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Explicit modeling of assurance cases supports engineers in reasoning about the
system safety and communicating with third-parties. Assurance cases are central
artifacts of the safety assurance engineering process, an explicit model of an

FASTEN.Safe: A Model-Driven
Engineering Tool to Experiment
with Checkable Assurance Cases

Carmen Carlan'®) and Daniel Ratiu?

! fortiss GmbH, Munich, Germany
carlan@fortiss.org
2 Siemens Corporate Technology, Munich, Germany
daniel.ratiu@siemens.com

Abstract. The Goal Structuring Notation (GSN) is popular among
safety engineers for modeling assurance cases. GSN elements are specified
using plain natural language text, this giving safety engineers great flexi-
bility to express their arguments. However, pure textual arguments intro-
duce ambiguities and prevent automation. Currently, assurance cases
are verified by manual reviews, which are error prone, time consuming,
and not adequate for today’s systems complexity and agile development
methodologies. In this paper we present our research tool FASTEN.Safe,
which extends GSN with a set of higher-level modeling language con-
structs capturing recurring argumentation patterns and integrating for-
mal system models. This allows automatically checking 1) the intrinsic
consistency of assurance models, 2) the consistency of arguments with
system models and 3) the verification of safety claims themselves by
using external verification tools. FASTEN.Safe is open source and allows
experimenting with language abstractions to bridge the world of GSN-
based arguments that are common among safety engineers and the world
of formal methods that enable automation. Last but not least, we report
on the preliminary experience gained with FASTEN.Safe.

Keywords: Assurance cases * GSN - NuSMV - Language engineering

Introduction

assurance case entailing the core of the argument that the system is safe.

The Goal Structuring Notation (GSN) is a compact graphical representation
for argumentations and one of the most prominent notations used for model-
ing assurance cases, containing a small number of constructs that are intuitive
to understand and easy to use by practitioners [1]. Using models for assurance
arguments brings structure and enables the application of well-formedness rules
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— e.g., no circular reasoning is allowed. Claims within GSN elements are spec-
ified using plain natural language text, safety engineers having great flexibility
to express their arguments. However, pure text-based claims introduce ambigu-
ities and prevent automation. The only validation method of text-based claims
within assurance cases are manual reviews, this causing two challenges. First,
such reviews prove to be tedious when complex systems are built. Second, man-
ual reviews are not suitable for a more agile development mindset, where change
requests of safety critical components are frequent and their impact on the assur-
ance argument should be immediately evaluated.

In our work, we explore the way in which assurance cases can be made
checkable, yet easy to understand by practitioners. To this end, we extend GSN
language constructs with specialized constructs (DSLs) that reference formally
specified system models. This enables automated consistency checks both within
assurance cases and with the models linked therein. Further, given the integrated
automated verification engines, the verification of the satisfaction of safety claims
by the referenced system models can be triggered from the assurance case model
and the verification results lifted at the level of the assurance cases. Our long-
term vision is to make assurance case models central artefacts for starting veri-
fication activities in the context of agile development of safety-critical systems.

Contributions and Structure. The main contribution of this paper is FAS-
TEN.Safe', a new tooling approach to build extensible and semantically rich
assurance cases that are linked with formally defined system models in order to
increase the rigour of the assurance cases specification and to enable automated
verification of assurance cases. FASTEN.Safe is an extension of FASTEN, a For-
mAl SpecificaTion ENvironment described in [9], released under EPL 1.0 license
and available on github?. The rest of the paper is organized as follows: Sect. 2
presents a set of GSN extensions that make automated checks possible, Sect. 3
describes our preliminary experience with using these extensions, in Sect. 4 we
present the related work and Sect. 5 concludes the paper.

2 Checkable Assurance Cases

To facilitate automation for safety assurance, our approach is to check the assur-
ance case directly by 1) ensuring its intrinsic consistency, 2) enabling automatic
consistency checks with system models, and 3) firing up checks of various sys-
tem aspects that are modeled outside of the assurance case itself. These checks
make the assurance case a central engineering artifact that is to be checked and
facilitates automation for safety assurance.

