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One-Carbon Metabolism
and Development of the Conceptus
During Pregnancy: Lessons from Studies
with Sheep and Pigs

1

Fuller W. Bazer, Heewon Seo, Gregory A. Johnson,
and Guoyao Wu

Abstract

The pregnancy recognition signal from the
conceptus (embryo/fetus and associated
membranes) to the mother is interferon tau
(IFNT) in ruminants and estradiol, possibly in
concert with interferons gamma and delta in
pigs. Those pregnancy recognition signals
silence expression of interferon stimulated
genes (ISG) in uterine luminal (LE) and super-
ficial glandular (sGE) epithelia while inducing
expression of genes for transport of nutrients,
including glucose and amino acids, into the
uterine lumen to support growth and develop-
ment of the conceptus. In sheep and pigs, glu-
cose not utilized immediately by the conceptus
is converted to fructose. Glucose, fructose, ser-
ine and glycine in uterine histotroph can con-
tribute to one carbon (1C) metabolism that
provides one-carbon groups for the synthesis
of purines and thymidylate, as well as S-
adenosylmethionine for epigenetic methylation
reactions. Serine and glycine are transported
into the mitochondria of cells and metabolized
to formate that is transported into the cytoplasm
for the synthesis of purines, thymidine and S-
adenosylmethionine. The unique aspects of

one-carbon metabolism are discussed in the
context of the hypoxic uterine environment,
aerobic glycolysis, and similarities in metabo-
lism between cancer cells and cells of the rap-
idly developing fetal-placental tissues during
pregnancy. Further, the evolution of anatomical
and functional aspects of the placentae of sheep
and pigs versus primates is discussed in the
context of mechanisms to efficiently obtain,
store and utilize nutrients required for rapid
fetal growth in the last one-half of gestation.

Keywords

Pregnancy · Placenta · One-carbon
metabolism · Formate · Glycine · Serine ·
Glucose · Fructose

Abbreviations

1C one carbon
AFT4 activating transcription factor 4
GE glandular epithelium
IFNT interferon tau
ISG interferon stimulated gene
LE luminal epithelium
MTHFD methylenetetrahydrofolate

dehydrogenase
MTOR Mechanistic target of rapamycin
PFK phosphofructokinase-1
PHGDH phosphoglyceride dehydrogenase
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PPP pentose phosphate pathway
PSAT phophoserine aminotransferase
PSPH phosphoserine phosphatase
sGE superficial glandular
SHMT serine hydroxymethyltransferase
TCA tricarboxylic acid
THF tetrahydrofolate
Tr trophectoderm
αKG α-ketoglutarate

1.1 Introduction

Reproduction is essential to the propagation of all
species. Accordingly, diverse species employ
multiple options regarding mechanisms for preg-
nancy recognition signaling, implantation, pla-
centation and the initiation of parturition.
Livestock species and primates differ in
mechanisms for implantation and placentation
and these differences impact how nutrients are
acquired, stored and utilized. Implantation is
invasive in primates, but diffuse and superficial
in livestock species (Perry 1981). Before ovine
and porcine blastocysts develop into a conceptus,
they “hatch” from the zona pellucida on Days 6–7
of pregnancy and then undergo a remarkable
transition to filamentous forms in preparation for
implantation and placentation (Bazer and John-
son 2014; Johnson et al. 2018). Sheep blastocysts
are spherical on Days 4 (0.14 mm) and
10 (0.4 mm), elongate to the filamentous form
between Days 12 (1.0 by 33 mm) and 15 (1 by
150–190 mm), and extend through the uterine
body into the contralateral uterine horn by Days
16–17 of pregnancy while attaching to the uterine
luminal epithelium (LE) to initiate implantation.
Pig blastocysts are 0.5–1 mm diameter spheres
when they “hatch” from the zona pellucida and
increase in size to Day 10 of pregnancy (2–6 mm)
before undergoing a morphological transition to
large spheres of 10–15 mm diameter and then
tubular (15 mm by 50 mm) and filamentous
(l by 100–200 mm) forms on Day 11. During
the transition from tubular to filamentous forms,
pig conceptuses elongate at 30–45 mm/h, primar-
ily by cellular remodeling and proliferation of

trophectoderm cells. However, hyperplasia is
responsible for subsequent growth and elongation
of the conceptus to 800–1000 mm length by Day
15 of pregnancy as implantation progresses.
Elongation of ovine and porcine conceptuses is
a prerequisite for central implantation that
involves the trophectoderm achieving maximum
surface area contact with uterine epithelia that
secrete and/or transport nutrients into the uterine
lumen. As conceptuses elongate they metabolize
and are responsive to significant concentrations of
molecules supplied in the form of histotroph
within the uterine lumen. Histotroph is a complex
mixture of molecules either secreted or
transported into the uterine lumen and includes
hormones, enzymes, growth factors, cytokines,
transport proteins, adhesion factors, nutrients
and other substances that plays roles in conceptus
nourishment, implantation and placentation
(Bazer et al. 2015). The invasive implantation
for primates results in the spherical blastocyst
invading into the uterine stroma wherein it
establishes intimate contact with maternal blood
vessels that directly supply it with nutrients and
other molecules essential for growth and devel-
opment in preparation for placentation (Huppertz
and Borges 2008).

Placentae evolved independently among the
livestock species leading to substantial
differences in morphology, vascularization, fold-
ing of the chorioallantois and associated uterine
endometrium, development of placentomes (uter-
ine caruncles and placental cotyledons in
ruminants), development of areolae to absorb
secretions directly from uterine glands for trans-
port into the fetal-placental circulation, and devel-
opment of the allantois (Seo et al. 2019, 2020a).
The allantois is connected to the fetal bladder via
the urachus that allows molecules cleared via the
fetal kidney to enter the bladder and then move,
via the urachus, into allantoic fluid within the
allantoic sac. Those molecules that accumulate
in allantoic fluid include nutrients, growth factors
and hormones that can be reabsorbed across the
allantoic epithelium into the fetal-placental vas-
culature. Thus, the allantois is a repository from
which recirculation of nutrients, hormones,
growth factors, cytokines and other molecules

2 F. W. Bazer et al.



occurs to meet demands for placental develop-
ment and exponential growth of the fetus. Placen-
tal weight in sheep increases from 5 to 435 g
between Days 25 and 80 of gestation while fetal
weight increases from 0.2 to 257 g during the
same period, but fetal weight is tenfold greater
on Day 140 (2956 g) of the 147 day period of
gestation (Bazer et al. 2012a, b). Similarly, pla-
cental weight increases from 0.21 to 250 g
between Days 20 and 70 of gestation in pigs,
while fetal weight increases from 0.06 to 313 g
on Day 70, but increases another threefold to
900 g on Day 100 and about 1500 g at term
(Day 114 of gestation) (Knight et al. 1977).

Pigs have a diffuse, epitheliochorial placenta
and sheep have a cotyledonary, synepithe-
liochorial placenta with six and five (within
placentomes) layers of cells, respectively,
separating maternal and fetal blood. In order to
overcome this significant barrier to the transport
of nutrients from the uterine vasculature to the
placental vasculature, blood flow to the pregnant
uteri of pigs increases from about 1.25 L/min on
Day 45 of gestation to 2.75 L/min by Day 110 of
a 114 day gestation period and this requires con-
siderable maternal heart work by the dam (Pere
and Etienne 2000). For ewes, uterine blood flow
increases from about 50 ml/min on Day 30 of
gestation to 1.4 L/min on Day 140 of a 147 day
period of gestation (Metcalfe et al. 1959). In the
hemochorial placenta of women, the chorion is in
direct contact with maternal blood and only three
layers of cells separate maternal and fetal blood
allowing for much more efficient transport of
nutrients. Accordingly, uterine blood flow in
pregnant women increases to a lesser degree
than for pigs and sheep, from around 95 ml/min
in early pregnancy to 342 mL/min during late
gestation (Thaler et al. 1990). This evolution of
placental types may reduce maternal heart work
as one can appreciate from differences in uterine
blood flow at the end of gestation; 2.75 L/min for
pigs, 1.4 L/min for sheep and 0.342 L/min for
women (Fig. 1.1).

Given the relatively inefficient placentae in
sheep and pigs, allantoic fluid serves as a reser-
voir for a reserve of nutrients that compliments
the direct transfer of nutrients across the placenta

in support of growth and development of the
conceptus. The placentae of sheep and pigs
include the yolk sac, amnion, allantois and cho-
rion, but only yolk sac, amnion and chorion are
present in the human placenta. The yolk sac
provides the initial vascular system, primordial
germ cells and hematopoietic stem cells, but it
regresses during the first 30–60 days of gestation,
depending on species. Retention of the allantois
in species with chorioallantoic and synepithe-
liochorial placentae provides the reservoir for
the accumulation of nutrients. In pigs, allantoic
fluid volume increases from Day 20 (4 ml) to Day
30 (189 ml), decreases to Day 45 (75 ml) and
increases again to Day 58 (451 ml) (Bazer 1989).
Thereafter, allantoic fluid volume decreases to
term at Day 114 of gestation. Allantoic fluid
volume in sheep conceptuses increases from
Day 25 (21 ml) to Day 40 (72 ml), decreases to
32 ml on Day 70, and then increases to 450 ml on
Day 140 of a 147 day period of gestation (Bazer
et al. 2012a, b).

Early anatomical studies suggested that the
allantoic sac and its fluid was a reservoir for
fetal urine and that the mesonephric glomeruli
were the “source” of allantoic fluid (see Bazer
1989). However, the urinary system does not
make water, but only redistributes available
water. Allantoic fluid is, therefore, of maternal
origin. A comparison of concentrations of
electrolytes in maternal or fetal plasma and allan-
toic fluid reveals that allantoic fluid is not a dialy-
sate of plasma since the osmotic gradient favors
the exchange of fluids in an allantoic-to-maternal
rather than in a maternal-to-allantoic direction.
Allantoic fluid and the allantoic epithelium have
several key roles. First, increases in allantoic fluid
volume expand the chorioallantoic membranes
and force them into apposition with the maternal
uterine epithelia to maximize placental surface
area for nutrient and waste exchange. Second,
allantoic fluid contains substantial quantities of
electrolytes, water, sugars, proteins and other
nutrients that are cleared by the kidney and accu-
mulate in the allantoic sac to be reabsorbed into
the fetal-placental circulation across the allantoic
epithelium. Third, the allantoic epithelium is
derived from the hindgut and is, therefore, an

1 One-Carbon Metabolism and Development of the Conceptus During Pregnancy:. . . 3



epithelium capable of absorbing or actively
transporting nutrients into the fetal-placental
vasculature.

Rapid growth of ovine and porcine conceptuses
includes extensive proliferation, remodeling and
migration of trophectoderm cells, as well as
growth and development of the fetus. Each of
these processes consumes and depletes available
oxygen and nutrients, resulting in metabolic stress
for implanting conceptuses. Rapid development of
conceptuses occurs in a hypoxic environment in
which aerobic glycolysis provides substrates for
the hexoseamine biosynthesis pathway, pentose
phosphate pathway, and one-carbon metabolism,
as well as production of adenosine triphosphate
(ATP) required for rapid proliferation and migra-
tion of conceptus Tr cells.

A recent report on the survival of African naked
mole-rats was most informative as it revealed how

they tolerate hours of extreme hypoxia/anoxia and
survive for 18 min under total oxygen deprivation
(anoxia). Under those conditions, the Naked Mole
rats switch metabolically to aerobic glycolysis
fueled by fructose that was metabolized to lactate
in the brain (Park et al. 2017). Global expression of
the GLUT5 fructose transporter and high levels of
expression of ketohexokinase (fructokinase) in
tissues of naked mole rats under anoxia resulted
in fructose-driven aerobic glycolysis that
circumvented the normal feedback inhibition of
phosphofructose kinase-dependent glycolysis.
This was key to the prolonged viability of naked
mole rats under hypoxic or anoxic conditions.
Ketohexokinase converts fructose to fructose-1-
PO4 that is metabolized to glyceraldehyde, dihy-
droxyacetone phosphate and glyceraldehyde
3 phosphate. That pathway is not inhibited by
pH, citrate or ATP as occurs when glucose is

Fig. 1.1 The pig conceptus is representative of animals
with epitheliochorial or synepitheliochorial placentae. The
chorion is in direct contact with uterine epithelia and
transports nutrients and other molecules into the vascula-
ture of the fetal-placental tissues. The allantoic sac
contains allantoic fluid that serves as a reservoir for
nutrients and other molecules transported into the fetal-
placental vasculature. Those nutrients and molecules sup-
port development of the conceptus; however, those not
utilized are cleared through the kidney, into the bladder
and then, via the urachus, transported into the allantoic sac

for storage until needed. Subsequently, those nutrients and
other molecules are transported across the allantoic epithe-
lium into the fetal-placental circulation to meet metabolic
or regulatory functions. This recirculation of nutrients and
other molecules provides an efficient means for storage,
access, and utilization of nutrients with allantoic fluid. The
amnion is filled with amniotic fluid that supports the
conceptus and allows it to develop symmetrically. In the
latter stages of pregnancy sheep fetuses have been reported
to drink amniotic fluid

4 F. W. Bazer et al.



metabolized via the hexokinase pathway to glu-
cose-6-PO4.

Trophectoderm cells of sheep and pigs in their
hypoxic environment are metabolically distinct
from cells of resting tissues, and reflect
characteristics of cancer cells and activated
lymphocytes in their ability to enhance aerobic
glycolysis (Yang and Vousden 2016). There is
evidence that pig trophectoderm cells express
the ketohexokinase enzyme (Steinhauser et al.
2016). Utilization of the ketohexose pathway in
trophectoderm cells of sheep and pigs under hyp-
oxic conditions during the peri-implantation
period of pregnancy and later stages of gestation
is clearly advantageous.

L-Lactate, a major metabolic product of aero-
bic glycolysis, also creates an acidic environment
for trophectoderm cells (Gardner 2015) and plays
a role in survival of Naked Mole rats (Park et al.
2017). In mice, aerobic glycolysis also provides
for a high carbon flux to fulfil biosynthetic
demands, increase concentrations of lactate and
lower pH around the conceptus (Gardner 2015).
Lactate activates cell signaling under hypoxic
conditions at implantation sites to: (1) increase
expression of hypoxia inducible factor 1-α and
down-stream growth factors such as bioactive
vascular endothelial growth factor to increase
angiogenesis; (2) modulate local immune
responses to favor immune tolerance; and (3)mod-
ulate expression of enzymes that modify the extra-
cellular matrix of the endometrium in preparation
for implantation. The conversion of pyruvate into
lactate via lactate dehydrogenase also regenerates
NAD+ required for glycolysis to continue. Main-
tenance of the NAD+/NADH redox balance is
necessary for conversion of glyceraldehyde-3-
phosphate to 1,3-bisphosphoglycerate, and
NADH is a cofactor for the transcriptional regula-
tor C-terminal-binding protein involved in cell
growth, differentiation, and transformation (Lunt
and Vander Heiden 2011).

In cells that are not dividing and migrating,
metabolism of glucose through the tricarboxylic
acid (TCA) cycle and oxidative phosphorylation
is an efficient way to produce ATPs. However, as
noted previously, proliferating and migrating cells
are metabolically distinct from resting cells (Pearce

et al. 2013; Burton et al. 2017). Cancer cells and
activated lymphocytes enhance aerobic glycolysis
(also known as the Warburg effect) to produce
glycolytic intermediates used as substrates for
metabolism via: (1) the pentose phosphate path-
way (PPP) for generating a pentose sugar (i.e.,
ribose 5-phosphate) as a precursor for synthesis
of nucleotides, and NADPH for nitric oxide syn-
thesis an anti-oxidative reactions; (2) one-carbon
metabolism for de novo synthesis of purines and
thymidine for synthesis of nucleotides, and S-
adenosyl methionine for methylation reactions
and epigenetic modifications of genes;
(3) hexosamine biosynthesis for synthesis of
glycosaminoglycans (e.g., hyaluronic acid), uri-
dine diphosphate-N-acetyl glucosamine, a cell sig-
naling molecule, and uridine diphosphate-N-acetyl
galactosamine involved in synthesis of glycolipids,
glycosaminoglycans and proteoglycans; and
(4) the TCA cycle for generation of NADH,
FADH2 and ATP. A result of activation of the
PPP and 1C metabolism is a decrease in availabil-
ity of pyruvate for metabolism via the Kreb’s
cycle. Cancer cells overcome this metabolic
restriction by utilizing glutaminolysis to convert
glutamine into a TCA cycle metabolite,
α-ketoglutarate (αKG), through a process known
as anaplerosis. Glutaminolysis-derived αKG is
converted into citrate via enzymes of the Krebs
cycle, a process known as reductive glutamine
metabolism, and citrate is exported into the cytosol
where it is cleaved into oxaloacetate and acetyl-
CoA. The latter is used for the synthesis of lipids.
The active TCA cycle generates ATP that inhibits
the enzyme phosphofructokinase-1 (PFK) and,
therefore, glycolysis. This inhibition can be
circumvented via activation of the polyol pathway
to synthesize fructose from glucose, and fructose-
driven glycolysis (also called fructolysis)
continues to provide glycolytic intermediates.
Enzymes required for the polyol pathway are
expressed by conceptus trophectoderm cells of
pigs and sheep. We propose that in a hypoxic
environment, trophectoderm cells of pig and
sheep conceptuses: (1) utilize glucose via the gly-
colytic biosynthetic pathway, and accumulating
glycolytic intermediates are shunted into the de
novo synthesis of nucleotides; (2) utilize glutamine

1 One-Carbon Metabolism and Development of the Conceptus During Pregnancy:. . . 5



as an alternate carbon source to maintain TCA
cycle flux and provide biosynthetic precursors for
the synthesis of lipids; and (3) convert glucose to
fructose through the polyol pathway, and
fructolysis provides glycolytic intermediates from
fructose-1-PO4 metabolism that is not inhibited by
ATP, citrate or pH. The synthesis of nucleotides
and lipids through these biosynthetic pathways is
essential to support extensive proliferation and
migration of conceptus Tr cells required for
implantation and early placentation.

1.2 Metabolism in Trophectoderm
During Peri-Implantation
Period

1.2.1 Warburg Effect in a Hypoxic
Environment

Implantation and early placentation in humans
involves rapid growth of the conceptus that
requires extensive proliferation, migration and
differentiation of cells, all of which rapidly
exhaust available oxygen and nutrients. In
humans, the fetal heart does not start beating
until the 5th week of pregnancy and an effective
circulation through the placental villi is only
achieved towards the end of the first trimester
(Burton et al. 2017). Therefore, implantation and
early placentation in humans take place in a hyp-
oxic environment (Burton et al. 2017; Tayade
et al. 2007). During the initial stages of implanta-
tion, pig and sheep conceptuses elongate and
attach to the uterine LE, processes that also
require extensive proliferation, migration, and
differentiation of cells in a hypoxic environment.
This results in hypoxia inducible factor 1-α
expression by trophectoderm cells of pig
conceptuses that is upstream of expression of
vascular endothelial growth factor and
angiopoietins required to initiate angiogenesis
and transport of nutrients from the dam into the
uterine lumen and or fetal-placental vascular sys-
tem. Optimal utilization of multiple biosynthetic
pathways is likely an essential aspect of early
conceptus development for both humans and live-
stock species including sheep and pigs; however,
little is known about the biosynthetic pathways

employed by conceptuses of these species.
Metabolism may occur through the tricarboxylic
acid (TCA) cycle and oxidative phosphorylation
to produce ATP (O’Neill et al. 2016). However,
proliferating, migrating and differentiating cells
are metabolically distinct from cells of resting
tissues and reflect characteristics of cancer cells
and activated lymphocytes. Cancer cells and
activated lymphocytes utilize aerobic glycolysis
(also called the Warburg effect) (Andrejeva and
Rathmell 2017; Yang et al. 2017) that generates
various metabolites required to support multiple
metabolic pathways. Those pathways include:
(1) the PPP for generating pentoses, ribose
5-phosphate and NADPH; (2) the hexosamine
biosynthesis pathway (HBP) for producing
UDP-N-acetylglucosamine (UDP-GlcNAc) and
glycosaminoglycans such as hyaluronic acid;
(3) one-carbon metabolism that generates formate
for the de novo synthesis of purine nucleotides,
thymidylate, S-adenosylmethionine required for
methylation reactions; and (4) generation of
NADPH. These metabolic pathways require
cooperation between amino acids and glucose
(Wu 2018).

1.2.2 Glutaminolysis as a TCA Cycle
Anaplerosis

Activation of the PPP, HBP and one-carbon
metabolism decreases the generation of pyruvate
as substrate for the TCA cycle. Therefore,
proliferating cells such as trophectoderm cells,
may utilize glutaminolysis to convert glutamine
into the TCA cycle metabolite, αKG, a process
known as anaplerosis (Yang et al. 2017; Jiang
et al. 2016). The creatine kinase pathway is
another pathway to generate ATP to support con-
ceptus development (Brosnan and Brosnan 2016).
Glutaminolysis-derived αKG can also support
synthesis of fatty acids, as noted previously. Glu-
tamine increases in the uterine lumen during the
peri-implantation period of pigs and sheep that
increases proliferation of porcine trophectoderm
cells in vitro. All enzymes required for
glutaminolysis are expressed by the Tr cells of
pig conceptuses (Seo et al. 2020b).

6 F. W. Bazer et al.



1.2.3 Polyol Pathway and Fructolysis
to Bypass Feedback Inhibition
of Glycolysis

An active TCA cycle generates ATP that inhibits
PFK and, therefore, glycolysis. This inhibition
can be overcome by activation of the polyol path-
way to synthesize fructose from glucose (see Park
et al. 2017). Fructose-driven glycolysis then
provides glycolytic intermediates continuously.
Enzymes required for the polyol pathway are
expressed by conceptus trophectoderm cells of
pigs (Steinhauser et al. 2016). Again, the Naked
mole rat, under conditions of anoxia or hypoxia,
immediately increases the conversion of glucose
to fructose and activation of ketohexokinase to
generate fructose-1-PO4 for aerobic glycolysis
downstream of phosphofructokinase (Park et al.
2017). The synthesis of nucleotides and lipids
through these biosynthetic pathways is essential
to support extensive proliferation and migration
of conceptus trophectoderm cells required for
implantation and placentation.

1.3 Serine as a Major Source
of 1C Unit

1.3.1 Serine Biosynthesis from
Glucose

Increased serine biosynthesis is one of the meta-
bolic changes occurring in proliferating cells (see
Mattaini et al. 2016; Locasale 2013;Ma et al. 2017;
Yang and Vousden 2016). Serine is required for
several biosynthetic pathways including the syn-
thesis of other amino acids and the production of
phospholipids, but its linkage with one-carbon
metabolism is particularly relevant to populations
of proliferating cells such as cancer cells and
trophectoderm cells of elongating ovine and por-
cine conceptuses. One-carbon metabolism has
been referred to as an integrator of nutrient status,
an analogy often used for mTOR. Hexose sugars,
particularly fructose and glucose, and amino acids
enter the pathway, undergo chemical modification
and then are out-sourced for diverse cellular
functions. Cells can either obtain serine from the

outside environment, as we propose here for serine
production in uterine LE and uptake by adjacent
trophectoderm, or through intracellular synthesis
from hexose sugars. The reactions of
serineneogenesis are catalyzed by the successive
actions of the enzymes phosphoglyceride dehydro-
genase (PHGDH), phosphoserine aminotransfer-
ase (PSAT), and phosphoserine phosphatase
(PSPH). PHGDH converts 3-phosphoglycerate to
3-phosphohydroypyruvate which is the committed
step into the pathway for serine biosynthesis. PSAT
next converts 3-phosphohydroypyruvate to
3-phosphoserine (P-Ser), which is then converted
to serine by PSPH. Serine can either remain in the
cytosol or be transported to neighboring cells
where it can enter mitochondria for incorporation
into one-carbon metabolism, a network of inter-
connected biochemical pathways that facilitate the
transfer of one-carbon units for biosynthesis.
Within mitochondria, serine hydroxymethyl-
transferase 2 (SHMT2) catalyzes the reversible
reaction of serine and tetrahydrofolate (THF) to
glycine and 5,10-methylene tetrahydrofolate
(mTHF). mTHF is required for synthesis of for-
matewithin themitochondria. Formate then goes to
the cytoplasm for synthesis of thymidine for DNA
synthesis, purines for RNA andDNA synthesis and
S-adenosyl methionine which is the primary
methyl donor for methylation reactions such as
those for epigenetic modifications of gene expres-
sion. The temporal and cell-specific expression of
these genes in uteri and placentae of pigs and sheep
indicates that glucose and fructose can be
converted to serine within the uterine LE via
PHGDH, PSAT1 and PSPH, while serine can
also be transported into trophectoderm cells by
SLC1A4 (neutral amino acid transporter A).Mech-
anistic target of rapamycin (MTOR) and hypoxia
inducible factor 1-α can then potentially induce
expression of SHMT2 and methylenetetrahy-
drofolate dehydrogenase 2 (MTHFD2) in
trophectoderm cells to convert serine to 1 carbon
units(unpublishedobservations)(Fig.1.2).Because
plant porteins contain relatively low content of
both serine and glycine (Hou et al. 2019; Li and
Wu 2020), de novo synthesis of serine is of
nutritional and physiological importance for suc-
cessful pregnancy outcomes in ruminants and
swine that typically consume plant-based diets.
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As noted previously, there is a link between
serine, one carbon metabolism and rapidly
proliferating cells such as cancer cells and
trophectoderm cells of elongating ovine and por-
cine conceptuses. In rapidly dividing cells, it is
known that amino acids such as arginine, stimu-
late MTOR in trophectoderm cells (Bazer et al.
2015), but there is also evidence for a link between
MTOR and one-carbon metabolism indicating
cross-talk among metabolic pathways in such

cells. It should also be noted that MTORC1
activates activating transcription factor 4 (ATF4)
that stimulates expression of MTHFD2, but also
PHGDH, PSAT and PSP that generates serine for
one-carbon metabolism (Ben-Sahra et al. 2016).
Glucose and fructose can be metabolized via the
hexosamine biosynthetic pathway to activate the
Akt-TSC2-MTOR signaling cascade due to gly-
cosylation and activation of those transcription by
UDP-N-acetylglucosamine, a primary product of

Fig. 1.2 Glucose may enter tissues via glucose trans-
porter 1 (SLC2A1) and be phosphorylated to glucose-6-
PO4 and fructose-6-PO4 by hexokinases and then PFK
generates fructose-1,6 bisphoshphate that aldolases B and
C convert to trioses, dihydroxyacetone phoshphate and
glyceraldehyde-3-PO4 for further metabolism to pyruvate
and lactate. This pathway is inhibited by increases in ATP,
citrate, and decreases in pH. However, fructose produced
from glucose via the aldoase pathway can enter cells via
SLC2A5 and be phosphorylated by ketohexokinase to

fructose-1-PO4. Aldolase B primarily the converts fruc-
tose-1-PO4 to trioses (dihydroxyacetone phoshphate and
glyceraldehyde-3-PO4) that can be metabolized to pyru-
vate and lactate. The pathway whereby ketohexokinase
yields fructose-1-PO4 at a higher efficiency than by
hexokinases and fructose-1-PO4 is directly metabolized
into trioses via aldolase B or aldolase C to bypass feedback
inhibition by ATP, citrate and pH. However, glyceralde-
hyde-3-PO4 can also be metabolized via the
serineogenesis pathway for one-carbon metabolism
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the hexosamine biosynthesis pathway (Wang
et al. 2016). The generation of MTOR via this
pathway may then activate ATF4 to induce the
pathway for generation of serine for one-carbon
metabolism (Fig. 1.3).

1.3.2 Serine Biosynthesis from
Fructose

Fructose is clearly the most abundant hexose sugar
in allantoic fluid and fetal blood of ungulates and
cetaceans (Kim et al. 2012). Fructose can be

synthesized from glucose via the polyol pathway,
also known as the sorbitol-aldose reductase path-
way (Steinhauser et al. 2016). Glucose is
converted to sorbitol by aldo-keto reductase family
1 member B (AKR1B1), then sorbitol is converted
to fructose by sorbitol dehydrogenase (SORD).
Cells obtain fructose from their environment
through fructose transporters, particularly solute
carrier family 2 member 5 (SLC2A5, also known
as GLUT5) and SLC2A8 (also known as GLUT
8). Within cells, fructose is phosphorylated by
ketohexokinase to fructose-1-phosphate that can
be metabolized to dihydroxyacetone phosphate

Fig. 1.3 In rapidly dividing cells, it is known that amino
acids such as arginine, stimulate the mechanistic target of
rapamycin cascade in that stimulates proliferation and
expression of mRNAs in ovine and porcine trophectoderm
cells (see Bazer et al. 2015). This figure provides evidence for
cross-talk between pathways fueled bymolecules involved in
glycolysis. In this case, there is cross-talk between the
hexosamine biosynthesis pathway and the pathway for
generating molecules required for one-carbon metabolism.
It should also be noted that MTORC1 activates activating
transcription factor 4 (ATF4) and ATF4 then stimulates
expression of phosphoglyceride dehydrogenase (PHGDH),
phosphoserine aminotransferase (PSAT), and phosphoserine

phosphatase (PSPH) to generate serine for one-carbonmetab-
olism (Ben-Sahra et al. 2016). Glucose and fructose can be
metabolized via the hexosamine biosynthetic pathway to
activate the Akt-TSC2-MTOR signaling cascade. This
results from glycosylation and activation of Akt-TSC2-
MTOR transcription factors by actions of UDP-N-acetylglu-
cosamine, a primary product of the hexosamine biosynthesis
pathway and O-glycosyltransferase (OGT) (Wang et al.
2016). Thus, the mitochondrial tetrahydrofolate (mTHF)
cycle is activated to generate formate for purines, thymidine
and s-adenosylmethionine to support rapid proliferation of
trophectoderm cells. (This figure is adapted from those
published Wang et al. (2016) and Ben-Sahra et al. (2016))
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and then 3-phosphoglycerate for entry into the
pathway for synthesis of serine. This switch to
fructose-1-PO4 by-passes the key regulatory step
that limits glycolytic flux (Park et al. 2017). Glu-
cose metabolism via hexokinases 1 and 2 yields
glucose-6-PO4 that is metabolized by the pathway
requiring PFK. PFK is subject to feedback inhibi-
tion by ATP, hydrogen ions, and citrate. However,
fructose-1-phosphate metabolites enter glycolysis
downstream of PFK which permits continued met-
abolic flux through aerobic glycolysis that is not
inhibited by ATP, pH or citrate.

Sorbitol is present in high concentrations in
porcine, ovine, bovine, and human placentae,
especially during early pregnancy and there is
expression of SLC2A5 and SLC2A8 by pig
conceptuses (Jauniaux et al. 2005; Steinhouser
et al. 2016; Bazer et al. 2012a, b). Fructose is
transported into trophectoderm cells by SLC2A5
and SLC2A8, converted to fructose-1-phosphate
by ketohexokinase and further metabolized via
aerobic glycolysis that supports hexosamine
biosynthesis, pentose phosphate pathway and
one-carbon metabolism, all of which are essential
to support fetal-placental development and ensure
a successful outcome of pregnancy.

1.3.3 Serine in Biological Fluids
During Pregnancy

Serine is abundant in the uterine histotroph of
sheep (Gao et al. 2009a) and pigs (Bazer et al.
2012a, b). Concentrations of serine (nmol) in uter-
ine flushings from ewes increase between Days
10 and 15 of pregnancy (542 � 267 versus
1975� 687) and decrease, perhaps due to metabo-
lism, by Day 16 of pregnancy (1708� 494). Simi-
larly, concentrations of glycine (nmol) increase in
uterine flushings from pregnant ewes between Day
10 (4214 � 739) and 14 (8598 � 2308) and then
decrease to Day 16 (5805� 2004). Concentrations
of serine (nmol) are much greater in litter bearing
pigs. Concentrations of glycine (nmol) in uterine
flushings from pigs increase between Days

10 (93,387 � 12,435) and 15 (95,282 � 54,745)
and concentrations of glycine (nmol) are
63,8878 � 6145 and 41,409 � 25,858 on the
same respective days. The decreases in serine and
glycine in uterine flushings toward the end of the
peri-implantation period of pregnancy likely reflect
increased uptake and metabolism by highly active
trophectoderm cells. Serine is also very abundant in
allantoic fluid of sheep with mean concentrations
(μmol/L) of 1636, 19,072 and 16,468 on Days
40, 100 and 140 of gestation, respectively (Kwon
et al. 2003). On Day 140 of gestation in sheep,
serine accounts for about 60% of total α-amino
acids in allantoic fluid (Kwon et al. 2003). Glycine
(μmol/L) is also very abundant in ovine allantoic
fluid on Days 40 (2449), 100 (5464) and
140 (1132). Mean concentrations (μmol/L) of ser-
ine (1218) and glycine (3054) are also very abun-
dant in allantoic fluid on Day 110 of gestation
(Wu et al. 1995). Increases in abundances of serine
and glycine are coincident with rapid proliferation
of trophectoderm cells as the conceptus elongates
and mononuclear trophectoderm cells differentiate
into trophoblast giant cells that invade the uterine
LE to undergo syncytialization at the uterine-
placental interface (Seo et al. 2019). Also, there is
rapid development of the chorioallantois and
amnion during the first one-half of gestation that
will support exponential growth of the fetus during
the second one-half of gestation. Fetal develop-
ment does not increase exponentially until after
placental development is essentially complete.
The trophoblast giant cells have a high level of
expression of the serine transporter SLC1A4
mRNA indicating that they take up serine released
by adjacent uterine LE cells. The primary mem-
brane transporters for serine are solute carrier
family 1 member 4 (SLC1A4) and SLC1A5,
both of which are expressed by uterine epithelia
and trophectoderm cells of ovine conceptuses
during the peri-implantation period of pregnancy
(Gao et al. 2009b). Patterns of expression of
transporters for glycine, such as GLc6A9, by uter-
ine epithelia and trophectoderm of sheep and pigs
are unknown.

10 F. W. Bazer et al.



1.4 Formate as a Major Output
of 1C Metabolism

Brosnan and Brosnan (2016) noted that formate is
the neglected member of one-carbon metabolism
because it is not linked to a tetrahydrofolate
(THF) coenzyme like other molecules involved
in one-carbon metabolism. They also noted that
formate is more mobile than THF-linked
molecules and easily provides inter-organ and
inter-organelle shuttling of one-carbon groups
due to its presence in blood at considerably higher
concentrations than folates. Cancer cells have
higher concentrations of formate than cells of
healthy tissues (Wang et al. 2013) and over-
expression of methylenetetrahydrofolate dehy-
drogenase 2 (MTHFD2), a bifunctional mito-
chondrial enzyme, is associated with increased
proliferation of cancer cells (Gustafsson et al.
2015).

1.4.1 Neural Tube Defects

Neural tube defects occur in Mthfd1l null mice as
that gene encodes for mitochondrial 10-formyl-
THF synthase that catalyzes the interconversion
of 10-formyl-THF to formate (Momb et al. 2013).
However, neural tube defects in Mthfd11 null
mice are reduced significantly when dams are
provided with sodium formate in their drinking
water. Dietary supplementation with sodium for-
mate also reduced neural tube defects in Gldc
(glycine dehydrogenase (decarboxylating), mito-
chondrial) null mice (Pai et al. 2015).

Pai et al. (2015) reported that glycine decar-
boxylase (Gldc) null mice are deficient in folates
charged with one-carbon groups. Gldc null mice
have two phenotypes. One phenotype was par-
tially penetrant with 25–30% of mice having neu-
ral tube defects, particularly exencephaly. The
second phenotype of mice exhibited nonketotic
hyperglycinemia characterized by elevated
concentrations of glycine in their plasma and a
high incidence of hydrocephalus. Supplementing
the diet with sodium formate in drinking water from
Day 1 of pregnancy restored normal concentrations
of folate in the plasma and eliminated the neural tube

defects in the partially penetrant phenotype, but did
not alleviate defects in the hyperglycinemia pheno-
type. Thus, the glycine cleavage system provides
one-carbon groups, in the form of 5,10-methylene-
tetrahydrofolate required for normal closure of the
neural tube, particularly between embryonic days
8.5 and 10.5 in mice. Alternatively, glycine can be
oxidized by glycine oxidase to glyoxylate, which is
decarboxylated by NAD-linked glyoxylate dehy-
drogenase to produce formate (Wu 2013).

1.4.2 Formate During Pregnancy
in Sheep and Pigs

There are limited studies in sheep and humans
linking formate with the growth and development
of conceptuses. For pregnant ewes at Day 120 of
gestation, concentrations of format in fetal plasma
and in amniotic fluid were six- and ninefold greater
than those in maternal plasma, and concentrations
of format in plasma from neonatal lambs remained
high until around 8 weeks of life (Washburn et al.
2015). Similarly, in pregnant women,
concentrations of formate, as well as its precursors
(serine, glycine, tryptophan, and methionine) were
greater in the plasma from cord blood than mater-
nal plasma. However, babies with variant forms of
the MTHFD1 gene (1958 G to A) and MTHFR
gene (1298 A to C) had lower concentrations of
formate in their blood, but infants with the more
common mutation in the MTHFR gene (677 C to
T) had concentrations of formate that were similar
to those for normal babies.

As noted earlier, serine and glycine are abun-
dant in uterine flushings and in fetal fluids and may
be used for synthesis of one carbon groups such as
formate. Cetin et al. (1992) reported significant
uptake of serine by both liver and hindlimbs of
fetal lambs, as well as a net uptake of serine across
the placenta. They also obtained umbilical venous
and maternal arterial blood from 24 normal (AGA)
and 31 intrauterine growth retarded (IUGR)
fetuses with 16 AGA pregnancies between
18 and 25 weeks of gestation and 8 AGA and
31 IUGR pregnancies between 27 and 39 weeks
of gestation (Cetin et al. 1993). They reported no
significant relationship between concentrations of
amino acids in maternal arterial blood and
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gestational age except for threonine, methionine,
serine and glutamic acid. Further, concentrations
of glycine, aspartic acid, and glutamic acid
increased in umbilical vein plasma and were sig-
nificantly greater in normal fetuses during the third
trimester than in the second trimester, and glycine
was the only amino acid in umbilical vein plasma to
increase in concert with gestational age. Washburn
et al. (2015) suggested that formate is synthesized
in the placenta from serine and distributed to fetal
tissues as a substrate for use in one-carbon metabo-
lism since the ovine placenta exhibits high activity
of mitochondrial SHMT throughout pregnancy
(Narkewicz et al. 1999). Also, human placentae
express an abundance of mitochondrial bifunc-
tional protein (MTHFD2) mRNA that codes for
methylenetetrahydrofolate dehydrogenase and
5,10-methenyl-THF cyclohydrolase (Prasannan
et al. 2003). Each of those three enzymes is critical
for the synthesis of formate in mitochondria. Thus,
Washburn et al. (2015) suggest that formate is not
only an intracellular metabolite in one-carbon
metabolism, but an inter-organ metabolite that
distributes one-carbon groups to rapidly develop-
ing tissues.

1.5 Compartmentalization of 1C
Metabolism

1.5.1 Mitochondrial 1C Metabolism

The primary route for production of folates begins
in mitochondria where serine, glycine, sarcosine
and dimethylglycine are converted to 5,10-methy-
lene-tetrahydrofolate (5,10 –CH2-THF). Brosnan
and Brosnan (2016) noted the following key points
regarding synthesis of formate in mitochondria:
(1) sarcosine is not abundant in tissues and
contributes little to the synthesis of formate; (2) ser-
ine metabolism is initiated by an isoform of
mitochondrial serine hydroxymethyltransferase
(SHMT)-2; (3) glycine metabolism is initiated by
the mitochondrial glycine cleavage system;
(4) sarcosine and dimethylglycine metabolism are
initiated, respectively, by sarcosine dehydrogenase
and dimethylglycine dehydrogenase; (5) 5,10-
methylene-THF produced from these substrates is

oxidized to 10-formyl-THF by the sequential
actions of themitochondrial isoforms of 5,10-meth-
ylene-HF dehydrogenase and 5,10-methenyl-THF
cyclohydrolase; (6) 5,10-methylene-THF dehydro-
genase and 5,10-methenyl-THF cyclohydrolase are
bifunctional proteins in mammalian mitochondria;
(7) the two bifunctional mitochondrial isoforms are
methylenetetrahydrofolate dehydrogenase/5,10-
methenyl-THF cyclohydrolase (MTHFD2) and
MTHFD2L; (8) MTHFD2 is expressed primarily
in tumors and embryonic tissues; (9) 10-Formyl-
THF synthase produces formate and THF from
10-formyl-THF; (10) formate is transported from
the mitochondria into the cytosol by an unknown
mechanism and may be incorporated into cytosolic
10-formyl-THF and then other THF-linked
one-carbon intermediates; (11) limited amounts of
formatemay be produced from histidine catabolism
to formiminoglutamate and this one-carbon group
may be metabolized to yield cytosolic 5,10-methy-
lene-THF to be oxidized to 10-formyl-THF and
then to formate in the cytosol; and (12) serine is
likely the most important precursor of formate as
both carbons 2 and 3 of serine are incorporated into
formic acid and formate.

1.5.2 Cytosolic 1C Metabolism

Three canonical functions of one-carbon metabo-
lism are synthesis of purine nucleotides, synthesis
of thymidylate, and provision of labile methyl
groups to remethylate homocysteine to methionine
(Brosnan and Brosnan 2016). Formate functions in
the cytoplasm include actions of ATP-dependent
10-formyl-THF synthetase with 5,10-methenyl-
THF cyclohydrolase and 5,10-methylene-THF
dehydrogenase in the trifunctional protein
MTHFD1. The 10-formyl-THF is incorporated
into the 2 and 8 positions of the purine ring and
may be further reduced to 5,10-methylene-THF and
5-methyl-THF, respectively, for thymidylate syn-
thesis and remethylation of homocysteine to methi-
onine. During folate deficiency, mammalian cells in
the S phase of the cell cycle can translocate SHMT1,
SHMT2α, thymidylate synthase, dihydrofolate
reductase, and MTHFD1 to the nucleus to form a
functional metabolon to achieve the synthesis of
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thymidylate (Field et al. 2014). Those authors
indicated that SHMT1 and SHMT2α function as
scaffold proteins rather than as enzymes because
catalytically inactive SHMT1 also enhances
thymidylate synthesis. Formate produced in
mitochondria enters the nucleus for conversion to
5,10-methylene-THF by the three reactions of
MTHFD1. Thus, cells deficient in folate and 5,10-
methylene-THF are able to achieve de novo synthe-
sis of thymidylate at the expense of remethylation of
homocysteine to methionine.

1.6 Summary

This review links morphological and functional
aspects of placentae required for transport of
nutrients across the placenta and into the fetal-
placental vasculature for delivery to those respec-
tive tissues. Further, placentae of sheep and pigs
must support rapid growth of the fetus in spite of
capillaries in the placenta being separated from
maternal capillaries by 5 or 6 layers of cells.
Accordingly, the allantois serves as a reservoir
in which nutrients in excess of metabolic needs
can be stored and then reabsorbed, as needed, to
compliment the on-going transfer of nutrients from
maternal to fetal-placental vasculatures. The focus
of the review is on the utilization of available
serine and glycine by the rapidly developing pla-
centa, as well as pathways for glucose and fructose
to be used to produce 3-phosphoglycerate that can
enter into the serinogenesis pathway in the pres-
ence of glutamate. It is also noteworthy that fruc-
tose in the blood and allantoic fluid of sheep and
pigs is at conentrations 11–30 times those of glu-
cose. Fructose can be phosphorylated by
ketohexokinase to yield fructose-1-PO4 that is
metabolized via a pathway that by-passes phos-
phofructokinase to assure continuous generation of
metabolites via aerobic glycolysis that supports
hexosamine biosynthesis, pentose phosphate path-
way and one-carbon metabolism, all of which are
essential to support fetal-placental development
and ensure a successful outcome of pregnancy.
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Cell-Specific Expression of Enzymes
for Serine Biosynthesis
and Glutaminolysis in Farm Animals

2
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Bryan A. McLendon, and Avery C. Kramer

Abstract

During the peri-implantation period, conceptuses
[embryo and placental membranes, particularly
the trophectoderm (Tr)] of farm animals (e.g.,
sheep and pigs) rapidly elongate from spherical
to tubular to filamentous forms. In concert with
Tr outgrowth during conceptus elongation, the Tr
of sheep and pig conceptuses attaches to the
endometrial luminal epithelium (LE) to initiate
placentation. In sheep, binucleate cells (BNCs)
begin to differentiate from the mononuclear
trophectoderm cells and migrate to the endome-
trial LE to form syncytial plaques. These events
require Tr cells to expend significant amounts of
energy to undergo timely and extensive prolifer-
ation, migration and fusion. It is likely essential
that conceptuses optimally utilize multiple bio-
synthetic pathways to convert molecules such as
glucose, fructose, and glutamine (components of
histotroph transport by sheep and pig endometria
into the uterine lumen), into ATP, amino acids,
ribose, hexosamines and nucleotides required to
support early conceptus development and sur-
vival. Elongating and proliferating conceptus Tr
cells potentially act, in amanner similar to cancer

cells, to direct carbon generated fromglucose and
fructose away from the TCA cycle for utilization
in branching pathways of glycolysis, including
the pentose phosphate pathway, one-carbon
metabolism, and hexosamine biosynthesis. The
result is a limited availability of pyruvate for
maintaining the TCA cycle within mitochondria,
and Tr cells replenish TCA cycle metabolites via
a process known as anaplerosis, primarily
through glutaminolysis to convert glutamine
into TCA cycle intermediates. Here we describe
the cell-specific expression of enzymes required
for serine biosynthesis, one-carbon metabolism
and glutaminolysis at the uterine-placental inter-
face of sheep and pigs, and propose that these
biosynthetic pathways are essential to support
early placental development includingTr elonga-
tion, cell migration, cell fusion and implantation
by ovine and porcine conceptuses.
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GLUD glutamate dehydrogenase
LE luminal epithelium
PHGDH phosphoglyceride dehydrogenase
PHP 3-phosphohydoypyruvate
PSAT phophoserine aminotransferase
PSPH phosphoserine phosphatase
SAM S-adenosylmethionine
SHMT serine hydroxymethyltransferase
SLC solute carrier
TCA tricarboxylic acid
THF tetrahydrofolate
Tr trophectoderm
α-KG α-ketoglutarate

2.1 Introduction

Over two-thirds of pregnancy losses in mammals
occur during the peri-implantation period of preg-
nancy. In sheep and pigs, conceptuses [embryos
and associated placental membranes, particularly
the trophectoderm (Tr)] undergo dramatic mor-
phological changes from spherical to tubular and
then filamentous forms, and attach to the uterine
luminal epithelium (LE) to initiate placentation
(Bazer and Johnson 2014). These processes
require that Tr cells expend significant amounts
of energy to undergo timely and extensive prolif-
eration and migration at a time when the
conceptuses have not yet established a placental
connection to the uterus, and are dependent upon
limited nutrients either secreted or transported
into the uterine lumen by cells of the endome-
trium (Perry et al. 1973; Fischer et al. 1985).
Therefore, optimal utilization of multiple biosyn-
thetic pathways to convert molecules such as
glucose, fructose, and glutamine (components of
histotroph secreted and/or transported by sheep
and pig endometria into the uterine lumen), into
ATP, amino acids, ribose, hexosamines and
nucleotides is required to support early conceptus
development and survival. Studies with swine
have shown that glutamine is a highly abundant
amino acid in porcine fetal allantoic and amniotic
fluids (Wu et al. 1995, 1996), and its adequate
provision in diets is critical for conceptus growth
and survival (Wu et al. 2011; Zhu et al. 2018).

Our previous work has also demonstrated that
ovine fetal fluids contain a large amount of gluta-
mine during gestation (e.g., about 25 mM in
allantoic fluid on day 60 of gestation; Kwon
et al. 2003). However, little is understood about
the biosynthetic pathways employed by sheep
and pig conceptuses during the peri-implantation
period of pregnancy (Bazer et al. 2020).

Cell metabolism primarily occurs through the
TCA cycle and oxidative phosphorylation, which
is a complex, but efficient, process that requires
mitochondrial biogenesis to produce ATP
(Wu 2018). However, proliferating cells, such as
the Tr of sheep and pigs, are metabolically dis-
tinct from cells of resting tissues, and reflect
characteristics of cancer cells and activated
lymphocytes (Andrejeva and Rathmell 2017). A
hallmark of tumors and activated lymphocytes is
their ability to enhance glycolysis, even in the
presence of oxygen, a phenomenon known as
the Warburg effect or aerobic glycolysis which
is a classic example of the ability of proliferating
cells to reprogram the activation of metabolic
pathways (Yang et al. 2017; DeBerardinis and
Chandel 2016). Glycolysis is a physiological
response to hypoxia in normal tissues, but in the
1920s Otto Warburg observed that tumor slices
and cancer cells with ascites fluid constitutively
take up glucose and produce lactate regardless of
the availability of oxygen, an observation now
recognized in many types of cancer cells and
tumors. The widely accepted theory is that cancer
cells switch from using oxidative phosphoryla-
tion to using glycolysis because high glycolytic
rates result in more rapid generation of ATP as
compared with the oxidation of glucose and acti-
vation of the TCA cycle. The glycolytic
intermediates that accumulate are then shunted
into branching pathways of glycolysis for de
novo synthesis of nucleotides, amino acids, and
fatty acids to fulfill the metabolic demands of
proliferating cells (Cruys et al. 2016; Rathmell
et al. 2000; Wang et al. 1976; O’Neill et al. 2016).

The proliferating Tr cells of sheep and pig
conceptuses appear to use a similar switch from
reliance on oxidative phosphorylation to activa-
tion of glycolysis. Glucose and fructose are pres-
ent in the uterine flushings from early pregnant
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sheep and pigs (Zavy et al. 1982; Gao et al.
2009a). In pigs, expression of the facilitated dif-
fusion transporter of the solute carrier family 2A1
(SLC2A1, responsible for the basal uptake of
glucose into most cells) and SLC2A8, a high
affinity glucose transporter that can also transport
fructose, are expressed in uterine LE, whereas
SLC2A3 (a high affinity and high capacity glu-
cose transporter), and SLC2A8 are present in
conceptus Tr cells. In sheep, SLC2A1 and
SLC5A1 are expressed by LE while SLC2A1,
SLC2A3, SLC2A4, SLC5A1, and SLC5A11 are
expressed by conceptus Tr (Gao et al. 2009b).
Therefore, sheep and pig conceptus Tr cells
have access to glucose and fructose as energy
sources during the peri-implantation period of
pregnancy. These Tr cells appear to utilize the
glucose for glycolytic branching pathways
including the pentose phosphate pathway, serine
biosynthesis, one-carbon metabolism, and
hexosamine biosynthesis (Kim et al. 2012;
Wang et al. 2016), because conceptus Tr cells
express key enzymes required for those pathways
(described in the next sections) and the pentose
phosphate pathway is highly active in porcine Tr
cells (Lin et al. 2013). Therefore, the Warburg
effect appears to be operational in proliferating Tr
cells of sheep and pig conceptuses.

Glutamine, another principal growth-
supporting substrate, not only contributes carbon,
but also reduces nitrogen for the de novo biosyn-
thesis of a number of diverse nitrogen-containing
compounds (Pavlova and Thompson 2016). One
glutamine molecule is used in the production of
uracil and thymine, while cytosine and adenine
each require two glutamines, and guanine
requires three molecules of glutamine for synthe-
sis (Wu 2013). Thus, glutamine is a critical struc-
tural components in the biosynthesis of
nucleotides. Accordingly, glutamine levels have
been shown to be a rate-limiting factor for cell
cycle progression, and glutamine shortage leads
to cell proliferation arrest and S-phase accumula-
tion in certain cellular contexts. The concentra-
tion of glutamine increases in the uterine lumen
during the peri-implantation period of pregnancy,
and glutamine affects proliferation of porcine Tr

cells in vitro (Kim et al. 2013; Gao et al. 2009a).
We hypothesize that the Tr cells of ovine and
porcine conceptuses utilize glucose and fructose
within the uterine lumen via the glycolytic bio-
synthetic pathway, and that accumulating glyco-
lytic intermediates are shunted into pathways for
the de novo synthesis of nucleotides and amino
acids, and that glutamine within the uterine lumen
is used as an alternate carbon source to maintain
TCA cycle flux.

2.2 Overview of Serine
Biosynthesis, One-Carbon
Metabolism,
and Glutaminolysis

Glycolysis is classically depicted as a single chain
of molecular events that leads to the generation of
pyruvate, but a number of glycolytic
intermediates can be diverted into branching
pathways, generating diverse biosynthetic
precursors (Wu 2018). One of the most intensely
studied growth-promoting mechanisms that
shunts metabolites out of the glycolytic pathway
is the use of 3-phosphoglycerate as a precursor for
serine biosynthesis (Fig. 2.1). Serine is required
for several biosynthetic pathways including the
synthesis of other amino acids and the production
of phospholipids, but its linkage with one-carbon
metabolism or the folate cycle is particularly
relevant to proliferating cells such as cancer
cells and the Tr of elongating sheep and pig
conceptuses. Cells can either obtain serine from
the outside environment or through intracellular
synthesis from hexose sugars. Serine biosynthesis
is catalyzed by the successive actions of the
enzymes phosphoglyceride dehydrogenase
(PHGDH), phophoserine aminotransferase
(PSAT), and phosphoserine phosphatase
(PSPH). PHGDH converts 3-phosphoglycerate
(3-PG) to 3-phosphohydoypyruvate (PHP)
which is the committed step into the pathway
for serine biosynthesis. PSAT next converts
PHP to 3-phosphoserine (P-Ser), which is then
converted to serine by PSPH. Increases in serine
biosynthesis is one of the metabolic changes that
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occurs in proliferating cells. Enhanced expression
of PHGDH, a rate-limiting enzyme of serine bio-
synthesis, occurs in breast cancer and melanoma
cells (Locasale et al. 2011; Possemato et al.
2011).

The newly synthesized serine, or serine
transported into the cell can be incorporated into

one-carbon metabolism or the folate cycle. The
carbon-3 of serine unit can be transferred to a
carrier molecule, tetrahydrofolate (THF), in a
enzymatic reaction catalyzed by serine
hydroxymethyltransferase 2 (SHMT2) in the
mitochondria, and SHMT1 in the cytosol,
generating 5, 10-methylene-THF and glycine.

Fig. 2.1 Overview of possible utilization of glucose and
fructose through anaerobic and aerobic glycolysis for
serine biosynthesis and one-carbon metabolism, and
utilization of glutamine via glutaminolysis. Glucose,
fructose, and glutamine are abundant nutrients in the
conceptuses of farm animals, and glutamine is present in
food and animal proteins at relatively high content (Hou
et al. 2019; Li and Wu 2020). Glucose is utilized via
multiple metabolic pathways (including glycolysis in the

presence or absence of oxygen). Similar pathways may
exist for fructose metabolism. Phosphate-activated gluta-
minase (a mitochondrial enzyme in mammals) plays an
important role in initiating its catabolism in conceptus,
with metabolites including glutamate, aspartate, alanine,
pyruvate and lactate. This pathway for partial glutamine
catabolism is termed glutaminolysis analogous to glycoly-
sis where glucose is converted into pyruvate and lactate via
partial metabolism
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Then, 5,10-methylene-THF undergoes a series of
oxidative-reductive reactions, generating a series
of one-carbon-THF species. One-carbon-THF
species are utilized as substrates for the biosyn-
thesis of purines and thymidine, as well as pro-
duction of S-adenosylmethionine (SAM) which is
the primary methyl donor for methylation
reactions required for epigenetic modifications
of gene expression (Wu 2018). The enzymes
required for one-carbon metabolism are fre-
quently upregulated in tumors and activated T
cells (Nilsson et al. 2014; Ron-Harel et al. 2016)

Glucose-derived pyruvate is a main source of
carbon for the TCA cycle. However, cancer cells
direct the majority of the carbon generated from
glucose away from the TCA cycle, and instead
use the carbon for aerobic glycolysis (Yang et al.
2017). The result is limited availability of pyru-
vate for maintaining the TCA cycle within
mitochondria, and cancer cells replenish TCA
cycle metabolites via a process known as
anaplerosis. Anaplerosis is the process of
replenishing metabolic pathway intermediates,
and there are TCA cycle anaplerotic pathways
through which TCA cycle intermediates other
than acetyl-CoA can be supplied (Wu 2013).
The major anaplerotic substrate in proliferating
cells is glutamine.

Many cancer cells undergo metabolic
reprogramming that makes them highly depen-
dent on glutamine for survival and proliferation.
Indeed, when deprived of glutamine, those cells
stop growing and die (Yang et al. 2014;
DeBerardinis et al. 2007). Glutamine-dependent
cell lines consume glutamine as the preferred
anaplerotic substrate, as is evident from their oxa-
loacetate pools, 90% of which are derived from
glutaminolysis (DeBerardinis et al. 2007).
Glutaminolysis is the process by which cells con-
vert glutamine into aspartate, pyruvate and ala-
nine (which can be further metabolized to form
TCA cycle metabolites) through the activity of
multiple enzymes (Wu 2013). Glutamine is first
converted into glutamate via glutaminase
(GLS/GLS2). Glutamate is then converted into
alpha-ketoglutarate (α-KG) via two divergent
pathways. The first is through the activity of
glutamate dehydrogenase (GLUD). The second

is through the activity of a group of
transaminases, including glutamate–oxaloacetate
transaminase, glutamate–pyruvate transaminase,
and phosphoserine transaminase (PSAT). The
α-KG that is generated then serves as an
anaplerotic substrate for the TCA cycle. In addi-
tion to α-KG, GLUD generates ammonia and the
cofactor NADH and NADPH. In contrast,
aminotransferases generate α-KG, as well as
other amino acids such as serine, alanine, and
aspartate, which contribute to several cell
functions including the biosynthesis of
nucleotides. In addition to its role in TCA cycle
anaplerosis, glutamine serves as a critical nitro-
gen donor. The deamination of glutamine into
glutamate involves the donation of an amide
group to enable de novo synthesis of both purines
and pyrimidines. Overall, glutamine directly
supports the biosynthetic needs required for
growth and division of cells by directly
contributing carbon and nitrogen. Whereas the
carbon contributed by glutamine is used for fatty
acid and amino acid synthesis, the nitrogen from
glutamine contributes directly to de novo biosyn-
thesis of nucleotides.

In the next section of this review, we present
results indicating the cell-specific localization of
enzymes that participate in serine biosynthesis,
one-carbon metabolism and glutaminolysis at
the uterine-placental interface of sheep and pigs
during the peri-implantation period of pregnancy.

2.3 Overview of Placental
and Uterine Anatomy
for Sheep and Pigs

The 2- to 4-cell pig embryo moves from the
oviduct into the uterus 60–72 h after onset of
estrus, and reaches the blastocyst stage by day
5 (Fig. 2.2). The spherical 0.5–1 mm diameter
blastocyst sheds the zona pellucida between
days 6 and 7 and expands to a 2–6 mm diameter
by day 10. At this stage of development pig
embryos diverges dramatically from rodents or
primates, and the presumptive placental
membranes (Tr and endoderm) elongate rapidly
to a filamentous form by day 16. Blastocysts

2 Glycolysis and Glutaminolysis 21



expand at about 0.25 mm/h from the early spheri-
cal blastocyst stage to the 4–9 mm diameter
spherical blastocyst stage (Geisert et al. 1982).
Then a remarkable increase in the rate of elonga-
tion to 30–45 mm/h from the 10 mm blastocyst to
the 150–200 mm long filamentous conceptus
occurs within a few hours. A dense band of cells
(the elongation zone) composed of both endo-
derm and Tr extends from the inner cell mass to
the tip of the ovoid blastocyst on day 10. After
formation of the elongation zone, there is further
rapid elongation of the 100–200 mm long con-
ceptus to a conceptus of 800–1000 mm in length
by day 16 of pregnancy mediated through
alterations in microfilaments and junctional
complexes of Tr cells and formation of filopodia
by endodermal cells. This last period of elonga-
tion involves cellular hyperplasia and each con-
ceptus within the litter achieves maximum surface
area for contact between Tr and uterine LE to
facilitate uptake of nutrients from uterine LE
and uterine glandular epithelium (GE), which
increase coincidentally with elongation of the
conceptuses (Bazer and Johnson 2014).

Sheep share many features of early embryonic
development and implantation with pigs. The

morula enters the uterus on day 4 post-
fertilization in sheep, and the blastocyst is formed
by day 6. Before sheep blastocysts develop into a
conceptus, they “hatch” from the zona pellucida
on days 6–7. Sheep blastocysts are spherical on
day 4 (0.14 mm) and day 10 (0.4 mm), elongate to
the filamentous form between days 12 (33 mm)
and 15 (150–190 mm), and extend through the
uterine body into the contralateral uterine horn by
days 16–17 of pregnancy. The filamentous con-
ceptus is closely associated with the uterine LE
and appears to be immobilized within the uterine
lumen by day 14, although the conceptus can still
be recovered intact from the uterus by lavage with
only superficial damage. Apposition begins near
the inner cell mass, and spreads towards the ends
of the elongated conceptus, and by day 16, the Tr
is firmly attached to the uterine LE with signifi-
cant interdigitation between the microvilli on
uterine LE and Tr cells.

The term “implantation” is somewhat of a
misnomer for the pig, but nevertheless, it is used
to describe the initial stages of placentation in
livestock species. Pigs demonstrate true
epitheliochorial placentation in which there is no
displacement or invasion of the maternal tissues

Fig. 2.2 Overview of conceptus elongation in the pig.
The conceptuses of sheep undergo a similar pattern of
elongation. (a) A cartoon depicting the Tr cells (red color)
of the round blastocyst (left panel) migrating inward
towards the inner cell mass to form the elongation zone
(middle panels), then Tr cells migrate outwards (right

panel) to form the filamentous conceptus. (b) Uterine
flushing from Day 10 of gestation (left panel) containing
22 round blastocysts, and H&E staining of two pig
conceptuses (right panel) from a uterine flushing obtained
on Day 15 of gestation. (The cartoon in Panel A is adapted
from that published by Geisert et al. (1982))
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and the conceptus remains within the uterine
lumen throughout gestation. In epitheliochorial
placentation, separation of fetal and maternal
blood is always maintained by an elaborate
array of endometrial and extra-embryonic fetal
tissues that represent a potential barrier to
hemotrophic (nutrients carried in the blood) nutri-
ent transport from the mother to fetus. Thus, the
interhaemal distance in pigs must be minimized.
This is initially accomplished through degrada-
tion of much of the connective tissue separating
the uterine LE and Tr/chorion (referred to as Tr
throughout this paragraph) from their underlying
capillary beds resulting in the blood vessels actu-
ally indenting into the basal surfaces of uterine
LE and Tr cells. Surface areas of contact between
the uterus and placenta increase through interdig-
itation of microvilli between uterine LE and
Tr. However, between day 25 and day 30, exten-
sive remodeling of the uterine-placental interface
to form chorionic (placental) ridges and
corresponding endometrial invaginations results
in folding that further increases the area of
uterine-placental association across the entire pla-
centa, except at the openings of uterine glands in

pigs (Fig. 2.3). In addition to having uterine LE
closely apposed to the Tr, there are specialized
chorionic epithelial cells at the openings of the
mouths of uterine glands where the Tr never fuses
with the uterine LE, but forms a pocket referred to
as an areola (Fig. 2.4). Histotroph from the uterine
GE is delivered into the areolae, absorbed and
transported across the chorion by fluid phase
pinocytosis for release into the placental circula-
tion. The placenta of each piglet in a litter has
about 2500 areolae and their number correlates
significantly with fetal weight. The Tr cells that
line the areolae and line the tops of the placental
ridges of the folds are tall columnar epithelia, well
suited for transport of nutrients across the epithe-
lial barrier (Song et al. 2010).

In contrast to the pig, sheep demonstrate
synepitheliochorial placentation in which limited
fusion of Tr with uterine LE occurs (Fig. 2.4).
Two morphologically and functionally distinct
cell types, mononucleate Tr cells and binucleate
Tr giant cells (BNCs), are present in the Tr of
sheep placentae. The mononucleate cells consti-
tute the majority of the Tr cells and BNCs begin
to differentiate from the mononucleate Tr cells in

Luminal
Epithelium

b

Trophectoderm

Luminal
Epithelium

Glandular
Epithelium

Chorionic
Epithelium
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Fig. 2.3 Overview of placental development in the pig.
(a) A cartoon depicting the uterine-placental interface
during implantation (left panel) and placentation (right
panel). (b) Immunofluorescence staining at the uterine-

placental interface for PCNA (left panel) on Day 15 of
pregnancy and α2β1 integrin (right panel) on Day 60 of
pregnancy. The asterisk indicates a uterineplacental fold/
villi
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concert with Tr outgrowth during conceptus elon-
gation. BNCs first appear between days 14 and
16 of gestation in sheep conceptuses and com-
prise 15–20% of the Tr during the apposition and
attachment phases of implantation. BNCs migrate
and fuse with individual uterine LE cells to form
trinucleate syncytial cells beginning about Day
16 of pregnancy in sheep, thereby assimilating
uterine LE. The syncytia of sheep subsequently
enlarge through continued BNC migration and
fusion to form syncytial plaques. The syncytial
plaques are conceptus-maternal hybrid cells com-
posed of uterine LE and BNCs, and they eventu-
ally form the epithelial interface between uterine
and placental tissues within the placentomes
(described in the next paragraph). In sheep, the
syncytial plaques are a consistent feature in the
placentomes throughout pregnancy.

Following successful elongation of the concep-
tus, trophectoderm outgrowth, and implantation,
the placentae of sheep organizes into placentomal
and interplacentomal regions (Placentomes and

areolae depicted in Fig. 2.4). During placentome
development, highly branched villous placental
folds, termed cotyledons, initially form by day
30 of gestation in sheep. Cotyledonary chorioal-
lantoic villi lined by syncytial plaques then begin
to protrude into crypts in the maternal endometrial
caruncular tissue (aglandular areas of endome-
trium consisting of stroma covered by a single
layer of uterine LE), resulting in extensive inter-
digitation of endometrial and placental tissues by
day 40 of gestation. Placentomes provide a conduit
for hemotrophic nutrition to the fetus wherein
maternal and placental blood vessels are in close
proximity for exchanging oxygen and
micronutrients, and there is a close correlation
between placentomal mass and birth weight of
the fetus. In contrast, interplacentomal areas
exhibit epitheliochorial attachment of uterine LE
to trophectoderm, and contain areolae that take up
histotroph secreted by the uterine GE for transport
to placental vasculature that rings the areola
(Wooding and Burton 2008).

Fig. 2.4 Overview of placental development in the
sheep. (a) A cartoon and immunostaining for pregnancy
associated glycoprotein (green) and epithelial cadherin

(red) depicting the current consensus for syncytia forma-
tion. (b) A cartoon and H&E staining depicting the struc-
ture of a placentome and an areola
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2.4 Enzymes for Serine
Biosynthesis, One-Carbon
Metabolism,
and Glutaminolysis Are
Expressed in a Cell-Specific
Manner

Serine biosynthesis is catalyzed by the successive
actions of the enzymes PHGDH, PSAT and PSPH.
PHGDH converts 3-PG to PHP which is the
committed step in serine biosynthesis. PSAT next
converts PHP to P-Ser and PSPH removes the
phosphate group to yield serine (Wu 2013). We
performed immunofluorescence microscopy on
cells at the uterine-placental interface of Day
18 pregnant sheep and Days 15, 20 and 30 preg-
nant pigs using antibodies to PHGDH and PSPH,
the first and last enzymes in the conversion of
hexose sugars to serine. Both PHGDH and PSPH
are expressed by the uterine LE of sheep on Day
18 of gestation. Similar to sheep, the uterine LE,
but not Tr, of pigs express PHGDH, PSAT1 and
PSPH on Days 15 and 20 of gestation, and expres-
sion begins to decrease in uterine LE between
Days 20 and 30 of pregnancy (Table 2.1).

Within mitochondria, SHMT2 catalyzes the
reversible reaction of serine and tetrahydrofolate
(THF) to glycine and 5,10-methylene
tetrahydrofolate (mTHF). Mitochondrial MTHFD2
converts mTHF to formate, which is transported to
the cytoplasm for synthesis of purines, thymidine
and SAM which is the primary methyl donor for
cellular methylation. In sheep, SHMT2 and

MTHFD2 are expressed by BNCs of the placenta
on Day 18 of gestation. These SHMT2-expressing
cells fuse together to form BNCs that actively
invade into the uterine LE to begin formation of
the synepitheliochorial placenta characteristic of
sheep. The Tr cells of pigs expresses high levels of
SHMT2 andMTHFD2 on Days 15 and 20 of gesta-
tion. In summary, uterine LE expresses enzymes of
serine biosynthesis including PHGDH, PSAT,
PSPH in sheep and pigs, and SHMT2 and
MTHFD2, enzymes for one-carbon metabolism,
are highly expressed by the conceptus Tr of sheep
and pigs during the peri-implantation period. Taken
together, our observations suggest that glucose and
fructose can be converted to serinewithin the uterine
LE, serine can be transported into conceptus Tr to be
utilized as a substrate of one-carbon metabolism in
conceptusTr to support proliferation during the peri-
implantation period of pregnancy (Fig. 2.5).

Different cancer subtypes have distinct
patterns of glutamine metabolism depending on
whether they reside in a glutamine rich or
glutamine-poor environment. In the presence of
glutamine, cancer cells convert glutamine to glu-
tamate through the action of GLS, glutamine
anaplerosis, and this metabolic pathway
maintains the flow of substrates that drive the
TCA cycle. However, in the absence of gluta-
mine, or in a glutamine–poor environment, some
cancer cells use glutamine synthetase (GLUL) to
synthesize glutamine from glutamate and this
allows the cells to survive (Cluntun et al. 2017).
Luminal breast cancer cells frequently exhibit

Table 2.1 Major cell types that express enzymes for serine biosynthesis, one-carbon metabolism, and glutaminolysis
during peri-implantation period of pigs and sheep (between Days 15–20 of pregnancy in pigs and between Days 18–20 in
sheep)

Metabolic pathways Enzymes

Pig Sheep

Endometrium Conceptus Endometrium Conceptus

Serine biosynthesis PHGDH LE En LE Tr
PSAT1 LE Tr n.a. n.a.
PSPH LE – LE –

One-carbon metabolism SHMT2 – Tr – BNC
MTHFD2 – Tr – BNC

Glutaminolysis GLUL – En LE –

GLS – Tr n.a. n.a.
PSAT1 LE Tr n.a. n.a.

n.a. not analyzed
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high GLUL and low GLS expression, whereas the
opposite is true for basal breast cancer cells.
Matching these expression patterns, most luminal
breast cancer cells can be cultured in glutamine-
free media, whereas basal cells are highly sensi-
tive to glutamine withdrawal and to inhibition of
GLS, both in cell culture and when grown as
xenograft tumors in vivo (Gross et al. 2014;
Kung et al. 2011). The expression of GLS and
GLUL in porcine conceptuses is cell type-specific
during the peri-implantation period. GLS protein
is localized to the conceptus Tr on Day 15 of
pregnancy, and GLUL protein is localized to con-
ceptus endoderm. This indicates heterogeneity in
glutamine metabolism in the conceptus during the
peri-implantation period and suggests that con-
ceptus endoderm is able to synthesize glutamine,
and conceptus Tr is able to consume glutamine
for glutaminolysis.

Glutamate is converted into α-KG via two
divergent pathways. There are some key
differences in the two pathways for the conver-
sion of glutamate into α-KG. Both pathways gen-
erate α-KG, but they have different by-products
(Altman et al. 2016). GLUD generates ammo-
nium and the cofactors NADH and NADPH as
by-products. In contrast, aminotransferases gen-
erate other amino acids such as serine, alanine,
and aspartate, which contribute to the biosynthe-
sis of nucleotides (Wu 2013). PSAT1 protein is
highly abundant in conceptus Tr cells on Day

15 of the peri-implantation period, whereas
GLUD1/2 are not detectable in those same cells.
Therefore, glutaminolysis likely occurs in con-
ceptus Tr through the GLS-aminotransferase met-
abolic pathway. Furthermore, increased
expression of aminotransferase suggest that
proliferating conceptuses utilize
aminotransferases to support rapidly growing
conceptuses possibly by providing other amino
acids (Fig. 2.5).

2.5 Summary

Conceptus elongation, implantation and early pla-
cental development in sheep and pigs are complex
events that require significant energy, the
substrates for which are primarily supplied from
histotroph within the uterine lumen. Glucose, fruc-
tose and glutamine are major components of
histotroph. Embryonic mortality during this com-
plex, energy consumptive, peri-implantation
period of pregnancy remains a major constraint to
improving reproductive efficiency and profitability
in livestock enterprises, and is a major source of
difficulty to women trying to maintain successful
pregnancies. We have presented results indicating
cell-specific localization of enzymes that partici-
pate in serine biosynthesis, one-carbon metabo-
lism, and glutaminolysis at the uterine-placental
interface of sheep and pigs during the peri-

Fig. 2.5 (a) The proposed utilization of glucose and fructose during early placental development in sheep and pigs.
(b) The proposed utilization of glutamine by trophectoderm cells during early placental development in pigs
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implantation period of pregnancy. PHGDH and
PSPH, enzymes for serine biosynthesis, are
expressed by the endometrial LE of both sheep
and pigs. SHMT2 and MTHFD2, enzymes for
one-carbon metabolism, are expressed by the
proliferating Tr of pig conceptuses and expressed
by the migrating BNCs of sheep conceptuses. We
also showed cell type-specific expression of GLS
in the Tr and GLUL in the endoderm of
conceptuses, suggesting that endoderm
synthesizes glutamine, and Tr converts glutamine
into glutamate. The aminotransferase PSAT1 is
preferentially expressed in Tr suggesting genera-
tion of α-KG and amino acids which support rap-
idly growing conceptuses. The temporal and cell-
specific expression of these enzymes illustrate that
glucose and fructose can be used for serine biosyn-
thesis followed by one-carbon metabolism, and
that glutamine can be converted to α-KG within
the conceptus Tr, and glutaminolysis-derived
α-KG enters the TCA cycle for synthesis of
nucleotides. These biosynthetic pathways are
essential to support elongation, migration, implan-
tation and early placental development of sheep
and pig conceptuses. As shown in Fig. 2.1 of this
review, glycolysis provides a means whereby
substrates are available for conceptuses to opti-
mally utilize multiple biosynthetic pathways to
use molecules such as glucose, fructose, and glu-
tamine in the uterine lumen in early pregnancy or
in the fetal-placental vasculature in later pregnancy
to synthesize ATPs, amino acids, ribose sugars,
hexosamines and nucleotides required for growth,
development and survival of conceptuses.
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Amino Acids in Beef Cattle Nutrition
and Production 3
Werner G. Bergen

Abstract

Proteins have been recognized for a long time as
an important dietary nutritional component for
all animals. Most amino acids were isolated and
characterized in the late nineteenth and early
twentieth century. Initially dietary proteins
were ranked high to low quality by growth
and N balance studies. By the 1950s interest
had shifted to studying the roles of individual
amino acids in amino acid requirements by
feeding studies with non-ruminants as rodents,
poultry and pigs. The direct protein feeding
approaches followed by measurements of
nutritional outcomes were not possible however
in ruminants (cattle and sheep). The develop-
ment of measuring free amino acids by ion
exchange chromatography enabled plasma
amino acid analysis. It was thought that plasma
amino acid profiles were useful in nutritional
studies on proteins and amino acids. With
non-ruminants, nutritional interpretations of
plasma amino acid studies were possible.
Unfortunately with beef cattle, protein/amino
acid nutritional adequacy or requirements
could not be routinely determined with plasma
amino acid studies. In dairy cows, however,
much valuable understanding was gained from
amino acid studies. Concurrently, others studied

amino acid transport in ruminant small
intestines, the role of peptides in ruminant N
metabolism, amino acid catabolism (in the ani-
mal) with emphasis on branched-chain amino
acid catabolism. In addition, workable
methodologies for studying protein turnover in
ruminants were developed. By the 1990s,
nutritionists could still not determine amino
acid requirements with empirical experimental
studies in beef cattle. Instead, computer soft-
ware (expert systems) based on the accumulated
knowledge in animal and ruminal amino acids,
energy metabolism and protein production were
realized and revised frequently. With these
tools, the amino acid requirements, daily energy
needs, ruminal and total gastrointestinal tract
digestion and performance of growing beef cat-
tle could be predicted.
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IAA indispensable amino acids
MP metabolizable protein
NRC national research council
PAA plasma free amino acid profiles
RDP rumen degradable protein
RUP rumen undegradable protein
SCFA short-chain fatty acids

3.1 Introduction

The overall role of amino acids as required
precursors for protein synthesis and growth was
well appreciated by physiology and nutrition
researchers by the 1950s. However, concentration
profiles of 20 amino acids (aminograms) in blood/
serum or plasma are much more difficult to relate
to physiological processes than for example
plasma glucose or thyroxine concentrations. Dur-
ing the middle of the twentieth century, Rose
(1957) established which amino acids were indis-
pensable and dispensable (essential/nonessential)
from the diet for human subjects. Rose and
coworkers principally used the nitrogen balance
technique as a response criterion in such work.
Empirical experimental studies, based on nitrogen
balance and growth responses were also being
conducted with poultry and swine to delineate
qualitative and quantitative aspects of amino acid
(protein) nutrition (Almquist 1954; Baker 2009;
Baker et al. 1966; Klain et al. 1960). Amino acid
nutrition was much more enigmatic in ruminants.
During the 1940s and 1950s recognition grew that
rumen bacteria (a likely source for amino acids to
ruminants; Owens and Bergen 1983) possessed all
amino acids found in meat proteins (Weller 1957).
Experiments utilizing proteins of known amino
acid composition or amino acids directly for pro-
tein nutrition studies using the feeding approach
could not be done in cattle and sheep as the rumen
microbiota ferments, catabolizes or remodels die-
tary proteins into microbial proteins before diges-
tion and amino acid absorption in the small
intestine. Thus, for many years, quantitative
aspects of ruminant protein/nitrogen metabolism
were assessed using nitrogen balance and growth
responses (Perry et al. 1967; Burroughs et al.
1971).

3.2 Emerging Issues
on the Utilization of Plasma
Amino Acid Analysis
in Nutrition Studies

The prospect of employing quantitative free
amino analysis in body fluids to enhance the
understanding of amino acid nutrition in humans
and animals (Snyderman et al. 1968) became a
reality with the commercial application of the
Moore and Stein (1954) ion-exchange, post col-
umn ninhydrin detection amino acid chromatog-
raphy technology in the late 1960s. The then
concept of a special role of the limiting amino
acid in nutrition furthered the movement toward
plasma/serum amino acid analysis in clinical
studies to assess amino acid status. It was thought
that identifying limiting amino acids in diets
would allow optimizing protein nutrition and
health in particular in children in “so called”
underdeveloped countries (Allison 1955, 1961;
Snyderman et al. 1968). Likewise, for nutrition
research in ruminants, obtaining a blood sample
followed by an amino acid analysis was deemed
to expedite the understanding of protein/amino
acid nutrition without the necessity of nitrogen
balance determinations. Workers in human nutri-
tion, pediatrics and animal nutrition pursued this
research paradigm with exceeding gusto, but
unfortunately immediate amino acid results were
not too interpretable. In time, the whole field of
plasma amino acid analyses and nutrition
research matured and data became interpretable
(Bergen 2007).

For beef cattle and sheep, approaches utilizing
plasma amino acid analyses for amino acid
requirement studies were conducted in some
laboratories (Fenderson and Bergen 1975;
Shelling et al. 1967). Unfortunately, beef cattle
are seldom growing fast enough and the supply of
amino acids from the rumen outflow may just
meet the animal’s amino acid/metabolic protein
requirements for that rate of growth. Thus, amino
acid infusions, broken line PAA response curves
(or the current marker amino acid or direct amino
oxidation studies; Bergen 2007) will not show
that a stimulation in amino acid utilization has
occurred. Using plasma amino acids to study
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amino acid utilization in high producing dairy
cows is much more satisfactory as the protein
needed for digestion in the small intestine and
mammary protein synthesis exceeds the microbial
protein production capacity for indispensable
amino acids. In amino acid infusion studies, the
roles of dispensable amino acids was not
evaluated (Schwab and Broderick 2017; Clark
et al. 1978; King et al. 1981, 1990; Kung et al.
1984; Huber et al. 1984).

The rumen microbiota eco-system and the host
animal are intertwined in a symbiotic
relationship. In essence, the rumen produces
short-chain fatty acids (SCFA) and microbial
cells during feed fermentation while the animal
provides buffers to stabilize rumen pH, absorbs
SCFA, and gastrointestinal mobility moves digesta
out of the rumen-reticulum to the abomasum and
small intestine. This review will not include the
role of the rumen microbial ecosystem on protein
nutrition and metabolism in ruminants. Readers are
referred to recent reviews instead (Gilbreath et al.
2020; NRC 2016; McCann et al. 2014). Currently,
traditional rumen research work on N/urea cycling,
quantitative aspects of ruminal microbial growth,
fermentation and SCFA production, dietary pro-
tein degradation, and metabolism of isolated
ruminal anaerobes, has been replaced by and
large by molecular biology approaches in the
rumen (McCann et al. 2014; Firkins and Yu
2015) particularly in the identification of bacteria
and other organisms in the rumen. These studies
are providing us with new insights; however, the
myriads of the organisms identified in the rumen
will be difficult to isolate, culture to characterize all
aspects of fermentation of fibrous or highly digest-
ible carbohydrates (Seshadri et al. 2018).

Performance response data in ruminants to
dietary amino acids has almost no interpretable
outcome unless the amount of amino acids
reaching the abomasum is quantified. To obtain
such data on every feedstuff and combination of
feeds by direct experimentation would be an
impossible task. Expert system such as the
Cornell model (Fox et al. 1992) have the ability
to predict protein flows to the small intestine and
allow workers to estimate quantitative amino acid
absorption. It is not yet clear how molecular level

characterization of the rumen microbiome will
eventually enhance our ability to utilize the
rumen fermentation with less energy wastage
including methane generation. In any case, it is
clear that the rumen-produced microbial protein is
the most important source of amino acids for
many domestic and wild ruminants. Likewise,
differential gene expression (DE) in the liver,
mammary gland, skeletal muscle, adipose tissue
and enterocytes have been measured in varying
degrees in dairy and beef cattle to study amino
acid metabolism.

3.3 Plasma Amino Acid Responses
to Dietary Manipulations

The essence of determining amino acid
requirements in farm species is to improve perfor-
mance, enterprise sustainability and depress envi-
ronmental impact of protein feeding to animals.
Thus, the National Research Council-Animal
Nutrition expert committees (NRC 2016) over
years have evaluated and summarized innumerable
studies on dietary protein content and performance
to better define protein requirements in beef cattle.
NRC committees have had difficulty to evaluate
and provide quantitative amino acid requirements
in beef cattle in their reports. There have been very
few direct amino acid nutrition studies in beef
cattle under typical production systems; hence
NRC committees have estimated amino acid
requirements of beef cattle by indirect methods
based on product (i.e., amino acid) content and
the efficiency of amino acid utilization from inges-
tion to skeletal muscle protein synthesis.

As plasma amino acid analysis became rou-
tine, workers began to explore the effect of pro-
tein sources and time after feeding on arterial
(general systemic) and portal vein plasma free
amino acid profiles (PAA). This work was
complemented by tissue free amino acid analysis.
In all cases, the emphasis was on comparing the
amino acid profiles of dietary proteins with PAA.
Further, identifying indispensable amino acids
(IAA) requirements in human (or farm animals)
using nitrogen balance studies (Rose 1957) was
not an efficient procedure. In addition, the general
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notion was advanced that the limiting amino acid
of most individual dietary protein could likely be
identified by PAA studies (Allison 1961;
Snyderman et al. 1968). For non-ruminants stud-
ies of PAA profiles from given protein sources
(often accompanied with a high protein quality
control group) could identify many limiting die-
tary amino acids (McLaughlan 1974). Plasma AA
were also studied in protein malnutrition as well
as for the development of diagnostic tools for
such maladies. A consensus (see Fig. 3.1)
emerged after many such studies that PAA
would rise after feeding high quality proteins,
but poor quality proteins resulted often in
depressed plasma IAA. PAA responses to various
dietary and other experimental conditions formed
basic principles for the interpretation of such data
(Bergen 2007). These principles were adapted to
studying amino acid requirements by direct and
indirect oxidation utilizing stable isotope labelled
amino acids in experimental animals and humans
(Ball and Bayley 1986; Kim et al. 1983a, b;
Pencharz and Ball 2003; Elango et al. 2008;
Kurpad et al. 1998). There are those however,
that have vigorously challenged amino acid oxi-
dation studies as a procedure to determine human
amino acid requirements and insists that all such
studies should be based on nitrogen balance
procedures (Millward 2004). In poultry use of
empirical feeding approaches for amino acid
nutrition where growth/performance is the
response criterion is faster and less controversial
(Dozer et al. 2011).

In ruminants, the adoption of PAA studies
were also proposed as a method to determine
amino acid requirements. Unfortunately, PAA
behaved differently in ruminants than in
non-ruminants. Often PAA show a postprandial
decline in ruminants rather than elevations noted
in non-rumonants after feeding (Bergen 1978).
For most situations, in ruminants (microbial pro-
tein and a some rumen undegradable protein
(RUP) will satisfy AA requirements (Bergen
1986) or AA needs of most ruminants are at or
below the total digesta AA flow. This scenario
makes direct studies of amino acid requirements
using PAA profile changes less satisfying in beef
cattle. Dairy cows are much more responsive to

small intestinal AA availability since the rumen
microbiota and some RUP will not satisfy amino
acid needs for high mammary protein synthesis
(King et al. 1990; Schwab and Broderick 2017).

