
A Compositional Semantics
for Repairable BDMPs

Shahid Khan1(B) , Joost-Pieter Katoen1 , and Marc Bouissou2

1 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
{shahid.khan,katoen}@cs.rwth-aachen.de

2 EDF-R&D, Electricité de France, Palaiseau, France
marc.bouissou@edf.fr

Abstract. Boolean-logic Driven Markov Processes (BDMPs) is a graph-
ical language for reliability analysis of dynamic repairable systems. Sim-
ulation and trace-based analysis tools for BDMPs exist and have been
used to analyze reliability, safety and security aspects of industrially rel-
evant case studies. To enable a model-based analysis of BDMPs, such
as probabilistic model checking, formal semantics is indispensable. This
paper presents a rigorous semantics to repairable BDMPs using Markov
automata (MA), a variant of continuous-time Markov chains (CTMCs)
with action transitions. The semantics is modular: an MA is associated
with each BDMP element and these are combined to obtain an automa-
ton for the entire BDMP. By ignoring the actions that are used to “glue”
the MA of BDMP elements, a CTMC is obtained that is amenable to
analysis by e.g., model checking. We report on a prototypical implemen-
tation and experimentally show that our semantics corresponds to the
BDMP interpretation by the tool Yet Another Monte Carlo Simulation.

Keywords: Reliability · Dependability · Formal methods ·
Probabilistic model checking · Monte-Carlo simulation · Compositional
analysis

1 Introduction

Static Fault Trees. Fault trees [18] are used for safety and reliability engineer-
ing in many application areas. Static Fault Trees (SFTs) are the simplest; their
leaves, called basic events (BEs), model individual component failures or human
errors. The failure times are governed by continuous probability distributions.
Internal nodes, called gates, model how component failures lead to system fail-
ures. Gates are like logic circuit elements such as AND and OR, both instances
of the voting (VOT) gate. Fault tree analysis amounts to determine the failure
probability of the root of the fault tree, called the top event. SFTs are simple;
the ordering of failures is irrelevant and repairs are excluded.

S. Khan—Supported by a HEC-DAAD Scholarship.
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 82–98, 2020.
https://doi.org/10.1007/978-3-030-54549-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54549-9_6&domain=pdf
http://orcid.org/0000-0001-5549-7809
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-54549-9_6

A Compositional Semantics for Repairable BDMPs 83

Extensions. SFTs have been extended in numerous ways, e.g., with priority-
AND PAND gates [20], by dynamic fault trees (DFTs) [9] possibly extended
with repairs [6,11], state-event fault trees (SEFTs) [14], component fault trees
(CFTs) [15], Boolean logic Driven Markov Processes (BDMPs) [5] and a gener-
alisation thereof [17]. These extensions are driven by the need to model e.g., (a)
the replacement of failed components by spare ones, (b) hot and cold redundan-
cies, (c) complex failure orderings, (d) repairs and maintenance strategies, or (e)
the failure of a component by going through several degraded modes.

The Need for Semantics. The added expressive power leads to more modeling
flexibility but comes at a price: the interpretation of these graphical fault tree
languages becomes involved. (Also the analysis is more complex; e.g., maximal
cut set computations—the main technique for SFTs—no longer suffice.) The
interpretation of fault trees is not just of theoretical interest. Slightly different
interpretations may lead to significantly divergent reliability measures and give
rise to distinct underlying stochastic (decision) processes. This issue is discussed
in detail for DFTs in [13]. Moreover, a rigorous semantics is a prerequisite to
enable the analysis of fault trees using multiple tools. Our overall aim is to
analyze Bouissou’s BDMPs [5] by means of probabilistic model checking [1]. It
has been shown in the last years that such an approach is quite successful for
analyzing DFTs [11,19]. This paper, therefore, focuses on providing a rigorous
model-based semantics to BDMPs.

BDMPs in a Nutshell. BDMPs are used in the probabilistic safety assessment of
nuclear power plants. Two major mechanisms in BDMPs are triggers and trig-
gered Markov processes. The triggers model activation: if the source of a trigger
fails, then the target of the trigger is activated, i.e., woken from a stand-by mode,
provided at least one of its parents is activated. Triggered Markov processes are
pairs of Markov chains associated with BEs: one describes the behavior when
being activated while the other considers the case when de-activated. BE can
thus be in four states: working or failed in standby, or working or failed in the
activated mode. BDMPs facilitate repairs by transiting from a failed to a work-
ing state. BDMPs allow modeling state-dependent failures, an aspect that is not
supported by SFTs. BDMPs can be analyzed by the discrete-event simulator
Yams and the trace-based analysis tool FigSeq [4].

