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Preface

Mycoremediation is a process of bioremediation in which fungal-based technology 
is used to decontaminate the environment. Fungi have been confirmed to be a very 
cost-effective and environmentally sound way for helping to remove an extensive 
array of contaminants from damaged environments or wastewater. The contami-
nants include heavy metals, persistent organic pollutants [polycyclic aromatic 
hydrocarbons (PAHs), pesticides, and herbicide], textile dyes, leather tanning indus-
try chemicals and wastewater, petroleum fuels, pharmaceuticals, and personal care 
products. The by-products of the remediation can be appreciated constituents them-
selves, such as enzymes (like laccase) and edible or medicinal mushrooms, making 
the remediation process even lucrative. Mycoremediation practices involve placing 
of mycelium into contaminated soil and placing mycelial mats over toxic sites or a 
combination of these techniques in one or more treatments. Toxins in our food chain 
(including heavy metals, PCBs, and dioxins) become more concentrated at each 
step, with those at the top being contaminated by ingesting toxins consumed by 
those lower on the food chain. Fungal mycelia can destroy these toxins in the soil 
before they enter our food supply.

Fungi are among the primary saprotrophic organisms in an ecosystem, as they 
are efficient in the decomposition of material. Wood-decay fungi, especially white 
rot, secrete extracellular enzymes and acids that break down lignin and cellulose. 
Fungi feature among nature’s most vital agents for the decomposition of waste mat-
ter and are crucial components of the soil food web, providing nourishment for the 
supplementary biota that live in the soil environment. The degree of sustainability 
of the physical environment is an index of the survival and well-being of the all-
inclusive components in it. Additionally, it is not sufficient to try disposing toxic/
deleterious substances with any known method. The best method of sustaining the 
environment is to return all the components (wastes) in a recyclable way so that the 
waste becomes useful and helps the biotic and abiotic relationship to maintain an 
aesthetic and healthy equilibrium that characterizes an ideal environment.

This book should be immensely valuable for researchers, technocrats, policy 
makers, and scientists of fungal biology and those who are interested in environ-
mental sustainability. We are honored that leading scientists who have extensive, 
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in-depth understanding and expertise in fungal biology and environmental concern 
took the time and effort to develop these outstanding chapters. Each chapter is writ-
ten by globally recognized academicians, so the reader is given an up-to-date and 
detailed account of our knowledge of the fungal system and numerous applications 
of fungi.

We are indebted to the many people who helped bring this book to light. The 
Editors wish to thank Series Editors Dr. Vijai Kumar Gupta and Dr. Maria G. Tuohy 
as well as Dr. Eric Stannard, Senior Editor, Botany, Springer, for their generous 
assistance, constant support, and patience in initializing the volume. Editors in par-
ticular are very thankful to Springer’s Nicholas DiBenedetto, Anthony Dunlap, and 
Rahul Sharma (Project Coordinator) for the kind care and constant encouragement 
received. Ram Prasad thanks honorable Vice Chancellor Dr. Sanjeev Kumar for 
continuous support and inspiration in putting everything together. Special thanks 
are due to our well-wishers and friends.

Motihari, Bihar, India� Ram Prasad
Mysore, India� S. Chandra Nayak
Varanasi, India� Ravindra Nath Kharwar
Varanasi, India� Nawal Kishor Dubey
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1.1  �Introduction

Soil pollution is a serious global threat and, hence, an effective remediation technol-
ogy is of great importance (Abioye et al. 2019). Rapid industrialization along with 
increasing population has resulted in a wide accumulation of chemicals (Aransiola 
et al. 2013). The recurrence and enormous utilization of ‘xenobiotic’ chemicals have 
prompted an amazing push toward new innovations in order to reduce or eliminate 
these contaminants from the environment. The techniques traditionally used for the 
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remediation of polluted sites (e.g., recycling, landfilling, pyrolysis, and incineration) 
affect the environment as well, which can cause the release of toxic intermediates 
(Debarati et al. 2005; Prasad 2021). Moreover, these techniques are expensive and 
sometimes difficult to execute, particularly in broad agricultural areas (Jain et  al. 
2005). One promising technique is bioremediation which exploits the capacity of 
microorganisms to expel toxins from polluted environment, an option that is viable, 
negligibly hazardous, economical, flexible, and environmentally friendly (Finley et al. 
2010). Pesticides have turned into an unavoidable part of present-day agriculture 
because of their need in economical pest management and in the enhancement of 
product quality (Gouma 2009). Be that as it may, increased use of pesticide signifi-
cantly affects climate, around 90% of pesticides applied by farmers failed to com-
pletely achieved the set objectives as it affect farmers health directly, escaped into the 
soil, air and washed into water bodies. Out of the aggregate unpredictable outflow to 
nature, 63% are pesticides (Yates et al. 2011). Overall, their capacity to collect into the 
tissues of living beings prompting bioaccumulation is the real concern. Each of these 
factors contributes to environmental contamination and significant strides are taken to 
handle this issue. The conventional methods utilized for the treatment of these con-
taminants are compelling and additionally have certain disadvantages; for example 
they are expensive and the quality of these procedures is low. Likewise, most of the 
time, these systems are not adequate (Dixon 1996). Pesticide management should 
essentially maintain soil quality which is of high concern. Pesticides constitute the key 
control system for crop pest and disease management. Nonstop application of these 
pesticides to the soil and aquatic system poses risks to well-being and results in envi-
ronmental contamination, which has activated much open concern. Consistence appli-
cation of these pesticides throughout the years has brought about issues created by 
their cooperation with the biological framework in nature. Despite the risks, pesticides 
will continue to be a crucial component in agriculture in years to come as there is no 
reasonable other option to absolutely supplant them. Considering the lethal impact of 
the pesticides, it is fundamental to expel them from the environment with appropriate 
remediation measures. Bioremediation is one of the current methods utilized for envi-
ronmental cleanup. In this process, heterotrophic microorganisms are used to separate 
carbon and other vital compounds from perilous mixtures. Organophosphorous com-
pounds alone compensate for 70% of the pesticides utilized around the world.

It has been found that microorganisms can alter and degrade xenobiotics; 
researchers have been investigating different microbial qualities, especially around 
polluted environments looking for microorganisms that can help in the remediation 
of an extensive variety of contaminations. Subsequently, biotransformation of envi-
ronmental contaminants in the regular habitat has been widely considered to com-
prehend microbial ecology, physiology, and development because of their 
bioremediation potential (Mishra et al. 2001; Kumar M et al. 2017; Kumar V et al. 
2017). The biochemical and genetic basis of microbial degradation has gotten 
impressive consideration. A few genes/enzymes, which furnish microorganisms 
with the capacity to remediate organopesticides, have been recognized and por-
trayed. In this manner, microorganisms has proved to be a better and safer option in 
the biodegradation of pesticides. The capacity of these microorganisms to degrade 
xenobiotics is specifically connected to their adaptation to conditions where these 
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compound exist. Also, genetic engineering might be utilized to upgrade the proper-
ties of such microorganisms that have the desirable characteristics required for bio-
degradation (Schroll et al. 2004). Around 30% of agricultural produce is lost because 
of pests. Consequently, increased utilization of pesticides has turned out to be irre-
placeable in agribusiness and has become a part of agribusiness. Nonetheless, the 
unpredictable utilization of pesticides also poses serious threats and issues to people 
and the biodiversity (Gavrilescu 2005; Hussain et al. 2009). Environmental pollu-
tion caused by pesticides is also noted in regions where pesticides are not used. The 
agricultural pesticides applications gets to the soil and can diffuse quickly until it 
reaches the water table at noticeable concentration which affects different catego-
ries of living organisms. Therefore, the fate of pesticides is unpredictable and they 
can degrade different regions apart from where they were initially utilized. Hence, 
cleaning pesticide-contaminated zones becomes an extremely complex errand 
(Gavrilescu 2005).

Organochlorine pesticides were generally in use during the 1970s, especially in 
the United States. Although their utilization has been ousted in numerous nations, 
they are still used in many developing countries. Organochlorine pesticides get 
aggregated in living beings and pose interminable risks to well-being, for example, 
cancer, neurological, and teratogenic impacts (Vaccari et al. 2006). Numerous xeno-
biotic compounds are unmanageable and resistant to biodegradation, especially 
organochlorine pesticides (Chaudhry and Chapalamadugu 1991; Dua et al. 2002). As 
a result, these exceedingly dangerous and cancer-causing compounds hold on in the 
environment for a relatively long time. But in reality organophosphorus pesticides 
are generally utilized in the United States. These pesticides affect the nervous system 
of insects and humans, in addition to influencing the reproductive system (Colosio 
et al. 2009; Jokanovic and Prostran 2009). Increased utilization of organophosphorus 
in agribusiness has begun to result in different environmental issues (Singh and 
Walker 2006). In spite of the fact that these pesticides degrade rapidly in water, there 
is a possibility that the buildups and by-products of these pesticides remain in unsafe 
levels in living beings (Silva et al. 1999; Ragnarsdottir 2000). Carbamate pesticides 
are imperative in the farming because of their wide movement range. Notwithstanding 
an extensive variety of compound, they are moderately pollute the environment and 
for the most part are less harmful to people (Wolfe et al. 1978). Nonetheless, they 
interfere with the activity of enzyme acetylcholinesterase, thereby inhibiting the 
hydrolysis of acetylcholine (AcH) which results in the accumulation of AcH. This 
leads to different manifestations, for example, sweating, lacrimation, hypersaliva-
tion, and convulsion of extremities (Suzuki and Watanabe 2005). Hence, this class of 
pesticides are considered lethal. Cleaning the pesticide-infested environment is a 
troublesome matter and can be exorbitant. Indeed, the negative effects from pesti-
cides in the environment are for all intents and out-weighed its usefulness. Any mea-
sure used to diminish the impacts of pesticides on the environment will only be a 
palliative measure and not a solution. Unfortunately, there is a constant threat to the 
organisms and environment, for instance, the annihilation of the avian species and 
microorganisms on the planet. Organic strategies are more reliable to disinfect 
regions that have been contaminated by pesticides. These techniques use a large 
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number of microorganisms in the environment, whose specific end goal is to elimi-
nate pesticides from the contaminated zone. Numerous native microorganisms 
develop complex and viable metabolic pathways that allow the biodegradation of 
pollutants that are discharged into nature. In spite of the fact that the metabolic pro-
cedure is long, it is considered a more suitable option for evacuating the wellsprings 
of xenobiotic compound and the contamination they cause (Diaz 2004; Schoefs et al. 
2004; Finley et al. 2010). By virtue of the deadly dangers synthetic pesticides stance 
to the living beings, there is an unending quest for environmentally friendly pesti-
cides that can support agricultural enterprise. Organic pesticides depend on common 
exacerbates that viably control the invasion of bugs in agribusiness. As opposed to 
synthetic pesticides, organic pesticides are advantageous in that they are efficient and 
do not cause inadvertent blowback (Gerhardson 2002; Raaijmakers et  al. 2002; 
Fravel 2005). This chapter discusses the degradation of pesticides using microorgan-
isms and their metabolites. This topic is infinite, and we are going to underscore the 
most recent points, including studies on the biodegradation of organochlorine, 
organophosphorus, and carbamate pesticides by microbiological processes.

1.2  �Pesticides

A pesticide can be defined as any substance or mixture of substances that counter-
act, devastate, repulse, or destruct any pest (e.g., nematodes, insects, parasites, rats, 
weeds). Pesticides like herbicides, fungicides, and insecticides and different materi-
als are utilized to control pests (EPA 2015).

Every year, millions of tons of pesticides are used throughout the world. The 
expenditures on pesticides were 35.8 billion in 2006, which increased to 39.4 billion 
US dollars in 2007. One of the essential concerns is to limit hurtful impacts brought 
by organisms including viruses, bacteria, fungi and insects (Liu et al. 2001). The 
broad utilization of pesticides causes environmental worries, as just 5% or less from 
the applied pesticides achieve the objective living beings which brought about con-
tamination of soil and water bodies (major environmental problem of current age). 
Occasional utilization of pesticides results in the process of pesting. This redun-
dancy in the long time application without remediation, essentially prompts pesti-
cides and their deposits in the environments, endangering the whole populace by 
their multifaceted toxicity (Bouziani 2007).

1.2.1  �Types of Pesticides

Synthetic pesticides (Table 1.1) offer many benefits to agriculture; however, as dis-
cussed before, they are lethal to other non-target life forms and cause environmental 
contamination. Therefore, research works are focusing on new pests control choices 
due to the impacts of these compounds on human well-being and on the environment. 
The persistence of pesticides in soil differs from 7 days to quite a while relying on the 
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structure of the pesticide and penetration through the soil. For instance, the exceedingly 
toxic phosphates do not hold on for more than 3 months, while chlorinated hydrocar-
bon insecticides like chlordane are known to continue in any event for 4–5 years and a 
few times over 15 years. Constancy of pesticides represents a danger to domesticated 
animals and human well-being. Longer aplications of pesticides prompts the amassing 
of its deposits in soil which may come about into the expanded bioaccumulation by 
plants to the level at which the utilization of plant items may demonstrate harmful to 

Table 1.1  Summary of types of pesticides and their effects

Pesticides Class Examples Health effects

Insecticides Organophosphates Parathion, malathion, methyl 
parathion, chlorpyrifos, 
diazinon, dichlorvos, phosmet, 
fenitrothion tetrachlorvinphos 
and azinphos methyl

Neuropathy, myopathy,
tremors, irritability,
convulsions, inhibiting the 
enzyme 
acetylcholinesterase, 
paralysis

Carbamates Aldicarb, carbofuran 
(Furadan),
fenoxycarb, carbaryl (Sevin), 
ethienocarb and fenobucarb

Inhibition of 
acetylcholinesterase
enzyme, paralysis

Organochlorines
(dichlorodiphenyle
thanes and 
cyclodienes)

DDT, dicofol, heptachlor, 
endosulfan,
chlordane, aldrin, dieldrin, 
endrin, mirex and 
pentachlorophenol

Stimulation of the nervous 
system by disrupting the 
sodium/potassium
balance of the nerve fiber, 
tremors,
irritability, convulsions,
hyperexcitable state of the 
brain, cardiac arrhythmiatic 
and reproductive problems

Herbicides Phenoxy and
benzoic acids,
triazines, ureas, and
Chloroacetanilides

Chlorophenoxy acids,
hexachlorobenzene (HCB), 
Picloram, atrazine, simazine, 
propazine, diquat, paraquat, 
oxyfluorfen, alachlor, 
fluroxypyr

Dermal toxicity, 
carcinogenic effect,
damage to the liver, 
thyroid, nervous system, 
bones, kidneys, blood and 
immune system.

Fungicides Substituted 
benzenes,
thiocarbamates,
thiophthalimides,
organomercury 
compounds, etc.

Chloroneb, chlorothalanil,
hexachlorobenzene, ferbam, 
metam
sodium, thiram, ziram, ethyl 
mercury

Damage to the liver, 
thyroid, nervous system, 
bones, kidneys, blood and 
immune system, 
carcinogenic property also

Rodenticides Coumarins,1,3-
indandione

Warfarin, coumatetralyl, 
difenacoum, brodifacoum, 
flocoumafen, bromadiolone 
diphacinone, chlorophacinone, 
pindone

Nematicides Aldicarb, 
dibromochloropropane

Bactericides Metiram, difolatan
Botanicals Perethrin, permethrin

1  Bioremediation of Toxic Pesticides in Soil Using Microbial Products
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human being and also animals. Pesticides buildups in different environmental frame-
works (soil and additionally water) have been reported around the world.

1.2.2  �Biological Pesticides

As per the Environmental Protection Agency (EPA 2015), biopesticides are charac-
terized as naturally occurring pest control substances. They are categorized into 
three groups (Joshi 2006):

Microbial pesticides: a microbial living thing (microorganisms, protozoans, par-
asites) is the dynamic control agent

Plant pesticides: pesticidal substances produced by plants from presented genetic 
material (plant consolidated protectants)

Biochemical pesticides: naturally occurring substances that control pests by non-
toxic components. These incorporate substances that meddle with development or 
mating, for example, pheromones.

The good thing about biopesticides is their safety to non-target life form, biode-
gradability and their specificity, which allows the utilization of little measurements 
and power presentation, thus maintaining a strategic distance from contamination 
created by conventional pesticides (Rosell et al. 2008). Notwithstanding being less 
harmful than chemical pesticides, biopesticides are significantly utilized in inte-
grated pest management (IPM) procedures, where they incredibly diminish the uti-
lization of chemicals, thereby increasing harvest yields. The specificity of 
biopesticides varies widely depending on their chemical counterparts.

1.2.2.1  �Organochlorine, Organophosphate, and Carbamate Pesticides

Organochlorine pesticides (Fig. 1.1) are being used widely throughout the world for 
public health and farming purposes. As of now, their utilization is being eliminated 
in light of their toxic quality, environmental industriousness and collection in the 
environmental way of life. Hexachlorocyclohexane (HCH) is a standout among the 
most widely used organochlorine pesticides for both agriculture and medical pur-
poses. Although the use of a specialized mixture containing eight stereoisomers of 
organochlorine compounds was restricted in a few developing countries in the 
1970s, many developed nations continue to use lindane (γ-HCH) for monetary rea-
sons. Hence, new destinations are consistently being polluted by γ-HCH and its 
stereoisomers (Blais et al. 1998; Iwata et al. 1993).

As of now, among the different groups of pesticides used around the world, 
organophosphorus pesticides are the major and most widely used, accounting for 
more than 36% of the total world market. The most utilized among these is methyl 
parathion. Its accumulation causes numerous health risks; therefore, its degradation 
becomes vital (Ghosh et al. 2010). Organophosphorus pesticides (OP) are esters of 
phosphoric acid, also called organophosphates, which includes aliphatic, phenyl, 
and heterocyclic derivatives (Fig. 1.2). Organophosphates are used to control the 
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Fig. 1.1  Structure of organochlorine pesticide

Fig. 1.2  Structure of organophosphate pesticide

1  Bioremediation of Toxic Pesticides in Soil Using Microbial Products
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sucking, biting, and boring insects, arachnid, aphids, and pests that assault crops 
like cotton, sugarcane, peanuts, tobacco, vegetables and other products of the soil. 
Organophosphorus pesticides are advertised by a considerable lot of the world’s 
major agrochemical organizations. Few principal agricultural products are para-
thion, methyl parathion, chlorpyriphos, malathion, monocrotophos, diazinon, feni-
trothion, and dimethoate (Fig. 1.2).

Carbamates were introduced as pesticides in the early 1950s and are still used 
extensively in pest control due to their effectiveness and broad spectrum of biologi-
cal activity (insecticides, fungicides, herbicides). High polarity and solubility in 
water and thermal instability are typical characteristics of carbamate pesticides, as 
well as high acute toxicity. The carbamates are transformed into various products in 
consequence of several processes such as hydrolysis, biodegradation, oxidation, 
photolysis, biotransformation, and metabolic reactions in living organisms (Soriano 
et  al. 2001). Chemically, the carbamate pesticides are esters of carbamates and 
organic compounds derived from carbamic acid (Fig. 1.3). This group of pesticides 
can be divided into benzimidazole-, N-methyl-, N-phenyl-, and thiocarbamates. The 
compounds derived from carbamic acid are probably the insecticides with the wid-
est range of biocidic activities (Sogorb and Vilanova 2002).

1.2.3  �Importance of Pesticides

The important goal of using pesticides in agricultural fields is to control vermins and 
disease vectors. This has been ponder upon as human efforts through research could 
be used in expanding agricultural yields and enhancing general wellbeing when 
pesticides are applied (Helweg 2003). Pesticides discharged into the environment 
may have a few unfriendly environmental impacts extending from long time impacts 
to numerous changes in biological community. In spite of the great consequences of 
utilizing pesticides in agriculture and public health, their utilization is typically with 
pernicious environmental and general well-being impacts. Pesticides are considered 
remarkable environmental contaminants because of their high organic toxicity 
(acute and chronic). Pesticides by definition are lethal compound operators. A pes-
ticide is normally equipped with harmful substances to all types of life other than the 
focused pests. Because of this property, they can be best defined as biocides (fit to 
destroy all forms of life). Albeit a few pesticides are produced to be specific in their 
method of action, that their scope of selectivity is just restricted to the targeted pest.

Fig. 1.3  General structures of carbamate pesticides
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1.2.4  �Environmental Impact of Pesticides

The broad usage and transfer of pesticides by agriculturists, establishments and the 
overall population give numerous conceivable wellsprings of pesticides in the envi-
ronment. Pesticides once discharged into the environment may have a wide range of 
destinies. Pesticides that are released can travel through the air and may in the long 
run get accumulated in different parts of the environment, for example, in soil or 
water. Pesticides that are connected specifically to the soil may be washed off the 
soil into nearby surface water bodies or may permeate through the soil to lower soil 
layers and groundwater (Harrison 1990). However, these exchanges not only hap-
pen between ranges that are near one another (for example, a neighborhood lake 
getting a portion of the herbicides connected to an adjoining land) but also addition-
ally may include transportation of pesticides over long distance in the environment. 
The applications of DDT and the nearness of pesticides in waterways, for example, 
causes threat to the living organisms in such an environment (Fig.  1.4). Besides 
being toxic to people, pesticides are highly dangerous to the biological community 
(Veiga et  al. 2006). Volatilization of sprayed pesticides typically hit (straightfor-
wardly) non-target vegetation, which results in the contamination of air, soil, and 
non-target plants (Johnson and Ware 1992). There are constant dangers to human 
life, brought about by long time applications of pesticides. It can bring about hor-
monal disturbance and can bring about brain degeneration (Gupta 2004). The steady 
release of pesticides through draining, sorption, and volatilization brings about pol-
lution of various levels in the environment (Nawab et  al. 2003; Andreu and 
Picó 2004).

Fig. 1.4  Impact of pesticides on human health

1  Bioremediation of Toxic Pesticides in Soil Using Microbial Products
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1.2.4.1  �Effects of Pesticides on the Environment

Pesticides applied to the environment have appeared to have long-term leftover 
impacts, while others have appeared to have intense lethal impacts when not appro-
priately taken care of. Organochlorine pesticides, for instance, remain stable in the 
environment, due to which they contaminate groundwater, surface water, suste-
nance items, air, and soil, and may affect people through direct contact. Accumulation 
of pesticides in human being has been very much archived to be the reasons for the 
occurrences of few illnesses such as cancer, respiratory ailments, skin diseases, 
endocrine disturbance, and reproduction disorders. This has raised concern among 
environmental researchers to focus their research on environment and to obtain a 
solution to protect human population from the unfavorable impacts of pesticides. 
Even 50 years (half a century) after Rachel Carson’s cautioned the world about the 
staggering impact that pesticides have on birds and useful insects, pesticides is still 
being an inescapable and tricky danger to the world’s biological systems. An enor-
mous substance assault on our environment is propelled every year. This harmful 
flow of pesticides affect biological systems, for example, in growing sub-urban 
development and dammed streams, debilitating the survival of many fowls, fish, 
insects, and little oceanic living beings that frame the premise of the sustenance 
web. All the more for the most part, pesticides decrease species of all animals and 
add to populace decrease microorganisms and plants by destroying environmental 
surroundings, diminishing nourishment supplies and impeding proliferation 
(Kegley 1999).

1.2.4.2  �Effects Involving Pollinators

Some common pollinators, for example, honeybees and butterflies, are exception-
ally delicate to pesticides. Pesticides can kill honey bees and are clearly involved in 
eliminating pollinators, through the component of Colony Collapse Disorder 
(Hackenberg 2007), in which worker bees from a beehive or Western honey bee 
colony unexpectedly vanish. Since honey bees are vital pollinators of both harvests 
and local plants, a decreased number of common pollinators can result in decreased 
seed production and other environmental products. This has a strong impact on the 
environment. Honey bees are very essential for the pollination of crops and wild 
plants. In spite of the fact that pesticides are screened for their toxic effects on honey 
bees and the utilization of these pesticides is allowed under stringent conditions, 
numerous honey bees are being killed by pesticides, which results in extremely less 
yield of harvests, which rely on honey bee pollination (Miller 2004).

O. P. Abioye et al.
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1.2.4.3  �Effects on Soil Erosion, Structure, and Fertility

A significant number of the chemicals used in the production of pesticides are 
always soil contaminants, whose effect may persevere for a considerable length of 
time and antagonistically influence soil fertility. A smaller substance of environ-
mental matter in the soil builds the measure of pesticide and leave other part of the 
soil, since organic matter ties to and separates pesticides (Lotter et  al. 2003). 
Herbicides for instance can lessen vegetative cover of the ground thereby advancing 
soil disintegration by means of overflow and wind. Soil disintegration distorts the 
soil structure and results in lopsidedness in soil fertility. An exposed land with poor 
soil structure and poor soil fertility can’t bolster the development of plants on it. 
Biologically, such lands can’t bolster different types of life on it; consequently, they 
may prompt the fall of specific ecosystem.

1.2.4.4  �Effects on Water Quality

Water bodies are the destination for pesticides applied in the environment either 
from the air, or by overflow or by permeation to groundwater. There are four ways 
through which pesticides can reach water bodies: it might float outside of the pro-
posed zone when it is sprayed, it might permeate or filter through the soil, it might 
be conveyed to the water as spillover, or it might be spilled, for instance, coinciden-
tally or through carelessness. They may also be conveyed to water by disintegrating 
soil. When pesticides enter water bodies, they can possibly bring about destructive 
impacts on the well-being of humans and amphibians and can interfere with oceanic 
biological systems. This may affect fish production in streams and vast water bod-
ies, particularly where angling is one among the major financial exercises of a spe-
cific group. In the United States, for instance, pesticides were found to contaminate 
each stream and more than 90% of wells that were tested in a review by the US 
Geological Survey (Gillion 2007). Pesticide deposits have likewise been found in 
rain and groundwater. The UK government demonstrated that pesticide fixations 
surpassed those permissible for savoring water a few specimens of stream water and 
groundwater (Bingham 2007).

1.2.4.5  �Effects on Birds

Pesticides have had some of their most striking impacts on birds, especially those at 
the higher trophic levels, for example, bald eagles, hawks, and owls. These feath-
ered creatures are regularly uncommon, jeopardized, and helpless to pesticide 
buildups; for example, these species get affected due to the bioconcentration of 
organochlorine insecticides through terrestrial food chain. Pesticides may kill grain- 
and plant-nourishing birds and also deaths of numerous uncommon types of ducks 
and geese have been reported. Insect-eating birds, for example, partridges, grouse, 
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and pheasants, have diminished in farming fields by applications insecticides. 
Application of pesticides incorporated with diazinon and carbofuran has resulted in 
killing of many birds across the world (Kegley 1999). Organochlorine bug sprays, 
for example, DDT, are reported to have destroyed avian species even after their use 
is restricted. Weight reduction, helplessness to predation, a decrease in illness resis-
tance, absence of enthusiasm for mating and safeguarding region, and deserting of 
nestlings are the impacts of pesticides introduction.

1.2.4.6  �Effects on Human Beings

Pesticides can enter human body through inhalation of aerosols, dust, and vapor that 
contain pesticides; through oral exposure by consuming contaminated food and 
water; and through dermal exposure by direct contact of pesticides with skin 
(Fig. 1.4; Sacramento 2008). Pesticides are sprayed onto food, especially fruits and 
vegetables, and they secrete into soils and groundwater which can end up in drink-
ing water; pesticide spray can drift and pollute the air. Pesticides have more harmful 
effects on human health, which is based on the toxicity of the chemicals and the 
duration and magnitude of exposure (Lorenz 2009). Farmworkers and their families 
are mostly exposed to agricultural pesticides as the directly deal with chemical pes-
ticides. But every human contain a percentage of pesticides in their fat portions of 
body. Children are most susceptible and sensitive to pesticides due developing 
organs. The chemicals can bioaccumulate in the body over time. Exposure to pesti-
cides can result in mild skin irritation, birth defects, tumors, genetic changes, blood 
and nerve disorders, endocrine disruption, and even coma or death (Miller 2004).

