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Abstract. Increasingly sophisticated mathematical modelling processes
from Machine Learning are being used to analyse complex data. How-
ever, the performance and explainability of these models within prac-
tical critical systems requires a rigorous and continuous verification of
their safe utilisation. Working towards addressing this challenge, this
paper presents a principled novel safety argument framework for critical
systems that utilise deep neural networks. The approach allows various
forms of predictions, e.g., future reliability of passing some demands, or
confidence on a required reliability level. It is supported by a Bayesian
analysis using operational data and the recent verification and validation
techniques for deep learning. The prediction is conservative – it starts
with partial prior knowledge obtained from lifecycle activities and then
determines the worst-case prediction. Open challenges are also identified.

Keywords: Safety cases · Quantitative claims · Reliability claims ·
Deep learning verification · Assurance arguments · Safe AI · Bayesian
inference

1 Introduction

Deep learning (DL) has been applied broadly in industrial sectors including auto-
motive, healthcare, aviation and finance. To fully exploit the potential offered by
DL, there is an urgent need to develop approaches to their certification in safety
critical applications. For traditional systems, safety analysis has aided engineers
in arguing that the system is sufficiently safe. However, the deployment of DL in
critical systems requires a thorough revisit of that analysis to reflect the novel
characteristics of Machine Learning (ML) in general [2,10,27].

Compared with traditional systems, the behaviour of learning-enabled sys-
tems is much harder to predict, due to, inter alia, their “black-box” nature
and the lack of traceable functional requirements of their DL components. The
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“black-box” nature hinders the human operators in understanding the DL and
makes it hard to predict the system behaviour when faced with new data. The
lack of explicit requirement traceability through to code implementation is only
partially offset by learning from a dataset, which at best provides an incom-
plete description of the problem. These characteristics of DL increase apparent
non-determinism [25], which on the one hand emphasises the role of probabilistic
measures in capturing uncertainty, but on the other hand makes it notoriously
hard to estimate the probabilities (and also the consequences) of critical failures.

Recent progress has been made to support the Verification and Validation
(V&V) of DL, e.g., [23,47]. Although these methods may provide evidence to
support low-level claims, e.g., the local robustness of a deep neural network
(DNN) on a given input, they are insufficient by themselves to justify overall
system safety claims. Here, we present a safety case framework for DL mod-
els which may in turn support higher-level system safety arguments. We focus
on DNNs that have been widely deployed as, e.g., perception/control units of
autonomous systems. Due to the page limit, we also confine the framework to
DNNs that are fixed in the operation; this can be extended for online learning
DNNs in future.

We consider safety-related properties including reliability, robustness, inter-
pretability, fairness [6], and privacy [1]. In particular, we emphasise the assess-
ment of DNN generalisation error (in terms of inaccuracy), as a major reliability
measure, throughout our safety case. We build arguments in two steps. The first
is to provide initial confidence that the DNN’s generalisation error is bounded,
through the assurance activities conducted at each stage of its lifecycle, e.g.,
formal verification on the DNN robustness. The second step is to adopt proven-
in-use/field-testing arguments to boost the confidence and check whether the
DNN is indeed sufficiently safe for the risk associated with its use in the system.

The second step above is done in a statistically principled way via Conser-
vative Bayesian Inference (CBI) [8,46,49]. CBI requires only limited and partial
prior knowledge of reliability, which differs from normal Bayesian analysis that
usually assumes a complete prior distribution on the failure rate. This has a
unique advantage: partial prior knowledge is more convincing (i.e. constitutes a
more realistic claim) and easier to obtain, while complete prior distributions usu-
ally require extra assumptions and introduces optimistic bias. CBI allows many
forms of prediction, e.g., posterior expected failure rate [8], future reliability
of passing some demands [46] or a posterior confidence on a required reliabil-
ity bound [49]. Importantly, CBI guarantees conservative outcomes: it finds the
worst-case prior distribution yielding, say, a maximised posterior expected fail-
ure rate, and satisfying the partial knowledge. We are aware that there are other
extant dangerous pitfalls in safety arguments [25,27], thus we also identify open
challenges in our proposed framework and map them onto on-going research.

The key contributions of this work are:
a) A very first safety case framework for DNNs that mainly concerns quan-

titative claims based on structured heterogeneous safety arguments.
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b) An initial idea of mapping DNN lifecycle activities to the reduction of
decomposed DNN generalisation error that used as a primary reliability measure.

c) Identification of open challenges in building safety arguments for quanti-
tative claims, and mapping them onto on-going research of potential solutions.