Contributions of This Paper. The main contribution is a formal semantics of
BMDPs. The semantics is operational: we map each BDMP onto a Markov
automaton [10]. This semantics assumes all continuous failure distributions to
be negative exponentials. It covers two versions of triggers and takes triggered
Markov processes as basic events. It thus includes repairs. This complicates mat-
ters a bit, as—in contrast to SFTs and classical (non-repairable) DFTs—the
property is lost that once a sub-tree has failed it remains to do so. Many exist-
ing semantics of extensions of SFTs do not contain repairs; a notable exception is
recent work on rare event simulation of DFTs with repairs [6]. Our semantics is
modular, following the compositional approach for DFTs in [3]. This entails that

84 S. Khan et al.

each BDMP construct, i.e., basic event, gate (such as VOT and priority AND),
triggers, etc. are mapped onto a single Markov automaton (MA). The MA for
the entire BMDP is obtained by composing the constituting MA together. In
order to enable this composition, the MAs for the BDMP elements are equipped
with extra signals (a.k.a. actions). Once the entire MA of a BDMP is obtained,
the actions are not of any further use and are abstracted away.

A prototypical implementation of the semantics has been made. It constructs
the MA in a modular way as defined in this paper using the tool moconv1 and
uses the probabilistic model checker Storm [8] for reliability and availability
analysis. Our semantics is validated by comparing the analysis results of our
prototype with the simulation results of the BDMP analysis tool Yams [4]. (In
the absence of any other formal semantics of BDMPs, this is the best we can
hope for.) We stress that the focus of this work has not been to define a memory-
efficient semantics—the peak memory consumption of a compositional approach
can be substantial [19]. The modular approach, however, is conceptually simple,
easily reveals the intricacies of some of the individual BMDP elements and can
easily be extended with new types of gates. We, therefore, believe that our
semantics increases the understanding of BDMPs and can provide the basis for
more efficient state-space generation techniques for BDMPs, e.g., our semantics is
amenable to partial-order reduction techniques for MA. The main contributions
of this paper are:

1. A compositional, operational semantics of repairable BDMPs.
2. A prototypical implementation of this semantics.
3. An experimental validation of the semantics by comparing analysis results.

Organization of the Paper. Section 2 discusses the formal model, Markov
Automata (MA). The components of BDMPs and their semantics are detailed
in Sect. 3. The proposed prototypical implementation along with experimental
results are discussed in Sect. 4. Section 5 concludes the paper and discusses some
future work.

2 Markov Automata

Markov automata are a mathematical model that support discrete probability
distributions, exponential delays, non-determinism among choices, and parallel
composition. MA subsume DTMCs, CTMCs, CTMDPs and PAs as detailed by
[12]. Here we outline the theory of MA necessary to understand the present
work. We use R for the set of real numbers, μ for a distribution over the set S
μ:S → [0, 1] such that

∑
s∈S μ(s) = 1, Dist(S) for the set of discrete probability

distributions over the set S, supp(Dist) for the support of distribution function
Dist, and ⊥ (�) for FALSE (TRUE). Syntactically, a Markov automaton M is
a tuple (S,Act,→, ���, s0) where S is a finite set of states, Act is a finite set of
actions, → ⊆ S ×Act×Dist(S) is a set of action transitions, ��� ⊆ S ×R>0 ×S

1 The Modest Toolset: http://www.modestchecker.net/.

http://www.modestchecker.net/

A Compositional Semantics for Repairable BDMPs 85

is a set of Markovian transitions, and s0 ∈ S is an initial state. Semantically
speaking, if an action a can be performed from a state s such that (s, a, μ) ∈→
(we write s

a−→ μ), then the probability of moving to state s′ ∈ S from state

s is μ(s′). Moreover, in case of a Markovian transition s
λ��� s′, this transi-

tion can be performed within time t with a probability which is exponentially
distributed with rate λ, i.e., (1 − e−λ·t). The states of MA are called Marko-
vian (iff having only Markovian outgoing transitions), interactive (iff having
only probabilistic outgoing transitions), deadlock (iff having no outgoing transi-
tion), or hybrid (otherwise). The exit rate of a Markovian state s is computed

as E(s) =
∑

s′ ∈S R(s, s′), where R(s, s′) =
∑{λ|s λ��� s′} is the rate between

state s and s′. The probability of leaving s is 1−e−E(s)·t. If s has more than one
successor state, then there exists a race between such states after leaving state
s; the probability of s′ winning the race equals P (s, s′) = R(s,s′)

E(s) .
The parallel composition (denoted ‖) of two MA Mi = (Si, Acti,→i, ���i

, s0,i), where i ∈ {1, 2} w.r.t. A = Act1 ∩Act2 can be formally defined as the
MA M1 ‖ M2 = (S1 × S2, Act1 	 Act2,→, ���,(s0,1, s0,2)), where → and ��� are
defined as the smallest relations satisfying the following six rules (R1 through
R6):

s1
α−→1 μ1 α
∈ A

(s1, s2)
α−→ μ1·{s2 �→1}

R1
s2

α−→2 μ2 α
∈ A

(s1, s2)
α−→ {s1 �→1}·μ2

R2
s1

α−→1 μ1 s2
α−→2 μ2 α ∈ A

(s1, s2)
α−→ μ1 · μ2

R3

s1
λ���1 s

′
1 s1
= s

′
1

(s1, s2)
λ��� (s

′
1, s2)