1.3  �Microbial Degradation of Pesticides

Within the environment, the fate of pesticides is determined by abiotic and biotic 
factors. The rate at which completely different pesticides are biodegraded varies 
widely. Some pesticides like dieldrin and DDT are recalcitrant. Consequently, they 
remain in the environment for a long time and accumulate into food chains for 
decades after their application to the soil (Kannan et al. 1994). Biodegradation of 
DDT residues largely involves co-metabolism, that is, it requires the presence of an 
alternative carbon source, in which microorganisms growing at the expense of a 
substrate are able to transform DDT residues without deriving any nutrient or energy 
for growth from the process (Bollag and Liu 1990). Under reducing conditions, 
reductive dechlorination is the major mechanism for the microbial conversion of 
both the o,p’-DDT and p,p’-DDT isomers of DDT to DDD (Fries et al. 1969). The 
reaction involves the substitution of an aliphatic chlorine for a hydrogen atom. 
Using metabolic inhibitors together with changes in pH and temperature. Wedemeyer 
(1967) found that discrete enzymes were involved in the metabolism of DDT by 
Aerobacter aerogenes. The pathway for the anaerobic transformation of DDT by 
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microorganism is shown in Fig. 1.5. Degradation proceeds by successive reductive 
dechlorination reactions of DDT to yield 2,2-bis(p-chlorophenyl)ethylene (DDNU), 
which is then oxidised to 2,2- bis(pchlorophenyl) ethanol (DDOH). More oxidiza-
tion of DDOH yields bis(p-chlorophenyl) acetic acid (DDA) that is decarboxylated 
to bis(p-chlorophenyl)methane (DDM). DDM is metabolized 
to4′dichlorobenzophenone (DBP) or, instead, might bear cleavage of one of the 
aromatic rings to form p-chlorophenylacetic acid (PCPA). Below anaerobic condi-
tions, DBP was not more metabolized. Through an investigation of the co-metabo-
lism of DDT metabolites by a number of fungi (Subba-Rao & Alexander, 1985) 
were able to substantiate the pathway proposed by Wedemeyer (1967). There has 
been one report describing the conversion of DDE to 1-chloro-2,2-bis(p-chlorophe-
nyl)ethylene – DDMU by microorganisms. Some studies have given notable results 
on the biodegradation of organochlorine pesticides. Table 1.2 presents a variety of 
microorganisms that were able to degrade organochlorine pesticides. Among the 
various microorganisms, bacteria comprise the most cluster with regard to organo-
chlorine degradation, particularly soil habitants belonging to genera Bacillus, 
Pseudomonas, Arthrobacter, and Micrococcus (Langlois et al. 1970). Thus, to pre-
dict the different factors that influence the ability of Sphingobacterium sp. in the 
biodegradation of insecticides, Fang et al. (2010) studied biodegradation at com-
pletely different temperatures, pH levels, concentrations of insecticides, and with an 
extra supply of carbon. Results showed that the degradation rates were proportional 
to the concentrations of p,p′-DDT, o,p′-DDT, p,p′-DDD and p,p′-DDE ranging from 
1 to 50 mg.L−1. The ability of Sphingobacterium sp. to degrade DDTs was some-
what repressed by DDTs at a concentration as high as 50 mg.L−1. In step with the 
authors, this would possibly ensue to the actual fact that DDTs at high concentration 

Fig. 1.5  Proposed pathway for bacterial metabolism of DDT. (Source: Aislabie et al. 1997)
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are cytotoxic to Sphingobacterium sp. and inhibit degradation. The experiment was 
conjointly tested at different pH levels; 5, 7, and 9. The results indicated that neutral 
pH condition is favorable for the degradation of insecticide by Sphingobacterium 
sp., whereas higher or lower pH scale inhibits degradation. The influence of tem-
perature on the biodegradation was investigated by playacting the experiments at 
temperatures of 20, 30 and 40 °C. The results indicated that the optimum tempera-
ture for the biodegradation of DDTs by a Sphingobacterium sp. in pure culture 
was 30 °C.

Studies with fungi have conjointly proven the biodegradation of organochlorine 
pesticides. Ortega et al. (2011) evaluated marine fungi collected off the coast of São 
Sebastião, north of urban center state, Brazil. The fungi strains were obtained from 
marine sponges. The fungi Penicillium miczynskii, Aspergillus sydowii, Trichoderma 
sp., Penicillium raistrickii, Aspergillus sydowii, and Bionectria sp. were anteced-
ently tested in solid medium containing 5, 10, and 15 mg of DDD. The tests were 
conjointly administered with liquid medium throughout a rotary shaker, with 

Table 1.2  Microorganisms having potential for remediation of pesticides

Microorganism involved 
in the degradation Pesticides

Pseudomonas Cypermethrin, oxyfluorfen, chlorphyrifos, iprodione (fungicide), 
atrazine (Mercadier et al. 1997; Kaneva and Chen 1999; Martínez 
et al. 2001; Fulekar and Geetha 2008; Jung et al. 2008)

Bacillus Lindane, endosulfan, oxyflurfen (Benimeli et al. 2008; Mervat 2009; 
Mohamed et al. 2011)

Rhodococcus Metamitron (Pesce and Wunderlin 2004; Kumar and Philip 2006)
Arthrobacter Metamitron, atrazine (Kumar and Philip 2006)
Staphylococcus Endosulfan (Mohamed et al. 2011)
Stenotrophomonas Tetrachlorvinphos, chlorpyriphos (Parekh et al. 1994; Aislabie et al. 

2005)
Bjerkandera Terbufos, azinphosmethyl, phosmet and tribufos (Kumar and Philip 

2006)
Pleurotus Terbufos, azinphosmethyl, phosmet and tribufos (Kumar and Philip 

2006)
Proteus Tetrachlorvinphos (Parekh et al. 1994)
Proteus Tetrachlorvinphos (Parekh et al. 1994)
Vibrio Tetrachlorvinphos (Parekh et al. 1994)
Yersinia Tetrachlorvinphos (Parekh et al. 1994)
Serratia Tetrachlorvinphos (Parekh et al. 1994)
Synechocystis 
(cyanobacterium)

Chlorpyrifos (Ortiz-Hernández and Sánchez-Salinas 2010)

Brucella Chlorpyrifos (Yang et al. 2006)
Trichoderma Malathion (Jauregui et al. 2003)
Micococcus Cypermetherin (Singh et al. 2011)
Sphingomonas Oxyfluorfen (Vidya Lakshmi et al. 2008)
Enterobacter Chlorpyrifos (Chawla et al. 2013)

Sources: Chawla et al. (2013)
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identical quantity of DDD per a 100 cm3 liquid medium. The results showed that the 
fungi P. miczynskii, A. sydowii, and Trichoderma sp. presented good growth in the 
presence of the pesticide.

1.4  �Bioremediation of Toxic Pesticides 
with Microbial Products

Different microorganisms (Table 1.2) can be utilized to degrade specific pesticides, 
though this largely depends on the chemical constituents of the pesticide. The selec-
tion of these microorganisms should be done carefully for effective remediation as 
they can continue to exist within a narrow range of contaminants (Prescott et al. 
2002; Dubey 2004). Bacteria, mainly of the genus Alcaligenes, Pseudomonas, 
Flavobacterium, and Rhodococcus, are the potent degraders of pesticides (Larkin 
et  al. 2005). Actinomycetes also show an impressive ability to biodegrade pesti-
cides. Research revealed that these microorganisms produce various extracellular 
enzymes that enable them to degrade different types of complex organic com-
pounds. These actinomycetes work under aerobic conditions, and an extensive fea-
ture is the presence of monooxygenases and dioxygenases (Bastos and Magan 
2009). The major genera involved are Rhodococcus, Streptomyces, Clavibacter, 
Arthrobacter, and Nocardia. Recent studies have shown the capacity of actinomy-
cetes in deterioration of pesticides. White rot fungi such as Phanerochaete chryso-
sporium and Trametes versicolor have played a significant role in biodegradation of 
pesticides like lindane, atrazine, metalaxyl, DDT, dieldrin, aldrin, mirex and chlor-
dane, diuron, etc. (Pointing 2001; Bending et  al. 2002; Shanahan 2004; Tortella 
2005; Rubilar et al. 2007; Fragoeiro and Magan 2008). Pesticides have different 
chemical structures including s-triazines, carbamates, triazinonones, organophos-
phates, acetanilides, etc. Because of this variation, their mineralization is difficult 
by single isolates; therefore, consortia of bacteria must be used for complete and 
effective degradation. The degradation of pesticides results in the production of 
carbon dioxide (CO2) and water (H2O) via oxidation of parent compounds. The 
bacterium involved in the degradation process derives its energy from the degrada-
tion of the products. The optimum atmospheric conditions, that is, temperature, pH 
of soil, moisture contents, etc., are what determines the efficiency of the degradation 
process.

Genetic modification and mutations of different bacterial isolates also enhance 
the effectiveness of applied microbes. The breakdown of pesticides has positive 
effects on the fertility of agricultural soil. Chlorpyrifos has a massive effect on con-
taminating soil and water bodies. Microbial breakdown is very useful for the detoxi-
fication of such (chloroorganic) pesticides (Chishti et al. 2013).

The importance of microbial degradation of pesticides cannot be overempha-
sised. This is due to the diversity, wide distribution, and adaptation of variable meta-
bolic pathways (Cui et al. 2012). Microbial strain screening and isolation are very 
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effective for the degradation of carbendazim in mineral culture medium. 
Sphingobium japonicum is a strain that degrades chlorinated pesticides, that is, 
hexachlorocyclohexane. This strain (Sphingobium japonicum LZ-2) can completely 
decompose lindane at a concentration of 20 mg/L in 10 h (Liu et al. 2007). An aero-
bic bacterium (Burkholderia cepacia strain CH-9) can be used for the degradation 
of imidacloprid and metribuzin. Sixty-nine percent degradation of imidacloprid and 
86% degradation of metribuzin can be obtained in 20 days with an initial dose of 
50 mg/L in a mineral salt medium. Bifenthrin (BF) is a synthetic pesticide that can 
be degraded by pyrethroid bacteria (Acinetobacter calcoaceticus). A 56.4% degra-
dation rate could be achieved with an initial concentration of 100 mg/L at a pH 
range of 6.0–8.0 and 5% inoculation (Tingting et al. 2012). Streptomycetes strains 
have enormous applications in the degradation of chlorpyrifos (CP) pesticide. The 
ability of these strains to carry out biodegradation can be studied in an agar medium. 
Alterations of the pH can affect the efficiency of the degradation process (Briceño 
et  al. 2012). Liquid chromatography (HPLC) analysis of bacterial strains shows 
their ability to degrade methomyl and carbofuran. Acetonitrile and water were used 
as mobile phases. Carbofuran-degrading strains are very close to the genera 
Flavobacterium and Alcaligenes and that of methomyl-degrading strains. 
Photosynthetic bacterium (GJ-22) is capable of degrading cypermethrin (CMP). 
CMP degradation by GJ-22 is very productive at 25–35 °C and pH of 7.0. By per-
forming gas chromatography/mass spectrometry (GC-MS), metabolic products are 
detected. Lactic acid bacteria can degrade organophosphorus insecticides through 
fermentation. Lactic acid bacteria utilize organophosphate as a source of carbon and 
phosphorus (Kye et al. 2009). Highly efficient bacterial strain of Enterobacter aero-
genes can degrade many other pesticides, such as bifenthrin, cypermethrin, and so 
on (Lio and Xie 2009).

Sphingomonas a Gram-negative bacterial strain possesses high potential for 
degrading DDT (Shunpeng and Mingxing 2006). Pyrethroid insecticide which is an 
allethrin can be degraded by Acidomonas sp. Eight bacterial strains potentially 
degrade PCNP pesticide. Better results were obtained when all these strains were 
collectively used (Ning et al. 2005). Two bacteria cad1 and cad2 that degraded cadu-
safos in mineral salt medium with nitrogen (MSMN) were also able to degrade 
ethoprophos nematicide completely (Karpouzas et al. 2005). Psychrotrophic bacte-
rium can degrade Me-parathion. This biodegradation is sensitive to pH and tem-
perature variations (Krishna and Philip 2009). Six genera are able to degrade 
organochlorine pesticides, that is, endosulfan. Different genera have different 
potential to degrade them, from which Micrococcus and Pseudomonas were highly 
active compared to others (Li et al. 2004). Immobilized Escherichia coli (a well-
known bacterium) was able to degrade organochlorine insecticide which had an 
ester bond (Singh et al. 2003). Fungi from the environment can be properly screened 
as an effective tool for biodegradation of toxic organic chemicals. Fusarium verti-
cillioides is a fungal strain capable of using lindane as a carbon and energy source 
under aerobic conditions. This strain can be isolated from Agave tequilana leaves 
using enrichment techniques. Fusarium oxysporum, Lentinula edodes, Penicillium 
brevicompactum and Lecanicillium saksenae possess great potential for the 
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biodegradation of pesticides like pendimethalin, difenoconazole and terbuthylazine 
in batch liquid cultures. These fungal strains are investigated to be valuable as active 
microorganisms for pesticides degradation (Hai et al. 2012). Endosulfan-degrading, 
aerobic fungal strains are effective for soil contaminated with organochlorine pesti-
cides. These strains (Mortierella sp. strains W8 and Cm1–45) resulted in 50–70% 
degradation in 28 days at 25 °C. During degradation, diol formation of endosulfan 
takes place first and then endosulfan lactone conversion.

1.4.1  �Remediation of Toxic Pesticides by Microbial Enzymes

Microorganisms in soil (bacteria and fungi) are responsible for the degradation of 
glyphosate via two chemical pathways. The first pathway produces a compound 
known as AMPA (aminomethylphosphonic acid) which is found in soils treated 
with glyphosate. This is thought to be mildly toxic to plant growth. The second 
pathway produces the compound sarcosine. The microorganisms responsible for the 
degradation use enzymes to break down glyphosate, so as to get phosphorus, nitro-
gen, and carbon sources for themselves. Studies examining the rate of glyphosate 
degradation revealed some variability in results, and the process can depend on a 
range of factors. There is some evidence for the rate of degradation being correlated 
with the population size of bacteria in the soils (Gimsing et al. 2004). Overall, sorp-
tion of glyphosate onto soil particles is thought to decrease degradation, but glypho-
sate that has been sorbed can still be degraded by microorganisms. Rates vary with 
topographical features that affect water availability (Stenrod et al. 2006) and soil 
type and increase with temperature.

Enzymes produced during different metabolic pathways in plants as well as in 
microbes present in soil are key for bioremediation of pesticides. Optimum environ-
mental conditions such as pH and temperature support fast rate of removal of toxic 
intermediates. The engineered bacteria were used to produce esterase genes which 
specifically act on a substrate and degrade more than 65% methyl parathion within 
3 h (Li-Qing et al. 2008). Carbofuran, an insecticide present in contaminated soil, 
can be treated with Paracoccus sp. YM3, by MSM method, which enzymatically 
degrades carbofuran into its metabolites which were analyzed by HPLC. This bac-
terium uses carbofuran as a sole source of carbon (Peng et al. 2008). Genetically 
modified E. coli enzymatically degrades methyl parathion and many other OPs, that 
is, PNP, which is detected by HPLC (Zhang et al. 2008). Micrococcus sp. has been 
found to have a versatile ability to degrade OPs pesticide like cypermethrin by enzy-
matic action (Tallur et  al. 2008). Lindane is degraded by fungus Conidiobolus 
through enzyme action. GC-ECD and GC/MS confirm that there is no metabolite; 
this proved that lindane is completely degraded by this fungus (Nagpal et al. 2008). 
In a study of atrazine (AT) and alachlor (AL), their degradation by treating them 
with extracellular enzyme extracted from fungi was determined (Chirnside et  al. 
2007). FDS-1 strain of Burkholderia sp. can degrade nitrophenyl enzymatically at 
30 °C and pH of 7.0 taken as optimized conditions (Lan et  al. 2006). Strains of 
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genetically modified bacteria contain enzymes, which potentially can degrade a 
number of pesticides including OPs, carbamates, and pyrethroids (Liu et al. 2006). 
A study revealed that different enzymes specifically degrade different pesticides 
(OPs) in wheat kernels (Yoshii et al. 2006). Thirty fungal strains were used to inves-
tigate the degradation rate of Diuron and pyrithiobac-sodium. Results suggested 
that the highest degrading rate was by ligninolytic enzymes (Gondim-Tomaz et al. 
2005). Enterobacter enzymatically degrades chlorpyrifos and many other OPs. It 
degrades them and uses them as carbon and phosphorus source (sole source) (Singh 
et al. 2004). Some Gram-negative bacteria have the ability to degrade dimethoate. 
They use it as a sole source of carbon. Bacteria hydrolyze insecticides by using dif-
ferent enzymes, namely, phosphatases and esterases (Kadam et al. 2003). More than 
15 fungal strains were capable of degrading different OPs up to 96% by enzyme-
catalysed pathways (Jauregui et al. 2003). Enzymes for the degradation of organo-
chlorinated pesticide are mainly dehydrochlorination enzymes, hydrolytic enzymes, 
and dehydrogenases. The genes related are Lin family genes with typical functional 
codes. Further studies are needed to find an effective tool for the complete removal 
of these pesticides (Zhang et al. 2012). The amino acid sequence of phosphotries-
terase mutant is very effective in organophosphorus pesticide degradation (Xiang-
Ming and Ping-Ping 2012).

The first signs of the aerobic lindane degradation were determined by Nagata 
et  al. (1999), who demonstrated that Sphingobium japonicum UT26 possesses a 
dechlorinase enzyme, LinA (γ-hexachlorocyclohexane dehydrochlorinase, EC 
4.5.1), encoded by the linA gene that catalyzes two dehydrochlorination steps: 
γ-HCH to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN) via 
γ-pentachlorocyclohexene (γ-PCCH). In addition to γ-HCH and γ-PCCH, α- and 
δ-isomers of HCH were also dehydrochlorinated by LinA, whereas γ-HCH was not 
(Nagata et al. 1999). Furthermore, it was experimentally confirmed that dehydro-
chlorination of γ-HCH proceeds by a 1,2-ante dehydrochlorination reaction (Nagata 
et al. 2007). Regarding the environmental problems caused by lindane and the cur-
rent lack of information about the presence of dechlorinase activity in Streptomyces, 
the aim of this point was to demonstrate, for the first time, a specific dechlorinase 
activity in Streptomyces using lindane as a substrate. In order to determine lindane 
and metabolites in cell-free extract of Streptomyces sp. M7, the strain was grown in 
flasks with 250 mL of MM containing γ-HCH 100 μg mL−1 and incubated at 30 °C 
at 100 rpm for 48 and 96 h. At the beginning of the experiment, the inoculum con-
tained 150 μL of concentrated spore suspension (109 CFU ml−1). Lindane and its 
metabolites were extracted by solid-phase extraction (SPE) using C18 columns, 
evaporated to dryness under reduced pressure, and the residue was resuspended in 
hexane. Routine quantitative determinations of lindane (γ-HCH), 
γ-pentachlorocyclohexene (γ-PCCH), and 1,3,4,6-tetrachloro-1,4-cyclohexadiene 
(1,4-TCDN) were carried out with gas chromatography-micro-electron capture 
detector (GC-μECD) [37–38]. The gas chromatography results of the cell-free 
extracts obtained at 48 and 96 h of growth of Streptomyces sp. M7 revealed the 
appearance of γ-PCCH (Rt 6.26 min) and 1,4-TCDN (Rt 5.29 min), the first and 
second products of the lindane catabolism by the specific dechlorinase in the 
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catabolic way proposed by Nagata et al. (1999). The relative abundance of γ-PCCH 
and the 1,4-TCDN increased one and a half times, at 96 h compared to 48 h of 
growth. However, these results indirectly demonstrated the presence of one specific 
enzyme in the lindane degradation pathway from Streptomyces sp. M7. This is one 
of the recent studies on dehalogenase activity in actinomycetes with lindane as the 
specific substrate. It has only been reported in Sphingomonas (Nagata et al. 1999) 
and a putative 2,5-dichloro-2,5cyclohexadiene-1,4-diol dehydrogenase (2,5-DDOL 
dehydrogenase) was reported in Frankia (Normand et al. 2007). Genetic studies of 
this strain are necessary for a proper understanding of the principle of its ability to 
degrade different chlorinated hydrocarbon compounds.

1.4.2  �Remediation of Toxic Pesticides by Biosurfactant

A wide variety of microorganisms such as bacteria, fungi, and yeast can naturally be 
used to produce biosurfactants extracellularly or as part of the cell membrane. Some 
examples are Pseudomonas aeruginosa (produces rhamnolipids), Bacillus subtilis 
(produces a lipopeptide called surfactin) (Ron and Rosenberg 2001; Mata-Sandoval 
et  al. 2002; Mulligan 2005), Nocardia amarae (Moussa et  al. 2006), and 
Saccharomyces lipolytica CCT- 0913 (Lima and Alegre 2009). Barkay et al. (1999) 
examined the influence of the bioemulsifier alasan on the biodegradation fates of 
PAHs. The presence of alasan (500 μg mL−1) more than doubled the rate of fluoran-
thene mineralization and significantly increased the rate of phenanthrene mineral-
ization by Sphingomonas paucimobilis EPA505. Shin et  al. (2006) used a 
rhamnolipid from Pseudomonas to remediate soil contaminated with phenanthrene 
by the combined solubilization biodegradation process. They reported a high per-
centage of removal in the solubilization step and a significant decrease of phenan-
threne in the soil sample during biodegradation. They suggested that the degradation 
of contaminants by specific species might not be affected by the residual biosurfac-
tants following the application of the solubilization process, that they would not 
present negative effects to the environment, and that they could be combined with 
the biodegradation process to improve the removal efficiency. In general, most pes-
ticides used in agriculture are moderately hydrophobic compounds, with complex 
molecular structures that differ from hydrocarbons in their lower hydrophobicity 
and in the presence of a polar functional group. These compounds are also strongly 
adsorbed by soil organic matter and desorption is limited (Rodríguez-Cruz et al. 
2004). Their desorption rate decreased with an increase in aging time. Wattanaphon 
et al. (2008) evaluated the ability of a BS biosurfactant produced by Burkholderia 
cenocepacia BSP3 to enhance pesticide solubilization for further application in 
environmental remediation. Moreover, it lowered the surface tension of deionized 
water to 25 ± 0.2 mN m−1 and exhibited good emulsion stability. Many microbes 
have been discovered with abilities to degrade different pesticides and toxic com-
pounds. Research works are carried out to isolate and characterize those 
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microorganisms that are responsible for the degradation of carbfuran, carbaryl, and 
Baygon (Sutherland et al. 2002). Genes responsible for the degradation of pesti-
cides and hazardous chemicals were present on the plasmids. It was observed that 
sequences of Esd gene have the same homology to monooxygenase family that 
requires reduced flavin, presented by a separate flavin reductase enzyme, found in 
Mycobacterium smegmatis as co-substrates (Weir et  al. 2006). Esd gene has the 
ability to catalyze the oxygenation of β-endosulfan to endosulfan monoaldehyde to 
endosulfan hydroxyether, but it lacks the ability to degrade either α-endosulfan or 
the metabolites of endosulfan and endosulfan sulpfate. Coding enzyme of the gene 
Ese, from the monooxygenase family, has also been reported (Lal et  al. 2006), 
which has the ability to break both endosulfan α and β using Arthrobacter species.

1.4.3  �Remediation of Toxic Pesticides by Microbial Pigments

Filamentous fungi produce several non-carotenoid pigments (quinones). 
Anthraquinone pigments are produced by Eurotium spp., Fusarium spp., Curvularia 
lunata, and Drechslera spp. The yellow pigments epurpurins A to C were isolated 
from Emericella falconensis and Emericella fruticulosa. Moreover, Monascus spp. 
produce azaphilone pigments. A red colorant of the anthraquinone class, it may be 
produced by a variety of Penicillium oxalicum. The pigments produced by microor-
ganisms that are commercially used are riboflavin (vitamin B2), a yellow pigment 
accepted in many countries and produced by Eremothecium ashbyii and Ashbya 
gossypi, and the pigments from Monascus purpureus and M. ruber. Carotenoids 
(yellow pigments) are being produced by several microorganisms, but to this 
moment commercial production is only from microalgae, such as β-carotene using 
Dunaliella salina and D. bardawil and astaxanthin by Haematococcus pluvialis.

Microbial pigments are advantageous, when compared to similar pigments 
extracted from plants or animals. However, the isolation and development of new 
strains may provide new, different pigments which could be effective in biodegrada-
tion of pesticides (Babitha 2009).

Fungi often act as important natural control agents against insects, pathogenic, 
nematodes and as herbicide. Some fungi that are utilized as biopesticides are patho-
genic to insect hosts and are referred to as entomopathogenic fungi; examples are 
members of Entomophtorales (Zygomycota) and Hyphomycetes currently under 
research (Srivastava et al. 2009). Fungal strains are considered suitable for biopes-
ticide development because, unlike other microorganisms, the infectious propagules 
(conidia) need to be ingested and contact with cuticle allows the fungi to enter the 
insect body (Thomas and Read 2007).

Fungi can act as an insecticide in two ways:

	(a)	 Infection: many of the fungi species cause death to the insect through asexual 
spores called conidia. The infective unit (conidium) of entomopathogenic fungi 
binds to the host cuticle by nonspecific interaction mediated by cuticle-
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degrading enzymes present on the conidia or by fungal lectins. These conidia 
enter through the body wall of the host pest by dissolving the body wall by the 
combined action of enzymes, i.e., chitinase and protease, secreted by the fungi. 
Fungal penetration is further enhanced by mechanical force.

	(b)	 Mycotoxins: another fungi mode can cause the death of the host by the produc-
tion of mycotoxins, which can interfere in the nervous system of insects. 
Mycotoxins such as aflatoxin B, trichothecenes, patulin, and ochratoxin are 
reported to be toxic to insects (Srivastava et al. 2009).

Virus-based biopesticides have been used as insect control agents. The larvae of 
many insect species are vulnerable to viral diseases. Baculoviruses are a large 
virus group belonging to the family Baculoviridae and can infect different insect 
orders, particularly Lepidoptera and Diptera (Theilmann et  al. 2005). 
Baculoviruses are classified into two genera: nuclear polyhedrovirus (NPV) and 
granulovirus (GV) (Cory and Hails 1997; McCutchen and Flexner 1999). Two 
morphologically distinct forms of infectious particles are generated in the bacu-
lovirus cycle, the occlusion derived virus (ODVs), comprising enveloped virions 
embedded within a crystalline matrix of protein (polyhedrin for NPVs and gran-
ulin for GVs), and budded virus (BVs), consisting of a single virion enveloped 
by a plasma membrane. Due to their specificity and high virulence to a number 
of insect pest species, they have been used worldwide to control lepidopteran 
pests in many crops. BVs are responsible for the systemic or cell-to-cell spread 
of the virus within an infected insect. OVs, in turn, are responsible for the larva-
to-larva transmission of the virus (Inceoglu et al. 2006). Like bacteria, viruses 
must be ingested to infect the insect hosts. Forest pests are good targets for viral 
pesticides because the permanence in the forest environment contributes to the 
pathogen cycle and the forest canopy also helps to protect viral particles from 
radiation. Different approaches targeted at enhancing the role of baculovirus as 
effective biopesticides. For example, the effect of baculovirus may be enhanced 
by the synergistic action of specific chemical insecticides, such as the pyrethroids 
deltamethrin and permethrin (McCutchen and Flexner 1999).

Few protozoan pathogens can kill insect hosts; however, many of them cause seri-
ous infections with debilitating effects (Lacey and Goettel 1995). The conse-
quence of protozoan infection is the reduction in the number of offspring by the 
infected insects. Species of the genera Nosema sp. and Vairimorpha necatrix 
offer the greatest biopesticide potential. Nosema locustae is a species of 
Microsporidium commercially available to control grasshoppers and crickets. It 
is most effective when ingested by immature grasshoppers (early nymphal 
stages). Spore formed by the protozoan is the infection stage of insusceptible 
insects; it germinates in the midgut and causes a slow progressive infection 
where the pathogen causes death 3–6 weeks after the initial infection (Rosell 
et al. 2008). Ostrinia nubilalis that causes important damages to corn was con-
trolled by Nosema pyrausta infection, which reduced the egg production per 
female by 53% and 11% at 16 and 27 °C temperature, respectively (Bruck et al. 
2001). Nosema locustae has been used to reduce grasshopper population in 
rangeland areas; although not all insects are killed, the infected grasshoppers 
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consume less forage, and the females produce fewer eggs. However, the utility of 
N. locustae as biopesticide remains questionable because of the difficulty to 
determine the treatment efficacy in this highly mobile insect.

1.4.4  �Remediation of Toxic Pesticides by Microbial Crystal 
Protein and Toxins

Most biopesticides available in the market are bacterial products. The well-known 
and widely used bacterial biopesticide comprises Gram-positive, spore-forming 
bacteria belonging to the genus Bacillus that are commonly found in soil. The 
majority of commercial microbial insecticides are preparations based on strains of 
Bacillus thuringiensis (Bt) that produces a crystalline inclusion body during sporu-
lation (Frankenhuyzen 2009).

