
Systematic Evaluation of (Safety)
Assurance Cases

Thomas Chowdhury(B), Alan Wassyng, Richard F. Paige, and Mark Lawford

McMaster Centre for Software Certification, McMaster University, Hamilton, Canada
{chowdt2,wassyng,paigeri,lawford}@mcmaster.ca

Abstract. An Assurance Case (AC) documents an argument that sup-
ports a claim made about a system. An effective Assurance Case pro-
vides adequate belief to stakeholders that the system under consideration
adequately embodies specific critical properties, for example safety and
security. Comprehensive evaluation of an AC is a necessary step in build-
ing this belief. This involves measuring confidence in the assurance case
argument, but also includes an overall quality assessment of the AC. This
paper describes essential components of a (safety) AC evaluation process
using previously defined evaluation criteria. These criteria were classified
as applying to either structure or content of the (safety) AC. Two exam-
ple (safety) ACs are used to demonstrate the approach, and for brevity,
we illustrate the examples using purely Goal Structuring Notation (GSN)
and in a second example, a GSN -like notation.

Keywords: Assurance case · Safety · GSN · Traceability

1 Introduction

An Assurance Case (AC) is a generalization of a safety case for a particular
system. It is a living document that provides arguments that assure critical
properties the system is required to embody. For demonstration purposes within
the restrictions of this paper, we focus on safety as the critical property to be
assured. One of the main objectives of an AC evaluation is to ensure that argu-
ments in the AC are valid and sound. However, sound argumentation is not
enough. The AC must be understandable by all stakeholders. It must also be of
sufficient quality to engender trust that sufficient care was taken in its construc-
tion. Any weakness in claims, arguments or evidence potentially degrades the
quality of an AC. The objective of our work is to assess the overall quality of an
AC. This paper describes essential elements of a systematic and comprehensive
evaluation process guided by previously defined evaluation criteria [4].

There are many notations used to document ACs. Goal Structuring Notation
(GSN) [7] has gained considerable popularity in academia and is making inroads
in industry. Thus, we use GSN examples to illustrate our evaluation process.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 18–33, 2020.
https://doi.org/10.1007/978-3-030-54549-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54549-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-54549-9_2


Systematic Evaluation of (Safety) Assurance Cases 19

1.1 Contribution

The contribution of this work is the definition of a systematic approach to the
comprehensive evaluation of ACs. In this paper:

• we present pertinent aspects of our approach, supplemented by high-level,
semi-formal models of the evaluation process and its outcomes;

• we provide sufficient detail to illustrate our approach on three criteria from
[4] – two that apply to content, and another one that applies to structure of
an AC;

• we evaluate our approach using two example ACs. The one AC is documented
in GSN, the other is documented using a GSN-like notation.

2 Preliminaries

This section briefly introduces assurance cases, GSN, and recaps the evaluation
criteria we presented in [4].

2.1 Assurance Cases

According to Bloomfield et al., “An Assurance Case is a documented body of
evidence that provides a convincing and valid argument that a specified set of
critical claims about a system’s properties are adequately justified for a given
application in a given environment” [3]. In general, an AC starts with a top-
level claim regarding critical properties of a system, which is then supported by
sub-claims. Terminal claims are grounded in evidence from the development of
the system. There are many notations used to document ACs. Some of them
are largely textual, and others are largely graphical with extensive references to
textual documents produced during system development. The primary reason to
develop a (safety) AC is to present explicit, understandable reasoning as to why
we should believe that the system of interest is adequately safe.

2.2 Goal Structuring Notation

Goal Structuring Notation (GSN) was developed by Tim Kelly [7], motivated by
Toulmin’s work on argumentation [11]. The main body of a GSN diagram con-
sists of goals representing claims and sub-claims, optional strategies that describe
how goals are decomposed into sub-goals as representative of an argument, and
solutions representing evidence that supports terminal goals. In addition, the
AC developer can include supplementary information by adding assumptions,
context, and justifications.



