
Model-Based Safety Analysis of Mode
Transitions

Marco Bozzano1, Peter Munk2, Markus Schweizer2, Stefano Tonetta1,
and Viktória Vozárová1(B)

1 Fondazione Bruno Kessler, Trento, Italy
{bozzano,tonettas,vvozarova}@fbk.eu

2 Robert Bosch GmbH, Research and Advance Engineering, Renningen, Germany
{Peter.Munk,Markus.Schweizer}@de.bosch.com

Abstract. The verification of safety requirements is fundamental in
many safety-critical domains. In order to reach the highest level of
required safety assurance, system engineers design components with a
variety of safety mechanisms. The resulting potential combination and
sequence of operational modes may become very complex and requires
automated analysis support.

In this paper, we propose new formal methods, based on minimal cut
sets, to generate explanations for operational mode transitions, in terms
of causes defined as combinations of basic events, namely faults and
recovery actions. The problem is quite subtle, as it requires to consider
events occurring before, and in between, the source and target opera-
tional modes, identifying those that are necessary to bring the system
into the source mode. We implemented the approach on top of the xSAP
safety analysis platform, and evaluated it on an industrial design, namely
an electronic control unit of a power steering system with redundancy
and multiple safety mechanisms.

1 Introduction

The increasing level of autonomy and complexity of networked systems and sys-
tem of systems in automotive as well as in other safety-critical domains augments
the required level of functional safety and reliability of Electronic Components
and Systems (ECS) [8]. In turn, the growing requirements in terms of func-
tional safety and reliability push the development of new design technologies to
analyze the safety of ECS. Fail-operational architectures include various safety
mechanisms such as redundancies and fault detection components inside a single
control unit. The interplay of multiple faults and mechanisms for fault masking
and fault recovery may become very complex and requires automated methods
and tools for its analysis.

In this paper we tackle the problem of analyzing the various faults, or in
general events, that may lead a system from an operational mode to another.
The system usually runs in nominal mode and switches to different backup or
degraded modes upon the occurrence of faults or recovery actions. Due to the
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 99–114, 2020.
https://doi.org/10.1007/978-3-030-54549-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54549-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-54549-9_7

100 M. Bozzano et al.

presence of different components and overlay of various redundancies and mon-
itors, the system can switch to an operational mode for various reasons. We
propose a model-based approach to the analysis of these mode transitions build-
ing on symbolic model-based safety analysis techniques for minimal cut sets and
fault-tree generation [4].

The problem is quite subtle because the transition from mode m1 to mode m2

can be caused by events that occurred before m1 but due to some propagation
have effect with some delay or the effect is enabled by the new operational mode
m1. At the same time, we should not consider the events before m1 that caused
the system to go to m1. We propose a formulation that takes into account these
aspects and reduce the problem to parameter synthesis for temporal logic [6].

We implemented the approach on top of the xSAP tool [2] and evaluated
the results on the architecture of an automotive Electronic Control Unit. This
includes a dynamically redundant dual channel, each channel with a dual fail-
safe core, extended with a watchdog that may trigger the recovery of a passive
channel. The results are very useful to understand the interplay of events that
cause the mode transitions and show the scalability of the approach.

The rest of this paper is structured as follows. In Sect. 2 we discuss related
work. We describe the case study in Sect. 3. In Sect. 4 we discuss some back-
ground notions. In Sect. 5 we discuss our formal approach. The experimental
evaluation is presented in Sect. 6. Finally, we conclude and discuss future work
in Sect. 7.

2 Related Work

The problem addressed in this paper builds upon, and extends previous work on
Fault Tree Analysis (FTA), namely generation of minimal cut sets (MCSs) for
a given top level event (TLE). The semantics of MCSs is given in terms of fault
events occurring on a trace reaching the TLE [4,13]. The problem of computing
the cut sets can be reduced to reachability analysis and solved using Binary
Decision Diagrams as in [4], or using satisfiability (SAT)-based techniques for
parameter synthesis [6]. The region of cut sets can be minimized to obtain the
MCSs using classical routines for minimization of Boolean functions [7]. In [3]
the SAT-based approach is extended with several enhancements based on the
specific features of the problem, such as on-the-fly minimization and layered
computation of the MCSs for increasing cardinality.

In this work, the trace-based semantics for MCSs is extended to encom-
pass the case of generic (fault and recovery) events that explain the transitions
between different system modes, rather than a TLE. The problem is reduced to
parameter synthesis on a property expressed in LTL, and solved using techniques
that build upon those in [3].

A qualitative analysis of the EPS case study has been carried out in [1] using
FTA. The author performed the analysis by manually inspecting all possible
states and transitions, and demonstrated that the order of events causing the
mode transitions can be neglected. However, manual analysis is error-prone and

Model-Based Safety Analysis of Mode Transitions 101

Fig. 1. EPS case study: assembly view with the electronic control unit (ECU) circled
in red (left) and schematic overview (right). (Color figure online)

does not scale up when additional channels or states are considered. In this
paper, we give a formal definition of the problem and solve it using a formal
approach, based on model-checking.