R4

s2
λ���2 s

′
2 s2
= s

′
2

(s1, s2)
λ��� (s1, s

′
2)

R5
s1

λ1���1 s1 s2
λ2���2 s2

(s1, s2)
λ1+λ2��� (s1, s2)

R6

In natural language, rules R1 and R2 state that an MA can independently take
any action not in the common action set. Rule R3 states that both MA must
progress synchronously on the common action α. Rule R4 and R5 define that no
synchronization takes place on Markovian transitions. The last rule R6 defines
that the rates of self-loops are added in parallel states. The composition opera-
tor (‖) for MA is commutative and associative. Thus, the order of composition
among n MA does not matter. MA is called open if it can be composed with
another MA. Once all composition is done, the MA is called closed. This paper
takes a state-based view of Markov automata for model checking and actions
are only required for parallel composition. This implies that all actions in closed
MA are turned into invisible actions (τ) and maximal progress assumption can
be applied thereafter. The maximal progress property states that if Markovian
and action-based transitions are enabled simultaneously in a state, then the MA
will always follow the latter and the former can be removed from the MA.

We do not have input and output actions (as adopted by [3]) in our frame-
work. The composition is done over common alphabets as per rule R3 using
synchronization vectors of the form 〈a, a〉 �→ a (both MA must synchronize on
action a and this action will behave as a in resultant composed MA) as detailed
in [12]. This rule can be extended to an arbitrary number of MA and intuitively
speaking, all MA having a shared action must synchronize to perform this action.

86 S. Khan et al.

In order to enable model checking on Markov automata, we equip states with
atomic propositions and introduce variables in the MA. The variable expressions,
defined on top of these variables, represent visible aspects of the system and
can be considered as labeling functions returning atomic propositions of each
state. The action transitions can be equipped with guards (predicates over the
variables) and updates (variable assignments).

Fig. 1. MA example

Example 1. These con-
cepts are summarized in
Fig. 1 by parallel compo-
sition of two MA; (a)
and (b). Where (a) has
one transition guarded
by when(⊥), this guard
makes the transition impos-
sible (we use gray color to
highlight impossible transitions). This guard also makes the a1 labeled action
transition of MA (b) impossible which was supposed to synchronize with this
impossible transition of (a). We associate one atomic proposition L with state
p1 of (a) (double circle is used to distinguish this state from the other states). The
treatment of L through different stages of parallel composition can be followed.
As a convention, we drop the distribution part of the transition whenever there is
only one reachable state after an action, i.e., supp(Dist(S)) = 1. Consequently,
we have dropped the probabilistic part for both actions a0 and a2 in (a) ‖ (b),
see Fig. 1(c). Conversion to invisible labels (τ) is shown in Fig. 1(c) and closed
MA after removing all action-labeled transitions is shown in Fig. 1(d). The selec-
tion of Markovian transition rate λ was deliberate to highlight the application
of rules R4 and R5.

3 BDMPs and Their Semantics

Fig. 2. BDMP elements

BDMPs [5] syntactically extend SFTs by
one new element called trigger (Trig). The
syntax of this formalism is very flexible.
The triggers can have any type of node as
their source and target. There are three
syntactic restrictions: (1) trigger source
and origin cannot be the same, i.e., trig-
ger loops are not allowed; (2) Top cannot
be the target of a trigger; (3) two triggers
cannot target the same node. However,
the semantics of this language is quite
involved. For instance, there are four vari-
ants of triggers available in BDMPs. The
name “logic-driven” stems from the fact

A Compositional Semantics for Repairable BDMPs 87

Fig. 3. MA of the BDMP gates

that predicates are used to switch between the BE modes, e.g., from standby to
active mode. The structure-function SF and activation-function AF are used
to control the failure and activation mechanisms in a BDMP. In the original
paper [5], a predicate (trimming) was used to do computational optimization
and to incorporate don’t-care propagation assumption. The don’t-care propaga-
tion assumption is based on the view that the components of an already failed
subsystem can not fail while the system is being repaired. This assumption dras-
tically reduces the state space explosion and is close to reality. For the sake of
understandability, in this paper, we only focus on the activation behavior of
BDMPs and do not consider this trimming and any other optimizations for
BDMPs [5].

Compositional Semantics. In our compositional approach, we use actions to
model the failure and mode switching mechanism of BDMPs. We introduce four
actions namely active (a), de-active (d), fail (f) and repaired (r) to inform
the rest of the system when a component is active, standby, failed or repaired,
respectively. These four actions are enough to model BDMP elements. We define
two MA for each BDMP element corresponding to activation and failure. We
have defined different templates for each BDMP element and depending upon
the position and the configuration of an element in a BDMP we invoke the
corresponding template. These templates correspond to the semantics of each
element. The approach is modular therefore it is easy to add more templates
if, for instance, other elements are considered in the future. An exhaustive list
of BDMP elements is presented in Fig. 2. We segregate these elements into four
categories; the first row of Fig. 2 defines gates, the second and third row define
leaves, the fourth row defines triggers, and the fifth row defines others. We discuss
the proposed semantics under each category:

Gates: BDMPs have four types of gates; AND, OR, VOTing and PAND as shown
in the first row of Fig. 2. The AND, OR and VOT are inherited from SFTs.
PAND is a dynamic gate, i.e., its behavior depends on the order of input failures.