Because of the different responses of
circulating amino acids to protein intake plus
time after feeding for ruminants, the questions
arose whether ruminants can rank the quality of
various proteins the same as nonruminants? Fur-
ther, can the same limiting amino acids be
identified in various pure protein sources in both

Fig. 3.1 A template for interpretation of plasma amino
acid responses to increasing intake of the first limiting
amino acid (from Bergen 2007). (a) Effect of increasing
limiting amino acid intake on weight gain or nitrogen
balance, (b) Plasma concentrations of limiting amino
acid stay constant and then increase rapidly with increas-
ing intake. The intersection of the two straight b lines
indicates the limiting amino acid requirement under the
given experimental circumstances. This experiment can
also be done with amino acid heavy isotopes. As the
limiting amino acid requirement is reached, catabolism of
the limiting amino acid increases rapidly (Also called
direct oxidation method). (c) A representation of the oxi-
dation of an indicator amino acid during limiting amino
acid requirement studies; the oxidation will decline as
required limiting amino acid reaches requirements. (d)
Plasma concentrations of the sum of non-limiting essential
amino acids. The concentrations decline as upon addition
of the limiting amino acid, protein synthesis increases
lowering circulating concentrations of other essential
amino acids
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ruminants as identified in non ruminants? These
questions required a direct study with an sheep
animal model (Potter et al. 1972; Potter and
Bergen 1974). The sheep were prepared with a
duodenal cannula and all rumen outflow was
discarded. The fermentation of dietary
carbohydrates (SCFA production) in the rumen
was not affected here. The ruminal outflow was
replaced with an artificial chyme containing vari-
ous purified proteins, minerals and vitamins
which were pumped directly into the small intes-
tine and bypassed rumen metabolism entirely
(Potter et al. 1972). A group of rats were fed
each the identical protein sources for a nonrumi-
nant control comparison. Under these experimen-
tal conditions, the sheep responded with PAA
profiles similar to non-ruminants and the correct
limiting amino acids could be identified (Potter
et al. 1972).

3.4 Interlude

While AA requirements and metabolism research
has continued in agriculturally important animals,
in humans research protocols shifted to the utili-
zation of stable isotopes (13C; 18O) of amino acids
for oxidation or marker amino acids procedures to
study amino acid requirements (Kim et al.
1983a, b; Ball and Bailey 1986; Kurpad et al.
1998; Pencharz and Ball 2003; Elango et al.
2008). Such approaches have not been adopted
in beef cattle protein/amino acids needs research.
In cattle, there was a shift away from amino acid
metabolism/requirement work to factors affecting
bovine muscle growth and protein turnover
(Owens and Bergen 1983). Then emerged molec-
ular biology/gene expression procedures and
subsequent bioinformatics approaches and most
work with profiling PAA for amino acid metabo-
lism and requirements ceased. Instead, epithelium
transporters gene expression in gut tissues and
mammary glands became a focus. More recently
metabolomics have been added to study protein
nutrition status in tissue fluids. Meanwhile the
Cornell model (Fox et al. 1992) and NCR
(2016) calculations of AA requirements are
using tissue/muscle protein AA profiles as a
starting point. Here several assumption must be

used to translate qualitative understanding to a
quantitative basis. It should also be noted that
according to Lapierre et al. (2006) single effi-
ciency constants in converting from actual data
to derived values can be fraught with problems
and should be approached with caution. The rea-
son for all this research was to accurately describe
the amino acid needs of beef cattle. Secondarily,
data could be applied to trait selection and meta-
bolic issues.

3.5 Small Intestine Amino Acid
and Peptide Absorption
and Metabolism

Perusing previous reviews and publications on the
subject, the overall digestive physiology in the
abomasum and small intestine of ruminants closely
resembles digestion/absorption processes as
observed in rodents and humans with a few
exceptions (Bergen 1978). As the ruminal digesta
flows from the abomasum to the lower gut (small
intestine) for some time the digesta pH will remain
acidic. In a large measure this is because ruminants
appear to have less copious flow/sodium bicarbon-
ate buffering than noted in rodents or humans
(Bergen 1978; Taylor 1962). This would certainly
modify the dynamics of intestinal/pancreatic diges-
tive proteases such as trypsin and chymotrypsin
whose pH optima are in the slightly basic range. A
putative quantitative effect on digestion/absorption
of amino acids and proteins in the small intestine
of ruminants in comparison to non-ruminants has
not been assessed. While the number of
characterized enterocyte solute/amino acid
transporters has expanded over the years
(Wu 2013), there is no compelling evidence that
ruminants possess different intestinal amino acid
transporters than other species.

The digesta in ruminants arriving at the small
intestine contains considerable amounts of
nucleic acids due to its rich microbial organic
matter content. The breakdown of these nucleic
acids is achieved via DNase and RNase
phosphodiesterases and phosphomonoesterases.
According to Barnard (1969), the pancreatic
flow in ruminants has a 1000–2000 times greater
RNase activity than in primates, dogs, cats or
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rabbits and a fourfold greater activity than that of
rats. Smith et al. (1970) reported apparent
digestibilities of 85% and 75% for RNA and
DNA respectively in calves. The traditional
view about the disposition of absorbed
nucleotides has been that they may be utilized in
salvage pathways for nucleic acid synthesis or
dephosphorylated and the resulting nitrogenous
bases are metabolized or excreted.

Early phases of amino acid transport
explorations were conducted with rodents and
cell cultures. Initially there was discovery of
transport systems and substrate-amino acid over-
lap/competition. During these studies the A and L
transporter systems of amino acids were identified
(Christensen 1962; Wiseman 1968). Next
followed extensive kinetic studies to determine
substrate (amino acid) affinity, role of cations
and pH effects, to identify passive, facilitated,
active transporters and capacity of such
transporters. Very little effort was directed toward
ruminants as such experiments involve high ani-
mal costs (Hume et al. 1972; Williams 1969). In
the early 1970s, Johns and Bergen (1973)
measured amino acid transport in sheep. Small
intestines were harvested from sheep and amino
uptake was determined in enteric epithelial/muco-
sal cell and preparations utilizing documented
in vitro procedures. Uptake of methionine, gly-
cine, lysine and leucine –lysine competion were
assessed. They showed that AA transport
measured here was dependent on respiratory
ATP production (active transport) and L-lysine
absorption was maximized in the ileum. The
relationships between the rate of amino acid
uptake in small intestinal rings (V) and substrate
concentrations (S) resulted in hyperbolic curves.
Thus Vm and Km (affinity) were determined from
these data using the Lineweaver-Burk (1934)
plot. Glycine had the lowest Km but the highest
Vm (data not given). Methionine had KM and
Vmax of 2.43 mM and 1.52 μmol/100 mg wet
tissue per 0.5 h, respectively, whereas lysine had
KM of 5.80 mM and Vmax of 0.87 μmol/100 mg
wet tissue per 0.5 h, respectively. These results
showed that carrier affinities were strong for both
methionine and lysine while their transport capac-
ity was modest. Simultaneous incubation of leu-
cine and lysine in the small intestinal rings

inhibited lysine uptake from 25% to 48%. Finally,
the role of enteric amino acid catabolism as
related to first pass metabolism (Stoll et al.
1998) has not been evaluated in cattle.

By the 1980s, numerous brush border amino
acid transport systems had been identified and
characterized. These included: alanine, serine,
cysteine and threonine transporters (ASCT1);
Na+ and Cl� depended neutral and cationic
amino acid transporters (ATBo, +); Na+ dependent
neutral amino acid transporter (Bo AT); Na+ inde-
pendent cationic and zwitter-ionic amino acid
transporters (bo, + AT); Na+ independent cationic
amino acid transporter 1 (CAT1); Na+ indepen-
dent cationic amino acid transporter 2; Na+ inde-
pendent cationic and Na+-dependent neutral
amino acid transporters (y+LAT1 and 2) and L
type amino acid transporter-1 (LAT1). These
transporters are located either in the apical or
basolateral membranes of the small intestinal
epithelia (Liao et al. 2008).

During this time period, the putative role of
peptide transporters in amino acid absorption
from the small intestine was examined. Indeed,
peptides can be taken up by enterocytes and this
presents a whole new viewpoint on intestinal
absorption (Gilbert et al. 2008). It is not yet
clear that peptide transport in a time course
manner will change the pattern of amino acid
uptake from the gut. In as much as peptides are
not directly utilized for protein synthesis since
obviously there are no tRNA for peptides,
clearly cellular peptidases must be involved
after absorption (Munk 1976). It may be
speculated that amino acid utilization efficiency
may be enhanced or depressed through peptide
transport. As yet, such downstream ideas about
the consequences of an intermediate pool of
peptides during digestion and absorption have
not been explored. Research on intestinal,
mammary and colonic solute transporters has
continued in a new direction in the twenty-first
century. Instead of measuring functional kinetic
aspects of amino acid transporters, gene expres-
sion and molecular regulation in response to
nutritional regimen and phenotypic changes
are now at the forefront of intestinal solute
(amino acid) transporters research in ruminants
(Liao et al. 2008; Foote et al. 2017).
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3.6 Metabolism of Amino Acids
in Ruminants

Beyond quantitative needs of amino acids for pro-
tein synthesis, the carbon chains of amino acids are
also metabolites/intermediates important in a variety
of physiological processes (Wu 2018). Amino acid
catabolism was studied extensively in prokaryotes
and later eukaryotic organisms. Two major findings
in the past were that most amino acids are
transaminated/deaminated in the liver before further
catabolism of the carbon skeleton, while for
branched-chain amino acids (BCAA, leucine,
valine, isoleucine) catabolism occurs in extra
hepatic tissues (Harper et al. 1984). These amino
acids are highly abundant in both plant and animal
proteins (Hou et al. 2019; Li andWu 2020). Activity
of BCAA amino transferases and branched-chain
α-ketoacid dehydrogenases (BCKDH) are highly
regulated by covalent modification (phosphoryla-
tion). In addition, BCAA are highly non-polar and
integrally involved in protein folding phenomena
and in the membrane domain of transmembrane
receptors. Amino acid synthesis and catabolism
pathways have recently been reviewed and
summarized by Bender (2012).

In the 1980s, little data were available on the
dicodomy of BCAA and all other AA metabolism
in ruminants. Working with an perfused, isolated
sheep diaphragm preparation, Coward and But-
tery (1979) detected only minimal BCAA catab-
olism in these preparations and concluded that
muscle is not a major site for BCAA catabolism;
however the BCAA aminotransferase and
BCKDH may have been highly down regulated
in the diaphragm preparation. Later, Bergen et al.
(1988) studied the relative activities of BCAA
amino transferase and BC keto acids dehydroge-
nase in sheep liver, adipose tissue and skeletal
muscle. Enzymes were assayed immediately
after post-slaughter tissue harvest. Their results
indicated that in ruminants, BCAA catabolism is
centered in extra-hepatic tissues as also reported
by others (Suryawan et al. 1998; Webb et al.
1992). In general, adipose tissues had the highest
activities in sheep (Bergen et al. 1988). Unfortu-
nately this work was also done before the strong

covalent regulatory modifications of BCAA ami-
notransferase and BCKDH were appreciated.
While these data of Bergen et al. (1988) from
non-lactating ruminants would agree with a extra-
hepatic/hepatic dicodomy of BCAA vs. other
essential amino acids in sites of catabolism as
found in rodents, these experiments were not
designed to address the phosphorylation (inac-
tive)/dephosphorylation (active) issue (Lu et al.
2009; Shimomura et al. 1990; Crowell et al.
1990). More recent work measuring tissue fluxes
(labelled amino acids), enzyme protein abun-
dance, enzyme expression and enzyme activity
in tissue preparations showed considerable
differences between BCAA tissue fluxes as
related to catabolizing enzymes activity, protein
abundance and gene expression (Webb 1986;
Webb et al. 2019). From flux data in ruminants,
liver oxidation of BCKAwas not too high; maybe
enzymes were allosterically down regulated
in vivo, while typical tissue enzyme preparations
and assays of BCKDH may have been less
downregulated, resulting in higher activity values
but not necessarily reflecting the in vivo physio-
logical milieu.

By the 1950s, workers had realized that both
propionic acid and amino acids can serve as carbon
precursors for gluconeogenesis. This finding was
of particular interest to ruminant nutrition
researcher working with animals on typical forage
plus some concentrate diets. Cattle and other
ruminants absorb relatively small amounts of glu-
cose from the small intestine (Huntington and
Reynolds 1986). It was previously hypothesized
that propionic acid could supply all the carbon
intermediates for obligatory gluconeogenesis
(Leng et al. 1967). At the same time others showed
that amino acid carbon may also be a precursor for
gluconeogenesis in ruminants (Annison and
Lindsay 1962). Since lactating ruminants (espe-
cially high producing dairy cows) have to synthe-
size glucose, amino acids used in gluconeogenesis,
which are often not in excess, supply may become
limiting for milk production. Thus, determining
the contributions of propionic acid and/or amino
acids to gluconeogenesis became a major research
priority. This was further compounded by
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occurrences of ketosis, a metabolic disorder, when
highly producing ruminants often were unable to
supply adequate glucose and amino acids for opti-
mal milk production. An up to 50% of propionate
and about a 30% contribution from amino acids to
whole body and individual organ fluxes of glucose
were determined byWolff andBergman (1972) and
Bergman and Heitman (1978) using flux and tissue
A-V differences. They found that alanine was the
highest contributor to hepatic gluconeogenesis
(Wolff and Bergman 1972; Bergeman andHeitman
1978). Alanine is also an end product of mostly
deamination in skeletal muscle from BCAA (Felig
1975). Thus, if in ruminants BCAA are not
deaminated in muscle, the contribution of alanine
from the muscle-liver glucose alanine cycle to
hepatic gluconeogenesis would likely be minor.
However, Ahmed et al. (1983) noted a net efflux
of alanine and dispensable amino acids from steer
hind limbs. Estimation of glucose production from
amino acids can be achieved from urea-N excretion
where it is assumed that urea was not recycled and
all urea was quantitatively excreted in the urine
(Bergen and Wu 2009). This experimental
approach, however, is much less feasible in
ruminants because of urea recycling (Packett and
Groves 1965; Reynolds and Kristensen 2008;
Bergen and Wu 2009). Today we know that urea
can also be made in enterocytes (Wu 1995) and the
assumptions about estimates of amino acid use for
glucose synthesis based on data on urinary urea
excretion are prone to errors even in
non-ruminants (Bergen and Wu 2009). An impor-
tant issue in assessments of quantitative amino acid
metabolism is that our contemporary cattle and
sheep have undergone many years of genetic selec-
tion and differ for instance with higher lean deposi-
tion, lower fat deposition and also size. The
argument can be made that certain studies need to
be redone to evaluate the metabolism in our con-
temporary farm species.

Time-course studies of time after feeding on
plasma amino acids concentrations have been
conducted in many species. In ruminant animals,
as noted above, after feeding, plasma AA often
decline initially while in non-ruminants plasma
AA increase (Bergen 1978). This appears to be
related to the relative absorption of energy
substrates and amino acids. In ruminants,

commencing immediately after feeding the rumen
starts to produce SCFA which are readily absorbed
and are the main energy substate to the animal.
This rapid energy availability could stimulate mus-
cle protein synthesis and hence cause the decline in
plasma AA concentrations; however in
non-ruminants amino acids and energy substrates
are absorbed simultaneously and PAA initially
increase as related to protein intake (Bergen 1978).

The process of ammonia and urea recycling
between the rumen ecosystem and the host animal
has been well appreciated for years (Reynolds and
Kristensen 2008). This unique symbiotic interaction
favors ruminant survival on low protein feedstuffs
when compared to non ruminants (Reynolds and
Kristensen 2008). Batista et al. (2016) conducted a
meta-analysis of urea kinetics and microbial N
assimilation of recycled urea by ruminants as related
to feed intake and dietary protein concentrations.
The beta analysis data base originated from
25 experiments (reported between 2001 and 2016)
with 107 treatment means (Batista et al. 2016).
Major meta analyses conclusions were that rumen
ammonia concentrations increased and the fraction
of recycled urea that is assimilated into microbial
protein decreases with increasing dietary protein
intake from 53% (lowN intake) to 21% respectively
(Batista et al. 2016). These results are also in concert
with the findings of Satter and Slyter (1974) who
found that rumen ammonia concentration in the
rumen in excess of what a 12–13% protein diet
usually can provide will not support increased
assimilation of ammonia nitrogen into microbial
protein. Since energy availability and rumen outlow
rate will set a threshold of microbial proteins syn-
thesis (Bergen 1982), ruminants provided high RDP
diets will waste considerable N as urinary –N excre-
tion. Thus with low protein diets ruminants are very
efficient in conserving N, while at higher protein
intakes (often from high quality forages) the symbi-
otic system will waste nitrogen.

3.7 Protein Synthesis Concepts
in Ruminants

The translational process in eukaryotic cells is
highly conserved evolutionarily across
organisms; thus the roles of tRNA, ribosomes,
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amino acid activation, mRNA and genetic code,
eukaryotic initiation factors, eukaryotic elonga-
tion factors and the final release factors are
believed to be the same across eukaryotic cells.
Thus, it generally assumed that the protein syn-
thesis process in ruminants is similar to all other
animals. In the past, Beecher (1974) developed
some in situ and in vitro methods to study protein
synthesis in rodent and then apply these methods
to ruminant skeletal muscle. These procedures
were based on previous work by Florini (1962)
and others who developed functional cell free
protein synthesis systems from rodents. There
was no indication that the translation process in
ruminants differed from other animals (Beecher
1974; Bergen 1974). From a more contemporary
perspective, little research has been done for
example on the role of mTOR in ruminant muscle
protein synthesis/translation, effect of leucine on
translation, the role in nutrient sensing and in
insulin mediated processes. The role of mTOR
in ruminant has been studied in brown adipose
cells and ovine trophectoderm cells (Ma et al.
2017; Wang et al. 2015a, b, 2016a, b).

Much of either tissue or whole body protein
synthesis has been pursued in cattle with in vivo
studies. This is because in beef cattle, the interest is
in lean deposition rates and extent during various
experimental conditions. Well established proce-
dure utilizing labelled amino acid infusions or
labelled amino acid flooding dose procedures
(Fern and Garlick 1973; Garlick and Millward
1972; McNurlin et al. 1979; Garlick et al. 1989)
are not very cost effective in large cattle and have
not been tested. Protein deposition in the whole
carcass can be done by differential slaughter, dis-
section and protein (Kjeldahl) analysis procedures.
The basic drawback here is estimating the initial
organ or total body protein in cattle before protein
deposition studies were started (Anderson et al.
1988). The use of amino acid isotope (such as
15N, 14C, 13C, and 18O) infusion methods first
outlined by Picou and Taylor-Roberts (1969) are
not cost effective in beef cattle (Bergen et al. 1987).
An alternate procedure using quantitative collection
(via urine) of a post translation modified amino acid
that arises from protein degradation, N-Tau-Methyl
histidine, emerged as a tool to study quantitative

protein degradation in skeletal muscle proteins in
beef cattle (Rathmacher and Nissen 1998;
McCarthy et al. 1983; Bergen et al. 1987; Bergen
2007, 2008). Actual accumulation of muscle protein
during a trial was determined by initial and final
slaughter based differences in muscle size and com-
position from a very uniform pool of beef cattle
(same breed, age, bodyweight and background
genetics); the value obtained was referred to as net
accretion. Protein degradation was estimated from
urinary N-T MeHis excretion from the same
animals. Since net protein (lean) synthesis equals
total protein synthesis minus protein degradation,
total carcass protein synthesis could estimated by:
protein synthesis ¼ net protein accretion plus pro-
tein degradation. It is, however, necessary here to
know the total body weight of animals. The above
equation can also be expressed on a fractional basis
(activity expressed per unit tissue rather than the
whole animal)where fractional accretion rate¼ frac-
tional protein synthesis rate minus fractional protein
degradation rate (Waterlow et al. 1978). Nissen and
co-workers (Rathmacher and Nissen 1998),
McCarthy et al. (1983), and Bergen et al. (1987)
utilized these procedures.

Amino acid metabolism in ruminants has since
evolved into multiple directions. Such work
includes fetal sheep amino acid metabolism, tissue
and splanchnic amino acid metabolism during dis-
ease states and mammary amino acid metabolism
using amino acid infusions or evaluating the
expression of genes critical for casein synthesis.
Inflammations or infections result in marked
changes in amino acid and protein metabolism in
sheep (McNeil et al. 2016). Such responses may
result in increased amino acid demands by the liver
for increased acute-phase proteins synthesis and
hepatic gluconeogenesis during major stress states
(Bruins et al. 2002a, b; Shaw and Wolfe 1986).

Much of the past work on amino acid metabo-
lism in ruminants has ultimately focused on amino
acid needs for muscle growth and milk produc-
tion. Particularly in dairy cattle, in recent times
there has been tremendous focus on mammary
amino acid utilization; but as far back as the
1970s, workers in the US, UK and New Zealand
were already engaged in studying mammary
amino acid utilization (Bickerstaffe et al. 1974;
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Clark et al. 1978; Schwab et al. 1976; Vik-Mo
et al. 1974).

3.8 Standard Estimates of Amino
Acid Requirements in Beef
Cattle

When an amino acid requirement has to be
established by direct experimental procedures in
ruminants, total digesta amino acid flow to the
duodenum has to be determined, amino acids will
have to be infused into the abomasum/duodenum
at incremental amounts and blood samples have
to be obtained followed by PAA analyses
(Fenderson and Bergen 1975). A much more
useful system in beef cattle is to first determine
net amino acid requirements from growth/muscle
lean accretion data coupled with the amino acid
composition data of products, here skeletal mus-
cle (NRC 2016). This can be followed by
predicting rumen microbial protein yield and
rumen escape protein (RDP; RUP- corrected for
indigestible protein) and total amino acid flow to
the duodenum. The total digestible/absorbable
amino acids can then be compared to the amino
acid requirements based on the amino acid needs
from step one above. The fundamental underlying
assumptions for the production of microbial pro-
tein, the rumen degradability of dietary proteins,
utilization of energy feedstuffs, amino acid flow
to the duodenum, amino acid deposition into
muscle (or milk) proteins were modelled by
Cornell workers to predict net energy content,

gain, absorbable amino acids and RDP and RUP
by constructing the Cornell Net Carbohydrate and
Protein System (CNCPS; Russel et al. 1992;
Sniffen et al. 1992; Fox et al. 1992; O’Connor
et al. 1993). The CNCPS model will then estimate
net energy, absorbed protein (metabolizable pro-
tein) and amino acid supply and predict amino
acid requirements for a given bovine fed a given
diet. Cornell workers then used data from 25 feed-
ing trials (Holstein steers) to conduct validation
experiments (Ainslie et al. 1993). The CNCPS
system predicted metabolizable protein
(MP) and EAA allowable gains with solid statis-
tical confidence (Ainsle et al. 1993). In more
recent version of the Cornell system software,
an adjustment for microbial protein flow or effi-
ciency of microbial protein synthesis (according
to trade journals) has improved the system as
previously suggested by Bergen (1982). An
approach similar to the Cornell work has been
promulgated by the NRC Committee on Nutrients
Requirements for Beef Cattle (2016) to also
developed models and software to predict amino
acid requirements. The approach here is based on
MP requirements, the efficiency to convert MP to
net protein, and the amino acid content of tissue
(e.g. carcass protein). NRC provides software to
calculate amino acid requirements based on MP
requirement (NRC 2016). A comparison between
estimates of daily essential amino acid
requirements in steers from NRC (2016) and
Fenderson and Bergen (1975) is shown in
Table 3.1. The values of Fenderson and Bergen
(1975) are generally lower than NRC (2016), but

Table 3.1 Essential amino acid requirements of steers estimated by National Research Council (NRC 2016) and from a
direct empirical experimental amino acid infusion approacha

Amino acid NRC (2016)b g/day Fenderson and Bergen (1975)c g/day

Arginine 21.92 9.0
Histidine 16.61 8.7
Isoleucine 18.60 22.4
Lysine 44.51 31.0
Methionine 13.29 9.9
Phenylalanine 23.25 22.9
Threonine 25.91 20.1
Valine 26.37 22.4
Leucine 47.52 26.7
aAdapted from Fenderson and Bergen (1975)
bSteer weights 300–500 kg; fed a alfalfa hay, steam flaked corn meal and soybean meal, minerals and micronutrients
cSteer weight 250 kg; fed ground oats wheat bran, ground corn, soybean meal, sugarcane, urea, minerals and vitamins
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the steers used were lighter. The profiles of amino
acid requirements resemble each other as Ile, Lys,
Phe, Thr, Val, and Leu are higher (g/day) while
His, Met and Arg are in the lower group.
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Amino Acid Nutrition and Reproductive
Performance in Ruminants 4
Kyler R. Gilbreath, Fuller W. Bazer, M. Carey Satterfield,
and Guoyao Wu

Abstract

Amino acids (AAs) are essential for the sur-
vival, growth and development of ruminant
conceptuses. Most of the dietary AAs (includ-
ing L-arginine, L-lysine, L-methionine and
L-glutamine) are extensively catabolized by
the ruminal microbes of ruminants to synthe-
size AAs and microbial proteins (the major
source of AAs utilized by cells in ruminant
species) in the presence of sufficient
carbohydrates (mainly cellulose and hemicel-
lulose), nitrogen, and sulfur. Results of recent
studies indicate that the ruminal microbes of
adult steers and sheep do not degrade extracel-
lular L-citrulline and have a limited ability to
metabolize extracellular L-glutamate due to
little or no uptake by the cells. Although tradi-
tional research in ruminant protein nutrition
has focused on AAs (e.g., lysine and methio-
nine for lactating cows) that are not
synthesized by eukaryotic cells, there is grow-
ing interest in the nutritional and physiological
roles of AAs (e.g., L-arginine, L-citrulline,
L-glutamine and L-glutamate) in gestating
ruminants (e.g., cattle, sheep and goats) and
lactating dairy cows. Results of recent studies
show that intravenous administration of
L-arginine to underfed, overweight or prolific

ewes enhances fetal growth, the development
of brown fat in fetuses, and the survival of
neonatal lambs. Likewise, dietary supplemen-
tation with either rumen-protected L-arginine
or unprotected L-citrulline to gestating sheep
or beef cattle improved embryonic survival.
Because dietary L-citrulline and L-glutamate
are not degraded by ruminal microbes, addi-
tion of these two amino acids may be a new
useful, cost-effective method for improving
the reproductive efficiency of ruminants.
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RUP ruminally undegraded protein
UIP undegraded intake protein

4.1 Introduction

Human consumption of animal protein is
projected to increase with the expected increase
in the world population. Currently, for the global
average, animal-derived protein is about 30% of
total protein consumption by humans and this
percentage will be greater in the near future due
to the growing middle class of people in many
developing countries (Wu et al. 2020). To supply
adequate amounts of animal protein, increases in
the number of animals and productivity across
animal industries will be required. In terms of
the cattle, sheep and goat industries, the enhance-
ment of reproductive efficiency is an attractive
approach to increasing both beef cow inventory
and the beef industry’s overall productivity
(Bazer et al. 2020; Dahlen et al. 2014).

Among the most important determinants of the
financial viability and sustainability of ruminant
production systems is reproductive performance.
Quantification of infertility is challenging when
considering the numerous methods of manage-
ment and potential environmental factors that
can play a part in altering reproductive perfor-
mance in beef cattle. Bellows et al. (2002)
estimated that $441 to $502 million in losses of
yearly income occurs in the beef cattle industry
due to reproductive diseases and conditions
favoring reductions in fertility. Three-fourths of
this cost was associated with the infertility of
females and their inability to produce a healthy
calf that survived beyond 24 h of life (Looney
et al. 2006). This estimated loss was approxi-
mately 3.6% of the total value of production by
the beef industry in the same year. Reproductive
failure creates losses from a decline in production
stemming from delayed conception and increases
in financial inputs in the form of treatment and
cost of preventative measures (Bellows et al.
2002; Thatcher et al. 2001). Due to reproduction
being the primary factor influencing profitability,
new strategies that enhance fertility and promote

the efficiency of reproduction within the beef
cattle industry should be studied and
implemented. This is also a strategy to enhance
milk production and fertility of dairy cows, as
well as other ruminant species (e.g., sheep and
goats).

There has been considerable progress in our
understanding of amino acid (AA) nutrition and
metabolism in ruminants over the past century,
from the concept of crude protein to metaboliz-
able protein (Schwab and Broderick 2017) and
functional AAs (Wu 2018). The major objective
of this article is to highlight results of recent
studies of reproductive efficiency in beef cattle
and sheep, AA metabolism and nutrition in
ruminants, and the use of arginine or citrulline
to improve embryonic/fetal survival in ruminants.

4.2 Reproductive Efficiency in Beef
Cattle

In terms of increasing the net calf crop, the pri-
mary factor is the ability of the heifer or cow to
become pregnant and maintain their pregnancy to
term (Bazer et al. 2015; Santos et al. 2004). Prior
research has shown that embryonic death is the
primary determinant of reproductive failure and
ultimately the major source of inefficiency in
livestock reproduction. Approximately 30% of
all potential neonates in beef cattle are lost
between the events of the initial cleavage stages
of embryos, and parturition and embryonic death
usually begin by day 16 of gestation (Maurer and
Chenault 1983). This was further confirmed by
findings of higher embryonic loss (~30%) by day
7 of pregnancy in sub-fertile cows (e.g., repeat
breeders) (Maurer and Chenault 1983; Gustafsson
1985), whereas in cows with improved fertility,
embryonic losses (~40%) were observed to occur
more gradually between days 8 and 17 of gesta-
tion (Diskin and Sreenan 1980; Roche et al.
1981). Of interest, pregnancy loss can be as high
as 80% in some heifers due to genetic and envi-
ronmental factors (Moraes et al. 2018; Diskin
et al. 2011). Bellows et al. (1979) recorded the
various factors accounting for reductions in net
calf crops over 14 years in a naturally bred group
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of beef cattle. A calf crop of 71% was reported as
a result of the failure of females to conceive or
early embryonic death (17.4%), fetal deaths dur-
ing gestation (2.9%), perinatal calf deaths (6.4%),
and calves dying between birth and weaning
(2.9%). Thus, the greatest limitation to reproduc-
tive efficiency across mammalian livestock spe-
cies (including ruminants) is the high rate of
embryonic mortality (Bazer et al. 2015).

Several different factors can influence the
prevalence and specific timing of embryonic
death, such as parity, nutritional status, semen
quality of the bull, environmental factors (e.g.,
temperatures), hormonal influences, genetics,
and disease (Amundson et al. 2006; Thatcher
et al. 1994). An experiment exposing beef cows
to heat stress during early pregnancy showed
potential negative impacts, such as decreased
pregnancy rates and lower conceptus weights
(Biggers et al. 1987; Putney et al. 1989). Heat
stress results in an increase in uterine temperature,
which is believed to alter the metabolic rate of the
developing conceptus and create a sub-optimal
environment that limits embryonic, placental
and fetal growth (Biggers et al. 1987). By chang-
ing the metabolic rate, the uptake of nutrients by
the conceptus is also affected and was thought to
be the primary factor behind decreased pregnancy
rates and decreased conceptus weights (Biggers
et al. 1987). Another potential reason for higher
embryonic loss is the increase in temperature
causing chromosomal abnormalities as the oocyte
is released from its first meiotic arrest and
resumes meiosis (Thatcher et al. 1994).

Dystocia poses a significant threat to cow calf
producers, due to the potential loss of both cow
and calf. This not only affects the likelihood of a
successful birth, but the future production of both
cow and calf (Bellows et al. 1988). The occur-
rence of dystocia-related fatalities was estimated
to be 45.9% of all preweaning deaths (Patterson
et al. 1987). Laster and Gregory (1973) studied
the factors related to early postnatal mortality
over a 5-year period involving 5064 cows for
which all parturitions were evaluated and scored
based on calving difficulty. Calf mortality for
cows experiencing dystocia was recorded at
20.4%, while only 5.0% of neonatal mortality

occurred when parturition occurred without assis-
tance (Laster and Gregory 1973).

Nutritional strategies to enhance embryonic
survival has drawn increased attention due to the
livestock producers’ ability to control nutritional
inputs (Dunn and Moss 1992). Oocyte develop-
ment, ovulation, fertilization, embryonic survival,
and establishment of pregnancy are all directly
influenced by nutrition through the supply of
specific nutrients, whereas nutrition also indi-
rectly affects fertility through circulating
concentrations of hormones and metabolites in
blood (Robinson et al. 2006). Diets that are
lacking in either energy or protein put animals
in a negative energy balance, and the animal’s
energy demands for maintenance, reproduction,
and lactation exceed the energy intake. For this
reason, body weight and body condition scoring
have been used by producers and researchers as
indicators of energy status in cattle and potential
rebreeding performance post-calving (Randel
1990). Body condition or body nutrient stores
has a strong influence on pregnancy rates in beef
cows and heifers. One potential mechanism
whereby nutritional deficiencies can affect
embryonic survival is an impairment of embry-
onic growth and development. Ewes that were fed
25% of their maintenance energy requirements
showed no differences in embryonic survival,
but ewes that were nutrient-restricted on days
11–21 post-mating had fetuses that were less
well developed and had shorter crown-rump
lengths (Parr et al. 1982).

Quality of nutrition also alters normal hor-
monal cycles that accompany stages of the
cow’s normal estrous cycles. Increased sensitivity
to the negative feedback effects of estradiol was
observed in cows that were nutritionally deficient
(Keisler and Lucy 1996; Wettemann et al. 2003)
and this resulted in the animal being anestrus for
up to 100 days or longer (Williams 1990). This
hypersensitivity to estradiol prolongs the postpar-
tum anestrus period due to a decrease in
the release of gonadotropin releasing hormone
(GnRH), and this delay in return to cyclicity
reduces a cow’s reproductive efficiency. Poor
nutrition (e.g., 25% of the maintenance energy
requirement) was also shown to be correlated
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with higher levels of circulating progesterone in
sheep during early gestation (Parr et al. 1982).
This relationship was reported to occur whether
the progesterone source was endogenous (ovary)
or administered exogenously to ovariectomized
ewes (Parr et al. 1982). Underfed ewes (50% of
the maintenance energy requirement) had
concentrations of progesterone in blood that
increased more rapidly between days 2 and
10 after mating, when compared to ewes consum-
ing diets with adequate energy (Rhind et al.
1989).

4.3 Overall AA Nutrition
in Ruminants

Continuous fermentation within the rumen envi-
ronment is possible due to its wide array of bac-
teria, archaea, protozoa, and fungi (Firkins et al.
2007). The utilization of both dietary protein and
non-protein nitrogen (NPN) by ruminants
involves the rumen, abomasum, and small intes-
tine (Bergen 2020; Firkins et al. 2007). For the
ruminant to achieve maximum feed intake, nutri-
ent digestion, and ruminal health, sufficient
amounts of rumen-degraded crude protein
(RDP) must be provided (Wu 2018). As research
on protein nutrition has continued, more empha-
sis has been put on the AA profile in ruminal fluid
available to be absorbed after microbial and enzy-
matic digestion of microbial proteins. The break-
down of dietary protein and the resulting
synthesis of microbial proteins in the rumen
results in a lack of correlation between the AA
profile of the diet and the AA profile in the blood
of ruminants (Bergen 1979).

The microbiome within the rumen allows
ruminants to receive higher-quality microbial
protein than the protein provided in lower quality
feedstuffs. Research by Sok et al. (2017)
attempted to show the different AA profiles that
existed between ruminal fluid-associated bacteria
and particle-based bacteria within the rumen and
how this could affect the AA composition of the
microbial protein flow. Optimizing protein nutri-
tion in ruminants has long been pursued by
researchers as a strategy to increase overall

production without sacrificing profitability. The
pursuit of optimizing the amount of protein
provided to ruminant species requires reliable
estimates of quantities pertaining to: (1) the AA
profile of protein flow, (2) dietary AAs entering
and being absorbed by the small intestine, and
(3) AA requirements for maintenance and pro-
duction (Merchen and Titgemeyer 1992).

The 20 proteinogenic AAs in animals were
traditionally classified as nutritionally essential
(EAA) or non-essential AA (NEAA) (Hou et al.
2015). However, this classification has now been
modified to indicate that arginine, glutamine, gly-
cine, and proline are conditionally EAAs because
they are not synthesized in the body in sufficient
amounts to meet requirements for optimum pro-
duction under certain physiological conditions
such as pregnancy and lactation (Wu 2013).
Early studies involving isotopic tracers in dairy
cattle and sheep led to the conclusion that the
classification of EAAs in ruminants was similar
to that for EAAs in non-ruminants (Black et al.
1957; Downes 1961). This view should be
reconsidered in light of recent advances in AA
nutrition and metabolism. There is little evidence
for a sufficient synthesis of cysteine from methio-
nine or of tyrosine from phenylalanine in
ruminants. It is noteworthy that glycine is the
most abundant free AA in the plasma of adult
cattle and sheep (Table 4.1). This is consistent
with a high rate of the synthesis of creatine
(an abundant metabolite participating in energy
metabolism and antioxidative reactions in skeletal
muscle, heart, and brain) from glycine, arginine
and methionine in ruminants, whose plant-based
diets lack creatine (Hou et al. 2019; Li and Wu
2020). Likewise, cysteine is used for the produc-
tion of taurine (an abundant antioxidant in skele-
tal muscle, heart and brain but is absent from
plant-source feedstuffs) in ruminants.

AAs serve as precursors for protein synthesis
and other nitrogen containing metabolites
involved in gluconeogenesis, and as metabolic
energy when they are oxidized to CO2 (Wallace
and Chesson 1995). Ruminal bacteria can synthe-
size all EAAs, assuming that the supplies of
ammonia, carbohydrates, and sulfur are readily
available. Some of the bacteria are engulfed by

46 K. R. Gilbreath et al.



the ruminal protozoa to generate protozoal
proteins, with bacterial and protozoal proteins
entering the abomasum and the small intestine
of ruminants for digestion (Wu 2018). A marker
for bacterial protein is 2,6-diaminopimelic acid
(DAPA) present in the peptide component of
peptidoglycans in the cell wall of Gram-negative

bacteria (Kung and Rode 1996). Of note, the
content of DAPA in ruminal bacteria (g/100 g of
bacterial protein) is similar between sheep and
cattle (Table 4.1). Although the synthesis of
these AAs in the rumen is a continuous biochem-
ical process, it may not be provide adequate
amounts of EAAs and NEAAs to meet the

Table 4.1 Composition of amino acids (AAs) in the feeds, ruminal bacterial protein, plasma, and skeletal muscle
proteins of adult sheep and cattlea

AAs

AAs in feeds
(g/100 g AAs)

AAs in ruminal bacterial
proteinsb (g/100 g AAs)

Free AAs in plasma
(μmol/L)

AAs in skeletal muscle
proteinsc (g/100 AAs)

Sheepd Cattlee Sheep Cattle Sheepd Cattlee Sheep Cattle

Ala 6.53 8.02 6.74 � 0.24 6.72 � 0.29 182 181 5.52 � 0.19 5.55
Arg 5.91 5.18 5.03 � 0.21 5.01 � 0.25 190 121 6.58 � 0.31 6.57
Asn 5.13 4.71 5.34 � 0.26 5.36 � 0.31 33 31 4.16 � 0.22 4.18
Asp 5.83 6.58 6.74 � 0.33 6.75 � 0.36 11 5.4 5.15 � 0.28 5.16
Cysf 1.87 1.61 1.48 � 0.06 1.49 � 0.07 114 132 1.38 � 0.06 1.35
Gln 9.02 5.95 5.11 � 0.30 5.13 � 0.34 372 286 5.66 � 0.33 5.64
Glu 7.85 10.8 8.02 � 0.47 7.99 � 0.55 61 52 9.35 � 0.47 9.32
Gly 4.90 4.93 5.06 � 0.19 5.07 � 0.23 511 347 4.17 � 0.15 4.18
His 2.18 2.28 2.05 � 0.06 2.07 � 0.07 62 67 3.94 � 0.13 3.95
Ile 4.20 4.47 5.53 � 0.22 5.51 � 0.26 62 100 5.13 � 0.26 5.15
Leu 8.32 8.67 7.67 � 0.31 7.66 � 0.36 107 148 8.34 � 0.34 8.33
Lys 4.98 4.66 7.70 � 0.34 7.70 � 0.41 94 104 9.02 � 0.37 9.03
Met 1.63 1.79 2.42 � 0.09 2.40 � 0.12 24 27 3.18 � 0.12 3.17
Phe 4.90 5.30 5.13 � 0.17 5.16 � 0.19 36 51 4.19 � 0.10 4.18
Pro 7.93 4.90 3.67 � 0.20 3.66 � 0.24 156 184 4.06 � 0.25 4.08
Ser 5.05 4.56 4.65 � 0.23 4.62 � 0.27 75 67 4.38 � 0.18 4.41
Thr 3.81 4.78 5.52 � 0.28 5.57 � 0.34 60 62 4.61 � 0.20 4.59
Trp 1.24 1.53 1.39 � 0.08 1.38 � 0.09 39 49 1.26 � 0.04 1.25
Tyr 3.73 3.42 4.65 � 0.15 4.63 � 0.18 61 70 3.76 � 0.11 3.75
Val 4.98 5.91 6.08 � 0.27 6.11 � 0.32 128 224 5.96 � 0.21 5.94
Hyp ND ND ND ND 41 45 0.20 � 0.01 0.21

Hyp, 4-hydroxyproline; ND, not detected
aAdult Sulfolk female sheep (60–65 kg) were fed a soybean hulls-, wheat middlings-, and corn-based diet (Gilbreath et al.
2020b), whereas adult Angus � Hereford steers (mean body weight of 538 kg) fitted with a ruminal cannula consumed
daily 14.02 kg (dry matter) of Bermudagrass hay and 0.506 kg (dry matter) of dried-distillers’ grains with solubles. These
diets contained no taurine. Fresh rumen-fluid was collected from sheep and steers that had been deprived of food for 16 h.
The amounts of AAs in the feeds, ruminal bacterial proteins, and skeletal muscle (longissimus lumborum muscle; loin
muscle) proteins were calculated on the basis of their intact molecular weights. Values are either means � SEM, n ¼ 10
for ruminal bacterial proteins, ruminal bacterial 2,6-diaminopimelic acid (DAPA), and sheep skeletal muscle proteins, or
means taken from our published studies. The content of DAPA in the ruminal bacteria of sheep and cattle was
0.865 � 0.033 and 0.872 � 0.041 g/100 g of bacterial protein, respectively
bProtein-bound AAs and DAPA were analyzed by high-performance liquid chromatography after acid and alkaline
hydrolyses as previously described (Wu and Meininger 2008; Hou et al. 2019). Calculations were based on the molecular
weights of intact AA.
cProtein-bound AAs were analyzed by high-performance liquid chromatography after acid and alkaline hydrolyses as
previously described (Dai et al. 2010; Hou et al. 2019). Values for cattle were taken from Wu et al. (2016). Calculations
were based on the molecular weights of intact AA.
dTaken from Gilbreath et al. (2020b)
eTaken from Gilbreath et al. (2020a)
fTotal cysteine (cysteine plus ½ cystine)
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requirement of a high-producing animal (Lapierre
et al. 2006; Satterfield et al. 2012, 2013). Thus,
there is growing interest in the nutritional and
physiological roles of NEAAs in gestating
ruminants. For example, intravenous administra-
tion of L-glutamate (7 mg/kg body weight) twice
weekly (Monday and Friday) between mid-June
and late September in northern Mexico enhanced
the onset of puberty in female goats without
affecting body condition scores or concentrations
of insulin, urea and glucose in plasma (Torres-
Moreno et al. 2009). Furthermore, dietary supple-
mentation with 5, 10 and 15% monosodium glu-
tamate by-product (providing 0.24%, 0.48% and
0.72% supplemental glutamate in the diet)
increased the milk production profit by 15%,
22% and 33%, respectively (Padunglerk et al.
2017). Similarly, dietary supplementation with
citrulline plus glutamine to cows during early
lactation reduced the coefficient of variation in
milk yield change over a 7-day period by 50%
(Keith et al. 2018).

In non-ruminants, dietary intake reflects the
supply of nutrients. This makes correcting dietary
deficiencies relatively easy to manage.
Deficiencies of AAs in these animals can be
corrected by simply adding the deficient AAs
directly into the diet (Wu 2018). However, AA
deficiencies in ruminants must be overcome using
other strategies to fulfill AA requirements
because of difficulties in the control of metabolic
pathways in ruminal microbes. Simply adding
any AA into the diet is not an efficient option to
increase AA flow within the duodenum in cattle
(Lapierre et al. 2006). There is a limited amount
of data regarding the AA content in ruminal fluid,
endogenous protein sources, and undegraded
intake protein (UIP) fractions of consumed
feedstuffs (Clark et al. 1992). This protein is
hydrolyzed by proteases in the small intestine to
free AAs, dipeptides, and tripeptides. Researchers
have attempted to predict this supply of protein
with estimates derived from experiments with
ruminants cannulated either at the level of the
abomasum or small intestine (Hvelplund 1986).
Results from several experiments have been
called into question because the location of the
cannula in relation to the digestive tract can cause

wide variations in the measurements of AA flow.
The interpretation of the data becomes difficult
because the non-ammonia nitrogen supply that
reaches the small intestine consists of free AAs,
peptides, UIP, microbial protein, and endogenous
protein. This creates more difficulty in making
inferences on any one of the individual sources
of the microbial and endogenous proteins.

An assumption existed that the AA composi-
tion of the RUP was identical to that of the origi-
nal feedstuff. However, this assumption is not
valid for plant-based diets (Bergen 1979). Fur-
ther, the AA profile of the undegradable fraction
of protein leaving the rumen is different from the
dietary AA profile following ruminal fermenta-
tion (Schwab and Broderick 2017). However,
others have reported that the profiles of some
AAs in both the RUP and original dietary source
are similar (Ganev et al. 1979). There have been
attempts to use concentrations of individual AAs
in a wide variety of feeds (Hvelplund 1986) and
silages (Von Keyserlinkgk 1998) to identify
relationships between the flow of individual
AAs from feed to the duodenum, but no strong
relationship has been established. We noted that
the profiles of most AAs in the diets of ruminants
(e.g., adult sheep and cattle) differ substantially
from those in ruminal microbes (Table 4.1) due to
microbial protein synthesis from ammonia, as
well as extracellular AAs and small peptides
(Wu 2018). However, the composition of alanine,
asparagine, glutamate and glycine in the diet of
adult sheep fed a soybean hulls-, wheat
middlings-, and corn-based diet is similar to that
in their ruminal microbes, whereas the composi-
tion of arginine, aspartate, glycine, phenylalanine,
serine and valine in the diet of adult steers fed a
Bermudagrass hay-based diet is similar to that in
their ruminal microbes (Table 4.1). Because the
sheep and steers were fed different diets but the
composition of AAs in their ruminal bacterial
proteins was similar (Table 4.1), we conclude
that diets that provide adequate nutrients (includ-
ing protein, fiber, and minerals) have little effect
on the composition of AAs in ruminal microbial
proteins.

There is limited data on the contributions of
the endogenous protein supply (the protein
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secreted into the lumen of the gastrointestinal
tract plus the protein of epithelial cells sloughed
into the lumen) to total protein flow in the small
intestine. Likewise, little is known about the
factors that affect the overall impact of those
proteins. Most attention is directed towards the
other two sources of protein, although estimates
of total protein flow have varied from 16%
(Lammers-Weinhoven et al. 1998) to 56%
(Hannah et al. 1991). This endogenous source of
protein ultimately provides AAs to the body
although the protein is originally derived from
multiple sources, such as glycoproteins from
mucus, the epithelial cells that are shed, bile,
and the digestive enzymes released into the
abomasum and duodenum (Larsen et al. 2010).

Of the sources of protein leaving the rumen,
microbial protein is estimated to be the largest
contributor. Results from experiments estimate
that 60% to 90% of the total AAs that enter the
small intestine of the ruminant are from microbial
proteins (Butter and Folds 1985; Nocek and
Russel 1988). It is apparent that microbial protein
has a large role in determining the quality of
protein entering the small intestine. Because
rumen fermentation leads to the production of
microbial proteins, ruminants are not thought to
have dietary requirements for EAAs for mainte-
nance and low growth rates. Many of the biosyn-
thetic pathways have been identified using
in vitro experiments. It is difficult to ascertain
the activity of these bacteria and their enzymes
in vivo. Although ruminal bacteria can synthesize
all EAAs, as noted previously, the supply of
microbial EAAs may not be adequate to meet
the EAA requirements of a high-producing
animals (Lapierre et al. 2006). This may also be
true for NEAAs (Wu 2018). Note that AA profiles
in ruminal microbial proteins differ from those in
the plasma of ruminants (Table 4.1), because AAs
are metabolized by the small intestine at different
rates during the first pass into the portal circula-
tion (Wu 2018).

Free AAs are intermediate products in ruminal
fluid as dietary protein is broken down upon entry
into the rumen. These AAs can have multiple
fates, including degradation to ammonia by
microbes, assimilation into rumen microbes,

absorption from the rumen, and being bound to
microbial cells or feed particles (Chalupa 1975).
There is also limited research concerning the rates
of degradation of AAs within the rumen. The
concentrations of free AAs in ruminal fluid are
very low (e.g., ranging from 1.3 μM for taurine to
44 μM for glutamate in the ruminal fluid of adult
steers; Gilbreath et al. 2020a). This is due to a
number of factors, such as a limited amount of
free AA in the diet, the active degradation of
dietary protein-derived AAs by ruminal bacteria
(via transaminases, dehydrogenases, and
deaminases), the rapid microbial uptake of
peptides and free AAs, as well as the constant
flow of AA-containing ruminal fluid into other
parts of the forestomach. The small amount of
taurine present in ruminal fluid is derived from
the saliva and blood, because this AA is absent
from plants and is not synthesized by microbes
(Wu 2013).

Several factors affect the metabolic activity of
microbes, including pH, protein structure, and the
predominant species of microbes in the rumen
(Bach et al. 2005; Scheifinger et al. 1976).
Conflicting views exist pertaining to the
estimated rates of the degradation of individual
AAs undergoing ruminal fermentation. Individual
strains of microbes use the supply of free AAs
differently and this likely results in different rates
of utilization for individual AAs (Scheifinger
et al. 1976). Mixtures of AAs are degraded more
rapidly than individual AAs, although no expla-
nation or mechanism has been identified to
explain this result (Lewis 1955). It is possible
that compared with the presence of a single AA,
a mixture of AAs helps to enhance the synthesis
of AA-degrading enzymes, the removal of AA
metabolites via microbial protein synthesis, and
overall metabolic function in ruminal microbes.
Continued research on this topic reveals that all
EAAs are degraded to the same extent
(Macgregor et al. 1978), whereas results from
other studies indicate that this assumption may
not be true. EAAs are degraded more slowly than
the NEAA fraction of proteins (Cozzi et al. 1995).
It should be noted that rates of the degradation of
individual EAAs differ among different
feedstuffs, including meat meal, herring meal,
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and corn gluten meal (Cozzi et al. 1995). Hydro-
philic AAs, such as arginine, histidine, lysine and
threonine, may be degraded more rapidly when
compared to the rates of the degradation of hydro-
phobic AAs, such as leucine, isoleucine, methio-
nine, phenylalanine, tryptophan, and valine (Van
Soest 1994). Branched-chain AAs (BCAAs) have
slower rates of degradation in comparison with
other AAs (Varvikko 1986), but provide
ruminants with more branched-chain fatty acids
than nonruminants (Wu 2018).

In the rumen, only a small proportion of free
AAs are incorporated intact into microbial
proteins; therefore, the de novo synthesis of
AAs by the microbial population is very impor-
tant. This point is clearly shown in the case of
both growing and lactating ruminants fed the diets
that provided either deficient AAs or no AA
(Virtanen 1966). Although the synthesis of these
AAs is a continuous process, it may not be ade-
quate to meet the EAA requirements of high-
producing animals, as noted previously (Lapierre
et al. 2006), as noted previously. Improving rumi-
nant protein nutrition has always centered around
the optimization of the efficient usage of dietary
nitrogen to maximize growth and milk production
per unit of nitrogen consumed (Wallace and
Chesson 1995). This pursuit involves the ade-
quate provision of degradable intake protein
(DIP) to meet the microbial population’s require-
ment for nitrogenous substrates and adequate pro-
vision of UIP with the correct AA balance that
complements the microbial AA profile (Wallace
and Chesson 1995). For this reason,
supplementing rumen-protected AAs to
ruminants is a viable option for meeting AA
requirements and promoting optimal growth,
reproduction, and lactation (Kung and Rode
1996). For ruminants to efficiently use both
sources of protein, rumen-protected protein and
rumen-degradable protein must be supplied at
their optimal ratios, depending on reproduction,
lactation, and growth (NRC 2001). There is evi-
dence that the provision of a rumen-protected AA
(RPAA) is necessary to ensure that the ruminant
has sufficient nutrition to support the microbial
population and allow for enzymatic digestion and
absorption of the intended AA profile by the

small intestine (Schwab and Broderick 2017).
The use of RPAAs allows producers the opportu-
nity to increase protein production in their live-
stock due to their ability to optimize the balance
of AAs absorbed by the small intestine and ulti-
mately decrease the amount of UIP needed in the
diet to satisfy nutritional and physiological
requirements (Wallace and Chesson 1995).
There have been numerous methods to reduce
the degradation of protein inside the rumen
including: mild heating, chemical treatment,
polyphenolic phytochemicals, and encapsulation
(Wallace and Chesson 1995; Wu 2013).

Prior studies involving supplemental RPAAs
mainly provided lysine and methionine. This is
because the direct evidence from abomasal or
duodenal infusion studies showed that lysine
and methionine were often the most limiting
AAs involved with growing ruminants (Merchen
and Titgemeyer 1992) and lactating dairy cows
(Schwab et al. 1976). A limiting AA is defined as
an AA that is in the shortest supply from the diet
relative to its requirement for the maintenance
and growth of the animal (Wu 2018). In terms
of nitrogen retention, methionine and lysine are
also the first and second limiting AA within
microbial proteins in growing sheep (Nimrick
et al. 1970; Storm and Ørskov 1984) and growing
cattle (Richardson and Hatfield 1978). There are a
few reports claiming that arginine and histidine
may be a factor limiting weight gain, depending
upon the growth stage and the diet of the animal.
Veira et al. (1988) provided theoretical
calculations and recorded changes in
concentrations of AAs in plasma when a combi-
nation of fishmeal and silage were fed to growing
steers and suggested that both arginine and histi-
dine were limiting in growing steers fed grass
silage. However, changes in the circulating levels
of AAs in animals should not be used as the sole
criterion for assessing dietary requirements for
AAs (Wu 2018). It should be borne in mind that
the profiles of AAs in plasma differ from those in
the skeletal muscle of ruminants (Table 4.1)
because they differ in their metabolic fates and
rates of utilization in the body (Wu 2013).

Studies involving beef cattle found an increase
in their average daily gains when diets were
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supplemented with RPAAs. Veira et al. (1991)
observed that growing steers fed grass silage
gained weight when supplemented with small
quantities of RPAAs that were thought to be
limiting (lysine and methionine). This weight
gain was thought to result from the RPAA suffi-
ciently meeting the AA requirements for both
maintenance and growth (Veira et al. 1991).
Mowat and Deelstra (1972) supplemented
encapsulated methionine to lambs consuming a
basal corn-alfalfa diet and found that methionine
had no effect on weight gains or feed efficiency
when the animals consumed the basal diet
supplemented with soybean meal. However, the
authors did observe an increase in gains (11%)
and feed efficiency (9%) when the basal diet was
supplemented with corn-urea or corn-blood meal.
A metabolism trial was then conducted, and the
supplemented encapsulated methionine increased
protein and dry matter digestibilities, as well as
the retention of dietary nitrogen in the body
(Mowat and Deelstra 1972). Davenport et al.
(1995) supplemented growing lambs with
rumen-protected arginine or ornithine due to
their actions to stimulate the secretion of somato-
tropin and determined its effect on growth. The
supplementation of arginine and ornithine
increased circulating concentrations of somato-
tropin and insulin-like growth factor, but failed
to improve the growth performance of the lambs
(Davenport et al. 1995). Although results of
experiments to determine growth responses of
beef cattle and other ruminants are inconsistent
(Kung and Rode 1996), the various findings may
be explained by the fact that AAs have metabolic
roles other than for the synthesis of proteins
(Wu 2013) and a possibility that some AAs are
co-limiting for protein synthesis (Merchen and
Titgemeyer 1992).

Researchers studying the effects of supple-
mentation of rumen-protected methionine to
dairy cattle observed mixed results, but there
were beneficial effects, such as increases in milk
protein synthesis (Pisulewski et al. 1996;
Armentano et al. 1997; Dinn et al. 1998), milk
yield and milk protein synthesis (Illg et al. 1987),
as well as the yield of fat-corrected milk and milk
fat (Overton et al. 1996). Other investigators

supplemented diets with rumen-protected methi-
onine and found that this nutritional treatment had
no effects on milk production (Papas et al. 1984;
Overton et al. 1998). Izumi et al. (2000) reported
that supplementing rumen-protected methionine
to the diet over a 22-week period resulted in a
significant, but temporary, increase in milk yield.
This temporary effect was significant only
through the peak to middle periods of lactation,
but over the complete lactation period there was
no significant effect on milk yield, milk fat, or
milk protein synthesis (Izumi et al. 2000). It is
possible that there is more than one co-limiting
AA for lactating ruminants.

Supplementation of diets with certain RPAAs
has overcome the decrease in milk protein synthe-
sis in dairy cattle consuming rations with higher
fat contents (Canale et al. 1990). In a study of the
effects of RPAAs on cow and calf production,
primiparous beef cows supplemented with
increasing levels of rumen-protected lysine and
methionine had increased milk production (Hess
et al. 1998). This increase in milk yield was also
paired with decreasing body weight gain after
parturition (Hess et al. 1998). Rode et al. (1993)
supplemented the diet with RPAAs as a replace-
ment for 0.5 kg of soy/blood meal and found that
cows consumed less protein and increased their
consumption of forage, when compared to their
non-supplemented counterparts. Thus, appropri-
ate RPAAs hold promise in improving the pro-
ductivity of ruminants.

4.4 Catabolism of AAs
in the Rumen of Ruminants

In ruminants, dietary protein is hydrolyzed by
bacterial proteases and peptidases into small
peptides and AAs in the rumen, whereas free
AAs are further degraded to ammonia and their
carbon skeletons by a number of bacterial
enzymes, including deaminases, transaminases,
hydrolases, and decarboxylases (Wu 2013). In
the presence of α-ketoacids (e.g., pyruvate, oxa-
loacetate, and α-ketoglutarate which are products
of carbohydrate metabolism) and sulfur, ammo-
nia is utilized by ruminal bacteria for the
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synthesis of new AAs and proteins (Wu 2018).
The rates of AA catabolism are high in the rumen,
such that all AAs studied to date (Ala, Arg, Asn,
Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met,
ornithine, Phe, Pro, Ser, Thr, Tyr, and Val) do
not escape the rumen. Thus, the microbial popu-
lation within the rumen has long been considered
to have the capability of extensively degrading
dietary AAs (Chalupa 1976; Lewis and Emery
1962; Scheifinger et al. 1976).

We recently discovered that the ruminal mixed
microbes of adult cattle (Gilbreath et al. 2019,
2020a) and sheep (Gilbreath et al. 2020b) do not
degrade extracellular citrulline and have a limited
ability to metabolize extracellular glutamate. Spe-
cifically, glutamine and arginine are extensively
degraded by ruminal microbes from cattle
(Fig. 4.1) and sheep (Fig. 4.2) in a time- and
concentration-dependent manner. The major
products of ruminal glutamine catabolism are
glutamate, ammonia, and alanine, whereas the
major products of ruminal arginine catabolism
are ornithine, proline, and ammonia. At the end
of a 2-h incubation period, no urea is present in
the incubation medium containing arginine,

indicating that ruminal microorganisms are
highly active. In contrast, there was no detectable
loss of extracellular citrulline or glutamate from
the ruminal fluid during a 2-h period of incuba-
tion (Figs. 4.1 and 4.2). Consistently, the rates of
formation of 14CO2,

14C-glutamine, 14C-aspar-
tate, 14C-alanine, 14C-ornithine, 14C-proline, and
14C-protein from extracellular 14C-glutamate
(5 mM) are negligible and there is no detectable
production of 14C-citrulline or 14C-arginine from
extracellular 14C-glutamate (5 mM), compared
with the formation of 14C-labeled products from
extracellular 14C-glutamine or 14C-arginine
(Gilbreath et al. 2019, 2020b). Interestingly,
there is little uptake of glutamate and no detect-
able uptake of citrulline by the ruminal microbes
(Gilbreath et al. 2019, 2020b). In support of this
finding, Stalon and Merceniner (1984) found that
few bacteria can utilize extracellular citrulline as a
nitrogen source for growth. For comparison, red
blood cells of rats and humans, as well as
periportal hepatocytes of mammals, do not take
up extracellular glutamate (Watford 2002), and
the mammalian liver does not take up extracellu-
lar citrulline (Wu and Morris 1998). Thus,

Fig. 4.1 Concentrations of amino acids in the ruminal
fluid (containing microbes) of adult steers that was
incubated for 0, 0.5, 1 or 2 h in the presence of 5 mM
L-glutamine, 5 mM L-glutamate, 5 mM L-citrulline, or
5 mM L-arginine. Values are means � SEM, n ¼ 6.
Adapted from Gilbreath et al. (2019). Results indicate

that ruminal microbes of adult steers do not degrade extra-
cellular L-citrulline and have a limited ability to metabo-
lize extracellular L-glutamate. (AA ¼ amino acid;
Arg ¼ arginine; Cit ¼ citrulline; Gln ¼ glutamine;
Glu ¼ glutamate)
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transporters for glutamate and citrulline are not
universally expressed in all eukaryotic and pro-
karyotic cells. It is possible that ruminal microbes
do not take up or catabolize extracellular aspartate
(an acidic AA like glutamate), but experimental
data are needed to test this hypothesis. Consistent
with the in vitro observations, the concentrations
of glutamate in the ruminal fluid of adult steers
increase in response to oral administration of
glutamine because of the hydrolysis of extracel-
lular glutamine into glutamate, but there is no
increase in the concentrations of arginine in the
ruminal fluid of adult steers after oral administra-
tion of citrulline due to the lack of utilization of
extracellular citrulline by ruminal microbes
(Fig. 4.3). Likewise, the concentrations of citrul-
line and arginine in the plasma of adult sheep
increase by 117% and 23%, respectively, at 4 h
after oral administration of citrulline (8 g along
with 800 g of the soybean hulls-, wheat
middlings-, and corn-based diet), compared with

the baseline value (Fig. 4.4). Collectively, these
findings refute the traditional view that all unpro-
tected AAs in diets are extensively catabolized by
ruminal microbes and are unable to escape the
rumen (Owens and Basalan 2016; Tedeschi and
Fox 2016). This new concept has far-reaching
implications for the nutrition of ruminants and
their dietary supplementation with selected AAs.
For example, glutamate, a major metabolic fuel
for the small intestine and glutathione synthesis
(Hou and Wu 2017, 2018), can be added to the
diets of ruminants to improve digestive functions
(Brake et al. 2014). In addition, dietary supple-
mentation with citrulline plus glutamine (Keith
et al. 2018) or rumen-protected arginine (130 g/
day, Kirchgessner et al. 1993) enhances milk
production by dairy cows, as reported for arginine
supplementation to lactating sows (Mateo et al.
2008). Furthermore, citrulline, without encapsu-
lation, can be effectively supplemented to the
diets of ruminants to increase concentrations of

Fig. 4.2 Concentrations of amino acids in the ruminal
fluid (containing microbes) of adult sheep that was
incubated for 0, 0.5, 1 or 2 h in the presence of 5 mM
L-glutamine, 5 mM L-glutamate, 5 mM L-citrulline, or
5 mM L-arginine. Values are means � SEM, n ¼ 6.
Adapted from Gilbreath et al. (2019). Results indicate

that ruminal microbes of adult steers do not degrade extra-
cellular L-citrulline and have a limited ability to metabo-
lize extracellular L-glutamate. (AA ¼ amino acid;
Arg ¼ arginine; Cit ¼ citrulline; Gln ¼ glutamine;
Glu ¼ glutamate)
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arginine in plasma (Gilbreath et al. 2020b). Die-
tary glutamate and citrulline are functional AAs
that enhance the growth and productivity (e.g.,
lactation and embryonic survival) of ruminants.

4.5 Benefits of AA
Supplementation to Gestating
Ruminants

Arginine catabolism involves multiple pathways
and provides a variety of useful products to the
body including ornithine, polyamines, proline,
glutamate, agmatine (argamine), creatine, and
NO (Wu 2013). These products along with argi-
nine itself allow arginine supplementation to
improve cardiovascular function, immunity, neu-
rological function, wound healing, fertility in
both genders, absorption of nutrients, and insulin
sensitivity (Wu et al. 2013). Those benefits also
allow the potential use of arginine supplementa-
tion to reduce hyperglycemia, dyslipidemia, obe-
sity, high blood pressure, atherosclerosis,
infections, embryonic and fetal death, and diar-
rhea (Wu 2013). NO and polyamines serve vital
roles in placental angiogenesis and growth in
mammals (Hosomi et al. 1987). Arginine has the
potential to be a vital nutrient for both dam and
fetus during pregnancy (Wu et al. 2013). Arginine
is also an essential part of the urea cycle for
ammonia detoxification by activating N-

Fig. 4.3 Concentrations of amino acids in the ruminal
fluid of adult steers after their consumption of a rumen-
protected amino acid (RPAA; encapsulated citrulline +
glutamine; Panel A) or a rumen-unprotected amino acid
(RUAA; unencapsulated citrulline + glutamine; Panel B)
supplement. Analyses of amino acids in the amino acid
products mixed with microbe-free deionized and double-
distilled water indicated that 24.2% of citrulline and 24.0%
glutamine in the RPAA product were not encapsulated by
the binder. Thus, concentrations of both citrulline and
glutamine increased in the ruminal fluid of steers after
consuming the RPAA product, but were much lower

than those for steers consuming the RUAA product.
Concentrations of citrulline in the ruminal fluid of
RUAA and RPAA steers declined rapidly after 1 h, likely
because of a rapid flow of the amino acid out of the rumen
into the other compartments of the forestomach. Both a
rapid flow of glutamine out of the rumen and its rapid
catabolism by ruminal microbes contributed to a more
rapid decline of glutamine in the ruminal fluid than citrul-
line. Values are means � SEM, n ¼ 8. (Adapted from
Gilbreath et al. (2020a), Cit¼ citrulline; Gln¼ glutamine;
Glu ¼ glutamate)

Fig. 4.4 Concentrations of amino acids in the plasma of
sheep after consumption of a L-citrulline supplement. The
L-citrulline supplement consisted of 8 g L-citrulline and
800 g of a soybean hulls-, wheat middlings-, and corn-
based diet. Values are means� SEM, n¼ 6. Adapted from
Gilbreath et al. (2020b). Oral administration of L-citrulline
increased the concentrations of both L-citrulline and
L-arginine in the plasma of sheep at the 1-, 2- and 4-h
time points when compared with the baseline (time 0 h)
values, as analyzed by one-way analysis of variance for
repeated measures data. (Arg ¼ arginine; Cit ¼ citrulline;
Gln ¼ glutamine)
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acetylglutamate synthase to generate N-
acetylglutamate (an allosteric activator of
carbamoylphosphate synthase-I) from glutamate
and acetyl-CoA (Wu and Morris 1998). Further-
more, arginine increases protein synthesis and
inhibits proteolysis in ovine brown adipocytes
(Ma et al. 2017), as reported for porcine mam-
mary epithelial cells (Ma et al. 2018). Therefore,
arginine is now known to be nutritionally essen-
tial for pregnancy, lactation, and rapid postnatal
growth in animals (Wu et al. 2013, 2018).

Results of a study in which gilts were
supplemented with 1% arginine-HCl between
days 30 and 114 of gestation showed a 22%
increase in live litter birth weight and a 24%
increase in the number of pigs born alive (Mateo
et al. 2007). Similar findings have been reported
for dietary supplementation with 0.4% or 0.8%
arginine to gilts between days 14 and 30 of gesta-
tion (Li et al. 2014). This enhancement in embry-
onic and fetal survival and growth is due, in part,
to an increase in placental angiogenesis and
growth during early- to mid-gestation. This
improves the intrauterine environment for the
maternal to fetal-placental exchange of nutrients
and gases throughout pregnancy (Wu et al. 2017).
Similarly, Zeng et al. (2008) conducted four sep-
arate experiments testing the effects of arginine
supplementation on embryonic survival in
Sprague-Dawley rats. In rats supplemented with
arginine throughout their pregnancy, litter size
was increased by 3.2 pups per dam
(14.5 � 0.062 vs. 11.3 � 0.61). An increase in
litter size was also observed in rats supplemented
with arginine between days 1 and 7 of pregnancy
(14.7 � 0.39 vs. 11.4 � 0.66). The arginine
treatment also increased embryonic survival on
day 7 of pregnancy and this was thought to be the
primary factor responsible for the increase in
litter size.

There has been growing interest in the role of
arginine in the nutrition and metabolism of ges-
tating sheep over the past two decades. Because
intravenous administration of arginine to preg-
nant ewes increased the concentrations of argi-
nine and insulin in their plasma, as well as
uterine, utero-placental, and fetal uptake of argi-
nine (Thureen et al. 2002), arginine could

potentially improve pregnancy outcomes in
these animals. A separate study of the effects of
arginine supplementation on ovine IUGR fetuses
showed that increasing circulating concentrations
of arginine increased fetal protein accretion
(De Boo et al. 2005). Increasing concentrations
of arginine in maternal blood was thought to
enhance the vasodilation of blood vessels in the
uterus and placenta through NO production,
which increased blood flow both to the uterus
and within the fetal-placental vasculature
(De Boo et al. 2005). A series of studies from
our group revealed that intravenous administra-
tion of arginine-HCl to underfed, overweight or
prolific ewes enhanced fetal growth, fetal brown
fat, and neonatal lamb survival (Lassala et al.
2010, 2011; McKnight et al. 2020; Satterfield
et al. 2012, 2013). Similar results were reported
by McCoard et al. (2013, 2014, 2016) and
Reynolds et al. (2019). Additionally, Sales et al.
(2016) demonstrated that intravenous administra-
tion of arginine-HCl to twin-bearing ewes during
late gestation enhanced placental growth and
development (van der Linden et al. 2015),
reduced mammary gland infections during early
lactation (Sciascia et al. 2019), and promoted the
postnatal growth of lambs (Sales et al. 2016).

Because arginine is extensively degraded by
ruminal bacteria (Chalupa 1976), addition of
unprotected arginine to the diets of ruminants
cannot augment its concentration in blood. This
necessitates the use of rumen-protected arginine
for feeding sheep. Saevre et al. (2010)
supplemented rumen-protected arginine to ewes
to determine if it enhanced reproductive effi-
ciency as reported for monogastric animals
supplemented with arginine. The rumen-
protected arginine product increased circulating
levels of arginine and ovarian blood flow in ewes
fed the arginine supplement over a 5-day period.
de Chávez et al. (2015) reported that dietary sup-
plementation with rumen-protected arginine
[7.8 g Arg (as arginine-HCl)] to sheep (45 kg
body weight) between the onset of estrus and
day 25 after breeding enhanced embryonic and
fetal survival during early pregnancy. Likewise,
Zhang et al. (2016) demonstrated that dietary
supplementation with rumen-protected arginine
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(10 g/day) to underfed ewes (40 kg body weight;
50% of NRC (1985)-recommended nutrient
requirements) between days 35 and 110 of gesta-
tion enhanced fetal weight by 18%. Similar
results were obtained by Sun et al. (2018).
Taken together, available results clearly indicate
the promise of dietary supplementation with argi-
nine to improve fertility and fetal growth in sheep
production systems.

Recently, we determined an effect of dietary
supplementation with RPAA (citrulline + gluta-
mine) or RUAA (citrulline + glutamine) on
embryonic survival in lactating beef cows that
were fed a diet meeting NRC (2000) nutrient
requirements (Gilbreath et al. 2018). During the
entire experimental period, multiparous Brangus
cows grazed green pasture and had free access to
drinking water and mineral blocks. At the onset of
lactation, cows received dried distillers grain
(DDG) only, DDG top-dressed with the RUAA
product, or DDG top-dressed with the RPAA
product. After 2 months of lactation, all cows
were synchronized to estrus and artificially
inseminated one time. From day 1 to day
60 after artificial insemination, cows were fed
daily either 0.64 kg DDG, 0.56 kg DDG + 0.28 kg
RUAA (2% of estimated daily intake of 14 kg dry
matter from pasture; 0.07 kg citrulline + 0.07 kg
glutamine), or 0.56 kg DDG + 0.28 kg RPAA
(2% of estimated daily intake of 14 kg dry matter
from pasture; 0.07 kg citrulline + 0.07 kg gluta-
mine). Once on each day of the supplementation
period, cows were moved to pens to receive their
respective supplement and then returned to their
original pasture. Dietary supplementation of
RUAA or RPAA enhanced the birth rate of live-
born calves from 22% in cows fed DGG alone to
34% and 36%, respectively for the two treatment
groups. The beneficial effects of the AA supple-
ment were associated with increases in the
concentrations of insulin in serum and of citrul-
line, arginine, ornithine and proline in plasma, but
decreases in the concentrations of ammonia in
plasma. Thus, dietary citrulline in either a
rumen-protected or unprotected form escaped
the rumen, entered the portal circulation, and
served as the immediate precursor for synthesis
of arginine in the extrahepatic tissues of beef

cows. These findings have important implications
for improving both lactation and fertility in both
beef and dairy cows.

Dietary supplementation with citrulline
[a neutral AA and an effective precursor of argi-
nine (Lassala et al. 2009)] is expected to increase
the reproductive efficiency of beef cows and their
profitability. A successful pregnancy in beef or
dairy cows is currently estimated to be worth
$750 (Dr. Jason Cleere, Texas A&M AgriLife
Extension, personal communication). Based on
the cost of citrulline + glutamine ($10/kg) and
the daily use of 0.14 kg/day for 60 days, the total
expense for feeding one cow would be $84. For an
operation with 1000 beef cows, the net income
would be $20,250, $55,000, and $89,750, respec-
tively, assuming a value of either $750, $1000, or
$1250 per calf (Table 4.2). Dietary supplementa-
tion with L-citrulline alone, which is expected to
improve the reproductive performance of cattle as
effectively as with L-citrulline + L-glutamine,
would double the margin of profits. Additional
benefits that are not included in the margin of
profit calculation include reductions in manage-
ment and labor costs, improvements in herd health,
an increase in cow numbers, and the prospect of
improved fertility in the next breeding period.
Based on the results of this research, we now
know that unencapsulated citrulline is able to
bypass the rumen and, therefore, will be more
affordable for use by producers. Thus, the price
for feed-grade citrulline without encapsulation will
be substantially reduced (e.g., $5/kg), similar to
that for feed-grade arginine (Wu et al. 2018). Thus,
a nutrition-based management system to increase
embryonic survival will have an enormous impact
on the global beef industry. These findings also
have important implications for enhancing both
milk production and fertility in lactating dairy
cows, because they also have very low pregnancy
rates [e.g., 16% in the U.S. in the summer (Stewart
et al. 2011)]. Large-scale experiments are
warranted to optimize the supplemental doses
and estimate economic returns from dietary sup-
plementation of diets for beef and dairy cows with
citrulline.

In summary, research in ruminant protein
nutrition research over the past decade has
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gradually shifted from the concept of crude pro-
tein to a focus on functional AAs, especially
conditionally essential AAs. Although a majority
of dietary AAs are extensively degraded by
ruminal microbes and do not escape the rumen,
recent studies have shown that the ruminal
microbes of adult steers and sheep do not degrade
extracellular citrulline and have a limited ability
to metabolize extracellular glutamate due to little
or no uptake of these two AAs by the microbes.
Although traditional research in ruminant protein
nutrition has focused on AAs (e.g., lysine and
methionine for lactating cows) that are not
synthesized by eukaryotic cells, there is growing
interest in the nutritional and physiological roles
of AAs in gestating and lactating ruminants.
Intravenous administration of arginine or dietary
supplementation of rumen-protected arginine to
gestating ewes improves fetal growth, brown fat
development in fetuses, and postnatal survival
and growth of offspring. Similarly, dietary sup-
plementation with unprotected citrulline to gestat-
ing beef cattle improved embryonic survival. The
use of both citrulline and glutamate as feed
additives holds great promise in improving the
health (including intestinal integrity), immunity,
and reproductive efficiency of ruminants.
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Amino Acids in the Nutrition
and Production of Sheep and Goats 5
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Abstract

In sheep and goats, amino acid nutrition is
essential for the maintenance of health and
productivity. In this review, we analysed liter-
ature, mostly from the past two decades, focus-
ing on assessment of amino acid requirements,
especially on the balance of amino acid
profiles between ruminal microbial protein
and animal production protein (foetal growth,
body weight gain, milk and wool). Our aim
was to identify amino acids that might limit
genetic potential for production. We propose
that much attention should be paid to amino
acid nutrition of individuals with greater
abilities to produce meat, milk or wool, or to
nourish large litters. Moreover, research is
warranted to identify interactions among
amino acids, particularly these amino acids
that can send positive and negative signals at
the same time.

Keywords

Foetus · Growth · Meat · Wool · Milk ·
Immunity · Ovine · Caprine

Abbreviations

BCAA branched-chain amino acids
GIT gastrointestinal tract
MP metabolizable proteins
PDV portal-drained viscera

5.1 Introduction

Management of amino acids in sheep nutrition
and production has two major aims – achieving
genetic potential for productivity and maintaining
good animal health (Liu and Masters 2000, 2003).
In an industrial context, these aims must also be
achieved at an acceptable cost so the enterprise is
profitable, because protein feeds and amino acid
additives are usually expensive, and inefficiencies
in the use of such feed components must be
avoided.

The sheep industry supplies meat, milk and
wool, and the rates of protein retention in these
products is a dominant factor in productivity.
Therefore, the management of amino acid nutri-
tion for these productive processes aims at
increasing, as much as possible, protein synthesis
in the mammary gland and in the wool follicle,
and protein retention in body weight gain –the
difference between protein synthesis and break-
down (Wu 2018). In addition, because pregnancy
is fundamental for flock propagation, the survival
and growth of the foeto-placental units (the foetus
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must be neither too small nor too large), as well as
associated growth and functional development of
the uterus, are major targets of protein retention
and therefore amino acid nutrition for ewe nutri-
tion during gestation.

This review therefore focuses on amino acid
nutrition during pregnancy and lactation, and dur-
ing body weight gain and wool growth, in sheep.
The relationships between these functions and the
metabolism of the gastrointestinal tract (GIT) is
also addressed because the GIT contains the larg-
est immune biomass in the body. Most of the
literature cited concerns sheep, but we also refer
to some work on goats. To reflect the most recent
advances, we primarily analysed literature
published since 2000.

5.2 General Considerations
in Amino Acid Nutrition

Dietary proteins are digested in the GIT and the
resulting amino acids are absorbed into the body
and transported to sites of protein synthesis to
meet the requirements of the animal. In farm
animals, the quality and quantity of dietary pro-
tein are usually referred to as ‘profiles’
(proportions of individual amino acids to
the total amino acids or total protein) and as the
amounts of essential amino acids entering the
small intestine. In ruminants, in contrast to mono-
gastric animals, dietary protein is degraded by
rumen microorganisms to ammonia, amino acids
and peptides that the microorganisms then use as
nitrogen sources to support their own growth
(Wu 2018). The host benefits from this process
when the microorganisms flow into the small
intestine and are digested. The amount of ruminal
microbial protein that moves into the small intes-
tine varies widely, with feed intake (as a propor-
tion of body weight) and with the protein
degradability of the dietary ingredients. Most
dietary protein is degraded by the rumen
microorganisms and used by those microbes as a
source of nitrogen to synthesize their proteins,
and this microbial protein enters the small intes-
tine and is used by the host (Agricultural
Research Council 1984), but some dietary protein

can escape ruminal degradation. The amino acids
contributed by this ‘bypass protein’ are very dif-
ficult to quantify, due to wide variation in by-pass
rates, digestibility and amino acid composition of
the various proteins (Ministry of Agriculture and
Fisheries and Food Standing Committee on
Tables of Feed Composition 1990). As a conse-
quence, the amino acid profile of the ruminal
microbial protein is used as an approximation of
the profile available to the host, unless the dietary
protein has been processed to enhance its rumen
by-pass rate.

In farm animals, the primary purpose of the
management of amino acid nutrition is to match
the profile of amino acids, essential amino acids
in particular, in the protein flowing into the small
intestine [i.e., metabolizable proteins (MP) in
ruminants)] with the amino acid profile of the
products. This management is based on an
assumption that the body does not need to modify
the amino acid profile in MP in do novo protein
synthesis because any such modification will
lower the efficiency of utilization of dietary
amino acids. To determine this supply-demand
relationship, a basic strategy is to compare the
amino acid profiles in MP with those in animal
products. Table 5.1 lists the amino acid profiles of
protein in rumen microbes, whole-body, wool,
and milk for sheep, as well as milk for goats,
and the uterine and umbilical uptakes of amino
acids in ewes at 130 days of pregnancy. If the
amount of an essential amino acid in ruminal
microbial protein is much lower than the amount
in the product protein, it is likely the dietary
supply of this amino acid will not meet the
demand of the body. As shown in Table 5.1, the
pattern of most of the essential amino acids in
ruminal microbial protein is similar to the patterns
of body protein and milk protein, whereas the
amounts of Ile and Val in microbial protein are
much lower than the umbilical and uterine
uptakes of these two amino acids in pregnant
ewes. Among the traditionally classified dispens-
able amino acids, wool protein contains
disproportionally high amounts of Cys (about
five-fold), Arg, Pro and Ser (about two-fold),
milk protein has higher proportions of Glu/Gln
and Pro, and the uterus and foetus use a much
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higher proportion of Arg, compared with these
amino acids in the ruminal microbial protein. The
high content of these amino acids must endow
special functions to proteins in the respective
products – for example, Cys for disulphide
bridges, Ser for hydrogen bonds, and Arg for
salt bridges, in the structure of wool proteins
(Popescu and Höcker 2007). The supply of these
amino acids from the diet as well as from synthe-
sis in the body, must be considered for the man-
agement of these biological processes. We will
discuss some of these situations below.

A further consideration for understanding
amino acid nutrition in animals is obligatory
oxidation in the body after intestinal
absorption – essential amino acids are either
used for protein synthesis or disposed of by

oxidation, including conversion to other amino
acids, such as Met to Cys. The extent of oxida-
tion therefore directly determines the utilisation
efficiency of an amino acid in the body. This
oxidation can be measured by using
13C-labelled amino acid (Young and Borgonha
2000) and, for a given amino acid, the oxidation
rate is defined as the amount oxidised as a
proportion of the flux. Liu and Masters (2003)
analysed published literature and calculated the
oxidation rates of 0.18 for Cys, 0.03–0.04 for
Leu, 0.15 for Lys, 0.16 for Met, 0.08–0.09 for
Phe, and 0.04 for Thr. The sulfur-containing
amino acids (Met and Cys) and Lys and have
much higher oxidation rates than the others,
suggesting lower efficiencies for protein syn-
thesis and, therefore, higher dietary demands.

Table 5.1 Amino acid concentrations (g/kg protein) of microbial protein in the rumen, the whole-body of sheep
(excluding wool) and wool protein

Rumen microbial
proteina,b

Whole-body
proteinc

Wool
proteind

Goat
milke

Sheep
milkf

Uterine
uptakeg

Umbilical
uptakeg

His 16–21 24 8–13 35 30 20 28
Ile 54–62 36 27–32 46 47 142 116
Leu 74–83 73 67–79 98 97 91 66
Lys 81–115 67 27–35 99 78 81 89
Met 16–25 18 4.4–6.3 22 27 12 30
Phe 49–57 39 25–36 50 42 38 55
Thr 52–66 49 54–66 40 43 46 54
Val 53–65 43 46–57 60 63 157 101
Ala 34–62 80 32–52 34 37 36 47
Arg 46–53 73 62–91 39 28 118 134
Asp(h) 112–129 86 55–66 72 84 0.1 �2
Cys 20–26 13 86–131 9 8 – –

Glu(i) 127–141 132 111–142 200 217 97* 146*
Gly 49–65 96 46–86 16 18 �12 47
Pro 34–40 63 53–75 89 100 75 61
Ser 41–47 42 83–108 44 43 54 �27
Tyr 44–51 31 38–63 47 37 45 54
aStorm et al. (1983)
bMartin et al. (1996)
cMacRae et al. (1993). Calculated from the amino acid profiles of the carcass, gut, liver and skin and the corresponding
protein contents in sheep by the authors. Wool protein is not included
dReis (1979). Merino sheep wool
eCeballos et al. (2009). Granadian goats
fGerchev et al. (2005). Mean of amino acid concentrations for Tsigai and Karakachanska sheep
gChung et al. (1998). Columbia-Rambouillet sheep, carrying a single fetus, pregnancy 130 days. *Including both
glutamate and glutamine concentrations. Cysteine concentration was not reported in this paper. Amino acid profiles
were calculated by the author based on the uterine and umbilical uptakes (g/kg fetus.d) of amino acids reported in the
paper
hAsp ¼ aspartate plus asparagine
iGlu ¼ glutamate plus glutamine
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In essence, any essential amino acid oxidised in
the body must be replenished from the diet, and
the amount needed in the diet can be defined as
the requirement of this amino acid for the
corresponding physiological process. The
requirements for the essential amino acids
(Leu, Ile, Lys, Met+Cys, Phe, Tyr, Thr, and
Try) for adult humans, based on measurements
of their oxidation rates, is known as the
Massachusetts Institute of Technology System
that was proposed by Young and Borgonha
(2000). For sheep, a comparable system has
not been fully established – only Met and Cys
requirements were reported by Liu and Masters
(2000) and, for growing Kazakh lambs, the Met
requirement has been estimated from Phe oxi-
dation (Wei et al. 2017).

Another point worth noting is that amino acid
nutrition is influenced by genetic potentials for
productivity and dietary intake. At the same
level of feed intake, animals achieving higher
productivity certainly have a higher efficiency
of utilization of dietary amino acids for protein
deposition, compared to these with low produc-
tivity. For amino acids that are incorporated into
specific products in particularly high
proportions, such as wool protein and the gravid
uterus, the same level of dietary intake of these
amino acids may meet the demands of animals
with low productivity, but could be inadequate
for animals with high productivity. For
example, Merino sheep of 55 kg live weight are
fed 0.7 kg/day of a hay/barley/lupin diet
containing 12% crude protein, providing 8%
MP, an intake level that maintains body
protein balance (i.e., no net protein deposition
in the body) – the estimated Cys absorption
would be 1.4 g/day, and after excluding obliga-
tory oxidation, about 0.7 g/day Cys would be
available for wool growth, equivalent to the
amount needed for wool growth of 7 g/day
(Liu and Masters 2000). This diet can thus
meet the Cys demand of sheep growing up to
7 g wool per day, but not sheep growing more
than 7 g wool per day.

