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Abstract. In Vehicle-to-Grid (V2G) scenarios, Electric Vehicle (EV)
batteries serve as distributed energy resources that help stabilize power
supply through managed (dis)charging. The effective and safe grid inte-
gration is only possible when an Electric Vehicle Charging System
(EVCS) responsible for the battery management and V2G communi-
cation is counterfeit-free and protected against malicious attacks. By
manipulating the EVCS, adversaries can cause financial and physical
damage and increase the risk of hazardous situations such as fire and
traffic accidents. In this paper, we introduce secEVCS, a security architec-
ture for EVCSs, which ensures that only a vehicle with a manufacturer-
approved charging system can connect to the grid by securely binding
all components of the EVCS. Our solution is based on the enhanced
authorization functionality of the Trusted Platform Module (TPM) and
protects against the installation of counterfeit products and re-use of
secret data stored in scrapped EVCSs. We implemented secEVCS using a
TPM 2.0 chip and the V2G protocol specified in the ISO 15118 standard
to show the feasibility and to evaluate the performance of our solution.
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1 Introduction

The worldwide adoption of EVs, i.e., fully battery-powered and plug-in hybrid
vehicles, is growing, with the 5 million mark reached in 2018 [8]. The need to
charge EV batteries causes an extra load on electric grids, but their storage
capacity can be used by V2G services to handle power fluctuations [3]. The
V2G technology allows EVs to communicate with the grid to optimize charging
profiles, e.g., to limit the charging rate or to feed energy from batteries back
to the grid during high demand. For this purpose, V2G communication proto-
cols such as ISO 15118 [10] were developed. Using these protocols, an EV can
inform the grid of its preferences (energy amount, departure time, etc.) and
negotiate a grid-friendly (dis)charging schedule. The support for bidirectional
power transfer services is provided by the vehicle’s EVCS with two connected
components: an Electric Vehicle Communication Controller (EVCC) and a Bat-
tery Management System (BMS) responsible for the V2G session handling and
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battery management, respectively. As the degradation rate of EV batteries is
affected by the charging strategy, ensuring their correct operation during V2G
sessions is equally important to servicing the grid [18]. Besides, Li-ion batter-
ies are prone to overheating and can self-ignite due to improper (dis)charging
control [1,21].

The possibility to cause safety hazards and the V2G connectivity can provide
a strong incentive for malicious attacks aiming to subvert the functioning of the
EVCS. For example, if an adversary manipulates the BMS part of the EVCS or
replaces it with a tampered one, s/he can damage the battery by deliberately
operating it outside of the safe range, which can eventually lead to its failure
and the danger of fire or explosion [14,15]. In case several EVCSs connected
to the grid are under adversarial control, they can be turned into a botnet of
high-wattage devices for a coordinated attack aiming for local power outages or
large-scale blackouts [20]. Another critical aspect is the usage of counterfeit com-
ponents in EVCSs. The growing market and high price of EV batteries attract
criminals selling expired or low-quality counterfeit spare parts, which do not
meet regulatory standards and are potentially unsafe [17].

In this paper, we propose a new security architecture for EVCSs, further
referred to as secEVCS, which guarantees that a vehicle participating in V2G ser-
vices has a manufacturer-approved configuration of EVCC and BMS by securely
binding these components. secEVCS uses a TPM in the EVCC and the Device
Identifier Composition Engine (DICE) [25] in the BMS as security anchors. The
general idea is to only allow access to a V2G authentication key, which is required
for connecting to the grid, if the binding is successfully verified using the TPM’s
enhanced authorization functionality. secEVCS protects against the installation
of counterfeit spare parts and re-use of secrets from scrapped EVCSs. We imple-
mented secEVCS using a hardware TPM and ISO 15118 [10] for V2G communi-
cation1 to evaluate secEVCS under realistic constraints. To our knowledge, TPMs
have not been deployed in this scenario yet and the analysis of the trade-offs is
missing. Our work aims to close this gap.

