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Abstract. Dependability assurance of systems embedding machine
learning (ML) components—so called learning-enabled systems (LESs)—
is a key step for their use in safety-critical applications. In emerging
standardization and guidance efforts, there is a growing consensus in
the value of using assurance cases for that purpose. This paper devel-
ops a quantitative notion of assurance that an LES is dependable, as a
core component of its assurance case, also extending our prior work that
applied to ML components. Specifically, we characterize LES assurance
in the form of assurance measures: a probabilistic quantification of con-
fidence that an LES possesses system-level properties associated with
functional capabilities and dependability attributes. We illustrate the
utility of assurance measures by application to a real world autonomous
aviation system, also describing their role both in i) guiding high-level,
runtime risk mitigation decisions and ii) as a core component of the
associated dynamic assurance case.
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1 Introduction

The pursuit of developing systems with increasingly autonomous capabilities is
amongst the main reasons for the emergence of learning-enabled systems (LESs),
i.e., systems embedding machine learning (ML) based software components.
There is a growing consensus in autonomy standardization efforts [1] on the value
of using assurance cases (ACs) as the mechanism by which to convince various
stakeholders that an LES can be relied upon. ACs have been successfully used
for safety assurance of novel aviation applications where—like LESs—regulations
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and standards continue to be under development [2]. However, LESs pose partic-
ular assurance challenges [3] and existing AC technologies may not be sufficient,
requiring a framework where the system and its AC evolve in tandem [4]. Here
too, there are specific additional challenges: first, structured arguments1 in many
ACs are effectively static, i.e., they are usually developed prior to system deploy-
ment under assumptions about the environment and intended system behavior.
Evolution of the system or its ML components (e.g., via online learning, or by
adaptation in operation) can render invalid a previously accepted AC. In princi-
ple, although it is possible to dynamically evolve structured arguments [4], since
their role is primarily to convince human stakeholders, it makes more sense for
such updates to happen between missions at well-defined points.

Second, an operational evaluation of the extent of assurance in an LES (or its
ML components, where appropriate) is a valuable system-level indicator of con-
tinued fitness for purpose. That, in turn, can facilitate potential intervention and
counter-measures when assurance drops below an acceptable level during a mis-
sion. Indeed, online assurance updates that are aimed at machine consumption
must necessarily be in a computable form, e.g., using a formal language, such as
a logic, or as a quantification. So far as we are aware, prevailing notions of ACs
do not yet admit such evaluation. Prior efforts at AC confidence assessment [5,6]
have focused on the argument structure rather than the system itself, and face
challenges in repeatable, objective validation due to their reliance on subjective
data. They have also not been applied to LESs. Thus, there is a general need
to capture a computable form of assurance to bolster an otherwise qualitative
AC. Note that although a qualitative AC may well refer to quantitative evidence
items, here we are identifying the necessity to have quantified assurance as a core
facet of LES ACs.

This paper focuses on the problem of assurance quantification, deferring its
use in dynamic updates to future work. The main contribution is an approach
to characterize assurance in an LES through uncertainty quantification (UQ) of
system-level dependability attributes, demonstrated by application to an avia-
tion domain LES.

2 Methodology

Previously [7], we have described how assurance of ML components in an LES
can be characterized through UQ of component-level properties associated with
the corresponding (component-level) dependability attributes. Here, we extend
our methodology to the system-level, relying on the following concepts: assurance
is the provision of (justified) confidence that an item—i.e., a (learning-enabled)
component, system, or service—possesses the relevant assurance properties. An
assurance property is a logical, possibly probabilistic characteristic associated

1 The systematic reasoning that captures the rationale why specific conclusions, e.g.,
of system safety, can be drawn from the evidence supplied.
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with dependability attributes [8] and functional capabilities. One or more assur-
ance properties applied to a particular item give an assurance claim2. An assur-
ance measure characterizes the extent of confidence that an assurance property
holds for an item through a probabilistic quantification of uncertainty. It can
be seen as implementing a UQ model on which to query the confidence in an
assurance property.3

In general, we can define multiple assurance properties (and assurance mea-
sures), based on the LES functionality and dependability attributes for which
assurance is sought. For example, the proposition “the aircraft location does not
exceed a specified lateral offset from the runway centerline during taxiing” is a
system-level assurance claim associated with the attribute of reliability. Similarly,
the assurance property “the aircraft does not veer off the sides of the runway
during taxiing” is associated with the attribute of system safety. Such assur-
ance properties directly map to the claims made in the structured arguments
of an LES assurance case. Thus, we can leverage the methodology for creating
structured arguments [9] to also specify assurance properties.