5.3 Reproduction

In pregnant ewes, the primary purpose of amino
acid nutrition is to support ovulation, fertilization,
implantation, embryo development, and fetal
growth through to birth (Wu 2018). This process
begins with ovarian follicles and their oocytes
going through a selection process regulated by
an interplay of reproductive hormones, and
some of the dominant follicle(s) eventually ovu-
late (Scaramuzzi et al. 2011). In sheep, the num-
ber of dominant follicles that ovulate, the
ovulation rate, depends on the energy balance of
the animal, and it seems unlikely that amino acid
balance plays a role (Scaramuzzi et al. 2011).
Fertilization leads to the formation of a zygote
that moves into the uterus and simultaneously
begins to develop into an embryo. Early embryos
produce signals that lead to implantation and rec-
ognition of pregnancy about 2 weeks after fertili-
zation. The process of embryogenesis involves
consumption of nutrients, from internal reserves,
oviduct fluid and uterine secretions. To create
conditions for conceptus development, the glan-
dular tissue of the uterus produces, or selectively
transports from the bloodstream, a complex array
of proteins and other molecules into the uterine
lumen (Bazer et al. 2012). Most embryo deaths
occur during this peri-implantation period so an
optimal nutrient supply seems to be crucial to the
success of implantation. The placenta begins to
develop about 25 days after fertilization and it
ensures adequate nutrition to support the growth
and development of the foetus (Bazer et al. 2012).

Throughout the whole process, the nutritional
status of the pregnant female is critical for the
establishment and maintenance of pregnancy.
The supply of amino acids plays a significant
role in embryo development to the blastocyst
stage. For example, studies with an in vitro
mouse model have shown that non-essential and
essential amino acids, and Gln, play opposite
roles in the regulation of cleavage and blastocoel
development (Lane and Gardner 1997; Van Win-
kle 2001). In cattle, the concentrations of both
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essential and non-essential amino acids in the
uterine fluid, 12–18 days post-estrus, are 2.1–3.9
fold greater than the concentrations in
non-pregnant cattle (Groebner et al. 2011). In
cultured ovine primary trophectoderm cells from
day 15 conceptuses, concentrations of Arg, Leu,
and glucose, but not Gln, seem to be critical for
cell function, with Arg and Leu concentrations
stimulating proliferation and migration of cells
within the embryo (Kim et al. 2011). In ewes,
the nutrient composition of uterine luminal fluid
differs between days 3–16 of the cycle and days
10–16 of pregnancy. Similarly, in pregnant ewes,
the amounts of glucose, Arg, Gln, Glu, Gly, Cys,
Leu, Pro and glutathione in uterine fluid increase
3- to 23-fold between days 10 and 14 of preg-
nancy and remain high until day 16 (Gao et al.
2009). These observations suggest that pregnancy
recognition is associated with transport of amino
acids into the uterine lumen, with Arg, Leu, Val
and Gln/Glu, being the most critical.

To distinguish the amino acids that are prefer-
ably used by the conceptus and associated tissues
during pregnancy, Chung et al. (1998) measured
the uptake of amino acids by the uterus and
umbilical cord in pregnant ewes for 130 days.
These observations can be compared with the
amino acid profile of rumen microbial protein as
a representative of dietary supply, and the amino
acid profile in the whole-body protein of growing
lambs (Table 5.1). It is clear that the uptakes of
Arg, Ile and Val are 2–three-fold greater than
their compositions in both rumen microbial pro-
tein and whole-body protein. It should be noted
that any amino acid taken up can be used either
for anabolism (protein deposit) or catabolism, and
the amino acid profile in deposited protein would
be similar to protein composition of tissue or
body protein. There is no evidence that the
amino acid profile of the whole-fetus differs
from that of the whole-body of growing lambs.
Therefore, a corollary is that these amino acids
are not preferentially taken up specifically for
protein deposition in the fetus, but for modulating
metabolic processes in the gravid uterus, includ-
ing uterine tissue as well as the fetus, the so-called
“functioning amino acids” (Wu 2009). This con-
cept is supported by the fact that the net

uteroplacental uptake of Arg was about four-fold
greater than the net fetal uptake in ewes at
129 days gestation (Thureen et al. 2002). The
functions of Arg include: i) the synthesis of NO,
an important molecule for regulating placental
angiogenesis and uterine blood flow during ges-
tation; ii) synthesis of polyamines, molecules that
are essential for placental development and
embryogenesis; iii) activation of the mTOR sig-
naling pathway and regulation of hormone secre-
tion, both thoroughly reviewed (e.g., Wu et al.
2016; Wu et al. 2014; Wu et al. 1999).

It is therefore not surprising that, in pregnant
ewes, Arg supplementation has beneficial effects
from the first trimester through to the birth of the
foetus. In the early stages of embryogenesis,
rumen-protected Arg saves weaker embryos
from entering early degeneration by increasing
the synthesis of NO and polyamines (Saevre
et al. 2011). Parenteral administration of Arg
between 100 and 121 days of gestation increases
the birth weight of quadruplet lambs and
improves post-natal survival (Lassala et al.
2011). The improvement in lamb survival with
Arg supplementation, by feeding rumen-
protected Arg or by intravenous Arg infusion,
seems to be related to increased brown fat in the
foetus, alleviation of slow fetal growth caused by
poor maternal nutrition (restricted feeding),
increased uteroplacental weight, increased
birthweight, as shown in reviews and confirmed
in a number of experiments, particularly in ewes
that are under-fed or carrying multiple fetuses
(Lassala et al. 2011; McCoard et al. 2013;
Satterfield et al. 2012, 2013; Sun et al. 2018;
Zhang et al. 2016; van der Linden et al. 2015).
To maintain a high concentration of Arg in the
maternal circulation, administration of citrulline
was more effective than a direct supplement of
Arg because of a longer half-life (Lassala et al.
2009). The beneficial effect continued on the
post-natal growth of lambs up to about 2 months
old when pregnant ewes had restricted feeding
(60% of the nutrition requirement) but were
supplemented with about 12 g/day rumen-
protected Arg from day 54 gestation until parturi-
tion (Peine et al. 2018). Because it is now known
that citrulline is not degraded by the ruminal
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microbes of steers (Gilbreath et al. 2019, 2020a)
and sheep (Gilbreath et al. 2020b), this amino
acid (in an unprotected form) can be directly
supplemented to the diets of sheep and goats to
enhance their reproductive performance as
suggested by these authors.

It is no surprise that there are few concerns
about the supply of amino acids during early
pregnancy, because so little biomass is involved
in eggs, blastocysts, embryos, and early stage
fetuses. The total requirement for amino acids,
even those considered essential for pregnancy,
would be negligible within the context of
requirements for the whole body. On the other
hand, evidence is accumulating for effects of peri-
conception nutrition on the subsequent develop-
ment of the embryo, the foetus, the newborn, with
some effects persisting into adult life (e.g., Sen
et al. 2016; Gardner et al. 2006). It is not clear
whether such effects involve the supply of amino
acids or energy. Moreover, some amino acids
play regulatory roles that might be far more
important than simply being building blocks for
proteins. There are substantial changes in the
reproductive endocrinology during the estrous
cycle and pregnancy, and many of the hormones
involved are controlled by neuronal activity in the
brain, where several amino acids act as
neurotransmitters (e.g., as Asp and Glu; Wu
2013) or as precursors for the synthesis of
neurotransmitters (such as the large neutral
amino acids, Try and Tyr; Growdom and
Wurtman 1979). Indeed, in sheep, infusions of
such amino acids have triggered the secretion of
gonadotrophin and increased ovulation rate
(Downing et al. 1995, 1996, 1997; Foster et al.
1989). One of the problems with these hypotheses
is the concept that critical brain functions can be
determined by normal variation in the supply of
dietary amino acids, although extreme
imbalances could be devastating.

In the last third of pregnancy, however, as the
feto-placental units achieve significant mass and
the uterus itself develops muscle and secretory
tissue, protein deposition in the gravid uterus
becomes significant and it becomes essential to
meet this demand for amino acids. The processes
that regulate metabolism prioritize the gravid

uterus over other physiological processes, and
preferentially allocate nutrients to it, deriving
them from both nutritional sources and, where
necessary, sacrificing maternal tissues. To ensure
reproductive success, through the support of
pregnancy and the subsequent lactation, it is
essential to manage amino acid nutrition
correctly. The literature mentioned above shows
that supplementation of Arg can reduce the
impairment of fetal growth in underfed ewes,
but only partially. The effects of dietary restric-
tion during early pregnancy on the subsequent
performance of the offspring in sheep, described
above, were long ago recognized for maternal
undernutrition during late pregnancy (Everitt
1967). This phenomenon later became known as
‘fetal programming’ or ‘developmental origins of
health and disease (DOHAD)’ in the context of
human health. As in many other species, maternal
undernutrition in sheep is now recognized as a
factor that determines offspring performance in
growth, reproduction and several aspects of
homeostasis (Vinoles et al. 2014; Rhind et al.
2001; Bielli et al. 2002). Again, the role of
amino acid nutrition in these phenomena is not
clear, although Arg has been implicated (Sales
et al. 2016). We can conclude that, because
some amino acids have special physiological
functions (Wu 2013), it is best to manage amino
acid nutrition in a holistic fashion during preg-
nancy to ensure optimal life-time growth and
development of offspring.

We also need to consider the role of amino
acid nutrition as a determinant of the quality and
quantity of colostrum and milk, an essential issue
in neonatal survival and offspring growth
(Banchero et al. 2015). The capacity of the mam-
mary gland for milk synthesis depends largely on
the number and efficiency of the mammary epi-
thelial cells (Rezaei et al. 2016). The development
of these cells begins in the embryo but most
happens during puberty and pregnancy, when
undernutrition can have profound effects
subsequent milk yield and quality. We need to
remember that the rates of milk synthesis and
secretion are largely driven by the rate of lactose
synthesis within the mammary epithelial cells, so
limiting energy intake during pregnancy, even if
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positive energy balance is maintained by ad
libitum intake during lactation, will lead to
reduced milk production at birth. Nevertheless,
the supply of amino acids is important because
they are involved in synthesis of milk proteins as
well as the proliferation and function of the mam-
mary cells. Interestingly, the amino acid profiles
are very similar for milk and the rumen microbes
(Table 5.1), so microbial protein can match the
requirements for synthesis of milk protein with-
out substantial modification. In other words, there
does not seem to be any ‘limiting’ amino acids
during lactation in sheep or goats. Even so, daily
supplementation of multiparous Saanen dairy
goats with rumen-protected Met increases milk
yield (Flores et al. 2009). In another experiment
with Karagouniko dairy ewes, dietary supplemen-
tation of fat plus rumen-protected Met from
2 weeks before lambing until the twelfth week
of lactation increased milk yield by 37% during
the first 7 weeks of lactation (Goulas et al. 2003).
On the other hand, dietary supplementation with
rumen-protected Met to Chios dairy ewes in last
fifth pregnancy did not change milk yield. Simi-
larly, in Danish Landrace � Saanen crossbred
goats, milk yield was not affected by dietary
supplementation of rumen-protected Met or Lys
(Madsen et al. 2005). The same outcome has been
reported for Blackface, Dorset and Comisana
ewes (McCoard et al. 2016). However, the effects
of Met or Lys supplementation on milk yield is
likely to depend on the timing and size of the
supplement. For example, the highest milk yield
in these studies was less than 3 kg/day and the
basal diets contained 14–18% crude protein.
Mature dairy goats generally weigh 30–80 kg
and daily milk yield varies among breeds, from
2.6 kg (Nigerian Dwarf) to 11.9 kg (Toggenburg)
with the Alpine, Nubian, Oberhasli, and Saanen
producing 7–10 kg (Park et al. 2007). Protein
concentrations average at 35 g/L (Park et al.
2007). Therefore, amino acid nutrition might be
an issue in dairy goats with very high milk pro-
duction, but only if they are fed diets with limited
crude protein.

5.4 Growing Sheep and Goats

Growth involves the accumulated outcomes of
cell division and cell differentiation, and, in live-
stock production, is measured as growth rate and
muscle gain. Critically, maternal nutrition during
pregnancy influences fetal and post-natal growth,
with under-nutrition seriously inhibiting the
growth and development of skeletal muscle in
the offspring (Wu 2018). The third trimester of
pregnancy is particularly important for the prolif-
eration of muscle cells and changes in amino acid
supply might alter post-natal muscle growth
(Greenwood et al. 2000). For example, nutrition-
restricted ewes produce lambs with reduced body
weight but, if they are provided with supplements
of rumen-protected Arg during gestation, the out-
come is restoration of neonatal birth weight, lamb
weight at age 19 days, and brown fat reserves
(Peine et al. 2018).

Overall, research on amino acid nutrition is
scarce for growing lambs and kids compared to
monogastric animals. It could be that growth rate
is a smaller economic factor for ruminants under
grazing conditions than for monogastric animals
in intensive, in-door systems. Moreover, the great
similarity between the amino acid profiles of
whole-body protein and rumen microbial protein
(Table 5.1) suggests that no particular amino acid
(s) is deficient or preferably required for lamb
growth. By contrast, in growing pigs, dietary
supplementation of Lys is necessary for muscle
protein accretion and thus muscle growth (Liao
et al. 2015).

Numerous studies show that the branched-
chain amino acids (BCAA; Ile, Leu, Val) have
the unique ability to initiate signal transduction
pathways that up-regulate translation, and there-
fore protein synthesis, in skeletal muscle
(Kimball and Jefferson 2006; Yoshizawa 2004).
However, the literature for the lamb is inconclu-
sive. For example, van Nolte et al. (2008) fed
Rambouillet wether lambs (35–46 kg body
weight) a basal diet containing 14.3–15% crude
protein, and then infused abomasally a mixture of
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10 essential amino acids. They then removed
individual essential amino acids from the infu-
sion. Removal of Met and Thr reduced N reten-
tion (g/day) and the ratio of retained N to
digested N, whereas removal of BCAA had no
significant effect. On the other hand, Sang et al.
(2010) found that dietary supplementation of
6-month old wether lambs (25 kg) with rumen-
protected Leu (0.5, 1 or 2 g/day) for 15 days
increased protein synthesis rate in m. longissimus
dorsi and, in m. biceps femoris, protein synthesis
was increased only at 1 g/day (Sang et al. 2010).
In this experiment, the basal diet contained 11.6%
crude protein. By contrast, intravenous infusion
of Suffolk-cross wether lambs (32 kg; aged
8 months) with 1.3 g of a mixture of BCAA
over 6 h did not change the protein synthesis
rates in vastus muscle or m. longissimus dorsi
(Wester et al. 2004). It appears that the effect of
Leu supplementation on lamb growth varies with
dietary protein level and the rate of Leu supple-
mentation. We conclude that more work is
required to resolve the issue of ‘limiting’ amino
acids in growing lambs and kids.

5.5 Wool (Fibre) Growth

Amino acid and protein nutrition for fibre produc-
tion was thoroughly reviewed a decade ago by
Liu and Masters (2003) for sheep and by
Galbraith (2000) for goats. Since then, there has
been little new research.

The fibre is produced by follicles embedded
500–600 μm below the skin surface and, in
Merino sheep, the biomass of the follicular tissue
amounts to about 50 g, or 0.1% of live weight
(Williams 1995). The fibre is composed almost
entirely of protein and the net efficiency of dietary
protein for wool growth is estimated to be
0.20–0.25 (Standing Committee on Agriculture
1990). This value is substantially lower than
those for weight gain (0.59), pregnancy (0.85)
and lactation (0.68) in sheep (Agricultural and
Food Research Countil Technical Committee on
Responses to Nutrients 1993). The low efficiency
is mostly due to limits in the supply of Met+Cys
from the diet, combined with the relatively low
productivity (7–18 g/day) of protein retained in

wool compared with values for 300 g/day body
weight gain (about 45 g/day) and for 1 kg/day
milk (about 50 g/day).

Wool protein contains about 10% Cys, and
much higher proportions of Arg, Ser and Pro,
compared with the ruminal microbial protein
(Table 5.1). Most feed proteins contain at
most 2% Met and 2–5% Cys (Ministry of Agri-
culture and Fisheries and Food Standing Commit-
tee on Tables of Feed Composition 1990). In the
body, Cys can be synthesised from Met through
the trans-sulphuration pathway (Finkelstein
1990) and the amount of Cys produced from
Met is estimated to account for 5–22% of the
Cys flux (Liu and Masters 2003). In addition,
local synthesis of Cys in the skin and follicle
provides substantial amounts for wool growth
(Harris et al. 1997; Souri et al. 1998b). For these
reasons, Cys + Met is usually considered to be the
limiting amino acid for wool production.

Many studies have shown that supplementing
Merino sheep with appropriate levels of Met
(about 2–5 g/day) improves wool growth, but not
during late pregnancy or early lactation (review:
Liu and Masters 2003). In cashmere and Angora
goats (Souri et al. 1998a), Met also improves fibre
production. In cultured follicles, Met alone
produces 80% of the response seen with Met
+Cys, whereas the response to Cys alone varies –
follicle growth and viability can be reduced while,
with Met alone, follicle growth can reach 75% of
that recorded withMet+Cys. Although the concen-
tration of Met in wool protein is very low, it
combines with Cys to play a major role, probably
by initiating protein synthesis and cell division. By
contrast, Cys provides a substrate for wool protein
synthesis, as evidenced by the increases in expres-
sion of mRNA encoding a family of Cys-rich
proteins (Fratini et al. 1994) and the synthesis of
Cys-rich proteins (Harris et al. 1994).

Supplying more Met and Cys through dietary
supplementation is not usually cost effective
because of the high prices of the supplements
and the price penalty paid because fibre diameter
increases. On the other hand, the most effective
way to improve feed efficiency and amino acid
utilization for fibre growth in sheep and goats is
probably genetic selection for high fibre growth
rate. Within species, variation in fibre growth is
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explained by variation in the proportion of active
follicles and/or the efficiency of the follicles (fibre
growth rate/follicle density). Thus, on the same
plane of nutrition, sheep selected for high clean
fleece weights grow more wool than sheep
selected for low fleece weight, and wool growth
rates are closely related to skin fractional protein
synthesis rate and to skin total protein synthesis
(Masters et al. 2000).

The rate of fibre production varies greatly
across species. Merino sheep (53 kg body
weight) produce about 4 kg greasy fleece
(2.8 kg clean) per year (Mortimer et al. 2017).
Angora goats (30–60 kg) can produce 1.5–4 kg
mohair over 6 months and cashmere goats
(30–70 kg) produce less than 1 kg of guard hair
and cashmere per year (Lupton 2010). Angora
rabbits (3.5–4.0 kg) can produce 1.2–1.4 kg
clean wool per year at a net efficiency of 0.43
(Liu et al. 1992), and are obviously the most
productive in terms of fibre produced per kg of
body weight. These differences among species
are associated with variation in net efficiencies
of use of digested protein for fibre growth: 0.43
for Angora rabbit, 0.39 for Angora goat, and
0.20–0.25 for Merino sheep (review: Liu and
Masters 2003). We do not have a value for cash-
mere production but it must be very low. There is
a clear interaction between the genetic capacity
for fibre growth and responses to dietary protein
or amino acids, so we would not expect supple-
mentation of low-productivity animals to greatly
improve productivity or profitability. Experi-
mental data supports this hypothesis: Angora
goats show a substantial fibre response to sup-
plementation with rumen-protected Met (62% vs
30%; Souri et al. 1998a, b) whereas, in cashmere
goats, the fibre response is similar for a urea-
based diet and a fish-meal diet (about 15% crude
protein) providing similar levels of nitrogen
(Galbraith, 2000), probably because the nutrient
demand for fibre growth was already met by the
urea. The variation among species therefore
seems to be more dependent on genetic variation
in follicle density and morphology than amino
acid efficiency, so exploration of the molecular
mechanisms that control follicle productivity is
likely to be a more productive avenue towards

improvements in fibre growth than dietary
manipulation.

5.6 Amino Acid Nutrition for GIT
Health and Nematode Infection

In sheep, the biomass of the gastrointestinal tract
(GIT) is about 4–6% of body weight (Liu et al.
2005; MacRae et al. 1993) and, metabolically,
GIT tissue has the highest turnover rate in the
body (Lobley 1994) due to the renewal of
desquamated enterocytes, and the production of
secreted digestive enzymes, immune molecules
and cells. Therefore, protein synthesis in the
GIT accounts for 25–33% of whole-body protein
synthesis (Lobley et al. 1994; Neutze et al. 1997)
as well as 11%–23% of whole-body energy
expenditure (McBride and Kelly 1990; Lobley
1994). There is no doubt that these high costs
mean that relatively small proportions of amino
acids and energy are available for anabolism of
peripheral tissues, limiting body growth, the pro-
duction of milk and wool, and fetal growth and
development. This is an intrinsic aspect of mam-
malian biology. However, there is a wide range in
protein turnover in the GIT in proportion to the
whole body, suggesting considerable genetic var-
iation that is likely to be closely associated with
variation in whole-body efficiency of utilization
of amino acids. To date, there has been little
research into these issues in sheep and goats.

The use of amino acids by the GIT would be
expected to have flow-on effects to the amino acid
profile that is available to the peripheral tissues. In
other words, does the GIT disproportionally
incorporate specific amino acids into its proteins?
This question may be partly answered by compar-
ison of the amino acid profiles (g/kg total amino
acids) of the GIT and the carcass, as done for
sheep by, for example, MacRae et al. (1993).
Using their data, we calculated the ratios of
18 amino acids in GIT to those in the carcass
and found that 13 ratios fell into the range of
0.9–1.1 (i.e., close to unity). By contrast, the
ratio was 1.6 for Cys, 1.2 for Met, Ser and Thr,
and only 0.7 for 4-hydroxyproline. These ratios
suggest that GIT proteins contain particularly
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high concentrations of Cys, Met, Ser and Thr, so
less of these amino acids would be available for
other tissues. It should be noted that proteins
secreted into the GIT lumen, such as digestive
enzymes, some immunoglobulins and
glycoproteins, are probably not included when
GIT tissue is sampled for analysis. For example,
in one study with sheep (Mukkur et al. 1985),
goblet-cell mucin in the small intestine contained
94 g Cys, 243 g Thr, and 237 g Val per kg total
amino acids (masses recalculated by the authors
to remove ammonia). These values are over
ten-fold higher than those in the sheep carcass
(MacRae et al. 1993). We can see, therefore,
how these proteins could affect the profile of
amino acids in the GIT, but no quantitative data
are available for the amounts of these proteins
produced, so their impact on amino acid supply
to other tissues is not known.

When not used in protein synthesis, some
amino acids are oxidised in the GIT, and the
oxidation rates could also alter the amounts and
proportions that reach peripheral tissues. The
small intestine of the sheep can catabolize Leu
and Met, accounting for 26% and 10% respec-
tively of the whole-body Leu and Met oxidation,
whereas there seems to be no net catabolism of
Lys and Phe (Lobley et al. 2003). Estimates of the
magnitude of Leu oxidation in the GIT of sheep
vary from 0–50% in the literature (Lobley et al.
2003; Yu et al. 2000), and we have not been able
to find estimates for other essential amino acids in
sheep and goats. This is perhaps no surprise
because direct measurement of amino acid oxida-
tion in the GIT requires surgical placement of
catheters into specific positions in selected
arteries and veins, as well as the small intestine,
employment of isotope-labelled amino acids, and
analysis of the end-product (mostly CO2) of oxi-
dation (Lobley et al. 2003; Yu et al. 2000). The
techniques are complex, and therefore the data are
rare. An alternative approach is to measure the
sequestration of amino acids by the mesenteric-
drained viscera (from the small intestine) and the
portal-drained viscera (PDV, GIT plus spleen and
pancreas; Lobley et al. 2003), as has been done in
sheep (MacRae et al. 1997) and pigs (Fang et al.
2010). In sheep, the PDV recoveries of amino

acids infused into the jejunum varied from 61%
for His to 65% for Phe, 76% for Lys, 79% for Thr,
80% for Ile and Leu, and 83% for Val (MacRae
et al. 1997). Therefore, 17–39%, depending on
the amino acid, were used by the PDV. In pigs,
the amount of Met used by the PDV accounted for
29–33% of dietary intake (Fang et al. 2010). It is
worth noting that the sequestrated amino acid can
be used either for protein synthesis or oxidation,
and it is difficult to ascertain partitioning between
these two processes. Yu et al. (2000) found about
14% of Leu sequestrated by the PDV in sheep
was oxidized, with a slight increase to 15%–16%
after infection with the helminth,
Trichostrongylus colubriformis. Infection with
T. colubriformis also leads to a considerable
reduction in Met absorption (Liu et al. 2002).

As with the obligatory oxidation of amino
acids in the liver, oxidation in the GIT is likely
to serve a purpose. In the GIT, we can find all of
the catabolic pathways for Met (Bauchart-Thevret
et al. 2009; Liu and Masters 2003) through which
S-adenosylmethionine (an important methyl
donor), polyamines (spermidine and spermine),
and Cys are derived. The aforementioned GIT
proteins and secreted glycoproteins contain high
proportions of Cys, and the GIT epithelium
contains very high levels of glutathione (GSH),
the synthesis of which demands Cys as a substrate
(Wu et al. 2002). Cys synthesized from Met
through the trans-sulphuration pathway
(Finkelstein 1990) could be a significant source
for GIT tissues, because the proportions of Cys
are low in dietary and ruminal microbial proteins.
The small intestine contains the highest levels of
polyamines, spermine in particular, compared
with other tissues (liver, lymph nodes, muscle,
skin) in sheep (Liu et al. 2007), supporting its
high turnover rate (Loest et al. 2002; Tabor and
Tabor 1984). Met is catabolized through the
aminopropylation pathway and provides the
aminopropyl moiety for synthesis of spermidine
and spermine. In rats, about 45% of spermidine
and spermine are derived from de novo synthesis
(White and Bardocz 1999). If this was also the
case in sheep, synthesis of polyamines would
certainly consume a considerable amount of
Met. As for why Leu is oxidized in the GIT,

72 Y. Cao et al.



Lobley et al. (2003) speculated that the process
might involve the interaction with signal cascades
that regulate protein metabolism.

Among the dispensable amino acids, the GIT
has specific and substantial demands for Gln. In
the PDV of sheep, there is a net uptake of Gln
when levels of protein are changed from slightly
above maintenance (basal diet) to 3.8-fold main-
tenance by infusion of protein into the aboma-
sum, whereas Glu was taken up at relatively low
protein intakes (from maintenance to about 2.4-
fold maintenance) but then released when the
protein intake was more than three-fold mainte-
nance (Freetly et al. 2010). Uptake of Gln by the
PDV has also been observed in other studies with
sheep (Foote and Freetly 2016; McNeil et al.
2016). The roles of Gln in GIT tissues have
been thoroughly reviewed by Lobley et al.
(2001) and it is clear that Gln is important for
the provision of energy to rapidly growing cells.
For example, it provides up to 30% of the energy
needs of lymphocytes in cattle (Wu and Greene
1992). Intracellular Gln can either be deaminated
to produced Glu plus ammonia, both of which are
excreted out of cells, or partially oxidized to Asp,
coupled with the formation of 9 ATP, far less than
the 38 ATP produced from full oxidation of glu-
cose (Rich 2003). However, Gln breakdown
produces ATP at a much faster rate than oxidative
phosphorylation (Aledo 2004), so it becomes an
important energy source in cells with high prolif-
eration rates, such as cancer cells and enterocytes
(Aledo 2004). Gln is also a precursor that supplies
half of the N required for synthesis of both
purines and pyrimidines as well as aminosugars
in all cell types (Calder and Newsholme 2002;
Wu 2013).

In addition, the conversion of Gln to Glu (the
glutaminolytic pathway) is more closely linked to
cell proliferation than its intracellular concentra-
tion (Aledo 2004). High rates of conversion of
Gln to Glu are seen in all lymphoid organs and
cells, and Gln catabolism contributes more than a
third of the energy requirement of immune cells
(Duff and Daly 2002). The differentiation of B
lymphocytes to plasma cells, and immunoglobu-
lin synthesis, are Gln-dependent over the physio-
logical range of Gln concentrations (Crawford

and Cohen 1985). Since the GIT is structured to
contain, or to be directly associated with, the
highest biomass of immune components in the
body, including the lymph nodes, Peyer’s patch,
immune cells, immunoglobulins and cytokines
(Pastoret et al. 1998), one would expect an ade-
quate supply of Gln to be essential for the main-
tenance of gut health. Indeed, in piglets weaned
early (about 3 weeks of age), dietary supplemen-
tation with 1% Gln (on a fed basis) prevents
jejunal atrophy, increases feed efficiency, and
improves the immune responses to infection by
Escherichia coli (Wu et al. 2011), suggesting that
the Gln requirement is higher in gut-stressed
animals. In calves weaned early (age 42 days),
intravenous administration of Ala-Gln dipeptide
at 1 g Gln per kg body weight (the total amount of
Gln equivalent to 0.05% of the dietary intake of
solid matter) increased blood CD2+ and CD4+

lymphocytes, serum IgA and IgG concentrations,
and mucosal secretary IgA concentrations in jeju-
num and ileum, while decreasing the incidence of
diarrhoea (Zhou et al. 2012). However, there is
little information about the effect of dietary Gln
supplementation on gut function in sheep or
goats, probably because dietary Gln is destroyed
by rumen microorganisms. To address this issue,
we need a source of rumen by-pass Gln, although
it is feasible that gut-stress is not as problematic in
young sheep and goats as it is in weaning piglets.

A critical GIT health issue in grazing sheep
and goats is infection by helminth nematodes.
Severe infection depends on season/climate and
management, but it causes chronic inflammation
of GIT tissues, reduces feed intake and
re-absorption of nutrients from the intestinal
lumen, and can cause chronic diarrhoea, with
the overall outcome being reduced productivity
(Sykes and Coop 2001; Grencis et al. 2014;
Williams 2011). Nematode infection also changes
amino acid oxidation in the GIT. Yu et al. (2000)
examined Leu metabolism in the GIT of lambs
after infection with T. colubriformis larvae and
found that, in the absence of detectable effects on
whole-body leucine flux, there was a 24%
increase in total GIT Leu sequestration and an
increase from 22% to 41% in GIT Leu oxidation.
These observations suggest that nematode
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infection stimulates Leu oxidation in the GIT and
reduces nutrient partitioning to the peripheral
tissues. As mentioned above, infection of lambs
with T. colubriformis reduces Met absorption into
the peripheral tissues (Liu et al. 2002). Taken
together, these observations suggest that nema-
tode infection increases the consumption of some
amino acids in the GIT, probably to support
enhancement of metabolic processes for repair
of damaged GIT tissue and to elicit immune
responses.

The various pathophysiological responses to
nematode infection include an increase in the
secretion of mucus by the GIT (Theodoropoulos
et al. 2001). The GIT is lined by a mucus layer
that is continuously secreted and forms the first
physical barrier that protects the GIT epithelium.
The mucus has gel characteristics due to the pres-
ence of high molecular weight mucins (glycopro-
tein monomer or polymers), antibodies
(immunoglobulin A in particular) and other
molecules (Simpson et al. 2016; Theodoropoulos
et al. 2001; Dharmani et al. 2009). An increase in
the secretion of mucus is part of the initial non-
specific response to nematode infection, followed
by activation of biosynthetic processes that
involve changes in the chemical composition,
and therefore structure, of the mucins; the final
outcome depends on the nematode species and on
the adaptation of the host to that species
(Theodoropoulos et al. 2001; Menzies et al.
2010).

In the sheep small intestine, the mucin proteins
contain high proportions of Cys and Pro and very
high proportions of Thr, Ser and Val (Lien et al.
2001; Mukkur et al. 1985). The hydroxyl moiety
in Ser, Thr and Pro services O-glycosylation, and
the hydrosulphide moiety is used for forming
disulphide bonds within the monomer and
polymers, all of which are critical for resistance
to proteolytic enzymes (Dharmani et al. 2009). In
pigs, the mucin protein contributes 5–11% of the
total endogenous protein in ileal digesta,
depending on feed consumption, dietary protein
and fibre concentration (Lien et al. 2001). The
corollary is that the contribution in ruminant

animals may be higher than for monogastrics
due to the very high proportions of fibre in their
diet. The extremely high proportions of Thr, Ser
and Val in gastric and intestinal mucins means a
high requirement for mucin synthesis and an
increase in dietary demand, depending on the
response in mucin secretion evoked by nematode
infection. The problem is that there are no quanti-
tative estimates of mucin secretion, even in
healthy animals, so we have no way to assess
the potential effects of these amino acids in
the diet.

Investigation of the effects of supplementation
with specific amino acids on epithelial barrier
(mucin) and the immune responses of the GIT in
ruminants is scarce. In sheep, we know that wool
growth demands a high amount of SAA, particu-
larly Cys, because they are deposited in wool, and
that Cys is therefore drawn from the metabolic
body pool, reducing the availability of Cys for,
for example, immune competency. Indeed, in
Romney sheep, the fecal worm egg counts are
increased in animals selected for high fleece
weight, and abomasal infusion of Cys (2 g/day)
tended to increase peripheral eosinophil count,
abomasal globular leukocyte count, and the
immunoglobulin G response, yet no interaction
between Cys supplementation and genotype was
observed when selected and unselected animals
were compared (Miller et al. 2000). Abomasal
supplementation of 6-month old Suffolk cross
lambs with both Cys (1 g/day) and Gln (5 g/
day) for 12 weeks after infection with
T. colubriformis led to an increase in nitrogen
retention, along with reductions in circulating
eosinophil count and peak faecal egg counts, but
had no effect on final nematode counts (Hoskin
et al. 2002). In lactating rats infected with
Nippostrongylus brasiliensis (the adults reside in
the small intestine), feeding the Met- and
Leu-deficient diets (about 40% below the normal
diet) increased the number of worm eggs in the
colon, but had no effects on systemic immuno-
globulin activity or the numbers of mast cells,
goblet cells and eosinophils (Sakkas et al. 2013).
This literature is limited, but suggests that
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deficiency or supplementation of specific amino
acids influences worm fecundity, as reflected in
changes in fecal worm egg counts, but there is no
conclusion with respect to influences on the
immune responses to infection.

5.7 Concluding Remarks

Concomitant evolution of rumen microbes and
their hosts over millions of years has resulted in
great similarity in the amino acid profiles of
microbial proteins and host whole-body protein.
This similarity ensures a balance between the
dominant supply of amino acids from the
microbes and the host’s needs for growth, sur-
vival and reproduction. However, the question
is – has this balance been overridden by human
interference? This question is most acute with the
rapid progress in productivity driven by modern
breeding practices, with changes that exceed by
far the pace of evolution. The evidence is
accumulating to support the view that the supply
of amino acids to the host, from both rumen
microbial protein and rumen by-pass protein, no
longer meets the demands of high-performance
animals that produce large amounts of meat, milk
or wool, or need to nourish large litters. Without
doubt, the pursuit of high productivity will con-
tinue, so research on amino acid nutrition needs to
accelerate. Meanwhile, with regard to the pro-
cesses, amino acids need to be seen as “two-way
switches” that can send positive and negative
signals at the same time, and thus play specific
regulatory roles under specific conditions. For
example, in cultured mouse mammary epithelial
cells, Leu, Ile, and Val stimulated phosphoryla-
tion of ribosomal protein kinase beta-1 (S6K1),
whereas Lys, His and Thr inhibited it (Prizant and
Barash 2008). Similarly, in myogenic C2C12
cells, Leu and Gln have opposite regulatory
effects on the phosphorylation of downstream
effector S6K1 and eukaryotic translation initia-
tion factor 4E binding protein in the mammalian
target of rapamycin (mTOR) pathway (Deldicque
et al. 2008). Leucine increases protein synthesis
by stimulating the mTOR signaling pathway, and
also enhances catabolism (Gannon and Vaughan
2016). In sheep, arginine affects both protein

synthesis and proteolysis in cultured brown adi-
pocyte precursor cells and, in those cells, the
mTOR signalling pathway is promoted by an
increase in the Arg concentration in maternal
plasma (Ma et al. 2017). At the highest level of
regulation, the brain, mTOR is deeply implicated
in the control of energy homeostasis through the
coordination of anabolic and catabolic processes
focused on survival (Morentin et al. 2014). There-
fore, much more attention must be paid to the
interactions among amino acids in the regulation
of biological processes.

References

Agricultural and Food Research Countil Technical Com-
mittee on Responses to Nutrients (1993) Energy and
protein requirements of ruminants. CAB International,
Wallingford

Agricultural Research Council (1984) The nutrient
requirements of ruminants livestock. Commonwealth
Agricultural Bureaux, Slough

Aledo JC (2004) Glutamine breakdown in rapidly dividing
cells: waste or investment? BioEssays 26:778–785

Banchero G, Milton J, Lindsay D, Martin G, Quintans G
(2015) Colostrum production in ewes: a review of
regulation mechanisms and of energy supply. Animal
9:831–837

Bauchart-Thevret C, Stoll B, Burrin DG (2009) Intestinal
metabolism of sulfur amino acids. Nutr Res Rev
22:175–187

Bazer FW, Song G, Kim J, Dunlap KA, Satterfield MC,
Johnson GA, Burghardt RC, Wu G (2012) Uterine
biology in pigs and sheep. J Anim Sci Biotechnol 3:23

Bielli A, Pérez R, Pedrana G, Milton JT, Lopez Á, Black-
berry MA, Duncombe G, Rodriguez-Martinez H, Mar-
tin GB (2002) Low maternal nutrition during
pregnancy reduces the number of Sertoli cells in the
newborn lamb. Reprod Fertil Dev 14:333–337

Calder PC, Newsholme P (2002) Glutamine and the
immune system. In: Calder P, Field C, Gill H (eds)
Nutrition and immune function. CAB International,
Wallingford, pp 109–132

Ceballos LS, Morales ER, de la Torre Adarve G, Castro
JD, Martínez LP, Sampelayo MRS (2009) Composi-
tion of goat and cow milk produced under similar
conditions and analyzed by identical methodology. J
Food Composition Analysis 22:322–329

Chung M, Teng C, Timmerman M, Meschia G, Battaglia
FC (1998) Production and utilization of amino acids by
ovine placenta in vivo. Am J Physiol Endocrinol
Metab 274:E13–E22

Crawford J, Cohen HJ (1985) The essential role of
L-glutamine in lymphocyte differentiation in vitro. J
Cell Physiol 124:275–282

5 Amino Acids in the Nutrition and Production of Sheep and Goats 75



Deldicque L, Canedo CS, Horman S, De Potter I,
Bertrand L, Hue L, Francaux M (2008) Antagonistic
effects of leucine and glutamine on the mTOR pathway
in myogenic C2C12 cells. Amino Acids 35:147–155

Dharmani P, Sirivastava V, Kissoon-Singh V, Chadee K
(2009) Role of intestinal mucins in innate host defense
mechanisms against pathogens. J Innate Immunity
1:123–135

Downing J, Joss J, Scaramuzzi R (1995) A mixture of the
branched chain amino acids leucine, isoleucine and
valine increases ovulation rate in ewes when infused
during the late luteal phase of the oestrous cycle: an
effect that may be mediated by insulin. J Endocrinol
145:315–323

Downing J, Joss J, Scaramuzzi R (1996) The effects of
N-methyl-D, L-aspartic acid and aspartic acid on the
plasma concentration of gonadotrophins, GH and pro-
lactin in the ewe. J Endocrinol 149:65–72

Downing J, Joss J, Scaramuzzi R (1997) Ovulation rate
and the concentrations of LH, FSH, GH, prolactin and
insulin in ewes infused with tryptophan, tyrosine or
tyrosine plus phenylalanine during the luteal phase of
the oestrous cycle. Anim Reprod Sci 45:283–297

Duff M, Daly J (2002) Arginine and immune functions. In:
Calder P, Field C, Gill H (eds) Nutrition and immune
function. CAB International, Wallingford, pp 93–108

Everitt G (1967) Residual effects of prenatal nutrition on
the postnatal performance of Merino sheep.
Proceedings of the New Zealand Society of Animal
Production 27:52–68

Fang Z, Huang F, Luo J, Wei H, Ma L, Jiang S, Peng J
(2010) Effects of DL-2-hydroxy-4-methylthiobutyrate
on the first-pass intestinal metabolism of dietary methi-
onine and its extra-intestinal availability. Br J Nutr
103:643–651

Finkelstein JD (1990) Methionine metabolism in
mammals. J Nutr Biochem 5:228–237

Flores A, Mendoza G, Pinos-Rodriguez JM, Plata F,
Vega S, Bárcena R (2009) Effects of rumen-protected
methionine on milk production of dairy goats. Italian J
Anim Sci 8:271–275

Foote AP, Freetly HC (2016) Effect of abomasal butyrate
infusion on net nutrient flux across the portal-drained
viscera and liver of growing lambs12. J Anim Sci
94:2962–2972

Foster D, Ebling F, Vannerson L, Bucholtz D, Wood R,
Micka A, Suttie J (1989) Modulation of gonadotropin
secretion during development by nutrition and
growth. In: 11th international congress on animal
reproduction and artificial insemination, Belfield
Campus, University College Dublin (Ireland),
26–30 June, 1988

Fratini A, Powell BC, Hynd PI, Keough RA, Rogers GE
(1994) Dietary cysteine regulates the levels of mRNAs
encoding a family of cysteine-rich proteins of wool. J
Invest Dermatol 102:178–185

Freetly HC, Ferrell CL, Archibeque S (2010) Net flux of
amino acids across the portal-drained viscera and liver
of the ewe during abomasal infusion of protein and
glucose12. J Anim Sci 88:1093–1107

Galbraith H (2000) Protein and Sulphur amino acid nutri-
tion of hair fibre-producing angora and cashmere goats.
Livest Prod Sci 64:81–93

Gannon NP, Vaughan RA (2016) Leucine-induced ana-
bolic-catabolism: two sides of the same coin. Amino
Acids 48:321–336

Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW
(2009) Select nutrients in the ovine uterine
lumen. I. Amino acids, glucose, and ions in uterine
lumenal flushings of cyclic and pregnant ewes. Biol
Rprod 80:86–93

Gardner D, Van Bon B, Dandrea J, Goddard P, May S,
Wilson V, Stephenson T, Symonds M (2006) Effect of
periconceptional undernutrition and gender on
hypothalamic–pituitary–adrenal axis function in
young adult sheep. J Endocrinol 190:203–212

Gerchev G, Mihaylova G, Tsochev I (2005) Amino acid
composition of milk from Tsigai and Karakachanska
sheep breeds reared in the Central Balkan mountains
region. Biotechnol Anim Husbandry 21:111–115

Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield
MC, Bazer FW, Wu G (2019) Ruminal microbes of
adult steers do not degrade extracellular L-citrulline
and have a limited ability to metabolize extra-cellular
L-glutamate. J Anim Sci 97:3611–3616

Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield
MC, Bazer FW, Wu G (2020a) Metabolic studies
reveal that ruminal microbes of adult steers do not
degrade rumen-protected or unprotected L-citrulline. J
Anim Sci 98:skz370

Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G
(2020b) Ruminal microbes of adult sheep do not
degrade extracellular L-citrulline. J Anim Sci 98:
skaa164

Goulas C, Zervas G, Papadopoulos G (2003) Effect of
dietary animal fat and methionine on dairy ewes milk
yield and milk composition. Anim Feed Sci Technol
105:43–54

Greenwood PL, Hunt AS, Hermanson JW, Bell AW
(2000) Effects of birth weight and postnatal nutrition
on neonatal sheep: II. Skeletal muscle growth and
development. J Anim Sci 78:50–61

Grencis RK, Humphreys NE, Bancroft AJ (2014) Immu-
nity to gastrointestinal nematodes: mechanisms and
myths. Immunol Rev 260:183–205

Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach
HD, Daniel H, Wolf E, Meyer HH, Ulbrich SE (2011)
Increase of essential amino acids in the bovine uterine
lumen during preimplantation development. Repro-
duction: REP-10-0533

Growdom J, Wurtman F (1979) Neurotransmitter synthe-
sis: control by availability of dietary precursors. In:
Carenz L, Panchei P, Zichella L (eds) Clinical
Psychoneuroendocrinology in reprodution. Academic,
London, pp 127–138

Harris PM, Lee J, Sinclair BR, Treloar BP (1994) The
effect of whole body cysteine supplementation on cys-
teine utilization by the skin of a well-fed sheep. In: The
New Zealand Society of Animal Production, pp
139–142

76 Y. Cao et al.



Harris PM, Sinclair BR, Treloar BP, Lee J (1997) Short-
term changes in whole body and skin sulfur amino acid
metabolism of sheep in response to supplementary
cysteine. Australian J Agric Res 48:137–146

Hoskin S, Lobley G, Coop R, Jackson F (2002) The effect
of cysteine ad glutamine supplementation on sheep
infected with Trichostrongylus colubriformis. In:
Proceedings – New Zealand Societ of Animal Produc-
tion. New Zealand Society of Animal Production;
1999. pp 72–76

Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE,
Bazer FW (2011) Select nutrients in the ovine uterine
lumen. VII. Effects of arginine, leucine, glutamine, and
glucose on trophectoderm cell signaling, proliferation,
and migration. Biol Reprod 84:62–69

Kimball SR, Jefferson LS (2006) Signaling pathways and
molecular mechanisms through which branched-chain
amino acids mediate translational control of protein
synthesis. J Nutr 136:227S–231S

Lane M, Gardner DK (1997) Differential regulation of
mouse embryo development and viability by amino
acids. Reproduction 109:153–164

Lassala A, Bazer FW, Cudd TA, Li P, Li X, Satterfield
MC, Spencer TE, Wu G (2009) Intravenous
admistration of L-citrulline to pregnant ewes is more
effective than L-arginine for increasing arginine avail-
ability in the fetus. J Nutr 139:660–665

Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH,
Satterfield MC, Spencer T, Wu G (2011) Parenteral
administration of L-arginine enhances fetal survival
and growth in sheep carrying multiple fetuses. J Nutr
141:849–855

Liao SF, Wang T, Regmi N (2015) Lysine nutrition in
swine and the related monogastric animals: muscle
protein biosynthesis and beyond. Springerplus 4:147

Lien KA, Sauer WC, He JM (2001) Dietary influences on
the secretion into and degradation of mucin in the
digestive tract of monogastric animals and humans. J
Anim Feed Sci 10:223–245

Liu SM, Masters DG (2000) Quantitative analysis of
methionine and cysteine requirements for wool pro-
duction of sheep. Anim Sci 71:175–185

Liu SM, Masters DG (2003) In: D’Mello JPF (ed) Amino
acid utilization for wool production. In: amino acid in
animal nutrition, 2nd edn. CAB International, pp
309–328

Liu SM, Zhang L, Chang C, Pen DH, Xu Z, Wang YZ,
Chen Q, Cao WJ, Yuan DZ (1992) The nutrient
requirements of Angora rabbits. 1. Digestible energy,
crude protein and methionine and lysine. J Appl Rabbit
Res 14:260–265

Liu SM, Travendale M, Bermingham EN, Roy NC,
McNabb WC, Lee J (2002) The effects of parasite
infection on methionine metabolism in sheep. Anim
Prod Australia 24:133–136

Liu SM, Smith TL, Palmer DG, Karlsson LJE, Besier RB,
Greeff JC (2005) Biochemical differences in Merino
sheep selected for resistance against gastro-intestinal
nematodes and genetic and nutritional effects on faecal
egg count and egg output. Anim Sci 81:149–157

Liu SM, Smith TL, Briegel J, Gao SB, Pen WK (2007)
Fraction protein synthesis rate and polyamine
concentrations in tissues of Merino sheep selected for
gastrointestinal nematode resistance. Livest Sci
106:65–75

Lobley GE (1994) Amino acid and protein metabolism in
the whole body and individual tissues of ruminants. In:
Asplund JM (ed) Principles of protein nutrition of
ruminants. CRC Press, Boca Raton, pp 147–178

Lobley GE, Connell A, Milne E (1994) Protein synthesis
in splanchnic tissues of sheep offered two levels of
intake. Br J Nutr 71:3–12

Lobley GE, Hoskin SO, McNeil CJ (2001) Glutamine in
animal science and production. J Nutr 131:2525S–
2531S

Lobley GE, Shen X, Le G, Bremner DM, Milne E, Calder
AG, Anderson SE, Dennison N (2003) Oxidation of
essential amino acids by the ovine gastrointestinal
tract. Br J Nutr 89:617–629

Loest C, Titgemeyer E, Van Metre GS-JD, Smith J (2002)
Methionine as a methyl group donor in growing cattle.
J Anim Sci 80:2197–2206

Lupton C (2010) Fibre production. In: Solaiman SG
(ed) Goat science and production. Wiley-Blackwell,
Iowa, pp 293–321

Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu
G (2017) L-Arginine promotes protein synthesis and
cell growth in brown adipocyte precursor cells via the
mTOR signal pathway. Amino Acids 49:957–964

MacRae JC, Walker A, Brown D, Lobley GE (1993)
Accretion of total protein and individual amino acids
by organs and tissues of growth lambs and the ability
of nitrogen balance techniques to quantitate protein
retention. Anim Prod 57:237–245

MacRae JC, Bruce LA, Brown DS, Calder AG (1997)
Amino acid use by the gastrointestinal tract of sheep
given lucerne forage. Am J Physiol Gastrointest Liver
Physiol 273:G1200–G1207

Madsen TG, Nielsen L, Nielsen MO (2005) Mammary
nutrient uptake in response to dietary supplementation
of rumen protected lysine and methionine in late and
early lactating dairy goats. Small Ruminant Res
56:151–164

Martin C, Bernard L, Michalet-Doreau B (1996) Influence
of sampling time and diet on amino acid composition
of protozoal and bacterial fractions from bovine
ruminal contents. J Anim Sci 74:1157–1163

Masters DG, Liu SM, Purvis IW, Hartofillis M (2000)
Wool growth and protein synthesis in the skin of
superfine Merinos with high and low fleece-weight.
Asian-Australian J Anim Sci 13(Supplement
A):457–460

McBride B, Kelly J (1990) Energy cost of absorption and
metabolism in the ruminant gastrointestinal tract and
liver: a review. J Anim Sci 68:2997–3010

McCoard S, Sales F, Wards N, Sciascia Q, Oliver M,
Koolaard J, van der Linden D (2013) Parenteral admin-
istration of twin-bearing ewes with L-arginine
enhances the birth weight and brown fat stores in
sheep. Springerplus 2:684

5 Amino Acids in the Nutrition and Production of Sheep and Goats 77



McCoard SA, Sales FA, Sciascia QL (2016) Amino acids
in sheep production. Front Biosci Elite edition
8:264–288

McNeil CJ, Hoskin SO, Bremner DM, Holtrop G, Lobley
GE (2016) Whole-body and splanchnic amino acid
metabolism in sheep during an acute endotoxin chal-
lenge. Br J Nutr 116:211–222

Menzies M, Reverter A, Andronicos N, Hunt P,
Windon R, Ingham A (2010) Nematode challenge
induces differential expression of oxidant, antioxidant
and mucous genes down the longitudinal axis of the
sheep gut. Parasite Immunol 32:36–46

Miller FM, Blair HT, Birtles MJ, Reynolds GW, Gill HS,
Revell DK (2000) Cysteine may play a role in the
immune response to internal parasites in sheep.
Australian J Agric Res 51:793–799

Ministry of Agriculture and Fishries and Food Standing
Committee on Tables of Feed Composition (1990) UK
tables of nutritive value and chemical composition of
Feedingstaffs. Rowett Research Services, Aberdeen

Morentin P, Martinez-Sanchez N, Roa J, Ferno J,
Nogueiras R, Tena-Sempere M, Dieguez C, Lopez M
(2014) Hypothalamic mTOR: the rookie energy sen-
sor. Curr Mol Med 14:3–21

Mortimer SI, Hatcher S, Fogarty NM, van der Werf JHJ,
Brown DJ, Swan AA, Greeff JC, Refshauge G,
Edwards JEH, Gaunt GM (2017) Genetic parameters
for wool traits, live weight, and ultrasound carcass
traits in Merino sheep. J Anim Sci 95:1879–1891

Mukkur TKS, Watson DL, Saini KS, Lascelles AK (1985)
Purification and characterization of goblet-cell mucin
of high Mr from the samll intestine of sheep. Biochem
J 229:419–428

Neutze SA, Gooden JM, Oddy VH (1997) Measurement
of protein turnover in the small intestine of lambs.
2. Effects of feed intake. J Agric Sci 128:233–246

Park YW, Juárez M, Ramos M, Haenlein GFW (2007)
Physico-chemical characteristics of goat and sheep
milk. Small Ruminant Res 68:88–113

Pastoret P-P, Griebel P, Bazin H, Govaerts A (1998)
Handbook of vertebrate immunology. Academic, San
Diego

Peine JL, Jia G, Van Emon ML, Neville TL, Kirsch JD,
Hammer CJ, O'Rourke ST, Reynolds LP, Caton JS
(2018) Effects of maternal nutrition and rumen-
protected arginine supplementation on ewe perfor-
mance and postnatal lamb growth and internal organ
mass. J Anim Sci 96:3471–3481

Popescu C, Höcker H (2007) Hair—the most sophisticated
biological composite material. Chem Soc Rev
36:1282–1291

Prizant RL, Barash I (2008) Negative effects of the amino
acids Lys, His, and Thr on S6K1 phosphorylation in
mammary epithelial cells. J Cell Biochem
105:1038–1047

Reis PJ (1979) Effects of amino acids on the growth and
properties of wool. In: Black JL, Reis PJ (eds)
Physilogical and environmental limitations to wool

growth. University of New England Publishing Unit,
Armidale, pp 223–242

Rezaei R, Wu Z, Hou Y, Bazer FW, Wu G (2016) Amino
acids and mammary gland development: nutritional
implications for milk production and neonatal growth.
J Anim Sci Biotechnol 7:20

Rhind SM, Rae MT, Brooks AN (2001) Effects of nutri-
tion and environmental factors on the fetal program-
ming of the reproductive axis. Reproduction
122:205–214

Rich P (2003) The molecular machinery of Keilin's respi-
ratory chain. Biochem Soc Trans 31:1095–1105

Saevre C, Caton J, Luther J, Meyer A, Dhuyvetter D,
Musser R, Kirsch J, Kapphahn M, Redmer D, Schauer
C (2011) Effects of rumen-protected arginine supple-
mentation on ewe serum-amino-acid concentration,
circulating progesterone, and ovarian blood flow.
Sheep Goat Res J 26:8–12

Sakkas P, Jones LA, Houdijk JGM, Athanasiadou S, Knox
DP, Kyriazakis I (2013) Leucine and methionine defi-
ciency impairs immunity to gastrointestinal parasites
during lactation. Br J Nutr 109:273–282

Sales F, Sciascia Q, Van der Linden D, Wards N,
Oliver M, McCoard S (2016) Intravenous maternal
L-arginine administration to twin-bearing ewes, during
late pregnancy, is associated with increased fetal mus-
cle mTOR abundance and postnatal growth in twin
female lambs. J Anim Sci 94:2519–2531

Sang D, Sun H, Guo J (2010) Effects of leucine on protein
synthesis in sheep. Chinese J Anim Nutr 22:951–955

Satterfield MC, Dunlap KA, Keisler DH, Bazer FW,Wu G
(2012) Arginine nutrition and fetal brown adipose tis-
sue development in diet-induced obese sheep. Amino
Acids 43:1593–1603

Satterfield MC, Dunlap KA, Keisler DH, Bazer FW,Wu G
(2013) Arginine nutrition and fetal brown adipose tis-
sue development in nutrient-restricted sheep. Amino
Acids 45:489–499

Scaramuzzi R, Baird D, Campbell B, Driancourt M-A,
Dupont J, Fortune J, Gilchrist R, Martin G,
McNatty K, McNeilly A (2011) Regulation of
folliculogenesis and the determination of ovulation
rate in ruminants. Reprod Fertil Dev 23:444–467

Sen U, Sirin E, Yildiz S, Aksoy Y, Ulutas Z, Kuran M
(2016) The effect of maternal nutrition level during the
periconception period on fetal muscle development
and plasma hormone concentrations in sheep. Animal
10:1689–1696

Simpson H, Umair S, Hoang V, Savoian M (2016)
Histochemical study of the effects on abomasal mucins
of Haemonchus contortus or Teladorsagia
circumcincta infection in lambs. Vet Parasitol
226:210–221

Souri M, Galbraith H, Scaife JR (1998a) Comparisons of
the effect of genotype and protected methionine sup-
plementation on growth, digestive characteristics and
fibre yield in cashmere-yielding and Angora goats.
Anim Sci 66:217–223

78 Y. Cao et al.



Souri M, Galbraith H, Scaife JR (1998b) Conversion of
methionine to cysteine by transsulphuration in isolated
anagen secondary hair follicles of Angora goats.
Proceedings of the British Society of Animal Science.
p 139

Standing Committee on Agriculture RS (1990) Feeding
standards for Australian livestock – ruminants. CSIRO
Publications, East Melbourne

Storm E, Ørskov E, Smart R (1983) The nutritive value of
rumen micro-organisms in ruminants: 2. The apparent
digestibility and net utilization of microbial N for
growing lambs. Br J Nutr 50:471–478

Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F (2018)
Dietary rumen-protected arginine and
N-carbamylglutamate supplementation enhances fetal
growth in underfed ewes. Reprod Fertil Dev
30:1116–1127

Sykes AR, Coop RL (2001) Interactoin between nutrition
and gastrointestinal parasitism in sheep. New Zealand
Vet J 49:222–226

Tabor CW, Tabor H (1984) Polyamines. Annu Rev
Biochem 53:749–790

Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG,
Carrington SD (2001) The role of mucins in host–
parasite interactions: part II–helminth parasites. Trends
Parasitol 17:130–135

Thureen PJ, Baron KA, Fennessey PV, Hay WW (2002)
Ovine plcental and fetal arginine metabolism at normal
and increased maternal plasma arginine concentrations.
Pediatr Res 51:464

van der Linden DS, Sciascia Q, Sales F, Wards NJ, Oliver
MH, McCoard SA (2015) Intravenous maternal
L-arginine administration to twin-bearing ewes during
late pregnancy enhances placental growth and devel-
opment1. J Anim Sci 93:4917–4925

van Nolte JE, Loest CA, Ferreira AV, Waggoner J, Mathis
C (2008) Limiting amino acids for growing lambs fed a
diet low in ruminally undegradable protein. J Anim Sci
86:2627–2641

Van Winkle LJ (2001) Amino acid transport regulation
and early embryo development. Biol Reprod 64:1–12

Vinoles C, Paganoni B, McNatty KP, Heath DA,
Thompson A, Glover K, Milton J, Martin G (2014)
Follicle development, endocrine profiles and ovulation
rate in adult Merino ewes: effects of early nutrition
(pre-and post-natal) and supplementation with lupin
grain. Reproduction 147:101–110

Wei G, Chen L, Xinmei G, Fan Z, Daofu C, Chenli L
(2017) Investigation of the postruminal methionine
requirement of growing lambs by using the indicator
amino acid oxidation technique. Anim Feed Sci
Technol 228:83–90

Wester TJ, Lobley GE, Birnie LM, Brompton L, Brown S,
Buchan V, Clader A, Milne E, Lomax M (2004) Effect
of plasma insulin and branched-chain amino acids on
skeletal muscle protein synthesis in fasted lambs. Br J
Nutr 92:401–409

White A, Bardocz S (1999) Estimation of the polyamine
body pool: contribution by de novo biosynthesis, diet
and luminal bacteria. In: Bardocz S, White A (eds)
Polyamines in health and nutrition. Kluwer Academic
Publishers, Boston, pp 117–122

Williams AJ (1995) Wool growth. In: Cottle DJ (ed)
Australian sheep and wool handbook. Inkata Press,
Melbourne, pp 224–242

Williams AR (2011) Immune-mediated pathology of nem-
atode infection in sheep–is immunity beneficial to the
animal? Parasitology 138:547–556

Wu G (2009) Amino acids: metabolism, functions, and
nutrition. Amino Acids 37:1–17

Wu G (2013) Amino acids: biochemistry and nutrition.
CRC Press, Boca Raton

Wu G (2018) Principles of animal nutrition. CRC Press,
Boca Raton

Wu G, Greene L (1992) Glutamine and glucose metabo-
lism in bovine blood lymphocytes. Comp Biochem
Physiol B 103:821–825

Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid
composition of the fetal pig. J Nutr 129:1031–1038

Wu G, Fang YZ, Yang S (2002) Glutathione metabolism
in animals: nutritional regulation and physiological
significance. Trends Biochem Physiol 9:217–227

Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC,
Spencer TE, Li X, Wang J (2011) Important roles for
L-glutamine in swine nutrition and production. J Anim
Sci 89:2017–2030

Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014)
Amino acid nutrition in animals: protein synthesis and
beyond. Annu Rev Anim Biosci 2:387–417

Wu Z, Hou Y, Hu S, Bazer FW, Meininger CJ, McNeal
CJ, Wu G (2016) Catabolism and safety of supplemen-
tal l-arginine in animals. Amino Acids 48:1541–1552

Yoshizawa F (2004) Regulation of protein synthesis by
branched-chain amino acids in vivo. Biochem Biophys
Res Commun 313:417–422

Young VR, Borgonha S (2000) Nitrogen and amino acid
requirements: the Massachusetts Institute of Technol-
ogy amino acid requirement pattern. J Nutr
130:1841S–1849S

Yu F, Bruce LA, Calder AG, Milne E, Coop RL,
Jackson F, Horgan GW, MacRae JC (2000) Subclini-
cal infection with the nematode Trichostrongylus
colubriformis increases gastrointestinal tract leucine
metabolism and reduces availability of leucine for
other tissues. J Anim Sci 78:380–390

Zhang H, Sun L, Wang Z, Deng M, Nie H, Zhang G,
Ma T, Wang F (2016) N-carbamylglutamate and
L-arginine improved maternal and placental develop-
ment in underfed ewes. Reproduction 151:623–635

Zhou Y, Zhang P, Deng G, Liu X, Lu D (2012)
Improvements of immune status, intestinal integrity
and gain performance in the early-weaned calves par-
enterally supplemented with L-alanyl-L-glutamine
dipeptide. Vet Immunol Immunopathol 145:134–142

5 Amino Acids in the Nutrition and Production of Sheep and Goats 79



Amino Acids in Swine Nutrition
and Production 6
Qian Zhang, Yongqing Hou, Fuller W. Bazer, Wenliang He,
Erin A. Posey, and Guoyao Wu

Abstract

Amino acids are the building blocks of
proteins in animals, including swine. With
the development of new analytical methods
and biochemical research, there is a growing
interest in fundamental and applied studies to
reexamine the roles and usage of amino acids
(AAs) in swine production. In animal nutri-
tion, AAs have been traditionally classified as
nutritionally essential (EAAs) or nutritionally
nonessential (NEAAs). AAs that are not
synthesized de novo must be provided in
diets. However, NEAAs synthesized by cells
of animals are more abundant than EAAs in
the body, but are not synthesized de novo in
sufficient amounts for the maximal productiv-
ity or optimal health (including resistance to
infectious diseases) of swine. This underscores
the conceptual limitations of NEAAs in swine
protein nutrition. Notably, the National
Research Council (NRC 2012) has recognized
both arginine and glutamine as conditionally
essential AAs for pigs to improve their growth,
development, reproduction, and lactation.
Results of recent work have also provided

compelling evidence for the nutritional essen-
tiality of glutamate, glycine, and proline for
young pigs. The inclusion of so-called
NEAAs in diets can help balance AAs in
diets, reduce the dietary levels of EAAs, and
protect the small intestine from oxidative
stress, while enhancing the growth perfor-
mance, feed efficiency, and health of pigs.
Thus, both EAAs and NEAAs are needed in
diets to meet the requirements of pigs. This
notion represents a new paradigm shift in our
understanding of swine protein nutrition and is
transforming pork production worldwide.
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GDH glutamate dehydrogenase
GFAT glutamine: fructose-6-phosphate

transaminase
IDO indoleamine 2,3-dioxygenase
IUGR intrauterine growth restriction
KIC α-ketoisocaproate
mTOR mechanistic target of rapamycin
NEAA nutritionally nonessential amino acid
NO nitric oxide
NOS nitric oxide synthase
NRC National Research Council
OAT ornithine aminotransferase
ODC ornithine decarboxylase
OH-
POX

hydroxyproline oxidase

P5C pyrroline-5-carboxylate
POX proline oxidase
SHMT serine hydroxymethyltransferase
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6.1 Introduction

Amino acids (AAs) have traditionally been clas-
sified as nutritionally essential AAs (EAAs) or
nonessential AAs (NEAAs) for animals and
humans, depending on whether they can be
synthesized de novo in cells of animals and can
support the nitrogen balance or growth of the
organism (Abderhalden 1912; Rose 1957). For
those AAs that are not synthesized de novo,
they must be provided in diets to sustain the life,
growth and development of animals (Hou andWu
2018a; Yao et al. 2011). With the development of
modern analytical methods and biochemical
research, scientists have identified that the rates
of utilization of some NEAAs are greater than the
rates of their synthesis under certain conditions
that include early weaning, lactation, pregnancy,
burns, injury, infection, heat stress, and cold
stress (Hou et al. 2015, 2016a, b; Wu 2010; Wu
et al. 2013c; Yi et al. 2018). Similarly, there are
reports that the National Research Council (NRC
2012)-recommended requirements of swine for
some EAAs (e.g., tryptophan and threonine for
post-weaning pigs) are insufficient for their max-
imum growth or optimal health, including

intestinal health (Le Floc’h et al. 2018; Liang
et al. 2018, 2019; Xu et al. 2015). Therefore, it
is necessary to reconsider the roles of both EAAs
and NEAAs in swine nutrition and production. A
growing body of evidence in the literature has led
to the development of the new concept of func-
tional amino acids (FAAs) in nutrition, which are
defined as AAs that can regulate key metabolic
pathways to benefit the survival, growth, devel-
opment, reproduction, lactation, and health of
animals and humans (Wu 2009). FAAs (e.g.,
arginine, cysteine, glutamine, glutamate, glycine,
leucine, proline, and tryptophan) can be either
EAAs or NEAAs, and play an important role in
both protein synthesis and maintaining whole-
body homeostasis.

Modern breeds of pigs grow faster, gain more
lean body weight (BW), and gestate more
fetuses; therefore, they have greater nutritional
and physiological requirements for AAs, when
compared with previous breeds of swine
(Wu et al. 2018). However, low-protein diets
widely used to reduce the production of nitroge-
nous wastes by swine farms may not supply
sufficient AAs and may result in the suboptimal
growth and productivity of pigs (Hou et al.
2016a). Furthermore, due to the extensive catab-
olism of AAs in the small intestine and the
different metabolic fates of AAs in different
extra-intestinal tissues, the pattern of AAs in
the diet does not accurately reflect the composi-
tion of AAs in the body (Wu et al. 2014). Thus,
the conceptual foundation for ideal protein based
on the EAA composition of the body is flawed.
The lack of knowledge about AA metabolism
and function in pigs has precluded the use of
NEAAs in pork production systems (Hou et al.
2016a). Thus, there is an urgent need to reevalu-
ate the dietary requirements of modern breeds of
pigs for AAs. To achieve this goal, the present
article highlights AA metabolism and nutrition
in pigs of different ages and provides a scientific
basis for revising the recommendations for die-
tary AA requirements of the animals. Findings
from studies of swine as an animal model also
have important implications for improving
human nutrition.
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6.2 Metabolism of the Arginine
Family of AAs in Pigs

The arginine family of AAs consists of glutamine
(Gln), glutamate (Glu), arginine (Arg), proline
(Pro), aspartate (Asp), asparagine (Asn), ornithine
(Orn), and citrulline (Cit) (Wu et al. 2007).
Except for Orn and Cit, all of them are substrates
for protein synthesis (Wu and Morris 1998). Typ-
ically, interconversion among these AA occurs
frequently via the complex interorgan metabolism
of great physiological importance to maintain
reproduction, growth and development of pigs
(Fig. 6.1). Branched-chain AAs (BCAAs),
which are highly abundant in both plant- and
animal-source feedstuffs (Hou et al. 2019; Li
and Wu 2020), are major donors of the amino
group in Glu, Gln, Ala and Asp (Wu et al. 2016).
We will also summarize the synthesis and catab-
olism of the arginine family of AAs to provide a
better understanding of their nutritional roles in
pigs.

6.2.1 Glutamate

Glu is one of the most abundant AAs in both
plant- and animal-source feedstuffs (Hou et al.
2019; Li et al. 2011a; Li and Wu 2020), as well
as in tissue proteins of the body (Table 6.1; Wu
2013). Because 95–97% of dietary Glu is
catabolized by the small intestine of pigs during
its first pass into the portal vein (Wu 2013), essen-
tially all of the Glu in the body is produced from
other AAs via multiple metabolic pathways. Glu
can be synthesized in almost all cell types of pigs.
The nitrogen (N) and carbon (C) skeleton for Glu
synthesis originate primarily from AAs (Gln,
BCAAs, alanine and Asp) and glucose [the
major source of α-ketoglutarate (α-KG)], respec-
tively (Wu et al. 2005; Li et al. 2009). Many
enzymes are involved in the reactions in a
cell- and tissue-specific manner, including
phosphate-activated glutaminase, glutamine:fruc-
tose-6-phosphate transaminase (GFAT), BCAA
transaminase (BCAT), Glu-pyruvate transami-
nase, Glu-oxaloacetate transaminase and Glu

dehydrogenase (GDH) (Wu 2018). Glutaminase
was discovered by Krebs (1935) as a mitochon-
drial enzyme encoded by two different genes in
the liver and kidneys that catalyze the conversion
of Gln into Glu (Curthoys and Watford 1995).
GFAT (a cytosolic enzyme) converts Gln and
fructose-6-phosphate into glucosamine-6-phos-
phate and Glu, and is abundant in red blood

Fig. 6.1 Interconversion of the arginine family of amino
acids in pigs. Aspartate is required for both the synthesis of
both arginine from citrulline in all tissues (primarily the
kidneys) and cell types (including enterocytes, endothelial
cells, macrophages, neurons, and smooth muscle cells).
Citrulline is formed from glutamine (via glutamate) and
proline exclusively in the mitochondria of enterocytes,
with ornithine being the common intermediate. Most
of the glutamine and essentially all of the glutamate in
blood are derived from branched-chain amino acids and
glucose (the source of the carbon skeleton) in extra-
intestinal and extra-hepatic tissues (primarily skeletal mus-
cle). In most tissues and cell types with the exception
of porcine placentae and mammary tissues, as well
as mature red blood cells (without mitochondria), gluta-
mine is hydrolyzed by phosphate-activated glutaminase
into glutamate and ammonia. In red blood cells, glutamate
can be generated from glutamine via glutamine:fructose-6-
phosphate amidotransferase. Glutamate is converted
into glutamine by glutamine synthetase or into aspartate
by glutamate:oxaloacetate transaminase in all cell types,
but a net synthesis of glutamine is limited in the small
intestine. Arginine is metabolized to ornithine by
arginases (type I and type II) and arginine:glycine amidi-
notransferase in a cell-specific manner, and is also
oxidized by nitric oxide synthase to NO and citrulline in
all cell types. The arginine-derived citrulline is recycled
into arginine via argininosuccinate synthase and lyase.
Note that although the mitochondria-generated ornithine
is readily converted into citrulline in the small intestine,
the ornithine provided from the diet and blood is a poor
substrate for arginine synthesis in the body because of the
complex compartmentalization of intestinal metabolism of
amino acids
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cells (e.g., 2.17 � 0.13 and 2.02 � 0.15 nmol/mg
protein per min in erythrocytes of 30- and
150-day-old pigs, respectively; mean � SEM,
n ¼ 8) and endothelial cells at high enzymatic
activity, contributing to Glu production in cells
that lack mitochondria (Wu et al. 2001). The
activity of BCAT varies greatly among different
cell types, with skeletal muscle possessing the
greatest total activity per gram of tissue. In con-
trast to many enzymes of AA metabolism, BCAT
activity in the porcine liver is low and there is
little transamination of BCAAs in this organ
under physiological conditions. Glu-pyruvate
transaminase and Glu-oxaloacetate transaminase
catalyze the reversible reactions between Glu and
alanine or Asp, respectively, in various animal
tissues. GDH is a mitochondrial enzyme that
interconverts α-ketoglutarate (α-KG) and ammo-
nia into Glu, with the direction of the reaction
dependent on the concentrations of substrates in
cells. In addition, Glu can be formed by degrada-
tion of intracellular proteins.

The contributions of metabolic pathways to
Glu synthesis vary among tissues. The liver
takes up little Glu from the portal vein; therefore,
endogenous synthesis is the major source of Glu
in this organ for release into the blood circulation
in the post-absorptive state (Wu 2018). It is
unlikely that under physiological conditions, the
porcine liver has either a net synthesis of Glu
from Gln due to the presence of the intra-organ
Glu-Gln cycle or significant generation of Glu
from BCAAs because of low BCAT activity
(Li et al. 2009). Instead, alanine, Pro, phenylala-
nine and asparagine are the major substrates for
Glu synthesis in the liver (Wu 2018). Other
tissues, such as skeletal muscle, small intestine,
and kidneys, catabolize both BCAAs and Gln to
regulate their homeostasis and inter-organ AA
metabolism in the body (Hou and Wu 2018b).
BCAAs also undergo extensive transamination
in both the mammary gland and porcine placenta
to provide Glu, Gn, Ala and Asp for synthesis of
milk protein and fetal-placental tissues, respec-
tively (Li et al. 2009; Wu et al. 2013a).

Most of the enzymes in Gln-synthetic
reactions are also involved in Glu degradation.
In the small intestine, Glu undergoes extensive

degradation, so that there is no release of Glu
from the gut of post-absorptive pigs (Wu et al.
1994). In this process, Glu is metabolized into
CO2, glutathione, alanine, and Asp through oxi-
dation via the actions of glutathione-synthetic
enzymes, Glu-pyruvate aminotransferase, and
Glu-oxaloacetate aminotransferase, respectively
(Wu et al. 1994). Pyrroline-5-carboxylate (P5C)
synthase is essential for converting Glu into Cit
and Arg in enterocytes, which plays a crucial role
in maintaining Arg homeostasis in milk-fed
piglets (Flynn and Wu 1996), post-weaning pigs
(Wu et al. 1997), and adult pigs (Wu et al. 2018).
In pig enterocytes, the activity of GDH is rather
low, thus little ammonia is produced from Glu
(He et al. 2019a) or monosodium Glu by pig
enterocytes (Blachier et al. 1999). In contrast,
GDH is highly active in the liver and kidneys to
produce ammonia (Hou and Wu 2018b). Ammo-
nia is detoxified as urea via the hepatic urea cycle
in the liver and is used to combine H+ as NH4

+ in
the kidneys for control of the acid-base balance.
Transamination of Glu with pyruvate and oxalo-
acetate also occurs in the liver, skeletal muscle,
and mammary gland of pigs to produce alanine
and Asp from Glu (Ytrebo et al. 2006; Li et al.
2009; Wu 2013). The Glu-derived-α-KG is used
for either glucose synthesis or ATP production.

6.2.2 Glutamine

Gln is one of the most abundant AAs in the body
of pigs and the third most abundant free AA in the
plasma of gestating and lactating sows (0.35 to
0.5 mM), as well as fetal, neonatal, and postwean-
ing pigs (0.4 to 0.5 mM;Wu 2018). About 67% of
dietary Gln is metabolized by the pig small intes-
tine during the first pass into the portal vein, and
most of the circulating Gln is derived from endog-
enous synthesis (Wu et al. 2011b). The only
enzyme capable of synthesizing Gln in animal
cells is Gln synthetase (GS; Curthoys and
Watford 1995). This ATP-dependent enzymatic
reaction requires Glu and ammonia, and is present
in many tissues, with skeletal muscle being the
major site for Gln synthesis (Watford 2008). The
lungs, adipose tissue, and the lactating mammary
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glands also synthesize and release Gln (Watford
2008; Li et al. 2009). The ammonia for Gln syn-
thesis is derived primarily from the degradation of
EAAs. The liver has the capacity for both synthe-
sis and utilization of Gln because the enzymes are
compartmentalized in different populations of
cells (i.e., periportal and perivenous hepatocytes)
(van Straaten et al. 2006). Little Gln is
synthesized in the small intestine of pigs since
there is negligible Gln synthetase activity in that
tissue (Chen et al. 2009; Haynes et al. 2009).

Degradation of Gln in the body primarily
involves its hydrolysis into Glu and ammonia
via the action of phosphate-activated glutamin-
ase, with Glu being further metabolized to gluta-
thione, glucose and other AAs (alanine, Orn, Pro,
and Arg) or oxidized to CO2, as noted previously.
The Gln-derived ammonia is used for urea syn-
thesis to maintain a low concentration of ammo-
nia in the blood. A small fraction (<3%) of Gln
serves as a precursor for the synthesis of purines,
pyrimidines, NAD, glucosamine, and asparagine
through amidotransferase pathways (Wu et al.
2011b). In the kidneys, Gln-derived ammonia is
vital for regulation of the acid-base balance
(Curthoys and Watford 1995). As mentioned pre-
viously, Gln can be catabolized to Glu by
phosphate-activated glutaminase in tissues
containing mitochondria. However, the lactating
mammary gland (O’Quinn et al. 2002) and
placentae (Self et al. 2004) of pigs lack glutamin-
ase activity, which maximizes the amount of Gln
available to support the production of milk and
the rapid growth and development of fetal-
placental tissues.

6.2.3 Arginine

Milk provides at most 40% of the total daily Arg
requirements of 7-day-old sucking pigs (Wu and
Knabe 1995). Substantial amounts of Arg are
synthesized endogenously to support the growth
and development of pigs. Arg is synthesized pri-
marily from Cit in the small intestine and kidneys.
In pig enterocytes, Gln and Pro are the main

substrates for the production of Cit. This meta-
bolic pathway is regulated by P5C synthase and
N-acetylglutamate synthase (Wu et al. 2004). P5C
synthase is expressed, almost exclusively, in
enterocytes of the small intestine (Wu and Morris
1998; Wu et al. 2000), and its enzymatic activity
is inhibited by the high concentrations of Orn
(e.g., by 75% in the presence of 5 mM Orn; Hu
et al. 1999). The oxidation of Pro by Pro oxidase
(POX) in the mitochondria of enterocytes also
yields P5C that is subsequently converted into
Orn and Cit by Orn aminotransferase (OAT) and
Orn carbamoyltransferase (Wu 1997). As noted
previously, the Gln- and Pro-derived Cit is
converted into Arg via argininosuccinate synthase
(ASS) and argininosuccinate lyase (ASL). In 1- to
-7-d-old pigs, ASL activity is high in their
enterocytes, but low in their kidneys, but the
opposite is true for post-weaning pigs (Wu and
Knabe 1995; Wu et al. 1997). Therefore, Arg is
produced from Cit mainly in the small intestine
for newborn pigs, but primarily in the kidneys for
weaned pigs.

Degradation of Arg in pigs is initiated by argi-
nase and nitric oxide (NO) synthase (NOS)
(O’Quinn et al. 2002; Wu et al. 2010). Interest-
ingly, arginase activity is absent from the porcine
placenta in which degradation of Arg is initiated
by NOS to promote NO synthesis, which is of
great importance for the survival and growth of
the conceptus (embryo/fetus and placenta)
(Wu et al. 2017). In the placenta, NOS activity
is quantitatively very low; therefore, a large
amount of Arg is transferred from mother to
fetus (Wu et al. 1996a). This explains why Arg
is highly abundant in the allantoic fluid of pigs
during early- and mid-gestation to support the
growth and development of the conceptuses.
The mammary glands of lactating sows use both
arginase and NOS to actively degrade Arg to form
Pro, Orn, and urea, and to a lesser extent,
polyamines and NO (O’Quinn et al. 2002).
Thus, the concentrations of Arg are low, but
the concentrations of proline are high in sow’s
milk (Wu and Knabe 1994). Arg from the diet or
from de novo synthesis undergoes little
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catabolism in enterocytes of pre-weaning pigs
because these cells have no detectable arginase
activity (Wu et al. 1996b). After pigs are weaned,
the expression of arginase in the intestine
increases significantly in response to the cortisol
surge at parturition (Flynn and Wu 1997) and
40% of the dietary Arg is catabolized by the
small intestine during the first pass into the portal
vein (Wu et al. 2016). Arg that is not utilized by
the small intestine enters the portal vein, but only
about 8% of the Arg in blood is taken up by the
liver due to a low abundance of cationic AA
transporters in hepatocytes (Wu et al. 2007).
Within the liver, Arg is used by arginase, argi-
nine:glycine amidinotransferase, Arg decarboxyl-
ase, and NOS to produce Orn, creatine, agmatine,
and NO, respectively (Wu et al. 2018). In addi-
tion, Arg is utilized by the liver to synthesize
homoarginine and lysine, possibly by arginine:
glycine amidinotransferase (Hou et al. 2016b).
Furthermore, Arg is an allosteric activator of N-
acetylglutamate synthase, which catalyzes the
formation of N-acetylglutamate (an allosteric acti-
vator of carbamoylphosphate synthase-I) from
Glu and acetyl-CoA. Thus, Arg is required to
maintain the hepatic urea cycle in an active state
for the detoxification of ammonia. This metabolic
pathway is essential for the survival of mammals
such as swine.

6.2.4 Proline

Proline is the second most abundant AA in the
body of pigs (after Gly) (Wu 2013). It is formed
from Arg via pathways involving P5C synthase
and OAT (Wu and Morris 1998). As noted previ-
ously, P5C synthase converts Glu into
glutamyl-γ-semialdehyde, which spontaneously
cyclizes to yield P5C. The P5C is then reduced
to Pro by NADPH-dependent P5C reductase. The
endogenous synthesis of Pro is highly active in
the body (Bertolo et al. 2003; Wu 2010), because
pigs are generally fed plant-based diets that con-
tain low concentrations of Pro (Hou et al. 2019;
Li et al. 2011a). OAT exists in all cell types

throughout the body to convert Orn into
glutamyl-γ-semialdehyde, which is used for Pro
synthesis. The formation of Pro from Arg is active
in the mammary tissue, small intestine (post-
weaning animals), liver, and kidneys (Wu et al.
2011a). Of particular note, in porcine mammary
tissue, Pro is synthesized from Arg and Orn via
the arginase pathway, but not Glu or Gln due to
the absence of glutaminase and P5C synthase
(Wu and Morris 1998). This provides an addi-
tional explanation for the relatively high enrich-
ment of Glu, Gln and Pro, but a severe deficiency
of Arg in sow’s milk (Wu and Knabe 1994).

Mitochondrial POX is the only known enzyme
that initiates the degradation of Pro in cells of
animals (Adams and Frank 1980; Phang 1985).
Almost all cell types that contain mitochondria
express POX, except for mammary tissue
(Wu et al. 2008). In pigs, POX activity is highest
in the small intestine, followed by the liver,
kidneys, and placenta (Wu et al. 2008). POX
generates P5C from Pro and, therefore,
glutamyl-γ-semialdehyde and Orn by OAT. In
porcine enterocytes, the mitochondria-derived
Orn is converted into Cit and Arg. In both the
intestine and the placenta, Orn is used for the
synthesis of polyamines via Orn decarboxylase
(ODC), spermidine synthase, and spermine
synthase (Wu et al. 2005). Thus, the Pro-derived
polyamines are particularly important in the pla-
centa and in the small intestine of neonatal pigs
that lack arginase activity (Wu et al. 1996b).
Because the conceptus and neonatal pig grow
very rapidly, both dietary and endogenously
synthesized Pro play an important role in fetal
and neonatal growth and development. Further-
more, the lack of conversion of Orn into Cit and
of P5C into Glu due to the absence of Orn
carbamoyltransferase activity and the near absence
of P5C dehydrogenase maximize the synthesis of
polyamines from Pro in porcine placentae
(Wu et al. 2008; Wu et al. 2011a). Because
polyamines are essential for syntheses of DNA
and protein, Pro metabolism plays an important
role in supporting conceptus growth and develop-
ment in swine (Wu et al. 2005; Wu et al. 2008).
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6.3 Metabolism of Glycine (Gly)
in Pigs

Gly is the most abundant AA in tissue proteins of
animals, including pigs (Li and Wu 2018). Inter-
estingly, in contrast to many nonruminants (e.g.,
humans and rats) that have 0.2–0.3 mM free
glycine in their plasma, Gly is the most abundant
free AA in the plasma of fetal and postnatal pigs
(0.9–1.2 mM; Wu et al. 1994). Because pigs are
generally fed plant-based diets that have low
concentrations of Gly (Hou et al. 2019; Li et al.
2011a; Li and Wu 2020), these animals have a
high rate of Gly synthesis via multiple metabolic
pathways (Hou et al. 2016a; Wu et al. 2019).
Specifically, Gly is formed from: (1) serine via
serine hydroxymethyltransferase (SHMT),
(2) choline via the formation of sarcosine, (3) thre-
onine via the threonine dehydrogenase pathway,
(4) glyoxylate via alanine-glyoxylate aminotrans-
ferase, and (5) 4-hydroxyproline via mitochon-
drial hydroxyproline oxidase (OH-POX) in pigs
(Walsh and Sallach 1966; Ballevre et al. 1990;
Wu et al. 2011a). Gly synthesis from dietary
serine, choline and threonine contributes <12%
of Gly needed by young pigs (Wang et al. 2013).
There is evidence that 4-hydroxyproline (abun-
dant in sow’s milk and the plasma of piglets)
contributes to most Gly synthesis in 7-day-old-
pigs (Wu et al. 2019). 4-Hydroxyproline is
derived from the hydrolysis of proteins (primarily
collagens) containing hydroxylated Pro residues.
Collagen in the body and certain foods (such as
milk and meat) are the major sources of
4-hydroxyproline in pigs (Wu et al. 1999; Wang
et al. 2015d). The catabolism of 4-hydroxyproline
into Gly occurs in multiple tissues, including the
small intestine, kidneys, liver, and skeletal muscle
(Hu et al. 2017b). Note that alanine-glyoxylate
aminotransferase catalyzes the final, nearly irre-
versible reaction of the 4-hydroxyproline cata-
bolic pathway, i.e., the formation of Gly from
glyoxylate (Wu et al. 2019). This indicates that
OH-POX, together with alanine-glyoxylate ami-
notransferase, favors the generation of Gly from
4-hydroxyproline and glyoxylate. Thus, their uri-
nary excretion is minimal. The OH-POX pathway

explains: (a) the ultimate conversion of Arg, Pro
and Orn, as well as BCAAs, Glu and Gln into Gly
via 4-hydroxyproline; and (b) efficient conserva-
tion of AA nitrogen and carbon as Gly.