The rest of the paper is structured as follows: First, we introduce the neces-
sary background on TPMs to be able to understand the paper in Sect. 2. Next,
we discuss related work in Sect. 3. In Sect. 4, we define our system model and in
Sect. 5 analyze safety-related security threats. Security and functional require-
ments are defined in Sect. 6. In Sect. 7, we introduce secEVCS before we describe
and evaluate our prototype in Sect. 8. We discuss the applicability of our solution
in Sect. 9 and conclude the paper in Sect. 10.

2 Background on Trusted Platform Modules (TPMs)

The TPM 2.0 Library Specification [23] defines a catalog of functionalities that
can be used to build the second iteration of the TPM for different platforms.
1 The ISO 15118 standard series is actively adopted by the industry, e.g., the CharIn

network (www.charinev.org). While we focus on the current protocol specification,
ISO 15118-2, we consider the 2nd edition draft, ISO 15118-20 [11], whenever relevant.

www.charinev.org
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Accompanying the TPM specification, a TPM Software Stack (TSS) 2.0 specifi-
cation [26] defines multiple Application Programming Interfaces (APIs) for dif-
ferent application scenarios. A TPM is a microchip designed to provide security-
related functionalities, e.g., secure storage and usage of cryptographic keys. A
central functionality in our solution is the enhanced authorization functionality.
All objects of a TPM, e.g., cryptographic keys, can be authorized with a policy
that must be satisfied in order to authorize an action on that object. Policy asser-
tions are sent to the TPM before the command being authorized. Our solution
also uses the internal Non-Volatile (NV) memory of a TPM, which retains con-
tent even if the power is off. This memory can be used to make keys of the TPM
persistent but can also be allocated by applications to create indexed strongly
monotonic NV counters. In the following, we list the TPM 2.0 commands and
policy assertions relevant for our proposed solution.

– TPM2 Create. This command is used to create all kinds of objects for the
TPM. This includes cryptographic keys usable for authenticating to external
entities. During creation, an (enhanced authorization) policy can be provided
that restricts usage of the created object.

– TPM2 Sign. This command calculates a signature using a private key cre-
ated via TPM2 Create. These signatures can be used for authenticating a
device or for asserting data integrity and origin.

– TPM2 VerifySignature. The TPM can verify a signature using a provided
public key. This operation by itself is much faster when implemented in soft-
ware and does not require the secure execution environment of a TPM. This
operation is to be used in conjunction with TPM2 PolicySigned.

– TPM2 NV DefineSpace. This command is used to define an NV index.
Depending on the assigned index number, the NV index is either part of the
user-owned (storage hierarchy) or of the platform-/OEM-owned (platform
hierarchy) areas of the TPM. For the sake of this paper, only OEM-owned
indices are used.

– TPM2 NV Increment. This command is used to increment a TPM NV
counter value.

– TPM2 StartAuthSession. In order to fulfill any authorization policy, the
application needs to start a policy session using the TPM2 StartAuthSession
command. Then the actual policy statements are subsequently satisfied by
invoking the corresponding TPM commands.

– TPM2 PolicyAuthorize. This command allows the activation of policies
after the definition of an object. In order to achieve this, a public key is
registered with a policy. This policy element then acts as a placeholder for
any other policy branch that is signed with the corresponding private key.

– TPM2 PolicyNV. The PolicyNV element provides the possibility to include
NV-indices in the evaluation of a policy. Amongst other operations, it can be
used to test whether an NV counter index has a certain value or whether it
is smaller or greater.

– TPM2 PolicySigned. This policy element can be used to validate a signa-
ture before granting object usage. A public key is registered with the pol-
icy. In order to satisfy a TPM2 PolicySigned, a TPM generated nonce (from
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Fig. 1. System overview

TPM2 StartAuthSession) must be signed by the holder of the private key
corresponding to the registered public key.

– TPM2 PolicyTicket. In order to speed up operations, a TPM2 Policy
Signed can return a ticket that is valid for a certain amount of time.
Instead of having to execute the same sequence of TPM2 VerifySignature
and TPM2 PolicySigned, the ticket can be replayed into a TPM2 PolicyTicket
command instead. This saves the round trips with the owner of the private
key for a predefined amount of time. The expiration time is already denoted
in the policy during its creation.