For quantification, we mainly consider assurance measures for those system-
level properties that can be reasonably and feasibly quantified. For example,
assurance measures for the preceding example quantify the uncertainty that the
aircraft location does not exceed, respectively, the specified lateral offset from
the runway centerline (reliability), and half the width of the runway pavement
(safety), over the duration of taxiing.

LESs used in safety-critical applications, especially aviation, are effectively
stochastic dynamical systems. The insights from this observation are that we can:
i) capture LES behavior through model-based representations of the underlying
stochastic process; ii) view system-level assurance properties as specific real-
izations of particular random variables (RVs) of that process; and iii) express
confidence in the assurance properties—i.e., the assurance measures—by prop-
agating uncertainty through the model to determine the distributions over the
corresponding RVs.

One challenge is selecting an appropriate model and representation of the
stochastic process to be used to model LESs. Although there is not a generic
answer for this, such a model could be built, for example, by eliciting the
expected system behavior from domain experts, by transforming a formal system
description, using model fitting and statistical optimization techniques applied
to (pre-deployment) system simulation and execution traces, or through a combi-
nation of the three. For LESs, a formal system description may be often unavail-
able. As such, we rely on elicitation and statistical techniques, using Bayesian
models where possible, making allowance to admit and use other well-known,
related stochastic process models—such as Markov chains—and leveraging data
from analytical representations of system dynamics, simulations, and execution.
The Bayesian concepts of credible intervals and regions—determined on the

2 Henceforth, we do not distinguish assurance properties from assurance claims.
3 When the assurance property is itself probabilistic, the corresponding assurance

measure is deterministic, i.e., either 0 or 1.
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posterior distribution of the RVs for assurance properties—give a formal footing
to the intuitive, subjective notion of confidence that usually accompanies claims
in assurance arguments, and ACs in general [10].

3 Illustrative Example – Runway Centerline Tracking

System Description. To show our methodology is feasible, we now apply it to
quantify assurance in an aviation domain LES supplied by our industrial collabo-
rators: a unmanned aircraft system (UAS) embedding an ML component, trained
offline using supervised learning, to support an autonomous taxiing capability.
The broader goal is to enable safe aircraft movement on a runway without human
pilot input. Figure 1 shows a simplified pipeline architecture used to realize this
capability. A deep convolutional neural network (CNN) implements a perception
function that ingests video images from a wing-mounted camera pointed to the
nose of the aircraft. The input layer is (360 × 200) pixels ×3 channels wide;
the network size and complexity is of the order of 100 layers with greater than
two million tunable parameters. Effectively, this ML component performs regres-
sion under supervised learning producing estimates of cross track error (CTE)4

and heading error (HE)5 as output. These estimates are input to a classical
proportional-integral-derivative (PID) controller that generates the appropriate
steering and actuation signals.

Fig. 1. Pipeline architecture to implement an autonomous taxiing capability in a UAS.

3.1 Assurance Properties

The main objective during taxiing (autonomously, or under pilot control) is to
safely follow the runway (or taxiway) centerline. Safety during taxiing entails
avoiding lateral runway overrun, i.e., not veering off the sides of the runway
pavement. Although avoiding obstacles on the runway is also a safety concern,

4 The horizontal distance between the aircraft nose wheel and the runway centerline.
5 Heading refers to the compass direction in which an object is pointed; heading error

(HE) here, is thus the angular distance between the aircraft heading and the runway
heading.
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it is a separate assurance property that we do not consider in this paper. Thus,
safety can be achieved here, in part, by meeting a performance objective of
maintaining an acceptable lateral offset (ideally zero) on either side of the runway
centerline during a taxi mission from starting taxi to stopping (or taking off).6

In other words, the closer the aircraft is to the runway centerline during taxiing,
the less likely it is to veer off the sides of the runway.

