very helpful and constructive comments by two
anonymous referees.

A Derivation of Equation (4.20)

Starting point is ∂H
∂c1

∣∣∣
c1=0

≤ 0, i.e.

z1u
1
c1 + λS − λA p ≤ 0. (4.32)

Using (4.9) we obtain

z1u
1
c1 + λS − pz1u

1
y1 ≤ 0. (4.33)
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Using the functional specification and ĉ1 = 0 we arrive (after rearrangement) at

αc ≤ p(w1)
−σ − λS

z1
. (4.34)

Solving and inserting the steady state value of λS , which is λ̂S = az1
ρ(ρ+δ)

(
û2 − û1

)
,

we obtain (4.20). For the derivation of λS we used the result by Caulkins et al. [4]
stating that the long-run optimal solution converges to the non-addictive consumption
steady state if S is sufficiently low.

Equation (4.25) and (4.26) can be proven analogously.
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Chapter 5
Modeling Social Status and Fertility
Decisions Under Differential Mortality

Sergey Orlov, Elena Rovenskaya, Matthew Cantele, Marcin Stonawski,
and Vegard Skirbekk

5.1 Introduction

Investigations into the behavior of social animals have revealed a strong correlation
between higher fertility and a higher social status at the individual level. For example,
the closest animal relatives of modern-day humans, chimpanzees, and bonobos have
been found to exhibit a direct positive relationship between their hierarchy status
and fertility. Here, it is particularly interesting that this relationship seems to hold
regardless of the sex, as bonobos’ societies are matriarchal and chimpanzees’ soci-
eties are patriarchal societies [34, 37, 45, 49, 50]. In societies of these social animals,
the dominant male (in case of chimpanzees) and male offspring of the dominant
female (in case of bonobos) have greater mating opportunities, often limiting the
reproductive success of other members.
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Empirical analyses find that the fertility between humans and their social status
(defined based on education, occupation, and income/wealth) varies by context. A
number of studies, particularly from more recent periods, indicate a relatively low
fertility for individuals with a higher social status, especially for women [19, 28,
36, 43], while some studies find that higher social status of humans relates to higher
fertility [20, 41] aswith themajority of non-human social animals. Both situations are
observed in different environments and under different social conditions even within
the same country [2]. A negative relation between social status and fertility in humans
presents a stark contrast to the positive relation observed for social animals. This
discrepancy has been used by scholars to critique the use of socio- and evolutionary
biology in understanding human behavior [48].

We attempt to explain this discrepancy by applying notions of evolutionary life
history theory to our understanding of the modern demographic trends. This theory
posits that individuals face a resource allocation problem in their attempt to achieve
higher biological fitness [33]; see e.g., [26, 27]. Within certain environments, having
a lower number of offspring, but with a higher investment in their well-being, may
be a viable strategy to increase fitness [30, 40]. Longitudinal studies are scarce but
some indicate that preferring status to fertility over the relatively short time frame
(ca. 5 generations) reduces long-term fitness [24].

Natural disasters, including droughts, floods, infectious disease outbreaks, hurri-
canes, extreme temperature swings, and tsunamis often have long-term demographic
implications [16, 17, 25, 39], contributing to high mortality and a lower popula-
tion growth before the demographic transition (UN [32, 46]. As a consequence, the
fertility level necessary to maintain a given population size in the context of fluctu-
ating mortality varied [8, 32]. European societies have over historic periods applied
mechanisms that regulated fertility up or down, maintaining a certain population
equilibrium given resource availability and mortality, also in anticipation of natural
events and resource constraints [7, 51]. Indeed, one’s exposure to both climatic and
famine-related risk has been found to correlate with the fertility behavior [35]. In
several case studies, the regions with a greater frequency of extreme weather events
have been found to exhibit relatively high fertility levels, and also a high preference
to fertility [9, 12, 42].

Some researchers have theorized that social status plays an important role for
survival and eventually higher fitness in the context of frequent and severe high-
mortality events [11]. Education as one component of the social status has also
been linked explicitly to a lower disaster vulnerability [18, 22, 38] as well as lower
(particularly female) fertility [43]. Baker et al. [3] offer a meta-analysis of how
education affects adult mortality; they show that lower education is associated with
a higher likelihood of death.

Thus, the fact that the human population has been frequently subjected to high-
mortality events throughout the vast majority of human evolutionary history may
explain the drive toward higher social status, even at a cost to fertility. In light of the
extant theoretical research, we pose the following research question: Within which
environments could social-status-seeking at a cost to fertility have evolved as an
adaptation for survival and ultimately higher biological fitness over the long term?
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5.2 The Model

In order to address our research question, we propose a model that explicitly
accounts for the trade-off between social status and fertility in different economic,
environmental, and social situations.

We assume that at timemoments t = 1, 2, 3 . . . there appears and lives generation
t consisting of Nt adult individuals, homogeneous in all their attributes. Every indi-
vidual from generation t inherits capital Bt−1 from the previous generation and earns
wage wt over their entire life. These together make up capital Kt = Bt−1 + wt she
has available, which she can use for on consumption, rearing children, and bequest.
Every individual in generation t is assumed to choose, independently from others, the
number of children to have (denoted by nt ), on the amount of resources to allocate
into their children’s education (denoted by λαt , where λ is the cost of full education
and αt ∈ [0, 1] is the education level of offspring), and on the share of the reminder
Kt − κnt − λαt nt to be passed on to the next generation (denoted by bt ; here κ is
the amount of resources required to rear one child).

We assume wage wt to be positively related to the individual’s education level αt

as follows

wt = s + rλαt−1,

where s > 0 is a minimum wage1 that an individual gets over their entire life
without optional education, r is a coefficient defining how the education level pays
off in terms of the total wage. In case of r > 1, education pays off and an individual
earns more (rλαt) than their parents directly invested in their education (λαt ). In
case of r = 1, education is budget-neutral. In case of 0 < r < 1, optional education
allows an individual to earn extra money, but it costs more to their parents than an
individual actually gets. In case of r = 0, education has no influence on the wage
of an individual. Case r < 0 describes the situation, in which people with higher
education receive a lower salary than people without education over their whole life.
This can occur, for example, because they spend a significant part of their life on
obtaining education, while non-educated people start working much earlier.

Each generation t and their offspring are assumed to suffer from natural disas-
ters, which can lead to premature deaths, namely, mortality events are happening
before children become adults and make their own decisions; we assume that those
remove fraction of children μ(αt ) given their education level αt . Consistent with
the results revealing a negative correlation between the number of deaths caused
by natural disasters and the education level of subjects, in our model, we assume
differential mortality and use the power-law function for the probability of death of
every child; i.e., we assume μ(αt ) = 1 − α

β
t . Here parameter β ≥ 0 characterizes

the strength of mortality events affecting offspring of generation t. After suffering
from natural disasters, individuals of generation t fade away and those children who

1It is also assumed here that the minimal level of individual’s consumption necessary to survive is
already subtracted from the value of s.
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survive become adults of new generation t + 1, make their decisions and the process
repeats. Thus, the dynamics of the population size and the total capital per individual
are the following:

Nt+1 = Nt [1 − μ(αt )]nt , N1 = N̄1, (5.1)

Kt+1 = bt (Kt − κnt − λαt nt ) + s + rλαt , K1 = K̄1. (5.2)

Here N̄1 is the population size of the first generation, K̄1 is the total capital per
individual in the first generation, and bt is the fraction of (Kt − κnt − λαt nt ) that is
bequeathed to offspring of an individual in generation t.

Being consistentwith a life history theory approach of optimal resource allocation,
we describe an individual’s decision-making problem as follows. Each generation t
is assumed to derive their utility Jt from (a) their consumption (which is a standard
assumption (e.g., [5, 6]), (b) the expected number of their survived children, (c) their
children’s education (equivalent to the resources allocated into children’s education),
and (d) the bequest left to their children (following the idea of the “warm-glow” type
of altruism in bequeathing [21, 44, 53]). We follow a well-established tradition of
using logarithmic utilities [13, 15, 23, 52] and convolute the competing goals (a),
(b), (c), and (d) into a single weighted-sum utility function

Jt = ωC ln[(1 − bt )(Kt − κnt − λαt nt )] + ωR ln[(1 − μ(αt ))nt ]

+ ωE ln[(1 − μ(αt ))λαt nt ] + ωB ln[bt (Kt − κnt − λαt nt )]. (5.3)

In (5.3), weights ωC , ωR , ωE , and ωB reflect preferences of an individual in
generation t to Consume (C), Reproduce (R), to invest in children’s Education (E),
and to Bequeath (B), respectively. Without loss of generality, we assume ωC +ωR +
ωE + ωB = 1.

Let us point out that our approach of explicitly including the bequest and chil-
dren’s education in the utility function differs from other models presented in liter-
ature, which rather consider children’s consumption [5, 6] and human capital [13,
21, 31]. The form of utility used in this study allows for describing the trade-off
between having more children and higher education of fewer offspring in a clear and
transparent way.

Let us define the population growth rate (PGRt ) at time moment t as the ratio
between the number Nt+1 of survived individuals in generation t +1 and the number
Nt of survived individuals in generation t:

PGRt = Nt+1

Nt
.

We define the long-term population growth rate as follows:
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PGR = lim
t→∞ PGRt = lim

t→∞
Nt+1

Nt
.

The long-term population growth rate PGR characterizes the long-term dynamics
of the population size.

Let us call a dynasty the infinite sequence of generationswith a fixed “dynastic” set
of preferences ω = (ωC , ωR, ωE , ωB), which is inherited by individuals’ offspring.
Then the higher the PGR of a dynasty is, the more offspring the dynasty has over the
sufficiently long term. Thus, we use PGR as a proxy of biological fitness. Also, we
use the combination of education and income as a proxy of social status [1, 10, 29].
Fertility is characterized by a number of offspring of an individual.

To address the research question posed in the introduction, we would like to
compare long-termpopulation growth rates PGR for different strategies, i.e., different
sets of preferences (weights) ω, which define decisions regarding consumption, the
number of children, their education and bequest. By this comparison, we would
like to reveal strategies that are optimal in terms of maximizing biological fitness
under different economic and environmental conditions as well as to delineate the
parameter sets, for which the dynasty grows and shrinks. Hence, we consider the
following problem

Maximize
ω=(ωC ,ωR ,ωE ,ωB )

PGR

S.t. ωC + ωR + ωE + ωB = 1,
ωi ≥ 0, i = C, R, E, B,

Nt+1 = Nt [1 − μ(αt )]nt , N1 = N̄1,

Kt+1 = bt (Kt − κnt − λαt nt ) + s + rλαt , K1 = K̄1

(5.4)

where αt , nt , bt are optimal solutions in the individual’s decision-making problem

Maximize
αt ,nt ,bt

Jt

S.t. Kt − κnt − λαt nt ≥ 0,
αt ∈ [0, 1], nt ≥ 0, bt ∈ [0, 1],

(5.5)

in which Kt and ω are given.
Importantly,we assume that ourmodel (5.4), (5.5) is applicable at a local scale, that

is that the environmental and economic conditions can be treated as external factors,
and decisions of individuals have no influence on the environment and the economy.
Hence, we assume that all economic and environmental parameters, namely, the
independent part of the wage, s, the cost of full education, λ, the coefficient of
the return of the investment in education, r, the cost of rearing one child, κ , and
the strength of mortality event, β, do not change over time. Solving the two-stage
problem (5.4)–(5.5) under these assumptions allows for investigation of strategies
ω = (ωC , ωR, ωE , ωB) that are optimal over the long term under fixed economic and
environmental conditions. Explaining the processes related to the dynamic fertility at
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the global scale would require considering feedbacks between globally implemented
decisions of individuals and the environment and the economy, which is outside of
the scope of this study.

5.2.1 Solution to the Individual’s Decision-Making
Problem (5)

We take advantage of the separation of variables, which is possible in (5.3), and
represent the utility function Jt in the following form:

Jt = ut (αt , nt ) + vt (bt )

where

ut (αt , nt ) = (ωC + ωB) ln(Kt − κnt − λαt nt )

+ ωR ln[(1 − μt (αt ))nt ] + ωE ln[(1 − μt (αt ))λαt nt ] (5.6)

and

vt (bt ) = ωC ln(1 − bt ) + ωB ln bt .

Therefore, problem (5.5) can be split into two independent problems:

Maximizeαt ,nt ut (αt , nt )
S.t. Kt − κnt − λαt nt ≥ 0,

αt ∈ [0, 1], nt ≥ 0;
(5.7)

and

Maximizebt vt (bt )
S.t. bt ∈ [0, 1].

(5.8)

Theorem 5.1 Problem (5.7) has a solution
(
α∗
t , n

∗
t

)
as follows:

1. If ωR + ωE > 0 then the solution is unique and, additionally,
if (a) ωE+β(ωR+ωE )

λ
≤ ωR−β(ωR+ωE )

κ
, then

α∗
t = ωE + β(ωR + ωE )

ωR − β(ωR + ωE )

κ

λ
,

n∗
t = (ωR − β(ωR + ωE ))

Kt

κ
;
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if (b) ωE+β(ωR+ωE )

λ
>

ωR−β(ωR+ωE )

κ
, then

α∗
t = 1, n∗

t = (ωR + ωE )
Kt

κ + λ
;

2. If ωR = ωE = 0, then

α∗
t ∈ [0, 1], n∗

t = 0.

Proof Let us first consider case 1. We rewrite utility function (5.6) in the form

ut (αt , nt ) = (ωC + ωB) ln(Kt − κnt − λαt nt )

+ ωR ln nt + ωE ln λαt nt + (ωR + ωE ) ln α
β
t .

First, we calculate the derivatives

∂ut (αt ,nt )
∂αt

= − (ωC+ωB )λnt
Kt−κnt−λαt nt

+ ωE+β(ωR+ωE )

αt
,

∂ut (αt ,nt )
∂nt

= − (ωC+ωB )(κ+λαt )

Kt−κnt−λαt nt
+ ωR+ωE

nt

and find stationary points (ᾱt , n̄t ) of ut (αt , nt ) by solving the system of equations
∂ut (αt ,nt )

∂αt
= 0, ∂ut (αt ,nt )

∂nt
= 0; we obtain a unique stationary point as follows

ᾱt = ωE + β(ωR + ωE )

ωR − β(ωR + ωE )

κ

λ
, n̄t = (ωR − β(ωR + ωE ))

Kt

κ
.

By applying the second partial derivative test at (ᾱt , n̄t ) (i.e., checking the negative
definiteness of the Hessian matrix of ut (αt , nt )), we obtain

∂2ut (αt , nt )

∂α2
t

∣∣∣
∣αt = ᾱt

nt = n̄t

= − (ωC + ωB + ωE + β(ωR + ωE ))(ωR − β(ωR + ωE ))2λ2

(ωC + ωB)(ωE + β(ωR + ωE ))κ2
< 0,

∂2ut (αt , nt )

∂α2
t

∣∣∣
∣αt = ᾱt

nt = n̄t

∂2ut (αt , nt )

∂n2t

∣∣∣
∣αt = ᾱt

nt = n̄t

−

⎛

⎜⎜
⎝

∂2ut (αt , nt )

∂αt∂nt

∣∣∣
∣αt = ᾱt

nt = n̄t

⎞

⎟⎟
⎠

2

= (ωR − β(ωR + ωE ))λ2

(ωC + ωB)(ωE + β(ωR + ωE ))K 2
t

> 0.

Thus, function ut (αt , nt ) is concave in the totality of its two arguments αt and nt ,
and its unique maximum point (ᾱt , n̄t ) is its global maximum point.
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Note that the inequalities of case 1 (a) ensure that expression ωR − β(ωR + ωE )

is positive. Hence, n̄t ≥ 0 and, moreover, ᾱt ∈ [0, 1]. Also, the first inequality of
problem (5.7) is satisfied at this point:

Kt − κ n̄t − λᾱt n̄t = (ωC + ωB)Kt > 0.

Therefore, the global maximum point (ᾱt , n̄t ) satisfies all the constraints of
problem (5.7) and, hence,

(
α∗
t , n

∗
t

) = (ᾱt , n̄t ) is the solution of problem (5.7) in
case 1 (a).

Under inequalities of case 1 (b) value ᾱt either does not exist or lies outside
segment [0, 1]. Thus, the stationary point (ᾱt , n̄t ) does not satisfy the constraints of
problem (5.7). In order to find the conditional maximum in problem (5.7) in this case,
let us consider domain D generated by the constraints of problem (5.7) and within
which the utility function ut (αt , nt ) is to be maximized:

D =
{
(αt , nt ) : 0 ≤ αt ≤ 1, 0 ≤ nt ≤ Kt

κ + λαt

}
.

Let us consider the parametrization of domain D by the set of non-intersecting
curves

nt = ξt
Kt

κ + λαt
, ξt ∈ [0, 1],

and consider the function

ū(αt , ξt ) =u(αt , nt )|nt=ξt
Kt

κ+λαt
= (ωC + ωB) ln((1 − ξt )Kt )

+ ωR ln ξt
Kt

κ + λαt
+ ωE ln λαtξt

Kt

κ + λαt
+ (ωR + ωE ) ln α

β
t .

For any ξt ∈ (0, 1)

∂ ū(αt , ξt )

∂αt
= λκ

ωE+β(ωR+ωE )

λ
− αt

ωR−β(ωR+ωE )

κ

αt (κ + λαt )
.

Thanks to the inequality of case 1 (b) and αt ∈ [0, 1] in domain D we have the
following set of relations

ωE + β(ωR + ωE )

λ
− αt

ωR − β(ωR + ωE )

κ

≥ min

(
ωE + β(ωR + ωE )

λ
− ωR − β(ωR + ωE )

κ
,
ωE + β(ωR + ωE )

λ

)
> 0
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Therefore, ∂ ū(αt ,ξt )

∂αt
> 0 and function ū(·, ξt ) increases with respect to αt ∈ (0, 1]

for any ξt ∈ (0, 1) and, hence, has its maximum point αt = 1. Then, by solving
equation

∂

∂ξt

(
ū(αt , ξt )|αt=1

) = −ωC + ωB

1 − ξt
+ ωR + ωE

ξt
= 0,

we find a unique stationary point ξ̄t = ωR + ωE ∈ (0, 1). The negative second
derivative

∂2

∂ξ 2

(
ū(αt , ξt )|αt=1

) = −ωC + ωB

(1 − ξt )
2 − ωR + ωE

ξ 2
t

< 0

confirms that point ξt = ξ̄t is a globalmaximizer of ū(αt , ξt )|αt=1 on [0, 1]. Returning
to the original variables, we conclude, that point

(
α∗
t , n

∗
t

) = (1, (ωR + ωE ) Kt
κ+λ

)
is

a solution of problem (5.7) in case 1 (b).
In case 2, utility function (5.6) becomes ut (αt , nt ) =

(ωC + ωB) ln(Kt − κnt − λαt nt ). Due to the fact that it monotonically decreases
with respect to αt+1 and nt , the global maximizer of problem (5.7) in case 2 is such
that n∗

t = 0 and α∗
t is any point from segment [0, 1].

The proof is complete.
�

Theorem 5.2 Problem (5.8) has a solution b∗
t as follows:

1. If ωC + ωB > 0, then the solution is unique and

b∗
t = ωB

ωC + ωB

2. If ωC = ωB = 0, then

b∗
t ∈ [0, 1].

Proof Let us find stationary points b̄t of function vt (bt ) by solving equation

v′
t (bt ) = − ωC

1 − bt
+ ωB

bt
= 0.

We obtain

b̄t = ωB

ωC + ωB
∈ [0, 1]

only if ωC + ωB > 0. The second derivative evaluated at the stationary point b̄t is
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v′′
t

(
b̄t
) = − ωC

(
1 − b̄t

)2 − ωB

b̄2t
≤ 0.

Thus, b∗
t = b̄t is the maximizer of function vt (bt ) given ωC + ωB > 0. If ωC =

ωB = 0, then any point of segment [0, 1] is the maximizer in problem (5.8).
The proof is complete.

�

We obtain that, besides the degenerate case 2 of the two weights ωB, ωC being
zero, the fraction of the bequeathed wealth, b∗

t = ωB
ωC+ωB

, depends on the proportion
between weightsωC , ωB . This means that fraction b∗

t depends on the “ratio” between
an individual’s preferences about their own consumption and bequest. Particularly,
in the limit case when ωC = 0, the available resources are allocated solely to the
bequest if individual behaves optimally, and vice versa, in case ωB = 0 all the
available resource is consumed and nothing is bequeathed. In the degenerate case of
ωC = ωB = 0, an individual cares neither about consumption, nor about bequests,
so it follows from the Theorem 1 that in this case (ωR + ωE = 1) there will be no
amount money to split and the value b∗

t does not play any role and can be any number
between zero and one.

5.2.2 Dynamics and the Explicit Formula for the Long-Term
Population Growth Rate

Here, we consequently investigate model dynamics and find the explicit form of
long-term population growth rate as follows.

Let us consider dynamic Eqs. (5.1), (5.2) of the model. Due to Theorems 5.1
and 5.2, every individual in generation t chooses to have n∗

t children, to give them
education of level α∗

t , and to leave bequest as fraction b∗
t of the remainder of their

capital. Given that, formulas (5.1), (5.2) become

Nt+1 = Nt
[
1 − μ

(
α∗
t

)]
n∗
t , (5.9)

Kt+1 = b∗
t

(
Kt − κn∗

t − λα∗
t n

∗
t

)+ s + rλα∗
t = ωBKt + s + rλα∗

t . (5.10)

Theorem 5.1 implies the following optimal level of education constant over time
for each generation in the non-degenerate case

α∗
t = α∗ =

{
ωE+β(ωR+ωE )

ωR−β(ωR+ωE )
κ
λ
if ωE+β(ωR+ωE )

λ
≤ ωR−β(ωR+ωE )

κ
,

1 if ωE+β(ωR+ωE )

λ
>

ωR−β(ωR+ωE )

κ
; (5.11)

the optimal wage then becomes
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wt = w∗ = s + rλα∗. (5.12)

Theorem5.2 implies the following constant over time optimal bequeathed fraction
for each generation in the non-degenerate case

b∗
t = b∗ = ωB

ωC + ωB
.

The degenerate case solution remains the same. Hereafter, we consider only non-
degenerate cases, i.e., we assume that ωR + ωE > 0; case when ωR = ωE = 0
implies the absence of any offspring at all and thus zero population growth rate which
is clearly not optimal in terms of maximizing the long-term population growth rate.

Lemma Let α∗ and w∗ be defined by relations (5.11) and (5.12), respectively. Then
the long-term population growth rate PGR of the dynasty with the set of preferences
ω = (ωC , ωR, ωE , ωB) takes the following form

PGR(ωC , ωR, ωE , ωB) =
{

α
β∗ (ωR−β(ωR+ωE ))

1−ωB

w∗
κ

ifα∗ < 1,
ωR+ωE
1−ωB

w∗
κ+λ

ifα∗ = 1.

Proof Given formulas (5.11), (5.12), capital (5.10) can be represented by the formula

Kt+1 = ωBKt + w∗, or, by solving it, Kt = ωt−1
B K1 + 1−ωt−1

B
1−ωB

w∗, where ωB ∈ [0, 1)

and K1 is the initial value of capital for generation 1. Then, lim
t→∞ Kt = w∗

1−ωB
as ωt−1

B

tends to zero while t tends to infinity.
The population growth rate PGRt thanks to formula (5.9) and the results of

Theorem 1 becomes

PGRt = [1 − μ
(
α∗
t

)]
n∗
t =

{
α

β
∗ (ωR − β(ωR + ωE )) Kt

κ
ifα∗ < 1,

(ωR + ωE ) Kt
κ+λ

ifα∗ = 1.

Hence, using the fact that lim
t→∞ Bt = w∗

1−ωB
and the definition of PGR we obtain

the formula in the statement of Lemma.
The proof is complete.

�

Theorem 5.3 Optimal preferences ω∗
R , ω∗

E , ω∗
B , (while ω∗

C = 0) optimal level of
education α∗, and optimal long-term population growth rate PGR∗ in problem (5.4)
can be represented in the following form:

(1) ω∗
E = 0, ω∗

R + ω∗
B = 1, ω∗

R > 0, α∗ = β

1−β
κ
λ
,PGR∗ =

(
β

1−β
κ
λ

)β(
[1 − β] s

κ
+ βr

)
if

(a) β ∈
[
0,

λ

λ + κ

)
, r ≤ 0; or (b) β = 0, r ∈

(
0,

s

κ

)
;
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(2)

ω∗
E = ω̄∗

ERω∗
R > 0, ω̄∗

ER = 1
2β s

κ

([
(1 − β) s

κ
− (1 + β)r

]

−
√(

s
κ

− r
)[

(1 − β)2 s
κ

− (1 + β)2r
])

, ω∗
B = 1 − (ω∗

R + ω∗
E

)
, α∗

= ω̄∗
ER +β(1+ω̄∗

ER)
1−β(1+ω̄∗

ER )
κ
λ
, PGR∗ = PGR

(
0, ω∗

R, ω∗
E , ω∗

B

)
, i f

β ∈ (0, β̄∗
)
, β <

λ

λ + κ
, r ∈

(
0,

s

κ

)
;

(3) ω∗
E ≥ λ

κ+λ
−β

κ
κ+λ

+β
ω∗

R > 0, ω∗
B = 1 − (ω∗

R + ω∗
E

)
, α∗ = 1,PGR∗ = s+rλ

κ+λ
if

(a) β ∈
(
0,

λ

λ + κ

)
, r ≥ s

κ
; or (b ) β ∈

[
β̄∗,

λ

λ + κ

)
, r ∈

(
0,

s

κ

)
; or (c ) β = 0, r >

s

κ
;

(4) ω∗
B = 1 − (ω∗

R + ω∗
E

)
< 1, α∗ = 1,PGR∗ = s+rλ

κ+λ
if

β ≥ λ

λ + κ
;

(5) ω∗
B = 1 − (ω∗

R + ω∗
E

)
< 1, α∗ = min

(
ω∗
E

ω∗
R

κ
λ
, 1
)
,PGR∗ = r if

β = 0, r = s

κ
.

Value β̄∗ is a unique root to equation PGR
(
0, 1, ω̄∗

ER, ω∗
B

) = s+rλ
κ+λ

.

The proof of Theorem 5.3 is presented in the Appendix; qualitatively different
cases are summarized in Tables 5.1 and 5.2 and discussed thereafter.

Each of the five cases presented in Tables 5.1 and 5.2 (marked by different colors)
describes a society with certain economic parameters (namely, r describing the
distribution of income between educated and non-educated people, λ describing the

Table 5.1 Optimal strategies maximizing long-term fitness
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Table 5.2 Brief description of optimal strategies in problem (5.4). Here, optimal preference ω∗
C is

zero and optimal preference ω∗
B = 1 − ω∗

R − ω∗
E

education cost, s describing the minimum salary individual gets over their lifespan,
and κ describing the child-rearing cost) and environmental parameter (namely, β

describing the strength of mortality events). A combination of these parameters
implies a certain optimal strategy, i.e., an optimal set of preferences (weights)
ω∗
C , ω∗

R, ω∗
E , ω∗

B . Multiple sets of preferences correspond to each optimal strategy. It
is the ratio between the preference toward social status attainment and the preference
toward reproduction that defines which strategy is optimal.

We distinguish several qualitatively different situations. From the economic side,
we consider situations with a negative, low-, and high-income gap between people
with full education and people with basic education only, corresponding to r ≤ 0,
0 < r < s

κ
, and r ≥ s

κ
, respectively. From the environmental side, we consider

situations of no, low-, medium-, and high-mortality events corresponding to β = 0,
β ∈ (0, β̄∗

)
, β ∈ [β̄∗, λ

λ+κ

)
and β ≥ λ

λ+κ
, respectively. Here, value β̄∗ depends on

all four economic parameters (one can find the exact equation for β̄∗ in Appendix
B). Importantly, different economic situations in the society imply different bounds
for the classification of the strength of mortality events.
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In what follows, we describe what strategies optimize the long-term population
growth in different societies and reveal in what cases seeking for higher social status
becomes optimal for survival. The strategy “Maximize offspring” is optimal in soci-
eties in which the gain in the survival potential due to a higher social status is
not significant enough to motivate compromising the number of offspring against
investment into their education. In the absence of premature mortality, social status
does not affect the survival probability; parents optimize their utility to which the
number of offspring makes a greater contribution. This motivates them to choose the
“Maximize offspring” strategy. Another situation, which also promotes the choice
of this strategy, is the case of a negative income gap. A need to sacrifice a part of
the income in order to obtain a higher social status demotivates a rational individual
from investing in education, but this consideration trades-off with a potential gain in
the number of survived offspring due to a higher status. Correspondingly, in the pres-
ence of low- and medium-strength mortality events, it remains optimal to maximize
offspring in our model. However, if a society experiences high-strength mortality
events, optimal behavior will change. In this case, indifferently to their preferences,
the allocation for the education of children to offer them the best opportunities to
survive must be maximal. We refer to this case as “Maximize allocation in social
status to survive” strategy. This strategy is optimal regardless of the relation between
incomes of educated and non-educated.

The strategy “Prioritize social status” is similar to the latter case. It recommends
setting a sufficiently high weight on social status while retaining some weight on
reproduction too. In this scenario, despite a balanced approach to set the preferences,
the optimal allocation for social status must be maximal. This strategy becomes
optimal in a number of cases when mortality event strength is between zero and
medium and the income gap is between low and high. The higher the income gap
and mortality event strength, the more motivated the dynasty is toward allocating
resources into social status.

“Balance reproduction and social status” is a strategy that prescribes a certain
optimal ratio between the weight toward social status and the weight toward repro-
duction. The ratio depends positively on the mortality event strength; the optimal
allocation for social status is roughly proportional to this ratio. Let us point out that
in this case, as well as in the other cases, the long-term population growth rate is
positively related both to themaximal number of non-educated children an individual
can afford and to the income inequality (gap).

Our model also demonstrates a special case in which the income gap is strictly
equal to the ratio of the basic income and the cost of rearing a child in the absence
of premature mortality. In this case, which we call “No influence of social status on
population growth”, any weight combination between reproduction and social status
is optimal; the ratio of the chosen weights defines the optimal allocation for social
status; however, the long-term population growth rate is unrelated to the choice of
weights and equals to the income gap.

Considering situations, inwhich enhancing the social status significantly promotes
survival (i.e., strategies “Prioritize social status” and “Maximize allocation in social
status to survive”) with PGR∗ = s+rλ

κ+λ
, we conclude that the total income of an
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individual over their life span, w = s + rλ, must be larger than the amount of
resources κ + λ to be spent for rearing one full-educated child in order for this
dynasty to survive over the long-term.

5.3 Transitions Between the Boundaries: Possibility
of Regime Switches of Optimal Strategies Maximizing
Biological Fitness

Theorem 5.3 describes sets of strategies (preferences ω∗
C , ω∗

R ,ω
∗
E , ω

∗
B) optimal in the

long term under certain fixed economic and environmental conditions. They were
derived under the assumption that the basic wage, s, the cost of full education, λ, the
coefficient of the return of the investment in education, r, the cost of rearing one child,
κ , and the strength of mortality event, β, as well as preferences ωC , ωR, ωE , ωB do
not change over time.

Interestingly, the transition between the boundaries of the different cases is not
always continuous in terms of the optimal sets of preferences. Such a discontinuity
can be interpreted as a regime switch of an optimal strategy. Let us consider, for
instance, cases 1 and 5 of Theorem 5.3. The Hausdorff distance between the corre-
sponding sets of optimal preferences	1 = {ω∗

C = ω∗
E = 0, ω∗

R + ω∗
B = 1, ω∗

R > 0
}

and	5 = {ω∗
C = 0, ω∗

B = 1 − (ω∗
R + ω∗

E

)
< 1
}
is non-zero (equal to

√
3/2), which

indicates the discontinuity of the transition between these cases. Let us consider
a situation with a non-positive income gap, r ≤ 0, and high-mortality events,
β ≥ λ/(λ + κ). In such a situation, ω̄∗ = (

ω∗
C = 0, ω∗

R = ω∗
E = ω∗

B = 1
3

)
from

	5 is one possible optimal strategy (see case 5 of Theorem 5.3). If parameter β

changes to β < λ
λ+κ

(note that this change can be very small if the initial value
of β lies close to the boundary between the cases), strategy ω̄∗ becomes non-
optimal, because in case 1 (a) the optimal preference is ω∗

E = 0. This means that
the affected individual needs to switch from ω̄∗ to a strategy from the optimal set
	1. The distance (in the Euclidian metric) between even the closest strategy from
this set

(
ω∗
C = ω∗

E = 0, ω∗
R = ω∗

B = 1
2

)
and the previously optimal strategy ω̄∗ is√

1/6—due to an arbitrary small change in β.

5.4 Long-Term Survival Under Different Economic
and Environmental Conditions

Inequalities PGR∗ > 1, PGR∗ = 1, and PGR∗ < 1 describe the situations, in which
a dynasty following the optimal strategy grows, remains stable, or dies out over the
long term correspondingly. Originally, the environmental and economic conditions
are defined by the set of five parameters, s, λ, κ , r, β in the model; in fact the number
of parameters can be reduced to four: s/κ , λ/κ , r, β; all are naturally dimensionless.
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In this section, we investigate how the long-term population growth rate depends
on the model parameters.We delineate parameter sets for which PGR∗ > 1, PGR∗ =
1, and PGR∗ < 1. The visualization of the obtained results is presented in Fig. 5.1.

Each panel in Fig. 5.1 represents PGR∗ in axes β and r depending also on different
values of parameters s/κ and λ/κ , varying along large horizontal and vertical arrows
correspondingly. The value of PGR∗ is marked by color. The black line corresponds
to PGR∗ = 1 separating the parameter set, in which a dynasty survives and grows
(PGR∗ > 1) from the parameter set, in which it dies out (PGR∗ < 1).

We can see that if the both fractions s/κ and λ/κ are small, which means that
individuals do not have enoughmeans for child-rearing, then for any β and for r such
that r <

1+λ/κ−s/κ
λ/κ

the long-term population growth rate PGR∗ < 1 and the dynasty
dies out. Let us point out that for smaller fractions λ/κ , the set of such r becomes
larger. Increasing each fraction leads to an increase in the long-term population
growth rate, which can eventually become greater than 1 for small enough r and β.

Fig. 5.1 Sensitivity analysis of the long-term population growth values with respect to model
parameters s/κ , λ/κ , r, and β



5 Modeling Social Status and Fertility Decisions Under … 127

For a sufficiently large minimum salary with respect to child-rearing, s/κ , the long-
term population growth rate can be greater than 1 for any mortality events strength
β and any non-negative income gap r. Also, one can see that long-term population
growth is non-decreasing in r given all other parameters fixed; the dependence on β

can exhibit different monotonicities (i.e., it may increase, decrease, and be constant).
As individual preferences defining the optimal solution of resource allocation

problem (2.1) and thus maximizing biological fitness are sticky over generations (in
this context the individual preferences are changed through phenotypic plasticity
which has eventual costs and limits preventing from instantaneous change to those
preferences maximizing fitness [14]), Fig. 5.1 alludes to the fact that a slight but
sudden change in environmental or economic conditions may move a dynasty from a
growing to a shrinking trend. As optimal weights in changed environment emerge as
a result of a long-lasting social evolutionary process and depending on how big the
drop in PGR is, the dynasty may not be in the position to adapt to the new conditions
swiftly enough and will die out or even if it manages to quickly adapt the highest
PGR can become less than one and thus dynasty may die out without introducing
fast changes in the socio-economic system to prevent extinction.

Let us, for instance, consider a society with a near-zero income gap in the environ-
ment with mortality events of low strength with a minimum salary which is a twice
more than child-rearing costs and full education is three times more expensive than
child-rearing (see the panel in the fourth row and the third column). In the proposed
situation, PGR∗ > 1 but it is close to the black line defining PGR∗ = 1 from the left.
Due to a sudden switch of the strength of mortality events to a higher level, which
may happen even in the near future due to climate change [4, 47], the point on the
plot would jump over the line PGR∗ = 1 to the right and will find itself in the area
with PGR∗ < 1, where the dynasty will turn out to be on the verge of extinction.

5.5 Conclusion

Our analysis here demonstrates the optimal employment of alternative strategies in
order to optimize biological fitness with respect to the trade-off between havingmore
children and giving each child a higher social status. The first strategy prescribes
allocating available resources toward maximizing the number of children, with a
minimal investment in social status. Following this strategy improves an individual’s
biological fitness by ensuring the maximum number of survived offspring and is
optimal when the severity of mortality events is moderate. However, this strategy
does not optimize fitness when mortality events become more frequent or severe.
Under environmental conditions of elevated mortality, the second strategy involving
allocation resources to ensure a high social status of offspring is optimal; here the
number of children decreases as each child “costs” more to rear and educate.

Our study provides insights, in a highly stylized fashion, into how major
economic and environmental parameters influence long-term population dynamics.
For example, the model shows that a higher income inequality promotes higher
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investment in social status, particularly under high-mortality conditions. Building
upon previous literature, this study provides a quantitative rationale for allocating
resources into social status at a cost to immediate biological fitness. Within an envi-
ronment largely characterized by the absence of high-mortality events, social status-
seeking at a cost to reproduction may be the result of evolutionary lag, or a mismatch
between phenotypes not yet adapted to life within low mortality contexts. This study
provides the first version of a model explaining how seeking social status at a cost to
fertility may become optimal in terms of maximizing biological fitness in societies
experiencing premature mortality where mortality is disproportionately high among
low-status individuals.

The model developed here allows for comparison of the long-term population
growth rate under different environmental and economic situations, as well as for
comparison of optimal strategy sets. We distinguish the model parameters sets, for
which the dynasty exhibits qualitatively different long-term behavior ranging from a
growing to a declining trend.We consider possible sudden shifts in the model param-
eters, whichmay lead to jumps of the long-term population growth rate between these
parameter sets, which may lead to a qualitatively different long-term survival future
of the dynasty. Also, we show that in some cases, a slight change in environmental
conditions can lead to a regime switch of an optimal strategy maximizing biological
fitness.
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Appendix

Proof of Theorem 5.3 First, let us show that the optimal preference ω∗
C = 0;

for that let us assume the opposite. Let set
(
ω̂C , ω̂R, ω̂E , ω̂B

)
, where ω̂C > 0,

be optimal. Then, as one can see from the formula for PGR in Lemma, set(
ω̂C
2 , ω̂R, ω̂E , ω̂B + ω̂C

2

)
delivers even bigger value to PGR, as both denominators are

greater in the latter case. This contradicts with the optimality of
(
ω̂C , ω̂R, ω̂E , ω̂B

)

and, therefore, ω∗
C = 0 is optimal. Hereafter we assume, that ωC = 0, and, in turn,

ωB = 1 − (ωR + ωE ).
Another observation is that PGR(ωC , ωR, ωE , ωB) is not defined for ωB = 1,

or, given the previous assumption, for ωR = ωE = 0. So, below we suppose, that
ωR + ωE > 0. Also, below, when we define optimal sets of preferences, we suppose
that ω∗

R ≥ 0, ω∗
E ≥ 0, ω∗

B ≥ 0, and ω∗
R + ω∗

E + ω∗
B = 1.
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Let us rewrite the long-term population growth ratemore explicitly than in Lemma
using equalities (5.11), (5.12) as follows:

PGR

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ωE+β

(
ωR+ωE

)

ωR−β
(
ωR+ωE

) κ
λ

)β
ωR−β

(
ωR+ωE

)

1−ωB

s+rλ
ωE+β

(
ωR+ωE

)

ωR−β
(
ωR+ωE

) κ
λ

κ if
ωE+β

(
ωR+ωE

)

λ
≤ ωR−β

(
ωR+ωE

)

κ ,

ωR+ωE
1−ωB

s+rλ
κ+λ

if
ωE+β

(
ωR+ωE

)

λ
>

ωR−β
(
ωR+ωE

)

κ .

Substituting ωB = 1 − (ωR + ωE ), we simplify and obtain

PGR = PGR(ωR , ωE )

=

⎧
⎪⎨

⎪⎩

(
ωE+β

(
ωR+ωE

)

ωR−β
(
ωR+ωE

) κ
λ

)β [
ωR−β

(
ωR+ωE

)] s
κ +[ωE+β

(
ωR+ωE

)]
r

ωR+ωE
if

ωE+β
(
ωR+ωE

)

λ
≤ ωR−β

(
ωR+ωE

)

κ ,

s+rλ
κ+λ

if
ωE+β

(
ωR+ωE

)

λ
>

ωR−β
(
ωR+ωE

)

κ .

One can easily show that function PGR(·, ·) is continuous with respect to ωR , ωE

in domain ωR ≥ 0, ωE ≥ 0, 0 < ωR + ωE ≤ 1 for any non-negative β, positive s, κ ,
λ, and an arbitrary r.

In what follows, we derive a maximizer of PGR(ωR, ωE ) in the following three
different cases: β ≥ λ

λ+κ
, β = 0, and β ∈ (0, λ

λ+κ

)
.

If β ≥ λ
λ+κ

then, due to λ
λ+κ

≥ λ
λ+κ

ωR
ωR+ωE

≥ λωR−κωE
(λ+κ)(ωR+ωE )

, we obtain that

β ≥ λωR−κωE
(λ+κ)(ωR+ωE )

, which is equivalent to ωE+β(ωR+ωE )

λ
≥ ωR−β(ωR+ωE )

κ
. In this case

PGR(ωR, ωE ) = PGR∗ ≡ s+rλ
κ+λ

is constant. Hence, any preferences ω∗
R , ω

∗
E , ω

∗
B are

optimal and the optimal level of education is α∗ = 1. This proves case 4.
If β = 0, then the formula for PGR(ωR, ωE ) has a simpler form which can be

obtained by taking the corresponding limit as follows:

PGR(ωR, ωE ) =
{

ωR
s
κ
+ωEr

ωR+ωE
if ωE

λ
≤ ωR

κ
,

s+rλ
κ+λ

if ωE
λ

> ωR
κ

.

Here, we consider three different subcases: r = s
κ
, r > s

κ
, r < s

κ
.

If r = s
κ
then PGR(ωR, ωE ) ≡ PGR∗ = r is constant. Hence, any preferences

ω∗
R , ω∗

E , ω∗
B are optimal and the optimal level of education in this case is α∗ =

min
(

ω∗
E

ω∗
R

κ
λ
, 1
)
. This proves case 5.

Then, for technical reasons, we fix ωR + ωE = c ∈ (0, 1]. Then

PGR(ωR) =
{

ωR
c

(
s
κ

− r
)+ r if κc

λ+κ
≤ ωR ≤ c,

s+rλ
κ+λ

if 0 ≤ ωR < κc
λ+κ

is a piecewise linear function of ωR .
If r < s

κ
, then the maximum value of the long-term population growth rate is

PGR
(
ω∗

R

) = PGR∗ = s
κ
, where ω∗

R = c. Then ω∗
E = c − ω∗

R = 0. Thus, thanks to
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the independence of the maximum value of PGR(·) from the parameter c ∈ (0, 1],
the optimal preferences are such that ω∗

E = 0 and the optimal level of education is
α∗ = 0. This proves case 1 (a) and case 1 (b) given β = 0.

If r > s
κ
, then the maximum value of the long-term population growth rate is

PGR
(
ω∗

R

) = PGR∗ = s+rλ
κ+λ

, where ω∗
R ∈ [0, κc

λ+κ

]
. Then ω∗

E = c − ω∗
R ∈ [ λc

λ+κ
, 1
]
.

By returning to the formula of PGR(ωR, ωE ) and thanks to the independence of the
maximum value of PGR(·) from parameter c ∈ (0, 1], we conclude that the optimal
preferences are such that ω∗

E ≥ λ
κ
ω∗

R and the optimal level of education is α∗ = 1.
This proves case 3 (c).

Let us consider case β ∈ (0, λ
λ+κ

)
and let ωR > 0. Then, we can rewrite the

formula for the long-term population growth rate as follows:

PGR(ωR , ωE )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( ωE
ωR

+β
(
1+ ωE

ωR

)

1−β
(
1+ ωE

ωR

) κ
λ

)β [
1−β

(
1+ ωE

ωR

)]
s
κ +
[

ωE
ωR

+β
(
1+ ωE

ωR

)]
r

(
1+ ωE

ωR

) if

ωE
ωR

+β
(
1+ ωE

ωR

)

λ
≤ 1−β

(
1+ ωE

ωR

)

κ ,

s+rλ
κ+λ

if

ωE
ωR

+β
(
1+ ωE

ωR

)

λ
>

1−β
(
1+ ωE

ωR

)

κ .

Hence, PGR appears to be dependent on ωE
ωR

only. Denoting ωER = ωE
ωR

, we have

PGR(ωER)

=
⎧
⎨

⎩

(
ωER+β(1+ωER)

1−β(1+ωER)
κ
λ

)β [1−β(1+ωER)] s
κ
+[ωER+β(1+ωER)]r

(1+ωER)
if 0 ≤ ωER ≤ (1−β)λ−βκ

(1+β)κ+βλ
,

s+rλ
κ+λ

ifωER >
(1−β)λ−βκ

(1+β)κ+βλ
.

Due to the continuity of function PGR(·) and being constant while ωER >
(1−β)λ−βκ

(1+β)κ+βλ
, it is sufficient to consider the problem of itsmaximization only on segment

0 ≤ ωER ≤ (1−β)λ−βκ

(1+β)κ+βλ
. The derivative becomes

∂

∂ωER
PGR(ωER)

=
(

ωER + β(1 + ωER)

1 − β(1 + ωER)

κ

λ

)β β s
κ
(ωER)2 + [(1 + β)r − (1 − β) s

κ

]
ωER + βr

(ωER + β(1 + ωER))(1 − β(1 + ωER))(1 + ωER)2
.

(5.13)

Here, we again will consider three different subcases r ≥ s
κ
, r ≤ 0 and r ∈ (0, s

κ

)
.

If r ≥ s
κ
, then (1 + β)r − (1 − β) s

κ
> 0 and other multipliers and summands

in formula (5.13) are also positive. Hence, ∂
∂ωER

PGR(ωER) > 0 and so PGR(ωER)

increases monotonically in ωER . Therefore, PGR∗ = PGR
(
ω∗

ER

) = s+rλ
κ+λ

, where

ω∗
ER ≥ (1−β)λ−βκ

(1+β)κ+βλ
; the optimal preferences are such that ω∗

E ≥ (1−β)λ−βκ

(1+β)κ+βλ
ω∗

R , and the
optimal level of education is α∗ = 1. This proves case 3 (a).

