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Abstract. Electronic systems that are related to human safety need
to comply to strict international standards such as the IEC 61508. We
present a functional verification methodology for highly parametrizable,
continuously operating, safety-critical real-time systems implemented in
FPGAs. It is compliant to IEC 61508 and extends it in several ways.
We focus on independence between design and verification. Natural lan-
guage properties and the functional coverage model build the connec-
tion between system safety requirements and verification results, provid-
ing forward and backward traceability. Our main verification method is
Formal Property Verification (FPV), even for Safety Integrity Level 1
and 2. Further, we use constrained-random simulation in SystemVerilog
with the Universal Verification Methodology and a design independent
C reference model. When faults are discovered, the coverage model is
extended to avoid regressions. Automation allows the reproduction of
results and the reuse of verification code. We evaluate our methodol-
ogy on a subset of the newly developed CERN RadiatiOn Monitoring
Electronics (CROME). We present the challenges we faced and propose
solutions. Although it is impossible to simulate the full design exhaus-
tively, several formal properties have been fully proven. With FPV we
found some safety-critical faults that would have been extremely hard to
find in simulation.

Keywords: Functional verification · Safety · Formal Property
Verification · Constrained-random simulation · Natural language
properties · Functional coverage · Regression coverage

1 Introduction

When electronic systems are related to human safety, their whole life cycle needs
to comply with strict domain-specific standards [1–4]. The general standard for
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functional safety of electrical/electronic/programmable electronic safety-related
systems is the IEC 61508 [5]. Its latest version dates back to 2010. The ISO 26262
automotive standard is the most modern one. Its latest version is from 2018 [1].
One very strict, but also quite old standard for safety-critical hardware is the
DO-254 from 2000 [2]. The IEC 60532 standard for radiation protection instru-
mentation assigns Safety Integrity Levels (SILs) to certain radiation protection
functions [3]. These SILs and corresponding requirements for the design and
verification of safety-related electronic systems are defined in the IEC 61508 [5].
Since 2010, verification methodologies and electronic design automation tools
for digital design verification have progressed at a rapid pace. Our methodology
adds modern verification techniques to the IEC 61508’s V-model flow.

The most common technique for functionally verifying the Hardware Descrip-
tion Language (HDL) code for Field Programmable Gate Arrays (FPGAs) is still
simulation with directed tests [6]. Stimuli are applied to the inputs of the Design
Under Verification (DUV) and the values at the outputs are examined. For highly
parametrizable systems that have many input parameters of large bit-widths it
would be extremely time consuming to manually specify all interesting combi-
nations and calculate the expected output values. More flexible techniques like
constrained-random simulation are available [7]. But even with this method it
can be infeasible to simulate all possibilities for certain designs. Let’s imagine we
could simulate one combination at each CPU clock cycle of the workstation which
executes the simulation tool. It would take roughly 146 years to simulate each of
the possible input combinations of a single 64-bit vector. In reality, many CPU
clock cycles will pass until the simulator applies a new stimulus. While in many
cases it might be sufficient to simulate only representative values, it is often hard
to tell which value ranges are representative enough to catch all corner cases.
These might be rare inputs or combinations of extreme values of mathematical
functions or boundary values [8]. Furthermore, for some input values it might be
necessary to verify all possible combinations. Therefore, additional verification
techniques need to be applied.

We propose a functional verification methodology that combines the state-
of-the-art verification techniques of the semiconductor industry: Formal Prop-
erty Verification (FPV) and constrained-random simulation using the Universal
Verification Methodology (UVM) [9], both with functional and structural cov-
erage collection, while complying to IEC 61508. We evaluate them for a highly
parametrizable, continuously operating safety-critical real-time system. We pro-
pose a workflow that extends the verification process required by IEC 61508 with
the following concepts (see also Table 1):

– Independence between design and verification engineers
– Semi-formal methods during verification planning and requirements review
– Formal methods as main verification method even for SIL 1 and SIL 2.
– Constrained-random inputs for (expanded) functional black-box testing
– Coverage for regression test cases
– Traceability from requirements over coverage model and Natural Language

Properties (NLPs) to verification results and backwards
– Repeatability of the results
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Section 2 summarises related work and background. Section 3 provides an
overview of our methodology. Section 4 is an in-depth case study of applying
our methodology to the CERN RadiatiOn Monitoring Electronics (CROME).
Section 5 concludes the paper.