In [10] a methodology is presented, based on Hip-Hops, to construct fault
trees structured in terms of a set of (critical and non-critical) modes orga-
nized into a mode chart. The methodology is focused on the investigation of
failure propagation, based on the annotation of system components with their
(dynamic) mode-based behavior. In our case, instead, we are interested in syn-
thesizing the mode-based (failure propagation) behavior automatically from a
given behavioral model of the system.

The concept of events triggering mode transitions is related with the notions
of causality as given, e.g., in the theory of counterfactual causality [9]. The latter
is defined using structural equations, but can be readily re-formulated for tran-
sition systems [5]. However, the notion of causality is more fine-grained, in that
it aims at distinguishing the notions of causality and temporal correlation, and
addresses concepts such as responsibility and blame. Moreover, we are interested
in sets of events that are necessary to explain a mode transition in all possible
scenarios, whereas classical causality focuses on identifying such causes in a given
scenario of interest. Finally, in our setting a cause may not be sufficient to trig-
ger a mode transition – an additional side condition, a contingency in causality
terminology, may be needed to make it sufficient.

3 Motivating Case Study

As case study, we selected an electronic power steering (EPS) system designed
for highly-automated driving vehicles, as shown in Fig. 1. The system is not
only able to support the driver in steering, but also to steer the vehicle without
any input from the driver, by receiving steering commands from a redundant
vehicle bus. Hence, the EPS system has high safety, reliability, and availability
requirements.

102 M. Bozzano et al.

3.1 ECU Design

In this case study, we focus only on the electronic control unit (ECU) of the
EPS system, circled in red in Fig. 1 (left). A schematic overview of the EPS
ECU is given in Fig. 1 (right). The ECU includes two separate channels, named
primary and secondary channel in the following. Each channel has its own and
independent power supply and connection to an individual vehicle bus. Both
channels can communicate with each other by redundant intra-ECU commu-
nication channels. Each channel contains a lock-stepped microcontroller with
an external watchdog and is able to drive 2 electric motors. The lock-stepped
microcontroller contains two cores that compute the same instructions in par-
allel. At each cycle, a comparator circuit inside the controller compares the
state of both cores. The microcontroller shows fail-silent behavior, so in case the
two core states are not equal no result is forwarded. In order to check whether
the comparator is working correctly, an external watchdog sends challenges to
the comparator and checks the correctness of the response. If the challenge is
answered incorrectly or if a timeout error occurs, the entire microcontroller is
reset.

3.2 System Modes

Each channel is either in mode master, slave, or passive. In master mode, the
channel calculates the torque for its two motors and sends a request to the other
channel in slave mode to set the same torque to its connected motors, so all four
motors provide the same torque. In slave mode, the channel awaits the torque
requests from the other channel and sets the torque as described before. If the
torque request is not received, the channel in slave mode has to assume that
the other channel has failed silently, hence it becomes master and calculates the
required torque itself. Since one channel and its directly connected two motors
are sufficient to steer the vehicle, the EPS system is still available even if one
channel fails.

3.3 Expected Faults and Their Effects

A channel has fail-silent behavior, therefore it enters the passive state only when
an internal error occurs and it is detected, e.g. by the lock-step comparator or
the watchdog. In passive state, the channel does not send any torque to its two
motors anymore. A fault in the power supply of a channel leads to it entering
the passive mode. When an erroneous or missing message is received from the
vehicle bus connected to a channel, the channel switches or stays in slave mode,
relying on the torque requests from the other channel in master mode. A fault
in the communication between the channels is critical, as the torque requests
cannot be exchanged anymore. For this reason, this intra-ECU inter-channel
communication is implemented by heterogeneously redundant links. A fault in
the microcontroller and its core, respectively, is very likely to be detected by the
comparator circuit. A fault in the comparator itself is critical, for this reason it

Model-Based Safety Analysis of Mode Transitions 103

is implemented in hardware directly. In order to ensure the correct functionality
of the comparator circuit, a watchdog, which is external to the microcontroller,
monitors it by a challenge-response protocol. In case the comparator does not
provide the correct response in time, the entire microcontroller is reset by the
watchdog. A fault in the watchdog itself is critical again, as it potentially resets
the microcontroller.