3 Related Work

The use of trusted computing in vehicle communication scenarios is commonly
discussed. In [30,31], solutions for privacy-preserving EV charging and billing
based on Direct Anonymous Attestation techniques using a TPM are introduced.
In [29], the authors use TPM-based remote attestation for identity and integrity
verification in the V2X scenario. The authors of [28] propose to use a Mobile
Trusted Module for remote attestation in V2G networks. In their system, an EV
directly sends its integrity metric to the grid server to verify its trustworthiness.
The work in [7] presents a privacy-aware architecture for V2G networks. As part
of this solution, a TPM in EV batteries is used for encrypted communication
of charging status, accumulation of information in sealed storage and remote
attestation. In [19], another security architecture for V2G networks is discussed
using a TPM in EV batteries for remote attestation. In [5], the authors propose
to include a TPM in a head unit (also called infotainment system) to realize
protocols for secure update, remote attestation, and sensitive data protection.

In our previous work [4], we introduce TrustEV, a security architecture for
secure provisioning, storage and usage of ISO 15118 credentials in an EV based
on TPM 2.0. Similarly, the TPM is used to store and control access to authen-
tication keys of the EVCC. The main feature of TrustEV is the direct import of
the ISO 15118 keys created by a third party into the EVCC’s TPM. TrustEV can
be combined with secEVCS to additionally support secure components binding.

4 System Overview

Figure 1 gives an overview of our assumed system. An Electric Vehicle Charg-
ing System (EVCS) comprises a Battery Management System (BMS) with an
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integrated rechargeable battery and an Electric Vehicle Communication Con-
troller (EVCC) with a TPM providing it with security services (cf. Sect. 2). As
TPMs are common in modern cars [9], this assumption is not limiting.

The BMS’s major function is to maintain the vehicle’s battery within its
safe operating range, to monitor its state (i.e., state-of-charge, state-of-health,
and state-of-function) and to assess the available energy amount [2]. The BMS
also controls battery cooling/heating, operates power switches, and exchanges
charging-related data via a Controller Area Network (CAN) bus with the EVCC.

The EVCC is responsible for communication with a Supply Equipment Com-
munication Controller (SECC) of a charge point during V2G service sessions and
supports automated authentication of EVs (i.e., Plug&Charge). We assume an
EV has to identify and authenticate itself against an SECC by means of a so-
called authentication key stored in its EVCC before it can connect to the grid
for charging. In ISO 15118, this key is part of the vehicle’s OEM provision-
ing or contract certificate. When negotiating a charging schedule for a V2G
session with the SECC, the EVCC queries the BMS on such parameters as bat-
tery state, allowed current and voltage. Together with the expected departure
time and other user-defined charging preferences, this information is crucial for
demand-side management aimed to improve efficiency and stability of the grid.
Grid-friendly charging behavior can be awarded with reduced tariff rates. While
charging, the EVCC periodically receives metering receipts from the SECC for
signing that may later be used to bill the EV’s driver for the charged energy.

The life-cycle of an EVCS and its components includes several stages. The
BMS and the EVCC are produced by respective Original Equipment Manufac-
turers (OEMs) that provide firmware and cryptographic keys. An automotive
OEM creates for an EV a unique Vehicle Identification Number (VIN)2 and
authentication key, while a battery OEM provides a BMS with a unique identity
key. The cryptographic keys are assumed to be created by OEMs in a secure
way and not leaked during manufacturing. When deploying a new EVCS in a
vehicle, the EV’s manufacturer defines a safety-approved configuration, by bind-
ing a BMS to an EVCC. Replacing or updating any of the EVCS’s components
can be carried out in an authorized repair shop, where a new approved con-
figuration will be created. A drained EV’s battery can also be replaced with
a fully-charged one in a battery swap station operated by a battery swapping
company [22]. We assume backend systems of the OEMs and service providers
exchange information securely using a common Public Key Infrastructure (PKI).