2 Related Work and Background

Independence between verification and design is very important in our method-
ology. Engineers are more likely to find faults in code written by other people
than in their own [10]. The IEC 61508 does not mandate it, it only refers to
application specific standards [5]. It is required e.g. by the DO-254 [2].

Formal Property Verification (FPV), also called assertion-based verification,
can exhaustively proof that a property holds on a design. Many engineers still
hesitate to use formal verification because of its perceived complexity [6,11]. A
campaign was launched at Intel to convince engineers of its benefits [11]. As
we will also demonstrate, additional faults can be found with FPV in designs
that had already been verified by simulation [11,12]. Often it is only used for
simple designs or control paths [8,13]. In [14], each design was first classified as
suitable or not for FPV. A design with our characteristics would not be suitable
according to their criteria. Opposed to that we decided to use FPV as main
verification method for a complex continuously operating safety-critical design
and got indispensable results. Our methodology shows how to integrate it into
a safety-standard compliant process.

Requirements-based testing is required by e.g. DO-254 [2] and ISO 26262 [1].
In [15], this method was extended with constrained-random simulation for
robustness testing, or in IEC 61508 terms “expanded functional testing” [5].
Researchers in [11] mentioned the difficulty of tracking verification progress in
FPV. We use the functional coverage model and Natural Language Properties
(NLPs) [16] as connection between system safety requirements and test results.
The methodology in [14] uses templates instead of NLPs that are automati-
cally translated into SystemVerilog Assertions (SVA) by a proprietary tool. The
importance of a consistent translation from properties in easily reviewable form
to formal languages was also shown in [17]. The lack of such methods can lead
to incorrect translations and additional iterations. In [18], each requirement was
related to a test case and coverage model item. Encountered faults were added
to a fault database, related to requirements and if necessary, the coverage model
was extended. We call the extension of the coverage model “regression coverage”.
Our approach (detailed in Sect. 3.2) was prior to that described in [19].

An advantage of FPV with SVA is that properties are proven directly on
the HDL code. Several formal verification methodologies for FPGAs exist that
require a translation from HDL to a formal model in a tool-specific language [13,
20]. To comply to safety standards, it would be necessary to derive this model
from the HDL code [17]. Any used tools need to be qualified [5]. We decided for
SVA, for which several qualified tools are available [17].
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Constrained-random simulation is very useful for highly parametrizable sys-
tems. A large number of stimuli can be applied without the need to explicitly
specifying them. Weighted constraints can be used to guide the randomization
in order to increase chances of generating scenarios of interest while also test-
ing unusual input combinations. This technique typically finds more faults than
directed testing [8,15]. SystemVerilog provides many features to ease the devel-
opment of flexible testbenches as well as properties and sequences which can be
used both in simulation and FPV [7]. The SystemVerilog UVM library facilitates
abstraction into transactions and verification code reuse. UVM was released in
2011, after the publication of the IEC 61508. It has been standardized in 2017 [9].

It can be distinguished between functional and structural coverage. The func-
tional coverage model states which scenarios are of verification interest. It is
defined by the verification engineers. Structural coverage measures how many
percentage of the Hardware Description Language (HDL) code have been cov-
ered [8]. A very effective coverage metric is Modified Condition/Decision Cov-
erage (MC/DC), where each condition has to affect the condition outcome at
least once. It is required by the DO-178 standard for software in avionics indus-
try [4]. Simulation tools provide this metric as well for HDL code [15]. Sys-
temVerilog covergroups, cover properties or assertions could also be added by
the designers to ensure that simulation test benches cover important implemen-
tation details [8,12]. This would not violate the concept of independence [12].

In this article we solely focus on functional verification. Measures for avoid-
ing failures due to random hardware faults need to be considered additionally
for any safety-critical design [5].