The individual faults have different occurrence probabilities, depending e.g.
on the complexity of the hardware or the employed level of redundancy. In
order to argue the safety of the entire EPS system and its ECU specifically, it
is indispensable to analyze the combination and probability of faults that lead
to unwanted behavior of the system. In general, the EPS system can exhibit
unwanted behavior whenever no channel is in master mode and one of them is
in slave mode. Given three modes per channel, overall nine modes exist in the
system. Not all nine system modes are equally critical, e.g. one channel being
in master mode and the other channel being in passive mode is acceptable for
a specific duration. On the contrary, both channels being in master mode and
potentially calculating opposite torque request is very critical and it potentially
leads to steering in the wrong direction and even hinders the driver to overrule
the system.

4 Background

In this section we present some background, in particular we introduce transi-
tions system, temporal logic, model checking, parameter synthesis, and minimal
cut sets.

4.1 Symbolic Transition Systems

The system under analysis is a reactive system, whose behavior is characterized
by a (possibly infinite) sequence of state changes triggered by events. In this
paper, we adopt a standard symbolic representation of the system, where the
system states are represented by a finite set V of variables and the state tran-
sitions by symbolic formulas that specify how the values of V change [12]. This
is usually obtained by using a copy v′ of each variable v ∈ V to represent the
next value of v after a transition. We denote by V ′ the set of next versions v′

of the variables in V . We also use a finite set E of event variables to label the
transitions and represent the events that triggered a state change. For simplicity,
we assume that the variables have all a Boolean domain, but this can be easily
lifted and the tool implementation of the approach considers also more complex
and infinite-domain variables.

Formally, a Transition System (TS) is a tuple S = 〈V,E, I, T 〉 where:

– V is a set of state variables;
– E is a set of event variables;
– I is a formula over V , representing the initial states;

104 M. Bozzano et al.

– T is a formula over V ∪ E ∪ V ′, representing the transitions.

A state of S is an assignment to the variables in V . Similarly, an event
is an assignment to the variables in E. A trace of S is an infinite sequence
σ = s0, e0, s1, e1, . . . of states and events such that s0 |= I and si, ei, si+1 |= T
for every i ≥ 0.

4.2 LTL Model Checking

We use Linear-time Temporal Logic (LTL) [14] with future and past operators
(see for example [11]) to represent sets of traces. Given a TS S = 〈V,E, I, T 〉,
the set of Linear Temporal Logic (LTL) formulas is inductively defined as

ϕ :: = p
∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ Yϕ

∣
∣ ϕSϕ

with p ∈ V ∪ E. Here X stands for next, U for until, Y for previous, and S for
since. Other logical constants and operators like �, ⊥, ∧, → and ↔ are used
as syntactic sugar with the standard meaning. The following abbreviations for
temporal operators are also used: Fϕ := �Uϕ, Gϕ := ¬F¬ϕ, Oϕ := �S ϕ,
Hϕ := ¬O¬ϕ, Zϕ := ¬Y¬ϕ.

Given a trace σ = s0, e0, s1, e1, . . . of S and i ≥ 0, we define the relation
σ, i |= ϕ as follows:

– if ϕ = p ∈ V , then σ, i |= ϕ iff si |= p
– if ϕ = p ∈ E, then σ, i |= ϕ iff ei |= p
– if ϕ = ¬φ, then σ, i |= ϕ iff σ, i |= φ
– if ϕ = φ ∨ ψ, then σ, i |= ϕ iff σ, i |= φ or σ, i |= ψ
– if ϕ = Xφ, then σ, i |= ϕ iff σ, i + 1 |= φ
– if ϕ = φUψ, then σ, i |= ϕ iff for some j ≥ i, σ, j |= ψ and for all i ≤ k < j,

σ, k |= φ.
– if ϕ = Yφ, then σ, i |= ϕ iff i > 0 and σ, i − 1 |= φ
– if ϕ = φSψ, then σ, i |= ϕ iff for some j, 0 ≤ j ≤ i, σ, j |= ψ and for all

j < k ≤ i, σ, k |= φ.

The (universal) model checking problem is the problem to check if σ, 0 |= ϕ
holds for every trace σ of S (denoted by S |=∀ ϕ or simply S |= ϕ). The existential
model checking problem is the dual problem of checking if σ, 0 |= ϕ holds for
some trace σ of S (denoted by S |=∃ ϕ). Note that S |=∃ φ iff S |= ¬φ.

4.3 Parameter Synthesis

In parametric systems, formulas can include also parameters, which are rigid
symbols whose value does not change along the execution of the system [6].
Let U be the set of parameters. A parameter valuation is an assignment to
the parameters. Given a propositional or an LTL formula φ and a parameter
valuation γ, we denote by γ(φ) the formula obtained from φ by replacing each
parameter in U with the assignment given by γ.

Model-Based Safety Analysis of Mode Transitions 105

A parametric transition system S is a tuple S = 〈U, V,E, I, T 〉 where U is the
set of parameters, V is the set of state variables, E is the set of event variables,
I(U, V) is the initial formula, and T (U, V,E, V ′) is the transition formula. Each
parameter valuation γ induces a transition system Sγ = 〈V,E, γ(I), γ(T)〉.