5 Safety-Related Security Threats

The EVCS of a vehicle is a safety-critical system. The growing number of reports
on self-ignition of EV batteries while charging or in driving [21], shows the poten-
tial for adversaries not only to damage EVs and their components but to harm
their passengers or people in the vicinity with targeted attacks. In [15,16], the
2 VINs mainly conform to two international standards ISO 3779 and US Standard

FMVSS 115; a VIN is always 17 characters long.
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authors propose a Security-Aware Hazard and Risk Analysis Method (SAHARA)
and use it to identify threats for a BMS and estimate the risk. Threats for BMS
and potential effects are also analyzed in [14]. Based on these analyses, we con-
sider the following threat scenarios with their possible safety impact:

Configuration Tampering. An adversary replaces the BMS in the EVCS with
one that is not approved by the OEM and/or under full control of the adver-
sary. This could also be done by the EV’s driver who aims to extend the
range of the vehicle by upgrading the battery [6]. Such action would violate
the OEM’s warranty. Impact: The attack affects the EVCS’s integrity and
has multiple safety implications. The adversary can modify battery informa-
tion, e.g., to indicate a larger capacity than given, and control battery func-
tions to, e.g., ignore dangerous operating conditions like overheating in order
to damage the battery or cause a fire [18]. Moreover, incompatible EVCS
components can incorrectly interpret exchanged data, which can shorten the
battery lifetime and lead to hazardous situations. Disrupting demand-side
management would also affect the grid.

Charging Contract Hijacking. An adversary uses a scrapped EVCC storing
the authentication key of a valid V2G user to charge her/his own vehicle on
the uncovered account or to use the access profile to connect to the V2G ser-
vice. Impact: The attack affects the confidentiality of the EV’s key and the
privacy of the previous user of the scrapped EVCC; the integrity and authen-
ticity of V2G sessions is also breached. The latter can affect grid stability
due to unexpected charging behavior or even cause blackouts if the attack is
launched in a coordinated manner [20].

Counterfeit BMS. An adversary uses old BMSs with expired or malfunction-
ing batteries to produce and sell counterfeit products, which can still carry the
label of the original manufacturer but are not certified for safe use. Impact:
The attack affects system integrity and authenticity. Counterfeit batteries
often lack required safety protections and can easily catch fire.

6 Security and Functional Requirements

To prevent the threats defined in Sect. 5 with secEVCS, we propose to enable
access to an EV’s authentication key needed to use V2G services, only if its EVCS
is original, i.e., only if a verifiable binding between EVCC and BMS exists. This
leads to the following security requirements, which must be fulfilled:

SR1 Secure private key storage and usage. Private keys (e.g., authentication
keys, identity keys) shall be protected against leakage during their storage
and usage.

SR2 Restriction of key usage to trustworthy systems (Key usage authorization).
Access to private keys shall only be possible if the EVCS is trustworthy,
i.e., the components configurations are approved by the manufacturer and
are not manipulated.
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Fig. 2. secEVCS policy verification steps

SR3 Revocation support. It shall be possible to revoke BMS of an EVCS in case it
is removed from an EV, so that it cannot be used in another manufacturer-
approved EVCS configuration later on.

A security solution for EVCSs should bring clear benefits to the automo-
tive and EV battery industry and consumers without unnecessary restricting
legitimate usage scenarios. This results in the following functional requirements:

FR1 Minimal performance overhead. A solution shall not cause undesirable
delays in EV charging and shall meet timing constraints of standard V2G
protocols. In ISO 15118, e.g., charging may be delayed by two uses of the
EVCC’s key and key use is bound by strict timing requirements (detailed
in Sect. 8.2).

FR2 Support of legitimate component exchange. Only legitimate entities shall be
able to replace or swap the battery (including BMS) and/or EVCC while
maintaining the manufacturer-approved EVCS configuration.

7 Solution

The general idea of secEVCS is to bind EVCC and BMS of an EV and to allow
access to an authentication key only if this binding can be verified. The authen-
tication key is securely stored and used in the EVCC’s TPM and access is only
possible if a TPM enhanced authorization policy is fulfilled. This policy includes
the result of challenge-response protocol between EVCC and BMS.

secEVCS consists of an initial EVCS preparation phase for initializing and
binding EVCC and BMS (cf. Sect. 7.1), the EVCS usage phase (during the life-
time of the EV) supporting the authorization of charging sessions and the swap-
ping of batteries (cf. Sect. 7.2), and performance optimizations (cf. Sect. 7.3).
Figure 2 shows the enhanced authorization policy verification steps as the cen-
tral part of secEVCS, which are described in more detail below.