20 T. Chowdhury et al.

2.3 Recap of Our Evaluation Criteria in [4]

In [4] we defined criteria for the evaluation of an AC. We categorized the criteria
into two groups, one for the structure of an AC and another for the content of an
AC. Furthermore, we defined them from two different evaluation perspectives:
i) the AC developer’s perspective; and ii) the external reviewer’s perspective.
Table 1 presents all the criteria. We have added a little extra discussion for
three of these criteria below the table. These three criteria are the same criteria
for which details of the evaluation process are described in Sect. 4.

Table 1. A list of evaluation criteria and their rationale (from [4]).

Evaluation criteria for structure Evaluation criteria for content

Criterion Rationale Criterion Rationale

Syntax check Difficult to
navigate and
understand if
syntax is not
well-defined

Convincing
basis

A feasible top-level claim is
essential. Reasoning needs to be
explicit so that it can be
reviewed. Confirmation bias can
adversely affect reasoning and
the acceptance of evidence

Traceability Necessary for
understanding
and maintenance

Rigour of
argument

Rigour is important in making
the reasoning less subjective and
more repeatable

Robustness Essential to
achieving
incremental
assurance

Quality of
hazard
analysis

Hazard identification and
mitigation is a critical aspect in
assuring safety

Understandability Need to facilitate
understanding
through structure

Arguing
complete-
ness

Deficiencies in completeness are
a common source of error

Efficiency Need to facilitate
the ease with
which ACs can
be evaluated
through structure
and notation

Repeated
arguments

A source of error if they are
used where not completely
appropriate

ALARP ALARP and associated
principles are essential in
demonstrating cost-benefit
considerations and due diligence

Confidence An essential measure of trust in
the reasoning and associated
evidence. Not dealt with in
detail in this paper because of
the abundance of publications
on this topic



Systematic Evaluation of (Safety) Assurance Cases 21

• Structure Evaluation-Syntax Check: In addition to affecting understand-
ability, syntax errors in the AC may indicate a lack of care taken in its con-
struction and thus adversely affect the perceived quality of the AC.

• Content Evaluation-Convincing Basis: As with any complex document,
the overview presented to readers is crucially important. The overview in
an AC is represented by the top-level of the argument – the top claim
and its immediate supporting sub-claims and their associated assumptions
and context. Throughout the AC, the argument that supports upper-level
claims should be explicit. It may be described in natural language, a logic of
some kind, or a combination of these. The important point is that for every
(sub)claim, there needs to be some reasoning that shows why, if its premises
are true, then the parent claim is true. “Confirmation bias” [8] is another
challenge in ACs. A simple example is when people look for specific evidence
that supports a claim without considering counter-evidence. Apparent con-
firmation bias degrades confidence in an AC.

• Content Evaluation-Rigour of the argument: Explicit argumentation is
an important characteristic of an AC. Evaluation of rigour of the argument is
complementary to evaluating the convincing basis. Presentation of the argu-
ment in natural language is not as convincing as semi-formal notations or
rigorous application of reasoning patterns.

3 Related Work

Reference [4] included a thorough literature review on the evaluation of an AC
in the context of defining evaluation criteria. We have added some additional
publications that specifically deal with the process of evaluating ACs. In [10],
the author uses problem focused guide words (incorrectly phrased, relevance,
directness, deductively invalid, undercutting evidence, rebutting evidence, low
inductive strength, high inductive strength, coverage, replicability) to structure
the evaluation process, followed by suggestions on how these often can be fixed.
In [9], the assessment process consists of four steps (preparation, logic and struc-
ture validation, quality evaluation, record and feedback) performed by a safety
assessor, who makes recommendations that are then implemented by the safety
case developer. In [6], the Health and Safety Executive (HSE) defines 36 princi-
ples categorized into 10 groups that are used to assess safety cases.

A key part of evaluating ACs is assessing confidence; there has been much
work published on this (much of which is reviewed in [4]). A relatively recent
publication [2] has been added to the literature on AC confidence. It introduces a
confidence measure technique ‘INCIDENCE’, which considers both design time
and run time evidence and uses GSN as an example.