About 30% of the dietary Gly is metabolized by
the small intestine of postweaning pigs during its
first pass into the portal vein (Wu 2013). Because
porcine enterocytes have a limited ability to
degrade Gly (Wang et al. 2014c), microbes in the
lumen of the small intestine likely play an impor-
tant role in utilizing dietary Gly. It appears that the
rate of Gly catabolism to CO2 and ammonia in the
whole body of pigs is low, relative to the rate of
Gly synthesis (Hou et al. 2016a; Wu 2010). Three
enzymes are responsible for these reactions: the
glycine cleavage system, SHMT, and D-amino
acid oxidase (van Straaten et al. 2006). Among
them, the glycine cleavage system is the main
enzyme that catalyzes the degradation of Gly to
NH3 and CO2, with the generation of 5,10-methy-
lene-tetrahydrofolate from tetrahydrofolate, an
essential cofactor for SHMT (Lamers et al.
2007). D-amino acid oxidase has a minor role in
Gly degradation in animal tissues due to its low
affinity for Gly (Thureen et al. 1995). In pigs, the
conversion of Gly into serine is limited, likely due
to insufficient amounts of methyl-group donors
and folate (Wang et al. 2013).

6.4 Metabolism of Leucine (Leu)
and Tryptophan (Trp) in Pigs

Leu and Trp are EAAs for monogastric animals,
because their carbon skeletons cannot be formed in
the body. Leu is actively transaminated with α-KG
to form Glu, as noted previously, whereas Trp is
the precursor of serotonin, N-acetylserotonin, mel-
atonin, anthranilic acid, niacin, and indoles with
enormous physiological importance (Wu 2013).
Leu is highly abundant in all plant- and animal-
source feedstuffs (Hou et al. 2019; Li et al. 2011a;
Li and Wu 2020). In contrast, Trp is adequate in
animal-source feedstuffs, but deficient in most
plant-source feedstuffs. Plant-based diets generally
provide more Leu than needed for protein accre-
tion, but insufficient or barely adequate Trp for
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maximum growth and optimum health of the intes-
tine and the whole body of pigs. Therefore, pigs
must degrade a substantial amount of Trp for nor-
mal neurological, endocrine, and intestinal
functions, while also conserving Trp for tissue
protein synthesis.

Degradation of Leu is initiated by BCAA trans-
aminase (BCAT), which reversibly interconverts
Leu and α-KG into α-ketoisocaproate (α-KIC) and
Glu (Wilkinson et al. 2013). As noted previously,
BCAT activity is low in the porcine liver. There-
fore, Leu transamination occurs mainly in extrahe-
patic tissues, with skeletal muscle being
quantitatively the most important site (Su et al.
2012). α-KIC is then released into the bloodstream
and taken up by various tissues where it undergoes
irreversible oxidative decarboxylation to
isovaleryl-CoA, leading to the formation of
acetoacetate (a ketone body) and acetyl-CoA
(a precursor of ketone bodies and fatty acids).
This reaction is catalyzed by the branched-chain
α-keto acid dehydrogenase (BCKD) complex
located within mitochondria. BCKD kinase
regulates the activity of BCKD via protein phos-
phorylation (inactive form), whereas protein phos-
phatase maintains BCKD in the dephosphorylation
state (active form; Wu 2013). BCKD is highly
active in the liver, intermediate in activity in the
heart and kidneys, but its activity is relatively low
in skeletal muscle (Suryawan et al. 1998). In addi-
tion, a small proportion (~5%) of α-KIC is
oxidized to β-hydroxy-β-methylbutyrate by
α-KIC dioxygenase located within the cytosol of
hepatocytes (Nissen and Abumrad 1997). In the
mammary tissue of lactating sows, Leu is actively
degraded to generate Glu, Gln, alanine and aspar-
tate that support milk production (Li et al. 2009).
Because all BCAAs share the same transporters for
entry into cells, the proper balances of these AAs
in diets and blood are particularly important to
avoid antagonisms (Wu et al. 2014).

In mammals, approximately 95% of Trp is
degraded through the kynurenine pathway,
mediated by two rate-limiting enzymes: Trp
2,3-dioxygenase and indoleamine 2,3-dioxygenase
(IDO; Brown et al. 1991; Taylor and Feng 1991;
Schwarcz et al. 2001). Trp 2,3-dioxygenase is con-
stitutively expressed in the liver, while IDO is

present mainly in immune cells and is inducible
by inflammatory cytokines in piglets (Ruddick
et al. 2006; Bhutia et al. 2015). Through multi-
stage enzymatic reactions, Trp is primarily
converted into kynurenine, quinolinic acid, nico-
tinic acid, and kynurenic acid via the kynurenine
pathway (Badawy 2015). In addition, 1–2% of Trp
is metabolized to serotonin (5-hydroxytryptamine)
by tryptophan hydroxylase, and to melatonin (Bai
et al. 2017). Serotonin primarily exists in the gas-
trointestinal tract, and melatonin is produced mainly
by the pineal gland, but also by the retina, gastroin-
testinal tract, skin and leukocytes (Radogna et al.
2010; Bai et al. 2017). The remaining Trp is
metabolized primarily to indoleacetic acid in the
gastrointestinal tract and liver. Many metabolites
of Trp are involved in the regulation of immune
responses (Bai et al. 2017). When pigs are
challenged with endotoxins or pathogens,
the concentrations of Trp in plasma decrease signif-
icantly due to high rates of utilization by immune
cells and other cell types (Le Floc’h et al. 2012).
Piglets are able to detect and respond to metabolic
changes induced by a Trp deficiency, and Trp
metabolism affects the growth and development of
pigs at different stages (Ettle and Roth 2004).

6.5 Functions of AAs in Pigs

6.5.1 Regulation of Intestinal
Development and Mucosal
Barrier Function

The mucosa of the porcine small intestine
contains high concentrations of FAAs, such as
Glu, Gln, Gly and taurine (Table 6.1). Prolifera-
tion and turnover of enterocytes are essential to
maintain intestinal function (Peterson and Artis
2014). AAs promote the synthesis of proteins by
serving as their building blocks and activating the
mechanistic target of rapamycin (mTOR) signal-
ing (Wu 2009). mTOR is a highly conserved
serine/threonine protein kinase and a master reg-
ulator of the initiation of polypeptide formation
(Laplante and Sabatini 2012). Several lines of
evidence support the notion that mTOR signaling
is essential for intestinal growth and function. For
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example, Gln stimulates protein synthesis and
inhibits proteolysis (Xi et al. 2012) in porcine
enterocytes by activating the mTOR signaling
pathway, leading to enhanced proliferation of
those cells (Xi et al. 2012; Yi et al. 2015).
Glu-induced increases in the intestinal
RNA/DNA ratio are associated with maintaining
the mTOR signaling pathway (Qin et al. 2018).
Similar findings were reported from studies
involving the supplementation of culture medium
for IPEC-1 cells with Gln, Glu, Arg, Trp or Gly
(Wang et al. 2014c; Wang et al. 2015a; Zhu et al.
2015; Li et al. 2016b; Xiao et al. 2017). In addi-
tion to mTOR signaling, anti-apoptosis is another
mechanism that supports the proliferation and
survival of enterocytes. For example, Gln protects
porcine enterocytes from apoptosis by activating
the IRE1α-XBP1 axis, regulating glutathione-
related redox homeostasis, and enhancing gluta-
thione S-transferase A-mediated metabolism
(Jiang et al. 2017; Liu et al. 2018b). Likewise,
Gly exerts an anti-apoptotic effect on cells of the
small intestine of piglets by repressing the induc-
tion of the endoplasmic reticulum stress-induced
C/EBP homologous protein (a transcription fac-
tor; Fan et al. 2019). Arg also increases DNA
synthesis in lipopolysaccharide-challenged
enterocytes, thus contributing to the regeneration
and restoration of the mucosa of the small-
intestine (Tan et al. 2015). These studies provide
solid evidence that FAAs are beneficial for intes-
tinal growth, development and health.

In accordance with its role in protein synthesis,
AAs are crucial for the maintenance of intestinal
mucosal barrier integrity, and thus play a key role
in gut homeostasis (Yang et al. 2015). Tight
junctions are widely distributed in the intestinal
epithelium as a primary physical barrier to selec-
tively regulate the passage of molecules and ions
via the paracellular pathway (Shen 2012). They
are composed of three major tight junction
proteins: occludin, claudins, and junction adhe-
sion molecule proteins (Steed et al. 2010). Inter-
estingly, AAs, such as Gln, Glu, Asp, Arg, Pro,
Gly, and Trp, enhance the abundances of tight
junction proteins in the small intestine, thus
improving intestinal mucosal barrier function
(Jiao et al. 2015; Wang et al. 2015b; Wang et al.
2015c; Li et al. 2016a; Wang et al. 2017; Liang

et al. 2019; Zheng et al. 2018). Moreover, these
AAs beneficially regulate inflammatory and oxi-
dative responses to pro-inflammatory cytokines
or reactive oxygen species to mitigate increases
in intestinal permeability by enhancing the
expression of tight-junction proteins (Al-Sadi
et al. 2010; Wang et al. 2014a). For example,
dietary supplementation with 1.0% Arg to low-
birth-weight piglets improves intestinal mucosal
barrier function and enhances antioxidant capac-
ity by increasing the expression of claudin-1 and
glutathione peroxidase mRNAs (Zheng et al.
2018). Similarly, dietary supplementation with
Asp protects mucosal barrier function in
lipopolysaccharide-challenged weaned pigs by
increasing the expression of claudin-1 and
occludin in the jejunum, while inhibiting TLR4
and NODs/NF-κB and p38 signaling (Wang et al.
2017). In addition, intestinal mucosal barrier and
absorptive functions depend on the constant pro-
vision of a large amount of ATP (Wu 1998). Gln,
Glu and Asp are primary substrates metabolized
in intestinal epithelial cells of pigs and chickens
to yield ATP (He et al. 2018, 2019a). Also, Gln
and Glu contribute more ATP to pig and chicken
enterocytes than glucose and fatty acids (He et al.
2018, 2019a; Wu et al. 1995). Therefore, AAs are
indispensable for the optimal function and health
of the small intestines.

6.5.2 Regulation of Gut Microbiota
Composition and Diversity

The intestinal microbiota is now recognized to
have broad biological effects on the health and
growth of both humans and animals (Sommer
et al. 2017). AAs can influence the composition
and diversity of the intestinal microbiota in pigs,
thus improving intestinal function. For example,
dietary supplementation with 1% Gln increased
the abundance of intestinal-friendly microbiota
(Bacteroidetes and Actinobacteria), while
decreasing the abundance of pernicious bacteria
(Oscillospira and Treponema), thus alleviating
constipation in sows during late gestation
(Zhang et al. 2017). Supplementing 0.2% to
0.4% Trp to a corn- and soybean meal-based
diet that contained 0.2% Trp reduced the
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abundances of Clostridium species, which are
potential pathogenic bacteria, and increased
abundances of Prevotella and Roseburia, which
can regulate homeostasis in the large intestine of
weaned piglets (Liang et al. 2018). Of note, some
Trp-metabolizing bacteria are enriched in both the
small and large intestines (Liang et al. 2019;
Liang et al. 2018). This confirms that bacteria in
the intestine are primarily responsible for the use
of dietary Trp (Wu 1998). Recently, Wang et al.
(2020) reported that dietary supplementation of
Trp (0.1 mg/g BW per day in drinking water) to
mice with dextran sodium sulfate-induced colitis
modulated intestinal immune response and
reduced mucosal injury partly through attenuating
the activation of TLR4-STAT3 signaling and
nuclear p-65. These findings also provide evi-
dence that Trp-metabolizing bacteria may con-
tribute to the beneficial effects of dietary Trp on
the integrity of the intestinal mucosa and the
responses of immune cells in the intestine
(Liang et al. 2019).

6.5.3 Prevention of Viral Infection

There is emerging evidence that AAs play impor-
tant roles in protecting pigs from viral infections.
Chen et al. (2015) reported that Gln had a positive
effect to ameliorate reproductive failure caused
by porcine circovirus type 2 (PCV2). Further
research indicated that Gln starvation increased
PCV2 replication by promoting the activation of
p38 MAPK associated with the down-regulation
of intracellular glutathione levels (Chen et al.
2015). The generation of reactive oxygen species,
which is induced by a Gln deficiency, also
activates the JAK2/STAT3 signaling pathway
and induces autophagy to promote PCV2 infec-
tion (Liu et al. 2018a). Likewise, Arg suppresses
viral protein interactions and promotes the inacti-
vation of viruses using mechanisms that depend
on concentrations of the virus, pH and tempera-
ture (Naito et al. 2009). Complex mechanisms are
involved in the inactivation of viruses by Arg
(Naito et al. 2009; Ikeda et al. 2012) and include
the NO-dependent killing of viruses (Li et al.
2007). Trp also exhibits an anti-virus effect

(Rabbani and Barik 2017). The degradation of
Trp via the IDO pathway reduces the availability
of Trp for catabolism to 5-hydoxytryptophan
(a protector of viral growth) via the Trp hydroxy-
lase pathway, thereby inhibiting human
parainfluenza virus type 3 (Rabbani and Barik
2017). Interestingly, IDO is one of the genes
whose expression is induced by interferons to
exert antiviral effects. Thus, it is possible that
AAs may not act on viruses directly, but destroy
viruses and mitigate the virus-induced tissue
damage through altering the production of
metabolites, regulating protein synthesis, and
improving immune responses. In support of this
view, dietary supplementation with Arg (0.4 g/kg
BW per day) to rotavirus infected piglets fed a
standard milk replacer diet augmented intestinal
protein synthesis by activating mTOR and p70
(S6k), thereby facilitating restitution and villus
regrowth in the intestine (Corl et al. 2008). Die-
tary supplementation with 1% Leu improved
growth performance, and alleviated diarrhea in
rotavirus-challenged weanling pigs (Mao et al.
2015). Leu may exert this beneficial effect by
improving the digestive and absorptive function
of the small intestine and non-specific mucosal
barrier mechanisms via the activation of mTOR
cell signaling (Mao et al. 2015). Furthermore,
dietary supplementation with both Thr and Trp
to growing pigs inoculated with a modified live
porcine reproductive and respiratory syndrome
virus vaccine promoted the expression of TLR3
and TLR7 mRNA in lymph nodes and enhanced
immune responses, thereby mitigating lung dam-
age and improving growth performance (Xu et al.
2015). These results suggest that dietary supple-
mentation with functional AAs is a promising
strategy to protect animals and humans from
viral infections (Table 6.2).

6.6 Use of Amino Acids to Improve
the Nutrition, Health,
and Productivity of Pigs

New knowledge of AA metabolism and function
in pigs has prompted us to re-evaluate the multi-
ple roles of AAs in the nutrition, health, and
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productivity of pigs. Indeed, intensive studies
show that traditional feed ingredients cannot sup-
ply sufficient AAs to support maximum growth
and development of pigs (Hou et al. 2015, 2016a;
Wu et al. 2014). Instead, specialized nutritional
formulas are needed to meet the requirements of
pigs at different stages of their growth and pro-
duction activities (e.g., reproduction and lacta-
tion), and different AAs may act through
different or common mechanisms (Table 6.3).

6.6.1 Amino Acid Nutrition
in Gestating Pigs

In practical swine production, the number of live-
born piglets that a sow delivers is far less than the
number of oocytes ovulated (10–15 vs 20–30; Ji
et al. 2017). The unfavorable intrauterine
conditions during gestation lead to embryo/fetus
maldevelopment and losses, which represents a
significant obstacle to maximizing the reproduc-
tive efficiency of gilts and sows (Vonnahme et al.

2001). Maternal nutrition is a major factor that
affects the survival, growth, and development of
conceptuses in pigs (Wu et al. 2006). However,
maternal feed intake is restricted to avoid exces-
sive fat accumulation in gilts or sows and prevent
them from becoming overweight or obese during
gestation. Moreover, AAs, such as Gln, Glu, and
Arg, undergo extensive catabolism in the small
intestine, and only portions (3–85%) of the dietary
AAs enter the portal circulation of pregnant gilts
(Stoll and Burrin 2006; Wu et al. 2014). There-
fore, providing the pregnant dam with adequate
amounts of AAs is vital for improving pregnancy
outcomes [including the alleviation of intrauter-
ine growth restriction (IUGR)] in pigs.

The amounts of the Arg family of AAs are
particularly high in the allantoic fluid of pigs
during early gestation, suggesting that they play
critical roles in the growth and development of
conceptuses (Wu et al. 1996a). A growing body
of evidence supports this notion. First,
supplementing 1% Gln to the diet of gilts between
days 90 and 114 of gestation increased the litter

Table 6.3 Major mechanisms responsible for the effects of functional amino acids to improve growth and health of pigs

Pigs Amino acids (AAs) Active molecules or major mechanisms

Gestating swine Arginine-family of AAs, Leu,
Cit

Polyamine, NO, and MTOR signaling

Lactating sows Gln, Glu, Arg, Leu, BCAAs,
Cit

NO, MTOR signaling, downregulation of ubiquitin and
proteasome expression

Postweaning
pigs

Gln, Glu, Asp, Arg, Pro, Gly,
Leu, Trp, Cit

Gene expression (e.g., AA transporters, and tight-junction
proteins) and anti-inflammation

Growing-
finishing pigs

Arg, Gly, Leu, Glu, Cit MTOR signaling, lipid metabolism, and anti-oxidative responses

Boars Arg, Cit NO, polyamines, and anti-oxidative responses

BCAAs branched-chain amino acids, Cit citrulline, MTOR mechanistic target of rapamycin, NO nitric oxide

Table 6.2 Functions of amino acids in animals, including pigs

Function Amino acids

Energy substrate for the small intestine Gln, Glu, and Asp
Regulation of enterocyte growth and apoptosis Gln, Glu, Arg, Pro, Trp, and Gly
Regulation of gut microbiota composition Gln, Arg, Trp, Pro, and Hyp
Maintenance of intestinal mucosal barrier integrity Gln, Glu, Asp, Arg, Pro, Gly, Trp
Antiviral effects Gln, Arg, Leu, Trp, and Pro
Antioxidant effects Gln, Glu, Asp, Arg, Pro, and Gly
Anti-inflammatory effects Gln, Glu, Asp, Trp, Gly, Cys, Hyp
Regulation of metabolism Gln, Glu, Arg, Asp, Pro, Gly, Trp

Hyp 4-hydroxyproline
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birth weight of live-born piglets at birth, while
reducing variation in birth weights and the mor-
tality of live-born piglets by 33% and 46%,
respectively (Wu et al. 2011b). Second, sows
that received 1.3% L-Arg-HCl supplementation
between days 1 and 14 of gestation had more total
piglets born (14.29 vs 12.22) and piglets born
alive (13.24 vs 11.43) per litter than for control
sows (Li et al. 2015). Third, gilts that received
dietary supplementation with 1.0% L-Arg-HCl
(0.83% Arg) between days 30 and 114 of gesta-
tion increased the numbers of live-born piglets by
2 per litter and litter birth weight by 24% (Mateo
et al. 2007). Similar findings were obtained for
gilts receiving dietary supplementation with 0.4%
or 0.8% Arg between days 14 and 25 of gestation
(Li et al. 2014). Fourth, supplementation with Pro
(14 g/day) to the diets of sows between days
30 and 114 of gestation increased litter size and
birth weights (Gonzalez-Anover and Gonzalez-
Bulnes 2017). Furthermore, supplementing 1%
Gln to multiparous sows from day 85 of gestation
until farrowing increased the average birth weight
of piglets, as well as their intestinal development
and abundances of tight-junction proteins, while
decreasing the within-litter variation in body
weights of newborn piglets (Zhu et al. 2018).
Combinations of these Arg family AAs also
improved the reproductive performance of pigs.
For example, adding a mixture of Arg and Gln
(0.6% Gln plus 0.4% Arg) to a corn- and soybean
meal-based diet increased the number of live-born
piglets by 1.4 per litter and litter birth weight
(+10% for all piglets born and + 15% for live-
born piglets; Wu et al. 2010). In addition to Arg
and Gln, other AAs may also be beneficial for
fetal growth and development. For example,
supplementing 0.4% to 0.8% Leu to a corn- and
soybean meal-based diet for gestating swine dur-
ing late gestation (day 70 to farrowing) enhanced
the birth weights of piglets (Wang et al. 2018).

Scientists have made great efforts to uncover
the underlying mechanisms responsible for the
effects of AAs on pregnancy in swine. NO and
polyamines, metabolites of Arg, play essential
roles in improving pregnancy outcomes
(Wu et al. 2017). Polyamines are key regulators

of both DNA and protein syntheses in animal
cells. Pro and Orn are the main sources of
polyamines in the porcine placenta (Wu et al.
2013b). In gestating swine, Pro is degraded to
Orn in maternal and fetal tissues, which is utilized
for the synthesis of polyamines via ODC,
spermidine synthase, and spermine synthase. Of
note, expression of ODC is stimulated by Gln,
and Gln is also a precursor of Orn (Wu et al.
2010). Therefore, Gln promotes polyamine syn-
thesis in the conceptus. In addition, Arg is
converted into Pro and Orn in maternal tissues,
with both Pro and Orn contributing to the synthe-
sis of polyamines in porcine placentae (Wu et al.
2006). This helps to compensate for the lack of
arginase (the enzyme that hydrolyzes Arg into
Orn and urea) in the porcine placenta. Consistent
with this view, the concentrations of spermidine
and putrescine were greater in the plasma of ges-
tating sows on day 28 when receiving Arg sup-
plementation between days 15 and 30 or between
days 1 and 30 of gestation (Li et al. 2015). In
support of this view, dietary supplementation
with Pro to gestating mice also increased
the concentrations of polyamines in fetal fluids
and placenta (Liu et al. 2019a, b) and modulated
immune responses at the placenta-uterine inter-
face (Liu et al. 2020). Unlike polyamines, NO is
generated only from Arg by NOS in the porcine
placenta. NO induces angiogenesis and blood
flow in the uterus and placenta, which is benefi-
cial for the transfer of nutrients from the mother to
her conceptuses to support their growth and
development (Meininger and Wu 2002). Accord-
ingly, dietary supplementation with Arg
increased NO production in the placenta of ges-
tating sows (Wu et al. 2010), as well as the
angiogenesis and growth of placentae (Wu et al.
2017), resulting in increases in embryonic/fetal
survival and litter size, as noted previously. In
addition, Arg and other AAs (e.g., Gln, Leu, and
Pro) may regulate the growth and development of
skeletal muscle and other tissues of embryos and
fetuses via mTOR cell signaling (Bazer et al.
2015; Ji et al. 2017), as well as the postnatal
growth and development of skeletal muscle in
offspring (Ji et al. 2017).
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6.6.2 Amino Acid Nutrition
in Lactating Pigs

In pigs, Arg undergoes intensive degradation by
arginase in the lactating mammary glands
(Wu et al. 2018). This necessitates an adequate
provision of Arg to mammary epithelial cells for
milk production. In support of this view,
supplementing 1% Arg-HCl to the diets enhanced
milk production by 21% in the first week of
lactation and by 11% during a 21-day suckling
period (Mateo et al. 2008). Laspiur and Trottier
(2001) demonstrated that although dietary supple-
mentation with Arg to lactating sows did not
improve milk production, it reduced their weight
loss and enhanced feed efficiency (Laspiur and
Trottier 2001). The beneficial effect of Arg on
milk production is partially mediated by the pro-
duction of NO, which acts as a vasodilator and
angiogenic factor to increase blood flow to the
mammary gland (O’Quinn et al. 2002). Arg also
increases protein synthesis in porcine mammary
epithelial cells by activating mTOR cell signal-
ing, while inhibiting protein degradation in these
cells by down-regulating the expression of both
ubiquitin and proteasomes (Ma et al. 2018). Thus,
Arg enhances the synthesis and secretion of milk
proteins by the lactating mammary glands
(Ma et al. 2018). Furthermore, dietary supple-
mentation with 1% Arg to lactating sows
increased the concentrations of creatine in their
milk by 42% (our unpublished work). This obser-
vation is highly significant for sucking piglets
(particularly those with a low birth weight),
because creatine is essential for the growth and
development of multiple organs, particularly the
skeletal muscle and brain (Wu 2020).

Lactating sows have high requirements for
BCAAs (Kim et al. 2009). Interestingly, the
uptake of BCAAs by porcine mammary glands
substantially exceeds their output in milk (Trottier
et al. 1997). Glu, Gln, Asp and Ala are the main
metabolic products of BCAAs in the lactating
porcine mammary glands (Li et al. 2009). In
accordance with this finding, the lactating porcine
mammary glands produces 125% more Gln in
milk than its uptake from arterial blood, and Gln

is the most abundant free AA in sow’s milk
(Haynes et al. 2009). Thus, dietary supplementa-
tion with 1% Gln to lactating sows increased
the concentrations of Gln in milk, maternal
plasma, maternal skeletal muscle, milk produc-
tion, and piglet growth (Wu et al. 2011b). Like-
wise, supplementing Glu plus Gln to the diet of
lactating sows increased the concentrations of
lipids in colostrum and mature milk (Santos de
Aquino et al. 2014). However, work on BCAA
nutrition in lactating sows is limited and beset
with conflicting results likely due to
the imbalances of BCAAs in diets (Rezaei et al.
2016). Nonetheless, there are reports that
supplementing BCAAs to lactating sows
increases litter weaning weights (Richert et al.
1997a, b; Moser et al. 2000; Paulicks et al.
2003). Unfortunately, the milk yields of the
sows were not measured in those studies. Of
note, Che et al. (2019) reported that dietary sup-
plementation with valine to gilts during late preg-
nancy increased the production of proteins in
colostrum. Because Leu and valine can activate
mTOR cell signaling in porcine mammary epithe-
lial cells (Li et al. 2011b; Zhang et al. 2019), it is
reasonable to propose that a mixture of BCAAs in
proper ratios are required for maximum milk pro-
duction by lactating sows.

6.6.3 Amino Acid Nutrition in Piglets

As noted previously, Gln and Glu are enriched in
milk. However, milk-born Gln is insufficient for
maximal growth of sow-reared piglets (Wu et al.
2011b; Hou and Wu 2018). Haynes et al. (2009)
reported that Gln supplementation promoted
the growth of sow-reared piglets by 12%,
indicating that augmenting Gln provision beyond
that from milk was beneficial for improving the
growth performance of the suckling neonates
(Haynes et al. 2009). Similar findings were
obtained for Glu, as oral administration of
monosodium glutamate to sow-reared piglets
(0.5 and 1 g/kg BW per day) for 21 days
increased the expression of Glu receptors and
Glu transporters in their stomach and small
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intestine (Zhang et al. 2013). Although Leu is
highly abundant in sow’s milk (Wu and Knabe
1994), this AA has a regulatory role in
stimulating the syntheses of muscle proteins and
syntheses of Glu and Gln in piglets (Hou et al.
2016a). Unlike Leu, Arg and Gly are relatively
deficient in sow’s milk (Wu and Knabe 1994).
However, the growth of piglets is sensitive to the
external provision of Arg, Gly and Leu. Several
lines of evidence support this view. First, dietary
supplementation with 0.2% and 0.4% Arg dose-
dependently enhanced the concentrations of Arg
in plasma (30% vs 61%), and increased the BW
gain of milk-fed pigs (28% vs 66%) (Kim andWu
2004). Second, dietary supplementation with 0.5,
1 and 2% Gly increased daily weight gains and
improved intestinal health, indicating that Gly is a
nutritionally essential AA for maximal growth of
sucking piglets (Wang et al. 2014b). Third, oral
administration of 0.7 and 1.4 g Leu/kg BW to 7-
to 21-day-old sow-reared piglets increased their
daily BW gains by 10.6% and 11.9%, respec-
tively, compared with the control group, and
enhanced the expression of Leu transporters in
the jejunum of the sow-reared pigs (Sun et al.
2015). Further studies indicated that the beneficial
effects of Leu on the growth of neonates were
associated with increases in both intestinal devel-
opment and lean tissue growth (Columbus et al.
2015; Sun et al. 2015). Collectively, adequate
supplementation with these functional AAs is
necessary for maximum and optimal growth of
sucking piglets.

Piglets normally suffer from weaning stress,
leading to reduced feed intake and intestinal dys-
function. Emerging evidence indicates an impor-
tant role for Gln in maintaining intestinal
physiology and function, but the amount of Gln
from the diet and the synthesis of Gln from glu-
cose plus BCAAs and other AAs is inadequate for
maximum growth of weaning piglets (Wu et al.
1996c; Wang et al. 2008). Thus, dietary supple-
mentation with Gln is essential for maximizing
the growth performance of weanling piglets. This
notion is supported by several lines of experimen-
tal evidence. First, dietary supplementation with
1.0% Gln enhanced BW gains between
21–28 day of age, as well as the integrity and

villus height of the intestinal epithelium (Wu et al.
1996c; Wang et al. 2008; Wang et al. 2015b).
Similarly, dietary supplementation with 1–4%
monosodium glutamate (Rezaei et al. 2013) or
2% Glu (Lin et al. 2014) to weanling piglets
enhanced the concentrations of glutathione, anti-
oxidative capacity, and integrity of the small
intestine, as well as its digestive and absorptive
functions. In addition, other AAs can also
improve the growth performance of weanling
piglets by enhancing intestinal function. For
example, supplementing 1% Pro to a corn- and
soybean meal-based diet enhanced villus height
in the jejunum, the weight of the small intestine,
and the growth performance of weanling pigs
(Wu et al. 2011a). Similarly, dietary supplemen-
tation with 0.5% and 1.0% Asp alleviated growth
suppression and intestinal damage induced by a
lipopolysaccharide challenge in weaned pigs
(Pi et al. 2014). These results again highlight the
crucial roles of important AAs in the intestinal
development, as well as the growth and well-
being of weanling piglets.

6.6.4 Amino Acid Nutrition
in Growing-Finishing Pigs

NEAAs and EAAs constitute 60% and 40% of
total AAs in pigs, respectively (Table 6.1). The
size of the free AA pool is very small in the body,
representing only 0.9% of total AAs in the body
(Table 6.1). Thus, the animals must be fed regu-
larly to provide free AAs for metabolic processes,
including protein and creatine syntheses. In
growing-finishing pigs, the deposition of exces-
sive amounts of subcutaneous white adipose tis-
sue (e.g., backfat) is a major concern in market-
weight pigs fed conventional finishing diets
(NRC 2012). Leu is known to be an important
nutrient that stimulates protein synthesis in the
skeletal muscle of pigs (Columbus et al. 2015).
In addition, Hu et al. (2019) reported that dietary
supplementation with 1% Leu for fattening pigs
increased biceps femoris muscle weights. Con-
versely, reduced muscle mass was associated
with decreases in the intramuscular
concentrations of Leu, Thr and Val (Sales et al.
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2013). These results further highlight a key role
of Leu in regulating muscle protein anabolism
(Volpi et al. 2003).

Besides Leu, dietary supplementation with
Arg and Glu also promote skeletal muscle growth
in pigs (Wu 2010; Hou and Wu 2018). For exam-
ple, supplementing 0.5–2% Arg to a corn- and
soybean meal-based diet for 30- to 121-d-old pigs
dose-dependently reduced the concentrations of
ammonia, cholesterol, free fatty acids,
triglycerides in plasma, as well as white fat in
the body, indicating a promising role for Arg in
improving lean tissue mass (Hu et al. 2015).
Similarly, supplementing 1% Arg to the diet of
110-day-old barrows for 60 days reduces serum
triglycerides by 20% and whole-body fat content
by 11%, while increasing whole-body skeletal-
muscle content by 5.5%, and intramuscular gly-
cogen content by 42% (Tan et al. 2009). This
resulted in a 0.32 increase in the intramuscular
pH at 45 min post-mortem, a greater intramuscu-
lar anti-oxidative capacity, and better meat qual-
ity (Ma et al. 2010; Tan et al. 2009). Likewise,
dietary supplementation with 1% Glu favorably
decreased average back fat thickness and
increased intramuscular fat deposition in
growing-finishing pigs (Hu et al. 2017a). Further-
more, adding 3% monosodium glutamate to a
corn- and soybean meal-based diet beneficially
modified the lipid content and fatty acid profile
in the skeletal muscle of pigs by regulating the
expression of genes related to lipid metabolism,
lipid composition, and muscle fiber composition
(Kong et al. 2015). Additionally, dietary supple-
mentation with Glu plus Arg decreased average
back fat thickness and the percentage of subcuta-
neous fat, but increased the intramuscular fat con-
tent of longissimus dorsi and biceps femoris
muscles, whereas supplementationwithGlu + Leu
increased biceps femoris muscle mass and
the concentrations of Glu and carnosine in the
biceps femoris muscle (Hu et al. 2017a; Hu
et al. 2019). Findings from these studies are
expected to guide the development of optimal
diets for growing-finishing pigs.

6.6.5 Improved Arg and Gly Nutrition
to Enhance the Survival
and Growth of IUGR Pigs

Among livestock species, pigs exhibit the greatest
embryonic loss (up to 50%) and the most severe,
naturally occurring IUGR due to inadequate uter-
ine capacity as well as inadequate maternal and
fetal AA nutrition (Wu et al. 2006). IUGR piglets
represent 20–25% of all pigs born (Wu et al.
2010). At birth, runt piglets may weigh only
one-half or even one-third as much as their largest
littermates, and the weights of the small intestine
and skeletal muscle of runt pigs are disproportion-
ately much less than those for normal-birth-
weight littermates (Wang et al. 2008). Compared
to littermates with a normal birth weight, IUGR
pigs have greater neonatal morbidity and mortal-
ity (representing 76% of preweaning deaths in
swine), as well as lower postnatal growth and
meat quality (Ji et al. 2017). Thus, preweaning
survival rates decrease gradually from 95% to
15% as birth weights of piglets decrease from
1.60 to 0.60 kg (Quiniou et al. 2002). At present,
IUGR piglets are culled on farms and there are no
effective nutritional means to prevent their death
or enhance their growth, resulting in enormous
financial losses. We discovered that these
compromised pigs are underdeveloped with
respect to the syntheses of Arg and Gly and,
therefore, are severely deficient in these two
FAAs (Hu et al. 2017b). Thus, deficiencies of
Arg and Gly may be major limiting factors for
the postnatal growth and survival of IUGR pigs.
This notion is supported by the following experi-
mental evidence. First, the survival rates of IUGR
piglets receiving oral administration of 0.0, 0.1,
0.2 or 0.4 g Arg (in the form of L-arginine-HCl)
per kg BW twice daily between days 0 and 14 of
life were 50%, 75%, 90% and 90%, respectively
(Long et al. 2017). When compared to the control
group (average daily gain ¼ 152 g/day between
days 1 and 14 of life), IUGR piglets administered
0.2 and 0.4 g Arg/day per kg BW gained 19% and
31% more BW, respectively. Thus, the growth
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and survival of IUGR piglets can be improved
through dietary supplementation with L-arginine-
HCl. Second, supplementing 1% Gly to a corn-
and soybean meal-based diet for post-weaning
IUGR pigs (weaned at 21 days of age) for
127 days did not affect their feed intake (per kg
BW), but increased their growth rates by 28%,
15%, and 10% during days 21–35, 35–64, and
65–120 of age, respectively (He et al. 2019b).
Importantly, by day 120 of age, the BW of
IUGR pigs receiving Gly supplementation did
not differ from that of pigs with a normal birth
weight. Thus, our results indicate that dietary
supplementation with 1% Gly (a low-cost supple-
ment) beneficially improves growth rates of, and
economic returns from, IUGR piglets. With this
new nutritional strategy, IUGR pigs can be saved
on farms and successfully fed to a market weight.

6.6.6 Amino Acid Nutrition in Boars

The use of artificial insemination by pork
producers has increased greatly over the past
decades (Flower 2020). For artificial insemina-
tion, increasing the quality and quantity of
sperm produced by boars is of primary impor-
tance. Arg has been identified as a nutrient to
improve reproductive performance of boars
through enhancing the availability of Arg (the
nitrogenous precursor of NO for vasodilation of
testicular blood vessels) and polyamines (essen-
tial for fertilization) in semen (Wu et al. 2009). In
support of this notion, an in vitro study conducted
by Funahashi (2002) found that Arg improved
capacitation and acrosome reactions of boar
spermatozoa via an NO-dependent mechanism.
A recent feeding study further showed that dietary
supplementation with 0.8% or 1.0% Arg for
42 days remarkably improved semen quality and
libido of boars during the hot summer months
(Chen et al. 2018). This is of great importance
for pig production, because sperm are likely to be
more susceptible to the effect of heat stress with
reductions in their motility and numbers, as well
as an increase in defects. These results indicate

that adequate Arg supplementation should be
taken into consideration to maximize the repro-
ductive performance of boars.

6.7 Safety of Amino Acid
Supplementation in Pigs

Appropriate doses of supplemental AAs are gen-
erally safe for animals based on food intake,
behavior, as well as physiological parameters in
plasma and urine (Wu 2018). The No Observed
Adverse Effect Levels (NOAEL) for Arg in pigs
are summarized in Table 6.4. However, excessive
amounts of any AA in diets can cause AA
imbalances, antagonisms, and toxicity (Wu et al.
2013c). Therefore, comprehensive and systematic
studies should be conducted regarding the safety
of dietary supplementation with AAs to animals,
including pigs (Hou and Wu 2018a, b; Wu et al.
2016, 2018).

Pigs between 30 and 121 days of age can
tolerate a large amount of supplemental Arg (2%
of the diet or 630 mg/kg BW per day for 91 days)
without any detectable adverse effects (Hu et al.
2015). However, supplementing 4% Arg (as the
Arg base) to a corn- and soybean meal-based diet
for growing pigs causes AA imbalances and
reduced their growth performance (Edmonds
et al. 1997). We found that supplementing up to
1% Arg to diets is safe for gestating sows
(between days 14 and 114 of gestation) and lac-
tating sows (between days 1 to 21 of lactation),
and had no adverse effects on fetal or neonatal
piglets (Mateo et al. 2007; Mateo et al. 2008; Li
et al. 2014). For comparison, healthy adult
humans (94 to 117 kg BW) can tolerate at least
30 g Arg (as Arg-HCl)/kg BW per day (in two or
more divided doses daily) for at least 90 days
(McNeal et al. 2018), which is equivalent to
256 to 319 mg/kg BW per day). Of note, neonatal
pigs have been reported to be particularly sensi-
tive to high intakes of Arg, as oral administration
of 0.29 g Arg/kg BW per day twice daily between
1 and 16 days of age (Getty et al. 2015) or 1.80 g
Arg/kg BW per day to 7-day-old enterally fed
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pigs (Wilkinson et al. 2004) had adverse effects
of reducing the growth of piglets. However,
because the consumption of sow’s milk or the
dietary intake of AAs were not reported by the
authors (Getty et al. 2015) and the basal enteral
diet for the young pigs (Wilkinson et al. 2004)
lacked both Gln and Asp and was imbalanced in
AAs, caution should be exercised in interpreting
these results. We did not find any adverse
response of 0- to 14-day-old piglets (with either
a normal or a low birth weight) to daily oral
administration of up to 0.8 g Arg (as Arg-HCl)/
kg BW per day (Long et al. 2017). Overall,

supplementing up to 2% Arg to typical diets is
safe for gestating, lactating, and growing pigs.

Gln itself is not toxic to cells because large
amounts of Gln (e.g., 4 mM or approximately 8-
to 10-times the physiological concentrations in
plasma) are usually included in culture medium
for all cell types (Curi et al. 2005). Dietary sup-
plementation with up to 1% Gln (on an as-fed
basis) for at least 34 days does not reduce feed
intake, and does not contribute to any sickness or
death in neonatal, post-weaning, gestating, or lac-
tating pigs (Wu et al. 2011b). However, as with
any other AA, a high dose of supplemental Gln

Table 6.4 The No Observed Adverse Effect Levels (NOAELs) for supplementation with amino acids to typical diets for
swinea

Amino
acid

Young swineb Adult swine (non-pregnant)c Gestating swined

% of
supplemental
AA in diet

Content of AA in
the basal diet (%)

% of
supplemental
AA in diet

Content of AA
in the basal diet

% of
supplemental
AA in diet

Content of AA
in the basal
diet

Ala 2.5 1.3 2.7 0.94 2.2 0.78
Arg 2.0 1.3 2.2 1.1 1.0 0.70
Asn 2.0 0.94 2.2 0.77 1.0 0.58
Asp 4.0 1.3 4.2 1.1 2.0 0.76
Cys 0.38 0.37 0.38 0.30 0.25 0.23
Gln 1.0 1.8 1.0 1.6 1.0 1.2
Glu �4.0 1.7 �4.0 1.5 2.0 1.1
MSG 2.0 1.7 (Glu) 2.0 1.5 (Glu) 2.0 1.1 (Glu)
Gly 2.0 0.88 2.0 0.85 2.0 0.55
His 0.50 0.57 0.63 0.44 0.50 0.33
Ile 1.1 0.89 1.3 0.74 1.0 0.51
Leu 2.2 1.8 2.4 1.6 2.0 1.2
Lys 1.4 1.4 1.4 0.90 0.80 0.58
Met 0.40 0.36 0.4 0.28 0.25 0.18
Phe 1.0 0.99 1.1 0.86 0.80 0.60
Pro 2.0 1.6 2.2 1.4 2.0 1.0
Ser 2.0 0.79 2.0 0.83 1.5 0.45
Thr 0.80 0.85 0.80 0.65 0.50 0.49
Trp 0.40 0.25 0.40 0.21 0.30 0.17
Tyr 1.2 0.76 1.3 0.70 0.80 0.45
Val 2.0 1.0 2.2 0.82 1.5 0.65
Cit 2.0 0.0 2.0 0.0 1.0 0.0
aVaues are expressed on the as-fed basis, with the dietary content of dry matter being 90%. Adapted from Hou and Wu
(2017, 2018a), Wu (2018), Wu et al. (2011b, 2018)
bNeonatal or weanling pigs. The dietary content of crude protein is 20%
cGrower-finisher pigs, lactating sows, and adult boars. The dietary content of crude protein is 14–18%
dEarly period of gestation. If 0.8% arginine is supplemented to the diet, the supplementation should not start before day
14 of gestation. The dietary content of crude protein is 12%, and dietary intake is 2 kg per day. During late gestation,
dietary intake can be increased to 2.2 to 2.5 kg per day, depending on the maternal nutritional status. The total
supplemental amount of nitrogen should not exceed 12.5% of the nitrogen content in the basal diet
Cit L-citrulline, MSG monosodium glutamate
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(such as 2% Gln to a corn- and soybean meal-
based diet) may reduce the feed intake of wean-
ling piglets, and should be avoided in swine pro-
duction (Wu et al. 2011b). Collectively, Gln is
now recognized as an essential nutrient to exert
beneficial effects on the small intestine, as well as
whole-body growth and health. Thus, a sufficient
supply of dietary Gln is critical for optimum
survival, growth, development, lactation, and
reproduction in swine (Wu 2010).

Many studies have indicated that dietary sup-
plementation with 0.15–4% Glu or 0.5–4%
monosodium glutamate is safe in swine (Hou
and Wu 2018b). Based on those studies, Hou
and Wu (2018b) indicated that dietary supple-
mentation with at least 2% Glu is safe for pigs
of all ages. Because 95–97% of dietary Glu is
degraded by the small intestine of pigs (Stoll
and Burrin 2006), exogenous supplementation
and endogenous synthesis of Glu in the extra-
intestinal tissue is necessary to maintain normal
intestinal physiology and support maximum
growth of weaning, growing and finishing pigs.
Therefore, Glu is truly a functional AA and a
dietarily essential AA in swine nutrition.

Dietary supplementation with at least 2% Gly
or 2.1% Pro is safe for young pigs (Wu et al.
2011a; Wang et al. 2013). This is also true for
lactating and gestating sows. Moreover, dietary
supplementation with 0.4% Trp or 2.5% Leu to a
typical con- and soybean meal-based diet does
not adversely affect growing-finishing pigs
(Liang et al. 2018, 2019; Yao et al. 2011; Hu
et al. 2019). The safe doses of an AA vary with
the physiological state of animals, but are gener-
ally higher than its content in the basal diet
(Table 6.4). Because pigs are sensitive to exces-
sive intakes of cysteine and methionine (Hou and
Wu 2018a), caution should be exercised when
they are supplemented to the basal diet.

6.8 Economic Benefits of AA
Supplementation
to Swine Diets

Dietary supplementation with AAs that are defi-
cient in diets or that have regulatory functions in
metabolism can increase the growth rates, feed

efficiency, and productivity of pigs, decrease the
rates of their morbidity and mortality, and shorten
the time between the weaning and marketing of
hogs. This can lead to improvements in the effi-
ciency of pork production and economic returns
to the farmers, as illustrated by the examples with
studies involving gestating gilts/sows and IUGR
pigs. Specifically, based on the number of sows
(33.4 � 106) per year worldwide, an income of
US $45/live-born piglet, one additional live-born
piglet/sow per farrowing (2.4 farrowings/year),
and saving 90% of IUGR piglets before weaning
(Long et al. 2017), an increase in net income due
to dietary supplementation with Arg to gestating
swine and IUGR piglets is estimated to be US
$136.16/sow per year. For the total number of
sows worldwide, the net benefits are US
$4.55 � 109/year (Table 6.5). Of note, increasing
the number of piglets at weaning allows for a
reduction in the number of total sows reared
globally, leading to decreases in maintenance
costs (both sows and feeds) and the production
of manure from swine farms. Similarly, saving
one postweaning IUGR piglet/sow per farrowing
through post-weaning dietary supplementation
with Gly results in a net benefit of $17.34/pig
(Table 6.6). For the total number of 145 � 106

IUGR pigs worldwide, the net benefits are US
$2.61 � 109/year (Table 6.6).

In summary, there have been exciting
developments in the field of swine AA metabo-
lism and nutrition over the past three decades.
Both exogenous supplementation and endoge-
nous syntheses via inter-organ metabolism of
AAs are crucial for maintaining physiological
homeostasis in the whole body. There is compel-
ling evidence that these nutrients are essential for
improving the health, survival, growth, develop-
ment, lactation, and reproduction of pigs. Future
studies in this exciting area of investigation are
needed to elucidate the cellular and molecular
mechanisms responsible for the beneficial effects
of AAs on the overall health, and wellbeing of
swine under physiological and pathological
conditions, as well as economic returns and agri-
cultural sustainability. Both sufficient amounts
and proper ratios of EAAs and NEAAs must be
provided in swine diets to achieve the goal of
precision nutrition. Because pigs are similar to
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Table 6.5 Economic returns from dietary supplementation with L-arginine (Arg) to gestating sows and preweaning
IUGR piglets, compared with no arginine supplementation

Variable
No Arg
supplementation

Arg supplementation to sows during
days 14 to 30 of
gestation, and to IUGR piglets during a
21-day period of suckling

A. Arginine supplementation to gestating sows
Amount of supplemental Arg/sow per year (kg)a 0.0 0.614
Cost of supplemental Arg/sow per year (US $)b 0.0 – 6.14
Additional number of piglets born alive/sow per year
(n)c

0.0 2.4

Value of live-born piglets per sow per year (US $)d 0.0 108
Net benefit per sow per year (US $) 0.0 + 101.86
B. Arginine administration to IUGR piglets before weaning
Number of IUGR piglets born per sow per year (n)e 4.8 4.8
Number of surviving IUGR piglets per sow per year (n)f �4.8 4.32
Amount of supplemental Arg to IUGR piglets per sow
per year (kg)g

0.0 0.242

Cost of supplemental Arg/sow per year (US $) 0.0 – 2.42
Additional labor cost (US $)h 0.0 – 181.44
Value of surviving IUGR piglets per sow per year
(US $)i

0.0 194.4

Saving the cost of raising a sow through rescuing her
IUGR offspring (US $/sow per year)j

0.0 23.76

Net benefit per sow per year (US $) 0.0 + 34.3
C. Net benefit per sow per year (US $) 0.0 136.16
D. Net benefit from all sows per year worldwide (US $)k 0.0 4.55 � 109

IUGR intrauterine growth restriction
aAssuming 2.4 gestations/sow per year. During a gestation, each sow consumes 2 kg diet/day. In the case of Arg
supplementation, between days 14 and 30 of gestation, each sow receives 16 g Arg/day (256 g for 16 days/gestation or
614 g Arg/2.4 gestations/year)
bAssuming the cost of Arg is US $10/kg. The cost of Arg for each sow is 0.614 kg/year � US $10/kg ¼ US $6.14/year
cAssuming that a sow receiving Arg supplementation produces one additional live-born piglet per farrowing. The total
number of additional live-born piglets per sow in a year is 2.4 (i.e., 1 additional piglet/sow per farrowing � 2.4
farrowings in a year)
dAssuming that the value of a live-born piglet is US $45. For 2.4 more piglets per sow in a year, the total value is $108 per
sow in a year (i.e., US $45 � 2.4)
eThe mean number of IUGR piglets born per sow is 2. The total number of IUGR piglets per sow in a year is 4.8 (i.e.,
2 IUGR piglets/sow per farrowing � 2.4 farrowings in a year)
fAll IUGR piglets are culled on farms when they are not treated with Arg. With oral administration of Arg, the
preweaning survival rate of IUGR piglets is 90%
gEach IUGR piglet receive 0.8 g g/kg body weight per day. Assuming the mean body weight of an IUGR pig is 3 kg
between days 0 and 21 of life, the piglet will receive 2.4 g Arg/day (50.4 g Arg for 21 days). For 4.8 IUGR piglets per sow
per year, the use of Arg is 242 g (i.e., 50.4 � 4.8)
hThe management requires 1.5 min/IUGR pig per administration for each of two persons. The combined time is 3 min per
administration � 2 administrations per day ¼ 6 min/IUGR piglet. For 4.8 piglets/sow and 21 days in a year, the time is
6 min/IUGR piglet per day� 4.8 IUGR piglets � 21 days ¼ 605 min ¼ 10.08 hours. Assuming that the additional labor
cost is US $18/hour, the total labor cost is US $181.44 per sow per year (i.e., 10.08 � 18)
iAssuming that the value of a surviving IUGR piglet is US $45. For 4.32 surviving IUGR piglets per sow in a year, the
total value is US $194.4 per sow in a year
jThe cost of raising a sow during gestation is $66/sow. For a litter size of 12, the cost of producing a newborn pig is $5.5/
piglet. For 2.4 farrowings per sow per year with the survival rate of IUGR pigs being 90%, the saving is $23.76/sow per
year (i.e., 2 � $5.5 � 2.4 � 0.9)
kAssuming that the total number of sows per year worldwide is 33.4� 106 (FAO 2018). The net benefit per sow per year
is US $4.55 � 109 (i.e., US $136.16/sow per year � 33.4 � 106 sows worldwide)
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humans in nutritional requirements, metabolism
and physiology, results from research with swine
have important implications for improving the
health of human infants and adults.
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Amino Acid Nutrition and Metabolism
in Chickens 7
Wenliang He, Peng Li, and Guoyao Wu

Abstract

Both poultry meat and eggs provide high-
quality animal protein [containing sufficient
amounts and proper ratios of amino acids
(AAs)] for human consumption and, therefore,
play an important role in the growth, develop-
ment, and health of all individuals. Because
there are growing concerns about the subopti-
mal efficiencies of poultry production and its
impact on environmental sustainability, much
attention has been paid to the formulation of
low-protein diets and precision nutrition
through the addition of low-cost crystalline
AAs or alternative sources of animal-protein
feedstuffs. This necessitates a better under-
standing of AA nutrition and metabolism in
chickens. Although historic nutrition research
has focused on nutritionally essential amino
acids (EAAs) that are not synthesized or are
inadequately synthesized in the body, increas-
ing evidence shows that the traditionally clas-
sified nutritionally nonessential amino acids
(NEAAs), such as glutamine and glutamate,
have physiological and regulatory roles other
than protein synthesis in chicken growth and
egg production. In addition, like other avian

species, chickens do not synthesize adequately
glycine or proline (the most abundant AAs in
the body but present in plant-source feedstuffs
at low content) relative to their nutritional and
physiological needs. Therefore, these two AAs
must be sufficient in poultry diets. Animal
proteins (including ruminant meat & bone
meal and hydrolyzed feather meal) are abun-
dant sources of both glycine and proline in
chicken nutrition. Clearly, chickens (including
broilers and laying hens) have dietary
requirements for all proteinogenic AAs to
achieve their maximum productivity and
maintain optimum health particularly under
adverse conditions such as heat stress and dis-
ease. This is a paradigm shift in poultry nutri-
tion from the 70-year-old “ideal protein”
concept that concerned only about EAAs to
the focus of functional AAs that include both
EAAs and NEAAs.
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7.1 Introduction

Amino acids (AAs) are the building blocks of
protein, which is the major dry matter component
of growth in chickens and their eggs (Baker
2009). As foods for humans, poultry and eggs
provide high-quality protein that contains suffi-
cient amounts and proper ratios of AAs, therefore
playing an important role in the growth, develop-
ment, and health of humans (McNeill et al. 2017;
Réhault-Godbert et al. 2019). Chicken or poultry
byproducts are also low-cost and high-quality
protein feedstuffs for livestock species, fish, and
companion animals (Li and Wu 2020). In addi-
tion, taurine (a nonproteinogenic AA), which is
present abundantly in poultry tissues, is essential
for the integrity and function of the eyes, heart
and skeletal muscle, as well as the nervous, diges-
tive, immune, and reproductive systems in both
mammals and birds (Wu 2020a). As for other
animals, adequate intakes of dietary AAs are cru-
cial for the optimum efficiency of poultry produc-
tion (Baker 2009). Either an excess or a
deficiency of AAs has negative impacts on the
health and productivity of chickens.

Compared with the chicken breeds
used 30 years ago, modern breeds of broilers
grow faster and gain more lean tissues, and mod-
ern breeds of leghorns lay more eggs (Applegate
and Angel 2014; Bailey 2020). However, there is
not much progress in our understanding of AA
nutrition and metabolism in chickens over the
past three decades (Bailey 2020). It is known
that the patterns of free AAs in plasma and skele-
tal muscles of chickens (Table 7.1) differ from
those in mammals (Wu 2018a, b) and that ammo-
nia is removed primarily as uric acid in birds
rather than as urea in mammals (Wu 2013).

Thus, there are distinct differences in AA metab-
olism and nutrition between avian and mamma-
lian species. Because improving the efficiency of
poultry production and sustaining the global envi-
ronment are important goals of animal agriculture
(Wu et al. 2020), much attention has been paid to
the formulation of low-protein diets through the
addition of low-cost crystalline AAs. This
necessitates renewed interest in the fundamental
knowledge of cell- and tissue-specific synthesis
and catabolism of AAs in chickens. Although
historic nutrition research has focused on nutri-
tionally essential amino acids (EAAs) that are not
synthesized or are inadequately synthesized in the
body (Baker and Han 1994), increasing evidence
shows that the traditionally classified nutritionally
nonessential amino acids (NEAAs; coined in
1912) such as glutamine and glutamate have
physiological and regulatory roles other than pro-
tein synthesis in chicken growth and egg produc-
tion (Wu 2014, 2018a, b). The major objective of
this article is to highlight recent advances in AA
nutrition and metabolism in meat-type and
egg-laying chickens.

7.2 Digestion of Dietary Protein
and Absorption of Its
Hydrolysis Products
in Chickens

The digestive system of chickens differs from that
of pigs, but these two species share common
features of digestion and absorption
(Wu 2018a). In birds, ingested feed passes
through the esophagus into the crop
(a temporary storage pouch) and then enters the
proventriculus (also known as the “true stom-
ach”). Within the proventriculus, feed is mixed
with HCl and digestive enzymes as in mammals
to initiate the hydrolysis of proteins and fats. This
acid is produced from NaCl and carbonic acid
(H2CO3) by parietal cells in the gastric glands of
the stomach to create an acidic environment (e.g.,
pH ¼ 2.5–3.5; equivalent to 10–2.5 to 10–3.5 M
HCl). Gastrin (released by the parietal cells of the
stomach) and acetylcholine (released by the
vagus nerve and enteric system) stimulate gastric
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acid production. In contrast, somatostatin (also
known as growth hormone-inhibiting hormone;
produced by D cells in the stomach, the small
and large intestine, and also the pancreas) and
secretin (produced by the S cells of the duode-
num) inhibit gastric acid secretion. Gastric HCl
aids in protein digestion by: (1) converting inac-
tive gastric proteases (pepsinogens A, B, C, and D
and pro-chymosin, collectively called zymogens,
which are synthesized and released by the chief
cells of the gastric glands) to active proteases
(pepsins A, B, C, and D, and chymosin); and
(2) denaturing dietary proteins so that they lose
their natural folded structures to expose their pep-
tide bonds to the active proteases for hydrolysis.

The specific activities of pepsinogens A, B and C
in the proventriculus increase progressively dur-
ing the embryonic development, reach a tempo-
rary peak several days before hatching, and
increase 30-fold within 24 h after hatching, in
comparison with the values at birth, regardless
of enteral feeding (Yasugi and Mizuno 1981).
Dietary protein, AAs, histamine, acetylcholine,
gastrin, gastrin-releasing peptide, vagal stimula-
tion, and vasoactive intestinal peptide enhance the
secretion of gastric proteases (Wu 2018a).

The digesta from the proventriculus enters the
gizzard (ventriculus; also known as the mechani-
cal stomach; pH ¼ 2.5–3.5) for grinding, mixing
and mashing. The digesta includes the large

Table 7.1 Concentrations of free amino acids in the plasma and skeletal muscles of 6-week-old fed and 48-h fasted male
White Leghorn chickensa

Amino
acid

Fed chickens 48-h fasted chickens

Plasma
(nmol/ml)

Gastrocnemius
muscle

Pectoralis
muscle Plasma

(nmol/ml)

Gastrocnemius
muscle

Pectoralis
muscle

(nmol/mg tissue) (nmol/mg tissue)

Ala 521 � 14 3.21 � 0.15 1.20 � 0.08 616 � 8* 3.93 � 0.10* 1.70 � 0.09*
β-Ala 44 � 7 1.08 � 0.30 0.83 � 0.13 79 � 6* 1.49 � 0.15 0.78 � 0.05
Arg 461 � 32 0.40 � 0.03 0.24 � 0.02 297 � 13* 0.36 � 0.01 0.26 � 0.02
Asp 65 � 5 1.55 � 0.09 0.31 � 0.02 152 � 13* 0.74 � 0.05* 0.32 � 0.01
Asn 114 � 13 0.41 � 0.04 0.18 � 0.02 86 � 11 0.32 � 0.03 0.21 � 0.04
Cit 1.01 � 0.03 0.016 � 0.002 0.015 � 0.001 0.74 � 0.02* 0.014 � 0.001 0.013 � 0.001
Cys 251 � 17 0.23 � 0.02 0.21 � 0.01 173 � 12* 0.18 � 0.01* 0.17 � 0.01*
Gln 1089 � 60 9.45 � 0.64 1.41 � 0.04 941 � 26 3.02 � 0.17* 1.38 � 0.07
Glu 265 � 22 3.43 � 0.28 0.90 � 0.06 317 � 11* 1.69 � 0.12* 0.89 � 0.05
Gly 496 � 16 1.05 � 0.14 0.71 � 0.09 709 � 28* 1.37 � 0.12 0.80 � 0.08
His 138 � 7 0.10 � 0.01 0.14 � 0.02 181 � 12* 0.32 � 0.03* 0.24 � 0.01*
Hyp 103 � 6 0.048 � 0.002 0.043 � 0.002 71 � 4* 0.044 � 0.002 0.041 � 0.002
Ile 228 � 10 0.21 � 0.02 0.23 � 0.02 241 � 9 0.18 � 0.02 0.19 � 0.02
Leu 305 � 24 0.28 � 0.03 0.32 � 0.05 287 � 5 0.31 � 0.04 0.26 � 0.03
Lys 209 � 13 0.47 � 0.06 0.23 � 0.03 446 � 26* 0.52 � 0.08 0.26 � 0.04
Met 75 � 6 0.094 � 0.006 0.10 � 0.01 77 � 2 0.11 � 0.01 0.12 � 0.02
Orn 20 � 2 0.046 � 0.003 0.032 � 0.002 21 � 2 0.042 � 0.003 0.030 � 0.002
Phe 212 � 12 0.19 � 0.03 0.18 � 0.02 244 � 5 0.17 � 0.02 0.20 � 0.02
Pro 349 � 21 0.29 � 0.04 0.24 � 0.02 251 � 14* 0.27 � 0.02 0.22 � 0.01
Ser 481 � 33 1.60 � 0.15 0.71 � 0.04 503 � 31 1.17 � 0.08* 0.84 � 0.06*
Tau 249 � 33 11.8 � 0.30 0.45 � 0.06 512 � 29* 9.20 � 0.42* 0.42 � 0.05
Thr 260 � 17 0.77 � 0.09 0.57 � 0.05 294 � 10 0.76 � 0.07 0.66 � 0.05
Trp 68 � 2 0.04 � 0.01 0.05 � 0.01 82 � 3* 0.06 � 0.01* 0.06 � 0.01
Tyr 171 � 10 0.14 � 0.01 0.16 � 0.01 250 � 11* 0.21 � 0.02* 0.23 � 0.02*
Val 288 � 19 0.46 � 0.04 0.33 � 0.03 316 � 4 0.40 � 0.04 0.32 � 0.03

Cit ¼ citrulline; Hyp ¼ 4-hydroxyproline; Orn ¼ ornithine; Tau ¼ taurine
*P < 0.05 vs the Fed group as analyzed by unpaired t-test
aTaken from Watford and Wu (2005). Data are means � SEM, n ¼ 5
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polypeptides, small peptides and free AAs
resulting from the enzymatic hydrolysis by
pepsins in the stomach, as well as dietary proteins
that are resistant to pepsins in the stomach. The
transit time of food particles through the proven-
triculus and gizzard is about 90 min. Food
particles from the gizzard, the food particles
enter the small intestine for further digestion.
The pancreas plays an essential role in the diges-
tion of dietary protein because its acinar cells
secrete pro-proteases into the lumen of the duo-
denum (pH ¼ 6.0–6.5). These enzymes are the
zymogens of endopeptidases (trypsin,
chymotrypsins A, B and C, collagenase, and elas-
tase) and exopeptidases (carboxypeptidases A
and B), and are activated in the duodenal lumen
by a cascade of limited proteolysis by enteroki-
nase to remove an N-terminal oligopeptide (2 to
6 AA residues) from each zymogen. Specifically,
enterokinase (released by enterocytes of the duo-
denum) converts trypsinogen into trypsin through
the removal of an N-terminal hexapeptide. Sub-
sequently, trypsin converts other pancreatic
zymogens into active forms (e.g.,
chymotrypsins A, B and C, elastase, and
carboxypeptidases A and B). In addition,
aminopeptidases (exopeptidases; released by the
mucosa of the small intestine) cleave the last
peptide bond adjacent to an AA at the NH2 termi-
nus. Furthermore, prolyl oligopeptidase (prolyl
endopeptidase; released by the small intestine)
cleaves proline or hydroxyproline from the inside
of an oligopeptide that contains the imino acid.

The extracellular proteolysis occurring in the
duodenum of poultry is limited due to the short
length of this intestinal segment and a short transit
time of food particles (about 7 min). The chyme
moves into the jejunum (pH ¼ 6.5–7.0), where
most proteolysis takes place due to its long length
and high protease activities. The transit time of
the digesta through the jejunum is about 25 min.
Continuous digestion of protein and polypeptides
can occur in the ileum (pH ¼ 7.0–7.4) if their
hydrolysis is not completed in the jejunum, with
the transit time of the digesta through the ileum
being about 60 min. The small peptides
containing 4–6 AA residues are further
hydrolyzed by peptidases that are bound

primarily to the brush-border of enterocytes, and
to a lesser extent, in the intestinal lumen to form
free AAs, dipeptides, and tripeptides. Dipeptides
(not containing imino acids, i.e., proline or
hydroxyproline) and tripeptides are hydrolyzed
by mucosa-derived dipeptidases and
tripeptidases, respectively (Wu et al. 2011a).
However, dipeptides containing an imino acid
are cleaved by mucosa-derived prolidases. The
true ileal digestibilities of AAs in the proteins of
corn grain, soybean meal, sorghum grain, and
meat & bone meal are 85–89%, 86–91%,
84–88%, and 89–91%, respectively, in chickens
(Wu 2014).

Absorption of tripeptides and dipeptides by the
enterocytes of small intestine occurs through the
apical-membrane Na+-independent, H+-driven
peptide transporter 1 (Gilbert et al. 2010). Sodium
is indirectly required for this process because the
needed protons are provided by the Na+/H+

exchange. Within the enterocytes, tri- and
di-peptides are rapidly hydrolyzed by cytosolic
peptidases to form free AAs. Because of the
high activity of intracellular peptidases, a nutri-
tionally significant quantity of peptides does not
transcellularly enter the portal vein or the intesti-
nal lymphatics (Wu 2018a). It is possible that a
limited amount of special small peptides [e.g.,
those containing an imino acid (such as
Gly-Pro-OH-Pro, a degradation product of colla-
gen) or a formyl AA (e.g., N-formyl-Met-Leu-
Phe, a bacterial peptide serving as a chemotactic)]
are absorbed intact from the luminal content to
the bloodstream through M cells, exosomes, and
enterocytes via transepithelial cell transport (Hou
et al. 2017).

Free AAs in the intestinal lumen are absorbed
by enterocytes primarily via (a) Na+-independent
system (facilitated system; e.g., for basic AAs as
well as small and large neutral AAs) and (b) Na+-
dependent system (active transport; e.g., for
acidic AAs as well as small and large neutral
AAs) (Matthews 2000). There are reports that
elevating dietary AA intake increases the abun-
dance of the b0,+AT mRNA in the jejunum of
chickens (Osmanyan et al. 2018) and that dietary
supplementation with L-methionine or
DL-methionine promotes the expression of the
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B0AT transporter in the small intestine of broilers
(Zhang et al. 2017a). The international Nomen-
clature Committee has named AA transporters
according to their solute carrier families based
on their gene sequence similarities. Na+-depen-
dent AA transporters and Na+-independent AA
transporters account for the uptake of 60% and
40% of free AAs from the lumen of the small
intestine into enterocytes, respectively
(Wu 2018a, b). Before binding to an AA, the
Na+-dependent AA transporter binds to Na+

first, which will increase its affinity for the
AA. As a result, both Na+ and the AA are
transported into the cytoplasm of the enterocyte.
To maintain the balance of electrolytes within the
enterocyte, the Na+/K+-ATPase in its basolateral
membrane is responsible for pumping Na+ out of
the cell and getting K+ into the cell at the expen-
diture of ATP.

In chickens, the apical membrane of
enterocytes actively takes up AAs (including glu-
tamine, glutamate and aspartate) from the lumen
of the small intestine. At present, it is unknown
about the percentages of dietary AAs entering the
portal circulation of any poultry species. This
issue can be addressed by cannulating the portal
vein of chickens and obtaining blood samples
from the portal vein at various time points after
feeding for AA analyses, as performed in pigs
(Wu et al. 1994). Alternatively, Ussing chambers
can be used to assess the transfer of AAs (e.g.,
0.5–5 mM glutamine, glutamate, or aspartate)
from the luminal (apical, mucosal) side of the
small intestine (e.g., jejunum) of chickens to the
serosal (or basolateral, facing the blood) side of
the gut, as performed in the pig small intestine
(Wang et al. 2014). In pigs, about 70% of dietary
glutamine (Wu et al. 2011a) and 97% of dietary
glutamate (Hou and Wu 2018) are utilized (pri-
marily via oxidation to CO2) by the small intes-
tine during the first pass into the portal vein. If
this is also true for birds, most of the circulating
glutamine and glutamate in their bodies must be
derived from endogenous synthesis.

Based on the intakes of digestible AAs and the
accretion of AAs in the body of 14- and
42-day-old broiler chickens, we estimate that the
overall efficiency of digestible AAs for their
growth is 65.5% and 60.3%, respectively, with

the rates for individual AAs differing greatly from
40% to 79%, depending on age and diet
(Tables 7.2 and 7.3). If substantial amounts of
dietary AAs are catabolized by the small intestine
(either enterocytes, luminal microbes, or both) as
reported for pigs (Wu 2013), these efficiency
values may be greater, particularly for older
birds with more active microbes in the small
intestine. If nearly all of the dietary glutamate is
utilized by the small intestine in chickens as
reported for mammals (Wu 1998), glutamate
must be synthesized endogenously from other
AAs. We consider this to be highly possible.
Nonetheless, in 14- and 42-day-old chickens fed
rations containing 21.5% and 18.4% crude pro-
tein, respectively, all dietary AAs but glycine
appear to meet requirements for growth at the
rates of 36.3 and 112 g of body weight per day,
respectively. This raises an important question of
whether insufficient glycine intake may limit
maximum growth of chickens and whether die-
tary supplementation with glycine can reduce the
intake of total AAs by the birds without affecting
their growth performance.

7.3 Amino Acid Syntheses
in Chickens

Chickens, like other poultry species, do not form
the carbon skeletons of the following thirteen
proteinogenic AAs: arginine, cysteine, histidine,
isoleucine, leucine, lysine, methionine, phenylal-
anine, proline, threonine, tryptophan, tyrosine,
and valine (Wu 2013). This is because the birds
lack one or more of the enzymes (e.g., pyrroline-
5-carboxylate synthase, carbamoylphosphate
synthase-I, and ornithine carbamoyltransferase)
required for the biosynthesis of those carbon
skeletons from non-AA materials. Except for
arginine, cysteine, lysine, and threonine, the
α-ketoacids of the proteinogenic AAs can
undergo transamination with glutamate to gener-
ate their corresponding L-AAs. However,
chickens can convert: (1) phenylalanine into tyro-
sine in the liver and kidneys via the
tetrahydrobiopterin-dependent phenylalanine
hydroxylase, and (2) methionine into cysteine in
the liver via the transsulfuration pathway
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(Wu 2013). Tyrosine and cysteine can replace up
to 50% of phenylalanine and methionine in the
diets of chickens, respectively, depending on age
and dietary nutrient composition (Baker 2009). In
addition, relatively small amounts of ornithine
and proline are produced from arginine via argi-
nase, ornithine aminotransferase, and pyrroline-5-
carboxylate reductase (Austic 1973; Graber and
Baker 1973; Wu et al. 1995). Arginase
hydrolyzes arginine into ornithine and urea. The
latter is excreted in urine. Thus, despite the lack of
urea cycle in avian species, the body of

poultry contains urea of non-dietary origin. Fur-
thermore, a limited amount of citrulline is
generated from arginine via nitric oxide synthase.
This explains why the concentrations of ornithine
and citrulline in the plasma of chickens is very
low and negligible, respectively (Table 7.1), in
comparison with pigs (Wu 2018a).

Chickens synthesize de novo an additional
group of seven proteinogenic AAs (alanine,
asparagine, aspartate, glutamate, glutamine, gly-
cine, and serine), and some nonproteinogenic
AAs (e.g., taurine and γ-aminobutyrate) in a

Table 7.2 Utilization of proteinogenic amino acids in diet for the growth of 14-day-old broiler chickensa

AAs

AAs in diet

Intake of
digestible
AAs in diet
(g/day)b

AAs in the
body

AA
accretion
in the body
(g/day)

Digestible
AAs
catabolized to
CO2 (g/day)

Percentage (%) of
digestible AA

% of
diet
(as-fed
basis)

g/
100 g
AA

g/
100 g
wet
weight

g/
100 g
AAs

Oxidized
to CO2

Deposited
in the
bodyd

Ala 1.31 6.16 0.491 0.951 6.61 0.345 0.145 29.6 70.4
Arg 1.44 6.77 0.546 0.975 6.78 0.354 0.192 35.2 64.8
Asn 0.93 4.37 0.345 0.521 3.62 0.189 0.156 45.2 54.8
Asp 1.31 6.16 0.491 0.618 4.30 0.224 0.266 54.3 45.7
Cysc 0.51 2.40 0.186 0.219 1.52 0.079 0.106 57.2 42.8
Gln 1.81 8.51 0.684 0.747 5.19 0.271 0.413 60.4 39.6
Glu 1.70 7.99 0.647 1.190 8.28 0.432 0.216 33.3 66.7
Gly 0.88 4.14 0.326 1.670 11.6 0.606 – 0.280 – 86.0 186.3
His 0.55 2.58 0.202 0.306 2.13 0.112 0.091 44.9 55.1
Ile 0.88 4.14 0.333 0.513 3.57 0.186 0.146 44.0 56.0
Leu 1.79 8.41 0.673 0.988 6.87 0.359 0.315 46.7 53.3
Lys 1.40 6.58 0.514 0.881 6.13 0.320 0.194 37.8 62.2
Met 0.52 2.44 0.196 0.273 1.90 0.099 0.097 49.3 50.7
Phe 1.01 4.75 0.385 0.496 3.45 0.180 0.204 53.2 46.8
Pro 1.52 7.14 0.564 1.224 8.51 0.445 0.120 21.2 78.8
Ser 0.81 3.81 0.307 0.641 4.46 0.233 0.074 24.2 75.8
Thr 0.87 4.09 0.317 0.521 3.62 0.189 0.128 40.4 59.6
Trp 0.24 1.13 0.088 0.167 1.16 0.061 0.027 31.2 68.8
Tyr 0.78 3.67 0.295 0.379 2.64 0.138 0.157 53.3 46.7
Val 1.02 4.79 0.385 0.598 4.16 0.217 0.168 43.7 56.3
Hyp ND ND 0.499 3.47 0.181 – 0.181 – –

AA amino acid, Hyp 4-hydroxyproline, ND not detectable
aMale broiler chickens (Cobb) were fed a corn- and soybean meal-based diet containing 21.5% crude protein. Values are
means for 10 chickens. Amino acids in the diet and the animal body were analyzed by high-performance liquid
chromatography after acid and alkaline hydrolyses as previously described (Li and Wu 2020) and their values were
calculated on the basis of the molecular weights of intact AAs. A negative value indicates net formation
bFeed intake was 170 g/kg body weight per day. The mean body weight of 14-day-old broiler chickens was 297 g, and
their mean weight gain was 36.3 g/day. The true ileal digestibility (%) of AAs in the diet was: Ala, 88.1; Arg, 89.3; Asn,
87.2; Asp, 88.1; Cys, 85.6; Gln, 89.0; Glu, 89.6; Gly, 87.6; His, 86.3; Ile, 88.9; Leu, 88.5; Lys, 86.4; Met, 88.6; Phe,
89.6; Pro, 87.3; Ser, 89.1; Thr, 85.7; Trp, 86.5; Tyr, 88.9; and Val, 88.8 (Wu 2014)
cTotal cysteine (cysteine plus ½ cystine)
dAs protein and non-protein products
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cell- and tissue-specific manner (Wu 2013). To
date, compelling evidence shows that chickens
fed conventional diets do not adequately synthe-
size glycine and proline relative to their metabolic
needs (Baker 2009); therefore, these two AAs are
classified as EAA for the birds (Wu 2009). Note
that glutamate is the major excitatory neurotrans-
mitter in the central nervous system (He and Wu
2020). The transamination of branched-chain
AAs (BCAAs; leucine, isoleucine and valine)
with α-ketoglutarate (α-KG; derived primarily
from glucose metabolism) by BCAA

transaminase generates glutamate, which is
amidated with ammonia by the ATP-dependent
glutamine synthetase to form glutamine. Gluta-
mate is also transaminated with pyruvate or oxa-
loacetate by glutamate-pyruvate transaminase and
glutamate-oxaloacetate transaminase to yield ala-
nine and aspartate, respectively. Asparagine is
synthesized from aspartate and glutamine by the
ATP-dependent asparagine synthetase. Of note,
α-ketoisocaproate (the α-ketoacid of leucine) may
inhibit proteolysis in chicken skeletal muscle
(Nakashima et al. 2007), which fulfils another

Table 7.3 Utilization of proteinogenic amino acids in diet for the growth of 42-day-old broiler chickensa

AAs

AAs in diet

Intake of
digestible
AAs in diet
(g/day)b

AAs in the
body

AA
accretion
in the body
(g/day)

Digestible
AAs
catabolized to
CO2 (g/day)

Percentage (%) of
digestible AA

% of
diet
(as-fed
basis)

g/
100 g
AA

g/
100 g
wet
weight

g/
100 g
AAs

Oxidized
to CO2

Deposited
in the
bodyd

Ala 0.93 5.08 1.36 0.944 6.55 1.057 0.302 22.2 77.8
Arg 1.21 6.61 1.79 0.971 6.74 1.088 0.703 39.3 60.7
Asn 0.76 4.15 1.10 0.519 3.60 0.581 0.518 47.1 52.9
Asp 1.09 5.95 1.59 0.617 4.28 0.691 0.901 56.6 43.4
Cysc 0.43 2.35 0.61 0.226 1.57 0.253 0.357 58.5 41.5
Gln 1.62 8.85 2.39 0.741 5.14 0.830 1.561 66.3 33.7
Glu 1.50 8.19 2.23 1.183 8.21 1.325 0.905 40.6 59.4
Gly 0.76 4.15 1.10 1.712 11.9 1.917 – 0.819 – 74.6 174.6
His 0.43 2.33 0.61 0.304 2.11 0.340 0.269 44.1 55.9
Ile 0.75 4.10 1.11 0.511 3.55 0.572 0.535 48.3 51.7
Leu 1.59 8.68 2.34 0.987 6.85 1.105 1.230 52.7 47.3
Lys 1.16 6.33 1.66 0.880 6.11 0.986 0.673 40.6 59.4
Met 0.47 2.57 0.69 0.272 1.89 0.305 0.385 55.8 44.2
Phe 0.86 4.70 1.28 0.493 3.42 0.552 0.726 56.8 43.2
Pro 1.41 7.70 2.04 1.236 8.58 1.384 0.657 32.2 67.8
Ser 0.83 4.53 1.23 0.640 4.44 0.717 0.510 41.5 58.5
Thr 0.75 4.10 1.07 0.518 3.59 0.580 0.486 45.6 54.4
Trp 0.21 1.13 0.30 0.168 1.17 0.188 0.109 36.6 63.4
Tyr 0.71 3.88 1.05 0.382 2.65 0.428 0.620 59.2 40.8
Val 0.85 4.64 1.25 0.601 4.17 0.673 0.579 46.2 53.8
Hyp ND ND ND 0.507 3.52 0.568 – 0.568 – –

AA, amino acid; Hyp, 4-hydroxyproline; ND not detectable
aMale broiler chickens (Cobb) were fed a corn- and soybean meal-based diet containing 18.4% crude protein. Values are
means for 10 chickens. Amino acids in the diet and the animal body were analyzed by high-performance liquid
chromatography after acid and alkaline hydrolyses as previously described (Li and Wu 2020) and their values were
calculated on the basis of the molecular weights of intact AAs. A negative value indicates net formation
bFeed intake was 74 g/kg body weight per day. The mean body weight of 42-day-old broiler chickens was 2245 g, and
their mean weight gain was 112.0 g/day. The true ileal digestibility (%) of AAs in the diet was: Ala, 88.0; Arg, 89.1; Asn,
87.1; Asp, 88.1; Cys, 85.5; Gln, 89.0; Glu, 89.5; Gly, 87.0; His, 86.1; Ile, 88.9; Leu, 88.5; Lys, 86.2; Met, 88.4; Phe,
89.5; Pro, 87.2; Ser, 89.0; Thr, 85.6; Trp, 86.4; Tyr, 88.9; and Val, 88.7 (Wu 2014)
cTotal cysteine (cysteine plus ½ cystine)
dAs protein and non-protein products
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physiological function of leucine. Due to its large
mass, skeletal muscle [constituting 40–45% of
body weight (BW)] is the major site for the
syntheses of glutamate, glutamine and alanine in
chickens, with both glutamine and alanine
participating in inter-organ metabolism of AAs
(Wu et al. 1989). Thus, glutamine is the most
abundant free α-AA in the plasma and gastrocne-
mius muscle (a skeletal muscle) of chickens
(Table 7.1). The avian liver is also an active
organ for the syntheses of glutamate, aspartate,
and alanine, but contributes to little or no net
synthesis of glutamine due to its use for uric
acid synthesis (the major route of ammonia detox-
ification in birds) under physiological conditions.

Plant-based diets are deficient in glycine and
proline relative to protein synthesis in chickens
(Hou et al. 2019; Li et al. 2011; Li and Wu 2020).
We determined that the typical corn- and soybean
meal-based diets for 7- to 14-day-old and 35- to
42-day-old broiler chickens provide 30.8% and
28.2% of the glycine needed for weight gain and
uric acid production in the body, respectively
(Table 7.4). Assuming that the amounts of gly-
cine used for the syntheses of creatine, purines,
glutathione, hippurate, and heme as well as the
oxidation to CO2 and water (i.e., 0.91 and 0.36 g
glycine/kg BW per day in 7- to 14- and 35- to

42-day-old male broiler chickens, respectively)
represents 20% of the needs for weight gain plus
uric acid production (Wang et al. 2013; Wu
2010), the needs for all glycine-dependent meta-
bolic pathways are 5.48 and 2.18 g glycine/kg
BW per day in 7- to 14- and 35- to 42-day-old
male broiler chickens, respectively. In other
words, the diets provided 25.7% and 23.5% of
the glycine required by 7- to 14-day-old and 35-
to 42-day-old broiler chickens, respectively.
Thus, the rapidly growing bird must synthesize
daily at least 74–76% of the needed glycine, as
reported for young pigs (Wang et al. 2014). This
AA is synthesized endogenously from threonine,
serine (via glucose and glutamate), and
4-hydroxyproline (a product of collagen degrada-
tion) via multiple pathways in a cell-and tissue-
specific manner involving primarily the liver,
kidney, and skeletal muscle (Li and Wu 2018).
For example, glycine is formed from serine in the
liver and kidneys via serine hydroxymethyl-
transferase (present in both the mitochondria and
cytosol), from threonine in the liver, and from
4-hydroxyproline in almost all tissues (Wu et al.
2019). Because of a small amount of choline in
the diet, this substance is a minor source of gly-
cine in the body. Glycine is the most abundant
AA in the body of chickens (Wu 2013). This is

Table 7.4 Use of dietary glycine for growth and uric acid production in broiler chickens fed corn- and soybean meal-
based dietsa

Age of
chickens

Feed intake
(g/kg BW
per day)

Digestible
glycine
intake (g/kg
BW per
day)

Glycine
accretion in
the body
(g/kg BW
per day)

Uric acid
excretion in
urine (g/kg
BW per
day)

Glycine
needed for
uric acid
productionb

(g/kg BW
per day)

Glycine
needed for
weight gain
and uric acid
production
(g/kg BW
per day)

Dietary
glycine
meeting
glycine
needed for
weight gain
and uric acid
production
(%)

Days
7–14

180.5 � 2.9 1.44 � 0.03 2.05 � 0.05 5.63 � 0.19 2.51 � 0.08 4.57 � 0.09 30.8 � 0.19

Days
35–42

75.6 � 0.55 0.51 � 0.01 0.98 � 0.01 1.88 � 0.04 0.84 � 0.02 1.82 � 0.02 28.2 � 0.11

BW body weight
aValues are means� SEM, n¼ 4 pens. Cobb male broiler chickens were fed 21.5% and 18.4% crude-protein diets (corn-
and soybean meal-based) between days 7 and 14 and between days 35 and 42 of age, respectively. There were 10 birds
per pen. The mean body weight of the chickens was 36, 118, 297, 1489 and 2245 g at 0, 7, 14, 35, and 42 days of age,
respectively. The content of glycine in the whole bodies of 14- and 42-day-old broilers were 1.65 and 1.68 g/100 g of
body weight, respectively
bCalculated on the basis of the fact that one mole of glycine is required to synthesize 1 mole of uric acid (Wu 2013). Uric
acid was determined as described by Flynn and Wu (1996)
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consistent with its diverse roles in the metabolism
and physiology. For example, glycine is required
for the syntheses of glutathione (the most abun-
dant low-molecular-weight antioxidant in cells),
heme (a component of hemoglobin, myoglobin,
and heme-containing enzymes), and bilirubin
(a vehicle for iron excretion via feces and urine).
This AA also regulates the expression of
proteases to inhibit protein degradation in chicken
skeletal muscle (Nakashima et al. 2008). Glycine
is also a major inhibitory neurotransmitter in the
spinal cord and lower brainstem to regulate the
behavior and function of the animals (He and Wu
2020). In addition to glycine, chickens are not
able to synthesize adequately proline to meet
their nutritional and physiological requirements
(Baker 2009).

7.4 Amino Acid Catabolism
in Chickens

In mammals (e.g., rats, pigs, and humans), it is
now known that not all digestible AAs enter the
portal circulation and that all individual
proteinogenic AAs present in the lumen of the
small intestine undergo catabolism by enterocytes,
intestinal microbes, or both at various rates
(Wu 2013). At present, little is known about this
key aspect of protein nutrition in any poultry spe-
cies. In mammals, among all the AAs in the arterial
blood, only glutamine is absorbed by the
basolateral membrane of the enterocyte in the
post-absorptive state (Wu 2013). This is because
the basolateral membrane of the enterocyte
expresses glutamine transporters but no or low
levels of transporters for other AAs. In adult rats
and young pigs, the small intestine takes up about
30% of glutamine but no glutamate or aspartate
from the arterial blood in the post-absorptive state
(Wu 1998). It is unknown whether this is also true
for poultry. Both in vivo (e.g., jejunal cannulation)
and in vitro (e.g., Ussing chambers) techniques can
be used to address this important issue.

Poultry can degrade all the twenty proteinogenic
AAs in a cell- and tissue-specific manner to form
ammonia and their respective carbon skeletons such
as pyruvate, oxaloacetate, and α-KG (Wu 2013).
For example, there is little degradation of asparagine

in the small intestine (Porteous 1980) but this AA is
hydrolyzed by asparaginase in the liver and kidneys
of chickens to aspartate and ammonia (Coon and
Balling 1984). Except for BCAAs, the avian liver is
the major site for initiating and completing the
catabolism of these AAs to form ammonia. This
organ has a limited ability to transaminate BCAAs
due to low BCAA transaminase activity under
physiological conditions. In contrast, skeletal mus-
cle converts BCAAs and α-KG into their respective
α-ketoacids [i.e., branched-chain α-ketoacids
(BCAAs)] and glutamate in chickens (Wu and
Thompson 1987). As noted previously, glutamine
and alanine (neutral AAs) are formed from gluta-
mate as vehicles for the inter-organ transport of
carbon and nitrogen atoms of AAs. In extrahepatic
tissues, such as skeletal muscle, small intestine, and
heart, some of the BCKAs undergo oxidative decar-
boxylation but most of them are released to the
blood stream. The liver is the major organ to take
up BCKAs in the blood for either oxidation to CO2,
glucose synthesis (except for the α-ketoacid of leu-
cine), and ketogenesis. Tissues of birds can convert:
(1) citrulline into arginine via argininosuccinate
synthase and lyase, and (2) ornithine into α-KG
via ornithine aminotransferase and pyrroline-5-car-
boxylate dehydrogenase. The latter is primarily
expressed in the liver. There is negligible catabo-
lism of taurine in animals (including poultry), and it
is excreted from the body via either urine as a free
AA or bile salt in feces.