88 S. Khan et al.

All gates shown in Fig. 2 have two inputs (A, B) and one output (Y). We use
subscripts to denote actions of a particular BDMP element, e.g., the failure of
input A is denoted by fA. Any n input gate can be represented by a cascade
of n − 1 two-input gates (a.k.a: binary gates). Therefore it suffices to provide
semantics of binary AND, OR and PAND gates. The structure function of AND
is true when SF of both inputs A and B is true, i.e., SF (Y) = SF (A) ∧ SF (B).

The failure of an AND is captured by the s3 → s4 transition in the MA of
Fig. 3(a). The gate is considered repaired if either one or both of its inputs get
repaired. Therefore, we have two repair action transitions (s5 → s1 and s6 → s2)
for single input repairs and two repair transitions (s7 → s0 and s8 → s0) for the
repair of both inputs. The states representing the failure of the gate output are
double circled. Note that the gate can only leave the double circled states by
means of rY -labeled transitions.

The structure function of OR is true when SF of any of its inputs is true,
i.e., SF (Y) = SF (A) ∨ SF (B). This behavior is captured in the MA of Fig. 3(b)
by introducing two fail transitions (s1 → s5 and s2 → s6).

The PAND in BDMPs follows an exclusive-PAND semantics, i.e., simultane-
ous input failures do not cause output failure. The structure-function of PAND is
true only when fA occurs strictly before fB . The precise semantics are depicted
in Fig. 3(c) where intricacies of repair orders can be followed. It is remarked that
exclusive-PAND, in-general, cannot capture the behavior where both inputs are
INST (introduced in the next paragraphs) and both fail simultaneously.

Fig. 4. MA of EXP and STDBY

Strictly speaking, the failure behavior
of a gate does not depend on its activa-
tion status. Therefore we did not have any
activation transition in the MA of gates.
This is different for leaves as we discuss
next. Although the behavior of a gate is
independent of the activation, the gates
are involved in propagating the activation
behavior towards the leaves. Therefore we also define the activation MA for
gates. (In-fact activation MA templates, in general, only depend on the type of
trigger pointing to a node and the number of parents inheriting this nodes.)

Leaves: There are eight types of leaves in BDMPs as shown in the second
and third row of Fig. 2. The EXP represents component failures which follow
an exponential probability distribution with rate λ ∈ R>0. The EXP can fail
upon activation as depicted in Fig. 4(a). The repair rate for this BE is μ and
it is unaffected by the activation status of EXP. The STDBY is used to model
components which can fail in standby mode. Hence, two failure rates are relevant:
the standby failure rate λs and the active failure rate λa. If we remove the
standby failure behavior of a STDBY, then it behaves as EXP. This can also be
observed in Fig. 4(b), i.e., if we remove the Markovian transition (s0 ��� s7) and
the then unreachable state s7, the resulting automaton is identical to Fig. 4(a).

A Compositional Semantics for Repairable BDMPs 89

Fig. 5. MA of MULTI

The MULTI element represents a batch of inde-
pendent and identical EXP components. MULTI with
parameters n and m can be modeled as n EXPs inher-
ited by a VOT gate where K = m and N = n. The
structure function of MULTI becomes true after N−K
of these identical units have failed. The semantics of
MULTI with K = 2 and N = 3 are presented in Fig. 5.
Notice that the automaton structure of Fig. 5 can be
easily extended to other values of K and N . Since the
functionality of a VOT is hidden in MULTI, the MA of
VOT is also hidden in MA of MULTI. If we remove all a and d labeled action-
transitions from the MA of MULTI, we get the MA of a VOT gate with three
EXPs having identical failure rates (λ) and repair rates (μ).

Fig. 6. MA of INST

BDMPs model on-demand failures using INST
BEs. The SF of this element (upon activation)
becomes one with probability γ or remains zero with
probability 1 − γ as depicted in state s1 of Fig. 6. The
failing mechanism of this BE is quite straightforward
but its repair mechanism is not obvious. INST is recep-
tive to activation and deactivation actions even when
it is failed. The INST will keep track of the activation
requests and if it has a valid activation request at the
time of repair, then INST will be checked again.