This performance objective relates to the attribute of reliability, where taxi
failure is considered to be the violation of the specified lateral offset. Here,
we focus on the corresponding assurance property, AssuredTaxi : |CTEa| <
offset, where offset = 2m is the maximum acceptable lateral offset on either
side of the runway centerline for this application and aircraft type. CTEa, which
is the true (or actual) CTE for the UAS, is a signed, real valued scalar; the
absolute value gives the magnitude of the offset, and the sign indicates where
the UAS is located relative to the centerline, i.e., to its left or its right.

3.2 Assurance Quantification

Model Choice. The assurance measure corresponding to AssuredTaxi, estab-
lishes Pr (|CTEa| < 2m), which characterizes the uncertainty (or conversely, con-
fidence) in the true (or actual) CTE (CTEa) relative to the specified offset.
CTEa evolves in time as the PID controller responds to estimates of CTE and
HE, themselves the responses of the deep CNN component, to runway images
captured by the wing mounted camera (see Fig. 1). CTEa is thus uncertain and
depends on other variables, of which those that can be observed are the esti-
mated CTE (CTEe), estimated HE (HEe), and a sequence of images. We can
also model the controller behavior in terms of a time series evolution of CTEa

since, during taxiing, the true CTE at a given time is affected by the controller
actuation signals at prior times.

An abstracted model of LES behavior is reflected in the joint distribution
of the relevant observed and uncertain variables. In fact, a dynamic Bayesian
network (DBN) [11] is a convenient and compact representation of this joint
distribution, as we will see subsequently in this section. It takes into account the
temporal evolution of the variables and their (known or assumed) conditional
independence relations. Thus, to determine the assurance measure, we effectively
seek to quantify the (posterior) distribution over CTEa, given a sequence of
runway images, the estimates of CTE and HE produced by the ML component,
and the controller behavior, as a query over the corresponding DBN model.

Model Variables. Model variables can be discrete or continuous, and there are
tradeoffs between information loss and computational cost involved in the choice.
Table 1 lists the discrete variables we have chosen, giving the interval boundaries
for their states. The choice of the intervals that constitute the states of the
variables has been based, in part, on: i) domain knowledge, ii) an assessment
6 Our industry collaborators elicited the exact performance objectives from current

and proficient professional pilots.
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Table 1. DBN model variables.

of the data sampled from the environments used for training and testing the
CNN, and iii) the need to develop an executable model that was modest in its
computational needs.

Here, w is the width of the runway in meters, and negative values represent
CTE measured on the left of the runway centerline. The HE is given in degrees,
while D is dimensionless. An additional variable (I, not shown in Table 1) models
the runway image captured from the camera video feed as a vector of values in
the range [0 . . . 1] representing normalized pixel values. The Boolean variable
D represents the detection of outliers in camera image data. Such outliers may
manifest due to various causes, including camera errors and covariate shift, i.e.,
when the data input to the CNN has a distribution different from that of its
training data. Note that the LES shown in Fig. 1 does not indicate whether or not
it includes a mechanism to detect outliers or covariate shift. However, we include
this variable here, motivated by our earlier work on component-level assurance
quantification of the CNN [7], which revealed its susceptibility to outlier images.
In fact, D models a runtime monitor for detecting out of distribution (OOD)
inputs to the CNN.

Fig. 2. DBN structure for assurance quantification, showing two adjacent slices at times
t− 1, and t; shaded nodes represent observed variables, clear nodes are the uncertain,
latent variables.



276 E. Asaadi et al.

Model Structure. Each variable in Table 1 is indexed over time: we will denote
a variable X at time t as X(t). The causal ordering of the model variables
(Fig. 2) informs the structure of the DBN: the estimated CTE and HE at time
t are inputs to the controller which, in turn, impacts the future location of the
aircraft at time t + ε. The directed links between the corresponding variables in
adjacent time slices capture this dependency. For example, in Fig. 2, these are the
directed links CTE(t−1)

e → CTE(t)
a , and HE(t−1)

e → CTE(t)
a (and likewise for the

preceding and subsequent time slices). The directed links CTE(t−1)
a → CTE(t)

a

model the correlation between actual vehicle position over time, also capturing
vehicle inertia.