In the scope of this paper, we are interested in the parameter synthesis for
LTL existential model checking, i.e., given an LTL formula ϕ over U ∪V ∪E, the
problem of finding all parameter valuations γ such that Sγ |=∃ γ(ϕ). We denote
by ρ(U, S, ϕ) the set of all such parameter evaluations. This set can be computed
effectively with a sequence of incremental model checking problems [6].

4.4 Minimal Cut Sets

Minimal Cut Sets (MCS) analysis produces all possible configurations of system
faults (called fault configurations) that cause the reachability of an unwanted
condition, called the Top Level Event (TLE). More formally, given a transition
system 〈V,E, I, T 〉 and a set of faults represented as event variables F ⊆ E, we
call fault configuration a subset FC ⊆ F .

A cut set represents a fault configuration that may cause the top event.
Formally, we generalize the definition in [4] as follows. Let S = 〈V,E, I, T 〉 be a
TS and let TLE be a propositional formula over V . We say that FC is a cut set
of TLE in S, written FC ∈ CS(S,TLE ,F), iff there exists a trace σ of S such
that:

1. σ, j |= TLE for some j ≥ 0;
2. FC ⊆ F and for all f ∈ FC there exists i, 0 ≤ i < j such that σ, i |= f .

Intuitively, a cut set corresponds to the set of faults that occur along a
trace reaching the TLE . Minimal cut sets (MCSs), written MCS (S,TLE ,F),
are those that are minimal in terms of faults: MCS (S,TLE ,F) = {cs ∈
CS (S, TLE,F) | ∀cs′ ∈ CS (S,TLE ,F) (cs′ ⊆ cs → cs′ = cs)}. When S and F
are clear from the context, we just use the notation CS (TLE) and MCS (TLE).

In practice, MCS are of interest since they represent the simpler (and more
probable) explanations for a given TLE. The monotonicity assumption (i.e, if cs
is a cut set, then any superset cs′ ⊇ cs is also a cut set) is commonly adopted,
since most systems are monotonic and for non-monotonic systems, the assump-
tion leads to a conservative (and accurate) over-approximation of the unrelia-
bility of the TLE. Non-monotonic analysis can be addressed by generalizing the
concept of MCS to the one of prime implicant [7].

4.5 Computing MCSs Using Parameter Synthesis

Given a transition system S = 〈V,E, I, T 〉 and a set of event variables F ⊆ E, the
region of cut sets can be computed via parameter synthesis [3]. Let us consider
a parameter pe for every event e ∈ F and the LTL formula ΨTLE := (

∧

e∈F (e →
pe))U TLE (see also similar approach in [13]). Then the set of cut sets is given
by ρ(U, S, ΨTLE).

106 M. Bozzano et al.

The set of MCSs can be computed as the set of minimal such valuations,
i.e. the set of valuations γ ∈ ρ(U) such that for each γ′ ∈ ρ(U), γ′ ⊆ γ implies
γ′ = γ (where we define γ′ ⊆ γ iff γ′(u) implies γ(u) for each u ∈ U). This can
be computed with standard BDD-based operations.

5 Formal Problem and Solution

5.1 Formalization of Modes and Mode Transitions

An operational mode can be considered from the formal point of view as a macro
state, i.e. a set of concrete states. For example, in the EPS case study described
above, the master-slave mode, where the primary channel is in master mode and
the backup channel is in slave mode, includes various states where the power may
or may not be supplied to the channels, the data has been provided or not, the
cores are processing the data, the comparator state represents the consistency
of the cores’ output, etc.

On this line, a mode transition is achieved with a sequence of state transitions.
For example, in order to switch from master-slave to master-passive, the system
performs different state transitions, where for example a core of the backup
channel fails, the comparator silences the output torque, and the channel goes
to passive mode.

Formally, we define a mode of a system S = 〈V,E, I, T 〉 as a set of states
of S. A mode can be therefore represented by a propositional formula over the
state variables V . With abuse of notation, given a formula m over V , the mode
m refers to the set of states satisfying m.

Given two modes m1 and m2, a mode transition from m1 to m2 is a sequence
of s0, . . . , sn such that n > 0 and there exists a trace σ of S and i ≥ 0 such that

– for k, 0 ≤ k ≤ n, σi+k = sk (the sequence is part of the trace σ of S);
– for k, 0 ≤ k < n, sk |= m1 and sn |= m2 (the sequence leads from m1 to m2);
– i = 0 or σi−1 |= ¬m1 (the sequence is maximal as it is either the first mode

transition of σ or is preceded by another mode transition leading to m1).