The crystal proteins (Cry proteins) are toxic to many insects and are defined as 
endotoxins (Bt toxin) that are generally encoded by bacterial plasmids. Both spores 
and inclusion bodies are released upon lysis of the parent bacterium at the end of the 
sporulation cycle, and if ingested, the spores and crystals act as poisons in certain 
insects. The protein is activated by alkaline conditions and enzyme activity of the 
insect’s gut; hence, Bt is referred to as a stomach poison (Chattopadhyay et  al. 
2004). The toxicity of the activated protein is dependent on the presence of receptor 
sites on the insect’s gut wall. This match between toxin and receptor sites deter-
mines the range of insect species killed by each Bt subspecies and isolates 
(Frankenhuyzen 2009). Cry proteins are produced as protoxins that are proteolyti-
cally converted into a combination of up to four smaller toxins upon ingestion. 
These proteins bind to specific receptors in the larval midgut epithelium causing the 
formation of large cation-selective pores that increase the water permeability of the 
cell membrane. A large uptake of water then causes cell swelling and rupture of the 
midgut. Poisoned insects can die quickly from the toxin activity or may die within 
2–3 days from septicemia due to the entering of gut contents into the bloodstream. 
Bt strains containing mixtures of up to 6–8 Cry proteins have been used as microbial 
pesticides since Bt var. kurstaki have been commercially available since 1961 
(Montesinos 2003). Formulations are active against insect order Lepidoptera (moths 
and butterflies), Diptera (flies and mosquitoes), Coleoptera (beetles and weevils), 
and Hymenoptera (bee and wasps) larvae (Frankenhuyzen 2009). Of the recognized 
subspecies of Bt, var. kurstaki is toxic to gypsy moth, cabbage looper, and caterpil-
lars (order Lepidoptera); var. israelensis is toxic to fungus gnat larvae, mosquitoes 
(species of Aedes and Psorophora), black fly, and some midges (order Diptera); var. 
san diego is effective against potato beetle, elm leaf beetle, and boll weevils (Whalon 
and McGaughey 1998); var. aizawai is effective against wax moth larvae and dia-
mondback moth caterpillar; and var. morrisoni is toxic against moth and butterfly 
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caterpillars (order Lepidoptera) (Chattopadhyay et  al. 2004). Cytolysins interact 
with phospholipid receptors on the cell membrane in a detergent-like manner (Gill 
et al. 1987). The hydrophobic portion of the cytolysins binds the amphipathic phos-
pholipids; transmembrane pores are formed and cells are lysed by osmotic lysis 
(Knowles and Ellar 1987). Spore inclusions contain many proteins, have distinct 
activities, and may act in a synergistic manner (Yokoyama et al. 1998). Cry proteins 
are non-toxic to vertebrate species even at doses higher than 1 × 106 μg/kg body 
weight, while dosages acutely toxic to susceptible insects are about μg/kg body 
weight (Rosell et al. 2008); however, Bt formulations can lead to skin and eye irrita-
tion (Siegel and Shadduck 1990). The mammalian stomach which has an acidic 
environment does not enhance solubilization and activation of the Cry proteins. 
These proteins are broken down very fast (often in few seconds) – from 60–130 kDa 
to polypeptides less than 2 kDa that corresponds to peptides with 10 amino acids in 
length. Research into vertebrates has failed to find high-affinity Cry protein binding 
sites on gut epithelial cell membranes (Rosell et al. 2008). Bt has thus become a 
bioinsecticide of great agronomical importance and is classified as toxicity class III 
pesticide (slightly toxic). Commercial Bt products are powders that contain a mix-
ture of dried spores and toxin crystal proteins, and these are applied to the leaves 
and roots where insects feed. Other species of Bacillus, including B. firmus, B. pum-
ilus, B. subtilis, B. lentimorbus, B. popilliae, and B. sphaericus, have been applied 
as biopesticides (Schisler et al. 2004). Bacteria belonging to other genera such as 
Pseudomonas fluorescens, P. syringae, P. putida, P. chlororaphis, Burkholderia 
cepacia, and Streptomyces griseoviridis have also been used as biopesticides 
(Montesinos 2003). Bacteria generally lose viability when stored for a few weeks, a 
disadvantage when compared with Bacillus (spore-forming) that shows better shelf 
life and facilitates the development of commercial products. Insect resistance to Bt 
toxins has led to pursue suitable alternatives. Two more bacteria that are also known 
to produce insecticidal toxins are Xenorhabdus and Photorhabdus (both of these 
belong to the family Enterobacteriaceae). Both bacteria are entomophathogens; 
Xenorhabdus luminescens is found to occur in a specialized intestinal vesicle of the 
nematode Steinernema carpocapsae with which it maintains a symbiotic relation-
ship. Photorhabdus luminescens maintains a symbiotic relationship with nematodes 
of the family Heterorhabditidae (Poinar 1990) and is present throughout the intes-
tinal tract of these nematodes. In both mutualistic associations, the nematodes and 
the bacteria complement each other: the nematode acts as a vector and transports the 
bacteria into the target insect larva where it bores holes in the intestinal walls of the 
insect and releases the bacteria in the hemolymph. In the absence of the nematode, 
the bacteria cannot penetrate into the hemocoel. Both the nematode and the bacteria 
release insecticidal toxins, which eventually kill the insect (Poinar et  al. 1977). 
Septicemia in insects is caused by bacteria, the insect is killed, and its tissues are 
used as nutrients (Kaya and Gaugler 1993). Bacteria are needed by the nematodes 
in their developmental stage into the infective juvenile stage and thus are needed for 
efficient completion of the nematode life cycle.
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1.5  �Advantages of Using Microbial Products

The main advantage of using microbial products in bioremediation strategies is that 
the toxic compound to be treated is neutralized or removed totally, which produces 
a waste material that is easily disposed. At times, there is no requirement for dis-
posal by any means (Gold et al. 2005).

The issue that needs to be solved regarding the use of microbial pesticides is their 
specificity because they are not effective against a wide range of pests. Specificity 
is sometimes considered advantageous because the commercial potential gets lim-
ited and costs get increased compared to synthetic pesticides. Moreover, biopesti-
cide preparations are sensitive to heat, desiccation, and ultraviolet radiation, which 
reduce their effectiveness. Storage conditions and special formulations are impor-
tant; this in turn can negatively affect the distribution and use of products. Genetic 
engineering technology and molecular genetics of microorganisms will help in find-
ing out new ways for biopesticide improvement and its use. Further studies should 
be done to enhance shelf-life, the speed of killing, the biological spectrum, and the 
field efficacy of biopesticides (Bhattacharyya et al. 2016).

Bioremediation is a natural process seen by the public as an acceptable waste 
treatment process to treat contaminated material such as soil. Microorganisms that 
can degrade contaminants increase in numbers when the contaminant is present; 
when the contaminant is degraded or broken down, the microbial population 
declines. The remains from the treatment are mostly harmless products that include 
carbon dioxide, water, and cell biomass. This puts to rest the chance of future liabil-
ity associated with treatment and disposal of contaminated material. Transferring 
contaminants from one environmental medium to another, for example, from land 
to water or air is not necessary anymore because complete destruction of target pol-
lutants is possible. Bioremediation can often be carried out onsite, often without 
causing a major disruption of normal activities. This also eliminates the need to 
transport quantities of waste offsite and the potential threats to human health and the 
environment that can arise during transportation. Bioremediation is less expensive 
than other technologies that are used for cleanup of hazardous waste. Bioremediation 
is limited to those compounds that are biodegradable. Not all compounds are sus-
ceptible to rapid and complete degradation. There are some concerns that the prod-
ucts of biodegradation may be more persistence or toxic than the parent compound. 
Biological processes are often highly specific. Factors necessary for success include 
the presence of metabolically competent microbial populations, optimal environ-
mental growth conditions, and optimal levels of nutrients and contaminants.

Many toxic chemical compounds have been degraded by utilizing different 
microorganisms, and their enzymatic activity can be increased by using various 
genetic engineering techniques (Prasad 2017, 2018). Genetically engineered micro-
organisms have certain advantages such as rapid growth affinity, fast growth rate, 
and resistance to toxicity (Gold et al. 2005). The potential results of releasing such 
genetically engineered microorganisms into the environment cannot be predicted 
practically because the conditions of the field are not always optimal; also, there are 
indigenous communities.
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1.6  �Future Prospects of Microbial Products 
in Bioremediation of Toxic Pesticides

There are diverse bioremediation techniques that have proven effective in restoring 
sites polluted with different pollutants including pesticides. The role of microorgan-
isms is very important in bioremediation; molecular techniques with suffix “omics” 
such as genomics, metabolomics, proteomics, and transcriptomics have contributed 
toward the understanding of microbial identification, functions, and metabolic and 
catabolic pathways, thereby overcoming the limitations associated with microbial 
culture-dependent methods. Nutrient limitation lowers the population or results in 
the absence of microbes with degradative capabilities and pollutant bioavailability, 
which are among the major pitfalls. Bioremediation depends on microbial process; 
two major approaches to increase microbial activities in polluted sites are biostimu-
lation and bioaugmentation. Biostimulation involves the addition of nutrients or 
substrates to a polluted sample in order to stimulate the activities of autochthonous 
microbes. As microorganisms are ubiquitous, it is apparent that pollutant degraders 
are naturally present in the polluted site and their numbers and metabolic activities 
may increase or decrease in response to pollutant concentration; hence, the use of 
agroindustrial wastes with appropriate nutrient composition, especially nitrogen, 
phosphorus, and potassium, will help solve the challenge of nutrient limitation in 
most polluted sites. Excessive addition of stimulant resulted in suppressed micro-
bial metabolic activity and diversity (Wang et al. 2012). While bioaugmentation is 
an approach aimed at introducing or increasing microbial population with degrada-
tive capabilities, microbial consortium has been reported to degrade pollutants more 
efficiently than pure isolates (Silva-Castro et  al. 2012). This is due to metabolic 
diversities of individual isolates, which might originate from their isolation source 
or adaptation process or as a result of pollutant composition and will bring about 
synergistic effects, which may lead to complete and rapid degradation of pollutants 
when such isolates are mixed together. Although bioaugmentation has proven effec-
tive, competition between endogenous and exogenous microbial populations, the 
risk of introducing pathogenic organisms into an environment, and the possibility 
that the inoculated microorganisms may not survive in the new environment make 
bioaugmentation a very skeptical approach. The use of agar, agarose, alginate, gela-
tin, gellan gum, and polyurethane as carrier materials will help solve some of the 
challenges associated with bioaugmentation (Tyagi et al. 2011).

Simultaneous multiple bioremediation techniques during remediation will help 
increase remediation efficacy (by reducing the weakness of individual techniques) 
and at the same time reduce cost (Cassidy et al. 2015; Garcia-Delgado et al. 2015; 
Martinez-Pascual et al. 2015). Application of combined metric of spatial configura-
tion of bacterial dispersal networks will be a good indicator of biodegradation per-
formance (Banitz et al. 2016). Enhancing bioremediation efficacy with controlled 
use of genetically engineered microorganisms (GEM) is a promising approach. 
Nevertheless, horizontal gene transfer and uncontrolled multiplication of GEM in 
an environment limit the application of such a promising approach. Notwithstanding, 
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bacterial biofilm will be killed by induction of controlled suicide systems which 
will help gain public acceptance of using GEM to restore polluted environment. The 
use of nanomaterials could help reduce toxicity of pollutant to microorganisms. 
Nanomaterials increase surface area and lower activation energy, thereby increasing 
the efficiency of microorganisms in the degradation of waste and toxic materials, 
resulting in overall reduction in remediation time and cost (Rizwan et  al. 2014; 
Prasad et al. 2016; Prasad and Aranda 2018).

1.7  �Conclusion

Results brought about by pesticides utilization of contaminated environment is need 
in this current time. The application of ordinary methods, that is, physicochemical 
techniques, for the degradation of harmful chemicals are not extremely proficient. 
This strategy is costly and furthermore not agreeable in the biological community. 
For the degradation of pesticides and extreme disinfecting of contaminated territo-
ries, biodegradation by microscopic organisms is exceptionally proficient as they are 
financially savvy and additionally ecofriendly. These methods can possibly break 
down pesticides into their less dangerous results. There is a need of further review for 
the examination of instruments of microorganisms and their proteins amid degrada-
tion potentials. The comprehension of enzymatic activities, particularly ideas identi-
fied with pesticides mode of action, resistance, selectivity, resilience, and 
environmental purpose, vitally affects the learning of pesticide science and 
applications.
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2.1  �Introduction

Many countries have faced increasing challenges in protecting their soils from con-
tamination caused by dizzying population growth (Tume et  al. 2018; Yang et  al. 
2018), aggravated by rapid industrialization (Sarwar et al. 2017), and unprecedented 
urbanization rate, especially in the last three decades. Studies draw attention to the 
fact that a considerable amount of financial resources must be invested by govern-
ments and industries from various economic segments, among other anthropogenic 
sources, to remediate contaminated sites (Swartjes et al. 2012; Cappuyns 2016).

A significant and alarming number of contaminated areas are estimated to exist 
worldwide, which represent a missed economic opportunity and a direct threat to 
human health and well-being and the environment (CRCCARE 2013; Gasparatos 
2013). Although soil contamination was recognized in the 1960s due to the legacy 
of industrialization, less than one-tenth of potentially contaminated land was only 
remedied due to the challenging nature of the contamination itself, as well as cost, 
technical impracticality, legislation, and soil use impossibility (Naidu et al. 2008).

Many countries do not have comprehensive and systematic studies about the 
identification and assessment of contaminated sites, which substantially increases 
the difficulty of accurately quantifying currently affected areas and the actual cost 
of remediation. However, the extent of contamination is growing at a rate of approx-
imately 3% per year. The global remediation market estimated at about $ 59.5 bil-
lion in 2013 is expected to expand to nearly $ 80.5 billion in 2019, with a compound 
annual growth rate of 5.5% during 2013 and 2019 (Kuppusamy et al. 2017).

Contaminated land management has become a global challenge (Phoungthong 
et al. 2016; Järup 2003). Even so, the remediation process needs to deliver tangible 
benefits. However, if remediation practices are not properly selected and imple-
mented, more environmental impact may arise in addition to the impacts directly 
associated with the contamination itself. Stated another way, corrective action itself 
in addressing the contamination problem can have negative effects on soil ecologi-
cal functions (Groot et  al. 2002; Volchko et  al. 2013) – soil compaction, loss of 
organic matter, decline in biodiversity, and nutrient deficiency, among others. In 
turn, these negative effects contribute to a drastic reduction in the provision of soil 
ecosystem services (Volchko et  al. 2014). Main soil functions or soil ecosystem 
services are (i) biomass production, including agriculture and forestry; (ii) storage, 
filtration, and transformation of nutrients, substances, and water; (iii) biodiversity 
shelter; (iv) physical and cultural environment for humans and the development of 
their activities; (v) raw materials source; (vi) carbon storage; and (vii) refuge of 
geological and archaeological heritage (CEC 2006). Considering the criticality of 
soil functions for the survival of the ecosystem, it is essential to evaluate its perfor-
mance from a sustainability perspective in remediation projects (Volchko et al. 2013).

Over the years, scientists in partnership with governments and other interested 
institutions have made efforts to create decontamination processes and technologies 
to meet sustainability goals in environmental remediation (Gavrilescu and 
Macoveanu 2000; Gavrilescu and Macoveanu 1999; Khan et al. 2004). Integrating 
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sustainability practices into contaminated soil remediation provides an opportunity 
for the process’s social, environmental, and economic benefits to be considered and 
optimized (Schädler et  al. 2011; Rosén et  al. 2015; Gill et  al. 2016; Behera and 
Prasad 2020).

Remediation process, which also includes sustainable remediation or green 
remediation, consists in reducing or removing unwanted contaminants from the soil 
(Prasad 2021). According to the technique, soil remediation activities themselves 
can become an additional source of contamination. Since the mid-1990s, due to 
significant increase in remediation sites, scientific community has been paying 
increasing attention to these additional threats introduced by remediation efforts, 
increasing the need for better evaluation and management of these projects. The 
Sustainable Remediation Forum (SuRF) played an important role in connecting 
diverse stakeholders, disseminating knowledge, and building and developing a 
framework based on a criteria set to evaluating remediation activities (Rosén et al. 
2015; Bardos et al. 2016; Yasutaka et al. 2016).

Although SuRF originally started in the United States in 2006, it achieved greater 
projection in Europe, driving an increase in the number of evaluation activities 
across the continent (Bardos et al. 2016). These SuRFs have produced publications 
covering guidance recommendations (NICOLE-2011 2011), assessment frame-
works (Holland et al. 2011), assessment standards (ASTM 2013; ISO 2016), and 
assessment tools (Volchko et al. 2014; Rosén et al. 2015; Perini and Rosasco 2013; 
Lemming et al. 2010; Beames et al. 2014). Importantly, for the effective monitoring 
of the pace of these developments, it is necessary to establish processes of continu-
ous assessment of recommended correction efforts, as well as the accuracy of newly 
introduced assessment tools through case studies. Such studies may facilitate the 
refinement of the methods, as well as expand their application, enabling greater 
understanding and wider adoption of these methods, especially focusing on the 
development of sustainable remediation methods (Bardos et al. 2016).

Sustainable remediation can be defined as a treatment or a combination of treat-
ments whose benefit to human health and the environment is maximized by the 
judicious use of limited resources Bardos et al. (2009). Sometimes, organizations 
refer to green remediation, which can be defined as the practice of considering all 
environmental effects of treatment implementation and incorporating options to 
maximize the benefit of environmental cleansing actions (EPA 2008). ISO 18504 
defines sustainable remediation as the safe and appropriate elimination and/or con-
trol of unacceptable risks, with a focus on optimizing the environmental, social, and 
economic value of the activity (ISO 2016). The UK Sustainable Remediation Forum 
(SuRF-UK)  established clear principles for effective sustainable remediation with 
a fundamental emphasis on decision-making on risk assessment and management of 
contaminated land (Bardos et al. 2016). Table 2.1 presents the six key principles.

These key principles should be considered by professionals in preparing, imple-
menting, and reporting sustainable remediation systems. Balancing environmental, 
social, and economic costs and benefits in identifying the best remediation solution 
needs to be achieved while meeting key principles (Bardos et al. 2011). Admittedly, 
selection of any practice or alternative to environmental remediation has historically 
been made according to the contaminant type, environmental component affected 
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by the contamination, location, and the potentially exposed and affected receptors 
(Fortuna et al. 2011).

Considering the sustainable remediation principles proposed by SuRF, it becomes 
evident the viability of using arbuscular mycorrhizal fungi in remediation processes 
of contaminated areas, since they are beneficial microorganisms to plant growth and 
widespread occurrence in ecosystems, do not present risks to human health. Thus, 
the use of these microorganisms for soil decontamination mainly meets the follow-
ing principles: (1) protection of human health and the wider environment, (2) safe 
working practices, (3) consistent, clear, and reproducible evidence-based decision-
making, and (4) sound science. In this chapter, we approach research on the poten-
tial of arbuscular mycorrhizal fungi in the remediation of contaminated area by 
potentially toxic elements and their importance in environmental sustainability. We 
also discuss the physiological and biochemical mechanisms of these microorgan-
isms and plants related to tolerance to these elements and explore relevant aspects 
of the phytoremediation process involving arbuscular mycorrhizal fungi.

Table 2.1  Key principles of sustainable remediation established by UK Sustainable Remediation 
Forum (UK-SuRF)

Principles Description Definition – scope

1 Protection of 
human health and 
the wider 
environment

Remediation (site-specific risk management) should remove 
unacceptable risks to human health and protect the wider 
environment now and in the future for the agreed land use, and 
give due consideration to the costs, benefits, effectiveness, 
durability, and technical feasibility of available options

2 Safe working 
practices

Remediation works should be safe for all workers and for local 
communities and should minimize impacts on the environment

3 Consistent, clear, 
and reproducible 
evidence-based 
decision-making

Sustainable risk-based remediation decisions are made having 
regard to environmental, social, and economic factors and 
consider both current and likely future implications. Such 
sustainable and risk-based remediation solutions maximize the 
potential benefits achieved. Where benefits and impacts are 
aggregated or traded in some way, this process should be 
explained and a clear rationale provided

4 Record keeping 
and transparent 
reporting

Remediation decisions, including the assumptions and 
supporting data used to reach them, should be documented in a 
clear and easily understood format in order to demonstrate to 
interested parties that a sustainable (or otherwise) solution has 
been adopted

5 Good governance 
and stakeholder 
involvement

Remediation decisions should be made having regard to the 
views of stakeholders and following a clear process within 
which they can participate

6 Sound science Decisions should be made on the basis of sound science, 
relevant and accurate data, and clearly explained assumptions, 
uncertainties, and professional judgment. This will ensure that 
decisions are based upon the best available information and are 
justifiable and reproducible

Source: Bardos et al. (2011)
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2.2  �What Are the Potentially Toxic Elements (PTE)?

Usually, under natural conditions, chemical elements do not pose an environmental 
risk, as they occur naturally in low-concentration soils and rocks (Kabata-Pendias 
2011; Cao et al. 2015). Some of these elements perform indispensable physiological 
functions for plant metabolism, and therefore, elements such as cobalt (Co), copper 
(Cu), iron (Fe), manganese (Mn), and zinc (Zn) are considered essential mineral 
elements for plants (Table  2.2) but, in high concentrations, are toxic to living 
organisms.

On the other hand, elements such as cadmium (Cd), lead (Pb), and mercury (Hg) 
and metalloids such as arsenic (As) are highly toxic to the environment and human 
health (Cabral et al. 2015), since they do not have biological functions. Given the 
wide variety of chemical elements capable of promoting toxicity to plants, this 
chapter will address potentially toxic elements (PTE). In this sense, all essential and 
nonessential chemical elements, formerly called heavy metals, trace elements, 

Table 2.2  Functions and benefits of some potentially toxic elements (PTE) in plant metabolism

Group Element

Ionic species 
uptake by 
plant

Essential/beneficial biological 
function Reference

Essential elements
Metalloid Boron (B) H3 BO3, H2 

BO3
− and 

 B(OH)4 −

Enzyme activator, cell wall 
component, carbohydrate transport

Prado 
(2008)

Transition 
metals

Zinc (Zn) Zn2+ Indoleacetic acid (AIA) synthesis, 
protein synthesis, nitrate reduction, 
enzyme component and activator

Prado 
(2008)

Transition 
metals

Manganese 
(Mn)

Mn2+ Enzyme component and activator Prado 
(2008)

Transition 
metals

Iron (Fe) Fe2+, Fe3+, and 
chelated-Fe

Chlorophyll and protein synthesis, 
protein and enzyme component, and 
enzyme activator

Prado 
(2008)

Transition 
metals

Cupper (Cu) Cu2+ and 
chelated-Cu

Electron transport, activator and 
enzyme component, nodulation

Prado 
(2008)

Transition 
metals

Molybdenum 
(Mo)

MoO4 2− and  
HMoO4 −

Biological nitrogen fixation, 
enzymatic component, sulfur 
metabolism

Prado 
(2008)

Beneficial elements
Transition 
metals

Cobalt (Co) Co2+ Nitrogenase component (biological 
nitrogen fixation)

Marschner 
(2012)

Transition 
metals

Nickel (Ni) Ni2+ Urease component Marschner 
(2012)

Metalloid Silicon (Si) H4SiO4 
(pH < 9)

Cell wall strengthening, plant 
structural defense system that 
increases plant resistance against 
pests and pathogens, improved plant 
tolerance to drought and heavy metal 
excess

Guntzer, 
et al. (2012)
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alkali metals, alkaline earth metals, transition metals, metalloids, post-transition 
metals, lanthanides, and actinides (Fig. 2.1) are considered as potentially toxic ele-
ments (PTE) (Kasemodel et  al. 2019; Halka and Nordstrom 2011; Göhre and 
Paszkowski 2006).

2.3  �Contamination Inputs in Biosystems and Negative 
Consequences of Soil Contamination by Potentially Toxic 
Elements (PTE)

PTE sources are generally classified into two categories: (i) lithogenic (natural) and 
(ii) anthropogenic (man-made) (Karimi et al. 2017). Most PTEs that occur in the 
environment originate from lithogenic (natural) sources. The most important natural 
sources of pollution are volcanic activity, erosion, and weathering of minerals 
(Coninx et al. 2017). However, anthropogenic sources stand out as the main cause 
of soil contamination by PTEs (Kabata-Pendias 2011). The intensification of indus-
trial and agricultural activities on the planet as well as population growth, respon-
sible for the rapid and unorganized urbanization of many areas, provides a large 
contribution of PTEs to ecosystems (Dankoub et al. 2012; Esmaeili et al. 2014; Li 
et al. 2015). This situation aggravates the inadequate disposal of urban and indus-
trial waste, the intensification of mining activities, and the use of high doses of 
agricultural inputs (pesticides, herbicides, mineral fertilizers, sewage sludge, etc.) 
(Yesilonis et  al. 2008; Xu et  al. 2014; Barbieri 2016). Mining activities usually 
result in the most extreme cases of PTE soil contamination (Cabral et  al. 2015; 
Göhre and Paszkowski 2006; Perveen et al. 2015). Table 2.3 presents examples of 

Fig. 2.1  Chemical elements of the periodic table considered in this chapter as potentially toxic 
elements (PTE)
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anthropogenic sources of some PTE. The first six (Pb, Zn, Cu, Ni, Cr, and Cd) are 
the most intensely studied, and these are listed in descending order of frequency 
(Hou et al. 2017).

Essential or not, excess of PTE in the soil impairs plant development, impeding 
several important metabolic processes. Considering the physicochemical proper-
ties, some PTE can be separated into redox and non-redox active metals. The first 

Table 2.3  Anthropogenic sources of some potentially toxic elements (PTE)

PTE Sources References

Pb Chemical and organic fertilizer usage, 
agricultural practices, traffic emission, 
industrial activities

Lv (2019), Jiang et al. (2017), Liang et al. 
(2017), Huang et al. (2015), Mihailović et al. 
(2015), Maas et al. (2010), Sun et al. (2010), 
Lee et al. (2006), Zhang (2006), Li et al. 
(2004), Facchinelli et al. (2001)

Zn Electroplating industries and livestock/
poultry breeding, chemical and organic 
fertilizer usage, traffic emission

Lv (2019), Jiang et al. (2017), Liang et al. 
(2017), Huang et al. (2015), Mihailović et al. 
(2015), Kelepertzis (2014), Maas et al. 
(2010), Sun et al. (2010), Zhang (2006), Li 
et al. (2004)

Cu Atmospheric deposition from coal 
combustion, chemical and organic fertilizer 
usage, traffic emission

Liang et al. (2017), Krishna and Mohan 
(2016), Luo et al. (2015), Mihailović et al. 
(2015), Kelepertzis (2014), Sun et al. (2010), 
Zhang (2006), Li et al. (2004)

Ni Atmospheric deposition from coal 
combustion, traffic emission, surgical 
instruments, kitchen appliances

Liang et al. (2017), Sarwar et al. (2017), 
Tume et al. (2018), Luo et al. (2015), Sun 
et al. (2010), Tariq et al. (2006), Zhang 
(2006), Li et al. (2004)

Cr Atmospheric deposition from coal 
combustion, electroplating industries and 
livestock/poultry breeding, metallurgical 
and steel industry, chrome plating and 
pigment production, leather industry

Tume et al. (2018), Jiang et al. (2017), Liang 
et al. (2017), Sarwar et al. (2017), Krishna 
and Mohan (2016), Huang et al. (2015), Luo 
et al. (2015), Mihailović et al. (2015), Zhang 
(2006), Li et al. (2004)

Cd Chemical and organic fertilizer usage, 
agricultural practices, cement industry, 
power stations, metal industries

Lv (2019), Sarwar et al. (2017), Huang et al. 
(2015), Kelepertzis (2014)

Hg Gold mining industry, cement industry, 
chemical and organic fertilizer usage, 
traffic emission, coal combustion, surgical 
instruments, hospital waste

Liang et al. (2017), Huang et al. (2015), 
Kelepertzis (2014), Mason et al. (2012), 
Pacyna et al. (2010)

As Chemical and organic fertilizer usage, coal 
and peat combustion for home heating, 
wood preservatives

Tóth et al. (2016), Huang et al. (2015), 
Kelepertzis (2014), Khan et al. (2007), 
Zhang (2006), Ursitti et al. (2004)

Mn Waste incineration and the textile/dyeing 
industries
Mining activities

Tume et al. (2018), Jiang et al. (2017), 
Rivera-Becerril et al. (2013)

V Electroplating industries and livestock/
poultry breeding

Jiang et al. (2017), Wang et al. (2013)

Fe Chemical and organic fertilizer usage 
(insecticides, fungicides, and herbicides)

Myers and Thorbjornsen (2004)
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group includes elements such as Cr, Cu, Mn, and Fe and generally promotes oxida-
tive damage to plant metabolism, which leads to ROS production and, consequently, 
disruption of cellular homeostasis due to DNA molecule disruption, lipid peroxida-
tion, defragmentation of proteins or cell membrane, and damage to photosynthetic 
pigments, which can trigger cell death. On the other hand, those non-redox active 
metals (e.g., Cd, Ni, Hg, Zn, and Al) trigger oxidative stress through other mecha-
nisms such as by binding with sulfhydryl protein groups, inhibiting antioxidant 
enzymes, downregulating glutathione, or upregulating ROS-producing enzymes 
such as NADPH oxidases (Emamverdian et al. 2015). In general, PTE toxicity can 
cause the following (Göhre and Paszkowski 2006; Emamverdian et al. 2015):

	1.	 Changes in or displacement of protein structure blocks arising from the forma-
tion of bonds between PTE and sulfhydryl groups

	2.	 Downregulation of important molecular functional groups, compromising plant 
physiological balance

	3.	 Replacement of essential metals in root uptake and, consequently, interruption of 
the functionality of these elements in biomolecules such as pigments or enzymes

	4.	 Induction of nutritional deficiency caused by nutrient replace in root uptake
	5.	 Reduction of plasma membrane integrity by promoting alterations of important 

membrane proteins such as H+-ATPases
	6.	 Suppression of vital processes such as photosynthesis, respiration, and enzy-

matic activities
	7.	 Stimulation of the production of reactive oxygen species (ROS), such as super-

oxide free radicals (O2∙−), and hydroxyl free radicals OH∙−), or free radical spe-
cies such as singlet oxygen (O2) and hydrogen peroxide (H2O2)

2.4  �Plant Defense Strategies Against Toxicity of Potentially 
Toxic Elements (PTE)

Plants usually have a wide range of defense strategies against toxicity caused by 
excess PTE. These various strategies can be grouped into (1) the creation of physi-
cal barriers against absorption of TEP, (2) changes in plant metabolism, and (3) 
activation of the antioxidant defense mechanism, as shown in Fig. 2.2 (Emamverdian 
et al. 2015; Bhandari and Garg 2017; Garg and Bhandari 2014).

Under PTE excess in the soil, the first strategy of plants is to avoid the uptake of 
these elements by creating physical barriers (Fig. 2.2). Under these conditions, mor-
phological changes such as root cuticle thickening and increased production of bio-
logically active tissues such as trichomes are found to impair root uptake and secrete 
secondary metabolites capable of chelating PTE, respectively (Emamverdian et al. 
2015). Another strategy, already well described in the literature, is the development 
of mycorrhizal symbiosis, which will be further explored in Sect. 2.7 of this chapter.