Let us note, that stationary points of PGR(ωER) are given by equation:
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β
s

κ
(ωER)2 +

[
(1 + β)r − (1 − β)

s

κ

]
ωER + βr = 0, (5.14)

whose roots, if real, are

ω
1,2
ER = 1

2β s
κ

([
(1 − β)

s

κ
− (1 + β)r

]
±
√( s

κ
− r
)[

(1 − β)2
s

κ
− (1 + β)2r

])
.

(5.15)

(subscript 1 corresponds to “−”, subscript 2 corresponds to “+“). As the left-hand
side of (5.14) is quadratic with respect to ωER , and other multipliers in (5.13) are
positive, we conclude that PGR(ωER) increases for ωER ≤ ω1

ER and decreases for
ω1

ER ≤ ωER ≤ ω2
ER and then it again increases for ωER ≥ ω2

ER .
If r ≤ 0, thenω1

ER ≤ 0 andω2
ER ≥ 1 and, hence, PGR(ωER) decreases on segment

[
0, (1−β)λ−βκ

(1+β)κ+βλ

]
. Therefore, PGR∗ = PGR

(
ω∗

ER

)=
(

β

1−β
κ
λ

)β(
[1 − β] s

κ
+ βr

)
, where

ω∗
ER = 0, with preferences such that ω∗

E = 0 being optimal, and the optimal level of
education is α∗ = β

1−β
κ
λ
. This proves case 1 (a).

Finally, consider r ∈ (0, s
κ

)
. Consider the expression under the square root in

(5.15): (1 − β)2 s
κ

− (1 + β)2r . Its roots are given by β1,2 =
(√

s
κ
±√

r
)2

s
κ
−r . One can

prove that β1 =
(√

s
κ
+√

r
)2

s
κ
−r > 1 and β2 =

(√
s
κ
−√

r
)2

s
κ
−r < 1.

If β ∈ [
β2,

λ
λ+κ

)
, then the roots in (5.15) are either imaginary or real and

coincide. Hence, due to monotone increasing of PGR(·) in this case, PGR∗ =
PGR

(
ω∗

ER

) = s+rλ
κ+λ

, where ω∗
ER ≥ (1−β)λ−βκ

(1+β)κ+βλ
; the optimal preferences are such

that ω∗
E ≥ (1−β)λ−βκ

(1+β)κ+βλ
ω∗

R , and the optimal level of education is α∗ = 1. This proves

case 3 (b) for β ∈ [β2,
λ

λ+κ

)
.

Now let us considerβ ∈ (0, β2). In this case ω̄∗
ER = ω1

ER > 1 and functionPGR(·)
achieves itsmaximumon segment

[
0, (1−β)λ−βκ

(1+β)κ+βλ

]
either on the border (atω∗

ER(β) = 0

or at ω∗
ER(β) = (1−β)λ−βκ

(1+β)κ+βλ
) or at the local maximum point ω∗

ER(β) = ω̄∗
ER(β) (if

ω̄∗
ER(β) ∈

[
0, (1−β)λ−βκ

(1+β)κ+βλ

]
). Note that ω∗

ER(β) �= 0 because PGR(·) increases for

0 ≤ ωER ≤ ω̄∗
ER . Let us write the values of PGR(ωER) at the other two points:

PGR

(
(1 − β)λ − βκ

(1 + β)κ + βλ

)
= s + rλ

κ + λ
= d,

PGR
(
ω̄∗

ER(β)
)

=
(

ω̄∗
ER + β

(
1 + ω̄∗

ER

)

1 − β
(
1 + ω̄∗

ER

)
κ

λ

)β [
1 − β

(
1 + ω̄∗

ER

)]
s
κ

+ [ω̄∗
ER + β

(
1 + ω̄∗

ER

)]
r

(
1 + ω̄∗

ER

)

= f (β).
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Let us consider two subcases: λ >
√

sκ
r and λ ≤ √ sκ

r .
If λ >

√
sκ
r , one can prove that the following inequalities hold: f (0) − d > 0,

f (β2) − d < 0 and f (·) is a monotone decreasing function for β ∈ (0, β2). Then
there exists a unique β̄∗ ∈ (0, β2) such that f

(
β̄∗
) = d.

Therefore, ifβ ∈ (0, β̄∗
)
, then f (β) > d and PGR∗ = PGR

(
ω∗

ER

) = PGR
(
ω̄∗

ER

)
,

where ω∗
ER = ω̄∗

ER ; the optimal preferences are such that ω∗
E = ω̄∗

ERω∗
R, and the

optimal level of education is α∗ = ω̄∗
ER+β(1+ω̄∗

ER)
1−β(1+ω̄∗

ER)
κ
λ
. This proves case 2 for λ >

√
sκ
r .

If β ∈ [β̄∗, β2
)
, then f (β) < d and PGR∗ = PGR

(
ω∗

ER

) ≡ s+rλ
κ+λ

, where ω∗
ER ≥

(1−β)λ−βκ

(1+β)κ+βλ
; the optimal preferences are such that ω∗

E ≥ (1−β)λ−βκ

(1+β)κ+βλ
ω∗

R and the optimal

level of education is α∗ = 1. This proves case 3 (b) for β ∈ [β̄∗, β2
)
and λ >

√
sκ
r .

For the case λ ≤ √
sκ
r let us put β̄∗ = λ(s−rκ)

rλ2+(s+rκ)λ+sκ < β2. One can prove

that f (0) − d > 0, f
(
β̄∗
) = d and the function f (β) is monotone decreasing for

β ∈ (0, β̄∗
)
.

Hence, if β ∈ (0, β̄∗
)
, then PGR∗ = PGR

(
ω∗

ER

) = PGR
(
ω̄∗

ER

)
where ω∗

ER =
ω̄∗

ER ; the optimal preferences are such that ω∗
E = ω̄∗

ERω∗
R, and the optimal level of

education is α∗ = ω̄∗
ER+β(1+ω̄∗

ER)
1−β(1+ω̄∗

ER)
κ
λ
. This proves case 2 for λ ≤ √ sκ

r .

If β ∈ [β̄∗, β2
)
, then ω̄∗

ER(β) ≥ ω̄∗
ER

(
β̄∗) = λr

s = (1−β̄∗)λ−β̄∗κ
(1+β̄∗)κ+β̄∗λ ≥ (1−β)λ−βκ

(1+β)κ+βλ

whichmeans that localmaximumpoint is outside the considered segment and, hence,
PGR∗ = PGR

(
ω∗

ER

) ≡ s+rλ
κ+λ

, where ω∗
ER ≥ (1−β)λ−βκ

(1+β)κ+βλ
; the optimal preferences are

such that ω∗
E ≥ (1−β)λ−βκ

(1+β)κ+βλ
ω∗

R , and the optimal level of education is α∗ = 1. This

proves case 3 (b) for β ∈ [β̄∗, β2
)
and λ ≤ √ sκ

r .
The proof is complete.

�
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6.1 Introduction

This paper extends the novel numerical modelling of optimal climate change policy
responses developed in Semmler et al. [15]. In that paper, the dynamic decision
problemwas solved under a single regime of fixed exogenous parameters. We extend
that framework here to consider multiple regimes. Under updated parameterizations,
we compare the single-regime model against a multi-regime specification in which
a new climate financing mechanism—“green bonds”—are introduced to the policy
set. The regimes are exhaustive and sequential meaning, there is no possibility of
the model returning to an earlier phase. In order to solve the multi-regime model a
new numerical algorithm is applied: the arc parameterization method (APM). APM
ensures continuous trajectories of the model’s state variables, making the numerical
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solution more realistic. We find that the multi-regime model is Pareto-superior to the
single-regime version.

The multi-regime model builds on the structure in Semmler et al. [15], which
develops an integrated assessment model (IAM) of climate change’s impact on
social welfare. In that paper, the finite-horizon model continually solves for the
optimal financing allocation to three climate change policy responses: (i) mitiga-
tion of increased CO2 emissions; (ii) adaptation to the unavoidable consequences of
climate change and (iii) investment in carbon-neutral, productivity-enhancing infras-
tructure. Under various sensitivity tests, the consistent optimal solution was found to
prioritize funding of the latter category—productivity-enhancing infrastructure—to
a much greater extent than the other two policy areas (i.e. over 90% of the total
budget).

This policy-focused IAM is extended here to include a new public finance
mechanism—so-called “green bonds”—designed to support climate change policy
action. The funds raised by green bonds must be allocated to environmental efforts
(i.e. among the three allocation options) and are repaid over very long horizons. As
argued by Sachs [14], Flaherty et al. [6] and Heine et al. [7], such green bond financ-
ing generates more equitable intergenerational outcomes. Intergenerational equity is
improved because repayment of the green bonds is a cost faced by future genera-
tions who will reap the benefits of an economy spared the worst of climate change’s
impacts as a result of policies undertaken by earlier generations. It follows that at
least two model regimes are required: a period of green bond issuance and a period
of their repayment. We also include an antecedent regime in which green bonds do
not exist; this represents the current policy world and is similar to the single-regime
model in Semmler et al. [15]. We show that the introduction of green bonds reduces
total emissions, increases private and public capital, and results in higher overall
welfare.

The remainder of the paper is organized as follows. Section 6.2 describes the
general form of the IAM. Section 6.3 describes the numerical solution techniques.
Sections 6.4 and 6.5 present the results for the single-regime model and its multi-
regime extension, respectively. Section 6.6 reports on sensitivity analyses applied to
the multi-regime model. Section 6.7 concludes.

6.2 Model Description

Climate change economicmodels are complex dynamic systems that typically do not
lend themselves to standard, closed-form solutions. Common work arounds include
linearizing the dynamic system or generating exogenous macroeconomic trajec-
tories that are later integrated with climate dynamics.1 In contrast, our integrated
assessment model (IAM) numerically determines optimal control solutions for the
full dynamic system. The model described below extends the IAM developed in

1See Bonen et al. [2] for a further discussion.
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Semmler et al. [15]. Note that in spite of the use of capital letters, all variables are in
per capita terms.

The dynamic system is driven by the state variables X = (K , R, M, b, g) ∈ R5

as defined by the following equations:

K̇ = Y · (ν1g)
β(1 − τk) − C − eP − (δK + n)K − u ψR−ζ , (6.1)

Ṙ = −u, (6.2)

Ṁ = γ u − μ(M − κ ˜M) − θ(ν3 · g)φ, (6.3)

ḃ = (rt − n)b − α4eP − Y · (ν1g)
βτk + ςkg, (6.4)

ġ = α1eP − (δg + n)g + ςkg, (6.5)

where K is the stock of private capital, R is the stock of the non-renewable resource,
M is the atmospheric concentration of CO2, b is the public debt level and g is the
stock of public capital. Note that it is from g that climate policy actions are funded.2

The dynamic system in (6.1)–(6.5) extends Semmler et al. [15] by introducing
k > 1 regimes. Specifically, τk and ςk are regime-specific parameters that define three
regimes (k = 1, 2, 3). When τk = ςk = 0 there are no green bonds in circulation. For
ςk > 0, green bonds are issued and the funds allocated to the stock of public capital
used for climate change action, g. When τk > 0, a special income tax is levied to
pay down public debt, b.

The accumulation rate of private capital K̇ is driven by, among other factors,
output generated under a CES production function in which K and the extracted
non-renewable resource u are inputs,

Y (K , u) := A(AK K + Auu)α. (6.6)

Here A is multifactor productivity, AK and Au are efficiency indices of the inputs K
and u, respectively. In (6.1) private-sector output Y is modified by the infrastructure
share allocated to productivity enhancement ν1g, for ν1 ∈ [0, 1]. This public-private
interaction generates gross output Y (ν1g)β .3 When green bonds are being repaid,
τk > 0 reduces net output to Y (ν1g)β(1 − τk), fromwhich the economy consumesC ,
pays a lump sum tax eP , and is subject to physical δK anddemographicn depreciation.
The last term in (6.1) is the opportunity cost of extracting the non-renewable resource
u, where ψ and ζ are the scale and shape parameters that tie the marginal cost of u
to the remaining stock of the resource à la Hotelling [9].

The dynamics Ṙ and Ṁ specify the environmental drivers of climate change.
Equation (6.2) is the stock of the non-renewable resource R depleted by u units in
each period. The depletion rate is constrained such that 0 ≤ u(t) ≤ 0.1,∀t . Equation
(6.3) defines the change of CO2, which is affected nonlinearly by mitigation efforts,

2All variables are in per capita terms.
3The exponent β is the output elasticity of public infrastructure, ν1g.
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ν3g.4 The non-renewable resource emits carbon dioxide and thus increases the atmo-
spheric concentration of CO2 at the rate γ. The environmentally stable level of CO2

concentration is κ > 1 times the pre-industrial level ˜M . CO2 levels at or below this
level are naturally re-absorbed into the ecosystem (e.g. oceanic reservoirs) at the
rate μ. The last term in (6.3) is the reduction of per-period emissions Ṁ due to the
allocation of ν3 ∈ [0, 1] of public infrastructure g to mitigation projects.

The dynamics ḃ and ġ specify the government’s fiscal stance.Revenue is generated
from the lump sum tax eP and the regime-specific income tax used to repay green
bonds, τk . The latter flows directly to debt repayment. The former is allocated among
shares

∑4
i=1 αi = 1: capital accumulation α1, social transfers α2 and administrative

overhead α3 > 0. The remainder α4 = 1 − α1 − α2 − α3, pays down the stock of
debt. Further, we constrain the lump sum tax to be 0 ≤ eP ≤ 1,∀t .

In addition to repayments α4eP and τk , public sector surplus/deficit ḃ in (6.4) is
driven by the time-varying interest rate rt , and green bond issuances ςkg. The growth
of public capital, Eq. (6.5), evolves according to the revenue stream α1eP and funds
raised from green bond issuance ςkg, but depreciates at the population-adjusted rate
of δg + n.

The objective function is the economy’s per capita social welfare. Welfare W is
maximized over a given planning horizon [0, T ], where T > 0 denotes the terminal
time.Using aCESwelfare function,welfare is a function of T , state variables X ∈ R5

and control variables U :

W (T, X,U ) =
∫ T

0
e−(ρ−n)t

(

C · (α2eP)η
(

M − ˜M
)−ε

(ν2g)
ω
)1−σ − 1

1 − σ
dt. (6.7)

Private consumption C is augmented by three factors: (i) the share α2 ∈ [0, 1] of tax
revenue eP used for direct welfare enhancement (e.g. healthcare, social services); (ii)
the amount bywhich atmospheric concentration of CO2 M is above the pre-industrial
level ˜M and (iii) the share ν2 ∈ [0, 1] of public infrastructure g allocated to climate
change adaptation. Exponents η, ε,ω > 0 ensure social expenditures and adaptation
are welfare enhancing, whereas carbon emissions produce a disutility.5 Finally, the
pure discount rate ρ is adjusted by the population growth rate n.

The policymaker maximizes (6.7) subject to (6.1)–(6.5) via the control vector

U = (C, eP , u, ν1, ν2, ν3) ∈ R6. (6.8)

4Use of R emits carbon dioxide increasing M at the rate γ. The stable level of CO2 emissions is
κ > 1 of the pre-industrial level ˜M . Some CO2 is absorbed into oceanic reservoirs at the rate μ.
5Note that instead of an independent damage function mapping climate change into output reduc-
tions, (6.7) treats climate change as a direct welfare loss. Adaptation efforts are modelled in a
similarly direct fashion. We adopt this approach because the welfare impacts of climate change are
not limited to lost productivity. For example, loss of life will increase from changing disease vectors
and more intense heat waves.
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Table 6.1 Definition of climate change policy funding shares

Variable Definition In equations

ν1 Investment in carbon-neutral private infrastructure K̇ (6.1) and ḃ (6.4)

ν2 Climate change adaptation. Funds used to increase
the population’s resilience to climate change

W (6.7)

ν3 Climate change mitigation. Funds used to reduce
CO2 emissions

Ṁ (6.3)

As noted, C is per capita consumption, eP is a tax on capital gains and the rate of
non-renewable resources extracted per period is u. The control variables ν1, ν2 and ν3
determine the allocation of public capital g to carbon-neutral private capital, climate
change adaption and climate change mitigation efforts, respectively (see Table 6.1).6

As shares of g, νi ∈ [0, 1], i = 1, 2, 3 are constrained by
∑3

i=1 νi = 1, total climate
change policy funding levels are therefore ν1g, ν2g and ν3g.

All parameters for the model defined in Eqs. (6.1) through (6.7) are listed in
Table 6.2.

6.3 Numerical Solution Techniques

The control problem is discretized on a fine grid, generating a large-scale nonlinear
programming problem which is formulated with the Mathematical Programming
Language AMPL; see Fourer et al. (1993). In AMPL we employ the interior-point
optimization solver IPOPT (seeWächter andBiegler, 2006), that furnishes the control
and state variables aswell as the adjoint (co-state) variables. In thisway,we are able to
checkwhetherwe have found an extremal solution satisfying the necessary optimality
conditions. To this end, we first derive an analytical expression of the control as a
function of state and adjoint variables via the Maximum Principle. Inserting the
computed values of state and adjoint variables into this analytical expression, the
values must agree with the directly computed control values with a given tolerance.
To verify sufficient conditions for local optimality, we could apply the second-order
sufficient conditions presented in Augustin and Maurer [1]. This test amounts to
verifying that an associatedmatrixRiccati equation has a bounded solution.However,
since this is a rather elaborate procedure, we refrain from performing this test.

The IPOPT solver is sufficient for single-regime models and was implemented
for the solutions reported in Semmler et al. [15]. For the multi-regime extension we
introduce a novel application of the arc parameterization method (APM). In Sect.
6.5.3 we show that the APM approach produces realistic trajectories that are Pareto-
superior to those of the single-regimemodel. Belowwe provide a brief description of
the arc parameterization method. A full explanation of APM is offered in Appendix.

6Under a single-regime setting, Semmler et al. [15] demonstrate incorporating the νi as controls in
U improves welfare outcomes versus treating them as fixed parameters.
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Table 6.2 Parameter values

Variable Value Definition

ρ 0.03 Pure discount rate

n 0.015 Population growth rate

η 0.1 Elasticity of transfers and public spending in utility

ε 1.1 Elasticity of CO2-eq concentration in (dis)utility

ω 0.05 Elasticity of public capital used for adaptation in utility

σ 1.1 Intertemporal elasticity of instantaneous utility

A 1 Total factor productivity

AK 1 Efficiency index of private capital

Au 100 Efficiency index of the non-renewable resource

α 0.05 Output elasticity of privately owned inputs,
(AkK + Auu)α

β 0.5 Output elasticity of public infrastructure, ν1g

ψ 0.1 Scaling factor in marginal cost of resource extraction

ζ 2 Exponential factor in marginal cost of resource
extraction

δK 0.075 Depreciation rate of private capital

δg 0.05 Depreciation rate of public capital

α1 0.1 Proportion of tax revenue allocated to new public capital

α2 0.7 Proportion of tax revenue allocated to transfers and
public consumption

α3 0.1 Proportion of tax revenue allocated to administrative
costs

rt 0.07 Interest rate charged on debt, fixed ∀t
˜M 1 Pre-industrial atmospheric concentration of greenhouse

gases

γ 0.9 Fraction of greenhouse gas emissions not absorbed by
the ocean

μ 0.01 Decay rate of greenhouse gases in atmosphere

κ 2 Atmospheric concentration stabilization ratio (relative to
˜M)

θ 0.01 Effectiveness of mitigation measures

φ 1 Exponent in mitigation term (ν3 g)φ

6.3.1 Application of Arc Parameterization

Multi-process (multi-phase) optimal control problems have been studied by Clarke
and Vinter [4, 5] and later by Augustin and Maurer [1]. To solve our optimal multi-
phase control problem, we implement the arc parameterization presented in Maurer
et al. [12], Loxton et al. [11] and Lin et al. [10], along with discretization and
nonlinear programming methods used previously. Although Maurer et al. [12] apply
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the arc-parametrization method (APM) only to bang-bang control problems, the
APM is extended here to a continuous, multi-phase control problems (see Appendix
for further details).

Following this work, we define the multi-process control problem on a grid of
t ∈ [0, T ] with s + 1 phases (regimes) occurring at switch points tk ∈ (0, T ), k =
1, ..., s. Discretization is achieved via a uniform grid of mesh points

τi = i · h, h = 1

N
, i = 0, 1, . . . , N .

The mesh size N must be a multiple of the number s + 1 of intervals. This condition
ensures that the phase boundaries (k + 1)/(s + 1), k = 0, . . . , s + 1, appear as knot
points in the applied integration schemes. The resulting discretized control problem
is then formulated as a large-scale nonlinear programming problem (NLP) in AMPL.

We define multiple regimes on the specified mesh grid as s + 1 ordinary differ-
ential equations. Let the dynamics of the economic process in the interval [tk, tt+1]
be given by

ẋ(t) = fk
(

x(t), u(t)
)

, tk ≤ t ≤ tk+1 (k = 0, 1, . . . , s), (6.9)

where the right-hand side of the ODE is a C1 function.
A continuous state trajectory x(t) on the entire interval [0, T ] is obtained by

imposing the continuity condition

x(tk) = x(tk−), k = 1, . . . , s. (6.10)

Note that the continuity of the state variables in (6.10) does not automatically ensure
the continuity of the control variables; in fact, these can jump when the system
transitions between policy phases.

6.4 Single-Phase Model

The model defined in Eqs. (6.1)–(6.7) is discretized on a fine grid t ∈ [0, 70]. While
each integer step can be said to represent one year, discrete steps are set at�t = 0.05
for the single-phase model, ie., we use N = 1400 grid points. For the multi-phase
model, subsequently discussed, we also use N = 1400 or a refined grid. The finer
grid helps the multi-phase pathways be smoother than otherwise. Importantly, the
single-phase model does not allow for green bonds or a new tax for repayment.
Therefore, the parameters are set at ςk = τk = 0 in Eqs. (6.1), (6.4) and (6.5) for the
single-phase model.

The numerical solution technique employed in AMPL requires initial values for
each state variable. In addition, model stability is ensured by placing terminal value
boundaries (maxima or minima) on certain state variables. The initial values and
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Table 6.3 Initial values and terminal constraints

Variable Initial value t = 0 Terminal value t = 70

K (t) 10 ≥15

M(t) 2.5 ≤2.5

R(t) 1.5 ≥0

g(t) 0.5 Unconstrained

b(t) 0.8 Unconstrained
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Fig. 6.1 Government debt, taxes and consumption in single-regime model

terminal constraints are listed in Table 6.3. Note that the terminal constraints ensure
that there is at least a 50% increase in private capital over the 70-year period and that
CO2 concentration will only increase slightly over the entire period. In other words,
the parameterizations presume climate action is successful. This differs from the
setup in Semmler et al. [15] which considered climate policy optimization against a
baseline of “business as usual” (i.e. no investment in climate change policies).

Figure 6.1 shows the trajectories of government debt b, taxes eP and consumption
C over the full horizon. Government debt at first rises as various investments are
made, but as the terminal point t = T approaches, public debt is driven toward zero
so that there are no outstanding obligations at the end of the finite horizon (i.e. no
Ponzi schemes are allowed). This downward trend to b(T ) = 0 is driven by increase
is the tax rate eP which peaks at t = 48. Throughout this trajectory consumption
increases as it is the major component of welfare in (6.7).

The positive consumption growth rate in the face of increasing taxation comes at
the cost of lower investment in capital—both private and public. Figure 6.2 shows the
trajectory of private capital stock K . After an initial, brief contraction K increases
by approximately 60%. But, in the final 11 periods of the model, the tax burden takes
its toll and private capital falls rapidly, and then recovers slightly toward its terminal
constraint K (T ) = 15. Public capital follows a similar pattern, albeit without the
slightly recovery at the terminal point. It increases from g(0) = 0.5 to g(56) = 1.2,
only to fall back slightly in the final years of model. The retrenchment is more
dramatic for g than it is for K , with public capital stock reaching 0.89 at the terminal
point.
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Fig. 6.3 Public capital stock in single-regime model

In addition to reducing the private and public capital stocks, the increased tax
revenue needed to pay off government debt has another perverse impact: increas-
ing CO2 emissions. Recall that private capital K is a carbon-neutral input for the
production of Y , with the extracted non-renewable resource u being the alternative
input.7 We find that u(t) ≈ 0 for t < 67, but becomes positive thereafter. At t = 67
the extraction rate u rapidly increases (see Fig. 6.4). This behaviour in the model’s
final decade is driven by the shift in production toward fossil fuel inputs that allow the
economy to achieve the no-Ponzi condition b(T ) = 0 without negatively impacting
consumption (Fig. 6.3).

7See Eq. (6.6) and accompanying text. We also want to note the long period of no fossil fuel energy
extraction comes from the fact that the carbon stock is presumed to start at a low initial level as well
as the low efficiency of the fossil fuel-based energy assumed, i.e. Au = 100 (see Sect. 6.6 below).
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Fig. 6.5 CO2 emissions in single-regime model

The sudden jump in u translates into additional carbon emissions M . Figure 6.5
shows that reliance on K in production corresponds with a steady decline in CO2

emissions. This decline is completely reversed by the re-introduction of u in produc-
tion. Evidently, the somewhat generous terminal condition applied to M(T ) allows
for this fossil fuel-intensive behaviour.

Finally, Fig. 6.6 shows the relative allocation of g to infrastructure ν1, adaptation
efforts ν2 and emissions mitigation ν3. The results are consistent with those reported
in Semmler et al. [15]. Namely, approximately 96% of g is allocated to ν1, 4%
to ν2 and essentially 0% to ν3 during the first 57 periods. For t > 60, ν1 declines
slightly as K falls to it terminal value and adaptation efforts ν2 increase slightly as
non-renewable extraction rates increase (see Fig. 6.4).
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Fig. 6.6 Optimal distribution of public capital in single-regime model

6.5 Multi-phase Extension of the Model

The multi-phase model uses the same parameterization listed in Table 6.2, as well
as the same initial values and terminal constraints in Table 6.3.8 As discussed in
Sect. 6.5 and Appendix, the nonlinear multi-phase problem is solved using the arc
parameterization method (APM). In accordance with the continuity condition in
(6.10), the state variables transition continuously between regimes. However, the
model solution generates discontinuous jumps in the controls variables. This is a
natural result of the changed dynamic system introduced as the model shifts from
one policy environment to another.9

The multi-regime model presented here assumes fixed switching points. While it
is computationally feasible for the transition times to be endogenously and optimally
determined as part of the dynamic system’s solution [12], we do not allow for this
extra complexity here. Beyond the greater computational expense, preliminary test-
ing indicates that time spent in the second regime (when green bonds are issued) is
maximized. This is not surprising as this regime is not constrained by the no Ponzi
condition. However, such a result is neither realistic nor helpful as the dynamics
of the two other, extremely short regimes become impossible to discern. The three
regimes are thus fixed on the intervals t ∈ [0, 20], t ∈ (20, 40] and t ∈ (40, 70].

8Of course, the initial values apply only to the starting values in phase 1 and the terminal constraints
bind only at T = 70, at the end of the third phase.
9DSGE models have also recently allowed for regime switches (see [8], Sect. 7.2), but not address
the issue of discontinuities in the control variables.
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6.5.1 Regimes of the Multi-phase Model

The first phase, “no green bonds”, corresponds exactly to the single-phase model
discussed inSect. 6.4. In particular, ςk = τk = 0 for k = 1. In the secondphase, k = 2,
green bonds are introduced as a financing option ς2 > 0.We choose the specific value
ς2 = 0.05. The long-term nature of the green bonds means no repayments are made
in k = 2, such that τ1 = τ2 = 0. In the third and final phase the green bonds come
due and the government ceases issuance, ς3 = 0. Repayment is conducted through
a special income tax set at 3%, τ3 = 0.03. Although the accumulated green bond
debt feeds into the same overall public debt level, b, the special tax τk provides the
policymaker with a new mechanism by which to raise revenue. The policymaker can
of course continue to control the value of capital taxation eP throughout the model’s
three phases.

The introduction of a new asset—green bonds—has implications for financial
markets. In general, the issuance of the new green bonds—especially when scaled
up—will have price and rebalancing effects on the asset market.10 In our context we
assume that wealth-holders have many assets in their portfolio, such as cash, equity,
real estate and bonds. Further, we assume all green bonds are sold at issuance, which
implies that wealth-holders bid prices down to a market clearing level. This affects
the relative price and return across assets, but can simply be thought of as causing
a rebalancing of different types of assets in the portfolio. A similar but more static
approach is considered by Tobin [16] in macroeconomic portfolio theory where
asset accumulation and portfolio allocation decisions interact with the real side of
the economy. A dynamic extension of Tobin’s approach is developed in Chiarella
et al. [3] in which there are simultaneous asset accumulation and dynamic portfolio
decisions.11

In the graphical results that follow, the first phase in which no green bonds have
been issued is plotted in red. The second phase—green bond issuance—is coloured
green, and the third phase, repayment, is blue.

6.5.2 Multi-phase Model Results

As in the single-regime model, government debt b builds up rapidly before being
driven to the no-Ponzi condition b(T ) = 0. However, the trajectory of b is somewhat

10In addition, when green bonds portend reductions in CO2-emitting energy sources, their issuance
might lead to significant devaluation of assets representing fossil fuels if this is expected to increase
the risk of these assets becoming (so-called) “stranded” assets. Formally introducing this effect is
left for later work.
11Note that in the present context the Ricardian equivalence theorem, which says that the real side
of the economy will not be affected by deficit spending financed through issuing of bonds, is not
applicable in this context. This is because green bonds are used to reduce future damages to GDP,
and thus carry some future returns from their investments (in particular from public infrastructure).
For details, see Orlov et al. [13].
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Fig. 6.7 Public debt in 3-regime model
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Fig. 6.8 Capital taxation level in 3-regime model

different and specific to the three regimes (see Fig. 6.7). In the first phase, government
debt b increases only mildly and even decreases mildly ahead of the green bond
issuance phase. Unsurprisingly, the introduction of green bonds increases the stock
of public debt threefold to 2.6. The debt level reverses course only as the repayment
phase is introduced at t = 40.

Interestingly, the standard taxation rate chosen by the policymaker follows a rather
different path than before. Figure 6.8 shows eP rising rapidly at the end of phase 1
and hits the constraint eP ≤ 1. The introduction of green bonds allows for the rapid
reduction of taxation rates. In the final phase, standard taxation rates increase so as
to help reduce the overall tax burden.

Consumption follows a similar upward trajectory in the first and second regimes,
but then retrenches slightly in the third phase (see Fig. 6.9). The fall in per capita con-
sumption in k = 3 is due to the reduction in output Y stemming from the special tax
τk . Yet, at its peak per capita consumption reachesC = 2.97, surpassing themaximal
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Fig. 6.10 Private capital stock in 3-regime model

observed in the single-phase model, C = 2.70. This higher maximal consumption
contributes to the overall welfare improvement of the multi-phase model relative to
the single-phase version (see Sect. 6.5.3).

Both private and public capital follow as similar pattern as seen in the single-
regimemodel: a rapid increase over the first two-thirds of the finite horizon is reversed
with a retrenchment in both as t → T . As before, the retrenchment of private capital
K is partially reversed in the final stages of the model (Fig. 6.10), whereas public
capital declines monotonically during the third phase (Fig. 6.11).

Carbon dioxide emissions M follow a nearly identical pattern trajectory in the
three-regime model in Fig. 6.12 as in the single-regime model (see Fig. 6.5). As
before, the terminal value M(T ) = 2.5 is the reason for the sudden jump in emis-
sions. This constraint can be thought of as a politically determined contract to limit
emissions at a higher than optimal level. Where a lower political bound for emissions
agreed upon, the final level of emissions modelled would of course be lower as well.
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Figure 6.13 displays some of the discontinuities of the νi control variables as
the system enters a new regime. In particular, the third regime exhibits additional
investments in adaptation efforts, which then slowly reduces as t → T . Mitigation
efforts remain steady and around zero throughout the three regimes. The effect of
these shifts in allocations is to reduce the rate of investment of public capital g into
green infrastructure K relative to the single-phase model (see Fig. 6.6). The average
allocation to K is slightly lower at approximately 94% in the multi-regime model
versus 95% in the single-regime model.

6.5.3 Comparison of Welfare Results

The single and multi-regime models share similar overall pathways, but the slight
differences accumulate to large total welfare differentials (see Table 6.4). Average
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Table 6.4 Single and multi-phase model key variable comparison

Average Terminal Maximum

Single regime

Consumption C 1.42 2.69 2.70

Private capital K 12.82 15.00 16.04

Public capital g 0.85 0.89 1.23

Carbon emissions M 2.36 2.50 2.50

Multi-regime

Consumption C 1.66 2.05 2.97

Private capital K 12.63 15.00 17.48

Public capital g 1.02 0.80 1.65

Carbon emissions M 2.38 2.50 2.50

Social welfare Total

Single regime W −21.48

Multi-regime W −12.34

consumption over time was higher in the multi-regime model (1.7 versus 1.4), as is
the single-periodmaximumvalue (3.0 vs. 2.7). The stock of private and public capital
shifted from the single to the multi-regime model. Average K declined slightly in
the multi-regime model, whereas average g increased when green bonds were intro-
duced. As expected, from the trajectories observed above, CO2 concentration levels
are virtually identical in the two models, which the multi-regime model exhibiting
marginally higher average M (2.38 vs. 2.36).

The higher average pathway of C generated a significantly higher overall social
welfare value for the multi-regime model. The values calculated from Eq. (6.7),
show that the multi-regime model is superior with at Wmulti (T ; X;U ) = −12.3 as
compared to the single-regime model’s total welfare value of Wsingle(T ; X;U ) =
−21.5.
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6.6 Sensitivity Analysis

Finally, we present here some sensitivity analyses of the multi-phase IAM. The
focus is on the efficiency index of Au , which sets the relative productivity level of
the non-renewable resource in production. The model results discussed above set
Au = 100. We compare the trajectories for several key variables with higher non-
renewable input productivity, for Au = 300 and Au = 500. This is a particularly
important parameter to test since there was little extraction and use of the non-
renewable resource under the initial parameterization. Unsurprisingly, for higher Au

parameterizations the extraction rate u becomes substantially higher.
With a more productive non-renewable resource, production uses a greater level

of u as an input (see Eq. 6.6). The direct result of this is the increased level of CO2

emissions in the atmosphere. Figure 6.14 shows emissions falling persistently in the
baseline case Au = 100 (in red) until the terminal constraint pulls it up in the final
periods. For Au = 300 (in green) and Au = 500 (in blue), emissions rise rapidly
in the early phases of the model before trending down to the fixed terminal point
M(T ) = 2.5.

The six panels in Fig. 6.15 show the pathways under Au = 100, 300 and 500 for
public g and private K capital, consumption C and public debt b, and the allocation
of public capital productivity enhancements ν1 and climate change mitigation ν3. In
general, the large change (a 3- to 5-fold increase) in the Au efficiency index leads
to relatively small shifts in these variables’ pathways. Further, in each case the shift
in trajectories move the expected direction. Public and private capital accumulation
rises faster and peaks at a higher level as one of the inputs to production is made
cheaper (viz. more productive). Consumption is higher in all periods as Au rises, and
the allocation to productivity-enhancing capital ν1 falls relative to the baseline as the
higher carbon emissions rise. In place of ν1, public capital is shifted toward greater
CO2 mitigation efforts, ν3, in the third phase of the model as a response to the higher
emissions generated from non-renewable resource-intensive production.
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Fig. 6.14 Sensitivity test of CO2 emissions
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6.7 Conclusion

In Semmler et al. [15]we developed an integrated assessmentmodel (IAM) explicitly
accounting for the extraction and use in production of CO2-emitting resources, as
well as the optimal allocation of public finances to counter climate change. We have
extended that IAM framework here to consider how new policies, specifically green
bond financing, could be introduced to the set of available policies. To achieve this,
we posited a 3-regime model in which green bonds are (i) non-existent, (ii) issued
and (iii) repaid. The multi-regime model was shown to be Pareto-superior to the
single-regime baseline, and enhanced intergenerational equity.12

Overall, the IAM developed here is an advancement both in terms of the solution
algorithmemployed and in its use of novel,multi-phase dynamics (namely,APM).As
mentioned, the modelling of non-renewable resource extraction and detailed public

12In this context, a recent discussion of proposals for central banks to accept climate bonds as
collateralizable securities is available in Flaherty et al. [6].
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sector policies on climate change are newbut important features in the IAM literature.
In addition we have treated the damage function of climate change as impacting
social welfare directly, as opposed to indirectly through reductions in the rate at
which output is produced. While neither approach is perfect, we have employed
the direct-utility impact version because we believe it is better able to capture the
multitude of physical, ecological and societal losses that are likely to be induced
by unabated climate change. Regardless of how the damage function is introduced,
our framework allows for a multi-phase approach in which new, unforeseen policies,
events and dynamics of the state equations can be introduced and responded to by the
policymaker oriented toward a limited time horizon. We believe this to be a far more
natural framework to address climate-economic-financial questions over a known,
finite period of time.

Appendix: Multi-phase Optimal Control Problems and
Their Numerical Solution

Multi-process (multi-phase) optimal control problems have been studied by Clarke
and Vinter [4, 5] and later by Augustin and Maurer [1]. Suppose that a dynamic
economic process on a given time interval [0, T ] consists of (s + 1) phases (regimes)
that switch at the transition times tk ∈ (0, T ), k = 1, ..., s. The switching times are
ordered according to

0 = t0 < t1 < t2 < · · · < ts < ts+1 = T . (6.11)

In each interval [tk, tk+1], k = 0, 1, . . . s, the dynamics and objectives may be dif-
ferent.

Let x ∈ R
n be the state variable and u ∈ R

m the control variable. The dimen-
sions of the state vector and control vector may be different in different phases. For
simplicity, we refrain here from discussing this general case and assume the same
dimensions in each subinterval. Hence, the dynamics of the economic process in the
interval [tk, tt+1] is given by the ordinary differential equation,

ẋ(t) = fk
(

x(t), u(t)
)

, tk ≤ t ≤ tk+1 (k = 0, 1, . . . , s), (6.12)

where the right-hand side of the ODE is a C1 function fk : Rn × R
m → R

n. The
time tk in (6.12) is understood from the right, while the time tk+1 is taken from the
left. The initial condition and terminal constraints are given as

x(0) = x0, ψ(x(T )) = 0. (6.13)
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We further impose control constraints in each interval,

uk,min ≤ u(t) ≤ uk,max , tk ≤ t ≤ tk+1 (k = 0, 1, . . . , s), (6.14)

with −∞ ≤ uk,min < uk,max ≤ +∞.
A continuous state trajectory x(t) on the whole interval [0, T ] is obtained by

imposing the continuity condition

x(tk) = x(tk−), k = 1, . . . , s. (6.15)

Note that the continuity of the state variables in (6.15) does not automatically ensure
the continuity of the control variables; in fact, these can jump, as we demonstrate
below, when the system transitions between policy phases are studied. Moreover, we
can prescribe interior (transition) conditions for the state variables by

ϕk(x(tk−) = 0, k = 1, . . . , s, (6.16)

with C1 functions ϕk : Rn → R.

In each interval one may also have different objectives which are defined by func-
tions Lk : Rn × R

m → R
n, k = 0, 1, . . . , s. Then the optimal multi-phase control

problem is defined by the following objective:

J (x, u) = max
u

⎧

⎨

⎩

k=s
∑

k=0

tk+1
∫

tk

e−rk ·t Lk(x(t), u(t)) dt

⎫

⎬

⎭

, (6.17)

subject to the constraints (6.12)–(6.15), and rk > 0 for k = 0, 1, . . . , s.
To solve the optimal multi-phase control problem, we implement the

arc-parametrization in Maurer et al. [12] in conjunction with discretization and non-
linear programming methods. Although they apply the arc-parametrization method
(APM) only to bang-bang control problems, the APM can easily be extended to
continuous, multi-phase control problems as follows. Let

ξk = tk+1 − tk, k = 0, 1, . . . , s, (6.18)

denote the arc lengths (or, arc durations) of the multi-process. The time interval
[tk, tk+1] is mapped onto the fixed interval [k/(s + 1), (k + 1)/(s + 1)] by the linear
transformation

t = ak + bkτ , τ ∈
[

k

s + 1
,
k + 1

s + 1

]

, (6.19)

where ak = tk − kξk and bk = (s + 1)ξk . Taken together, the complete time interval
[0, T ] is thereby mapped onto the unit interval [0, 1]. Identifying x(τ ) = x(ak +
bkτ ) = x(t) in the relevant intervals, we obtain the scaled ODE system
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dx

dτ
= ξk(s + 1) · fk

(

tk + τ · ξk, x(τ ), u(τ )
)

(6.20)

for τ ∈ [

k
s+1 ,

k+1
s+1

]

. Note that ξk are treated as optimization variables if the transition
times tk are free.

The time transformation leads us to rescale the objective function (6.17) as fol-
lows:

J (x, u) = max
u

⎧

⎪

⎨

⎪

⎩

k=s
∑

k=0

k+1
s+1
∫

k
s+1

ξk(s + 1)e−rk ·(ak+bkτ )Lk(x(τ ), u(τ )) dτ

⎫

⎪

⎬

⎪

⎭

, (6.21)

and subject to (6.12)–(6.15) and rescaled according to (6.19). For the purposes of
exposition, we fix the transition points tk to reflect the exogenous (and often sub-
optimally protracted) nature of introducing and implementing new policies.
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Chapter 7
On Scientific Innovations and
Constraints: A Dynamic Analysis

Yuri Yegorov and Franz Wirl

7.1 Introduction

Research is a special economic activity. It combines individual and collective efforts
in order to discover new knowledge; even Sir Isaac Newton admitted that he had
to stand on the shoulders of giants in order to see farther. Science consists of many
fields and sub-fields of which it is often unclear at the beginning which will yield
successful (not necessarily useful) knowledge. The crucial feature that we address
in this paper is how a new field gets started. The obstacles are that initiating a new
field provides, at least at the beginning, almost no rewards compared with work in
established and respected and thus well-cited field.

In the past research was a kind of hobby pursued by few. Nowadays it is a produc-
tive sector, financed by research positions and grants paid by the government as well
as research within industries, see e.g., the survey of Diamond [1]. Global expendi-
tures are around US$ 1.7 trillion (according to UNESCO) with the leading countries
spending up and around to 3% of GDP on R&D. Nevertheless, not all is well. There
is high inequality in scientific productivity, discovered about 100 years ago by Lotka
[2], and later described in Merton [3], and currently expressed in the good fittings
of the power law (Pareto) with respect to the numbers of published papers and of
citations. Another crucial feature of science is the observation of serendipity, when
a researcher looks for ‘a’ but discovers ‘b’, Merton (the ‘father of the economist’)
and Barber [4]. The focus of this paper is on modeling research activity, both at
individual and collective levels, and in particular on the emergence and dynamics of
a new research field.

We thank Markus Eigruber for his support (discussions and Figs. 7.1 and 7.2).
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Kuhn [5] describes the phenomenon of “scientific revolution”. Scientific revo-
lutions involve discontinuity in commonly accepted paradigms, cited literature, but
mostly important, a rapid change in the relative number of scientists working in dif-
ferent fields. They happen not frequently due to some obstacles.We suggest that scale
economies can be responsible for that, and model them explicitly. Increasing returns
were studied by different authors from different perspective. Optimal intertemporal
use subject to increasing returns to scale were first addressed in Skiba [6], Sehti
[7] and Dechert and Nishimura [8] with applications in many and different fields:
Brock [9] on lobbying, Brock and Dechert [10] on regulation and more recently in
environmental economics, more precisely about shallow lakes, Maler in [11], and in
endogenous growthmodels startingwith Romer [12]; the analysis of Arthur [13–16])
is complementary. Summarizing, scale economies represent an important but not the
only explanation for multiplicity of equilibria, see Wirl and Feichtinger [17].

The economics of science aims to understand the impact of science on the advance
of technology, to explain the behavior of scientists, and to understand the efficiency
or inefficiency of scientific institutions [1]. In this paper we contribute to the 2nd and
3rd issue, that is: how incentives shape the behavior of individual researchers, how
they interact in expanding old fields and forming new research schools, whether this
process leads to socially efficient outcomes and what should be the lessons for the
policy of scientific institutions.

Stephan [18] notes that “Compensation in science is generally composed of two
parts: one portion is paid regardless of the individual’s success in races, the other
is priority-based and reflects the value of the winner’s contribution to science.” She
argues that while the 1st part (salary) is rather flat, the 2nd part is “much less flat
as the scientist gains prestige, journalistic citations, paid speaking invitations, and
other such rewards”. While the second part creates incentives for individual growth,
it also creates skewness in rewards, discovered by Merton [19].

This paper focuses on policies drawing on mathematical models about produc-
tivity, incentives, and social interactions in science. However, instead of aiming for
a“master” model encompassing all relevant aspects, we present different models that
highlight one aspect at the time. Section7.2 addresses research productivity differ-
entiating between an established and a new field from an individual and a collective
perspective. The crucial characteristic of individual rewards is that it depends also on
collective efforts (possibly cumulative, i.e., all papers published and results known in
a certain field) and that it offers little or no return at all at the very beginning of a new
field; rewards can start even negatively if one counts the attacks from researchers
working in the at the time dominating paradigm. This initial phase is followed by
increasing returns to scale (IRS) that are ultimately declining (decreasing returns
to scale, DRS). Section7.3 addresses these aspects and presents suitable functional
forms for the returns if entering a new field. In Sect. 7.4 we consider the (static)
decisions of individual researchers facing exogenous shifts in the productivity in the
new field. Section7.5 presents instead of the static a dynamic, two-stage set up of a
researcher who can work either in research (first) or (if, then) in another research-
related activity (consulting, management, etc.). Finally (Sect. 7.6), we try to integrate
individual and collective actions and analyze how and under which conditions a new
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field gets started in a competitive setting. The result is: whether a direction of research
is pursued depends not only on the initiation (i.e., the first promising results) but also
on the researchers’ collective expectations about the new field’s prospects. Indeed,
most of the presented models show a non-trivial intertemporal pattern. Section7.7
draws some policy implications from our analysis.

7.2 Research Productivity and Individual Incentives

The goal of this section is to give microeconomic analysis of research activity of a
scientist, addressing social value of research, individual incentives and human capital
as the necessary input.

7.2.1 Human Research Capital

Research differs from other economic activities, and this paper focuses on those
differences and tries to model them from different perspectives. At the individual
level, research productivity depends on the researcher’s own field-specific human
capital, h. Entering a new field and then continuing requires investment into kind
of human capital. It can be accumulated by investment (i) in learning, reading,
participation in conferences, etc., but depreciates at the (constant) rate δ, i.e., human
capital follows the dynamics of physical capital accumulation,

dh/dt = i − δh.