Next, we present preliminaries. Sect. 3 provides top-level argument, and
Sect. 4 presents how CBI approach assures reliability. Other safety related prop-
erties are discussed in Sect. 5. We discuss related work in Sect. 6 and conclude
in Sect. 7.

2 Preliminaries

2.1 Safety Cases

A safety case is a comprehensive, defensible, and valid justification of the safety
of a system for a given application in a defined operating environment, thus it is
a means to provide the grounds for confidence and to assist decision making in
certification [12]. Early research in safety cases mainly focus on their formulation
in terms of claims, arguments and evidence elements. The two most popular
notations are CAE [12] and GSN [26]. In this paper, we choose the latter to
present our safety case framework.

Fig. 1. The GSN core elements and an example of using GSN

Figure 1 shows the core GSN elements and a quick GSN example. Essentially,
the GSN safety case starts with a top goal (claim) which then is decomposed
through an argument strategy into sub-goals (sub-claims), and sub-goals can
be further decomposed until being supported by solutions (evidence). A claim
may be subject to some context or assumption. An away goal repeats a claim
presented in another argument module. A description on all GSN elements used
in this paper can be found in [26].
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2.2 Deep Neural Networks and Lifecycle Models

Let (X,Y ) be the training data, where X is a vector of inputs and Y is a vector
of outputs such that |X| = |Y |. Let X be the input domain and Y be the set of
labels. Hence, X ⊂ X. We may use x and y to range over X and Y, respectively.
Let N be a DNN of a given architecture. A network N : X → D(Y) can be
seen as a function mapping from X to probabilistic distributions over Y. That is,
N (x) is a probabilistic distribution, which assigns for each possible label y ∈ Y
a probability value (N (x))y. We let fN : X → Y be a function such that for
any x ∈ X, fN (x) = arg maxy∈Y{(N (x))y}, i.e. fN (x) returns the classification
label. The network is trained with a parameterised learning algorithm, in which
there are (implicit) parameters representing e.g., the number of epochs, the loss
function, the learning rate, the optimisation algorithm, etc.

A comprehensive ML Lifecycle Model can be found in [4], which identifies
assurance desiderata for each stage, and reviews existing methods that con-
tribute to achieving these desiderata. In this paper, we refer to a simpler lifecycle
model that includes several phases: initiation, data collection, model construc-
tion, model training, analysis of the trained model, and run-time enforcement.

2.3 Generalisation Error

Generalisability requires that a neural network works well on all possible inputs
in X, although it is only trained on the training dataset (X,Y ).

Definition 1. Assume that there is a ground truth function f : X → Y and
a probability function Op : X → [0, 1] representing the operational profile. A
network N trained on (X,Y ) has a generalisation error:

G0−1
N =

∑

x∈ X

1{fN (x) �= f(x)} × Op(x) (1)

where 1S is an indicator function – it is equal to 1 when S is true and 0 otherwise.

We use the notation Op(x) to represent the probability of an input x being
selected, which aligns with the operational profile notion [35] in software engi-
neering. Moreover, we use 0-1 loss function (i.e., assigns value 0 to loss for a
correct classification and 1 for an incorrect classification) so that, for a given Op,
G0−1

N is equivalent to the reliability measure pfd (the expected probability of the
system failing on a random demand) defined in the safety standard IEC-61508.
A “frequentist” interpretation of pfd is that it is the limiting relative frequency
of demands for which the DNN fails in an infinite sequence of independently
selected demands [48]. The primary safety measure we study here is pfd, which
is equivalent to the generalisation error G0−1

N in (1). Thus, we may use the two
terms interchangeably in our safety case, depending on the context.
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3 The Top-Level Argument

Figure 2 gives a top-level safety argument for the top claim G1 – the DNN is
sufficiently safe. We first argue S1: that all safety related properties are satisfied.
The list of all properties of interest for the given application can be obtained
by utilising the Property Based Requirements (PBR) [34] approach. The PBR
method is a way to specify requirements as a set of properties of system objects
in either structured language or formal notations. PBR is recommended in [2] as
a method for the safety argument of autonomous systems. Without the loss of
generality, in this paper, we focus on the major quantitative property: reliability
(G2). Due to space constraints, other properties: interpretability, robustness,
etc. are discussed in Sect. 5 but remain an undeveloped goal (G3) here.

More properties that have a safety impact can be incorporated in the frame-
work as new requirements emerge from, e.g., ethical aspects of the DNN.