4 Evaluation of an Assurance Case

This section presents details of our systematic evaluation of ACs. To put this on
a well-structured footing, we started by modelling the evaluation process and its



22 T. Chowdhury et al.

Fig. 1. The generic model of the AC evaluation process.

relevant data, including all primary components of an AC as well as development
artefacts from the system of interest. This generic model is shown in Fig. 1. The
generic model shows explicitly process, recommendation, AC data and system
development data with associations and data flows required for the systematic
evaluation. The model serves as a guide to the evaluation as well as a check on
it consistency. The main components are (colours are not shown in this paper):

• The Process for evaluating the AC (represented by Green rectangles);
• The Recommendation arising from the evaluation (Blue rectangles);
• AC data that is the subject of the evaluation (Yellow rectangles);
• System development data that is referred to in the AC (Orange rectangles).

In addition,

• Black arrows/lines are used for input and output and associations;
• Red arrows/lines are used to highlight links between the AC and system

development artefacts.

Figure 1 contains all essential links for refinement of all 12 criteria. In this paper,
we had space to focus on only 3 criteria. The generic model must be refined and
instantiated for specific evaluation criteria. The generic model systematizes the
process of defining an evaluation process for arbitrary AC criteria, making AC



Systematic Evaluation of (Safety) Assurance Cases 23

evaluation more repeatable and less error prone, as we can rely on the model to
guide us as to how to carry out the instantiation. Refinement will involve pre-
cisely modeling inputs and outputs of individual steps in an evaluation process.
Instantiation will involve adding textual descriptions for process stages, which
can be checked for conformance with the components of the model.

To illustrate refinement and instantiation of our model we chose one content
criterion and one structural criterion as examples for instantiation. The content
criterion we selected was “Convincing basis for the AC” and we have included the
refined version of the model for Convincing basis in Fig. 2, and the instantiated
process in Sect. 4.1:1. We also include a much briefer discussion on another con-
tent criterion, “Rigour of the argument” in Sect. 4.1:2. The structural criterion
we selected to include in this paper was “Syntax check”. In this case we show
the instantiated process in Sect. 4.2, but there is no space to include another
figure showing the refined model. (Actually, we wanted to include “Traceability”
as the structural criterion, but it is too complex to show in the space available).

We conducted a self-validation of our AC evaluation processes as a first step
in evaluating our approach. A full-scale evaluation of the process is very difficult
to arrange at this stage of development. The result of our self-validation of
the process for Convincing basis is documented in Sect. 5.1; for Rigour of the
argument in Sect. 5.2; and for Syntax check in Sect. 5.3.

4.1 Evaluating Content of an Assurance Case

We can now describe how we refined the high-level model for each of the evalu-
ation criteria. We start with criteria related to content of the AC, and will show
the major steps in evaluating the convincing basis for the AC.

1. Convincing basis for the AC: Figure 2 shows the relevant aspects of a
refinement of the model in Fig. 1. We did not include the documentation
resulting from the development of the system, since that part of the model
does not change depending on the specific criterion being evaluated, and the
links to that data are obvious.

One of the main intentions of convincing basis is to check explicitness of
claims, arguments, supporting terms and evidence. In addition to this, a con-
vincing basis looks for a complete top-level claim description, and compliance
of evidence with acceptance criteria to avoid confirmation bias highlighted by
Leveson [8].

The refinement shows that “ProcessX” now consists of 4 main steps (reading
bottom to top):

• TopLevelClaimCheck – a review of the top level claim. Inputs to this process
are the AC data items of the TopClaim itself, and TopClaimSupp.Terms.
Output is simply to the ErrorReport. These links make it reasonably clear
that the focus of this check is the wording of the top-level claim. Assumptions
and criteria for this check are found in TopLevelAssumptions.



24 T. Chowdhury et al.

Fig. 2. The evaluation process for Convincing basis for the AC.

• SubClaimCheck – a review of all subclaims. Inputs to this process are Sub-
claims, SubclaimsSupp.Terms, Rationale, TerminalClaims, AcceptanceCrite-
ria and the RequiredEvidence. Output is again to the ErrorReport. The focus
of this check is on the wording and rationale for the decomposition of the argu-
ment, and also on whether or not the evidence required to support terminal
claims makes sense. Assumptions and criteria for this check are to be found
in SubclaimCheckAssumptions.