The strategies outlined in Fig. 2.3 are commonly effective under conditions of 
low toxicity (low PTE concentrations). On the other hand, under high soil 
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concentrations, plant uptake of PTE is unavoidable. Thus, the second group of 
defense mechanisms comes into operation: alteration in metabolism, upregulating 
the molecules biosynthesis capable of altering the PTE availability within cells and, 
consequently, attenuating the harmful effects of these elements on physiological 
processes (Fig. 2.4; Cabral et al. 2015; Dutta and Neog 2016; Garg and Singh 2018; 
Kapoor et al. 2013; Dietterich et al. 2017; Lenoir et al. 2016; Cicatelli et al. 2014).

Upregulation of low-molecular-weight chelating proteins such as metallochaper-
ones has been reported in plants under PTE toxicity. Among metallochaperones, 
nicotinamide, spermine, muginic acids, organic acids, phytochelatins, and metallo-
thioneins stand out. Cellular exudates such as flavonoids and other phenolic com-
pounds, as well as heat shock proteins, protons, amino acids (proline and histidine), 
and hormones (ethylene, jasmonic acid, and salicylic acid), also minimize internal 
damage caused by PTE toxicity (Göhre and Paszkowski 2006; Perveen et al. 2015; 
Emamverdian et al. 2015; Garg and Bhandari 2014; Gratão et al. 2005; Shi et al. 
2019). Phytochelatins are low-molecular-weight molecules synthesized from gluta-
thione and catalyzed by the enzyme phytochelatin synthase (PC synthase). These 
molecules act on cellular homeostasis and PTE detoxification, as they have a high 
capacity to bind to various metals, including Cd, Cu, Zn, and As through sulfhydryl 
and carboxyl residues (Inouhe 2005). Phytochelatins are synthesized in the cytosol 
and, after binding to PTE, are actively transported as high-molecular-weight metal-
phytochelatin complexes to the plant cell vacuole, their final destination. 

PTE

PTE PTE

PTE
PTE

PTE

PTE

PTEPTE

PTE

PTE
PTE

PTE PTE

PTE

PTEPTE

PTE
PTE

1. Physical Barrier 
against PTE uptake

2. Metabolism alteration: 
molecules biosynthesis to 
reduce the PTE availability 

3. Activation of the 
antioxidant defense 

mechanism

Increased of the PTE concentration 
in the plant tissues

Increased of the ROS concentration 
in the cells

PTE
PTE

After PTE 
uptake

Fig. 2.2  Plant defense strategies against the toxicity of potentially toxic elements. PTE, poten-
tially toxic elements; ROS, reactive oxygen species
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Fig. 2.3  Plant defense strategies that performance as physical barriers to prevent or reduce the 
uptake of potentially toxic metals (PTE)
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Fig. 2.4  Plant defense strategies under stress after the uptake of potentially toxic metals (PTE)
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Phytochelatin synthesis occurs in both roots and shoots but tends to accumulate in 
roots. Thus, upregulation of phytochelatins is a relevant strategy to reduce PTE 
translocation to plant shoots (Emamverdian et al. 2015; Garg and Bhandari 2014). 
In turn, metallothioneins make up a family of cysteine-rich low-molecular-weight 
cytoplasmic metal-binding proteins produced by a wide variety of eukaryotic organ-
isms, including fungi and plants, as well as some prokaryotes. Unlike phytochela-
tins (enzymatically synthesized peptide product), metallothioneins are synthesized 
from mRNA translation. In addition, they have affinity for a wider range of PTE. In 
plants, these molecules act to mitigate PTE toxicity through cell sequestration, cel-
lular homeostasis, metal transport adjustment, ROS scavenging, cell proliferation, 
and restoration of the plasma membrane and damaged DNA (Emamverdian et al. 
2015; Garg and Bhandari 2014). Proline, another plant metabolite, is an amino acid 
that acts as a compatible metabolic osmolyte, free-radical scavenger, antioxidant, 
and macromolecule stabilizer. Increased proline cell levels are a characteristic 
response of higher plants under biotic and abiotic stress conditions (e.g., PTE). This 
amino acid can act as an osmoregulator or osmoprotectant as well as stimulating 
antioxidant enzyme activities, preserving cellular redox homeostasis, restructuring 
the chlorophyll molecule, and stabilizing intracellular pH (Emamverdian et al. 2015).

These mechanisms are not always able to mitigate the negative effects of toxic 
elements on plant metabolism. Thus, there is an excessive increase in the production 
and accumulation of reactive oxygen species (ROS) in the cell, generating a series 
of physiological and molecular damages, briefly reported in Sect. 2.7.5. Thus, the 
ROS increase in the cell triggers the antioxidant defense mechanism of plants that 
promote the upregulation of enzymatic and nonenzymatic components (Fig. 2.5).

Enzymatic components mainly include the enzymes superoxide dismutase 
(SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), 
and glutathione reductase (GR). Briefly, SOD catalyzes the conversion of the highly 
reactive superoxide radical to H2O2, which is removed by the CAT, APX, and GPX 
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Fig. 2.5  Enzymatic and nonenzymatic components of the plant antioxidant defense system 
responsible for scavenging reactive oxygen species from cells
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activity (Gomes et al. 2014a; Nath et al. 2016, 2017; Kapoor et al. 2019). Activity 
of these oxidative enzymes associated with the action of phytochelatins may present 
an important synergy in the defense of plants subjected to PTE high concentrations 
(Emamverdian et al. 2015). In nonenzymatic components, there are molecules such 
as ascorbate, glutathione, carotenoids, alkaloids, tocopherols, proline, and phenolic 
compounds (e.g., flavonoids) which constitute acting as free-radical scavengers, 
chelators, and/or antioxidants. Upregulation of these compounds varies by PTE 
type, contamination level, plant species, plant species tolerance to PTE, and plant 
developmental stage (Perveen et  al. 2015; Emamverdian et  al. 2015; Garg and 
Bhandari 2014; Gratão et al. 2005).

2.5  �Remediation Alternatives for Contaminated Soils by 
Potentially Toxic Elements (PTE)

Given the extent of soil contamination sources and the risk of these PTE to human 
and animal health, it is necessary to remediate contaminated sites (Coninx et  al. 
2017). Restoration of PTE-contaminated areas can be made possible through the 
implementation of remediation techniques. These techniques encompass a set of 
practices designed to mitigate or suppress the impacts caused by contaminants 
(Cabral et al. 2015).

Bioremediation and phytoremediation are efficient techniques for environmental 
restoration, as they optimize existing natural resources (microorganisms and plants) 
and biological processes (Cabral et al. 2015). Bioremediation processes consist of 
degrading soil contaminants using efficient species of microorganisms. 
Bioremediation (from Greek “bios,” life, and Latin “remedium,” clean or restore) 
includes in situ (performed at the contaminated site) and ex situ (with physical 
removal of contaminated material off-site) techniques. Microorganisms used in 
these processes release enzymes that degrade toxic compounds, such as industrial 
waste, oils, and pesticides, reducing their toxicity. Importantly, although PTE can-
not be decomposed, many microorganisms are able to alter their availability through 
changes in oxidation state, chelation processes, complexation, etc. (Arya et al. 2018; 
Chibuike 2013). Phytoremediation (from the Greek “phyto” meaning plant, and the 
Latin “remedium” meaning clean or restore) refers to a diverse set of technologies 
based on the use of natural or genetically modified plants to mitigate or clear soil 
and water contamination (Prasad and Freitas 2003; Koch et al. 2021). This set of 
techniques includes (Cabral et al. 2015; Göhre and Paszkowski 2006; Coninx et al. 
2017; Chibuike 2013; Hassan et al. 2017; Meier et al. 2012):

	1.	 Phytoextraction includes the uptake, translocation, and accumulation processes 
of contaminants by plants in their aboveground biomass. This technique is often 
used in areas contaminated by PTE.

	2.	 Phytodegradation refers to the degradation/decomposition of organic contami-
nants (e.g., herbicides, insecticides, chlorinated solvents) through internal and 
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external metabolic processes to plant tissue, however, always driven by the plant. 
However, this process does not apply to PTE as they are not biodegradable.

	3.	 Rhizodegradation promotes the organic contaminants decomposition by micro-
organisms present in the rhizosphere. Plant roots release exudates that stimulate 
microbial activity and, consequently, accelerate the pollutant degradation. In 
addition, plants also release enzymes that have the ability to degrade soil organic 
pollutants.

	4.	 Phytofiltration is the removal of contaminants from soil or wastewater by plants. 
In this technique, PTE uptake or adsorption and its movement in groundwater 
are minimized.

	5.	 Phytostabilization includes the reduction of PTE bioavailable forms and subse-
quent immobilization by microorganisms and plants at the contaminated site, 
either by sorption, precipitation, or chemical complexation processes.

	6.	 Phytovolatilization is the transformation of contaminants into volatiles and con-
sequent release to the atmosphere. This technique is widely used in soils con-
taminated with organic pollutants and has restricted application to PTE.

Unlike organic pollutants, PTE are nonbiodegradable and persistent elements, and 
therefore, low-cost phytoremediation techniques used for the organic pollutant 
remediation (e.g., phytodegradation and rhizodegradation) are not applicable to 
PTE-contaminated soils. Phytovolatilization techniques, for example, are applica-
ble for a small amount of PTE (e.g., mercury and selenium) (Coninx et al. 2017; 
Emamverdian et al. 2015; Prasad and Freitas 2003). Among these techniques, phy-
tostabilization and phytoextraction are the most studied PTE phytoremediation pro-
cesses (Cabral et  al. 2015; Chibuike 2013). In phytoextraction, plants, usually 
hyperaccumulating species, uptake large amounts of soil contaminants, storing 
them in their shoots. On the other hand, in phytostabilization, the contaminants are 
not extracted from the soil; however, they are immobilized, especially in the roots. 
As a result, the translocation of contaminants to the shoots is reduced, which reduces 
the pollutant toxicity (Cabral et  al. 2015). Since both of these processes require 
plant cultivation, their survival in PTE-contaminated soils is critical to successful 
phytoremediation (Coninx et al. 2017). In this perspective, considering the ubiqui-
tous occurrence of arbuscular mycorrhizal fungi and, consequently, mycorrhizal 
symbiosis formation and its benefits in various ecosystems types, it is remarkable 
that these microorganisms can be used in phytoremediation processes. In addition, 
along with phytostabilization, exploitation of mycorrhizal symbiosis increases the 
success chance, since arbuscular mycorrhizal fungi also stabilize contaminants in 
their biomass, reducing their translocation to the aerial part of plants (Cabral et al. 
2015). The potential of arbuscular mycorrhizal fungi for PTE remediation will be 
explored in the following topics.
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2.6  �What Are Arbuscular Mycorrhizal Fungi (AMF) 
and Mycorrhizal Symbiosis?

Arbuscular mycorrhizal fungi (AMF) are obligate ubiquitous biotrophic microor-
ganisms that establish the symbiosis called mycorrhizae with most superior plants 
(Delavaux et al. 2017; Dubchak 2017; Stürmer et al. 2018). These fungi thus consti-
tute important soil microbiome communities. AMF omnipresence is verified even in 
degraded ecosystems, and much research data confirms that these microorganisms 
can reduce the PTE toxicity in host plants (Cabral et al. 2015; Coninx et al. 2017). 
AMF are probably determining factors in the structure and function of plant com-
munities. These fungi are often predominant in soil microbial biomass and therefore 
occupy a prominent position at the soil-plant interface (Van der Heijden et al. 1998a, b, 
2008; Wagg et al. 2014).

The main ecosystem service provided by these fungi is their role as extension of 
plant roots. This is because after intracellular colonization, AMF develop an abun-
dant extraradicular mycelium, which uptakes nutrients and water into the host plant 
in exchange for photoassimilates. Such a benefit is widely known as the biofertilizer 
function (Giri et al. 2019). Opportunely, AMF promote non-nutritional effects on 
plants that may be as important as nutritional benefits. Thus, mycorrhizal symbiosis 
can increase water uptake, alter plant metabolism, and improve soil aggregation, 
plant defense mechanisms, and tolerance to biotic and abiotic stresses. The non-
nutritional benefits of mycorrhizal symbiosis may not be independent of the others. 
Generally, these benefits derive from the AMF nutritional action on plants. Thus, 
better-nourished plants tend to produce more defense compounds or have greater 
tolerance to biotic and abiotic stresses (Delavaux et al. 2017).

In the current classification, AMF belong to the phylum Glomeromycota 
(Schüβler et al. 2001) and have about 222 species described so far (Stürmer et al. 
2018). AMF diversity species in contaminated areas closely matches the abundance 
of plant species present. In addition, the AMF isolate tends to determine which plant 
species can be selected for application and, therefore, the success of phytostabiliza-
tion strongly depends on the selection of AMF isolated. On the other hand, it is 
important to highlight that the AMF species richness in the environment varies in 
terms of soil attributes, contamination level, and type of available PTE, which 
makes it difficult to directly relate the proportion of plants and the AMF species 
abundance in PTE-contaminated areas (Coninx et al. 2017; Van der Heijden et al. 
1998a, b, 2008; Wagg et al. 2014).

Many studies point out that plants that colonize PTE-contaminated soils possibly 
have great survival advantage if mycorrhized. This behavior is evident from the 
observation that non-mycotrophic species can develop symbolic mycorrhizal when 
growing in contaminated soil (Coninx et al. 2017). In this context, we present in the 
next topic the numerous benefits of mycorrhizal symbiosis under PTE toxicity.
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2.7  �Benefits of Mycorrhizal Association in Mitigating 
the Toxicity of Potentially Toxic Elements (PTE)

AMF can mitigate the PTE toxicity in plants through several direct and indirect 
mechanisms (Fig. 2.6). In general, such mechanisms favor mainly the processes of 
phytostabilization and/or phytoextraction of PTE (Cabral et al. 2015; Coninx et al. 
2017; Perveen et al. 2015; Kapoor et al. 2013; Meier et al. 2012; Kaur and Garg 
2018; Krishnamoorthy et al. 2019).

2.7.1  �Physical Barrier Promoted by Arbuscular Mycorrhizal 
Fungi on Plants in Soil Contaminated by Potentially 
Toxic Elements

The first mechanism of AMF defense to plants is to act as a physical barrier, by 
means of exclusion mechanisms, to reduce the PTE uptake in high concentrations 
(Fig. 2.6). In this sense, AMF may release chelating substances (metallothionein, 
siderophores, glomalin, oxalic acid, formic acid, malic acid, and succinic acid) to 
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Fig. 2.6  Possible mechanisms of arbuscular mycorrhizal fungi to mitigate the toxicity of poten-
tially toxic metals to plants and to promote phytoremediation
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reduce the bioavailability of these elements in soil. Chelation is a primary defense 
mechanism of AMF under PTE toxicity. The efficiency of this mechanism varies 
depending on the PTE type and AMF isolate. Under these conditions, various 
organic molecules excreted by the fungi are capable of chelating metals, reducing 
their uptake by the host plant. There is also the release of polyphosphate granules 
that promote the PTE exclusion by precipitation (Coninx et al. 2017; Bhandari and 
Garg 2017; Garg and Bhandari 2014; Kaur and Garg 2017).

Glomalin role in the PTE retention is an important strategy to reduce the uptake 
of these elements by plants or to mitigate toxic effects (Garg and Bhandari 2014). 
Glomalin is possibly the highly conserved heat shock proteins. Its production may 
be induced by several factors, including abiotic stress such as excess PTM (Kaur 
and Garg 2018; Gadkar and Rillig 2006). Purin and Rillig (Purin and Rillig 2007) 
suggest that glomalin has (or had) primary cellular function, related to the proper-
ties of heat shock proteins, such as chaperonins (stress signalers). Subsequently, 
glomalin acquired function over the extraradical mycelium, reducing its palatability 
against microarthropods and saprophytic fungi to reduce predation. Secondary to 
the primary physiological functions, glomalin would act in the soil aggregation pro-
cess due to its high persistence in the environment. It is a fact that glomalin pro-
motes the sequestration of PTE in contaminated soils. Jia et al. (2016) reported this 
behavior in the rhizosphere of Robinia pseudoacacia, a tree legume, grown in Cd- 
and Pb-contaminated soil. This research showed that as contamination increased, 
total glomalin-related soil protein (T-GRSP) contents and easily extractable GRSP 
(EE-GRSP) increased proportionally. Moreover, over time, there was an increase in 
the amount of GRSP-bound Pb and Cd, reducing the concentration of DTPA-Pb and 
DTPA-Cd in the soil. An interesting observed fact was the higher GRSP-bound Pb/
total ratio compared to GRSP-bound Cd/total, which suggests a higher affinity of Pb 
with glomalin molecules than Cd. Another study in a sand culture system with a 
clover plant, increasing Pb concentrations increased the immunoreactive glomalin 
(IR) and Bradford-reactive glomalin content. At the highest Pb dose (450 μM), IR 
amount increased more than twofold compared to the control. Apparently, increas-
ing Pb doses induce protein upregulation, reinforcing the AMF protection mecha-
nism to plants under these conditions. In addition, there was significant Pb 
sequestration in the glomalin fractions. In hyphal compartment, glomalin Pb seques-
tration reached 665.72  mg Pb mg−1 glomalin at the highest dose (450  μM) 
(Malekzadeh et al. 2016a). Fungal hyphae are the major site of glomalin-related 
gene expression (Gadkar and Rillig 2006). Many other studies have evaluated the 
involvement of glomalin in the PTE sequestration and retention in contaminated 
soils (Jia et al. 2016; Malekzadeh et al. 2016a, b; Wu et al. 2014; Gil-Cardeza et al. 
2014; Jia et al. 2018; Singh 2015; Siani et al. 2017).
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2.7.2  �Mechanisms to Reduce the Potentially Toxic Elements 
Translocation in Mycorrhizal Plants

Reducing PTE translocation from roots to the shoots of mycorrhizal plants is 
another efficient mechanism for mitigating the harmful effects of toxicity and 
includes some PTE exclusion mechanisms (precipitation, chelation, compartmen-
talization in organelles). For this, AMF have capacity to store PTE in their biomass, 
which reduces the transfer of these elements to the shoots. Storage of these elements 
may occur by binding to amino acids, carboxyl and hydroxyl groups, chitin, and 
negatively charged phosphates on the hyphae cell wall. In addition, these fungi can 
compartmentalize PTE in their vacuoles, plastids, and other membrane-rich organ-
elles in both hyphae and arbuscules and spores (Cornejo et al. 2013).

Another outstanding AMF mechanism to reduce soil PTE availability is the 
release of heat shock protein and glutathione to promote precipitation or chelation 
of PTE and formation of metal-phosphate complexes within hyphae (Emamverdian 
et al. 2015). In addition, AMF activity can alter soil pH, causing metal immobiliza-
tion in the mycorrhizospheric region (Kapoor et  al. 2013; Kaur and Garg 2018; 
Bano and Ashfaq 2013). Change in soil pH and consequent change in the Cd and Pb 
availability were observed by Zhan et  al. (2019) by inoculating separately 
Funneliformis mosseae and Diversispora spurcum in bermudagrass. Soil pH ranged 
from 5.4 (uninoculated treatment) to 5.8 with D. spurcum inoculation; however, 
both AMF species were able to significantly reduce soil acidity. As a result, there 
was a highlighted reduction in the Pb and Cd content available in the soil.

Finally, especially in cases of high toxicity and considerable PTE uptake and 
translocation, AMF promote mechanisms that help plants mitigate the deleterious 
effects of high PTE concentrations on plant biomass (Fig. 2.6). Under these condi-
tions, one of the simplest mechanisms refers to the favoring of plant growth through 
symbiosis, which results in a dilution effect of PTE on plant biomass. Thus, AMF 
exerts an antagonistic effect on PTE, as they promote rapid plant growth, which is 
not accompanied by an increase in PTE accumulation in plant tissues, resulting in a 
reduction in the concentration of these elements, characterizing the dilution effect 
(Marschner 2012). This occurs mainly through the AMF biofertilizer function, as it 
ensures nutrient uptake and thus stimulates plant growth (Shi et al. 2019; Kaur and 
Garg 2018) as noted by Gomes et al. (2014b). These authors verified that plants of 
Anadenanthera peregrina inoculated with Acaulospora scrobiculata had higher leaf 
P content and, consequently, higher growth in As-contaminated soil (539.33 mg As 
kg−1). The dilution effect also occurred in maize submitted to Cd levels (1 and 
5  mg  kg−1), where the individual inoculation of Rhizophagus intraradices and 
Glomus versiforme promoted increase in shoot and root dry weight; however, there 
was a drastic reduction in the Cd concentration in plant tissues (Zhang et al. 2019). 
In Robinia pseudoacacia, inoculation with Funneliformis mosseae and Rhizophagus 
intraradices increased growth to the detriment of Pb concentration, especially in 
leaves (Yang et  al. 2015). PTE dilution effect on plant biomass caused in 
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mycorrhizal plants is frequently reported (Hu et al. 2013; Zhang et al. 2015; Wang 
et al. 2017; Zhipeng et al. 2016).

Many studies show that not only the nutritional but also water status of mycor-
rhizal plants is higher to those not colonized, even in soils with high PTE concentra-
tions. Biofertilizing action along with the increase in water uptake occurs through 
extraradical mycelium from the AMF that reach places beyond the root zone. 
Another benefit is that better-nourished plants can alter the biosynthesis of various 
metabolites (amino acids, hormones, antioxidant defense components) to withstand 
high levels of PTE contamination (Shi et al. 2019).

The challenge of using these benefits is in the fact that the effect of mycorrhizal 
symbiosis on plant growth in contaminated locations varies with a large number of 
factors, which makes the interpretation of research results quite complicated and 
often with inconclusive results. Thus, the interpretation of the benefits of mycor-
rhizal symbiosis under these conditions must consider the chemical and physical 
attributes of contaminated soil; quality, PTE quantity and availability, level of 
mycorrhizal dependence on plant species, and plant and fungal ecotypes tolerance 
to PTE (Takács 2012).

2.7.3  �Arbuscular Mycorrhizal Fungi Mechanisms to Exclude 
or Alter the Availability of Potentially Toxic Elements 
and Metabolic Alteration of Colonized Plants

Analyzing the relationship between PTE uptake and mycorrhizal plant growth 
parameters in contaminated soils, research points to two more recurrent response 
patterns: first, increased PTE uptake via mycorrhizosphere under conditions of low 
PTE concentrations and, second, reduced PTE uptake at high concentrations due to 
decreased PTE bioavailability through specific fungal protection mechanisms or 
toxicity mitigation (Takács 2012). In reducing uptake, PTE immobilization in the 
fungal mycelium is the main protection mechanism to plants in contaminated soils. 
Molecules such as free amino acids, hydroxyl and carboxyl groups of the AMF, and 
chaperone cell walls (heat shock proteins, e.g., glomalin) act as PTE binding points. 
In corn plants under Cd (1 and 5  mg  kg−1) addition, AMF inoculation not only 
reduced Cd concentration in the shoot and roots but also changed the storage pattern 
of this PTE in the plant cell. In this case, the proportion of accumulated Cd in the 
cell wall and soluble fractions (vacuoles) of the cell increased along with increasing 
Cd doses. This behavior was even more significant in the roots. On the other hand, 
there was a reduction in the accumulated Cd fraction in cell organelles (Zhang et al. 
2019). Cd compartmentalization in the vacuoles and cell wall and simultaneous 
reduction in accumulated organelle fractions show that AMF inoculation assists the 
plant in its toxicity defense strategies and preserves cellular processes, especially 
those occurring in organelles.
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AMF’s role in altering the PTE available forms in soil may also contribute to the 
reduction of uptake of these elements under high toxicity. Moshiri et al. (2019) veri-
fied this behavior in Pb- and Zn-contaminated soil (DTPA extractable Zn 
8.66 mg kg−1; total Zn 126 mg kg−1; DTPA extractable Pb 3.12 mg kg−1; total Pb 
34 mg kg−1). Under these conditions, AMF inoculation in alfalfa increased the less 
labile fractions of these elements in the soil (organic and oxide-linked fractions) to 
the disadvantage of the more labile fractions (exchangeable and readily available 
fractions), elucidating one of the factors that may contribute to the reduction. PTE 
uptake by plants in contaminated soil (Moshiri et al. 2019). Similar behavior showed 
the Rhizophagus intraradices inoculation in rice cultivated in Cd-spiked soil 
(10 mg k−1). Compared to uninoculated treatment, this AMF species reduced the 
extractable Cd content of the soil while reducing the Cd concentration in the shoots 
and roots (Chen et al. 2019), demonstrating that the concentration reduction of this 
PTE in the soil did not occur by the increase in the uptake by the plants, but, prob-
ably, by the AMF participation in the alteration of the soil Cd fractions.

Changes in PTE fractions within the plant cell are also influenced by the AMF 
action. Zhang et al. (2019) verified that the Rhizophagus intraradices and Glomus 
versiforme inoculation in maize with Cd addition decreased the proportions of inor-
ganic Cd form (extracted with 80% ethanol, FE) and organic water-soluble form 
(more toxic fractions). On the other hand, the pectates and proteins-integrated Cd 
fraction increased prominently, which may be responsible for the adaptation of the 
plant to the stress caused by Cd. The latter fraction refers to Cd bound to pectates 
and proteins such as phytochelatins, which complex Cd to phytochelatin-Cd com-
plexes which are subsequently compartmentalized in vacuoles. This was corrobo-
rated by the increase in Cd content in the soluble fraction (mainly vacuoles) of plant 
cells in inoculated plants, demonstrating the importance of AMF in reducing the 
toxicity of this PTE. Similarly, Li et al. (Li et al. 2016) found that rice inoculated 
with Rhizophagus intraradices and Funnelliformis mosseae (inoculated separately) 
reduced the active and more toxic Cd proportions, contributing to higher tolerance 
of plants to the addition of Cd (0.05 and 0.1 mM).

Importantly, there are also reports of no response (Cui et al. 2019) or negative 
response of mycorrhizal symbiosis on plant development in PTE-contaminated 
soils (Aguirre et al. 2018). Interestingly, plant colonization by AMF can increase 
PTE uptake; however, in many cases, even with increased PTE uptake, mycorrhized 
plants may show higher growth, suggesting the presence of detoxifying mecha-
nisms from molecular processes and/or biochemicals as yet unknown (Cicatelli 
et al. 2014). Mycorrhizal colonization affects the PTE biogeochemical fractions and 
their accumulation in plant tissues, and this varies as to the level of soil contamina-
tion and the nature of PTE. Moshiri et al. (2019) found that AMF inoculation in 
alfalfa altered the chemical behavior of Zn and Pb, notably the mobility of these 
PTE in the soil. In highly contaminated soil (DTPA extractable Zn 89.6 mg kg−1; 
total Zn 258.1 mg kg−1; DTPA extractable Pb 9.9 mg kg−1; total Pb 91.6 mg kg−1), 
mycorrhiza increased the Zn- and Pb-labile forms (exchangeable and readily avail-
able fractions – Ca (NO3)2) to the detriment of less labile forms (oxide-bound and 
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organic fractions). These changes in soil PTE lability may also explain the increased 
uptake of these elements by mycorrhizal plants.

In addition to all primary and external mechanisms of defense of AMF to plants 
under stress, these fungi also act as mechanisms of PTE exclusion in internal pro-
cesses. In fungal cell cytosol, for example, there may be the production of molecules 
that promote PTE chelation to reduce their deleterious action on plant metabolism. 
Among the intracellular chelators, we highlight metallothionein, glutathione, poly-
amines, amino acids, and chaperones (some of them are heat shock proteins). Once 
chelated, these metal complexes can also be transported. PTE compartmentalization 
mechanism in fungal structures (Fig.  2.6) includes the action of carrier proteins 
present in the plasma membrane of AMF. These metal carrier proteins can alleviate 
toxicity by transporting metals out of the cell or into intracellular compartments. In 
addition, metal uptake through specific transport systems located on the AMF 
plasma membrane can be downregulated under conditions of high PTE contamina-
tion (Coninx et al. 2017).

Exposed to excess PTE, plants synthesize various low-molecular-weight metab-
olites in the cytoplasm, together referred to as compatible solutes. This set of mol-
ecules includes specific amino acids (proline, total soluble sugars, glycine betaine, 
trehalose, sorbitol, etc.) that have the osmoprotective function, inhibit lipid peroxi-
dation, stabilize proteins, and sequester free radicals (Garg and Bhandari 2014; 
Kaur and Garg 2018). Proteomic analysis performed on leaves of Populus alba 
showed that Glomus intraradices inoculation largely altered proteins belonging to 
the functional groups “photosynthesis and carbon fixation” and “sugar metabo-
lism.” In this research, after 4 months of clone transplantation into contaminated 
soil, a significant number of proteins were involved in the protein folding functional 
group. Sixteen months after transplantation, there was a greater representation of 
protein groups linked to “oxidative damage” and “glutathione metabolism” to the 
detriment of previous groups (Lingua et al. 2012). Mycorrhizal symbiosis can stim-
ulate plant production of these molecules by favoring plant defense systems (Cabral 
et al. 2015). In corn plants under Cu addition (500 μg g−1), Rhizophagus irregularis 
inoculation increased the phytochelatin concentration in leaves in the Cu-sensitive 
cultivar (Merlos et al. 2016). Increased phytochelatin content by AMF inoculation 
was reported in Lonicera japonica plants inoculated with Glomus versiforme and 
Rhizophagus intraradices, even at the highest dose of Cd  – 20  μg  g−1 (Jiang 
et al. 2016a).