Running Example: Airbag of a Car. To facilitate the understanding, we
introduce in the following FASTEN.Safe features “by example”. We use system
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models of an airbag and integrate them with assurance case elements. The airbag
system’s main functionality is specified by the following functional requirement:
FR_01: The purpose of an airbag is to slow a wvehicle occupant’s motion as
evenly as possible using a bag designed to inflate extremely quickly, then quickly
deflate during a crash scenario. Based on this requirement, a list of hazards is
derived. Hazard H1 is mitigated by implementing, among others, the following
derived safety requirement: SR_01: The airbag shall inflate only after a colli-
ston. This requirement is then refined in the system’s architecture, as described
by Arts et al. [2]. The architecture comprises a top-level component, named
airbag_system, containing the following subcomponents: 1) the Sensor, which
detects collisions and sends messages encoded by an End-2-End (E2E) protection
mechanism (specific to the AUTOSAR standard) to the airbag controller, 2) the
Link that connects the components, and 3) the Device, entailing the airbag’s
controller. All components are specified in a black-box manner, the requirements
being specified via formal contracts expressed in LTL. While functional require-
ment FR_01 is formalized as post(1) collision_post postcondition, postcondition
post(2) no_collision formalizes safety requirement SR_01. The bus guarantees
that the airbag system functions correctly even when failures such as message
corruption and deletion occur. To express this failure model, we specify precon-
dition pre(1) collision pre.

Tool Architecture. In Fig. 1, we present an overview over our tooling platform
built using the Jetbrains’ MPS language workbench®. FASTEN.Safe is a plat-
form that allows experimentation with different modeling abstractions for the
development of safety critical systems. The tool addresses four concerns — 1) haz-
ard and risk analysis (HARA), 2) requirements specification, 3) formal modeling
of system architecture [9] and 4) safety argumentation. To enable verification of
architecture models, FASTEN.Safe integrates the NuSMV verification engine.
At its core, FASTEN.Safe features an implementation of the Goal Structuring

DSLs Extensions of GSN which Integrate Formal Models
Bxtensions. | syv_based Requirements Specification I Contract-based Design Pattemns
we | HARA | Requirements | SMv Architecture GSN
" Platiorm JetBrains MPS
= e —

Fig. 1. Overview over the FASTEN DSL-stack developed using JetBrains’ MPS. FAS-
TEN integrates verification engines as external tools and provides support for their
input languages. In blue we highlight the parts that belong to FASTEN.Safe — they
comprise an implementation of GSN language and a set of patterns. Specialized GSN
entities (blue-hashed) reference formally specified elements of system models (hashed).
(Color figure online)
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Notation (GSN) language. Additionally, to support automatic checks, we imple-
mented extensions of the GSN language with specific types of goals, strategies
or solutions, integrating other safety and system models.

Checkable Assurance Cases are modeled via the instantiation of a special type
of GSN-based patterns, based on state-of-the-art patterns, for which we provide
special language constructs integrated with system models, and which come with
automated checks. In the following we introduce three categories of such checks.

2.1 Type I Checks: Intrinsic Consistency of the Safety Case

GSN has rules for how to connect GSN elements among each other to obtain
a syntactically correct argumentation. However, it does not regard the seman-
tic validity of an argumentation. GSN patterns go a step further and enable a
higher intrinsic consistency since they re-use several entities together. To ensure
the validity of the arguments created via instantiation, the patterns come with
instructions on how to instantiate them. However, unless the instantiation is done
automatically, there is no guarantee that the instantiation will generate a valid
argumentation. To ensure valid instantiation of patterns, FASTEN.Safe provides
special types of GSN entities via language extensions, which may only be con-
nected via special types of connections, which extend the GSN supported by and
in context of connections. For example, the Argument over Hazards Strategy can
only be supported by sub-goals of type Hazards Mitigation Goal.

2.2 Type IT Checks: Consistency with System Models

The second category of checks ensures the consistency between the assurance
case and system models. To this end, we propose specialized entities extending
GSN elements, which are integrated with different types of models, specifying
the system at different levels of abstraction (e.g., hazards, requirements, archi-
tecture). As the system models are created in the same tool as the safety case
model, deeper integration can be achieved.