The difference is the shape of the marginal productivity of capital and its dependence
on the efforts of other researchers, currently andmaybe also in the past. Furthermore,
human capital can be used in research but also alternative activities, like teaching,
consulting or in management.

7.2.2 Social Value of Scientific Research

Scientific research creates social value via the implementation of scientific results
in practical applications. It is often impossible to tell a priori which of the many
fields will become socially beneficial and even the experts of the field can get it
wrong. That is why mathematicians work in many abstract fields of which only few
find an application, sometimes long after their discovery (e.g., projective or non-
Euclidean geometry for the general theory of relativity). Nevertheless, any new field
(or intersection of two or more fields, i.e., interdisciplinary or even transdisciplinary
work) is potentially beneficial. A social planner should probably put at least a few
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researchers in every knownfield in order tomaximize the number of future inventions.
Indeed, Acemoglu argues in a number of papers, e.g., Acemoglu [20], for such a
“directed technical change” in order to counter the positive feedback loops generated
within a particular field, e.g., the automobile producers have tendency to improve
the combustion engine with which they are familiar rather than the electric car.
Unfortunately, public funding is conservative. For example, Azoulay,Manso andGra
Zivin [21] show that medical researchers funded by the National Institutes of Health
often pursue less ambitious projects. The sociologist Kuhn [5] attacked Popper’s [22]
(normative theory), the logic of scientific discovery, as an appropriate description of
science and characterized it instead as a rather conservative enterprise sticking to
old paradigms even if facing contradictory result until scientific revolutions sweeps
them away. A reason is that entering a new field is risky and may be ignored by
the mainstream (at least it will receive no or only few citations). Therefore, such an
innovative strategy lacks incentives for an individual scientist.

7.2.3 Productivity of a Researcher

Research is both an individual and a collective activity. Therefore, it is important to
account for the interactions between researchers. Joint activity of researchers creates
collective human capital in a field,1 which (together with private human capital)
influences the productivity of each researcher there.

Let us measure current productivity by the volume of additional knowledge pro-
duced, which is the quality weighted volume of currently written papers. Working in
such a field can be compared with mining.2 At the initial stage, immediately after the
discovery of amine, productivity is very low due to lack of equipment and knowledge
about the size and precise location of the mine. The more is invested, the more is
known and the higher is the return. Therefore, we have scale economies (IRS) in the
beginning of exploiting the mine as information about the location and the size of
the resource size are revealed. However, as experience is gained, the volume remain-
ing in the mine will shrink thereby lowering productivity. The output will reach a
maximum and decline thereafter, i.e., decreasing returns to scale (DRS) take over.
Similarly, a new field of research has a productivity of the IRS-DRS shape, which
has important consequences on the outcome, in particular, whether a field turns into
a prospective one or is abandoned.

1 The field can correspond, for example, to the (first) letter in the JEL classifications in economics
and similar in other sciences. A subfield is then identified by the following two numbers of the
JEL-code. The only crucial point is that we assume that a subfield can be invented by a researcher
(but rarely a larger area which we call field) and generate several publications by one or many
persons.
2 This is only used as ametaphor. Both, mining and research, are looking for useful elements that are
mixed with things useless. The analogy is in growing skills to find a mine (or research subfield) and
in lowering the probability to find something useful after some time of exploitation. Both processes
can be described by similar mathematical models.
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We define with Hi the overall knowledge about a field i and call it aggregate (field
specific) human capital. Although overall knowledge is the aggregate over time (i.e.,
all past findings) and space (i.e., all researchers active in the field) we ignore the
cumulative effect over time for analytical reasons (its analysis added another dynamic
relation) and let Hi denote the human capital of all researchers currently active in
field i . This level of knowledge (Hi ) determines jointly with the field-specific human
capital hij of a researcher j the individual output in each period t ,

yij (t) = F(Hi (t) , hij (t)), (7.1)

with ∂F/∂hij > 0. That is, researchers with higher field-specific human capital will
also be more productive in this field. However, the partial derivative w.r.t. collective
human capital is positive only for small Hi (IRS) but turns negative at large values
of Hi (DRS part). Along the decreasing returns to scale (DRS) part, marginal pro-
ductivity will drop, but agents with sufficiently high hij will still be able to achieve
high output.

7.2.4 Incentives and Private Returns

A researcher selects initially one field, possibly because a professor assigns him to
this field. It is impossible to start a new field alone, because of the lack of knowledge
foundation, F(0) = 0. Only an experienced or risk friendly researcher can do this.
And even if right, he may not obtain the rewards. There are many famous examples
and Ignaz Semmelweis is an often quoted and tragic example. He discovered that
“childbed fever” could be drastically cut by the use of hand disinfection in obstetrical
clinics based on the observation that the assistance of medical doctors instead of mid-
wives increased the death toll substantially. Of course, this insulting hypothesis faced
severe opposition by his colleagues3 for a long time and because he could offer an at
that time (Louis Pasteur came years later) acceptable scientific explanation. Another
historical example is that of Alfred von Wegener, a meteorologist. He proposed the
idea of a super continent from the observation that Latin America fits into the Gulf
of Guinea. This theory was the laughing stock of geologists until they discovered a
few decades later plate tectonics themselves, which allowed them to understand what
Alfred von Wegener conjectured a long time ago. A more recent example is Yoshi-
nori Ohsumi whose research outside mainstream led to path breaking experiments
(autophagy) and was rewarded with the Nobel prize 2016. Or doctors ignore very
rare illnesses (due to the obvious lack of incentives, in particular financial ones) and
instead people privately involved take up the research and even succeed, compare
the movie Lorenzo’s oil. Therefore, it is important to understand the potential costs
and benefits from such an undertaking, which will be done in the next section.

3 He was treacherously committed to an asylum by his colleague where died 14 days later after
being beaten by the guards.
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Consider the incentives for a researcher who starts to work in a well-developed
field. There are several incentives to continue work in this field even in the presence
of DRS. First, there are many publications in this field, and it is easier to publish
(if one finds something marginally new) because many referees are familiar with
the field and can easily evaluate its contribution. Indeed, from our own experience
we observed that papers that make a point along a well-trodden path have a much
higher acceptance rate than papers that try to make a new point. Second, it is easier
to get a grant in a well-established field, because grants are largely determined by the
cumulative publications of an applicant within the field, which grows monotonically
even beyond the point of decreasing returns. Moreover, since the reward (salary
and of course personal reputation or vanity4) depends on cumulative publications,
it continues growing even when the flow of output is declining. In contrast, the
probability to publish an original and new but possibly still imperfect result is low
and its reception presumably even lower. Suppose that such a scientist has reached
his point of maximal productivity, e.g., he can write 10 papers per year in this new
field. If he is the only one working in this new field, nobody would understand the
major, probably subtle points and therefore most of his papers will be rejected. And
even if accepted, nobody (or at best very few) will take notice let alone appreciate
them. Therefore, the incentives to develop a new field are very low, even given high
individual productivity in this new field.

7.3 Modeling

We present a sequence of models that address different issues, partially in isolation.
The first model is about the exogenous transition (Sect. 7.4.1) and the optimal tim-
ing for shifting to a new field. The model in Sect. 7.4.2 takes collective actions of
scientists into account when a new research field emerges. The models of Sect. 7.5
are about individual optimization with the possibility to work just in one research
field but with the additional option to use the human capital in an alternative activity
(teaching, consulting, or management). Section7.6 analyzes an intertemporal com-
petitive equilibrium of individual researchers.

The following features seem crucial and are therefore addressed in (at least one
of) our models:

1. At least one of the fields has IRS-DRS type of production function, where the
marginal productivity first increases and then decreases (“when almost everything
is said, but maybe not by everyone,” to quote Karl Valentin). Then there exists an
optimal size of the field.

4 Scientists are among the most vain people as Carl Djerassi, the discoverer of the anti-baby pill
observed. Richard Blair wrote under the pseudonym George Orwell, but the idea that Einstein had
published his general theory of relativity under a pseudonym is absurd. Sir Isaac Newton is another
example in his fight against Gotthold Ephraim Leibniz about priority over calculus.
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2. Changes can be either exogenous (a given evolution over time as in the baseline
model) or endogenous defined by the history of scientific activity in the field. The
second case is more complex and only considered partially.

3. Agents (scientists) can be either homogeneous or heterogeneous. Even if they
are assumed to be homogeneous, strategic interactions can lead to coordination
failures. For example, the shift to a promising new sector with currently low but
potentially higher future productivity can be beneficial only if many scientists join
and mutually reinforce their productivity via accumulation of collective human
capital in the new sector; compareKrugman [23] on the transition from agriculture
(CRS) to industry (IRS).

4. The heterogeneity of agents can be of two types: age and human capital. While in
the first case the dynamics of age is given, in the second it is defined by individual
paths of capital accumulation. Since many different types of agents with different
human capital lead to complex interactions, only simplified dynamic games can
be considered in this paper.

Scientific research differs from the production technology inmost other economic
areas. Research means finding something new. This resembles geologic search, e.g.,
drilling for oil, and then mining. Qualification of a researcher is similar to qual-
ification of a geologist who finds a new mine. Each mine can produce only final
cumulative stock of output. Thus, its productivity must ultimately decline over time
and eventually must vanish given the “finite” resource analogy.

Consider a mine (or a scientific field) with one unit deposit. Let x denote the skill
of a geologist and miner (as one person), who has exploited the subinterval [0, x],
and thereby gained the skill x (learning by doing). The remaining deposit is of the
size 1 − x . Thus the (marginal) productivity of aminer will depend on the cumulative
output, e.g., mp(x) = x(1 − x). Using this metaphor, a scientist with specialization
in a certain area has the marginal productivity proportional to both, his human capital
h (growing proportionally to exploitation) and the remaining deposit.

mp(h) = h(1 − h).

Considering probabilities, suggests also an alternative formalization,

mp(h) = he−h .

The probability to find something new for a unit of effort (proportional to human
capital) declines exponentially, but never vanishes to zero.5

5 In physics, when we move to the height h above the sea level, the density of atmosphere declines
exponentially. This is also an example of a deterministic outcome for the law of large numbers,
due to very large number of particles. The similar deterministic equivalence of random outcome is
assumed here in “research mining,” but it is less justifiable and is assumed for simplicity.
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Based on the above analogy with a mine but accounting for the fact that overall
individual (or marginal) productivity (mp) depends on the aggregate stock of knowl-
edge (H ignoring sub- and superscripts in this subsection), we consider the following
shapes for research output mp per unit of individual human capital,

mp(H) = H(1 − H), (7.2)

mp(H) = He−H , (7.3)

mp(H) = H 2e−H . (7.4)

The first shape, the logistic one, ismathematically simpler. The possibility of negative
productivity for H > 1 is not a problem as this domain is irrelevant for any economic
consideration. The exponential shape will be used in Sect. 7.5 for individual dynamic
optimization problem with infinite horizon but in this using only individual human
capital as argument.

Why do we assume for the individual reward (π),

π = hmp(H)?

It is because scientific recognition is very low for a scientist with low human capital
who operates in a newfield.6 Both functions,mp(h) = he−h andπ(h) = h2e−h , have
a maximum for finite h.mp has it at h∗ = 1, while π has it at a higher level, h∗∗ = 2,
at already lower and declining productivity. This captures delays in rewards. Nobel
Laureates usually get the prize for their accumulated reputation (life work) rather
than for their production at a certain point in time and when their productivity is
presumably lower (it is all downhill as Samuelson observed about the productivity
of economists).

7.4 Exogenous Evolution of Productivity

This section analyzes interactions of researchers working in the same field. In the
first model it is assumed that a field has inverse-U shape of productivity over time
given exogenously. Different fields have different times of productivity peak. At any
time moment, one researcher enters it and another exits (retires), and researchers can
decide what time is optimal for shift across fields. The second model (4.2) makes
the productivity endogeneous, depending on the mass of researchers there. Two

6 Scientific reward is not directly linked to productivity due to the so-called Matthew effect (“For
to everyone who has will more be given, and he will have abundance; but from him who has
not, even what he has will be taken away,” Matthew 25:29). This point was first addressed by the
sociologist Merton [19], in order to explain why eminent scientists get disproportionately credit for
their contributions, while relatively unknowns get disproportionately little. Therefore, a person with
many written, maybe partially unpublished, papers gets lower reward per written paper compared
to a famous scientist, even after accounting for quality.
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cases, without switching cost and with it, are considered. In this section there is no
accumulation of individual human capital (this will be considered in Sect. 7.5), and
all researchers take sectoral human capital as given, and their productivity equals
to it, h = H . While in 4.1 h = H(t), in the model of 4.2 it depends not on time
but on mass of researchers X , so that h = H(X). Finally, Sect. 7.4.3 deals with age
heterogeneity and switching cost.

7.4.1 Identical Researchers

Since research fields have similar to products and technologies a life cycle, there are
also waves sometimes even fashions in research activity. Considering economics,
applications of chaos theory (quite fashionable during the 1980-ies) are clearly in
decline, while economic experiments are on the rise. Consider an exogenously given
time-dependent productivities in the (only) two scientific fields A already in decline
and B growing,

yA(t) = (t + G/2)(G/2 − t) = G2/4 − t2, yB(t) = t (G − t),

where G > 0 is a given and constant parameter that shapes the productivity in two
fields A and B. The maximal productivity of G2/4 is reached at t = 0 for sector A
and at t = G/2 for sector B.7 The scientific lifetime of a researcher is normalized to
1 (say around 30–40 years). The life cycle of scientific field lasts for G > 1, i.e., it
is longer than an individual scientific lifetime.

All researchers have the same qualification, supply inelastically one unit of labor,
and earn the value of their productivity. There is no saving, no investment and no
discounting so they consume everything in the same period. The lifetime utility of a
scientist (we use π in different places but always referring to a scientist’s payoff) is
simply the integral over outputs:

π =
∫ 1

0
[yA(t) + yB(t)]dt.

The only decision is when to shift from sector A to sector B. Given the persistence
of scientific paradigms, it may happen only once in a scientist’s lifetime, say at time
τ < 1.8

7 G corresponds to both output and time. G can be calibrated as typical life cycle of a subfield, for
example, 100 years. If the unit of time (t = 1) is, for example, 40 years then G = 2.5. If the maximal
productivity in this subfield is G2/4, it can be measured by maximal intensity of total publications
per unit of time (here 40 years). If G2/4 = 2.52/4 = 3.125 in this example, while in reality is 312
papers, then a unit of publication is 100 papers.
8 For example, the authors of this paper have presumably missed the transition to experiments.
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The scientist’s lifetime utility when switching at date τ is

π(τ ) =
∫ τ

0
(t + G/2)(G/2 − t)dt +

∫ 1

τ
t (G − t)dt = G/2 − 1/3 + G2

4
τ − G

2
τ2.

(7.5)
The optimal time (τ ∗) for an individual scientist starting his career at t = 0 follows
from solving the first-order condition of maximizing π(τ ),

π′ = G2/4 − Gτ = 0 ⇒ τ ∗ = G/4.

In this baseline model it is individually optimal to work in the field A up to t = G/4
and then to shift to sector B. If G > 4, the productivity decline in A is so slow that
it is not optimal to shift to B during the scientist’s lifetime. Thus, we have already
two regimes (work in A and then work in B) in this simple baseline case.

7.4.2 Static Equilibria for Costless Shifting

Now consider endogenous formation of sector sizes. Let old sector A has constant
productivity. In contrast, the productivity in the new field B is endogenous, more
precisely, depends on the number of researchers working in field B. The new sector
B is born at t = 0 and productivity is of IRS-DRS shape,

q(X) = Q(X) = X (G − X),

where X is the mass of researchers already working in the field B.9 As above,
maximal productivity of G2/4 is obtained at the mass X = G/2. If G/2 < 1, there
is no incentive to develop the new sector, because even this mass of G/2 will not
deliver a productivity(and reward) exceeding 1, which is earned in the old sector. In
order to rule this trivial case out, we assume G > 2.

This problem is similar to the one considered in Mascarilla-i-Miro and Yegorov
[24]: Two cities have IRS-DRS shape of net benefits for their population and the
fixed population has to be split across two of them. If the total population is above
the sum of optimal population values for both cities, the intersection is on the DRS
part, and this equilibrium is stable. If the intersection is on IRS, such equilibrium is
unstable, and all other initial conditions result in asymmetric equilibria, where all
choose to live in one city.

Figure7.1 shows that productivity in sector B is above one in sector A for
X1 < X < X2 and reaches its maximum at X = X∗.

9 Here X is the mass (quantity) of researchers. It is normalized in such a way that maximal produc-
tivity is for X = G/2. Both can be calibrated. For example, we know that maximal productivity,
G2/4, is for 10 researchers in subfield. Then X = G/2 corresponds to 10 researchers. A researcher
lives between t and t + 1, so that q is measured in the units of lifetime salary, and G can be defined
correspondingly.
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Fig. 7.1 Productivity in sector A, B as the function of sector size X

An economic equilibrium must satisfy the no arbitrage condition. Then salaries
in both sectors should be equal: X (G − X) = 1. This equation yields the roots:

X1,2 = 0.5(G ±
√
G2 − 4),

of which X2 is the lower one. Let μ denotes the total mass of researchers. If X2 < μ,
then there is sufficient mass to create the new field with a higher productivity.

The problems are as follows: (a) how to implement these equilibria from different
initial conditions, (b) whether they are socially efficient.

We have to consider individual and collective incentives for shifting from A to
B in three different regions separately: (1) X ∈ [0, X1], (2) X ∈ [X1, X∗], and (3)
X ∈ [X∗, X2]. In region 1 there is neither an individual nor a collective incentive. In
region 2, there is an incentive for individuals and the collective. Consider a sequential
decision of rational workers. Every marginal worker with number X in this region
gains from shifting personally, and at the same time the collective of researchers
already in B also gains. In region 3 there is still an individual benefit for shifting to
B, but the collective of those who already work in B is harmed (because their pro-
ductivity drops) and also the social welfare is reduced (average productivity drops).

Note that the size of sector B at the maximum of q(X) equals to G2/4 and is
obtained at X = G/2. It gives the highest productivity for sector B and the highest
overall GDP (calculated as the mass of researchers in different sectors multiplied
by their productivity). But this outcome is not an equilibrium, because there is an
incentive for further shift to B and individual possibility of an arbitrage.
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Suppose that X2 < μ < X1. Then the mass of researchers is sufficient for a mutu-
ally beneficial shift. Shift of an optimal fraction of researchers from sector A to B
yields higher productivity in B. It will be beneficial for all who shift and the society
as a whole.

Finally, for μ ≥ X1, the shift will stop at X = X1. At this point, both sectors have
the same productivity of 1. The old sector will stay with the mass μ − Y1, while Y1
will move to the new sector.

When a new sector is created, somebody has to be the first. The first ones will
have to be from the youngest cohort to be followed by older cohorts. In the absence
of switching costs, all would benefit from a collective simultaneous shift (cascade)
of the mass X such that q(X) > 1.

Will rational expectationswill drive a cascade of simultaneous shifts?No, because
there is still an unsolved collective action problem. The interaction between agents
is as follows. The youngest can be the first mover, since he can benefit longer from
a higher salary in a new sector. in the future. His move should trigger the move of
the next, and so on. However, irrational (or bribed by a third party) guys can block
this mutually beneficial collective shift. Freemarkets cannot implement coordination
(but also not the above blocking).

However, such a shift can be implemented in a planned economy or by a dic-
tator. We know examples from the USSR that offered proper incentives to young
researchers to build a nuclear bomb or a space rocket. Indeed, the USSR had the first
man in space but its heating systems lacked proper valves (also less interesting from
an individual researcher’s perspective). With the only alternative to lose freedom
and the state support in financing new sector, the coordination problem disappears.
The extreme case of prisoners-researchers has been described in the novel by A.
Solzhenytsyn “In the first circle.”

7.4.3 Heterogeneous Age and Switching Cost

Coexistence of cohorts of scientists of different age a ∈ [0, 1] is considered in this
subsection. Again, there is no individual accumulation of human capital, and every-
body’s productivity (and wage) q(t) equals to the sectoral productivity Q(t) in this
moment. Scientists can switch across sectors, paying only a one time cost c at the
beginning. It represents the cost of learning the tricks of the new field B.

The following argument follows Yegorov [25]. We consider cohorts entering
research at different degrees of maturity of field A, which choose their intertem-
poral research strategy. A typical assumption is that a researcher starts in A (e.g.,
due to the human capital obtained during his education) but considers switching to
B. Furthermore, assume that the agents have a different age, 0 < a < 1, that each
agent has a time horizon of length 1 and, like in the baseline model, that there is no
time discounting, but a cost c when switching from A to B.

The lifetime income of each worker of age has two components, a for the years
working in sector A (before the shift) and (1 − a)q(X) for working the rest of his
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Fig. 7.2 Value from collective shift with cost c of ages below a for age a versus value of staying

life in sector B after paying cost c for shifting. The larger is age a, the lower are
the benefits from this shift, because c should be compensated by the wage gain over
smaller duration (1 − a). Hence, the incentive to shift is monotonically declining
with respect to the age of the scientist. Consider the marginal worker of age a∗ who
is indifferent between shifting and not. Then all younger would shift, and the mass
of workers will be a. Then there exists some age threshold a∗, so that all younger
agents, 0 < a < a∗, choose B, because the gains from working in the new sector
will exceed the switching costs even for the oldest agent in this group, a = a∗. All
older agents, 1 ≥ a > a∗ continue working in field A. Figure7.2 shows the value for
researchers of different age from such a collective shift. Then the benefit from shift,
V (a), will be a decreasing function of age, V ′(a) < 0. The critical age, a = a∗, is
defined by the equation

1 − â = Q∗(1 − a∗) − c.

The scientist of critical age is indifferent between shift and stay if net benefits are
equal for both options. All younger scientists will obtain larger benefits from shifting.

Furthermore, we ignore how the collective action problem of initiating research
in B is solved and assume a group of researchers of mass X works already in B.
Therefore, everybody working in B earns q(X) = Q(X) per period. Therefore, an
agent of age a will switch iff,

(q(X) − 1)(1 − a) ≥ c,
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i.e., the increase in earning during the remaining lifetime justifies the investment
costs of entering the new field. Since benefits decrease monotonically in age (a),
only the young,

a < 1 − c

q(X) − 1
, q(X) > 1

will switch and only if X is sufficiently large.
If we assume perfect coordination among the young researchers to circumvent the

collective action problem then we can determine the size of the jump from X = 0
to X > 0, i.e., the field B is born. Needless to say, this is very unlikely and the
calculations serve to determine an “efficient” benchmark. Themass of shifting agents
equals to X = μā, where ā denotes the limit age of shift. The oldest agents should
be indifferent between shift or not. Then the following equation defines a = a∗ :

(μa∗(G − μa∗ − 1)(1 − a∗) ≥ c.

In the case of switching cost the wages in both sectors can differ, but nobody will
benefit from further shift.

Here it was assumed that a shift takes place once and at once. However, real world
dynamics are more complex, because there will be a future entry (of new cohorts)
and exits (to retirement) in both sectors.

The above models show the complexity of interactions between researchers even
without accounting for human capital accumulation, which will be the focus of the
following models.

7.5 Intertemporal Optimization of Individual Activities

In this section, we endogenize human capital accumulation by considering the
intertemporal optimization problem of a scientist. However to do so, we make a
few simplifying assumptions. First and also different from the analysis so far (and
also below in Sect. 7.6) is that there is only one research field. This can be justified if
entering a newfield of research requires high fixed cost. Instead of two research fields,
the scientist can choose between two activities either research or other activities like
teaching, taking up administrative and managerial tasks (as a dean or rector), con-
sultancy, and practising (medical doctors, psychologists, civil engineers). Second,
there is only an individual scientist with an infinite planning horizon who can invest
into his human, field specific, capital, h(t), and who discounts (r) future benefits
and costs. Third, and in contrast to the continuous shifting and the working in both
fields for the high equilibrium in Sect. 7.6, the scientist must choose either or between
two possible activities: research ( j = 1) and the alternative activity ( j = 2). At each
point of time, the current level of human capital is mapped into marginal productivity
(mpj ) and reward π j for both activities j = 1, 2: mpj = f (h(t)), π j = g(h(t)).
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Human capital (h) is subject to IRS-DRS returns in the area of research but delivers
its returns linearly in the alternative activity,

π1(t) = h(t)e−h(t), π2(t) = wh(t),

where w < 1 is the relative wage in activity j = 2. Productivity in research is max-
imized at h = 1 and deteriorates for h > 1 because too little is left in the scientist’s
research field (again exploiting the metaphor of a mine). Since return in the second
activity grows linearly with h, it becomes profitable to shift to this activity for h
exceeding a threshold

(
h̄
)
.

A scientist often faces alternative options like teaching, consulting, and managing
(either as a dean or in science organizations, just think of a big shot like Watkins,
one of the discoverers of DNA, or in business). Normally a person has only one
main employment, but it may correspond to a bundle of activities (like position of
professor assumes research and teaching).

The dynamic optimization model can be formulated as follows:

max
i(t)≥0

∫ ∞

0
e−r t [π(t) − i(t) − c

2
i2]dt (7.6)

s.t. ḣ = i − δh, h(0) = b > 0

π1 = he−h, π2 = wh.

Given the binary choice between the two activities, the profit in each period is simply
the maximum,

π(t) = max {π1(t),π2(t)} = h(t)e−h(t)

wh(t)
iff

≤
>
h̄ := − lnw,

because it is optimal to devote all activity to research if research delivers the higher
return, i.e., he−h > wh, which holds for not too high human capital (not a compliment
for us researchers), h < h̄, and of course, this threshold decreases with higher wages
paid outside the university.

Remark: It is possible to abstract from adjustment costs, i.e., by setting c = 0. This
eliminates interior solutions, i.e., the policy will be bang-bang following amost rapid
approach path. Of course, the precise specification of the payoff in research is not
crucial and we will therefore consider the case π1 = h2e−h too.

7.5.1 Optimality Conditions for the Auxiliary Problems

First, before addressing the problem of switching from activity 1 to activity 2 at some
future date, we consider two problems, each forcing the agent to stick to the initial
choice, either research (7.7) or making money in consulting (7.8).
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max
i(t)≥0

∫ ∞

0
e−r t [he−h − i(t) − ci2(t)]dt he−h > wh, (7.7)

max
i(t)≥0

∫ ∞

0
e−r t [wh − i(t) − ci2(t)]dt he−h < wh, (7.8)

s.t. ḣ = i − δh. (7.9)

7.5.1.1 Stage 1 - Lifelong Research

The Hamiltonian for the objective (7.7) is

H1 = h(t)e−h(t) − i − ci2 + λ[i − δh].

It follows fromH j = 0 that i = (λ − 1)/(2c). Then the dynamic system for the case,
e−h > w, is

λ̇ = λ(r + δ) + (h − 1)e−h, (7.10)

ḣ = λ − 1

2c
− δh. (7.11)

This long run outcome is only meaningful if the steady state of human capital
remains below the threshold h̄ = − lnw.

Computing the isoclines,

λ̇ = 0 ⇐⇒ λ = (1 − h)e−h

r + δ
,

ḣ = 0 ⇐⇒ λ = 1 + 2cδh, (7.12)

we find that the 1st is downward sloping and the 2nd is upward sloping and trans-
gressing the entire positive quadrant of the phase plane, we have a unique and positive
steady state, (h∗,λ∗) . The steady state is saddlepoint stable but the solution is only
meaningful if h∗ < h̄. Of course, by choosing w sufficiently small, one can ensure
that h∗ is indeed the long run outcome of the original two-stage problem. The steady
state of human capital is a solution of the following equation,

(h − 1)e−h

2c (r + δ)
− 1

2c
− δh = 0, (7.13)

which unfortunately lacks an analytical solution.
To complete, we use a numerical example with r = 0.05, δ = 0.1, c = 1, w =

0.2. Given the low wage for consulting, the outcome of this isolated case is even the
optimal one for starting with small h0 since the steady state is at h = 0.668 < h̄ =
− lnw = − ln 0.2 = 1.61, see Fig. 7.3.
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Fig. 7.3 Saddle for the case 1. r = 0.05, del = 0.1, c = 1

7.5.1.2 Stage 2 - Lifelong Consulting

For the objective (7.8) and thus e−h < w, we denote the costate by μ and then get
the canonical equations:

μ̇ = μ(r + δ) − w, (7.14)

ḣ = μ − 1

2c
− δh. (7.15)

The corresponding canonical equations system can be explicitly integrated,10

μ (t) = w

r + δ
, t ≥ T,

h (t) = (w − r − δ)
(
1 − e−δt

)
2cδ (r + δ)

+ h0e
−δt ,

10With the first isocline coinciding with the stable path.
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implying the steady state,

h = 1

2cδ

(
w

r + δ
− 1

)
.

Therefore, ifw > r + δ, stationary human capital is positive and unique, while there
is no positive solution in the opposite case; i.e., ifw < r + δ then it is optimal remain
forever in stage 1.

We sketch also the phase diagram as in case 1 and determine the corresponding
isoclines

μ̇ = 0 ⇔ μ = w/(r + δ),

ḣ = 0 ⇐⇒ μ = 1 + 2cδh.

Thefirst isocline is horizontal, and the 2nd is upward sloping. Therefore both intersect
at above computed steady state, which is a saddle. Using the same parameters but a
larger wagew = 0.5, such that the steady state of the first case exceeds the threshold
(Fig. 7.4).

Fig. 7.4 Saddle for the case 2. r = 0.05, del = 0.1, c = 1, w = 0.25
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7.5.2 Optimal Transition

Since by assumption the consulting phase is, if at all, the second one, one can rewrite
the general two-stage problem as,

max
i(t)≥0

∫ T

0
e−r t [π1(t) − i(t) − c

2
i2]dt + e−rT S (h (T )) , (7.16)

in which S is the salvage value from the second phase, more precisely, the solution
of the case 2 from above. Since, the corresponding canonical equation system have
been explicitly integrated, the salvage value can be analytically computed,

S (h (T )) = (w − r − δ)2

4cδ (r + δ)2
+ wh (T )

r + δ
, (7.17)

and it is linear in h (T ).
The corresponding optimality conditions for the first phase become then,

λ̇ = λ(r + δ) + (h − 1)e−h,λ (T ) = S′ = w

r + δ
, (7.18)

ḣ = λ − 1

2c
− δh, h (0) = h0, (7.19)

and the optimal stopping condition is

H1 (T ) = r S (h (T ))

H1 (T ) = h(T )e−h(T ) −
w

r+δ
− 1

2c
− c

( w
r+δ

− 1

2c

)2

+ w

r + δ

( w
r+δ

− 1

2c
− δh(T )

)
.

Therefore,

h(T )e−h(T ) −
w

r+δ − 1

2c
− c

( w
r+δ − 1

2c

)2

+ w

r + δ

( w
r+δ − 1

2c
− δh(T )

)
= r (w − r − δ)2

4cδ (r + δ)2
+ rwh (T )

r + δ

and expressed in terms of the arbitrage between research and alternative activity,

h(T )e−h(T ) − wh (T ) = r (w − r − δ)2

4cδ (r + δ)2
+

w
r+δ − 1

2c
+ c

(
w

r+δ − 1

2c

)2

− w

r + δ

w
r+δ − 1

2c

we get finally the condition,

h(T )e−h(T ) − wh (T ) = r (w − r − δ)2

4cδ (r + δ)2
+ w − r − δ

2c (r + δ)

(
1 + w − r − δ

2 (r + δ)
− w

r + δ

)
,

(7.20)
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which cannot be solved analytically with respect to h (T ). The right hand side is a
constant, and equating the left hand side to zero yields h̄ := − lnw, which is the
point of identical marginal productivity in both fields. However, we conjecture that
the transition takes place before the return on the first activity (research) falls below
the return on the second activity, at least if the right hand side is positive.

7.5.3 Delayed Rewards

A kind of Matthew effect in science as noted in Merton [3] is also generated if the
individual reward is delayed. There are several difficulties for a scientist starting
new field (especially when he is not famous). Although he may be able to formulate
many new problems and solve some of them, there are several disadvantages. First,
the papers in a new field have a lower probability to be published, because reviewers
may not fully understand its contribution and thus reject it.11 Second, even if a paper
is published, it might receive fewer citations, because people with human capital in
this new field are lacking.12 As a consequence, this endeavor results in a lower record
in publications and citations even for a successful researcher in a new field. And it
will be more difficult to win grants and to attract new researcher in this field, even
when it has promising future.

In order to model this case, it is possible to use the idea about reward being pro-
portional not only to net productivity he−h , but also to human capital of a researcher,
h. Thus, the returns to research are

π3(h) = h2e−h .

Then we can consider two subproblems, like in the previous case:

max
i(t)≥0

∫ ∞

0
e−r t [h2e−h − i(t) − ci2(t)]dt h2e−h > wh, (7.21)

max
i(t)≥0

∫ ∞

0
e−r t [wh − i(t) − ci2(t)]dt h2e−h < wh, (7.22)

s.t. ḣ = i − δh. (7.23)

But the difference is that there are normally 2 positive roots (and one zero) for the
transcendental equation

h2e−h = wh.

Denote them as h1, h2, h1 < h2. Then the production functionwill stimulate research
only in the interval h1 < h < h2. If h < h1, it is optimal to alternative job (think about

11 This also often happens with interdisciplinary papers.
12 And they also have low incentives to do that.
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teaching assistantship for Ph.D. students). There is also a possibility to do science
in a classical field with DRS and accumulate human capital to start a new field (but
we do not model this formally).

The Hamiltonian for the 1st case is

H1 = h2(t)e−h(t) − i − ci2 + γ[i − δh].

Again, fromH j = 0 it follows, that i = (λ − 1)/(2c). Then the dynamic system for
the 1st case, he−h > w, is:

γ̇ = γ(r + δ) + (h2 − 2h)e−h,

ḣ = γ − 1

2c
− δh. (7.24)

The 2nd case, with wh, is identical to the one considered above.
The isocline γ̇ = 0 generates the equation

(2h − h2)e−h = γ(r + δ).

Since the l.h.s. is positive for 0 < h < 2 and negative afterward, there are typically
2 solutions to it.

Consider the parameters r = 0.05, δ = 0.1, c = 1, w = 0.2, the same as in the
previous model. Then we have two equilibria, h1 = 0.087 and h2 = 1.435 . The left
is an unstable focus, while the right is a saddle. The saddle for the 2nd system (when
wh dominates) is the same as before; hw = 1.667. Again we have h2 = 1.435 <

1.667 = hw, but two saddles are now closer (comparing to the previous example).
The general behavior of the problemmay result in convergence to the 1st or the 2nd

saddle. If parameter c becomes smaller, the saddle hw grows, and this may stimulate
lock in the lower saddle, with never leaving research field. The full investigation of
this problem is not provided here. It is similar in complexity to the previous one, and
analytical solution cannot be obtained.

Policy issues are important for this model. In the domain 0 < h < h1 it is not
optimal to do research, because the research productivity is too low. It might be also
impossible to survive on a research salary (without incurring personal debt), because
the returns are quadratic in h (for low h), while the replacement cost of depreciated
capital contains linear term. The previous model did not contain that interval. It is
one more hurdle in the development of new sector (here for human capital accumu-
lation on individual level). Young researchers often get their income from alternative
activity (like teaching assistantship), before they reach some threshold in research
productivity.
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7.6 An Intertemporal Competitive Equilibrium

One way to analyze the collective actions of individual researchers, which was
ignored in the previous sections, is to depart from Krugman’s [20] labor market
model. Assume that by chance a jump occurs, X → X0 , X0 possibly small. There
are various reasons for such a jump. For example, some stubborn persons (recall the
few examples from above) pursue for idiosyncratic reasons a research so far ignored
or considered as either not promising or as unsolvable. Or alternatively, the research
in field B is initiated by spillovers from a completely different field. Recent devel-
opments in economics offer two examples: Chaos theory in economics was created
as a spillover from natural science (economists visiting the Santa Fe Institute). Eco-
nomic experiments are to a large extent a follow up of the work of psychologists as
the Nobel prize awarded to Daniel Kahneman documents. At the beginning it was
by many (“neoclassical” economists) considered as no economics at all. However,
it offered opportunities for different (and with hindsight) some fresh views and all
this with little technical hurdles (knowledge of more or less elementary statistics was
sufficient, and the games were not only off the shelves but the most simple ones like
the ultimatum game) compared with traditional economics. In the meantime it has
received its fair (presumably more than that) share of Nobel prize winners.

Let us consider how such an event affects the decision of an individual scientist.
The scientist’s temporal endowment at each point in time is normalized to 1, and
he can spend y hours in field A delivering the gain y (due to constant and unitary
marginal productivity) and x hours in the new activity B delivering the individual
output xQ (X) in which the capital letter (X) refers to the time spent in the activity
B by all researchers (having the measure 1). Yet entering and then expanding his
activity in the new field (u) is costly (K ), in terms of time, K = c

2u
2. This leads to

an individual scientist’s optimization problem

max
u(t)≥0

∫ ∞

0
e−r t [xQ (X) +

(
1 − x − c

2
u2

)
]dt, (7.25)

s.t. ẋ = u, x(0) = x0 > 0. (7.26)

Although we assume an infinite planning horizon, we consider the appearance of the
single new scientific paradigm B during the scientists “infinite” lifetime.

The specification of the productivity in B is Q = Q (X), i.e., with respect to the
total time (X) of all researchers spent actively in B. It is important to note that the
individual has no control over what the other researchers are doing and must there-
fore treat X (t) as exogenously given path when solving the individual intertemporal
optimization problem (7.25) and (7.26). However, assuming a symmetric and com-
petitive equilibrium we can set,

X (t) = x (t)∀t ≥ 0. (7.27)
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Therefore, (7.25)–(7.27) does not constitute a standard optimal control and the
implied first-order optimality conditions have important different consequences (as
the possibility of a non-unique outcome shown below). Allowing for the hump-
shaped quadratic relation of Q as argued above allows in contrast to Krugman’s
model for an interior steady state.

Remark 1 Clearly, this is the most simple setup that can be extended in various
dimensions. Starting with costs, one could imagine that learning as well spillover
effects from a larger research community lower the costs, K (u, X) and KX ≤ 0.
Another alternative is to relate the productivity in the field to the cumulative research
output, e.g.,

�̇ = X − ω�

if allowing for depreciation.

Remark 2 Wirl [26] indicates that similar results hold in a setting of strategically
acting researchers, not necessarilymany, let alone infinitelymany.Wirl [27] considers
general intertemporal competitive equilibria and the corresponding conditions for
thresholds and indeterminacy.

Setting up the Hamiltonian for an individual researcher’s optimization problem,

H = xQ (X) +
(
1 − x − c

2
u2

)
+ λu,

implies the first-order conditions,

u = λ

c
,

λ̇ = rλ + 1 − Q,

and thus the steady-state condition,

λ = 0 ∧ Q = 1. (7.28)

Assuming a hump-shaped relation, e.g., a variation of one of the above suggested
specifications,

Q (X) = X (G − X) ,

in which G > 2 (otherwise the new field can never reach the productivity of the
field) scales the potential of this new field and X = G/2 is the point of maximal
productivity (=maximum sustainable yield in resource economic terms) implies the
following characterization of a competitive equilibrium (including the isoclines for
the analysis below),
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ẋ = λ

c
, x(0) = x0, ẋ = 0 ⇔ λ = 0

λ̇ = rλ + 1 − x (G − x) , λ̇ = 0 ⇔ λ = (G − x) x − 1

r
,

which results from thus substituting (7.27). The system has two interior steady states,
the two roots,

x12 = G

2
±

√
G2

4
− 1,

one above and one below argmax Q and a boundary solution,

x → 0,

all three combined with λ → 0.
Computing the Jacobian,

J =
(

0 1/c
2x − G r

)

implies that the lower steady state, x1, is unstable, since the corresponding eigenval-
ues have positive real parts,

e12 = 1

2

(
r ±

√
r2c − d√

c

)
, d := 4

√
G2 − 4

and are complex unless the product r2c exceeds d which is unlikely. The second
steady state implies the eigenvalues

e34 = 1

2

(
r ±

√
r2c + d√

c

)

and is thus a saddlepoint. As a consequence, indeterminacy, both eigenvalues being
negative (or have negative real parts) is impossible, (compare Wirl [28]) for corre-
sponding conditions that are not satisfied here.

Hence the long run outcome for research in the field B can depend on the initial
stimulus X0 aswell as onhow the agents coordinate. To see this, consider the example,

G = 3, r = 0.10, c = 1.

Then x1 = 0.38 is the unstable and x2 = 2.61 the (saddlepoint) stable steady state.
Figure7.5 shows the phase diagram and the potential intertemporal and long run
outcomes. It highlights that the large and stable steady state is globally reachable.
This means that even a spark can be sufficient to trigger this beneficial outcome.
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However, a warning is here in place because for X0 almost as large as 0.75, the
termination of research in B, i.e., x → 0, is also possible and thus for quite substantial
initiations, i.e., very prospective first results (maybe the role chaos theory played in
economics for some time fits this scenario). Hence, an initiation of research of the
size (X0 ∈ [0, .75) can result in the termination or large expansion of this particular
area of research., i.e., indeterminacy.

However, the outcome in Fig. 7.5 that the “good” equilibrium can be reached
even from initial “sparks” depends crucially on the specifics. More precisely, that
example assumes a fairly farsighted research community (10% is a low discount
rate considering the uncertainties of a scientific career, a lottery according to Max
Weber), low costs, and a substantial potential gain, 50% over continuing along the
trodden path. Less optimistic assumptions, e.g., G = 2.5, r = 0.50, c = 4, result in
the scenario shown in Fig. 7.6. The lower steady state at x = 1/2 is an unstable

Fig. 7.5 Phase diagram for r = 0.10, G = 3, c = 1

Fig. 7.6 Phase diagram for r = 0.50, G = 2.5, c = 4
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spiral and the larger one at x = 2 is again a saddlepoint. However now the overlap
between the saddlepoint branches is rather small. It requires an initial seeding of at
least X0 > 0.35 to get the research in B started and this outcome cannot be granted
unless X0 > 0.65. In this case, we have three regions ( see Fig. 7.6). For X0 < 0.35,
the new research activity converges to zero, for X0 > 0.65 it converges to the high
steady state X = 2 and the outcome is indeterminate, i.e., depends on the researchers
joint expectations, for X0 ∈ [0.35, 0.65]. Both cases but in particular the second and
less attractive case supports Acemoglu’s argument of directed technical change, i.e.,
the necessity of a public push into unexplored research and development areas, e.g.,
in Acemoglu [20].

7.7 Policy Implications and Concluding Remarks

We have formulated a few models and solved some of them, about socio-economic
interactions of scientists focusing on individual and collective choices and in par-
ticular about the birth of a new field (and to trigger scientific revolutions, which are
rare according to Kuhn [5]). The crucial feature of a new field is that the individual
returns for the first published papers are very low at the time of publishing them. Fur-
thermore note that the more or less immediate recognition and appreciation of such
an endeavor is crucial for the career of a young scientist. In contrast, working in the
dominating research paradigm yields more predictable results (more readers, more
citations). However, the productivity in an established field will inevitably decline
while a new research field offers the possibility of higher future productivity.

A crucial question is how a group of researchers enters a new scientific field. It is
always very difficult to be the first, because of scale economies. Therefore, only altru-
istic or stubborn researchers can develop new fields. Perfect coordination couldmake
such a collective shift to a new field possible, but this is very unlikely in an unreg-
ulated, i.e., market economy. However, government incentives, to pay for research
outsidemainstream could foster such coordinations even inmarket economies, which
is similar to please for directed technical change, e.g., Acemoglu [20].

In the case of computing an intertemporal competitive equilibrium,wederived that
there are three areas of initial (aggregate) human capital. For very low values there is
inefficient outcome of the elimination of this research field. At an intermediate level
there is indeterminacy, the research in the new field gets going or is phased out. Only
high initiation levels of a new research paradigm guarantee that it will be pursued.

We also model delayed returns. This indicates even larger obstacles for the devel-
opment of a new field. In this case, the difficulties are not linked to the build-up of the
human capital stock, specific for the new field, but to the management and finance of
research that award grants based on past research records. Summarizing this but also
the above observation lends critique to the current research practice. More precisely,
the current policy (especially for grants but also for journal publications) provides
insufficient incentives for researchers to encourage them to take the risk of working
in and exploring new fields.



7 On Scientific Innovations and Constraints: A Dynamic Analysis 185

Of course, our paper attempts to address just a few of the critical issues to under-
stand the enterprise of scientific research better. Therefore, there are many con-
ceivable extensions and variations. A natural one is to account for the uncertainty
associated with any research undertaking (recall the quote from Max Weber) and in
particular in new areas. It is also important to differentiate between vertical (com-
plementary skills between scientists) and horizontal (professor-student) cooperation.
Here the first case tends to foster new ideas, while the second one adds to the con-
servatism of science.
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Chapter 8
On the Structure and Regularity of
Optimal Solutions in a Differential Game
with Regime Switching and Spillovers

Anton Bondarev and Dmitry Gromov

8.1 Introduction

Examples of non-smooth dynamics in Economics are numerous, but papers dealing
with full formal complexity of dynamics are scarce, see Brito et al. [5], Brito et al.
[6], for example. Recently, some interest emerged in regime-switching differential
games, e.g., Dawid et al. [8], Gromov and Gromova [19], Long et al. [22], Bondarev,
andGreiner [4]. In there, different types of switching conditions and different types of
solutions are proposed. Note that a lot of economic phenomena naturally conform to
switching dynamics: consider, e.g., a transition to new production technology, chang-
ing leadership in oligopolistic markets with imitation, resource extraction games, or
advertising games.

On the theory side, there is an increasing number of papers dealing with switching
systems or sliding dynamics, see Di Bernardo et al. [10] for an overview. However,
this strand of literature does not consider optimal dynamics and is focused on a
qualitative behavior of non-smooth dynamical systems in the vicinity of the switching
manifold.

On the other hand, the optimal dynamics of switched systems is extensively stud-
ied in hybrid optimal control theory, where a number of important results were
obtained, see, e.g., Boltyansky [2], Azhmyakov et al. [1], Shaikh and Caines [27]
among many others. A particularly important result consists in the formulation of
Hybrid Maximum Principle [27] that extends the classical maximum principle to the
class of hybrid control systems, that is systems experiencing structural changes due
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to some exogenous or endogenous events. We refer the interested reader to Lunze
and Lamnabhi-Lagarrigue [23] for a detailed account on hybrid systems and related
fields.