Metallothioneins, low-molecular-weight proteins, are synthesized by numerous 
organisms, including plants and AMF (Cabral et  al. 2015). These proteins are 
encoded by a multigene family, which appear to be regulated according to the organ 
and development stage and in response to various stimuli, including PTE contami-
nation (Cicatelli et  al. 2014). Metallothioneins play a complex role in both PTE 
homeostasis and protection against oxidative stress of organisms under toxic condi-
tions (Cabral et al. 2015; Cicatelli et al. 2014). It is important to mention that AMF 
inoculation can regulate the metallothionein gene expression in plants and thus 
favor the survival of these plants under toxicity conditions. This behavior was stud-
ied in Festuca arundinacea plants under Ni (30, 90, and 180  mg  kg−1) and 
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Funneliformis mosseae inoculation. In these growing conditions, compared to unin-
oculated plants, inoculated plants upregulated the MET gene in the roots at all Ni 
levels and in the shoot from 90  mg  kg−1 (Shabani et  al. 2016). Modulation of 
metallothionein gene transcription levels in Populus alba inoculated with Glomus 
mosseae or Glomus intraradices showed that after 16 months of growth in PTE-
contaminated soil, there was upregulation of the PAMT1, PAMT2, and PAMT3 
genes (in both isoforms, a and b) related to metallothionein (Cicatelli et al. 2014).

Polyamines, another important intracellular chelator, are organic polycations 
considered to be plant growth regulators. Putrescine (Put), spermidine (Spd), and 
spermine (Spm) are the most abundant polyamines in plants and occur in both free 
and conjugated forms. Since these molecules act on cell growth and proliferation 
and protein and nucleic acid synthesis, their biosynthesis is essential for normal 
growth and development of eukaryotic organisms (Cicatelli et al. 2014). Fortunately, 
mycorrhizal symbiosis can stimulate plant production of these chelators in PTE-
contaminated environments. Polyamines can protect against PTE contamination by 
both their antioxidant activity and metal chelation. Inoculation of Populus alba with 
Glomus mosseae or Glomus intraradices upregulated PaSPDS1 and PaSPD2 gene 
expression in Zn and Cu contaminated soil. As a result, free spermidine levels were 
higher in the presence than in the absence of AMF and correlated with better plant 
growth. In addition, conjugated spermidine and spermine levels also expanded sig-
nificantly in plants inoculated with G. intraradices relative to control (Cicatelli 
et al. 2010).

2.7.4  �Changes in Gene Expression in Arbuscular Mycorrhizal 
Fungi and Plants (Stimulated by Mycorrhization)

Advances in molecular techniques have allowed for more in-depth studies of the 
PTE effects on AMF gene expression and their effect on plant gene expression. 
AMF can mediate the up- and downregulation of specific genes as well as different 
chemical components (Cabral et al. 2015), in both plant and fungal cells. AMF can 
favor plant defense through non-nutritive mechanisms, for example, by regulating 
the expression of specific plant metabolism genes, resulting in induced tolerance 
that plants can develop in response to AMF colonization (Delavaux et al. 2017). 
Large-scale molecular analyses reinforce that mycorrhizal symbiosis determines 
important changes at the transcriptional/translational levels. These changes may 
help clarify the reasons for the increased growth of mycorrhizal plants under PTE 
toxicity (Cicatelli et al. 2014).

Some studies indicate that AMF inoculation strongly modifies transcriptome in 
plants subjected to PTE toxicity, partially restoring it to the control profile (Cicatelli 
et al. 2014). In a transcriptome analysis of Populus alba leaves subjected to PTE 
contamination, Cicatelli et al. (2014) found that AMF inoculation strongly modified 
the transcriptome of plants grown in contaminated soil. PTE contamination did not 
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affect the regulation of most genes evaluated. However, inoculation with Glomus 
mosseae and Glomus intraradices upregulated defense gene groups (thaumatin, 
glutathione synthase, and metallothioneins) and genes related to primary metabo-
lism and transcription. Moreover, observation of the gene expression pattern showed 
that the AMF species differed from each other, since Glomus mosseae showed 
greater activation capacity of the plant defense system. Additionally, colonized 
plants obtained higher PTE concentration in the biomass; however, they also 
achieved higher growth and negative regulation of most antioxidant genes, suggest-
ing a higher degree of protection in these plants and a lower need for the activation 
of the antioxidant pathways involved in ROS scavenging.

In addition to changes in plant gene expression at toxic PTE levels, AMF show 
changes in their own gene expression to overcome stress. Benabdellah et al. (2009a, 
b) identified the first glomeromycotan dithiol glutaredoxin gene (GintGRX1) from 
the Glomus intraradices. Cu induced the ROS accumulation in the extraradicular 
mycelium of Glomus intraradices and further upregulated GintGRX1 transcription 
in the fungus. This gene encodes a multifunctional protein with oxidoreductase, 
peroxidase, and glutathione S-transferase activity, suggesting the role of the 
GintGRX1 gene in protecting the fungus against oxidative damage induced directly 
by superoxide anions or indirectly by copper (Benabdellah et al. 2009a). Additionally, 
Benabdellah et al. (2009b) have shown that GintGRX1 gene encodes the PDX pro-
tein involved in vitamin B6 biosynthesis. PDX 1 and PDX2 are proteins involved in 
the alternative pathway of vitamin B6 biosynthesis. Importantly, this vitamin has 
recently been implicated in the defense against cellular oxidative stress.

2.7.5  �Changes in Antioxidant Defense System 
of Mycorrhizal Plants

PTE have the ability to interact with various cellular biomolecules, such as nuclear 
proteins and DNA, leading to excessive increase in reactive oxygen species (ROS). 
Due to the induction of oxidative stress caused by PTE excess, AMF can stimulate 
antioxidant enzyme activity and also trigger the upregulation of enzymatic and non-
enzymatic antioxidants to protect the plant cell from ROS (Emamverdian et  al. 
2015; Shi et al. 2019).

Higher concentrations of enzymatic antioxidants (Fig. 2.5) are often found in 
mycorrhizal plants compared to control plants (Coninx et  al. 2017; Garg and 
Bhandari 2014; Shi et  al. 2019; Abdelhameed and Metwally 2019). This was 
observed in fenugreek (Trigonella foenumgraecum L.) plants submitted to Cd appli-
cation (2.25 and 6.25  mM), where the inoculation with Glomus monosporum, 
G. clarum, Gigaspora nigra, and Acaulospora laevis mixture significantly increased 
the activity of the enzymes superoxide dismutase (SOD), peroxidase (POD), and 
catalase (CAT) (Abdelhameed and Metwally 2019). The stimulus for the enzyme 
activity by AMF is important because of their functions in the antioxidant defense 
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system of plants, as they act to suppress or prevent the formation of free radicals or 
reactive species in cells. SOD, POD, and CAT are the first-line defense antioxidants 
since they neutralize free-radical precursor molecules or the free radicals them-
selves capable of inducing the production of other harmful molecules (Ighodaro and 
Akinloye, 2018). SOD, for example, catalyzes the conversion of superoxide anion 
(O2 • -) to oxygen and hydrogen peroxide (H2O2). Superoxide anion is a byproduct 
of many metabolic processes, including mitochondrial respiration; however, its 
excessive accumulation in cells is deleterious. In addition to superoxide anion, SOD 
activity controls the levels of a variety of ROS and reactive nitrogen species (e.g., 
peroxynitrite – ONOO−), restricting the toxic potential of these molecules (Wang 
et al. 2018). Already CAT, abundant in peroxisomes, transforms H2O2 into water 
and molecular oxygen. However, there is no catalase in mitochondria, so in this, 
organelle glutathione peroxidase (GPx) is responsible for decomposing to H2O2. 
The role and effectiveness of first-line defense antioxidants (SOD, CAT, and GPx) 
is therefore indispensable in any antioxidant defense strategy (Ighodaro and 
Akinloye 2018) and may be positively influenced by mycorrhizal symbiosis in sev-
eral plant species (Sharma et al. 2017; Schneider et al. 2017; Jiang et al. 2016b; 
Spagnoletti et al. 2016; Sarathambal et al. 2017).

In addition to ROS accumulation in cells, high concentrations of PTE uptaked by 
plants cause malondialdehyde (MDA) accumulation, impairing plasma membrane 
stability (Jiang et al. 2016b; Hashem et al. 2016; Shahabivand et al. 2016). MDA 
generation is clearly related to the symptoms of plants stressed by the environment 
(Morales and Munné-Bosch 2019). MDA is a small reactive organic molecule that 
occurs omnipresent among eukaryotes. Formation of this molecule may be induced 
by lipoxygenase activity or ROS accumulation. As most MDA is derived from lipid 
peroxidation of polyunsaturated fatty acid in response to oxidative stress (via ROS 
and/or lipoxygenase), MDA content is widely used as an indicator of membrane 
damage in plants (Morales and Munné-Bosch 2019). Fenugreek (Trigonella foenu-
mgraecum L.) plants inoculated with mix of Glomus monosporum, G. clarum, 
Gigaspora nigra, and Acaulospora laevis showed lower MDA concentration than 
uninoculated plants, both at 2.25 and 6.25 mM Cd (Abdelhameed and Metwally 
2019). Similar results are reported in tomato under Cd (Jiang et al. 2016b; Hashem 
et al. 2016), Lonicera japonica – Cd (Jiang et al. 2016a), maize – Cu (Merlos et al. 
2016), wheat – Cd (Shahabivand et  al. 2016), Phragmites australis  – Cd (Wang 
et al. 2017), and sunflower – Cd (Abd-Allah et al. 2015).

In the nonenzymatic antioxidant defense system (Fig. 2.5), AMF acts by increas-
ing the concentration of these components in plant biomass (Spagnoletti et al. 2016; 
Spagnoletti and Lavado 2015). The addition of 1 mg Cd kg−1 in maize inoculated 
with Rhizophagus intraradices and Glomus versiforme did not change glutathione 
concentration in leaves and roots. However, the increase in Cd concentration 
(5 mg kg−1) significantly enhanced the concentration of this antioxidant, especially 
in plants inoculated with G. versiform (Zhang et al. 2019). Glutathione is a low-
molecular-weight water-soluble thiol compound, widely distributed in most plant 
tissues. Besides storing and transporting reduced sulfur, this metabolite can protect 
plant cells of excess PTE in three possible ways: (1) direct ROS scavenging (second 
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component with greater H2O2 neutralizing capacity), (2) PTE chelation/complex-
ation, and (3) phytochelatin precursor (Noctor et  al. 2012; Hasanuzzaman et  al. 
2017), which in turn are capable of chelating PTE and reducing its deleterious 
action on plant cells. The increase in phytochelatin concentration in maize under Cd 
levels (1 and 5 mg kg−1) was directly proportional to the increase of glutathione 
content, especially in plants inoculated with G. versiforme (Zhang et  al. 2019). 
Thus, we can see the wide range of processes beneficially influenced by AMF, pro-
tecting the plant against excess PTE.

Ascorbate concentration in plants under PTE toxicity is also favored by AMF 
inoculation (Jiang et al. 2016a; Hristozkova et al. 2016). This antioxidant is very 
abundant and occurs in all plant tissues, especially those rich in photosynthetic cells 
and meristems. Its main role in plant defense refers to the elimination of free radi-
cals O2•− and OH.  The rise in ascobartum levels has already been reported for 
Glomus versiforme and Rhizophagus intraradices species in Cd-spiked soil (Jiang 
et al. 2016a) and Glomus versiforme and Glomus mosseae under Cs addition (Huang 
et al. 2016). Increase in leaf content by mycorrhizal inoculation is not verified only 
for the ascorbate. Inoculation with various AMF species was able to increase con-
centrations of polyphenols (Hristozkova et al. 2016; Ibiang et al. 2017), carotenoids 
(Sharma et al. 2017; Abd-Allah et al. 2015; Hristozkova et al. 2016), proline (Kaur 
and Garg 2017; Sharma et al. 2017; Hashem et al. 2016), tocopherols (Sharma et al. 
2017), and flavonoids (Hristozkova et al. 2016).

Although numerous studies demonstrate the beneficial action of AMF to the anti-
oxidant defense system of plants, there is a lack of studies that elucidate the path-
ways of AMF action in increasing nonenzymatic antioxidant concentrations as well 
as in the activity of antioxidant enzymes.

2.8  �Phytoremediation Involving Arbuscular Mycorrhizal 
Fungi (AMF)

Filtration, electrochemical application, reverse osmosis, and chemical precipitation, 
among others, are some of the remediation techniques that make the process of 
recovering contaminated soil very expensive or harmful to the environment. In this 
sense, AMF benefits to promote plant growth and even enhance phytoremediation 
in contaminated areas make these microorganisms a lower-cost alternative and 
especially with no environmental impact, given that these microorganisms are 
native to many ecosystems, disturbed and undisturbed (Hassan et al. 2017).

However, for the phytoremediation process associated with AMF mycorrhizal 
symbiosis to be successful, several factors and some steps need to be considered and 
carefully planned (Fig.  2.7). Obtaining a detailed diagnosis of the contaminated 
area should be the first step in the process. This diagnosis should start with soil 
characterization (step 1), especially with the chemical, physical, and mineralogical 
attributes analysis, since these will directly influence the PTE bioavailability. 
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Together, identifying the contaminants present, it is possible to predict the intrinsic 
affinity of ions with soil adsorption surfaces (e.g., humus, silicate, and oxides clays) 
as well as the influence of more variable soil attributes (e.g., pH, redox potential, 
water content, temperature, biological activity, ionic strength) on PTE availability 
(Kabata-Pendias 2011). Identification of the contamination degree and extent as 
well as the origin and conditions of contamination formation is essential 
(Takács 2012).

In the second stage, the detailed survey of the contaminated area will point out 
the diversity of plant species as well as the AMF species that colonize the roots of 
these plants. These results will mainly lead to step 5 (Fig. 2.7). Generally, AMF 
ecotypes that develop in contaminated areas have greater PTE contamination toler-
ance. These ecotypes are assumed to evolve as contamination increases over time 
and gradually develop mechanisms to resist or tolerate PTE stress (Wei et al. 2015).

Risk assessment, step 3, is a useful tool to enable a rational and objective basis 
to assist in priority making and decision-making (Ferguson et al. 1998). There are 
many ecological risk assessment methodologies. This assessment may include col-
lecting, organizing, and analyzing environmental data to estimate the contamination 
risks to ecosystems (Weeks and Comber 2005) exposed to PTE excess or a descrip-
tion or estimate of changes in populations or ecosystems. In the latter case, it may 
also be presented as an impact assessment rather than a risk assessment (Jensen 
et al. 2006). Following the US National Research Council (NRC) risk assessment 
process report, we can list four distinct phases for this step in contaminated soil: (1) 
identification of the present PTE that may cause harmful effects; (2) estimated dose-
response relationship of PTE, i.e., quantitative relationship between plant exposure 
and adverse effects or epidemiological studies; (3) analysis of plant exposure to 
PTE by estimating the intensity, frequency, and duration of exposure these 
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Fig. 2.7  Summary of the implementation steps of phytoremediation techniques using arbuscular 
mycorrhizal fungi species associated with plants
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elements; and (4) risk characterization through the interpretation of data collected 
in previous phases. In general, many countries have a similar framework for risk 
assessment procedures for contaminated areas. Thus, some important parameters 
are considered (Fig. 2.8) (Takács 2012; Ferguson et al. 1998).

Information and data obtained from the diagnostic steps enable the precise choice 
of phytoremediation technology as well as the definition of priorities (Fig. 2.7). The 
main phytoremediation techniques were discussed in Sect. 2.5, and in this chapter, 
we will emphasize those with the possibility of applying mycorrhizal symbiosis, 
especially phytostabilization and phytoextraction. Once the phytoremediation tech-
nique is defined, step 5 begins (Fig. 2.7), which consists of performing tests to select 
efficient host plants for the chosen technique and effective and infectious AMF 
strains for these plant species. This choice can be driven mainly by the data obtained 
in step 2. The botanical families Asteraceae, Brassicaceae, Caryophyllaceae, 
Cyperaceae, Cunoniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, 
Violaceae, and Euphorbiaceae together contain over 500 hyperaccumulating plants 
species (Prasad and Freitas 2003; Krishnamoorthy et  al. 2019). However, many 
hyperaccumulators species such as Brassicaceae, Juncaceae, Caryophyllaceae, 
Amaranthaceae, and Cyperaceae and some members of the Fabaceae family do not 
develop arbuscular mycorrhizae (Liu et al. 2015). This factor is extremely relevant 
and should be considered when choosing which species to associate with AMF in 
contaminated areas. Therefore, the choice of plant species for efficient methods of 
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Fig. 2.8  Main parameters observed in risk analysis for the employment of remediation techniques 
of soils contaminated with potentially toxic elements

L. A. F. Vilela and E. C. de Oliveira



61

phytoremediation using AMF should prioritize species that have considerable 
mycorrhizal dependence. Takács (2012) highlights three plants categories that grow 
in PTE-contaminated soils:

	1.	 Excluding plants (excluders): plants that uptake PTE by storing them in the roots 
to the detriment of the shoots

	2.	 Indicator plants: plants that present PTE concentration in their organs directly 
proportional to the concentration found in the soil

	3.	 Hyperaccumulator plants: plants in which PTE concentration in the roots exceeds 
1000 mg kg−1 dry weight, a higher dose than the soil

From the choice of plant species, it is possible to select AMF species to be tested. 
The choice of the most appropriate species and ecotypes can start from the data col-
lected in step 2. Indigenous AMF ecotypes from contaminated areas may be more 
efficient than others, as they have already developed considerable tolerance and 
adaptation to contamination (Wei et  al. 2015). Furthermore, PTE contamination 
tends to suppress the most sensitive species. In Sb mining area in China, S contami-
nation was the factor that predominantly influenced the AMF community (Wei et al. 
2015). However, combining indigenous with exogenous AMF species may also be 
a successful option (Takács 2012). Nevertheless, many studies of diversity, infectiv-
ity, adaptation, and tolerance of AMF under PTE contamination show that these 
elements may retard fungal development but never completely suppress it (Lenoir 
et al. 2016; Wang 2017). Consequently, much research data attests to the ubiquitous 
presence of MFA in contaminated locations (Wei et al. 2014, 2015; Ban et al. 2017; 
Mikryukov et al. 2015; Buck et al. 2019; Sun et al. 2016). In a gold mining area in 
Brazil, Schneider et al. (2013) found that the Glomus minutum, G. fasciculatum, 
Acaulospora spinosa, A. scrobiculata, A. tuberculata, Scutellospora biornata, 
Racocetra fulgida, and R. persica were identified only in native areas without con-
tamination, indicating that these species were more susceptible to contamination 
than A. morrowiae, Paraglomus occultum, and Glomus clarum, for example, which 
had the highest frequencies of occurrence in both native and contaminated areas. 
Paraglomeraceae and Glomeraceae species also had higher frequency of occurrence 
in Pb contaminated área (Faggioli et al. 2019). In Zn Foundry Unit, Lopes Leal et al. 
(2016) found a higher occurrence of Glomus sp. and Paraglomus occultum. 
Moreover, these authors showed that there was a reduction in the frequency of 
occurrence of P. occultum in the areas under rehabilitation. These data may indicate 
high adaptability of these species under these conditions, placing them as good 
options for remediation processes. In China, phylogenetic analysis of soil in the Sb 
mining area showed that most AMF species belonged to the genus Glomus. Although 
the frequent identification of Glomus in contaminated areas may represent the larg-
est AMG group, it is still suggested that this genus has greater adaptability to stress-
ful conditions than the others (Wei et al. 2015). In South Africa, Buck et al. (2019) 
identified substantial AMF species diversity in an inactive Au and U mining. These 
authors have identified species of the genera Claroideoglomus (2), Diversispora (4), 
Scutellospora (Swartjes et al. 2012), Rhizophagus (3), Sclerocystis (1), Glomus (1), 
Cetraspora (1), and Redecker (1). However, the highest occurrence was of the 
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species Claroideoglomus lamellosum, C. etunicatum, and Diversispora celata. In 
multicontaminated area with PTE (Cd, Zn, Cu, Pb, Cr, and Ni), Sidhoum and Fortas 
(2019) reported significant occurrence of the genera Glomus (1 spp.), Funneliformis 
(4 spp.), Rhizoglomus (3 spp.), and Sclerocystis (2 spp.). Besides, species of 
Septoglomus (1 sp.) Acaulosporaceae/Acaulospora (11 spp.) were present. These 
authors also highlighted the occurrence of Archaeosporaceae (Archaeospora 2 
spp.), Claroideoglomeraceae (Claroideoglomus 2 sp.), Diversisporaceae 
(Diversispora 1 spp. and Tricispora 1 sp.), Paraglomeraceae (Paraglomus 2 sp.), 
and Ambisporaceae (Ambispora 1 sp.), which had a rare occurrence. Despite the 
extremely varied results, it is clear that there are few reports of the occurrence of the 
genera Diversispora, Redeckera, Pacispora, Racocetra, Cetraspora, Dentiscutata, 
Septoglomus, Sclerocystis, Archaeospora, Ambisporaceae, Ambispora, and 
Entrophospora, which strongly suggests their very low competitive capacity under 
PTE contamination conditions (Wei et al. 2015; Ban et al. 2017; Buck et al. 2019; 
Lopes Leal et al. 2016; Vilela et al. 2018; Vilela and Barbosa 2019).

With the best results obtained in the selection tests of efficient plant and fungal 
species, it is possible to perform step 6 of the phytoremediation process, implemen-
tation of the in situ phytoremediation technique (Fig. 2.7). From this, it is necessary 
to continuously monitor the entire process through the dashboard, which consists of 
uninterrupted monitoring of the effectiveness of the chosen technology through the 
evaluation of ecological, environmental, and economic indicators (step 7) that will 
enable the adoption of corrective measures (step 8) throughout the phytoremedia-
tion process.

Conventionally, AMF inoculum production occurs in cultivated pots containing 
sterile soil and inoculated with fungal spores. This cultivation takes place in green-
houses using plants with high mycorrhizal dependence. After the plant growth 
cycle, soil is collected containing spores, extraradicular mycelium and mycorrhized 
roots that are used as a source of inoculum (Kumar et al. 2017). Despite its relative 
simplicity, this technique requires for at least 4 months to produce viable spores 
(https://invam.wvu.edu/) and can become unviable for large-scale inoculum produc-
tion. There are other more expensive and more technological techniques for the 
production of AMF inoculum, hydroponics, and aeroponics. Hydroponics is a sys-
tem in which host plants are inoculated with AMF and grown in aqueous solution 
that provides nutrients to plants. In aeroponics, plants are also inoculated with AMF 
spores; however, cultivation is suspended in the air, with plants supported by the 
root of the roots, which are sprayed with a mist of nutrient solution. In addition to 
their high cost, these cropping systems require constant monitoring, are susceptible 
to widespread disease occurrence, and have large-scale production limitations 
(Kumar et al. 2017). Due to their characteristic biotrophic, AMF are not produced 
in monoxenic culture (in vitro culture system) without the presence of metabolically 
active roots. For these conditions, there is a need for the use of transformed plant 
roots (induced by Agrobacterium rhizogenes Ri-TDA) or autotrophic plants with 
the shoot outside the Petri dish or in a sterile tube connected vertically to the petri 
dish. Despite the high cost, in vitro crops continually produce pure, contamination-
free, and traceable concentrate products (Kumar et al. 2017). In addition to care in 
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inoculum production, the inoculum must be properly supplied to the plant. For her-
baceous or arboreal species, the seedlings are usually grown in seedling nursery, 
where they receive the AMF inoculum. In this way, the plant begins the establish-
ment of mycorrhizal symbiosis before transplantation in contaminated soil, i.e., 
being placed in contact with contamination is already benefiting from symbiosis.

2.9  �Closing Remarks

The main sources of PTE contamination of soil have anthropogenic cause, demon-
strating that the number of contaminated areas in the world tends to increase expo-
nentially in the coming years. Worryingly, some remediation techniques in these 
areas tend to be as environmentally impactful as the contamination itself. In this 
sense, techniques that prioritize the use of natural resources for soil detoxification 
gain more space in remediation projects because they are environmentally friendly. 
Of these, we mention phytoremediation (phytoextraction and phytostabilization) 
that use plants to extract or immobilize potentially toxic elements in the soil, mak-
ing them less harmful. Although many plants have a considerable range of external 
and internal defense strategies, they are not always effective. Therefore, arbuscular 
mycorrhizal fungi may favor plant growth in contaminated sites given their toler-
ance to these environments as well as the plant defense processes, as discussed in 
this chapter. Effects of arbuscular mycorrhizal fungi on the PTE uptake by host 
plants can be influenced by the metal specifications and their total concentrations, 
substrate physicochemical properties, combinations between mycorrhizal fungi iso-
lates and host plants, and cultivation conditions. Currently, there are numerous 
research results demonstrating that AMF inoculation in plants grown in contami-
nated soil can stimulate photosynthetic activity, increase nutrient uptake, increase 
production of secondary metabolites, and modify the expression of plant defense-
related genes, which promotes greater tolerance to plants. However, research has 
not yet directed how these positive results can turn into applicable remediation, 
bioremediation, or phytoremediation projects for contaminated areas. Major diffi-
culty is in the absence of specific information on the remediation capacity of each 
AMF species for certain types of PTE, i.e., there are no specific remediation pro-
grams yet to mention which AMF species and plants should be used for each kind 
of contamination. It is noteworthy that the latest research has focused on metage-
nomic and metatranscriptomic techniques to broaden knowledge about new genes 
and proteins responsible for AMF tolerance and mycorrhizal plants in PTE-
contaminated soils. Possibly, these results will expand understanding of the diver-
sity, functionality, and adaptability of different AMF species in contaminated soils. 
In addition, there is a great need for advances in research into large-scale AMF 
inoculum production or the production of mycorrhizal stimulants for native AMF 
populations with applicability to contaminated soil remediation programs.
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Chapter 3
Microbial Enzymes in the Bioremediation 
of Pollutants: Emerging Potential 
and Challenges

Geeta Bhandari and Mukund Sharma

3.1  �Introduction

A large number of pollutants such as polychlorinated biphenyl compounds (PCBs), 
hydrocarbons, dyes, pesticides, esters, heavy metals, petroleum products, and 
nitrogen-containing chemicals persist in the environment, which are released from 
various industrial and agricultural resources (Dua et al. 2002; Prasad 2021). These 
pollutants are highly toxic and carcinogenic in nature, and accumulations of these 
chemicals become hazardous to the environment and also flora and fauna living in 
the environment (Wasilkowski et al. 2012). As the increase of contaminated sites 
poses a major environmental and human health problem, it appears mandatory to 
decontaminate the environment. Wastes released from various industries and agri-
cultural resources are treated by dumping off in a hole, high-temperature-based 
incineration, and using UV rays. But these methods don’t prove very effective due 
to their less effectiveness, complex nature, high cost, and formation of other 
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recalcitrant derivatives (Vidali 2001). Bioremediation provides a way for the degra-
dation of these chemicals (Dzionek et al. 2016). Bioremediation involves the use of 
microorganisms and their enzymes for the degradation and transformation of pollut-
ants into another form which is less toxic to the environment. Various species of 
archaea, bacteria, algae, and fungi demonstrating bioremediation ability have been 
discovered (Dua et al. 2002). Use of microbes and their enzymes for the removal of 
pollutants is an effective, safe, and less expensive method (Karigar and Rao 2011; 
Behera and Prasad 2020).

3.2  Microbial Enzymes in Bioremediation

Enzymes are complex biological macromolecules which act as a catalyst for a num-
ber of biochemical reactions involved in the pollutant degradation pathways 
(Kalogerakis et al. 2017). Enzymes can enhance the rate of a reaction by lowering 
the activation energy of molecules. Enzymes are central to the biology of many 
pesticides, influencing their modes of action, environmental fates, and mechanisms 
of target species resistance. In the last few years, microbial enzymes separated from 
their cells have been used for bioremediation as compared to using whole microor-
ganisms (Thatoi et al. 2014). They are the main effectors of all the transformations 
occurring in the biota. They are catalysts with either narrow (chemo-, region-, and 
stereo-selectivity) or broad specificity and, therefore, they can be applied to a large 
range of different compounds in a mixture, as well. They may produce extensive 
transformations of structural and toxicological properties of contaminants and even 
their complete conversion into innocuous inorganic end products. They may per-
form processes for which no efficient chemical transformations have been devised. 
Bioremediation based on purified and partially purified enzymes does not depend 
on the growth of a particular microorganism in a polluted environment, but it 
depends upon the catalytic activity of the enzyme secreted by microbes (Ruggaber 
and Talley 2006). Moreover, enzymes may present advantages over traditional tech-
nologies and also over microbial remediation. In nutrient-poor soil, bioremediation 
can be possible by using a purified enzyme. Toxic side products produced by micro-
bial biotransformation are not produced by using enzymatic biotransformation 
which is safe to the environment. Indeed, enzymes are not inhibited by inhibitors of 
microbial metabolism. They can be used under extreme conditions limiting micro-
bial activity. They are effective at low pollutant concentrations and are active in the 
presence of microbial predators or antagonists and are more mobile than microor-
ganisms because of their smaller size (Gianfreda and Bollag 2002). In comparison 
to microbes, enzymes are more specific to their substrate and mobile in nature 
because of their smaller size (Gianfreda and Bollag 2002). There are several types 
of enzymes such as oxidoreductases, laccases, hydrolases, and peroxidases actively 
involved in the bioremediation process (Table 3.1; Kadri et al. 2017; Prasad 2017, 
2018; Prasad and Aranda 2018).
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Table 3.1  Enzymes used in the bioremediation of different pollutants

Enzymes Microorganisms Pollutant Reference

Carbamate hydrolase Achromobacter sp.,
Pseudomonas sp.