Fig. 7. MA of other BDMP leaves

The structure function of
PHASE becomes immediately
true upon an activation request
and once true it switches to
false upon the occurrence of
a Markovian transition gov-
erned by rate μ, see Fig. 7(a).
Notice that action names like
start-phase and end-phase are
not used because they are just
aliases of failure and repairing actions, respectively. The SF of G.Fail (F.Safe)
becomes true (false) at the start of BDMP analysis and remains true (false)
thereafter. This behavior is achieved by adding a when(⊥) guard in the repair
(fail) action transition of Fig. 7(b) (Fig. 7(c)). BDMPs achieve the G.Fail (F.Safe)
feature by associating a flag FailF_Frozen to BEs. Setting this flag to true forces
the BE to keep its failure state set by the user during modeling. The user can
set the failure state through another flag called FailF . BDMPs (like other fault
tree formalisms) analyze how BEs contribute towards the occurrence of an unde-
sired top-level event (called TOP in BDMPs). It can inherit only one child v and
follows failure fv and repair rv transitions of this child, see Fig. 7(d).

90 S. Khan et al.

Fig. 8. MA of Trig and two parents

BDMP Modularization: Before
presenting the activation semantics
we discuss modularization; an impor-
tant concept for our approach. A
module is a subset of BDMP ele-
ments disjoint (from activation point
of view) from other elements and hav-
ing the same activation behavior. The
modularization creates a partition of
BDMP elements. In order to mod-
ularize, we traverse the BDMP and
identify the nodes that are target
of triggers. We call these nodes the
module representatives. The module-
representative is the element which
interacts with other parts of the BDMP and decides the activation status of the
module it is representing. The activation/deactivation mechanism of all module-
members are tethered to activation and deactivation of module-representative. It
becomes apparent that BDMP can be segregated in modules and cardinality of
these modules can range from one (imagine module consist of single BE) to the
size of entire BDMP (when BDMP is a simple SFT).

Triggers: There are four types of triggers in BDMPs: trigger Trig, inverted
trigger InvTrig, equal separating trigger EqSTrig, and opposite separating trigger
OppSTrig. The Trig link connecting nodes u and v means that, AF (v) is true
when SF (u) is true and v is input of some gates g1, g2, . . . , gk and AF of at
least one of these k gates is true. The semantics of Trig for the case where v
is inherited by two gates (a.k.a.: nodes) are shown in Fig. 8, where we perform
activation action av after reception of two actions; failure of u (fu) and activation
of gate 1 or 2 (a1 or a2 respectively). Here, we only presented MA for the case
where Trig target v is input of two gates but the pattern in this automaton can be
extended by adding states and transitions capturing activation, deactivation of
more gates (if added). We double circle the states where v is active to distinguish
them from the other states.

A Compositional Semantics for Repairable BDMPs 91

Fig. 9. MA of other triggers

The InvTrig provides complementary behavior
to Trig. Here AF (v) is false when either SF (u)
is true, or SF (u) is false and v is the input of
some gates g1, g2, . . . , gk and AF of all of these
gates is false. The automata-based view for tar-
get v of InvTrig inherited by one gate is shown
in Fig. 9(a). Notice that the deactivation action
is performed as soon as parent is deactivated or
trigger origin u in repaired. The OppSTrig isolates
the activation behavior of the target node v from
its parents. The semantics of this link is presented
in Fig. 9(b). Informally speaking, v is activated at
the start of BDMP analysis and it is deactivated
as soon as OppSTrig origin u performs a fail action.
The EqSTrig achieves complementary behavior of
the OppSTrig. The target v of EqSTrig is activated
upon failure of the trigger origin, i.e., u. The deac-
tivation of v is performed upon repair of u, see Fig. 9(c).

Fig. 10. MA of PHASE activation

The aforementioned acti-
vation semantics captures the
behavior of all BDMP ele-
ments except PHASE, which
is treated differently. In BDMPs,
a flag In_progress is associ-
ated to PHASE. If this flag
is set to true, then the acti-
vation action has to be performed at the start of the BDMP analysis. The
In_progress flag of only one phase element should be set to true so that we can
clearly identify the first phase of the phased-mission profile. This flag is effective
at the beginning of the BDMP analysis. Subsequent activation is conditioned to
the fact whether PHASE is the target of a trigger or not. If it is not the target
of a trigger, then PHASE can not be activated afterward, see Fig. 10(a).

On the other hand, if PHASE is the target of the trigger then it will get
activated on the failure of trigger origin u. This activation mechanism is similar
to EqSTrig MA of Fig. 9(c) and we only need to add an activation action at the
start provided In_progress flag is true, see Fig. 10(b). We remark that BDMPs
are multi-top trees and each top module is activated at the start of the analysis.
We assign a different number to each top module because the top element can
be the target of the trigger.

92 S. Khan et al.

Fig. 11. Composition example

Fig. 12. MA of AlwaysTure and AlwaysFalse

Others: This includes node
activation flags (AlwaysFalse,
AlwaysTrue), BeforeLink, and
LogicLink. The AlwaysTrue
(AlwaysFalse) flags can be
associated to any node of the
BDMP. If this flag is true,
then that node and associated
module will remain active (de-active) throughout the analysis of the BDMP as
indicated by the MA of Fig. 12(a) (Fig. 12(b)). The BeforeLink connecting two
INST type nodes u and v enforces an order in checking the Bernoulli distribution
associated to the INST. That is, v is checked only after checking u. The Before-
Link were proposed later in BDMPs as an optimization. They are mentioned here
for the sake of completeness and we did neither outline its precise semantics nor
discuss it further because we do not consider optimizations. The last element we
mention is the LogicLink. The semantics of LogicLink are quite subtle. When we
syntactically say node B is child of node A, we are semantically implying that
the actions of the MA corresponding to B and A are visible to each other.