While the hybrid maximum principle is capable of addressing a wide class of
multi-modal control problems its application is pretty much restricted due to the
rapidly increasing difficulty of obtaining an analytical solution as the model com-
plexity increases. To overcome this difficulty, an approach based on the extension of
the classical maximum principle was proposed in Gromov and Gromova [19]. This
approach, albeit less general, allows one to solve a pretty wide range of multi-modal
optimal control problems in a rather intuitive way.

In this paper, we continue this line of research and apply the previously described
methodology to the analysis of a particular class of switched differential games
that has been studied recently in Bondarev [3], Bondarev and Greiner [4]. The goal
of this study is to provide a detailed analysis and thorough understanding of the
consequences of non-smooth dynamics for economic models. We wish to note that
after this paper was submitted for publication, the authors came across a recent
preprint by Reddy et al. [24] and the paper [25] that consider similar problems, albeit
from a somewhat different perspective.

We intentionally consider the simplest possible model with a single common state
which has linear dynamics. It has been demonstrated (see Dockner and Nishimura
[12], Wirl and Feichtinger [31]) that even this class of models can have surprisingly
rich dynamics, including thresholds, history dependence and multiple equilibria.

We consider only two specific cases: the open-loop Nash equilibrium with two
players and the social cooperation case. These two suffice to demonstrate the main
qualitative findings, whereas the method itself is no way limited to these situations.

The contribution of this paper is twofold. First, we explicitly derive optimal tra-
jectories both for the cooperative and non-cooperative cases for a regime-switching
system through the application of a modified version of the classical maximum prin-
ciple. This increases the tractability of results and makes explicit solution feasible.
Second, we demonstrate that our results are in the agreement with the intuition given
by the hybrid maximum principle while being more tractable and intuitive. We show
in which cases the problem admits regular cases of finite-time switches and study
the conditions for the emergence of new complicated types of dynamics such as the
sliding motion along the switching manifold.

The paper is organized as follows: in Sect. 8.2, we describe the multi-modal
differential game with spillovers that forms the subject of our study. In Sects. 8.3
and 8.4, a detailed analysis of optimal solutions both for the cooperative and the
Nash equilibrium cases is presented in detail. Section 8.5 contains a discussion of
possible extensions associated with more complex dynamic patterns that can occur
in the considered game. Finally, Sect. 8.6 presents brief conclusions.
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8.2 A Multi-modal Dynamic Game

As a starting point of our analysis, consider a differential game with two players and
one state variable such that the objectives of players are interdependent (referred to
simply as a game further on):

∀i ∈ {1, 2} : Ji =
∫ ∞

0
e−ρt (ai x + ci xu−i − 1

2
u2i )dt (8.1)

where x is the common state variable and ui are the controls (strategies) of both play-
ers with the subscript −i denoting the complement to i : u−1 = u2 and so on. The
objective (8.1) contains the cross-term ci xu−i which measures the indirect benefit of
a given player from efforts of the other player.We interpret this in terms of advertising
models, whereas the goodwill accumulation is affecting both agents. Furthermore,
both the controls and the state are required to be (almost everywhere) differen-
tiable. Note that the payoff functional (8.1) has a linear-quadratic form and hence
enjoys a number of important properties. In particular, it is known that Hamilton–
Jacobi–Bellman approach and Maximum Principle yield the same controls if they
are restricted to linear-feedback forms, see Dockner et al. [11].

We additionally impose the following non-negativity constraints on controls and
the state:

x ∈ R+, u{1,2} ∈ U ⊂ R+ (8.2)

where U is the set of admissible controls and R+ = [0,∞). These are standard for
economic applications, where controls u{1,2} are interpreted as investments. Thus, by
(8.2), we just require investments to be non-negative and the resulting stock to be
bounded by zero.

This game has a bilinear-quadratic structure, similar to advertising and marketing
models (see the seminal example by Deal et al. [9] and more recent [20] for a
review) and includes a spillover effect modeled by the term ci xu−i . This term is
novel and rarely appears in economic applications. It can represent a positive or
negative impact on the value of firm i by state and investments product of firm j ,
hence the term spillover effect. Such effects are typically present in advertising and
goodwill models, where the value of advertising for one firm positively depends on
advertising efforts of the other firm provided they have similar products.

The dynamic constraint is given by

ẋ = b1u1 + b2u2 − δx, (8.3)

i.e., the stock of (advertising, technology, resource, capital) is changing due to the
common investments/extractions of both players and depreciates over time. In this
equation, coefficients bi represent the efficiency of investments of the firm i .

It can be transformed into a multi-modal game, once we let efficiency coefficients
bi to vary across regimes, b+

i �= b−
i with either time-dependent or state-dependent
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(autonomous) switching. For instance, the situation with b+
i > b−

i would refer to
joint learning while both firms become more efficient after reaching the threshold,
whereas the case b+

i > b−
i , b+

−i < b−
−i refers to the changing leadership situation,

while the firm which becomes the leader is more efficient in investments (learns
more).

Let f (x, t) be a smoothmap, f : R+ × R+ → R, such that the rank of Df is equal
to 1 for all (x, t) ∈ R+ × R+. The level set f (x, t) = 0 is the switching manifold.
Define

b1 =
{
b+
1 , f (x(t), t) ≥ 0,

b−
1 , f (x(t), t) < 0

b2 =
{
b+
2 , f (x(t), t) ≥ 0,

b−
2 , f (x(t), t) < 0

(8.4)

We limit ourselves to the two basic cases (using the terminology from [19] and [27]):

1. Time-driven (controlled) switch: f (x(t), t) = t − τ ∗ with τ ∗ fixed
2. State-driven (autonomous) switch: f (x(t), t) = x(t) − x∗ with x∗ fixed, but t left

free.

In Long et al. [22], a somewhat similar problem is considered but with τ being
subject to decision of one of the players. Here, we mainly focus on the derivation of
optimal solutions with the help of the standard Maximum Principle, whereas in the
aforementioned paper an alternative piece-wise Nash solution concept is developed.

Many economic problems can be put into this simple framework. As examples,
consider resource extraction problems with regime switches (e.g., Long et al. [22]),
technological transitions where efficiency of investments change after initial transi-
tion time (e.g., Dawid et al. [8]), pollution control (e.g., Gonzalez [18]), and patent
races (e.g., Fudenberg et al. [15]).

In the following, we will use τ and x(τ ) to denote the switching time and the
switching state. Furthermore, we put the asterisk (∗) to denote which component of
the solution is fixed at the switching. That is to say, we use x∗(τ ) or simply x∗ when
referring to a state-driven switch and x(τ ∗), resp., τ ∗ when referring to a time-driven
switch.

Whichever type of switching is considered, we assume that the system has a fixed
initial mode, that is, 0 < τ ∗, resp., x(0) < x∗ and thus refer to T− = [0, τ ∗), resp.,
T− = {t ∈ R+|x(t) < x∗} as the first interval and consequently, T+ = R+ \ T− as
the second interval (note that T+ can be empty).

In the following, we will use the minus and the plus superscripts to refer to the
first, resp. the second interval.Wemake some remarks further onwhat changes in our
results if the switching sequence is reversed. Finally, we assume that all parameters
in the model are non-negative:

{a1,2, c1,2, b±
1,2, δ, ρ} ∈ R+. (8.5)

It is worth noting that the distinction between the two types of switches is of sub-
stantial rather than notational character. For instance, for the time-driven switch, the
switching time τ ∗ is always eventually reached as the system evolves. In contrast to
it, the switching state is not always reached as the following definition suggests.
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Definition 8.1 Thegame (8.1)–(8.3) is said to be in thenormalmode, if the switching
threshold f (x(τ ), τ ) is never reached by the optimal trajectory and no switching
occurs. Otherwise, the game is said to be in the switching mode.

In other words, if the game is in the normal mode and under the fixed switching
sequence condition, Definition 8.1 implies that T− = [0,∞) and the second interval
is never reached.

We observe that under the assumption of fixed sequence, the only case when
the game can be in the normal mode is when the switching condition is defined to
be dependent on x and the equilibrium of the dynamics in the first interval is such
that x−

eq < x∗(τ ). This agrees with the assumption that both equilibria are regular
(terminology follows Di Bernardo et al. [10]) in the case of a state-driven switch,1

that is:

Assumption 8.1 If equilibria of the dynamic system (8.3) exist, they are regular:

x−
eq < x∗(τ ) < x+

eq (8.6)

with x±
eq denoting the (potential) equilibria of the system below and above the thresh-

old value x∗.
By employing this assumption, we restrict the attention to the case of at most one

switching event. Indeed, if the optimal trajectory contacts the switching manifold,
the optimal jump in the co-state trajectory will immediately select the extension
after the threshold lying on the stable manifold of the associated equilibrium (since
this is, by construction of the model, of a saddle type). However, in more complex
settings, multiple (or even infinite number of) switches are potentially possible. We
will further discuss the relevance and importance of this assumption in Sect. 8.5.

Below, we explore the solution technique for this game in more details. We con-
sider separately the social cooperative and the (open-loop) Nash equilibrium solu-
tions to the differential game (8.1)–(8.4).

8.3 Cooperative Game

8.3.1 Second Interval

The solution for the cooperative game is obtained by solving the optimal control prob-
lem given by dynamic constraint (8.3) and an objective being the sum of individual
ones:

W = J1 + J2 =
∫ ∞

0
e−r t

[
(a1 + a2)x + (c1u2 + c2u1)x − 1

2
(u21 + u22)

]
dt (8.7)

1Since in the case of a time-driven switch this notion does not bear any meaning.
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The Hamiltonian is

H(x,ψ, u) = e−ρt
(
(a1 + a2)x + (c1u2 + c2u1)x − 1

2
(u21 + u22)

)
+ ψ(b1u1 + b2u2 − δx).

(8.8)
The optimal controls are obtained from the first order optimality condition to be

uCi = c−i x + eρt biψ. (8.9)

Plugging (8.9) into (8.3) and introducing a new variable λ = eρtψ representing
the current value of the adjoint ψ we get a system of two autonomous DEs:

ẋ = (b21 + b22)λ + (c2b1 + c1b2 − δ)x,

λ̇ = ρλ − (
(c21 + c22)x + a1 + a2

) − (b1c2 + b2c1 − δ)λ.
(8.10)

Using vector-matrix notation and introducing some abbreviations the system (8.10)
can be rewritten as

ż = Cz + g, (8.11)

where z =
[
x
λ

]
, C =

[
r b

−c ρ − r

]
, and g =

[
0

−a

]
. In (8.11), we also used the fol-

lowing short notation: a = a1 + a2, b = b21 + b22, c = c21 + c22, q = b1c2 + b2c1, and
r = q − δ.

Note that the problem (8.11) constitutes a system of two linear ODEs. Thus, there
is at most only one equilibrium in each interval and the resulting piece-wise system
has at most two equilibria (or exactly two if the equilibria are regular), each one
associated with the corresponding regime.

The equilibrium state of the system (8.11) is

[
xCeq
λC
eq

]
= −C−1g = − 1

det(C)

[
δ − q + ρ −b

c q − δ

] [
0

−a

]
= a

det(C)

[ −b
q − δ

]
.

(8.12)
Since xCeq must be non-negative,2 we impose the following regularity assumption.

Assumption 8.2 The coefficients of the matrix C have to satisfy det(C) < 0 or,
equivalently,

(δ − q)2 + (δ − q)ρ − bc ≥ 0.

The matrix C has two eigenvalues:

σ1,2 = ρ

2
±

√
[2(δ − q) + ρ]2 − 4bc

2
.

2Also note that if Assumption 8.2 doesn’t hold, we have trace(C) = ρ > 0 and hence, the equilib-
rium is a source (either an unstable focus or an unstable node). This implies that there does not exist
an initial state (x0,λ0) such that the solution to (8.11) converges to the equilibrium.
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We will enumerate the eigenvalues in the way that σ2 > σ1. Assumption 8.2 implies,
in particular, that σ1σ2 < 0 and hence, the equilibrium point of (8.11) is a saddle.

To simplify further analysis, we rewrite C in terms of its eigenvalues. So, we get

C =
[
r (r−σ1)(r−σ2)

c−c σ1 + σ2 − r

]
.

The two-point boundary value problem associated with the optimal control prob-
lem (8.3), (8.7) consists in solving the system of DEs (8.11) while satisfying the
following boundary conditions:

x(τ ∗) = x∗

lim
t→∞ e−ρtλ(t) = 0.

(8.13)

The conditions (8.13) allow us to determine the initial condition on the adjoint vari-
able as stated below. We define λ∗+ = limt→τ+0 λ(t).

Proposition 8.1 The initial value λ∗+ guaranteeing the fulfilment of (8.13) is
uniquely defined as

λ∗+ = a

σ2
− c

r − σ2
x∗.

Proof The solution of (8.11) is dominated by its largest positive eigenvalue σ2,
which is larger than ρ due to Assumption 8.2. This implies that the initial conditions
(x∗(τ ∗),λ(τ ∗)) must be chosen in the way that the solution’s component at eσ2t

is equal to 0. This is equivalent to saying that the initial condition must lie on the
stable manifold of the saddle. As time elapses, the state and the adjoint variable will
approach their equilibrium values (8.12).

Let v1,x and v1,λ be the respective components of the eigenvector corresponding to
σ1. The linear subspace corresponding to v1 can be written as V1 ={
(xCeq + αv1,x ,λ

C
eq + αv1,λ) | α ∈ R

}
. Setting the first component to x∗, we recover

α and the respective λ-component of the vector of initial conditions. �

Now we can compute explicit expressions for the optimal solution x(t) and λ(t)
to get

x(t) = a
(r − σ1) (r − σ2) (eσ1(t−τ ) − 1)

cσ1σ2
+ x∗eσ1(t−τ )

λ(t) = a

(
r − (r − σ1) eσ1(t−τ )

)
σ1σ2

− ceσ1(t−τ )

r − σ2
x∗

(8.14)

One can easily check that x(τ ) = x∗ and limt→∞ x(t) = xCeq . Furthermore, we
observe that x(t) changes monotonously and the sign of ẋ(t) depends on whether
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x(t) is smaller or greater than xCeq : if x(t) < xCeq , then ẋ(t) ≥ 0 and vice versa. The
optimal control is

uCi (t) = abieσ1(t−τ )

σ2
+ a

(
eσ1(t−τ ) − 1

)
σ1σ2

(bc−i − bir) +
(
c−i − bic

r − σ2

)
x∗eσ1(t−τ )

(8.15)
We know that all the previous results stay valid only for the case that the optimal

control (8.15) is non-negative. We have the following result.

Proposition 8.2 The optimal controls uCi are non-negative if the following condition
holds:

min

(
abi
σ2

+
(
c−i − bic

r − σ2

)
x∗,

−a

σ1σ2
(bc−i − bir)

)
≥ 0, i = 1, 2.

Proof To check if this is the case, we compute the derivative of uCi (t) w.r.t. time:

d

dt
uCi = − (bic − c−i (r − σ2)) (ab + σ1σ2x∗)

σ2 (r − σ2)
eσ1(t−τ )

We see that the sign of the derivative is constant for all t ∈ T+ and is determined
only by the parameters and the value of the switching state x∗.

Depending on the sign of the derivative, theminimal value of the control is attained
either at t = τ or at t = ∞. Thus, both of the following two expressions must be
non-negative to ensure that the control falls in with the bounds:

lim
t→τ+0

uCi (τ
∗) = abi

σ2
+

(
c−i − bic

r − σ2

)
x∗, lim

t→∞ uCi (t) = −a

σ1σ2
(bc−i − bir) .

This yields the required result. �

Note that σ1σ2 < 0, while, say, r − σ2 can be of either sign depending on parameters.
Finally, substituting (8.14) into the expression for the payoff function, integrating

and performing some algebraic simplifications, we get

J (τ ∗, x∗) = 1

2

[
2a

σ2
x∗ − r − σ1

b
(x∗)2 + a2b

σ2
2ρ

]
e−τ ∗ρ. (8.16)

Note that the value function depends both on τ ∗ and x∗. Relaxing one of the argu-
ments, we recover either a state-dependent or time-dependent switch.
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8.3.2 First Interval

8.3.2.1 Normal Mode

We start by considering the normal mode as introduced in Def. 8.1. The social
cooperative game is given by the optimal control problem with joint maximization.
Under given assumptions, there exists only one Skiba-threshold in a system (8.3):

Lemma 8.1 The indifference point (DNSS-point) xCS exists for cooperative game
(8.1)–(8.3) and xCS < x∗(τ ).

Proof Any bi-stable systemwithout heteroclinic connections possesses such a point,
see Wagener [30], Bondarev and Greiner [4]. The state–co-state system associated
with (8.3) in cooperative case is given by (8.10) is linear in each interval and as such
has a unique equilibrium. The overall piece-wise canonical system is thus bi-stable
(it has two regular equilibria by Assumption 8.1) and it does not have heteroclinic
connections since we assume fixed switching sequence and there is no unstable focus
in between. By definition of the DNSS-point, it has to be xCS < x∗(τ ). �

Denote the associated equilibrium of the first interval flow cooperative game by xC,−eq ,
and assume 0 ≤ xC,−eq < x∗(τ ). We use the minus superscript to denote quantities
associated with the first interval (so C− denotes the equivalent of the matrix C for
the first interval).

Proposition 8.3 Let x(0) < x∗(τ ) and Assumption 2 holds for matrix C−. Then:

• If x(0) < xCS , the cooperative game is in the normal mode and xC,−eq is realized as
the long-run equilibrium of the cooperative game.

• If x(0) > xCS , the cooperative game is in the switching mode and xC,−eq realizes as
the long-run equilibrium with a unique switching event at x∗(τ ).

• Outcome is indeterminate only at xC,−eq = xCS which has zero measure.

Proof If Assumption 8.2 holds, the xC,−eq is positive. We also assumed that xC,−eq <

x∗(τ ) so it can be reached by the x(t) process without crossing the threshold. Now
if x(0) < xCS holds, it means that by definition of the Skiba point it is optimal to
converge to this value xC,−eq . Once it is a saddle, no arcs entering the x > x(τ ) region
can be part of the optimal trajectory converging to this (lower) equilibrium. Game is
in the normal mode.

On the contrary, once x(0) > xCS , it is optimal to converge to the equilibrium
xC,+eq > x∗(τ ) and crossing occurs. It is the unique one since the equilibrium is a
saddle (so there are no arcs re-entering the first region).

At last, once x(0) = xCS the dynamics is indeterminate, as is standard for this
types of models (see discussion in Krugman [21]), but this is a non-generic point. �

We further on assume away the indeterminacy by letting xC,−eq �= xCS .
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8.3.2.2 State-Driven Switch

In the first interval, we optimize the objective function given by

J−(0, x0) =
∫ τ

0
e−r t

[
ax + (c1u2 + c2u1)x − 1

2
(u21 + u22)

]
dt + J+(τ , x).

Here, the optimal value of the objective function enters as the terminal cost for
the respective optimization problem. Note that we put the superscripts − and + to
distinguish between the parameters and variables that take different values in the
first, resp., second phases.

There are twopossible cases:when the switching state x∗ is fixed and the switching
time τ is free and the opposite. The former corresponds to the state-driven switch,
while the latter to the time-driven one.

We start be considering the state-driven switch. Here, the terminal time τ is free
and hence, we can use the result presented in the Appendix. According to (8.31), we
evaluate H(t, x,ψ) at t = τ and equate the resulting expression to− d

dτ
J+(τ ), where

J+(τ ) is given in (8.16). Replacing ψ with e−ρτλ, we get the following quadratic
equation in λ:

b−λ2 + 2r−λx∗ = a2b+

(σ+
2 )

2
+ 2a(ρ − σ+

2 )

σ+
2

x∗ − ρ
(
r+ − σ+

1

) + b+c
b+ (x∗)2. (8.17)

Solving (8.17), we get two candidates for the end-point values of the adjoint variable
λ∗− = limt→τ−0 λ(t). We require that λ∗−(τ ) yields ẋ(τ ) > 0, which is equivalent
to (cf. 8.10):

((b−
1 )

2 + (b−
2 )

2)λ∗− + (c2b
−
1 + c1b

−
2 − δ)x∗ > 0.

When λ∗− is determined, the final step consists in solving the system (8.10) with
conditions x(0) = x0, x(τ ) = x∗ and λi (τ ) = λ∗−

i . This allows us to determine τ ,
for instance, by integrating (8.10) backward in time with initial conditions (x∗,λ∗−

i )

and determining τ from x(τ ) = x0.

8.3.2.3 Time-Driven Switch

If the switching time τ ∗ is fixed, the endpoint condition onλ∗− is uniquely determined
by

λ∗− = d

dx
J (τ ∗, x(τ ∗))

∣∣∣∣
t=τ ∗

= a

σ2
− r − σ1

b
x(τ ∗),

which equalsλ∗+ (see Proposition 8.1). Again, this agreeswith theHybridMaximum
Principle in that the adjoint variable is continuous at an autonomous switch.
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Finally, the switching state is computed by solving the system (8.10) over the
interval [0, τ ∗]with boundary conditions x(0) = x0, andλi (τ

∗) = λ∗−
i . The obtained

solution is used to determine the switching state x(τ ∗).

8.4 Nash Equilibrium Solution

8.4.1 Second Interval

We start by determining the Nash equilibrium solution to the differential game (8.1)–
(8.5) in the second interval T+. In doing so, we will initially suppose that both the
initial time and the state are fixed to (τ ∗, x∗). Relaxing respective terms, we will
recover either the state- or the time-driven switch.

Since the presented below results can be of interest on their own, we first drop
the + superscript indicating the value of the parameter bi in the second interval and
restore it later when making a connection to the first interval.

When determining the Nash equilibrium solution one has to solve simultaneously
asmanyoptimization problems asmanyplayers there are. That is to say, for i ∈ {1, 2},
we maximize Ji w.r.t. ui while assuming that u−i is chosen to satisfy u−i = uNE

−i .
Following the standard procedure, we write the individual Hamiltonian for each
optimization problem:

H1(x,ψ1, u) = e−ρt

(
a1x + c1u2x − 1

2
u21

)
+ ψ1(b1u1 + b2u2 − δx),

H2(x,ψ2, u) = e−ρt

(
a2x + c2u1x − 1

2
u22

)
+ ψ2(b1u1 + b2u2 − δx).

(8.18)

The respective optimal controls are found to be uNE
i = eρt biψi . Plugging uNE into

(8.3), and going over to the current values of the adjoint states λi = eρtψi , we recover
a set of autonomous DEs corresponding to Hamiltonians (8.18):

λ̇1 = δλ1 − a1 + λ1ρ − b2c1λ2,

λ̇2 = δλ2 − a2 + λ2ρ − b1c2λ1.
(8.19)

The resulting system of differential equations for x and λi has the following form:

d

dt

⎡
⎣ x

λ1

λ2

⎤
⎦ =

⎡
⎣−δ b21 b22

0 δ + ρ −b2c1
0 −b1c2 δ + ρ

⎤
⎦

⎡
⎣ x

λ1

λ2

⎤
⎦ +

⎡
⎣ 0

−a1
−a2

⎤
⎦ = A

⎡
⎣ x

λ1

λ2

⎤
⎦ + f. (8.20)
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The matrix A is block-diagonal with the first eigenvalue σ1 = −δ < 0. Thus, the
character of the system’s behavior in long run is determined by the eigenvalues of the
second block submatrix. The respective eigenvalues areσ{2,3} = δ + ρ ± √

b1b2c1c2.

Assumption 8.3 The coefficients of the matrix A satisfy

(δ + ρ)2 − b1b2c1c2 ≥ 0. (8.21)

We have the following result.

Proposition 8.4 The system (8.20) has the following long-run solution

⎡
⎣ xeq

λ1,eq

λ2,eq

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(a1b21 + a2b22)(δ + ρ) + (a1b2c2 + a2b1c1)b1b2
δ
(
(δ + ρ)2 − b1b2c1c2

)
a1(δ + ρ) + a2b2c1
(δ + ρ)2 − b1b2c1c2
a2(δ + ρ) + a1b1c2
(δ + ρ)2 − b1b2c1c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
3
+ . (8.22)

with xeq ≥ 0 iff Assumption 8.3 holds. Furthermore, it holds that λi (t) = λi,eq ∀t ∈
T+.

Proof The equilibrium solution to (8.20) is obtained as −A−1 f . The non-negativity
of the equilibrium state xeq follows from Assumption 8.3.

On the other hand, the same Assumption implies that at the equilibrium point
the system (8.20) has two positive and one negative eigenvalues. This means that
the initial values are to be located along the respective eigenvector v1 = [1, 0, 0]�,
which, in turn, implies that λi (τ

∗) = λi,eq . Since the r.h.s. of (8.19) do not depend
on x , we have that λi (t) = λi,eq ∀t ∈ T+. �

Solving the equation for x(t) with initial condition x(τ ∗) = x∗, we get

x(t) =

x∗e−δ(t−τ ∗) +
(
(a1b21 + a2b22)(δ + ρ) + b1b2(a1b2c2 + a2b1c1)

)
δ
(
(δ + ρ)2 − b1b2c1c2

) (1 − e−δ(t−τ ∗)).

At this point, we note that the system state changes monotonically (given (8.5));
furthermore, at the switching time τ ∗ the phase vector ẋ(τ ∗) points toward the region
x > x∗ if x∗ < xeq (that is, Assumption 8.1 holds).

Finally, the value functions are computed to be
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J+
1 (τ ∗, x∗) =

(
a1(δ + ρ) + a2b

+
2 c1

)
c1ρ

(
(δ + ρ)2 − b+

1 b
+
2 c1c2

)×

e−ρτ ∗
[(

a1(δ + ρ) + a2b
+
2 c1

) (
c1(b

+
1 )

2 + 2b+
2 δ + 2b+

2 ρ
)

2
(
(δ + ρ)2 − b+

1 b
+
2 c1c2

) − (
a1b

+
2 − c1ρx

∗)
]

J+
2 (τ ∗, x∗) = a2(δ + ρ) + a1b

+
1 c2

c2ρ
(
(δ + ρ)2 − b+

1 b
+
2 c1c2

)×

e−ρτ ∗
[(

a2(δ + ρ) + a1b
+
1 c2

) (
c2(b

+
2 )

2 + 2b+
1 δ + 2b+

1 ρ
)

2
(
(δ + ρ)2 − b+

1 b
+
2 c1c2

) − (
a2b

+
1 − c2ρx

∗)
]
,

where we restored the+ superscript. Note that the value functions depend on both τ ∗
and x∗. Letting one of them be free, we recover a state-driven switch or a time-driven
switch, respectively.

8.4.2 First Interval

In this subsection, we compute the optimal controls for the first interval in three cases
(including the normal mode) and discuss the specific aspects of each case.

8.4.2.1 Normal Mode

We start by considering the conditions under which the normalmode is realized in the
system. We assume that an equivalent of Assumption 8.3 holds for the first interval,
i.e., the x−

eq value is positive and the equilibrium is of the saddle type (1, 0, 0).
Recall first also that in piece-wise smooth system the so-called Skiba (DNSS)

points (thresholds) may exist even if dynamics is linear in each of the intervals (see
Skiba [28], Sethi [26], Caulkins et al. [7] for original definition and Bondarev and
Greiner [4] for (pseudo) DNSS-points in piece-wise smooth systems).

Definition 8.2 The value xiS is called a (pseudo) DNSS-threshold for player i in
a differential game given by a piece-wise smooth dynamical system if converging
from this threshold to the x−

eq or x
+
eq yields the same value for player i :

xiS : J+
i (0, xiS) = J−

i (0, xiS) (8.23)

with J±
i (x(0) = xiS) being value functions of player i with initial condition set at the

threshold while converging to x±
eq .

Let A− be the system matrix for the dynamical system associated with the first
interval3 analogous to A defined above.

3It may easily be derived by substituting for b−
1,2 in (8.20).
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Then we get the following:

Proposition 8.5 Let x(0) < x∗(τ ) and Assumption 8.3 holds for the matrix A−.
Then:

1. Once x(0) < min{x1S, x2S} the normal mode realizes with x−
eq being the long-run

equilibrium of the game
2. Once x(0) > max{x1S, x2S} the switching mode realizes and the optimal trajectory

reaches the switching manifold in finite time
3. Once x(0) ∈ [xiS, x−i

S ], the outcome is indeterminate
If Assumption 8.3 does not hold for the matrix A−, only the switching mode realizes
as the outcome of the game.

Proof If Assumption 8.3 holds, x−
eq is positive. We also assumed that x−

eq < x∗(τ )
so it can be reached by the x(t) process without crossing the threshold. Now if
x(0) < min{x1S, x2S} holds, it means that by definition of the Skiba point it is optimal
to converge to this value x−

eq . Once it is a saddle type (1, 0, 0), no arcs entering
the x > x(τ ) region can be part of the optimal trajectory converging to this (lower)
equilibrium. Game is in the normal mode.

On the contrary, once x(0) > max{x1S, x2S}, it is optimal to converge to the equi-
librium xeq > x∗(τ ) and crossing occurs. It is a unique one, since the equilibrium is
a saddle type (1, 0, 0) (so there are no arcs re-entering the first region).

At last, once x(0) ∈ [xiS, x−i
S ] the dynamics is indeterminate, as is standard for

this types of models (see discussion in Krugman [21]), provided xiS �= x−i
S . �

To avoid further complications, we will assume for the rest of this subsection that
x(0) /∈ [xiS, x−i

S ].
This condition implies that there are exactly two branches of the optimal trajec-

tory: once x(0) < min{x1S, x2S}, the optimal trajectory cannot cross the indeterminacy
region [xiS, x−i

S ] and since the switchingmanifold is located to the right of this region,
the switching mode cannot realize as the optimal one. We thus consider only the nor-
mal mode, that is a game with the only one regular equilibrium which is the lower
one. On the other hand, once x(0) > max{x1S, x2S}, the lower equilibrium cannot be
reached by the optimal trajectory since it is located to the left of the indeterminacy
region and we could consider the switching trajectory only, whereas there is only one
feasible equilibrium located to the right of the switching manifold, x+

eq . The fact that

the optimal trajectory cannot cross the region [xiS, x−i
S ] follows from the definition of

the Skiba-point: once the game starts to the left from this region, it is not profitable
for both players to move to the upper equilibrium and vice versa. So we can observe
that the existence of these (pseudo) Skiba-points actually simplifies the analysis by
helping us to select the proper mode for the game.

8.4.2.2 State-Driven Switch

Similar to the cooperative case we assume that the switching state is fixed, i.e.,
x(τ ) = x∗, while the switching instant is left free. This means, in particular, that
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the adjoint variables corresponding to the state x are not fixed at the final time and
that the functions J+

i should now be considered as functions of τ . In this case, we
have to employ a slightly modified version of the Pontryagin’s maximum principle
as described in Appendix.

To use the condition (8.31), we rewrite the Hamiltonians (8.18) replacing u with
respective optimal controls uNE . Thus, we get

H∗
1 (t, x,ψ) = e−ρt a1x + b−

2 c1ψ2x + ψ1

(
1

2
(b−

1 )
2eρtψ1 + (b−

2 )
2eρtψ2 − δx

)

H∗
2 (t, x,ψ) = e−ρt a2x + b−

1 c2ψ1x + ψ2

(
1

2
(b−

1 )
2eρtψ1 + (b−

2 )
2eρtψ2 − δx

)
.

(8.24)
Finally, we write (8.31) while replacing ψi with e−ρtλi . This results in the following
set of equations:

(b−
1 )

2λ1
2 + 2(b−

2 )
2λ1λ2 + 2b−

2 c1λ2x
∗ − 2δλ1x

∗ + 2a1x
∗ = a1(δ + ρ) + a2b

+
2 c1

(δ + ρ)2 − b+
1 b

+
2 c1c2

×
[(

a1(δ + ρ) + a2b
+
2 c1

) (
c1(b

+
1 )

2 + 2b+
2 δ + 2b+

2 ρ
)

c1
(
(δ + ρ)2 − b+

1 b
+
2 c1c2

) − 2
(
a1b

+
2 − c1ρx∗)
c1

]

(8.25)

2(b−
1 )

2λ1λ2 + 2b−
1 c2λ1x

∗ + (b−
2 )

2λ2
2 − 2δλ2x

∗ + 2a2x
∗ = a2(δ + ρ) + a1b

+
1 c2

(δ + ρ)2 − b+
1 b

+
2 c1c2

×
[(

a2(δ + ρ) + a1b
+
1 c2

) (
c2(b

+
2 )

2 + 2b+
1 δ + 2b+

1 ρ
)

c2
(
(δ + ρ)2 − b+

1 b
+
2 c1c2

) − 2
(
a2b

+
1 − c2ρx∗)
c2

]

(8.26)

Solving the system (8.25), (8.26) with respect to λi , we obtain a number of
candidates for the end-point values of the respective adjoint variables at t = τ :
λ∗−
i = limt→τ−0 λ−

i (t). Note that according to Bézout’s theorem [16], there cannot
bemore than four such candidates. Choosing an appropriate solution to (8.25), (8.26)
is a separate problem that requires some extra analysis. One obvious test consists in
checking the direction of the state phase vector at τ : it should hold that ẋ(τ ) > 0.
This is equivalent to requiring that (b−

1 )
2λ∗−

1 + (b−
2 )

2λ∗−
2 > δx∗. We conjecture that

there will be at most two feasible solutions out of four.A rigorous proof of this fact
is yet to follow.

When λ∗−
i are determined, the final step consists in solving the system (8.20) with

conditions x(0) = x0, x(τ ) = x∗ andλi (τ ) = λ∗−
i . This will allow us to determine τ ,

for instance, by integrating (8.20) backward in time with initial conditions (x∗,λ∗−
i )

and determining τ from x(τ ) = x0. If there are more than one feasible solution
to (8.25)–(8.26), the optimal solution is obtained by comparing the values of the
objective functions.
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8.4.2.3 Time-Driven Switch

If τ ∗ is fixed, while the switching state x(τ ∗) is unrestricted one can make use of
the standard transversality condition from optimal control theory and compute the
end-point values of adjoint variables as

ψi = d

dx
J+
i (x)

∣∣
x=x∗ .

Expressed in terms of current values of adjoint variables, this yields λ∗−
i = λeq (cf.

(8.22)). This agrees with the Hybrid Maximum Principle in that the adjoint variables
do not undergo a discontinuity at a time-driven, i.e., controllable switch.

Finally, the switching state is computed following the same procedure as in Sect.
8.3.2.3. We note that since the DEs for λ do not depend on x , the problem can be
conveniently solved in two runs: first, the DEs for λ are solved backward in time to
recover λi (0); next, the whole system (8.20) is solved forward to yield the required
value of the state.

8.5 Extensions

It is of interest what would be the global dynamics of the system (8.3) for the state-
driven switch in case Assumption 8.1 does not hold. In particular, since x∗ is an
arbitrary value, it could be the case that one of x+

eq > x∗ and x−
eq < x∗ do not hold

or both do not hold. These are cases of virtual (again following terminology of Di
Bernardo et al. [10]) equilibria. We discuss these two cases separately.

One virtual equilibrium. If only one of the equilibria is virtual the dynamics of
both cooperative and non-cooperative cases becomes somewhat simple. In the case
of the fixed switching sequence, we observe that:

Proposition 8.6 Once either x+
eq > x∗ or x−

eq < x∗ but not both, the equilibrium
which remains regular is reached by the optimal trajectory in finite time.

Once x+
eq > x∗ but x−

eq > x∗ and x(0) < x∗, there is a unique switching trajectory
with a unique stitching event at some x∗(τ ) which reaches x+

eq .
Once x+

eq < x∗ but x−
eq < x∗ and x(0) > x∗, there is a unique switching trajectory

with a unique stitching event at some x∗(τ ) which reaches x−
eq .

Once x+
eq > x∗ but x−

eq > x∗ and x(0) > x∗, there is a unique smooth trajectory
in the second interval which reaches x+

eq .
Once x+

eq < x∗ but x−
eq < x∗ and x(0) < x∗, there is a unique smooth trajectory

in the second interval which reaches x−
eq .
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Proof It has been shown in numerous literature (see e.g. Feichtinger and Wirl [13])
that in (optimally controlled) systems with a threshold there exist optimal solution
candidates crossing the threshold in finite time. Once we get only one (thus unique)
regular equilibrium, it is reached by the optimal trajectory either by crossing the
threshold or not. �

Now the case of one virtual equilibrium is not exhausting the full list of global
configurations. The other one4 is the case of two virtual equilibria.

Two virtual equilibria. If both equilibria are virtual, that is, they are infeasible,
there are no optimal control candidates leading to any equilibrium. This is the case
where we have to apply the alternative solution concept to find a suitable solution.We
thus may resort to the sliding mode control (see, e.g., Gamkrelidze [17] and further
works). We abstain here from the formal proof of the optimality of such control
(leaving this for future extension) and limit ourselves to the following observation:

Proposition 8.7 For a system (8.3) with a state-driven switch and once both x+
eq <

x∗ and x−
eq > x∗, the only optimal control candidates are those leading to the sliding

mode dynamics such that

∀t > τ : ẋ = 0, x(t) = x∗. (8.27)

Proof If both equilibria of regular flows are virtual, there are no candidate trajectories
crossing the threshold, Thus, the only sufficiently long trajectory is the one leading
to the threshold x∗ and this is the only optimal control candidate. �
This type of dynamics will not come up from the maximum principle (as is noted
already in Gamkrelidze [17]) and in general is obtained as a (linear) combination of
controls, leading the trajectory of the state to the switchingmanifold. Once the trajec-
tory reaches the switching manifold, it stays there the rest of the game, converging to
the pseudoequilibrium (see Di Bernardo et al. [10]) which is defined as the equilib-
rium of the (in our case one-dimensional) sliding flow λ̇S := conv{λ̇+, λ̇−}|x = x∗
while state remains fixed at the threshold value. There are several methods of defining
this flow (see Filippov [14], Utkin [29]) which in general lead to equivalent results.

We also note that even in the case the pseudoequilibrium is repelling; it still can be
reached from the outside of the switchingmanifold by the suitably designed sequence
of controls. We stop our discussion of the sliding mode here since it is not easy to
prove the optimality of such a candidate and this is an entirely different problem
requiring much more complicated analysis left for further research.

The other question is whether the study undertaken here is applicable to a wider
variety of problems besides those linear in the state. We claim that the core method is
valid for many piecewise systems which allow for derivation of steady states. This,
of course, includes a lot of non-linear problems. We do not claim however that any
piece-wise system may be treated this way, since non-linear systems may exhibit
rather rich additional dynamics. Checking the derivations above we observe that the

4We neglect the case of boundary equilibria as having zero measure in the space of parameters.
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explicit solution for the underlying canonical system is not actually necessary to
derive the global dynamics. We still need to know where both equilibria are located
(are they regular or virtual), which requires explicit derivation of those equilibria.
The method for obtaining boundary conditions at the switching time is quite general
and does not rely on the linear-quadratic structure of the problem. This has been taken
only for the sake of simplicity of exposition and by no way limits the applicability
of our results to a larger class of piece-wise smooth problems.

8.6 Conclusions

In this paper, we considered an example of a multi-modal differential game with
two players and one state variable. It is demonstrated that this differential game can
possess a rich variety of types of dynamics, including the normal mode (with smooth
solution trajectory), the switching mode (with optimal trajectory consisting of two
parts) and even the sliding mode, which requires some further analysis.

We applied a modified version of a standard Maximum Principle and obtained
full analytic results for the switching trajectories including the conditions on adjoint
states at the threshold.We studied both time-driven and state-driven switching condi-
tions. In so doing, we explore the main difficulties arising in these two formulations
(leading, in general, to different optimal control problems).

Moreover, we also find out that the game, although linear-quadratic in each of the
intervals, is overall non-linear and as such possesses so-called indifference (DNSS)
points for each of the players. It is remarkable that this effect arises solely because
of the piece-wise structure of the state equation (8.3), leading to the multiplicity of
equilibria in the overall game, both for cooperative and non-cooperative solutions.
To see this, we observe that every sub-system (lower and upper ones) possesses a
unique equilibrium despite the presence of the ci xu−i term in objective functionals.
As such, the smooth system itself cannot exhibit Skiba-points (since the multiplicity
of equilibria is a necessary condition for this, see Wagener [30]). However, the
combined piece-wise smooth system has two equilibria and thus can exhibit Skiba-
points even for linear-quadratic systems.

Themain insight from our analysis so far is the following: The relevant method for
obtaining an optimal solution depends on the global configuration of the respective
dynamic system’s equilibria.While in the normal mode conventional optimal control
methods can be used, in the case of switching additional boundary constraints on
adjoint variables have to be taken into account. In the even more special case of
sliding, conventional tools are inapplicable at all. Thus, the general algorithm to
solve this kind of problems would be as follows: we have to define the configuration
of equilibria of the game first and then select an appropriate solution technique. This
issue is frequently neglected in economic applications of regime-switching systems,
where usually only the switching mode is studied.
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Appendix

Consider the following optimal control problem:

{
J = ∫ T

0 f0(t, x, u)dt + φ(T ) → max,

ẋ = f (x, u), x(0) = x0,
(8.28)

where the final time T is assumed to be free. A particular feature of this problem
statement is that the terminal payoff function depends on the final time, rather the final
state. To accommodate the known results to this case, we reformulate the system and
include an auxiliary variable θ that evolves according to θ̇ = 1 with initial condition
θ(0) = 0. Following [Pontryagin], we write the Hamiltonian function as

H(x, θ,ψ,ψθ, u) = H(θ, x,ψ, u) + ψθ,

where H(t, x,ψ, u) = 〈ψ, f (x, u)〉 + f0(t, x, u) is the “original”Hamiltonian func-
tion. Following the standard procedure, we obtain the optimal control uo bymaximiz-
ing H(θ, x,ψ, u), i.e., H∗(θ, x,ψ) = maxu H(θ, x,ψ, u) and write the differential
equations for the adjoint variables as

{
ψ̇ = − ∂H

∂x

ψ̇θ = − ∂ f0
∂t .

(8.29)

While the end-point conditions on the adjoints ψ are determined according to the
standard procedure, for ψθ, we have ψθ(T ) = d

dt φ(t)
∣∣
t=T . Finally, we recall that, for

an optimal control problem with free final time, we have

H∗(x, θ,ψ,ψθ) = H∗(θ, x,ψ) + ψθ = 0 (8.30)

along the optimal trajectory. Evaluating (8.30) at t = T and noting that θ(T ) = T ,
we obtain

H∗(T, x(T ),ψ(T )) = − d

dt
φ(t)

∣∣
t=T . (8.31)

That is to say, in contrast to the case when the terminal payoff expressed in terms of
x(T ) defines the final values of the adjoint variables, the terminal payoff expressed
in terms of the final time imposes an additional restriction on the value of the Hamil-
tonian function at t = T .
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Note that an alternative approach would be to use the jump condition from
Boltyansky [2]. However, the above-described approach seems to be more appropri-
ate as it is tailored to a particular class of multi-modal optimal control problems as
contrasted to the general formulation proposed by Boltyansky.
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Chapter 9
Optimal Switching from Competition
to Cooperation: A Preliminary
Exploration

Raouf Boucekkine, Carmen Camacho, and Benteng Zou
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9.1 Introduction

The recent years have noticed the emergence of numerous debates on the opportu-
nity and timing of very different types of transitions, each associated with a bunch of
academic works in the economic and operational research literatures: environmen-
tal transitions (in particular, the energy transition, see the early work of Tsur and
Zemel [17]), political transitions (among others, transition to democracy following
Acemoglu and Robinson [1]), organizational transitions (either in markets or in the
workplace, see Vallée andMoreno Galbis [18]), etc. In most of these works, the opti-
mal timing of transitions (if any) are only implicitly tackled though the vast majority
of the models developed are dynamic.1

There exists however an increasing number of papers interested in optimal regime
transition and the inherent timing. As a common feature, all these papers use mul-
tistage optimal control techniques, first developed in economics by Tomiyama [16].

1This is especially true in the political transitions literature,with the notable exceptionofBoucekkine
et al. [5].
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This notably covers technological regime switching ([2], or [13]) and environmental
transitions (see [4], or [12]).2 Not surprisingly, given the nature of problems tackled
in the latter literature, the decisions are taken by a single player, say the central plan-
ner. However, in many cases, from one stage to another, the decision makers may
differ. For example, from dictatorship to democracy, we have to move from a regime
in which initially almost all the decisions are taken by a dictator, to a regime in which
at the very least, the decisions are taken in a more collective way (see [1], in a frame
without multistage optimal control, and [5], with multistage optimal control). Sim-
ilar considerations arise when analyzing international climate agreement processes
where we typically switch from a regime with country-level decision-making and
no cooperation, for example, prior to the 2015 Paris agreement, to a regime of insti-
tutional cooperation with joint decision-making. On a more technical ground, the
economic literature is rather very poor in papers merging multistage optimal control
and dynamic game ingredients. The corresponding operational research literature is
less poor (see, for example, Boucekkine et al. [3]).

In this paper, we shall deal with a generic regime switching problem where the
decision-making process is not the same from one regime to another. Precisely, we
consider a simple model of optimal switching from competition to cooperation. We
believe this problem is generic enough to cover a large set of problems. In addition
to the dawn of multinational agreements, it can be also applied to political party or
companymergers within a country.3 Needless to say, the reverse can happen, and one
can notice situations in which long time cooperation comes to an end and a further
competition regime sets in: Canada pulled out of the Kyoto Protocol in 2011, USA
withdrew from the Paris Agreement in 2017, and the UK left the EU on the January
31, 2020. In this kind of situation, the decision-making process changes as well.