5.2 Model Checking Mode Transitions

It is easy to prove that S has a mode transition from m1 to m2 (denoted by S |=∃
m1 ⇒ m2) iff S |=∃ F(m1 ∧Xm2). In fact, one can see that the definition is one-
to-one with the LTL formula F(Z¬m1 ∧m1 ∧X(m1Um2)). We proved also with
a model checker that this formula is equivalent to F(Z¬m1 ∧ m1U(m1 ∧Xm2))
and to F(m1 ∧ Xm2).

We can also generate with parameter synthesis the set of events that occur
in mode transitions between m1 and m2. Let us introduce a parameter pe for
every event e ∈ E and define the formula ψE as ψE :=

∧

e∈E e → pe. Then, we
build the LTL formula: F((Z¬m1) ∧ ((m1 ∧ ψE)U(m1 ∧ ψE ∧ Xm2))).

Model-Based Safety Analysis of Mode Transitions 107

Fig. 2. States and transitions for the system in Example 1.

5.3 Discussion

The analysis discussed in the previous section is quite related to the problem
of understanding which events cause a mode transition. A deeper look at the
problem shows that it is not what we need.

Example 1. Consider for example the transition system shown in Fig. 2 formal-
ized by 〈{b1, b2, b3}, {e1, e2, e3},¬b1 ∧¬b2 ∧¬b3, T1〉, where T1 is a disjunction of
conjuctions representing the set of transitions (for example, the transition from
state 000 to state 100 is represented by ¬b0∧¬b1∧¬b2∧e1∧¬e2∧¬e3∧b′

0∧¬b′
1∧

¬b′
2). In the figure, the states are labeled by the value of the variables b1, b2, b3.

Thus for example, the state 001 assigns b1 and b2 to false and b3 to true.
Suppose we are interested in the transitions from mode m1 = b1 ∧ ¬b3 and

m2 = b3, which correspond to the central and right dashed boxes respectively.
The mode transitions are two: 110, 111 and 100, 110, 111. The events that occur
in these transitions are e3 and e2, e3. Thus, it seems that the cause of the mode
transition is e3 (since it labels the only incoming transition into m2). However,
also e2 is necessary to reach m2, but not necessarily to reach m1: in some traces
e2 occurs before entering mode m1. Hence this interpretation is not captured by
the definition in Sect. 5.2.

5.4 Problem Definition

Intuitively, given a transition system 〈V,E, I, T 〉 and two modes m1 and m2, we
are interested in the sets of events in E that are necessary to go from m1 to m2.
We call such set of events Minimal Transition Cut Set (MTCS) for m1 ⇒ m2 and
we denote by MTCS(m1,m2) the set of all MTCSs for m1 ⇒ m2. For simplicity,
we assume that an event can occur only once. The framework can be extended
to consider multiple occurrences of the same event. Note that: 1) a MTCS for
m1 ⇒ m2 should not contain the events needed to reach m1; 2) the event in a
MTCS for m1 ⇒ m2 may occur even before m1.

We formalize the definition of Transition Cut Sets (TCSs) and MTCSs as
follows:

108 M. Bozzano et al.

Definition 1. F ∈ TCS(m1,m2) iff F ⊆ E and there exist a trace σ and i, j ∈ N

s.t.

1. i < j, σ(j) |= m2, and σ(k) |= m1 for all k, i ≤ k < j (i.e., it contains a
mode transition from m1 to m2);

2. there exists C ∈ MCS (m1) such that C ∩ F = ∅ and for each e ∈ C there
exists k, 0 ≤ k < i, such that σ(k) |= e (i.e., F does not contain a MCS
necessary to reach m1);

3. for each e ∈ E \ C, if there exists k, 0 ≤ k < j, such that σ(k) |= e, then
e ∈ F (i.e., F contains all other events occurring until m2).

The set MTCS(m1,m2) is the set of cut sets in TCS(m1,m2) that are min-
imal: MTCS(m1,m2) := {F ∈ TCS(m1,m2) | ∀F ′ ∈ TCS(m1,m2) (F ′ ⊆ F →
F ′ = F)}

5.5 Solution Based on Parameter Synthesis

In this section, we reduce the problem of finding MTCS(m1,m2) to a parameter
synthesis problem. We first compute MCS (m1). We introduce a parameter pe

for every event e ∈ E. Finally, we build the LTL formula:

Ψ(m1,m2) :=
∨

C∈MCS(m1)

F(m1 ∧ Y
∧

f∈C

Of ∧ X(m1U(m2 ∧ YH
∧

e�∈C

e → pe)))

Theorem 1. Given a TS S = 〈V,E, I, T 〉 and two modes m1 and m2,

TCS(m1,m2) = {F ⊆ E | S |=∃ γF (Ψ(m1,m2))}

where γF is an assignment to parameters defined as follows: γF (pe) = � iff
e ∈ F .