• ExplicitArgument – a review that evaluates how explicit the argument is, in
general. Inputs to this process are ArgumentsSupp.Terms, Arguments and
Rationale. Indirect inputs are Claims, Evidence, Rebuttals, ArgPatterns and
ArgModules. Output is again to the ErrorReport. The focus of this check is
on whether the argument, i.e., reasoning, is made visible explicitly in the AC.

• ConfirmationBias – a review that evaluates how susceptible the argument is
to confirmation bias. Inputs to this process are Rebuttals, RequiredEvidence
and AcceptanceCriteria. Output is again to the ErrorReport. The focus of this
check is to ensure that the AC has specific safeguards against confirmation
bias.

Instantiated Evaluation Process: We can now instantiate the model. We do
this by describing the major steps in each of the 4 sub-processes. We can then
check these steps to see that they conform to the model.



Systematic Evaluation of (Safety) Assurance Cases 25

• TopLevelClaimCheck:

(1) Top-level claim should consist of two parts: subject and predicate. The sub-
ject should represent a system or a component or subsystem of a system and
the predicate should represent critical properties of that system to assure,
contextual, environmental and operational information.

(2) The meaning of a top-level claim shall be clear and not create any ambiguity.
(3) All critical terms mentioned in a top-level claim shall be clarified.
(4) Necessary assumptions shall be stated explicitly.

• SubClaimCheck:

(1) The meaning of a claim shall be clear and not create any ambiguity.
(2) All critical terms mentioned in a claim shall be clarified.
(3) Claims related to process or product or people shall be clarified to support

upper-level claims.
(4) Necessary assumptions to support claims related to process or product or

people shall be stated explicitly.
(5) Terminal claims shall be supported by proper evidence and acceptance cri-

teria for evidence shall be clarified.

• (Review)ExplicitArgument:

(1) The reasoning of how an upper-level claim is decomposed into supporting
claims and/or evidence and how lower-level claims and/or evidence together
support an upper-level claim shall be documented explicitly. The latter is
more important than the former one.

(2) The rationale for reasoning shall be documented if it is necessary.
(3) All key terms mentioned in reasoning shall be clarified.
(4) Necessary assumptions in reasoning shall be clarified.

• (Review)ConfirmationBias:

(1) Rebuttals shall be documented and resulting violation of a claim shall be
documented.

(2) Evidence to support rebuttals shall be clarified.
(3) Evidence description shall comply with acceptance criteria for that specific

evidence.

• GenerateRecommend:

(1) For any error found in an AC, a recommendation shall be made with appro-
priate criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC developers use the evaluation process from the beginning
of an AC development. For example, AC developers may provide guidelines to
system developers for defining boundary values for system functionalities, etc.
It also guides AC developers to use rebuttals and thus avoid “confirmation
bias”, and to check that evidence complies with its acceptance criteria.



26 T. Chowdhury et al.

• External Reviewer: External reviewers are guided as to how to check claims,
arguments and evidence using proposed procedures, and especially to examine
claims for ambiguity. Furthermore, external reviewers are reminded to check
for rebuttals, and judge whether or not they are adequately resolved.

2. Rigour of the Argument: We briefly describe another instantiated process
for the content criterion – rigour of the argument. In this case, due to space
limitations, we have not shown the refined model for this process.

Instantiated Evaluation Process: This criterion focuses on rigorous argu-
ment structure. Pattern instantiation may guide in achieving this, or a thorough
description of argument may help in acquiring a rigorous argument. Such a
description may be a deductive or inductive proof in an argument. The eval-
uation process “ProcessX” is refined in four checks: “CheckFormalArgument,”
“CheckInformalArgument,” “CheckClaimForValidity” and “CheckRationaleFor-
Validity”. The rules for each check are as follows:

• CheckFormalArgument:

(1) A formal argument shall be valid with necessary assumptions.
(2) Rationale to support the formal argument shall be clarified.
(3) All terms supporting the formal argument shall be valid.
(4) Rebuttals in a formal argument shall be clarified, and they shall be complete

and consistent. (if it is found)
(5) Mitigation of rebuttals in a formal argument shall be clarified, and they

shall be complete and consistent.(if rebuttals exist)
(6) An argument branch in an AC complying with an argument pattern shall

thoroughly follow the pattern.