3 Our Functional Verification Methodology

IEC 61508 lists several techniques that can be chosen for verifying FPGAs.
Table 1 lists the techniques that we chose plus some techniques that we added
(A). The last 4 columns show the level of recommendation by IEC 61508 per
SIL. Due to the large number of inputs (∼200) of our design and our positive
experience with FPV that we will highlight in later sections, we decided to
use it as main verification method. We complement it with constrained-random
simulation using the UVM. For software, the IEC 61508 requires traceability
from system safety requirements to verification results and vice versa, as well as
repeatability of the verification activities. We adopt these points for FPGAs.

3.1 Verification Planning

Our workflow, detailed in Fig. 1, starts based on the system safety requirements,
design requirements and the specification. Consistency between the first and the
last two needs to be verified [5]. Each verification requirements is related to at
least one system requirement. If we encounter undocumented design decisions
during verification, we report them first to the requirements engineers rather
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Table 1. E/E/EP system verification requirements and techniques

Sections in IEC 61508:2010 - Part 2 Techniques Required by

SIL 1 SIL 2 SIL 3 SIL 4

7.9.2.1-4 Verification planning Semi-formal methods A A A A

7.9.2.5 Conformance to safety

requirements

Requirements traceability A A A A

7.9.2.7, Table B.1 Verification of

system design requirements

Inspection of specification – HR HR HR

Semi-formal methods R R HR HR

7.9.2.8, Table B.2, Table B.5, Table

F.2 Verification of the system design

and development

Simulation – R R R

Formal methods – – R R

Functional testing on module level HR HR HR HR

Expanded functional testing – HR HR HR

Black-box testing R R R R

Constrained-random input A A A A

Coverage of the verification scenarios R R HR HR

Coverage for regression testing A A A A

7.9.2.6, 7.9.2.10 Verification results

documentation

Requirements traceability A A A A

A ... Additionally added to our methodology, - ... No recommendation for or against the method by the

standard, R ... Recommended, HR ... Highly recommended

than the designers, to keep independence high. After consensus, requirements,
specification and verification items are updated by the responsible persons.

In our methodology, the functional coverage model builds the connection
between the verification requirements and the results. Each verification require-
ment needs to be described by at least one SystemVerilog covergroup or cover
property for simulation or by at least one NLP [16]. Within each method the
Mutually Exclusive and Collectively Exhaustive (MECE) principle should be fol-
lowed [21]. For our kind of design we identified the following grouping inspired
by [21] as useful: use cases, interesting scenarios, temporal relations, value ranges,
stress tests, negated requirements. Input values should only be covered if they
had an effect and verification passes [8].

The analysis of uncovered items might reveal internal design details. In order
to keep independence high, we suggest that the design engineers should analyse
the structural coverage reports and disclose as little information as possible to
the verification engineers. The goal should be 100% functional and structural
coverage. If it can not be reached, an analysis should be performed and it should
be justified why less than 100% are acceptable [15].

Natural Language Properties (NLPs) [16] are our coverage model items for
FPV. They are a semi-formal notation where natural language snippets are trans-
lated into SystemVerilog property snippets with a fixed N:1 mapping. E.g. one
can use different natural language expressions to describe the same formal state-
ment. “Expr implies that Seq” and “Every time when Expr: Seq” can be both
translated into and implication “Expr |->Seq”. Technical details can be hidden
by application specific NLPs, e.g. “Cycle is the start of a measurement cycle”
is translated into “($rose(mtValidxDI))”. That way an unambiguous connection
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Fig. 1. Verification workflow

between a NLP and a formal property is established. The NLPs can be easily
reviewed by requirements engineers unfamiliar with SVA. We use this review
step to increase independence between design and verification.

For formal verification we calculate functional coverage as follows:

Functional coverage[%] =
Nr. of proven properties

Nr. of properties
∗ 100.00 (1)

Or with weights, similar to SystemVerilog covergroup coverage [7]:

Weighted functional coverage[%] =
∑

i(wi ∗ pi)∑
i wi

∗ 100.00 (2)

wi = weight per property, pi = 1 if property was proven, 0 otherwise

3.2 Automated Verification

Formal Property Verification (FPV). Our main verification method is FPV
with SVA [22]. We use as little formal assumptions, i.e. constraints, as possible,
therefore even allowing scenarios that are outside the current specification. When
the specification changes, the same properties can be reused for verification.
This reduces the logic in the Cone-of-Influence of the formal properties, which
makes it easier for formal tools to conclude. The properties can be validated in
simulation by including the SystemVerilog file that contains the properties inside
the SystemVerilog DUV interface.