Fig. 2. The top-level safety argument

Despite the controversy over the use of probabilistic measures (e.g., pfd) for
the safety of conventional software systems [29], we believe probabilistic mea-
sures are useful when dealing with ML systems since arguments involving their
inherent uncertainty are naturally stated in probabilistic terms.

Setting a reliability goal (G2) for a DNN varies from one application to
another. Questions we need to ask include: (i) What is the appropriate reliability
measure? (ii) What is the quantitative requirement stated in that reliability
measure? (iii) How can confidence be gained in that reliability claim?

Reliability of safety critical systems, as a probabilistic claim, will be about
the probabilities/rates of occurrence of failures that have safety impacts, e.g.,
a dangerous misclassification in a DNN. Generally, systems can be classified
as either: continuous-time systems that are being continuously operated in the
active control of some process; or on-demand systems, which are only called
upon to act on receipt of discrete demands. Normally we study the failure rate
(number of failures in one time unit) of the former (e.g., flight control software)
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and the probability of failure per demand (pfd) of the latter (e.g., the emer-
gency shutdown system of a nuclear plant). In this paper, we focus on pfd which
aligns with DNN classifiers for perception, where demands are e.g., images from
cameras.

Given the fact that most safety critical systems adopt a defence in depth
design with safety backup channels [28], the required reliability (preq in G2)
should be derived from the higher level system, e.g., a 1-out-of-2 (1oo2) system
in which the other channel could be either hardware-only, conventional software-
based, or another ML software. The required reliability of the whole 1oo2 system
may be obtained from regulators or compared to human level performance (e.g.,
a target of 100 times safer than average human drivers, as studied in [49]). We
remark that deriving a required reliability for individual channels to meet the
whole 1oo2 reliability requirement is still an open challenge due to the dependen-
cies among channels [30] (e.g., a “hard” demand is likely to cause both channels
to fail). That said, there is ongoing research towards rigorous methods to decom-
pose the reliability of 1oo2 systems into those of individual channels which may
apply and provide insights for future work, e.g., [7] for 1oo2 systems with one
hardware-only and one software-based channels, [28,48] for a 1oo2 system with
one possibly-perfect channel, and [15] utilising fault-injection technique. In par-
ticular, for systems with duplicated DL channels, we note that there are similar
techniques, e.g., (i) ensemble method [39], where a set of DL models run in
parallel and the result is obtained by applying a voting protocol; (ii) simplex
architecture [45], where there is a main classifier and a safer classifier, with the
latter being simple enough so that its safety can be formally verified. Whenever
confidence of the main classifier is low, the decision making is taken over by the
safer classifier; the safer classifier can be implemented with e.g., a smaller DNN.

As discussed in [8], the reliability measure, pfd, concerns system behaviour
subject to aleatory uncertainty (“uncertainty in the world”). On the other hand,
epistemic uncertainty concerns the uncertainty in the “beliefs about the world”.
In our context, it is about the human assessor’s epistemic uncertainty of the
reliability claim obtained through assurance activities. For example, we may
not be certain whether a claim – the pfd is smaller than 10−4 – is true due
to our imperfect understanding about the assurance activities. All assurance
activities in the lifecycle with supportive evidence would increase our confidence
in the reliability claim, whose formal quantitative treatment has been proposed
in [11,32]. Similarly to the idea proposed in [46], we argue that all “process”
evidence generated from the DNN lifecycle activities provides initial confidence of
a desired pfd bound. Then the confidence in a pfd claim is acquired incrementally
through operational data of the trained DNN via CBI – which we describe next.

4 Reliability with Lifecycle Assurance

4.1 CBI Utilising Operational Data

In Bayesian reliability analysis, assessors normally have a prior distribution of
pfd (capturing the epistemic uncertainties), and update their beliefs (the prior
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distribution) by operational data. Given the safety-critical nature, the systems
under study will typically see failure-free operation or very rare failures. Bayesian
inference based on such non or rare failures may introduce dangerously optimistic
bias if using a Uniform or Jeffreys prior which describes not only one’s prior
knowledge, but adds extra, unjustified assumptions [49]. Alternatively, CBI is a
technique, first described in [8], which applied Bayesian analysis with only partial
prior knowledge; by partial prior knowledge, we mean the following typical forms:

– E[pfd] ≤ m: the prior mean pfd cannot be worse than a stated value;
– Pr(pfd ≤ ε) = θ: a prior confidence bound on pfd ;
– E[(1 − pfd)n] ≥ γ: prior confidence in the reliability of passing n tests.