Carbofuran, carbaryl Derbyshire et al. 
(1987), Mulbry 
and Eaton (1991)

Laccase P. sanguineis Bleach plant effluents Archibald et al. 
(1990), Limura 
et al. (1996)

LiP, MnP Coriolopsis polyzona, 
Pleurotus ostreatus, T. 
versicolor

PCBs Zeddel et al. 
(1993), Novotny 
et al. (1997)

LiP, MnP White-rot fungi Biopolymers (kraft, 
lignin)

Reddy (1995), 
Cameron et al. 
(2000), Pointing 
(2001)

Lignin degrading 
enzymes, Laccase

Phanerochaete 
chrysosporium, Trametes 
versicolor

PAHs Bogan and Lamar 
(1996), Bumpus 
(1989)

MnP, LiP, laccase, 
chloroperoxidases, 
peroxidase

White-rot fungi Phenols, PAH Gianfreda et al. 
(1998), Bollag 
et al. (1988), 
Nicell (2001)

LiP, MnP, Cellobiose 
dehydrogenase

Phanerochaete 
chrysosporium

CCl4, CHCl3 Cameron and 
Aust (1999)

Peroxidases Phanerochaete 
chrysosporium

TNT (2,4,6- 
trinitrotoluene), 
Nitroaromatic 
compounds

Cameron et al. 
(2000)

Laccase Pycnoporus sanguineis Azo dyes Pointing and 
Vrijmoed (2000)

Laccase Pycnoporous sanguineus Dyes such as 
bromophenol blue, 
malachite green

Mayer and 
Staples (2002)

Carboxylesterases Pseudomonas aeruginosa 
PA1

Malathion and 
Parathion

Qiao et al. 
(2003), Singh 
et al. (2012)

Laccase Trametes versicolor, 
Pleurotus ostreatus

PCBs Dodor et al. 
(2004)

Alkane hydroxylases 
(monooxygenase and 
dioxygenase)

Arthrobacter, 
Burkholderia,
Mycobacterium, 
Pseudomonas,
Sphingomonas, 
Rhodococcus

Hydrocarbon 
(aromatic and 
aliphatic)

Das and 
Chandran (2010)

Atrazine dechlorinase, 
triazine hydrolase

Nocardioides sp. C190,
Pseudomonas, 
Rhodococcus, 
Erythropolis

Triazine herbicides Scott et al. (2010)

(continued)
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3.2.1  Oxidoreductases

The detoxification of toxic organic compounds by various bacteria and fungi and 
higher plants through oxidative coupling is mediated with oxidoreductases. 
Microbes extract energy via energy-yielding biochemical reactions mediated by 
these enzymes to cleave chemical bonds and to assist the transfer of electrons from 
reductants to oxidants resulting in releasing of chloride ions, CO2, and methanol. 
Heat or energy is generated as a result of the degradation of pollutants oxidoreduc-
tases, which is utilized by microorganisms for their metabolic activities. During 
such oxidation-reduction reactions, the contaminants are finally oxidized to harm-
less compounds (Interstate Technology and Regulatory Council (ITRC) 2002). 
Oxidoreductases have been used in the degradation of many natural and manmade 
pollutants. A Gram-positive bacteria Bacillus safensis CFA-06 produces oxidore-
ductase to degrade the petroleum compounds. Lignin degradation in nature pro-
duces various kinds of phenolic substances which have been converted into another 
form by oxidoreductases through polymerization and copolymerization by binding 
with other compounds (Husain 2006). Color compounds produced from textile 
industries are released into the environment degraded by various oxidoreductases 
enzymes such as peroxidases and laccase (Novotny et al. 2004). It was reported that 
phenols, color, and organic load from olive-mill wastewater were removed by white-
rot fungi, Panus tigrinus, and its extracellular oxidoreductases such as laccase, 
Mn-dependent peroxidase, and lignin peroxidase (Annibale et al. 2004). Many bac-
terial species release oxidoreductase enzymes for the reduction of radioactive met-
als as a result of redox reactions.

3.2.1.1  �Oxygenases

Oxygenases belong to the oxidoreductase group of enzymes. Oxygenases are the 
main enzymes in the aerobic degradation of aromatic compounds that catalyze the 
cleavage of the ring in aromatic compounds by transferring oxygen from molecular 
oxygen (O2) utilizing FAD/NADH/NADPH as a cosubstrate. On the basis of the 
number of oxygen molecules involved, oxygenases are classified into two sub-
classes: monooxygenase (catalyzing the addition of one molecule of an oxygen 

Table 3.1  (continued)

Enzymes Microorganisms Pollutant Reference

Chromium reductase Pseudomonas, Bacillus,
Enterobacter, 
Deinococcus, 
Shewanella, 
Agrobacterium, 
Escherichia, Thermus

Chromium Thatoi et al. 
(2014)

Phytase Aspergillus niger NCIM 
563

Organophosphate Shah et al. (2017)
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atom) and dioxygenase (catalyzing the addition of two molecules of oxygen atom). 
They play a key role in the metabolism of organic compounds by increasing their 
reactivity or water solubility or bringing about cleavage of the aromatic ring. 
Oxygenases have a broad substrate range and are active against a wide range of 
compounds, including chlorinated aliphatics. Generally, the introduction of O2 
atoms into the organic molecule by oxygenase results in the cleavage of the aro-
matic rings. Historically, the most studied enzymes in bioremediation are bacterial 
mono- or dioxygenases (Arora et al. 2009; Fetzner and Lingens 1994; Fetzner 2003).

�Monooxygenases

Monooxygenases catalyze the degradation of aromatic compounds by adding one 
molecule of oxygen into the substrate and enhance their reactivity and solubility. It 
has been reported that monooxygenases involved in dehalogenation, desulfuriza-
tion, denitrification, ammonification, hydroxylation, biotransformation, and biodeg-
radation of various aromatic and aliphatic compounds (Arora et  al. 2010). 
Monooxygenases are classified into two groups based on their cofactor used: flavin-
dependent monooxygenases and P450 monooxygenases. The monooxygenases 
comprise a versatile superfamily of enzymes that catalyze oxidative reactions of 
substrates ranging from alkanes to complex endogenous molecules such as steroids 
and fatty acids. Monooxygenases act as biocatalysts in the bioremediation process 
and synthetic chemistry due to their high region selectivity and stereoselectivity on 
a wide range of substrates. A tightly bound flavin cofactor is present in the flavin-
dependent monooxygenase family, reduced by NAD(P)H.  Esd (endosulfan diol) 
and Ese (endosulfan ether) are the members of the TC-FDM (two-component flavin 
diffusible monooxygenase) family used for the degradation of chlorine-containing 
pesticides such as endosulfan (Bajaj et al. 2010). Genes encoding the Ese and Esd 
enzymes were identified in bacteria isolated from endosulfan-exposed soil upon 
enrichment in sulfur-deficient media with endosulfan or endosulfate supplied as the 
sole source of sulfur, a technique that targeted the relatively reactive sulfur moiety 
(Sutherland et al. 2000, 2002c). Ese performs oxidation of one of the methylene 
groups of endosulfan or endosulfate, producing an unstable intermediate that spon-
taneously dehydrates the methylene group, allowing bond cleavage and leading to 
the generation of a sulfur-containing intermediate. The sulfur-containing intermedi-
ate of endosulfate metabolism has been identified as endosulfan hemisulfate (Weir 
et  al. 2006). The equivalent metabolite for endosulfan metabolism, endosulfan 
hemisulfite, was not detected and likely undergoes rapid desulfurization to form 
endosulfan monoalcohol. Esd works by differential metabolism of the two isomers 
of endosulfan, with no detectable activity on the alpha isomer. Esd catalyzes the 
oxidation of one or both of the methylene groups present in β-endosulfan, resulting 
in the formation of the endosulfan monoalcohol metabolite or endosulfan hydroxy-
ether, respectively (Sutherland et al. 2002a, b).

P450 monooxygenases found in both prokaryotes and eukaryotes are heme-
containing enzymes (Galan et  al. 2000). P450 enzymes require a non-covalently 
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bound cofactor to recycle their redox center. A variant of P450cam (F87W\ Y96F\
L244A\V247L) from Pseudomonas putida that has been demonstrated to have sig-
nificant activity against the key chlorinated pollutants pentachlorobenzene (a kcat of 
82.5 min−1) and hexachlorobenzene (a kcat of 2.5 min−1) (Chen et al. 2002). This 
variant of the P450cam enzyme has now been used to endow the capacity to com-
pletely degrade hexachlorobenzane upon a Sphingobium chlorophenolicum species 
(Yan et al. 2006). P450 monooxygenase isolated from bacterium Bacillus megate-
rium BM3 has the capacity to degrade a variety of substrates such as fatty acid and 
aromatic compounds (Roccatano 2015). Methane monooxygenase enzyme is the 
best characterized one, among monooxygenases. This enzyme is involved in the 
degradation of hydrocarbon such as substituted methanes, alkanes, cycloalkanes, 
alkenes, haloalkenes, ethers, and aromatic and heterocyclic hydrocarbons (Fox et al. 
1990; Grosse et al. 1999). Methane monooxygenase occurs in two forms: first is 
found in the cytoplasmic membrane and the second is located in the cytoplasm. 
Soluble MMOs isolated from bacterium Methylocella palustris are capable of 
degrading a wide range of pollutants such as hydrocarbon, aliphatic, and aromatic 
compounds (Singh and Singh 2017). Some monooxygenases have also been iso-
lated and characterized that do not require any cofactor for their activity like tetra-
cenomycin F1 monooxygenase (TcmH) isolated from bacterium Streptomyces 
glaucescens and quinol monooxygenase (YgiN) from E. coli (Shen and Hutchinson 
1993; Arora et al. 2010). Cytochrome P450 is also an important class of monooxy-
genase family used in many industries to oxidize the contaminant released. More 
than 200 subfamilies of P450 oxidoreductase are present in both prokaryotes and 
eukaryotes. All members of P450 oxidoreductase have an iron-containing porphyrin 
group, and to recycle their redox center, they use a non-covalently bound cofactor.

�Dioxygenases

Dioxygenases are multicomponent enzyme systems that introduce molecular oxy-
gen into their substrate. Aromatic hydrocarbon dioxygenases belong to a large fam-
ily of Rieske nonheme iron oxygenases. These dioxygenases catalyze 
enantiospecifically the oxygenation of a wide range of substrates. Dioxygenases 
primarily oxidize aromatic compounds and, therefore, have applications in environ-
mental remediation. All members of this family have one or two electron transport 
proteins preceding their oxygenase components. On the basis of their mode of 
action, aromatic dioxygenases can be classified into (1) aromatic ring hydroxylation 
dioxygenases (ARHDs) and (2) aromatic ring cleavage dioxygenases (ARCDs). 
ARHDs degrade the chemical compounds by the addition of two molecules of oxy-
gen into the ring, while ARCDs cleave the aromatic rings of compounds (Parales 
and Ju 2011).

Toluene dioxygenase (TOD) produced by Pseudomonas putida F1 catalyzes the 
first reaction in the degradation of toluene by P. putida F1 (Yeh et al. 1977; Gibson 
et al. 1982). This multicomponent enzyme not only has extremely broad substrate 
specificity but also acts as a dioxygenase or monooxygenase. TOD acts as a 
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dioxygenase against a range of compounds including monocyclic aromatics, fused 
aromatics, linked aromatics, and aliphatic olefins. TOD also acts as a monooxygen-
ase on monocyclic aromatics, aliphatic olefins, and other miscellaneous substrates 
(Mukherjee and Roy 2013). By these means, it converts different isomers of dimeth-
ylbenzene into dimethyl phenols and isomers of nitrotoluene into nitrobenzyl alco-
hols and nitrophenols (Whited and Gibson 1991; Lange and Wackett 1997). Allylic 
methyl group monooxygenation can be seen with different halo-propene and halo-
butene isomers which are converted into butene-1-ol and propene-1-ol, respectively 
(Resnick et al. 1996).

TOD also has the capacity to catalyze sulfoxidation reactions, converting com-
pounds such as ethyl phenyl sulfide, methyl phenyl sulfide, methyl p-nitophenyl 
sulfide, and p-methoxymethyl sulfide into their respective sulfoxides (Resnick et al. 
1996). TOD has been shown to work efficiently for detoxifying cation of polychlo-
rinated hydrocarbons, chlorotoluenes, and BTEX residues (benzene, toluene, ethyl-
benzene, and p-xylene) (Resnick et  al. 1996). The broad substrate specificity of 
TOD makes it an ideal enzyme for bioremediation of several key pollutants, includ-
ing certain pesticide residues. The TOD enzyme complex has been resolved into 
three components: an iron-sulfur protein (ISP TOL), a flavoprotein (reductase 
TOL), and an iron sulfur-dependent ferredoxin (ferredoxin TOL) (Yeh et al. 1977; 
Gibson et al. 1982; Subramanian et al. 1979, 1981, 1985). The reductase TOL ini-
tially accepts electrons from NADH and then transfers these electrons to ferredoxin 
TOL. The latter reduces the terminal ISP TOL that functions as the oxygenase com-
ponent. Reduced ISP TOL catalyzes the addition of both atoms of molecular oxy-
gen into the aromatic nucleus of toluene to form cis-toluene dihydrodiol, which is 
eventually mineralized by other enzymes encoded by the toluene dioxygenase gene 
cluster (tod operon) (Zylstra and Gibson 1989).

The catechol dioxygenases are found in the soil bacteria causes the biotransfor-
mation of aromatic precursors into aliphatic products (Muthukamalam et al. 2017). 
Ring-opening 2,4 dioxygenases help in the bioremediation of quinaldine, and 1H-4-
oxoquinoline catalyzes the breakdown of two carbon-carbon bonds with formation 
of carbon monoxide (Ali et al. 2017). A large number of aromatic compounds are 
released into the environment from various pharmaceutical, chemical, and dye 
industries. To incorporate two molecules of oxygen into the substrate, dioxygenase 
breaks down the aromatic ring at 1, 2-position (Guzik et  al. 2013). Naphthalene 
dioxygenases isolated from Pseudomonas putida involve in the naphthalene degra-
dation (Gennaro et al. 1997).

3.2.1.2  �Laccases

Laccases are copper-containing oxidases, which catalyzes the oxidation of a wide 
range of phenolic and aromatic compounds. It is found in multiple isoforms pro-
duced by varying species of bacteria, fungi, insects, and plants. Laccases are always 
produced in the cell but can be secreted extracellular, able to degrade the ortho- and 
paradiphenols, amino group containing phenols, and lignin and aryl groups 
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containing diamines (Mai et al. 2000). Laccase also decolorized azo dyes by oxidiz-
ing their bonds and transformed into less harmful substances present in the environ-
ment (Legerska et al. 2016).

Many microorganisms produce intra- and extracellular laccases capable of cata-
lyzing the oxidation of ortho and paradiphenols, aminophenols, polyphenols, poly-
amines, lignins, and aryl diamines as well as some inorganic ions (Mai et al. 2000; 
Ullah et al. 2000; Couto and Herrera 2006). Laccases not only oxidize phenolic and 
methoxyphenolic acids but also decarboxylate them and attack their methoxy 
groups (demethylation). These enzymes are involved in the depolymerization of 
lignin, which results in a variety of phenols. In addition, these compounds are uti-
lized as nutrients for microorganisms or repolymerized to humic materials by lac-
case (Kim et al. 2002).
Laccases produced by R. practicola have the ability to degrade and biotransform 
phenolic compounds (Strong and Claus 2011). Laccase immobilization on solid 
support increases their stability, half-life, and resistance to protease enzymes (Dodor 
et al. 2004). It proves a powerful enzyme for the bioremediation of a wide range of 
pollutants such as phenolic compounds, aromatic heterocyclic compounds, and 
amine-containing aromatic compounds. Laccase can reduce the dioxygen mole-
cules of pollutants into the water by the removal of electrons from the organic sub-
strate (Chakroun et al. 2010). The X-ray crystal structures of laccases deposited in 
Protein Data Bank (PDB) were used for docking studies with two-dimensional 
structures of pollutants, downloaded from the NCBI database. An online tool, 
CORINA, was used for the conversion of 2-D structures of pollutants into three-
dimensional structures. Further, GOLD was used for docking of protein-ligand. 
Nearly 30% and 17% of the selected datasets showed the best average GOLD fitness 
score for fungal and bacterial laccase enzymes, respectively, thereby suggesting that 
laccase might be able to oxidize these pollutants (Suresh et al. 2008).

3.2.2  �Peroxidases

Peroxidases are ubiquitous in nature, produced by animals, plants, fungi, and bacte-
ria. Peroxidases help in the degradation of lignin, phenolic, and other aromatic com-
pounds by using hydrogen peroxide in the presence of a mediator. Phenolic radicals 
produced by oxidation of phenolic compounds and aggregates become less soluble 
and precipitated quickly. These peroxidases can be heme and nonheme proteins. 
(Bansal and Kanwar 2013). The heme-containing peroxidases can be divided into 
two groups: one group found only in animals and the other group found in fungi, 
bacteria, and plants. Peroxidases found in bacteria, fungi, and plants are further 
divided into three classes: intracellular enzyme found in class 1 including cyto-
chrome c peroxidase produced by yeast, ascorbate peroxidase (APX) produced by 
some species of plants, and bacterial catalase peroxidases. Class 2 containing 
secreted fungal enzyme include lignin peroxidase (LiP) and manganese peroxidase 
(MnP). The main role of class II peroxidases appears to be the degradation of lignin 
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in wood. Class 3 contains plant-secreted peroxides such as horseradish peroxidases 
(HRP) from horseradish plants. Nonheme peroxidases are from five different fami-
lies, thiol peroxidase, alkylhydroperoxidase, haloperoxidase, manganese catalase, 
and NADH peroxidase (Koua et al. 2009). Among all, lignin peroxidase and man-
ganese peroxidase have greater potential for the degradation of toxic substances and 
most studied enzymes. Horseradish peroxidase-immobilized cross-linked enzyme 
aggregates (HRP-CLEAs) were produced using a cross-linking agent, i.e., ethylene 
glycol-bis[succinic acid Nhydroxysuccinimide, (EG-NHS)]. The efficiency of bio-
degradation of HRP-CLEAs was tested by using a packed bed reactor system (Bilal 
et al. 2017). HRP also causes the oxidative para-dechlorination of toxic contaminant 
and carcinogen 2,4,6-trichlorophenol (Sumithran et al. 2012). Soybean peroxidase 
and chloroperoxidase were studied for the degradation of thiazole compounds 
(Alneyadi and Ashraf 2016).

3.2.2.1  �Lignin Peroxidases

Lignin peroxidases (LiPs) are monomeric heme-containing proteins and secondary 
metabolites secreted by fungi such as Phanerochaete chrysosporium and Trametes 
versicolor and bacteria (Xu et al. 2014). In LiPs, Fe (III) is pentacoordinated with 
histidine residue and four heme tetrapyrrole nitrogens. It catalyzes the oxidation of 
toxic pollutants in the presence of cosubstrate hydrogen peroxide and mediator 
veratryl alcohol. The reaction mechanism of LiPs involved the two-electron oxida-
tion of the native ferric enzyme (Fe (III)) by H2O2 to form a compound I in the initial 
phase that is reduced by a reducing substrate with gaining of one electron to form 
compound II. In the final phase, compound II obtains a second electron from the 
reduced substrate with the returning of the enzyme in their native ferric oxidation 
state (Abdel-Hamid et al. 2013). LiPs show great application for the treatment of 
wastewater and in the field of bioremediation (Tuomela and Hatakka 2011).

3.2.2.2  �Manganese Peroxidases

Manganese peroxidases (MnPs) are heme-containing extracellular enzymes pro-
duced by lignin-degrading fungi that can oxidize Mn2+ into Mn3+ by the multistep 
reaction. Several acidic amino acid residues and one heme group containing a man-
ganese binding site are present in enzyme MnP. Additionally, Mn2+ contributes a 
single electron to compound I of MnP and acts as best reducing substrates. This 
chelator is considered to act indirectly to degrade lignin and xenobiotic compounds. 
These catalyze the degradation of several phenols, amine-containing aromatic com-
pounds, and dyes (Have and Teunissen 2001). MnPTra- 48424 was identified and 
purified from white-rot fungi Trametes sp. 48424. This enzyme has strong capabil-
ity to decolorize different kinds of dyes such as indigo, anthraquinone, azo, and 
triphenylmethane, while other dyes such as indigo carmine and methyl green com-
bined with heavy metal ions and organic solvent can also be degraded by 
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MnP-Tra-48424 enzyme. Different polycyclic aromatic hydrocarbons (PAHs) are 
also degraded by MnP-Tra- 48424 purified (Zhanga et al. 2016). During the degra-
dation of anthracene, gene (pimp1) encoding manganese-dependent peroxidase was 
found in P. incarnata KUC8836. This gene was further expressed in fungi 
Saccharomyces cerevisiae to enhance the bioremediation process (Lee 2016).

3.2.3  �Hydrolases

Hydrolytic enzymes are most commonly used for the bioremediation of pesticides 
and insecticides and reduction in their toxicity. Major chemical bonds such as esters, 
peptide bonds, and carbon-halide bonds are disrupted by different hydrolytic 
enzymes and generally operate in the absence of redox cofactors. Using bioreme-
diation for the degradation of toxic organic compounds is safe and economical as 
compared to physicochemical treatment (Karigar and Rao 2011). An extracellular 
hydrolase secreted by microbes catalyzes the bioremediation of organic polymers, 
toxic compounds with less than 600 Da molecular weights that can pass through cell 
pores (Vasileva-Tonkova and Galabova 2003). Bioremediation of oil spill, organo-
phosphate, and carbamate insecticides by using hydrolytic enzyme is very effective. 
Extracellular hydrolytic enzymes used in the food industry and chemical industry 
include proteases, lipases, xylanases, DNAses, and amylases. The hemicellulase, 
cellulase, and glycosidase are used for biomass degradation (Porro et  al. 2003). 
Recently, carbendazim, widely used fungicide, hydrolyzing enzyme encoding gene 
has been isolated from Microbacterium sp. djl-6F and cloned into Escherichia coli 
BL21 (DE3) by Lei et al. (2017) to increase the levels of the enzyme. This enzyme 
was able to hydrolyze carbendazim into 2-aminobenzimidazole.

3.2.3.1  �Lipases

Lipases are ubiquitous in nature and catalyze the breakdown of triacylglycerols into 
glycerol and free-fatty acids which are major constituents of hydrocarbons. Lipases 
are produced by many species of bacteria, plants, actinomycetes, and animal cells 
(Shukla and Gupta 2007). Hydrolysis, interesterification, esterification, alcoholics, 
and aminolysis reactions are carried out by lipases (Prasad and Manjunath 2011). 
The level of hydrocarbon in the contaminated soil was decreased due to lipase activ-
ity. These enzymes hydrolyze the fatty acids into triglycerol, diacylglycerol, mono-
acylglycerol, and glycerol (Ghafil et al. 2016). Different statistical tools were used 
to optimize media to enhance the production of microbial lipases. Using statistical 
tools, the medium was optimized for the production of a novel crude oil-degrading 
lipase from fungus Pseudomonas aeruginosa SL-72 for the bioremediation of crude 
oils (Verma et al. 2012).
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3.2.3.2  �Cellulases

Cellulases are the key enzymes for the degradation of cellulose, the most abundant 
biopolymer found on the earth. Cellulase produced by microorganisms can be cell-
bound, associated with the cell envelope, and extracellular (Yang et  al. 2016). 
Cellulases are used in the detergent manufacturing industries, where cellulose 
microfibrils produced during processes are removed by these enzymes. Some alka-
line cellulases are produced by Bacillus strains and neutral and acidic cellulases by 
Trichoderma and Humicola fungi (Hmad and Gargouri 2017). These cellulases have 
been employed for the bioremediation of ink in paper and pulp industry during the 
recycling of paper (Karigar and Rao 2011).

3.2.3.3  �Carboxylesterases

Degradation of synthetic compounds and natural products such as organophos-
phates, ester bond of carbamates, and chlorine-containing organic compounds has 
been catalyzed by enzyme carboxylesterases (Cummins et  al. 2007). 
Carboxylesterases has been used for the degradation of pesticides, insecticides, and 
fungicide spray in the fields. For the absorption of mercury in the polluted site, car-
boxylesterases E2 from strain P. aeruginosa PA1 was displayed on the outer mem-
brane of E. coli (Yin et  al. 2016). Ester bond of synthetic pyrethroids has been 
hydrolyzed by carboxylesterases using a common pathway for the degradation of all 
types of pyrethroids insecticides.

3.2.3.4  �Phosphotriesterases

Phosphotriesterases have the potential for the degradation of chemical waste 
released from industries and pesticides such as parathion used in crop fields (Romeh 
and Hendawi 2014). The bacterial phosphotriesterases are a subgroup of the amido-
hydrolase metalloenzyme family. The phosphotriesterases primarily catalyze the 
hydrolysis of OP trimesters. Two closely related bacterial phosphotriesterases have 
been extensively characterized: OpdA from Agrobacterium radiobacter (Harcourt 
et  al. 2002) and OPH from Pseudomonas diminuta (Serdar et  al. 1985) and 
Flavobacterium (Mulbry et  al. 1986). Field trials of OpdA as a bioremediation 
agent have been conducted (Sutherland et al. 2004), and it is already in use as a 
commercial product to detoxify OP residues in various contaminated wastes, sold 
under the brand name LandGuardTM from Orica Watercare (Australia) at a cost to 
user considerably lower than the pesticides themselves. Both OPH and OpdA dis-
play extraordinary catalytic efficiency for OPs, vastly superior to that of the E3 
mutants described above; for instance, the k cat /K m of OpdA for the pesticide 
methyl parathion is in the order of 3 × 106 sec–1 M–1 (Yang et al. 2003). The catalytic 
mechanism is thought to proceed via direct in-line nucleophilic attack from a water 
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molecule, activated through its interaction with the Fe2+ ion, at the electrophilic 
phosphorus of the substrate, which coordinates to the Zn2+ ion (Jackson et al. 2005).

Parathion is an organophosphate containing compound, used as a component in 
herbicides and insecticides (Gao et al. 2014). Organophosphate is an ester of phos-
phoric acid degraded by phosphotriesterases also known as aryldialkylphosphatase 
and organophosphorus hydrolase. Three recombinants thermostable phosphotries-
terase, SsoPox W263F, and SsoPox C258L/I261F/ W263A, whose gene isolated 
from wild-type Sulfolobus solfataricus, and SacPox isolated from Sulfolobus acido-
caldarius were produced and purified (Restaino et al. 2016). Some strains of marine 
bacteria such as Phaeobacter sp., Ruegeria mobilis, and Thalassospira tepidiphila 
have ability to degrade the phosphate triester present in coastal oceanic conditions 
(Yamaguchi et al. 2016). From bacteria Geobacillus stearothermophilus (GsP), a 
new enzyme homologous to phosphotriesterases was identified which has the capac-
ity to hydrolyze both lactone- and organophosphate-containing compounds. 
Phosphotriesterase-like lactonase (PLL) isolated from bacteria Geobacillus stearo-
thermophilus (GsP) are extremely thermostable and can be active at temperature 
100 °C (Hawwa et al. 2009).

3.2.3.5  �Haloalkane Dehalogenases

Halogenated compounds produced as a result of both natural activities and man-
made efforts are present everywhere in soil and can be hazardous, toxic, mutagenic, 
or carcinogenic (Koudelakova et al. 2013). Haloalkane dehalogenases used for the 
hydrolysis of carbon halogen bond present in the various halogens containing con-
taminants produce alcohol and halides (Kotik and Famerova 2012). The active site 
of haloalkane dehalogenase is present between two domains. The main domain of 
enzyme composed of an eight stranded b-sheet surrounded by a-helices (Pavlova 
et al. 2007). First haloalkane dehalogenase discovered in bacterium Xanthobacter 
autotrophicus GJ10 has the ability to degrade 1, 2- dichloroethane (Nagata et al. 
2015). After that, several dehalogenases have been cloned and characterized from 
Gram-positive and Gram-negative haloalkane-degrading bacteria.
Genes encoding the enzymes responsible for bacterial degradation of γ-isomer of 
hexachlorocyclohexane (γ-HCH, commonly known as lindane) have been cloned 
and studied extensively. The two key enzymes are encoded by the linA and linB 
genes. LinB is a haloalkane dehalogenase of the α/β−hydrolase fold family of 
enzymes that shows significant similarity to three other α/β-hydrolase fold enzymes: 
haloalkane dehalogenase (DhlA) from Xanthobacter autotrophicus GJ10, haloace-
tate dehalogenase (DehH1) from Moraxella sp. B, and 2-hydroxymuconic semial-
dehyde hydrolase (DmpD) from Pseudomonas sp. CF600 (Nagata et al. 1993a, b). 
LinB mediates the two sequential chlorohydrolase reactions converting 2,3,5,6-tetr
achloro-1,4-cyclohexadiene to 3,6-dichloro-2,5-dihydoxy-1,4-cyclohexadiene 
(Negri et al. 2007). In addition, LinB has been found to be involved in the degrada-
tion of β-HCH in Sphingomonas paucimobilis (Nagata et al. 2005) and of β- and 
δ-HCH in Sphingobium indicum B90A, Sphingobium francense SpC, and 
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Sphingobium japonicum UT26, although the ability to degrade β-HCH and δ-HCH 
differs between these strains (Sharma et al. 2006). The reaction mechanism of LinB 
involves nucleophilic attack from the aspartic acid residue 108 at an electrophilic 
carbon of the substrate, followed by the formation of a covalent alkyl-enzyme inter-
mediate. The catalytic aspartic acid is then regenerated through a nucleophilic 
attack at Asp108 upon the activation of a water molecule by histidine 272 (Prokop 
et al. 2003).

