
Using Hardware-In-Loop-Based Fault
Injection to Determine the Effects

of Control Flow Errors in Industrial
Control Programs

Jens Vankeirsbilck(B) , Hans Hallez , and Jeroen Boydens

KU Leuven Bruges Campus, Bruges, Belgium
{jens.vankeirsbilck,hans.hallez,jeroen.boydens}@kuleuven.be

Abstract. Embedded systems, which are at the core of many small
scale and large scale machines, are affected by external disturbances
which can introduce control flow errors. These control flow errors can
affect the control program executing on the embedded system, poten-
tially causing sensor signals to be misinterpreted or actuators being mis-
controlled. Software-implemented control flow error detection techniques
have existed for many years, although there is little literature about
these techniques being tested on input/output-driven programs. This
paper presents a hardware-in-loop-based fault injection campaign per-
formed on a typical industrial setting, i.e. a small scale factory. Thanks
to hardware-in-loop simulation, we can perform the fault injection cam-
paign without the risk of breaking a mechanical or an electrical part. For
our fault injection campaign, we considered both the unprotected control
program and the version protected with our RACFED error detection
technique. The results show that up to 58% of the injected control flow
errors can affect the unprotected control program in a dangerous man-
ner. Implementing RACFED clearly lowers this percentage to less than
4%, showing this technique can be used in industrial settings.

Keywords: Hardware-in-the-loop simulation · Fault injection ·
Control flow error

1 Introduction

Today, industry is becoming more and more data-driven, also known as Indus-
try 4.0 [8]. While the Internet-of-Things makes this shift possible, it also creates
a much harsher working environment for embedded systems that are at the core
of many small and large scale machines. By interconnecting all these machines,
often using wireless communication, electromagnetic interference is now a major
form of disturbance for those embedded systems [3,5,12]. Combined with other
technology trends such as decreasing transistor feature sizes and lowering sup-
ply voltages, embedded systems are inherently more susceptible for external
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 405–418, 2020.
https://doi.org/10.1007/978-3-030-54549-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54549-9_27&domain=pdf
http://orcid.org/0000-0003-0038-588X
http://orcid.org/0000-0003-2623-9055
http://orcid.org/0000-0002-7902-8537
https://doi.org/10.1007/978-3-030-54549-9_27


406 J. Vankeirsbilck et al.

disturbances [1,7,11,13,16,24]. These disturbances range from electromagnetic
interference and high-energy particles to temperature fluctuations and they may
introduce bit-flips in the system’s hardware [10,14]. In turn, these bit-flips can
cause control flow errors (CFE), unwanted jumps in the system’s software. This
can lead to misinterpreting sensor readings, erroneously controlling actuators or
even crashing programs [9].

To protect embedded systems, many software-implemented CFE detection
techniques have been proposed [2,15,18,20,22]. Such techniques add extra con-
trol variables and their update instructions to the target programs. At run time,
the added instructions are executed and calculate a run-time value for the con-
trol variable. At certain points in the target program, the run-time value and the
compile-time value of the control variable are compared to one another and a
mismatch indicates a CFE has occurred and has been detected. However, these
measures are often only validated using data-driven case studies, such as matrix
multiplication, fast fourier transform or cyclic redundancy check calculations.
To expand the validation of such techniques, we created a small scale factory
that enables the validation of CFE detection mechanisms using an input/output-
driven case study [23]. In that work, we merely performed a preliminary study
on the effects of CFEs on the control programs of the small scale factory. This
paper builds upon that work by proposing a hardware-in-loop-based (HIL) fault
injection setup. This allows us to execute the control programs of the small scale
factory in a simulated environment and enables an extensive fault injection study,
without the risk of breaking mechanical or electrical parts.

The remainder of this paper is structured as follows. Section 2 describes the
small scale factory and how a CFE detection technique is added to its control
programs. Following, Sect. 3 presents the built fault injection setup. Next, the
effects of the injected CFEs on those control programs are discussed in Sect. 4.
Then, the drawback of this HIL simulation is described in Sect. 5. Finally, future
work is presented in Sect. 6 and conclusions are drawn in Sect. 7.