• CheckInformalArgument:

(1) An informal argument shall be defined inductively, and the steps shall be
complete and consistent.

(2) Rationale to support the informal argument shall be clarified.
(3) All terms supporting the informal argument shall be complete and consis-

tent.
(4) Rebuttals in an informal argument shall be clarified, and they shall be

consistent. (if it is found)
(5) Mitigation of rebuttals in an informal argument shall be clarified, and they

shall be consistent. (if rebuttals exist)
(6) An argument branch in an AC complying with an argument pattern shall

thoroughly follow the pattern.

• CheckClaimForValidity:

(1) Claim shall be valid (by reviewing proofs-deductive or inductive), complete
and consistent



Systematic Evaluation of (Safety) Assurance Cases 27

(2) Rebuttals shall be valid (by reviewing proofs-deductive or inductive) and
complete (if it is found)

• CheckRationaleForValidity:

(1) Rationale shall be supported by deductive or inductive proofs.(if it is nec-
essary).

• GenerateRecommend:

(1) For any error found in an AC, a recommendation should be made with
criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC developers are guided to use more rigorous approaches to
their arguments. Based on these checks, they are more likely to find and fix
gaps/fallacies in arguments. They are reminded that there should be explicit
reasoning to show how child claims support a parent claim. The AC developers
may also find it worthwhile to provide documentation to external reviewers
that aid them in understanding the arguments.

• External Reviewer: External reviewers have a basic check list that guides
them in evaluating the rigour of the argument. It provides context for them
in deciding whether or not the argumentation is defined with adequate rigour
– and it does not have to be formal.

4.2 Evaluating the Structure of an Assurance Case

An AC must be evaluated in terms of its structure and content. In this section,
we illustrate the instantiation of the evaluation model with one criterion for
structure, more specifically for the “Syntax Check” criterion. We use a GSN
example to show the approach and also describe how developers and external
reviewers utilize the instantiated process.

Syntax check:

• Instantiated evaluation process: The “Syntax check” is an early but
important stage of the evaluation process: without valid syntax, an AC is
unusable in more sophisticated stages of evaluation. A syntax check can be
performed with or without tool support. If a tool is used for syntax checking,
experts should still review the syntax of an AC to avoid tool failures. In this
illustration, we consider syntax checking of a graphical notation for ACs only
for syntax checking as our example is documented using GSN; nevertheless
we have defined rules for both graphical and textual syntax.

• CheckGraphSyntax:

(1) Check what type of notation is defined. If it is a user-defined notation,
obtain the documentation. Otherwise, a standard for a particular notation
should be followed;



28 T. Chowdhury et al.

(2) Shapes of nodes shall be compliant with recommended shapes;
(3) There shall be one and only one association between any two nodes;
(4) Only valid associations shall exist between any two nodes;
(5) The only terminal nodes in the AC are those that in the defined syntax have

no outgoing associated nodes;
(6) Label/identifier of a claim/argument/evidence should be defined in an

acceptable format;

• CheckTextSyntax:

(1) Check what type of notation is defined. If it is a user-defined notation, then
one should look for the documentation;

(2) All artefacts of an AC shall comply with notation mentioned in the docu-
mentation.