Examples of patterns that may undergo such checks are arguments that all
hazards, or all safety requirements have been addressed, as proposed by Hawkins
and Kelly [7]. These patterns entail specialized GSN strategies integrated with
hazards and, respectively, requirements models. Consistency checks are then
executed on these strategies, ensuring that for each element in the list, an argu-
mentation leg exists. In Fig. 2, on the left hand side, we depict the hazards
mitigation checkable pattern; on the right hand side, we depict the patterns’
instantiation with hazards from the airbag example. The automated checks are
enabled by having specialized goals for claiming hazard mitigation — each goal
referencing a specific hazard — and specialized relationships between the strategy
and the goals. An error from our checks is triggered as the GSN model does not
contain argumentation legs regarding the mitigation of H3 and H4 hazards.
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Another example for type II checks is a pattern for arguing about the sat-
isfaction of a requirement in a contract-based design setting, entailing special-
ized GSN entities integrated with the components architecture (see Fig. 3). The
structure of this pattern reassembles the structure of the argument on compo-
nent level pattern proposed by Warg et al. [10]. Automated checks will trigger
errors given any inconsistencies between the components specified in the sys-
tem architecture and the GSN model (e.g., ensure that there is a correctness
implementation claim for each direct sub-component of the top-system).
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Fig.2. On top-left a list of hazards of an airbag is presented. On bottom-left the
checkable pattern containing specialized GSN strategy and goal is depicted, whereas
on bottom-right the instantiation of the pattern for the airbag system is presented. On
top-right the consistency checking results are displayed — in this example a check fails
since not all hazards have a corresponding Hazard Mitigation Goal.

2.3 Type III Checks: Verification of Safety Claims

The third type of checks that can be executed on an assurance case model are
verifications of the satisfaction of claims within the safety case by the referenced
system model via external verification tools. GSN elements expressing a system
property may be specialized as verifiable entities, by integrating them with the
formal specification of the respective system property. Such specialized entities
are integrated with external tools capable to verify the respective property type.
Verification goals are always supported by specialized solutions, which automat-
ically integrate the verification results whenever the verification is executed.
For example, the satisfaction of a safety requirement formalized as an assume-
guarantee contract can be reflected by a specialized strategy supported by three
main strands of argument, each comprising a specialized, checkable goal (see
Fig. 3). First, an argument about the correct refinement of the contract of the
upper-level component by the contracts of the subcomponents should exist. Con-
tract refinement checks ensure that the guarantees of an upper-level component
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is not weakened by the contracts of its subcomponents and the assumptions of
the upper-level component is strong enough to satisfy the assumptions of sub-
components (Refinement Check goal).

Second, A/G compatibility checks ensure that the composition of subcom-
ponents is consistent (Compatibility Check goal). Third, the correct implemen-
tation of each corresponding subcomponent shall be argued (Implementation
Check goal). In the case when subcomponents are hierarchical, the implementa-
tion check is again potentially performed via a CBD strategy. In the case when
subcomponents are atomic, a model checker (in our case NuSMV) is used to
verify if the implementation (an SMV module) of an atomic subcomponent sat-
isfies its contract (i.e., A — @). These goals are checkable, meaning that their
claim is checked with NuSMV and, if the verification is not successful, an error
is triggered in the assurance case editor. Each of the verification goals has a
special solution that is automatically updated with the corresponding model
checking results as evidence. Specialized solutions enable the automatic integra-
tion of NuSMYV results as evidence in assurance cases, whenever the verifica-
tion is (re)executed. The verification results are interpreted and the solution’s

| assembly airbag systen | Contract-based design |
ruision : boolean ] => [exploded : boolean] b o o o ——— -

fault_corruption : boolean
fault_deletion : boolean
MaxDeltaCounterInit : 1..7
contract:
pre(l) collision pre : MaxDeltaCounterInit >= 2 & G ((collision -> 6 collision) &
(fault (fault_corruption, fault deletion) -> X !fault(fault_corruption, fault_deletion)));
post(1) collision post : G (collision -> F exploded);
post(2) no_collision : G (exploded -> H collision);
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Fig. 3. The top-left side presents the interface definition of the airbag_system in terms
of ports and contracts (pre-/postconditions) and the architectural decomposition. The
bottom side displays the GSN argument about the correct implementation of a require-
ment based on contract-based design. The argument contains specialized entities (e.g.,
CBD Strategy is a specialization of Strategy) that are linked to corresponding system
models. NuSMV can be started directly on the CBD Strategy node (right) and the
results are lifted in and reflected in the corresponding solutions.
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editor displays whether the verification is successful or not. Thereby, the safety
engineer can see at a glance which goals have been invalidated after a change
was implemented. Furthermore, a solution is annotated as outdated when either
the referenced formal models or the claims within the safety case change, thus
making the verification results stale.