2 Case Study

This section presents our small scale factory and discusses how its control pro-
grams are protected against CFEs by implementing our Random Additive Con-
trol Flow Error Detection (RACFED) technique.

2.1 Small Scale Factory

Our small scale factory consists of three stations from the Festo-Didactic MPS R©

series: a distribution station, a testing station and a sorting station [6]. Com-
bined, they represent a closed process, in which workpieces are pushed out of
a stacked magazine and transported to the testing area where only the good
workpieces are moved to the final station, which in turn sorts them by color. In
total, the small scale factory is able to distinct between six types of workpieces.



Using Hardware-In-Loop-Based Fault Injection 407

Regarding the color, it recognizes three types: silver, red and black, and for each
color, there are correct workpieces and wrong workpieces.

As the stations’ names imply, each station performs a part of that process.
The setup is shown in Fig. 1, with the distribution station on the left, the testing
station in the middle and the sorting station on the right. To drive each station
and thus to execute the control program, we selected an NXP LPC 1768 which
is an ARM Cortex-M3 driven microcontroller. We selected the ARM Cortex-M3
because it is an industry leading 32-bit processor. For more information about
the functionality of each station and how the control programs are developed,
the reader is referred to our previous work [23].

Fig. 1. The small scale factory. On the left the distribution station, in the middle the
testing station and on the right the sorting station. The workpiece flow goes from left
to right.

2.2 Adding CFE Detection

To make the control programs more fault tolerant, the first step is to apply a
CFE detection technique. For this paper, we opted to implement our in-house
developed RACFED technique [22]. RACFED detects CFEs by inserting a con-
trol variable and its update instructions in the target code. As shown in Fig. 2,
RACFED is implemented in the assembly code of a control program, using a
basic block as implementation unit. A basic block is a sequence of consecutive
instructions with exactly one entry and one exit point. Together, basic blocks
and edges which show the intentional paths between basic blocks, a program can
be visualized in a control flow graph. In fact, Fig. 2 shows the control flow graph
of a sample program, with RACFED implemented. Shown in the normal font are



408 J. Vankeirsbilck et al.

Fig. 2. RACFED implemented for a sample program in the assembly code.

the original program instructions and shown in bold are the instructions inserted
by RACFED to detect CFEs, with the control variable held in register r11.

At the beginning of each basic block, a control variable update instruction
is inserted. This update instruction is followed by a verification instruction that
compares the run-time value of the control variable with its compile-time value.
If there is a mismatch between the two values, a CFE is detected and control
is transferred to an error handler, here located at address 0x24c. This error
handler is defined by the user and is out of scope for this paper. Next, control
variable update instructions are inserted after each non-branch instruction. The
final control variable update instruction is executed conditionally when the basic
block ends in a conditional branch.

Implementing RACFED in the assembly code of the control programs man-
ually would be too time consuming and too error-prone. Therefore, we adjusted
the compiler flags of the control programs to use our in-house developed GCC
plugin that can automatically add the supported CFE detection techniques to
the assembly code [21]. This GCC plugin supports up to ten CFE detection
techniques, including RACFED, and currently two instruction set architectures,
i.e. ARMv6-M and ARMv7-M. Figure 2 uses ARMv7-M as assembly code, since
this is the instruction set of the selected NXP LPC 1768. For more informa-
tion on RACFED or the GCC plugin1, the reader is referred to [22] and [21],
respectively.

Of course, adding RACFED to the control programs increases the instruction
count of those programs, leading to an increase in code size and execution time.
Although not important for the small scale factory, since memory is abundant

1 Available as open-source project on https://github.com/MGroupKULeuvenBruges
Campus/CFED Plugin.

https://github.com/MGroupKULeuvenBrugesCampus/CFED_Plugin
https://github.com/MGroupKULeuvenBrugesCampus/CFED_Plugin


Using Hardware-In-Loop-Based Fault Injection 409

and there are no deadlines to be met, we measured both types of overhead. The
code size overhead was measured by using the GNU size tool on the compiled
program, i.e. on the produced .elf file. This shows the amount of extra instruction
memory needed to store the protected program, relative to the unprotected
program. The execution time overhead is measured using an on-board hardware
timer of the NXP LPC 1768 and shows the extra time it took for the protected
control program to process one workpiece relative to the unprotected control
program.