Composition Example. Let us explain our compositional semantics on a BDMP
example. The example BDMP, depicted in Fig. 11(a), has two modules (0 and
1) as there is only one Trig. The BDMP consists of four elements; therefore we
need eight automata to construct the complete state-space of the BDMP. The
automata and their relevant compositions are:

A Compositional Semantics for Repairable BDMPs 93

MAFbdmp
︸ ︷︷ ︸

Fig.(n)

= MAFt︸ ︷︷ ︸
Fig.(f)

‖ MAAt︸ ︷︷ ︸
Fig.(b)

‖ MAFg
︸ ︷︷ ︸
Fig.(m)

‖ MAAg
︸ ︷︷ ︸
Fig.(c)

‖ MAFe︸ ︷︷ ︸
Fig.(d)

‖ MAAe︸ ︷︷ ︸
Fig.(c)

‖ MAFi︸ ︷︷ ︸
Fig.(e)

‖ MAAi︸ ︷︷ ︸
Fig.(l)

The final MA (see Fig. 11(g)) of the BDMP is obtained by turning all actions
into internal actions and applying maximal progress (as described in Sect. 2).

The activation mechanism of t (TOP) is shown in Fig. 11(b) with an impos-
sible deactivation transition. Since all other components of the primary module
will follow that behavior, the deactivation transition of their MA is colored gray
to indicate this impossibility, see Fig. 11(c). The same approach is followed in
Fig. 11(d) to indicate that e cannot be deactivated once activated. All states
corresponding to the failure of TOP are double circled. Notice in Fig. 11(n)
that some states after the Markovian transition from z10 are still tagged as
fail states but no time is spent in these states because they all have only out-
going action transitions. Another important observation on some paths, e.g.,
z11 → z13 → z23 → z6 is that there is an interleaving behavior but since all inter-
leavings of action transitions lead to the same end result, we do not draw all
possible paths. A similar phenomenon occurs in Fig. 11(j). The transitions to
v2 and v8 are highlighted as impossible transitions because they are paralleled
by immediate (action-based) transitions a1 and d1, respectively. Each state is
annotated with the state identifiers from the composing automata for the sake
of clarity. State identifiers are neither required for composition nor for model
checking.

Non-determinism. Due to the compositional nature of semantics, non-
determinism can occur. That is to say, the closed MA of a BDMP may contain
states that have more than one outgoing action-transition. These scenarios occur
if there are several possible ways in which failures, activation, and de-activation
are propagated through the BDMP. As our semantics is modular, these propa-
gations are initiated locally, though their effect is global. Let us illustrate this
by an example, see the BDMP in Fig. 13(a).

Fig. 13. Non-determinism example

Our semantics obtains a choice
between the activation and
deactivation actions of INST
IA. This can be seen as fol-
lows. Consider the closed MA
in Fig. 13(b) of the BDMP
obtained after applying max-
imal progress. The transi-
tions are labeled with actions
(instead of the invisible action
τ) for the sake of clarity. Note
that transition s4 → s0 has three labels indicating that these transitions can be
arbitrarily permuted. Their order, however, does not matter and we will finally
reach state s0, regardless of which order is taken. Consider the execution trace of
the BDMP in Fig. 13(a), initiated by a repair of E: rE → rO1 → dO2 . This trace
does not activate IA. However, this propagation of E’s repair resulting in O2’s

94 S. Khan et al.

de-activation is not atomic. Therefore, the activation action of IA can interleave
with this trace. This is reflected by state s2 in the MA which also has an outgoing
aI -action transition. Another non-deterministic choice exists at state s3. This is
due to the two possible execution traces initiated by E’s repair: rE → aI → fI

and rE → aI → rO1 → fI . The first trace will directly lead to failure. But
the second trace repairs O1 (rO1) before performing fI ; failure state S7 will be
reached only after E’s next failure. In the meantime, I could be repaired leading
to a return to the initial state. This behavior is captured through the Markovian
transitions from state s6. These subtle non-deterministic scenarios are mainly
due to the instantaneous behavior of the INST element.

4 Prototypical Implementation and Experimentation

Fig. 14. Prototypical tool

Our compositional BDMP
semantics has been imple-
mented in a software proto-
type. The overall setup of our
implementation is presented
in Fig. 14. We describe each
block:

KB3.exe: The Knowledge
Base Workbench [4] is a GUI
based tool used to create, sim-
ulate, and export the BDMP as Figaro definition. Figaro is a domain-specific
object-oriented probabilistic modeling language defined to carry out operation
safety studies [4]. It generalizes various reliability models, e.g., reliability block
diagrams and can cast generic models in knowledge bases KB. In fact, BDMPs
are originally defined as a knowledge base in Figaro.