3 Experience

Using the Extensions. We are currently evaluating the benefits of using checkable
assurance cases by collecting feedback from safety engineering practitioners who
used FASTEN.Safe in different projects from automotive domain and piloting
the functionality in realistic projects. The most important benefits so far seem to
be 1) the immediate feedback in the editor signalizing when assurance cases and
system models get desynchronized, and 2) the possibility to start verification
activities of claims from the assurance case itself, thereby making the trace
between system model changes and assurance cases more transparent. Further,
the feedback of practitioners is that, on longer term, based on the management
of changes on system models and the assessment of their impact on the assurance
case, our approach could support continuous verification of assurance cases, thus
enabling the integration of assurance cases in a continuous delivery pipeline.

Developing the Extensions. As presented in Sect.2, we have created a set of
extensions of GSN constructs covering strategies and claims about hazards,
requirements, specification of safety properties via LTL and their verification
with NuSMV. These extensions suffice to express three patterns from the lit-
erature [7,10]. The language workbench MPS allows easy implementation of
extensions in a modular fashion. On the conceptual side, we are looking for
other argumentation fragments or patterns (e.g., based on safety architecture
patterns) that can be made checkable.

4 Related Work

There is a vast amount of tooling approaches for developing assurance cases [8].
To the best of our knowledge, none of the existing tools support all types of checks
(I-III). Another distinguishing characteristic of FASTEN.Safe, that allows us to
implement the checks, is that it features language extensions of GSN that raise
the abstraction level at which assurance cases are modeled. In the following, we
compare FASTEN.Safe with existing assurance case modeling tools.

The most comprehensive automation support is provided by AdvoCATE 6]
and AMASS tool platform [5], both tools supporting references from assurance
case models to other system models (e.g., hazards, requirements or system archi-
tecture). AdvoCATE supports the automated creation and assembly of assurance
arguments based on patterns instantiation, hierarchical abstraction for argu-
ments, integration of formal methods in assurance arguments and verification of
safety claims. The AMASS platform scopes at supporting assurance activities.
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For example, similarly to AdvoCATE, AMASS supports automated generation
of model-based verification evidence, based on which, via pattern instantiation,
assurance case fragments are automatically generated. While AdvoCATE and
AMASS use patterns described directly in GSN to increase automation, we lift
recurring patterns at language level via DSL abstractions. This allows us to
define a richer set of consistency checks both for ensuring the intrinsic consis-
tency of arguments and their consistency with existing system and safety models
(checks of Type I and II). Furthermore, similar to our approach, in AdvoCATE
analyses performed by external verification tools (e.g. model checkers) can be
triggered directly based on the higher level entities.

Another category of approaches aims at automated construction of assurance
cases based on system models and existing verification results. The Evidential
Tool Bus (ETB) supports the construction and maintenance of assurance cases
by automatic generation of claims and evidence from the outputs of verifica-
tion tools [4]. ENTRUST supports automatic instantiation of assurance case
patterns with information from design-time and runtime system models and
verification tools [3]. In contrast to these tools, the automation enabled in FAS-
TEN.Safe checks the argumentation constructed by the engineer and does not
re-generate entire argumentation fragments. In FASTEN.Safe changes in system
models are immediately reflected in the assurance case via failed constraints.

5 Conclusions

In this paper we presented FASTEN.Safe, which is a platform for modeling assur-
ance cases based on GSN and experimenting with semantically rich extensions
for expressing safety arguments. Our work formalizes a subset of published GSN
patterns using domain specific constructs and links them to system models that
are amenable to automated checks. Our long term goal is to make GSN-based
arguments automatically checkable. This would enable incremental safety assur-
ance via (semi-)automated maintenance of safety cases, thereby facilitating the
development of safety-critical systems in more agile settings. Next, we plan to
identify more semantically rich extensions capturing assurance case patterns and
to integrate other verification engines (e.g. for performing quantitative analyses).
Furthermore, we intend to use the tool within real-world projects.
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