The measurement indicate that using RACFED to detect CFEs has increased
the code size of the control programs by a factor of ×1.66 for each station.
Nonetheless, this has no impact on the execution time overhead. The time nec-
essary to process one workpiece for the protected control program and the unpro-
tected program is the same. This is because the control program is mainly waiting
for the mechanical parts to have moved. During this wait, no instructions are exe-
cuted, leading to the same execution time for the unprotected and the protected
control program. These measurements show that the impact of implementing a
software-based CFE detection methods depends from use case to use case.

3 Fault Injection Setup

In order to analyse the effects of CFEs on the control program of each of the sta-
tions, we have built a HIL-based fault injection setup. Hardware-in-loop means
that the LPC 1768 is removed from its station and is plugged into a hardware
simulation of its respective station. This hardware simulation will provide the
necessary input signals to the LPC 1768 in order to execute the station control
program, and it will analyse the output signals of the LPC 1768. We opted to
perform fault injection using a HIL setup to avoid breaking mechanical or elec-
trical parts of the actual stations, as we do not know all potential effects of CFEs
on the control programs. This section will first discuss the hardware setup, later
the software execution is presented, concluding with the executed experiments.

3.1 Architecture

To inject control flow errors in the control program of each station, we created
the architecture illustrated in Fig. 3. As shown, the built setup has four major
parts: a computer, a USB-hub, the target LPC 1768 and another LPC 1768
which executes the HIL code to simulate the sensors and actuators of the actual
hardware.

Our in-house developed software-implemented fault injection (SWIFI) tool
executes on a computer, which is connected to the on-chip debugger of the target
LPC 1768 through a USB-hub [19]. Using the on-chip debugger, the SWIFI tool
has access to the program counter register of the microcontroller. By injecting
bit-flips in this register, CFEs are introduced into the control program. The
target LPC 1768 is connected to the computer through the controllable USB-
hub to enable hard-resetting the target. From time to time, the communication



410 J. Vankeirsbilck et al.

Fig. 3. The hardware setup built for the HIL-based fault injection campaign.

between the computer and the on-chip debugger of the target can get corrupted.
To solve this, the SWIFI tool can issue to the USB-hub to power down and re-
power the USB-port to which the target is connected. This power-cycling of the
USB-port resets the target and enables to establish a new connection between
the SWIFI tool and the on-chip debugger of the target.

To make sure that the station control program executes, we developed a HIL
program that provides the necessary digital inputs to the target LPC 1768 and
that analyses the received digital outputs send by the target. This HIL program
also executes on an LPC 1768, indicated as HIL LPC1768 in Fig. 3. To provide
the necessary digital inputs and to analyse the digital outputs of the target, both
LPC 1768 are connected through several digital I/O connections. To be able to
report the status of the station control program, and to know when to start
providing inputs to the target, the HIL LPC 1768 is connected to the computer,
and in fact the SWIFI tool, through a serial interface.

3.2 Injecting a CFE

To inject a CFE the following steps are executed:

1. The SWIFI tool determines an origin program counter value for the CFE.
Based on that origin value, a destination value is created by flipping a single-
bit of the origin value. To make sure the destination value is valid for the
current control program, the disassembly file of the control program is pro-
vided to the SWIFI tool. The disassembly file holds all valid program counter
values for the current program and can thus be used by the tool to select a
destination program counter value.

2. Once both the origin and destination of the CFE are selected, a thread is
started to inject the defined CFE. This thread waits until the program counter
holds the origin value and then corrupts it to the destination value.



Using Hardware-In-Loop-Based Fault Injection 411

3. Once the thread to inject a CFE is started, the SWIFI tool creates a second
thread which sends the command to the HIL LPC to start the process of pro-
viding the necessary digital inputs to the target LPC to simulate a workpiece
that must be processed. Once the HIL LPC has received this command, it
will sequentially provide the necessary digital inputs and for each provided
digital input, it will check to see if the target LPC provides the correct digital
outputs.