3.2.4  �Lyases

Lyases catalyze the cleavage of bonds in the absence of redox cofactors or water, 
including the energetically demanding cleavage of carbon-carbon bonds (pyruvate-
formate lyase, for example) (Sawers 1998) and carbon bonds with phosphorus, oxy-
gen, nitrogen, halides, and sulfur.

3.2.4.1  �Haloalkane Dehydrochlorinases: LinA

The linA-encoded HCH dehydrochlorinase (LinA) mediates the first two steps of 
dehydrochlorination of the insecticide γ-HCH (Nagata et  al. 1993a, b), which is 
further catabolized by the remaining enzymes encoded by the lin operon. The struc-
ture of LinA has not yet been resolved, but it is predicted to belong to a novel super-
family which includes scytalone dehydratase and naphthalene dioxygenase (Nagata 
et al. 2001). The reaction mechanism proposed for LinA is dependent upon a cata-
lytic dyad (Asp25 and His73) (Trantirek et al. 2001), where a proton is abstracted 
from HCH by His73 followed by the release of a chloride ion and formation of a 
carbon-carbon double bond. This process is then repeated with the product 
(pentchlorocyclohexene) to ultimately yield 2,3,5,6-tetrachloro-1,4-cyclohexadiene 
(Trantirek et al. 2001). HCH-contaminated soil was treated by the controlled release 
of a bacterium (Sphingobium indicum) containing the naturally occurring lin-operon 
which has led to significant remediation of the pesticide residue (up to 95%) (Raina 
et al. 2008).

3.3  �Conclusion

Due to increased population, urbanization, and industrialization, accumulation of 
harmful pollutants in the environment has reached an alarming level. Bioremediation 
is a promising approach for the removal and decontamination of these pollutants. 
Bioremediation using specific enzymes is a more efficient and cost-effective alter-
native. A diverse range of microbes from different natural sources have been 
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explored in the isolation of enzymes containing biodegradative ability. A diverse 
family of enzymes such as oxidoreductase, laccases, and peroxidases demonstrating 
bioremediation ability has been isolated and characterized. Enzymatic bioremedia-
tion can provide real benefits to the environment, avoiding the conditions that are 
required for whole-cell applications, especially in extreme environments. 
Furthermore, enzymatic effectiveness can be improved in vitro also using molecular 
tools, such as DNA engineering, to generate super bioremediators, which can pres-
ent advantages in field. Additionally, the catalytic activity, self-life, and stability in 
stress conditions of enzymes can be enhanced up to remarkable levels by enzyme 
engineering and immobilization techniques. Recently, cost-effective strategies in 
the production of nanoparticles and nanoparticle-based materials are attracting 
great interest for their unique properties and immense application potential in 
diverse areas. Single-enzyme nanoparticles (SENs) related to nanoparticles have 
been developed in which each enzyme molecule is surrounded by a hybrid organic/
inorganic polymer network. These nanoparticles have the potential to bind with the 
xenobiotic compounds and degrade them completely or transform in less harmful 
derivatives which further help in cleaning the environment. Nevertheless, the tech-
nologies described above are complete for effectual bioremediation, and the need 
for the optimal technological intervention is the key for evolved, efficient, and eco-
friendly strategies.
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4.1  �Introduction

Nowadays, environmental pollution has become a global concern; however, due to 
population growth, there is an increased demand for products and services, which 
translates into greater production of basic products by industries. This results in an 
increase in pollutants generated by anthropogenic causes, which are released into 
the environment and cause damage to ecosystems. Because toxins in the environ-
ment endanger human health, physicochemical and biological procedures have 
been developed as an attempt to mitigate the pollution. Biological methods seem to 
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be promising solutions, due to low operating costs, low energy consumption, and 
the production of less harmful compounds from microbial metabolism. Among bio-
logical methods, mycoremediation has been explored for the removal of a wide 
range of toxins (Prasad 2017, 2018). Fungi can chemically transform contaminants 
into less toxic compounds, or they can be used as a biological sorbent material to 
remove target compounds. This chapter shows the use of fungi for bioremediation 
purposes, i.e., the removal of benzene, methyl tert-butyl ether (MTBE), and vat blue 
dye (VBD). Possible fungal removal mechanisms are discussed, including redox 
reactions and biosorption processes. It was observed that the oxidation of contami-
nants is related to hydrogen peroxide (H2O2) production that in the presence of iron 
may lead to the formation of reactive species, which due to its high oxidizing 
strength can degrade contaminants.

4.2  �Fungi for Remediation Purposes

Mycoremediation is the biological procedure based on the use of fungi for toxic 
removal from the environment. This technique commonly involves biosorption, 
adsorption, bioaccumulation/biovolatilization, or biodegradation processes 
(Fig. 4.1). Biosorption consists in the passive uptake of toxins by inactive biological 
materials or its derivatives. The potential of any biomaterial as a biosorbent is deter-
mined by the nature of biomass, the concentration, and the pH and ionic strength. 
Adsorption could be defined as the physical adherence or bonding on to a given 

Fig. 4.1  Schematic diagram of fungal mechanisms for the removal of contaminants
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surface (fungal biomass) (Dhankhar and Hooda 2011; Puchana-Rosero et al. 2017). 
When intracellular uptake of toxins into living cells takes place, the process is 
known as bioaccumulation, where chemical transformations of toxins result in 
methylated or alkylated products that are often volatile. The release of gaseous com-
pounds to the environment from cells is known as biovolatilization (Boriová et al. 
2014). Moreover, biodegradation is the use of living organisms to carry out transfor-
mations of a substance into new compounds by enzymatic reactions. Fungi can be 
used for remediation since these microorganisms can chemically modify hazardous 
contaminants to less harmful compounds (Pérez-Armendáriz et al. 2010; Pinedo 
Pinedo-Rivilla et al. 2009).

Basidiomycetes and ascomycetes are fungi that can be exploited for biodegrada-
tion purposes (Table 4.1). Basidiomycetes are commonly classified into white-rot 
and brown-rot fungi, which are responsible for the wood decay by the decomposi-
tion of cellulose, hemicellulose, and lignin (Mäkelä et al. 2015). These mechanisms 
of degradation can be harnessed in the bioremediation of pollutants with similar 
chemical structures, such as hydrocarbons, pesticides, and PCBs, among others 
(Acosta-Rubí et al. 2017; Gayosso-Canales et al. 2011). It is worth noting that these 
fungi can also be used to remove or accumulate metals. Their degradative capacity 
of organic compounds is associated with an unspecific enzymatic system where 
extracellular ligninolytic enzymes, such as lignin peroxidase (LiP) and manganese 
peroxidase (MnP), play an important role. Both enzymes are capable to oxidize 
lignin and its derivatives, as well as a wide array of compounds. Due to its relative 
specificity, LiP can oxidize aromatic compounds such as veratrilic alcohol, methoxy-
benzenes, and aromatic hydrocarbons, among others, while MnP produces Mn3+ 
which can oxidize phenolic compounds. Among ligninolytic fungi, lacasse phenol 
oxidase is an enzyme that catalyzes the oxidation of a wide range of phenolic com-
pounds and aromatic amines using molecular oxygen as electron acceptor to form 
water (Janusz et al. 2013).

Ascomycota division of fungi is a group that presents the ability to degrade 
organic compounds and remove metals. Like basidiomycetes, some ascomycetes 
may secrete lignin-modifying enzymes; however, these enzymes may not play an 
important role in contaminated environments, since its expression is mediated by 
the use of lignocellulosic substrates (Aranda 2016). Nevertheless, ascomycetes are 
capable to produce reactive oxygen species (ROS) to oxidize the target contami-
nants. The production of ROS by these fungi is related to a wide range of enzymes, 
such as glucose oxidase, that catalyze the oxidation of glucose in the presence of 
molecular oxygen to form gluconolactone and hydrogen peroxide (H2O2). Then, 
H2O2 is decomposed to form water and oxygen, while gluconolactone is converted 
to gluconic acid spontaneously (Eqs. 4.1–4.3).

	 Glucose O Gluconolactone H O
Glucose oxidase

+ → +2 2 2 	 (4.1)

	 2 22 2 2 2H O H O O
Catalase

→ + 	 (4.2)
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	 Gluconolactone H O Glu eacid
Lactonase

+ →2 cos 	 (4.3)

The enzymatic activity of glucose oxidase when H2O2 is accumulated, which 
inactivates the enzyme. Moreover, the accumulation of gluconic acid promotes a 
decrease in the pH of the solution (Liaud et al. 2014). Under these acidic conditions, 
the Fenton reaction can take place (Jung et  al. 2009). The understanding of the 

Table 4.1  Basidiomycetes and ascomycetes for remediation purposes

Fungus species Pollutant Matrix Reference
Basidiomycetes

Pycnoporus 
sanguineus

Tetrabromobisphenol A 
(TBBPA)

Liquid culture 
medium

Feng et al. 
(2019)

Pycnoporus 
sanguineus

2,2′,4,4′-tetrabromodiphenyl 
ether

Liquid media Wang et al. 
(2019)

Pleurotus ostreatus Endocrine disruptors Urban wastewater Kresinová et al. 
(2018)

Bjerkandera adusta
Pleurotus ostreatus

2-Naphthalensulfonic acid 
polymers

Petrochemical 
wastewater

Palli et al. 
(2016)

Pleurotus ostreatus Polychlorinated biphenyls Mineral media Cvančarová 
et al. (2012)

Irpex lacteus
Pleorutus ostreatus
Bjerkandera adusta

Chlorobenzoic acids Soil Muzikář et al. 
(2011)

Boletus edulis, 
Gomphidius viscidus, 
Laccaria bicolor
Leccinum scabrum

DDT Liquid media Huang et al. 
(2007)

Ascomycetes

Fusarium solani Methane Vermiculite as solid 
support and mineral 
media

Vergara-
Fernández et al. 
(2019)

Aspergillus niger Hydrocarbons Liquid media Hassaine and 
Bordjiba (2019)

Penicillium oxalicum Diclofenac Liquid medium Olicón-
Hernández 
et al. (2019)

Trichoderma koningii Alachlor Liquid culture Nykiel-
Szymanska 
et al. 2018

Trichoderma 
tomentosum

Petroleum Liquid media Marchand et al. 
(2017)

Aspergillus niger Atrazine Model wastewaters Marinho et al. 
(2017)

Penicillium 
simplicissimum

Triphenylmethane dyes Liquid culture Hui-Chen and 
Yien-Ting 
(2015)
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biodegradation mechanisms in ascomycetes seems to be a key aspect that can serve 
to propose improvement strategies of the process.

4.3  �Fenton Reaction for Toxins Oxidation with Fungi

Oxidation reactions are widely used for the degradation of toxic compounds. Due to 
its high reduction potential, strong oxidants such as hydrogen peroxide, ozone, 
chlorine, or manganese oxide are commonly used for environmental applications. 
When hydrogen peroxide is coupled with ferrous iron (Fe2+), the Fenton reaction 
can take place (Eq. 4.4; Jung et al. 2009). Generally, this reaction is combined with 
another set of reactions related to the decomposition of H2O2, which are known as 
the Haber-Weiss reaction (Eqs.  4.4, 4.5, 4.6, and 4.7). From Fenton reaction, 
hydroxyl radicals (HO•) are produced, which are considered as nonselective strong 
oxidants:

	 Fe H O Fe HO OH2
2 2

3+ + −+ → + +•

	 (4.4)

	 HO H O H O O H• + → + +−
2 2 2 2 	 (4.5)

	 Fe O Fe O3
2

2
2

+ − ++ → + 	 (4.6)

	 O H H O O HO H O2 2 2 2 2
− + + → + +•

	 (4.7)

Besides, the coupling of Fe2+ with H2O2 and molecular oxygen may result in 
other reactive species that can oxidize simultaneously organic or inorganic com-
pounds (Eqs. 4.8 and 4.9; Hug and Leupin 2003). If H2O2 is available in the system, 
the reduction/oxidation cycle of iron proceeds, unless insoluble oxides and hydrox-
ides of iron are formed:

	 Fe O O Fe2
2 2

3+ − ++ → + 	 (4.8)

	 Fe O H Fe H O2
2

3
2 22+ − + ++ + → + 	 (4.9)

	 HO HO H O O2 2 2 2 2
• •+ → + 	 (4.10)

In biological systems, the HO• radical is generally produced by a Fenton reac-
tion. Fungi can produce hydrogen peroxide, to degrade complex carbon sources 
which can lead to the formation of reactive species (Ko et al. 2005). To use HO• as 
an oxidant agent, microorganisms need to reduce Fe3+ and produce H2O2. 
Ascomycetes can produce H2O2 by the enzymatic activity of different enzymes, 
such as glucose oxidase, glyoxal oxidase, alcohol oxidase, glyoxylate oxidase, and 
pyranose oxidase, among others. Once H2O2 is released to the extracellular environ-
ment, it can react with Fe2+ ions, and the Fenton reaction occurs (Izcapa-Treviño 
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et al. 2009). Figure 4.2 shows a schematic diagram of a proposed mechanism for the 
oxidation of target pollutants in fungi, involving Fenton and Haber-Weiss reactions.

4.4  �Remediation of Contaminated Water with Benzene 
and MTBE Using Fungi Associated with Green Coffee 
Beans: The Role of Reactive Species

Environmental pollution by hydrocarbon represents a global concern, since offshore 
extraction, fuel leakage during storage, refinement, or transportation of oil some-
times result in oil spills in soil and water, which cause severe damages to marine 
ecosystems and, thus, to activities dependent on these resources (Liua and Wirtzb 
2009). Among monoaromatic hydrocarbons of petroleum (BTEX), benzene is of 
the highest environmental concern since it is considered as a stable volatile hydro-
carbon with carcinogenic effects (Mosmeri et al. 2019). On the other hand, methyl 
tert-butyl ether (MTBE) is an oxygenate widely used to improve both the octane 
number and the combustion efficiency. However, the intensive use of these com-
pounds often results in soil, surface water, and groundwater pollution due to their 
high solubility and mobility (Table 4.2; Alfonso-Gordillo et al. 2016). This has led 

Fig. 4.2  Fungi mechanism for the oxidation of pollutants involving the formation of ROS. As an 
example, we consider GLOX (or another enzyme as mentioned in the text) as a peroxide producing 
enzyme, which is released to the environment. Moreover, CAT can decompose H2O2 to form water 
an oxygen as a mechanism to avoid oxidative stress. However, if H2O2 is released, and considering 
the presence of Fe2+ ions, the Fenton and Haber-Weiss reactions take place. The produced ROS can 
oxidize the target pollutants. GLOX glyoxal oxidase, CAT catalase, ROS reactive oxygen species
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to the application of a wide range of physicochemical techniques to remediate con-
taminated sites. However, many of these technologies do not destroy pollutants but 
are only moved from one place to another and may need further treatment for final 
disposal.

In the last decades, bioremediation has emerged as a technology compatible with 
the environment, since these techniques use living organisms that can modify the 
chemical structure of contaminants to compounds with less harmful effects. 
Moreover, the use of biological procedures can present the capability of high 
removal efficiency with low energy consumption. Thus, these techniques can be 
considered as cost-effective methods (AI-Hawash et al. 2018). Mycoremediation is 
the use of fungi to detoxify the environment or wastewater of toxic compounds. 
Fungi can be used for remediation purposes due to its ability to generate suitable 
environmental conditions to achieve the oxidation of organic and inorganic con-
taminants such as hydrocarbons, pharmaceuticals, pesticides, herbicides, textile 
dyes, or heavy metals (Deshmukh et al. 2016; Thakare et al. 2021).

Agroindustrial products/wastes can be a source of potential microorganisms for 
bioremediation. Green coffee beans (GCB) are known to host a microbiota consist-
ing of bacteria, yeast, and fungi. Ascomycetes such as Penicillium and Aspergillus 
have been isolated from coffee and coffee fermentation (Huch and Franz 2015). 
Besides, ascomycetes have been successfully used to remove aromatic hydrocar-
bons from soil and water (Winquist et al. 2014). This allows us to take advantage of 
coffee beans as an agricultural resource for remediation aims (Rodríguez-Vázquez 

Table 4.2  Physical 
properties of benzene and 
MTBE at 25 °C

Property Benzene MTBE

Melting point (°C) 5.5 −108.6
Boiling point (°C) 80.1 55.2
Density (g/mL) 0.87 0.74
Vapor pressure (KPa) 12.7 33.5
Solubility in water (g/L) 1.8 48

Box 4.1 Materials and Procedures
One-liter surface water samples were obtained from an oil-contaminated site (the 
ex-petroleum refinery 18 de Marzo, Ciudad de México, México, 19°28′00.1″N 
99°12′13.0″W) and stored in glass bottles at 4 °C for further analysis. Green cof-
fee beans (GCBs) have been studied previously as a source of potential microor-
ganisms for remediation. The microbiota of GCBs was identified by molecular 
(18s-ITS1-5.8S-ITS2-28s rRNA), microscopic, and macroscopic techniques in 
two previous works by Acosta-Rubí et al. 2017 and Roldán-Martín et al. 2007, 
finding fungal strains of Aspergillus niger, Fusarium sp., Mucor sp., and 
Penicillium sp. among other microorganisms. Fungi and bacterial count (UFC) 
were performed by diluting 500 μL contaminated water samples in 4.5 mL NaCl 
solution (0.9%). Once the dilutions in the range of 1 × 10−1 − 1 × 10−6 were pre-
pared, 30 μL was poured into petri dishes with nutritive agar for bacteria (at 37 °C) 

(continued)
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and rose Bengal agar for fungi (at 28 °C). In the case of GCBs, 0.5 g ground grain 
was used for dilutions. Furthermore, solid-state cultures were performed using 
raw GCBs at different particle sizes, and water was added to achieve the desired 
moisture content in the medium. For liquid cultures, the Wunder medium (modi-
fied) was used (Wunder et al. 1994), containing (g/L) 10 glucose, 1 polypeptide, 1 
(NH4)2SO4, 0.5 MgSO4-7H2O, 0.875 KH2PO4, 0.125 K2HPO4, 0.1 CaCl2-2H2O, 
0.1 NaCl, 0.02 MnSO4-H2O, and 0.001 FeSO4-7H2O. 40 mL of Wunder medium 
was inoculated with 0.5% GCBs (from SSC) in 125 mL shake flasks.

For chemical oxygen demand (COD) determinations, three solutions were 
prepared by duplicate. For the control blank, the standard solution, and the 
sample preparation, 5 mL of distilled water, 5 mL potassium hydrogen phthal-
ate (0.0024 M), and 5 mL contaminated water sample were poured into sepa-
rated round bottom flasks with three glass beads, respectively. Then, 2.5 mL 
potassium dichromate (0.041 M) and 7.5 mL concentrated sulfuric acid were 
added to each flask. Digestion was performed in a reflux apparatus with 
cooled water for 2 h. Then, two drops of ferroin indicator to each flask were 
instilled, and titration was carried out with ammonium ferric sulfate until to 
observe a color change from blue green to reddish brown. Ferroin indicator 
was prepared by dissolving 1.485  g 1,10-phenanthroline monohydrate and 
0.695 g ferrous sulfate heptahydrate in 100 mL distilled water. Equations 4.11 
and 4.12 were used for sample and standard COD calculations:

	
COD

mL mL

DilutionSample

Blank Sample=
( ) ⋅ ⋅

⋅

– 25 8000

5 	
(4.11)

	
COD

mL mL
Standard

Blank Standard=
( ) ⋅ ⋅– 25 8000

5 	
(4.12)

The pH of water samples was determined with a pH meter (Jenway Mod. 
3020, UK). For pH determinations of GCBs, a suspension was prepared using 
a 1:10 GCBs-distilled water ratio. The GCB moisture was determined with a 
thermobalance (Kern MLB 50–3, Germany). Total nitrogen was determined 
according to the Kjeldahl method suggested by the Association of Official 
Analytical Chemists (AOAC). The HgO-K2SO4 catalyzer was prepared as fol-
lows: 50 g potassium sulfate and 2 g mercury oxide were mixed in a ball mill 
until a homogeneous powder is obtained. NaOH-Na2S2O3 solution was pre-
pared by dissolving 600 g NaOH and 50 g Na2S2O3 in 1-L distilled water. The 
H3BO3 solution was prepared by dissolving 50 g H3BO3 in 1-L water. Methyl 
red and methylene blue were prepared by dissolving 200 mg methyl red and 
200 mg methylene blue in 100 mL absolute ethanol, respectively. To prepare 
the indicator solution, 100 mL of methyl red and 50 mL of methylene solu-
tions were mixed in a vortex. Then, 15–40 mg samples were collocated in a 
micro Kjeldahl flask; then, 2 g HgO-K2SO4 catalyzer and 2.5 mL sulfuric acid 
(0.01 N) were added. The samples were digested in a digestion unit for 2 h 
until samples were clarified and were allowed to cool to room temperature. 
Then, approximately 100  mL distilled water was added. The outlet of the 

(continued)
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condenser was submerged into a solution composed of 50 mL H3BO3 solution 
(5%) and two drops of indicator solution into an Erlenmeyer flask. 10 mL 
NaOH-Na2S2O3 solution was added to the sample. Steam distillation is per-
formed, and 75–100  mL distillated solution is recovered. The solution is 
titrated with hydrochloric acid (0.01 N) until a color change from green to red 
violet. The blank was determined with the same procedure. The following 
formula is used for nitrogen determinations:

		
%

.
N

V V N

M
HCl=

−( ) ⋅ ( ) ⋅
⋅2 1 14 007
100

	
(4.13)

where %N is the percentage of total nitrogen, V1 is the spent volume of HCl 
for blank titration (mL), V2 is the spent HCl for sample titration (mL), NHCl is 
the normality of HCl (N), and M is the sample weight (mg).

Metals were determined by atomic absorption spectroscopy. Sample diges-
tion was performed as follows: 10 mL samples were poured into microwave 
tubes (Mars 230/60, USA) and 5  mL concentrated nitric acid was added. 
Digestion was done for 40 min. Then, by evaporation on a hot plate, 2 mL of 
samples was obtained. Samples were filtrated in vacuo using filter paper 
(Whatman grade 42) and finally analyzed. The identification of organic com-
pounds in water was carried out by gas chromatography/mass spectroscopy. A 
previous extraction of samples with dichloromethane was done. For this, a cap-
illary column (ZB-5, 5% phenyl, 95% dimethylpolysiloxane) was used. The 
injector temperature was set at 200 °C. The oven starts with a temperature of 
35 °C (for 1 min), and a single ramp temperature program was used (35–300 °C, 
25 °C/min). The concentrations of benzene and MTBE were determined with a 
gas chromatograph (FOCUS, GC) equipped with an FID detector and a TR-5 
MS column (30 m × 0.32 mm), using nitrogen as carrier gas at 1.5 mL/min. The 
temperature configuration was as follows: 35 °C for oven, 200 °C for injector, 
and 180 °C for detector. For MTBE determinations, 100 μL of samples was 
taken from vials’ headspace, which was submerged previously in water bath at 
65 °C. For benzene, vials were maintained at 30 °C for 20 min before head-
space sampling. Organic acid determinations were carried out with HPLC with 
a UV detector (210 nm), using sulfuric acid as a mobile phase at 0.4 mL/min 
and an HPX-87H column (300 mm length, 7.8 mm diameter). The H2O2 pro-
duction and free-radical (FR) formation were evaluated by luminescence in a 
luminometer (TD2020, Turner Designs). In 4 mL vials, 200 μL culture medium, 
10 μL luminol, and 790 μL Tris buffer (pH = 8) were mixed and measured. For 
the detection of FRs, 100  μL culture medium, 800  μL buffer, and 100  μL 
Lucigenin (bis-N-methylacridinium nitrate) (1 mM) were mixed and measured.

Microbial respirometry (CO2 production, O2 consumption, and respiratory 
quotient) was determined using a Go-Mac 550 gas chromatograph equipped 
with a thermal conductivity detector and a CTR-1 column. Helium was used 
as carrier gas with a flow rate of 55 mL/min. The temperature configuration 
was as follows: 25 °C for column, 30 °C for injector, and 100 °C for detector.
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et al. 2011; Roldán-Martín et al. 2007). GCB can also be used as a carrier/support 
material to promote the formation of biofilms that can increase the resistance to 
adverse environmental conditions and increase the tolerance to high pollutant con-
centrations in addition to remove pesticides (Barragán-Huerta et al. 2007).

4.4.1  �Contaminated Water with Benzene and MTBE: Fungi 
for Remediation

Due to the intense refining activities (7500 barrels of oil per day) of the ex-petroleum 
refinery “18 de Marzo” (México), a serious subsoil and surface water pollution was 
generated (SEMARNAT 2019). The characterization of the contaminated water 
showed the presence of petroleum-derived products, such as benzene, cyclohexene, 
and MTBE (as gasoline additive) (Table 4.3). Moreover, low nitrogen content and 
low COD were found. The COD level was near to the common low limit of raw 
municipal wastewater (500 mg/L) that suggests a small amount of oxidable pollut-
ants. It is worth noting that fungi were not detected in water samples, probably due 
to the lack of nutrients (nitrogen and phosphorus). Besides, GCBs showed acid pH 
and the presence of both bacteria and fungi (Table 4.4). Fungal strains of the genera 
Penicillium, Mucor, and Aspergillus were identified previously in GCBs (Barragán-
Huerta et  al. 2007; Acosta-Rubí et  al. 2017), which was corroborated by micro-
scopic and macroscopic techniques. A factorial design (23, eight treatments, 
Table 4.5) was used as a first assessment of microbial activity and for inoculum 
selection. For this, solid-state cultures (SSC) were carried out using GCBs as carbon 
and energy source and as a source of microorganisms. Moisture, grain amount, and 
particle size were used as independent variables. CO2 production and respiratory 
quotient (RQ) were used as response variables.

RQ is defined as the ratio of microbial CO2 production and O2 consumption 
when a given substrate is used for microbial metabolic activities. This indicator has 
been used as a unique parameter to estimate the biodegradation process of organic 
compounds and is related to microbial growth (Lamy et al. 2013). RQ values near 

Table 4.3  Characterization of the contaminated water samples from the ex-petroleum refinery “18 
de Marzo,” México

Parameter/compound Value Parameter/compound (μg/L) Value

pH 7.44 Cd ND
COD (mg/L) 252.83 Ni ND
Nitrogen (%) 0.000029 Pb 0.09
Phosphorus (mg/L) 0.51 Mn 0.067
Total bacterial count (UFC/L) 2 × 102 Ca 62.28
Total fungal count (UFC/L) ND MTBE 20.47
Cu (μg/mL) ND Benzene 15.02

ND not detected
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or below to 1 are suggested for the utilization of monomers of complex carbon 
sources by ascomycetes, under aerobic conditions (Lameiras et al. 2018). Figure 4.3 
shows the RQ performance for 4 days’ culture in solid state, finding RQ values near 
to 1 from day 2, for all treatments tested (Table 4.5). Moreover, inoculums I1–I4 
were selected for reactive species formation and biodegradation tests in liquid 

Table 4.4  Characterization 
of the GCBs

Parameter Value

pH 5.84
Nitrogen (%) 0.062
Humidity (%) 0.11
Total bacterial count (UFC/L) 7 × 102

Total fungal count (UFC/L) 4 × 103

Table 4.5  Factorial design (23) matrix with natural values

Inoculum Particle size (mm) Moisture (% CC) GCB amount (g)

I1 2 20 1
I2 10 20 1
I3 2 40 1
I4 10 40 1
I5 2 20 4
I6 10 20 4
I7 2 40 4
I8 10 40 4

Fig. 4.3  Respiratory quotient of the microorganisms associated with GCBs for 4 days’ culture in 
solid state
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medium, because these conditions presented the highest microbial activity under 
aerobic conditions and low GCB amounts were needed.

4.4.1.1  �Reactive Species and Organic Acid Production by Fungi 
in Liquid Medium

Ascomycetes are able to degrade toxic compounds by redox mechanisms. On the 
one hand, this biodegradative capacity can be correlated with the production of 
enzymes such as lignin peroxidase and manganese peroxidase, which are able to 
degrade a wide range of pollutants. On the other hand, ascomycetes can produce 
and release hydrogen peroxide (Ko et al. 2005), which can be used to oxidize target 
contaminants.

For submerged liquid cultures, inoculums from solid-state culture were taken 
from day two, since at this time, a higher fungal growth was observed by micro-
scopic and macroscopic techniques. Moreover, the identified bacterial strains 
(Pseudomonas putida and Klebsiella variicola) are not known as H2O2 producers, 
and therefore, the H2O2 production can be attributed to fungal strains. First, to 

Fig. 4.4  Liquid culture performance for 36 h, using the inoculums obtained from SSC (Table 4.5, 
I1-I4). (a) Glucose consumption, (b) FR formation, (c) H2O2 production, and (d) pH of the liq-
uid medium
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determine suitable conditions (i.e., redox potential, pH, and H2O2 concentration) to 
perform the removal assays of benzene and MTBE, liquid cultures were performed 
with glucose as simple carbon and energy source. The H2O2 production is related to 
the enzymatic activity of fungi. According to Magnuson and Lasure (2004), A. Niger 
lowers the pH of its environment by releasing glucose oxidase to the outside of the 
cell wall. This enzyme can produce gluconic acid and hydrogen peroxide from glu-
cose. This trend is shown in Fig. 4.4a, where consumption of glucose from 78% to 
97% for all treatments is observed. Besides from Fig. 4.4d, a decrease of pH from 
5.5 to 1.9 is observed for all treatments.