A quite rich set of questions arises from the examples given above: what are
the trade-offs involved in the decision to move from competition to cooperation
(and vice versa), and what is the optimal timing for the institutional regime change
if any? Since addressing these questions involves dealing with strategic trade-offs
in dynamic settings, it implies embedding dynamic game ingredients in multistage
optimal control problems. As outlined above, the economic literature is rather thin
in this respect. There is a substantial applied game theory literature of endogenous
coalition formation (see, for example, Di Bartolomeo et al. [8], who study how
coalitions among fiscal and monetary authorities are formed and what their effects
are on the stabilization of output and prices). However, it generally pays no attention
to the regime switching problem described above.4

2Applications tomacroeconomic policy switching, e.g., Zampolli et al., or toworkplace organization
as in the above-cited paper by Vallée and Moreno Galbis [18], can be also found.
3For example, in December 2003, the Progressive-Conservative Party and the Reform/Canadian
Alliance parties merged and created a new right-wing political formation, the Conservative Party
of Canada. In October 2007, the two most important Italian left-wing parties merged into a single
political entity, the Democratic Party.
4Also, and even more clearly, our research questions and inherent settings are quite different from
the classical literature on cooperative and noncooperative R&D [7, 15], research joint ventures
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In this paper,we propose a preliminary exploration of the latter switching problem.
To this end, we solve a two-stage optimal control problem. In the first stage, two
players “compete” on a common state variable which could be public good or public
bad. They engage in a dynamic game in this first stage, and we solve for open-
loop strategies. Arguably, under the current setting, the interesting equilibrium is the
path strategies, i.e., open-loop strategies, given the fact that usually the commitment
extends over the entire future time, and negotiation results depend on the initial
condition. Thus, the strategy may not be subgame perfect by definition, which gives
possibility for changing in some future time. The decision rule strategies, i.e., the
Markovian strategies, are subgame perfect Nash equilibria, but no commitment at
all is possible, thus they do not fit our examples above. As the state equation and
the individual payoffs are linear-quadratic, the resulting dynamic game would be a
conceptually trivial problem if no perspective of switching to a cooperative regime
emerges. We do introduce such a possibility with the associated joint optimization
of the sum of the individual payoffs.

The paper is organized as follows. Section9.2 briefly presents the differential
game setting. Section9.3 provides the open-loop strategies during the noncooperative
and cooperative periods, thus the optimal switching conditions can be obtained. In
Sect. 9.4, we turn to the numerical analysis that illustrates and deepens the theoretical
findings. Section9.5 provides extra discussion of the other direction of the game, that
is, from cooperative to noncooperative, and Sect. 9.6 concludes.

9.2 A Simple Model of Optimal Switching

There are two players: players 1 and 2, who share a common variable, y ∈ [0,Y ],
which could be public good or public bad. Each player chooses the level of a variable
xi ∈ [0, X ] ⊂ [0,+∞), which provides her with utility. At the same time, their
choice increases the level of y, which induces a loss in utility. Let us assume that
at time 0, players play a noncooperative dynamic game, choosing their optimal
trajectory for xi . Then, since their individual choices affect equally the common
variable, they could decide to switch strategies at a time T and continue playing
strategically. Indeed, in this paper players can optimally choose a time T to start
playing cooperatively.

Let us provide an economic example that will accompany us throughout the paper.
We assume that there exists a unique final good, which requires only a polluting
resource as input. With a quantity xi of pollution, the firm produces an amount ai xi
of the final good. Consumption provides the player with utility, but at the same time
it increases the level of CO2 emissions, y. Obviously, the level of CO2 affects both
players. In the end, the player can obtain utility directly from the consumption of xi ,
but she also suffers from pollution, so she will receive disutility from y.

[10], or the empirical work of Cassiman and Veugelers [6]. Essentially, these models are static and
cannot show time switching conditions from noncooperative to cooperative games and vice versa.
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The objective of player i = 1, 2 is to maximize overall welfare, defined as

max
xi

Wi =
∫ +∞

0
e−r t

[
ai xi − x2i

2
− bi y2

2

]
dt,

which depends on her individual choice, xi and which is subject to the dynamic
constraint:

ẏ(t) = x1 + x2 − δy(t), y(0) = y0 given. (9.1)

Welfare is the sum of instantaneous utility from time zero. Instantaneous utility at a

time t ≥ 0 is given by ai xi − x2i
2 − bi y2

2 . As mentioned, xi is the choice of player i .

The cost of choosing xi is
x2i
2 , thus the net gain from xi is ai xi − x2i

2 , with ai (≥ X)

positive constant measuring the unit gain.
An increase in the state variable y has a negative effect on utility. Indeed, as in our

example where y is the stock of CO2 emissions, any increase in y induces a damage
bi y2

2 , with scaling parameter bi , a positive constant.
Suppose that at some future date T , the two players decide to play cooperatively.

Then, the join objective is

max
x1,x2

WI I (T ) =
∫ +∞

T
e−r t

[
a1x1 + a2x2 − x21 + x22

2
− (b1 + b2)y2

2

]
dt,

subject to the same state equation (9.1).
For simplicity reasons, we only consider here the symmetric case where ai =

a j = a and bi = b j = b.

Remark 9.1 The difficulty of considering the asymmetric case is to provide the
sharing principal in the second period. Here, in the symmetric case, the two share
equally the gain.

Indeed although switching from asymmetric noncooperative game to a cooper-
ative one is not uninteresting at all, it is a very difficult task which is beyond the
scope of the current study. It is important to grasp the difficulty of the asymmetric
problem. Under the current affine-quadratic setting, if we only study the differential
games without switching time, it is certainly possible to obtain explicit equilibria in
the asymmetric case. However, with switching, the problem becomes much trickier
as the outcomes will essentially depend on the sharing strategy under cooperation
when it turns to be optimal, that is at time T . Depending on the specific problem, the
sharing strategy may differ. The sharing problem when joining the Kyoto Protocol,
the Copenhagen Accord, Paris Climate Agreements,...etc., is different from the one
involved in joining the United Nations, the EU, or the NATO, which is in turn dif-
ferent from the counterpart when adhering to the Universal Postal Union, the World
Bank, and so on. The sharing strategy itself is the object of a stream of the litera-
ture named “conflict between groups”. Hence, to tackle the asymmetric problem one
needs to impose a specific sharing strategy, leading to very specific results. Instead,
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we aim here at providing general results even if this limits our scope to symmetric
games.

In the following, we compute the optimal switching time T . Denote by WI (T )

welfare of a player playing noncooperatively, from time 0 to the switching time T ,
when she starts playing cooperatively. Then, the player solves the following problem:

max
x

WI (T ) =
∫ T

0
e−r t

[
ax − x2

2
− by2

2

]
dt,

subject to the law of motion (9.1).
The optimal choice of T is given by the solution of

max
T

[
WI (T ) + e−rT WI I (T )

2

]
. (9.2)

If T = 0, then it is optimal for the two players to play cooperatively immediately,
whereas if T = +∞, the noncooperative game should continue forever.

9.3 The Optimal Switching Strategy

Following Boucekkine et al. [2–5], we solve first the second-stage problem. Optimal
trajectories for x and y are obtained in case the players play cooperatively from T
onwards. Second, taking T as given, we solve the first noncooperative game. We
obtain optimal trajectories in both phases that depend on y0 and T . Finally, the
optimal switching time T is obtained substituting the resulting WI and WI I into
(9.2), and solving the resulting problem. As a result, the optimal solution will be
made of an optimal switching time T , and the optimal trajectories for y and x before
and after the switch.

9.3.1 The Cooperative Regime

The joint symmetric optimization problem can be restated as

max
xI I

WI I (T ) =
∫ +∞

T
e−r t

[
2axI I − x2I I − by2I I

]
dt,

subject to the state equation

ẏ(t) = 2xI I − δyI I (t), t ≥ T .

Define the associated Hamiltonian as
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HI I (x, y, λI I ) = 2axI I − x2I I − by2I I + λI I (2x − δyI I (t)), (9.3)

with λI I as the costate variable. The first-order conditions yield the following set of
optimal conditions: ⎧⎨

⎩
xI I = a + λI I ,

ẏI I (t) = −δyI I + 2λI I + 2a,

λ̇I I (t) = 2byI I + (r + δ)λI I ,

(9.4)

with transversality condition lim
t→+∞ e−r t y(t)λI I (t) = 0.

The next proposition provides the analytical solution to (9.4).We do not reproduce
here the proof since it is a standard exercise.

Proposition 9.1 Suppose that the two players play the cooperative game from time
T onwards, then the optimal effort is given by (9.4). The corresponding state and
costate variables are given by

{
yI I (t) = 2C1eμt + y,
λI I (t) = (μ + δ)C1eμt + λ,

(9.5)

where t ≥ T andμ = r−
√

r2+4[δ(r+δ)+4b]
2 (< 0). Constant C1 will be determined later

by the transversality condition y(T−) = y(T+).
Moreover, there exists a unique steady state (y, λ) given by

y = 2a(r + δ)

δ(r + δ) + 4b
, λ = − 4ab

δ(r + δ) + 4b
.

Associated with this steady state, we can compute the steady state of xI I ,

x̄ = a + λ̄ = a

(
1 − 4b

δ(r + δ) + 4b

)
.

Corollary 9.1 Both ȳ and x̄ increase with a, they decrease with b.

Obviously if T = 0, that is, if the cooperation starts from the beginning, then
y(T ) = y(0) = y0 and C1 = y0−y

2 . It is easy to check that the optimal joint welfare
is in this case

W ∗
I I (0) = 2a(a + λ) − (a + λ)2 − by

r
+ (μ + δ)2C2

1

2μ − r
+ 2C1(b + (μ + δ)λ)

μ − r
.

(9.6)
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9.3.2 The Noncooperative Regime

Let us solve the first period noncooperative game for a switching time T given. The
first period optimization problem for player i is

max
xi

WI (T ) =
∫ T

0
e−r t

[
ai xi − x2i

2
− bi y2

2

]
dt,

subject to
ẏ(t) = xi + x j − δy(t),

for i, j = 1, 2, i 	= j , and where y(0) = y0 is given. The associated Hamiltonian is

HI (xi , y, λI ) = ai xi − x2i
2

− bi y2

2
+ λI (xi + x j − δy(t)), (9.7)

with λI as costate variable in the first period. In the symmetric setting, the first-order
conditions yield the following set of optimal conditions:

⎧⎨
⎩
xI = a + λI ,

ẏI (t) = −δyI + 2λI + 2a,

λ̇I (t) = by + (r + δ)λI .

(9.8)

Proposition 9.2 below provides the analytical solution to the first-order conditions
in (9.8). Its proof can be found in the appendix.

Proposition 9.2 Suppose that at time T , the two players start playing the coopera-
tive game. Then, for t ∈ [0, T ], the unique symmetric strategic Nash equilibrium is
xI (t) = a + λI , with state, yI , and costate variables, λI , given by

{
yI (t) = â eν1t + b̂ eν2t + yP(t),
λI (t) = ĉ eν1t + d̂ eν2t + λP(t),

(9.9)

in which ν1 and ν2 are eigenvalues given by

ν1 = r − √
r2 + 4[δ(r + δ) + 2b]

2
, ν2 = r + √

r2 + 4[δ(r + δ) + 2b]
2

.

(yP(t), λP(t)) is a special solution:

yP(t) = ŷP (1 − eν1t ) + yP (1 − eν2t ),

λP(t) = λ̂P (1 − eν1t ) + λP (1 − eν2t ),
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with

ŷP = 2a(ν2 + δ)

ν1(ν1 − ν2)
, yP = − 2a(ν1 + δ)

ν2(ν1 − ν2)
,

λ̂P = a(ν1 + δ)(ν2 + δ)

ν1(ν1 − ν2)
, λP = −a(ν1 + δ)(ν2 + δ)

ν2(ν1 − ν2)
.

Constants â, b̂, ĉ, d̂ are given by

â = −(ν2 + δ)y0 + 2λ0

ν1 − ν2
, b̂ = (ν1 + δ)y0 − 2λ0

ν1 − ν2

and

ĉ = (ν1 + δ)[−(ν2 + δ)y0 + 2λ0]
2(ν1 − ν2)

, d̂ = (ν2 + δ)[(ν1 + δ)y0 − 2λ0]
2(ν1 − ν2)

,

where y0 is given initial condition, while λ0 will be determined by the switching
condition at time T .

A special case arises when T = +∞, that is, when no cooperation is possible.
Here, the solution of (9.8) with transversality condition limt→+∞ e−r t y(t)λI (t) = 0
is {

yI (t) = 2C1I e
ν1t + yI ,

λI (t) = C1I e
ν1t + λI ,

(9.10)

where C1I = y0−y I
2 and the steady state (yI , λI ) =

(
2a(r+δ)

δ(r+δ)+2b ,− 2ab
δ(r+δ)+2b

)
. In this

special case, each player’s social welfare is

W ∗
I (+∞) = a(a + λI ) − (a + λI )

2/2 − byI /2

r
+ (ν1 + δ)2C2

1I

2(2ν1 − r)
+ C1I (b + (ν1 + δ)λI )

ν1 − r
.

(9.11)

From (9.6) and (9.11), it is easy to check that

W ∗
I I

2
(+∞) − W ∗

I (+∞) � 0,

depending on the combination of parameters. In other words, it is possible that
the switching happens at T = 0, or T = +∞, or T ∈ (0,+∞), depending on the
situation under study, which can also be seen in Sect. 9.4 with numerical illustration.
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9.3.3 Optimal Switching Time

At the switching time, T , and by continuity, the state variable y must verify that

yI (T ) = yI I (T ). (9.12)

Similarly, the costate variable must verify that

λI (T ) = λI I (T ), (9.13)

which is the standard matching condition for continuity identified by Tomiyama [16]
and used in Boucekkine et al. [2, 4].

Usually in the optimal switching problems with a unique decision maker, as in
Boucekkine et al. [2, 4, 5], a transversality condition is imposed on the maximized
Hamiltonian and shadow values at the switching time T . In particular, within a more
general setting with different types of switching, Boucekkine et al. [4] demonstrate
that the present value of the Hamiltonian must be also continuous at the switching
time. In other words, in the one decision maker’s optimal control problem, the maxi-
mized Hamiltonian is exactly the same immediately before and immediately after the
switch. However, under the current dynamic game setting, it is different. Before and
after the switch, there are different decision makers as stated in Introduction. Before
the switch, each individual player takes her own optimal decisions, while after the
switch, it is a joint choice. Thus, it is improper to equalize the maximized Hamilto-
nian before and after the switch, even with identical players. Therefore, the shadow
value continuity condition is the only natural and valid transversality condition in
our setting. In our example where y measures the stock of CO2, this transversality
condition implies that the shadow value of pollution does not change immediately
due to the signature of some agreement or protocol. Instead it takes some time for the
shadow value to change, while immediate changes come from the choice variables.

Combining (9.12) and (9.13), we obtain that the values of λ0(T ) and C1(T ):

⎧⎪⎪⎨
⎪⎪⎩

λ0(T ) = 2E1(T ) − (μ + δ)A1(T )

(μ + δ)A2(T ) − 2E2(T )
,

C1(T ) = E1(T ) + E2(T )λ0

μ + δ
e−μT ,

(9.14)

where

A1(t) = (ν1 + δ)eν2t − (ν2 + δ)eν1t

ν1 − ν2
y0 + (yP(t) − y), A2(t) = 2(eν1t − eν2t )

ν1 − ν2
,

and

E1(t) = (ν1 + δ)(ν2 + δ)(eν2t − eν1t )

2(ν1 − ν2)
y0 + (λP (t) − λ), E2(t) = (ν1 + δ)eν1t − (ν2 + δ)eν2t

ν1 − ν2
.
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Thus, substituting (9.14) into (9.9) and (9.5), we could obtain the explicit optimal
trajectories in both periods.

The optimal switching time T is given by the optimization problem (9.2). With
the above explicit solutions, it only remains to calculate the social welfare in the two
periods, i.e., WI (T ) and WI I (T ). It is easy to check that

e−rT

2
WI I =

(
a2 − λ

2 − by2

2

)
e−2rT

r
− [

(μ + δ)λ + 2by
]
C1

e(μ−2r)T

r − μ

−
[
(μ + δ)2 + 4b

2

]
C2
1
e(2μ−2r)T

r − 2μ
,

(9.15)

in which C1 = C1(T ) is given by (9.14).
Similarly, the first period social welfare WI is given by

WI =
[
a2 − (̂λP + λP)2 − b(ŷP + yP)2

2

]
(e−rT − 1)

−r

−
[
(̂c − λ̂P)2

2
+ b(̂a − ŷP)2

2

]
(e(2ν1−r)T − 1)

2ν1 − r

−
[

(d̂ − λP)2

2
+ b (̂b − yP)2

2

]
(e(2ν2−r)T − 1)

2ν2 − r

− [
(̂c − λ̂P)(d̂ − λP) + b (̂a − ŷP)(̂b − yP)

] (e(ν1+ν2−r)T − 1)

ν1 + ν2 − r

− [
(̂c − λ̂P)(̂λP + λP) + b (̂a − ŷP)(ŷP + yP)

] (e(ν1−r)T − 1)

ν1 − r

− [
(d̂ − λP)(̂λP + λP) + b (̂b − yP)(ŷP + yP)

] (e(ν2−r)T − 1)

ν2 − r
,

(9.16)

in which â, b̂, ĉ, d̂ depend on the switching time T as well, via λ0(T ).
The first-order condition from (9.2) yields

dWI (T )

dT
+ e−rT

2

[
−rWI I (T ) + dWI I (T )

dT

]
= 0. (9.17)

Intuitively, the first term should be nonnegative, i.e., the longer the time period
[0, T ], the higher the welfare it yields (otherwise T = 0 already). The second term
should be nonpositive (otherwise T = +∞). Nevertheless, due to the complexity of
expressions (9.15) and (9.16), the study of an explicit form becomes cumbersome,
and the study of the properties and impacts becomes impossible. Thus, it is not wise
to continue working on the search of explicit solutions. Instead, we focus in the next
section on numerical simulations to illustrate the impacts of important parameters,
such as the efficient parameter, a, and disutility parameter, b, as well as the initial
condition, y0.Although themodel is not realistically calibrated, the qualitative pattern
is illustrative.
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9.4 Numerical Illustration

This section illustrates numerically the theoretical results obtained in the previous
sections. First, we compare the optimal switching time as a function of the initial
endowment of the state variable, y0. In a second set of exercises, we compute the
optimal dynamic trajectories of the state variable y and of the optimal choice x .

9.4.1 Optimal Switching Time

To seize the importance of all the elements of the model, we have computed the
optimal switching time under various scenarios for both a and b. In all exercises,
r = 0.0015 and δ = 0.01. The time discount is in line with the most recent literature
(see the literature following Stern [14]).

We begin by exploring the role of a. Setting b = 0.000095, we choose an econ-
omy which loses little utility with y. Two economies are compared: a performant
economy, which can extract high utility from the same amount of the choice variable
x , for which a = 0.115; and a second less-efficient economy, in which a = 0.109.
Figure9.1 shows the optimal switching time and the associated overall welfare when
the initial endowment of the state variable ranges from y0 = 50 to y0 = 100.5

Interpreting y as the CO2 stock and x as consumption, a is a measure of the
efficiency of the economy. Indeed, with the same amount of the resource, the higher
the a, the more of the final consumption good we obtain. Low levels of y0 correspond
to economies that are not too polluted initially. By the same token, high y0 correspond
to economies that are already very polluted at the beginning of the game.

On the left panel of Fig. 9.1, we see that players always decide to play cooper-
atively, that is 0 ≤ T < ∞. They cooperate from T = 0 when y0 is relatively low.
When the environmental quality is high, players join as soon as possible to preserve
the environment and avoid the loss of utility induced by pollution. Besides, switch-
ing times are increasing functions of the initial stock of y0. If y is the stock of CO2

emissions, then clean economies start cooperating earlier. Indeed, earlier cooperation
reduces global emissions and ensures a higher production in the future. Conversely,
when economies are relatively dirtier, y0 is relatively high, then they start cooperat-
ing later as if the damage was already too large to struggle against. Finally, note that
T is always smaller for a = 0.115. Efficient economies cooperate sooner since their
advantage in production allows them to obtain more of the final good producing the
same amount of pollution. Note that better performing economies can cope better
with possible losses in consumption arising upon cooperation.

Let us study next the negative effect of the state variable in utility, as captured by
parameterb. The right panel inFig. 9.1 showsoptimal switching timeswhena = 0.09
for two values of b: a high level of b = 0.00015 and a low level b = 0.000095.

5The switching time trajectories displayed in Figs. 9.1 and 9.2 are maxima of (9.2), since they verify
the second-order condition as shown in Appendix 9.2.
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Fig. 9.1 Optimal T . Left: role of a when b = 0.000095. Right: role of b when a = 0.09

Again, understanding y as CO2 emissions, an economy with a low b corresponds
to an economy less sensitive to pollution, such as a very small open economy or
an economy embodied with sufficient forest or water source to absorb important
amounts of CO2. These economies start playing cooperatively earlier in order to
maintain y at a moderate level.

9.4.2 Optimal Dynamic Trajectories

Next, let us illustrate the dynamic trajectories for the economy underlining the roles
of a and b in the dynamics of the optimal control and state variables. In the first
exercise, a = 0.5 and we compare two economies which differ in their sensitivity to
pollution: in the less-sensitive b = 0.000095 and in the more-sensitive b = 0.00015.
In both cases the economy is initially endowed with y0 = 75. Figure9.2 shows our
results for the state variable, y, and for the control variable per capita, x .

Fig. 9.2 Dynamics of y(·) and x(·). a = 0.5
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Fig. 9.3 Dynamics of y(·) and x(·). b = 0.000095

The results are in linewith the precedent theoretical analysis. Indeed,we knew that
the steady state of y, yss , decreaseswith b. Hence the long-termof y for b = 0.000095
is higher than for b = 0.00015. The less-sensitive economy can maintain a higher
production level and afford higher consumption because it loses less welfare from
CO2 emissions.When b is low, players start playing cooperatively from the beginning
and the economy accumulates more pollution.

The right panel of Fig. 9.2 reveals the thinking of the policy maker. Compared to
their steady states, both economies start with a highly polluted environment, which
makes them lose a significant amount of welfare. Hence, the policy maker decides
not to consume during a certain period of time. This is true when b = 0.000095
and those players play together from t = 0, as well as in the more-sensitive case,
when b = 0.00015, and that there are two policy makers from t = 0 till T = 18.4.
Note that the less-sensitive economy starts consuming before and it consumes more
(Fig. 9.3).

Our last exercise compares two economies which differ in their efficiency level
letting b = 0.000095. In the first, a = 0.5, and in the second, the efficiency level
doubles the first, a = 1. As shown in Proposition 9.1, the steady state of y keeps the
same proportion than efficiency. Indeed, yss = 23.23 when a = 0.5 and yss = 46.46
when a = 1. Our results are displayed in Fig. 9.4. The most salient feature is that the
most efficient economy does not sacrifice initial consumption in order to preserve y
at a low level. Its technological advantage allows the policy maker to choose positive
levels of consumption from t = 0.
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Fig. 9.4 Second-order conditions

9.5 From the Cooperative to the Noncooperative Game

In the previous sections, if players decide to join at time T , they will play coopera-
tively forever after. In other words, their commitment to some protocol, or union, or
agreement is irreversible. However, if it were possible to exit in some future time,
choices and trajectories would be more complicated. In this section, we extend the
previous study to include the possibility of a future exit. The steps of the game are
the following:

Step 1. The two players play the noncooperative differential game until time T1.
Under the symmetric assumption, the revenue of the identical players is VI (T1, T2).

Step 2. From time T1 until T2, the two players play cooperatively. Denote the join
revenue as VI I (T1, T2).

Step 3. One of the two players exits the cooperative game at T2, thus from T2
onwards, the two players play the noncooperative differential games again. Denote
the revenue in this period as VI I I (T1, T2).

Then the optimal choice of switching times should be given by

max
T1,T2

[
VI (T1, T2) + e−rT1VI I (T1, T2) + e−rT2VI I I (T1, T2)

]
. (9.18)

Mathematically, this more complicated differential game can be solved by back-
ward induction by reversing the calculation order of Sect. 9.3. Similarly, numerical
investigation can be performed the same way as Sect. 9.4. Therefore, we do not need
to do this exercise here in detail.

9.6 Conclusion

We investigate both theoretically and numerically somedynamic game settingswhere
players choose to switch from noncooperative competition to cooperate (or vice
versa) andwhich automatically change the decisionmakers as well. The explicit con-
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ditions of open-loop strategic switching conditions are presented, though it cannot be
fully analytical. We rely on numerical simulation and demonstrate the importance of
parameters. Not surprisingly, given the intrinsic nature of open-loop strategies, both
switching time and the social welfare depend essentially on the initial condition of
the game, but neither weremonotonic. The efficient parameter plays a very important
role in not only the decision of switching from noncooperative to cooperative, but
also the choice of consumption. High efficient parameter may cover the side effects,
such as leading to high pollution as a by-product. Of course, different damage param-
eters may be assigned to the noncooperative versus cooperative games. Furthermore,
it is easy to imagine the situation where the two players are asymmetric or there are
more than two players. Last but not least, the present work is silent as to Markovian
strategies, which, of course, are sometimes a more adequate choice. This said, we
do believe that the current study paves the way to handle a much wider class of
problems, beyond the examples we presented in Introduction.

Appendix 9.1: Proof of Proposition 9.2

Recall the dynamic system as

{
ẏI (t) = −δyI + 2λI + 2a,

λ̇I (t) = by + (r + δ)λI .

It is easy to obtain the associated eigenvalues

ν1,2 = r ± √
r2 + 4(δ(r + δ) + 2b)

2

with ν1 < 0 and ν2 > 0, and associated eigenvectors

−→vi =
(

2
νi + δ

)
, i = 1, 2.

Define matrix

M(t) = (−→v1 −→v2
) (

eν1t 0
0 eν2t

)
=

(
2eν1t 2eν2t

(ν1 + δ)eν1t (ν2 + δ)eν2t

)
.

Thus, the inverse matrix of M(t) is

M−1(t) =
(

− ν2+δ
2(ν1−2)

e−ν1t e−ν1 t

ν1−ν2
ν1+δ

2(ν1−ν2)
e−ν2t − e−ν2 t

ν1−ν2

)
.

The unique solution of the system is then given by
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(
y(t)
λ(t)

)
= M(t)M−1(0)

(
y0

λ(0)

)
+ M(t)

∫ t

0
M−1(s)

(
2a
0

)
ds,

in which λ(0) is undetermined. Substituting M(t), M−1(t), and M−1(0) into
the above matrix algebra and taking integrals, we obtain the explicit solution in
Proposition 9.2.

That completes the proof.

Appendix 9.2: Second-Order Condition

Figure9.4 shows the value of the second-order derivative of (9.2) associated with the
examples in Sect. 9.4. The graphs show that the second derivative is negative for all
values of y0 in the four examples. Hence, the switching times T in Fig. 9.1 is always
a maximum.
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Chapter 10
Delaying Product Introduction in a
Duopoly: A Strategic Dynamic Analysis

Herbert Dawid and Serhat Gezer

JEL Classification: D43 · L13 · O31

10.1 Introduction

Technological change is a crucial driver of industrial dynamics. Improved versions
of products appear regularly. Furthermore, product innovations lead to differenti-
ated products and new submarkets arise. According to an empirical investigation
by Chandy and Tellis [5], most of the product innovations has been achieved by
established incumbents. Typical examples include Asus which has been active on
the notebook market and has introduced netbooks in 2007 or Apple’s introduction
of the iPad in 2010 which generated a huge submarket for tablet computers. For a
firm competing with others on a homogeneous market, a product innovation can be
very valuable. Given that a product innovation has been made, the innovator has to
decide whether to introduce a new product immediately, to delay the product intro-
duction strategically, or not to introduce at all.1 Wang and Hui [34] provide examples
where the market introduction of products has been delayed, e.g. DVD players and
MP3-related products which could have been introduced earlier.

1Several studies [1, 2, 28] have found out that a large fraction of product innovations is not brought
to the market.
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To analyze the question how an incumbent should optimally choose its market
introduction strategy we consider two firms competing on an established homoge-
neous market, and assume that one of the firms has the option to introduce a new
product, whereas the rival has to stick with producing the established product. More-
over, we assume that the new product is horizontally and vertically differentiated,
in particular that it has a higher quality than the established product. Both firms are
restricted by production capacities which they adjust over time. The setting after the
introduction of the new product has been analyzed in [10]. They find that not only
the innovator benefits but the non-innovator is better off as well in most cases, in
particular if the products are not too differentiated. The innovator strongly reduces
capacities on the established market in order to increase demand for the established
product.

Adjustments of capacities of established products prior to a product innovation
has been studied in a stochastic setting in [8] who consider a duopoly where both
firms can also invest in R&D in order to increase the probability of product innovation
(see [11] for an exogenous hazard rate). In contrast to those approaches, we assume
that the innovation has been made already and the time of product introduction is an
additional choice variable and hence is not directly linked to the time of the successful
completion of an R&D project. The separation of innovation and introduction has
been employed by Dawid et al. [9], however only in a three-stage model where
continuous capacity adjustments are not taken into account and the timing of product
introduction could not be addressed.

The game we are considering is a multi-mode differential game where one of
the firms can induce a regime switch (in our context adding a second differentiated
product to its product range) at any time. This is in contrast to models where a regime
switch occurs when the state variable hits some critical threshold (see e.g. [29, 31])
or is governed by a stochastic process as in [8, 11].

In [16] a related setting to that in this paper has been analyzed, however abstract-
ing from competition. An incumbent monopolist has the option to introduce an new
(substitute) product in addition to the one already offered. It is shown that the firm
might delay product introduction if it incurs adoption costs. By delaying the product
introduction, the monopolist benefits from discounted adoption costs, which has to
be paid as a lump sum at the time of product introduction. Furthermore, the monop-
olist can increase the marginal value of the new product by decreasing established
capacities. Similar effects are also present in the duopoly considered in this paper,
however strategic interaction adds substantial new effects.

Optimal timing of innovation has been analyzed extensively in the optimal stop-
ping and real options literature (see e.g. [12, 14, 22]). Recent contributions consider
for stochastic demand, both, optimal timing and capacity choice simultaneously (see
e.g. [23, 24]). The latter find in a setting with two firms who have the option to enter a
new market that firms invest earlier compared to the monopoly setting. In particular,
the first investor overinvests in order to delay market entry of the second investor.
The innovation of the present paper relative to this literature is that it considers the
dynamic adjustment of capacities before and after the innovation, whereas mostly
one-time investments have been treated in the real options literature.
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Optimal timing has been considered only in a fewdifferential gamemodels. Yeung
[35] derives feedback Nash equilibria for games with endogenous time horizon by
restricting terminal values for state variables. Recently, Gromov and Gromova [18]
formalize the class of hybrid differential games and characterize a switchingmanifold
in the time-state space which is determined by a switching condition. They argue
that deriving feedback Nash equilibria for state-dependent switching is complicated
and resort to open-loop Nash equilibria, which in certain games, parametrized by
initial conditions yields feedback Nash equilibria.

In terms of timing, the most related contribution is Long et al. [27] where in
a differential game model with multiple regimes, the concept of piecewise-closed
loop Nash equilibria (PCNE) is introduced. They derive necessary conditions for
the optimal switching time in a two player setting, where both players can induce
a change of the regime of the game. The timing decision is given implicitly by the
state variable arriving at a certain state which is derived by optimality conditions.
However, in their setting, it is assumed that firms commit to their switching time in
the sense, that they would not alter that time even if the other firmwould deviate from
its equilibrium control path. Hence, the considered equilibrium is not fully Markov
perfect with respect to the timing decision.

In our approach, we consider a case where the innovator can fully commit to
its product introduction time. Hence, the competitor cannot influence the timing
of the product introduction. An equilibrium is given if the choice of the product
introduction time, T , maximizes the value of the game for the innovator while given
this T , the investment strategies played by both players constitute a Markov-perfect
Nash equilibrium in the classical sense. Note that the timing decision is made in the
beginning of the game for given initial capacities and hence it is an open-loop strategy
whereas the continuous control variables constitute a Markov perfect equilibrium
using closed-loop strategies. Characterizing a fully closed-loop equilibrium in which
the introduction of the new product is triggered if the state variable hits a switching
manifold (to be optimally determined by the innovator) is technically challenging
and might lead to non-existence of equilibria (see [27] for details).

From an economic perspective, the commitment to the product introduction time
might be due to a preannouncement. There is a huge literature on preannouncements
considering its effects on various interest groups such as consumers, competitors and
others. Preannouncements are made for various purposes (cf. [26]). They are used
e.g. for building interest for the new product before the market launch [3], in order to
stimulate consumers to delay purchases, in particular to wait for a better product [33]
or to deter entry of potential entrants or to induce a competitor to adjust capacities
or to reposition (see [15, 21]).

We use dynamic programming for solving for the optimal capacity investment
strategies and derive an optimality condition for the optimal timing which depends
on the time-derivative of the corresponding value function at the outset of the game.
In that respect our game might be interpreted as a two stage game, where in the first
stage only the innovator decides on the introduction time and in the second stage
both firms simultaneously choose theirMarkovian capacity investment strategies and
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apply them either starting with only the established product or with both products in
case that the innovator introduces immediately.

We find that whenever it is optimal to delay the product introduction, the opti-
mal introduction time is increasing in adoption costs. Furthermore, we find that the
optimal introduction time increases in both initial capacities, i.e. the stronger the
innovator or the non-innovator on the established market, the later the product intro-
duction. The latter is in accordance with results of Dawid et al. [8] where R&D
investments are negatively affected by both firms’ capacities.

Additionally, we find that in a duopoly, the innovator introduces the product less
often compared to a monopoly scenario and, in case of product introduction she
introduces earlier compared to the monopoly. Thus, this paper contributes to the
debate initiated by Schumpeter and Arrow in the sense that we show that market
concentration facilitates product innovation but slows down the actual introduction
of the new product.

In Sect. 10.2, we provide themodel and in Sect. 10.3, we derive a general sufficient
condition for delaying the product introduction. Furthermore, we derive general
necessary conditions for optimal timing which has to hold at the outset of the game.
In Sect. 10.4 we discuss the different dynamic patterns that can arise in equilibrium
using numerical methods. In Sect. 10.5 we give some concluding remarks.

10.2 Model

We consider a duopoly where both firms, denoted by firm A and B, produce a homo-
geneous established product, denoted as product 1. Due to product innovation, firm
A has the option to introduce a horizontally and vertically differentiated substitute
product with higher quality, denoted as product 2. We call this firm the innovator
whereas the other firm, firm B is called the non-innovator. The innovator incurs
lumpy costs F at the time of introduction.

Both firms need to build and maintain production capacities, denoted by Ki f , i =
1, 2, f = A, B, for every product they are offering. For simplicity,we assume that the
innovator can only start to invest in the capacity of the new product after introduction,
i.e. there are no capacities at the time of introduction for the new product, yet. In
line with large parts of the literature (see e.g. [13, 24]), it is assumed that capacities
are always fully used. Production costs for given capacities are normalized to zero.
There is no inventory, i.e. production equals sales.

Before product introduction, i.e. for all t ≤ T , the linear inverse demand function
for the established product is given by

pm1
1 (K1A(t), K1B(t)) = 1 − K1A(t) − K1B(t), (10.1)

whereas after product introduction, i.e. for all t ≥ T , the inverse demand system is
given by
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pm2
1 (K1A(t), K1B(t), K2A(t)) = 1 − (

K1A(t) + K1B(t)
) − ηK2A(t), (10.2)

and

pm2
2 (K1A(t), K1B(t), K2A(t)) = 1 + θ − K2A(t) − η

(
K1A(t) + K1B(t)

)
, (10.3)

where η with 0 < η < 1 measures the degree of horizontal and θ > 0, the degree of
vertical differentiation of the strategic substitutes.

There are two modes in the game:

• mode 1 (m1): The newproduct has been developed by the innovator and is ready for
market introduction which is common knowledge. However, only the established
product is sold.

• mode 2 (m2): The new product has been introduced to the market. Both products
are sold.

Capacity investment is costly with quadratic costs

C1(I1 f (t)) = γ1

2
I 21 f (t), f = A, B, (10.4)

and
C2(I2A(t)) = γ2

2
I 22A(t). (10.5)

The capacity dynamics in m1 are

K̇1 f = I1 f − δK1 f , f = A, B, (10.6)

for initial capacities
K1 f (0) = K ini

1 f , f = A, B, (10.7)

where δ > 0 measures the depreciation rate of the capacities. In m2, there is an
additional state for the capacity of the new product which evolves in the same way
according to

K̇2A = I2A − δK2A, (10.8)

K2A(t) = 0 ∀t ≤ T . (10.9)

As in [10], we allow the firms to intentionally scrap capacities (i.e. investments
might be negative) while capacities have to remain non-negative, i.e. K1 f ≥ 0 ∀ t ,
f = A, B, and K2A ≥ 0 ∀ t . It should be noted that, due to the adjustment costs, in
our setting scrapping capacity is associated with costs.2

2Sincewe use a quadratic, rather than a linear quadratic, cost functionwe have implicitly normalized
the price of capital, both when buying and selling, to zero. Having a positive price of capital would
not qualitatively change our results, as long as the price is not too large.
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The innovator wants to determine the optimal time of product introduction T ,
i.e. the time of transition from m1 to m2, and the optimal strategies for investment
in capacities before and after product introduction, whereas the non-innovator only
determines the optimal strategy for investing in her capacity for the established
product. The discounted stream of profits of the innovator is given by

JA =
∫ T

0
e−r t

(
pm1
1 (·)K1A − C1(I1A)

)
dt

+
∫ ∞

T
e−r t

(
pm2
1 (·)K1A + p2K2A − C1(I1A) − C2(I2A)

)
dt − e−rT F,

(10.10)

which is maximized with respect to T , I1A and I2A. For the non-innovator, it is given
by

JB =
∫ T

0
e−r t

(
pm1
1 (·)K1B − C1(I1B)

)
dt +

∫ ∞

T
e−r t

(
pm2
1 (·)K1B − C1(I1B)

)
dt,

(10.11)
where the control variable of firm B is I1B .

10.3 Equilibrium Strategies

In this section,wewill derive some sufficient and necessary conditions for the optimal
timing of the product introduction. It should be noted that those conditions hold
generally for models where two firms’ controls affect the dynamics of a continuously
evolving state variable and one of the firms can induce a regime switch.

For the sake of brevity, denote the capacity pair (K1A, K1B) by K . Let

φi f (K , K2A, t,m), f = A, i = 1, 2 and f = B, i = 1

be theMarkovian investment strategies of both firms inmodem and T = τ the timing
strategy of the innovator. Then, a strategy vector of the innovator is a pair ψA =
((φ1A,φ2A), τ ) whereas the strategy of the non-innovator is given by ψB = φ1B . A
strategy profile (ψA,ψB) is an equilibrium if given τ , (φ1A,φ1B) constitutes aMarkov
perfect equilibrium and τ maximizes the objective functional of the innovator.

In the case that the innovator introduces the improved product at some finite time
T , there will be a structural change of the model. Denote by V opt

f (K , K2A, t,m)

the value function of firm f in mode m where the switching time from m1 to
m2 is selected optimally by the innovator. Furthermore, denote by Vm1

f (K ) and
Vm2

f (K , K2A), f = A, B, the value functions of the corresponding infinite horizon
games where the mode is fixed and hence does not change. This immediately gives
V opt

f (K (t), K2A(t), t,m2) = Vm2
f (K (t), K2A(t)) for all t and V opt

f (K (T ), K2A(T ),

T,m1) = Vm2
f (K (T ), K2A(T )) − F , f = A, B for the switching time T since inm2,
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Fig. 10.1 Value functions of m2 for K2A = 0. Parameters: r = 0.04, δ = 0.2, η = 0.5, θ =
0.1, γ = 0.1

themode does not change anymore. The infinite horizon games are time-autonomous,
and therefore we consider stationary strategies. Hence the value functions of the
infinite horizon games with fixed mode do not explicitly depend on time. The sub-
problem of m2 is of linear-quadratic type which can be solved easily by the dynamic
programming approach.3 Due to the linear quadratic structure of the game, the value
functions have the following form:

Vm2
f =Cm2

f + Dm2
f K1A + Em2

f K 2
1A + Fm2

f K1B + Gm2
f K 2

1B + Hm2
f K2A + Jm2

f K 2
2A

+ Lm2
f K1AK1B + Mm2

f K1AK2A + Nm2
f K1BK2A, f = A, B.

(10.12)
Using this functional form, the HJB-equations can be reduced to a set of algebraic

equationswhich has to be satisfied by the coefficients of the quadratic value functions.
Coefficients can be found by standard numerical methods for a given parameter
setting (cf. [10] for a similar model with slightly different inverse demand functions).
Figure 10.1 illustrates the shape of the value functions in m2. By regarding the value
of the subproblem (minus adoption costs) as the salvage value of the finite time
horizon problem in mode m1, i.e.

S(K1A(T ), K1B(T )) = Vm2
A (K1A(T ), K1B(T ), 0) − F , (10.13)

we can write the optimization problems of both firms in m1 as

3When solving the investment problem in mode m2 the non-negativity constraint for the capacities
is not explicitly included in the optimization problem. Rather, we have verified ex-post that the
constraint holds under the optimal investment strategy. A similar statement also applies to our
solution of the problem in mode m1.
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max
T,I1A

∫ T

0
e−r t

(
p1K1A − C1(I1A)

)
dt

+e−rT
(
Vm2
A

(
K1A(T ), K1B(T ), 0

) − F
)
,

(10.14)

and

max
I1B

∫ T

0
e−r t

(
p1K1B − C1(I1B)

)
dt + e−rT V m2

B

(
K1A(T ), K1B(T ), 0

)
. (10.15)

If an infinite time horizon is optimal, then the salvage value disappears and the value
of the game is simply given by Vm1

f (·) for f = A, B and there is a unique stable
steady state (see [25]).

As discussed above, we assume that the innovator announces the date of prod-
uct introduction and has commitment power such that he cannot deviate from the
announced date even though ex post it would be better to do so. Thus, the non-
innovator takes T as given by the preannouncement and chooses his investment
strategy in order tomaximize the value of the game. Technically speaking,we employ
Markov (feedback) strategies for the investment in capacities and open-loop strate-
gies for the introduction time T .

Note that for any fixed T , the game inm1 is still of linear quadratic structure. Since
the problem in m1 has a finite time horizon the coefficients in the value function
depend on time and from the HJB-equations a set of Riccati equations for those
coefficients is obtained. We solve this system using standard numerical solvers. The
corresponding HJB-equations to be fulfilled are given in Appendix 2. Denote the
value function of the game starting in m1 and switching to m2 at a fixed T by
V f (K , t; T ), f = A, B, and the corresponding profile of Markovian strategies in
equilibrium by φ1 f (K , t; T ), f = A, B.

Since the game is time-autonomous, i.e. t appears explicitly only in the discounting
term e−r t , we can consider equilibrium strategieswhich depend only on the remaining
time till T . This then also hold for the value function and we have V f (K , t; T ) =
V f (K , 0; T − t), f = A, B ∀ K and t ≤ T (cf. [4]).

In particular, we have φ1 f (K , T ; T ) = φ1 f (K , 0; 0) and for finite T , we denote
the right hand side of the HJB-equation of firm A (Eq. (10.40) in Appendix 2) at the
switching time by4

H(K ) = pm1
1 (K )K1A − C(φ1A(K , 0; 0)) + Vm2

A,K1A
(K , 0)(φ1A(K , 0; 0) − δK1A)

+ Vm2
A,K1B

(K , 0)(φ1B(K , 0; 0) − δK1B).

(10.16)
Note that the optimal strategies φ1A and φ1B stem from m1 whereas derivatives of
the value function of m2 are considered. We assume that V (K , t; T ) is sufficiently
smooth, i.e. let V (K , t; T ) be continuously differentiable in K and t for all T .

4Actually, H(K ) is the Hamiltonian where the co-state variable is replaced by the state derivatives
of the scrap value (cf. Pontryagin’s maximum principle with finite time horizon e.g. in [13]).
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Then, the following lemma gives a sufficient condition for delaying the product
introduction.

Lemma 10.1 If for the initial capacities (K1A(0), K1B(0)) = K ini the inequality

H(K ini ) > r(Vm2
A (K ini , 0) − F) (10.17)

holds, then the optimal time of product introduction T ∗ is positive, possibly infinite.

Proof Consider the value for the innovator to stay for the duration of ε in m1 and
afterwards to switch to m2 under the equilibrium strategy φ = (φ1A,φ1B):

VA(K (0), 0; ε) =
∫ ε

0
e−rs Fm1

A (K (s),φ(K (s), s; ε)ds + e−rε(Vm2
A (K (ε), 0) − F).

(10.18)
where Fm1

A (·) is the instantaneous profit function of the innovator in m1. For a finite
time horizon, since we consider non-stationary strategies, altering the terminal time
would yield different investments in m1 and hence different values for the terminal
capacities. Thus, for the sake of clarity, here we denote the capacity at t for terminal
time T by K1 f (t, T ), f = A, B. K1A(ε, ε) can then be derived via the initial value
K1A(0, ε) and the investments from 0 until ε:

K1A(ε, ε) = K1A(0, ε) +
∫ ε

0
(φ1A(K (τ , ε), τ ; ε) − δK1A(τ , ε))dτ . (10.19)

Its derivative with respect to ε is then given by

∂K1A(ε, ε)

∂t
+ ∂K1A(ε, ε)

∂T
(10.20)

= φ1A(K (·), τ ; ε) − δK1A(·) +
∫ ε

0

∂φ1A(K (τ , ε), τ , ε) − δK1A(τ , ε)

∂T
dτ .

(10.21)

In Eq. (10.18), subtracting VA(K (0), 0; 0) on both sides, dividing by ε and consid-
ering the limit ε → 0 yields

∂VA(K , 0, 0)

∂T
= pm1

1 (K )K1A(0, 0) − C(φ1A(K , 0; 0))

+ Vm2
A,K1A

(K , 0)

(
K̇1A(0, 0) + ∂K1A(0, 0)

∂T

)

+ Vm2
A,K1B

(K , 0)

(
K̇1B(0, 0) + ∂K1B(0, 0)

∂T

)

− r
(
Vm2
A (K1A(0, 0), K1B(0, 0), 0) − F

)

(10.22)

where no time derivatives of Vm2
A appear since we consider stationary strategies in

m2. Furthermore,
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∂K1 f (0, 0)

∂T
= 0, f = A, B (10.23)

and using inequality (10.17) we obtain

∂VA(K , 0, 0)

∂T
> 0, (10.24)

which proves that delaying the product introduction marginally is better than intro-
ducing immediately.

It follows fromLemma10.1 that (10.17) being violated is a necessary condition for
immediate product introduction. It should be noted that it is, however, not possible to
derive a (local) sufficient condition for immediate introduction sincemarginally being
worse-off does not necessarily imply that immediate introduction is optimal. For
some T > 0, the corresponding value might still outweigh immediate introduction’s
value.