At time t, the runway image I(t) influences the belief about the true aircraft
location, i.e., the states of CTE(t)

a , with the node D modeling the associated
structural uncertainty. This reflects the intuition that upon detecting an outlier
image (more generally an OOD input), we are no longer confident that the image
seen is an indicator of the actual aircraft location. Figure 2 reflects these depen-
dencies by the directed edges CTE(t)

a ← I(t), and CTE(t)
a ← D(t), respectively.

Figure 2 shows two adjacent time slices of the DBN structure, although the
actual structure is unrolled for T time steps, the duration of taxiing, to compute
the assurance measure over the taxi phase. At time t, this is, in fact, the sum
of the probability mass over the seven states of CTE(t)

a that lie within the inter-
val [−2, 2] (see Table 1). By unrolling the DBN for an additional ε time steps
and propagating the uncertainty through the model from the time of the last
observations, the model can provide an assurance forecast.

Probability Distributions. To complete the DBN model specification, we
need to specify the conditional probability distributions (CPDs) over the model
variables, as encoded by its structure. One way to identify the CPDs is through
uncertainty quantification of the physical system model [12]. Practically, the
latter may not be available, especially for LESs.

Another alternative—the approach we take here—is to assume a functional
form for the CPDs that is then tuned based on execution and simulation data.
Specifically, to construct the CPD represented by the transition edge between
the time slices, i.e., Pr(CTE(t)

a |CTE(t−1)
a ,CTE(t−1)

e ,HE(t−1)
e ), we chose a multi-

nomial distribution with a uniform prior, tuned using the maximum a posteriori
probability (MAP) estimate on simulation data. This choice was advantageous
in the sense that the DBN produces a uniform posterior distribution over CTEa

when the observed variables take on values from a distribution different from
that of the data used to build the CPDs. For this example, the simulation data
comprised sequences of runway images, estimated CTE and HE as produced by
the CNN, and true CTE. Section 4 gives more details on the simulation platform
and data gathered.

To determine the emission probability Pr(CTE(t)
a | I(t)), first we used the

Gaussian process (GP) model underpinning our prior work on component-level
assurance quantification [7]. In brief, the idea is to use a GP to model the error
performance of the CNN (i.e., its accuracy) on its input (i.e., runway images).
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Then, adding the error distribution to the estimate of CTE gives the distribution
over the true CTE. However, for high dimensional data (such as images), this is
computationally expensive. Instead, in this paper we used an ensemble of decision
trees [13] as a classifier that ascribes a probability distribution over the states
of CTEa, given a runway image, I. This approach builds uncorrelated decision
trees such that their combined estimate is more accurate than that of any single
decision tree. To identify the decision rules, we used supervised learning over
the collection of runway images and corresponding true CTE, sampled from
the same environments used to train and test the CNN (see Sect. 4). For this
example, we built 280 decision trees with terminal node size of at least 10,
by randomly sampling 100 data points using the Gini index as a performance
metric, selecting the model parameters to balance classification accuracy and
computational resources.

4 Experimental Results

We now present some results of our experiments in quantifying LES assurance
in terms of the assurance measure, Pr (|CTEa| < 2m), based upon simulations
of constant speed taxiing missions.

Simulation Setup. We use a commercial-off-the-shelf flight simulator instru-
mented to reflect the pipeline architecture of Fig. 1. The simulation environment
includes various airports and runways with centerlines of varying quality, e.g.,
portions of the centerline may be obscured at various locations (see Fig. 1). We
can create different training and test environments by changing various simula-
tion settings, among which two that we have selected are: i) weather induced
visibility (clear and overcast), and ii) the time of day (07:30 am to 2:00 pm).
Two such environments are, for example, “Clear at 07:30 am”, and “Overcast
at 12:15 pm”. More generally, we can construct environments such as “Clear
Morning”, “Overcast Afternoon”, and so on. The former refers to the collection
of data sampled from the environment having clear weather, and the time of
day incremented in steps of 15 and 30 min from 07:30 am until noon. A similar
interpretation applies to other such environments.