Python Script: This constitutes the core of our implementation. The script
takes a BDMP description as Figaro definition and generates a process-algebraic
description of its MA using the Modest language [2]. In order to do so, the
following five steps are performed;

1. ReadFI: we read the English or French version of BDMP and populate it into
a dictionary-based data structure.

2. ModularizeBDMP: the structure of the parsed BDMP is analyzed and seg-
regated into modules. We use a depth-first search on the underlying graph
to identify module-representatives. Whenever we encounter a node having
different activation behavior, i.e., the node is either target of Trig, InvTrig,
OppSTrig, EqSTrig, tagged as AlwaysTrue or AlwaysFalse, or inherited by more
than one module, then we consider this node as a module-representative. As
stated earlier, modules create a partition of a BDMP and from an activa-
tion point of view we only need to create interaction between partitions. We
remark that a module having TOP as module-representative is called primary
module and INST in primary modules of BDMPs as originally conceived in
[5] have no semantics, i.e., they are never tested.

A Compositional Semantics for Repairable BDMPs 95

3. RemoveVOT: converts a VOT gate into a cascade of AND and OR gates.
4. BinarizeGates: This step turns any gate into a cascade of binary gates.
5. WriteModestDefinitions: This step generates a process-algebraic description

for each component present in the BDMP under consideration.

monovonv.exe: This component of the Modest tool-set converts a Modest file
to a JANI file. JANI is an intermediate language originally designed to exchange
models between different formal analysis tools [7]. The model checker Storm
has direct support for the JANI format.

Property: We use probabilistic temporal logic to encode the properties of inter-
est, i.e., the unreliability and the unavailability. In a repairable BDMP, there is
no “permanent failure”. What we are interested in is an entry in a tangible
fail-labeled state. Note that unreliability is a simple reachability property and
mostly a partial state-space suffices for this property. However, we need complete
state-space to compute the unavailability.

Storm: We feed the JANI file to Storm along with the property of interest
and Storm computes and returns the numerical value for the desired metric.
Storm [8] is a state-of-the-art probabilistic model checker. It is an open-source
and freely available tool. Recently, Storm participated in the QComp 20192
competition and outperformed all competitors on most of the benchmarks. It
uses numerical and symbolic methods.

YAMS.exe: Yams is a freely available Monte-Carlo based simulation tool for
BDMPs [4]. Yams uses a standard event-driven Monte-Carlo simulation method.
It can report the mean value of an indicator function along with its standard devi-
ation, i.e., the range of uncertainty against a given confidence level. Yams can
be configured to compute different reliability metrics, e.g., mean-time-to-failure
(MTTF), unreliability and unavailability, etc. The simulation time increases
with increasing precision requirement, e.g., approximately O(10k) simulations
are required to obtain a (low) probability of 10−k with a 10% confidence inter-
val.

Results of Test-Cases. The test cases considered along with detailed documen-
tation are available online3. These test cases range from simple interactions,
e.g., mutual exclusion to literature benchmarks. For each test case, we com-
pare Storm generated results with those of Yams. Yams reports results for
different confidence bounds and we benchmark, as tolerance, 99% confidence
level for our comparison. Storm was run for the precision of 10−8. Yams is a
Windows-based tool, whereas Storm was run on a Linux-based machine hav-
ing 5x: 2 Intel® Xeon® Platinum 8160, 48 threads 2.1 GHz, 384 GB RAM.
The symbolic engine of Storm, i.e., sylvan was restricted to 8 threads with
maximum allocated memory of 40GB. We build complete state-spaces symboli-
cally and MAs reported here are sparse models build from the symbolic models
2 HTTP://qcomp.org/competition/2019/.
3 HTTP://sourceforge.net/projects/visualFigaro/files/Doc_and_examples/Francais/.

http://qcomp.org/competition/2019/
http://sourceforge.net/projects/visualFigaro/files/Doc_and_examples/Francais/

96 S. Khan et al.

Table 1. Indicative statistics for test-cases

#elements Yams Storm Comparison
Test Mission Complete MA Reduced MA CTMC Absolute Error
case stat dyn Time Unrel. Tol. Unavl. Tol. #state #trans. #state #trans. #state #trans. ΔUnr ΔUnavl
1 10 2 10 0.7872 0.0011 0.5157 0.0013 987 1889 313 1299 172 984 0.0000 0.0002
4 19 2 10 0.9101 0.0074 0.6864 0.0120 34336 99002 20027 86719 3105 26436 0.0001 0.0005
17 24 4 10 0.8562 0.0009 0.5978 0.0126 1793667 4630531 511752 3593876 207744 2845056 0.0001 0.0018
23 23 3 20 0.8690 0.0275 0.4950 0.0407 16110 40220 5677 29787 2048 22528 0.0017 0.0096
39 34 6 10 0.7712 0.0034 0.5620 0.0040 144483 336048 50436 242001 12288 157120 0.0008 0.0003
49 13 3 10 0.8811 0.0026 0.6148 0.0040 934 2109 574 1739 117 548 0.0011 0.0010
53 14 5 10 0.6770 0.0038 0.4042 0.0040 101761 220941 36712 166196 10840 104420 0.0015 0.0017