In contrast to mammals, the liver of birds has a
very low activity of phosphate-activated gluta-
minase (Coon and Balling 1984; Watford and
Wu 2005) such that hydrolysis of glutamine to
glutamate and ammonia is limited in this organ.
Like mammals (Wu et al. 1991), the skeletal
muscles of chickens express glutaminase to
degrade glutamine (Wu et al. 1998). Table 7.5
summarizes the activities of glutaminase in the
liver, skeletal muscle and small intestine of
chickens. The low activity of hepatic glutaminase
ensures the synthesis of uric acid from ammonia
via the formation of glutamine and subsequently
purine nucleosides in the liver (Wu 2013). Notes
that adenosine and guanosine are generated from
not only glutamine but also glycine, aspartate,
formate, ribose-5-phosphate, bicarbonate and
ATP. Compared with ureagenesis in mammals,
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more energy is required for uric acid generation
per removal of one ammonia molecule, resulting
in the release of more heat. This explains, in part,
why the basal metabolic rate and body
temperatures are higher in birds than in mammals
(e.g, pigs, rats and humans). Because ammonia is
toxic to the central nervous system, it must be
removed via uric acid production (the primary
route for detoxification) and other biochemical
pathways such as glutamine and glutamate
syntheses in avian species.

Physiologically important products of AA catab-
olism in animal cells include polyamines (putres-
cine, spermidine and spermine). These substances
are essential to the synthesis of DNA and proteins
and, therefore, the rapid growth and development of
all animals, including chickens (Agostinelli 2020).
However, metabolic pathways for polyamine syn-
thesis in avian tissues are largely unknown. In
chickens, expression of arginase is relatively low
and pyrroline-5-carboxylate synthase is absent in all
tissues (Wu et al. 1995). At present, little is known
about proline oxidase (POX) for polyamine synthe-
sis in avian tissues. Recently, we found that arginase
and POX activities are present only in the mitochon-
drial fraction of the kidneys of chickens between
0 and 21 days of age (Furukawa et al. 2018). Renal
POX activity was greater on day 7 than Day 0, but
no change in renal arginase activity was detected

during this period. Accordingly, there were
age-dependent changes in the syntheses of
14C-putrescine, 14C-spermidine and 14C-spermine
from [U-14C]arginine or [U-14C]proline in the
chicken kidneys. Interestingly, concentrations of
putrescine, spermidine and spermine in the plasma
of chickens were about 10-, 100-, and ten-fold
greater, respectively, than those in plasma from
mammals. Consistent with enzymatic activities
and polyamine syntheses, concentrations of
polyamines in the kidney and plasma were greater
on day 7 than day 0, but then values decreased on
days 21 and 42. Thus, results of this study reveal
that polyamines are synthesized from arginine via
arginase and proline via POX in the chicken
kidneys and that polyamines released from the
kidneys into blood provide polyamines for
extrarenal tissues. This new knowledge helps to
better understand the nutritional biochemistry of
arginine and proline in birds.

7.5 Inter-organ Metabolism
of Glutamate and Glutamine
in Chickens

Because of the versatile and enormous roles of
glutamine and glutamate in metabolism and phys-
iology as noted previously, the past four decades

Table 7.5 Activities of glutaminase, glutamine synthetase, and rates of protein synthesis in tissues of 6-week-old fed
and 48-h fasted male White Leghorn chickensa

Tissue
Nutritional
state

Activity of phosphate- activated
glutaminase (unit/g wet weight of
tissue)

Activity of glutamine
synthetase (unit/g wet weight
of tissue)

Fractional rate of
protein synthesis
(%/day)

Liver Fed 0.67 � 0.02 (6) 1.68 � 0.09 (4) 128.4 � 7.5 (5)b

48-h fasted 0.61 � 0.05 (6) 1.75 � 0.08 (5) 52.6 � 3.8* (5)b

GM Fed 0.39 � 0.03 (3) 0.50 � 0.04 (4) 36.1 � 1.50 (5)
48-h fasted 0.28 � 0.04 (4) 0.73 � 0.03* (5) 13.6 � 0.55* (5)

PM Fed 1.67 � 0.09 (4) 0.07 � 0.01 (4) 10.5 � 0.86 (5)
48-h fasted 1.28 � 0.16 (4) 0.08 � 0.01 (5) 10.3 � 0.81 (5)

Jejunum Fed 0.14 � 0.02 (5) 0.034 � 0.002 (5) 96.3 � 4.6 (5)b

48-h fasted 0.12 � 0.02 (5) 0.031 � 0.002 (5) 41.8 � 2.3* (5)b

Kidney Fed 8.22 � 0.53 (6) ND 48.6 � 2.4 (5)b

48-h fasted 6.30 � 0.50 (7)* ND 39.2 � 1.7* (5)b

GM gastrocnemius muscle, ND not detected, PM pectoralis muscle
*P < 0.05 vs. the fed group
aAdapted from Watford and Wu (2005) and Wu et al. (1998). Values are means � SEM. The number of animals is
indicated in the parentheses. One unit represents 1 μmol of product formed per minute at 38 �C
bRates of fractional protein synthesis were measured as described by Watford and Wu (2005)
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have witnessed growing interest in the inter-organ
metabolism of glutamate and glutamine in
chickens. In the skeletal muscle of chickens, glu-
tamate and glutamine can be synthesized and
degraded, with the intracellular glutamine-
glutamate cycle regulating the release of gluta-
mine from this organ (Wu et al. 1991). The rate of
the oxidation of glutamate in the muscle is gener-
ally lower than the rate of the synthesis of gluta-
mine from glutamate (Wu and Thompson 1987).
In chickens, the rates of the oxidation of gluta-
mate and glutamine are greater in the breast mus-
cle (mainly glycolytic fibers) than in the leg
muscle (mainly oxidative fibers) (Wu et al.
1991, 1998). This explains why the concentration
of glutamine is much lower in the breast muscle
than in leg muscles (Table 7.1). In addition,
extensive metabolism of both AAs occurs in the
liver, small intestine, brain, and kidneys (Smith
and Campbell 1983; Tinker et al. 1986; Watford
et al. 1981; Watford and Wu 2005). The synthesis
of glutamine from glutamate is of physiological
significance for directly scavenging free ammonia
in the blood and other tissues.

In the avian small intestine, glutamine and
fructose-6-phosphate are known as substrates for
the synthesis of glucosamine-6-phosphate and,
thus, glycoproteins (including mucins and mem-
brane receptors) (Wu 2013). In addition, gluta-
mine is capable of activating the mechanistic
target of rapamycin signaling pathway to stimu-
late tissue protein synthesis and animal growth.
Because of limited glutaminase activity and abun-
dant glutamine content in common feedstuffs for
poultry diets, the concentration of glutamine in
the plasma of chickens is about 1 mM, which
doubles the concentration of glutamine in the
plasma of mammals (Wu 2018a, b). In contrast,
the concentration of glutamate in plasma is rela-
tively low (< 100 μM) in poultry, although gluta-
mate is abundant in common feedstuffs for
poultry diets. This can be now explained by a
high rate of glutamate oxidation and utilization
by the enterocytes of chickens (He et al. 2018), as
reported for rats and humans (Reeds et al. 2000)
as well as pigs (Hou and Wu 2018) and fish
(Li et al. 2020a). It is likely that glutamate is
utilized as a substrate for intestinal glutathione
synthesis by poultry (Porteous 1980).

A previous study showed that the rate of glu-
tamine consumption by chicken enterocytes was
higher than that of proline, serine, glutamate,
aspartate, asparagine, and glucose at 2.5 mM for
each amino acid and 5 mM for glucose (Porteous
1980). The author also showed that the rate of
glutamate consumption was only 20% of that for
glucose. In contrast, Wu et al. (1995) reported
that the enterocytes of growing chickens had a
low activity of glutaminase and a limited ability
to utilize this AA. Similarly, He et al. (2018)
reported that chicken enterocytes had a low rate
of catabolizing glutamine, but extensively
degraded both glutamate and aspartate via
reactions initiated primarily by transaminases to
provide the majority of ATP. This basic research
is highly significant because energy metabolism
is the basis of life (Wu 2018a).

The liver of chickens takes up glutamine from
the arterial blood at a higher rate in the fasting
state than in the fed state (Tinker et al. 1986). In
contrast, the liver of chickens in the fed state
actively takes up glutamate, and the hepatic
uptake of glutamate is the highest among all the
amino acids measured, including glutamine, argi-
nine, alanine and aspartate (Tinker et al. 1986).
Due to the low glutaminase activity in the liver of
chickens (Table 7.5), glutamine is mainly used to
synthesize purine and pyrimidine nucleotides.
The purine can be further converted into uric
acid, which is an important antioxidant in birds
(Fang et al. 2002). In contrast, the liver of
chickens can readily degrade glutamate by either
glutamate dehydrogenase or glutamate
transaminases (e.g., glutamate-pyruvate transam-
inase and glutamate-oxaloacetate transaminase),
with the carbon skeletons of glutamate being
mainly converted into CO2 and water. This is
because, in avian hepatocytes, phosphoenolpyr-
uvate carboxykinase is localized exclusively in
mitochondria and, therefore, glutamate is not
converted into glucose in these cells under fed
or fasting conditions (Watford et al. 1981). This
aspect of hepatic amino acid metabolism in birds
is distinct from that in mammals.

In contrast to pigs (Hou and Wu 2018), the
kidneys of chickens in the fed state take up gluta-
mine from the arterial blood, but not glutamate
(Tinker et al. 1986). In the long-term (6-day)
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fasting state, there is no uptake of both glutamine
and glutamate by the chicken kidneys (Tinker
et al. 1986). In avian renal tubules, phosphoenol-
pyruvate carboxykinase is present in both the
cytosol and mitochondria, which allows for the
production of glucose from glutamate under both
fed and fasting conditions (Watford et al. 1981).
This is significant for the regulation of glucose
homeostasis in birds (Wu 2018a). When renal
glutamate dehydrogenase activity is enhanced
under acidotic conditions, the glutamate-derived
ammonia contributes to the regulation of acid-
base balance in the whole body (Curthoys and
Watford 1995).

7.6 Amino Acid Nutrition
in Poultry

7.6.1 Growth Performance

Chickens grow fast and respond sensitively to
the dietary intakes of AAs (Baker 2009). This is
consistent with a relatively high rate of protein
synthesis in their skeletal muscles (Table 7.5). In
addition, growth is also associated with the accre-
tion of free AAs (particularly taurine,
γ-aminobutyrate, glutamate and glutamine) in
tissues, including skeletal muscle and brain
(Tomonaga et al. 2004, 2005). Because of the
differences in genetic selection, environment,
and dietary composition, modern breeds
of chickens have different requirements for AAs
than the breeds used 30 years ago (Bailey 2020).
Although previous studies reported that adult
roosters did not need dietary glutamate or gluta-
mine to maintain their body at a zero or positive
nitrogen balance when fed a purified diet during
the 3-day experimental period (Leveille and
Fisher 1959), dietary glutamate and glutamine
are vital for chickens to maintain a zero or posi-
tive nitrogen balance for long-term growth
and survival (Maruyama et al. 1976). Note that
nitrogen balance is not highly sensitive to assess
dietary requirements for all AAs in animals
within a short period time (Wu 2014). One
longer-term study (> a 14-day period)
demonstrated that the absence of glutamate from

diets decreased the BW gain of 1- to 14-day-old
chickens fed a purified diet, while 10% of gluta-
mate supplementation to a glutamate-free basal
diet increased the BW gain of young chickens
by four-fold (Maruyama et al. 1976).

Much evidence shows that, due to the limited
activities of arginase (Klain and Johnson 1962)
and proline oxidase (Furukawa et al. 2018) in
chickens for glutamine synthesis from arginine
and proline, dietary glutamine is of great signifi-
cance for the health (including intestinal health)
and growth of birds, particularly under stress
conditions (Awad et al. 2014). In support of this
notion, dietary supplementation with glutamine
or feed-grade glutamine plus glutamate stimulates
muscle protein synthesis and whole-body growth
in broiler chickens (Li et al. 2010). This finding is
consistent with the report that glutamine
stimulates protein synthesis and inhibits proteoly-
sis in chick skeletal muscle in vitro (Wu and
Thompson 1990). Co-supplementation with glu-
tamate and glutamine mitigated on muscle catab-
olism in heat-stressed broiler chickens by
inhibiting intramuscular proteolysis (Furukawa
et al. 2020). Similarly, supplementing 0.2%,
0.4%, or 0.8% glutamine to a corn- and soybean
meal-based diet for laying hens housed at
25–30 �C improved small-intestinal and oviduct
morphologies; the circulating levels of luteinizing
hormone, follicle stimulating hormone, triiodo-
thyronine and tetraiodothyronine; and egg pro-
duction (Dong et al. 2010). Furthermore, dietary
supplementation with 0.5% or 1% glutamine to
broilers raised under hot conditions (30–34 �C)
enhanced feed intake, serum insulin concentra-
tion, tissue integrity, and body-weight gain
(Hu et al. 2016a), while improving the water-
holding capacity, moisture and color of meat
(Hu et al. 2016b). These findings establish that
growing chickens cannot synthesize enough glu-
tamine to meet their growth requirements.

Besides glutamate and glutamine, there is
continued interest in the nutrition of EAAs in
chickens. Dietary supplementation with lysine or
methionine for 21- to 42-day-old broilers
increased their growth rate through changes in
metabolic pathways, as well as polygenic and
pleiotropic relationships (Zhai et al. 2016).
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Likewise, dietary supplementation with lysine
(Zarghi et al. 2020) or tryptophan (Mund et al.
2020) above the NRC (1994)-recommended
levels had positive effects on growth perfor-
mance, tissue development, immune responses,
and antioxidant status in broiler chickens. How-
ever, excessive supplementation with tryptophan
increased risks for pulmonary arterial pressure
and induced plexiform lesion (Kluess et al.
2012). Therefore, caution must be exercised to
formulate AA-balanced diets for chickens. Fur-
thermore, elevating dietary AA density for
broilers enhanced feed efficiency and breast mus-
cle yield, while reducing fat pad yield (Johnson
et al. 2020). Interestingly, although dietary methi-
onine (0.50% and 0.43% for starter and finisher
diets, respectively) is sufficient to support the
growth of broiler chickens with a normal hatching
weight, this may not be the case for chickens with
a low hatching weight. Thus, supplementing
0.1% DL-methionine to the diet for the chickens
with a low hatching weight augmented their aver-
age daily BW gain, food intake, and the growth of
breast muscle (Wen et al. 2014). Wen et al. (2014)
explained that the beneficial effects of dietary
supplementation of DL-methionine may be
mediated by increases in IGF-I synthesis, as
well as the expression of genes for the
TOR/4EBP1 and FOXO4/atrogin-1 pathway.

Based on findings from studies with rats
(Fu et al. 2005; Jobgen et al. 2009) and pig (Tan
et al. 2009) that arginine reduces white fat accre-
tion, much attention has been directed to such a
novel role of this AA in poultry. For example,
dietary supplementation with arginine
(0.25–1.00%) from 21 to 42 days of age of
broilers reduced the abdominal fat deposition
without any side effect on meat flavor or quality
(Fouad et al. 2013). The underlying mechanisms
include: (1) reductions in the expression of
lipogenic genes in the liver and abdominal fat
tissue (Pirsaraei et al. 2017); (2) improvements
in blood metabolic profiles (including hematol-
ogy; Oso et al. 2017) and the development of
immune organs (e.g., thymus and spleen; Oso
et al. 2017); (3) enhancement in immunity, as
shown by amelioration of immunosuppression in
chickens inoculated with infectious bursal disease

virus (Tan et al. 2014); (4) alleviation of oxidative
stress and inflammation (Yazdanabadi et al.
2020); and (5) decreases in Salmonella counts in
the small intestine (Oso et al. 2017).

With the availability of low-cost feed-grade
EAAs, two or more of their combinations have
been used to improve the growth performance of
chickens. For example, Emadi et al. (2011)
reported that dietary supplementation of the com-
bination of arginine plus tryptophan above the
NRC (1994) requirements not only enhanced
their growth performance but also had a positive
immunomodulatory effect on innate (interferon-
α), cellular (interferon-γ) and humoral (immuno-
globulin G) immune responses in broiler chickens
challenged with an infectious bursal disease vac-
cine. In addition, supplementation with glycine
plus threonine increased the growth performance
of 21- to 35-day-old broiler chickens fed diets
based exclusively on plant-source feedstuffs
with low protein levels (Ospina-Rojas et al.
2013). Furthermore, supplementing a mixture of
AAs (0.3% Leu, 0.2% Gly, 0.2% Pro, 0.2% Ala,
0.6% Asp, and 0.6% Glu) to a reduced-protein
(18% crude protein) diet for broilers (days 6–21)
enhanced body-weight gain and feed efficiency
without affecting feed intake, compared with the
control group fed an 18% crude protein diet
(Corzo et al. 2005).

7.6.2 Neurological Function and Feed
Intake

AAs are known to modulate neurological func-
tion in animals (He and Wu 2020). Intracerebro-
ventricular (ICV) injection of L-proline inhibited
spontaneous activity and increased sleeping pos-
ture of chicks in a dose-dependent manner
(Hamasu et al. 2009). The sedative and hypnotic
effects induced by L-Pro was mediated by
N-methyl-D-aspartate (NMDA) receptors
(Hamasu et al. 2010). In addition, L-Ser, L-Asp,
D-Asp, L-Trp, D-Pro, L-Pro, L-Glu, glutathione,
or creatine has been reported to inhibit spontane-
ous activity and attenuate adverse stress
behaviors in chicks (Asechi et al. 2006; Erwan
et al. 2012; Erwan et al. 2014; Yoshida et al.
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2012; Yamane et al. 2009a, b). However, the
mechanisms responsible for the sedative effects
of these AAs are different. Specifically, L-Ser
inhibits the social separation stress-induced
behaviors, which is mediated by
γ-aminobutyrate A receptors. L-Asp induces sed-
ative and hypnotic effects via NMDA receptors,
whereas L-Pro, D-Pro, and glutamate exert the
same effects via NMD, glycine, and NMDA
plus AMPA receptors, respectively. In contrast,
D-Asp reduces stress response through the simul-
taneous involvement of other receptors besides
the NMDA receptor. These receptors are proteins,
indicating an important role of AAs in overall
neural network, behavior, and food intake (Tran
et al. 2019). For example, there are reports that:
(1) ICV injection of L-leucine increased the food
intake of neonatal chicks, while the other two
BCAAs or α-ketoisocaproate had no effect
(Izumi et al. 2004); (2) ICV injection of
L-ornithine, carnosine, L-His, β-Ala, and hista-
mine to neonatal chicks decrease their food intake
(Tran et al. 2016; Tomonaga et al. 2004;
Kawakami et al. 2000); these AAs are potential
acute satiety signals in the brain of neonatal
chicks; (3) the effect of L-Pro on food intake by
neonatal chicks varied with feeding status, with
ICV injection of L-Pro stimulating food intake
under free access conditions but decreasing food
intake in the fasting state (Haraguchi et al. 2007).
To translate these discoveries into feeding, stud-
ies involving dietary supplementation of one or
more AAs should be conducted with poultry.

7.6.3 Anti-oxidative
and Anti-inflammatory
Reactions

Glycine, arginine, glutamine, methionine, cyste-
ine, tryptophan, proline, taurine, and creatine
have anti-oxidative and anti-inflammatory
functions in animals, including chicks (Sestili
et al. 2011; Wu 2013). This line of research is
still active in the field of poultry nutrition. For
example, Xiao et al. (2018) reported that taurine
enhanced antioxidant status in the duodenum and
ameliorated lipopolysaccharide-induced intestinal
inflammation in chickens by improving

mitochondrial membrane permeability and goblet
cell function. The anti-oxidative property of tau-
rine also protects cardiomyocytes from oxidative
injury, as taurine supplementation enhanced the
levels of antioxidant molecules (e.g., glutathione,
superoxide dismutase and glutathione peroxidase)
and inhibited apoptosis in the cardiomyocytes of
broilers with right ventricular hypertrophy (Li et al.
2020b). Furthermore, adding glycine-Zn chelates
to the diet of broiler chickens enhanced the anti-
oxidative capacity of their skeletal muscle and
reduced the concentration of malondialdehyde
(a product of lipid peroxidation), thereby improv-
ing meat quality (Winiarska-Mieczan et al. 2020).

7.6.4 Revisit of the Ideal Protein
Concept in Chicken Nutrition

Animals have requirements for dietary AAs but
not protein (Wu 2018a). Growth of poultry is
characterized by the deposition of not only pro-
tein but also free AAs. The latter (e.g., free gluta-
mate, glutamine, aspartate and asparagine) can
constitute a significant proportion of the total
AA pool in the body and, therefore, should not
be neglected when considering dietary AA
requirements (Wu 2013). Unfortunately, chemi-
cal analysis of these AAs in feedstuff and body
proteins was not developed until the work of Li
et al. (2011). The century-old term “NEAA” has
recently been recognized as a misnomer in
nutritional sciences and should be replaced by a
new term, AASA (an AA that is synthesizable de
novo in animal cells (Hou and Wu 2017).

The “ideal protein” concept has played a sem-
inal role in advancing the development of AA
nutrition in chickens over the past 70 years. How-
ever, this nutritional concept has flaws due to the
limited knowledge of tissue-specific AA metabo-
lism and underdeveloped analytical tools in the
1950s–1970s. The “ideal protein” concept has
now been recognized to have significant
shortcomings because it ignores nutritionally
and physiologically important NEAAs in dietary
formulations (Wu 2014). Revisiting the historic
milestones in the development of the “ideal pro-
tein” concept will provide nutritional scientists
with “foods” for thoughts.
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Beginning in the late 1950s, researchers at the
University of Illinois conceptualized an ideal pro-
tein (optimal proportions and amounts of EAAs)
for diets of chickens (Glista et al. 1951; Fisher
and Scott 1954). This concept concerned only
EAAs but no NEAAs. Early attempts to define
an ideal protein were based on the composition of
EAAs in casein and chicken eggs, but were
largely unsuccessful partly because of the
imbalances and excessive amounts of many
EAAs. Several years later, Klain et al. (1960)
simulated the profile of EAAs in the chick carcass
to design a revised pattern of dietary EAAs in the
ideal protein. An improvement in the growth per-
formance of broilers was achieved with the
revised ideal protein, but remained largely
unsatisfactory.

Subsequently, a mixture of four AAs (cystine,
glycine, proline, and glutamic acid), which are
synthesized from methionine or other AAs by
birds and had previously been thought to be
NEAAs in chicken nutrition, was used in dietary
formulations to yield better results on growth
performance in broilers (Baker et al. 1968; Graber
and Baker 1973). The extensive research during
the 1960s and the 1970s culminated in several
versions of the “chick AA requirement standard”
for the first 3 weeks post-hatching (Dean and
Scott 1965; Huston and Scott 1968; Sasse and
Baker 1973). The reference values for EAAs
were revised by Baker and Han (1994) to improve
their balance in diets. The common features
shared by these different recommended standards
of dietary requirements of chickens for EAAs are
that the diets included: (a) all proteinogenic EAAs
that are not synthesized de novo by poultry;
(b) several AAs (glutamic acid, glycine, and pro-
line) that are synthesized de novo by birds to
various extents; and (c) no data on alanine, aspar-
tate, asparagine, glutamine, or serine.

It is noteworthy that the patterns of AA com-
position in the ideal protein for chicks, as pro-
posed by the Scott and Baker groups, differed
substantially for glycine and proline, and, to a
lesser extent, for branched-chain AAs, histidine,
and sulfur-containing AAs (Dean and Scott 1965;
Huston and Scott 1968; Sasse and Baker 1973;
Baker and Han 1994). These differences may
reflect variations in the AA composition of

chickens reported in the literature (Price et al.
1953; Robel and Menge 1973). Because the con-
tent of proline plus hydroxyproline, as well as
glutamate, glutamine, aspartate and asparagine,
in the body of chickens was not known at that
time, the relatively small amount of proline in the
recommended ideal protein was only arbitrarily
set and the diets still contained no glutamine,
aspartate or asparagine, which are all highly
abundant in the body (Wu 2013). In contrast, a
very large amount of glutamic acid (e.g., 13 times
the lysine value in the modified Sasse and Baker
Reference Standard) was used to presumably
meet the entire need for “nonspecific AA nitro-
gen”. However, key questions regarding whether
glutamic acid fulfilled this role and whether
excessive glutamic acid might interfere with the
transport, metabolism and utilization of other
AAs in chickens were not addressed by the Uni-
versity of Illinois researchers. Possibly due to
these concerns and the publication of the NRC
(1994) nutrient requirements for poultry, Baker
(1997) excluded glutamic acid, glycine or proline
from the ideal protein for the diets of 0- to
56-day-old broiler chickens in his final version
of the Ideal Ratios of Amino Acids for the birds.
This is unfortunate but reflects an inadequate
understanding of AA biochemistry and nutrition
in poultry at the earlier times. Recent advances in
nutrition research indicate that chickens, just like
swine, have dietary requirements for NEAAs
under certain physiological and environmen-
tal conditions (Wu 2014, 2018a). These NEAAs
are now considered to be conditionally essential
AAs in diets and play crucial roles in supporting
the health and the maximum growth and
egg-laying of chickens, as noted previously.
Thus, sufficient NEAAs in diets are critical for
improving the efficiency of poultry and egg pro-
duction worldwide.

7.6.5 Texas A&MUniversity’s Optimal
Ratios of AAs for Chickens

The composition of AAs in diets differ from that
in the skeletal muscle protein of broiler chickens
(Tables 7.3 and 7.6) because dietary AAs are
catabolized in animal tissues to different extents
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and some AAs are synthesized in a tissue-specific
manner at various rates (Wu 2013). As noted
previously, AAs (e.g., glutamate and glutamine)
that are present in the free pool at high
concentrations (Table 7.6), as well as glycine
and proline (the most abundant AAs in the
body), should be taken into consideration when
defining dietary requirements of chickens for
AAs. Based on the recent advances in the nutri-
tion and metabolism of AAs, particularly the
functional AAs (Wu 2010), Wu (2014) proposed
the Texas A&M University’s optimal ratios of
true digestible AAs in diets for growing broiler
chickens during different growth phases
(Table 7.7). This is consistent with the recent

findings that animals (including poultry) have
particularly high requirements for dietary gluta-
mate, glutamine, glycine and proline. These AAs
are very abundant in rendered animal sources of
feedstuffs, such as blood meal, feather meal,
ruminant meat & bone meal, and poultry
by-products (Li et al. 2011). In addition,
hydrolyzed feather meal is an abundant source
of both glycine and proline in chicken nutrition.
In contrast, plant-source feedstuffs contain rela-
tively low content of both glycine and proline
(Hou et al. 2019; Li and Wu 2020).

The Texas A&MUniversity’s optimal ratios of
dietary AAs for chickens (Wu 2014) are expected
to beneficially reduce dietary protein content and

Table 7.7 Texas A&M University’s optimal ratios of true digestible amino acids in diets for growing broilersa

AA

Age of broiler chickens Laying hensb

0 to
21 daysc

21 to
42 daysd

42 to
56 dayse Content of digestible AAs in diet

(%, as-fed basis)
Percentage of digestible
lysine in diet (%)(% of digestible lysine in diet)

Alanine 102 102 102 0.90 110
Arginine 105 108 108 1.03 126
Asparagine 56 56 56 0.72 88
Aspartate 66 66 66 1.03 126
Cysteine 32 33 33 0.29 35
Glutamate 178 178 178 1.45 177
Glutamine 128 128 128 1.58 193
Glycine 176 176 176 1.00 120
Histidine 35 35 35 0.41 50
Isoleucine 67 69 69 0.70 85
Leucine 109 109 109 1.52 185
Lysine 100 100 100 0.82 100
Methionine 40 42 42 0.38 46
Phenylalanine 60 60 60 0.53 65
Proline 184 184 184 1.31 160
Serine 69 69 69 0.80 98
Threonine 67 70 70 0.61 74
Tryptophan 16 17 17 0.19 23
Tyrosine 45 45 45 0.41 50
Valine 77 80 80 0.78 95

Adapted from Wu (2014)
aExcept for glycine, all amino acids are L-isomers. Values are based on true ileal digestible amino acids
bA diet that consists of 60% corn grain (containing 9.3% crude protein) and 24% soybean meal (43.5% crude protein) and
is supplemented with 0.2% glycine and 0.1% L-methionine can meet the requirements of laying hens for all amino acids
cPatterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of
digestible lysine in diet (as-fed basis; 90% dry matter) are 1.12% and 1.02% for male and female chickens, respectively
dPatterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of
digestible lysine in diets (as-fed basis; 90% dry matter) are 0.89% and 0.84% for male and female chickens, respectively
ePatterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of
digestible lysine in diets (as-fed basis; 90% dry matter) are 0.76% and 0.73% for male and female chickens, respectively
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nitrogen excretion, while improving the effi-
ciency of nutrient utilization, growth and produc-
tion performance, as well as sustaining the global
animal agriculture. It is noteworthy that this new
nutritional concept is now widely used to guide
the practice of poultry feeding worldwide (e.g.,
Badawi et al. 2019; Belloir et al. 2017; Chrystal
et al. 2020; Dessimoni et al. 2019; Liu et al. 2016;
Refaie et al. 2017; Zhang et al. 2017b).

The productivity of modern laying hens has
increased but their BW has decreased, when com-
pared with breeds used decades ago (Bailey
2020). This means that the requirements (mainte-
nance plus production) of the hens for dietary
AAs must be revised to modify those
recommended by NRC (1994). As for growing
chickens, the ideal protein concept without the
consideration of AAs that are synthesized in the
body has also been applied to the formulation of
diets for laying hens (Lemme 2009). At present,
only Arg, Ile, Lys, Met + Cys, Thr, Trp, and Val
are considered in various ideal AA profiles pro-
posed by different authors (see Lemme 2009 for
review). This is unfortunate, because AAs (e.g.,
glutamate, glutamine, glycine and proline) that
are synthesized by the egg-laying birds may not
meet their requirements for their maximum pro-
ductivity or optimum health (including intestinal
health). For example, there is evidence that the
provision of glutamine from corn- and soybean
meal-based diets (containing 18% crude protein)
is insufficient for the maintenance of a healthy gut
or a healthy oviduct in laying hens and that die-
tary supplementation with 0.4% or 0.8% gluta-
mine is needed to sustain their normal
morphology (Dong et al. 2010). It is likely that:
(1) as reported for broilers (He et al. 2018), the
small intestine of laying hens uses dietary gluta-
mate and aspartate as the major metabolic fuels;
and (2) as indicated for broilers (Table 7.4), die-
tary glycine is inadequate for protein accretion
and the detoxification of ammonia as uric acid
in laying hens.

Although common feedstuffs contain both
EAAs and NEAAs, dietary requirements of lay-
ing hens for all proteinogenic AAs (including
glutamate, glutamine, glycine, serine, proline
and tyrosine) must be recommended to guide
both research and the feeding practices.

Methionine is usually the first limiting AA in
the typical diets for laying hens, and there is
evidence that supplementing 0.1% methionine to
a corn- and soybean meal-based diet containing
16% crude protein and 0.29% methionine
enhances egg production (Calderon and Jensen
1990). Furthermore, supplementation with 0.4%
or 0.8% glutamine to a corn- and soybean meal-
based diet for laying hens for 42 days augmented
their egg production (Dong et al. 2010). Similar
findings were reported by Gholipour et al. (2017)
for laying guinea fowls fed a corn- and soybean
meal-based diet containing 18% crude protein.
Based on these considerations and research
findings, we proposed Texas A&M University’s
optimal ratios of AAs for laying eggs to further
stimulate research in this field. Animal-source
feedstuffs are good sources of all AAs for these
animals (Li and Wu 2020). Laying hens have a
particularly high requirement for glutamine, leu-
cine, glutamate, proline, arginine aspartate and
glycine, because these AAs are highly abundant
in the maternal bodies and in eggs. Inclusion of
4-hydroxyproline (a precursor of glycine; Li and
Wu 2018) and taurine (a product of cysteine
catabolism) in diets may reduce the requirements
of laying hens for dietary glycine and cysteine,
respectively. Both 4-hydroxyproline and taurine
are highly abundant in animal-source feedstuffs
(Li and Wu 2020). These findings have important
implications for improving the nutrition of zoo
birds (Herring et al. 2020).

7.7 Conclusion

AAs are not only the building blocks of proteins
but also signaling molecules, neurotransmitters,
and regulators of metabolic pathways. Although
AAs have been classified as EAAs or NEAAs for
animals since 1912, growing evidence shows that
a sufficient provision of NEAAs (e.g., glutamine,
glutamate, glycine, and proline) is necessary for
the optimal growth and health of chickens,
including broilers and laying hens. Thus, the con-
cept of “ideal protein”, which was based solely on
EAAs and ignored all AAs that are synthesized in
the animals, is not ideal in animal nutrition. Ideal
diets for poultry must provide all physiologically
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and nutritionally essential AAs (including EAAs
and NEAAs) to maximize their growth perfor-
mance and productivity, while promoting opti-
mum health. To achieve this goal, we have
proposed the Texas A&M University’s optimal
ratios of dietary amino acids for growing broilers
and laying hens. These data are expected to facil-
itate the formulation of low-protein diets and
precision nutrition through the addition of
low-cost crystalline AAs or their alternative
sources of animal proteins. Feedstuffs of animal
origin can provide AAs (including leucine, lysine,
methionine, arginine, glutamate, glutamine,
aspartate, glycine, and proline) to prepare
AA-balanced diets for chickens and help sustain
the global animal agriculture.
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Nutrition and Functions of Amino Acids
in Fish 8
Xinyu Li, Shixuan Zheng, and Guoyao Wu

Abstract

Aquaculture is increasingly important for
providing humans with high-quality animal
protein to improve growth, development and
health. Farm-raised fish and shellfish now
exceed captured fisheries for foods. More
than 70% of the production cost is dependent
on the supply of compound feeds. A public
debate or concern over aquaculture is its envi-
ronmental sustainability as many fish species
have high requirements for dietary protein and
fishmeal. Protein or amino acids (AAs), which
are the major component of tissue growth, are
generally the most expensive nutrients in ani-
mal production and, therefore, are crucial for
aquatic feed development. There is compelling
evidence that an adequate supply of both tradi-
tionally classified nutritionally essential amino
acids (EAAs) and non-essential amino acids
(NEAAs) in diets improve the growth, devel-
opment and production performance of aquatic
animals (e.g., larval metamorphosis). The pro-
cesses for the utilization of dietary AAs or
protein utilization by animals include diges-
tion, absorption and metabolism. The digest-
ibility and bioavailability of AAs should be

carefully evaluated because feed production
processes and AA degradation in the gut affect
the amounts of dietary AAs that enter the
blood circulation. Absorbed AAs are utilized
for the syntheses of protein, peptides, AAs,
and other metabolites (including nucleotides);
biological oxidation and ATP production; glu-
coneogenesis and lipogenesis; and the regula-
tion of acid-base balance, anti-oxidative
reactions, and immune responses. Fish
producers usually focus on the content or
digestibility of dietary crude protein without
considering the supply of AAs in the diet. In
experiments involving dietary supplementa-
tion with AAs, inappropriate AAs (e.g., gly-
cine and glutamate) are often used as the
isonitrogenous control. At present, limited
knowledge is available about either the cell-
and tissue-specific metabolism of AAs or the
effects of feed processing methods on the
digestion and utilization of AAs in different
fish species. These issues should be addressed
to develop environment-friendly aquafeeds
and reduce feed costs to sustain the global
aquaculture.
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Abbreviations

AA amino acid
CCK cholecystokinin
EAA nutritionally essential amino acid
GABA γ-aminobutyrate
GH growth hormone
IGF insulin-like growth factor
α-KG α-ketoglutarate
mTOR mechanistic target of rapamycin
NEAA nutritionally nonessential amino acid
NO nitric oxide
NRC National Research Council
ROS reactive oxygen species
SOD superoxide dismutase

8.1 Introduction

Adequate provision of dietary protein and amino
acids (AAs) is essential for the optimum health,
growth, development and survival of animals
(including fish) and humans (Wu 2013a, b). Tradi-
tionally, based on growth or nitrogen balance, AAs
have been classified as nutritionally essential
(EAAs, indispensable) or non-essential (NEAAs,
dispensable) for mammals, birds and fish
(Wu 2013a). However, recent studies have focused
on the potential roles of functional AAs from both
EAAs and NEAAs in animals (Wu 2013a;
Watford 2015; Andersen et al. 2016). Some AAs
and their metabolites are important regulators of
key metabolic pathways that are necessary for
maintenance, growth, feed intake, nutrient utiliza-
tion, immunity, behavior, larval metamorphosis,
reproduction, as well as resistance to environmen-
tal stressors and pathogenic organisms in various
fishes (Li et al. 2009; Smedley et al. 2016). Over
the past decade, there has been growing interest in
the roles of functional AAs in animal nutrition and
production (Wu 2013a; Watford 2015). Because
protein is the major component of tissue growth
and dietary protein is the most expensive nutrient
in feedstuffs, animal nutritionists always pay much
attention to the digestibility of dietary protein
(defined as the percentages of AAs plus their
small peptides released from dietary protein in

the small intestine) and AA bioavailability (defined
as the percentages of AAs plus their small peptides
in dietary protein that are digested and absorbed in
a form available for metabolic utilization by
animals (Wu 2018).

Aquaculture is the fastest growing food animal
sector and now contributes more high-quality
protein to the human food supply (by weight)
than wild caught seafood (FAO 2018). About
70% of global aquaculture (excluding aquatic
plants) relies on commercial compound feeds
that are produced by mixing feed ingredients
(Béné et al. 2016; Li et al. 2020h). Some, but
not all, fish species have a better rate of feed
utilization than terrestrial animals (Fig. 8.1).
However, the rate of protein retention in the
body of some growing fish (e.g., largemouth
bass) is even lower than that for growing pigs
and chickens (Li et al. 2020c, d). This is because
of the higher protein requirements in fish species
(Fig. 8.1) partly to provide the bulk of energy for
metabolic use (Jia et al. 2017; Li et al. 2020b).
High levels of protein in diets increase the excre-
tion of nitrogen (Cai et al. 1996; Yang et al.
2002), which is eventually discharged from aqua-
culture production systems. In aquaculture,
fishmeal is the most important protein source
and is derived from wild-harvested whole fish
and shellfish (FAO 2018). There are about 20 mil-
lion tons of fish destined for fishmeal production
each year, and about 70% of them is directed
towards aquaculture, followed by pig and chicken
production (Cashion et al. 2017). Fishmeal has
great values of protein digestibility and AA bio-
availability. However, 90% of the fish used for
fishmeal could be directed to feed humans instead
(Cashion et al. 2017). Although fish production
has benefits on economic development and food
provision, public debate on aquaculture is
dominated by concerns over resources and envi-
ronmental sustainability (Béné et al. 2016). In
terms of both economic returns and aquaculture
sustainability, it is imperative to maximize the
efficiency of protein utilization and reduce the
use of fishmeal in the diets for all farmed fish
species.

Understanding the digestion of dietary protein,
as well as the absorption, metabolism and
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functions of AAs (Table 8.3) is fundamental for
manufacturing environment-friendly aquafeeds
and reducing feed costs in animal production.
The major objective of this article is to highlight
current knowledge about feed processing, as well
as AA nutrition and metabolism in fish species at
different life stages. This will help to advance the
field of protein nutrition and guide the develop-
ment of future aquafeeds.

8.2 Feed Processing to Enhance
Protein Digestibility
in the Gastrointestinal Tract

Animal feeds are subjected to heat treatment dur-
ing the processing of feedstuffs and the produc-
tion of pelletized complete feeds to enhance
protein digestibility in the gastrointestinal tract
in fish. Extrusion cooking is the technology

commonly used for the intensive production of
aquafeeds as it confers good water stability and
desirable flavor, improves feed utilization, and
removes many anti-nutritional factors (Watanabe
2002). Appropriate heating can increase the
digestibility of native proteins by unfolding the
polypeptide chains and making the protein more
susceptible to digestive enzymes (Opstvedt et al.
2003). However, overheated meals or feeds are
undesirable because they may damage protein
and AAs, thereby decreasing protein digestibility
and AA bioavailability (Deng et al. 2005).
Reduced protein digestibility was reported when
commercial fishmeal and solvent-extracted soy-
bean meal were subjected to additional moist heat
for 30 min at 120 or 130 �C (Ljøkjel et al. 2000).
Moreover, the Maillard reaction occurs between
the carbonyl groups of reducing sugars and the
amino groups of AAs (particularly lysine and
arginine), peptides or proteins. Specifically,

Fig. 8.1 (a) Feed conversion ratio (FCR, feed intake/
weight gain) in different animals; (Adapted from Fry et al.
2018). (b) Protein retention in the edible portions of differ-
ent animal species; adapted from Fry et al. (2018). (c)
Requirements of different animal species for dietary

protein (% of dry matter in the diet); adapted from Wilson
and Halver (1986), Kim et al. (1991), Shelton (1971), and
Applegate and Angel (2008). (d) Fishmeal inclusion in
compound aquafeeds for different fish species and species
groups; adapted from FAO (2012). All values are the means
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lysine is bound with sugars during the Maillard
reaction, resulting in the deoxyketosyl compound
of lysine, which cannot be digested by fish,
including rainbow trout (Salmo gairdneri; Plakas
et al. 1988) and white sturgeon (Acipenser
transmontanus; Deng et al. 2005). Recently, crys-
talline AAs have been used to balance AA com-
position in fish feeds. It is important to develop
methods for protecting dietary AAs against for
damage and loss. Fish live and consume food
present in the water environment. As a result,
leaching of feeds affects the nutritional values of
feedstuffs and the validity of experimental results
(Kaushik and Seiliez 2010; López-Alvarado et al.
1994). This issue should be taken into consider-
ation in fish nutrition.

8.3 Digestion of Dietary Protein
and the Absorption
of Resulting Products

Dietary protein provides AAs for the growth and
development of animals. Proteins are large
polymers of AAs and have three dimensional
structures. In neonatal mammals, milk-borne
immunoglobulins are absorbed intact into the
enterocytes of their small intestines through
receptor-mediated mechanisms before “gut clo-
sure” occurs (Wu 2013b); other proteins are
digested in the gastrointestinal tract. In general,
dietary proteins have no nutritional value unless
they are hydrolyzed by digestive enzymes
(proteases and peptidases) to form free AAs and
small peptides. Digestion of dietary protein is
defined as its hydrolysis in the gastrointestinal
tract into smaller molecules that are suitable for
assimilation by the animals (Wu 2013b). The
alimentary tract, including the mouth, stomach,
intestines, and anus, are the organs for protein
digestion, the absorption of the resultant diges-
tion products, and the excretion of indigested feed
and endogenous substances. The mucosa in the
stomach of fish has a structure adapted for both
food storage and digestion. Gastric parietal cells
and chief cells produce hydrochloric acid (HCl)
and pepsinogen, respectively (Tan and Teh 1974;
Osman and Caceci 1991). The gastric HCl

denatures protein, while activating pepsinogen
into pepsin (an active protease) that acts on the
denatured dietary proteins (Wu 2018). Gastric
glands have been observed in all three regions
of the stomach of Nile Tilapia, but have only
been found in the cardiac and fundic regions of
some of the other fish species (Osman and Caceci
1991). For those fish that do not have a stomach,
the anterior intestine performs the function of
temporary storage of ingested food (Sinha
1983). Stomach-less fish (which lack pepsin) are
usually herbivores or omnivores that have a nearly
mature and slightly alkaline gut (Smith 1980).

During the digestive processes, the hydrolysis
of dietary proteins generates small peptides (di-
and tripeptides) and free AAs at the intestinal
lumen in the presence of specific proteases. The
di- and tripeptides are either further hydrolyzed to
free AAs by dipeptidase and tripeptidase or
directly taken up in the intact form into intestinal
epithelial cells. The amounts and activities of
proteases and peptidases in the intestine are
affected by many factors, including food intake
as well as the secretion of secretin (by the S-cells
of the duodenum) and cholecystokinin (CCK; by
the I-cells of the duodenum; Wu 2018). Secretin
regulates secretions from the stomach, pancreas
and liver, whereas CCK stimulates the secretion
of pancreatic digestive enzymes and the release of
bile from the gallbladder (for those fish that have
this organ). For example, dietary phospholipids
have beneficial effects on stimulating the secre-
tion of peptidases by increasing the level of CCK
in rainbow trout (Oncorhynchus mykiss; Azarm
et al. 2013). The true digestibilities of protein in
animal- and plant-source feedstuffs are about
88–93% and 75–85% in fish, respectively,
whereas the true digestibilities of free AAs in
diets are 100%. In aquaculture, a rational
approach to formulate diets is to supplement
them with crystalline AAs (Nunes et al. 2014).
However, Gu et al. (2013) reported that fish
absorb crystalline AAs more rapidly and earlier
in the gastrointestinal tract than protein-bound
AAs. These differences in the patterns of diges-
tion and absorption between free AAs and
protein-bound AA may lead to poor growth, low
feed utilization, and a suboptimal physiological
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status of aquatic animals. To improve the utiliza-
tion of crystalline AAs, a possible approach is to
coat AAs with substances, like dextrin,
β-cyclodextrin (Yuan et al. 2011), cellulose-
acetate-phthalate (Fournier et al. 2003),
tripalmitin-polyvinyl alcohol, acrylic resin (Chi
et al. 2011), and tripalmitin (López-Alvarado
et al. 1994).

Knowledge of diet and feeding habits is essen-
tial for the understanding of various aspects of
fish nutrition and biology, as well as for develop-
ing cost-effective aquafeeds and feeding
methods. Fish have been categorized as
herbivores, omnivores, or carnivores/piscivores.
Proteolytic enzymes are present in all kinds of
fish species, including non-carnivorous fish
(Hidalgo et al. 1999). Omnivores tolerate much
higher intakes of digestible carbohydrate than
carnivores, and need less dietary protein than
carnivores (Kuz’mina 1990; Hidalgo et al.
1999). Moreover, some anti-nutritional factors in
plant-source feedstuffs can inhibit endogenous
digestive enzymes to decrease the digestibility
of protein (Francis et al. 2001). For example, as
the main source of protein in aquaculture produc-
tion, crude or inadequately heated soybean meals
contain an active Kunitz trypsin inhibitor (a 21.5-
kDa protein; Roychaudhuri et al. 2004), as well as
an active Bowman-Birk inhibitor (an 8 kDa pro-
tein) of both trypsin and chymotrypsin (DiPietro
and Liener 1989). These soybean inhibitors
reduce the digestibilities of dietary protein in
juvenile starry flounder (Platichthys stellatus,
Song et al. 2014), Japanese seabass (Lateolabrax
japonicus, Zhang et al. 2018), and tilapia
(Oreochromis niloticus � O. aureus; Lin and
Luo 2011). The intestinal absorption of AAs (par-
ticularly methionine, leucine and threonine) was
also decreased in rainbow trout (Salmo gairdneri)
likely due to reductions in the expression of intes-
tinal AA transporters when only 17.5% of
fishmeal was replaced with 25% soybean meal
in their diets (Dabrowski et al. 1989).

The germination and defatting of soybean
meal could directly remove some of its protease
inhibitors (Wassef et al. 1988). Moreover, heat
treatment can inactivate and destroy some of the
anti-nutritional factors found in soybean meal

(El-Sayed et al. 2000; NRC 2011). For example,
a combination of proper heat treatment could
improve the nutritive value of defatted soy flour
in young Pacific salmon (Arndt et al. 1999).
Another common way to improve the digestion
of dietary protein is the fermentation. Hong et al.
(2004) reported that fermentation increased pro-
tein content by removing some carbohydrates,
eliminated trypsin inhibitors, and reduced peptide
size in soybeans and soybean meals. Replacing
dietary soybean meal with its fermented soybean
product has beneficial effects on the growth of
largemouth bass (Jiang et al. 2018). In another
study, lactic acid fermentation of soybean meal
could ameliorate the effect of its trypsin inhibitors
(Refstie et al. 2005). Besides, supplementation
with exogenous enzymes can also improve pro-
tein digestion, leading to increases in growth per-
formance and feed utilization. Total protease
activity in the intestine of juvenile hybrid tilapia
increased by dietary supplementation with a mix-
ture of commercial enzymes (including protease),
thereby augmenting protein digestibility from
78.2% to 86.7% (Lin et al. 2007). The supple-
mentation of protease could also increase the
apparent nutrient digestibility of soybean meal
in rainbow trout (Oncorhynchus mykiss;
Dalsgaard et al. 2012). Similar results have been
reported for Nile Tilapia (Soltan 2009). Proteins
in raw materials can be hydrolyzed by proteases
to obtain bioactive peptides before mixing with
other ingredients (Martínez-Alvarez et al. 2015).
The protein hydrolysates of animal by-products
and plant feedstuffs are promising additives to
aquafeeds as flavorings, functional ingredients,
and cost-effective sources of AAs (Zheng et al.
2012; Bui et al. 2014; Song et al. 2014; Cai et al.
2015; Khosravi et al. 2015).

In terrestrial mammals, dietary AAs and small
peptides (i.e., di- and tri-peptides) are actively
absorbed into the enterocytes via various AA
transporters and peptide transporter-1, respec-
tively, and some of them are taken up by
microbes in the small intestine via similar trans-
port mechanisms (Wu 2018). The percentages of
AAs released from dietary protein that enter the
blood circulation vary greatly among AAs
because of their different rates of first-pass
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catabolism in the small intestine (Wu 2013b). For
example, 3–5% of glutamate and aspartate, 50%
threonine, 60% proline and arginine, 64–66%
branched-chain AAs and serine, 69% glycine
and methionine, and 74–75% of asparagine and
tryptophan enter the blood circulation. This is
likely also true for aquatic animals (Jia et al.
2017; Li et al. 2020a). In fish species, some
AAs (e.g., aspartate, glutamate and glutamine)
are important energy sources for the intestine,
liver, kidneys and skeletal muscle (Li et al.
2020a). Thus, most of dietary glutamate and glu-
tamine would be oxidized in the gut for ATP
production (Jia et al. 2017; Li et al. 2020a), so
that only a small amount of them would pass the
intestine into the blood circulation of fish (Jürss
and Bastrop 1995; Jia et al. 2017). As in
mammals (Wu 2013a), most of the glutamate
and glutamine in plasma may be synthesized
from branched-chain AAs and α-ketoglutarate
(α-KG) by skeletal muscle and other tissues in
aquatic animals (Li et al. 2009). Although argi-
nine undergoes little oxidation to CO2 in the
intestine, this AA is extensively degraded by
intestinal arginase to produce ornithine and urea
(our unpublished work). In support of this view,
almost all species of fish express arginase
(Anderson 2001), but its isoforms are unknown.
Oliva-Teles et al. (2017) also reported that urea-N
excretion was directly related to dietary arginine
intake. Recently, we identified a particularly high
activity of arginase in tissues of largemouth bass,
such that the concentration of arginine in their
serum was very low but that of ornithine was
relatively high (Table 8.1) and serum ornithine
increased substantially after the feeding of diets
supplemented with arginine (Fig. 8.2). Interest-
ingly, largemouth bass are generally fed a
fishmeal-based diet containing little citrulline,
but have a relatively high concentration of citrul-
line in the serum (Table 8.1). Because this fish
does not synthesize citrulline from glutamate,
glutamine and proline (Li et al. 2020a) and
produces citrulline from arginine via nitric oxide
synthase at a very low rate, it is likely that argi-
nine is actively metabolized to generate citrulline
in its body through yet unknown pathways.
Although the role of dietary glutamate and

arginine in improving immunity have been well
reported for many fish species (Table 8.4), little is
known about their metabolism in intestinal
leukocytes. It is imperative to understand the
metabolism of these two AAs in a cell- and
tissue-specific manner. A high activity of arginase
in tissues may be a major factor limiting maximal
growth of largemouth bass.

Available evidence shows that some fish spe-
cies are capable of ureagenesis in the liver
(Anderson 2001). It is unknown whether this also
occurs in the small intestine of fish as reported for
pigs (Wu 1995). However, there are species
differences in the tissue-specific expression of
enzymes involved in the conversion of ammonia
or glutamine into urea and nucleotides. For exam-
ple, fish and invertebrates possess carbamoyl-
phosphate synthase-III (a mitochondrial enzyme),
which utilizes the amide group of glutamine as the
nitrogen-donating substrate and requires N-acetyl-
glutamate for activity. For comparison, carbamoyl-
phosphate synthase-I (a mitochondrial enzyme in
mammalian liver and enterocytes) uses NH3 as the
nitrogenous substrate and requires N-acetyl-gluta-
mate for activation, whereas carbamoylphosphate
synthase-II (a cytosolic enzyme in mammalian
liver, enterocytes and many other cell types) uses
glutamine as the nitrogenous substrate but does not
require N-acetyl-glutamate for activity. All these
three isozymes produce carbamoylphosphate.

8.4 Protein Synthesis

After absorption, AAs will enter either catabolic
(oxidation to CO2) or anabolic (protein and pep-
tide syntheses) pathways. The process of protein
synthesis in both fish and other animals include
five steps: (1) gene transcription; (2) initiation of
translation; (3) peptide elongation; (4) termina-
tion, and (5) posttranslational modification
(Wu 2013b). The supply of AAs, ATP, and
GTP, as well as the number of ribosomes and
the formation of polyribosomes will affect protein
synthesis (Green and Noller 1997). The availabil-
ity of AAs in plasma and cells has a direct rela-
tionship with the rate of protein synthesis. Ten
AAs (arginine, histidine, isoleucine, leucine,
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lysine, methionine, phenylalanine, threonine,
tryptophan, and valine) are not synthesized from
any dietary AAs in fish. If one of these AAs is in
excess, it will be oxidized to CO2 (NRC 2011). If

one of them is deficient (limiting), it will limit the
use of all AAs for intracellular protein synthesis,
therefore increasing their oxidation to CO2.
Although AAs synthesizable in tissues are

Table 8.1 Concentrations of free amino acids (AAs) in serum as well as free and peptide-bound AAs in the whole body
of juvenile largemouth bassa

AAs

Free AAs in
serum
(nmol/ml)

Free AAs in in the
whole body (μg/g of
wet weight)

Total AAs (free plus
peptide- bound) in the
whole bodyb

AAs in
protein
(mg/g of
PAAs)

Ratio of free AAs to
total AAs in the whole
body (%, g/g)

mg/g of wet
weight

mg/g of
total PAAs

Proteinogenic AAs
Ala 521 � 28 132 � 12 9.60 � 0.07 68.4 � 0.53 68.6 � 0.56 1.37 � 0.12
Arg 38 � 1.0 14.8 � 1.6 9.66 � 0.05 68.8 � 0.36 69.9 � 0.95 0.15 � 0.02
Asn 78 � 2.4 21.0 � 1.6 4.95 � 0.09 35.3 � 0.63 35.7 � 0.64 0.42 � 0.03
Asp 20 � 1.2 33.7 � 1.4 6.25 � 0.12 44.5 � 0.83 45.0 � 0.84 0.54 � 0.02
Cys 152 � 8.5 36.1 � 1.8 1.98 � 0.06 14.1 � 0.45 14.0 � 0.46 1.83 � 0.10
Gln 194 � 9.7 315 � 8.6 8.06 � 0.15 57.4 � 1.09 56.1 � 1.13 3.92 � 0.14
Glu 34 � 2.2 163 � 3.5 12.7 � 0.19 90.2 � 1.37 90.6 � 1.39 1.29 � 0.03
Gly 369 � 23 412 � 15 13.0 � 0.15 92.7 � 1.07 91.3 � 1.12 3.17 � 0.13
His 125 � 3.8 352 � 11 3.47 � 0.06 24.7 � 0.45 22.6 � 0.47 10.1 � 0.37
Ile 148 � 9.1 18.6 � 0.7 5.52 � 0.08 39.3 � 0.57 39.9 � 0.58 0.34 � 0.01
Leu 242 � 10 38.3 � 1.3 9.62 � 0.14 68.5 � 0.96 69.4 � 0.98 0.40 � 0.01
Lys 185 � 7.0 89.9 � 4.3 8.65 � 0.12 61.6 � 0.83 62.0 � 0.83 1.04 � 0.05
Met 53 � 2.3 12.5 � 0.9 4.02 � 0.08 28.6 � 0.58 29.0 � 0.59 0.31 � 0.02
Phe 92 � 2.6 30.1 � 2.4 5.63 � 0.13 40.1 � 0.96 40.6 � 0.96 0.53 � 0.04
Pro 257 � 13 204 � 8.5 9.43 � 0.16 67.2 � 1.15 66.3 � 1.36 2.17 � 0.09
OH-
Pro

42 � 1.6 15.3 � 0.5 3.07 � 0.09 21.9 � 0.67 21.2 � 0.96 0.50 � 0.02

Ser 179 � 5.5 72.2 � 5.7 6.87 � 0.12 48.9 � 0.86 49.2 � 0.84 1.05 � 0.07
Thr 143 � 4.7 99.7 � 9.0 5.76 � 0.11 41.0 � 0.76 41.0 � 0.76 1.73 � 0.15
Trp 28 � 1.1 21.6 � 1.5 1.62 � 0.06 11.5 � 0.42 11.6 � 0.42 1.33 � 0.06
Tyr 72 � 2.2 49.8 � 4.3 4.10 � 0.09 29.2 � 0.64 29.3 � 0.67 1.22 � 0.12
Val 268 � 15 36.7 � 2.6 6.46 � 0.10 46.0 � 0.69 46.9 � 0.68 0.57 � 0.04
Nonproteinogenic AA
β-Ala 12 � 0.7 5.97 � 0.66 – – – –

Cit 70 � 2.5 23.4 � 2.1 – – – –

Orn 124 � 6.0 131 � 9.4 – – – –

Tau 1016 � 42 1587 � 43 – – – –

aValues are means� SEM, n¼ 6. Juvenile largemouth bass were fed a diet consisting of the following (dry matter basis):
55.63% Menhaden fishmeal, 14.03% soybean protein concentrate, 9.2%, dextrinized starch, 0.57% soybean oil, 3.17%
poultry fat, 1% vitamin, 1% mineral premix, 14.27% cellulose, and 1% sodium carboxy methyl cellulose (Li 2020). The
composition of the vitamin premix (g/kg premix) was: vitamin A, 2.31; vitamin D3, 2.02; vitamin E, 20.00; vitamin K3,
1.2; vitamin C, 30.00; vitamin B5, 10.87; inositol, 15.00; niacin, 14.00; vitamin B6, 3.04; vitamin B2, 3.00; vitamin B1,
3.26; biotin, 0.15; folic acid, 0.6; vitamin B12, 0.02; Choline chloride, 135.00; Cellulose, 894.53. The composition of the
mineral premix (g/kg premix) was: NaCl, 363.88; MgSO4.7H2O, 586.67; FeSO4.7H2O, 22.22; AlCl3.6H2O, 0.67; KI,
0.67; CuSO4.5H2O, 2.22; MnSO4, 4.67; CoCl.6H2O, 0.86; ZnSO4.7H2O, 18.09; Na2SeO3, 0.06. The crude-protein
content of the diet was 50% (dry matter basis). Blood samples were obtained from the caudal vein of the fish (~ 50 g) at
24 h after the last feeding. Free AAs in serum as well as free and peptide-bound AAs in the whole body were analyzed as
described by Li and Wu (2020). The amounts of amino acids in the whole body and the protein were calculated on the
basis of their intact molecular weights. The content of dry matter in the whole fish was 31.0%
bCit citrulline, OH-Pro 4-hydroxyproline, Orn ornithine, PAAs proteinogenic amino acids
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Fig. 8.2 Post-prandial
concentrations of free
amino acids in the serum of
largemouth bass
(Micropterus salmoides).
The body weight of the fish
was 51.4 � 2.6 g (mean �
SEM, n ¼ 6). (a) The fish
were fed a diet consisted of
the following (%, dry
matter basis): fish meal
menhaden, 53.73; soybean
protein concentrate, 12.62;
soybean oil:fish oil (2:1), 3;
poultry fat, 1.23;
dextrinized starch, 5;
vitamin premix, 1; mineral
premix, 1; cellulose, 19.17;
choline chloride, 0.24; and
carboxymethyl cellulose,
2. The crude-protein
content was 45% (dry
matter basis). Data are
represented as
mean � SEM (n ¼ 6).
* P < 0.05 vs the value for
0 h. (b) Post-prandial
concentrations of citrulline
(Cit), arginine (Arg) and
ornithine (Orn) in the serum
of largemouth bass
(Micropterus salmoides).
The body weight of the fish
was 52.0 � 1.6 g (mean �
SEM, n ¼ 3). Time
indicates hours after
feeding. Data are
represented as
mean � SEM (n ¼ 3).
Control: fishmeal based diet
with 45% crude protein and
10% lipids (dry matter
basis, Li et al. 2020c); 2%
Arg: dietary
supplementation with 2%
arginine; 2% Cit: dietary
supplementation with 2%
citrulline. Arg or Cit was
added to the basal diet at the
expense of 2% starch
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traditionally regarded as NEAAs, they play a
critical role in protein synthesis, as well as
cell growth and development. For example, the
percentage of proliferating muscle cells was
markedly enhanced in response to supplementa-
tion with glutamine (Østbye et al. 2018).

Protein synthesis requires a large amount of
energy. A minimum energetic cost of protein
synthesis has been estimated to be 40 mmol
ATP equivalents per gram of protein synthesized,
and even 50 mmol ATP equivalents per gram of
protein synthesized when the use of energy for
post-translational modifications and intracellular
trafficking is considered (Wu 2018). Thus,
relationships between protein and energy intakes
are critical to the efficiency with which dietary
protein is partitioned into growth (Ballantyne
2001). For example, the protein-sparing effect of
dietary lipids has been well reported in many fish
species, including giant croaker (Nibea japonica)
(Li et al. 2015), starry flounder (Platichthys
stellatus; Ding et al. 2010), grouper (Epinephelus
coioides; Luo et al. 2005). However, such an
effect of dietary lipids has not been observed in
largemouth bass (Li et al. 2020d).

In fish as in terrestrial mammals, protein syn-
thesis is a major energy-demanding physiological
process (Wu 2018). The balance between the rates
of protein synthesis and proteolysis in tissues
(primarily skeletal muscle) determines the rate
of protein accretion in the body and, therefore,
its growth. For example, a 300-g Atlantic cod that
gains the body weight of 1.0%/day (i.e., 3 g of
body weight/day) synthesizes 1.25 g of protein
and degrades 0.81 g of protein per day, with a net
deposition of 0.4 g of protein (plus 1.2 g of
associated water) for growth (Houlihan et al.
1988). The other components (1.2 g) of the
growth includes lipids, minerals, and glycogen,
as well as water associated with non-lipids and
non-protein nutrients. The proportion of total
synthesized protein retained in the body increases
with increasing growth rate due to little or no
change or even a reduction in the rate of protein
breakdown, such that at a maximum growth rate
of 2%/day (i.e., 6 g of body weight/day), over
40% of the synthesized protein is retained in the
body. Among the tissues studied, liver, gills,

intestine, spleen, ventricle, stomach, gonads, and
white muscle, the white muscle has the highest
efficiency of protein retention and accounts for
40% of the total protein accretion in the fish body.
Interestingly, in contrast to terrestrial mammals
and birds, starving Altantic cods exhibit increased
rates of proteolysis in the whole animal and white
muscle as the rate of weight loss increases but at a
constant rate of protein synthesis, irrespective of
the rate of weight loss (Houlihan et al. 1988).

8.5 Amino Acid Metabolism

8.5.1 Oxidation to CO2 and Ammonia

In view of animal production, the most important
role of AAs is to serve as the building blocks of
proteins. However, most of fish species are car-
nivorous which use primarily AAs as energy
substrates to provide ATP (Ballantyne 2001; Li
et al. 2020a). For example, 35–40% of leucine is
oxidized for ATP production in fish (Fauconneau
and Arnal 1985). Likewise, the oxidation of AAs
as an entity may contribute to 50–70% of total
energy needs in the marine fish embryos and
yolk-sac larvae (Rønnestad and Fyhn 1993;
Rønnestad et al. 1999). We have recently shown
that glutamate, glutamine, leucine, aspartate, and
alanine together contribute to ~80% of ATP pro-
duction in the liver, proximal intestine, kidney,
and skeletal muscle of zebrafish (Jia et al. 2017),
hybrid striped bass (Jia et al. 2017), and
largemouth bass (Li et al. 2020b). Individual
AAs have their own catabolic pathways because
of their different structures. However, the catabo-
lism of many AAs shares a number of common
steps to generate pyruvate, oxaloacetate, α-KG,
fumarate, succinyl-CoA, and acetyl-CoA. For
example, the carbon backbones of some AAs
are converted into α-KG by glutamate dehydro-
genase and transaminases. Glutamate dehydroge-
nase is also quantitatively a major enzyme for
glutamate and glutamine catabolism in fish
(Ballantyne 2001). Alanine transaminase and
aspartate transaminase play an important role in
initiating the degradation of alanine and aspartate
to yield pyruvate and oxaloacetate, respectively
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(Wu 2013b). For the catabolism of leucine in
mammals, it undergoes active transamination
with α-KG to form α-ketoisocaproic acid and
glutamate primarily in skeletal muscle. Then, the
α-ketoisocaproic acid is converted into acetyl-
CoA by the branched-chain α-ketoacid dehydro-
genase complex primarily in the liver
(Wu 2013b). Little is known about the inter-
organ metabolism of leucine and other
branched-chain AAs in fish. Results of our recent
studies indicated that leucine was extensively
transaminated and decarboxylated in the liver of
largemouth bass (Li and Wu 2019). It is possible
that patterns of the catabolism of branched-chain
AAs differ between fish and terrestrial mammals.

The major end product of AA metabolism in
fish is ammonia, which is highly toxic and is
directly excreted into the water environment
(Ip et al. 2001). However, most teleost fish also
release a significant proportion of their total
excreted nitrogen as urea (5–20%). The latter is
formed via the hepatic urea cycle and the catabo-
lism of dietary arginine by arginase. Largemouth
bass excrete a higher percentage of their total
nitrogen as urea (about 30%) likely due to a
high activity of arginase (Anderson 2001). This
enzyme generates ornithine, which is used to
synthesize proline and polyamines for the produc-
tion of connective tissue and protein.

8.5.2 Gluconeogenesis
and Lipogenesis

Although AAs are important metabolic fuels in
carnivorous fish species, glucose is still required
for aerobic oxidation in the nervous system
and certain other cell types (e.g., red blood cells)
and as a precursor for the syntheses of glycogen
and mucopolysaccharides (Bever et al. 1981).
Most AAs are quantitatively important glucogenic
substrates in fish, which consume only a small
amount of dietary carbohydrate in their liver
(Cowey et al. 1977; Bever et al. 1981). The
major AA for gluconeogenesis in the fish liver
may be alanine, as its concentration in serum is
the greatest among all AAs in both largemouth
bass (Table 8.1) and hybrid striped bass

(Table 8.2). Intracellular serine, glutamate, gluta-
mine and aspartate are also important substrates
for glucose synthesis in fish. In the pathway of
gluconeogenesis, there are four unidirectional
rate-controlling steps that are catalyzed by pyru-
vate carboxylase, phosphoenolpyruvate
carboxykinase, fructose-1,6-bisphosphatase and
glucose-6-phosphatase, respectively. Gluconeo-
genesis from alanine or glutamate is increased by
fasting in the kelp bass (Paralabrax sp.; Bever
et al. 1981). In another study, the whole-body
synthesis of glucose from [U-14C]glutamate was
markedly increased by the low-carbohydrate diet
or starvation in rainbow trout (Salmo gairdneri;
Cardenas 1985). During prolonged starvation plus
exercise, the rates of gluconeogenesis from AAs
increased two-fold and, simultaneously there was a
corresponding increase in the activity of phospho-
enolpyruvate carboxykinase in the liver of rainbow
trout (French et al. 1981). All of these results
support the view that the primary function of glu-
coneogenesis from AAs is to meet the needs of the
body for glucose when dietary carbohydrate intake
is inadequate.

Exogenous glucose and AAs could produce
acetyl-CoA, which could increase fatty acid syn-
thesis in fish. Interestingly, de novo lipogenesis
from glucose in the liver is limited in some fish,
especially when they have low carbohydrate
intake (Jürss and Bastrop 1995). AAs are the
preferred precursors for lipid synthesis, compared
to glucose in some fish species (Nagai and Ikeda
1972; Nagai 1973). For example, in juvenile carp
(Cyprinus carpio), glutamate was preferentially
incorporated into hepatopancreatic lipids than
glycogen (Nagai and Ikeda 1972). Thus, the
partitioning of AAs into glucose or lipid synthesis
likely varies among different fish species.

8.5.3 Derivatives of AAs

AAs serve as substrates for the synthesis of many
substances with enormous physiological impor-
tance (Wu 2013b). These metabolites re essential
for the health, growth, and development of animals
(Table 8.3). For example, γ-aminobutyric acid
(GABA) is synthesized from glutamate, which is
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the major inhibitory neurotransmitter in the central
nervous system (Wagner et al. 1997) and plays an
important role in the control of pituitary hormone

secretion, anoxic metabolic depression, sex steroi-
dal regulation and excitatory responses (Nilsson
1992; Lariviere et al. 2005). Carnosine (β-alanyl-

Table 8.2 Concentrations of free amino acids (AAs) in serum as well as free and peptide-bound AAs in the whole body
of juvenile hybrid striped bassa

AAs

Free AAs in
serum
(nmol/ml)

Free AAs in in the
whole body (μg/g of
wet weight)

Total AAs (free plus
peptide- bound) in the
whole bodyb

AAs in
protein
(mg/g of
PAAs)

Ratio of free AAs to
total AAs in the whole
body (%, g/g)

mg/g of wet
weight

mg/g of
total PAAs

Proteinogenic AAs
Ala 554 � 31 81.3 � 4.3 9.75 � 0.11 68.7 � 0.76 68.8 � 0.77 0.83 � 0.05
Arg 140 � 8.6 21.3 � 1.5 9.80 � 0.15 69.1 � 1.07 69.6 � 1.09 0.22 � 0.02
Asn 66 � 2.7 3.18 � 0.32 5.14 � 0.08 36.3 � 0.60 36.6 � 0.60 0.06 � 0.006
Asp 28 � 1.4 19.8 � 3.3 6.47 � 0.11 45.6 � 0.77 45.9 � 0.76 0.30 � 0.05
Cys 157 � 9.3 37.4 � 1.4 2.01 � 0.09 14.2 � 0.63 14.0 � 0.64 1.87 � 0.08
Gln 206 � 10 164 � 6.4 8.11 � 0.12 57.2 � 0.85 56.6 � 0.87 2.02 � 0.09
Glu 67 � 3.5 74.2 � 4.0 12.8 � 0.29 90.3 � 2.07 90.5 � 2.11 0.58 � 0.04
Gly 292 � 24 320 � 20 13.1 � 0.33 92.7 � 2.34 91.0 � 2.27 2.43 � 0.12
His 237 � 15 142 � 7.0 3.49 � 0.07 24.6 � 0.52 23.8 � 0.54 4.08 � 0.24
Ile 148 � 8.7 10.4 � 1.7 5.56 � 0.05 39.2 � 0.37 39.4 � 0.37 0.19 � 0.03
Leu 235 � 12 13.2 � 0.38 9.76 � 0.22 68.8 � 1.52 69.3 � 1.53 0.14 � 0.004
Lys 176 � 9.1 34.3 � 1.1 8.71 � 0.15 61.4 � 1.09 61.7 � 1.09 0.39 � 0.01
Met 55 � 2.8 11.8 � 0.42 4.01 � 0.13 28.3 � 0.88 28.5 � 0.89 0.30 � 0.01
Phe 80 � 2.2 11.2 � 1.2 5.71 � 0.12 40.2 � 0.82 40.5 � 0.82 0.20 � 0.02
Pro 231 � 11 188 � 5.7 9.49 � 0.22 66.9 � 1.56 66.2 � 1.57 1.98 � 0.07
OH-
Pro

43 � 2.0 14.3 � 0.75 3.03 � 0.16 21.4 � 1.16 21.5 � 1.17 0.48 � 0.04

Ser 172 � 6.8 37.3 � 1.7 6.93 � 0.13 48.8 � 0.91 49.0 � 0.91 0.54 � 0.02
Thr 133 � 6.0 26.4 � 1.3 5.73 � 0.09 40.4 � 0.65 40.6 � 0.66 0.46 � 0.02
Trp 29 � 1.3 9.29 � 0.71 1.60 � 0.06 11.3 � 0.45 11.4 � 0.47 0.59 � 0.06
Tyr 72 � 2.9 10.4 � 0.46 4.12 � 0.13 29.0 � 0.94 29.2 � 0.95 0.25 � 0.01
Val 264 � 17 22.1 � 0.75 6.49 � 0.17 45.8 � 1.19 46.0 � 1.20 0.34 � 0.02
Nonproteinogenic AA
β-Ala 10 � 0.8 2.18 � 0.32 – – – –

Cit 69 � 3.2 4.75 � 0.50 – – – –

Orn 120 � 7.5 8.86 � 1.3 – – – –

Tau 979 � 54 1098 � 87 – – – –

aValues are means � SEM, n ¼ 6. Juvenile hybrid striped bass were fed a diet consisting of the following (dry matter
basis): 60.0%Menhaden fishmeal, 0.7% fish oil, 0.3% soybean oil, 4.7% poultry fat, 20% dextrinized starch, 1% vitamin,
1% mineral premix, 8.3% cellulose, 2.3% carboxymethyl cellulose, 0.8% Ca(H2PO4)2�H2O, 0.5% K2HPO4, and 0.5%
CaHPO4. The vitamin premix provided the following (mg/kg of the complete diet): vitamin A acetate, 23.06; cholecal-
ciferol, 20.24; DL-α-tocopheryl acetate, 200; menadione, 12; ascorbic acid, 300; DL-calcium pantothenate, 109;
myo-inositol, 150; niacin, 140; pyridoxine-HCl, 30.38; riboflavin, 30; thiamine mononitrate, 32.6; biotin, 1.5; folic
acid, 6; vitamin B12, 0.2; and carnitine, 0.08. The mineral premix Provided the following (mg/kg of the complete diet):
chromium(III) chloride, 7.3; CuSO4.5H2O, 35; FeSO4.7H2O, 498; MnSO4.H2O, 82; Na2SeO3, 3; ZnSO4.7H2O, 258;
sodium molybdate, 0.26; sodium fluoride, 1.3; CoCl.6H2O, 5.2; KI, 7.8; and NiCl, 2.2. The crude-protein content of the
diet was 38% (dry matter basis). Blood samples were obtained from the caudal vein of the fish (~ 50 g) at 24 h after the
last feeding. Free AAs in serum as well as free and peptide-bound AAs in the whole body were analyzed as described by
Li and Wu (2020). The amounts of amino acids in the whole body and the protein were calculated on the basis of their
intact molecular weights. The content of dry matter in the whole fish was 32.4%
bCit citrulline, OH-Pro 4-hydroxyproline, Orn ornithine, PAAs proteinogenic amino acids
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L-histidine), with a characteristic imidazole-ring, is
a dipeptide molecule, made up of β-alanine and
histidine. Carnosine is an antioxidant and impor-
tant buffer in the skeletal muscle of aquatic
animals, especially migratory pelagic marine fishes
(Snyder et al. 2012). Glutathione (L-glutamyl-L-
cysteinyl-glycine) is a tripeptide formed from gly-
cine, cysteine, and glutamate. Glutathione is capa-
ble of protect cellular components from damage by
reactive oxygen species, such as free radicals,
peroxides, lipid peroxides, and heavy metals in
fish species (Peña-Llopis et al. 2003).

8.6 Functions of Dietary AAs
in Fish

8.6.1 Survival, Growth and Muscle
Development

Protein is an essential component for every cell
in the body and undergoes continuous turnover
(synthesis and degradation). AAs not only serve
as the building blocks of protein but also play an
essential role in whole-body homeostasis
(Wu 2018). At present, the NRC (2011)

recommends dietary EAA requirements for
fish, but does not provide any values for
NEAAs, including glutamate, glutamine, gly-
cine and proline. However, using a chemically
purified diet that provides all EAAs in NRC
(2011)-recommended amounts, all NEAAs but
no glutamate and glutamine, as well as sufficient
amounts of fatty acids, carbohydrate, minerals
and vitamins, juvenile hybrid-striped bass grew
poorly in comparison with fish fed the purified
diet containing no glutamate or glutamine (Jia
et al. 2019). Beginning on Day 18 of the experi-
ment, deaths of the fish occurred in all tanks of
fish fed the purified diet without glutamate or
glutamine. By Day 35 of the experiment, mor-
tality rates in the different treatment groups of
the juvenile hybrid-striped bass were as follows:
the 60% fishmeal diet, 97%; the complete
purified diet (containing all AAs), 89%; the
purified diet without glutamate, 39%; the
purified diet without glutamine, 39% (Jia et al.
2019). These results indicate that the endoge-
nous synthesis of glutamate or glutamine is
insufficient for the growth or survival of the
hybrid-striped bass and that these two AAs are
nutritionally essential for the fish.

Table 8.3 Amino acid derivatives and their functions

Derivatives
Amino acids
sources Functions

Nitric oxide Arg A killer of pathogens; a signaling molecule; a neurotransmitter
Carnosine β-Ala, L-His Scavenge reactive oxygen species
Glutathione Cys, Glu, Gly Antioxidants, initiation of cell differentiation
Polyamines Arg, Met,

Pro, Orn
Protein and nucleic acid syntheses, protection from oxidative damage, activity
of ion channels, cell proliferation, differentiation, and apoptosis

Creatine Arg and Met Energy storage and metabolism
Carnitine Lys, Met and

Ser
Long-chain fatty acid transport

Purines and
pyrimidines

Gln, Gly and
Asp

Energy for cells, and are essential for production of DNA and RNA

Heme Gly Transport and storage of oxygen molecule
Histamine His Immune responses, neurotransmitter
Melatonin and
serotonin

Trp Modulate cortisol release, behavior and feeding

Epinephrine Phe and Tyr Increase heart rate, muscle strength, blood pressure, and sugar metabolism
Triiodothyronine and
thyroxine

Phe and Tyr Regulation of basal energy metabolism, metamorphosis and growth

γ-aminobutyrate Glu Major inhibitory neurotransmitter

Adapted from Wu (2013b)
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In growing fish, protein synthesis exceeds pro-
tein degradation, resulting in protein deposition
(NRC 2011). Intracellular protein synthesis
requires AAs and energy supply. Traditionally,
the requirements for dietary AAs were deter-
mined based on the growth performance or pro-
tein deposition in fish fed different levels of a
given AA. It should be borne in mind that protein
deposition is the main determinant of body
weight gain in growing fish (Dumas et al. 2007).
As in other animals, fish need 20 different
proteinogenic AAs to synthesize protein. About
25 to 55% of dietary AAs are used for protein
accretion in growing fish (NRC 2011). Generally,
the rates of lean tissue gain and protein retention
in fish increase progressively when the content of
protein or AAs in the diet increases from a sub-
optimal to an optimal level, beyond which the
rates of lean tissue gain and protein retention
either remains at the plateau or declines.

Fish continue to grow throughout their lives,
but the relative growth rate (%/day) decreases
with age. Both hyperplasia (increases in fiber
number) and hypertrophy (increases in fiber
size) contribute to adult myotomal muscle growth
for fish (Johnston 2001). Skeletal muscle forma-
tion or myogenesis involves the specific control
of several myogenic regulatory factors (MRFs)
which control a series of events, including the
specification, activation, and differentiation of
myogenic cells. The maintenance of formed mus-
cle fibers is dependent on a balance between
protein synthesis and protein degradation
(Fuentes et al. 2013). The mechanistic target of
rapamycin (mTOR) plays a key role in cell phys-
iology, acting primarily at the initiation of poly-
peptide synthesis (Wang and Pround 2006; Duan
et al. 2015). The pathway can be directly
activated by intracellular AAs through the
mediators of Rag, GTPase, Rheb, hVps34, and
MAP 4K3 (Duan et al. 2015). Dietary AAs, such
as leucine, glycine, glutamine, and arginine are
capable of regulating mTOR signaling pathway in
fish species (Chen et al. 2015; Liang et al.
2018a, b; Li et al. 2019). For example, increasing
dietary levels of leucine enhanced mTOR expres-
sion, growth performance and whole-body pro-
tein gain in juvenile blunt snout bream (Liang

et al. 2018a). Myostatin is a negative regulator
of myogenesis, and its mRNA expression in fish
could be suppressed by proper supplementation
with histidine to the diet (Michelato et al. 2017).
Glutamate and glutamine are important in the
growth of proliferating muscle cells, as well as
the acceptable firmness and quality of fish fillets
(Østbye et al. 2018; Ingebrigtsen et al. 2014). The
effects of these two AAs may be mediated, in
part, through activating the mTOR pathway.

The composition of AAs in tissue proteins is
generally similar among all fish species, as shown
for largemouth bass (Table 8.1) and hybrid
striped bass (Table 8.2). As fish grow, the free
AA pool in their bodies also expands. Most of
free AAs represent < 5% of their total AAs in
largemouth bass (Table 8.1) and hybrid striped
bass (Table 8.2), with the exception of histidine in
largemouth bass. In the largemouth bass, free
histidine represents 10% of total histidine in the
whole body. This AA, along with taurine (also a
highly abundant free AA), may play a role in
osmotic regulation and the maintenance of acid-
base balance. Thus, the profiles of both free plus
peptide-bound AAs in the whole body, rather
than the “ideal protein” that concerns only EAA
composition in tissue proteins, should be consid-
ered when formulating AA-balanced diets
for fish.

8.6.2 Release of Hormones

AAs regulates muscle growth and development
through direct actions on myogenic regulatory
factors and mTOR signaling, or indirectly via the
growth hormone (GH)/insulin-like growth factor
(IGF) axis (Vélez et al. 2017). As in other animal
species, the GH/IGF axis plays an important role in
muscle protein synthesis, as well as muscle cell
growth through both hyperplasia and hypertrophy.
GH can exert a direct effect on the muscle or
indirectly through IGF-I secreted by the liver.
IGF-1 modulates cell metabolism (e.g. nutrient
uptake) and the mTOR signaling pathway, which
controls both protein turnover and muscle cell
proliferation. Previous studies have demonstrated
that there is cross-talk between ghrelin and
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neurotransmitters (such as AAs and serotonin) to
regulate GH secretion (Pinilla et al. 2003). In
humans, AA intake increased ghrelin secretion to
further stimulate the GH/IGF axis (Knerr et al.
2003). Dietary AAs and protein are also important
nutrients that positively influence the GH-IGFs
axis in fish (Picha et al. 2008). For example,
Bower and Johnston (2010) have shown that
AAs can enhance the expression of many genes
in the IGF signaling pathway in the Atlantic
salmon. In another study, a deficiency of AAs,
especially lysine, affects the expression of genes
in the IGF system and of myogenic factors in
gilthead sea bream (Azizi et al. 2016). In rainbow
trout, dietary methionine could increase the
expression of genes involved in the GH/IGF axis
response and protein turnover (Rolland et al.
2015). More details about the effects of AAs on
GH/IGF axis and muscle development in fish are
presented in Fig. 8.3.

As noted previously, the CCK plays an impor-
tant role in controlling digestion in vertebrates. In
humans, the most potent stimulants of CCK
secretion are the partial digestion products of fat
and protein, including di- and tri-peptides (Liddle
2000). In sea bass larvae, different levels of pro-
tein or its hydrolysates in diets modulate trypsin
expression and affect CCK content (Cahu et al.

2004). There are reports that the ingestion of
liposomes that contain free AAs, protein or their
combinations effectively stimulates CCK produc-
tion in first-feeding herring larvae (Koven et al.
2002). In mammals, the secretion of other
hormones [e.g., insulin, gonadotropin-releasing
hormone (GnRH) and cortisol] may also be
affected by intakes of dietary protein and AAs
(Bourguignon et al. 1989; Kraemer et al. 2006;
Veldhorst et al. 2009). However, such studies are
limited in fish species (Fig. 8.4).

8.6.3 Attractants

The use of AAs as dietary attractants has received
considerable attention because the replacement of
fishmeal with plant-source protein feedstuffs
often reduces the feed intake of aquatic animals.
Vertebrates express two families of G-protein-
coupled receptors, taste receptors type 1 (T1R)
and type 2 (T2R), in their taste buds (Oike et al.
2007). In mammals, the heteromeric taste recep-
tor type 1 members 1 and 3 (T1R1/3) respond to
umami tastants, such as glutamate and nucleic
acids, whereas the taste receptor type 1 members
2 and 3 (T1R2/3) respond to sweet tastants, such
as sugars (Oike et al. 2007; Yarmolinsky et al.

Fig. 8.3 Different sizes of white skeletal muscle fibers in
largemouth bass at 5 g or 40 g of body weight. The fish
were fed a diet containing 45% crude protein and 10%
lipids (dry matter basis, Li et al. 2020c). The white skeletal
muscle (near the dorsal fin region) was obtained and
stained with haemotoxylin and eosin. The histology slides

were examined with the use of a microscope at 100X
magnification. Both large and small fibers are present in
the skeletal muscle of 40-g fish, indicating that both hyper-
plasia and hypertrophy contribute to myotomal muscle
growth for this fish
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2009). The T2Rs respond to bitter tastants,
including poisonous chemicals (Chandrashekar
et al. 2000; Mueller et al. 2005). However, both
T1R1/3 and T1R2/3 act as receptors for AAs but
not sugars in fish (Oike et al. 2007). The facial
nerve of zebrafish respond strongly to the admin-
istration of alanine and proline; moderately to
cysteine, glycine, serine, tyrosine, quinine-HCl,
and denatonium; and weakly to other AAs. Gly-
cine and some L-AAs (e.g., alanine, glutamate,
and arginine) possess dietary attractant
properties (Wu 2020b), which can trigger reflex-
ive snapping and biting behaviors (Kasumyan
and Morsi 1996; Polat and Beklevik 1999;
Derby and Sorensen 2008). Similarly,
Shamushaki et al. (2007) reported that alanine
and glycine are potent attractants for Persian stur-
geon juveniles. Some non-proteinogenic AAs
(e.g., D-glutamine, D-asparagine, D-glutamate,
and β-alanine) are also strong attractants for
glass eels (Sola and Tongiorgi 1998).
DL-alanine is also an attractant that has a very
strong effect on improving the survival or growth

of post-larval African catfish (Clarias gariepinus;
Yilmaz 2005) and juvenile Sea Bass
(Dicentrarchus labrax; Tekelioglu et al. 2003).