From optimal control theory, it is known that for H(K ini ) > r(Vm2
A (K ini , 0) −

F), the innovator prefers not introducing the product immediately but introducing
whenever H = r(Vm2

A − F)holds.Here, H = r(Vm2
A − F) is satisfied on a switching

line (see Appendix 1). In an optimal control setting, the firm exerts control such that
the state arrives at the switching line and the switch occurs. However, in a game, the
other player can influence the time the switching line is reached because it controls
the dynamics of its own capacity. In an equilibrium where the strategy determining
when to introduce the new product is of feedback type, e.g. Markovian, this gives
rise to intricate strategic effect to be considered. Here we assume however that firm
A commits at t = 0 to the time of product introduction (which might be infinity if
the firm decides not to introduce the product at all) rather than on a switching line in
the state space and therefore these issues do not arise. Also, by choosing T , firm A
influences the investment strategy of firm B. As it will turn out, this effect induces
that in our setting in equilibrium the product in general is not introduced at the point
in time when the state is on the switching line.

In order to characterize the optimal time of product introduction T , i.e. the choice
of the time horizon of the game, which maximizes VA(K , 0, T ), we proceed as
follows. We consider a sufficiently large fixed time horizon and compute the optimal
distance to the terminal time where the firm wants the game to start. For this, we use
a large T , which is defined as follows.

Standard turnpike arguments (see [30] or [19]) yield that for T → ∞, the change
in the value function becomes small since it is converging to the (time-independent)
value function of the infinite horizon game in mode m1, V

m1
f . For an ε with 0 < ε �∣∣Vm2

A (K ini , 0) − Vm1
A (K ini )

∣∣5 and an initial capacity K ini , a large T satisfies

∣
∣∣V f (K

ini , 0; T ) − Vm1
f (K ini )

∣
∣∣ ≤ ε. (10.25)

5Note that for higher choices of ε, inequality (10.25) might be satisfied for all T and hence would
not yield a large T .



10 Delaying Product Introduction in a Duopoly … 237

We denote by T l(ε, K ini ) the minimal T for which inequality (10.25) holds for
all T ≥ T l . Among all capacities which yield positive prices, we select the max-
imal T l which we denote by T L(ε), i.e. T L(ε) := T l(ε, Kmax ) where Kmax =
argmaxK :pm1

1 (K )≥0(T
l(ε, K )).

Using this notation, in the following proposition we characterize firm A’s choice
of the optimal time of product introduction.

Proposition 10.1 Let V f (K , t; T L) be the value function of the game for a fixed
large end time T L(ε) for f = A, B. Let t∗ be the time argument maximizing VA for
an initial pair K ini = (K ini

1A , K ini
1B ), i.e.

t∗(K ini ) = arg max
t∈[0,T L ]

VA(K
ini , t; T L). (10.26)

If t∗(K ini ) > 0, then
T ∗(K ini ) = T L − t∗(K ini ), (10.27)

is the optimal time of product introduction for K (0) = K ini and the value function
in m1 for f = A, B and for initial capacities K ini is given by

V opt
f (K , 0, t,m1) = V f (K , t; T ∗(K ini )). (10.28)

Furthermore, if t∗(K ini ) = 0 for all T ≥ T L(ε) (i.e. for all T L(ε̃) with ε̃ ≤ ε),
then

T ∗(K ini ) = ∞, (10.29)

is the optimal time of product introduction for K (0) = K ini and the value function
is given by

V opt
f (K , 0, t,m1) = Vm1

f (K ), f = A, B. (10.30)

Proof Due to time invariance, the current value of the initial game defined on the
time interval [0, T L ] at t∗ is equal to the current value at 0 of the game defined over
[0, T ∗] where T ∗ = T L − t∗. Hence, it is sufficient to derive the optimal distance to
a fixed terminal time where the innovator wants the game to start.

If t∗(K ini ) > 0, i.e. t∗(K ini ) is interior in [0, T L ], then for all T ≥ T L , according
to inequality (10.25), t∗(K ini ) (shifted by T − T L ) is still an interior maximum.
Hence, T L − t∗(K ini ) is the optimal distance to the terminal time T L .

If t∗(K ini ) = 0 for all T ≥ T L(ε), then the maximizing argument is at the left
boundary. More precisely, for reducing ε and thereby increasing T L , t∗ = 0 remains
optimal. Thus, VA(K ini , t, T ) is monotonously increasing in T . Hence, T ∗ = ∞ is
optimal.

Essentially, from a family of value functions of the game for different values of T ,
i.e. for varying terminal times, the innovator has to select that one which maximizes
his profits for the initial capacity. So, the optimal time of product introduction can
be found via considering the value function for a fixed initial pair K ini and a fixed
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sufficiently large terminal time and determining the optimal distance to the terminal
time.6 In the next corollary, we provide necessary conditions for the slope of the time
derivative of the value function at the outset of the game.

Corollary 10.1 (i) If immediate product introduction, i.e. a corner solution T ∗ = 0
is optimal, then

lim
T→0

(
lim
t→T−

VA,t (K
ini , t; T )

)
≥ 0, (10.31)

and
H(K ini ) ≤ r(Vm2

A (K ini , 0) − F). (10.32)

(ii) If no product introduction, i.e. T ∗ = ∞ is optimal, then

lim
T→∞ VA,t (K

ini , 0; T ) ≤ 0, (10.33)

(iii) For an interior solution, i.e. 0 < T ∗ < ∞ to be optimal we must have

VA,t (K
ini , 0; T ∗) = 0. (10.34)

Proof (i) For a corner solution T ∗ = 0, the maximizing argument of (10.26) is on
the right boundary, i.e. t∗ = T L . Thus,

lim
t→T−

VA,t (K
ini , t; T ) ≥ 0,

holds for all T > 0, which implies (10.31) . Furthermore, the HJB-equation
under T ∗ = 0 yields

r S(K ini ) − VA,t (K
ini , 0; 0) = H(K ini ). (10.35)

As the limit of VA,t stays positive, we obtain (10.32).
(ii) For a corner solution T ∗ = ∞, the maximizing argument is on the left boundary,

i.e. t∗ = 0. This means Vt (K ini , 0; T L) ≤ 0 for all T L . Thus, limT→∞ Vt (K ini ,

0; T ) ≤ 0.
(iii) follows directly from the first order condition if firm A.

Note that Corollary 10.1 yields necessary conditions only. In particular, condition
(10.34) might be satisfied for local maxima which are not globally optimal. To get
an intuition for this necessary optimality condition, consider the difference of the
value of the game for a fixed state variable vector when time moves from t to t + �,
� > 0:

V (K ini , t + �; T L) − V (K ini , t; T L). (10.36)

6The idea of considering large values for the terminal time has been employed by several works,
e.g. in [17].
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Assuming firmA is free to choose between t + � and t , (10.36) measures the change
in the value function in current- value terms. If (10.36) is positive, it is (locally)
optimal for the firm to choose a later starting point than t , and an earlier starting
point, else. As K ini is not affected by the choice of T ∗, maximizing with respect to
the second argument of the value function yields for fixed T L the (globally) optimal
time-span T ∗ = T L − t for firm A between the initial time and the time of product
introduction, which corresponds to the optimal time of product introduction of the
free end time game. The first order condition of the optimization of V (K ini , t; T L)

with respect to t yields (10.34). Since it is not feasible to provide an analytical
characterization of the globally optimal choice of T it s also not possible to to derive
results about the dependence of the introduction time and investment patterns in
equilibrium. In order to get a more complete picture of the dependence of the optimal
introduction time, as well as of the resulting equilibrium capacity dynamics, from
initial capacities and key model parameters, in the following section we compare the
actual equilibrium solutions under different parameter constellations using numerical
methods.

10.4 Dynamics

In this section, we first examine the behavior of the firms for an exogenously given
product introduction time T . We then explore optimal timing and its dependence
on adoption costs and initial capacities. In case of delay, we analyze how capacities
evolve before introduction.

10.4.1 Exogenous Time Horizon

In order to depict optimal introduction time and the equilibrium investment paths,
we use the following default parameter setting (similar to the parameter setting of
[10])

r = 0.04, δ = 0.2, η = 0.5, θ = 0.1, γA = γB = 0.1, (10.37)

We start by analyzing the equilibrium investment strategies φ f (K , t; T ), f = A, B,
for a large fixed time horizon T L = 3, fixed initial capacity K ini = (0.35, 0.35),
and adoption costs F = 1. In Fig. 10.2 the investment strategies φ1 f (K ini , 0, t,m1)

in mode m1 are depicted as functions of t ∈ [0, T L ] The dashed line corresponds
to the infinite horizon case in m1. Obviously, T L is large enough to resemble the
infinite horizon investment strategy at t = 0. In panel (a), we see that the innovator
reduces his investments as time approaches T L which is due to the decreasedmarginal
value of the established capacity when the innovator introduces the new product.
For the non-innovator, we have an interesting investment strategy which is non-
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Fig. 10.2 Optimal investments of both firms in mode m1 at a fixed capacity K ini = (0.35, 0.35)
for F = 1 and T L = 3

monotone in t . Note that the marginal value of its capacity is decreased inm2 as well.
Hence, eventually investments decline. The initial increase is due to the innovator’s
decreasing willingness to invest. Moreover, there is an intertemporal strategic effect,
i.e. by increasing investment, via a higher capacity and lower price in the future, a
firm can even further reduce the future investment of its competitor. As the innovator
is affected on both markets by the established capacity while the non-innovator is
affected only at the established market (since it is not producing product 2), the
non-innovator has more influence on its competitor than the other way around.

Figure 10.2 is also suitable to assess the changes in investment incentives if the
innovator (unexpectedly) preannounces the introduction of a new product at the
capacity levels (0.35, 0.35). Comparing the solid lines with the dotted ones, which
correspond to investment level if no introduction of a new product is expected, we see
that for the innovator, the expectation of future product introduction yields a reduction
of its investment in capacities for the established product. For the non-innovator,
it depends on the length T till the announced time of product introduction. For
T � 0.15, there is a negative effect of the preannouncement on investment, whereas
for higher T , investment of firm B increases.

10.4.2 Endogenous Time Horizon

Employing the approach described in Sect. 10.3 and using Proposition 10.1, we are
able to derive the optimal T to be preannounced by the innovator. In particular, we
calculate the value function of firm A for a sufficiently large T L and then determine
the optimal distance to the terminal time.The approach is illustrated inFig. 10.3. It can
be clearly seen that for the considered parameter the product is optimally introduced
after a very short but positive delay of about T L − t∗ ≈ 0.12. Furthermore, it can be
seen that delaying the product introduction by more than 0.4 actually is dominated
by immediate product introduction.
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Fig. 10.3 Value function for the innovator for F = 2.94, K ini = (0.35, 0.35) and for T L = 100

Fig. 10.4 Value function for K1B = Km1,ss
1B ≈ 0.3697

Using this approach we can obtain the equilibrium value of T for each pair of
initial capacities and also the resulting value functions for both players. In Fig. 10.4
we show the equilibrium value function at t = 0 for firm A (black line) as well as
the value obtained under immediate introduction (blue line) and no introduction (red
line) as a function of K ini

1A for a given value of K ini
1B . More precisely, we set K ini

1B
to the steady state value of the infinite horizon game in m1, which we denote by
Km1,ss

1B . Assuming relatively low adoption costs (panel (a)) for low initial K ini
1A , the

innovator introduces immediately whereas for higher initial capacity, there is a gain
by delaying the product introduction.7 For even higher values of F not introducing
becomes optimal for high capacities and hence infinite solutions for T occur. There
arises an indifference point for the capacity K1A (which depends on K1B), where
introducing (maybe after some delay) and not introducing at all yield the same value

7The value functions of immediate and no switching intersect at a point where the slopes of the
value functions are very different and hence there is a kink. As usual in endogenous timing problems
the option of delaying ’smoothes’ the value function of firm A.
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Fig. 10.5 Optimal time to switch to m2 (K ini = (0.35, 0.35))

for the innovator.8 If adoption costs F become too high firm A either introduces
immediately or never (see Fig. 10.4b).

The pattern sketched above can be clearly seen in Fig. 10.5, which shows the
optimal product introduction time T as a function of adoption costs for given initial
capacities. For low adoption costs the firmwants to introduce the new product imme-
diately, whereas above some threshold F̄K ini , the firm chooses to introduce after some
delay. This delay is higher the higher F is. There is another threshold F̃K ini where the
innovator abstains totally from product introduction and stays with its established
product. Thus, there is a jump from some finite T to infinity at this threshold. Note
that the thresholds depend on initial capacities.

A qualitative description of optimal timing for different levels of initial capacities
of both firms is given in Fig. 10.6. Each arrow in the figure depicts the equilibrium
trajectory of the capacities for the corresponding initial condition taking into account
the time of product introduction chosen by firm A in equilibrium. Here, the steady
state of m1 lies in the interior of the area where firm A decides not to introduce the
new product (i.e. T = ∞). Still, as can be seen in the figure, a trajectory starting
in the area where in equilibrium we have T = ∞ might for some time run through
the area in the state space where T < ∞ would be chosen if the state at t = 0 were
in this area. Along such a trajectory, once the state K1A(t), K1B(t)) has entered the
region T < ∞, it would be optimal for firm A to announce to introduce the new
product after a finite delay, although at t = 0 the optimal choice was to commit not

8In the literature, such indifference points or curves, separating different basins of attraction of
the dynamics under optimal investments, are called Skiba points (curves), see e.g. [20, 32]. For
a discussion of issues related to the existence of Skiba points under Markov Perfect Equilibria of
differential games see [7]. In general, the value functions have a kink at such Skiba points since,
depending on whether firm A plans to introduce the new product or not, equilibrium investments
are different. This means that equilibrium investment strategies exhibit jumps at this point in the
state space and accordingly the value functions exhibit a kink. In Fig. 10.6 below, the Skiba curve
can be seen as the line separating the area with T = ∞ from those with T = 0 respectively T < ∞.
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Fig. 10.6 Optimal trajectories for different initial capacities

to introduce the product. Hence, clearly this is a feature of the open-loop strategy
for the timing choice, which requires commitment of the firm about the product
introduction date at t = 0. Moreover, there are parameter settings where the steady
state of m1 does not lie in the corresponding area such that every trajectory starting
in the T = ∞ area would end up in another [0 < T < ∞] area where ex-post, the
firm would like to introduce the product (possibly after some delay) if there were no
commitment.

Furthermore, we are interested in how the optimal time of product introduction
is influenced by the capacities of both firms. Regarding the capacity of the non-
innovator, one might expect that if the non-innovator is stronger on the established
market, the innovator has higher incentives to introduce the new product earlier
in order to escape competition. But there is another effect as well, namely higher
capacity of the non-innovator leads not only to a lower price of the established product
but also to a lower price of the new product in m2. In order to compensate for that,
the innovator has incentives to decrease its own capacity on the established market
inm1 in order to be ’more prepared’ when switching tom2. Figure 10.6 suggests that
the latter effect is stronger such that the stronger the competitor, the later the product
introduction, i.e. T is increasing in K1B . Moreover, the duration in m1 is increasing
in the innovator’s capacity as well. Note that for the parameters considered here,
the switching line, which separates the 0 < T < ∞ from the T = 0 region, is never
reached.

Another interesting observation is that for the innovator, for every initial capacity
in the delaying region, it is optimal to reduce capacity whereas for the non-innovator,
the dynamics of its capacity depends on initial capacities, in particular on K1B . If
K1B is relatively low, then its capacity increases, otherwise it decreases as well. Note
that the steady state value of the non-innovators capacity in m2 is higher than in m1.
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Thus, it is very natural, that the non-innovator might increase its capacity already in
m1.

Considering initial conditions with 0 < T < ∞ it could be expected that the
change in mode at T leads to a discontinuous adjustment of the investment of firm
B, since at t = T the there is a discontinuous change in its instantaneous profit
function and it has no influence on the choice of the product introduction time T .
However, the investment trajectory of the non-innovator, is continuous at all t ≥ 0,
including at t = T , when the new product is introduced. Intuitively, in our setting,
where the switching time T is fixed and known already at t = 0, firmB anticipates the
marginal effect of investment on profits inm2 even before T and therefore investment
incentives do not jump at t = T .

Finally, we like to mention that in comparison to the monopoly case where the
non-innovator does not exist, which has been analyzed in [16], we find the following
interesting pattern: The innovator introduces earlier, i.e. the delay in product innova-
tion is shorter but at the same time innovation occurs for a smaller range of costs of
product introduction, i.e. for some F the innovator would innovate in monopoly but
not in presence of a competitor even though the competitor is only active on the estab-
lished market. Thus, we see a connection between the Schumpeterian and Arrowian
perspectivewheremarket concentration facilitates innovation but decreases its speed.

10.5 Conclusion

In this paper, assuming commitment of the innovator with respect to the product
introduction time, we have characterized how adoption costs and initial capacities
for the established product influence the optimal timing of new product introduction
in a dynamic duopolymarket. In the interesting case of delay of product introduction,
the innovator reduces capacities of the established product before the new product
is introduced, whereas the dynamics of the non-innovator’s capacity depends on
initial capacities. Furthermore, in our setting the innovator would always like to fur-
ther delay product introduction at the point in time where according to its initial
commitment, the new product is brought to the market. More generally, our anal-
ysis indicates conditions for determining optimal mode transitions in multi-mode
games under the assumption of open-loop determination of the transition times com-
bined withMarkov perfect equilibrium profiles within eachmode. A challenging and
interesting topic for future research clearly is the investigation of fully closed loop
equilibria, where also the mode transitions are determined by feedback strategies of
one (or several) players. The crucial difference between such a setting and the com-
mitment scenario considered in the present paper is that any player whose controls
influence the dynamics of the state(s) that enter the feedback strategy governing the
mode transition can influence the timing of that transition, and maybe even prevent
such a transition all-together. This feature, which is absent in our setting, makes the
strategic interaction much more intricate and also might jeopardize the existence of
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a Markov-perfect equilibrium (see [6] for a discussion of similar technical issues
arising in the context of Markov-perfect equilibria which exhibit Skiba points).
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Appendix

Appendix 1

As derived in Lemma 10.1, the innovator is indifferent between waiting marginally
and introducing the new product if and only if H = r S, which reduces to

1

2γ2

(∂Vm2
A

K2A

)2 = r F. (10.38)

Rearranging Eq. (10.38) yields the switching line

K1B =
√
2rγ2F − Hm2

A − Mm2
A K1A

Nm2
A

. (10.39)

Appendix 2

Given the terminal time T , the HJB-equations for non-stationary Markovian invest-
ment strategies are given by

rVA(K1A, K1B , t) − ∂VA(K1A, K1B , t)

∂t
= max

I1A

[
p1K1A − C1(I1A) + ∂VA

∂K1A
(I1A − δK1A)

+ ∂VA

∂K1B
(I∗1B − δK1B )

]

(10.40)
and

rVB (K1A, K1B , t) − ∂VB (K1A, K1B , t)

∂t
= max

I1B

[
p1K1B − C1(I1B ) + ∂VB

∂K1A
(I∗1A − δK1A)

+ ∂VB
∂K1B

(I1B − δK1B )
]

(10.41)
with the transversality conditions
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V f (K1A(T ), K1B(T ), T ) = Vm2
f (K1A(T ), K1B(T ), T ), f = A, B. (10.42)

Maximizing the right hand side of the HJB-equations yields

I1 f = 1

γ

∂V f

∂K1 f
, f = A, B. (10.43)

Additionally, firm A has to select the optimal value for T maximizing its dis-
counted stream of profits. Due to the linear-quadratic structure of the game, we
impose the following form for the value function:

V f = C f (t) + D f (t)K1A + E f (t)K
2
1A + F f (t)K1B + G f (t)K

2
1B + L f (t)K1AK1B , f = A, B.

(10.44)
Due to the finite time horizon, we consider non-stationary Markovian strategies and
hence coefficients depend on time. Comparison of coefficients yields the following
system of 12 riccati differential equations which are solved by standard numerical
methods:

rCA(t) = DA(t)2 + 2FA(t)FB(t) + 2γ1C
′
A(t)

2γ1

r DA(t) = γ1 + DA(t)(−γ1δ1 + 2EA(t)) + FB(t)LA(t) + FA(t)LB(t) + γ1D
′
A(t)

γ1

r EA(t) = 2EA(t)(−γ1δ1 + EA(t)) + LA(t)LB(t))

γ1
− 1 + E ′

A(t)

r FA(t) = 2FB(t)GA(t) + FA(t)(−γ1δ1 + 2GB(t)) + DA(t)LA(t) + γ1F
′
A(t))

γ1

rGA(t) = GA(t)(−4γ1δ1 + 8GB(t)) + LA(t)2 + 2γ1G
′
A(t))

2γ1

r L A(t) = 2(−γ1δ1 + EA(t) + GB(t))LA(t) + 2GA(t)LB(t) + γ1(−1 + L ′
A(t))

γ1

rCB(t) = 2DA(t)DB(t) + FB(t)2 + 2γ1C
′
B(t)

2γ1

r DB(t) = DB(t)(−γ1δ1 + 2EA(t)) + 2DA(t)EB(t) + FB(t)LB(t) + γ1D
′
B(t)

γ1

r EB(t) = (−4γ1δ1 + 8EA(t))EB(t) + LB(t)2 + 2γ1E
′
B(t))

2γ1

r FB(t) = γ1 + FB(t)(−γ1δ1 + 2GB(t)) + DB(t)LA(t) + DA(t)LB(t) + γ1F
′
B(t)

γ1

rGB(t) = 2GB(t)(−γ1δ1 + GB(t)) + LA(t)LB(t))

γ1
− 1 + G′

B(t)

r LB(t) = 2EB(t)LA(t) + 2(−γ1δ1 + EA(t) + GB(t))LB(t) + γ1(−1 + L ′
B(t))

γ1
(10.45)
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with transversality conditions C f (T ) = Cm2
f , D f (T ) = Dm2

f , E f (T ) = Em2
f ,

Ff (T ) = Fm2
f ,G f (T ) = Gm2

f , L f (T ) = Lm2
f , f = A, B.
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Chapter 11
On the Cournot-Ramsey Model
with Non-linear Demand Functions

Luca Lambertini and George Leitmann

JEL Codes: C73 · L13

11.1 Introduction

The usual approach to oligopoly games relies on the assumption that firms face a
linear demand function, for the sakeof (i) ensuring concavity and (ii)making thegame
analytically solvable without resorting to numerical simulations. This, however, has
the cost of leaving aside uncountably many scenarios potentially relevant from an
empirical point of view, in which demand is non-linear. Indeed, very few attempts to
treat the case of hyperbolic demand have been carried out [3, 14, 16, 18]. The same
is true for the demand function with parametric curvature appearing in the Cournot
game proposed by Anderson and Engers [1, 2], which hinges upon the ancillary but
crucial assumption of costless production to keep the model analytically solvable,
and has been used to study the impact of the curvature of market demand on cartel
stability [15] and capacity accumulation in the Ramsey model [5], as well as to prove
the existence of the best-response Hamiltonian potential function [11].

Here, we focus on three special cases of the demand structure introduced by
Anderson and Engers [1, 2] which lend themselves to be treated in a fully analytical
way in combination with a linear cost function, i.e. we look at three specifications
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of the differential game appearing in Cellini and Lambertini [5]. These demand
functions are used under open-loop information to solve the weakly and strongly
time-consistent versions of the Cournot–Ramsey differential game, to characterise
the impact of the curvature of market demand on the nature of the regime prevailing
at the saddle-point equilibrium of the game, which can be either driven by market
conditions or by technological efficiency and intertemporal parameters measuring
discounting and capital depreciation.

Before dealing with the dynamic version of the model, we characterise the Nash
equilibria of the static game, in correspondence of each of the three specifications of
the demand function. Doing so, we single out a property of equilibrium output levels
which is robust to the introduction of the Ramsey capacity accumulation dynamics,
namely that the ranking of optimal market-drive quantities is sensitive to the level of
the choke price (the vertical intercept of demand) as well as marginal cost. This, as
we know fromAnderson and Engers [1, 2], does not happen if production is costless,
as in such a situation switching from convex to linear to concave demand functions
implies a monotonic increase in individual and industry output.

This finding, in addition to telling that setting the marginal cost to zero, is not a
neutral choice, has relevant bearings on the properties of the differential game and,
in particular, on the attainment of the Ramsey rule (or, the lack thereof). Indeed,
for instance, there are admissible ranges of the choke price where firms reach the
steady state associated with the golden rule if demand is linear while being short
of it if demand is convex or concave, which contrasts with the picture emerging
from the costless case in Cellini and Lambertini [5]. Then, we also discuss the state-
redundant solution, which, on the one hand, delivers strong time consistency of
the market-driven output strategy but, on the other, causes the disappearance of the
Ramsey solution and may even prevent firms to reach a steady state at all.

The remainder of the paper is organised as follows. The model is laid out in
Sect. 11.2. Section 11.3 illustrates the static game, while Sect. 11.4 contains the anal-
ysis of the differential game, including both the regime switch between market-
driven and Ramsey solutions and the state-redundant case. Concluding remarks are
in Sect. 11.5.

11.2 Setup

A Cournot industry existing over continuous time t ∈ [0,∞) is populated by
N = 1, 2, 3...n firms supplying a homogeneous good whose instantaneous demand
function, as in Anderson and Engers [1, 2], is Q (t) = a − pα (t) , where Q (t) =∑n

i=1 qi (t) is industry demand. Moreover, a > 0 is the choke price and parame-
ter α > 0 determines the shape of market demand. The demand function is convex
(resp., concave) for all α ∈ (0, 1) (resp., α > 1), and linear for α = 1. Accordingly,
the relevant inverse demand to be used in the Cournot game is p (t) = [a − Q (t)]

1
α .
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On the supply side, the instantaneous cost function of firm i is Ci (t) = cqi (t) ,

with c > 0 measuring the time invariant marginal cost. Hence, the instantaneous
individual profit function is πi (t) = [p (t) − c] qi (t).

In order to produce and sell, firm i must build up physical capital (or, installed
capacity) ki (t) through unsold output, according to the following Ramsey [21]
dynamics:

dki (t)

dt
≡ ·

ki = f (ki (t)) − qi (t) − δki (t) (11.1)

in which f (ki (t)) is a concave technology with f ′ (ki (t)) ≡ ∂ f (ki (t))/∂ki (t) > 0
and f ′′ (ki (t)) ≡ ∂2 f (ki (t))/∂ki (t)2 < 0, and δ > 0 is the time-invariant decay rate
of capacity, common to all firms. Capacity accumulates as a result of intertemporal
relocation of unsold output, whenever f (ki (t)) > qi (t). Each firm discounts future
profits at the time-invariant rate ρ > 0 and has to choose its single control variable
qi (t) so as to maximise the flow of discounted profits

�i =
∫ ∞

0
e−ρt [p(t) − c] qi (t)dt, (11.2)

under the set of n dynamic constraints (11.1), the initial conditions k (0) =
[k1 (0) , k2 (0) , ...ki (0) , ...kn (0)] and the transversality conditions

lim
t→∞ μi j (t) k j (t) = 0 ∀ i, j (11.3)

where μi j (t) is the costate variable attached by firm i to the state variable k j .
As stated in the introduction, thus far the impact of the above demand function

has been exclusively investigated under the admittedly ad hoc assumption of costless
production, to allow for the analytical solution of the first-order condition delivering
the Cournot–Nash quantity, both in the static game [1, 2, 15] and in the dynamic one
[5, 11].1

Indeed, neither the static nor the dynamic game lends themselves to a full analyti-
cal treatment for a generic value of α. However, there are three obvious values of the
key parameter delivering solvable first-order conditions (FOCs), i.e. α ∈ {1/2, 1, 2}.
These are intuitive candidates for the solution of both the static and the dynamic
version of the game since the resulting necessary conditions are either linear or
quadratic in controls. Before delving into the details of the differential game, it is
worth dwelling upon the features of the static Cournot–Nash equilibrium, whose
implications are also relevant for the characterisation of the dynamic problem.

1In particular, in the costless case Dragone et al. [11] prove the existence of a best-response potential
function for the Cournot–Ramsey differential game for all values of α (see also Dragone et al. [12]).
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11.3 The Static Game

Leaving time aside for the moment, we may take a look at the static setting in which
capacity accumulation is not an issue and firms solve a one-shot Cournot–Nash game
in output levels. For any given α, the FOC for noncooperative profit maximisation
is

∂πi

∂qi
=

(a − Q)
1−α
α

[
α
(
a − qi −∑

j �=i q j

)
− qi

]

α
− c = 0 (11.4)

and of course its solution, in general, would require the use of transcendental
functions if c > 0, except in special cases. Clearly, if α = 1, demand is linear
and (11.4) yields the familiar Cournot–Nash output qCN

α=1 = (a − c) / (n + 1). If
α = 1/2, whereby the demand function is convex, there exist two solutions:

q±
α=1/2 = a (n + 1) ±√

a2 + cn (n + 2)

n (n + 2)
(11.5)

and the second-order condition for concavity selects qCN
α=1/2 = q−

α=1/2 as the Cournot
equilibrium quantity. If instead α = 2, the demand function is concave and (11.4)
has the following solutions:

q±
α=2 =

2
[
a (2n + 1) − nc2 ± c

√
a (2n + 1) + c2n2

]

4n (n + 1) + 1
(11.6)

with qCN
α=2 = q−

α=2 meeting the concavity requirement. For all a > c and n ≥ 1, the
three equilibrium quantities are monotonically increasing in a, with2

∂qCN
α=2

∂a
>

∂qCN
α=1

∂a
>

∂qCN
α=1/2

∂a
> 0 (11.7)

Moreover, in correspondence of a = c,

sgn
{
qCN

α=1/2

∣
∣
∣
a=c

}
= sgn {c − 1}

qCN
α=1

∣
∣
a=c = 0

qCN
α=2

∣
∣
a=c � 0 ∀ c � 1

(11.8)

2Alternatively, one could look at the (negative) partial derivatives of equilibrium quantities qCN
α

and replicate the ensuing discussion in terms of the level of the common marginal cost.
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Taken together, (11.7–11.8) imply that, for any a > c > 1, qCN
α=1/2, q

CN
α=1 and qCN

α=2

will intersect as in Fig. 11.1.3 In particular, the linear solution intersects the other
two at

ã = c + (n + 1)
√
c (c − 1)

a = 2c(n + 1)
(
c + √

c (c − 1)
)− c (2n + 1)

(11.9)

and ã, a ∈ R
+ iff c ≥ 1. The expression of â can only be approximated numerically.

While profits πCN
α=2 and πCN

α=1 generated by a concave or linear demand are always
positive, the profits πCN

α=1/2 associated with a convex demand are non-negative for
all4

a ≥ c3 (n + 2) − n

2c
≡ a ∈ (̃a, â) (11.10)

Conversely, firms facing a convex demand with a ∈ (c, a)will shut down production
because the choke price is too low. Hence, in order to ensure the viability of firms
across the three market outcomes, we must confine our attention to the range a ≥ a.
This condition identifies the relevant region of the space (a, q) in Fig. 11.1 in which
firms produce positive outputs irrespective of the shape of market demand, to the
right of the dashed line at a. Accordingly, the intersection between qCN

α=1/2 and q
CN
α=1

at â is ruled out because qCN
α=1/2 = 0 < qCN

α=2 < qCN
α=1 for all a ∈ (c, a).

For any a ≥ 1 > c ≥ 0, qCN
α=2 > qCN

α=1 > qCN
α=1/2, i.e. if the marginal cost is suffi-

ciently low, the sequence of equilibrium quantities reflects what we are accustomed
with from the initial version of the model in which marginal production cost is nil.
Indeed, this fact had to be expected at the very outset, on the basis of a continuity
argument. That is, since qCN

α=2 > qCN
α=1 > qCN

α=1/2 if c = 0, then the same ranking can
be expected to hold in the right neighbourhood of zero.

As we shall see in the dynamic version of the game, the impact of the demand
curvature on the Cournot–Nash outcome may entail unusual consequences on the
nature of the steady-state equilibrium.

3Also note that
∂2qCN

α=2

∂a2
>

∂2qCN
α=1

∂a2
= 0 >

∂2qCN
α=1/2

∂a2

so that, while the Cournot–Nash quantity generated by a linear demand is indeed linear in the choke
price, that generated by a concave (resp., convex) demand is convex (resp., concave) in the choke
price.
4The reason is that ifα = 1/2 then the profitmargin is negative for alla ∈ (c, a). So, the requirement
is indeed about the positivity of the markup.
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Fig. 11.1 Cournot–Nash quantities as functions of the choke price

11.4 The Differential Game

We are now in a position to investigate the differential game, in which the current
value Hamiltonian function of the generic firm is

Hi (t) = e−ρt

⎧
⎨

⎩
[p (t) − c] qi (t) + λi i (t)

·
ki +

∑

j �=i

λi j (t)
·
k j

⎫
⎬

⎭
(11.11)

in which the direct demand function takes one of the three forms considered above,
alternatively. In (11.11), λi j (t) = μi j (t) eρt is the capitalised costate variable that
firm i attaches to state j ; accordingly, the generic transversality condition can be
written as limt→∞ e−ρtλi j (t) k j (t) = 0 ∀ i, j . The game engendered by the linear
demand coincides with Cellini and Lambertini [4, 6] and will not be illustrated in
detail. Inwhat follows, we dwell upon the scenarios inwhich demand is either convex
(α = 1/2) or concave (α = 2).
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11.4.1 Convex Demand

Suppose α = 1/2. If so, the FOC taken on (11.11) is

∂Hi (t)

∂qi (t)
= e−ρt

{[
a − qi (t) − Q−i (t)

] [
a − 3qi (t) − Q−i (t)

]− c − λi i (t)
} = 0

(11.12)
where Q−i (t) ≡ ∑

j �=i q j (t) , and the n costate equations are

·
λi i = λi i (t)

[
δ + ρ − f ′ (ki (t))

]

·
λi j = λi j (t)

[
δ + ρ − f ′ (k j (t)

)] (11.13)

Now, imposing the symmetry conditions qi (t) = q j (t) and λi i (t) = λ j j (t) for all
i and j , (11.12) yields

[a − nq (t)] [a − (n + 2) q (t)] − c − λ (t) = 0 (11.14)

which can be solved to obtain the optimal value of the costate:

λ∗ (t) = [a − nq (t)] [a − (n + 2) q (t)] − c (11.15)

as well as the equilibrium individual quantity at any time t :

qCN
α=1/2 (t) = a (n + 1) −√

a2 + [c + λ (t)] n (n + 2)

n (n + 2)
(11.16)

and it is immediate that qCN
α=1/2 (t) = qCN

α=1/2 iff λ (t) = 0, i.e. firms play the static
Cournot–Nash quantity if and only if the value of the costate is zero. We will come
back to this particular case below.5

Differentiating both sides of (11.16), w.r.t. time, we obtain the following control
equation:

∂qCN
α=1/2 (t)

∂t
≡ ·

q
CN

α=1/2 = −
·
λ

2
√
a2 + [c + λ (t)] n (n + 2)

(11.17)

The r.h.s. of (11.17) can be appropriately rewritten to obtain

·
q
CN

α=1/2 = − λ (t)
[
δ + ρ − f ′ (k (t))

]

2
√
a2 + [c + λ (t)] n (n + 2)

(11.18)

5Also note that the n − 1 costate variables λi j (t) and their equations do not appear in (11.12) and
therefore can be disregarded as they exert no impact on firm i’s strategy.
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in which the index of k (t) has also disappeared in view of the symmetry condition.
Substituting (11.15) into (11.18), the control equation takes its definitive shape:

·
q
CN

α=1/2 = − [(a − nq (t)) (a − (n + 2) q (t)) − c]
[
δ + ρ − f ′ (k (t))

]

2
√
a2 + [c + λ (t)] n (n + 2)

(11.19)

and
·
q
CN

α=1/2 = 0 in correspondence of

qss
α=1/2 = a (n + 1) ±√

a2 + cn (n + 2)

n (n + 2)
f ′ (kss) = δ + ρ

(11.20)

where superscript ss mnemonics for steady state. For the same reasons as in the static
case, the relevant Cournot–Nash solution is qCN

α=1/2 = q−
α=1/2 as in (11.5), that is, the

optimal market-driven output engendered by open-loop rules replicates the static
Cournot–Nash quantity. The phase diagram appearing in Fig. 11.2 portrays the case
in which the quantity qss

R associated with the Ramsey equilibrium condition, also
known as Ramsey (modified) golden rule, f ′ (k (t)) = δ + ρ is higher than qss

α=1/2.
This situation yields three steady-state equilibria, E1, E2 and E3, at the intersections
between the linear loci (11.20) and the concave locus dk (t) /dt = 0. The relative
positions of these three points depend upon the parameters of the model and the
marginal productivity of physical capital. In particular, qCN

α=1/2 is strictly increasing
in the choke price a and decreasing in the number of firms n, as is the case for any
(quasi-)static Cournot–Nash quantity, and therefore the exact relative positions of
E1, E2 and E3 depend on the choke price and industry fragmentation, all else equal.

The stability properties of E1, E2 and E3 can be established by looking at the
Jacobian matrix of the state-control system composed by (11.1) and (11.19):

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂
·
k

∂k
= f ′ (k (t)) − δ

∂
·
k

∂q
= −1

∂
·
q

∂k
= � f ′′ (k (t))

2�

∂
·
q

∂q
= (ϒ + �)

[
δ + ρ − f ′ (k (t))

]

2�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11.21)

in which
� ≡ [(a − nq (t)) (a − (n + 2) q (t)) − c]

� ≡ a (n + 1) − n (n + 2) q (t)
ϒ ≡ a2 [n (n + 2) + 2] − 2an (n + 1) (n + 2) q (t)

� ≡ n (n + 2)
[
n (n + 2) q2 (t) + c

]
(11.22)
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The trace and determinant of the above Jacobian matrix are

T (J ) = ∂
·
k

∂k
+ ∂

·
q

∂q

�(J ) = ∂
·
k

∂k
· ∂

·
q

∂q
− ∂

·
k

∂q
· ∂

·
q

∂k

(11.23)

Substituting qCN
α=1/2 = q−

α=1/2 in (11.23), we obtain

T (J ) = ρ ; �(J ) = − [ f ′ (k (t)) − δ
] [

f ′ (k (t)) − δ − ρ
]

(11.24)

If instead one poses f ′ (k (t)) = δ + ρ so as to look at the case in which qss = qss
R ,

one obtains

T (J ) = ρ ; �(J ) = f ′′ (k (t)) · �

2�
(11.25)

with � < 0 for all q ∈
(
q−

α=1/2, q
+
α=1/2

)
and conversely outside this range; and � >

0 for all 0 < q < a (n + 1) / [n (n + 2)] , which, in turn, belongs to the interval(
q−

α=1/2, q
+
α=1/2

)
.

All of this, considering the situation appearing in Fig. 11.2, implies that, if a
steady-state point is unstable, it is necessarily a focus because T (J ) = ρ.Moreover,

Proposition 11.1 Suppose α = 1/2. If qss
R > qCN

α=1/2, then E1 and E3 are saddle
points, while E2 is an unstable focus. If instead qss

R < qCN
α=1/2, then E1 is an unstable

focus, while E2 and E3 are saddle points.

Three special cases are worth mentioning. If E1 = E2, then this as well as E3 are
saddle points. If E1 = E3, then this as well as E2 are saddle points. In this case, the
horizontal locus is tangent to the concave locus at the peak of the latter. Finally, if
the horizontal locus is strictly above the concave one, E2 is the only steady state: it
is engendered by the Ramsey rule and is a saddle point.

Under open-loop information, the saddle path actually taken by firms will depend
on the initial condition on capacity, which, under symmetry, will be the same k0
for all of them. Suppose, for instance, that the relevant situation is that represented
in Fig. 11.2. In such a case, a sufficiently small k0 will cause firms to follow the
saddle path to E1, which is drawn in the phase diagram, while if k 0 is large, they
will converge to the saddle point equilibrium E3. The latter, however, is inefficient,
as the same equilibrium quantity (or, from the consumers’ standpoint, the same level
of consumption) is associated with a larger volume of installed capacity (or physical
capital), as already stressed in Cellini and Lambertini [4, 6].



258 L. Lambertini and G. Leitmann

Fig. 11.2 The phase diagram with λi j (t) �= 0

11.4.2 Concave Demand

Here, α = 2 and the FOC taken on (11.11) is

∂Hi (t)

∂qi (t)
= e−ρt

{
2
[
a − Q−i (t)

]− 3qi (t)

2
√
a − qi (t) − Q−i (t)

− c − λi i (t)

}

= 0 (11.26)

while the n adjoint equations are the same as in (11.13). After imposing symmetry,
(11.26) yields6

λ∗ = 2a − (2n + 1) q − 2c
√
a − q

2
√
a − q

(11.27)

Then, differentiating both sides of (11.27) w.r.t. time and using (11.13), we have the
following control equation:

·
q
CN

α=2 = 2λ (c + λ)
[
f ′ (k) − δ − ρ

]

(2n + 1)2

[

2n + a (2n + 1) + 2n2 (c + λ)2

(c + λ)
√
a (2n + 1) + 2n2 (c + λ)2

]

(11.28)
The definitive formulation of the control equation obtains by substituting (11.27)
into (11.28):

6Henceforth, the explicit indication of the time argument is omitted for the sake of brevity.
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·
q
CN

α=2 = 2 (a − nq) [2a − (2n + 1) q]
[
2
(
a − c

√
a − nq − (2n − 1) q

)] [
f ′ (k) − δ − ρ

]

√
�

(11.29)
where

� ≡ [2a (n + 1) − n (2n + 1) q] [2a − (2n + 1) q] (11.30)

The control becomes stationary in correspondence of q−
α=2, q

+
α=2 and

q̂α=2 = a

n
; q̃α=2 = 2a

2n + 1
; f ′ (kss

) = δ + ρ (11.31)

Note also that � ≤ 0 for all

q ∈
[

q̃α=2,
2a (n + 1)

n (2n + 1)

]

(11.32)

Therefore, since

0 < q−
α=2 < q̃α=2 < q+

α=2 < q̂α=2 <
2a (n + 1)

n (2n + 1)
(11.33)

we must concentrate on q−
α=2 = qss

α=2 = qCN
α=2, which is the optimal quantity of the

corresponding static game (see (11.6)), and the Ramsey quantity qss
R corresponding

to the golden rule f ′ (kss) = δ + ρ. Relying on the analysis of the stability proper-
ties of the state-control system (11.1) and (11.29), we may formulate the following
Proposition, which shares its qualitative properties with Proposition 11.1:

Proposition 11.2 Suppose α = 2. If qss
R > qCN

α=2, then E1 and E3 are saddle points,
while E2 is an unstable focus. If instead qss

R < qCN
α=2, then E1 is an unstable focus

while E2 and E3 are saddle points.

The details of the proof are in the Appendix. For obvious reasons, the resulting
picture portraying the phase diagram in the situation in which the saddle-point equi-
librium is market-driven is observationally equivalent to Fig. 11.2. From Cellini and
Lambertini [4, 6], we also know that an analogous phase diagram emerges if α = 1,
i.e. in presence of a linear demand. We are now ready to comparatively assess the
equilibrium configurations delivered by the three different demand functions consid-
ered in the foregoing analysis, in order to carry out a simple parametric analysis of
the switch from the Cournot equilibrium to the Ramsey equilibrium (or the opposite).

11.4.3 Switching Regimes: Cournot Versus Ramsey

Were production costless, the static and dynamic versions of the game could be solved
analytically to obtain theCournot–Nash quantity qCN (α) = aα/ (αn + 1) explicitly
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parametric in α, and we know from Cellini and Lambertini [5] that ∂qCN (α) /∂α >

0. This, in terms of the three specific examples considered in the present paper, would
imply qCN

α=2 > qCN
α=1 > qCN

α=1/2.
If c ∈ (0, a) ,, we cannot write any partial derivative w.r.t. the curvature of market

demand because α necessarily takes numerical values, but from (11.7) and Fig. 11.1,
we are aware that Cournot–Nash quantities (i) increase monotonically in the choke
price, while (ii) their ranking changes as the choke price increases. The first property
implies that, for sufficiently high levels of a, the Cournot–Nash strategy will cross

the concave locus
·
k = 0 beyond the Ramsey equilibrium, and may even end up

not intersecting it at all if a is very large. Yet, the second property entails that the
identity of the Cournot–Nash quantity collapsing first into the Ramsey one is, a
priori, undefined. With one exception, though, as we may exclude the case qCN

α=1/2 >

qCN
α=1 > qCN

α=2, because q
CN
α=1/2 > 0 if and only if a ≥ a.

To see this, it suffices to observe that qss
R , being determined by f ′ (k) = δ + ρ,

is independent of demand conditions. Therefore, for instance, any a ∈ (a, â
)
, such

that qCN
α=1 > qCN

α=1/2 > qCN
α=2, might indeed yield qCN

α=1 = qss
R , which is the situation

depicted in Fig. 11.3. This amounts to taking the conditions determining the Ramsey
solution as given and asking oneself what happens if demand conditions change pro-
voking a shift in the horizontal locus corresponding to the market-driven solution.
But, in the opposite perspective, it might as well be the case that the marginal pro-
ductivity of physical capital or decay and discount rates modify, triggering a change
in the concave locus and a shift of the vertical locus (for instance, leftwards) so
as to generate the very same consequence. This brief example suffices to suggest
that changes in the curvature of demand and the choke price may push (pull) the
industry into (out of) the Ramsey rule, and the same may happen due to changes in
technological and intertemporal conditions.

Without delving in the details of all admissible cases, we may confine ourselves
to formulate the following:

Proposition 11.3 Suppose f (k) , δ and ρ are fixed. Then,

• for all a ∈ (a, a
)
, qCN

α=1 > max
{
qCN

α=1/2, q
CN
α=2

}
; therefore, the market-driven solu-

tion candidate to collapsing first into the Ramsey rule is the one generated by a
linear demand;

• for all a > a, qCN
α=2 > qCN

α=1 > qCN
α=1/2; therefore, the market-driven solution can-

didate to collapsing first into the Ramsey rule is the one generated by a concave
demand.

The above Proposition has a relevant Corollary:

Corollary 11.1 For a sufficiently high value of the choke price a,

qss
R ≤ min

{
qCN

α=1/2, q
CN
α=1, q

CN
α=2

}

If so, then demand, cost and competitive conditions have no bearings at all on the
equilibrium.
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Fig. 11.3 The phase diagram with λi j (t) �= 0

More explicitly, if the entire set of market-driven solutions collapses into the
Ramsey one, then the curvature ofmarket demandbecomes immaterial as far as firms’
production and sale decisions are concerned, since players only obey the Ramsey
rule for any a, c and n, whereby also the level of marginal cost and the structure of the
industry become irrelevant. Thismeans that the equilibrium configurations generated
by three very different markets are observationally equivalent, and therefore a casual
observer looking at qss

R but uninformed about demand conditions would be altogether
unable to formulate an educated guess about the shape of market demand.