7.1 EVCS Preparation

EVCC Preparation. During manufacturing, the OEM generates an authentica-
tion key on the EVCC’s TPM. This authentication key comes with an autho-
rization policy (TPM2 PolicyAuthorize()) that refers to an OEM public key
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(cf. Fig. 2 on the right) for policy statements. To use the authentication key,
the EVCC software needs to present a policy to the TPM that was authorized
(signed) by the OEM. Thus, the newly created key cannot be accessed directly
after its generation. The OEM needs to explicitly issue (and sign) a policy state-
ment that describes, under which conditions the authentication key can be used.
We use the EV’s VIN as policy reference value of the authentication key’s policy.
This way, this key can only be accessed if a policy is fulfilled that was authorized
by the OEM with the corresponding VIN denoted during key generation, i.e., a
signed policy addresses the intended EVCC only and cannot be copied to other
EVCCs. The EVCC preparation process is represented by InitTPM() in Fig. 3a.
If key generation on the TPM is not possible, keys can be also generated outside
and imported into the EVCC’s TPM (e.g., in ISO 15118 using TrustEV [4]).

BMS Preparation. The BMS is equipped with a DICE [25] (cf. InitDICE() in
Fig. 3a), as a cheap alternative to a TPM suitable for highly constrained embed-
ded systems [12]. DICE generates a unique device Identifier (ID) based on a glob-
ally unique secret and a measurement of the device’s first mutable code using a
cryptographically secure one-way function. Hence, any persistent attack to the
BMS results in the generation of a different device ID. As the DICE is trusted
and has exclusive access to the unique secret, it is impossible for an attacker to
recover the secret or generate a valid device ID after a persistent attack. The
BMS can use the DICE-generated ID to secure its identity key (e.g., by using the
ID as seed to a Key Derivation Function (KDF) and using the resulting key to
encrypt the identity key before it is stored). This way, the BMS’s identity key is
also protected from persistent attacks. With this key, the BMS can authenticate
itself using a public key signature. As the BMS’ public identity key is required
for the binding between EVCC and BMS (see next paragraph), the key is read
out by the BMS’ OEM and passed to the EVCC’s OEM (cf. OEM in Fig. 3a).

BMS and EVCC Binding. At this step, the EVCC’s OEM needs to issue (sign) a
respective policy (cf. BindingPolicy and PolicySig in Fig. 3a). The policy consists
of a TPM2 PolicySigned() containing the public key of the BMS. To fulfill this
condition, a nonce generated by the TPM must be signed with the BMS’ private
key and the signature validated by the TPM. Additionally, the policy contains
a TPM2 PolicyNV() statement that links this policy to a monotonic counter
inside the TPM. If a BMS binding needs to be revoked in the future, the OEM
can increment the TPM’s counter. The signature over this policy by the OEM
also includes the VIN as policy reference value as mentioned above. This binding
can happen in conjunction with the initial key generation or at a later stage.

7.2 EVCS Usage

Charging Authorization. Access to the authentication key is only possible if
the BMS and EVCC binding is successfully verified. This process is shown in
Fig. 3b (PolicyCheck() aggregates all policy-related validations). The EVCC first
loads the authorized policy (i.e., the BMS binding policy) and policy reference
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Fig. 3. EVCS sequence diagrams

value, i.e., VIN, and verifies the signature using the OEM’s public key. The
result is a so-called signature validation ticket. Then, the EVCC starts a policy
session (TPM2 StartAuthSession()) and sends the session’s nonce as a challenge
to the BMS. The BMS signs the nonce with its private key and returns the
signature and its public key. The EVCC extends its session with a validation
of the BMS’ signature (TPM2 PolicySigned()) and the comparison of the NV-
counter (TPM2 PolicyNV()). The BMS binding is authorized using the signature
validation ticket (TPM2 PolicyAuthorize()). After this, the policy session is in a
state that grants access to the EVCC’s key operations and the EVCC can issue
a TPM2 Sign() operation to authenticate itself against the charge point.