8.6.4 Immune Responses

Immunity is the ability of an organism to resist
attacks by pathogens. Generally, there are three
levels of immune defense in fish. The first line
consists of physical and epithelial barriers (such
as the scales, skin, and mucus), gastric acid, and
chemical mediators [such as lysozyme, transfer-
rin, complement systems, reactive oxygen species
(ROS), and reactive nitrogen species]. Dietary
AAs regulate the production of these tissues and
substances (Table 8.4). The second line of
defense involves cells, including phagocytes, nat-
ural cytotoxic cells, and inflammatory response.
The third line of defense is the development of a
specific immune response through the production
of antibodies by B-cells against specific
pathogens or the development of T-cell responses

Fig. 8.4 Molecular and cellular mechanisms whereby
amino acids stimulate muscle development and growth
through the mechanistic target of rapamycin (mTOR) sig-
naling pathway. mTOR is a highly conserved protein
kinase. Activated mTOR (in the phosphorylated form)
phosphorylates downstream proteins [eIF4E-binding

protein-1 (4E-BP1) and ribosomal protein S6 kinase-1
(p70S6K1)] to initiate protein synthesis. Activated
mTOR also contributes to the inhibition of intracellular
proteolysis. Accretion of intracellular protein results in the
growth of cells and tissues
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Table 8.4 Immune functions of amino acids in different fish species

Amino
acids Fish Main functions

Arginine Red drum (Sciaenops
ocellatus)

Increases in the production of reactive oxygen species
by neutrophils; higher serum lysozyme activity

Cheng et al.
(2011)

Channel catfish (Ictalurus
punctatus)

Increase in the resistance of channel catfish to infection
by E. ictalurid

Buentello
and Gatlin
(2001)

Hybrid striped bass (Morone
chrysops � M. saxatilis)

Increases in serum lysozyme activity and in superoxide
anion production by neutrophils

Cheng et al.
(2012)

Senegalese sole (Solea
senegalensis Kaup, 1858)

Increases in respiratory burst and nitric oxide
production by head–kidney leucocytes

Costas et al.
(2011)

Yellow catfish (Pelteobagrus
fulvidrac)

Increases in lysozyme activities, as well as the
phagocytic index and the respiratory burst of head–
kidney leucocytes

Zhou et al.
(2015)

Turbot (Scophthalmus
maximus L.)

Increases in lysozyme and glutathione peroxidase
activities

Zhang et al.
(2017)

Jian carp (Cyprinus carpio
var. Jian).

Increases in mRNA levels for inflammatory cytokines,
the phosphorylation of mTOR and 4E-BP, and humoral
and cellular immunities

Chen et al.
(2015)

Channel catfish (Ictalurus
punctatus)

Increases in phagocyte superoxide production and
neutrophil respiratory burst

Pohlenz
et al. (2014)

Golden pompano (Trachinotus
ovatus)

Increases in the activities of total nitric oxide synthase
and lysozyme in the serum and liver and in survival
rate, in response to Vibrio harveyi challenge

Lin et al.
(2015)

Turbot (Scophthalmus
maximus)

Increases in respiratory burst and NO production by
blood monocytes

Costas et al.
(2013)

Nile tilapia (Oreochromis
niloticus)

Increases in NO metabolites, as well as total NO
synthase and lysozyme activities in plasma

Yue et al.
(2015)

Orange-spotted grouper
(Epinephelus coioides)

Regulating mRNA levels for immune-associated genes,
and enhancing humoral and cellular immunities

Han et al.
(2018)

Glutamine Red drum (Sciaenops
ocellatus)

Increases in the production of reactive oxygen species
by neutrophils; higher serum lysozyme activity

Cheng et al.
(2011)

Hybrid striped bass (Morone
chrysops� M. saxatilis)

Increases in the production of superoxide by
neutrophils; higher serum lysozyme activity

Cheng et al.
(2012)

Turbot (Scophthalmus
maximus L.)

Increases in the respiratory burst of head-kidney
macrophages, and in serum lysozyme and glutathione
peroxidase activities

Zhang et al.
(2017)

Hybrid sturgeon (Acipenser
schrenckii ♀ � Huso
dauricus♂)

Increases in the concentrations of complement-3
(C3) and complement-4 (C4) in serum

Zhu et al.
(2011)

Jian carp (Cyprinus carpio var.
Jian)

Increases in serum lysozyme activity and C3
concentration

Hu et al.
(2015)

Methionine Jian carp (Cyprinus carpio var.
Jian)

Increases in survival rate; leukocyte phagocytic
activity; and lysozyme activity, acid phosphatase
activity, total iron-binding capacity, haemagglutination
titer, complements 3, 4, and immunoglobulin M
concentrations in serum

Kuang et al.
(2012)

Jian carp (Cyprinus carpio var.
Jian)

Increases in lysozyme activity, lectin potency,
immunoglobulin M concentration, compliments C3,
C4, total iron-binding capacity in serum; decreases in
intestinal Escherichia coli and Aeromonas counts

Tang et al.
(2009)

European seabass
(Dicentrarchus labrax)

Increases in peripheral leucocyte responses,
complement activity and bactericidal capacity; cellular
recruitment to the inflammatory site; and peroxidase
and bactericidal activities in plasma

(Machado
et al. 2015)

Yellow catfish (Pelteobagrus
fulvidraco)

Increases in serum lysozyme activity; serum immune
globulins; as well as the phagocytic activity and
respiratory burst of head-kidney phagocytic cells

(Elmada
et al. 2016)
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(Trichet 2010; Webster and Thompson 2015).
The nutritional status of the host can influence
the severity of impacts from pathogens (e.g.,
viruses, bacteria, fungi, and parasites), as well as
immunity acquisition (Webster and Thompson
2015). AAs hold great promise in improving
health and preventing infectious diseases in
animals (including fish and shrimp) and humans
(Li et al. 2007).

AAs play fundamental roles in the immune
systems of fish (Li et al. 2009). In fish, glutamine
is crucial to the immune response as it is a major
energy substrate to support optimal lymphocyte
proliferation and production of cytokines by
lymphocytes and macrophages (Table 8.5), as
reviewed previously (Alejo and Tafala 2011; Li
et al. 2009; Reyes-Cerpa et al. 2012).
Macrophage-mediated phagocytosis is
influenced by glutamine availability (Calder
and Yaqoob 1999). Glutamine is essential for the
proliferation of T and B cell lymphocytes in fish,
as dietary glutamine increased the proliferation
of lymphocytes from the head-kidney and
spleen of the channel catfish (Pohlenz et al.
2012b). Results of in vitro studies have shown
that arginine and glutamine are important
immunomodulators of both innate and adaptive
responses in fish leukocytes (Pohlenz et al.
2012a, b). In recent years, the positive function

of dietary glutamine on the immune responses
has been well studied in several fish species
(Table 8.4). Arginine is an abundant AA in tis-
sue proteins and plays an important role in the
immunity of the host directly through the pro-
duction of nitric oxide (NO) and polyamines by
macrophages, or indirectly via affecting gene
expression and endocrine status (Li et al. 2009;
Andersen et al. 2016). For example, NO is a
cytotoxic molecule of macrophages and
mediates inflammation (Wu 2013a, b). Both
in vivo and in vitro experiments in channel cat-
fish indicated that arginine has positive effect on
the immune system, as dietary arginine supple-
mentation enhanced the pathogen-killing and
phagocytosis abilities of macrophages
(Buentello et al. 2007; Pohlenz et al. 2012a, b).
Higher serum lysozyme activity was observed in
fish fed the diet supplemented with 1% arginine,
2% arginine, 1% glutamine, or 1% arginine plus
1% glutamine in hybrid striped bass (Cheng
et al. 2012). Methionine also has benefi-
cial effects on the immune system by improving
both cellular and humoral immune responses
(Rubin et al. 2007). As noted previously, methi-
onine is involved in polyamine and glutathione
syntheses, which may also affect the prolifera-
tion of lymphocytes and inflammatory processes
in cells (Grimble and Grimble 1998). The

Table 8.4 (continued)

Amino
acids Fish Main functions

Other AAs
Lysine Cobia (Rachycentron

canadum)
Increase in blood leukocyte number Zhou et al.

(2007)
Taurine Yellow catfish (Pelteobagrus

fulvidraco)
Increases in growth and red blood cells; serum
lysozyme activity and immunoglobulin concentrations;
and phagocytic index and respiratory burst of
macrophages

Li et al.
(2016a)

Leucine Blunt snout bream
(Megalobrama amblycephala)

Increases in plasma C3 immunoglobulin M (IgM)
concentrations; and decreases in the expression of
genes for pro-inflammatory factors in the
hepatopancreas

Liang et al.
(2018a)

Leucine Golden pompano Trachinotus
ovatus

Increases in growth and protein deposition; increase in
serum lysozyme activity; improvements in intestinal
morphology

Tan et al.
(2016)

Leucine Black carp Mylopharyngodon
piceus

Increases in mRNA levels or enzyme activities of
immune defense effectors and in non-specific
immunities; decrease in oxidative stress

Wu et al.
(2017)
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positive function of dietary methionine on the
immune response has been well studied in sev-
eral fish species (Table 8.4). Some studies also
reported that certain AAs, such as taurine and
lysine, may modulate immune responses in
aquatic animals. More studies are necessary to
understand the complex relationship between
AAs and the immune system (Fig. 8.5).

8.6.5 Anti-oxidative Defenses

Free radicals play a beneficial role in biological
evolution, metabolism, and physiology, but path-
ological levels of these substances also have an
adverse effect on oxidative damages to protein,
lipids and DNA, leading to cell injury and death
(Fang et al. 2002). The production and deleterious

Table 8.5 Primary sources and functions of major cytokines and chemokines produced in fish

Cytokine Primary source Primary functions

Pro-inflammatory cytokines

TNFα Macrophages, NK-cells, and T-cells Modulating cell proliferation; inducing necrosis
and apoptosis; promoting the synthesis of other
cytokines; killing infected cells; inhibiting the
intracellular replication of pathogens

IL-1β Blood monocytes and tissue macrophages Regulating the expression of other cytokines,
lymphocyte activation, leucocyte migration,
phagocytosis, and bactericidal activity

IL-6 Macrophages, lymphocytes fibroblasts, neurons,
glial cells, and endothelial cells

Modulating the production of immunoglobulins,
the differentiation of lymphocytes and monocytes,
the secretion of chemokines, and the migration of
leukocytes to infected tissues

IL-11 Intestine and gills (constitutive); spleen, head
kidney, and liver (induced following infection)

Exerting anti-microbial and anti-viral defenses

IL-12 Dendritic cells, macrophages Stimulating the secretion of IFNγ from T-cells;
activating NK cells and neutrophils; promoting the
maturation of naïve T-cells into cytotoxic T-cells;
regulating T-cell development

IL-17 Head kidney, spleen, gills, testis, ovary and skin Exerting pro-inflammatory actions
IL-18 M1 macrophages Inducing the synthesis of IFNγ by Th1 and NK

cells in concert with IL-12; promoting
the maturation of T-cells and NK cells; activating
neutrophils; enhancing Fas ligand-mediated
cytotoxicity

GM-CSFs M1 macrophages and T-cells Stimulating stem cells to produce granulocytes and
monocytes; hematopoietic growth factors;
promoting neutrophils, eosinophils, and M1
macrophages to produce pro-inflammatory
cytokines; activating NO production by iNOS

Regulatory cytokines

IL-2 Th1 cells Primarily promoting proliferation, activation and
differentiation of T-cells; required for the activation
of NK cells and the synthesis of immunoglobulins
by B-cells

IL-4 T-cells, mast cells, and basophils Regulating the functions of B-cells, T-cells, and
macrophages, as well as hematopoietic and
non-hematopoietic cells; serving as a key cytokine
to drive Th2 differentiation as well as mediating
humoral immunity and allergic responses

IL-7 Different stromal cell types (e.g., those in thymus,
head kidney, spleen, liver, gill, intestine, and
skeletal muscle)

Regulating the development, survival,
proliferation, and homeostasis of lymphocytes

(continued)
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effects of free radicals are illustrated in Fig. 8.6.
ROS, including superoxide anion (O2

�),
hydroxyl radical (OH�), and hydrogen peroxide
(H2O2), contribute to radiation and oxidant-
induced cytotoxicity. Fish species are highly sus-
ceptible to ROS as their tissues contain higher
levels of polyunsaturated fatty acids than those
in mammals and birds (Enser et al. 1996). To

prevent these harmful effects, ROS should be
rapidly removed by non-enzymatic and enzy-
matic antioxidants (Fang et al. 2002; Martinez-
Alvarez et al. 2005). Glutathione peroxidase acts
to reduce lipid hydroperoxides to their
corresponding alcohols and convert free H2O2 to
H2O. Thus, this enzyme is crucial for efficient
protection against lipid peroxidation. Besides

Table 8.5 (continued)

Cytokine Primary source Primary functions

IL-15 Leukocytes Regulating the functions of T-cells, dendritic cells,
and NK cells; serving as a key regulator of the
innate immune response

IL-21 Th1 and Th2 cells Acting on CD4+ and CD8+ cells, B-cells, NK cells,
dendritic cells, and myeloid cells; enhancing the
proliferation of CD4+ and CD8+ cells; exerting
anti-tumor effects

Anti-inflammatory cytokines

IFNα/β
(type-I IFN)

Most cells (induced by viruses) Exerting anti-viral, anti-proliferative, and
immunomodulatory activities

IFNγ (type-
II

NK cells and T-cells (in response to IL-12, IL-18,
mitogens or pathogens)

Activating leukocytes (including M1
macrophages); mediating cellular resistance
against viral pathogens; modulating both innate
and adaptive immune responses; enhancing NO
synthesis by iNOS

IL-10 M2 macrophages, monocytes, T-cells, and
keratinocytes

Inhibiting the production of Th1 cytokines
(mediated by induction of regulatory T-cells);
serving as a major anti-inflammatory cytokine

IL-20 Immune cells (e.g., macrophages) and certain
other cell types (e.g., keratinocytes and brain)

Mediating crosstalk between epithelial cells and
tissue-infiltrating immune cells

TGF-β Leukocytes (including M2 macrophages,
monocytes, T-cells)

Serving as a suppressive cytokine; inhibiting the
proliferation of Th1 and Th2 cells; promoting the
generation of T regulatory cells; maintaining
immune tolerance; regulating the development,
proliferation, differentiation, migration, and
survival of leukocytes (e.g., thymic lymphocytes,
dendritic cells, NK cells, macrophages, and
granulocytes; inducing the generation of Th17 cells

Chemokines

MCP-1 Monocytes and macrophages The most important chemokine that regulates the
migration and infiltration of monocytes and
macrophages

IL-8 Macrophages and many other cell types Recruitment of neutrophils, lymphocytes and
basophils to infected tissues; stimulating
respiratory burst in neutrophils

CK-1 Macrophages and many other cell types Inducing chemotaxis in leucocytes

CD4+ cells, T helper cells (Th cells) that play an important role in the immune system, particularly in the adaptive immune
system; they help the activity of other immune cells by releasing T cell cytokines; CD8+ cells, cytotoxic T-cells that
induce apoptosis in cells; CK-1 cytokeratin-1, GM-CSFs granulocyte-macrophage colony-stimulating factors, IFN
interferon, IL interleukin, iNOS inducible nitric oxide synthase, M1 macrophages (iNOS) pro-inflammatory
macrophages, M2 macrophages (arginase-2), anti-inflammatory macrophages that promote wound healing and tissue
repair,MCP-1 monocyte chemotactic protein-1, NK natural killer, NO nitric oxide, TGF-β transforming growth factor-β,
Th helper T-cell, TNFα tumor necrosis factor-α
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glutathione peroxidase, catalase and superoxide
dismutase (SOD) are two other major antioxidant
enzymes of the antioxidant defense system. SOD

catalyzes the conversion of O2
� into H2O2, which

is further converted to H2O by catalase (Fang
et al. 2002).

Fig. 8.6 Roles of amino
acids and their metabolites
as antioxidants in fish
(adapted from Fang et al.
2002). Arg arginine, Cys
cystine, CAT catalase, Gln
glutamine, Glu, glutamate,
Gly glycine, GPx
glutathione peroxidase, GR
glutathione reductase, GSH
glutahione, GSSG oxidized
glutathione, Lys lysine, Leu
leucine, LH lipids
(unsaturated fatty acids),
LOOH lipid hydroperoxide,
Met methionine, SOD
superoxide dismutase, Tau
taurine

Fig. 8.5 The endocrine axis (GH/IGF axis) that regulates
the growth of teleost fish. Amino acids act through the
ghrelin signaling pathway and also directly on the pituitary
gland to stimulate the release of growth hormone and on
the liver to promote the production of insulin-like growth
factor (IGF)-1. GH growth hormone, GHBP growth

hormone-binding protein, GHRH growth hormone-
releasing hormone,GHIH growth hormone-inhibiting hor-
mone, GHSR growth hormone secretagogue receptor,
mTOR mechanistic target of rapamycin, IGFBP insulin-
like growth factor-binding protein
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AAs are important nutrients for anti-oxidative
defense as they can be the building blocks for the
synthesis antioxidant enzymes. Some AAs (argi-
nine, citrulline, glycine, proline, 4-hydroxy-pro-
line, taurine and histidine) can directly remove
oxygen free radicals (Fang et al. 2002; Wu et al.
2019a). The antioxidant ability of fish could be
improved by AAs, such as arginine (Liang et al.
2018b), glutamine (Zhu et al. 2011; Han et al.
2014), taurine (Han et al. 2014; Pinto et al.
2010), methionine (Elmada et al. 2016), leucine
(Deng et al. 2016), lysine (Li et al. 2014), histidine
(Feng et al. 2013), citrulline (Li et al. 2013), and
proline (Li et al. 2013). In most of those studies,
authors made conclusions based on the activities
and gene expression of antioxidant enzymes. For
example, Liang et al. (2018b) reported that dietary
supplementation with arginine enhanced mRNA
mRNA levels for Cu/Zn-SOD, glutathione peroxi-
dase and catalase, as well as antioxidant defense in
juvenile blunt snout bream. In another study with
juvenile yellow catfish, optimum dietary methio-
nine decreased peroxidative damage in tissues,
because SOD and glutathione peroxidase activities
decreased with increasing dietary methionine
levels (Elmada et al. 2016). Recovery from oxida-
tive damage can be associated with a reduction in
inflammatory molecules. Thus, changes in the
expression or activities of antioxidative enzymes
may reflect either an increase or decrease in oxida-
tive stress. For this reason, the evaluation of effects
of AAs on antioxidative responses should be care-
fully performed with fish under different
conditions. Besides AAs, small peptides (glutathi-
one and carnosine) and nitrogenous metabolites
(creatine) are also important compounds for scav-
enging oxygen free radicals (Wu 2013a, b; Li and
Wu 2018). For example, dietary supplementation
with L-carnitine elevated the levels of enzymatic
antioxidants, such as SOD, catalase, glutathione
S-transferase (GST) activities, in tissues of juvenile
black sea bream (Ma et al. 2008). Glutamate
(derived from diet, synthesis, or glutamine hydro-
lysis), cysteine and glycine are required for the
synthesis of glutathione, thereby improving the
ability of fish enterocytes to repair, proliferate,
and migrate in response to oxidants (Hu et al.
2014).

In all animals, including fish, the normal func-
tion of organs depends on their structural integrity,
which can be affected by radiation-induced injury
(Wen et al. 2014). In other words, an increase in
antioxidant capacity brought about by dietary AAs
is important for the health and growth of aquatic
animals. Li et al. (2016b) suggested that lysine
plays a significant role in protecting the intestine
of fish in vivo and in vitro through the induction of
expression of key antioxidant genes. Similarly,
Rimoldi et al. (2016) reported that taurine supple-
mentation to soybean meal-based diets could
increase the length of villi folds, reduce the number
of vacuoles, and increase the number of goblet
cells. Decreases in the length of villi and the num-
ber of goblet cells were observed in turbot
(Scophthalmus maximus L.) fed Met-deficient
diets (Gao et al. 2019). Our results also indicated
that low fishmeal diets could cause structural dam-
age in the intestine and liver (Li et al. 2020f) and
that this nutritional problem could be alleviated by
dietary supplementation with methionine or, to a
lesser extent, taurine (Fig. 8.7; Li et al. 2020g).
Moreover, some traditionally nonessential AAs,
such as glutamate and glutamine, could promote
the antioxidant capacity in fish, which could fur-
ther enhance intestinal development and growth
(Li et al. 2013; Jiang et al. 2015; Zhao et al.
2015). It should be noted that an improvement in
antioxidant capacity is not the only variable for
assessing the positive functions of AAs in different
organs, because AAs are also major substrates for
ATP production and essential for protein synthesis
(Jia et al. 2017; Li et al. 2020b).

8.6.6 Lipid Digestion and Metabolism

As in terrestrial animals, AAs influence the nutri-
tion and metabolism of dietary lipids in fish,
including digestion, absorption, transport, lipo-
genesis, and biological oxidation (primarily the
mitochondrial β-oxidation) (Wu 2018). The
release of CCK is augmented by the entry of
long-chain fatty acids into the stomach or duode-
num of fish. CCK has two major functions in lipid
digestion: (1) stimulating the gallbladder to con-
tract and release the stored bile acids into the
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intestine; and (2) enhancing the secretion of pan-
creatic digestive enzymes. Bile acids play an
important role in the emulsification of fats and
increasing the surface area of fats, activating pan-
creatic lipase and accelerating the formation of
mixed micelles. In the liver, bile acids are cova-
lently conjugated with taurine and glycine in
mammals but only with taurine in fish (Kim
et al. 2007). However, recent evidence suggests
that bile acids are conjugated mainly with taurine
and, to a lesser extent, with glycine in the liver of
fish (El-Sayed 2014). The functions of taurine in
lipid digestion and the formation of bile salts have
been well reviewed by Salze and Davis (2015)
and El-Sayed (2014). The green liver syndrome in
some fish species may be caused by the impaired
conjugation of bilirubin and biliverdin in
response to a dietary deficiency of taurine
(Takeuchi 2014).

Fatty acids undergo β-oxidation in various
tissues to produce ATP. This process involves
the conversion of long-chain fatty acyl-CoA to
acetyl-CoA in mitochondria (Fig. 8.8), and is
enhanced in fish [e.g., Nile tilapia (Li et al.
2020e) as reported for mammals and birds
(Wu 2013b). Mitochondrial carnitine palmitoyl
transferase-1, which resides on the inner surface
of the outer mitochondrial membrane and
requires carnitine as an essential cofactor, is a
major site for the regulation of mitochondrial
long-chain fatty acyl-CoA transport (Wu 2018).
Carnitine is derived from diets and synthesized
from lysine, methionine and serine. The stimula-
tory effect of carnitine supplementation on the
β-oxidation of fatty acids has been reported for
many species, such as African catfish (Ozorio
et al. 2010) and common carp (Cyprinus carpio;
Sabzi et al. 2017). Similar results were also

Fig. 8.7 Hepatic and intestinal morphology in
largemouth bass fed low-fishmeal diets supplemented
with or without methionine or taurine. The body weight
of the fish was ~60 g. (a): Largemouth bass with a healthy
liver and intestine (Li 2020); (b): Largemouth bass with
dark skin, as well as liver and intestinal atrophies and
structural abnormalities (black skin syndrome); (c):
Largemouth bass with a healthy liver whose sinus struc-
ture is clear and well organized (white arrow); (d):
Largemouth bass with liver atrophy and abnormal struc-
ture, as indicated by (1) reductions in the sizes of
hepatocytes and their nuclei, (2) closely spaced nuclei,
and (3) unclear hepatic sinus structure; (e) (100X) & (f)
(200X): Morphology of the healthy intestine in
largemouth bass, as stained by the periodic acid-Schiff

(PAS) method and examined at different magnifications
under a microscope, showing well-structured mucosae and
normal lamina propria; (g) (100X) & (h) (200X): Mor-
phology of the unhealthy intestine in largemouth bass with
black skin syndrome; the gut was stained by the periodic
acid-Schiff (PAS) method and examined at 100X and
200X magnifications under a microscope, showing (with
an arrow) a wider lamina propria containing more inflam-
matory cells in comparison with normal largemouth bass.
Note that the occurrence of dark skin, as well as liver and
intestinal atrophies in largemouth bass fed a low (14.5%)-
fishmeal diet can be reduced by dietary supplementation
with either 0.5% methionine alone or 0.5% methio-
nine plus 0.5% taurine and, to a lesser extent, with 0.5%
taurine alone (Li 2020)
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observed in fish receiving dietary supplementa-
tion with lysine and methionine (Burtle and Liu
1994; Liao et al. 2014; Wang et al. 2016). How-
ever, there are conflicting reports that dietary
carnitine supplementation either has no effect on
lipid metabolism or even increases lipid deposi-
tion in fish (Dias et al. 2001; Zheng et al. 2014).
Consistent with this phenotype, dietary supple-
mentation with carnitine (331 or 3495 mg/kg
diet) up-regulated mRNA levels for lipogenic
genes, increased the activities of lipogenic
enzymes, and reduced mRNA levels for carnitine
palmitoyltransferase-1A in yellow catfish, com-
pared with fish without carnitine supplementation
(Zheng et al. 2014). In animals, β-oxidation is
regulated at transcriptional and post-
transcriptional levels. Transcriptional regulation
involves peroxisome proliferator-activated
receptors, sterol regulatory element-binding tran-
scription factor-1, and peroxisome proliferator-
activated receptor-γ coactivator-1α, whereas
post-transcriptional regulation depends on the
phosphorylation of acetyl-CoA carboxylase and
the allosteric inhibition of carnitine
palmitoyltransferase-1 by malonyl-CoA. The lat-
ter is formed from acetyl-CoA (a metabolite of

AAs and glucose) and bicarbonate by acetyl-CoA
carboxylase. Thus, metabolic conditions that
favor lipogenesis are associated with excessive
intakes of dietary AAs and starch. Based on
research with mammals (e.g., Wu 2018), studies
are warranted to define the mechanisms responsi-
ble for the regulation of lipid metabolism by AAs
in fish.

8.6.7 Spawning and Larval
Development

Newly spawned marine fish eggs have a total AA
content of 40–60% of their dry mass, and this
AAs pool includes proteins, peptides and free
AAs (Rønnestad et al. 1999). These AAs are
derived from the yolk protein (Thorsen 1995).
Free AAs are an important energy source during
the embryonic development of marine fishes
(Fyhn 1989; Rønnestad et al. 1992, 1993), until
the hatched larva has sufficiently developed its
digestive system to commence exogenous feed-
ing (Thorsen 1995; Rønnestad et al. 1993, 1999).
For example, the content of free AAs in the cod
(Gadus rnorhua L.) egg decreased from

Fig. 8.8 Roles of amino
acids in the regulation of
fatty acid oxidation in fish.
Some amino acids activate
the metabolic pathways for
the oxidation of long-chain
fatty acids to CO2 and water
through carnitine synthesis
and multiple cellular
mechanisms. CCK
cholecystokinin, CPT 1
Carnitine
palmitoyltransferase 1, Gly
glycine, FAs fatty acids, Lys
lysine,Metmethionine, Tau
taurine
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200 nmol/egg at spawning to 25 nmol/egg or fish
during the egg and yolksac larval stages (Fyhn
and Serigstad 1987). As a result, an adequate
supply of free AAs is necessary for successful
embryonic development as they are major
substrates for aerobic ATP production in eggs
and yolksac larvae (Fyhn and Serigstad 1987).
Some AAs, like taurine and β-alanine, are not
used for protein synthesis or ATP production,
but can improve the reproductive performance
of fish by regulating internal osmotic pressure,
neurotransmission, hormone release, anti-
oxidative reactions, cellular calcium levels, and
conjugation with bile acids (Matsunari et al.
2006; Pinto et al. 2010; Salze et al. 2012). A
balanced provision of nutrients in broodstock
feeds can increase the fecundity or egg quality
by influencing the brain–pituitary–gonad–endo-
crine system or the availability of a substance
for egg formation (Izquierdo et al. 2001). The
total AA pool, fertilizability and hatchability of
eggs of Nile tilapia (Oreochromis niloticus) can
be increased by high protein intake (Gunasekera
et al. 1996). Of particular note, the eggs of
females were not fertilized when fish were fed a
brookstock diet with only 10% crude protein
(Gunasekera et al. 1996). Additional studies
indicated that fertilization, hatchability or larval
development were improved by the inclusion of
adequate protein or AAs in broodstock feeds
(El-Sayed et al. 2003; Matsunari et al. 2006;
Embry et al. 2010).

Fish must initiate exogenous feeding after yolk
nutrients are no longer sufficient to support the
metabolic demand of the larvae. AAs are also
important catabolic substrates after the onset of
first feeding and may meet � 60% of the energy
requirement (Rønnestad et al. 1993). Besides, fish
larvae have very high growth rates, which
necessitates high requirements for dietary AAs
to support protein synthesis and accretion
(Rønnestad et al. 1999). In early-stage larvae,
extracellular proteolytic capacity develops when
they approach metamorphosis (Govoni et al.
1986). Thus, free AAs or protein hydrolysates

(pre-digested protein source) are important
components of the diet to initiate the feeding of
marine fish larvae (Rønnestad et al. 1999, 2003,
2007; Kolkovski 2001). Larval growth, digestive
system development, and metamorphosis were
improved by dietary supplementation with certain
AAs, such as taurine (Matsunari et al. 2005; Pinto
et al. 2010), methionine (Mamauag et al. 2012),
lysine (Abboudi et al. 2006; Naz and Türkmen
2009), and tryptophan (Saavedra et al. 2009). As
summarized in Fig. 8.9, different kinds of protein
hydrolysates have been reported to improve the
quality of microdiets (Zambonino Infante et al.
1997; Cahu et al. 1999; Plascencia-Jatomea et al.
2002; Lian et al. 2008; Gisbert et al. 2012).

8.6.7.1 Other Functions of AAs
Important roles of different AAs in the growth,
development, and health of fish have been well
summarized by Li et al. (2009) and Andersen
et al. (2016), and are briefly highlighted here.
AAs are the most versatile nutrients in animals,
ranging from protein structure, modifications,
reactions and functions, to cell sensing and signal-
ing, and to diverse metabolic pathways (Wu 2009;
Andersen et al. 2016). Additionally, AAs contrib-
ute to the health and pigmentation of tissues in all
animals, including fish. For example,
abnormalities in feeding behavior and pigmenta-
tion in red sea bream fed a taurine-free diet could
be ameliorated by taurine supplementation
(Takeuchi 2014). Similarly, our recent studies
indicated that juvenile largemouth bass fish fed
diets with low fishmeal had low concentrations of
taurine and methionine in serum (Li et al. 2020f),
and some of the fish exhibited black skin syn-
drome characterized by skin darkening and retinal
degeneration, as well as intestinal and liver
atrophies and structural abnormalities (Fig. 8.10).
Some AAs, such as arginine (Andersen et al. 2013)
or glutamate (Caballero-Solares et al. 2015), are
important for regulating hepatic glucose and
lipid metabolism. Some AAs, like glutamate, gly-
cine, tyrosine, and GABA, are involved in the
release of pituitary hormones and could regulate
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the food intake or behaviors of fish (Trudeau et al.
2000; Andersen et al. 2016). Breck et al. (2003)
suggested that elevated concentrations of dietary
histidine could mitigate cataract formation in
the Atlantic salmon, but the underlying
mechanisms are unknown. It is possible that ade-
quate histidine is necessary for normal retinal
structure and function in fish by serving as an
essential precursor for the production of carnosine
(a potent antioxidant) or related small peptides.
Although a regulatory role for AAs in gene

expression has been reported in some studies, the
underlying mechanisms remain to be elucidated.
Nonetheless, dietary supplementation with certain
AAs can improve the growth performance and
feed efficiencies in many fish species (Table 8.6),
as well as their health (Andersen et al. 2016; Li
et al. 2020a). Of particular note, we recently found
that dietary supplementation with 0.5% methio-
nine to a low (14.5%)-fishmeal diet reduced the
incidence of black skin syndrome in largemouth
bass by about 75% (Li et al. 2020g).

Fig. 8.9 Important roles of amino acids and protein in the
development, growth and reproduction of fish. Amino
acids are not only the building blocks of proteins but
also signaling molecules, neurotransmitters, and regulators

of metabolic pathways in animals (He and Wu 2020).
These nutrients must be provided in diets to ensure opti-
mum growth, development, health, and survival of fish
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Fig. 8.10 Black skin syndrome in largemouth bass fed
low (�14.5%)-fishmeal diets (�10% crude protein from
fishmeal, dry matter basis). This syndrome is characterized
by skin darkening and retinal degeneration, as well as
intestinal and liver atrophies and structural abnormalities.
During a 56-day experimental period, fish fed a diet
containing 78.37% fishmeal do not exhibit black skin
syndrome, whereas 5% of fish have the syndrome when

fed a diet containing 65.3% fishmeal (Li 2020). Panels
A-1, B-1 & C-1: Healthy juvenile largemouth bass
(Micropterussalmoides)withnormalskinpigmentationand
eye morphologies (Li 2020). Panels A-2, B-2 & C-2: Fish
(~ 60 g of body weight) fed low (14.5%)-fishmeal diets
that exhibit dark skin and retinal degeneration after a
30-day period of feeding (Li 2020)
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8.7 Conclusion and Perspectives

AAs play important roles in fish nutrition by
serving as the building blocks of protein and
precursors of low-molecular-weight substances
(e.g., NO, creatine, polyamines, GABA,
catecholamines, and glutathione) with enormous
physiological importance, and by regulating key
metabolic pathways that are vital to the growth,
development, reproduction (Fig. 8.9). As in other
animals, the utilization or metabolism of AAs in
fish is complex and compartmentalized. Besides

polypeptide synthesis, AAs participate in
biological oxidation, gluconeogenesis and lipo-
genesis in a cell- and tissue-specific manner. Die-
tary protein and AAs are essential for immune
responses, antioxidant reactions, metatrophosis,
and adaptations to environmental changes. As a
result, studies with the metabolism and functions
of AAs are essential for the development of low
fishmeal diets for fish by including plant-source
ingredients and crystalline AAs. Furthermore,
research on the environment [including air and
water pollution (Wu et al. 2019b), as well as

Table 8.6 Benenifial effects of dietary supplementation with amino acids (AAs) or protein hydrolysates on the growth
and development of early-stage of fish

Species and
developmental stages

AAs or protein
hydrolysates Functions References

Gilthead seabream
(Sparus aurata, L. 1758)
larvae

Lysine Increases in bombesin (a 14-amino acid
peptide) and cholecystokinin (CCK) release

Naz and Türkmen
(2009)

White seabream
(Diplodus sargus) larvae

Tryptophan and
lysine

Improvements in larval growth, survival and
quality

Saavedra et al.
(2009)

Cobia (Rachycentron
canadum) larval

Taurine Increases in specific amylase and trypsin
activities

Salze et al. (2012)

Large yellow croaker
(Pseudosciaena crocea,)
larvae

Lysine Improvements in growth and survival, as well
as trypsin and leucine-aminopeptidase
activities

Xie et al. (2012)

Amberjack (Seriola
dumerili) larval

Taurine enriched
rotifers

Increases in growth and survival Matsunari et al.
(2013)

California yellowtail
(Seriola lalandis) larvae

Taurine-enriched
Artemia

Increase in survival Rotman et al.
(2017)

Red Sea bream (Pagrus
major) larvae

Methionine Increase in the activities of digestive proteases
in larvae

Mamauag et al.
(2012)

Red Sea bream (Pagrus
major) larvae

Arginine Increase in growth Lopez-Alvarado
and Kanazawa
(1994)

Sea bass (Dicentrarchus
labrax) larvae

Fish protein
hydrolysate

Increases in alkaline phosphatase and
aminopeptidase N activities

Cahu et al. (1999)

Increases in the activities of pancreatic and
intestinal proteases and peptidases

Zambonino
Infante et al.
(1997)

Gilthead Sea bream
(Sparus aurata) larvae

Marine protein
hydrolysates

Increases in growth and innate immunity Gisbert et al.
(2012)

Nile tilapia (Oreochromis
niloticus L) fry

Shrimp head
hydrolysate

Increases in growth and feed utilization
efficiency

Plascencia-
Jatomea et al.
(2002)

Summer flounder
(Paralichthys dentatus)
larval

Squid hydrolysate Increases in growth and survival Lian et al. (2008)

Asian seabass (Lates
calcarifer Bloch) larvae

Fish muscle or
squid mantle
hydrolysate

Increases in digestive capacity and growth
performance

Srichanun et al.
(2014)
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ambient temperatures] is increasingly important
in fish nutrition.

There are technical difficulties and challenges
in both the industrial production of aquatic
animals (e.g., fish and shellfish) and laboratory
experiments (Hardy 2010; Rawles et al. 2018;
Tacon and Metian 2008). First, AA requirements
and functions in fish species have been deter-
mined primarily based on dose–response trials
involving purified or semi-purified diets. In
order to balance AA patterns in different experi-
mental diets, different protein sources are often
used among different studies. However, different
feedstuffs have very different composition of
AAs (Hou et al. 2019; Li and Wu 2020). Further-
more, the efficiencies of the utilization of supple-
mental crystalline AAs may vary considerably
with diets containing different protein sources,
especially at suboptimal dietary AA intakes
(Gahl et al. 1994; Thu et al. 2007). This means
that the same quantity and quality of crystalline
AAs supplemented to diets with different protein
sources will likely have different effects in fish.
Second, although extruded diets have become
common for many fish species in aquaculture,
hard pellet feeds are used for most laboratory
studies. Knowledge about nutrient losses or
nutritional enhancements (e.g., improvements in
the digestion of protein-bound AAs and their
absorption) due to feed extrusion is still limited.
It is necessary to strengthen our knowledge on
how to improve protein and AA utilization by
optimizing feed production processes. Third,
some NEAAs (e.g., glutamate, glutamine, pro-
line, and glycine) have long been used as an
isonitrogenous control in nutritional experiments
based on the unfounded belief that these AAs
have no nutritional or physiological effects in
fish. However, recent evidence indicated other-
wise (Li et al. 2009; Andersen et al. 2016). Thus,
conclusions drawn from those previous studies
should be reevaluated. Furthermore, different
experimental results due to the use of various
fish species or strains in the published work
make it difficult to propose general concepts
regarding the metabolism of AAs. For example,
we found that largemouth bass have an extremely
high activity of arginase in their tissues to

extensively degrade dietary and blood-borne argi-
nine, but this may not be true for other species of
fish (Li 2020). Therefore, it is imperative to
understand the metabolic characteristics of a
given fish species or a group of fish species so
that we can design highly efficient, cost-effective,
and sustainable aquafeeds to feed them. This, in
turn, will ensure an abundant provision of high-
quality animal protein (Wu 2016) and functional
nutrients (e.g., taurine, creatine and glutathione;
Wu 2020a) to the growing global population of
humans for improving their growth, development
and health, as well as resistance to metabolic
and infectious diseases.
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in Aquatic Crustaceans 9
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Abstract

Crustaceans (e.g., shrimp and crabs) are a
good source of protein-rich foods for human
consumption. They are the second largest
aquaculture species worldwide. Understanding
the digestion of dietary protein, as well as the
absorption, metabolism and functions of
amino acids (AAs) and small peptides is essen-
tial to produce cost-effective and sustainable
aquafeeds. Hepatopancreas (the midgut gland)
is the main site for the digestion of dietary
protein as well as the absorption of small
peptides and AAs into the hemolymph.
Besides serving as the building blocks of pro-
tein, AAs (particularly aspartate, glutamate,
glutamine and alanine) are the primary meta-
bolic fuels for the gut and extra-
hepatopancreas tissues (e.g., kidneys and skel-
etal muscle) of crustaceans. In addition, AAs
are precursors for the syntheses of glucose,
lipids, H2S, and low-molecular-weight

molecules (e.g., nitric oxide, glutathione,
polyamines, histamine, and hormones) with
enormous biological importance, such as
physical barrier, immunological and antioxi-
dant defenses. Therefore, both nutritionally
essential and nonessential AAs are needed in
diets to improve the growth, development,
molt rate, survival, and reproduction of
crustaceans. There are technical difficulties
and challenges in the use of crystalline AAs
for research and practical production due to the
loss of free AAs during feed processing, the
leaching of in-feed free AAs to the
surrounding water environment, and asynchro-
nous absorption with peptide-bounded AAs.
At present, much knowledge about AA metab-
olism and functions in crustaceans is based on
studies of mammals and fish species. Basic
research in this area is necessary to lay a
solid foundation for improving the balances
and bioavailability of AAs in the diets for
optimum growth, health and wellbeing of
crustaceans, while preventing and treating
their metabolic diseases. This review
highlights recent advances in AA nutrition
and metabolism in aquatic crustacean species
at their different life stages. The new knowl-
edge is expected to guide the development of
the next generation of their improved diets.
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Abbreviations

AA amino acid
EAA nutritionally essential amino acid
GABA γ-aminobutyrate
GDH glutamate dehydrogenase
GOT glutamate-oxaloacetate transaminase
GPT glutamate-pyruvate transaminase
mTOR mechanistic target of rapamycin
NEAA nutritionally nonessential amino acid
NO nitric oxide
NRC National Research Council
ROS reactive oxygen species

9.1 Introduction

Crustaceans (including shrimp and crabs) are
low-fat, good sources of high-quality protein,
free amino acids (AAs), small peptides, and poly-
unsaturated fatty acids for human consumption
(Bhavan et al. 2010; Wu et al. 2016; Wu 2020).
Therefore, they are healthy seafoods worldwide.
Crustacean farming has been an economically
important enterprise in either a marine or a fresh-
water environment as the second largest aquacul-
ture species (e.g., 7.86 million tons and US$ 57.1
billion in 2016; Tacon 2018). Twenty-seven
(27) species of aquatic crustaceans have been
reported, which include mainly shrimps, crabs,
and crawfish (Tacon 2018).

Crustaceans have particularly high
requirements for dietary protein, which ranges
from 60% of the diet for some post-larvae to
30–50% of the diet for juvenile shrimp, crabs
and lobsters (Unnikrishnan and Paulraj 2010; Jin
et al. 2013; Mente 2006). High-protein diets lead
to the excretion of a large amount of nitrogen and
low water quality. Traditionally, fishmeal has
been the major protein source for crustaceans
due to its high levels of digestible protein and
balanced AA profiles (Unnikrishnan and Paulraj
2010). However, fishmeal is an unsustainable
protein source due to its limited source and high
price (Hardy 2010). In the culture of crustaceans,
the cost of feeds represents more than 50% of the
production costs (Mente 2006). Therefore,
continued expansion of crustaceans is not

unsustainable if fishmeal is their sole or primary
protein source. In addition, disease and animal
health have been a major limiting factor for the
culture of shrimps, crabs, and crawfish (Mente
2006; Stentiford et al. 2012). Knowledge of
their optimum requirements for nutrients, particu-
larly AAs, is key to solving this problem, because
many AAs regulate key metabolic pathways that
are crucial to the maintenance, growth, reproduc-
tion, and immune responses of animals (Li et al.
2007, 2009b; Wu 2010; Wu et al. 2014).

Understanding the digestion of dietary protein,
as well as the absorption, metabolism and
functions of small peptides and AAs are essential
to manufacture environmentally-oriented
aquafeeds and reduce feed costs in animal pro-
duction (Li et al. 2009b). Such diets can improve
the health and wellbeing of crustaceans, while
preventing and treating their metabolic diseases.
Although a wide range of dietary AA
requirements has been reported for aquatic
animals in the literature, our knowledge about
AA metabolism and functions in crustaceans is
limited. The crustaceans belong to the suborders
of the Decapoda with different metabolic, physi-
ological, and immunological characteristics,
when compared with other animals such as fish
and mammals (NRC 2011; Vazquez et al. 2009).
The major objective of this article is to highlight
current knowledge about AA nutrition and metab-
olism in shrimps, crabs, and crawfish at their
different stages of lives. This will help to advance
the field of protein nutrition and guide the devel-
opment of future crustacean feeds.

9.2 Protein Digestion
and the Absorption of Small
Peptides and Free AAs in
Crustaceans

The diets of crustaceans contain high
concentrations of protein (NRC 2011). The diges-
tive tract of crustaceans is essentially an internal
tube and generally divided into three functional
segments: foregut (a tubular esophagus and a
stomach), midgut (a simple tubule with associated
ceca and the hepatopancreas), and hindgut (rec-
tum and anus; Fig. 9.1). The esophagus joins the
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mouth to the stomach [an anterior chamber (the
gastric mill apparatus) and a posterior chamber].
The anterior chamber functions in mastication
(cutting and grinding) of the ingested food,
whereas the posterior chamber keeps food
particles from leaving the stomach until the gas-
tric mill has reduced them into a small size
(McGaw et al. 2013). Secretion of HCl by gastric
epithelial cells results in acidic conditions in
stomach fluids (pH¼ ~ 4 or higher) during diges-
tion. The food particles leave the posterior cham-
ber of the stomach to enter the anterior midgut
and then the hepatopancreas (also called the mid-
gut gland or digestive gland; a branching array of
blind-ended tubules lined with an epithelium) that
connects to the anterior midgut via ducts
(Ceccaldi and Ceccaldi 1989). The hepatopan-
creas secretes digestive enzymes that flow into
the midgut and then retrograde into the stomach.
Much extracellular digestion of foods and absorp-
tion of digestion products (free AAs, as well as di-
and tri-peptides) or simple nutrients into the
hemolymph occur within the hepatopancreas
(Buarque et al. 2009, 2010; Fernández et al.
1997; Saborowski et al. 2006). The midgut
plays a relatively minor role in the digestion and

absorption of nutrients. Di- and tri-peptides (the
major products of protein digestion) are taken up
by the epithelial cells of the hepatopancreas via
the apical-membrane peptide transporter-1,
whereas free AAs are taken up by these cells via
various sodium-dependent and independent
transporters (Wu 2013). Within the absorptive
cells, the small peptides are hydrolyzed by
peptidases (including proline peptidases) to free
AAs. AAs that are not metabolized by the
hepatopancreatic cells enter the hemo-
lymph. Undigested food particles and unabsorbed
nutrients from the terminal midgut enter the rec-
tum to form feces, which leaves the gut through
the anus.

Studies with the southern brown shrimp
Farfantepenaeus subtilis have shown the
highest activity of aminopeptidase in the
presence of alanine-, arginine-, lysine- or
leucine-β-naphthylamide as a substrate (Buarque
et al. 2010). Proteinases and peptidases activities
in crustaceans are modulated by several internal
and external factors (Saborowski et al. 2006).
These enzymes have an optimum pH around
8 (Buarque et al. 2009; Dionysius et al. 1993).
Moreover, the enzyme activities are also

Fig. 9.1 Scheme of the digestive tract of crustaceans. The
digestive tract of crustaceans consists of the foregut
(a tubular esophagus and a stomach), midgut (a simple
tubule with associated ceca and the hepatopancreas), and
hindgut (rectum and anus). Cutting and grinding of the
ingested foods, as well as their initial digestion
(by digestive enzymes from the hepatopancreas) occurs
in the anterior chamber of the stomach (the gastric mill

apparatus). The food particles enter the anterior midgut
and then the joining hepatopancreas. The hepatopancreas
secretes digestive enzymes and is the major site for the
extracellular digestion of foods and absorption of diges-
tion products or simple nutrients into the hemolymph.
Undigested foods and unabsorbed nutrients enter the rec-
tum and exit the gut through the anus
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influenced by ontogenetic events (Lemos et al.
2000), life stages (Lee et al. 1984), hormones
(Gorell and Gilbert 1969; Thomson et al. 1971),
the molting cycle (Gimenez et al. 2001, 2002),
and diet composition such as protein levels and
sources (Lee et al. 1984; Brito et al. 2000;
Muhlia-Almazan et al. 2003). All of these results
indicate that crustaceans can adapt to changes in
their diets and physiological states.

Crustaceans have a high ability to digest a
wide range of animal- and plant-source proteins.
In whitelegs shrimp, the digestibilities of AAs are
greater than 92% (Cruz-Suárez et al. 2009).
Proteins from animal resources are better digested
than plant proteins in several crustacean species
(Forster and Gabbott 1971; Fenucci et al. 1982).
A decrease in the digestibility of AAs was
observed with an increase in the graded dietary
level of rice protein concentrate from 0% to 100%
(i.e., 25, 50, 75, and 100%) (Oujifard et al. 2012).
The low digestibility of AAs in plant ingredients
results from the presence of inhibitors of
proteinases and peptidases (Garcia-Carreo et al.
1997; Oujifard et al. 2012). To solve this prob-
lem, heating and fermentation are the common
ways to remove or reduce these anti-nutritive
factors in plant-source feedstuffs (NRC 2011).
Moreover, feed additives, such as organic acids
and enzymes, can be added to crustacean feeds to
improve the utilization of alternative dietary pro-
tein sources. In whiteleg shrimp, dietary organic
acids can modify the activities of digestive
enzymes and the digestibility of dietary protein
possibly due to changes in gastric pH and intesti-
nal microbes (Silva et al. 2016). Supplementation
with proteases to low fishmeal diets has been
reported to improve the growth or feed utilization
of some shrimp (Li et al. 2016; Song et al. 2017)
and crab (Chowdhury et al. 2018) species.

9.3 The Free AA pool in Crustacean
Tissues

Crustaceans have an open circulatory system,
where nutrients, oxygen, hormones, and cells are
distributed in the hemolymph. Therefore, all of
their blood is not contained within vessels, but

rather blood is drawn into the heart through holes
called the ostia, pumped out again to circulate
through tissues, and return to the heart (Wirkner
and Stefan 2013). After the hepatopancreas
absorb small peptides and free AAs through its
single-cell layer of epithelial cells into the hemo-
lymph, AAs participate in metabolic pathways in
the whole body as the building blocks of proteins
and peptides, substrates for ATP production, and
precursors for the syntheses of low-molecular-
weight bioactive substances (e.g., NO,
neurotransmitters, and thyroid hormones), signal-
ing molecules (Li et al. 2007; Wu 2013). The
concentrations of free AAs in most crustacean
tissues are higher than those in vertebrate tissues.
Table 9.1 shows the concentrations of AAs in the
hemolymph of shrimp. The major free AAs in
crustaceans are glycine, glutamine, alanine, argi-
nine, and taurine, which may vary among differ-
ent species (Fig. 9.2; Shinji and Wilder, 2012;
Miyagawa et al., 1990). All of these AAs are
abundant in animal-source feedstuffs (Li and
Wu 2018; Li and Wu 2020a), whereas all plant-
source feedstuffs lack taurine and contain low
concentrations of glycine (Hou et al. 2019; Li
and Wu 2020a; Li et al. 2011a). Of note, arginine
phosphate is present in some crustaceans, such as
shrimp. Concentrations of free AAs in their
tissues are affected by diets and environmental
factors, such as salinity (Shinji and Wilder 2012),
ammonia levels (Chen et al. 1994), temperature
(Rao and Ramachandra 1961), and intracellular
protein turnover (Wu 2013). Free AAs in tissues
are in dynamic equilibrium with the protein pool.
On the molar basis, glycine is the most abundant
free AA in the hemolymph (a fluid analogous to
the blood in vertebrates) and the whole body of
the whiteleg shrimp (Litopenaeus vannamei),
followed by alanine, taurine, arginine, glutamine
and proline in the hemolymph and by arginine,
taurine, proline, glutamine, and alanine in the
whole body, in descending order (Table 9.1). Of
note, in the whole body of the shrimp, most of
free AAs represent about 5% (g/g) of their
corresponding total AAs (free plus peptide-
bound), but free glycine and free arginine account
for 30.5% and 23.3% of the total AAs, respec-
tively. In the whole body of the whiteleg shrimp,
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Table 9.1 Concentrations of free and peptide-bound amino acids (AAs) in the whole body of whiteleg shrimpa

AA

Free AAs in
hemolymph (nmol/
ml)

Free AAs in the whole
body (mg/g of DM)

Total AAs (free plus
peptide-bound) in the
whole bodyb

Ratio of free AAs to total
AAs in the whole body

mg/g of
DM

mg/g of
protein AAs (g/g)

Proteinogenic AAs
Ala 958 � 33 5.98 � 0.26 43.5 � 0.40 60.3 � 0.91 0.137 � 0.003
Argb 576 � 21 11.0 � 0.48 47.0 � 0.22 65.1 � 0.43 0.233 � 0.006
Asn 189 � 11 1.21 � 0.05 31.4 � 0.46 43.5 � 0.88 0.038 � 0.001
Asp 80.1 � 4.2 1.62 � 0.06 37.7 � 0.43 52.3 � 0.95 0.043 � 0.001
Cys 152 � 11 1.10 � 0.05 11.6 � 0.25 16.1 � 0.55 0.095 � 0.002
Gln 562 � 12 6.25 � 0.29 40.6 � 0.58 56.3 � 0.97 0.154 � 0.003
Glu 95.3 � 6.8 2.78 � 0.13 65.9 � 0.44 91.3 � 0.76 0.042 � 0.001
Gly 1024 � 63 15.3 � 0.66 55.6 � 0.32 77.1 � 0.71 0.275 � 0.005
His 101 � 5.5 1.14 � 0.05 15.0 � 0.24 20.8 � 0.49 0.076 � 0.002
Ile 116 � 7.4 1.55 � 0.06 29.8 � 0.29 41.3 � 0.63 0.052 � 0.001
Leu 162 � 13 2.70 � 0.11 49.8 � 0.41 69.0 � 0.88 0.054 � 0.001
Lys 257 � 15 3.92 � 0.12 50.5 � 0.45 70.0 � 0.94 0.078 � 0.002
Met 32.7 � 1.6 0.90 � 0.04 15.2 � 0.23 21.1 � 0.44 0.053 � 0.001
Phe 70.5 � 8.3 1.53 � 0.05 33.1 � 0.57 45.9 � 0.96 0.046 � 0.001
Pro 308 � 19 6.60 � 0.31 49.2 � 0.55 68.2 � 1.2 0.134 � 0.004
OH-Pro 45.2 � 3.6 0.031 � 0.001 8.90 � 0.26 12.3 � 0.43 0.0035 � 0.0002
Ser 254 � 15 1.64 � 0.06 37.8 � 0.39 52.4 � 0.86 0.043 � 0.001
Thr 162 � 6.9 1.89 � 0.07 29.4 � 0.34 40.7 � 0.70 0.064 � 0.001
Trp 28.3 � 1.4 1.12 � 0.04 8.80 � 0.18 12.2 � 0.40 0.127 � 0.003
Tyr 30.5 � 1.8 2.43 � 0.08 27.1 � 0.32 37.6 � 0.68 0.090 � 0.002
Val 224 � 9.7 2.17 � 0.09 33.6 � 0.37 46.6 � 0.75 0.065 � 0.001
Total
AAs

5428 � 76 72.7 � 1.0 721.5 � 9.2 1000 –

Non-proteinogenic AAs
β-Alanine 25.2 � 3.8 0.009 � 0.0003 – – –

Cit 0.24 � 0.02 Trace amountc – – –

Orn 148 � 8.6 0.16 � 0.01 – – –

P-Arg 37.4 � 2.8 10.9 � 0.32 – – –

Taurine 717 � 55 9.06 � 0.09 – – –

Cit citrulline, DM dry matter, OH-Pro 4-hydroxyproline, Orn ornithine, P-Arg phosphoarginine
aValues are means � SEM, n ¼ 8. Whiteleg shrimp (Litopenaeus vannamei) were fed a diet consisting of the following
(as-fed basis): 20% fishmeal, 10% soybean meal, 15% wheat flour, 35% poultry by-product, 1.5% soybean oil, 1% soy
lecithin, 1% cholesterol, 0.1% vitamin C, 0.13% choline chloride, 4.6% K2HPO4, 0.7% MgCl2, 0.1% astaxanthin (5%),
0.5% vitamin-mineral premix, and 10.37% cellulose (Li and Wu 2020b). The composition of the vitamin-mineral premix
(g/kg premix) was: vitamin A, 0.4; vitamin D3, 0.04; vitamin E, 40; vitamin K3, 2.40; vitamin B5, 21.74; inositol, 30;
vitamin B3, 28; vitamin B1, 6.53; biotin, 0.3; folic acid, 1.2; vitamin B12, 0.04; KI, 1.06; CuSO4.5H2O, 1.10; MnSO4.
H2O, 1.25; ZnSO4.7H2O, 13.68; and cellulose, 840.19. The crude-protein content of the diet was 43.0% (dry matter
basis). The shrimp were raised in water (25 �C and 3–5 ppt salinity). Hemolymph (0.1 ml; a fluid that is analogous to the
blood in vertebrates) was obtained from the shrimp (15 g/shrimp) at 24 h after the last feeding. Hemolymph is a fluid that
is analogous to the blood in vertebrates. Free and peptide-bound AAs in the whole shrimp were analyzed as described by
Li and Wu (2020a). The amounts of amino acids in the whole body were calculated on the basis of their intact molecular
weights. The content of dry matter in the whole body of the shrimp was 24.2%. The true protein (calculated on the basis
of the molecular weights of amino acid residues; i.e., intact molecular weight – 18) in the whole body of the shrimp was
60.9% of dry matter, whereas collagen represents 10.0% of the total true protein in the whole body. Cys is the sum of
cysteine plus 1/2 cystine.
bExcluding phosphoarginine. The content of arginine as phosphoarginine in the whole body of the shrimp was 7.47 mg/g
of dry matter, as analyzed by high-performance liquid chromatography (Wu and Meininger 2008)
cThe value was 0.18 � 0.01 μg/g of dry matter
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the ratio of total free proteinogenic AAs (72.7 mg/
g of dry weight) to the total proteinogenic AAs
(721.5 mg/g of dry matter) is 1.0:10.0 (Table 9.1).
The high abundance of free AAs is consistent
with their important role in the maintenance of
osmolality and metabolism in shrimp.

9.4 Protein Synthesis
in Crustacean Tissues

The process of protein synthesis in both
crustaceans and other animals include five steps:
(1) gene transcription; (2) initiation of translation;
(3) peptide elongation; (4) termination, and
(5) posttranslational modifications (Wu 2013).

In crustaceans, the rate of protein synthesis is
generally higher in the hepatopancreas, followed
by the heart, gill, tail and claw muscle in
descending order (Houlihan et al. 1990; Mente
et al. 2011). Among these tissues, protein synthe-
sis in skeletal muscle is crucial for shrimp growth
and production. A postecdysial increase in mus-
cle fiber length and the associated increase in the
sarcomere number are accompanied by an
increase in muscle protein synthesis (Carter and
Mente 2014). The rate of muscle protein synthesis
(Ks, the percentage of the protein mass
synthesized per day) is 1.26%/day at 27 �C in
whitelegs shrimp (Mente et al. 2002), 1.15%/day
at 15 �C for shore crabs (Carcinus maenas; El Haj
and Houlihan 1987), and 0.9–1.4%/day at 30 �C

Fig. 9.2 Different metabolic pathways for the catabolism
of amino acids converge to common intermediates that
feed into the Krebs cycle, lipogenesis, and glucogenesis
pathways in crustaceans. G6Pase glucose-6-phosphatase,
PCL pyruvate carboxylase, PEPCK phosphoenolpyruvate

carboxykinase, PDH pyruvate dehydrogenase, PK pyru-
vate kinase, LDH lactate dehydrogenase, HK hexokinase,
PFK-1 phospho-fructokinase-1, G-3-P glyceradehyde-3-
phosphate, α-KG α-ketoglutarate, OAA oxaloacetate
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in brown tiger prawn (Penaeus esculentus; Hewitt
1992). For comparison, the rate of protein synthe-
sis is lower at 0.3–0.4%/day in the claw, leg and
abdominal muscles of the American lobster
(Homarus Americanus, Haj et al. 1996). The
rate of muscle protein synthesis also varies with
muscle fiber type and muscle type. Slow-type
tonic muscle fibers have a rate of protein synthe-
sis that is 2.1 times greater than fast-type phasic
fibers (El Haj and Houlihan 1987). Protein syn-
thesis plays a vital role in the growth, develop-
ment, health and survival of animals (Carter and
Mente 2014; Li et al. 2020c). For example, vitel-
logenesis (synthesis of vitellogenin as a precursor
protein of egg yolk in the blood or hemolymph of
females) occurs in the ovary and hepatopancreas
to support reproduction (Tseng et al. 2001).
Increases in protein synthesis in the midgut
gland after feeding enhance the secretions of
digestive enzymes for the digestion of dietary
nutrients (Houlihan et al. 1990).

The growth of crustaceans depends on ecdysis
(also known as molt), which refers to the replace-
ment of their rigid carapace with a new and larger
one generated underneath the former exoskeleton
that consists primarily of chitosan (Comeau and
Savoie 2001). Therefore, protein synthesis is
highly related to the molt cycle. The highest rate
of protein synthesis occurs during the premolt
stages in shore crabs (El Haj and Houlihan
1987). Moreover, protein synthesis is also
influenced by several abiotic and biotic factors,
such as hormones (Carter and Mente 2014), star-
vation and re-feeding (Pellegrino et al. 2013),
dietary composition, hypoxia, hyperoxia, temper-
ature, salinity, and other environmental factors
(Intanai et al. 2009; Mente et al. 2002, 2003).
For example, the rates of protein synthesis, sur-
vival, and specific growth are higher in shrimp
fed diets with high quality proteins than in shrimp
fed low quality proteins (Mente et al. 2002). Of
note, muscle protein synthesis is substantially
higher in brown tiger prawn (Penaeus esculentus)
fed a 50%-protein diet than a 30%- or 40%-
protein diet (Hewitt 1992). Similar to other
animals, protein synthesis requires a large amount
of energy in crustaceans and accounts 20% to
37% of oxygen consumption in the shore crab

(Houlihan et al. 1990). Therefore, starch and
lipids are often included in artificial diets for
crustacean as an energy source to spare protein
and improve protein deposition. The protein-
sparing effect of dietary digestible carbohydrate
has been reported in Litopenaeus vannamei
(Wang et al. 2015). In crabs fed a high-digestible
carbohydrate diet, the rate of muscle protein syn-
thesis measured with 14C-leucine has been
reported to be 2.3-fold greater than that in crabs
fed a high protein diet (Pellegrino et al. 2013).
This conclusion, however, may not be valid
because leucine is extensively catabolized by
skeletal muscle and therefore, is not an appropri-
ate tracer for the measurement of its protein syn-
thesis (Wu 2013).

Substantial amounts of collagens are present in
tissues of crustaceans, including the shell
(consisting of 22–24% dry matter) and skeletal
muscles of shrimp. For example, shrimp shell
consists of the following (dry matter basis):
25–40% protein, 15–20% chitin, 45–50% cal-
cium carbonate, and 15–40 mg astaxanthin/kg,
with the protein comprising of 60–75% collagen,
4–5% elastine, and 20–35% keratine
(Immaculada et al. 2009). Kimura and Tanaka
(1986) reported that the collagen content in the
skeletal muscles of three species of crustaceans
(giant river prawn, fleshy prawn and spiny lob-
ster) was 2.4% to 2.6% of total protein. The
content of collagen as the percentage of total
protein in the muscles of crustaceans is as
follows: 1.1–2.2% in the shrimp (Trachypenaeus
curvirostris, Palaemon paucidens, and Pandalus
borealis), 2.6–2.9% in prawn (Penaeus
japonicas), 2.5–2.7% in lobster (Panulirus
Iongipes), 0.2–0.8% in crabs (Charybdis japon-
ica, Portunus trituberculatus, Chionoecetes
opilio ♂, Chionoecetes opilio ♀, and Erimacrus
isenbeckii), 3.4% in crayfish (Procambarus
clarkia), and 5.9–6.2% in squilla (quilla
Oratosquilla oratoria) (Yoshinaka et al. 1989).
For comparison, collagen represents 2% of total
protein in beef skeletal muscle (Wu et al. 2016).
The AA composition and solubility of the major
collagen in the crustacean muscles are similar to
those of Type V collagen in vertebrate skeletal
muscles (Yoshinaka et al. 1989). As a major
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constituent of the connective tissue, collagen
supports the structure, locomotion, mechanical
strength of the muscles, bones and fin in
crustaceans. Based on the content of
4-hydroxyproline in the whole body of shrimp
(Table 9.1), the abundance of collagen in the
whole body of shrimp appears to be 66% lower
than that in vertebrates (Wu 2013).

9.5 Catabolism of Energy
Substrates for ATP Production
in Crustacean Tissues

The requirement of crustaceans for dietary protein
has been reported to be 30–60%, depending on
their species, developmental stage, and produc-
tion conditions (Halver and Hardy 2002; Cuzon
et al. 2004; Unnikrishnan and Paulraj 2010; Jin
et al. 2013; Mente 2006). However, the rate of
retention of dietary nitrogen is only about
17–30%, which is even lower than that for some
fish species (Bulbul et al. 2016; Panini et al. 2017;
Qiu et al. 2017). In addition, the oxygen:nitrogen
ratio (the ratio of oxygen consumed to nitrogen
excreted; O/N, mol/mol) is often employed in
energetic studies as an indicator for the use of
organic substrates (i.e., lipids, carbohydrates or
proteins) as metabolic fuels. An oxygen:nitrogen
ratio in shrimp is < 40 (Coelho et al. 2019;
Comoglio et al. 2004; Zhang et al. 2019),
indicating AAs may be their predominant energy
substrates. The limited utilization of glucose by
penaeid shrimp has been reported in some studies,
and the recommended levels of digestible
carbohydrates starch in diets are generally less
than 20% (Guo et al. 2006). Rosas et al. (2002)
have suggested that shrimp (Litopenaeus
vannamei) are well adapted to dietary protein as
a source of energy because of its limited ability to
use high carbohydrate. In crabs (Neohelice gran-
ulate), dietary proteins have been suggested as an
important source of energy (Pellegrino et al.
2013). AAs (especially alanine) are important
substrates in the gill tissue of the blue crab, and
appears to play a role in both short-term cell

volume regulation and long-term osmoregulatory
processes (Pressley and Graves 1983).

In all animals, individual AAs have their own
catabolic pathways because of their different
structures (Wu 2013). However, the catabolism
of many AAs shares a number of common steps
to generate pyruvate, oxaloacetate (OAA),
α-Ketoglutarate (α-KG), fumarate, succinyl-
CoA, and acetyl-CoA (Fig. 9.2). For example,
the carbon backbones of some AAs are converted
to α-KG by glutamate dehydrogenase (GDH) and
transaminases. Aminotransferases have been
reported in the skeletal muscle, gill and hepato-
pancreas of crabs (Carcinus maenas; Chaplin
et al. 1967). The catabolism of glutamine
involves its deamination by phosphate-activated
glutaminase to produce glutamate and ammonia.
The major end product of AA metabolism in
crustaceans is ammonia, which represents more
than 50% of their nitrogenous wastes (Regnault
1987). Free AAs are the second most important
nitrogenous waste since they account for 10–25%
of the total excreted nitrogen in different species
(Regnault 1987). Urea and uric acid are nitroge-
nous end-products but are usually excreted by
crustaceans in small amounts (< 10%).

To generate ATP, the carbon backbone of
glutamate, alanine, and aspartate are converted
into α-KG, pyruvate, and oxaloacetate by GDH,
glutamate-pyruvate transaminase (GPT), and
glutamate-oxaloacetate transaminase (GOT),
respectively (Wu 2013; Richard et al. 2010; Lu
et al. 2015). We found that in both whiteleg
shrimp (Litopenaeus vannamei) and blue crabs
(Callinectes sapidus), AAs, such as aspartate,
glutamine and glutamate, provide the bulk of
energy but the oxidation of glucose for ATP
production is very limited in their skeletal muscle
and ovaries (Table 9.2 and Fig. 9.3). In both
animal species, aspartate is the predominant met-
abolic fuel among the AAs (Fig. 9.3). Similarly,
both GPT and GOT are present in different tissues
(hemolymph, hepatopancreas, gills and skeletal
muscle) of shrimp (Fenneropenaeus indicus),
with the activity of GOT being 2–3 times higher
than that of GPT in the same tissue (Mohankumar
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and Ramasamy 2006). GDH is largely responsi-
ble for the production of ammonia from AAs in
crustaceans (Fernández-Urruzola et al. 2011). In
whiteleg shrimp (Litopenaeus vannamei, the
activity of GDH increases with increasing the
dietary protein level from 25% to 50% (Li et al.
2011b). The measurement of GDH activity in the
crude homogenates of the shrimp (Crangon
crangon) suggests that the oxidative deamination
of glutamate by GDH may account for all the
ammonia excretion by this species (Batrel and
Regnault, 1985). GDH transcripts are detected
in most tissues of Chinese mitten crabs (Eriocheir
sinensis; Wang et al. 2012), freshwater prawn
(Macrobrachium rosenbergii; Chakrapani et al.
2017), whiteleg shrimp (Litopenaeus vannamei;
Li et al. 2009a), and mud crabs (Scylla
paramamosain; Lu et al. 2015).

Although AAs are the major energy sources
for crustaceans, the rates of their oxidation to CO2

vary among different tissues and species. For
example, the specific activity of GPT in the skel-
etal muscle and gills of black tiger shrimp
(Penaeus monodon) is about 3-times the value
measured in the hepatopancreas (Richard et al.
2010). The activity of GDH is also relatively
low in the hepatopancreas of black tiger shrimp,
suggesting a minor role of this tissue in glutamate
catabolism (Richard et al. 2010). Likewise,
although GDH is expressed in the skeletal mus-
cle, epithelium, eyestalk, hepatopancreas, and gill
of Pacific white shrimp, its enzymatic activity in
the hepatopancreas is much lower than that in the
other four tissues (Li et al. 2009a). Similarly, the
rate of CO2 production from aspartate is 3–6
times higher than that from glucose in the

Fig. 9.3 ATP production
from the oxidation of
individual substrates in
tissues (the midgut,
hepatopancreas, gill plus
skeletal muscle) of the 15-
g whiteleg shrimp
Litopenaeus vannamei
(Panel A) and the
150-g swimming crab
Portunus trituberculatus
(Panel B). The rates of ATP
production were calculated
from the data in Table 9.1,
as described by Li et al.
(2020b).1 The contribution
of an individual substrate to
total ATP production in
tissues incubated in the
presence of a mixture of
substrates. Glc glucose, Pa
palmitate, Glu glutamate,
Gln glutamine, Ala alanine,
Asp aspartate, Leu leucine
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intestine and skeletal muscle of whiteleg shrimp,
but the rate of oxidation of these two substrates is
quantitatively comparable in the hepatopancreas
(Table 9.2). Of particular note, in blue crabs,
palmitate is the primary energy source for the
midgut and hepatopancreas, with the rate of its
oxidation being substantially higher than that of
any AA substrates (Table 9.2). In both whiteleg
shrimp and blue crabs, AAs are the most impor-
tant energy substrates for ATP production in skel-
etal muscle. Richard et al. (2010) also reported
that skeletal muscle has high activities of GPT
and GDH for glutamate catabolism in black tiger
shrimp.

Phosphate-activated glutaminase may be
quantitatively the major enzyme for initiating
glutamine catabolism in crustaceans. For exam-
ple, in a fresh-water crab (Paratelphusa
hydrodromus), a high correlation between gluta-
minase activity and ammonia excretion rate has
been observed at various salinity levels
(Krishnamoorthy and Srihari, 1973). In whiteleg
shrimp, the rate of the oxidation of glutamine is
similar to or even higher than that of glutamate in
various tissues (Table 9.2). However, the organs
(except for the gill) of blue crabs oxidize much
more glutamate than glutamine, which may be
attributed to the low glutaminase activity. The
gill of blue crabs oxidized both glutamate and
glutamine at relatively high rates. This is in agree-
ment with a previous report that glutaminase
activity is most active in the gills of three crab
species, indicating that this organ is an active site
of glutamine hydrolysis and glutamate degrada-
tion (King et al. 1985). Skeletal muscles of crabs
have a high activity of glutamine synthetase and
may be the major site for glutamine synthesis in
the body (King et al. 1985). Interestingly, the
activities of GDH and glutaminase are undetect-
able or very low in the hepatopancreas of the
three crab species studied (King et al. 1985).
Similarly, our results indicated that glutamine
and other AAs are not the primary energy
substrates in the hepatopancreas of blue crabs.
To date, our knowledge of AA catabolism in
crustaceans is very limited (Table 9.3).

9.6 Glucogenesis and Lipogenesis
in Crustaceans

AAs can be the precursors for glucose and lipid
syntheses to provide the body with glucose and
lipids (Fig. 9.2). Gluconeogenesis and its related
key enzymes [e.g., phosphoenolpyruvate
carboxykinase (PEPCK)] have been
demonstrated in different tissues of crustacean
species, such as the skeletal muscle, hepatopan-
creas, and gill (Reyes-Ramos et al. 2018; Vinagre
and Da Silva 2002; Schein et al. 2004). The
conversion of 14C-alanine and 14C-glycine into
glucose occurred in the hepatopancreas, gill and
skeletal muscle of crabs (Chasmagnathus granu-
late; Oliveira et al. 1997; 2004; Vinagre and Da
Silva, 2002; Martins et al. 2011). The in vitro
experiments also showed that these tissues were
able to incorporate 14C-glycine to lipids (Vinagre
and Da Silva 2002; Martins et al. 2011). The
presence of gluconeogenesis from AAs in the
skeletal muscle of crabs is interesting, because
such a biochemical pathway is absent from terres-
trial mammals and birds (Wu 2018).

Glucose and lipids are important energy
sources for crustaceans under certain physiologi-
cal conditions or stresses (Reyes-Ramos et al.
2018). For example, intramuscular lipids are
used for ATP production in crabs in the fall and
winter (Kucharski and Da Silva 1991). Dietary
AAs are converted into lipids in skeletal muscle
when crabs (N. granulate) are fed diets with high
protein content, and the intramuscular lipids serve
as an important energy reserve for the animals
during osmoregulation and in the winter
(Pellegrino et al. 2013). Moreover, gluconeogen-
esis and lipogenesis contribute to the adjustment
of the intracellular concentration of nitrogenous
compounds to withstand changes in the salinity of
the surrounding water (Martins et al. 2011).
Therefore, both gluconeogenesis and lipogenesis
from AAs are important for the growth and health
of crustaceans exposed to different levels of salin-
ity. Previous experiments indicated that the
incorporation of [14C]alanine into glucose in
the jaw muscles of crabs submitted to a
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hyperosmotic shock increased by 77% over the
control group (Schein et al. 2004). In the posterior
gills of N. granulata subjected to hyper- and
hypo-osmotic stresses, the formation of 14C-lipids
from 14C-glycine increased at 72 h after the treat-
ment, but the activity of PEPCK (a rate-
controlling enzyme for glucose synthesis)
decreased (Martins et al. 2011). Similarly, the

rate of lipid synthesis in shrimp exposed to both
hypo- or hyper-osmotic conditions was slightly
enhanced with an increase in FAS activity, when
compared with a normo-osmotic condition (Chen
et al. 2014). Thus, the partition of AAs toward the
synthesis of either lipids or glucose in
crustaceans, depending on nutritional, physiolog-
ical and environmental factors.

Table 9.3 Nutritional and physiological functions of amino acids and their metabolites in crustaceans

Metabolites Amino acids Reported functions in crustaceans References

NO, polyamines Arginine Improves antioxidant and immune systems in
shrimps Fenneropenaeus chinensis and
Marsupenaeus japonicus

Jiang et al. (2006)

Phosphoarginine Arginine Storage of biological energy, controlling
osmoregulation in crustaceans, such as the shrimp
(Litopenaeus vannamei), the blue crab (Callinectes
sapidus), and the common littoral crab (Carcinus
maenas)

Holt and Kinsey
(2002) and Kotlyar
et al. (2000)

NO, polyamines,
taurine,
phosphoarginine

Arginine,
ornithine, and
methionine

Regulation of osmotic and ionic homeostasis in
crustances, such as blue crabs (Callinectes sapidus
Rathbun)

Lovett and Watts
(1995)

Nucleotides, ATP Glutamine,
glycine and
aspartate

Improves the growth of black tiger shrimp (Penaeus
monodon)

Do Huu et al. (2012),
(2013)

Carnitine,
hydroxylysine,
taurine, polyamines

Lysine and
methionine

Improves immune functions, antioxidant defense
systems, and energy metabolism in whilteleg shrimp
(Litopenaeus vannamei) and in narrow clawed
crayfish (Astacus leptodactylus leptodactylus
Eschscholtz, 1823)

Safari et al. (2015)
and Zhou et al.
(2017)

Glucosamine,
glutamate, ATP

Glutamine Serves as a substrate for glycoprotein synthesis and
as a female signal (i.e. contact sex pheromone) in
mate recognition [e.g., in caridean shrimp
(Palaemonetes pugio)]; improves wound healing,
pathogen encapsulation, and maintenance of normal
crustacean connective tissues in custaceans

Caskey et al. (2009)
and Martin
et al. (2003).

Catecholamines,
melanin

Phenylalanine
and tyrosine

As components of primary stress responses in
whilteleg shrimp (Litopenaeus vannamei)

Aparicio-Simón et al.
(2010)

Glutathione Cysteine,
glutamate and
glycine

Improves growth, antioxidant system and stress
resistance in whilteleg shrimp (Litopenaeus
vannamei)

Xia et al. (2018)

Glutathione Glycine Improves growth, antioxidant and immune system in
whilteleg shrimp (Litopenaeus vannamei)

Xie et al. (2014)

Pyrroline-5-
carboxylate

Proline Improves growth, antioxidant system and stress
resistance in whilteleg shrimp (Litopenaeus
vannamei)

Xie et al. (2015a)

GABA, ATP Glutamate Improves growth, antioxidant system and stress
resistance in whilteleg shrimp (Litopenaeus
vannamei)

Xie et al. (2015b)

Serotonin,
melatonin

Tryptophan Regulator of growth, reproductive function and
agonistic behavior in the black tiger shrimp (Penaeus
monodon) and the mud crab (Scylla serrata)

Wongprasert et al.
(2006)and Laranjia
et al. (2010)

GABA γ-aminobutyric acid, NO nitric oxide
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9.7 Syntheses of Bioactive
Metabolites in Crustaceans

In addition to the syntheses of proteins, lipids and
glucose, AAs are the precursors of many low-
molecular-weight substances with important and
diverse biological roles in animals (Wu 2013,
2018). These products of AAs include NO,
billirubin, carnosine and related dipeptides, carni-
tine, catecholamines, neurotransmitters, creatine,
glucosamine, glutathione, heme, histamine,
polyamines (putrescine, spermidine and spermine),
purines, and pyrimidines, and are produced in a
tissue-specific manner (He and Wu 2020; Wu
2013). Polyamines, which are synthesized from
methionine and arginine, play vital roles in chroma-
tin structure, gene transcription and translation,
DNA stabilization, signal transduction, cell growth,
and proliferation in animals. Polyamines are also
involved in the regulation of osmotic and ionic
homeostasis by interacting directly with the Na +,
K+-ATPase enzyme in crabs (Lovett and Watts
1995). GSH is formed from cysteine, glutamate,
and glycine via two ATP-dependent enzymes in
the cytosol: γ-glutamyl-cysteine synthetase and glu-
tathione synthetase (Wu 2013). Glutathione exerts
both growth-promoting and immunostimulatory
effects in Litopenaeus vannamei (Xia and Wu
2018). L-Phosphoarginine (arginine phosphate),
which is generated from arginine and ATP by argi-
nase kinase, exists in skeletal muscles from various
invertebrate animals. Of particular note,
concentrations of L-phosphoarginine in the skeletal
muscles of some crustacean species (e.g., crayfish)
can be up to 83 to 100 mM (Ennor et al. 1956;
Marcus and Morrison 1964). We found that the
concentration of phosphoarginine in the hemo-
lymph of Litopenaeus vannamei was about
40 nmol/ml. The main function of phosphoarginine
is to store biological energy like phosphocreatine in
animals (Wu 2013). Phosphoarginine also plays a
role in the metabolic support of the gill’s function to
regulate osmoregulation in crustaceans (Holt and
Kinsey 2002; Kotlyar et al. 2000). However, knowl-
edge about the metabolism and functions of these
AA metabolites in most crustacean species is
limited.

9.8 Functions of AAs in the Culture
of Crustacean Species

9.8.1 Molt and Survival

The growth of crustaceans occurs through the
shedding of an old exoskeleton (shell) and the
formation of a new exoskeleton, and is greatly
influenced by the extended intermolt period (molt
frequency) and the molt increment (carapace and
body weight growth at molt). Moreover, the sur-
vival of some crustacean species is highly depen-
dent on the molting processes. For example,
many deaths are due to the presence of calcium
deposits embedded on and in the inner surface of
the exuvial exoskeleton, which is known as
the molt death syndrome (Bowser and Renée
1981; Wang et al. 2016). The molting process is
under the control of several regulatory hormones,
environmental factors (Hosamani et al. 2017),
and diets (Kibria 1993; Millikin 1980). The
cumulative molts in crabs are strongly affected
by voluntary feed and protein intakes, indicating
that AAs are required for tissue growth especially
during the postmolt period (Nguyen et al. 2014).
AAs have been suggested as important factors for
molting processes through energy provision for
ecdysis, osmoregulation, collagen synthesis, and
the removal of the exokeleton (Dooley et al.
2002), as well as the regulation of hormone
release (Qi et al. 2019). For example, free proline
and glycine may be used as metabolic fuels dur-
ing ecdysis (Claybrook 1983) and substrates for
the synthesis of the new exoskeleton in the later
premoult (Yamaoka and Skinner 1976).
Concentrations of a molt hormone, ecdysterone,
are increased in the serum of crab (Eriocheir
sinensis) receiving dietary supplementation with
arginine (Qi et al. 2019). The same species have
higher survival rates and molt frequency when
fed diets containing adequate lysine and arginine
(Jiang et al. 2005; Qi et al. 2019). More details
about the functions of AAs in the molting of
shrimp are presented in Table 9.4.

Osmoregulation is an essential physiological
process for the majority of aquatic crustaceans
since many of them have been widely farmed in
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inland and oceans with different environmental
conditions (Romano and Zeng 2012). As a result,
the crustaceans usually are faced with numerous
stresses such as low or high salinity, high density,
and hot or cold temperatures. Free AAs in the
hemolymph appear to play important roles in
ATP production (Pressley and Graves 1983).
Their levels generally increase in the hemolymph
under various stress conditions (Shinji andWilder
2012). Of particular note, some free AAs (e.g.,
glutamate, proline, glycine, alanine, taurine and
arginine) are known to be involved in the active
adjustment of intracellular osmoregulation in
marine invertebrates (Tan et al. 1981; Chen and
Chen 2000; Liu et al. 2012; 2018; Chakrapani
et al. 2017). A recent review has indicated that
an increase in protein levels in the diet of
Litopenaeus vannamei is a practical method of
nutritional modulation to increase their produc-
tion at extreme high and low salinities (Li et al.
2015). After an acute salinity change, the survival
of whiteleg shrimp is increased with increasing
the dietary glycine level from 2.26% to 2.70%
(Xie et al. 2014).

AAs play an important role in controlling
osmoregulation in crustaceans because their met-
abolic enzymes such as transaminase (Koyama
et al. 2018), GDH (Lu et al. 2015) and arginine
kinase (Holt and Kinsey, 2002; Kotlyar et al.
2000) are regulated by salinity levels. In the
abdominal muscle of the kuruma shrimp, the
concentrations of alanine and glutamine are

elevated in response to increased salinity in asso-
ciation with a decrease in GPT gene expression
and an increase in GDH gene expression
(Koyama et al. 2018). Acute salinity stress
increases GDH expression, as well as the
syntheses of glutamate, proline and alanine in
the muscle of the Chinese mitten Crab (Eriocheir
Sinensis) to meet the demand for osmoregulation
at hyperosmotic conditions (Wang et al. 2012).
Consistent with this finding, a reduction in
14C-alanine oxidation appears to be one of the
mechanisms responsible for the increase of the
free AA pool in the hepatopancreas of crabs
(Chasmagnathus granulate; Schein et al. 2005)
during hyperosmotic stress. A hyperosmotic stim-
ulus also induces proline synthesis from gluta-
mate in Tigriopus californicus (Burton 1991).

Much evidence shows that AAs play a central
adaptive role in crustaceans during exposure to
cold, starvation and ammonia (Chen et al. 1994,
2000; Zhou et al. 2011). For example, the accu-
mulation of proline and alanine in the hepatopan-
creas seems to be a common response to cold
stress in some invertebrates (Hanzal and Jegorov
1991; Fields et al. 1998; Liu et al. 2018). Increas-
ing the content of proline from 2.02% to 2.6% in
low (15%) fishmeal diets improved the tolerance
of Litopenaeus vannamei to ammonia stress (Xie
et al. 2015a, b). Moreover, shrimp fed diets with a
deficiency of lysine had the greatest incidence
and severity of neural lesions when they were
challenged with subsequent stress exercises

Table 9.4 Main functions of amino acids at different stages of the molt cycle in shrimp

Stage Duration Exoskeleton Feeding Main functions of AAs

Postmolt A 1–2 h Soft exoskeleton None Osmoregulation regulation, protein
synthesis for tissue growthB 2–5 h Little hardened

exoskeleton
Weak

Intermolt C 8–10 days Hard exoskeleton Maximal Energy sources; and protein and
peptide synthesesD0 1–2 days Epidermis starts apolysis Maximal

D1 1–2 days No new cuticle Decrease
Premolt D2 2 days New cuticle appears Decrease

D3 1 day Interval between the old
and the new cuticle

Decrease Collagen synthesis, osmoregulation
regulation, and hormone release

D4 1 day Water absorption and old
exoskeleton splits

None

Molt E 15 min Old cuticle is shed, body
expanded

Energy source and osmoregulation
regulation

The molt stage is adapted from (Rao et al. 2008)
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(Katzen et al. 1984). Clearly, it is imperative to
study the functions of specific AAs in crustaceans
exposed to different stresses.