(3) Label/identifier of a claim/argument/evidence should be defined in an
acceptable format;

• GenerateRecommend:

(1) For any error found in an AC, a recommendation should be made with
criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC Developers can evaluate the syntax of an AC with or
without tool support. If developers evaluate manually, then they use rules
to evaluate the AC. For instance, developers may generate a report if they
encounter an error, e.g. shapes not complying with GSN community standard
2.0 [5] for an AC documented by GSN. This report can help developers to
fix an AC before final submission to external reviewers. They should start
the process as soon as the development of an AC starts. Developers should
validate the tool in use. This evaluation should produce qualitative results
instead of only boolean values (e.g. ‘yes’ or ‘no’). AC developers can per-
form their evaluation without tool support as well. This is clearly more time
consuming and probably more error prone. It is also more likely for “home
grown” AC notations as compared with using a standard/commercially avail-
able technique. A simple notation that the AC has been checked for appro-
priate syntax may be welcomed by the external reviewer.

• External Reviewer: The procedure provides specific rules for syntax checking.
External reviewers should also use tools when available. Syntax checks are
relatively easy to define when the AC developers have provided adequate
guidance as to what notation has been used.

5 Validation of the Evaluation Processes

This section presents a self-validation: applying the Evaluation Processes to
example ACs.



Systematic Evaluation of (Safety) Assurance Cases 29

5.1 Validation of “Convincing Basis for the AC” (A Content
Criterion)

We use an excerpt of a GSN-like example of a coffee cup to illustrate the Con-
vincing basis check. The top-level claim (represented by a rectangle) of the
AC is labelled as ‘TopClaim, C’, contexts (represented by rounded rectangles)
are labelled as ‘K1’, ‘K2’, ‘K3’ and ‘K4’, assumptions (represented by ovals)
are labelled as ‘A1’ and ‘A2’, an argument (represented by a parallelogram) is
labelled as ‘R’ and sub-claims (represented by rectangles) supporting the top-
level claim are labelled as ‘CR’, ‘CI’, ‘CPM’ and ‘CA’.

We use the AC for a coffee cup shown in Fig. 3. Four checks have defined
rules that we use to perform an evaluation.

‘TopLevelClaimCheck’: evaluates the top-level claim in Fig. 3. Concerning
rule (1), we find that top-level claim, “TopClaim, C” consists of two parts:
the subject “The coffee cup < X >” specifies the system and the predicate
“is safe in its intended environment, and its intended uses” specifies the critical

Fig. 3. The top two level claims of an AC for a coffee cup.



30 T. Chowdhury et al.

property ‘safe’, with environmental and operational conditions in the description.
Concerning rule (2), we find that the meaning of the top-level claim is clear
and does not create any ambiguity. Concerning rule (3), we find clarification
of all terms (e.g. ‘safe,’ “intended environment,” “intended uses,” “coffee cup
specification”). Concerning rule (4), we find that necessary assumptions (e.g.
non-toxic material for a coffee cup and tolerable temperature) are clarified.

‘SubClaimCheck’: checks the second level claims of Fig. 3. The sub-claims
‘CR,’ ‘CI,’ ‘CPM’ and ‘CA’ are represented by modules as they contain implicit
argument branches. Page restrictions prevent us from including them. Concern-
ing rule (1), the meaning of all sub-claims is clear and does not create any ambi-
guity. Claim ‘CR2.2.1.1.1.2.2’ assures the competency of people in performing
‘FTA’ in Fig. 4.

Fig. 4. An excerpt of evidence complying with acceptance criteria for a coffee cup
example.

Concerning rule (2), we do not find any clarification for any term mentioned
in the claims. Concerning rule (3), we find that claims ‘CI’ clarifies assur-
ing implementation complies with requirements. Other claims (‘CR’, ‘CPM’
and ‘CA’) explain assuring valid and non-interfering requirements, ensuring
safety during production, maintenance and decommissioning and operational
assumptions. Concerning rule (4), we find no assumptions. Concerning rule
(5), we find that terminal claim ‘CR2.2.1.1.1.2.2’ is supported by evidence
‘E-CR2.2.1.1.1.2.2’ and claim ‘CR2.2.1.1.1.2.2 ACT’ and acceptance criteria



Systematic Evaluation of (Safety) Assurance Cases 31

‘E-CR2.2.1.1.1.2.2 ACT’ from an assurance case template are clarified. We use
‘(Review)ExplicitArgument’ to evaluate the explicitness of an argument. Con-
cerning rule (1), we find that argument ‘R’ describes explicit reasoning of how
subclaims (‘CR,’ ‘CI’, ‘CPM’ and ‘CA’) support top-level claim ‘C.’ Argument
‘R’ demonstrates reasoning adequately along with rebuttals and mitigation of
these rebuttals. Concerning rules (2), (3) and (4), we do not find any justification,
context or assumption.