Proof. Given F ⊆ E, we prove that F ∈ TCS(m1,m2) iff S |=∃ γF (Ψ(m1,m2)).
Note that, for any trace σ of S, σ |= γF (Ψ(m1,m2)) iff there exists C ∈

MCS (m1) and σ |= F(m1∧Y
∧

f∈C Of ∧X(m1U(m2∧YH
∧

e�∈C e → γF (pe)))).
Thus, σ |= γF (Ψ(m1,m2)) iff there exists C ∈ MCS (m1), i ≥ 0 such that

σ, i |= m1 and σ, i |= Y
∧

f∈C Of , σ, i + 1 |= m1U(m2 ∧ YH
∧

e�∈C e → γF (pe)).
Thus, σ |= γF (Ψ(m1,m2)) iff there exists C ∈ MCS (m1), i, j ≥ 0 such that

1) i < j and σ, j |= m1 and for all k, i ≤ k < j, σ, i |= m1; 2) σ, i |= Y
∧

f∈C Of ,
3) σ, jYH

∧

e�∈C e → γF (pe)). These are the three conditions of Definition 1. In
fact, 3) holds iff σ, k |= e for some k, 0 ≤ k < j implies γF (pe)).

Once we obtain the set tcs of Transition Cut Sets, we can compute the
minimal ones (MTCS) as described in Sect. 4.5.

Model-Based Safety Analysis of Mode Transitions 109

6 Experimental Evaluation

6.1 Implementation

We have implemented the solution for computing MTCS described in Sect. 5.5
as a command in the xSAP tool [2]. A model in xSAP is written in the SMV lan-
guage; it can be manually specified or it can be the result of fault injection (the
functionality to automatically extend a nominal model with the fault specifica-
tion – see [2] for more details). Modes can be specified as Boolean expressions,
or implicitly as a set of discrete domain state variables (in the latter case, modes
correspond to all the possible evaluations of the given variables). The user can
either choose to compute MTCS for one pair of given modes m1 and m2 or for
all pairs of distinct modes taken from a given set of modes.

For each event to be considered in the analysis, a corresponding parameter
is created. For each mode m1, MCS (m1) is computed using parameter synthesis
and stored for the computation of MTCS(m1,m2), for all target modes m2. For
each pair of modes 〈m1,m2〉, the LTL formula Ψ(m1,m2) described in Sect. 5.5 is
constructed and used for the parameter synthesis. The output of the parameter
synthesis problem is a region, i.e. a Boolean formula over the set of parameters.
Each parameter is replaced by the corresponding event and the corresponding
minimal models are computed and printed. The command provides an option to
print all modes and transitions in dot format.

6.2 Application to the EPS Case Study

We modeled the EPS system informally described in Sect. 3 in SMV language1.
We separately defined the nominal model and the xSAP fault extension instruc-
tions. Then, using fault injection, we created the extended (faulty) model, on
which we ran the MTCS computation routine. We created two variants of the
EPS (nominal) models, a simple and a complex one. The simple model does not
contain internal components of the channels. The behavior of the model is also
simplified by ignoring the possibility of a channel reset. The complex model,
on the other hand, also models cores, a comparator, a watchdog and the reset
action of the channels. We first focus on the simple model to demonstrate the
functionality of our approach. Then, we analyze its scalability using the complex
model.

The simple model is composed of two channels pd and sd, the energy sup-
ply and vehicle bus for each channel pdEnergy, sdEnergy, pdBus, sdBus, and
a redundant communication com. The modules representing these components
interact as described in Sect. 3. In our analysis, we are interested in all events
that can cause the system mode to change, namely the fault events described in
Sect. 3 and the take-over of a channel in slave mode (i.e., when it fails to receive
a torque request from the other channel and assumes that the other channel has
failed). The list of all events for the simple model is shown in the middle column
of Table 1.
1 Available at https://es-static.fbk.eu/people/vvozarova/TransitionAnalysis/.

https://es-static.fbk.eu/people/vvozarova/TransitionAnalysis/

110 M. Bozzano et al.

Table 1. The events of the EPS system.