The number of states of continuously operating designs grows exponentially
with the number of input bits and necessary clock cycles for a proof. We model
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complex calculations with 64-bit operands in auxiliary code and use properties
to proof the equivalence of the DUV’s outputs with the modelled calculations.

We start with black-box verification, which means that we do not modify or
access internal signals and describe properties only in terms of input and output
relations. If these properties are inconclusive, we apply abstraction techniques
like inserting cut points on internal registers. That means that logic which drives
these registers is cut away. This reduces the complexity of the proof calculation
and therefore it is easier for the formal tool to conclude. A proof is valid for all
values that are possible within the bit-widths of these registers. This includes
the values that can be generated by the logic which is cut off. Therefore it is a
logically safe transformation that might introduce false negatives, but never false
positives [22]. Such techniques require the verification engineer to gain knowledge
about the code, thus violating the principle of independence. Therefore, we apply
these methods only after all independent black-box verification activities have
been completed.

Constrained-Random Simulation. We use constrained-random simulation
with the SystemVerilog UVM library whenever formal tools can’t deliver results
within reasonable time. Verification engineers develop a reference model based
on the requirements, independent from the design engineers. SystemVerilog can
communicate with a C or C++ model through its Direct Programming Interface
(DPI). The test bench simultaneously sends UVM transaction to the Design
Under Verification (DUV) and the reference model and compares the outputs.

Regression Coverage. Whenever a fault is found with simulation-based or formal
verification that occurs in a scenario that is not yet part of the coverage model
for simulation, we add it in the following way:

1. Identify input and output signal traces and their relationships that revealed
the fault. Add a new covergroup, coverpoint or coverpoint bin. If a sequence
of stimuli is needed to uniquely identify the scenario, use e.g. value transition
or expression coverpoint bins or cover properties. Internal signals can be used
if provided by the design engineer. We call these “regression covergroups/-
bins”.

2. Rerun the failing test and check that the new regression bin is covered in the
same simulation time step in which the test failed.

3. Rerun all other test cases and check that the new coverage item is not covered
by any other test that passes. If it is, the coverage item does not model a
unique scenario. Either add step 6 or modify the coverage item and start at
step 1.

4. The design engineer removes the fault of the DUV.
5. Rerun the failing test with the updated DUV. Check that the bin is still

covered in the same simulation time step. Check that the verification passes.
6. Optionally: Copy the failing UVM test and UVM sequence class. Rename

them to match the regression coverpoint bin and implement a stop condition.
The test can stop when it has covered its corresponding bin. Add this test
case to the regression test suite and do not modify it anymore.
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Regarding point 3: In a continuously operating system, a unique scenario that
leads to a fault might have to be described by long and complex signal traces and
their relationships. Sometimes it can be more efficient in terms of engineering
time to describe a signal relationship with a higher level of abstraction, which is
not uniquely identifying the faulty scenario, but which includes it.
Regarding point 6: As long as the calls to randomisation functions in the regres-
sion test case are not altered, it can be used to reproduce the same scenario.
SystemVerilog provides random stability as long as the order of new requests for
random values is not altered within a thread [7].

Documentation, Traceability and Reproducibility. Forward tracing as
shown by the arrows in Fig. 1 and backward tracing (by following the arrows in
reversed direction) of verification items is used to measure verification progress
and to provide verification evidence. All verification activities are documented
in a version control system and can be reconstructed and reproduced.

4 Application to the CERN RadiatiOn Monitoring
Electronics (CROME)

4.1 CERN RadiatiOn Monitoring Electronics (CROME)

CERN, the European Organisation for Nuclear Research, operates the world’s
most powerful particle accelerators. Particle collisions produce ionizing radiation.
The radiation protection group is responsible for protecting humans from any
unjustified radiation exposure. The CERN RadiatiOn Monitoring Electronics
(CROME) are the new generation of instruments used for measuring ionizing
radiation levels and triggering alarms and machine interlocks based on these
measurements [23]. Several hundred units will be installed.