From these environments, we gathered images via automated screen capture
(simulating the camera output) whilst taxiing the aircraft on the airport runway,
using different software controllers, as well as different CNNs for perception: i.e.,
the same CNN architecture described in Sect. 3, but trained by our industrial
collaborators with data drawn from the various environments identified earlier.
In tandem, for each image, we collected true CTE (from internal simulation
variables), along with estimates of CTE and HE. We used several such data
sets, one for each of the different environments identified above, from which
data samples were drawn to build the CPDs of the DBN model. Here, note
that these data samples were not identical to those used to train and test the
CNN, even though the samples were drawn from the collection of environments
common to both the LES and the DBN.
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Fig. 3. Visualization of predicted uncertainty in true cross track error, CTE
(t)
a ,

to quantify assurance in runway centerline tracking as the assurance measure,
Pr(AssuredTaxi).

Uncertainty Quantification. Figure 3 shows the results of assurance quan-
tification for one test scenario, visualized as a probability surface overlaid on a
stretch of the runway, itself shown as a grid. The horizontal axis—discretized
using the interval boundaries for the states of CTEa (see Table 1)—gives the true
aircraft location, which is uncertain during taxiing. Thus, moving from left to
right (or vice versa) constitutes lateral aircraft movement. The vertical axis (dis-
cretized into 6 steps, each of duration 0.33 s) represents the number of time slices
for which the DBN model is unrolled. We selected this based on the time taken
for the UAS to laterally depart the runway after violating the 2m bound, given:
runway dimensions, maximum allowed taxiing speed, and other constraints on
the UAS dynamics, e.g., non-accelerating taxiing.

At t = 0, the horizontal axis gives the aircraft location at the current time.
The time steps t = 1, . . . , 6 are lookahead times for which the horizontal axis
gives the predicted location of the aircraft relative to the centerline, given the
CNN estimates of CTE and HE at t = 0. Thus, moving from the bottom to the
top of Fig. 3 represents forward taxiing, i.e., the temporal evolution of aircraft
position over the runway. Each cell of the grid formed by discretizing the two axes
is, therefore, a state of CTEa at a given time, shaded such that darker shades

Fig. 4. Pr(AssuredTaxi) for offset = 2 m and offset = 1.43 m.
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indicate lower uncertainty (or higher confidence) and lighter shades indicate
higher uncertainty (or lower confidence). Thus, the row at t = 0 shows the DBN
estimate of uncertainty over CTEa at the current time. Similarly, each row for
t = 1, . . . , 5 shows the predicted uncertainty over CTEa for those lookahead
times, given that the last known values for the observed variables are at t =
0. The solid white line in Fig. 3 at t = 0 is ground truth, i.e., the true CTE
at the current time based on internal simulation variables. Although this may
not be otherwise available during taxiing, we show it here primarily for model
validation, i.e., to show that the interval (state of CTEa) estimated by the DBN
to be the least uncertain is also the one that includes the ground truth. The solid
black line is CTE as estimated by the CNN (i.e., CTEe) at the current time.

Recall that assured taxiing involves maintaining CTEa between a 2m lateral
offset on either side of the centerline. To quantify assurance in this property, we
sum up the probability mass in each cell between the two offsets. Figure 4 shows
the assurance measure, Pr(|CTE(t=0)

a | < offset) computed for two different
offset values: 2m and 1.43m.7 The interval [−2, 2] is a Bayesian credible interval
within which the true CTE lies with probability ≈ 95%, based on Fig. 4. In
other words, the DBN model is ≈95% confident that the aircraft is truly located
within 2m of the runway centerline. In general, the expected (and desired) DBN
behavior is to be more uncertain over longer term assurance forecasts, when there
are no additional observations with which to update the posterior distributions
on the assurance measures.

Sufficient Assurance. We must select a threshold on the assurance measure
to establish what sufficient assurance constitutes, based on which we can assert
whether or not the assurance claim holds. The criterion we have selected here is:
when the DBN is ≥30% confident that the true UAS location exceeds the allowed
lateral offset, the assurance claim does not hold, i.e., Pr(|CTE(t)

a | ≥ 2m) ≥ 0.3 ⇒
¬(AssuredTaxi). We determined this threshold under conservative assumptions
about vehicle behavior, leveraging the engineering judgment of our industry
collaborators, to balance the tradeoff between safety (avoiding runway overrun)
and mission effectiveness (not stopping too often).