Once both threads have executed, the effect of the injected CFE is analyzed.
This is done by analyzing the state of the control program and by sending a
command to the HIL LPC, which then sends back whether or not all digital
outputs from the target LPC were correct. Based on the response of the HIL
LPC and the state of the control program, the effect of the CFE is categorized
in one of the following four categories:

– Detected (Det): The CFE is detected by a software-implemented CFE
detection mechanism.

– Hardware Detected (HD): The CFE is detected by a hardware measure
present in the LPC 1768. Many microcontrollers have error detection mecha-
nisms implemented in their hardware. Such error detection mechanism enable
the detection of improper bus usage, stack corruption, etc. This category indi-
cates that the CFE was detected by such a hardware error detection mecha-
nism.

– Silent Data Corruption (SDC): The CFE remained undetected and was
able to corrupt the execution of the station control program. This means that
the HIL LPC responded with an error code, indicating that while processing
a simulated workpiece, the target LPC provided incorrect outputs. This is
the most dangerous effect a CFE can have and should be avoided as much as
possible.

– No Effect (NE): The CFE remained undetected but had no effect on the
execution of the station control program. This is an indication of the inherent
CFE resilience of the control program.

3.3 Executed Experiments

In this paper, we conducted two types of experiments for each station control
program. The first type of experiment injected CFEs contained within a control
program function. This means that both the origin program counter value and
the destination program counter value belong to the same control program func-
tion. The results of this type of experiment will be indicated as IntraFunc for
the remainder of this paper. The second type of experiment injected CFEs that
jumped between two control program functions. In these experiments, the origin
program counter value belongs to one function, while the destination program
counter value belongs to another program function. The results of this type of
experiment will be indicated as InterFunc in the following sections.

To analyze the effects of CFEs on the unprotected control programs, we
injected 1000 IntraFunc and 1000 InterFunc CFEs for each control program



412 J. Vankeirsbilck et al.

function. For the testing station, we executed these experiments twice: once
simulating a correct workpiece and once simulating a wrong workpiece. Simi-
larly, we performed these experiments three times for the sorting station: once
simulating a silver workpiece, once simulating a red workpiece and finally, once
simulating a black workpiece.

To determine the efficiency of RACFED, we repeated this fault injection
campaign for the protected version of the control programs. To compensate for
the increase in instructions, we injected 2000 IntraFunc and 2000 InterFunc
CFEs for each protected control program function.

4 Impact of the Injected CFEs

The results of the fault injection experiments are shown in Fig. 4 and Fig. 5, in
which WP stands for workpiece. The two figures show the results of the IntraFunc
fault injection campaign and that of the InterFunc fault injection campaign,
respectively. In dark-green, the faults detected by RACFED are indicated, in
light-green the HD category is represented, the NE category is depicted in orange
and because the SDC category represents the worst possible effect of a CFE, it
is illustrated in dark-red.

Fig. 4. Results of the IntraFunc fault injection campaign. (Color figure online)

When analyzing the IntraFunc results, it is clear that the unprotected control
programs are vulnerable to these types of CFEs. Furthermore, the testing station
shows to be even more sensitive to IntraFunc CFEs than the other two stations.



Using Hardware-In-Loop-Based Fault Injection 413

Fig. 5. Results of the InterFunc fault injection campaign. (Color figure online)

As shown in Fig. 4, the IntraFunc CFEs resulted in an SDC ratio of 29.4% for
the distribution station and in an average SDC ratio of 28.0% for the sorting
station, the testing station reports an average SDC ratio of 56.1%. The data
does not show any discrepancies compared to the other two stations. We therefore
conclude that the control program for the testing station is just more susceptible
to IntraFunc CFEs than its distribution station and sorting station counterparts.