The CROME Measuring and Processing Unit consists of a radiation detector
and an electronic system for data communication and storage, signal processing
and safety-related decision taking. The latter contains a heterogeneous Zynq-
7000 System-on-Chip (SoC) consisting of an ARM core and an FPGA. The ARM
core executes an embedded Linux and an application that receives around 100
parameters with ranges up to 64 bit over the network, which it transfers to the
FPGA. The FPGA performs the radiation dose and dose rate calculations. Based
on that, it autonomously triggers alarms and machine interlocks. It contains all
safety-critical code, implemented in VHDL. Triple Modular Redundancy and
Soft Error Mitigation are used for detecting random hardware faults [24].

The devices can be used in areas with very different radiation levels, e.g.
in service caverns close to the particle detectors as well as at the fences of the
CERN site. To that end they were kept very generic and parametrizable. Peri-
ods of uninterrupted operation can last several months or years. These system
attributes lead to high numbers of possible input values and deep internal states
that are challenging for verification.
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The calculation of the radiation dose consists of 3 additions with 64-bit
operands, 1 multiplication with 32-bit operands and logic for rounding. It is
calculated from the measured input current (fA - nA) and it is the base for
one of the system’s alarms. The dose is accumulated over a configurable period,
which can last several years. Internal registers track the state. The calculation
can be influenced at run-time by sending 6 parameters of up to 64 bit length
from the CERN control room to a CROME device. The dose alarm decision
is based on the outcome of 7 conditions, sampled on 2 real-time measurement
cycles that can be thousands of clock cycles apart.

The alarm and interlock matrix block implements a complex configurable
logical formula which drive the safety-critical outputs of the system. These out-
puts are connected to the alarm units, which provide visual and audible alarms
and to the machine interlocks, which stop the particle accelerators in case of a
too high radiation level. The formula can be configured by 200 2-bit wide param-
eters. In total the block has 2451 possible input values. Some of its outputs are
fed back to the logical formula as input. Apart from that the block does not
store an internal state and therefore results are available after a few clock cycles.

4.2 Verification Planning

We derived 76 verification requirements for the radiation dose calculation from
only 26 system-level requirements, which were written with a very high level
of abstraction and some ambiguities. The latter were discussed directly with
the requirements engineers for increasing independence. 8 statements that were
added and 10 statements that were only partially contained in the design specifi-
cation lead to further verification requirements. The analysis lead to 12 updates
of either requirements, specification or verification code. Verification planning
lead to a more complete documentation of the whole project, which is very
important to comply with safety standards [5]. We specified 52 cover properties
and 4 covergroups that contained 56 coverpoints, as well as 30 NLPs.

During the review of the NLPs we discovered one very critical misunder-
standing regarding the triggering of the radiation dose alarm. The design and
verification engineers interpreted a requirement in the same way, but differently
than the requirements engineers. This could not have been discovered with any
automated verification technique. It shows the importance of independence and
reviews. The detailed example has been reported in [16].

4.3 Automated Verification

Simulation and FPV were executed on a CentOS 7 workstation with 4 GHz CPU
and 32 GB RAM. The single-threaded Questa Sim simulator, version 10.7, was
used for simulation. Questa PropCheck, version 10.7c, was used for FPV with 8
hardware threads on 4 processor cores.
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Formal Property Verification

Radiation Ambient Equivalent Dose Calculation. The dose calculation was mod-
elled with auxiliary code. Properties compare the outputs of both models. So far,
the dose calculation could be proven with the following constraints:

– 101 different calculation period lengths from 0 to 100, where 0 stands for an
unlimited period

– Operands of additions restricted to 8 possible values or calculation period
restricted to 2 real-time measurement cycles

– Time counting register restricted to 13.6 years in 100 ms unity, which therefore
also limits the maximum period length to 13.6 years.

We allowed arbitrary values in the reset state by using a netlist constraint that
sets the initial values of input ports to X. That means proofs cover every possible
starting state, which includes the actual reset state.

A cutpoint was inserted at the register etxDN that normally loads the time
counting register etxDP with a new calculated value. That means that the formal
tool treats etxDN as an input and generates a proof for all possible values. If
cutpoints are enabled, the auxiliary code also uses etxDP. That ensures that the
formal tool uses the same value inside the DUV and the auxiliary model during
one round of calculation. etxDN cannot be used in the model, as its value can
be arbitrary in any clock cycles. The DUV and the model can perform their
calculations in different clock cycles. The properties proof that, after a defined
number of clock cycles following the start of one round, the outputs of both
models are equivalent.