‘(Review)ConfirmationBias’: reviews confirmation bias. Concerning rule
(1), we find that argument ‘R’ demonstrates rebuttals with possible counters
explicitly. Concerning rules (2), we do not find any evidence to support those
rebuttals. Concerning rule (3), Fig. 4 shows terminal claim ‘CR2.2.1.1.1.2.2’ is
supported by evidence ‘E-CR2.2.1.1.1.2.2’ and evidence complies with accep-
tance criteria ‘E-CR2.2.1.1.1.2.2’.

‘GenerateRecommend’ generates the following: a) It is recommended to clar-
ify key terms, e.g. context of “documented assumption” mentioned in claim ‘CA.’
should be clarified. b) It is highly recommended to state necessary assumptions.
c) It is recommended to state assumptions, justifications in reasoning ‘R’ e.g.
justification for ‘R’ should be clarified. d) It is recommended to clarify evidence
to support rebuttals.

5.2 Validation of “Rigour of the Argument” (A Content Criterion)

We use the same example in Fig. 3 to illustrate the rigour of the argument
evaluation. The argument is informal so we use ‘CheckInformalArgument.’ We
also perform ‘CheckClaimForValidity’ and ‘CheckRationaleForValidity’.

‘CheckInformalArgument’: concerning rule (1), we find that the arguments
are defined inductively with adequate steps, including rebuttals to support the
upper-level claims, and they are complete and consistent. For instance, argument
‘R’ has four steps of reasoning. Concerning rule (2), we do not find any rationale
for the argument, since ‘R’ is not supported by a justification. Concerning rule
(3), we do not find any context or assumption to support the argument. Con-
cerning rule (4), we find that some arguments do use rebuttals, e.g., ‘R’ uses two
rebuttals, ‘R1’ and ‘R2’. Rebuttals mentioned in the argument ‘R’ are consistent.
Concerning rule (5), we find that the mitigation of each rebuttal is demonstrated.
For instance, mitigations ‘CPM’ and ‘CA’ in argument ‘R’ resolve the rebuttals,
‘R1’ and ‘R2’. Concerning rule (6), we find that an argument branch considers
different phases of the development process.

‘CheckClaimForValidity’: concerning rule (1), we find that the sub-claims are
valid, complete and consistent because arguments are valid and evidence com-
plying with acceptance criteria support terminal claims. Sub-claims (‘CR’, ‘CI,’
‘CPM’ and ‘CA’ are represented by modules, details of which are not included
in this paper) are complete and consistent and valid supported by arguments.
Concerning rule (2), we find that arguments have defined rebuttals and mitiga-
tions. Rebuttals are complete (shown earlier), but there is no proof to check the
validity of those rebuttals.



32 T. Chowdhury et al.

‘CheckRationaleForValidity’: concerning rule (1) we find that no justifica-
tion exists to support the argument.

‘GenerateRecommend’ produces the following: a) It is recommended that
rationale should exist to support argument ‘R.’ b) It is recommended that for
environmental or operational conditions during production, details of the main-
tenance stage should be clarified.

5.3 Validation of “Syntax Check” (A Structure Criterion)

To illustrate our syntax check process, we use AFI RVSM Pre-Implementation
Safety Case [1] as an example. It uses GSN for documentation. The safety
case shows safety arguments of RVSM (Reduced Vertical Separation Minimum)
implementation and maintenance to reduce the vertical separation between
Flight Levels 290 and 410 (inclusive) from 600 m to 300 m in AFI airspace. We
apply the rules for syntax check to an assurance case of type GSN.