All of this can be summarised in the following terms. As far as the issue at
stake, namely regime switch, is concerned, the foregoing discussion amounts to
saying that, if demand is low (or marginal cost is high) enough, the horizontal arm
determines the capacity accumulation path as well as the steady state, which are
indeed market-driven. It is also worth recalling that demand depends on both α
and a. So, for instance, if the vertical intercept of demand increases sufficiently to

determine qss
R ≤ min

{
qCN

α=1/2, q
CN
α=1, q

CN
α=2

}
, capacity accumulation and the resulting

equilibrium just obey the Ramsey rule, which is independent of market behaviour.
Consequently, in the latter case firms are not even aware of the specific pattern of
strategic competition in output levels associated with the definition of their profit
functions, the only residual trace of it being the fact that the equilibrium price level
will be determined along a specific demand function after plugging the industry
output Qss

R into it. This level of collective production, however, is entirely determined
by depreciation and discounting, and therefore could as well be supplied by the
same number of firms initially operating under Bertrand as well as monopolistic
or perfect competition (cf. Cellini and Lambertini [4, 5]). In fact, the golden rule
f ′ (kss) = δ + ρ is invariant across the three cases examined in this paper, while
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demand features are not. In some sense, the regime switch implies an analogous
switch in the minds of entrepreneurs, who cannot tell what it would have been like
to maximise profits in a proper Cournot game.

11.4.4 The State-Redundant Solution

There remains to examine the case in which λi i = λi j = 0 at all times, due to the
fact that adjoint equations (11.13) are differential equations in separable variables
admitting the nil solution. Taking this route, FOCs on controls become independent of
costates and therefore also states, and this implies that the game is state-redundant and
admits a strongly time-consistent solution represented by the static Cournot–Nash
quantity.7 Clearly, this holds true irrespective of the curvature of market demand.

More importantly, keeping in mind the above discussion, the additional implica-
tion of state redundancy is that the Ramsey equilibrium at f ′ (k) = δ + ρ disappears,
and consequently the switch between the market-driven solution and the one deter-
mined by technology, decay and discounting never takes place, as firms systemati-
cally play qCN

α , with α alternatively equal to 1/2, 1 or 2, forever. This delivers, for
instance, the phase diagram appearing in Fig. 11.4, which is equivalent to Fig. 11.3
without the vertical locus; hence, the steady-state point E2 disappears as well.

In the presence of the market-driven solution only, the dynamic properties of the
game are illustrated by the horizontal arrows along qCN

α , and there emerges that in
absence of the Ramsey rule the saddle-point equilibrium is necessarily the inefficient
solution corresponding to the rightwards intersection between the specific qCN

α and
·
k = 0 in E3, as already highlighted in Cellini and Lambertini [6].

Of course, if a is large enough, one of the horizontal loci (or even all of them)
may not cross the concave locus. In such a case, the steady-state equilibrium will not
exist for at least one of the three possible demand functions considered in this game.
It is worth noting that this cannot happen if λi i �= 0, as then the Ramsey solution
indeed generates a saddle-point equilibrium whenever the relevant Cournot quantity

lies above
·
k = 0.

This brief discussion shows that, in the Cournot–Ramsey game, strong time con-
sistency under open-loop information comes at a twofold price, namely the certain
lack of the Ramsey equilibrium and the possible disappearance of a steady-state
equilibrium under a portion or all of the set of market demand schedules. Hence, we
may formulate the following:

7The strand of research about the arising of degenerate feedback strategies under open-loop infor-
mation dates back to the identification of strongly time-consistent solutions in trilinear games [8].
Later, the same result was shown to hold in exponential games [22] as well as in linear-state or,
more generally, state-separable games [9], while Mehlmann and Willing [20] proved that differen-
tial game characterised by strongly time-consistent open-loop strategies is or can be reformulated
as a state-redundant game. For more, see also Fershtman [13], Dockner et al. [10, Chap. 7], Cellini
et al. [7] and Lambertini [17, Chap. 1].
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Fig. 11.4 The phase diagram with λi j (t) = 0

Proposition 11.4 The state-redundant solution of the Cournot–Ramsey differential
game admits the market-driven solution only, qCN

α , for any curvature of market
demand. This (i) excludes the attainment of the golden rule and (ii) may imply that
there exists no steady state at all.

Propositions 11.1–11.2 and 11.4 imply:

Corollary 11.2 While the weakly time-consistent solution of the game yields at least
one saddle-point equilibrium, irrespective of demand conditions, the strongly time-
consistent solution does not ensure, in general, the existence of a steady state.

Whenever the second casematerialises, given the dynamics of k above the concave
locus, the individual and aggregate capacity endowment is bound to shrink to zero.
One might say that taking the route of state redundancy rules out regime switches
by privileging the market-driven equilibrium, provided the latter does exist. That is,
ruling out switches may take a heavy toll.

11.5 Concluding Remarks

Wehave investigated the impact of demand curvature on the equilibriumoutcome of a
Cournot–Ramsey industry in three special caseswhich are the representative of a class
of gameswith analogous qualitative properties, to find that the choke price plays a key
role in shaping the nature of the steady-state equilibrium. In particular, it determines
whether and under what conditions the industry will switch from the market-driven
Cournot-Nash solution to the golden rule one. We have also stressed that if the
switch takes place, firms become unaware of the specific nature of strategic behaviour
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associated with the market-driven solution, as the Ramsey rule has no correlation
with demand conditions. Additionally, we have also shown that the strongly time-
consistent case excludes the attainment of the Ramsey solution and may also prevent
firms from reaching a steady state, as the latter does not exist if the choke price is
too high.

Acknowledgements We would like to thank two anonymous referees for helpful comments and
suggestions. The usual disclaimer applies.

Appendix

To prove the claim in Proposition 11.2, it suffices to evaluate the sign of the trace and
determinant of the Jacobian matrix associated with the state-control system made up
by (11.1) and (11.29) at f ′ (k) = δ + ρ:

T (J ) = ρ

�(J ) = 2
√
a − nq [2a − (2n + 1) q]

[
2a − (2n + 1) q − 2c

√
a − nq

]
f ′′ (k)√

�
(11.34)

Since T (J ) > 0, the Ramsey solution is either a saddle point or an unstable focus
depending on the sign of the determinant. Knowing that f ′′ (k) < 0, and verifying
that

2
√
a − nq [2a − (2n + 1) q]

[
2a − (2n + 1) q − 2c

√
a − nq

]

√
�

< 0 (11.35)

for all q ∈ (q−
α=2, q

+
α=2

)
while the opposite holds outside this interval, we see that

qss
R ∈ (0, q−

α=2

) ⇔ �(J ) < 0 (11.36)

and
qss
R ∈ (q−

α=2, q
+
α=2

) ⇔ �(J ) > 0 (11.37)

Hence, if qss
R < qCN

α=2 = q−
α=2, the Ramsey rule produces a saddle-point equilibrium,

while the market-driven solution is associated with an unstable focus. If instead
qss
R ∈ (q−

α=2, q
+
α=2

)
, the opposite applies.



11 On the Cournot–Ramsey Model with Non-linear Demand Functions 265

References

1. Anderson, S. P., & Engers, M. (1992). Stackelberg vs Cournot oligopoly equilibrium. Interna-
tional Journal of Industrial Organization, 10, 127–135.

2. Anderson, S. P., & Engers, M. (1994). Strategic investment and timing of entry. International
Economic Review, 35, 833–853.

3. Bischi, G. I., Chiarella, C., Kopel, M., & Szidarovszky, F. (2010). Nonlinear oligopolies:
Stability and bifurcations. Heidelberg: Springer.

4. Cellini, R., & Lambertini, L. (1998). A dynamic model of differentiated oligopoly with capital
accumulation. Journal of Economic Theory, 83, 145–155.

5. Cellini, R., & Lambertini, L. (2007). Capital accumulation, mergers, and the Ramsey golden
rule. In M. Quincampoix, T. Vincent, & S. Jørgensen (Eds.), Advances in dynamic game theory
and applications. Annals of the International Society of Dynamic Games (Vol. 8, pp. 487–505).
Boston: Birkhäuser.

6. Cellini, R., & Lambertini, L. (2008). Weak and strong time consistency in a differential
oligopoly game with capital accumulation. Journal of Optimization Theory and Applications,
138, 17–26.

7. Cellini,R., Lambertini, L.,&Leitmann,G. (2005).Degenerate feedback and time consistency in
differential games. In E. P. Hofer & E. Reithmeier (Eds.),Modeling and control of autonomous
decision support based systems. Proceedings of the 13th International Workshop on Dynamics
and Control (pp. 185–192). Shaker Verlag: Aachen.

8. Clemhout, S., & Wan, H. Y, Jr. (1974). A class of trilinear differential games. Journal of
Optimization Theory and Applications, 14, 419–424.

9. Dockner, E. J., Feichtinger, G., & Jørgensen, S. (1985). Tractable classes of nonzero-sum
open-loop Nash differential games: Theory and examples. Journal of Optimization Theory and
Applications, 45, 179–197.

10. Dockner, E. J., Jørgensen, S., Long, N.V., & Sorger, G. (2000).Differential games in economics
and management science. Cambridge: Cambridge University Press.

11. Dragone, D., Lambertini, L., & Palestini, A. (2012). Static and dynamic best-response potential
functions for the non-linear Cournot game. Optimization, 61, 1283–1293.

12. Dragone, D., Lambertini, L., Leitmann, G., & Palestini, A. (2015). Hamiltonian potential
functions for differential games. Automatica, 62, 134–138.

13. Fershtman, C. (1987). Identification of classes of differential games for which the open-loop
is a degenerate feedback Nash equilibrium. Journal of Optimization Theory and Applications,
55, 217–231.

14. Lamantia, F. (2011). A nonlinear Duopoly with efficient production-capacity levels. Compu-
tational Economics, 38, 295–309.

15. Lambertini, L. (1996). Cartel stability and the curvature of market demand. Bulletin of Eco-
nomic Research, 48, 329–334.

16. Lambertini, L. (2010). Oligopoly with hyperbolic demand: A differential game approach.
Journal of Optimization Theory and Applications, 145, 108–119.

17. Lambertini, L. (2018). Differential games in industrial economics. Cambridge: Cambridge
University Press.

18. Lambertini, L., & Palestini, A. (2014). On the feedback solution of differential oligopoly games
with hyperbolic demand curve and capacity accumulation. European Journal of Operational
Research, 236, 272–281.

19. Mehlmann, A. (1988). Applied differential games. New York: Plenum Press.
20. Mehlmann, A., & Willing, R. (1983). On nonunique closed-loop Nash equilibria for a class of

differential games with a unique and degenerate feedback solution. Journal of Optimization
Theory and Applications, 41, 463–472.

21. Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.
22. Reinganum, J. (1982). A class of differential games for which the closed loop and open loop

nash equilibria coincide. Journal of Optimization Theory and Applications, 36, 253–262.



Chapter 12
Optimal Taxation with Endogenous
Population Growth and the Risk
of Environmental Disaster

Tapio Palokangas

JEL Classification: J13 · O44 · Q53 · Q56 · Q58

12.1 Introduction

This document considers a market economy where firms produce goods from labor
and capital and households save in capital, dictate the number of their children, and
spend on health care to improve their survival. The economy contains the external-
ity that population growth and capital accumulation boost pollution that threatens
to trigger a lethal environmental disaster. Could this externality be eliminated by
(linear) taxation? This research question is examined by a dynamic game where the
benevolent government is the leader and the representative household the follower.

For the sake of clarity, the disaster is taken as a randomregime shift that occurs only
once, with the post-event regime holding indefinitely. As pointed out by de Zeeuw
and Zemel [2], this restriction is not essential, and models of recurrent events, where
several shifts occur at random times with independent intervals, can be analyzed
using the samemethodology. Because the construction of different mortality rates for
different cohorts would excessively complicate the analysis, then, following Becker
[1], it is assumed that thewhole populationhas a uniformmortality rate, for simplicity.

Polasky et al. [12] analyze how the threat of future regime shift affects the optimal
management of natural resources. They focus on harvesting a renewable resource
(e.g., fishery), whose growth rate is dependent on the regime and whose stock can
trigger a regime shift. They show that the possibility of the regime shift makes the
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central planner precautionary, i.e., willing to maintain a larger stock of the resource.
In this document, the government faces the risk of disaster due to pollution and
behaves in a precautionary manner by keeping the damaging stock (pollution) at a
lower level.

Many dynamic models of pollution control assume smooth convex damage func-
tions (e.g., van der Ploeg and de Zeeuw [16], and Dockner and Long [4]), which
ignores the effect of a potential regime shift on the optimal policy. Then, there is no
need for precautionary measures against pollution: the policy maker should respond
at the moment pollution occurs, but not beforehand. To examine the need for precau-
tionary environmental policy, de Zeeuw and Zemel [2] consider the management of a
system that is subject to the risk of an abrupt and random jump in pollution damage.
This document applies the same idea for the management of a market economywhen
pollution-related mortality is the damage.

Haurie andMoresino [7], Polasky et al. [12], and deZeeuw andZemel [2] consider
only the central planner that can fully control all resources of the economy. In contrast,
this document examines the government in a market economywhere microeconomic
agents (households and firms) determine production, fertility, and capital accumu-
lation, unintentionally generating lethal emissions, but the government can use only
linear taxes. Public policy is then constructed as a dynamic Stackelberg game where
the government is the leader. This approach has the benefit that the suggested policy
rules can be presented directly in terms of observable variables (e.g., prices and the
interest rate).

Tsur and Zemel [13, 14] ignore population growth, but examine the possibility
of climate change in a market economy where firms employ labor, capital, and two
energy inputs that are perfect substitutes: clean input that does not emit, and dirty
input the emissions of which accumulate “hazardous” stock that threatens to trigger
the climate change. As a result, they obtain a Pigouvian tax on the “hazardous” input.
In contrast, this document considers endogenous population growth that may trigger
the catastrophe. In order to avoid excessive complications in the model, the choice
of energy inputs is ignored, and it is assumed that population growth and capital
accumulation generate “hazardous” pollution as a by-product.

Harford [5, 6] addresses the issue of environmental and population externalities
in a dynamic model where the individuals are altruistic toward their descendants and
environmental pollution is a joint product of output. In his model, the social planner
optimizes the utility of the representative individual.By comparing this optimumwith
the individuals’ decisions, he shows that Pareto optimality requires both a pollution
tax and a parental tax per child, because the former does not limit fertility enough to
keep population stationary. To contribute to the discussion on this matter, this study
adds Harford’s parental tax into the potential tools of the government.

Palokangas [11] and Lehmijoki and Palokangas [9] examine optimal taxation in
an economy where households dictate fertility and save for capital, while firms pro-
duce output from labor and capital, and population growth and capital accumulation
generate pollution. In those studies, however, there is no precautionary motive, for
the current damage (mortality) is a smooth function of current pollution. In this doc-
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ument, in contrast, there is a precautionary motive: pollution triggers the damage
(i.e., lethal environmental disaster) randomly at any moment of time.

The remainder of this document is organized as follows. Section12.2 presents
the basic structure of the economy, including the behavior of competitive firms.
Then, a stochastic Stackelberg game is defined, with the government as the leader
and the representative micro-household as the follower. Section12.3 considers the
household’s and Sect. 12.4 the government’s behaviors. Section12.5 presents optimal
public policy and Sect. 12.6 summarizes the results.

12.2 The Economy as a Whole

12.2.1 Population and Labor Supply

In the model, time t is continuous. Population L grows at the rate that is equal to the
fertility rate f minus the mortality rate m:

1

L

dL

dt
= f − m, L(0) = L0. (12.1)

The units are normalized so that one unit of labor is needed to rear one newborn.
Then, labor devoted to child rearing is equal to total fertility f L , and the remainder
of the population, N , works in production:

N
.= L − f L = (1 − f )L ⇔ n

.= N/L = 1 − f. (12.2)

12.2.2 The Goods Market

In the economy, there is only one good. The depreciation of capital is included in the
production function of that good, so that the accumulation of capital K is given by
dK
dt . Because (private) capital is the only asset in the model, private saving is equal to
the accumulation of capital, dK

dt . The output of the good, Y , is used in consumption
C , health care H , and investment dK

dt :

Y = C + H + dK

dt
. (12.3)

It is convenient to define output Y , consumption C , health care H , and capital K
in proportion to population L:

y
.= Y

L
, c

.= C

L
, h

.= H

L
, k

.= K

L
. (12.4)
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Noting (12.1), (12.3), and (12.4), investment per head in the economy is defined
by

s
.= dk

dt
= d

dt

(
K

L

)
= 1

L

dK

dt
− dL

dt

K

L2
= 1

L

dK

dt
+ (m − f )k. (12.5)

Because it is convenient to define investment per head s
.= dk

dt as a control in dynamic
programming, then, by (12.5), private saving dK

dt is given by

dK

dt
= [s + ( f − m)k]L . (12.6)

12.2.3 Firms

The firms produce output Y from capital K and labor input N [cf. (12.2)] according
to neoclassical technology:

Y = F(K , N ), FK
.= ∂F

∂K
> 0, FN

.= ∂F

∂N
> 0, FKK

.= ∂2F

∂K 2
< 0,

FNN
.= ∂2F

∂N 2
< 0, FKN

.= ∂2F

∂K∂N
> 0, F linearly homogeneous. (12.7)

Noting (12.2), (12.4), and (12.7), output per head, y, can be defined as a function
of capital per head, k, and the fertility rate, f , as follows:

1 − f = n
.= N/L , Y/L = F(k, n) = F(k, 1 − f )

.= y(k, f ),

yk
.= ∂y

∂k
= FK (k, n) > 0, y f

.= ∂y

∂ f
= −FN (k, n) < 0. (12.8)

The representative firm maximizes its profit � by capital input K and labor input
N according to technology (12.7), given the wage w and the interest rate r . With
(12.4) and (12.8), this implies

�
.= max

K ,N

[
F(K , N ) − wN − r K

] = L max
k,n

[
F(k, n) − wn − rk

]
.

(12.9)

Because the production function F is subject to constant returns to scale (i.e., linearly
homogeneous), then, in equilibrium, the marginal products of capital and labor, FK

and FN , are equal to the interest rate r and the wage w, respectively, and total profit
� is equal to zero [cf. (12.8) and (12.9)]:

y(k, f ) = F(k, n) = FBn + FKk = wn + rk = (1 − f )w + rk,

r = FK (k, n) = yk, w = FN (k, n), y f = −FN (k, n) = −w. (12.10)
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12.2.4 Externality

It is assumed that aggregate capital K and aggregate population L pollute according
to the geometric average P = K γL1−γ = kγL , where 0 < γ < 1 is a constant. Then,
the change of pollution, v

.= dP
dt , is obtained from (12.1) and (12.6) as follows:

1

P

dP

dt
= d ln P

dt
= γ

d ln k

dt
+ d ln L

dt
= γ

1

k

dk

dt
+ 1

L

dL

dt
= γ

s

k
+ f − m

⇔ v
.= dP

dt
=

(
γ
s

k
+ f − m

)
P. (12.11)

With result (12.11), population L can be replaced by pollution P as a predetermined
state variable in the model.

The probability of the environmental disaster, π, is assumed to be an increasing
function of pollution P . Then, the disaster can be considered as a random shock q
with mean π(P) as follows:

q =
{
1 with probabilityπ(P),

0 with probalility 1 − π(P),
where π′ > 0. (12.12)

The externality in the economy is the following: the environmental shock q
increases every individual’s mortality rate m simultaneously, but each individual
can decrease her personal mortality rate m by spending on her personal health care
h with increasing marginal costs. This function is specified by

m = χ(δq − h), χ′ > 0,
d2(−m)

dh2
= χ′′ > 0, (12.13)

where the constant δ > 0 is the effect of the shock q in terms of output per head (=
in terms of health care per head, h) and

∣∣∣∣dmdh
∣∣∣∣ = −dm

dh
= χ′ (12.14)

the marginal efficiency of personal health care h in decreasing the personal mortality
rate m.

The household chooses its saving per head, s = dk
dt , fertility rate, f , and heath care

per head, h. Because of the one-to-one correspondence between h and m through
the function (12.13), health care h can be replaced by the mortality rate m as the
household’s control in the model, for convenience. Denoting the inverse function of
χ by z(m)

.= χ−1(m) in (12.13) yields

h = δq − z(m), z′ .= 1

χ′(m)
> 0, z′′ .= − χ′′

(χ′)2
< 0. (12.15)
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The factors affecting themortality ratem [cf. (12.13)] affect also the level of health,
�, but in the opposite direction: the environmental shock q worsens every individual’s
health simultaneously, but each individual can improve her personal health � by her
personal health care h. Because the definition of health � as a separate function
of q and h would excessively complicate the analysis, and because it is technically
convenient to handle themortality rate as the household’s control in themodel, health
� and the mortality rate m are defined as negatively associated joint products of the
same process1:

�(m), �′ < 0, �′′ exists. (12.16)

12.2.5 Public Policy

Thegovernment sets a poll taxa ∈ �per head, the tax τ ∈ (−∞, 1)on capital income
r K , the parental tax x ∈ � on the number of children, f L , and the tax b ∈ (−1,∞)

on health care H . If a tax is negative, then it is a subsidy. Any set of linear taxes that
support Pareto optimum in the model is equivalent to those taxes. The government’s
budget is [cf. (12.4)]:

aL + x f L + τr K + bH = 0 ⇔ a + x f + τrk + bh = 0. (12.17)

In the model, the setup of public policy is a Stackelberg game as follows. The
representative household is the follower that determines its consumption per head,
c, its spending on health care per head, h, and its fertility rate, f , taking the taxes
(a, x, τ , b) and the environmental shockq as given. The benevolent government is the
leader that maximizes the representative household’s utility by the taxes (a, x, τ , b),
observing the follower’s behavior, the behavior of the firms, (12.10), the budget
constraint of its own, (12.17), and the risk of the regime shift (12.12, 12.15) due to
pollution (12.11). The follower’s and leader’s behaviors are examined in Sects. 12.3
and 12.4.

12.3 The Household

12.3.1 Utility

According to Becker [1], an individual derives her utility c(t) f (t)α, where α > 0 is
a constant, from her consumption c(t) and the fertility rate in her household, f (t), at
each time t . This study extends that framework by introducing personal health � as

1The mortality ratem is introduced as a factor of utility through health � [cf. (12.18)] only to ensure
that the functions (12.26) and (12.42) can be strictly concave with respect to the mortality rate m
for realistic values of consumption per head, c, capital per head, k, and the mortality rate m.
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the third factor of individual utility. Consequently, noting (12.16), periodic utility u
is a function of consumption per head, c, the fertility rate, f , and the mortality rate,
m, as follows:

u(t) = c(t) f (t)α�
(
m(t)

)
, α > 0, �′ < 0, �′′ exists. (12.18)

Let ρ be the constant rate of time preference for a hypothetical individual who
could live forever. When an individual faces the mortality rate m, her probability of
dying in a short time dt is equal tom dt . Then, the probability of her survival beyond
the period [ζ, t] is given by em(ζ−t), and her expected periodic utility at time t ≥ ζ
is em(ζ−t)u(t). Consequently, noting (12.16), the representative member’s utility for
the whole period t ∈ [ζ,∞) in the household is given by

∫ ∞

ζ

u(t)σe(ρ+m)(ζ−t)dt with (12.18), 0 < σ < 1, (12.19)

where σ is a parameter and ρ + m the effective rate of time preference with mortality.
The closerσ is to one, themore eagerly the household transfers resources frompresent
to future by saving.

12.3.2 Saving

Investment dK
dt is equal to private saving:

dK

dt
= wN + r K − C − hL − [a + x f + τrk + bh]L , (12.20)

wherew is the wage, r the interest rate, N labor supply,wN labor income, r K capital
income, C consumption, h spending on health care per head, hL total spending on
health care, and [a + x f + τrk + bh]L tax expenditures [cf. (12.17)]. By (12.4),
(12.6), (12.8), (12.15), and (12.20), consumption per head, c, can be defined as a
function of the household’s controls (s, f,m), capital per head, k, taxes (a, x, τ , b),
the wage w, the interest rate r and the shock q as follows:

s + ( f − m)k = 1

L

dK

dt
= wN + r K − C

L
− (1 + b)h − a − x f − τrk

= (1 − f )w + rk − c + (1 + b)[z(m) − δq] − a − x f − τrk ⇔
c = c̃(s, f,m, k, a, x, τ , b, w, r, q)

.=
w + (m − f + r − τr)k − s + (1 + b)[z(m) − δq] − (w + x) f − a. (12.21)
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12.3.3 Transformation from Real into Virtual Time

Themortality ratem can be eliminated from the discount factor of the utility function
(12.19) by Uzawa’s [15] transformation:

θ(t) = (ρ + m)t with dt = dθ

ρ + m
. (12.22)

Because θ(ζ) = (ρ + m)ζ, θ(∞) = ∞, and dt
dθ

= 1
ρ+m > 0 hold true, one can define

θ(t) as an alternative time variable and set the variables in terms of it. Noting (12.10)
and (12.22), the utility function (12.19) with (12.18) and the constraint s = dk

dt can
be transformed into virtual time θ as follows:

∫ ∞

ζ

c(θ)σ f (θ)ασ�
(
m(θ)

)σ

ρ + m(θ)
eζ−θdθ, (12.23)

dk

dθ
= s(θ)

ρ + m(θ)
, k(0) = k0. (12.24)

12.3.4 Optimal Behavior

The household maximizes its utility (12.23) by investment per head, s, the fertility
rate, f , and the mortality rate, m, subject to its consumption per head, (12.21), and
its accumulation of wealth per head, (12.24), given the wage w, the interest rate r ,
the environmental shock q, and the taxes (a, x, τ , b). This defines the value function
at initial time ζ as

�(k, a, x, τ , b, w, r, q, ζ)
.= max

(s, f,m) s.t. (12.21),(12.24)

∫ ∞

ζ

c(θ)σ f (θ)ασ�
(
m(θ)

)σ

ρ + m(θ)
eζ−θdθ.

(12.25)

FollowingDixit andPindyck [3], and noting s = dk
dt [cf. (12.5)], theBellman equation

for the household’s program (12.25) is constructed as follows:

�(k, a, x, τ , b, w, r, q, ζ) = max
(s,f,m) s.t.(12.21)

�(s, f,m, k, a, x, τ , b, w, r, q, ζ) with

�(s, f,m, k, a, x, τ , b, w, r, q, ζ)

.= cσ f ασ�

ρ + m
+ ∂�

∂k

dk

dθ
= 1

ρ + m

[
cσ f ασ�(m)σ + ∂�

∂k
s

]
.

(12.26)

The first-order conditions for maximizing the function (12.26) by the controls
(s, f,m) subject to (12.21) are given by
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∂�

∂s
= 1

ρ + m

(
σcσ−1 f ασ�σ ∂c̃

∂s
+ ∂�

∂k

)
= 1

ρ + m

(
∂�

∂k
− σcσ−1 f ασ�σ

)
= 0

⇔ ∂�

∂k
= σcσ−1 f ασ�σ, (12.27)

∂�

∂ f
= 1

ρ + m

(
ασcσ f ασ−1�σ + σcσ−1 f ασ�σ ∂c̃

∂ f

)
= σ

cσ−1 f ασ�σ

ρ + m

(
α
c

f
− ∂c̃

∂ f

)

= σ
cσ−1 f ασ�σ

ρ + m

(
α
c

f
− w − x − k

)
= 0 ⇔ f = αc

w + k + x
, (12.28)

∂�

∂m
= 1

ρ + m

[
σcσ−1 f ασ�σ ∂c̃

∂m
+ σcσ f ασ�σ−1�′ − �

ρ + m

]

= 1

ρ + m

{
σcσ−1 f ασ�(m)σ[k + (1 + b)z′(m)] + σcσ f ασ�(m)σ−1�′(m)

− �

ρ + m

}
= 0 ⇔ k + (1 + b)z′ = �/(ρ + m)

σcσ−1 f ασ�σ︸ ︷︷ ︸
+

−c
�′

�︸︷︷︸
−

> 0. (12.29)

When the mortality rate m is held constant, the function � is strictly concave in
controls s and f . Toobtain a unique equilibrium for the household, the strict concavity
of�must be extended for all controls (s, f,m). This is done by examining the second-
order partial derivative of�with respect tom, which is obtained by (12.15), (12.19),
(12.21), and (12.29) as follows:

∂2�

∂m2
= 1

ρ + m︸ ︷︷ ︸
+

{
(σ − 1︸ ︷︷ ︸

−
)σcσ−2 f ασ�σ︸ ︷︷ ︸

+
[k + (1 + b)z′]2︸ ︷︷ ︸

+
+σcσ−1 f ασ�σ(1 + b)︸ ︷︷ ︸

+
z′′︸︷︷︸
−

+ σ2cσ−1 f ασ�σ−1︸ ︷︷ ︸
+

[k + (1 + b)z′︸ ︷︷ ︸
+

] �′︸︷︷︸
−

+(σ − 1︸ ︷︷ ︸
−

)σcσ f ασ�σ−2(�′)2︸ ︷︷ ︸
+

+ σcσ f ασ�σ−1︸ ︷︷ ︸
+

�′′ + �

(ρ + m)2︸ ︷︷ ︸
+

}
.

If, in this equation, the negative effects of the mortality rate m dominate over the
positive inter-temporal effect of the effective discount rate ρ + m and the ambiguous
effect of the mortality rate m through the second derivative �′′, then ∂2�

∂m2 < 0 holds
true and the function � is strictly concave. Furthermore, by (12.29), one obtains

∂2�

∂m∂b
= σcσ−1 f ασ�σ

ρ + m
z′ > 0.
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Thus, differentiating equation (12.29) totally yields the mortality function

m = M(k, w, r, q, a, x, τ , b, ζ) with
∂M

∂b
= − ∂2�

∂m∂b

/
∂2�

∂m2
> 0. (12.30)

Results (12.28) and (12.30) canbe explained as follows.An increase in the parental
tax per child, x , decreases incentives to rear children (i.e., the fertility rate f falls
relative to consumption c). When capital per head, k, increases, it is more difficult
for the household to save that capital k for each newborn. This as well decreases
incentives to rear children (i.e., f falls). An increase in the tax on health care, b,
discourages health care, increasing the mortality rate m.

The solution of dynamic programming is based on finding a specification for the
value function �. Then, one can use Merton’s [10] Rule as follows. In the steady
state s = 0, from the Bellman equation (12.26) it follows that

(
arg max

(s, f,m) s.t. (12.21)
�

)
s=0

=
(
arg max

(s, f,m) s.t. (12.21)

cσ f ασ�σ

ρ + m

)
s=0 .

Thus, one can try the simplest case where the value function � is a positive constant
ϑ times the maximized periodic utility in virtual time:

�
.= ϑ max

(s, f,m) s.t. (12.21)

cσ f ασ�σ

ρ + m
. (12.31)

Plugging (12.31) into the Bellman equation (12.26) in the steady state s = 0 yields

ϑ = 1. (12.32)

Thus, the value function (12.31) becomes

�
.= max

(s, f,m) s.t. (12.21)

cσ f ασ�σ

ρ + m
. (12.33)

Inserting this into the first-order condition (12.27) and noting (12.21) yield

σcσ−1 f ασ�σ = ∂�

∂k
= σ

cσ−1 f ασ�σ

ρ + m

∂c̃

∂k
⇔ ρ + m = ∂c̃

∂k
= m − f + r − τr

⇔ f = (1 − τ )r − ρ. (12.34)

The household’s response functions are the fertility rate relative to consumption,
(12.28), and the fertility rate (12.34). The government takes these together with the
firm’s responses (12.10) as constraints in its optimization.
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12.4 The Government

12.4.1 Setup for Public Policy

The definition of pollution, (12.11), determines the fertility rate f as a function of
the controls (s, v,m) and state variables (k, P):

f (s, v,m, k, P)
.= m + v

P
− γ

s

k
,

∂ f

∂s
= −γ

k
< 0,

∂ f

∂v
= 1

P
> 0,

∂ f

∂m
= 1,

∂ f

∂k
= γ

s

k2
,

∂ f

∂P
= − v

P2
. (12.35)

The government balances its budget (12.17) by the poll tax a. Because there is one-
to-one correspondence from the other taxes (τ , x, b) to (s, v,m) through the system
(12.21) [with (12.34)], (12.35) [with (12.28)], and (12.30), investment per head,
s = dk

dt , the change of pollution, v = dP
dt , and the mortality rate m can replace the

taxes (τ , x, b) as the government’s controls in the model.
Inserting the production function (12.10), the government’s budget (12.17), and

the fertility function (12.35) into the household’s consumption per head, (12.21),
it is possible to define consumption per head, c, as a function of the government’s
controls (s, v,m) and the state variables (k, P) as follows:

c = ĉ(s, v,m, k, P, q) = c̃ = y(k, f ) + (m − f )k − s − δq + z(m), (12.36)

with the partial derivatives

∂ĉ

∂s
= (y f − k)

∂ f

∂s
− 1,

∂ĉ

∂v
= (y f − k)

∂ f

∂v
= y f − k

P
,

∂ĉ

∂m
= k + z′ + (y f − k)

∂ f

∂m
,

∂ĉ

∂q
= −δ,

∂ĉ

∂P
= (y f − k)

∂ f

∂P
,

∂ĉ

∂k
= yk + m − f + (y f − k)

∂ f

∂k
. (12.37)

By (12.22), the constraint v = dP
dt can be written in virtual time θ as follows:

dP

dθ
= v(θ)

ρ + m(θ)
, P(0) = P0. (12.38)
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12.4.2 Optimization

The government maximizes the representative household’s welfare (12.23) by its
controls (s, v,m) subject to the occurrence of the environmental shock, (12.12), the
accumulation of capital per head and aggregate pollution, (12.24) and (12.38), and
the determination of the fertility rate and consumption per head, (12.35) and (12.36).
Thus, its value function at initial time ζ is defined by

�(k, P, q, ζ)
.= max

(s(ζ),v(ζ),m(ζ))

s.t.(12.24),(12.35),(12.36),(12.38)

∫ ∞

ζ

c(θ)σ f (θ)ασ�
(
m(θ)

)σ

ρ + m(θ)
eζ−θdθ, (12.39)

where q = 0 holds true before and q = 1 after the shock. Noting (12.39), one can
define the relative damage of the shock in terms of welfare as follows:

D(k, P, ζ)
.= �(k, P, 0, ζ) − �(k, P, 1, ζ)

�(k, P, 0, ζ)
. (12.40)

The following result is proven in Appendix:

Proposition 12.1 If the loss of income due to the shock, δ, is small relative to con-
sumption per head before the shock, c|q=0, (e.g., if

δ
c|q=0

is less than 10%), then the
relative damage of the shock in terms of welfare, (12.40), is approximately in fixed
proportion σ to it, D(k, P, ζ) ≈ σ δ

c|q=0
.

The parameter σ ∈ (0, 1) tells how willing the households are to save for future in
capital, i.e., 1

1−σ
is the elasticity of inter-temporal substitution. [cf. (12.19)]. If σ is

close to zero, then relative damage of the shock is insignificant in terms of current
consumption. The closer σ is to one, the greater the relative damage D is in terms of
current consumption.

At the occurrence of the environmental shock, q jumps permanently from 0 to 1
[cf. (12.12)], changing welfare (12.39) from �(k, P, 0, ζ) into �(k, P, 1, ζ). Thus,
by Kamien and Schwartz [8] and Dixit and Pindyck [3], the Bellman equation for
the government’s program is [cf. (12.12) and (12.39)]

� = max
(s(ζ),v(ζ),m(ζ)) s.t.(12.24),(12.35),(12.36),(12.38)

ϒ(s, f,m, k, P, q, ζ) with (12.41)

ϒ(s, f,m, k, P, q, ζ)
.= cσ f ασ�σ

ρ + m
+ ∂�

∂k
(k, P, q, ζ)

dk

dθ
+ ∂�

∂P
(k, P, q, ζ)

dP

dθ

+ π(P)
[
�(k, P, 1, ζ) − �(k, P, q, ζ)

]

= 1

ρ + m

[
cσ f σα�σ + ∂�

∂k
(k, P, 1, ζ)s + ∂�

∂P
(k, P, 1, ζ)v

]

+ π(P)
[
�(k, P, 1, ζ) − �(k, P, q, ζ)

]
,

(12.42)
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where the fertility rate, f , and consumption per head, c, are determined by (12.35)
and (12.36), π(P) is the probability of the environmental shock [cf. (12.12)], and
the difference�(k, P, 1, ζ) − �(k, P, q, ζ) is the immediate change of welfare due
to that shock. Note that the latter term π

[
�(k, P, 1, ζ) − �(k, P, q, ζ)

]
vanishes

entirely after the shock when q = 1 holds true.
From the equilibrium condition y f = −w [cf. (12.10)] and the household’s first-

order condition (12.28), it follows that

x = αc/ f − w − k = αc/ f + y f − k. (12.43)

Noting (12.35), (12.37), and (12.43), the first-order conditions for the maximization
(12.41) subject to (12.42) are obtained as follows:

0 = ∂ϒ

∂s
= 1

ρ + m

[
cσ f ασ�σ

(
σ

c

∂ĉ

∂s
+ σα

f

∂ f

∂s

)
+ ∂�

∂k

]

= 1

ρ + m

{
σcσ−1 f ασ�σ

[(
y f − k + α

c

f

)
∂ f

∂s
− 1

]
+ ∂�

∂k

}

= 1

ρ + m

[
σcσ−1 f ασ�σ

(
x
∂ f

∂s
− 1

)
+ ∂�

∂k

]

= 1

ρ + m

[
−σcσ−1 f ασ�σ

(
x
γ

k
+ 1

)
+ ∂�

∂k

]
,

(12.44)

0 = ∂ϒ

∂v
= 1

ρ + m

[
cσ f ασ�σ

(
σ

c

∂ĉ

∂v
+ σα

f

∂ f

∂v

)
+ ∂�

∂P

]

= 1

ρ + m

[
σcσ−1 f ασ�σ

(
y f − k + α

c

f

)
∂ f

∂v
+ ∂�

∂P

]

= 1

ρ + m

(
σcσ−1 f ασ�σx

∂ f

∂v
+ ∂�

∂P

)
= 1

ρ + m

(
σcσ−1 f ασ�σ x

P
+ ∂�

∂P

)
,

(12.45)

0 = ∂ϒ

∂m
= 1

ρ + m

[
cσ f ασ�σ

(
σ

c

∂ĉ

∂m
+ σα

f

∂ f

∂m
+ σ

�′

�

)
− ϒ

ρ + m

]

= 1

ρ + m

{
σcσ−1 f ασ�σ

[(
y f − k + α

c

f

)
∂ f

∂m
+ k + z′ + c

�′

�

]
− ϒ

ρ + m

}

= 1

ρ + m

[
σcσ−1 f ασ�σ

(
x + k + z′ + c

�′

�

)
− ϒ

ρ + m

]
⇔

1

σcσ−1 f ασ�σ

ϒ

ρ + m
− c

�′

�
= x + k + z′. (12.46)

The function ϒ [cf. (12.42)] is strictly concave in (s, v). To ensure that the govern-
ment’s equilibrium is unique, this property is extended by assuming that the function
ϒ as well is strictly concave in its arguments (s, f,m).
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12.4.3 Solution

In a steady state with s = v = 0, from the Bellman equation (12.41) with (12.42), it
follows that

(
arg max

(s(ζ),v(ζ),m(ζ)) s.t.
(12.24),(12.35),(12.36),(12.38)

ϒ

)
s=v=0

=
(
arg max

(s(ζ),v(ζ),m(ζ)) s.t.
(12.24),(12.35),(12.36),(12.38)

cσ f ασ�σ

ρ + m

)
s=v=0 .

Thus, one can try the simplest case where the value function � is a positive constant
� times the maximized periodic utility in virtual time:

�(k, P, q, ζ) = � max
(s(ζ),v(ζ),m(ζ)) s.t.

(12.24),(12.35),(12.36),(12.38)

cσ f ασ�σ

ρ + m
> 0,

� > 0, �(k, P, ζ)
.= �(k, P, 1, ζ), (12.47)

where � is the value after the disaster when q = 1. Noting (12.35), (12.37), (12.43),
and (12.47), the partial derivatives of the value function (12.47) with respect to the
state variables (k, P) are obtained as follows:

∂�

∂k
= �

∂ ln�

∂k
= �

σ

c

∂ĉ

∂k
+ σα

f

∂ f

∂k
= �

σ

c

(
∂ĉ

∂k
+ α

c

f

∂ f

∂k

)

= �
σ

c

[
yk + m − f +

(
y f − k + α

c

f

)
∂ f

∂k

]

= �
σ

c

(
yk + m − f + x

∂ f

∂k

)
= �

σ

c

(
yk + m − f + xγ

s

k2

)
,

(12.48)

∂�

∂P
= �

∂ ln�

∂P
= �

σ

c

(
∂ĉ

∂P
+ α

c

f

∂ f

∂P

)
= �

σ

c

(
y f − k + α

c

f

)
∂ f

∂P
= �

σ

c
x

∂ f

∂P

= −�
σ

c
x

v

P2 . (12.49)

Dividing the Bellman equation (12.41) and (12.42) by the value function (12.47)
and noting the definition of the relative damage, (12.40), yield

1 = ϒ

�
= cσ f ασ

ρ + m

1

�
+ 1

�

∂�

∂k

dk

dθ
+ 1

�

∂�

∂P

dP

dθ
+ π(P)

�(k, P, 1, ζ) − �(k, P, q, ζ)

�(k, P, q, ζ)

=
{ 1

� + 1
�

∂�
∂k

dk
dθ + 1

�
∂�
∂P

dP
dθ − π(P)D(k, P, ζ) for q = 0,

1
� + 1

�
∂�
∂k

dk
dθ + 1

�
∂�
∂P

dP
dθ for q = 1.

(12.50)
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In this study, the steady-state value of a variable is denoted by superscript ( ∗). There
are different steady states before (q = 0) and after (q = 1) the shock.Because (12.50)
holds in both of these steady states where dP

dθ
= dk

dθ
= 0 hold true, the multiplier �

is piecewise constant as follows:

�
∣∣
q=0=

1

1 + π∗D∗ < 1, �|q=1 = 1, (12.51)

where π∗ .= π(P∗|q=0) is the probability of the disaster [cf. (12.12)], D∗ .=
D(k∗|q=0, P∗|q=0, ξ) the relative damage [cf. (12.40)], and π∗D∗ the expected rela-
tive damage in the steady state before the occurrence of the shock.

12.5 Optimal Policy

12.5.1 The Parental Tax per Child

It is assumed that the relative change of pollution, v
P , is either negative or positive,

but small enough for v
P <

ρ+m
�

. Inserting the value function (12.47) and its partial
derivative (12.49) into the government’s first-order condition (12.45) and noting the
government’s fertility function (12.35) yield

0 = (ρ + m)
∂ϒ

∂v
= σcσ−1 f ασ�σ x

P
+ ∂�

∂P
= σcσ−1 f ασ�σ x

P
− �

σ

c
x

v

P2

= �

P

σ

c
x

(
cσ f ασ�σ

�
− v

P

)
= �

P

σ

c
x

(
ρ + m

�
− v

P︸ ︷︷ ︸
+

)
⇔ x = 0. (12.52)

Thus, in contrast to Harford (1997, 1998), the parental tax per child is not positive
in this case:

Proposition 12.2 The parental tax per child can be eschewed, x = 0.

Because the other taxes eliminate the externality through pollution and mortality,
this tax is unnecessary.

12.5.2 Taxing Capital Income

Plugging x = 0 [cf. (12.52)], the profit maximization condition yk = r [cf. (12.10)],
and the value function (12.47) into the partial derivative (12.48) and the first-order
condition (12.44), one obtains
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0 = ∂�

∂k
− σcσ−1 f ασ�σ

(
x
γ

k
+ 1

)

= �
σ

c

(
yk + m − f + xγ

s

k2

)
− σcσ−1 f ασ

(
x
γ

k
+ 1

)

= �
σ

c

(
r + m − f

)
− σ

c

�

�
(ρ + m) = �

σ

c

(
r + m − f − ρ + m

�

)

⇔ r = f − m + ρ + m

�
. (12.53)

Because the ratio of the difference between the fertility and mortality rates to the
sum of the rate of time preference and the mortality rate, f −m

ρ+m , is insignificant, one
can approximate the first-order condition (12.53) as follows:

r

ρ + m
= f − m

ρ + m︸ ︷︷ ︸
≈0

+ 1

�
≈ 1

�
⇔ ρ + m

r
≈ �. (12.54)

Plugging (12.51), (12.53), and (12.54) into the household’s response (12.34) yields
the optimal tax

τ = r − f − ρ

r
= 1

r

(
ρ + m

�
− m − ρ

)
= ρ + m

r

(
1

�
− 1

)
= �

(
1

�
− 1

)

=
{

�|q=0
(

1
�|q=0

− 1
) = π∗D∗

1+π∗D∗ for q = 0,

0 for q = 1.

This result can be rephrased by the following proposition:

Proposition 12.3 Before the disaster, the optimal tax on capital income is an
increasing function of the expected relative damage π∗D∗ as follows:

τ
∣∣
q=0≈

π∗D∗

1 + π∗D∗ .

After the disaster, that tax can be eschewed, τ |q=1 = 0.

12.5.3 Taxing Health Care

Because optimal public policy leads to the Pareto optimum, where consumption per
head, c, the fertility rate, f , and the mortality rate, m, are equal in the household’s
and the government’s problems, then, by (12.26), (12.32) and (12.41), the ratio
of the household’s and the government’s value functions, (12.33) and (12.47), is
ϒ/� = �/� = �/ϑ = �. From this, (12.13), (12.15), (12.51), and the comparison
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of the household’s and the government’s first-order conditions, (12.29) and (12.46),
it follows that

0 = (ρ + m)
∂ϒ

∂m
= σcσ−1 f ασ�σ(k + z′) − ϒ

ρ + m

= σcσ−1 f ασ�σ(k + z′) − ��

ρ + m

⇔ k + z′ = 1

σcσ−1 f ασ�σ

��

ρ + m
= �[k + (1 + b)z′] ⇔

b =
(
1

�
− 1

)(
k

z′ + 1

)
=

(
1

�
− 1

)
(kχ′ + 1)

=
{

(kχ′ + 1)π∗D∗ > 0 for q = 0,
0 for q = 1.

(12.55)

Noting (12.15), the result (12.55) can be rephrased as follows.