This way the unlimited number of consecutive calculations that keep track
of an internal state is reduced to a smaller sequence of recurring operations. The
elapsed time tracking register needs to be verified in a separate proof.

Proven: 8 properties could be fully proven, without any constraints on param-
eter values. Most importantly they include the proof of correct triggering of
radiation dose alarms. The triggering is decided by 7 conditions at 2 consecutive
real-time cycles with configurable distance.

Undocumented Design Decision Found: One fault happened only with very
specific input bit combinations when an internal calculation result was negative
and rounded. Even though thousands of inputs had already been simulated, this
scenario had not been covered. To cover it, very tightly constrained simulation
test cases were needed. The rounding mechanism was not documented. The
coverage model had to be updated.

Fault that Happens After 7 years of Continuous Device Operation: In
the division of the elapsed time value, one of the operands was treated as a signed
value. The calculation was only wrong, when the most significant bit had value
‘1’. This fault could have never been found by black-box simulation because it
would have required to simulate 7 years of device operation to discover it. For
environmental radiation monitors it is a realistic scenario to operate continuously
for such a long time. FPV revealed the fault within 1 s.
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Alarm and Interlock Matrix. The logical formulas of the matrix were modelled
with auxiliary code. Properties were used to prove the equivalence of the calcu-
lated values with the DUV’s outpus.

Proven: The alarm and interlock matrix was fully proven with 46 properties.

Fault in Radiation Dose Alert: In one very specific input combination, the
radiation dose alert was not triggered due to a wrongly specified range of a
partially used VHDL vector. Many stimuli had already been simulated by the
designer and user tests with the programmed FPGA had passed. Only FPV
revealed the fault.

Output not in Safe State in Case of Invalid Inputs: The system require-
ments allowed 3 different values for certain inputs that were stored as 2 bits. The
4th possible value is illegal and not expected. No specific measures were imple-
mented to handle that case, so the outputs would have been in inconsistent states
and not in their safe state.

Constrained-Random Simulation

Table 2. Functional coverage of the radiation dose calculation

Cover type Covered - all
tests

Covered -
passed tests

Nr. of
coverpoints

Nr. of bins Nr. of
stimuli
applied

Cover properties 100.00% 100.00% – – 16355

cgIntConditions 100.00% 93.98% 28 466 324647

cgIntRegression 100.00% 100.00% 3 3 250

cgIntValueRanges 91.95% 73.02% 17 656 249327

cgIntRobustness 7.15% 6.02% 8 392 280977

Total 79.82% 74.60% 56 1517 454200

Radiation Ambient Equivalent Dose Calculation. Table 2 shows the number of
stimuli that were applied to reach ca. 80% of coverage with constrained-random
inputs. The goal was not to find the minimum number of stimuli necessary to
reach full coverage, but rather to simulate large numbers of stimuli in the prox-
imity of interesting scenarios and corner cases in order to increase the chances
of finding faults in operation conditions that have not even been considered.

A coverage bin can be a value, value range, value transition or a condition
outcome. An additional condition for coverage sampling can be specified. E.g.
sampling a value for radiation dose calculation period is only valid, when the
whole period has been simulated. It is not meaningful to sample it already when
it has been applied to the input. The period can span thousands of clock cycles or
in real-time: days, months or years. Some faults only appear after a long sequence
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of applied inputs and internal state changes, like e.g. the fault that would have
happened after 7 years of operation that we found with formal verification.

We did not reach 100% functional coverage for all covergroups. This shows
the shortcomings of simulation for continuously operating devices. The last two
groups contain values and expressions that are related to the radiation dose
calculation period. Since simulation is even slower than real time, it is impossible
to simulate these scenarios with purely design independent black-box techniques.
Code coverage confirmed that the only bits that were never toggled were the
higher-order bits of registers that store time values. Toggle coverage reached
only 78%. The rest was fully covered.

It is possible to access any internal signals from within the SystemVerilog
testbench. The internal state, e.g. the elapsed time register, could be manipulated
to simulate different real time values and reach full coverage. As discussed for
cutpoints, to keep independence high, this technique should only be applied after
independent black-box verification has reached its limits.