Regarding the global results of the fault injection campaign, the figures indi-
cate that the IntraFunc CFEs resulted in a higher SDC ratio than the InterFunc
CFEs for the unprotected control programs. This is due to the hardware error
detection mechanisms present in the LPC 1768. A jump between two different
control program functions is more likely to corrupt the stack or to be a larger
jump, and the hardware error detection mechanisms are implemented to detect
such occasions. This is shown in Fig. 5, as the HD category has a minimum value
of 77.2%. Therefore, of all injected InterFunc CFEs, only 22.8% or less are not
caught by a hardware error detection mechanism and are able to corrupt the
workpiece processing. As shown in the figure, most of these InterFunc CFEs do
corrupt the processing of a workpiece and are thus categorized as SDC. Intra-
Func CFEs on the other hand are smaller jumps and less likely to cause stack
corruption, so less likely to trigger the hardware error detection mechanism and
thus remain undetected. This is shown in Fig. 4 in which the HD category has a
maximum value of 19.7%. This means that 80% of the injected IntraFunc CFEs
remain undetected and potentially be registered as SDC.



414 J. Vankeirsbilck et al.

When looking at the protected control programs, RACFED detects most of
the injected CFEs, achieving 60% or higher error detection ratio, and signifi-
cantly reduces the SDC ratio for all stations, as expected. For the distribution
station and the sorting station, the SDC ratio drops below 4% which is within
the design limit of the RACFED technique. As explained in the literature, a
technique will never reach an SDC ratio of 0% for IntraFunc CFEs, as there are
always IntraFunc CFEs that can defeat the technique [22]. To give an exam-
ple, consider again Fig. 2. A CFE originating at address 0x1d4 and landing at
address 0x1dc, skips the program instruction located at 0x1da but does not skip
a control variable update and thus remains undetected. While such InterFunc
CFEs do exist, they are much more rare and thus a fault injection campaign can
report an SDC ratio of 0% for these type of CFEs as is the case for the sorting
station.

The IntraFunc results of the testing station differ from those of the other two
stations. While RACFED detects 72% of the injected CFEs, the SDC ratio is
still 10.5% which is high. Analysis of the data revealed that many of the CFEs
causing SDC exploit the weaknesses of RACFED, such as the type of CFE
mentioned in the previous paragraph. Another reason for the high SDC ratio is
that, due to the memory layout of the program, multiple single-bit bit-flips of the
program counter, result in the program jumping to a wait sequence causing an
indefinite wait in the program. These wait sequences are used to make sure the
mechanical parts are driven for the correct amount of time. When a CFE jumps
to such a wait sequence, the waiting time is not initialized or the mechanical part
is not actually driven, causing an indefinite wait in the program, which is then
categorized as SDC. This shows that, although a CFE detection mechanism is
implemented, CFEs can still have devastating effects on the control program.

5 Drawback of the Created Fault Injection Setup

Using the created HIL-based fault injection, we were able to perform an in-
depth CFE study on the control programs for our small scale factory. This has
revealed that 30% or more of the injected IntraFunc CFEs can corrupt the
execution of these control programs, which is much more than our estimate
from our preliminary study [23].

The numbers presented in this paper are, however, a Worst Case scenario
since any deviation from the normal workpiece processing flow is categorized
as an SDC. This process does not take the inherent error resilience of the sta-
tion control programs into account. As described in Sect. 3.2, the created HIL
simulation sequentially produces the necessary inputs for the target LPC1768
to correctly process one workpiece, independent from the output of the target.
Once all signals to process one workpiece have been produced, no further sig-
nals are produced, regardless of the state of the station control program. In the
actual small scale factory, however, the sensors might produce signals for the
controlling LPC1768 indicating that something went wrong. In turn, the control
program can react to those signals and try to correctly process the workpiece.



Using Hardware-In-Loop-Based Fault Injection 415

As an example of this inherent error resilience, consider that the testing
station is processing a correct workpiece and that it is in the state put correct
workpiece on airslider, as shown in Fig. 6. If due to a CFE, the ejection
cylinder is not activated, the workpiece will remain on the lift table. Once the
remainder of the code is executed, the station will be in the state wait for
workpiece. Since the workpiece is still on the lift table, the HIL simulation
would classify this behavior as an SDC. In the actual small scale factory, however,
the workpiece detection sensor detects that the workpiece is still on the lift
table and hence sends the signal new workpiece, causing the control program to
process the workpiece correctly. This means that despite the CFE, the workpiece
is processed correctly albeit with a delay. This shows the inherent error resilience
of the control program.