Battery Swapping. A battery swapping company needs to maintain a backend
connection to the OEMs and perform the above BMS binding process. To inval-
idate the binding to the old BMS, the OEM increments the TPM’s counter and
then issues (signs) a new policy for the new BMS and the new counter value.

7.3 EVCS Enhancements for Better Performance

The process for key usage described in Sect. 7.2 requires the EVCC to chal-
lenge the BMS and perform the policy session assertions for each access to the
authentication key. This can lead to undesirable delays when trying to charge an
EV (e.g., in our tests it took on average 2.4 s; cf. Sect. 8.2). This can be easily
avoided by sending challenges to the BMS independent of the charging sessions
and pre-calculating the entire policy session. For example, the EVCC can send
a challenge whenever the charging port lid is opened. This way, a correct policy
session is always available before the authentication key is to be used.

Another issue is that the EVCC has to send a new challenge to the BMS each
time it needs to use the authentication key. This can delay communication proto-
cols between EVCC and SECC using this key not only for charge authorization,
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but also, e.g., to sign metering receipts. A low performance of the BMS Elec-
tronic Control Unit (ECU)3 and a low throughput of a CAN bus4, this process
(estimated to about 5.8 s) may exceed timing constraints of the protocol.

We address this issue by using a shortcut in the TPM2 PolicySigned()
command. The command can output a ticket upon validation, which can
be used in future policy sessions (within the expiration time) using the
TPM2 PolicyTicket() command as a replacement (cf. Fig. 2 on the left). This
expiration time should not be too short (to gain a speedup) and neither too
long (to restrain attacks). An expiration time of 5 min is a good starting point
to give a user enough time to initiate charging, while still preventing potential
attacks. These 5 min provide enough time to start a second policy session from
the beginning.

8 Implementation and Evaluation

In this section, we evaluate our proposed solution. We use ISO 15118-2 [10]
as communication protocol between EVCC and SECC. We describe the imple-
mented prototype and evaluate the added overhead. A minimal overhead is
important for the usability of secEVCS in terms of compliance to the timing
constraints of ISO 15118 on EVCC signature creation as well as for user conve-
nience. Additionally, ISO 15118-20 [11], the upcoming successor of [10], allows
for even tighter timing constraints, which are also considered in the evaluation.

8.1 secEVCS Implementation

Our prototype was implemented using three Raspberry Pi 3 Model B running
Linux kernel 4.14 to simulate the EVCC, BMS, and SECC. The EVCC-Pi is
equipped with an Infineon Iridium 9670 TPM 2.0. EVCC and BMS communicate
over regular Ethernet, while SECC and EVCC communicate over power-line
communication (PLC) Stamp micro 2 EVBs (similar to PLC over a charging
cable). Our test-bed is shown in Fig. 4.

To execute TPM commands, we use the TPM2-TSS5 and as ISO 15118 imple-
mentation we use RISE-V2G6, integrated with the TrustEV implementation
from [4] for EVCC Preparation (cf. Sect. 7.1). The challenge-response commu-
nication between EVCC and BMS is implemented using the Secure Shell (SSH)
protocol [13] to simulate any added security means on the automotive bus.

The expiration time of BMS signatures is set to 5 min. Challenges are sent
to the BMS 5 s before start of ISO 15118 communication (to simulate the

3 It can take an ARM Cortex-M0+ without performance optimizations up to 3649 ms
to create a signature using the algorithm and parameters defined by ISO 15118 [27].

4 Transmitting 16 byte nonce, 64 byte EC public key, and 64 byte ECDSA signature
in 18 extended CAN frames (16 bytes each with 8 bytes data and 7 bits inter-frame
spacing) with 125 kbps Low-Speed CAN takes about 20 ms under optimal conditions.