Simple model Complex model

Energy supply faults pdEnergy.fault pdEnergy.fault

sdEnergy.fault sdEnergy.fault

Vehicle bus faults pdBus.fault pdBus.fault

sdBus.fault sdBus.fault

Communication faults com.request_to_pd_fault com.can.request_to_pd_fault

com.request_to_sd_fault com.can.request_to_sd_fault

com.uart.request_to_pd_fault

com.uart.request_to_sd_fault

Channel faults pd.fault pd.core1.fault

sd.fault pd.core2.fault

pd.comparator.compare_fault

pd.comparator.forward_fault

sd.core1.fault

sd.core2.fault

sd.comparator.compare_fault

sd.comparator.forward_fault

Channel take-over recovery pd.takes_over pd.takes_over

sd.takes_over sd.takes_over

Channel reset recovery pd.reset

sd.reset

We carried out the MTCS analysis on all system modes of the simple model.
The modes, along with their criticality, are shown in Fig. 3. We ran the parameter
synthesis routine for all pairs of distinct modes and obtained a set of minimal
cut sets over the events. For illustration purposes, Fig. 4a shows a few selected
transitions between modes master-slave, slave-master, master-master and slave-
slave. The edge labels correspond to the sets of events found by our analysis
for the respective transitions. The graph shows that pdBus.fault is necessary to
reach slave-master mode. In case no other fault occurs, the sd channel takes
over in the following cycle. If the communication link to the sd channel fails at
the same time as pdBus, the system reaches slave-master mode in one cycle. If
the communication fails, the sd channel wrongly assumes that pd has failed and
goes to the critical master-master mode.

Model-Based Safety Analysis of Mode Transitions 111

Fig. 3. Possible combinations of channel modes. The green mode (solid border) is
a nominal functional mode. The orange modes (dashed) are modes with degraded
nominal function, but acceptable for a specific duration. The red modes (dotted) are
critical and can lead to erroneous behaviour. (Color figure online)

Fig. 4. Found MTCS (left) and occured events (right) in selected mode transitions.

Notice that if we used the formula presented in Sect. 5.2, that monitors only
events that occur in m1, different cut sets would be found. This is possible
because some faults take one cycle to propagate. For example, there is a sequence
of mode transitions containing transition from master-slave to slave-slave on
which no fault occurs. The sequence is visualized in Fig. 4. The effect of each
fault is visible in the next cycle. The communication fault causes sd to go to
master. The sd vehicle bus fault causes sd to go back to slave, analogously pd
vehicle bus fault causes pd to go to slave. As a result, only one minimal cut set
for master-slave to slave-slave transition is found, and that is an empty set.

112 M. Bozzano et al.

To test the scalability of our procedure, we created a more complex model
with more detailed communication and channel. Specifically, we modeled the
redundancy of the communication by introducing two submodules com.can and
com.uart with the same functionality as the original module. The communication
fails only if both submodules fail. The channel is extended by adding two core
modules core1 and core2, comparator and watchdog. The comparator ensures
that if a core fails, the channel goes to passive mode. However, if the comparator
is faulty, the channel can either wrongly stay in the nominal mode or go to passive
even when both cores are working correctly. If the watchdog recognizes that
either a core or the comparator is faulty, it resets the channel to its initial mode.
The list of all events is given in the last column of Table 1. The communication
faults are replaced by faults in com.can and com.uart, the channel faults are
replaced by core and comparator faults, and we additionally monitor the reset
event of the channel.

6.3 Scalability Results

We tested the implemented procedure for both simple and complex model. The
simple model contains 10 events and 7 nominal modules (more modules are
introduced after the fault extension). The complex model contains 20 events
and 17 nominal modules. We ran the experiments on a machine with Intel(R)
Core(TM) i5 CPU and 16GB RAM. The results are in Table 2. The results
show that the procedure is applicable for models with many events and complex
behaviour. Table 3 shows numbers of found minimal cut sets and their cardinality
for all mode transitions.

Table 2. Outcome of the MTCS analysis for both the simple and complex models. We
report used memory and time, and the number of generated MTCS for all transitions
between distinct modes (72 in total).

Simple model Complex model
Time (s) Mem (MB) MTCSs Time (s) Mem (MB) MTCSs

56.56 392.1 63 621.84 1047.0 354

Model-Based Safety Analysis of Mode Transitions 113

Table 3. Number of MTCS found for each transition from one mode (left) to another
(top) for the EPS system. Cells with dash ‘–’ are self loops on which the analysis
was skipped. Cells with ‘x’ are transitions with no cut sets found (the transition is not
feasible). The number of cut sets is followed by the cardinality of the sets in parentheses.

Simple model

MM MS MP SM SS SP PM PS PP

MM – 1 (1) 2 (1) 1 (2) 2 (2) 2 (2) 2 (1) 2 (2) 4 (2)

MS 1 (2) – 2 (1) 1 (3) 1 (1) 2 (2) 2 (3) 2 (1) 4 (2)

MP x x – x x 1 (1) x x 2 (1)

SM x x x – 1 (1) 2 (1) 2 (1) 2 (2) 4 (2)

SS x x x 1 (1) – 2 (1) 2 (2) 2 (1) 4 (2)

SP x x x x x – x x 2 (1)

PM x x x x x x – 1 (1) 2 (1)

PS x x x x x x 1 (1) – 2 (1)

PP x x x x x x x x –

Complex model

MM MS MP SM SS SP PM PS PP

MM – 1 (1),
1 (2),
2 (3)

4 (1) 1 (0) 1 (1),
1 (2),
2 (3)

4 (1) 1 (0) 1 (1),
1 (2),
2 (3)

4 (1)