Fig. 6. Flow chart showing the functionality of the testing station.

To have a more realistic simulation of the hardware and to have more realistic
fault injection results, another HIL simulator needs to be created. In this new HIL
simulator, each major part of each stations should be simulated independently
and be reactive to the inputs provided by the target LPC 1768. Where in the
current HIL simulation the HIL LPC 1768 is the master and the target LPC 1768
is the slave, these roles should be reversed in the more realistic HIL setup. The
current HIL setup has as advantage that detecting whether or not the workpiece
was processed correctly is easy. This can now be done by analysing the outputs
of the target LPC 1768 for each step in the sequential providing of the inputs.
In the more realistic and reactive HIL simulation this would be more difficult,
as each simulated part of the station needs to be analysed.

Moreover, such a reactive HIL simulation would allow to test our crude recov-
ery method. As described in our previous work, we implemented a crude recovery
method for each of the stations which, simply put, re-executes a certain part of
the control program depending on when the CFE is detected. With our cur-
rent HIL setup, we could not test this recovery mechanism, but with a more
reactive HIL simulation this becomes possible. We are currently working on the
architecture, hardware selection, etc., for this more reactive HIL simulation.



416 J. Vankeirsbilck et al.

6 Future Work

As described in Sect. 3.2, non-valid single-bit bit-flip CFE destination values for
the program counter are filtered from the pool of possible CFEs to inject. Anal-
ysis revealed that 0% to 30% of the single-bit bit-flip values are valid program
counter values, i.e. those single-bit bit-flip values are program counter addresses
valid for the target program. The other 70% to 100% are non-existing for the tar-
get program and CFEs using such values as destination address would be caught
by the hardware error detection mechanisms. Although the injected CFEs result
in silent data corruption, these values reveal that the program counter is not
that sensitive to erroneous bit-flips introduced by external bit-flips.

Therefore, a further study will include bit-flips introduced in the other cpu
registers, which are better known as data flow errors. Using the developed HIL
setup, bit-flips can be injected in the remaining cpu registers to cause data flow
errors risk free. Similarly, the effectiveness of data flow error detection techniques
can be evaluated when applied to a more input/output-driven case study [4,17].
Once known, the best performing data flow error detection technique can be
combined with RACFED to develop a technique that is able to detect both
control flow errors and data flow errors.

7 Conclusions

In this paper, we presented our HIL-based fault injection setup to be able to
inject CFEs into the control programs of our small scale factory without the fear
of braking anything. For our HIL simulation, we selected the NXP LPC 1768 as
hardware platform and developed a HIL control program for each of the three
stations in the small scale factory. This HIL control program sequentially pro-
vides the inputs to the target LPC 1768 to mimic a workpiece being processed
correctly. During this sequential process, the outputs of the target are moni-
tored. At the end, the HIL control program reports back to the fault injection
framework whether or not the target LPC 1768 provided the correct outputs or
not.

Once set up, we used the HIL-based fault injection setup to inject 1000 Intra-
Func and 1000 InterFunc CFEs in each control program function. The results
show that, when no CFE detection is present, up to 58% of the injected CFEs
can result in the corruption of the processing of a workpiece. This means that
due to the CFE, the target LPC 178 produced wrong outputs, which is here
classified as a corruption of processing. To analyse the effect of adding a CFE
detection technique, we implemented the RACFED technique in each of the
control programs and then repeated the fault injection experiments, using 2000
CFEs of each type. Now, a minimum of 60% of the CFEs is detected and the
corruption of processing a workpiece is reduced to less than 4% in most cases.
This clearly shows the increase in resilience due to the CFE detection technique.

However, due to the sequential and nonreactive nature of the created HIL
setup, the numbers shown in this paper represent the Worst Case scenario.



Using Hardware-In-Loop-Based Fault Injection 417

Each deviation of the normal procedure to process a workpiece is classified as
dangerous. In reality, however, some CFEs are handled by the inherent error
resilience of the control program and can result in the correct processing of
the workpiece. Unfortunately, the built HIL simulator does not allow for the
inherent error resilience to be executed. We are currently looking into new ways
to implement a HIL simulator for the small scale factory that is reactive and
does allow for this inherent error resilience to take place.