after application of the maximal progress. We only look into the accuracy of
results and disregard computation requirements in terms of memory and verifi-
cation time because the implementation is only a sanity check of semantics. The
results for six test-cases are reproduced in Table 1. Detailed results along with
the python script can be accessed at4. The last two columns of Table 1 report the
absolute errors of the unreliability (ΔUnr) and unavailability (ΔUnavl). Where
ΔUnr = |UnrelYams − UnrelStorm| and ΔUnavl = |UnavlYams − UnavlStorm|.
We do not reproduce Storm calculated values as they can be easily reproduced
from the absolute errors. It is clearly visible (in the last two columns of Table 1)
that the unreliability and the unavailability values computed by Storm are
always within Yams-computed range. The size of the complete MA, the reduced
MA (after application of maximal progress), and CTMC (after removal of spu-
rious non-determinism) are also provided.

Non-determinism. As described earlier, the compositional semantics may lead
to non-determinism. This occurred in eight test cases. The non-determinism is
primarily due to the instantaneous character of INST elements. After delaying
the INST activation actions by a very high rate Markovian transition, i.e., 105,
and applying maximal progress, the minimal and maximal values obtained by
Storm coincide. That is, all remaining non-determinism is spurious. Our analy-
sis with Storm yields the same values as the simulation tool Yams. The usage of
high-rate Markovian transitions increases the stiffness of the underlying Markov
chain and it results in an increased analysis time as convergence is slower.

5 Conclusion

We presented a formal, compositional semantics for repairable BDMPs. Its mod-
ularity provides insight into the subtleties of BDMPs and yields a comprehen-
sible semantics that is amenable to model-based analysis such as probabilistic
model checking. Experimental evaluations using a prototypical implementation
reveal that our semantics coincides with the BDMP interpretation of the simula-
tion tool YAMS. Future work includes reducing the peak memory consumption
by leveraging partial-order reduction, bi-simulation, and symmetry reduction as
shown to be successful for dynamic fault trees [19]. The challenge is to adapt
these techniques to repairs. It would also be interesting to extend our semantics
4 HTTP://github.com/moves-rwth/dft-bdmp/.

http://github.com/moves-rwth/dft-bdmp/

A Compositional Semantics for Repairable BDMPs 97

to generalized BDMPs [17], and to exploit priorities in GSPNs [16] to obtain a
fully deterministic compositional semantics as in [13] for DFTs.

References

1. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_28

2. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE TSE
32(10), 812–830 (2006)

3. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE TDSC 7(2), 128–143 (2009)

4. Bouissou, M.: Automated dependability analysis of complex systems with the KB3
workbench: the experience of EDF R&D. In: ICEE. CIEM (2005)

5. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes. Rel. Eng. Sys. Safety
82(2), 149–163 (2003)

6. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga, M.: Rare event
simulation for non-Markovian repairable Fault Trees. TACAS 2020. LNCS, vol.
12078, pp. 463–482. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5_26

7. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

8. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part
II. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9_31

9. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

10. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

11. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via
fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4_19

12. Hartmanns, A., Hermanns, H.: A modest Markov automata tutorial. In: Krötzsch,
M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial Intelligence. LNCS,
vol. 11810, pp. 250–276. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-31423-1_8

13. Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all: a unifying
semantics of Dynamic Fault Trees using GSPNs. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4_14

14. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees - a safety analysis
model for software-controlled systems. Rel. Eng. Sys. Safety 92, 1521–1537 (2007)

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-030-45190-5_26
https://doi.org/10.1007/978-3-030-45190-5_26
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-030-31423-1_8
https://doi.org/10.1007/978-3-030-31423-1_8
https://doi.org/10.1007/978-3-319-91268-4_14

98 S. Khan et al.

15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: SCS. CRPIT, vol. 33, pp. 37–46. Australian Computer Society (2003)

16. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets, vol. 292. Wiley, New York (1995)

17. Piriou, P.Y., Faure, J.M., Lesage, J.J.: Generalized Boolean logic Driven Markov
Processes: a powerful modeling framework for model-based safety analysis of
dynamic repairable and reconfigurable systems. Rel. Eng. Sys. Safety 163, 57–68
(2017)

18. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

19. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

20. Walker, M., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees with
PANDORA: the time of priority AND gates. Nonlinear Anal. Hybri. Syst. 2(2),
368–382 (2008)

	A Compositional Semantics for Repairable BDMPs
	1 Introduction
	2 Markov Automata
	3 BDMPs and Their Semantics
	4 Prototypical Implementation and Experimentation
	5 Conclusion
	References