These can be used by CBI either solely or in combination (e.g., several confi-
dence bounds). The partial prior knowledge is far from a complete prior distribu-
tion, thus it is easier to obtain from DNN lifecycle activities (C4). For instance,
there are studies on the generalisation error bounds, based on how the DNN
was constructed, trained and verified [5,21]. We present examples on how to
obtain such partial prior knowledge (G6) using evidence, e.g. from formal veri-
fication on DNN robustness, in the next section. CBI has also been investigated
for various objective functions with a “posterior” flavour:

– E[pfd | pass n tests]: the posterior expected pfd [8];
– Pr(pfd ≤ preq | k failures in n tests): the posterior confidence bound on pfd

[48,49]; the preq is normally a small pfd, stipulated at higher level;
– E[(1 − pfd)t | pass n tests]: the future reliability of passing t demands in [46].

Example 1. In Fig. 3, we plot a set of numerical examples based on the CBI
model in [46]. It describes the following scenario: the assessor has θ confidence
that the software pfd cannot be worse than ε (e.g., 10−4 according to SIL-4), then
after n failure-free runs (the x-axis), the future reliability of passing t demands
is shown on the y-axis. We may observe that stronger prior beliefs (smaller ε
with larger θ) and/or larger n/t ratio allows higher future reliability claims.

Fig. 3. Numerical examples based on the CBI model in [46]
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Depending on the objective function of interest (G2 is an example of a pos-
terior confidence bound) and the set of partial prior knowledge obtained (G6),
we choose a corresponding CBI model1 for S2. Note, we also need to explicitly
assess the impact of CBI model assumptions (G5). Published CBI theorems
abstract the stochastic failure process as a sequence of independent and iden-
tically distributed (i.i.d.) Bernoulli trials given the unknown pfd, and assume
the operational profile is constant [8,46,49]. Although we identify how to jus-
tify/relax those assumptions as open challenges, we note some promising ongoing
research:

a) The i.i.d. assumption means a constant pfd, which may not hold for a
system update or deployment in a new environment. In [31], CBI is extended
to a multivariate prior distribution case coping with scenarios of a changing
pfd, which may provide the basis of arguments for online learning DNNs in
future.
b) The effect of assuming independence between successive demands has been
studied, e.g., [20]. It is believed that the effect is negligible given non or rare
failures; note this requires further (preferably conservative) studies.
c) The changes to the operational profile is a major challenge for all proven-
in-use/field-testing safety arguments [27]. Recent research [9] provides a novel
conservative treatment for the problem, which can be retrofitted for CBI.

The safety argument via CBI is presented in Fig. 4. In summary, we collect
a set of partial prior knowledge from various lifecycle activities, then boost our
posterior confidence in a reliability claim of interest through operational data,
in a conservative Bayesian manner. We believe this aligns with the practice
of applying management systems in reality – a system is built with claims of
sufficient confidence that it may be deployed; these claims are then independently
assessed to confirm said confidence is justified. Once deployed, the system safety
performance is then monitored for continuing validation of the claims. Where
there is insufficient evidence systems can be fielded with the risk held by the
operator, but that risk must be minimised through operational restrictions. As
confidence then grows these restrictions may be relaxed.

4.2 Partial Prior Knowledge on the Generalisation Error

Our novel CBI safety argument for the reliability of DNNs is essentially inspired
by the idea proposed in [46] for conventional software, in which the authors
seek prior confidence in the (quasi-)perfection of the software from “process”
evidence like formal proofs, and effective development activities. In our case, to
make clear the connection between lifecycle activities and their contributions to
the generalisation error, we decompose the generalisation error into three:

G0−1
N = G0−1

N − inf
N∈N

G0−1
N

︸ ︷︷ ︸
Estimation error of

N + inf
N∈N

G0−1
N − G0−1,∗

f,(X,Y )

︸ ︷︷ ︸
Approximation error of

N + G0−1,∗
f,(X,Y )︸ ︷︷ ︸

Bayes error

(2)

1 There are CBI combinations of objective functions and partial prior knowledge
haven’t been investigated, which remains as open challenges.
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Fig. 4. The CBI safety argument

a) The Bayes error is the lowest and irreducible error rate over all possible
classifiers for the given classification problem [19]. It is non-zero if the true labels
are not deterministic (e.g., an image being labelled as y1 by one person but as
y2 by others), thus intuitively it captures the uncertainties in the dataset (X,Y )
and true distribution f when aiming to solve a real-world problem with DL. We
estimate this error (implicitly) at the initiation and data collection stages in
activities like: necessity consideration and dataset preparation etc.

b) The Approximation error of N measures how far the best classifier in N is
from the overall optimal classifier, after isolating the Bayes error. The set N is
determined by the architecture of DNNs (e.g., numbers of layers ), thus lifecycle
activities at the model construction stage are used to minimise this error.

c) The Estimation error of N measures how far the learned classifier N is
from the best classifier in N. Lifecycle activities at the model training stage
essentially aim to reduce this error, i.e., performing optimisations of the set N.