References

1. Abella, J., et al.: Towards improved survivability in safety-critical systems. In:
2011 IEEE 17th International On-Line Testing Symposium. pp. 240–245 (2011).
https://doi.org/10.1109/IOLTS.2011.5994536

2. Choi, K., Park, D., Cho, J.: SSCFM: separate signature-based control flow error
monitoring for multi-threaded and multi-core environments. Electronics 8(2), 199
(2019). https://doi.org/10.3390/electronics8020166

3. Claeys, T., Catrysse, J., Pissoort, D., Arien, Y.: Stripline set-up for characteriz-
ing the effect of corrosion and ageing on the shielding effectiveness of emi gas-
kets with improved repeatability. In: 2018 International Symposium on Electro-
magnetic Compatibility (EMC EUROPE), pp. 725–729 (2018). https://doi.org/
10.1109/EMCEurope.2018.8485135

4. Didehban, M., Shrivastava, A.: nZDC: a compiler technique for near zero silent
data corruption. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE (2016)

5. Estep, N.A., Petrosky, J.C., McClory, J.W., Kim, Y., Terzuoli, A.J.: Electromag-
netic interference and ionizing radiation effects on cmos devices. IEEE Trans.
Plasma Sci. 40(6), 1495–1501 (2012). https://doi.org/10.1109/TPS.2012.2193600

6. Festo-Didactic: Mps the modular production system. http://www.festo-didactic.
com/int-en/learning-systems/mps-the-modular-production-system/stations/

7. Hashimoto, M., Liao, W.: Soft error and its countermeasures in terrestrial envi-
ronment. In: 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 617–622 (2020)

8. i-SCOOP: Industry 4.0: the fourth industrial revolution - guide to industry 4.0.
https://www.i-scoop.eu/industry-4-0/

9. Ibe, E.H., et al.: VLSI design and test for systems dependability. Radiation-Induced
Soft Errors (2019). https://doi.org/10.1007/978-4-431-56594-9 3

10. Jagannathan, S., et al.: Temperature dependence of soft error rate in flip-flop
designs. In: 2012 IEEE International Reliability Physics Symposium (IRPS), pp.
SE.2.1–SE.2.6 (2012). https://doi.org/10.1109/IRPS.2012.6241927

11. Kanekawa, N., Ibe, E.H., Suga, T., Uematsu, Y.: Dependability in Electronic Sys-
tems: Mitigation of Hardware Failures, Soft Errors, and Electro-Magnetic Distur-
bances. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-6715-2,
https://www.springer.com/gp/book/9781441967145

12. Kim, K., Iliadis, A.A.: Critical bit errors in cmos digital inverters due to pulsed elec-
tromagnetic interference. In: 2007 International Conference on Electromagnetics
in Advanced Applications, pp. 217–220 (2007). https://doi.org/10.1109/ICEAA.
2007.4387276

https://doi.org/10.1109/IOLTS.2011.5994536
https://doi.org/10.3390/electronics8020166
https://doi.org/10.1109/EMCEurope.2018.8485135
https://doi.org/10.1109/EMCEurope.2018.8485135
https://doi.org/10.1109/TPS.2012.2193600
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stations/
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stations/
https://www.i-scoop.eu/industry-4-0/
https://doi.org/10.1007/978-4-431-56594-9_3
https://doi.org/10.1109/IRPS.2012.6241927
https://doi.org/10.1007/978-1-4419-6715-2
https://www.springer.com/gp/book/9781441967145
https://doi.org/10.1109/ICEAA.2007.4387276
https://doi.org/10.1109/ICEAA.2007.4387276


418 J. Vankeirsbilck et al.

13. Riera, M., Canal, R., Abella, J., Gonzalez, A.: A detailed methodology to compute
soft error rates in advanced technologies. In: 2016 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 217–222 (2016)

14. Sierawski, B.D., et al.: Effects of scaling on muon-induced soft errors. In: 2011
International Reliability Physics Symposium. pp. 3C.3.1–3C.3.6 (2011). https://
doi.org/10.1109/IRPS.2011.5784484