9.8.2 Growth and skeletal muscle
development

AAs have been traditionally classified as essential
(EAAs) or nonessential (NEAAs) for animals,
including crustaceans. The diets of crustacean
species must contain ten EAAs for survival and
growth: arginine, methionine, valine, threonine,
isoleucine, leucine, lysine, histidine, phenylala-
nine, and tryptophan, all of which are not
synthesized de novo by eukaryotic cells (NRC,
2011). These AAs are considered as limiting
nutrients in commercial feed formulas and are
indispensable for the growth, development and
survival of the animals. If one of the EAAs is
deficient, it will limit the use of all AAs for
intracellular protein synthesis, therefore increas-
ing their oxidation to CO2. For example, a low
rate of retention of dietary protein in the
Litopenaeus vannamei results from a deficiency
of lysine (Xie et al. 2012) or threonine (Zhou et al.
2013) in their diets. Purified or semi-purified diets
have been employed to determine both qualitative
and quantitative requirements of crustaceans for
dietary EAAs. Lysine, arginine, and methionine
are regarded as the most limiting factors for
whole-body growth. Most of these studies were
based on the growth performance of select
crustaceans as shown in Table 9.5. To date,
NEAAs have been recommended to be included
in the diets of all animals (Wu 2013). This revises
the classical “ideal protein” concept to formulate
balanced diets for improving protein accretion,
feed efficiency, and health in animals
(Wu 2018). A recent study indicated that weight
gains and specific growth rates were increased in
juvenile Pacific white shrimp receiving dietary
supplementation with glycine (Xie et al. 2014).
Many factors, such as feeding regime, stocking
density, water quality, and other rearing
conditions, may affect the requirements of aquatic
organisms for dietary AAs (Façanha et al.
2016; Zhang et al. 2018).

AAs can promote muscle development and pro-
tein synthesis by either providing the building
blocks or stimulating signaling pathways. In
mammals, dietary supplements with branched-
chain amino acid (BCAAs) alone elicits an anabolic
response (e.g., muscle protein synthesis; Wolfe
2017; Wu 2013). An evolutionally conserved pro-
tein kinase, mechanistic target of rapamycin
(mTOR), is the master regulator of protein synthesis
and cytoskeleton remodeling, as well as intracellular
protein degradation via autophagy (Wu 2013).
AAs, such as leucine, arginine, glutamine, glycine,
tryptophan and valine, activate the mTOR cell sig-
naling to initiate protein synthesis in skeletal muscle
and intestine (Li et al. 2011c; Wu 2018). The
mTOR plays an important role in the regulation of
growth, molting, cell differentiation, and nutrient
metabolism in crustacean species (Abuhagr et al.
2014; Shyamal et al. 2018; Wu et al. 2019). In the
Chinese white shrimp (Fenneropenaeus chinensis),
intraperitoneal administration of leucine and argi-
nine stimulated the expression of fch-TOR and
activated the mTOR signaling pathway in skeletal
muscle (Sun et al. 2015a). Functional AAs are
expected to enhance the growth, survival, and pro-
ductivity of crustaceans, as reported for terrestrial
mammals and birds (Wu 2018).

9.8.3 Release of Hormones

Similar to terrestrial animals, hormones in
crustaceans are messengers that help to regulate
their physiological states and functions, such as
temperature, satiety, nutrient and energy metabo-
lism, growth, development, and reproduction. For
example, AAs regulate muscle growth not only
through direct actions on myogenic regulatory
factors and mTOR signaling, but also indirectly
via the growth hormone/insulin-like growth fac-
tor (IGF) axis. Growth hormone in serum and the
expression of IGF2 in the hepatopancreas of the
Chinese mitten crab (Eriocheir sinensis) were
significantly enhanced by dietary supplementa-
tion with arginine (Qi et al. 2019). In addition,
the concentrations of insulin and neuropeptide Y
in the blood of Litopenaeus vannamei were
increased in response to dietary supplementation
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Table 9.5 Reported requirements of crustacean species for dietary lysine, arginine and methionine

Species

Initial
body
weight

Dietary crude protein,
% (sources)

Isonitrogenous
control

Requirement
(% of the diet,
model) Variables References

Lysine requirements
Whiteleg shrimp
(Litopenaeus
vannamei)

0.52 g 40 (FM and WGM) Asp/Gly (1:1) 1.64 (BL) SGR Xie et al.
(2012)

3.62 g 38 (FM and CGM) Arga 2.11 (Anova) WG,
SGR

Feng et al.
(2013)

Giant tiger prawn
(Penaeus
monodon)

21 mg 40 (casein and gelatin) Asp and Glu 2.08 (BL) WG Millamena
et al.
(1998)

Atlantic ditch
shrimp
(Palaemonetes
varians)

17 mg 45 (FM and WGM) AAs mixb 2.42 (BL),
2.63 (EX)

WG Palma et al.
(2015)

Swimming crab
(Portunus
trituberculatus)

7.86 g 50 (FM and SBM) Asp/Gly (1:1) 2.17 (BL) SGR Jin et al.
(2015a)

Chinese mitten
crab (Eriocheir
sinensis)

2.05 g 38 (casein, FM, SBM) Glu 2.34 (Qua) WG Ye et al.
(2010)

6.86 mg 60 (casein and gelatin) AA mixc 2.55 ML,
survival

Jiang et al.
(2005)

Arginine requirements
Whiteleg shrimp
(Litopenaeus
vannamei)

0.5 g 41 (FM and WGM) Asp/Gly (1:1) 1.96 (BL) SGR Zhou et al.
(2012)

3.62 g 38 (FM and CGM) Lysa 1.80
(ANOVA)

WG,
SGR

Feng et al.
(2013)

Giant tiger prawn
(Penaeus
monodon)

21 mg 35 (casein and gelatin) Asp and Glu 1.85 (BL) WG Millamena
et al.
(1998)

1.19 g 45 (casein) Casein 2.5 (BL) WG Chen et al.
(1992)

Kuruma shrimp
(Marsupenaeus
japonicus)

0.25 g 50 (casein and gelatin) Glu 2.66 (BL) WG Alam et al.
(2004a)

Atlantic ditch
shrimp
(Palaemonetes
varians)

17 mg 45 (FM and WGM) AAs mixb 2.05 (BL),
2.39 (EX)

WG Palma et al.
(2015)

Chinese mitten
crab (Eriocheir
sinensis)

2.03 g 38 (casein, FM, SBM) Glu 3.62 (Qua) WG Ye et al.
(2010)

6.86 mg 60 (casein and gelatin) AA mixc 2.0 (Anova) ML,
survival

Jiang et al.
(2005)

Swimming crab
(Portunus
trituberculatus)

4.72 g 50 (FM and SBM) Asp/Gly (1:1) 2.77 (BL) SGR Jin et al.
(2016)

Methionine requirements
Whiteleg shrimp
(Litopenaeus
vannamei)

0.55 g 40 (FM, SBM) Asp/Gly (1:1) 0.91 (Qua) WG Lin et al.
(2015)

(continued)
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with GABA (Xie et al. 2015b). Tryptophan is the
precursor of the monoaminergic neurotransmitter
serotonin (5-hydroxytryptamine). In mud crabs,
tryptophan supplementation contributed to a sig-
nificant increase of serotonin in the hemolymph,
thus suppressing the agonistic behavior of mud
crabs during aggressive encounters and improv-
ing their survival (Laranjia et al. 2010). In the
Chinese mitten crab (Eriocheir sinensis), dietary
supplementation of tryptophan can promote limb
regeneration by regulating regeneration-related
gene expression and the digestion of foods within
the hepatopancreas, which may be related to the
enhanced levels of melatonin and the binding of
serotonin and dopamine to their corresponding
receptors (Zhang et al. 2019). In the juvenile
Litopenaeus vannamei, dietary supplementation
with tryptophan was beneficial to improve its
growth performance possibly by mediating sero-
tonin and GABA signaling pathways (Sun et al.
2015b).

9.8.4 Immune and Antioxidant
Responses

Proper nutrition is critical not only to achieve
optimal growth rates but also to maintain the
health of cultured aquatic animals (Pohlenz and
Gatlin 2014). AAs are essential components of
the cells and tissues of the immune system, and
play a vital role in the immunity of mammals, fish
and crustacean species (Trichet 2010; Li et al.
2007). Like other invertebrates, crustaceans lack
adaptive immune systems and depend solely on
the innate immune system to defend against infec-
tious pathogens (Vazquez et al. 2009). The
prophenoloxidase activating system (the proPO-
system) and associated factors are important
mediators of immunity in crustaceans. The
proPO is activated by substances of microbial
origins (e.g., β-1,3-glucans, lipopolysaccharides,
and peptidoglycans) to stimulate the circulating

Table 9.5 (continued)

Species

Initial
body
weight

Dietary crude protein,
% (sources)

Isonitrogenous
control

Requirement
(% of the diet,
model) Variables References

4.18 g 38 (FM, SBM) Asp/Gly (1:1) 0.67 (Qua) WG Lin et al.
(2015)

9.77 g 34 (FM, SBM) Asp/Gly (1:1) 0.66 (BL) WG Lin et al.
(2015)

Atlantic ditch
shrimp
(Palaemonetes
varians)

17 mg 45 (FM and WGM) AAs mixb 0.96 (BL),
0.99 (EX)

WG Palma et al.
(2015)

Chinese mitten
crab (Eriocheir
sinensis)

2.05 g 38 (Casein, FM, SBM) Glu 1.12 (Qua) WG Ye et al.
(2010)

Giant tiger prawn
(Penaeus
monodon)

21 mg 37 (casein and gelatin) Asp and Glu 0.89 (BL) WG Millamena
et al.
(1996)

Swimming crab
(Portunus
trituberculatus)

11.3 g 50 (FM and SBM) Asp/Gly (1:1) 0.96 (BL) SGR Jin et al.
(2015b)

Regression model: BL broken line, Qua quadratic, EX exponential
Parameters: IGR instantaneous growth coefficient, WG weight gain, SGR specific growth rate, ML Molt
Protein sources: FM fishmeal, SBM soybean meal, SPC soybean protein concentrate, WGM wheat gluten meal, CGM
corn gluten meal
aThe study is about the optimal ratio and content of lysine to arginine in diet for shrimp
bPremix of amino acids (g/100 g): cystine, 5; tryptophan, 3; threonine, 11; isoleucine, 9; histidine, 12; valine, 12; leucine,
15; phenylalanine, 20; tyrosine, 13
cAmino acid mixture (g/100 g): leucine, 8.53; isoleucine, 5.01; lysine, 7.06; methionine, 1.27; phenylalanine, 5.17;
threonine, 5.21; tryptophan, 2.76; valine, 2.37; histidine, 2.29; aspartic acid, 11.31; serine, 4.74; glutamic acid, 16.74;
proline, 5.62; glycine, 7.25; alanine, 7.07; tyrosine, 6.96; cysteine, 0.63
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hemocytes (large granular hemocytes, small gran-
ular hemocytes, and hyaline cells). These cells
play important roles not only through direct
sequestration and killing of infectious agents but
also by synthesis and exocytosis of a battery of
bioactive molecules (Söderhäll and Cerenius
1992). Along with hemocytes, crustaceans pos-
sess plasma proteins or humoral factors, such as
lectin, α-2 macroglobulin responsible for clotting,
lipopolysaccharide-binding protein, β-glucan-
binding protein, antimicrobial peptides, and
lysosomes (Trichet, 2010; Vazquez et al. 2009).
As the nitrogenous precursor for NO, arginine has
a beneficial effect on tissue oxygenation and
immune function for animals (Wu et al. 2009),
including crustaceans (Qi et al. 2019; Zhu et al.
2009). Thus, increasing the dietary arginine con-
tent from 1.72% to 3.72% improved the growth,
feed efficiency survival, immunity, and disease
resistance to Aeromonas hydrophila in the juve-
nile Chinese mitten crab (Qi et al. 2019).

Similarly, dietary supplementation with trypto-
phan to Chinese mitten crabs increases their sur-
vival after a challenge with pathogens (Yang et al.
2019).

Reactive oxygen species (ROS) are highly
reactive molecules that may contribute to
radiation-induced cytotoxicity (e.g., chromosome
aberrations, protein oxidation, and muscle
injury), as well as metabolic and morphologic
changes (e.g., increased muscle proteolysis and
dysfunction of the central nervous system) in
animals (Fang et al. 2002). Endogenous antioxi-
dant defenses are crucial for the control of ROS
production and the prevention of oxidative dam-
age in cells. The principal defense systems
against oxygen free radicals are superoxide
dismutase, glutathione, glutathione peroxidases,
glutathione reductase, catalase (a heme-
containing enzyme), and antioxidant nutrients
(Fig. 9.4). AAs and their derivatives are important
antioxidant nutrients for crustacean species, as for

Fig. 9.4 Roles of amino acids and their metabolites as
antioxidants in crustaceans. Cys cystine, CAT catalase,Gln
glutamine, Glu glutamate, Gly glycine, GPx glutathione
peroxidase, GR glutathione reductase, GSH glutahione,

GSSG oxidized glutathione, Lys lysine, Leu leucine, LH
lipids (unsaturated fatty acids), LOOH lipid hydroperox-
ide, Met methionine, SOD superoxide dismutase.
(Adapted from Fang et al. 2002)
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terrestrial animals (Fang et al. 2002). For exam-
ple, glutathione, which is the most abundant thiol-
containing substance of low molecular weight in
cells, is synthesized from glutamate, cysteine, and
glycine. Dietary supplementation with glutathi-
one to Litopenaeus vannamei enhances immunity
and antioxidant defenses (Xia and Wu 2018).
Glycine supplementation also improves the resis-
tance of the shrimp to acute salinity challenge
(Xie et al. 2014). More details about the functions
of AAs and their derivatives in immunity and
antioxidant responses are summarized in
Table 9.6. Adequate AA nutrition plays a crucial
role in protecting crustaceans from infectious and
metabolic diseases, such as the white spot syn-
drome caused by viral infection (Corteel 2013),
bacterial infection (Zhang et al. 2018), and
oxidant-induced tissue damage (Dong et al.
2018; Li et al. 2020a,c).

9.8.5 Spawning and Larval
Development in Crustaceans

Most crustaceans have separate sexes. The weight
of the gonad of maturing shrimp or crabs increase
during their reproductive development, which
prepares sufficient nutrients needed for the forma-
tion of egg yolk or spermatogenesis. This process
is important to sustain the normal development of
the embryos and the production of pre-feeding
larvae in crustacean species (Islam et al. 2010).
Optimum development of ovaries is necessary for
maximum crab production as they are a popular

edible tissue (Wu et al. 2020). Vitellogenesis is
the process of yolk formation, which plays
the central role in ovarian development and repro-
duction (Subramoniam 2011). Vitellogenin is an
egg yolk precursor protein and is synthesized in
the hepatopancreas and gonad tissues in decapod
crustaceans (Tsukimura 2001). Its synthesis is
under the control of estradiol-17β and other
neuropeptidic precursors from the nervous system
(Fig. 9.5). Furthermore, the hepatopancreas is an
important site for the syntheses of vitellogenin
and sex steroid hormones. Therefore, the crusta-
cean hepatopancreas is crucial for maximum
growth and optimum maturation of ovaries. An
unbalanced or incomplete diet causes poor repro-
ductive performance or may even stop animals
from reproducing (Woulters et al. 2001). As
noted previously, the release of some hormones
can be influenced by dietary AA intake. By
augmenting the syntheses of egg yolk proteins,
hormone peptides and enzymes during matura-
tion and reproduction, AAs are also essential to
ovarian development. Indeed, we found that AAs,
particularly aspartate and glutamate, are impor-
tant metabolic fuels in the ovaries of blue crabs
(Table 9.2). Thus, increasing dietary provision of
AAs (particularly aspartate and glutamate) may
beneficially improve reproduction in crustaceans.

Protein and AAs are the main components of
dry matter in invertebrate eggs, and support
embryonic survival, growth and development
(Heras et al. 2000; Xu et al. 2013). Moreover,
broodstock nutrition can significantly affect the
biochemical profiles of embryos and, therefore,

Table 9.6 Primary roles of amino acids during the life cycle of shrimp and crab species

Life cycle

Shrimp Crab Feeding The main functions of AAs
Fertilized
egg

Fertilized
egg

– Improves the quality of fertilized eggs

Nauplius – Yolk reserves Improves survival and development
Zoae Zoae Microalgae
Mysis Megalopa Algae and zooplankton
Post-larvae – Zooplankton and

micro-diets
Juvenile Juvenile Pellet diets Improves survival and growth
Adult Adult Pellet diets Improves the development of gonads and sperm; enhances egg

production

The life cycle is adapted from Tuan (2016) and Mcleady et al. (2015)
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embryogenesis, the quality of larvae and post-
larvae (Calado et al. 2005; Harrison 1990).
Shrimp (Litopenaeus setiferus) fed a 35%-protein
diet had a lower sperm quality than shrimp fed a
45%-protein diet, indicating that dietary AAs are
important for its reproductive performance
(Gonimier et al. 2006). There are suggestions
that a deficiency of dietary protein or certain
AAs can induce Daphnia pulex to enter a resting,
non-reproductive state (Koch et al. 2009, 2011).
Arginine and histidine can enhance not only the
number of eggs, but also the development of
subitaneous eggs in Daphnia pulex (Fink et al.
2011).

Crabs and shrimp must initiate exogenous
feeding after yolk nutrients are no longer

sufficient to support the metabolic demand of
their larvae. The diet for the larvae relies on either
live food (algae and zooplankton) or artificial
micro-diets, depending on the life stage. Free
AAs are important for the metamorphosis of crus-
tacean larvae by providing them with energy,
enhancing protein synthesis in their tissues, and
promoting their rapid growth (Bahabadi et al.
2018; Rønnestad et al. 2000). For example, feed-
ing Litopenaeus vannamei larvae taurine-
enriched rotifers improved their survival and
development (Jusadi et al. 2011). Likewise, the
enrichment of Artemia with lysine increased the
survival, growth performance, and stress resis-
tance capacity of Litopenaeus vannamei post-
larvae (Bahabadi et al. 2018).

Fig. 9.5 Roles of internal and external factors in the
regulation of reproduction in female crustaceans. DA
Dopamine, 5-HT 5-hydroxytryptamine (serotonin), VIH
vitellogenesis-inhibiting hormone, MOIH Mandibular
organ-inhibiting hormone, CHH crustacean hyperglyce-
mic hormone, MIH molt-inhibiting hormone, B & TG

brain and thoracic ganglia, GOSH gonad stimulating hor-
mone, MO mandibular organ, MF methyl farnesoate, E2,
17β-estradiol, Vg vitellogenin ‘+’ and ‘-’ denotes activa-
tion and inhibition, respectively. (Adapted from Pamuru
(2019) and Subramoniam (2011), (2017))
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9.9 Conclusion and Perspectives

Both EAAs and NEAAs play vital roles in the
production of aquatic crustacean species. AAs are
substrates for ATP production, as well as the
syntheses of lipids, glucose, protein and other
bioactive molecules (e.g., NO, creatine,
polyamines, GABA, catecholamines, and gluta-
thione). In addition, AAs increase the ability
of crustaceans to resist various adverse factors
(such as hyperosmotic, ammonia, hot and cold
stresses), improve their immune and antioxidant
defense systems, and regulate their hormone
release, metabolic pathways and osmotic homeo-
stasis. Thus, dietary AAs are vital to the
growth, development, reproduction, health, and
survival of these aquatic animals. Dietary protein
and AAs may also play important roles in
spawning and larval development, although tradi-
tional studies have focused on the nutrition of
lipids.

Based on the recent advances in our under-
standing of AAmetabolism and nutrition in shrimp
and crabs, considerations should be given on the
use of crystalline AAs (particularly aspartate, glu-
tamate, glutamine, leucine, and glycine) and their
alternative sources to feed crustaceans for enhanc-
ing their survival and productivity (Huo et al.
2017; Wu 2018). At present, there are several
technical difficulties and challenges in the use of
crystalline AAs to formulate diets for crustacean
species. We would also like to propose solutions to
solve the problems.

First, although heating can increase the digest-
ibility of native proteins in plants by unfolding the
polypeptide chains and removing the intrinsic
protease inhibitors, overheated meals or feeds
are undesirable because they have reduced
biological values in animals (Wu 2018). The
Maillard reaction during the feedstuff heating
process damages protein and AAs, leading to
reductions in the digestibility of dietary protein
and the bioavailability of AAs in feeds (Deng
et al. 2005). Animal-source feedstuffs, which
contain large amounts and proper balances of
AAs (Li and Wu 2020a), can be used as the
major source of dietary AAs to reduce the

inclusion of plant-source ingredients and fishmeal
in the diets of crustaceans.

Second, leaching can lead to the loss of
nutrients (including protein and AAs) from the
diets fed to crustacean species such as shrimp and
crabs, particularly because most of them are slow
and continuous eaters. These animals can pick up
a feed pellet, cradle it with their maxillipeds
(an appendage modified for feeding in
crustaceans that is situated in pairs behind the
maxillae), and begin to tear and crush the end of
a pellet with their mandibles (Obaldo et al. 2006).
Therefore, nutritional studies with shrimp and
crabs have met with the difficulties of enhancing
feeding efficiencies due to the leaching of
nutrients before feed pellets are consumed by
the animals. If crustaceans are fed an experimen-
tal diet with a high leaching rate, their estimated
requirements for dietary AAs may be inaccurate.
To optimize the utilization of crystalline AAs, a
possible approach is to coat AAs with lipids
(Alam et al. 2004b; Gu et al. 2013).

Third, crystalline AAs in diets enter the sys-
temic circulation of crustaceans more rapidly than
the protein-bound AAs, possibly resulting in the
asynchronous absorption of dietary AAs and a
suboptimal efficiency of utilization of dietary
AAs (Lovell 1991; Guo et al. 2020). For example,
there are higher percentages of AAs lost in the
urine (e.g., 13.6% for His; 17.6% for phenylala-
nine; and 8–10% for isoleucine, leucine, lysine
and valine) when shrimp fed diets with crystalline
AAs in comparison with diets with proteins (Liou
et al. 2005). Similarly, a previous study showed
that shrimp fed diets with coated crystallinemethi-
onine grew more rapidly than those fed diets with
uncoated crystalline methionine (Chi et al. 2011).
Therefore, it is necessary to systematically evalu-
ate the efficiency of utilization of different free
AAs (either coated vs crystalline) to define an
appropriate replacement level of protein-bound
AAs by crystalline AAs. Some studies with pigs
(Gahl et al. 1994) and rainbow trout (Tran et al.
2007) demonstrated that the efficiencies of utili-
zation of supplemented crystalline AAs varied
with diets, depending on protein sources espe-
cially at suboptimal dietary levels of AAs. This
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means that AAs with the same quantity and qual-
ity may yield different effects on the growth of
animals when they are supplemented to diets with
various feedstuff ingredients.

Fourth, there are no standardized diets or AAs
as isonitrogenous controls for nutritional research
in crustaceans. Due to the inadequate understand-
ing of NEAAs in the past decades, glutamate,
glycine and aspartate have long been used as an
isonitrogenous control in nutritional experiments.
This is inappropriate based on recent studies with
terrestrial animals (Hou and Wu 2018; Wu 2018),
fish (Li et al. 2020a), and crustaceans (Xie et al.
2014, Xie et al. 2015a, b) indicating that these
AAs have nutritional or physiological effects in
the animals. We suggest that L-alanine be used as
the isonitrogenous control in nutritional studies
with crustaceans where it is not a test AA.

Fifth, there is limited knowledge about the
cell- and tissue-specific metabolism of AAs in
different aquatic crustaceans (e.g. crabs and
shrimp). For example, GPT and GOT are abun-
dant in both the mitochondria and the cytoplasm
of hepatocytes of many animal species
(Wu 2013). Thus, the activities of these two
enzymes in serum are often determined to assess
hepatic integrity in human medicine. Similarly,
both enzymes in the hemolymph of giant tiger
prawn and Pacific white shrimp have been
regarded as important indicators of the
hepatopancreatic injury (Pan et al. 2003; Liu
et al. 2019). This, however, it may be not valid
for all species of shrimp and crabs. For example,
the activity of GPT and GDH in the hepatopan-
creas of black tiger shrimp (Penaeus monodon) is
either very low or undetectable (Richard et al.
2010). Furthermore, in blue crabs, the hepatopan-
creas is not a main site for the catabolism of AAs
(Table 9.2).

Finally, although there has been active
research to determine the dietary requirements
of crustaceans for crude protein over the past
50 years (Table 9.5), much emphasis should be
directed to studies of the dietary requirements of
these animals for NEAAs. Nutritionists should
move away from the traditional concept of crude
protein toward all AAs with nutritional and phys-
iological functions in the animals. The

composition of AAs in the diets with various
protein sources for crustaceans may differ sub-
stantially even though the diets have the same
crude-protein level. Dietary requirements of
crustaceans for all AAs (including AAs that are
synthesized in animal cells, such as glutamate,
glutamine and glycine) should be defined to opti-
mize dietary formulations for both health and
growth performance. Research on the metabolism
and functions of AAs is fundamental to achieve
this goal so as to manufacture future
environment-friendly aquafeeds and reduce feed
costs in crustacean production. The new
nutritional concepts of “dietary requirements of
animals for NEAAs” and “functional AAs”,
which were originally proposed on the basis of
basic and applied studies with terrestrial animals
(Wu 2010), are expected to transform nutritional
studies with shrimp and crabs, as well as feeding
practices in the global crustacean production (Xie
et al. 2014, 2015a,b).
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Amino Acids in Dog Nutrition and Health10
Anita M. Oberbauer and Jennifer A. Larsen

Abstract

The dog has assumed a prominent role in
human society. Associated with that status,
diet choices for companion dogs have begun
to reflect the personal preferences of the
owners, with greater emphasis on specialty
diets such as organic, vegan/vegetarian, and
omission or inclusion of specific ingredients.
Despite consumer preferences and many mar-
keting strategies employed, the diets must
ensure nutritional adequacy for the dog; if
not, health becomes compromised, sometimes
severely. The most frequent consideration of
consumers and dog food manufacturers is pro-
tein source and concentration with a growing
emphasis on amino acid composition and bio-
availability. Amino acids in general play
diverse and critical roles in the dog, with spe-
cific amino acids being essential. This review
covers what is known regarding amino acids in
dog nutrition.
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Abbreviations

AAFCO Association of American Feed Con-
trol Officials

DCM dilated cardiomyopathy
mTOR mechanistic target of rapamycin
NRC National Research Council
SND Superficial necrolytic dermatitis

10.1 Introduction

Much of the canine nutrition work addressing
protein and amino acid requirements was done
in the mid-1900’s with a resurgence of interest
and characterization of dog diets in the last
20–25 years. Similarly, in the most recent
decades, within human society dogs have moved
from a more utilitarian relationship into the role of
family members (Power 2008) and with that evo-
lution, pet humanization has become a driving
force in consumer product purchasing (Kumcu
and Woolverton 2015) and food in the human
societal context is complex, symbolic, and cul-
tural. Recent dietary formulations for the dog
target consumer preferences with emphases on
premium, exotic or novel, natural, organic,
and/or sustainable ingredients. Despite the
anthropomorphizing, and regardless of marketing
category, all balanced diets must reflect the phys-
iological needs of the dog.
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Dietary provision of protein must provide the
essential amino acids necessary for structural pro-
tein synthesis, both for growth and maintenance.
Additionally, dietary amino acids serve as
precursors for dispensable (non-essential) amino
acids that are synthesized by the body (Wu 2013).
These serve as a source of energy and provide
components necessary for key metabolic
functions. As such, an adequate supply of digest-
ible nitrogen must be provided. Both
non-essential and essential amino acids are also
used in the synthesis of neurotransmitters,
hormones, and purine and pyrimidine
nucleotides. Thus, it is critical to match the
amino acid profile (concentrations and
proportions) of a dietary formulation with a
dog’s physiological state. Failure to do so results
in deficiencies that translate into preventable
health conditions. Knowledge of the role of
amino acids in the canine diet is essential to
enable continued improvements in canine
nutrition.

10.2 Overview of Amino Acids

The amino acids in circulation are derived from
meal digestion, protein degradation, and de novo
synthesis. Dietary amino acids have different met-
abolic fates that include incorporation into struc-
tural proteins, synthesis of dispensable amino
acids, conversion into signaling molecules such
as hormones and neurotransmitters, and use as an
energy source either as glucose or fat storage
(Wu 2013). The physical structure of the amino
acids plays a role in their function; this is particu-
larly true based upon whether the side chains con-
fer hydrophobic, polar, or neutral configurations.

Most proteins contain alpha amino acids with
alpha carboxyl groups, except for proline, and
there are generally 22 alpha-amino acids in
proteins (Case et al. 2010). Physiologically, cells
synthesize the L-isomer of amino acids and only
that form is incorporated into proteins. However
the D-isomers of amino acids have been isolated
from bacterial cell walls and recent evidence

shows the D-isomer form is found in
microorganisms, plants, insects, and mammals
and they are proposed to have distinct biological
functions in diverse tissues such as neurological
development and transmission and endocrine
systems (reviewed by Genchi 2017). Mammals
have measurable proportions of D-isomer amino
acids predominantly D-serine and D-aspartate
(Ohide et al. 2011; Fujii 2002). Some evidence
also suggests a role for D-isomer amino acids as
osmolytes in aquatic invertebrates (Abe et al.
2005) and in host defense mechanisms and
neurotransmitters for mammals (Sasabe and
Suzuki 2018; Fujii 2002; Snyder and Kim
2000). Despite these findings, when fed to dogs,
D-isomer tryptophan resulted in over one-third of
the ingested tryptophan being excreted in the
urine (Czarnecki and Baker 1982). In general,
D-isomers are thought to impair the digestion of
proteins and reduce bioavailability of other amino
acids (reviewed in Man and Bada 1987) resulting
in impaired growth (Friedman and Levin 2012),
although other studies have suggested a potential
role as antimicrobials (reviewed in Friedman and
Levin 2012)). Whereas D-isomer amino acids are
naturally synthesized, they can also be the result
of artificial processing or thermal and environ-
mental insult (Genchi 2017); the latter,
racemisation, being an important consideration
in diet preparations given the putative role of
D-isomers in reducing amino acid availability
(Tran et al. 2008).

Ten amino acids are categorized as indispens-
able, or essential, for the dog because the rate of
synthesis is insufficient to meet the physiological
demands of the body and thus must be supplied
by the diet (Table 10.1). Dispensable, or
non-essential, amino acids can be synthesized
from indispensable amino acids. Some authors

Table 10.1 Indispensable/essential amino acids for dogs

Arginine Methionine
Histidine Phenylalanine
Isoleucine Threonine
Leucine Tryptophan
Lysine Valine
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have suggested that the description of some
amino acids as nutritionally non-essential is
incorrect or otherwise inappropriate (Hou and
Wu 2017). Similarly, arguments in support of
this concept have been addressed with knowledge
of species-specific essential amino acids as well
as the widely accepted principle of conditionally
essential amino acids for example (Morris et al.
2017; Lourenco and Camilo 2002).

Amino acids differ in their overall structure,
side chain structure and general chemical
characteristics and they are often categorized
based upon these properties. The aliphatic class
includes glycine, alanine, valine, leucine, and iso-
leucine. The sulfur-containing class includes cys-
teine and methionine. Proline is the lone amino
acid classified as an imino acid. The aromatic
class includes phenylalanine, tyrosine, and trypto-
phan. The basic classification includes histidine,
lysine, and arginine and the acid amino acid clas-
sification includes aspartate and glutamate. Histi-
dine may also be considered an aromatic
amino acid.

Additionally, amino acids may be classed based
upon their side chain configuration. The branched-
chain amino acids have an aliphatic side chain that
branches, and this group includes leucine, isoleu-
cine, and valine. The branched-chain amino acids
represent the majority of amino acids found in
muscle proteins. They also promote muscle protein
synthesis through the mechanistic target of
rapamycin (mTOR) pathway and translational acti-
vation (Kimball and Jefferson 2006) while reduc-
ing protein catabolism (Fulks et al. 1975). The
mTOR pathway is involved in many physiological
processes including protein and lipid synthesis and
energy metabolism. Amino acids, especially leu-
cine and arginine, are essential for the activation of
this pathway, even mediating the action of growth
factors and integrating the levels of energy, stress,
and oxygen (reviewed in (Laplante and Sabatini
2012). Sancak et al. (2008) demonstrated that the
activation of the mTORC1 growth promotion
pathway by amino acids is mediated by the Rag
family of GTPAses and that when activated by
branched-chain amino acids permit mTOR to relo-
cate within the cell thereby enabling interaction

with the key downstream enzymes for each syn-
thetic pathway.

The hydrophobicity of branched-chain amino
acids also contributes to their role in phospholipid
bilayer signaling molecules (Brosnan and
Brosnan 2006). Catabolism of branched-chain
amino acids has been associated with obesity in
humans (Newgard et al. 2009). Branched-chain
amino acids are unique in that amounts beyond
that needed for protein synthesis are metabolized
in peripheral tissues rather than the liver, espe-
cially skeletal muscle.

The aromatic ring amino acid configuration is
synthesized by plants and microorganisms but not
animals, which lack the shikimate pathway nec-
essary for the synthesis of these amino acids. All
but tyrosine of the aromatic amino acids are indis-
pensable if the diet provides phenylalanine; tyro-
sine can be formed from phenylalanine through
the action of phenylalanine hydrolase. Aromatic
amino acids play a role in protein-protein
interactions conferring specificity to the binding
process (Moreira et al. 2013) and both phenylala-
nine and tryptophan are precursors to the crucial
metabolic hormones of dopamine, epinephrine,
norepinephrine, serotonin, and thyroxine.

In the formation of energy, amino acids are
further classified as ketogenic or glucogenic,
reflective of the fate of their carbon skeleton during
protein catabolism. To contribute to energy supply,
the carbon backbone of the amino acid is used for
gluconeogenesis. Amino acids that when broken
down form acetyl CoA or acetoacetyl CoA are
ketogenic, so named because they form ketone
bodies that are ultimately used in the citric acid
cycle to generate ATP. Ketogenic amino acids are
leucine and lysine. Glucogenic amino acids, the
majority of amino acids, are those whose carbon
skeletons are converted into glucose and include
alanine, arginine, asparagine, aspartic acid, cyste-
ine, glutamic acid, glutamine, glycine, histidine,
methionine, proline, serine, and valine. Five
amino acids, phenylalanine, isoleucine, threonine,
tryptophan, and tyrosine, share both ketogenic and
glucogenic properties.

Early research confirmed the role of amino
acids in stimulating glucagon response in the
dog (Rocha et al. 1972). When exogenously
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administered intravascularly, the majority of
amino acids stimulated glucagon secretion except
for leucine which is strictly nonglucogenic
(Rocha et al. 1972), as well as isoleucine which
much more strongly stimulated insulin release,
and valine which was among the weakest to stim-
ulate both glucagon and insulin. Since the first
step of branched-chain amino acid catabolism is
primarily in muscle, with slow removal of the
keto-acids, the concentration of these in plasma
rises faster after a meal than for other amino acids.
As such, the reduced to absent stimulation of
glucagon release, and greater effect on insulin at
least for leucine and isoleucine, may be an adap-
tive response to the normal physiological milieu
that occurs in the post-absorptive state.

10.3 Digestion of Dietary Protein
and Amino Acids

The dog is a meal feeder having a monogastric
digestive system. Although in the phylogenetic
order of Carnivora, dogs are more appropriately
classified as omnivorous (D'Mello 2003). The dog,

to a greater degree than their wolf ancestors, con-
sume and utilize a wider variety of food sources
including starches, perhaps reflecting their long
evolutionary relationship with humans (Axelsson
et al. 2013). Despite this ability to efficiently digest
and utilize starch as an energy source, the dog was
considered to rely primarily on pancreatic amylase
due to a lack of salivary α-amylase enzyme
(Chauncey et al. 1963) although recent studies
using newer techniques have detected measurable
quantities in dog saliva (de Sousa-Pereira et al.
2015; Contreras-Aguilar et al. 2017).

To accommodate the meal feeding pattern,
the dog digestive system has adapted to cope
with large meals followed by long periods of
fasting. Some modifications are seen in the
ability to synthesize dispensable amino acids
such as taurine (Fig. 10.1). In addition, amino
acid catabolism can be slowed during period of
reduced food availability (Bosch et al. 2015).
When compared to the cat, the dog shows
higher apparent digestibility of not just crude
protein but also fat, carbohydrate by difference,
and gross energy from a range of processed
commercial diets and fresh foods (Kendall
et al. 1982).

Fig. 10.1 Taurine biosynthetic pathway
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As in other species, the canine stomach
secretes pepsin that functions in proteolysis. Pep-
sin optimally coordinates with collagen intake,
thus is important in the digestion of consumed
animal-based tissue (meat). Meat and other pro-
tein sources that contain certain amino acids pro-
mote digestive function such that gastric secretion
is proportional to protein consumed. The small
intestine is the site of the majority of the dog meal
digestion. Peptides containing phenylalanine
enhance cholecystokinin release by the duodenal
gastrointestinal endocrine cells, which in turn
promotes fat and protein digestion in the small
intestine. Component amino acids derived from
digestion are absorbed from the diet in the small
intestine.

The dog, similar to the cat (Che et al. 2020),
has an obligatory requirement to utilize solely
taurine for bile acid conjugation. The conjugating
enzyme in dogs and cats is taurine-specific, while
other species use both glycine and taurine (Czuba
and Vessey 1981). Once the chyme reaches the
distal small intestine, the conjugated bile acids are
reabsorbed via the ileum, resulting in an efficient
recycling mechanism of taurine in the dog,
assuming the absence of medications, dietary
factors, or other reasons for accelerated bile losses
through bacterial degradation or fecal excretion.

Colonic/post ileal absorption contributes only
a small proportion to the overall digestion of
foods and contributes greatest for diets having
high starch or legume content (Zentek and
Meyer 1995; Meyer et al. 1989). Diet is known
to affect the microbial composition of the gastro-
intestinal tract (Hooda et al. 2012) and con-
versely, metabolism of certain dietary nutrients
are enhanced by particular microbial populations.
For example, amino acid utilization is in part
dependent upon the composition of the microbial
communities within the gut (Dai et al. 2011).
Thus, diet, and in particular the profile of amino
acids, shape the diversity of the microbial
communities and those communities in turn influ-
ence the utilization and metabolism of dietary
components. Characterization of this interplay is
in its infancy and caution must be applied to
studies assessing dietary influences on the dog
microbiome composition because the high within

animal variability in microbiome signatures may
confound conclusions (Cuscó et al. 2017). It has
been hypothesized that the microbial population
in the distal colon ferments any remaining undi-
gested protein (Council 2006) and Stevens and
Hume (Stevens and Hume 2004) reported that
absorption of ammonia in the distal colon
conserves the nitrogen associated with secreted
enzymes necessary for the digestive processes.

The fermentation of undigested amino acids in
the colon contribute to pungent and unpleasant
odors associated with flatulence and feces in the
dog. The addition of Yucca schidigera extract can
reduce fecal odor even when the dog has high
dietary protein inclusion (Dos Reis et al. 2016;
Lowe et al. 1997). The modulating effect is likely
due to the interactions with the microbiota
through the impact on composition or metabolism
(Pinna et al. 2017). In addition, dietary supple-
mentation of prebiotics, such as oligofructose,
added to diets serve as nutritional substrates for
the microflora that inhabit the gastrointestinal
tract. Optimizing the microflora community and
types and numbers of species has health benefits
including reduced risk of colon cancer as
observed in rodent models (Pool-Zobel et al.
2002). Increasing the diversity in general and
the abundance of Bifidobacterium in particular
are considered especially beneficial. Of course,
the production of short-chain fatty acids resulting
from the fermentation of various fibers constitute
an important energy source for colonocytes in
addition to likely beneficial systemic effects
even in carnivores adapted to consuming diets
very low in this dietary component (Verbrugghe
et al. 2012).

Interestingly, circulating amino acids, both
indispensable and dispensable, differ based upon
the size of the dog leading many commercial pet
food manufacturers to develop diets tailored to
size or even breed. (Middleton et al. 2017). Dogs
categorized as “small” based upon weight
(6.1–15.6 kg) have elevated arginine levels
when compared to that observed for dogs classi-
fied as “large” (18.4–54.4 kg); the situation is
reversed for phenylalanine, tyrosine, lysine, glu-
tamine, hydroxyproline, and prolylhydrox-
yproline, despite the higher digestibilities in the
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“small” dogs for a common diet fed to all dogs.
The fecal microbiome varied between the two
size categories leading the investigators to
hypothesize that the resident microflora of the
dogs differentially used the amino acids. Further-
more, the authors speculate that genetic selection
for phenotype in breed development altered
metabolism beyond just that related to
physical size.

10.4 Diet

10.4.1 Food Intake and Role of Dietary
Factors

If permitted free choice dogs will selectively con-
sume ~25–30% of calories as protein. (Romsos
and Ferguson 1983; Tôrres et al. 2003). The liter-
ature also suggests that dogs offered a choice will
avoid diets deficient in essential amino acids
(Leung and Rogers 1987). Of course, in the dog,
palatability plays an important role in diet selec-
tion and preference and is difficult to differentiate
from metabolic effects of nutrient composition.
Overall protein amount and type as well as some
individual amino acids (alanine, proline, lysine,
histidine, and leucine) will increase preference,
palatability, and satiety in cat and dog diets
(White and Boudreau 1975; Weber et al. 2007;
Hargrove et al. 1994). Purified proteins are virtu-
ally flavorless while specific amino acids or
isolated peptides can be bitter, sweet, or sour.
Furthermore, the D-isomer amino acid form may
present as a different and/or more potent flavor.
For example L-tryptophan is detected as a bitter
flavor yet D-tryptophan is detected as even
sweeter than sucrose (Bachmanov et al. 2016).

Both energy and protein intake are regulated
by satiety and behavioral feeding mechanisms.
Protein regulation is known to be influenced by
the amino acid composition of the protein source.
Anderson posited that the presence of certain
amino acids, particularly those that serve as
precursors for neurotransmitters, could account
for the mechanism of protein and amino acid
regulation of feeding behavior (reviewed in
Anderson 1979). Of course, other dietary factors

including fiber content have been shown to influ-
ence food intake to a variable degree depending
on the study design. Fiber is used to dilute energy
in diets formulated for weight control, but the
impact of fiber on satiety is a challenging issue
to define, and study design or other dietary
features may influence findings. Dogs fed high
fiber diets ad lib showed voluntary reduction in
food intake in one study, while another study
demonstrated that dogs on a weight loss plan
lost similar amounts of weight while consuming
either a low or high fiber diet, with no apparent
effects on satiety associated with either diet
(Jewell and Toll 1999; Butterwick and Markwell
1997; Jackson et al. 1997).

10.4.2 Amino Acid Composition
and Availability

Dietary protein is the sole dietary component for
which an objective definition of nutritional “qual-
ity” is established. Protein quality is determined
by the overall digestibility as well as the amino
acid quantity, pattern, and bioavailability. Dietary
sources of amino acids vary in these
characteristics. Certain amino acids are present
at sufficient levels in both animal and plant pro-
tein sources (Hou et al. 2019; Li and Wu 2020).
These include leucine, isoleucine, and valine.
Other protein sources are more limited in their
amino acid profiles. For instance, legumes are
limiting in sulfur amino acids, some cereal crops
such as wheat and corn have low lysine content,
and corn is also limiting in tryptophan.

Assessment of novel protein ingredients that
are being incorporated into dog diet formulations,
such as calamari meal, alligator, venison, and
duck, revealed that differences in protein compo-
sition are accompanied by variable digestibility of
the amino acids within those proteins. Specifi-
cally, digestibilities differed for indispensable
amino acids dependent upon the protein source.
For instance, calamari meal had more highly
digestible indispensable amino acids when com-
pared to lamb meal, indicating a critical need for
fully analyzing dietary components prior to
incorporating them into a diet (Deng et al.
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2016). It appears that the amino acid composition
as well as bioavailability must be considered
when using both uncommon and more typical
protein sources. Novel protein sources may have
different levels of essential and dispensable
amino acids (McCusker et al. 2014), and this
should be defined when considering use for
food. In general, animal-sourced proteins of
high quality have better amino acid profiles com-
pared to those derived from plants. However,
interestingly, even rabbits, a common prey spe-
cies as well as one sometimes used in pet foods,
contains taurine concentrations below the known
requirements for cats (Owens 2016) and exclu-
sive feeding has been associated with the devel-
opment of taurine deficiency and dilated
cardiomyopathy in cats (Glasgow et al. 2002).

Well formulated diets provide adequate protein
and amino acid content in dietary concentrations
which meet the needs of the target dog population.
However, comprehensive in vivo testing is neces-
sary to fully assess adequacy in the long term. This
is particularly true for vegetarian/vegan pet food
diets in which concentrations and/or bioavailabil-
ity of some amino acids may be inadequate to meet
needs for growth or maintenance (Kanakubo et al.
2015). In a study of beagles, body weight was
maintained along with baseline general health
with a diet providing the minimal protein (from
egg) requirement (Sanderson et al. 2001). Interest-
ingly one beagle on that study developed dilated
cardiomyopathy and the condition was fully
reversed with taurine supplementation. This
underscores that amino acid adequacy cannot be
predicted bymeasures of energy and protein status;
more targeted and precise assessments are needed.

Bioavailability of amino acids from plant and
animal protein sources can differ. In general, ani-
mal proteins have higher digestibilities than plant
based proteins (Neirinck et al. 1991; NRC 2006).
However even highly digestible proteins can be
negatively impacted by other factors (Bednar
et al. 2000), including processing factors (Dust
et al. 2005; Backus et al. 1998), whereas digest-
ibility of other proteins may be enhanced
(Morgan et al. 1951); however, the impact of
other dietary components and their interactions
with protein must also be considered.

The negative impact of high dietary fiber
inclusion on protein digestibly is well known.
Protein digestibility will decrease 6% if alpha
cellulose is added to diets (Burrows et al. 1982;
Burkhalter et al. 2001) reducing availability of
amino acids for essential bodily functions. Fiber
also dilutes energy density, which is a benefit or a
detriment depending on the individual dog
(obese-prone vs. small breed puppy, for exam-
ple). Yet, depending upon the fiber added, it can
exert an amino acid sparing effect (Wambacq
et al. 2016). Thus incorporating high amounts of
fiber into diets must consider the life stage and
other characteristics of the dog. Practically
speaking, fecal water content, transit rate, protein
concentration, and protein digestibility all impact
stool quality which differs by body size (Nery
et al. 2012). Furthermore, protein digestibility
differs across dog breeds (Hannah et al. 1995)
and sizes (Nery et al. 2012).

Provision of certain dietary components exert
an anti-nutritional effect. Some cereal grains con-
tain trypsin inhibitors or lectins that alter the
intestinal epithelium, reduce protein digestibility,
and diminish of essential amino acids (Lajolo and
Genovese 2002). Dietary oligofructose, a fer-
mentable fiber additive to diets, alters nutrient
digestibility when added to dog diets. Specifi-
cally, the level of fecal ammonia was proportion-
ally decreased with increasing concentrations of
oligofructose whereas bifidobacteria were ele-
vated, indicating alterations in amino acid use
(Flickinger et al. 2003; Hussein et al. 1999).
Amino acid sparing is also observed when soluble
fiber (sugar beet pulp mixed with guar gum) is
added to the diet; in that situation, the use of the
short-chain fatty acid proprionate is preferentially
utilized for gluconeogenesis over the use of
amino acids (Wambacq et al. 2016).

Soyabean meal is added to some dog diets as a
supplemental or primary source of protein as well
as to include isoflavones which may assist with
weight management (Pan 2007). However, soy is
associated with reduced small intestine digestibil-
ity likely due to the presence of tannins, lectins,
trypsin inhibitors, phytates, oligosaccharides
(e.g., raffinose and stachyose), and β-mannans
(Sarwar Gilani et al. 2012). If the soyabean meal
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is not properly processed to reduce or inactivate
anti-nutritional factors, digestibility of specific
amino acids is profoundly impaired (lysine,
methionine, cystine, threonine; Willis 2003). In
addition, methionine is usually the first or second
limiting amino acid in dog diets formulated with
soybean meal and rendered meats (NRC 2006)
and methionine is particularly susceptible to heat
processing damage with subsequent reduction in
bioavailability (Marshall et al. 1982; Hurrell et al.
1983).

It is clear that thermal processing can improve
protein digestibility and both global and specific
amino acid availability due to destruction of anti-
nutritional factors or protein denaturing; however,
heat damage can also have direct negative effects
on protein and amino acid adequacy in certain
matrices. It has been reported that much of the
variation in quality of rendered animal meals as it
relates to amino acid digestibility is related to
processing effects (Hendriks et al. 2004; Johnson
et al. 1998). Poultry by product meal has reduced
essential amino acid digestibility compared to
other meat sources (especially cysteine and lysine
but also to some extent threonine) (Johnson et al.
1998) underscoring the importance of processing
in amino acid adequacy in canine diets. Amino
acids present in foods can be affected by several

aspects of processing (heat, pH, moisture) in var-
ious ways including oxidation, desulfuration, and
isomerization. In addition, although naturally
occurring amino acid cross-linking is noted
(such as in keratin and collagen), similar reactions
can also occur as a result of processing, which
result in decreased amino acid availability. Indi-
vidual amino acid destruction and formation of
new (non-nutritional) amino acids may also
occur, as well as Maillard-type reactions between
reducing sugars and the free amine groups of
lysine. Maillard-type reactions result in the obvi-
ous loss of lysine, but also reduce global protein
digestibility and therefore most other essential
amino acids as well (van Rooijen et al. 2013;
Cheftel 1976).

The recent publication by Hendriks et al.
(2015) indicates that the recommendations of
amino acid requirements is still a work in
progress. The authors suggest that the
recommendations by National Research Council
(NRC), Association of American Feed Control
Officials (AAFCO), and the European Pet Food
Industry Federation underestimate the amino acid
requirements for many of the essential amino
acids when true digestibility and bioavailability
are taken into account (Table 10.2). The authors
caution that for especially lysine but also other

Table 10.2 Published recommended allowances for essential amino acids for adult canine maintenance per the National
Research Council (NRC 2006) and recommendations for minimum concentrations of essential amino acids in diets for
adult dogs per the Association of American Feed Control Officials (AAFCO 2019) and the European Pet Food Industry
Federation (FEDIAF 2018a)

NRC 2006 AAFCO 2019

FEDIAF 2018

based on MER of

95 kcal/kg0.75 110 kcal/kg0.75

Amino acid g/1000 kcalb

Arginine 0.88 1.28 1.51 1.3
Histidine 0.48 0.48 0.67 0.58
Isoleucine 0.95 .i95 1.33 1.15
Leucine 0.83 1.7 2.37 2.05
Lysine 1.63 1.58 1.22 1.05
Methionine 1.7 0.83 1.16 1
Methionine+cystine 0.88 1.63 2.21 1.91
Phenylalanine 1.13 1.13 1.56 1.35
Phenylalanine+tyrosine 1.85 1.85 2.58 2.23
Threonine 1.08 1.2 1.51 1.3
Tryptophan 0.35 0.4 0.49 0.43
Valine 1.23 1.23 1.71 1.48
aFédération européenne de l’industrie des aliments pour animaux familiers
bAssumes energy density of 4000 kcal/kg dry matter as indicated
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amino acids, such as methionine and cystine, may
be present in processed foods and even absorbed
yet remain unavailable for metabolic utilization
due to thermal and chemical destruction or
transformation.

10.5 Role of Amino Acids

Within the body, amino acids have diverse roles
with specific amino acids being important in
different physiological contexts. Amino acids
have a direct role in regulating genes involved
in amino acid metabolism such as arginine’s
downregulation of argininosuccinate synthase
mRNA (Haines et al. 2010) or lysine’s regulation
of ornithine decarboxylase, although a frequent
observation is the down regulation of genes, such
as those involved in fatty acid synthesis or those
in the mTOR pathway, when amino acids are
limiting (Fafournoux et al. 2000; Jousse et al.
2004). In addition to their role in developing
and maintaining muscle mass, dietary provision
of branched-chain amino acids to dogs improves
cognitive function in active and aged dogs
(Fretwell et al. 2006) which suggests a dual role
in ameliorating signs of both cognitive aging and
sarcopenia.

The dispensable amino acid glutamic acid can
form the potent neurotransmitter, glutamate, upon
protonation in physiological fluid. Glutamate is
the most abundant neurotransmitter in the brain
(Lipton and Rosenberg 1994) and regulates key
neurological functions including cognition,
learning, memory, and neuronal developmental
plasticity; excess activation has been associated
with neurological injury. Excess glutamate acti-
vation, or “excitotoxicity”, has been implicated in
idiopathic epilepsy in the dog (Podell and
Hadjiconstantinou 1997; Platt 2007). Anxiety
disorders in dogs are also correlated with elevated
levels of plasma glutamine and γ-glutamyl gluta-
mine (Puurunen et al. 2018). In neurological
conditions, the normal cycling between glutamine
and glutamate (or the neurotransmitter
γ-aminobutyric acid is disrupted with altered

pools of each. Glutamine is the most abundant
free amino acid and its elevation in states of fear is
intriguing yet the implication is unknown.
Whether that deviation correlates with release
from tissue stores creating a greater demand for
dietary provision of glutamine has yet to be deter-
mined (Puurunen et al. 2018).

Protein content of the diet may be associated
with expression of certain behaviors such as dom-
inance aggression; low protein diets were
associated with higher aggressive behavioral
assessments whereas high protein diets, or low
protein diets supplemented with the amino acid
tryptophan, were associated with reduced aggres-
sive tendencies (DeNapoli et al. 2000). It is well
recognized that neuronal and endocrine signaling
act in behavioral control. Tryptophan serves as a
precursor for a number of neurotransmitters and
hormones including serotonin, that when secreted
in the brain impacts mood and is associated with
inhibition and modulation of aggressive
behaviors (Bosch et al. 2007). Higher
concentrations of tryptophan have been
incorporated into diets marketed for canine anxi-
ety. Tyrosine is a precursor for the
catecholamines adrenalin and nor-adrenaline and
thus plays a significant role in stress reactions;
studies in dogs are lacking.

As noted above, dietary amino acids and the
gastrointestinal microflora show complex and
mostly uncharacterized interactions. Addition-
ally, although studied in the pig, arginine, glu-
tamine, glycine, cysteine, and proline have
been shown to protect the gut, improve the
integrity of the mucosal barrier of the intestine,
and promote immune capacity through regula-
tion of cytokine secretion (Liu et al. 2017b;
Ruth and Field 2013; Li et al. 2016; Liu et al.
2017a).

Leucine can repress proteolysis, to an even
greater degree than insulin, suggesting that provi-
sion of particular amino acids can conserve lean
body mass. One study showed that a 90 minute
intravenous infusion of pharmacological doses of
leucine to adult dogs resulted in 75–80% reduc-
tion in the rate of global proteolysis (Frexes-Steed
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et al. 1992). Under long term dietary caloric
restriction, serum levels of valine, leucine, lysine,
and phenylalanine are possibly reflecting an
altered energy metabolism (Richards et al. 2013)

A recent study of young Labrador retrievers
and Newfoundlands targeted phenylalanine plus
tyrosine to determine if supplementation would
result in more intense, darker coat colors. Though
this was done in puppies, it was likely reflecting
the adequate synthesis of eumelanin in the hair;
no other physiological parameters were assessed
(Watson et al. 2015). It is also well established
that in black cats, the dietary requirement for
phenylalanine plus tyrosine in order to maintain
black coats is almost twice that established for
optimal growth (Anderson et al. 2002)

demonstrating a vital role of tyrosine in pigment
synthesis.

10.6 Deficiencies

Protein adequacy in the dog is most practically
assessed over the long term by confirmation of
maintenance of normal serum albumin concentra-
tion and normal lean body mass. Clinical signs
of deficiency of specific amino acids may be
preceded by, or confirmed with, decreases in
plasma concentrations. Plasma amino acids
measurements are an accessible and noninvasive
clinical tool for assessment of global or individual
amino acid status (Table 10.3). However, most

Table 10.3 Plasma amino acid concentrations in adult dogs, and puppies where available, fed diets with adequate
amino acid concentrations

Amino acid
Adulta Puppy#

Mean � SEM (nmol/mL) (nmol/mL)

Alanine 388 � 9.6
Arginine 102 � 2.6 72
Asparagine 40 � 1.1
Aspartate 7 � 0.2
Citruline 41 � 1.9
Cysteine 46 � 1.3
Glutamate 23 � 1.2
Glutamine 495 � 9.4
Glycine 268 � 8.4
Histidine 71 � 1.6
Hydroxyproline 67 � 4.1
Isoleucine 51 � 1.3
Leucine 120 � 3.2 100
Lysine 132 � 5.0 85
Methionine 57 � 1.6
Ornithine 35 � 1.5
Phenylalanine 45 � 0.9 85
Proline 246 � 8.2
Serine 107 � 2.6
Taurine 77 � 2.1
Threonine 178 � 5.0
Trptophan 60 � 1.7
Tyrosine 39 � 1.1 12
Valine 157 � 4.1

# (Council 2006)
asource: (Delaney et al. 2003) and confirmed in (Chan et al. 2009)
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unbalanced diets are unlikely to be lacking only
one essential nutrient, and with regard to protein
and amino acid adequacy, it may be a challenge to
differentiate the effects of a single nutrient in the
face of multiple deficiencies. Furthermore, the
interrelationship of energy and protein intake
means that both factors must be considered
when interpreting both published data as well as
when undertaking animal assessments in real
time.

Humbert et al. (2001) characterized the meta-
bolic adaptations in the dog to diets that were
energy equivalent yet either deficient in overall
protein or protein deficient diets that were also
lysine and tryptophan deficient. The dogs fed the
protein deficient diet reduced protein degradation
11% compared to dogs fed a control diet and the
effect was more pronounced for the diets that
were lysine and tryptophan deficient which
exhibited a 25% reduction. This conservation
mechanism is due to downregulation of catabolic
pathways although protein turnover rates can only
be reduced to a limited extent. As such, some
ongoing losses are unavoidable. Similarly, the
dogs showed decreased protein synthesis with
the greatest effect observed in the diet with spe-
cific amino acid deficiencies with reductions of
approximately 25% for the overall protein defi-
cient diet and 30% for the lysine and tryptophan
deficient diet. In contrast, oxidation of proteins
was unaffected. Thus, the dog can modify to a
limited extent its metabolic use of proteins in the
face of dietary deficiencies (Humbert et al. 2001).

In humans, and thus, could possibly be
extrapolated to dogs, generalized chronic dietary
protein deficiency causes reduction in circulating
essential amino acids with a concomitant increase
in serum dispensable amino acids (Holt Jr et al.
1963). The metabolism of an animal will change
to accommodate alterations in the abundance of
certain amino acids. For example amino acid
catabolism will be altered in the face of reduced
dietary protein content. The flux of alanine,
aspartic acid, and glutamic acid through the urea
cycle is changed reflective of abundance or defi-
ciency. Arginine is essential for proper metabo-
lism and homeostasis of amino acids as is the
regulation of nitrogen catabolic enzymes.

Arginine deficiency in dogs, as in cats, results in
hyperammonemia. This is due to the resultant low
hepatic ornithine concentration derived from the
reduced arginine substrate that precludes orni-
thine serving as an carbamoyl phosphate accep-
tor, thereby slowing down synthesis of urea and
disposal of excess nitrogen/ammonia (Milner
et al. 1975; Dimski 1994).

It is postulated that although dogs are
omnivores, they retain metabolic specializations
reflective of their evolutionary ancestry. This spe-
cialization can be seen in the physiological dys-
function from a deficiency in arginine (D’Mello
2003). As a consequence of hyperammonemia,
dogs fed a diet lacking in arginine for as little as
1 week, will exhibit muscle tremors and gastric
upset (Burns et al. 1981). This is less dramatic
than the outcome in cats, where a single meal
lacking arginine can cause signs as severe as
coma and death (Morris and Rogers 1978).

As noted above, generally reduced dietary pro-
tein intake can be reflected in potential
deficiencies of critical amino acids. Those amino
acids are important in all body processes ranging
from maintenance to growth to repair. Both
essential amino acids as well as nitrogen provi-
sion are important. Feeding to meet an overall
nitrogen content in the diet is adequate provided
the essential amino acids are present at required
levels. The overall dietary protein intake, if ade-
quate, does not appear to influence the essential
amino acid requirements for either dogs or cats
(Delaney et al. 2001; Strieker et al. 2006).

Along with other essential nutrients, adequate
amino acids are responsible for normal skin struc-
ture and function. This is demonstrated by studies
in many species including dogs and cats which
show dermatological lesions related to amino acid
deficiencies (Council 2006). Furthermore, the dis-
ease process referred to as hepatocutanous syn-
drome or superficial necrolytic dermatitis (SND),
is characterized by severe skin lesions together
with profound hepatic disease or less commonly,
glucagon-secreting tumor. The plasma amino
acid profiles of affected dogs differ from those
with hepatitis, and are notably reduced compared
to normal (Outerbridge et al. 2002). Interestingly,
higher branched-chain to aromatic amino acid
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ratio is correlated with SND but not other types of
hepatopathy (Outerbridge et al. 2002). Together
with the finding that intravenous infusions of
amino acids typically yield better clinical
response compared to oral supplementation, this
suggests that aberrant hepatic catabolism of
amino acids may be occurring. More research to
further characterize this disease is needed.

Provision of adequate arginine and phenylala-
nine is essential to prevent cataracts in dogs (Ranz
et al. 2002) and arginine is key for urea cycle as
stated above (Milner et al. 1975). Restriction of
histidine in adult dogs results in reduced hemato-
crit, hemoglobin, body weight and circulating
histidine, carnosine, albumin, zinc, and copper;
behaviorally dogs exhibited lethargy and meal
avoidance (Cianciaruso et al. 1981). A recent
study assessed the dietary phenylalanine
requirements as a function of breed size and
found no difference; that is, the phenylalanine
requirements for small breed dogs did not differ
from that for large breeds (Mansilla et al. 2018)

Dispensable amino acids when absent from the
diet results in reduced plasma levels of certain
essential amino acids, notably proline and aspar-
agine in kittens (Taylor et al. 1997) though not
studied to date in puppies. Furthermore, in kittens
fed diets with 9 and 12% glutamic acid showed
signs of thiamin deficiency compared to those fed
diets with 6% glutamic acid or less, even when
thiamin was provided in excess (Deady et al.
1981). Presumably the same effects would be
seen in the dog.

Sulfur containing amino acids are quite impor-
tant and specific imbalances of these amino acids
in the diet causes alterations in weight gain in
growing dogs (for example, Bressani 1963;
Czarnecki et al. 1985; Hirakawa and Baker
1985). The sulfur containing amino acids, methi-
onine and cysteine, are considered necessary for
normal hair development because of their abun-
dance in the keratin, the main protein found in
hair. Provision of methionine will facilitate reten-
tion of body nitrogen stores even in an overall
state of protein deficiency creating a nitrogen
sparing situation (Allison et al. 1947). Further-
more, methionine is necessary for the synthesis of
insulin-like growth factor I (IGF-I) a key

mediator of the actions of growth hormone and
a potent stimulator of cell proliferation in its own
right (Stubbs et al. 2002). The metabolism of
sulfur amino acids results in the excess sulfur
eliminated in the urine; diets high in sulfur
amino acids acidifies the urine. This is the mech-
anism of the urine of carnivorous animals having
more acidic urine than those that are herbivorous.

The B vitamin niacin comes from both dietary
sources and the conversion of tryptophan and
therefore a deficiency in tryptophan can result in
a niacin deficiency. Dietary lysine can compen-
sate for a niacin deficiency due to the conver-
gence with the tryptophan pathway during lysine
catabolism (Baker 2005). Recent research has
shown a correlation between reduced circulating
tryptophan and the expression of protein-losing
enteropathy, a subset of canine bowel diseases
(Kathrani et al. 2018). Whether a tryptophan defi-
ciency is causal or a consequence of the disease
remains unknown at this time. In addition to its
role in protein synthesis, tryptophan is an impor-
tant precursor for kynurenine, serotonin, and mel-
atonin (Richard et al. 2009). Kynurenine is a
metabolite produced in the tryptophan to niacin
pathway and has wide-ranging roles in humans
including cancer, immune function, and neuro-
logical disorders (Stone et al. 2013) although little
studied in the dog. Administration of the
neurotransmitters/neurohormones of serotonin
and melatonin is recommended to reduce anxiety
and other behavioral conditions.

Dogs are often utilized as models to character-
ize human protein dietary allergens (Dearman and
Kimber 2009) which may or may not be ideal for
human purposes but does serve canine dietary
development. Although most proteins evoke
some degree of allergic response as evidenced
by elevated IgG, the vast majority do not reach
the degree of allergenic sensitization
characterized by elevated IgE. Interestingly it is
the protein as whole and its configuration that
appears to confer allergenicity (e.g. the specific
epitope structure of the peptide) and not particular
amino acids that cause the immune system to
mount a response. Because adverse food
reactions are seen in a measurable proportion of
pet dogs, the development of diets with limited
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and often uncommon ingredients to reduce
allergenicity have been designed although many
of the diets purported to be limited actually are
contaminated with other protein sources (Fossati
et al. 2019). The additional concern with some
diets is that the composition and bioavailability of
the indispensable amino acids may be lacking
(Kanakubo et al. 2015). In fact, this may be
contributing to the recent cases of nutritionally
medicated dilated cardiomyopathy (DCM) in
dogs that are fed grain-free diets. As previously
noted, deficiencies in taurine are causal for DCM
in cats. A taurine deficiency in dogs likewise was
also associated with DCM (Fascetti et al. 2003),
and currently ongoing cases are likely also due to
the same problem (Kaplan et al. 2018). Whereas
taurine deficiency in cats manifests as retinal
degeneration, reproductive abnormalities, and
impaired growth as well as DCM, in the dog,
taurine deficiency appears mostly limited
to DCM.

10.7 Life Stages

Although it is well known that protein and amino
acid quantity requirements vary during growth
relative to pre or post weaning stages, this infor-
mation is more global. There have been few stud-
ies targeting specific amino acids during the
growth and development stage and what is
known about particular amino acids predomi-
nantly comes from laboratory rodent models and
some work with kittens. This is the case despite
that need being articulated in 1994 (Morris and
Rogers 1994). Specific controlled experiments to
evaluate the role of particular amino acids during
the growth phase in dogs are limited. Milner and
colleagues undertook studies limiting particular
amino acids in immature (14–15 weeks old)
male beagles to define dietary requirements in
the dog (Milner 1979a; Milner 1979b; Burns
and Milner 1982; Milner 1981). In all cases,
removing the essential amino acids resulted in
reduced food intake, growth, nitrogen balance,
plasma transaminase activities, and elevated
plasma urea. With the restriction of methionine
and threonine, plasma ammonia and dermatitis
were also seen. Provision of higher than required

threonine (e.g., at 0.8%) tended to reduce food
intake and depressed growth (Burns and Milner
1982). An early study of sulfur containing amino
acids found breed specific differences in dietary
levels of methionine and cysteine that conferred
adequacy for growing puppies (Blaza et al. 1982)

A recent study used a multipronged approach
to assess the impact of dietary supplements on
growth and development during the neonatal
stage (Wang et al. 2017) Although multiple
components were in the supplement including
docosahexaenoic acid (DHA), carotenoids, and
vitamins, taurine was also included at 2.5 times
the level fed to the control group. Thus, although
changes in growth rate, body composition, and
circulating growth factors were observed, the
direct impact of the taurine supplementation
could not be assessed.

It is known that diets during pregnancy and
lactation require provision of carbohydrate to
spare the diversion of proteins for energy and
maintenance use in the bitch. In the absence of
carbohydrate, protein use for conceptus growth
and development is prevented, leading to fetal
and neonatal mortality (Kienzle et al. 1985).
Beyond these studies, research targeting diets
and dogs are limited.

Animal factors such as life stage may also
influences protein and amino acid requirements.
Senior dogs appear to require higher amounts of
crude protein in their diets to sustain a reserve
level of readily available protein (Wannemacher
Jr and McCoy 1966). However, this increased
protein requirement does not appear to be an
effect of decreased digestibility, as no studies
have reported a decreased digestive efficiency in
geriatric dogs. Although there are potentially
important physiological effects of aging on the
digestive process, most studies report no
differences in nutrient absorption when compar-
ing young adult to geriatric dogs. One study
reported higher inter-individual variability in
older vs. younger dogs (Buffington 1989), so
this may partly explain conflicting results.
Regardless, adequate amounts of high quality
protein are indicated in aged dogs, given the
age-related decline in protein synthesis (Rattan
1996) and increased protein turnover in older
animals (Wannemacher Jr and McCoy 1966).
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Since older pets have a higher requirement for
dietary protein, a reduction in intake further
widens the gap between need and provision and
is likely to be even more detrimental than in
younger animals. In addition, if caloric intake is
decreased to manage weight gain, the proportion
of energy provided as protein should be increased
(Laflamme 2005, 2012).

Another aspect to be considered is that the gut
microbiota and its metabolism has been shown to
change with age as well as under conditions of
dietary restriction (Wang et al. 2007) which has
overarching implications for amino acid metabo-
lism although the extent of impact is yet to be
determined.

10.8 Summary

Amino acids play a pivotal role in the health and
well-being of dogs. Provision of a balanced diet
that contains the appropriate quantities of amino
acids each with adequate bioavailability is neces-
sary for optimal health of the dog throughout its
life. Although indispensable amino acids are typi-
cally those of concern in deficiency states, overall
amino acid profile and the impact of many other
dietary factors must also be considered. Deficiency
syndromes are often clinically nonspecific and less
commonly may be characterized by precise
diseases such as DCM secondary to taurine defi-
ciency. The roles of life stage, age, and other
animal factors including the microbiome will
likely prove to have major influences on amino
acid nutrition for the individual. The involvement
of amino acids in all physiological processes of the
dog from muscle growth to energy metabolism to
neurological function and behavioral states argue
for a greater and more comprehensive understand-
ing of their nutrition in the dog.
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Amino Acids in the Nutrition,
Metabolism, and Health
of Domestic Cats
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Abstract

Domestic cats (carnivores) require high
amounts of dietary amino acids (AAs) for nor-
mal growth, development, and reproduction.
Amino acids had been traditionally
categorised as nutritionally essential (EAAs)
or nonessential (NEAAs), depending on
whether they are synthesized de novo in the
body. This review will focus on AA nutrition
and metabolism in cats. Like other mammals,
cats do not synthesize the carbon skeletons of
twelve proteinogenic AAs: Arg, Cys, His, Ile,
Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val.
Like other feline carnivores but unlike many
mammals, cats do not synthesize citrulline and
have a very limited ability to produce taurine

from Cys. Except for Leu and Lys that are
strictly ketogenic AAs, most EAAs are both
glucogenic and ketogenic AAs. All the EAAs
(including taurine) must be provided in diets
for cats. These animals are sensitive to dietary
deficiencies of Arg and taurine, which rapidly
result in life-threatening hyperammonemia
and retinal damage, respectively. Although
the National Research Council (NCR, Nutrient
requirements of dogs and cats. National
Academies Press, Washington, DC, 2006)
does not recommend dietary requirements of
cats for NEAAs, much attention should be
directed to this critical issue of nutrition. Cats
can synthesize de novo eight proteinogenic
AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and
Ser, as well as some nonproteinogenic AAs,
such as γ-aminobutyrate, ornithine, and
β-alanine with important physiological
functions. Some of these AAs (e.g., Gln, Glu,
Pro, and Gly) are crucial for intestinal integrity
and health. Except for Gln, AAs in the arterial
blood of cats may not be available to the
mucosa of the small intestine. Plant-source
foodstuffs lack taurine and generally contain
inadequate Met and Cys and, therefore, should
not be fed to cats in any age group. Besides
meat, animal-source foodstuffs (including
ruminant meat & bone meal, poultry
by-product meal, porcine mucosal protein,
and chicken visceral digest) are good sources
of proteinogenic AAs and taurine for cats.
Meeting dietary requirements for both EAAs
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and NEAAs in proper amounts and balances is
crucial for improving the health, wellbeing,
longevity, and reproduction of cats.

Keywords

Cats · Amino acids · Nutritional requirements ·
Protein deficiency

Abbreviations

AA amino acid
BCAA branched-chain amino acid
BCKAD branched chain α-ketoacid

dehydrogenease
CP crude protein
DM dry matter
FHL feline hepatic lipidosis
IDO indoleamine 2,3-dioxygenase
MAT methionine adenosyltranferase
NO nitric oxide
SAA sulfur-containing amino acid
SAM S-adenosylmethionine

11.1 Introduction

Domestic cats (Felis silvestris) are obligate
carnivores (Zoran 2002). The word “obligate”,
which means “by necessity”, is used to emphasize
the fact that they are somewhat different than
many other meat-eating predators. The cats eat
“prey” or depend on nutrients [such as amino
acids (AAs)] in animal tissues as their foods,
and are also known as hypercarnivores (Adronie
et al. 2013). Thus, the cats have evolved to lose an
ability of synthesizing taurine (Sturman and
Hayes 1980), which is an abundant AA in
animals-source feedstuffs but absent from plant-
source feedstuffs (Hou et al. 2019; Li and Wu
2020). Hypercarnivores require more dietary pro-
tein than omnivorous mammals (Holliday and
Steppan 2004). Verbrugghe and Bakovic (2013)
have suggested that cats have many physical and
metabolic variations due to evolution pressure
that includes the metabolism of one-carbon

molecules and fatty acids. The requirements of
carnivores for dietary protein are higher than
omnivores and herbivores, because the former
need AAs [e.g., Glu, Gln, Asp, Ala, and
branched-chain AAs (BCAAs)] for ATP produc-
tion by major tissues. The carnivorous mammals
may be just like carnivorous fish in using Glu,
Gln and Asp as the major metabolic fuels (Jia
et al. 2017; Li et al. 2020a). In addition, AAs
are used for glucose synthesis in all carnivores.
During the deprivation of food, the
gluconeogenic capacity of cats is maximized
with the high expression of the needed enzymes
in the liver (Rogers et al. 1977; Verbrugghe and
Bakovic 2013).

Protein metabolism in domestic cats is differ-
ent than that in omnivores (Wortinger 2010). This
includes dietary requirements of cats for arginine
and taurine (Wester et al. 2015; Wu 2018). Pro-
tein in the body cats consists of 20 proteinogenic
AAs and other AA derivatives, including
4-hydroxyproline, 3-hydroxyproline,
hydroxylysine, 3-methylhistidine, and
methylarginines (Wu 2013). Like other
mammals, cats do not synthesize the carbon
skeletons of 12 proteinogenic AAs: Arg, Cys,
His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and
Val (Jungnickel et al. 2018). These AAs have
been traditionally classified as nutritionally essen-
tial AAs (EAAs) and must be included in diets for
the cats of all age groups (Hou and Wu 2018a).
Like other feline carnivores but unlike many
mammals, cats do not synthesize citrulline de
novo and have a limited ability to produce tau-
rine. Taurine has a plethora of physiological
functions (Wu 2020b) and must also be provided
in their diets to prevent disorders, such as retinal,
cardiovascular, muscular, and reproductive
disorders. However, cats can synthesize de novo
eight proteinogenic AAs: Ala, Asn, Asp, Gln,
Glu, Gly, Pro, and Ser, as well as some
nonproteinogenic AAs, such as γ-aminobutyrate,
ornithine, and β-alanine with important physio-
logical functions (Rogers et al. 1998). The
biosynthesizable proteinogenic AAs had been
historically classified as nutritionally nonessential
AAs (NEAAs; see Hou et al. 2015 for review),
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but this term has now been recognized as a mis-
nomer in nutritional sciences and should not be
used in nutrition research or practices (Hou and
Wu 2017). Studies with pigs, rats, chickens, and
fish have shown that these animals have dietary
requirements for at least some of the NEAAs
(Hou et al. 2015, 2016; Li et al. 2020a). This
may also be true for cats (e.g., Gln and Gly),
particularly those with cancers and intestinal
damage (Morrison 2002).

Based on their metabolic fates, AAs are classi-
fied as glucogenic, ketogenic, or both glucogenic
and ketogenic (Wu 2013). Glucogenic AAs are:
Ala, Arg, Asp, Asn, Cys, Gln, Glu, Gly, His, Met,
Pro, Ser, Thr, and Val that can produce pyruvate
or an intermediate of the Krebs cycle (Burns et al.
1981; D’Mello 2003; NRC 2006; Saxton et al.
2016). Ketogenic AAs are Leu and Lys that pro-
duce acetyl-CoA and ketone bodies but no glu-
cose (Harris et al. 2004; NRC 2006; Zhao et al.
2010). Amino acids that serve as both glucogenic
and ketogenic are Ile, Phe, Thr, Trp and Tyr that
can generate pyruvate or an intermediate of the
Krebs cycle (substrates of glucose), as well as
acetyl-CoA and ketone bodies (Hendriks 1996;
Yu et al. 2001; NRC 2006). Furthermore, in
domestic cats, cysteine, glycine, and glutamate
[derived from branched-chain AAs (BCAAs)]
participate in the syntheses of three unique
sulfur-containing AAs (felinine, isovalthine, and
isobuteine) through inter-organ metabolism that
involves the liver and kidneys (Brosnan and
Brosnan 2006; NRC 2006; Hand et al. 2010).
The major objective of this article is to highlight
the important roles of AAs in the nutrition, metab-
olism, and health of these companion animals.

11.2 Requirements of Protein
and AAs for Growing
and Adult Cats

Dietary AAs are required by cats for the growth
and maintenance of body tissues and also for the
production of nitrogen-containing organic
compounds, including purines, pyrimidines, sero-
tonin, creatine, polyamines, nitric oxide (NO), and

glutathione (Hendriks 1996; Wu 2013). In prac-
tice, dietary protein is the primary source of AAs
for the animals. Cats use a large amount of dietary
protein for ATP production (Zoran 2002). The
minimum requirement of growing and reproduc-
tive cats for dietary crude protein (CP) is 30% of
the dietary dry matter and the minimum mainte-
nance requirement of adult cats for dietary CP is
26% of the dietary dry matter (AAFCO 2014).
Both EAAs and NEAAs are needed in the diets
of animals (including cats) for their optimum
health, growth and development (Wu 2018).
Because some of the free AAs confer bitter, salty
or unpleasant tastes and because it is expensive to
prepare free AA-based purified diets, the cats that
can eat and have a healthy digestive tract are
generally provided with intact protein. Fully devel-
oped cats need dietary protein for the maintenance
of digestive enzymes and proteins in tissues, such
as those in blood, skeletal muscle, gastrointestinal
mucosae, skin, hair, liver, and brain (Laflamme
2008). Growing cats and kittens need dietary pro-
tein for maintenance (just like adult cats), as well
as the growth and development of tissues.

Cats can adapt to changes in dietary protein
intake from 14% to 56% CP (Green et al. 2008;
Rogers et al. 1998). This likely involves
alterations in the activities of AA-metabolic
enzymes and the rates of whole-body protein
turnover (protein synthesis and degradation).
Thus, cats fed a low-protein diet produce less
ammonia, urea, and creatine than those fed a
normal-protein diet (Zoran 2002). Animals can
utilize excess protein as the source of energy if
they are fed low-energy diets that contain rela-
tively low levels of lipids and digestible
carbohydrates (e.g., starch/glycogen). If dietary
energy intake by animals is adequate, excessive
dietary protein will be converted into lipids and
glycogen, with nitrogen being excreted primarily
as ammonia and urea in the urine (Wu 2013). The
content of protein in meat is relatively constant.
Of note, cats fed meats that naturally contain
70–75% CP [dry matter basis; about twice their
minimum requirement for dietary CP (NRC
2006)] do not exhibit any adverse response.
When their arginine intake is adequate and their
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liver functions normally, healthy cats that con-
sume meat do not exhibit ammonia toxicity.
This indicates a high capacity of young and
adult cats to catabolize dietary AAs.

Because Cys is formed from Met in the liver
and Tyr is produced from Phe in both the liver
and kidneys (Hou et al. 2020; Li et al. 2020d; Wu
2013), Cys and Tyr are generally not considered
by some authors as EAAs (Verbrugghe and
Bakovic 2013). However, a great dependence on
Met for Cys provision will reduce the availability
of Met as a methyl group donor for critical bio-
chemical reactions (e.g., creatine synthesis and
protein methylation) in the body. In addition,
because the conversion of Phe into Tyr requires
tetrahydrobiopterin (Wu 2013), which is readily
oxidized and can be depleted under conditions of
oxidative stress and disease (Shi et al. 2004), the
degradation of Phe may not provide sufficient Tyr
in a catabolic state. Cats that have genetic defects
in Cys synthesis and Phe hydroxylation must
obtain both Cys and Tyr from diets. To meet
metabolic needs and reduce metabolic burdens

on AA synthesis, all proteinogenic AAs should
be provided to young and adult cats, just like
livestock mammals and poultry (Wu 2014). In
addition, cats of all age groups have a dietary
requirement for taurine, as noted previously.

There are differences in the recommended
requirement values of some EAAs for growing
and reproductive cats between the 2006 and 2014
versions (Table 11.1). The requirements for His,
Ile, Leu, Phe (+ Tyr), Phe and Val in the 2014
version are greater than those in the 2006 version.
However, the recommended requirement values of
most EAAs in the 2014 version are the essentially
the same as those in the 2006 version. Interest-
ingly, the recommended requirement value for Arg
in the 2014 version is slightly lower by a 0.01%
unit than that in the 2006 version. Of particular
note, the recommended requirement values for Phe
and Tyr in the 2014 version is substantially greater
than those in the 2006 version to maintain the
black hair color of the cats. Adequate intakes of
Cys, Met and taurine are of exceptional concern in
cat nutrition (Case et al. 2011). Deficiencies of

Table 11.1 Recommended requirements of cats for dietary protein and nutritionally essential amino acids

Nutrient (% of
dry matter in
diet)

AAFCO (2007); National Research Council
(NRC 2006) AAFCO (2014)

Minimum
requirement for
growth and
reproduction

Minimum
requirement for
maintenance in
adults

Maximum
requirement

Minimum
requirement for
growth and
reproduction

Minimum
requirement
for adult
maintenance

Maximum
requirement

Crude protein 30 26 – 30 26 –

Arginine 1.25 1.04 – 1.24 1.04 –

Histidine 0.31 0.31 – 0.33 0.31 –

Isoleucine 0.52 0.52 – 0.56 0.52 –

Leucine 1.25 1.25 – 1.28 1.24 –

Lysine 1.20 0.83 – 1.20 0.83 –

Methionine 0.62 0.62 1.5 0.62 0.20 1.5
Methionine
(+ cysteine)

1.10 1.10 – 1.10 0.40 –

Phenylalanine
(+ tyrosine)

0.88 0.88 – 1.92 1.53 –

Phenylalanine 0.42 0.42 – 0.52 0.42 –

Taurine 0.20 0.20 – –

Threonine 0.73 0.73 – 0.73 0.73 –

Tryptophan 0.25 0.16 – 0.25 0.16 1.7
Valine 0.62 0.62 – 0.64 0.62 –

Total EAAs 8.11 7.44 9.25 7.38

– Data are not available
EAAs nutritionally essential amino acids (including Cys and Tyr)
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these AAs result in protein malnutrition in cats,
leading to weight and lean tissue losses, poor work
and reproductive performance, and insulin resis-
tance (Case et al. 2011; Verbrugghe et al. 2012).
The poor health of the animals may be caused by a
deficiency of NO, which is a metabolite of Arg
(Wu and Meininger 2009).

Compelling evidence shows that cats have die-
tary requirements for NEAAs (Verbrugghe and
Bakovic 2013; Rogers et al. 1998). For example,
growing kittens fed a 14% CP diet with all EAAs
[1X NRC (1986) requirements] but without any
NEAA lost body weight during a 10-day experi-
mental period (Table 11.2). Additionally, kittens
fed a 21% CP diet with all EAAs [2.8X NRC
(1986) requirements] but without any NEAA
grew poorly. Furthermore, kittens fed a 35% CP
diet with all EAAs [4.7X NRC (1986)
requirements] but without any NEAA grew at a

suboptimal rate, as compared with the animals fed
a 25% CP containing both EAAs and NEAAs.
Disappointingly, the mixture of NEAAs used in
the previous studies did not contain serine, and the
ratios of NEAAs to EAAs were not consistent with
those in meat (Wu et al. 2016) or the animal body
(Wu 2013).