MS 1 (3),
4 (4)

– 4 (1) 2 (4),
2 (5)

1 (1) 4 (2) 5 (4),
2 (5)

4 (1) 16 (2)

MP x 4 (2) – x 4 (3) 1 (1) x 16 (3) 4 (1)

SM 1 (2),
2 (3)

1 (3),
3 (4),
4 (5),
4 (6)

4 (3),
8 (4)

– 1 (1),
1 (2),
2 (3)

4 (1) 4 (1) 4 (2),
4 (3),
8 (4)

16 (2)

SS 1 (3),
2 (4)

1 (2),
2 (3)

4 (3),
8 (4)

1 (1) – 4 (1) 4 (2) 4 (1) 16 (2)

SP x 4 (4),
8 (5)

1 (2),
2 (3)

x 4 (2) – x 16 (3) 4 (1)

PM 4 (1) 4 (2),
4 (3),
8 (4)

16 (2) x x x – 1 (1),
1 (2),
2 (3)

4 (1)

PS 4 (3) 4 (2) 16 (3) x x x 1 (1) – 4 (1)

PP x 16 (4) 4 (2) x x x x 4 (2) –

7 Conclusions

In this paper, we extended model-based safety analysis techniques to consider the
transition between operational modes in complex systems. We propose new tech-
niques based on parameter synthesis and symbolic model checking. We evaluated
the approach in an industrial automotive case study describing the architecture
of an ECU implementing multiple safety mechanisms for functional safety.

114 M. Bozzano et al.

The directions for future development are manifold: 1. to investigate opti-
mization techniques to increase the scalability; 2. to extend the method to
consider the negation of events (when an event must not occur in the mode
transition, thus going beyond the monotonic case and MCS); 3. to extend the
method to consider multiple occurences of an event; 4. to extend the method
to consider more general notions of causality; 5. to investigate how ordering of
events influences mode transitions; 6. to embed the techniques in system and
safety engineering processes involving the design of fault detection and recovery
components and the specification of safety contracts on components.

References

1. Abele, A.: Transformation of a state description into a qualitative fault tree. In:
Praxisforum Fehlerbaumanalyse & Co. (2019)

2. Bittner, B., et al.: The xSAP safety analysis platform. In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 533–539. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9_31

3. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques
for model-based safety analysis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 603–621. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21690-4_41

4. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75596-8_13

5. Caltais, G., Leue, S., Mousavi, M.R.: (De-)Composing causality in labeled transi-
tion systems. In: Proceedings of the CREST Workshop (2016)

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
Proceedings of FMCAD, pp. 165–168. IEEE (2013)

7. Coudert, O., Madre, J.C.: Implicit and incremental computation of primes and
essential primes of boolean functions. In: Proceedings of the Design Automation
Conference (DAC 1992), pp. 36–39. IEEE Computer Society Press (1992)

8. ECSEL-JU: Multi-Annual Strategic Plan (MASP), Private Members Board of the
ECSEL Joint Undertaking - ECSEL GB 2019.134 (2020)

9. Halpern, J.: A modification of the Halpern-Pearl definition of causality. In: Pro-
ceedings of the IJCAI, pp. 3022–3033 (2015)

10. Kabir, S., et al.: A model-based extension to HiP-HOPS for dynamic fault prop-
agation studies. In: Bozzano, M., Papadopoulos, Y. (eds.) IMBSA 2017. LNCS,
vol. 10437, pp. 163–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-64119-5_11

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

12. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic, Dordrecht (1993)
13. Ortmeier, F., Reif, W., Schellhorn, G.: Deductive cause-consequence analysis

(dcca). IFAC Proc. Vol. 38(1), 62–67 (2005)
14. Pnueli, A.: The temporal logic of programs. In: Proceedings of the SFCS, pp. 46–57

(1977)

https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-540-75596-8_13
https://doi.org/10.1007/978-3-540-75596-8_13
https://doi.org/10.1007/978-3-319-64119-5_11
https://doi.org/10.1007/978-3-319-64119-5_11
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7

	Model-Based Safety Analysis of Mode Transitions
	1 Introduction
	2 Related Work
	3 Motivating Case Study
	3.1 ECU Design
	3.2 System Modes
	3.3 Expected Faults and Their Effects

	4 Background
	4.1 Symbolic Transition Systems
	4.2 LTL Model Checking
	4.3 Parameter Synthesis
	4.4 Minimal Cut Sets
	4.5 Computing MCSs Using Parameter Synthesis

	5 Formal Problem and Solution
	5.1 Formalization of Modes and Mode Transitions
	5.2 Model Checking Mode Transitions
	5.3 Discussion
	5.4 Problem Definition
	5.5 Solution Based on Parameter Synthesis

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Application to the EPS Case Study
	6.3 Scalability Results

	7 Conclusions
	References