15. So, H., Didehban, M., Shrivastava, A., Lee, K.: A software-level redundant multi-
threading for soft/hard error detection and recovery. In: 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1559–1562 (2019). https://doi.
org/10.23919/DATE.2019.8715089

16. Team, M.M.: International roadmap for devices and systems - 2018 update: More
moore. Technical Report, IEEE IRDS (2018). https://irds.ieee.org/images/files/
pdf/2018/2018IRDS MM.pdf

17. Thati, V.B., Vankeirsbilck, J., Penneman, N., Pissoort, D., Boydens, J.: An
improved data error detection technique for dependable embedded software. In:
IEEE 23rd Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 213–220. IEEE (2018)

18. Tsai, T., Huang, J.: Source code transformation for software-based on-line error
detection. In: 2017 IEEE Conference on Dependable and Secure Computing, pp.
305–309 (2017). https://doi.org/10.1109/DESEC.2017.8073852

19. Vankeirsbilck, J., Cauwelier, T., Van Waes, J., Hallez, H., Boydens, J.: Software-
implemented fault injection for physical and simulated embedded CPUs. In:
IEEE XXVII International Scientific Conference Electronics (ET), pp. 1–4 (2018).
https://doi.org/10.1109/ET.2018.8549630

20. Vankeirsbilck, J., Penneman, N., Hallez, H., Boydens, J.: Random additive sig-
nature monitoring for control flow error detection. IEEE Trans. Reliab. 66(4),
1178–1192 (2017). https://doi.org/10.1109/TR.2017.2754548

21. Vankeirsbilck, J., Hallez, H., Boydens, J.: Automatic implementation of control
flow error detection techniques. In: Accepted at IASED International Conference
on Wireless Networks and Embedded Systems (ICWNES) (2019)

22. Vankeirsbilck, J., Penneman, N., Hallez, H., Boydens, J.: Random additive control
flow error detection. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP
2018. LNCS, vol. 11093, pp. 220–234. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99130-6 15

23. Vankeirsbilck, J., Van Waes, J., Hallez, H., Pissoort, D., Boydens, J.: Control flow
errors in an industry 4.0 setup: a preliminary study. In: IEEE International Con-
ference on Systems, Man and Cybernetics (SMC), pp. 2305–2310 (2019). https://
doi.org/10.1109/SMC.2019.8914545

24. White, M., Chen, Y.: Scaled cmos technology reliability users guide. Techni-
cal Report 20100014217, National Aeronotics and Space Administration (NASA)
(2010). https://nepp.nasa.gov/files/16361/08 102 4%20new%20del White.pdf

https://doi.org/10.1109/IRPS.2011.5784484
https://doi.org/10.1109/IRPS.2011.5784484
https://doi.org/10.23919/DATE.2019.8715089
https://doi.org/10.23919/DATE.2019.8715089
https://irds.ieee.org/images/files/pdf/2018/2018IRDS_MM.pdf
https://irds.ieee.org/images/files/pdf/2018/2018IRDS_MM.pdf
https://doi.org/10.1109/DESEC.2017.8073852
https://doi.org/10.1109/ET.2018.8549630
https://doi.org/10.1109/TR.2017.2754548
https://doi.org/10.1007/978-3-319-99130-6_15
https://doi.org/10.1007/978-3-319-99130-6_15
https://doi.org/10.1109/SMC.2019.8914545
https://doi.org/10.1109/SMC.2019.8914545
https://nepp.nasa.gov/files/16361/08_102_4%20new%20del_White.pdf

	Using Hardware-In-Loop-Based Fault Injection to Determine the Effects of Control Flow Errors in Industrial Control Programs
	1 Introduction
	2 Case Study
	2.1 Small Scale Factory
	2.2 Adding CFE Detection

	3 Fault Injection Setup
	3.1 Architecture
	3.2 Injecting a CFE
	3.3 Executed Experiments

	4 Impact of the Injected CFEs
	5 Drawback of the Created Fault Injection Setup
	6 Future Work
	7 Conclusions
	References