5 TPM2-TSS: https://github.com/tpm2-software/tpm2-tss.
6 RISE-V2G: https://github.com/V2GClarity/RISE-V2G.

https://github.com/tpm2-software/tpm2-tss
https://github.com/V2GClarity/RISE-V2G
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Fig. 4. Test-bed setup

time from opening the charging port lid to plugging in the charging cable)
and a minute before the current signature expires. After receiving a signature,
TPM2 PolicySigned() is called to retrieve the verification ticket. The ticket is
used by two processes to pre-calculate multiple policy sessions concurrently.
When the authentication key is used in ISO 15118, one of these pre-calculated
policies is consumed. We only use two pre-calculation processes along with the
ticket generation process, to not exceed three concurrent authorization sessions.
While a TPM must be able to support 64 active sessions, it must only be able to
hold 3 of those in RAM at a time [24]; hence, exceeding this limit would decrease
performance on TPMs that only support the minimums from [24].

8.2 Performance Evaluation

During performance evaluation, we measured the computational overhead cre-
ated by our prototype from Sect. 8.1 compared to the default RISE-V2G imple-
mentation. All measurements were repeated 100 times each using Java’s Sys-
tem.nanoTime(). During a charging loop, the EVCC alternates between sending
charging status and signed metering receipt messages. It tries to send them as
fast as possible, reaching 121.9 ms between consecutive receipts. For our measure-
ments, the EVCC sent 10 metering receipts for each of the 100 charging loops.

The time for signing ISO 15118 messages with default RISE-V2G was 15.7 ms
and with secEVCS 469.8 ms. For comparison, without the parallel pre-calculated
policies, the average signature time was 1119.8 ms, and without any of the perfor-
mance optimizations for secEVCS, i.e., with an on-demand challenge to the BMS
for each key usage and no policy pre-calculation, the time for signing ISO 15118
messages was 2437.8 ms. Our measurements for secEVCS are shown in Fig. 5
(signature #0 is for charge authorization and #1–10 for metering receipts).

With our setup, the time from sending a challenge to the BMS until receiv-
ing a signature was 277.6 ms. In Sect. 7.3, we discussed a more realistic device
configuration. Extrapolating our measurements to low power ECUs and CAN
bus, the measurements for BMS signatures would increase to 3669 ms, leading
to ISO 15118 message signing time of 5829.28 ms for secEVCS without optimiza-
tions. This correlates to the head time used for pre-calculation of sessions and
the use of the improvements proposed in Sect. 7.3.
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Fig. 5. Mean times of signature creation in a charging session

It is worth noting that with secEVCS there was a significant difference in the
times for signing charge authorization requests compared to metering receipts.
The former was on average 228.8 ms, whereas the latter – 493.9 ms. Also, the
mean time for signing the first 2 receipts of each charging loop was 304.3 ms and
the mean time for the 3rd to 10th was 541.3 ms. This is because we have only
two processes to pre-calculate policy sessions. Hence, when starting a charging
session, there are two policies ready to use and if more than two signatures need
to be created, new policy sessions need to be calculated at run-time.

In our setup with 2 parallel policy sessions (np), 121.9 ms between metering
receipts (tm), and the signature time of 228.8 ms (ts) there are only 472.6 ms
(= np × tm + (np − 1) × ts) for policy pre-calculation. Anything above that
will increase the signature time. With an average time for policy calculation of
737.4 ms, i.e., an overrun of 264.8 ms, this gives about 500 ms for signatures
without full policy pre-calculation. While this should lead to alternating signa-
ture times (after a signature with ts = 500, the available time for pre-calculation
is 743.8 ms which should allow for a fast signature), we did not experience this
effect. Instead, as a result of the parallelization, the times for the 3rd metering
receipt signature onward were much less predictable with a standard deviation
of 231 ms compared to the times for the first 2 with a standard deviation of 56.4
ms and the time for the authorization signature with a standard deviation of
4.8 ms.