‘CheckGraphSyntax’: concerning rule (1), we consider the GSN community
Standard 2.0 [5] as a reference. Concerning rule (2), by review we note that
shapes of goal and strategy comply with the standard. However, the example
refers to a solution as evidence, and they used a rounded rectangle for evidence
instead of a circle. They used one context and did not use any assumption or
justification in their safety case, though mentioned those terms in their exam-
ple safety case, and they otherwise comply with the standard. However, the
shape of the context used in the safety case does not comply with the standard.
Concerning rule (3) and (4), there is one and only one valid association (‘Sup-
portedBy’) that exists between any two nodes. For rule (5), the terminal nodes
(in some pages, terminal nodes are goals, and in some pages, terminal nodes are
evidence) have no outgoing association with other goals. With rule (6), the label
of goals, strategies and evidence follows a hierarchy. Thus, with rule (2), one
shape (context) does not comply with the standard.

‘GenerateRecommend’ generates that it is highly recommended to fix the
shape to comply with the standard, or to explicitly document how and why it
deviates from the standard.

6 Conclusion

Our proposed approach incorporates rules to identify known weaknesses in an
AC. These weaknesses can be associated with specific, previously published eval-
uation criteria, and the evaluation process made more structured and systematic
by using these criteria to drive the evaluation process. We illustrated the appli-
cation of these evaluation rules, via refinement and instantiation of a generic
evaluation process, for two criteria related to content of the AC, and one crite-
rion related to structure of the AC. These three processes were then self-validated
using one GSN example and another GSN -like example. We have thus shown
that systematic and comprehensive evaluation of ACs is feasible.



Systematic Evaluation of (Safety) Assurance Cases 33

References

1. ALTRAN-ATM Division, National Aerospace Laboratory NLR and AFI RVSM
Project Management Team: AFI RVMS Pre-Implementation Safety Case, final
edn., February 2008

2. Belle, A.B., Lethbridge, T.C., Kpodjedo, S., Adesina, O.O., Garzón, M.A.: A novel
approach to measure confidence and uncertainty in assurance cases. In: 2019 IEEE
27th International Requirements Engineering Conference Workshops (REW), pp.
24–33. IEEE (2019)

3. Bloomfield, R., Bishop, P., Jones, C., Froome, P.: ASCAD. Adelard Safety Case
Development Manual. Adelard 5 (1998)

4. Chowdhury, T., Wassyng, A., Paige, R., Lawford, M.: Criteria to systematically
evaluate (safety) assurance cases. In: 30th International Symposium on Software
Reliability Engineering (ISSRE), pp. 380–390. IEEE (2019)

5. Group, A.C.W., et al.: Goal structuring notation community standard (version 2)
(2018)

6. Hse, M.: Assessment Principles for Offshore Safety Cases (APOSC) (2006)
7. Kelly, T.P.: Arguing Safety–A Systematic Approach to Safety Case Management.

The University of York, Department of Computer Science (1998)
8. Leveson, N.: Cost-effective safety certification of software-intensive systems. Sev-

enth Software Certification Consortium (SCC), Annapolis, May 2011
9. Luo, Y., van den Brand, M., Li, Z., Saberi, A.K.: A systematic approach and tool

support for GSN-based safety case assessment. J. Syst. Archit. 76, 1–16 (2017)
10. Mayo, P.: Structured safety case evaluation: a systematic approach to safety case

review. In: Proceedings of the First IET International Conference on System Safety,
pp. 164–173 (2006)

11. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(2003)


	Systematic Evaluation of (Safety) Assurance Cases
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Assurance Cases
	2.2 Goal Structuring Notation
	2.3 Recap of Our Evaluation Criteria in ch2chowdhury2019criteria

	3 Related Work
	4 Evaluation of an Assurance Case
	4.1 Evaluating Content of an Assurance Case
	4.2 Evaluating the Structure of an Assurance Case

	5 Validation of the Evaluation Processes
	5.1 Validation of ``Convincing Basis for the AC'' (A Content Criterion)
	5.2 Validation of ``Rigour of the Argument'' (A Content Criterion)
	5.3 Validation of ``Syntax Check'' (A Structure Criterion)

	6 Conclusion
	References