In a first attempt the simulation that created the coverage shown in Table 2
ran nearly 40 h. The cause for that long runtime were the cover properties. They
contained many sequences that spanned over a large number of clock cycles, using
SystemVerilog constructs like ##[1:$], which means that something happens
after 1 or an arbitrary number of clock cycles. As long as a property or sequence
is not yet covered, the simulator has to create a new instance of it at each clock
cycle and check in each following clock cycle whether it has been covered. This
construct is very useful to intersect different sequences at arbitrary times, but it
comes with the cost of runtime increase. A more efficient alternative turned out
to be covergroups that use expression coverage with value transition bins. The
covergroup sampling did not add any significant overhead.

We tracked the test cases that actually contributed to the coverage of the
cover properties. We ran each of them until its contribution to coverage of cover
properties stagnated. Once all properties were covered, we executed the rest
of the test suite with cover properties disabled. This approach led to a total
simulation runtime of 3 h.

Table 3. Verification findings - radiation dose calculation

Found by Update of

specification

Update of

implementation

Update of

verification code

Total found

by method

Review of requirements 4 5 6 9

Natural Language

Properties

1 1 1 1

Review of design

specification

1 2 0 2

Constrained-random

simulation

5 9 2 15

Formal Property

Verification

4 3 4 11

Total 15 20 13 38
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4.4 Results Summary

Table 3 shows the faults that we found in the radiation dose calculation. Some
findings caused updates of multiple artefacts. The total numbers per method
should not be compared, because faults that had already been found with one
verification technique had been removed and could have therefore not been found
anymore with the other techniques. The results show that each described method
contributes to the discovery of faults. Table 4 shows how long it would minimum
take to apply each input combination that has been covered by formal proofs
if we could simulate one stimulus at each CPU clock cycle. Many more simu-
lation cycles would have to be added to cover all different traces of continuous
operation, like e.g. different dose calculation periods. The fault that would have
happened after 7 years of operation clearly shows this need. The fault that was
not covered because it was hidden behind an undocumented design decision and
the fault in the radiation dose alert show that testing only a few values per
equivalent class is not always sufficient.

Table 4. Estimated minimum simulation time for the proven bits, compared to actual
formal verification run time.

Radiation dose
calculation

Alarm & interlock
matrix

Nr. input bits covered by proofs 70 451

Nr. proven properties 8 46

Estimated min. simulation time 9359 years 7.99 * 10137 years

Runtime formal verification for all proofs 1.46 h 33 s

Documentation, Traceability and Reproducibility. We use the version
control system Git to communicate design and verification artefact updates. It
can be easily forgotten to update a version number inside the DUV or verification
code. Git generates unique hashes for each commit. We used these hashes to track
the faulty and updated versions, log files, planning and results documentation.
Any state of the test bench can be checked out and results can be reproduced.

5 Conclusion and Future Work

We presented a functional verification methodology for highly parametrizable,
continuously operating, safety-critical real-time systems implemented in FPGAs.
The methodology can also be applied to digital Application Specific Integrated
Circuits (ASICs). We started with a discussion of our methodology in comparison
to the requirements of the IEC 61508 and related work. We defined a workflow
that starts with the system safety requirements as input and verification results
as output. Forward and backward traceability between these artefacts is pro-
vided via functional coverage items. We applied our technique of NLPs [16] to
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aid the requirements review. Our main verification method is Formal Property
Verification (FPV). This decision was supported by the discovery of several inter-
esting faults and successful proofs. Additionally we apply constrained-random
simulation with the UVM. For both methods we use functional and structural
coverage as a metric for progress tracking.

The methodology was demonstrated on a subset of the CERN RadiatiOn
Monitoring Electronics (CROME). We will further apply it to that system and
use it for future FPGA or ASIC projects. There is still potential for further
automation and usage of the UVM’s concepts for reusability from block to FPGA
system level. Fault injection will have to be added to address random hardware
faults. Then we intend to extend the methodology to include SoC system level
verification that also includes the software running on the ARM core. We are
also working on unifying the reference model for simulation with the auxiliary
code for formal verification to reduce effort.
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