5 Discussion

We now evaluate how the DBN performs relative to the LES, in the context of
ground truth. The intent is to show that it is a reasonable (i.e., valid) reference
model of the system suitable for runtime use (i.e., simple and abstract), based on
which to make certain decisions, e.g., whether or not to stop taxiing. Moreover,
we must also show that the software implementation of the DBN can be relied
upon. In this paper, we primarily address the former, leaving the latter for future
work.

7 The introduction of a second offset was motivated by our industry collaborators to
integrate the assurance measure on the LES platform.
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Validity. We compare how well the DBN and the LES can discriminate between
true positive and true negative situations when their respective outputs are trans-
formed into a classification on a plurality of image data drawn from multiple
simulated taxiing scenarios for different test environments unseen by both the
DBN and the LES.

A true positive (negative) situation for the DBN is one where it indicates
that the assurance property is satisfied (not satisfied) based on the criterion for
sufficient assurance (see Sect. 4), and ground truth data also indicates that it
is truly the case that the UAS location is within (exceeds) the allowed lateral
offset from the runway centerline. Likewise for the LES, a true negative (positive)
situation is one where the CNN estimate of CTE indicates (does not indicate)
an offset violation i.e., CTEe ≥ 2m (equivalently, CTEe < 2m), and so does
ground truth data.

Table 2. DBN Performance evaluation for runway centerline tracking.

Table 2 shows our evaluation results in terms of sensitivity (true positive
rate) and the specificity (true negative rate) of both the DBN model and the
LES, varying the embedded CNN used for perception. The variability arises
from using CNNs trained under two different training environments. We also
used these training environments to build the DBN for both LES variants using
≈37000 image samples. These samples were not the same as those that were used
to train the CNN variants: indeed, we did not have access to the actual training
data for the different CNNs. Also, the test environments listed in the table (and,
therefore, the resulting test data), are unseen during the development of both
LES variants, and the DBN models of the same.

Based on Table 2, in the context of the sensitivity and specificity metrics
shown, as well as the criterion for sufficient assurance, we are cautiously opti-
mistic in claiming that the DBN models the LES reasonably well. For the test
environments “Clear at 11:45 am”, and “Overcast at 12:15 pm”, the DBN has
a lower sensitivity than the LES, however its specificity is substantially better.
This suggests that the LES may be biased in its estimates of CTE for those
operating conditions.
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Suitability. The DBN model structure—in particular, the conditional inde-
pendence relations encoded by the structure—is informed by (our knowledge of)
the causal impacts of the identified variables and the system dynamics, and the
resulting assumptions. We note that it is always possible to relax these assump-
tions and learn the DBN structure as well as its parameters. However, in most
cases, especially when there is limited data available, structure learning can be
an unidentifiable problem, or can produce a non-unique solution. In our case, the
conditional independence assumptions used have turned out to be neither too
strong to affect model performance nor too conservative to impose a problem in
identifying the CPDs given limited data.

Our assessment in Table 2 does not compare the DBN and the CNN that
estimates CTE. Indeed, the latter is a learned, static regression function for
a component, that associates a vector of real values with a real-valued scalar,
whereas here we are assessing a stochastic process model of a (learning-enabled)
system (i.e., the DBN) against the system itself. When we use the DBN for
runtime assurance, we implement it as a software component integrated into the
LES. This can be viewed as an item to which we can apply our own assurance
methodology, i.e., as in Sect. 2, and [7]. Thus, although we have not formulated
assurance properties for the DBN, sensitivity and specificity are probabilistic
performance metrics (albeit in a frequentist sense) that we can view as assurance
measures in their own right, that we have now applied to our model.

The validation above is admittedly not exhaustive although the following
observations are worth noting: the DBN is a relatively simple and abstract
model of the time-series evolution of the system, whose estimates can be updated
through Bayesian inference given observed data. Thus, it is amenable to applying
other verification techniques including inspection, and formal verification.

Moreover, the DBN does not produce point estimates of CTE; rather, in
quantifying confidence in a system-level assurance property, a by-product is the
uncertainty in true CTE given as a probability distribution over the range of
admissible values of CTEa. Thus, in unseen situations where the CNN can pro-
duce an inaccurate estimate of CTE (see Fig. 3), the DBN gives a distribution
over possible values of true CTE. As such, it is more conservative in potentially
unsafe scenarios. Based on this assessment, we submit that the DBN is a rea-
sonable and suitable runtime reference model of the LES for the autonomous
taxiing application, when used for centerline tracking.