Since in ISO 15118 at most the first two signatures are time-critical, i.e.,
signing a request for a new authentication key and signing the charge autho-
rization request afterwards can delay the charging start, we argue that the
achieved results are acceptable for the use-case. Regarding ISO 15118 com-
patibility, the only requirements affected by the increased EVCC signature
time are the V2G EVCC Sequence Performance Time of 40 s (time for the
EVCC to send its next request after a response from the SECC) and the
V2G SECC Sequence Timeout of 60 s (timeout of the SECC for waiting on the
next EVCC request). Even without the performance optimizations, secEVCS
stays well within the relevant limits. However, in the 2nd edition ISO 15118-20
[11], the timeout mechanism for metering receipts was changed. The SECC may
define its own arbitrary timeout in seconds. Hence, a minimal timeout of 1 s is
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possible and only the optimized secEVCS would be able to meet this minimum
(cf. Fig. 5).

9 Requirements Coverage Discussion

To prevent safety-related threats from Sect. 5, secEVCS verifies the binding
between the EVCS components prior to charging. In Sect. 6, we defined the
requirements that need to be satisfied by a secure and usable solution. Below we
informally discuss how these requirements are covered by secEVCS.

In secEVCS, the EVCC’s authentication key is generated and stored in the
controller’s TPM and can only be accessed by this TPM and used only in its
shielded location. Thus, this private key is protected from any attacks that read
keys from the memory. As the binding between EVCC and BMS is validated
based on a signature by the BMS’s identity key, secure storage of this private key
is essential for the overall security, too. To protect this key, secEVCS uses DICE.
As our solution does not require the BMS to use the TPM’s advanced security
functions, a smaller security architecture with less hardware requirements was
chosen as more appropriate. Due to the relatively high cost of a TPM, it is also
desirable to limit their number to externally facing ECUs. Thus, secEVCS meets
the security requirement Secure private key storage and usage (SR1).

The TPM always verifies, whether the EVCC is in a trustworthy state and
whether the BMS defined in the configuration provided by its OEM is present,
before allowing access to the authentication key. Thus, if an attacker has manip-
ulated or replaced the BMS, or uses a scrapped controller, the EVCC will not
be able to authenticate itself for using V2G services. This corresponds to the
security requirement Restriction of key usage to trustworthy systems (SR2).

The security requirement Revocation support (SR3) is fulfilled by the vali-
dation of the value of a monotonic counter inside the EVCC’s TPM, which can
be incremented each time an expired or malfunctioning BMS is exchanged in a
repair shop. This way, it will not be possible to use this BMS together with the
EVCC for charging because it is not part of the approved configuration anymore.

The functional requirement Minimal performance overhead (FR1) is met as
explained in detail in Section 8.2. Requirement Support of legitimate component
exchange (FR2) is also fulfilled since only an authorized OEM can register a
new BMS with an EVCC’s TPM by sending an updated policy.

10 Conclusion

Recent studies indicate fire and traffic incidents caused by manipulated EVCSs
as a major safety concern for EVs. In this paper, we proposed secEVCS, a new
security architecture aiming to prevent harmful situations by allowing only vehi-
cles with manufacturer-approved charging systems to (dis)charge electric energy
at charge points. This guarantee is achieved through securely binding the compo-
nents EVCC and BMS responsible for charging authentication and management
using the enhanced authorization feature of the EVCC’s TPM. This binding
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is verified each time the EV wants to use its authentication credential, which
turned out to be challenging with regard to user convenience and communication
timeouts. In order to evaluate our solution within realistic constraints, we imple-
mented secEVCS using a TPM 2.0 chip and ISO 15118-2 [10] as a V2G protocol.
Also, the upcoming ISO 15118-20 [11] with harder timeouts was considered in
our evaluation. While the performance overhead is acceptable for the use case
and within the timing constraints of ISO 15118-2, a straightforward approach
of TPM-based component binding cannot meet the new requirements. With the
new edition, conformance to the standard can only be guaranteed if all proposed
secEVCS performance optimizations are in place.

Our results provide a useful reference for future work that can address the
shown limitations (e.g., timing conditions or runtime attacks on EVCS) or adopt
secEVCS as a security anchor in broadened scenarios, e.g., secure load manage-
ment. We also plan a collaboration with industry as part of technology transfer.
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