Both the Approximation and Estimation errors are reducible. We believe, the
ultimate goal of all lifecycle activities is to reduce the two errors to 0, especially
for safety-critical DNNs. This is analogous to the “possible perfection” notion
of traditional software as pointed to by Rushby and Littlewood [28,42]. That
is, assurance activities, e.g., performed in support of DO-178C, can be best
understood as developing evidence of possible perfection – a confidence in pfd =
0. Similarly, for safety critical DNNs, we believe ML lifecycle activities should
be considered as aiming to train a “possible perfect” DNN in terms of the two
reducible errors. Thus, we may have some confidence that the two errors are
both 0 (equivalently, a prior confidence in the irreducible Bayes error since the
other two are 0), which indeed is supported by on-going research into finding
globally optimised DNNs [17]. Meanwhile, on the trained model, V&V also
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provides prior knowledge as shown in Example 2 below, and online monitoring
continuously validates the assumptions for the prior knowledge being obtained.

Example 2. We present an illustrative example on how to obtain a prior confi-
dence bound on the generalisation error from formal verification of DNN robust-
ness [23,40]. Robustness requires that the decision making of a neural network
cannot be drastically changed due to a small perturbation on the input. For-
mally, given a real number d > 0 and a distance measure || · ||p, for any input
x ∈ X, we have that, fN (x) = fN (x′) whenever ||x′ − x||p ≤ d.

Figure 5 shows an example of the robustness verification in a one-dimensional
space. Each blue triangle represents an input x, and the green region around
each input x represents all the neighbours, x′ of x, which satisfy ||x′ − x||p ≤ d
and fN (x) = fN (x′). Now if we assume Op(x) is uniformly distributed (an
assumption for illustrative purposes which can be relaxed for other given Op(x)
distributions), the generalisation error has a lower bound – the chance that the
next randomly selected input does not fall into the green regions. That is, if ε
denotes the ratio of the length not being covered by the green regions to the
total length of the black line, then G0−1

N ≤ ε. This said, we cannot be certain
about the bound G0−1

N ≤ ε due to assumptions like: (i) The formal verification
tool itself is perfect, which may not hold; (ii) Any neighbour x′ of x has the same
ground truth label of x. For a more comprehensive list, cf. [14]. Assessors need
to capture the doubt (say 1 − θ) in those assumptions, which leads to:

Pr(G0−1
N ≤ ε) = θ. (3)

We now have presented an instance of the safety argument template in Fig. 6.
The solution So2 is the formal verification showing G0−1

N ≤ ε, and G8 quan-
tifies the confidence θ in that result. It is indeed an open challenge to rigor-
ously develop G8 further, which may involve scientific ways of eliciting expert
judgement [36] and systematically collecting process data (e.g., statistics on the
reliability of verification tools). However, we believe this challenge – evaluating
confidence in claims, either quantitatively or qualitatively (e.g., ranking with
low, medium, high), explicitly or implicitly – is a fundamental problem for all
safety case based decision-makings [11,16], rather than a specific problem of our
framework.

The sub-goal G9 represents the mechanism of online monitoring on the valid-
ity of offline actives, e.g., validating the environmental assumptions used by
offline formal verifications against the real environment at runtime [18].

Fig. 5. Formal verification on DNN robustness in an one-dimensional space
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5 Other Safety Related Properties

So far we have seen a reliability-centric safety case for DNNs. Recall that, in this
paper, reliability is the probability of misclassification (i.e. the generalisation
error in (1)) that has safety impacts. However, there are other DNN safety
related properties concerning risks not directly caused by a misclassification,
like interpretability, fairness, and privacy; discussed as follows.