Utility. A key advantage of an abstract assurance quantification model is a small
implementation footprint for runtime integration into the LES. As indicated in
Sect. 1, one of the primary motivations for quantified assurance measures is to
provide feedback signals (in a computable form) to the LES, that can be acted
on, e.g., by a Contingency Management System (CMS), in operation. In this
work, the assurance measure values were translated into commands to either
stop, slow down, or continue based on i) the chosen decision thresholds (Sect. 4),
and ii) a simple model of the system-level effect (i.e., likelihood of lateral runway
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overrun) given the assurance measure and current system state.8 In general,
deciding between a series of options in the presence of conflicting and uncertain
outcomes is a special case of decision making under uncertainty [14]. We plan
to investigate such techniques as future work to develop a principled approach
to contingency management using assurance measures.

The aim of run-time assurance, also known as run-time verification, is to
provide updates as to whether a system satisfies specified properties as it executes
[15]. This is done using a run-time monitor, which evaluates the property using
values extracted from the state of the system and its environment. In a sense,
therefore, the notion of assurance measure we have described here is a kind of
monitor. However, it is worth making several distinctions. A monitor relates
directly to properties of the system, whereas an assurance measure characterizes
confidence in our knowledge of such properties. Second, an assurance measure
seeks to aggregate a range of sources of information, including monitors. Thus
it can be seen as a form of data fusion. Third, monitors typically provide values
that relate to the current state of the system, whereas the assurance measures
we have defined are predictive, intended to give a probabilistic quantification on
dependability attributes.

In general, our approach to assurance quantification admits other models
including runtime monitors: recall that the node D(t) in Fig. 2 is a runtime
monitor detecting data distribution shift in the input image at time t. Indeed,
our framework is not intended to replace runtime verification, and the assurance
measures generated show the assurance contribution of the runtime monitors,
additionally providing an assurance/uncertainty forecast. We are not aware of
existing runtime verification techniques that do this.

6 Related Work

The work in this paper is closely related to our earlier research on assurance case
confidence quantification [5]. There, although confidence estimation in an assur-
ance claim also uses Bayesian techniques, it relies primarily on the argument
structure to build the model. Similarly, based on the structure of an argument,
the use of an evidential theory basis has been explored for confidence quantifi-
cation in assurance claims [6]. However, neither work has been applied to LES
assurance quantification. Moreover, in this paper the focus is on those properties
where quantification is possible, relying upon models of the system that can be
assessed against objective, measured data.

This paper is a natural extension of our prior work on quantifying assurance
in ML components [7]: the assurance property we consider there is CTEe accu-
racy. Assurance quantification then entails using Gaussian processs (GPs) to
determine the uncertainty in the error of CTEe, which is inversely proportional
to accuracy. However, the data used are not (and need not be) time dependent
8 Although the content of integrating assurance measures with a CMS is very closely

related to the work here, it is not in scope for this paper, and will be the topic of a
forthcoming article.
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and the model used applies regardless of whether or not the aircraft position has
violated AssuredTaxi. Indeed, despite a high assurance CNN that accurately
estimates CTE, it is nevertheless possible to violate AssuredTaxi. However, in
this paper we model the LES as a stochastic process, including any runtime
mitigations, e.g., a monitor for detection OOD images. As such, the models used
for UQ are a generalization of that in [7] to time-series behavior.

As previously indicated (Sect. 1), one of the motivations is to support
dynamic assurance cases (ACs). Our prior work [4] first explored this concept,
which has subsequently been tailored for so-called self-adaptive software [16].
Again, neither work has considered LESs, although self-adaptation is one of the
properties that LESs can exhibit. In [4], confidence quantification has been sit-
uated as a core principle of dynamic assurance which has also motivated this
paper to an appreciable degree. However, that work relies on the quantification
methodology in [5]. In [16], assurance quantification employs probabilistic model
checking, which can be leveraged for LESs if they can be represented using state-
space models, e.g., as in [17] which uses hybrid model checking instead. Neither
technique is incompatible with the stochastic processes-based modeling approach
that we have adopted. As such, they may be a candidate means to check prop-
erties of the stochastic models that we build as a means of (meta-)assurance.