Proposition 12.4 Before the disaster, the tax on health care should be in proportion
(kχ′ + 1) to the expected relative loss for the disaster π∗D∗,

b|q=0 = (kχ′ + 1)π∗D∗ > 0,

where k is capital per head and χ′ the marginal efficiency of personal health care
h in decreasing the mortality rate m [cf. (12.14)]. After the disaster, that tax can be
eschewed, b|q=1 = 0.

Because a single household ignores the effect of its health care h on the other house-
holds’ mortality rate m through the increase of population L and pollution P , its
demand for health care exceeds the socially optimal level before the occurrence of
the disaster. Thus, the demand for health care must be discouraged by the tax b. The
more efficiently personal health care decreases mortality (i.e., the greater χ′), or the
more capital k each surviving person needs, the higher the tax b must be. If health
care is very inefficient in decreasing mortality (i.e., χ′ is close enough to 0), then the
tax is roughly equal to the expected relative loss for the disaster, b ≈ π∗D∗.

12.6 Conclusions

This study examines the optimal management of a market economywhere (i) house-
holds decide on saving, health care, and the number of their children; (i i) the gov-
ernment controls their activity only by linear taxes; and (i i i) population growth and
capital accumulation generate pollution, increasing the risk of a lethal environmental
disaster. In this situation, it turns out that a rational government should perform the
following precautionary policy.
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To implement Pareto optimality—i.e., to internalize the external link from popula-
tion growth and capital accumulation to welfare though pollution andmortality—it is
necessary to set precautionary taxes (i.e., taxes prior to the disaster) on capital income
and the demand for health care. These are increasing functions of the expected rela-
tive damage of the disaster. The specific tax rules are given by Propositions 12.2, 12.3,
and 12.4. In particular, Harford’s (1997, 1998) parental tax is wholly unnecessary in
this setup. In addition, only the revenue raising-poll tax is needed.

There are two reasons for this sharp result. First, because there is no incremental
contribution of pollution to the mortality rate, there is only the precautionary, but no
maintenance motive for the government to intervene. Second, because the mortality
rate can be decreased by spending on health care, the mortality shock turns into an
increase in the cost of health care, which has the same effect as an exogenous fall of
income.

Acknowledgements The author thanks the two anonymous reviewers and the editors for construc-
tive comments and IIASA (Laxenburg, Austria) for hospitality during my visit in November 2018
when this paper was started.

Appendix: The Approximation of the Relative Damage D

Because, by (12.35) and (12.37), the fertility rate f doesn’t, but consumption per
head, c, does depend on the shock q, the partial derivative of the value function
(12.47) with respect to the shock q is negative:

∂�

∂q
(k, P, q, ζ) = ∂

∂q
max
s,v,m

�cσ f ασ�σ

ρ + m
= σ

�

c

∂c

∂q
= −σδ

c
�(k, P, q, ζ) < 0.

(12.56)

Consider nowwhat happens for the value function (12.47) if q jumps discretely from
0 to 1. Applying the mean value theorem to (12.47), and noting (12.56), one obtains
the following: there exists a value ξ ∈ (0, 1) so that

�(k, P, 1, ζ) − �(k, P, 0, ζ) = ∂�

∂q
(k, P, ξ, ζ) = − σδ

c|q=ξ
�(k, P, ξ, ζ) < 0.

(12.57)

Furthermore, from (12.37) it follows that c|q=ξ = c|q=0 − δξ. Given this, (12.47)
and (12.57), the relative damage (12.40) can be approximated by
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D(k, P, ζ)
.= �(k, P, 0, ζ) − �(k, P, 1, ζ)
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and lim
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. (12.58)

Noting (12.19), the result (12.58) leads to the approximation D(k, P, ζ) ≈ σ δ
c|q=0

.
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Chapter 13
A Regime-Switching Model with
Applications to Finance: Markovian and
Non-Markovian Cases

E. Savku and G.-W. Weber

13.1 Introduction

AMarkov regime-switching model is a continuous-time process with discrete com-
ponents. Hence, this type of stochastic processes is applied to finance, psychology,
automotive, aircraft traffic, etc., where a hybrid nature is required to catch a real-
life phenomenon effectively. While the continuous-time process evolves according
to a stochastic differential equation, the discrete component belongs to a finite or a
countable set, by the way, such systems can be considered as an interleaving among
a finite or countable family of diffusion or jump-diffusion processes.

Regime-switching models were first studied by Quandt [48] to derive a method
to estimate the parameters of a linear regression system with two different regimes.
Hamilton [22] followed Goldfeld’s and Quandt’s Markov regime-switching regres-
sion work [19] and investigated whether the business cycle between a recessionary
state and a growth state is better denoted by such discrete components. The results
of this investigation led researchers to focus on regime-switching models more and
more in financial applications.

Generally, regime-switching models are seen as proxies of the different states of
the economy, such as a gross domestic product, a purchase management index, and
a sovereign credit rating. A discrete shift among different regimes can be observed
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after a change in a monetary or an exchange rate policy or after a new regulation.
If we take into account that the plot programs, even just in tick sizes, like MiFID
(Markets in Financial Instruments Directive) I and II in 2004–2018, see [31], and
similar ones in the USA by the Security and Exchange Commission since 2016 and
the Tokyo Stock Exchange in 2014–2015 [24] deeply modified the microstructure of
financial markets, a very realistic and great importance of regime-switching systems
in economy arises brightly.Moreover, wemay describe not only a day-by-day change
in a financial market (from a bullish day to a bearish one), but also, in some instants,
some major events, such as the bankruptcy of Lehman Brothers in September 2008,
or the 1973 oil crisis can be represented. Hence, many authors worked on regime-
switches from different perspectives: option pricing and risk minimization [11, 12,
60], consumption [34, 51], determining optimal selling rules [58], optimal asset
allocation [59], and more can be found in [5, 32, 37, 44, 55].

There are several models, which describe the hybrid nature of regimes mathemat-
ically, see [1, 18, 23]. Here, for this study, we will present some constructions and
financial applications based on the semimartingale representation of Markov chains
established by Elliott et al. [10]. We approach to this very large area of research by
the tools of stochastic optimal control, both by the Dynamic Programming Principle
(DPP) and the stochastic Maximum Principle (MP). Furthermore, we give examples
for both diffusion and jump-diffusion processes with regimes. It can be considered
that aBrownianmotion describes the random shock of stock prices, a Poisson random
measure interprets larger price fluctuations of the stock as a consequence of sudden
changes in the market, and finally, Markov regime-switches carry the uncertainty of
the macroeconomic indicators.

It is well known that in the past thirty years, game theory has been universally
highlighted to explain the strategic interactions in economics, behavioral and social
sciences. In this sense, the existence of an optimal strategy against others’, called
Nash equilibrium, becomes a cornerstone in modern economics. Hence, first, we
summarize some financial applications within the framework of stochastic differ-
ential games in a Markov regime-switching diffusion system by DPP [13, 35]. We
present corresponding Hamilton-Jacobi-Bellman–Isaacs (HJBI) equations and the
analytical solutions for portfolio optimization problems. Moreover, several authors
focused on stochastic game theory without regimes; see [8, 21, 26, 27] and the
references therein.

Second, we concentrate on another main tool, the stochastic Maximum Principle
both with regimes and time delay. In real-life events, market participants pay a deep
attention to the historical performance of the risky assets for pricing options, making
optimal investment decisions, getting better and better portfolios, etc. This main
concern is carried out as memory in the dynamics of the stochastic processes with
paying the price of violating the Markov property. This kind of systems are called
Stochastic Differential Delay Equations (SDDEs). The first existence-uniqueness
result of time-delayed diffusion processes was driven by Itô and Nisio [25], which
was followed byKushner [29].A fundamental reference isMohammed [39], inwhich
he introduces and presents a very detailed theory of SDDEs. The difference between
the methods of obtaining a solution of a system with and without delay component
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arises at the first sight. Let us explain this for a diffusion process as in Mohammed
[39].

Let (�,F, (Ft )t≥0 ,P) be a probability space satisfying that (Ft )t≥0 is a right-
continuous filtration and for each t ≥ 0, Ft contains all P-null sets in F. Here, we
define

d X (t) = σX (t − δ)dW (t), t ≥ 0. (13.1)

In Eq. (13.1), if δ = 0, then the closed-form solution is

X (t) = X (0)eσW (t)−σ2/2, t ≥ 0.

If we assume δ > 0, we need an initial path θ(·) to solve Eq. (13.1) such that

X (t) = θ(t), −δ ≤ t ≤ 0.

Then, by recursive Itô integration over steps of length δ, we observe that there is
no closed-form solution if terminal time T is not finite:

X (t) = θ(0) + σ

∫ t

0
θ(u − δ)dW (u), 0 ≤ t ≤ δ,

X (t) = X (r) + σ

∫ t

r

[
θ(0) + σ

∫ v−δ

0
θ(u − δ)dW (u)

]
dW (v), δ < t ≤ 2δ,

. . . = . . . , 2δ < t ≤ 3δ,

...

The solution process {X (t) : t ≥ −δ} is still anFt -martingale but it is notMarko-
vian any more. Let us define the segment Xt : [−δ, 0] → R

n by

Xt (s) = X (t + s) a.s. t ≥ 0, s ∈ [−δ, 0].

Then, a general representation for an SDDE is as follows:

d X (t) = h(t, Xt )dt + g(t, Xt )dW (t), t ≥ 0,

X0 = θ(t), t ∈ [−δ, 0],

where the initial path θ(·) ∈ C([−δ, 0],Rn) is an F0-measurable process.
However, including memory into the dynamics of the system provides a strong

tool to capture the real-life phenomenon of finance and economics in a much more
realistic way, applying DPP becomes more and more complicated (see [14–17, 30,
45]). While the requirement of a Markovian structure in DPP can not be omitted,
with its infinite-dimensional nature, the stochastic MP arises as a more practical way
to formulate financial problems for a non-Markovian process.
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Cadenillas and Karatzas [3] provided the first use of stochastic MP, which states
that an optimal control process maximizes a functional, called Hamiltonian, and
satisfies the optimality system, described by forward–backward stochastic differential
equations. Later on, several authors gave valuable applications [34, 41, 42, 54, 60].
Here, in this setting, the counterpart of the Partial Differential Equations (PDEs) in
DPP can be seen as Backward Stochastic Differential Equations (BSDEs) in MP. A
systematic work of BSDEs was first established by Pardoux and Peng [46], and their
connection to financial mathematics attracted many authors very rapidly; see [4, 6,
9, 20, 27, 33, 52].

When memory is taken into account in a problem formulation, the corresponding
adjoint equations appear in their new forms, called Anticipated (time-advanced)
BSDEs (ABSDEs). This type of equations was developed originally in a diffusion
setting. The pioneering study of Peng and Yang [47] introduced this new type of
BSDEs, proved the existence-uniqueness and comparison theorems, and, moreover,
constructed the duality between SDDEs and ABSDEs.

Peng and Yang [47] presented the ABSDEs as follows:

−dY (t) = f (t, Y (t), Z(t), Y (t + δ1(t)), Z(t + δ2(t)))ds − Z(t)dW (t), t ∈ [0, T ],
Y (t) = ξ(t) and Z(t) = ψ(t), t ∈ [T, T + K ],

where δi (·), i = 1, 2, be R+-valued continuous functions on [0, T ].
In the sequel, the existence-uniqueness and duality theorems, which support the

underlying theory of an optimal control problemwith delay inMP,were extended to a
jump-diffusion process in [42, 56] and to aMarkov regime-switching jump-diffusion
model by Savku and Weber [49].

This work is organized as follows: In Sect. 13.2, we briefly introduce a Markov
regime-switching model, which is established by Elliott, Aggoun, and Moore [10].
In Sect. 13.3, we illustrate zero-sum and nonzero-sum stochastic differential game
applications by the methods of DPP. In Sect. 13.4, we present the necessary and
sufficient Maximum Principles with time delay and regimes and give an example of
optimal consumption with memory. The last section is devoted to a conclusion and
an outlook.

13.2 Preliminaries

Let us explain the main result to include Markov regime-switches to the dynamics
of stochastic differential equations with and without delay. Throughout this chapter,
we work on a finite time horizon T > 0 and t ∈ [0, T ].

Let (X (t) : t ∈ [0, T ]) be a continuous-time, finite-state, and observable Markov
chain. The finite-state space of the homogenous and irreducible Markov chain X (t),
S = {e1, e2, . . . , eD}, is called a canonical state space, where D ∈ N, ei ∈ R

D and
the j th component of ei is the Kronecker delta δi j for each pair of i, j = 1, 2, . . . , D.
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The generator of the chain under P is defined by�(t) := [λi j (t)]i, j=1,2,...,D . For each
i, j = 1, 2, . . . , D, λi j (t) is the transition intensity of the chain from each state ei

to state e j at time t . For i �= j , λi j (t) ≥ 0 and
∑D

j=1 λi j (t) = 0; hence, λi i (t) ≤ 0.
We suppose that for each i, j = 1, 2, . . . , D, with i �= j , λi j (t) > 0 and λi i (t) < 0,
t ∈ [0, T ].

Elliott et al. [10] proved the following semimartingale representation for aMarkov
chain α:

X (t) = X (0) +
∫ t

0
�T (u)X (u)du + M(t), (13.2)

where (M(t) : t ∈ [0, T ]) is an RD-valued (F,P)-martingale and �T represents the
transpose of the matrix.

For the following sections, we present a survey of applications in finance with
Markov regime-switches based on this representation.

13.3 Stochastic Differential Games with Regimes

The idea of combining game theory, DPP, and regime-switches, which are very
powerful tools of mathematics, attracted many authors, [2, 7, 12, 50, 55, 57]. In this
section, we present two financial examples of zero-sum and nonzero-sum stochastic
games by summarizing the results of Elliott and Siu [13] and Ma et al. [35].

13.3.1 A Zero-Sum Game Application

Elliott and Siu [13] seek a robust optimal portfolio strategy under model uncertainty
in a continuous-time Markov-modulated financial market. The states of the Markov
chain interpret the different states of an economy as macroeconomic indicators. The
problem is formulated as a Markov regime-switching version of a two-player, zero-
sum stochastic differential game between the agent and the market. The agent max-
imizes the minimal expected utility of terminal wealth over a family of probability
measures in a finite time horizon by DPP.

Let (�,F,P) be a complete probability space, whereP is generated by a fam-
ily of absolutely continuous real-world probability measures. Elliott and Siu [13]
presents a market with a risk-free bond B(t) and a risky asset S(t), which evolve as
follows:

B(t) = exp

(∫ t

0
r(u)du

)
, B(0) = 1,

and
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d S(t) = μ(t)S(t)dt + σ(t)S(t)dW (t),

S(0) = s > 0

correspondingly, where {W (t) : t ∈ [0, T ]} is a Brownian motion. Here, r, μ and σ
are defined by

r(t) = 〈r, X (t)〉 , μ(t) = 〈μ, X (t)〉 , σ(t) = 〈σ, X (t)〉 ,

where r = (r1, r2, . . . , rD)T ∈ R
D , μ = (μ1,μ2, . . . ,μD)T ∈ R

D , and σ = (σ1,σ2,

. . . ,σD)T

∈ R
D , i.e., r, μ and σ get constant real values at each state. The authors work on a

complete probability space with an enlarged σ-field G (t), generated by F X (t) and
F S(t), t ∈ [0, T ]. Hence, the wealth process is governed by

dV (t) = V π(t)([r(t) + π(t)(μ(t) − r(t))]dt + π(t)σ(t)dW (t)),

V π(0) = v > 0, (13.3)

where π is self-financing and

∫ T

0
π2(t)dt < ∞, P − a.s.

Then, π is called admissible, and let A be the class of such processes.
Let θ := {θ(t) : t ∈ [0, T ]} represent a Markovian regime-switching process such
that

θ(t) = 〈θ(t), X (t)〉 ,

where θ(t) := (θ1(t), θ2(t), . . . , θD(t))T ∈ R
D , θi (t) ≥ 0 for all i = 1, 2, . . . , D

and θ(N )(t) := max
1≤i≤N

θi (t) < ∞, t ∈ [0, T ]. Let � be the space of all such θ pro-

cesses.
For each θ(t) ∈ �, the density process for the Brownian motion associated with

θ is defined as

αθ
1(t) := exp

(
−

∫ t

0
θ(s)dW (s) − 1

2

∫ t

0
θ2(s)ds

)
,

where αθ
1 := {

αθ
1(t) : t ∈ [0, T ]} is a (G ,P)-martingale, see Elliott and Siu [13]

for technical details.
Let �θ(t) := [λθ

i j (t)]i, j=1,2,...,D represent a second family of generators for the
Markov chain X such that

λθ
i j (t) = θλi j (t), t ∈ [0, T ]. (13.4)
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We also define Dθ(t) =
[
λθ

i j (t)/λi j (t)
]

i, j=1,2,...,D
.

Lemma 13.1 (Elliott and Siu [13]) Let �0(t) := �(t) − diag(λ(t)), where λ(t) :=
(λ11(t),λ22(t), . . . ,λDD(t))T , for each t ∈ [0, T ]. Suppose

Ñ := N (t) −
∫ t

0
�0(u)X (u)du, t ∈ [0, T ], (13.5)

where

N (t) =
∫ t

0
(I − diag(X (u−)))d X (u), t ∈ [0, T ],

counts the number of times the chain X jumps to the state ei in the time interval
[0, t], for each i = 1, 2, . . . , D. I denotes the (D × D)-identity matrix.

Let us introduce another density process as follows:

αθ
2(t) = 1 +

∫ t

0
αθ
2(u−) [D0(u)X (u−) − 1]T (d N (u) − �0(u)X (u)du),

where αθ
2 is an (F X ,P)-martingale. Hence, the authors define

αθ(t) := αθ
1(t)α

θ
2(t),

which is a (G ,P)-martingale.
Then, authors define a real-world probability measure Qθ ∼ P as

d Qθ

dP
:= αθ(T ), for each θ ∈ �.

Finally, there is a family of real-world probability measures Pλ := Pλ(�) ={
Qθ : θ ∈ �

}
.

Therefore,

Ñ θ := N (t) −
∫ t

0
�θ

0(u)X (u)du, t ∈ [0, T ], θ ∈ �,

is an (F X , Qθ)-martingale.
Here, X , which is a Markov chain with a family of generators αθ(t), t ∈ [0, T ],

under Qθ, is represented by

X (t) = X (0) +
∫ t

0
�θ(u)X (u)du + Mθ(t),

where Mθ := {
Mθ(t) : t ∈ [0, T ]} is an (F X , Qθ)-martingale. Moreover, by Gir-

sanov’s theorem,
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W θ(t) = W (0) +
∫ t

0
θ(s)ds

is a standard Brownian motion under Qθ.
The problem is formulated as in Mataramvura and Øksendal [36] within the

framework of Markov regime-switches as follows:

d Z(t) = (d Z0(t), d Zπ,θ
1 (t), d Z θ

2(t))
T

= (dt, dV π,θ(t), d X (t))T ,

Z(0) = z = (s, z1, z2)
T ,

where

d Z0(t) = dt, Z0(0) = s ∈ [0, T ],
d Z1(t) = Z1(t)

(
[r(t) + π(t)(μ(t) − r(t)) − θ(t)π(t)σ(t)]dt + π(t)σ(t)dW θ(t)

)
,

Z1(0) = z1 > 0,

d Z2(t) = �θ(t)Z2(t)dt + d Mθ(t), Z2(0) = z2.

Now, conditioning on Z(0) = z, the robust utility maximization problem can
be formulated as a two-player, zero-sum Markovian regime-switching stochastic
differential game as follows:

�(z) = sup
π∈A

(
inf
θ∈�

Ez
θ

[
U (V π,θ(T ))

] )

= Ez
θ̂

[
U (V π̂,θ̂(T ))

]
.

LetH denote the space of functions h(·, ·, ·) : [0, T ] × R
+ × E → R such that

for each x ∈ E , h(·, ·, x) ∈ C([0, T ] × R
+).

Then, we introduce

H(s, z1) := (h(s, z1, e1), h(s, z1, e2), . . . , h(s, z1, eD))T ∈ R
D.

Hence, theMarkovian regime-switching generatorL θ,π is represented as follows:

L θ,π[h(s, z1, x)] =∂h

∂s
+ z1[r(s) + (μ(s) − r(s))π(z) − θ(z)π(z)σ(s)] ∂h

∂z1

+ 1

2
z21π

2(z)σ2(s)
∂2h

∂z21
+ θ(z) 〈H(s, z1),�(s)x〉 .

Now, we can present the main theorem of this work.
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Theorem 13.1 (Elliott and Siu [13]) Let Ō denote the closure of O . Suppose there
exists a function φ such that for each x ∈ E , φ(·, ·, x) ∈ Crm2(O) ∩ C(Ô) and a
Markovian control (θ̂(t), π̂(t)) ∈ � × A , such that

1. L θ,π̂[φ(s, z1, x)] ≥ 0, for all θ ∈ � and (s, z1, x) ∈ O × E ,
2. L θ̂,π[φ(s, z1, x)] ≤ 0, for all π ∈ A and (s, z1, x) ∈ O × E ,
3. L θ̂,π̂[φ(s, z1, x)] = 0, for all (s, z1, x) ∈ O × E ,
4. for all (θ,π) ∈ � × A ,

lim
t→T −

φ(t, Z θ,π
1 (t), X (t)) = U (Z θ,π

1 (T )).

5. let K denote the set of stopping times τ ≤ T . The family
{
φ(Z θ,π

1 (τ )) : τ ∈ K
}

is uniformly integrable.

For each z ∈ O × E and (θ,π) ∈ � × A , we write

J θ,π(z) := Ez
θ[U (Z θ,π

1 (T ))].

Then,

φ(z) =�(z)

= inf
θ∈�

(
sup
π∈A

J θ,π(z)

)
= sup

π∈A

(
inf
θ∈�

J θ,π(z)

)

= sup
π∈A

J θ̂,π(z) = inf
θ∈�

J θ,π̂(z) = J θ̂,π̂(z), z ∈ O × E ,

and (θ̂, π̂) is an optimal Markovian control.

Let us summarize the results of this problem formulation for a power utility
function as in [13]:

U (v) = v1−γ

1 − γ
,

where v ∈ [0,∞) and γ is the risk-aversion coefficient.
Now, an ansatz form for the function φ is as follows:

φ(z) = z1−γ
1 (g(s, x))1−γ

1 − γ
, ∀z ∈ O × E ,

where for each (s, x) ∈ (0, T ) × E , g(s, x) does not vanish, g(T, x) = 1, and the
authors define G(s, γ) as follows:

G(s, γ) = (g1−γ(s, e1), g1−γ(s, e2), . . . , g1−γ(s, eD))T .
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Let us represent gi (s) := g(s, ei ), μ(s) = μi , σ(s) = σi and r(s) = ri , for each
i = 1, 2, . . . , D, when x = ei . Then, g satisfies the following system of first-order
nonlinear ODEs:

dgi (s)

ds
+

(
ri + γ

2
(π̂∗(s, ei )

2σ2
i

)
gi (s) + θ̂∗(s, ei )π̂

∗(s, ei )σi = 0,

where

π̂∗(s, ei ) = 〈G(s, γ),�(s)ei 〉
(1 − γ)σi g

1−γ
i (s)

,

and

θ̂∗(s, ei ) = μi − ri − γπ̂∗(s, ei )σ
2
i

σi
, i = 1, 2, . . . , D.

13.3.2 A Nonzero-Sum Game Application

Moreover, Ma et al. [35] illustrated a nonzero-sum game application within the
framework of a diffusion regime-switching system by using Eq. (13.2). There are
two risky assets and a risk-free asset, and each investor may invest in just one of the
risky assets. The dynamics of the risky assets is defined as follows:

d Sk(t) = Sk(t) (μk(t)dt + σk(t)dWk(t)) , k = 1, 2,

where μk(t) = μk(t, X (t)) = 〈μk, X (t)〉, and similar for σ(t) and r(t). The authors
assume that the interest rate r , the appreciation rate μ, and the volatility σ have
constant real values at each state as in [13], i.e., μk = (μ1

k,μ
1
k, . . . ,μ

D
k ) ∈ R

D ,
σk(t) = (σ1

k ,σ
2
k , . . . ,σ

D
k ) ∈ R

D , for each k = 1, 2. Here, in this setup, Brownian
motions Wk(t), k = 1, 2, are correlated with correlation coefficient ρ.

The authors formalize a kind of collaboration between two investors by the max-
imization of the sum of their wealth processes under a stochastic optimal control
problem construction. Let us represent the wealth processes of each investor:

dY1(t) = [r(t, X (t))Y1(t) + (μ1(t, X (t)) − r(t, X (t)))π1(t)] dt + σ1(t)π1(t)dW1(t),

Y1(0) = y1(0),

dY2(t) = [r(t, X (t))Y2(t) + (μ2(t, X (t)) − r(t, X (t)))π2(t)] dt + σ2(t)π2(t)dW2(t),

Y2(0) = y2(0),

where π1 and π2 represent the amount invested to the risky assets S1 and S2, corre-
spondingly. Hence, the wealth process for this nonzero-sum stochastic differential
game is
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d Zπ1,π2 =
(

r(t, X (t))Z(t) + (μ1(t, X (t)) − r(t, X (t)))π1(t)

+ (μ2(t, X (t)) − r(t, X (t)))π2(t)

)
dt

+ σ1(t)π1(t)dW1(t) + σ2(t)π2(t)dW2(t),

Z(0) = y1(0) + y2(0).

If a Nash equilibrium exists, this implies that each player’s strategy is a best
response against the other one. Furthermore, there can be no unilateral profitable
deviation for each player’s action. Since a Nash equilibrium is self-enforcing, at the
equilibrium, each player knows that moving brings a worse payoff.

Subsequently, we give a mathematical representation for the Nash equilibrium of
such a stochastic differential game.

Definition 13.1 Let us assume that for the optimal strategy of Investor 2, π∗
2 ∈ �2,

the best response of Investor 1 satisfies

J
π1,π

∗
2

1 (t, z, ei ) ≤ J
π∗
1 ,π

∗
2

1 (t, z, ei ) for all π1 ∈ �1, ei ∈ S, z ∈ K ,

and for the optimal strategy of Investor 1, π∗
1 ∈ �1, the best response of Investor 2

satisfies

J
π∗
1 ,π2

2 (t, z, ei ) ≤ J
π∗
1 ,π

∗
2

2 (t, z, ei ) for all π2 ∈ �2, ei ∈ S, z ∈ K .

Here, for k = 1, 2 Jk are the payoff functionals of each investor, �k represents
the set of admissible controls, and K ⊂ R, which is an open set, symbolizes the
solvency region. Then, the pair of optimal control processes (π∗

1 ,π
∗
2) ∈ �1 × �2 is

called a Nash equilibrium for such a stochastic differential game.

The authors solve the problem for exponential utility functions for each investor:

Uk(y) = −1

γ k
e−γk y, k = 1, 2,

where γk , k = 1, 2, are the coefficients of absolute risk-aversion (CARA) of each
investor.

The ansatz forms of the value functions are as follows:

V1(t, z, ei ) = −1

γ1
e−γ1ze− ∫ T

t r(s)ds
f (t, ei ),

where f (t, ei ) is a suitable positive function with the boundary condition f (T, ei ) =
1 for all ei ∈ S, and
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V2(t, z, ei ) = −1

γ2
e−γ2ze

∫ T
t r(s)ds

g(t, ei ),

where g(t, ei ) is a suitable positive functionwith the boundary condition g(T, ei ) = 1
for all ei ∈ S. The problem can be formulated as

L (π1,π2)Vk(t, z, ei ) = [r(t)z + (μ1(t) − r(t))π1(t) + (μ2(t) − r(t))π2(t)]
∂V i

k

∂z

+ 1

2

[
σ2
1(t)π

2
1 + σ2

2(t)π
2
2 + 2ρσ1(t)π1σ2(t)π2

] ∂2V i
k

∂z2

+
D∑

j=1

λi j
[
Vk(t, z, e j ) − Vk(t, z, ei ))

]
, i = 1, 2, . . . , D.

Hence, for each k = 1, 2, the HJBI equations can be described as follows:

∂V i
1

∂t
+ sup

π1∈�1

L (π1,π
∗
2 )(t, z, ei ) = 0,

∂V i
2

∂t
+ sup

π2∈�2

L (π∗
1 ,π2)(t, z, ei ) = 0.

Finally, we have the optimal portfolios for each investor as

π∗
1(t) = 1

1 − ρ2

(
μ1(t) − r(t)

γ1σ
2
1(t)

e− ∫ T
t r(s)ds

− μ2(t) − r(t)

γ2σ1(t)σ2(t)
e− ∫ T

t r(s)ds

)

and

π∗
2(t) = 1

1 − ρ2

(
μ2(t) − r(t)

γ2σ
2
2(t)

e− ∫ T
t r(s)ds

− μ2(t) − r(t)

γ1σ1(t)σ2(t)
e− ∫ T

t r(s)ds

)
.

Moreover, theFeyman–Kac representations of f (t, ei ) and g(t, ei ) canbeobtained
as follows:

f (t, ei ) = Et,i

[ ∫ T

t
a(u, X (u)))du

]
,

and

g(t, ei ) = Et,i

[ ∫ T

t
b(u, X (u)))du

]
,
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where

a(t, ei ) = γ2
1

2(1 − ρ2)

[
(μ2(t) − r(t))2

γ2
2σ

2
2(t)

− (μ1(t) − r(t))2

γ2
1σ

2
1(t)

− 2
(μ2(t) − r(t))2

γ1γ2σ
2
2(t)

+ 2ρ
(μ1(t) − r(t))(μ2(t) − r(t))

γ2
1σ1(t)σ2(t)

]

and

b(t, ei ) = γ2
2

2(1 − ρ2)

[
(μ1(t) − r(t))2

γ2
1σ

2
1(t)

− (μ2(t) − r(t))2

γ2
2σ

2
2(t)

− 2
(μ1(t) − r(t))2

γ1γ2σ
2
1(t)

+ 2ρ
(μ1(t) − r(t))(μ2(t) − r(t))

γ2
2σ1(t)σ2(t)

]
.

By the way, the value function of this nonzero-sum stochastic differential game
is provided.

13.4 Stochastic Maximum Principle with Memory and
Regimes

The Stochastic Maximum Principle is one of the main foundations of stochastic
optimal control theory; hence, many authors focused on this tool, see some recent
approaches and applications in [34, 37, 38, 40, 43, 53, 54, 60]. Øksendal et al. [42]
proved some theorems of necessary and sufficient maximum principles within the
framework of a delayed jump-diffusion model, and Savku and Weber [51] carried
these results over to a Markov regime-switching setup and illustrated their results
by an application in finance for an optimal consumption rate derived from a cash
flow with a delay effect. In this section, we prefer to present the results of this very
general setup [51].

Let (�,F, (Ft )t≥0 ,P)be a complete probability space,whereF = (Ft : t ∈ [0, T ])
and (Ft )t≥0 is a right-continuous, P-completed filtration generated by a Brownian
motion W (·), a Poisson random measure N (·, ·) and a Markov chain α(·) with con-
stant transition intensities. We assume that these processes are independent of each
other and adapted to F. Let B0 be the Borel σ-field generated by an open subset O
of R0 := R \ {0}, whose closure does not contain the point 0. Let

(N (dt, dz) : t ∈ [0, T ], z ∈ R0)

be thePoisson randommeasure on ([0, T ] × R0,B([0, T ]) ⊗ B0). Let Ñ (dt, dz) :=
N (dt, dz) − ν(dz)dt be the compensated Poisson random measure, where ν is the
Lévy measure of the jump measure N (·, ·) such that
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ν({0}) = 0 and
∫
R

(1 ∧ |z|2)ν(dz) < ∞.

We introduce a set of Markov jump martingales associated with the chain α as in
[60] by using Eq. (13.2).

Let J i j (t) represent the number of the jumps from the state ei to the state e j up to
time t for each i, j = 1, 2, . . . , D, with i �= j and t ∈ [0, T ]. Then,

J i j (t) :=
∑
0<s≤t

〈α(s−), ei 〉
〈
α(s), e j

〉

=
∑
0<s≤t

〈α(s−), ei 〉
〈
α(s) − α(s−), e j

〉

=
∫ t

0
〈α(s−), ei 〉

〈
dα(s), e j

〉

=
∫ t

0
〈α(s−), ei 〉

〈
�T α(s), ei

〉
ds +

∫ t

0
〈α(s−), ei 〉

〈
d M(s), e j

〉

= λi j

∫ t

0
〈α(s−), ei 〉 ds + mi j (t),

where the processes mi j s are (F,P)-martingales and called the basic martingales
associated with the chain α. For each fixed j = 1, 2, . . . , D, let � j be the number
of the jumps into state e j up to time t . Then,

� j (t) :=
D∑

i=1,i �= j

J i j (t)

=
D∑

i=1,i �= j

λi j

∫ t

0
〈α(s−), ei 〉 ds + �̃ j (t).

Let us define �̃ j (t) := ∑D
i=1,i �= j mi j (t) andλ j (t) := ∑D

i=1,i �= j λi j
∫ t
0 〈α(s−), ei 〉 ds;

then for each j = 1, 2, . . . , D,

�̃ j (t) = � j (t) − λ j (t)

is an (F,P)-martingale. By �̃(t) = (�̃1(t), �̃2(t), . . . , �̃D(t))T , we represent a
compensated random measure on ([0, T ] × S,B([0, T ]) ⊗ BS), where BS is a σ-
field of S.

Now, let us represent the model:
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d X (t) = b(t, X (t), Y (t), A(t),α(t), u(t))dt

+ σ(t, X (t), Y (t), A(t),α(t), u(t))dW (t)

+
∫
R0

η(t, X (t), Y (t), A(t),α(t), u(t), z)Ñ (dt, dz)

+ γ(t, X (t), Y (t), A(t),α(t), u(t))d�̃(t), t ∈ [0, T ], (13.6)

X (t) = x0(t), t ∈ [−δ, 0], x0 ∈ C([−δ, 0];R),

where

Y (t) = X (t − δ) and A(t) =
∫ t

t−δ

e−ρ(t−r) X (r)dr for t ∈ [0, T ].

Here, δ > 0, ρ ≥ 0 and T > 0 are given constants and b, σ, η and γ are Ft -
measurable functions for all t . LetU be a nonempty, closed, convex subset ofR. An
admissible control is a U -valued, Ft -measurable, càdlàg process u(t), t ∈ [0, T ],
such that SDDEJR (13.6) has a unique solution and

E

[∫ T

0
|u(t)|2 dt

]
< ∞.

We denote the set of all admissible controls by A . Our problem is to find an
optimal control û ∈ A such that

J (û) = sup
u∈A

J (u(·))

= sup
u∈A

E

[∫ T

0
f (t, X (t), Y (t), A(t),α(t), u(t))dt + g(X (T ),α(T ))

]
,

where J (u(·)) represents the performance criterion (objective functional) of the prob-
lem. The Hamiltonian is defined as follows:

H(t, x, y, a, ei , u, p, q, r, w) = f (t, x, y, a, ei , u) + b(t, x, y, a, ei , u)p

+ σ(t, x, y, a, ei , u)q +
∫
R0

η(t, x, y, a, ei , u, z)r(t, z)ν(dz)

+
D∑

j=1

γ j (t, x, y, a, ei , u)w j (t)λi j .

The adjoint equations corresponding to u and X (t) := X (u)(t) for the unknown,
adapted processes p(t) ∈ R, q(t) ∈ R, r(t, z) ∈ R and w(t) ∈ R

D , t ∈ [0, T ], are
given by the following Anticipated Backward Stochastic Differential Equation with
Jumps and Regimes (ABSDEJR):
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dp(t) = E[μ(t)|Ft ]dt + q(t)dW (t) +
∫
R0

r(t, z)Ñ (dt, dz) + w(t)d�̃(t),

p(T ) = gx(X (T ),α(T )), (13.7)

where

μ(t) = − ∂H

∂x
(t, X (t), Y (t), A(t),α(t), u(t), p(t), q(t), r(t, ·), w(t))

− ∂H

∂y
(t + δ, X (t + δ), Y (t + δ), A(t + δ),α(t + δ),

u(t + δ), p(t + δ), q(t + δ), r(t + δ, ·), w(t + δ))1[0,T −δ](t)

− eρt

(∫ t+δ

t

∂H

∂a
(s, X (s), Y (s), A(s),α(s), u(s), p(s), q(s),

r(s, ·), w(s))e−ρs1[0,T ](s)ds

)
. (13.8)

As seen in Eq. (13.8), we observe not only the present values but also the future
values of the processes. In this sense, such equations are called time advanced or
anticipated.

Now let us establish the required assumptions for the Necessary Maximum Prin-
ciple.

• Let û be an optimal control process and β ∈ A be such that û + β = v ∈ A . Since
U is a convex set, for any v ∈ A the perturbed control process us = û + s(v −
û), 0 < s < 1, is also in A .

• The directional derivative of the performance criterion J (·) at û in the direction
of v − û is given by

d

ds
J (û + s(v − û))|s=0 := lim

s→0+

J (û + s(v − û)) − J (û)

s
.

• Since û is an optimal control, then a necessary condition for optimality is

d

ds
J (û + s(v − û))|s=0 ≤ 0.

Now, we can present the following theorem of the NecessaryMaximumPrinciple.

Theorem 13.2 (Savku and Weber [51]) Let û ∈ A be an optimal control with
the corresponding trajectories X̂(t), Ŷ (t), Â(t), and ( p̂(t), q̂(t), r̂(t, z), ŵ(t)) be
the unique solution of the corresponding adjoint equation. Under some technical
conditions (see [51]), for any v ∈ U , we have

∂H

∂u
(t, X̂(t), Ŷ (t), Â(t),α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))(v − û(t)) ≤ 0
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dt − a.e, P − a.s..

Savku and Weber [51] proved the necessary and maximum principles under full
and partial information, here, Theorem 13.2 and the following Theorem 13.3 are the
versions under full information.
Let us present a sufficient maximum principle for the system (13.6) as follows.

Theorem 13.3 (Savku and Weber [51]) Let û ∈ A with corresponding state pro-
cesses X̂(t), Ŷ (t), Â(t) and adjoint processes p̂(t), q̂(t), r̂(t, z), ŵ(t), assumed to
satisfy the ABSDEJR (13.7)–(13.8). Suppose that the following assertions hold:

E

[∫ T

0
p̂(t)2

(
(σ(t) − σ̂(t))2 +

∫
R0

(η(t, z) − η̂(t, z))2ν(dz)

+
D∑

j=1

(γ j (t) − γ̂ j (t))2λ j (t)

)
dt

]
< ∞

and

E

[∫ T

0
(X (t) − X̂(t))2

(
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

+
D∑

j=1

(ŵ j )2(t)λ j (t)

)
dt

]
< ∞.

Furthermore, we assume that the following conditions are fulfilled:

1. For almost all t ∈ [0, T ],

H(t, X̂(t), Ŷ (t), Â(t),α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

= max
u∈U

H(t, X̂(t), Ŷ (t), Â(t),α(t), u(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t)).

2. H is a concave function of x, y, a, u for all (t, ei ) ∈ [0, T ] × S.
3. g(x, ei ) is a concave function of x for each ei ∈ S.

Then û(t) is an optimal control process and X̂(t), Ŷ (t), Â(t) are the correspond-
ing controlled state processes.

Here, the concavity condition of the Hamiltonian is a cornerstone of the proof
of Theorem 13.3 (see Savku and Weber [51]). Pamen [44] proved a more general
stochastic maximum principle, which can be applied to a nonconcave Hamiltonian
without time delay in the dynamics of a Markov regime-switching jump-diffusion
process.
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13.4.1 An Optimal Consumption Problem

In this subsection, we apply the results of Theorems 13.2 and 13.3 to a delayed cash
flow with jumps and regime-switches. Let us introduce the optimal consumption
problem as follows:

Let b(t,α(t)), σ(t,α(t)), η(t,α(t)), and γ(t,α(t)) be given bounded adapted
processes and the consumption rate c(t) ≥ 0, t ∈ [0, T ], be a càdlàg adapted process.
Then the corresponding net cash flow X (t) = Xc(t) is defined by Eq. (13.9):

d X (t) = (X (t − δ)b(t,α(t)) − c(t))dt + X (t − δ)σ(t,α(t))dW (t)

+ X (t − δ)

∫
R0

η(t,α(t), z)Ñ (dt, dz)

+ X (t − δ)γ(t,α(t))d�̃(t), t ∈ [0, T ], (13.9)

X (t) = x0(t), t ∈ [−δ, 0], x0 ∈ C([−δ, 0];R).

Let U (t, c, ei ), i = 1, 2, . . . , D, be a given function such that

• t �→ U (t, c, ei ) isFt -adapted for each c ≥ 0 and ei ∈ S,
• c �→ U (t, c, ei ) is C 1, ∂U

∂c (t, c, ei ) > 0 for each ei ∈ S,
• c �→ ∂U

∂c (t, c, ei ) is strictly decreasing for each ei ∈ S,
• lim

c→∞
∂U
∂c (t, c, ei ) = 0 for all t ∈ [0, T ] and ei ∈ S.

• Let v0(t, ei ) := ∂U
∂c (t, 0, ei ) and define

I (t, v, ei ) :=
{
0, if v ≥ v0(t, ei ),

( ∂U
∂c (t, ·, ei ))

−1(v), if 0 ≤ v < v0(t, ei ).

Our problem is to find the consumption rate ĉ(t) such that

J (ĉ) = sup
c∈A

E

[∫ T

0
U (t, c(t),α(t))dt + g(X (T ),α(T ))

]
.

Consequently, in such a case, the Hamiltonian gets the form:

H(t, x, y, a, ei , c, p, q, r(·), w) = U (t, c, ei ) + (b(t, ei )y − c)p + yσ(t, ei )q

+y
∫
R0

η(t, ei , z)r(t, z)ν(dz) + y
D∑

j=1

γ j (t, ei )w
j (t)λi j .

Hence, the corresponding adjoint equations are defined by
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dp(t) = − E[(b(t + δ,α(t + δ))p(t + δ) + σ(t + δ,α(t + δ))q(t + δ)

+
∫
R0

η(t + δ,α(t + δ), z)r(t + δ, z)ν(dz)

+
D∑

j=1

γ j (t,α(t + δ))w j (t + δ)λ j (t))1[0,T −δ](t)|Ft ]dt

+ q(t)dW (t) +
∫
R0

r(t, z)Ñ (dt, dz) + w(t)�̃(t), t ∈ [0, T ];
p(T ) = gx(X (T ),α(T )).

Here, we observe that maximizing H with respect to c gives

∂U

∂c
(t, ĉ(t),α(t)) = p(t).

Therefore, we may summarize our findings by the following proposition.

Proposition 13.1 (Savku and Weber [51]) Let p(t), q(t), r(t, z) and w(t) be the
solution of the corresponding ABSDEJR, and suppose that 0 ≤ p(t) ≤ v0(t,α(t))
holds for all t ∈ [0, T ].

Then, the optimal consumption rate, ĉ(t), and the corresponding optimal terminal
wealth, X̂(t), are given implicitly by the coupled equations

ĉ(t) = I (t, p(t),α(t))

and Eq. (13.9), respectively.

Now, in order to finalize our optimal consumption problem, we assume that
b(t,α(t)) is deterministic and g(x, ei ) = kx, k > 0.

Hence, by the Martingale Representation Theorem for regime-switching jump-
diffusions, Crépéy and Matoussi [6], we can choose q = r = w = 0. Then the ABS-
DEJRs (13.7)–(13.8) become

dp(t) = − b(t + δ)p(t + δ)1[0,T −δ](t)dt, t < T,

p(t) = k, t ∈ [T − δ, T ].

To solve this, we introduce

h(t) = p(T − t), t ∈ [0, T ].

Then, we obtain the DDEs:

dh(t) = b(T − t + δ)h(t − δ)dt, t ∈ [δ, T ],
h(t) = k, t ∈ [0, δ].
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Finally, we can determine h(t) inductively on each interval as follows:

h(t) = h( jδ) +
∫ t

jδ
h′(s)ds = h( jδ) +

∫ t

jδ
b(T − t + δ)h(s − δ)ds (13.10)

for t ∈ [ jδ, ( j + 1)δ].
Whereas we may apply any utility function, in order to obtain a more specific

solution formweprefer to useU (t, c, ei ) = φ(t, ei ) ln(1 + c) for all i = 1, 2, . . . , D,
where φ(t, ei ) is an R

+-valued, càdlàg andFt -adapted function such that

E

[∫ t

0
|φ(t,α(t))|2 dt

]
< ∞.

Then, following the theorem presents the solution of our problem.

Theorem 13.4 (Savku and Weber [51]) The optimal consumption rate ĉ(t) under
the above construction is explicitly given by

ĉ(t) = I (t, hδ(T − t),α(t)|α(t)=ei )

=
{
0, if hδ(T − t) ≥ φ(t, ei ),
φ(t,ei )

hδ(T −t) − 1, if 0 ≤ hδ(T − t) < φ(t, ei ),

where h(·) = hδ(·) is determined by Eq. (13.10).

13.5 Conclusion and Outlook

In this survey study, we introduced mathematical the structure of Markov regime-
switches and combined it with stochastic differential games and a time delay under
the headline of the stochastic optimal control theory. Moreover, we provided opti-
mal portfolio and consumption formulas for the systems of stochastic differential
equations modulated by Markov regime-switches.

Mathematically, regime-switches should not be seen just as an additional jump
part with carrying very similar properties of a compensated Poisson random mea-
sure. Many fundamental results, such as existence-uniqueness theorems of BSDE,
ABSEDs, and SDDE with regimes, comparison theorems, duality, etc, have to be
extended for a mathematically concrete and satisfactory scientific work. Further-
more, these additional jump parts, generated by a compensating counting measure
of a Markov chain bring several challenges, not only in theory, but also in getting
analytical results. Consequently, still there are many mathematical problems waiting
to be solved with these settings.

Furthermore, the shifts between the states of a Markov chain may characterize
some of the psychological phenomena from the perspective of macroeconomic indi-
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cators, for example, the currency risk or the country risk may affect the market
psychology and the investors’ preferences easily.

Markov-switching models, particularly with a delay, have gained a growing inter-
est recently in so many disciplines, both theoretical and applied, e.g., in finance and
economics, in medicine and neuroscience. Herewith, they demonstrate their unify-
ing and pioneering scientific potentials and their future promise for a high-quality
modeling, a balance of interests, and a decision-making in a world characterized
by the highest complexity, stochastic uncertainties, and “human factors” [28]. We,
the authors of this chapter, express our hope to having generated an interest in this
emerging research agenda and its positive impact in the world of tomorrow.
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