Interpretability is about an explanation procedure to present an interpre-
tation of a single decision within the overall model in a way that is easy for
humans to understand. There are different explanation techniques aiming to
work with different objects, see [22] for a survey. Here we take the instance expla-
nation as an example – the goal is to find another representation expl(fN , x)
of an input x, with the expectation that expl(fN , x) carries simple, yet essen-
tial, information that can help the user understand the decision fN (x). We use
f(x) ⇔ expl(fN , x) to denote that the explanation is consistent with a human’s
explanation in f(x). Thus, similarly to (1), we can define a probabilistic measure
for the instance-wise interpretability:

IN =
∑

x∈X

(f(x) �⇐⇒ expl(fN , x)) × Op(x) (4)

Fig. 6. A template of safety arguments for obtaining partial prior knowledge

Then similarly as the argument for reliability, we can do statistical inference
with the probabilistic measure IN . For instance, as in Example 2, we (i) firstly
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define the robustness of explanations in norm balls, measuring the percentage
of space that has been verified as a bound on IN , (ii) then estimate the con-
fidence of the robust explanation assumption and obtain a prior confidence in
interpretability, (iii) finally Bayesian inference is applied with runtime data.

Fairness requires that, when using DL to predict an output, the prediction
remains unbiased with respect to some protected features. For example, a finan-
cial service company may use DL to decide whether or not to provide loans to
an applicant, and it is expected that such decision should not rely on sensitive
features such as race and gender. Privacy is used to prevent an observer from
determining whether or not a sample was in the model’s training dataset, when
it is not allowed to observe the dataset directly. Training methods such as [1]
have been applied to pursue differential privacy.

The lack of fairness or privacy may cause not only a significant monetary loss
but also ethical issues. Ethics has been regarded as a long-term challenge for AI
safety. For these properties, we believe the general methodology suggested here
still works – we first introduce bespoke probabilistic measures according to their
definitions, obtain prior knowledge on the measures from lifecycle activities, then
conduct statistical inference during the continuous monitoring of the operation.

6 Related Work

Alves et al. [2] present a comprehensive discussion on the aspects that need to be
considered when developing a safety case for increasingly autonomous systems
that contain ML components. In [10], a safety case framework with specific chal-
lenges for ML is proposed. [44] reviews available certification techniques from
the aspects of lifecycle phases, maturity and applicability to different types of
ML systems. In [27], safety arguments that are being widely used for conven-
tional systems – including conformance to standards, proven in use, field testing,
simulation and formal proofs – are recapped for autonomous systems with dis-
cussions on the potential pitfalls. Similar to our CBI arguments that exploit
operational data, [24,33] propose utilising continuously updated arguments to
monitor the weak points and the effectiveness of their countermeasures. The work
[3] identifies applicable quantitative measures of assurance for learning-enabled
components.

Regarding the safety of automated driving, [41,43] discuss the extension and
adaptation of ISO-26262, and [13] considers functional insufficiencies in the per-
ception functions based on DL. Additionally, [37,38] explores safety case patterns
that are reusable for DL in the context of medical applications.

7 Discussions, Conclusions and Future Work

In this paper, we present a novel safety argument framework for DNNs using
probabilistic risk assessment, mainly considering quantitative reliability claims,
generalising this idea to other safety related properties. We emphasise the use of
probabilistic measures to describe the inherent uncertainties of DNNs in safety
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arguments, and conduct Bayesian inference to strengthen the top-level claims
from safe operational data through to continuous monitoring after deployment.

Bayesian inference requires prior knowledge, so we propose a novel view by
(i) decomposing the DNN generalisation error into a composition of distinct
errors and (ii) try to map each lifecycle activity to the reduction of these errors.
Although we have shown an example of obtaining priors from robustness verifi-
cation of DNNs, it is non-trivial (and identified as an open challenge) to establish
a quantitative link between other lifecycle activities to the generalisation error.
Expert judgement and past experience (e.g., a repository on DNNs developed by
similar lifecycle activities) seem to be inevitable in overcoming such difficulties.

Thanks to the CBI approach – Bayesian inference with limited and partial
prior knowledge – even with sparse prior information (e.g., a single confidence
bound on the generalisation error obtained from robustness verification), we can
still apply probabilistic inference given the operational data. Whenever there are
sound arguments to obtain additional partial prior knowledge, CBI can incor-
porate them as well, and reduce the conservatism in the reasoning [8]. On the
other hand, CBI as a type of proven-in-use/field-testing argument has some of
the fundamental limitations as highlighted in [25,27], for which we have identi-
fied on-going research towards potential solutions.

We concur with [27] that, despite the dangerous pitfalls for various existing
safety arguments, credible safety cases require a heterogeneous approach. Our
new quantitative safety case framework provides a novel supplementary approach
to existing frameworks rather than replace them. We plan to conduct concrete
case studies and continue to work on the open challenges identified.
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