Unfortunately, nutritionists have generally
considered only EAAs for cats (Table 11.1).
However, the sum of these EAAs is less than
31% CP of the diet. Feeding only these EAAs to
cats in any age group will not support their main-
tenance needs. Clearly, NEAAs should be
included in the diets of cats at all of their develop-
mental stages. At present, such data are not avail-
able. Based on the content (on the basis of dry
matter) of true proteins, small peptides, and free
AAs in the beef loin meat (Wu et al. 2016), as
well as a lower metabolic rate in the adult than in

Table 11.2 Growth of kittens fed purified diets containing various rations of EAAs to NEAAs for 10 daysa

CP content
%

EAAsb :
NEAAsc

(X) EAA
requirementd

Number of
animals

Weight gain
(g/day)

AA in plasma (nmol/ml)

Glu Arg Pro

35 0.27 : 0.73 1.5 36 24.4 – – –

14e 1.00 : 0.00 1.9 12 – 4.7 60 136 75
14 0.47 : 0.53 1.0 12 14.7 102 107 199
21e 1.00 : 0.00 2.8 12 10.8 72 344 70
21 0.31 : 0.69 1.0 12 16.9 124 106 513
21 0.61 : 0.39 2.0 8 19.1 100 301 207
35e 1.00 : 0.00 4.7 12 21.5 72 290 67
35 0.18 : 0.82 1.0 12 13.3 182 78 1062
35 0.55 : 0.45 3.0 10 29.0 77 262 257
42 0.23 : 0.77 1.5 10 28.8 188 121 801
42 0.45 : 0.55 3.0 10 18.2 105 348 633
56 0.11 : 0.89 1.0 12 1.3 413 68 2165
56 0.17 : 0.83 1.5 10 16.5 228 98 1165
56 0.23 : 0.77 2.0 8 18.2 157 119 890
56 0.34 : 0.66 3.0 10 24.3 143 227 742

AA amino acid
aAdapted from Rogers et al. (1998). Cats (8 to 12 weeks of age; the initial body weights¼ 1.02 to 1.30 kg) were used for
the experiments. Crude protein (CP) ¼ nitrogen in the diet x 6.25. All diets contained 0.15% taurine
bNutritionally essential amino acids (EAAs; L-isoform) used in the study are Arg, His, Ile, Leu, Lys, Met, Cys, Phe, Tyr,
Thr, Trp, and Val
cThe mixture of nutritionally nonessential amino acids (NEAAs) used in the study contained the following (%): was
L-Ala, 17.5; Gly, 17.5; L-Gln, 17.5; L-Glu, 7.5; L-Asn, 15; L-Asp, 10; and L-Pro, 15. Note that: (1) the NEAA mixture
did not provide Ser and therefore was incomplete; and (2) the proportion of NEAAs in the mixture was very different than
that in meat or the animal body
dNational Research Council (NRC 1986). The 1X EAA requirements (% of diet) are: Arg, 1.0; His, 0.3; Ile, 0.5; Leu, 1.2;
Lys, 0.8; Met, 0.4; Cys, 0.35; Phe, 0.4; Tyr, 0.45; Thr, 0.7; Trp, 0.15; and Val, 0.6
eThe diet contained only EAAs as the source of nitrogen
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the young (Wu 2018), we recommend the mini-
mum and maximum dietary requirements of cats
for protein, NEAAs, and EAAs (Table 11.2) as
references for feeding and a framework for
future studies. The CP content (on the basis
of dry matter) of the beef loin meat is
73.4% (Wu et al. 2016). The minimum and
maximum requirements for dietary AAs are
based on those for dietary protein (i.e., the mini-
mum dietary requirements of young and adult cats
for 30% and 26% CP, respectively, and the maxi-
mum dietary requirements of both young and adult
cats for 73.4% CP; dry matter basis). To prevent or
alleviate the loss of skeletal muscle in aging cats
through enhancing NO synthesis, protein synthe-
sis, and anti-oxidative reactions, as well as reduc-
ing white fat accretion, we recommend that elderly
cats have higher minimum dietary requirements

for Arg, Glu, Gly, and Trp than young adult cats.
This is mainly because of the following
considerations. First, Arg (Yao et al. 2008), Gly
(Sun et al. 2016), and Trp (Cortamira et al. 1991;
Dukes et al. 2015; Lin et al. 1988) enhance protein
synthesis in skeletal muscle (Lin et al. 1988; Sun
et al. 2016; Yao et al. 2008). Second, both Arg and
Gly increase glutathione synthesis to protect cells
from oxidative stress (Jobgen et al. 2009; Wang
et al. 2014). Third, Arg, Gly and Trp improve
intestinal immune function and health (Liang
et al. 2018, 2019; Wang et al. 2014, 2015; Wu
2014). Fourth, Glu is a major energy substrate for
the small intestine of animals (He et al. 2018; Hou
and Wu 2018b; Jia et al. 2017; Li et al. 2020a) and
plays an important role in maintaining intestinal
integrity (Hou and Wu 2018a; Jiao et al. 2015)
(Table 11.3).

Table 11.3 Recommended requirements of cats for dietary amino acidsa

Crude protein and
amino acid

Minimum dietary requirements of
cats for amino acids

Maximum dietary requirements of young, adult, and
elderly adult cats for amino acids

Young
cats

Young
adult cats

Elderly
adult cats

Crude protein 30 26 30 73.4
Taurine 0.2 0.2 0.2 0.29
Proteinogenic amino acids that are not synthesized de novo by cats
Arg 2.14 1.86 2.33 5.24
Cys 0.50 0.50 0.50 1.12
His 1.30 1.12 1.12 3.17
Ile 1.68 1.46 1.46 4.11
Leu 2.73 2.36 2.36 6.67
Lys 2.94 2.55 2.56 7.20
Met 1.03 0.90 0.90 2.53
Phe 1.37 1.19 1.19 3.35
Thr 1.51 1.31 1.31 3.70
Trp 0.41 0.35 0.44 1.00
Tyr 1.23 1.07 1.07 3.01
Val 1.94 1.68 1.68 4.74
Proteinogenic amino acids that are synthesized de novo by cats
Ala 1.86 1.61 1.61 4.54
Asn 1.37 1.18 1.18 3.34
Asp 1.68 1.46 1.46 4.11
Glu 3.07 2.66 3.33 7.51
Gln 2.04 1.77 1.77 4.99
Gly 1.38 1.19 1.49 3.37
Prob 1.42 1.23 1.23 3.47
Ser 1.45 1.25 1.25 3.54
aValues are % of dry matter in the diet
bProline + 4-hydroxyproline (the ratio of proline to 4-hydroxyproline ¼ 18.6:1.0; g/g)
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11.3 Protein Deficiency in Cats

Protein deficiency occurs in cats when their die-
tary protein intake is less than their minimum
protein requirement. Inadequate intake of pro-
tein can result in an insufficient provision of both
EAAs and NEAAs (Agnew and Korman 2014).
As noted previously, EAAs must be provided in
the diet simply because they are not formed
de novo in the animal body. Therefore, like
other mammals (e.g., rats; Anonymous 1975),
when a diet lacking protein is consumed by
cats, there is a decrease in enzyme activity for
EAA catabolism to conserve the AAs (Morris
2002). Clinical signs of protein deficiency in
cats are: reduced lean body mass, hindered
growth in young cats, loss of body weight,
impaired reproduction, and reduced work perfor-
mance (Case et al. 2011). This is because dietary
protein is particularly important for not only
“feline health”, but also the prevention of vari-
ous metabolic and infectious diseases (Backlund
et al. 2011; Kantorosinski and Morrison 1988;
Wu 2020a). If dietary protein deficiency happens
with sufficient energy intake, plasma AA and
albumin concentrations decrease, leading to
edema or ascites (Agnew and Korman 2014;
Case et al. 2011; Wester et al. 2015; Zoran
2002). Because cats depend on dietary protein
for gluconeogenesis when their typical diets
contain a small amount of digestible carbohy-
drate, low dietary AA intake may affect glucose
provision and therefore, the function of the
brain, red blood cells, retina, and kidney medulla
(Verbrugghe and Bakovic 2013).

11.4 Glucogenic Amino Acids

As a carnivore, the domestic cat consumes diets
rich in protein and fats. Thus, there are differences
in glucose metabolism between cats and
non-carnivorous mammals (Schermerhorn
2013). For example, healthy cats lack salivary
amylase (for glycogen and starch hydrolysis), as
well as hepatic glucokinase (for glycolysis and

glucose sensing) and hepatic glucokinase regu-
latory protein, and are prone to periods of fasting
hyperglycemia (Schermerhorn 2013). Glucogenic
AAs, which are derived primarily from net pro-
tein degradation in skeletal muscle, can be
converted into glucose through the biochemical
pathway of gluconeogenesis (Brosnan 2003).
Among them, Ala, Arg, Asp, Asn, Gln, Glu, Ile,
Pro, Ser, Thr, and Val are quantitatively the most
important glucogenic substrates in post-prandial
and post-absorptive cats. The synthesis of glucose
from AAs occurs in the liver and kidneys, and
involves the degradation of AAs to their
α-ketoacids and an intermediate of the Krebs
cycle. This process is quantitatively substantial
for AA catabolism and physiologically vital in
cats under catabolic conditions, such as fasting
and hunger (Young and Ajami 2001). Gluconeo-
genesis is used for the disposal of excess AA
carbons (Case et al. 2011).

11.4.1 Arginine

Arginine is an EAA for cats (NRC 2006), because
their small intestine has a very low activity of
pyrroline-5-carboxylate synthase (Rogers and
Phang 1985). This enzyme converts Glu into
pyrroline-5-carboxylate, an intermediate in the
formation of Arg from Gln, Glu, and Pro. There
is likely little or no synthesis of citrulline from
glutamine and glutamate in the enterocytes of the
feline small intestine under physiological
conditions. It is also possible that Pro oxidase,
which generates pyrroline-5-carboxylate from
Pro, is negligible or absent from the feline gut.
Of note, Arg contains a positively charged nitro-
gen side chain as a binding site for negatively
charged molecules (Burns et al. 1981). Cats
have a high requirement for Arg to maintain the
hepatic urea cycle in an active state and
the whole-body nitrogen balance (Baker and
Czarnecki-Maulden 1991). In the urea cycle
(also known as the ornithine cycle), Arg is an
allosteric activator of N-acetylglutamate synthase,
which generates N-acetylglutamate to stimulate
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carbamoylphosphate synthase-I (Wu and Morris
1998). The latter converts NH3 and bicarbonate
into carbamoylphosphate. In addition, Arg
stimulates the secretion of some hormones (e.g.,
insulin, glucagon and gastrin) (D’Mello 2003)
and the synthesis of NO in endothelial cells (Shi
et al. 2004). Furthermore, Arg activates the
mTORC1 cell signalling pathway to promote pro-
tein synthesis in skeletal muscle (Yao et al. 2008;
Saxton et al. 2016), placenta (Kong et al. 2012),
brown adipocytes (Ma et al. 2017), and mammary
epithelial cells (Ma et al. 2018). Cats rapidly
display hyperammonaemia within 2 to 5 h after
consuming an arginine-free diet (Baker and
Czarnecki-Maulden 1991), and the clinical
syndromes of ammonia toxicity include vomiting,
nausea, tremors, seizures and even death (Morris
1985).

Morris et al. (1979) reported that the inclusion
of ornithine in the Arg-free diets could prevent
the onset of hyperammonaemia in cats but could
not restore their weight gains. Therefore, blood-
borne ornithine can facilitate ammonia detoxifi-
cation but is not a substrate for Arg synthesis in
the body. This is explained by the complex com-
partmentation of ornithine metabolism in the
small intestine to favour Pro production
(Wu and Morris 1998). Note that there is no net
synthesis of Arg via the hepatic urea cycle
because Arg is rapidly hydrolyzed by arginase
into urea plus ornithine. In contrast to ornithine,
both extracellular and intracellularly generated
citrulline are readily used for Arg synthesis by
argininosuccinate synthase and lyase in cats
(Baker and Czarnecki-Maulden 1991). Thus, cit-
rulline can fully replace Arg in the diets for cats.
This is important for those cats that geneti-
cally lack intestinal transporters for cationic AAs.

11.4.2 Threonine, Histidine and Valine

Threonine contains a hydroxyl group that is chem-
ically reactive for phosphorylation by protein
kinase (Wu 2018). This is an important mecha-
nism for the regulation of enzyme or protein activ-
ity. In cats, neutral AA transporters are responsible
for the absorption of threonine by the small

intestine and the proximal tubules of the kidneys
in Na+-dependent and independent mechanisms.
In addition, Thr may play a role not only in hepatic
glucose synthesis but also insulin secretion or cell
apoptosis (Depaoli-Bug et al. 1994).

Histidine contains a positively charged imid-
azole side chain. Basic AA transporters are essen-
tial for absorbing histidine by the small intestine,
and the proximal tubule of the kidneys actively
reabsorb plasma histidine in the Na+-independent
manner. Histidine is a structural component of
proteins that plays a crucial part in oxygen
exchange and is the precursor of biologically
active compounds, such as histamine and
carnosine (NRC 2006). Haemoglobin is present
at a high concentration in the blood; the positive
charge on the imidazole side chain of histidine
facilitates oxygen exchange in the lungs and other
tissues (Cianciaruso et al. 1981). As a neuro-
active molecule, histamine plays a role in immune
function and vasodilation. As a histidine-derived
dipeptide, carnosine acts as a cellular antioxidant
and a chelator of copper and zinc in animal cells
(Boldyrev et al. 2013). Meat is rich in histidine
(Wu et al. 2016).

Valine is a BCAA. It is catabolised in the body
through the cooperation of multiple organs, includ-
ing in the skeletal muscle, adipose tissue, kidneys,
brain, and liver (Wu 2013). This AA is an abun-
dant AA in both animal- and plant-source proteins
(Hou et al. 2019; Li and Wu 2020). The carbon
skeleton of Val is either oxidized for ATP produc-
tion or used for hepatic glucose synthesis in cats,
depending on their physiological states (Garlick
and Grant 1988; Radford 2004). An intermediate
of Val may be used as a precursor for the synthe-
sis of a unique AA (isobuteine) in cats.

11.5 Ketogenic Amino Acids

Leucine and Lys are two strict ketogenic AAs that
produce acetyl-CoA and acetoacetyl-CoA in the
liver (D’Mello 2003). These two intermediates
are metabolized to form acetoacetate and
β-hydroxybutyrate in the liver, the ketone bodies
that are major metabolic fuels in the extra-hepatic
tissues, such as the brain, heart, skeletal muscle,
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and kidneys (Eisert 2011). Ketogenic AAs cannot
be converted into glucose in animals due to the
absence of the glyoxylate cycle, and are oxidized
to CO2 plus water (Wu 2018). Hydroxylation of
certain Lys residues in collagen is essential for its
structure, whereas an intermediate of Leu is used
as a precursor for the synthesis of a unique AA
(isovalthine) in cats. Leucine is an abundant AA
in both animal- and plant-source proteins (Hou
et al. 2019; Li and Wu 2020). In contrast, Lys is
abundant in animal-source proteins but is defi-
cient in most of the plant-source proteins.

Leucine is metabolized through transamination
in cats to form Glu, Gln, Ala and Asp (Baker and
Czarnecki-Maulden 1991). Because of its large
mass, skeletal muscle is the primary site for
initiating Leu degradation to form
α-ketoisocaproic acid via BCAA transaminase in
animals (Wu 2013). In lactating mammals, BCAA
transaminase is also highly active in their mam-
mary tissues (Li et al. 2009), which helps to
explain why the milk of mammals (including cats
and sows) is highly abundant in Gln and Glu
(Davis et al. 1994). The activity of this enzyme is
nearly absent in the feline liver under physiological
conditions. α-Ketoisocaproic acid is
decarboxylated by branched-chain α-ketoacid
(BCKA) dehydrogenease, which is highly active
in the liver (Harris et al. 2004) and mammary
tissue (Li et al. 2009; Zhang et al. 2019). In addi-
tion, Leu has been reported to enhance protein
synthesis by increasing plasma insulin
concentration (Anthony et al. 2002; Balage et al.
2001) and activating the MTOR cell signalling in
skeletal muscle (Manjarín et al. 2018). Further-
more, Leu and α-ketoisocaproic acid inhibit pro-
tein degradation in skeletal muscle (Nagasawa
et al. 2002). Therefore, dietary Leu exerts an ana-
bolic effect in animals after absorption.

Lysine is degraded primarily in the liver of
animals (Wu 2013). Caution should be taken to
avoid an imbalance among basic AAs in diets,
blood and cells, because these AAs share the
same transporters in the plasma membrane. As a
positively charged AA, Lys plays an important
role in the methylation and acetylation of proteins,
which contribute to the modulation of certain
cytoskeleton-associated proteins (e.g., actin,

tubulin, and small GTPases) and epigenetic regu-
lation of gene expression (Ali et al. 2018; Wang
et al. 2012; Zhao et al. 2010). Genetic defects in
basic AA transporters can cause the poor absorp-
tion of Lys, as well as ornithine, Arg and His by
the small intestine and the renal tubules, leading to
Lys deficiency in animals (Hoppe et al. 1993).

11.6 Glucogenic and Ketogenic
Amino Acids

11.6.1 Phenylalanine and Tyrosine

Phenylalanine and Tyr are the precursors for the
syntheses of dopamine, noradrenaline and adren-
aline in neurons, whereas Trp is the substrate for
the production of serotonin, N-acetylserotonin,
melatonin, and indoles in a cell-specific manner
(Hendriks 1996; Wu 2013). Thus, the availability
of these three aromatic AAs influences the health
and behaviour of cats. Of note, Phe and Tyr are
particularly important for cats to maintain their
hair color (Rogers and Morris 1979). Phenylala-
nine is degraded by the tetrahydrobiopterin-
dependent Phe hydroxylase to yield Tyr
(Wu 2013). Tyrosine is also the precursor of
thyroid hormones, melanin, and catecholamine
neurotransmitters (dopamine, norepinephrine
and epinephrine). Dietary restriction of Phe
along with excess tyrosine results in decreased
weight gain and negative nitrogen balance, com-
pared with cats fed a Phe-adequate diet (Rogers
and Morris 1979; Williams et al. 1987). About
half of the requirement for aromatic AAs may be
met by Tyr (Williams et al. 1987). A deficiency of
dietary Tyr decreases the production of pigment
substances (e.g., dopaquinone, trichochromes,
eumelanin, and pheomelanin) in the skin
(Anderson et al. 2002; Yu et al. 2001), and this
phenomenon is reversed by dietary supplementa-
tion with Tyr (Anderson et al. 2002).

11.6.2 Tryptophan

Tryptophan is a large neutral AA. It shares the
same transmembrane transporters with other
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large neutral AAs, such as Leu, Val, Met, Ile, Tyr
and Phe for uptake into cells (Hawkins et al.
2006). In the gastrointestinal tissue and brain,
Trp is metabolized via the tetrahydrobiopterin-
dependent Trp hydroxylase to generate serotonin
and N-acetylserotonin. This pathway regulates
the response of cats to environmental stress
challenges and their behaviours (Da Graça Pereira
and Fragoso 2010). In lymphocytes and
macrophages, Trp is metabolized by indoleamine
2,3,-dioxygenase to form kynurenine, and this
pathway plays an important role in intestinal and
whole-body anti-inflammatory responses (Kato
et al. 2012; Oxenkrug 2010). Furthermore,
animals (including cats) can synthesize niacin
from Trp (Baker and Czarnecki-Maulden 1991).
However, Trp cannot fully substitute nicotinic
acid in the diet of cats. Thus, these animals will
die after they are fed a diet with adequate Trp
level but a low level of nicotinic acid (NRC
2006). Of note, Trp is deficient in most of the
plant-source proteins but abundant in animal-
source proteins (Hou et al. 2019; Li and Wu
2020).

11.7 Carnitine

Carnitine is an AA derivative that is synthesized
from Lys, Met and Ser in the presence of vitamin
B6, vitamin C, α-ketoglutarate, and iron
(Wu 2013). Over the past two decades, there has
been much interest in the role of carnitine in
preventing and treating feline hepatic lipidosis
(FHL), as well as enhancing white-fat loss in
cats through stimulating fatty acid oxidation in
the liver and other tissues such as skeletal muscle
and white adipose tissue (Blanchard et al. 2002;
Center et al. 2000). The FHL, also known as
feline fatty liver syndrome, is one of the most
common forms of liver disease in cats that are
often obese. The clinical signs of this disease
include dramatic weight loss, lethargy, vomiting,
hepatomegaly, jaundice, and gastroparesis (Wills
and Simpson 1994). Although carnitine is present
in meat, dietary supplementation with this

nutrient may be beneficial for mitigating the
FHL in cats, which generally consume meat
with a relatively high content of lipids.

11.8 Sulfur-Containing Amino Acids

Cats have high requirements for dietary Met
and Cys (Burger and Smith 1987; Hendriks 1996)
to maintain their dense hair and metabolic activities
(MacDonald et al. 1984). Nutritional insufficiencies
of Met and Cys occur in cats fed home-made
vegetable-based diets, leading to reduced growth
and crusting dermatitis in the mucocutaneous skin
of the mouth and nose (Hoppe et al. 1993). Among
the following four sulfur-containing AAs (i.e., Met,
Cys, homocysteine, and taurine), only Met and Cys
are precursors for protein synthesis (Brosnan and
Brosnan 2006). Methionine is the initial AA for the
formation of proteins in eukaryotic cells, whereas
N-formyl methionine serves the same function in
prokaryotes. In the liver of cats, Met is degraded via
the transsulfuration pathway to generate Cys, with
methionine adenosyltransferase (MAT) catalysing
the initial step to form S-adenosylmethionine
(SAM) (Teeter et al. 1978; Wu 2013). SAM is the
major donor of the methyl group for protein and
DNA methylation reactions in the body. Cys is
either oxidized to CO2 plus water or used for the
synthesis of glutathione, a potent antioxidant (Stead
et al. 2006). In addition, Cys contributes to disulfide
linkages in proteins, thereby influencing their struc-
ture and biological activities. The formation of Cys
fromMet can substitute 50% of dietaryMet require-
ment in cats (Hendriks et al. 1995). As an interme-
diate of Met catabolism, homocysteine (a potent
oxidant) can be recycled into Met in the liver via
the vitamin B6-dependent Met synthase. Partial
catabolism of Met may occur at a low rate in
extrahepatic tissues, but generates little or no CO2.
Excessive intakes of Met and Cys are highly toxic
to animals due to the production of their
metabolites, such as H2S, SO2, and H2SO4 (Hou
and Wu 2018a), and therefore must be avoided at
all times.
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11.8.1 Taurine

Taurine is a crucial nutrient for cats (Knopf et al.
1978; Morris et al. 1990). It is a sulfur-containing
β-AA that is abundant in meat, fish and crustaceans
(Li et al. 2020b,c) but is absent from proteins
(Wu et al. 2016). In the liver of cats and dogs
(Oberbauer and Larsen 2020), taurine is the only
AA that conjugates with bile acid to yield bile
salts, which are essential for the digestion and
absorption of dietary lipids. Moreover, as an abun-
dant antioxidant AA, taurine protects the eyes,
brain, heart, skeletal muscle, reproductive tract,
and immune organs from damage (Hand et al.
2010; Morris et al. 1990; Sturman and Lu 1997).
In contrast to most species of dogs, cats have a
very limited ability to produce taurine from Cys
because of a low activity of cysteine dioxygenase
and cysteinesulfinate decarboxylase, and therefore
taurine must be included in the feline diets (Case
et al. 2011; Knopf et al. 1978; Morris and Rogers
1992). Clinical syndromes of taurine deficiency in
cats include retinal degeneration, poor reproduc-
tive performance, fetal and post-natal developmen-
tal abnormalities, and dilated cardiomyopathy
(Hall et al. 2018; Hand et al. 2010; Markwell and
Earle 1995). The recommended intake of cats for
dietary taurine is 0.2% (NRC 2006), which is
below taurine content in meat (0.23% to 0.29%)
(Wu et al. 2016).

11.8.2 Production of Three Unique
Sulfur-Containing AAs
(Felinine, Isovalthine,
and Isobuteine) by
Domestic Cats

Domestic cats synthesize three unique sulfur-
containing AAs (felinine, isovalthine, and
isobuteine; Kodama et al. 1980; Kuwaki et al.
1963; Mizuhara and Oomori 1961; Oomori and
Mizuhara 1962). The sources of the cysteine moi-
ety and the remaining portion in these AAs are
glutathione (formed from Glu, Gly and Cys) and
an appropriate fatty acid, respectively. The latter

is isopentenyl pyrophosphate (an intermediate of
cholesterol biosynthesis) in felinine (Rutherfurd
et al. 2002), isovaleric acid (a metabolite of leu-
cine) in isovalthine (Rutherfurd-Markwick et al.
2005), and possibly isobutyric acid (a metabolite
of valine) in isobuteine (Herring et al. 2020). In
the liver of cats, glutathione is conjugated with
isopentenyl pyrophosphate, isovaleric acid, and
isobutyric acid to yield respective derivatives,
which are transported in the blood to the kidneys.
In the proximal renal tubules of the kidneys, the
glutathione conjugates are metabolized via cauxin
(a carboxylesterase), γ-glutamyl transferase and
dipeptidases (e.g., aminopeptidase M) to release
felinine, isovalthine, and isobuteine for excretion
in the urine (Miyazaki et al. 2008). Because
isopentenyl pyrophosphate is generated from
acetyl-CoA from the oxidation of AAs, glucose
and fatty acids, and because the skeletal muscle is
the major site for initiating BCAA catabolism and
therefore the production of isovaleric acid
isobutyric acid, the inter-organ metabolism of
macronutrients is crucial for the production of
felinine, isovalthine, and isobuteine in cats.

Male cats produce more felinine than female
cats (Hendriks et al. 1995; Rutherfurd-Markwick
et al. 2005), but there is no gender-specific for the
urinary excretion of isovalthine (Hendriks et al.
2004). There are reports that in both male and
female cats, increasing dietary intake of Met or
Cys enhances the synthesis of felinine and
isovalthine (Hendriks et al. 1995; Hendriks et al.
2004). The biological significance of felinine,
isovalthine, and isobuteine, as well as their
derivatives remains largely elusive. These
sulfur-containing AAs and metabolites may
serve as non-toxic, non-reactive, and relatively
stable end-products of Met and Cys to prevent
excessive formation of toxic and highly toxic
substances (e.g., H2S, SO2, and H2SO4) from
Met and Cys (Herring et al. 2020). There are
also suggestions that felinine is a territorial
marker for intra-species communications and is
a putative precursor of a pheromone that serves as
a chemical signal to attract females (Miyazaki
et al. 2008).
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11.9 Summary

Dietary protein provides both EAAs and NEAAs
for domestic cats to synthesize tissue proteins,
peptides, neurotransmitters, and other AA
derivatives (e.g., NO, GABA, polyamines, thy-
roid hormones, melanin, melatonin, and felinine)
with enormous biological importance. Glutamate
and Gln may be the major metabolic fuels for the
feline small intestine to maintain its integrity and
health. All of the proteinogenic AAs are nutrition-
ally and physiologically essential for the growth,
development, health, and survival of the animals.
Because of an inability to synthesize Arg from
Gln, Glu and Pro, cats are very sensitive to a
deficiency of dietary Arg with very rapid onset
of life-threatening hyperammonemia. Although
dietary EAAs have been recommended to young
and adult cats, little data are available on the
dietary requirements of these animals for
NEAAs. The present article fills this important
gap of the knowledge to guide feeding practices
and future studies. In addition, cats have a very
limited ability to synthesize taurine
(a non-proteinogenic AA), which must be
included in their diets to prevent the eyes, brain,
heart, skeletal muscle, reproductive tract, and
other tissues from damage. Plant-based foods
with inadequate or no taurine should not be fed
to cats in any age group. Besides meat, animal-
source foodstuffs (including ruminant meat &
bone meal, poultry by-product meal, porcine
mucosal protein, and chicken visceral digest) are
excellent sources of proteinogenic AAs (in both
amounts and balances) and taurine. New
advances in AA nutrition and metabolism are
expected to improve the health and wellbeing of
cats in their life cycle.
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Abstract

Proteins are large polymers of amino acids
(AAs) linked via peptide bonds, and major
components for the growth and development
of tissues in zoo animals (including mammals,
birds, and fish). The proteinogenic AAs are
alanine, arginine, aspartate, asparagine, cysteine,
glutamate, glutamine, glycine, histidine, isoleu-
cine, leucine, lysine, methionine, phenylalanine,
proline, serine, threonine, tryptophan, tyrosine,
and valine. Except for glycine, they are all pres-
ent in the L-isoform. Some carnivores may also
need taurine (a nonproteinogenic AA) in their
diet. Adequate dietary intakes of AAs are nec-
essary for the growth, development, reproduc-
tion, health and longevity of zoo animals.
Extensive research has established dietary nutri-
ent requirements for humans, domestic livestock
and companion animals. However, this is not
true for many exotic or endangered species
found in zoos due to the obstacles that accom-
pany working with these species. Information
on diets and nutrient profiles of free-ranging
animals is needed. Even with adequate
dietary intake of crude protein, dietary AAs
may still be unbalanced, which can lead to
nutrition-related diseases and disorders com-
monly observed in captive zoo species, such

as dilated cardiomyopathy, urolithiasis, gut
dysbiosis, and hormonal imbalances. There
are differences in AA metabolism among
carnivores, herbivores and omnivores. It is
imperative to consider these idiosyncrasies
when formulating diets based on established
nutritional requirements of domestic species.
With optimal health, populations of zoo animals
will have a vastly greater chance of thriving in
captivity. For endangered species especially,
maintaining stable captive populations is crucial
for conservation. Thus, adequate provision of
AAs in diets plays a crucial role in the manage-
ment, sustainability and expansion of healthy
zoo animals.
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12.1 Introduction

Amino acids (AA) are nitrogenous, organic
compounds consisting of both an amino group
and an acid group (Wu 2018). All proteinogenic
AAs have a carboxylic acid group, and
non-proteinogenic AAs may contain a carboxylic
acid [e.g., citrulline, ornithine, β-alanine, and
γ-aminobutyrate (GABA)] or a sulfonic acid
(e.g., taurine) group. Twenty proteinogenic AAs
are precursors for protein synthesis (Wu et al.
2016), namely alanine, arginine, aspartate, aspar-
agine, cysteine, glutamate, glutamine, glycine,
histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, proline, serine, threonine, trypto-
phan, tyrosine, and valine. Some of them (e.g.,
glutamate, glycine and tryptophan) play an
important role in chemical sensing in tissues
[including the skin and digestive tract (Solano
2020; Wu 2020c)], as well as in intestinal and
pulmonary immune and antioxidative responses
(Beaumont and Blachier 2020; Chen et al. 2020;
Ren et al. 2020). Although non-proteinogenic
AAs are not required for protein synthesis, they
(e.g., taurine and GABA) have important physio-
logical functions and their deficiencies can result
in multi-organ abnormalities (Bazer et al. 2015;
Wu 2020a, b). Furthermore, some end products of
AA metabolism, such as felinine, isovalthine, and
isobuteine (Fig. 12.1) produced by certain
members of the Felidae species, may serve as
territorial marks and intra-species communication
signals in animals (Che et al. 2020; Miyazaki
et al. 2008).

Protein or AA requirements for zoo animals
(Allen and Ullrey 2004), like livestock and poul-
try (Wu 2018), vary among different stages of
their growth and development and in response to
alterations in nutritional, environmental, and
pathological conditions. For example, the mink
(a carnivore) is not able to synthesize arginine de
novo (NRC 1982), whereas tigers and cheetahs
(carnivores) do not produce taurine just like
domestic cats (Gelatt 2014). In addition,
mammals (Hou and Wu 2018) and birds
(Wu 2009), as well as carnivorous and omnivo-
rous fish (Jia et al. 2017; Li et al. 2020a) need

large amounts of glutamate and glutamine for the
growth and health of their small intestine. Much
work has been done in recent years to establish
optimal AA requirements for domestic livestock
species, birds, fish, and humans (Wu 2009, 2018).
Traditionally, AAs have been classified as nutri-
tionally essential (EAA) or non-essential (NEAA;
Wu 2010). The carbon skeletons of EAAs cannot
be synthesized de novo by the body or cannot be
synthesized in an adequate amount; therefore,
these AA must be provided in diets (Wu 2009).
Even though the body is able to synthesize
NEAAs, their formation may not be adequate
for maximal growth and optimal health, espe-
cially at certain physiological stages, such as
pregnancy, lactation, and growth after weaning

Fig. 12.1 Chemical structures of felinine (2-amino-7-
hydroxy-5,5-dimethyl-4-thiaheptanoic acid; (2R)-2-
amino-3-[(3-hydroxy-1,1-dimethylpropyl)thio]propanoic
acid]), isovalthine (2-amino-5-carboxy-6-methyl-4-
thiaheptanoic acid), and isobuteine [2-amino-6-carboxy-
4-thiaheptanoic acid; S-carboxyisopropylcysteine; S-
(2-methyl-2-carboxyethyl)cysteine]. Certain members of
the Felidae family (e.g., cats) synthesize and excrete
these three unique sulfur-containing amino acids.
In addition, humans with hypothyroidism and hypercho-
lesterolemia, as well as other select mammals (e.g., the rat,
rabbit, guinea pig, and dog) are known to produce
isovalthine
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(Hou and Wu 2017; Hou et al. 2015; Wu et al.
2017, 2018). For this reason, dietary requirements
of zoo animals for NEAAs must be established.

For zoo and endangered animals, it is difficult
to determine exact dietary nutritional
requirements due to the invasive nature of the
methods used (Schmidt et al. 2007). Therefore,
domestic animals are often employed to estimate
dietary nutritional requirements for captive
carnivores, herbivores, and omnivores (Schmidt
et al. 2007). However, these estimations may not
be completely accurate considering unique bio-
chemical and physiological differences among
species. Even when analyzing nutrient
concentrations in the serum of a captive exotic
animal is possible, the results may be vastly dif-
ferent from those in a free-ranging animal
because differences in nutrient intakes [e.g., dry
matter (DM), AAs, carbohydrates, vitamins, and
minerals] and blood hormone levels (Schmidt
et al. 2007).

The major objective of this article is to high-
light unique features of AA nutrition and metab-
olism in zoo animal species based on the limited
data available. Due to the complicated processes
necessary to define nutritional requirements of
zoo animals, it is important to use the information
established for domestic species (e.g., sheep, cat-
tle, pigs, chickens, and farmed fish) and make
adjustments based on observations to best formu-
late adequate diets for zoo animals.

12.2 Carnivores

Carnivores, by definition, eat animals or animal
products and have unique physiological features
that support the consumption and digestion of
prey. Their diets are rich in protein and fats, but
contain a very small amount of carbohydrate. Thus,
carnivores must synthesize a large amount of glu-
cose from AAs (Ala, Arg, Asp, Asn, Cys, Gln, Glu,
Gly, His, Met, Pro, Ser, Thr, and Val that can
produce pyruvate and an intermediate of the Krebs
cycle) in the liver and kidneys to support the meta-
bolic needs of their brain, red blood cells, retina, and
kidney medulla (Wu 2018). Based on studies with
cats and dolphins, carnivores lack hepatic glucoki-
nase (for glycolysis and glucose sensing) and

hepatic glucokinase regulatory protein, and are
prone to periods of fasting hyperglycemia, contrary
to monogastric mammals (Schermerhorn 2013).
This class of animals includes mammal obligate
carnivores [i.e. felids (e.g., domestic cats, tigers,
and lions), giant anteaters, otters, hyenas, sea lions,
mink, tarsiers, dolphins, seals, and walruses] and
non-mammal obligate carnivores (e.g., largemouth
bass, rainbow trout, salmon, hawks, eagles,
crocodilians, many snakes and lizards, and most
amphibians]. Obligate carnivores must eat animals
or animal products because they lack the enzymes
to synthesize or metabolize certain nutrients that
cannot be obtained from plants and bacteria
(Kleiman et al. 2010). As an example, felids do
not synthesize either ornithine, citrulline and argi-
nine from glutamic acid or taurine from cysteine
(MacDonald et al. 1984).

Ornithine serves as an intermediate for urea
synthesis in mammals by stimulating the conver-
sion of ammonia, a product of protein metabo-
lism, into urea for excretion (Wu 2013). Ornithine
can also be used for proline synthesis or
converted into polyamines (putrescine,
spermidine and spermine), which are important
regulators of DNA and protein synthesis
(Wu 2013). As an allosteric activator of N-
acetylglutamate synthase, arginine is also a cru-
cial AA for urea-cycle function and ammonia
detoxification as urea in mammals (Wu and Mor-
ris 1998). Thus, cats (which cannot synthesize
arginine due to an intestinal deficiency of
pyrroline-5-carboxylate synthase) develop severe
hyperammonemia after consuming an arginine-
free diet, which often quickly leads to death
(Baker 2007). Severe hyperammonemia occurs
in cats since they cannot synthesize ornithine,
and therefore citrulline, which limits renal argi-
nine synthesis (Ball et al. 2007). As obligate
carnivores, cats eat high levels of protein, and
therefore, need high levels of dietary arginine
for urea-cycle function and nitrogen excretion.
Likewise, mink grow very poorly and die when
fed an arginine-free or deficient diet (NRC 1982).

Taurine is critical for regulating intracellular
osmolality and retinal photoreceptor activity,
modulating the digestion and absorption of die-
tary fats and lipid-soluble vitamins, as well as the
nervous, muscular and reproductive systems, and
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it is also a major antioxidant (Wu 2018). As in
domestic cats (Che et al. 2020), the
concentrations of taurine in the plasma and
whole blood of zoo felids [the fishing cat
(Prionailurus viverrinus), lion (Panthera leo),
Bengal tiger (Panthera tigris tigris), Siberian
tiger (Panthera tigris altaicia); cheetah, leopard
(P. pardus), cougar (Puma concolor), and serval
(Leptailurus serval)] are 80–120 and
300–600 nmol/ml, respectively (Hedberg et al.
2007). The ability of carnivores to synthesize
taurine varies greatly among species and even
the different breeds of the same species. For
example, unlike domestic cats, tigers, lions and
other felids (e.g., the cheetah, puma, jaguar, and
leopard; Chesney and Hedberg 2009; Gelatt
2014), most of dog species are able to synthesize
taurine from cysteine in the liver (Hayes 1998).
However, certain breeds of dogs [e.g., giant breed
dogs (Newfoundland) and American Cocker
Spaniels] and some individuals do not synthesize
taurine due to genetic defects and must require a
dietary source of taurine to maintain health and
prevent disorders, such as dilated cardiomyopa-
thy and retinal lesions (Backus et al. 2003;
Fascetti et al. 2003; Kittleson et al. 1997).
Anderson et al. (1979) found that 0.1% taurine
in the diet supports sufficient growth in kittens
and prevents tissue depletion of taurine. How-
ever, with a taurine-free diet, photoreceptor
degeneration occurs in the retina due to taurine
depletion, while glycine and glutamine
concentrations increase in the area centralis of
the retina and in the heart (Anderson et al.
1979). Concentrations of glutamine also increase
in the lens of the eye, which alters the glutamine:
glutamate ratio (Anderson et al. 1979). Cats and
dogs use solely taurine to conjugate bile acids via
N-acylamidation, but other species use both gly-
cine and taurine to do so (Czuba and Vessey
1981). Bile acid conjugation plays an important
role in the digestion and absorption of dietary
lipids, as well as liver physiology and the intesti-
nal microflora (Hagey et al. 2010; Wu 2018). At
present, little is known about bile acid-
conjugating enzymes in zoo animals, including
carnivores. However, studies with 677 vertebrate
species (103 fish, 130 reptiles, 271 birds,

173 mammals) have shown significant variation
in bile salt composition among orders but not
between families, genera, or species (Hofmann
et al. 2010).

Some Felidae species (e.g., the bobcat, ocelot,
Chinese desert cat, kodkod, Siberian lynx, and
domestic cat) have been reported to synthesize
felinine (2-amino-7-hydroxy-5,5-dimethyl-4-
thiaheptanoic acid; (2R)-2-amino-3-[(3-hydroxy-
1,1-dimethylpropyl)thio]propanoic acid])
(Hendriks et al. 1995; Miyazaki et al. 2008;
Westall 1953). In addition, certain felids (e.g.,
the domestic cat and the lion), as well as humans
with hypothyroidism and hypercholesterolemia
and other select mammals (e.g., the rat, rabbit,
guinea pig, and dog) are known to produce
isovalthine (2-amino-5-carboxy-6-methyl-4-
thiaheptanoic acid) (Kuwaki et al. 1963;
Mizuhara and Oomori 1961). Furthermore, the
domestic cat, other select members of the Felidae
family, and humans generate isobuteine
[2-amino-6-carboxy-4-thiaheptanoic acid; S-
carboxyisopropylcysteine; S-(2-methyl-2-
carboxyethyl)cysteine] (Kodama et al. 1980;
Oomori and Mizuhara 1962).

Felinine, isovalthine, and isobuteine are
unusual sulfur-containing AAs in that they con-
tain both a sulfur atom in the main chain and a
branched side chain with a methyl group. Their
syntheses require glutathione and either an iso-
prene unit or a branched-chain α-ketoacid, as
illustrated for feline in Fig. 12.2. Specifically, in
the livers of those species, glutathione conjugates
with isopentenyl pyrophosphate [an intermediate
of cholesterol biosynthesis (Rutherfurd et al.
2002)], isovaleric acid [a metabolite of leucine
(Rutherfurd-Markwick et al. 2005)], and possibly
isobutyric acid (a metabolite of valine) to yield
3-methylbutanol-glutathione (3-mercaptobutanol-
glutathionine; γ-glutamylfelinylglycine), S-
(iso-propylcarboxymethyl)-glutathione, and S-
(iso-ethylcarboxymethyl)-glutathione, respec-
tively. These conjugation reactions are catalyzed
by glutathione S-transferase in the cytosol of
hepatocytes. The glutathione conjugates are
released from the liver and transported in the
blood to the kidneys, where they are metabolized
via γ-glutamyl transferase (a membrane-bound
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enzyme in the proximal renal tubules) to form
3-methylbutanol-cysteinylglycine, S-(iso-propyl-
carboxymethyl-cysteinylglycine, and S-(iso-ethyl-
carboxymethyl-cysteinylglycine, respectively.
These cysteinylglycine derivatives are hydrolyzed
by dipeptidases (e.g., aminopeptidase M) in the
cytosol of the proximal renal tubules to generate
felinine, isovalthine, and isobuteine, respectively,
with glycine as a co-product.

Some of the resultant sulfur-containing
metabolites are locally N-acetylated by N-
acetyltransferase to their corresponding acetyl
derivatives (i.e., N-acetyl-felinine, N-acetyl-
isovathine, and N-acetyl-isobuteine, respectively).
Additionally, 3-methylbutanol-cysteinylglycine,

S-(iso-propylcarboxymethyl-cysteinylglycine,
andS-(iso-ethylcarboxymethyl-cysteinylglycine
are hydrolyzed by the extracellular cauxin
(a carboxylesterase secreted by the proximal
straight renal tubules of the kidneys) in the
lumen of the renal tubules and the bladder to
yield felinine, isovalthine, and isobuteine, respec-
tively, with glycine as a co-product. In the cytosol
of the proximal straight renal tubules, feline is
further metabolized into 3-mercapto-3-methyl-1-
butanol, 3-mercapto-3-methylbutyl formate,
3-methyl-3-methylthio-1-butanol, and 3-methyl-
3-(2-methyldisulfanyl)-1-butanol (Miyazaki
et al. 2008). Similar modifications of isovalthine,
and isobuteine may also occur. Felinine,

Fig. 12.2 Synthesis and metabolism of felinine in domes-
tic cats. In the liver of domestic cats, glutathione S-transfer-
ase catalyzes the conjugation of glutathione with
isopentenyl pyrophosphate yield 3-methylbutanol-glutathi-
one. The latter is released from the liver and transported in
the blood to the kidneys, where it is metabolized via
γ-glutamyl transferase (a membrane-bound enzyme in the
proximal renal tubules) to form 3-methylbutanol-
cysteinylglycine. This cysteinylglycine derivatives is
hydrolyzed by dipeptidases (e.g., aminopeptidase M) in
the cytosol of the proximal renal tubules to generate
felinine, with glycine as a co-product. Felinine is locally

N-acetylated by N-acetyltransferase to N-acetyl-felinine.
Additionally, 3-methylbutanol-cysteinylglycine is
hydrolyzed by the extracellular cauxin (a carboxylesterase
secreted by the proximal straight renal tubules of the
kidneys) in the lumen of the renal tubules and the bladder
to yield felinine, with glycine as a co-product. In the cytosol
of the proximal straight renal tubules, feline is further
metabolized into methylated products (a, b, c and d).
a ¼ 3-mercapto-3-methyl-1-butanol; b ¼ 3-mercapto-3-
methylbutyl formate; c¼ 3-methyl-3-methylthio-1-butanol;
and d ¼ 3-methyl-3-(2-methyldisulfanyl)-1-butanol.
Felinine and its derivatives are excreted in the urine
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isovalthine, and isobuteine, as well as their
derivatives are excreted in the urine.

The syntheses of felinine, isovalthine, and
isobuteine are influenced by dietary intakes of
methionine and cysteine (Hendriks et al. 2008;
Rutherfurd-Markwick et al. 2005), and possibly
dietary lipids (in the case of felinine), leucine
(in the case of isovalthine), and valine (in the
case of isobuteine) when the dietary provision of
methionine, cysteine, glycine, and BCAAs is not
limiting. Interestingly, the production of felinine
by felids is gender-specific as its excretion in the
urine is much higher in males than in females
(Rutherfurd-Markwick et al. 2005), but the uri-
nary excretion of isovalthine by adult cats is not
gender-specific (Hendriks et al. 2004).

The biological significance of felinine,
isovalthine, and isobuteine, as well as their
derivatives remains largely elusive. It is possible
that these sulfur-containing AA and their
metabolites serve as non-toxic, non-reactive, and
relatively stable end products of Met and Cys to
prevent excessive formation of toxic and highly
acidic substances (e.g., H2S, SO2, and H2SO4)
from Met and Cys. Of particular note, Miyazaki
et al. (2008) have suggested that felinine is a
territorial marker for intra-species
communications and is also a putative precursor
of a pheromone that serves as a chemical signal to
attract females. This explains, in part, an impor-
tant role of dietary AAs in the physiology and
behavior of zoo animals of either the same or
different species.

Either inadequate nutrition (especially
deficiencies in certain AAs) or excessive AAs
lead to nutrition-related diseases and disorders
(Oberbauer and Larsen 2020; Wu 2020a). Uro-
lithiasis (the process of forming stones in the
kidenys, bladder and/or urethra) occurs when
mineral crystals precipitate from the urine and
form uroliths in the urinary tract (Kleiman et al.
2010). There are different types of uroliths that
may form from different nutrients and minerals in
the diet. In canids, a high-protein diet may cause
ammonium urate stones or cystine uroliths
(Kleiman et al. 2010). Cystine has a poor

solubility at physiological pH and in acidic
urine, and may lead to cystine uroliths in dogs
that have a defect in reabsorption of cystine and
other basic AAs in the kidneys (Kleiman et al.
2010). As previously stated, felids are strict
carnivores and require taurine in the diet, but
canids, bears, and giant anteaters also have a
dietary requirement for taurine (Kleiman et al.
2010). Dilated cardiomyopathy, bilaterally sym-
metrical hyper-reflective retinal lesions, poor
reproduction, and progressive exercise intoler-
ance and dyspnea have all been associated with
a taurine deficiency in those animals (NRC 2006).
These nutrition-related diseases highlight the
importance of balanced diets with adequate AA
composition in addition to the optimal overall
protein content.

The giant anteater (Mymercophaga tridactyla)
is an insectivore, a specific type of carnivore,
which also commonly experiences side effects
of taurine deficiency, such as dilated cardiomyop-
athy, in captivity (Nofs et al. 2018). Exact nutri-
ent requirements for the giant anteater have not
been established, but analyses of some diets
revealed taurine levels between 0.11 and 0.18 g/
kg DM (Nofs et al. 2018). As a comparison, the
recommended taurine level for dry food for cats,
another carnivore, is 1.0 g/kg DM (AAFCO
2012). Assuming that taurine homeostasis in
giant anteaters is regulated by urinary excretion
of taurine and that urinary taurine concentration
varies directly with body taurine status, Nofs et al.
(2018) analyzed urinary taurine concentrations in
response to taurine and methionine supplementa-
tion to a commercially available insectivore diet.
It was found that urinary taurine excretion
increased with increasing dietary taurine intake
and also increased with methionine supplementa-
tion, indicating that giant anteaters can synthesize
adequate amounts of taurine from methionine
(Nofs et al. 2018). Figure 12.3 illustrates how
methionine is metabolized to homocysteine,
which is further converted to cysteine by
cystathionine γ-lyase; cysteine is then converted
into taurine (Fig. 12.3). These findings suggest
that giant anteaters can synthesize adequate
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amounts of taurine as long as the diet contains
sufficient amounts of methionine or cysteine
(Nofs et al. 2018).

For carnivorous species in zoos, whole prey
items are commonly used as a dietary source, as
well as enrichment to mimic species-typical
behavior (Kerr et al. 2014). However, these
whole prey diets tend to exceed the protein
requirements established by the NRC (2006) for
dogs and cats or livestock species and do not
focus on specific AA requirements. Dierenfeld
et al. (2011) found that all the domestic meats
tested were limiting in arginine, leucine, methio-
nine + cystine, and phenylalanine + tyrosine com-
pared to the requirements for obligate carnivores.
However, this is not true for beef (Wu et al. 2016)
and some animal-source feedstuffs (Li and Wu
2020). Generally, lysine is considered as the first
limiting AA when calculating ideal protein ratios,

but these ratios are species-specific (Dierenfeld
et al. 2011). The cecectomized rooster assay was
determined to be an appropriate model for
evaluating AA digestibility of animal products
that may be fed as whole prey to captive exotic
felids to validate that these food sources are
meeting the nutritional requirements (Kerr et al.
2014). Compared to The Association of Ameri-
can Feed Control Officials (AAFCO 2012)
recommendations for domestic cats, ground
duck had a slightly lower combined concentration
of methionine + cysteine than that recommended
for growth, reproduction, and adult maintenance
(Kerr et al. 2014). Because some methionine and
cysteine in feedstuffs are oxidized under acid
hydrolysis conditions at 110 �C, caution should
be taken to ensure that the content of these two
sulfur-containing AAs in protein is analyzed
properly (Dai et al. 2014). For ground duck,

Fig. 12.3 Synthesis of taurine from sulfur-containing
amino acids (methionine and cysteine) in animals. The
enzymes catalyzing the indicated reactions are: (1) S-
adenosylmethionine synthase; (2) methylase; (3) S-
adenosylhomocysteinase; (4) cystathionine β-synthase;
(5) cystathionine γ-lyase; (6) cysteine dioxygenase;
(7) cysteinesulfinate decarboxylase; (8) methionine

synthase; (9) betaine:homocysteine methyltransferase;
(10) serine hydroxymethyltransferase; (11) N 5-N 10-meth-
ylene- tetrahydrofolate reductase; GSH ¼ glutathione;
α-KB ¼ α-ketobutyrate; NER ¼ nonenzyme catalyzed
reaction; N5, N10-CH2-THF ¼ N5, N10-methylene
tetrahydrofolate; N5-CH3-THF ¼ N5-methyl-
tetrahydrofolate
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150 to 180 day-old mice, 30- to 45-day -old
rabbits, and rabbits more than 65 days of age,
concentrations of taurine in their blood were
lower than values recommended by AAFCO
(2012) and Kerr et al. (2014).

Protein quality and concentration can also have
an effect on the microbiota in the gut of carnivores
(Madsen et al. 2017). Even though carnivores do
not rely heavily on microbial fermentation in the
gut for energy, the microbiota population has an
effect on gastrointestinal and whole body
functions, such as digestion, inflammation, and
pathogen resistance (Lubbs et al. 2009;
Wasimuddin et al. 2017). Captive animal
populations tend to have less diversity in their
microbome compared to their free-ranging
counterparts due to differences in their diet
(Wasimuddin et al. 2017). According to
Wasimuddin et al. (2017), captive cheetahs have
a higher prevalence of potential pathogenic bacte-
ria than free-ranging cheetahs when analyzing
fecal samples with 16S rRNA gene high-
throughput sequencing. Lower quality protein
may not be adequately digested in the small intes-
tine, which allows more AAs in dietary protein to
enter the large intestine and increases the activity
of its proteolytic bacteria (Amstberg et al. 1980;
Lubbs et al. 2009). Also, more protein in the lower
bowel may result in increased production of
ammonia, sulfur-containing compounds, indoles,
and phenols, all of which become toxic at high
concentrations in the body (Lubbs et al. 2009). In
domestic cats fed a high-protein diet, there was a
shift from carbohydrate-fermenting bacteria to pro-
teolytic bacteria, which may be pathogenic
(i.e. Clostridium) (Lubbs et al. 2009). Similarly,
Cheetahs in captivity experience a high prevalence
of Heliobacter infections, leading to chronic gas-
tritis (Wasimuddin et al. 2017), and both lions and
cheetahs are known to suffer from Clostridium
sordelli and Clostridium perfringens (de la Fe
et al. 2006). Captive marine carnivores, such as
the Australian sea lion, also experience changes in
the gut microbiota, compared to wild sea lions due
to less diverse protein sources (Delport et al.
2016). Reducing total protein content and
balancing all proteinogenic AAs in the current

commercial diets may be beneficial for improving
intestinal health in carnivores.

12.3 Herbivores

Herbivores eat predominantly plant matter and
have symbiotic microorganisms in the gut that
help to digest plant matter by anaerobic fermenta-
tion to supply the animal with energy (Wu 2018).
Herbivores can be divided into two different
subgroups: pregastric fermenters and postgastric
fermenters. Ruminants are pregastric fermenters
and have a compartmentalized stomach containing
a rumen where microbial fermentation occurs
(i.e. cattle, sheep, deer, giraffe, kangaroos, and
antelope; Kleiman et al. 2010). By definition,
ruminants regurgitate their food to remasticate,
resalivate and reswallow for further digestion
(Kleimen et al. 2010). In contrast to carnivores,
ruminants do not have a high dietary requirement
for AAs and vitamins because the microorganisms
of the rumen have the ability to synthesize protein
from non-protein and non-AA nitrogen such as
urea and ammonia (Kleiman et al. 2010; Wu
2013). Nonruminant pregastric fermenters also
have a compartmentalized stomach for microbial
fermentation, but do not regurgitate their food for
further digestion (i.e. hippopotamuses, kangaroos,
and langur primates; Kleiman et al. 2010).
Postgastric herbivores have a large cecum and
colon where microbial fermentation occurs
(i.e. horses, capybaras, rabbits, rhinoceroses,
elephants, and apes; Kleiman et al. 2010). The
growth, development, health, and survival of
herbivores (including ruminants) depend on the
unique characteristics of their digestive systems
(Wu 2005). All herbivores are able to synthesize
taurine from cysteine in their liver, but the rates of
the synthesis of taurine vary among animal species
(Hou et al. 2020; Jacobsen and Smith 1968;
Sturman and Hayes 1980; Wright et al. 1986).

Nutrient requirements of zoo animals are based
on similar domestic species with established nutri-
ent requirements; however, these are not always
accurate comparisons. Serum concentrations of
AAs in free-ranging giraffes from two game
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reserves in South Africa were compared with
serum concentrations of AAs in steers and sheep
which showed apparent differences in
concentrations of cystine, isoleucine, and valine
(Schmidt et al. 2007). The concentrations of free
cystine in free-ranging giraffes from Double Drift
Game Reserve and Kariega Game Reserve were
0.19 mg/dL (7.9 μM) and 0.35 mg/dL (14.6 μM),
respectively, compared to 4.52 mg/dL (188 μM) in
sheep (Schmidt et al. 2007). The concentrations of
free cystine in the serum of zoo giraffes (United
States) fed an alfalfa-based diet and free-ranging
giraffes (South Africa) were 0.00 mg/dL (0.0 μM)
and 0.22 mg/dL (9.2 μM), respectively (Schmidt
et al. 2009). The concentration of free cysteine in
the serum of captive sheep is similar to the con-
centration of total free cysteine (cysteine + ½ cys-
teine; 188 μM) in the plasma of adult sheep fed an
alfalfa-based diet (Kwon et al. 2003). However,
the reported concentrations of cystine (the
major oxidized dimer form of cysteine in animals;
0.0 to 15 μM) in the serum of adult giraffes are too
low to be compatible with life and may not repre-
sent its true values, but rather might be due to
problems with its analysis because the determina-
tion of this AA is a technical challenge (Wu 2013).
This underscores the importance of accurate
analyses of AAs in studying the protein and AA
nutrition of animals.

Similar to carnivores, herbivores can also
experience urolithiasis, the precipitation and for-
mation of mineral crystals from the urine in the
urinary tract (Kleiman et al. 2010). Sheep may
have a high cysteine requirement for wool pro-
duction, but Schmidt et al. (2007) has shown that
concentrations of cysteine in the serum of giraffes
are significantly reduced when compared to those
for sheep, suggesting that the use of the data on
dietary nutrient requirements of sheep to establish
dietary nutrient requirements for giraffes may not
be fully justified. Further studies are warranted to
validate these intriguing findings before
recommendations for changes in the diets of zoo
giraffes are recommended. In blood, most (97%)
cysteine is spontaneously oxidized to cystine
(Wu et al. 1997). Among all physiological AAs,
cysteine has the lowest solubility (0.46 mM) in
water at 25 �C and neutral pH (Wu 2013). Thus,
high concentrations of cystine in the diet could

contribute to the prevalence of urolithiasis in cap-
tive giraffes.

Isoleucine concentrations in the serum of giraffes
were 2.07 and 2.01 mg/dL from the two game
reserves compared to 0.79 and 0.87 mg/dL in steers
and sheep, respectively (Schmidt et al. 2007).
Concentrations of valine in serum of giraffes from
the two game reserves were 4.64 and 4.60 mg/dL,
compared to 1.53 and 2.00 mg/dL in steers and
sheep, respectively (Schmidt et al. 2007). Isoleucine
and valine are branched-chain amino acids
(BCAAs) along with leucine, and all the three
BCAAs must be balanced to gain advantage of
their physiological functions (Wu 2009). For exam-
ple, BCAAs are important for protein synthesis by
activating the mechanistic target of rapamycin cell-
signaling pathway (Wu 2009; Zhang et al. 2019).
Skeletal muscle can synthesize glutamine and ala-
nine from BCAAs and glucose (the primary precur-
sor of α-ketoglutartae and pyruvate). Glutamine
has a variety of metabolic functions including glu-
coneogenesis, cell proliferation, synthesis of NAD
(P), regulation of protein turnover, and synthesis of
purine, pyrimidine, ornithine, citrulline, arginine,
proline, and asparagine (Wu 2009). A balance of
dietary BCAAs is crucial for optimal health of all
animals to prevent antagonisms among the AAs.
However, dietary requirements of giraffes for the
BCAAs and other AAs should not be based solely
on their concentrations in the serum or plasma of
giraffes or other ruminant species (such as cattle and
sheep), because the circulating levels of AAs are
influenced by many factors (e.g., physiological,
pathological, and environmental) other than diets
and because there are significant differences in
concentrations of AAs in serum among animal spe-
cies (Wu 2018).

Caution should be exercised when feeding zoo
animals a diet similar to that for their
domesticated counterpart so as to prevent disrup-
tion of the gut microbiome. As previously stated,
the microbial population of the gut in herbivores
is essential for the digestion of fiber and produc-
tion of short chain fatty acids and AAs. Gibson
et al. (2019) found a significant difference in
diversity of the gut microbiome in captive black
rhinoceroses, compared to wild black
rhinoceroses. The captive rhinos showed an
increase in glycolysis and AA syntheses in the
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microbial populations, suggesting an imbalance
of nutrients in their diets (Gibson et al. 2019).

12.4 Omnivores

Omnivores are animals that consume both plant
and animal matter (i.e. pigs, bears, foxes,
raccoons, many primates, giant pandas, maned
wolves, and some canids). Because the composi-
tion of AAs differ between plant- and animal-
source feedstuffs (Hou et al. 2019; Li and Wu
2020), dietary intakes of many AAs (particularly
methionine, cysteine, glycine, proline, and tryp-
tophan) by these animals critically depend on
their food sources. The digestive physiology of
omnivores allows the consumption and digestion
of meat and plant material, but the intestines of
these animals except for certain species (e.g.,
grizzly bears, black bears, and giant pandas)
have a limited capacity for the microbial fermen-
tation of plant fibrous material in the gastrointes-
tinal tract (Kleiman et al. 2010; Pritchard and
Robbins 1990). Unlike carnivores, omnivores do
not have a strict requirement for meat but rather
base their diets on seasonally available feedstuffs
in their habitat (Kleiman et al. 2010). Most
omnivores are able to synthesize taurine from
cysteine in their livers, with the rates of synthesis
depending on species (Jacobsen and Smith 1968;
Sturman and Hayes 1980; Wright et al. 1986). It
is important to consider the ratio of plant- and
animal-source feedstuffs in the natural diet of
omnivores because over- or under-feeding of
macro and micronutrients may result in
nutrition-related diseases. Maned wolves tend to
eat a higher proportion of plant material than
other species of wolves that consume primarily
meat (Kleiman et al. 2010). In U.S. zoos, maned
wolves are fed diets primarily consisting of red
meat, which has high concentrations of sulfur-
containing AAs, leading to a decrease in urinary
pH and the formation of cystine uroliths that can
also occur in some herbivores and carnivores
(Phipps and Edwards 2009; Kahn and Line
2005). However, protein-restrictive diets result
in taurine deficiency and fecal inconsistency in
maned wolves (Sanderson et al. 2001),

suggesting that this animal species may have little
or no ability to synthesize taurine. Canids that
develop cystinuria also have an increased chance
of developing a carnitine deficiency (Sanderson
et al. 2001). Like cystine, carnitine is reabsorbed
by the renal glomerulus into the blood circulation
via a sodium-dependent transport system
(Wu 2018). Carnitine is derived from methionine
and lysine, and required for the transport of long
chain fatty acids from the cytosol into
mitochondria for oxidation and ATP production
(Wu 2018). Because of these issues, much
research is needed to formulate a specific diet
for captive maned wolves for optimal health.

Bears are considered omnivores and have the
digestive physiology of carnivores (e.g., having a
single stomach and a short intestine), whereas
giant pandas (also known as the panda bear)
with the digestive system of carnivores live as
herbivores consuming almost exclusively bam-
boo. Giant pandas do not rely primarily on micro-
bial fermentation of plant fibrous material to meet
their nutrient requirements, but are able to survive
by eating a large amount of bamboo (e.g., up to
6% of body weight in DM per day by a 120-kg
adult) despite their inefficient digestive system for
utilizing plant fibrous material (Dierenfeld et al.
1982; Schaller et al. 1985). Bamboo contains
8.6% CP, 74.6% cell wall material (including
29.7% hemi-cellulose, 26.5% cellulose, and
7.3% lignin), and 4.8 kcal/g gross energy (all on
the DM basis; Dierenfeld et al. 1982). For com-
parison, an adult steer (540 kg) consumes DM at
2.6% of body weight per day (Gilbreath et al.
2020). Interestingly, the passage of digesta
through the gastrointestinal tract of the giant
panda is very rapid (< 12 h), and the digestibility
coefficients of bamboo DM (largely crude fiber),
hemicellulose, and cellulose in adult giant pandas
are 20%, 27%, and 8%, respectively (Dierenfeld
et al. 1982). Cellular contents (AAs, protein,
sugars, and starch) are the main sources of
nutrients for giant pandas.

The gut microbiome of giant pandas closely
resembles the gut microbiome of a carnivore with
a high abundance of genes encoding for enzymes
for AA degradation and a low abundance of genes
for enzymes related to cellulose- and
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hemicellulose-digestion (Guo et al. 2018; Xue
et al. 2015). Specifically, despite its ability to
metabolize dietary cellulose (Zhu et al. 2011),
the gut microbiota of giant pandas is abundant
in Escherichia, Shigella and Streptococcus bacte-
ria that are normally found in carnivores for pro-
tein digestion (Xue et al. 2015) and in genes that
are associated with the degradation of glutamine
and glutamate (glutaminase, glutamate decarbox-
ylase, GABA-transaminase, and succinic
semialdehyde dehydrogenase; Fig. 12.4), similar
to carnivores and other bears (Guo et al. 2018).
Thus, we surmise that there is active nitrogen
metabolism and recycling in the intestine of
giant pandas for AA utilization, as reported for
such omnivores as humans, pigs, rats and
ruminants (Bergen and Wu 2009). This, however,
may not be able to fully compensate for the low
AA content of bamboo and its low digestibility
(Dierenfeld et al. 1982), such that giant pandas
may not have adequate protein nutrition for opti-
mum growth, gestation and lactation. In support

of the suggestion, the female giant panda ovulates
only once a year in the Spring season, and
implantation of her fertilized egg is delayed for
2 to 3 months until the leaves and shoots of
bamboo become more abundant and contain
more nutrients (e.g., AAs and calcium) to support
embryonic growth and development (Schaller
et al. 1985; Zhang et al. 2018). Despite the repro-
ductive and foraging strategies of gestating giant
pandas, as well as a gestation length of 96 to
158 days between insemination and parturition
(Zhang et al. 2009), the average birth weight of
their offspring (almost 50% singletons and 50%
twins) is only 90–130 g (Schaller et al. 1985). For
comparison, in domestic pigs, which usually ges-
tate 10 to 14 live fetuses, average fetal weights on
days 60, 90, and 114 (term) of gestation are
130, 596, and 1486 g, respectively (Wu et al.
2013). Improving the supply of AAs (particularly
arginine and glutamine) may enhance fetal sur-
vival and growth in giant pandas, as reported for
swine (Wu et al. 2010, 2011).

Fig. 12.4 Catabolism of glutamine and glutamate in zoo
animals. The enzymes in these specific pathways of gluta-
mine and glutamate metabolism are up-regulated in
pandas, as well as other bears and carnivores. In compari-
son, herbivores have greater expression of enzymes
associated with the synthesis of glutamine and glutamate

(i.e. glutamine synthetase, glutamate synthase, and gluta-
mate dehydrogenase). The enzymes catalyzing the
reactions are: (1) phosphate activated glutaminase; (2) glu-
tamine synthetase; (3) glutamate dehydrogenase; (4) gluta-
mine transaminase; and (5) succinate semialdehyde
reductase
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The nutrient requirements for most subhuman
primates are based on dietary nutrient
requirements of humans. The CP of normal diets
of captive apes, lemurs and marmosets provides
between 9.5% and 13% of the energy intake,
compared to the normal 10% to 12% in humans
(King 1978). However, nutrient requirements of
primates are only based on a few species of
primates and specific needs may vary among
species; and protein requirements seem to be dif-
ferent for New World primates, compared to Old
World primates (Crissey and Pribyl 2000). The
protein requirement of New World primates may
be closer to 25% of the diet, but the NRC (1978)
has established the minimum protein requirement
of primates to be 16% for all stages of life
(Crissey and Pribyl 2000). Flurer and Zucker
(1988) observed coprophagy in marmosets fed a
diet lacking in histidine and arginine, but did not
observe coprophagy in marmosets fed a diet of
the same protein content that contained both his-
tidine and arginine. Histidine is an essential AA
for one-carbon unit metabolism, protein biosyn-
thesis, formation of major dipeptides in skeletal
muscle and the brain such as carnosine, and con-
version to histamine by decarboxylation
(Wu 2013). Histidine can cross the blood-brain
barrier like most AAs. Paradoxically, elevated
levels of histidine and homocarnosine have been
detected in the brains of rats, guinea pigs and
infant monkeys that experience protein malnutri-
tion (Taylor and Snyder 1972; Enwonwu and
Worthington 1973) likely due to enhanced intra-
muscular protein and peptide hydrolysis. In
protein-deficient monkeys, elevated levels of his-
tidine in the brain were accompanied by
decreased levels of arginine, threonine, isoleu-
cine, leucine, and valine in their plasma, which
compete with histidine to cross the blood-brain
barrier (Enwonwu and Okolie 1983). Along with
histidine, histamine levels in the brain were also
increased in protein-deficient monkeys
(Enwonwu and Okolie 1983). Histamine in the
brain acts as a regulator of central acetylcholine
secretion (He and Wu 2020). Protein deficiency
and a specific AA deficiency may lead to
impaired thermoregulation, elevated plasma

levels of cortisol, reduced plasma levels of
growth hormone, edema, and psychomotor
dysregulation in primates (Enwonwu and Okolie
1983).

12.5 Dietary Requirements
of Captive Carnivores,
Herbivores and Omnivores
for AAs

Animals have dietary requirements for AAs, but
not protein (Wu 2016). Traditional methods to
formulate diets for mammals (Bergen 2020;
Oberbauer and Larsen 2020; Wu et al. 2014;
Zhang et al. 2020), birds (He et al. 2020),
crustaceans (Li et al. 2020b), and fish (Li et al.
2020c) have been based on the dietary CP con-
tent, which includes AAs, as well as non-protein
and non-AA nitrogen. Data on dietary CP content
may provide some clues into the requirements of
zoo animals for dietary protein and AAs. For
example, in summarizing the consensus agree-
ment of the Giraffe Nutrition Workshop in 2005,
Schmidt and Schlegel (2005) thoughtfully stated
that “given the nutrient requirements of domestic
ruminants and diet studies of wild giraffe, there is
no nutritional reason to expect that the total die-
tary CP requirement of a mature giraffe is more
than 12% of the complete diet (DM basis) when
DM intake is at least 1.2% of the animal’s body
weight. Diets containing 10 to 14% CP
(DM basis) will likely provide the maintenance
needs of adult giraffe.” The maintenance needs
should include those for: (a) AAs that are irre-
versibly lost through catabolism, as well as excre-
tion via the skin, urine and feces; and (b) AAs that
are required for regulating immune and anti-
oxidative responses, as well as the integrity of
tissues such as the gastrointestinal tract, liver,
eyes, heart, brain, and the skin. Because some
non-protein and non-AA nitrogen (e.g., added
melamine) may have no nutritive value and even
be toxic to animals, and because AAs in
feedstuffs can now be analyzed readily by
advanced methods, such as high-performance liq-
uid chromatography (Dai et al. 2014), dietary
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AAs, instead of CP, should be recommended for
zoo animals for their optimal growth, develop-
ment, lactation, reproduction, and health. Because
there are differences in digestion and metabolism
of nutrients among carnivores, herbivores and
omnivores, as noted previously, these animals
likely have very different patterns of requirements
for dietary AAs.

To date, little information is available regard-
ing dietary requirements of zoo animals (includ-
ing nonhuman primates) for AAs. Domestic
animals (e.g., pigs, chickens, and sheep) may be
used to assess the digestibility of AAs in proteins
of commercially available avian and mammalian
whole prey diet items targeted for consumption
by zoo animals (e.g., Kerr et al. 2014). In addi-
tion, model animals can be used to estimate the
nutrient requirements of captive animals with
similar digestive physiology and metabolism
(Edwards 2003). Furthermore, data from human
studies (Wu 2016; Young and Borgonha 2000)
can be based to recommend the requirements of
nonhuman primates for dietary AAs. Diets should
be optimal for the growth, development, repro-
duction, survival and health of all animals. These
common criteria should be used for defining die-
tary requirements of various species of zoo
animals for AAs. However, it should be borne in
mind that additional criteria for recommending
nutrient requirements for domestic animals (e.g.,
growth performance, feed efficiency, and produc-
tivity) may be different from those for zoo
animals (e.g., longevity and social behavior).

Based on work with swine and poultry, as well
as companion animals (Baker and Czarnecki-
Maulden 1991), the “ideal protein” has been con-
sidered to optimize the provision of EAAs for zoo
animals, including carnivores (Dierenfeld et al.
2011). Because this nutritional concept does not
take into consideration the AAs that are
synthesized in animal cells, we must think “out
of the box” to recommend that the diets of
carnivores, like other animal species (Wu 2014),
include all proteinogenic AAs. According to the
review of AA composition in common raw meats
from domestic (e.g., beef, chicken, horse, pork,
and turkey) and “wild” (e.g., antelope, bison,
boar, guinea fowl, and rabbit) animals, Dierenfeld

et al. 2011 stated that arginine, leucine, methio-
nine plus cysteine, and phenylalanine plus tyro-
sine are limiting in all meats examined, regardless
of source, compared to requirements established
for obligate carnivores. However, it remains
uncertain whether or not the previously
recommended dietary requirements of the
animals for the reference AA “lysine” and other
EAAs are accurate, because tissue-specific
metabolism of all EAAs can be affected by the
dietary intakes of so-called “nutritionally nones-
sential AAs” that are not included in the “ideal
protein” (Wu 2013). It is unlikely that animal
meats would not meet the requirements of
carnivores for dietary AAs. In the wild, a carni-
vore eats whole prey animals (including such
internal organs as the liver, kidneys and heart).
Thus, it is more appropriate to estimate AA
requirements of carnivores on the basis of the
composition of AAs in the whole body rather
than meat. This does not mean that zoo carnivores
should be fed the whole carcasses of prey animals
due to concerns over food safety. The composi-
tion of AAs in the bodies of various species of
animals (mammals, birds and fish) is similar
(Wu 2013, 2018). In contrast to the previously
analyzed meats (Dierenfeld et al. (2011), the ani-
mal body and animal-source feedstuffs (e.g.,
chicken by-product meal and poultry by-product
meal) provide more arginine and leucine than
lysine (Li and Wu 2020; Wu 2013; Wu et al.
2016). Chicken viscera digest and spray-dried
peptone from enzyme-treated porcine mucosal
tissues supply more leucine than lysine (Li and
Wu 2020). As shown in Table 12.1, all alternative
animal protein products contain a large amount of
taurine and proteinogenic AAs [particularly argi-
nine, glutamate, glutamine, glycine, proline,
4-hydroxyproline, serine, sulfur-containing AAs
(methionine, cysteine and taurine), and trypto-
phan] that are crucial for intestinal integrity and
health, one-carbon metabolism, anti-oxidative
reactions, and immune responses in all tissues of
the animals (Hou et al. 2015; Liu et al. 2020;
Wang et al. 2013, 2020; Wu et al. 2019; Zhang
et al. 2019). In addition, meat provides creatine
that is essential for muscular and neurological
development (Wu 2010).
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Based on the AA content of the pig body
(Wu 2013) and diets for domestic animals [e.g.,
sheep (a herbivore ruminant; Satterfield et al.
2013), swine (an omnivore mammal; Wu et al.
2011), and chicken (an omnivore bird; He et al.
2020; Wu 2014), we recommend the
requirements of captive carnivores (young and
adult; Table 12.2), herbivores (young and mature;
Table 12.2), and omnivores (young, adult and
lactating mammals; as well as young and mature
birds; Table 12.3) for dietary true protein and
AAs as percentages of the total diet. Similarly,
data on the requirements of crustaceans (Li et al.
2020b) and fish (Li et al. 2020c) for dietary AAs
in aquaculture can serve as useful references to

formulate diets for these classes of animals in the
zoo. As reported by Hou et al. (2016), the ratios
of AAs to lysine in animal diets differ from those
in the animal body to various extents, depending
on individual AAs. This is because dietary AAs
are degraded by the small intestine at different
rates during the first pass and AAs in plasma are
utilized by the whole body at different rates
(Wu 2013). The recommendations based on AA
composition in the body provides an initial frame-
work for feeding practices and further studies. As
an animal becomes older, its rate of metabolism
(including basal protein metabolism) per kg body
weight decreases (Wu 2018). However, this also
includes reductions in the conversion of

Table 12.1 Content of total amino acids (peptide-bound plus free amino acids) in the whole body of pigs and in animal-
derived feedstuffsa

Amino
acid
(AA)

Pig body CBPM PBM (PFG) CVD SDPM

AA
content
(% of
DM)

% of
lysine
(g/g)

AA
content
(% of
DM)

% of
lysine
(g/g)

AA
content
(% of
DM)

% of
lysine
(g/g)

AA
content
(% of
DM)

% of
lysine
(g/g)

AA
content
(% of
DM)

% of
lysine
(g/g)

Ala 3.00 109 4.63 100 4.11 112 4.42 82.2 3.95 86.3
Arg 3.09 112 4.85 105 4.28 117 4.31 80.1 4.05 88.3
Asn 1.64 59.7 2.66 57.6 2.65 72.3 2.68 49.8 1.71 37.3
Asp 195 71.0 4.01 87.0 3.99 109 3.93 72.9 4.19 91.4
Cysb 0.60 21.9 1.09 23.6 1.08 29.4 1.31 24.2 1.11 24.2
Gln 2.34 84.9 3.96 85.9 3.52 96.3 4.00 74.2 3.14 68.5
Glu 3.86 140 5.45 118 4.91 134 6.80 126 6.50 142
Gly 5.36 195 6.06 131 7.09 194 8.85 164 5.58 122
His 0.95 34.4 1.39 30.0 1.36 37.0 0.80 14.8 1.45 31.6
Hyp 1.73 62.9 1.89 41.0 2.32 63.4 1.86 34.5 0.89 19.4
Ile 1.61 58.6 2.77 60.2 2.46 67.1 4.12 76.4 2.75 60.1
Leu 3.12 113 5.38 117 4.47 122 6.55 122 4.85 106
Lys 2.75 100 4.61 100 3.66 100 5.39 100 4.58 100
Met 0.85 31.0 1.46 31.6 1.43 39.0 1.70 31.5 1.35 29.5
Phe 1.56 56.8 2.75 59.7 2.40 65.5 3.97 73.7 2.63 57.3
Pro 3.93 143 4.39 95.1 5.24 143 5.93 110 3.56 77.8
Ser 2.02 73.5 3.11 67.5 2.71 74.0 6.92 129 3.80 82.9
Thr 1.60 58.1 2.83 61.3 2.64 72.2 2.14 39.7 3.21 70.1
Trp 0.51 18.4 0.77 16.8 0.65 17.8 1.10 20.4 0.71 15.4
Tyr 1.24 45.0 2.33 50.6 1.94 53.1 2.75 51.0 2.52 55.0
Val 1.93 69.9 3.39 73.5 3.01 82.1 5.97 111 3.43 74.9
TPAA 45.7 – 69.8 – 65.9 – 85.5 – 66.0 –

Taurine 0.14 – 0.21 – 0.40 – 0.14 – 0.18 –

aAdapted fromWu et al. (2013) for the 30-day-old pig and from Li and Wu (2020) for the animal-derived feedstuffs. The
molecular weights of intact amino acids were used for the calculation of AA content in the pig body and the feedstuffs
bCysteine + ½ cystine
CBPM chicken by-product meal, CVD chicken visceral digest, DM dry matter, Hyp 4-hydroxyproline, PBM (PFG)
poultry by-product meal (pet-food grade), SDPM spray-dried peptone from enzymes-treated porcine mucosal tissues,
TPAA total proteinogenic amino acids
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phenylalanine into tyrosine and of methionine
into cysteine in older animals than in younger
animals. Consequently, much attention should
be paid to adequate dietary intakes of both tyro-
sine and cysteine by ageing animals. Although
adult animals gain little protein in the body or
have a reduced requirement for dietary lysine,
their small intestine still requires a relatively
large amount of dietary threonine to produce
mucins for intestinal protection. Likewise, adults
also need dietary tryptophan for the production of
bioactive metabolites (e.g., serotonin, melatonin,
and indoles) to maintain neurological and intesti-
nal functions. Thus, compared with young
nonruminants, the dietary ratios of cysteine, tyro-
sine, threonine and tryptophan to lysine for adult
ruminants may be greater (e.g., +10% for

cysteine/lysine and tyrosine/lysine; +12% for
threonine/lysine and tryptophan/lysine; Wu
2018). However, this may not be true for
ruminants, because the ability of their rumen to
synthesize cysteine, tyrosine, threonine and tryp-
tophan in adults is greater than that in the young
ruminant.

Intakes of DM by zoo animals range from 1%
to 6% of their body weight, depending on species,
age, and physiological state. For example, within
the same given species, young animals have a
greater metabolic rate and, therefore, consume
more feed per kg body weight, compared with
adults (Wu 2018). Likewise, at the same relative
developmental stage, birds have a greater meta-
bolic rate and, therefore, consume more feed per
kg body weight, compared with ruminants

Table 12.2 Recommended requirements of zoo carnivores and herbivores for dietary amino acidsa

Amino
(AA)

Carnivores Herbivores (adult) Herbivores (young)b

AA content in
diet (% of DM)

% of lysine in
diet (g/100 g)

AA content in
diet (% of DM)

% of lysine in
diet (g/100 g)

AA content in
diet (% of DM)

% of lysine in
diet (g/100 g)

Ala 3.00 109 0.93 131 1.30 131
Arg 3.09 112 0.84 119 1.18 119
Asn 1.64 59.7 0.73 103 1.02 103
Asp 195 71.0 0.83 117 1.16 117
Cys 0.60 21.9 0.27 37.5 0.37 37.5
Gln 2.34 84.9 1.29 181 1.80 181
Glu 3.86 140 1.12 158 1.57 158
Gly 5.36 195 0.70 98.4 0.98 98.4
His 0.95 34.4 0.31 43.8 0.43 43.8
Hyp 1.73 62.9 – – – –

Ile 1.61 58.6 0.60 84.4 0.84 84.4
Leu 3.12 113 1.19 167 1.66 167
Lys 2.75 100 0.71 100 0.99 100
Met 0.85 31.0 0.23 32.8 0.33 32.8
Phe 1.56 56.8 0.70 98.4 0.98 98.4
Pro 3.93 143 1.13 159 1.58 159
Ser 2.02 73.5 0.72 102 1.01 102
Thr 1.60 58.1 0.54 76.6 0.76 76.6
Trp 0.51 18.4 0.18 25.0 0.25 25.0
Tyr 1.24 45.0 0.53 75.0 0.75 75.0
Val 1.93 69.9 0.71 100 0.99 100
TPAA 45.7 – 14.3 – 20.0 –

Taurine 0.10 – 0.00 – 0.02 –

aVaues are AA content in diet. The molecular weights of intact amino acids are used for the calculation of AA content in
the diet. Intakes of dry matter by zoo animals range from 1% to 6% of their body weight, depending on species, age, and
physiological state
bBefore the normal weaning age. Note: within the first 1 month after weaning, the dietary content of all amino acids is
reduced by 10%. A high intake of dietary protein in post-weaning mammals increases risks for intestinal dysfunction
DM dry matter; Hyp 4-hydroxyproline, TPAA total proteinogenic amino acids
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(Wu 2018). Because embryos and fetuses are
particularly sensitive to ammonia concentrations
in blood (Herring et al. 2018), high intakes of
dietary protein are not recommended for females
before breeding or during early gestation. Diets
for dams during late gestation can be the same as
those for early gestation. However, as the fetus
grows rapidly during the last trimester of preg-
nancy, the amount of the diet fed to the dams can
be increased appropriately (e.g., by 20 to 25%
over that during early gestation). Based on studies

with swine (Wu et al. 2017, 2018), dietary sup-
plementation with arginine (e.g., 0.4% of the diet)
shortly before the implantation of blastocysts can
be beneficial for reducing the concentrations of
ammonia in plasma, enhancing placental angio-
genesis, and improving embryonic/fetal survival
in zoo animals.

Our recommended values for dietary AA
requirements for zoo carnivores, herbivores and
omnivores may not be optimum for all AAs and
all animal species, but they are expected to serve as

Table 12.3 Recommended requirements of mammalian and avian omnivores in zoos for dietary amino acidsa

Amino
acid
(AA)

Mammalian omnivores Avian omnivores

Mammals (adults)
Mammals
(young)b

Mammals
(lactating) Birds (adults) Birds (young)

AA
content
in dietc

(% of
DM)

% of
lysine
in diet
(g/g)

AA
content
in dietd

(% of
DM)

% of
lysine
in diet
(g/g)

AA
content
in dietc

(% of
DM)

% of
lysine
in diet
(g/g)

AA
content
in dietc

(% of
DM)

% of
lysine
in diet
(g/g)

AA
content
in dietc

(% of
DM)

% of
lysine
in diet
(g/g)

Ala 0.81 97.4 1.38 95.6 1.05 104 0.90 102 1.36 102
Arg 0.83 100 1.44 99.8 1.73 171 0.95 109 1.41 105
Asn 0.57 68.5 0.97 67.1 0.83 82.5 0.49 56.2 0.75 56.1
Asp 0.81 97.4 1.38 95.6 1.19 118 0.58 66.3 0.89 66.2
Cys 0.25 30.4 0.39 26.8 0.33 32.5 0.32 36.4 0.43 32.1
Gln 1.26 152 2.17 151 1.74 173 1.13 129 1.72 128
Glu 1.41 170 2.42 168 2.29 226 1.57 179 2.38 178
Gly 0.90 108 1.53 107 0.95 93.8 1.56 177 2.35 175
His 0.33 39.6 0.56 38.6 0.49 48.8 0.31 35.2 0.47 35.1
Ile 0.54 65.4 0.94 65.4 0.83 82.5 0.61 69.3 0.92 68.7
Leu 1.10 132 1.90 132 1.78 176 0.96 110 1.46 109
Lys 0.83 100 1.44 100 1.01 100 0.88 100 1.34 100
Met 0.25 30.4 0.39 26.8 0.32 31.3 0.37 42.2 0.54 40.1
Phe 0.61 73.0 1.04 72.1 0.97 96.3 0.53 60.3 0.81 60.2
Pro 0.96 116 1.64 114 1.57 155 1.63 185 2.46 184
Ser 0.49 59.3 0.85 58.7 0.93 92.5 0.61 69.3 0.93 69.2
Thr 0.58 70.0 0.89 62.1 0.71 70.0 0.62 70.3 0.90 67.2
Trp 0.18 21.3 0.27 18.5 0.23 22.5 0.15 17.0 0.22 16.0
Tyr 0.47 56.3 0.81 56.2 0.78 77.5 0.40 45.2 0.60 45.1
Val 0.59 71.5 1.03 71.3 0.91 90.0 0.71 80.3 1.07 79.9
TPAA 13.8 – 23.4 – 20.6 – 15.3 – 23.0 –

Taurine 0.00 – 0.05 – 0.00 – 0.00 – 0.00 –

aVaues are AA content in diet. The molecular weights of intact amino acids are used for the calculation of AA content in
the diet. Intakes of dry matter by zoo animals range from 1% to 5% of their body weight, depending on species, age, and
physiological state
bBefore weaning. Note: Within the first month after weaning, the dietary content of all amino acids is reduced by 10%. A
high intake of dietary protein in post-weaning mammals increases risks for intestinal dysfunction
cThe true digestibility of amino acids in dietary protein and the content of dry matter in the diet are assumed to be 88%
and 90%, respectively
dThe true digestibility of amino acids in dietary protein and the content of dry matter in the diet are assumed to be 92%
and 90%, respectively
DM dry matter; TPAA total proteinogenic amino acids
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helpful guidelines for feeding practices and future
research, as noted previously. Because the metab-
olism of animals is affected by physiological, envi-
ronmental and pathological factors, their optimum
requirements for dietary AAs are not one set of
fixed data, and may undergo dynamic changes
with changing conditions. This calls for a range
of the recommended requirement values, which
need to be modified under practical feeding
conditions. Therefore, the data in Tables 12.2 and
12.3 should be considered only as references and
revised as new research findings become available.

12.6 Conclusion

In summary, domestic livestock species with
established dietary nutrient requirements provide
a baseline to use as a reference in formulating
dietary requirements for exotic zoo animals
since the processes used to determine dietary
nutrient requirements are not practical for zoo
animal species. However, it is important to take
into account the major differences between
domestic and wild species that could influence

dietary nutrient requirements such as habitat,
diet, behavior, and physiology. Malnutrition of
protein and AAs can lead to many different
nutrition-related diseases and disorders that may
threaten the vitality and fecundity of zoo animal
species (Fig. 12.5). Zoo animals will not thrive in
captivity if their health is not optimal. Especially
for endangered species, it is imperative that cap-
tive populations successfully thrive in order to
conserve the Earth’s biodiversity. Therefore, ade-
quate provision of dietary AAs is crucial for suc-
cessful management, sustainability and expansion
of all zoo animals, including captive carnivores,
herbivores and omnivores.
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