Dynamic safety management as an assurance concept has also been pro-
posed as a run-time assurance method [18], but it is largely speculative about
applicability for LESs. The idea of requirements-aware runtime models [19] is
very closely related to our notion of building a reference model. Quantified and
probabilistic guarantees in reinforcement learning have been explored in devel-
oping assured ML components in [20]. That work is also closely related to what
we have presented here, though its focus is mainly on assurance of correctness
properties that have a safety impact. Additionally, the assurance approach there
is intrusive in the sense that the ML component being built is modified. In
our case, assurance quantification does not modify the ML components. Bench-
marking of uncertainty estimation techniques [21] has also been investigated,
although mainly in the context of image classification. It is unclear if the reported
results translate to assurance quantification as applied in this paper. However,
the benchmarking principles and metrics used could be candidates for evaluating
various system models built using our approach.

Kalman filters have long been used to address uncertainty during state esti-
mation, and have some similarities to our approach. A Kalman filters is a special
case of a DBN where amongst the main assumptions are that sensor errors are
distributed as zero mean Gaussians, and that the uncertainty does not vary
between sensing outputs. In contrast, our model uses discrete distributions,
admitting varying sensor uncertainty for each image input, in a more general
graphical model that has a different structure, whilst including detections of
OOD inputs.
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7 Conclusion and Future Work

We have described our approach to quantifiable assurance using assurance mea-
sures, run-time computations of uncertainty (conversely, confidence) in specified
assurance properties, and their application to learning-enabled systems (LESs).
Assurance measures complement design-time assurance activities, each of which
forms part of an overall dynamic assurance case (DAC). In collaboration with
system integrators from industry, we have applied our framework to an aviation
platform that employed supervised learning using a deep CNN. Collaboration
was crucial to develop the contingency management capability, which relied on
engineering judgment to tradeoff safety risk reduction and achieving performance
objectives. Feedback from the end-users (i.e., our industry collaborators) was
also essential in refining the final visualizations of the assurance measure that
we ultimately deployed in the system (based on Fig. 4). Those are intended to
provide insight into the system assurance state for safety observer crew.

We have shown that our methodology can feasibly quantify assurance in
system-level properties of an aviation domain LES, though we have used clas-
sical UQ techniques. Our work in quantifying assurance in LESs is ongoing,
and we will be developing assurance measures for other autonomous platforms
in the context of more complex mission objectives that require additional ML
components and learning schemes.

The work in this paper is one strand of our overall approach to assurance
through DACs. The diverse components of an assurance case, including struc-
tured arguments, safety architecture [22], as well as the assurance measures
described here, each represent one facet of an integrated DAC. There are close
connections between the probabilistic models underlying assurance measures and
the safety architecture, as well as between assurance properties and claims in an
assurance arguments. Our future work will place these connections on a rigorous
basis. In part, this can be achieved through use of a high-level domain-specific
language (DSL) that will let us i) abstract from the details of the individual
probabilistic models, and ii) conversely, allow compilation into a range of dif-
ferent models, whilst making more explicit the connections to domain concepts
used elsewhere in the assurance case.

A related avenue of future work is providing comprehensive assurance for our
approach itself, and in turn, the assurance measures produced. From a verifica-
tion standpoint, we can consider correctness properties entailing i) consistency
between the quantification model and the other DAC components, e.g., the risk
scenarios captured by a safety architecture, and ii) correctness of the low-level
implementation against the higher level specification embodied by the quantifi-
cation model.

Additionally, assurance measure validity is related, in part, to the limits of
the statistical techniques used to infer the underpinning stochastic models, and
the data used to build them.

Indeed, one of the challenges we faced in this work was obtaining sufficient
useful data. Moreover, the quality of the data gathered also plays a key role
in corroborating that the assurance quantification models sufficiently represent
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the system behavior across its intended operational profile. We believe that a
more principled approach to specifying a variety of training data should be
possible (e.g., to include various types of perturbed and adversarial inputs),
and that such specifications could be derived from the DSL used to specify the
assurance measures themselves. The dynamic nature of assurance cases (ACs)
will also bear further investigation, to see how real-time updates provided by
assurance measures during a mission can inform updates between missions, to
the qualitative arguments of ACs.
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