The acidification of the culture medium can promote the inhibition of rap-
idly growing bacterial species and fungi that are not able to grow below pH 3 
(Magnuson and Lasure 2004). Figure 4.4c shows the production of H2O2 by 
the associated microorganisms to GCBs, cultivated in liquid medium for 36 h. 
It can be observed that the highest peak of relative units of luminescence 
(RUL) was obtained at 24  h, and the same tendency was obtained for all 
treatments.

The highest RUL was obtained for I1 and I2, 20.5 and 1.14 RUL, respectively. 
The difference in H2O2 production between I1-I2 and I3-I4 can be related to con-
ditions of SSC for the obtaining of inoculums. For instance, I1 and I2 were grown 
with a moisture content of 20%, while I3 and I4 were obtained with 40% mois-
ture. Nuñez-Gaona et al. (2010) indicated when ascomycetes are cultured in solid 
state, an increase of the moisture content leads to the decrease of the conidial 
yield. This fact can be explained by the resistance of oxygen mass transfer when 
water fills the spores. Furthermore, since the culture medium contains iron, it is 
possible that the Fenton reaction can occur. The formation of free radicals (FRs) 
was determined by luminescence (Fig.  4.4b). As expected, the I1 showed the 
highest FR formation at 24 h, which was at least 23-fold higher than the other 
inoculums. This was due to the high H2O2 concentration in the liquid medium 
that can react with Fe2+ to form FRs, according to Eq. (4.4). From this equation, 
one can observe that hydroxyl radical is formed. This product is known as the 
most reactive oxygen species that can react with organic and inorganic com-
pounds. Once FRs are produced, it is expected that oxidation of the pollutant 
takes place (Lira-Pérez et  al. 2019). Redox potential (Eh,) is a parameter that 
measure (mV) the electron availability of an environment and show its tendency 
to oxidize or reduce substrates. For instance, in well-oxidized water with oxygen 
concentrations above 1  ppm, the Eh will be highly positive, above 
300–500  mV.  Besides, in reduced environments, the Eh will be low, below 
100 mV or negative.

Figure 4.5a shows the profiles of Eh of the culture medium for 36 h, where simi-
lar tendency was observed for all experiments, reaching maximum values of 273 mV 
that indicate oxidant conditions. Eh is modified by two main effects: oxygen concen-
tration and pH. On the one hand, if oxygen concentration decreases, it is expected 
that Eh also decreases. However, oxygen concentration may not diminish drastically 
because the experiments were performed with constant agitation, which imply con-
tinuous mass transfer of oxygen to the aqueous phase consumption. On the other 
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hand, Eh is modified significantly with changes in the concentration of hydrogen 
protons. Because of this, it is expected that Eh changes, since pH varies with time. 
Nevertheless, the obtained Eh values were positive for all experiments, which are 
recommended to promote biodegradation processes (Maier and Gentry 2015). As 
depicted in Fig. 4.4, the decrease of pH could be related to the production of organic 
acids, when fungi use glucose or lignocellulosic biomass as carbon and energy 
source (Dörsam et al. 2017; Magnuson and Lasure 2004). Fungi are capable to pro-
duce organic acids such as oxaloacetic, oxalic, tartaric, citric, lactic, or succinic 
acids that lead to acidify the surroundings of the cells to very low pH values. In 
A. niger, the production of oxalic acid from oxaloacetate is mediated by oxaloace-
tate hydrolase (EC3.7.1.1), which is in the cytosol. The expression of this enzyme is 
induced at pH greater than 4 (Izcapa-Treviño et al. 2009). Our results show oxalo-
acetic acid concentrations up to 131.6 μg/L, which was obtained with the inoculum 
I1 (Fig. 4.5c). Besides, Fig. 4.5b shows that the maximum oxalic acid concentration 
(2.03 μg/L) was obtained for the same inoculum. The low formation of oxalic acid 
may be explained by the fact that the decrease of pH with time may decrease the 

Fig. 4.5  Redox potential and organic acids produced by the microorganisms associated with 
GCBs (I1-I4)
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activity of oxaloacetate hydrolase, since the optimal pH for oxalic acid formation is 
in the range of 4–6.

Finally, since inoculum I1 showed adequate conditions for biodegradation to 
take place, that is, high hydrogen peroxide production, high FR formation, and low 
pH, it was used to perform benzene and MTBE removal assays. For this, 20 μg/L of 
both benzene and MTBE was added to liquid cultures. The same initial culture con-
ditions were used for both removal assays. Figure 4.6 shows the biodegradation of 
benzene and MTBE by the microorganisms associated with GCBs for 36 h, where 
removal percentages of 60% and 52% were observed for benzene and MTBE, 
respectively. Fungal species of GCBs are reported to be able to mineralize alkanes 
or aromatic hydrocarbons in liquid medium (Govarthanan et al. 2017). The diminish 
of benzene and MTBE in the first 18 h where H2O2 and FRs are not yet formed can 
be related to biodegrading processes. However, between 18 and 30 h culture, H2O2 
and FRs are produced, which can improve the biodegradation of both pollutants.

Fig. 4.6  Benzene and MTBE removal using the inoculum I1

Fig. 4.7  Determination coefficients (R2) for each experimental statistical design (obtained from 
ANOVA) in the optimization process of VBD biosorption in A. niger. (Lira-Pérez et al. 2019)
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4.5  �Dyeing Pollution and Dye Biosorption to Active 
Fungal Biomass

Dyeing printing, tanning, leather, cosmetics, paper, food, painting, and textile 
industries are the main sources of dyes released to the environment. In the textile 
industry, during the dyeing processes, approximately 1–20% of color is discarded, 
which generates large quantities of wastewater containing a wide variety of pollut-
ants with different toxicities (Venkatesha et al. 2012). Since textile pollution repre-
sents a problem of global concern, physical, chemical, and biological technologies 
are used to treat those effluents. Azo-type (–N=N–) and anthraquinone dyes are 
widely used in the world for cotton and cellulose fibers dyeing (Lira-Pérez et al. 
2019). The release of these hazardous pollutants to the environment may generate 
by-products that are considered toxic or carcinogenic agents for humans and for 
aquatic living organisms. In humans, these toxins can cause dermatitis, skin and 
gastrointestinal irritation, or allergies. Moreover, the textile industry can damage the 
environment in two ways: first, by huge water consumption and secondly by the use 
of complex chemicals (Nawaz and Ahsan 2014). All these have led to the use of 
physical and chemical techniques for dye removal, such as precipitation, coagula-
tion, ozonation, and filtration, among others. However, these techniques can be 
expensive, generate toxic by-products, and not be adaptable to other dyes (El-Hosiny 
et al. 2018). Nowadays, biological procedures are used as an attempt to mitigate 
pollution in an environment-friendly way (Kumar et al. 2018). Mycoremediation is 
an effective and affordable method for the decolorization of dye-bearing effluents 
(Lu et al. 2017). Biosorption is considered as the most advantageous process for 
colored waters and living or inactive fungal cells have been studied as biosorbents 

Box 4.2 Improvement of Vat Blue Dye Removal from Water with Active 
Biomass of Aspergillus niger
Aspergillus niger CDBB-H-175 was cultured in potato dextrose agar (PDA) at 
28  °C for 5  days. After that, 6  mm-diameter agar disks were placed into 
500 mL Erlenmeyer flask with 170 mL of modified Wunder medium (Wunder 
et al. 1994). Incubation was done at 28 °C, 125 rpm for 72 h. 1.5 g fungal 
biomass was then used as inoculum. To evaluate the capacity of A. niger for 
vat blue dye (VBD) removal, VBD (Químicos y Colorantes S.A. de C.V.) 
solutions were prepared at different concentrations. The VBD concentration 
in the culture medium was determined with a UV-spectrophotometer 
(Shimadzu model UV-1800) at a wavelength of 630 nm. Decolorization (%) 
was calculated as the difference in concentration before and after adsorption. 
Furthermore, the glucose oxidase (GOX) activity was determined by measur-
ing the hydrogen peroxide produced from glucose (Eq. 4.1), using peroxidase 
and ABTS as its substrate. The absorbances were measured at 420 nm. One 
unit of GOX activity was defined as 1 μmol of hydrogen peroxide generated 
per minute (Tahir and Ali 2016).
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(Kaushik and Malik 2009). The biosorption process involves the passive uptake of 
pollutants by biological materials. The biosorption capacity of a given biomaterial 
is determined by the composition of the biomass and the concentration or pH, 
among other factors (Dhankhar and Hooda 2011). Fungal strains of Trametes, 
Phanerochaete, Penicillium, Pleurotus, Rhizopus, and Aspergillus have been used 
for sorption studies (Salvi and Chattopadhyay 2017; Rodríguez-Couto 2009). For 
A. niger, several compounds have been identified from its cell wall, which can play 
an important role in the biosorption process.

4.5.1  �Biosorption Optimization of VBD in Fungal Biomass 
and the Role of Hydrogen Peroxide in Decolorization 
of Water

Optimization techniques are useful tools that allow to find conditions that improve 
a desired response variable (Sandoval-Espinola et al. 2015). On one hand, the FFD 
showed that the VBD concentration and exposure time are the most significant 

Table 4.6  Results obtained for each experimental statistical design (Lira-Pérez et al. 2019)

ESD VBD (mg/L) Exposure time (min) pH Agitation (rpm) Decolorization (%)

FFD 100 30 3 180 43.07
FOM 150 150 5 180 62.91
SAS 450 142.5 5 180 90.85
CCD 520 143 5 180 94.06

The improvement of dye removal was performed as follows: first, to iden-
tify the variables that affect the sorption of VBD into active biomass of 
A. niger, a 24–1 fractional factorial experimental design (FFD) was performed, 
considering dye concentration (50 and 100 mg/L), pH (3 and 5 units), agita-
tion (60 and 180 rpm), and exposure time (30 and 90 min) as independent 
variables and the percentage of decolorization as a response variable. From 
here, since agitation and pH were not statistically significant, these variables 
were maintained constant at its optimal values, i.e., pH  =  5 and 180  rpm. 
Then, to improve the decolorization, a 22 factorial experimental design with 
central points was applied to obtain a first-order model (FOM), which is used 
in the steepest ascent step (SAS) methodology. Finally, the determination of 
the maximum decolorization percentage was carried out using a central com-
posite design (CCD) of a response surface methodology. Each experiment 
was done in triplicate, and an analysis of variance (ANOVA) was performed 
for means comparison using the least significant difference (LSD) method. 
More experimental details can be found in Lira-Pérez et al. (2019).
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variables in the VBD decolorization. On the other hand, optimization by the ascent 
step and the response surface methodologies were accomplished, finding the fol-
lowing optimal conditions: 450–500 mg/L VBD and exposure times from 133 to 
150 min. Under these conditions, a maximum of 94% decolorization was obtained 
(Lira-Pérez et al. 2019). Table 4.6 displays the best results obtained for each experi-
mental statistical design, where we can observe that the decolorization increases 
from 43% (FFD) to 94% (CCD). Figure 4.2 shows the determination coefficients 
obtained from the analysis of variance. Electrostatic attractions between VBD (neg-
ative charge) and positive charges of functional groups found in the cell wall of 
Aspergillus niger can be related to the biosorption process. Binding sites such as 
amino and carboxyl groups are the main responsible for sorption (Fu and 
Viraraghavan 2002). For A. niger cells at an early age, the main carbohydrates of the 
cell wall are mannose and galactose, but for aged cells, the percentage of glucose 
increase up to 90% of the carbohydrate portion. In this study, A. niger cells with a 
physiological age of ~80 h were used for assays. Due to the high content of glucose 
in cell wall composition and its neutral charge, carbohydrates could not play a rel-
evant role in biosorption. However, the negative charges of the VBD structure can 
interact with the positive charges of chitin components. Besides, the negative charge 
of glucans might interact with the positive charges of VBD. Both interactions can 
allow the sorption of VBD to the cell wall of A. niger (Lira-Pérez et al. 2019).

Notwithstanding, the removal of VBD can be due to an oxidative mechanism 
mediated by the production of reactive species that can oxidize contaminants. 
Results from FOM showed a decolorization percentage of 62.91%, where 28% was 
attributed to the hydrogen peroxide production by GOX activity (Eq. 4.1). The GOX 
activity and hydrogen peroxide production were 1.98  ±  0.16  U/mL and 
1.43 ± 0.25 mg/L, respectively. Since the culture medium contains iron (Wunder 
et al. 1994), it is possible that the production of hydrogen peroxide could promote 
the formation of reactive oxygen species (ROS), which can oxidize VBD due to its 
high oxidizing strength (0.695 V) (Heiser et al. 1998; Tec-Caamal et al. 2019; Ko 
et al. 2005). These results suggest that the decolorization of VBD using active fun-
gal biomass can be carried out by simultaneous sorption and redox reactions. It is 
important to note that although the agitation and pH were set as constant for most of 
the experiments, the study of these variables in other bioreactor configurations such 
as mechanically or pneumatic bioreactors could be of importance, since changes in 
pH and agitation are related to changes in the metabolism of microorganisms. 
Moreover, the temperature and inoculum amount could be also evaluated.

4.6  �Conclusions

The use of fungi for bioremediation purposes is widely used; however, there is a 
lack of information that should be covered in relation to the mechanisms used by 
ascomycetes to remove contaminants, as well as the culture conditions that could 
enhance the biodegradation process. Although the production of hydrogen peroxide 
by ascomycetes is reported in the literature, there is little information about the 
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redox reactions that can take place outside the cell for the elimination of toxins, 
such as dyes, hydrocarbons, and metals. This work emphasizes the capacity of asco-
mycetes to produce strong oxidants by means of Fenton and Haber-Weiss reactions. 
Once reactive species are formed enzymatically by a wide variety of enzymes, such 
as glucose oxidase, glyoxal oxidase, alcohol oxidase, and glyoxylate oxidase, 
among others, the pH of the environment is low by the production of organic acids, 
and there are oxidant conditions (positive redox potential) the oxidation of the pol-
lutant can occur. Moreover, it is possible that the simultaneous removal process can 
occur, such as the case of Aspergillus niger, where biosorption and hydrogen perox-
ide production were documented.
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5.1  �Introduction

The incessant and indiscriminate use of chemicals, agriculture fertilizers, sewage 
disposal, tar, accidental spillages, and explosives has been cardinally contaminating 
soil, water bodies, and air, which has created an alarming situation globally. The 
exuberant industrial growth and various developments and establishments have 
added to the exponential increase in the production of various municipal, industrial, 
and domestic wastes. All these waste materials are discarded either in landfill/soil or 
in the sea without undergoing initial treatment, thus annexing to the contamination 
of the environment as a whole.

5.1.1  �The Problems

Amongst the various kinds of pollution, soil pollution has recently gained tremen-
dous momentum across the global communities due to the proliferating number of 
problems associated with its contamination. Soil pollution can be reflected as a 
steady accumulation of toxic compounds, salts, chemicals, radioactive materials, or 
disease-causing agents having harmful effects on the growth and health of plants 
and animals.

The major soil pollutants can be grouped under two broad genres of compounds: 
(i) heavy metals and (ii) mephitic organic chemicals. Most of the organic chemicals 
like polycyclic aromatic hydrocarbons (PAHs), pentachlorophenols (PCP), poly-
chlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(4- chlorophenyl)ethane 
(DDT), and trinitrotoluene (TNT) are recognized as mutagenic and carcinogenic 
agents apart from their high degree of persistence in nature. The term heavy metal 
has been used in a different context by various authors as there is no clear definition 
by IUPAC. In some research, it has been cited in relation to density or specific grav-
ity, while in others, it has been described in terms of atomic mass atomic number or 
toxicity, while most of them are not pure metals like arsenic, selenium, and gera-
nium which is a metalloid. Here, we use the term heavy metals in context of all the 
metals occurring in the periodic table except for the ones present in group I and 
group II. Metals are an inherent part of the soil texture. A few of them are essential 
micronutrients. Metals in the soil are ascribed toxic when they exceed their bio-
availability threshold in living organisms. The immutable nature of the metals 
accounts for their bioaccumulation in the environment through the food chain. The 
percolation of these heavy metals in soil and water supplies eventually piles up to a 
toxic level and thereby contaminates the surrounding of the living beings. Some 
commonly detected heavy metal contaminants are mercury, lead, cadmium, and 
chromium (VI) which are regarded as toxic. Radionuclides, such as uranium, pos-
sess high toxicity and radioactivity and exhibit a serious threat, even at small con-
centrations (Thakare et al. 2021), whereas others such as copper, nickel, cobalt, and 
zinc are an integral part of various enzymes, and some like magnesium, potassium, 
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calcium, and sodium are required for the proper sustenance of living system and are 
not toxic, but their extensive usage and increasing levels in the environment are of 
serious concern. The metals have a propensity to form a toxic complex with the cel-
lular proteins or inactivate the enzyme, thereby disrupting the metabolic machinery 
which results in either malfunctioning or the death of the cells (Thakare et al. 2021). 
Bioaugmentation following bioaccumulation of the metals negatively affect the 
food chain and thus pose risk. Thus, remedial measure to detoxify agricultural land 
as well as other land masses becomes top priority once contaminated with the met-
als. Human beings are the worst sufferers as they are both primary and secondary 
consumers in the food chain. The effects of the quantity of heavy metal in the envi-
ronment and its subsequent repercussions on health and their resistance are an 
exhaustive issue demanding significant attention. Nevertheless, the source effects of 
metal toxicity associated with human health hazards is the same which are summa-
rized in Table 5.1 (Dhankhar and Hooda 2011).

5.1.2  �The Remedies

The existing decontamination methodologies through the chemical process like pre-
cipitation and ion exchange solvent extraction often involve low or incomplete 
metal contaminant removal including the high-cost expenditure, extensive reagents, 
and energy requirements incurred through the existing methodologies. These meth-
ods are susceptible at producing mephitic intermediate waste or toxic sludge which 
demands proper disposal.

5.1.2.1  �Bioremediation

There has been a tremendous upsurge in recent years to harness the efficiency of 
microorganisms to degrade contaminants on a more global scale commercially 
while offering a safer and holistic treatment. Bioremediation entertains the use of 
microorganisms as well as plants which employ their efficient enzyme system for 
the metabolism of various kinds of xenobiotics and other man-made chemicals, 
thereby detoxifying and degrading the environmental pollutant (Kumar et al. 2017). 
Bioremediation encompasses within itself a large body of biotic mechanism and can 
be described under three principal methods: (i) the process of natural degradation of 
pollutant and noxious chemicals or natural attenuation, (ii) biostimulation which 
involves the alteration in the physical environment to insinuate biodegradation of 
contaminant, and (iii) bioaugmentation, where exogenous or foreign organisms are 
ingressed at the contaminated site to initiate decomposition of the contaminant 
(Anza et  al. 2019). A significant number of plants and plant products have been 
associated with alleviating metal stress caused by heavy metals, also known as phy-
toremediation. The presence of well-bodied defence mechanism ensures the sur-
vival of plants at metal contaminated sites, but beyond a certain capacity, the plant 
living system fails to tolerate the heavy metal (HM) load, and its growth and 
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Table 5.1  Toxicity of heavy metals on human health (Dhankhar and Hooda 2011)

S. 
no Metal Primary sources Biological effects

1 Mercury Industries: pesticides, batteries, 
pulp, and paper

Damage to the nervous system, 
protoplasm poisoning

2 Cadmium Welding, electroplating, pesticide 
fertilizer, Cd and Ni batteries, 
nuclear fission plant

Kidney damage, bronchitis, 
gastrointestinal disorder, bone marrow, 
cancer

3 Lead Paints, pesticides, smoking, 
automobile emission, mining, 
burning of coal

Liver, kidney, and gastrointestinal damage, 
mental retardation in children

4 Chromium Chrome plating, ceramics, 
metallurgical processes, paints, 
dyes, magnetic tapes

Persisting diarrhoea, skin ulceration, 
“chrome holes”, bronchial asthma

5 Copper Agricultural fungicides, algicides, 
fertilizers, plumbing corrosion

Gastrointestinal disorder, liver and kidney 
malfunctioning, nausea, vomiting, 
diarrhoea, and intestinal cramps, anaemia

6 Arsenic Pesticides, fungicides, metal 
smelters

Bronchitis, dermatitis

7 Manganese Welding, fuel addition, 
ferromanganese production

Inhalation or contact causes damage to 
central nervous system

8 Nickel Nickel- or chromium-plated taps, 
bore-hole equipment

Skin sensitizer, dermatitis, prenatal 
mortality

9 Cobalt Aircraft engines, magnets, 
grinding and cutting tools, 
artificial hip and knee joints, 
glass, ceramics, and paints

Congestive heart failure, dermatitis, liver 
and kidney effects, nausea, vomiting, 
diarrhoea, bleeding, coma

10 Zinc Refineries, brass manufacture, 
metal plating, plumbing

Zinc fumes have corrosive effect on skin, 
cause damage to the nervous membrane

11 Iron Blister packaging, iron pipes, and 
cookware

Liver, cardiovascular system, and kidney 
malfunctioning

12 Palladium Automobile catalytic converters, 
electronic equipment, jewellery, 
glass production industry

Allergic reactions, including contact 
eczema chronic fatigue syndrome, 
multiple sclerosis, fibromyalgia, multiple, 
autism

13 Platinum Automobile exhaust, roadside 
soil

Allergic effects, liver and kidney damage

14 Thorium Electric lamps, metallurgical 
industries, laboratory crucibles, 
glass industry, nuclear fuel 
industry

Lung diseases, pancreas cancer, genetic 
alterations, bone cancer

15 Uranium Phosphate fertilizers, ceramics, 
mining

Kidney damage

16. Arsenic Paints, drugs, dyes, soaps, metals 
and semiconductors, agricultural 
applications, mining, and 
smelting

Hyper pigmentation and keratoses, 
gastrointestinal, cardiovascular, 
haematological, pulmonary, neurological, 
immunological, and reproductive 
malfunctioning
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sustenance are severely hampered and may even be fatal. It is chiefly the microor-
ganisms which have garnered special interest as a cost-effective and efficient alter-
native to overcome the menace of metal toxicity in the soil.

Bacterial bioremediation encompasses the use of bacterial consortia to degrade 
the contaminants. Presently, it is the most extensively explored area as the growth, 
sustenance, and maintenance of the bacterial species require minimal investment 
time and space. Pires et  al. (2017) have reported the presence of Firmicutes, 
Proteobacteria, and Actinobacteria at sites with heavy metal toxicant load compris-
ing mostly of Bacillus, Pseudomonas, and Arthobacter genera. There is substantial 
evidence indicating the efficiency of legume-rhizobia symbiosis in curtailing the 
HM stress, but it has also been found to greatly enhance the quality of the contami-
nated soil in spite of the sensitivity of the nitrogenase and nodulation activities to 
the heavy metal (Checcucci et al. 2017).

5.1.2.2  �Mycoremediation and Its Current Significance

Mycoremediation is rapidly emerging as a robust methodology to deal with abiotic 
metal/organic contaminant stress. Fungi can act as pivotal role because their effi-
cient adaptation in varied surroundings and emerge as key players in reducing the 
heavy metal contamination, high tolerance to lethal metal environments, and an 
inherent elaborate detoxification mechanism make them an ideal tool against heavy 
metal toxicants. The ease of genetic and morphological manipulation besides short 
multiplication cycle makes their growth easier and economical on a large scale. 
They show pronounced intracellular ingestion of heavy metal subject to decreased 
fluctuations in pH, temperature, aeration, and nutrition. The metal-fungal associa-
tions in the rhizosphere are extremely stringent and depend upon various parameters 
such as physicochemical texture of soil, concentration and the kind of metal species, 
metabolic activity, and diversity of microbes (Mishra et al. 2017).

The first fungus which was reported to successfully degrade a diverse group of 
environmental pollutants was Phanerochaete chrysosporium (Bumpus et al. 1985; 
Eaton 1985). The fungi are able to procure the contaminant from the environment 
and store it in their tissue such as mycelia or fruiting mushroom bodies. Fungi 
belonging to phyla Ascomycota and Basidiomycota commonly occur at HM con-
tamination sites. Diligent observations have led to the conclusion that nutrient-
deprived soil profiles with huge loads of HM toxicants are often colonized by 
arbuscular mycorrhizae. Fungi have an elaborate cell wall composition which 
enhances its potencies of binding different kinds of metal through various possible 
functional group ligands and thus helps in metal sequestration. The presence of vari-
ous transporter proteins, intracellular as well as extracellular enzymes such as 
lignin-modifying enzymes which have low substrate specificity, allows them to tar-
get many organic as well as inorganic/metal pollutants in this way fungi emerge as 
key player in bioremediation (Hyde et al. 2019).
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5.2  �Fungal Group Participation

The highly oxidative extracellular enzyme system enlarges the fungus degradative 
influence beyond the hyphae, thus rendering them profoundly efficient in oxidizing 
extremely hydrophobic substrate. It is of importance that the fungus does not utilize 
the contaminant for growth, and hence, the quantity of the contaminant degraded is 
not a function of the concentration of the fungus within the soil. The presence of 
enzymes like lignin peroxidases (LiP), manganese peroxidases (MnP), and laccases 
(LAC) exuded by fungi are tremendous at degrading organo and heavy metal pollut-
ants. Successful treatment of herbicides and pesticide containing heavy metal con-
taminated site has been reported with fungi such as Lentinus subnudus, Phlebia 
acanthocystis, and Pleurotus ostreatus (Kamei et al. 2011; Nyakundi et al. 2011; 
Xiao et al. 2011).

The fungi belonging to White rot fungi (WRF) group or the basidiomycetes are 
commonly saprophytes having dikaryotic hyphae and clamp connections along the 
septation, e.g. Pleurotus ostreatus (oyster mushroom), Lentinulus edodes (Shitake), 
and Agaricus bisporus (white button mushroom). The growth of the white rot fungi 
through hyphal extension makes them adept in reaching out to the contaminated 
sites unlike the other organism like bacteria with low colonizing capacity (Reddy 
and Mathew 2001).

Various edible mushroom species from the Bucegi mountain forest area were 
reported to uptake heavy metal. The mean values of the metal concentration in the 
fruiting body of the mushrooms were reported: 17.49 mg/kg for Mn, 1163.86 mg/
kg for Bi, 11.94 mg/kg for Ti, and 1.07 mg/kg for Sr. Amongst the eight mushroom 
species evaluated, Hypholoma capnoides species was the most efficient and 
absorbed the highest concentrations of Ti, Sr, and Mn followed by Marasmius 
oreades which reported crucial bioconversion values of Bi and Ti (Carmen and 
Gabriela 2013; Asiriuwa et al. 2013) employed mushrooms at Cd, Zn, Cu, and Pd 
metal-contaminated sites. Efficient bioaccumulation of the Cu metals was reported 
with a minimum value of 10.60 and a maximum value of 41.80 mg/kg. The maxi-
mum concentration of Cu accumulation was recorded without any amendment in 
the soil apart from the fungal inoculum. Out of the four mentioned metals, Cd was 
the least biosorbed by the mushrooms. Galerinavitti formis species from 
Strophariacea family was found to be efficient in the uptake of Cu, Cd, Cr, Pb, and 
Zn, from the contaminated soils of Dakshina Kannada, Karnataka, India, in about 
30 days. At 1, 5, and 10 mmol/kg, both the biological and chemical chelators (citric 
acid and gallic acid) increased the metal uptake capacity of the mushrooms. 
Mycorrhizal fungi also have tremendous potencies in alleviating metal toxicity for 
their host plants. Several researchers have successfully demonstrated that Aspergillus 
sp., Penicillium sp., and Fusarium sp. can be used to remove heavy metals, i.e. Cr, 
Zn, Ni, Pd, and Cd (Sen 2018; Khodja et al. 2018; Das and Osborne 2018). Similarly, 
in another finding, Aspergillus niger and other Aspergillus sp. showed more toler-
ance to heavy metals (Zn  >  Ni  >  Pd  >  Cd) as compared to Penicillium sp. and 
Fusarium sp. (El Hameed et  al. 2015). AM fungi have been documented as 
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promoting the survival and growth of plant at metal-contaminated sites. Ruscitti 
et al. (2017) subjected pepper plant to an increasing load of Cu concentration in the 
soil after the inoculation with AM fungi. Phenomenal increase in the total dry 
weight and leaf area in the mycorrhizal plants was observed.

Lamar and White (2001) suggested a four-step strategy for the practical imple-
mentation of fungi for the mycoremediation of contaminated sites. The steps include 
(i) laboratory-scale experiments to establish preparation methods, (ii) comprehen-
sive on-site pilot testing to understand the technical and engineering methodology 
details, (iii) and the production of inoculum enhanced nutrients to warrant the 
growth and finally full-scale application.

The propensity of the fungi to survive in extreme conditions of pH, temperature, 
and nutrient availability has conferred excellent metal bonding properties by the cell 
wall. Fungal species such as Aspergillus sp. and Sterigmatomyces halophilus have 
been employed to remove metal contaminant which is then physically removed by 
harvesting the fungus (Bano et al. 2018; Baldrian 2003). The biosurfactants of fun-
gal species have been reported to eliminate heavy metals such as Fe, Zn, and Pb 
(Igiri et al. 2018). For example, an anionic biosurfactant from Candida sphaerica 
was tested on cleaning soil collected from an automotive battery industry, and the 
heavy metal removal success rate was 95%, 90%, and 79% for Fe, Zn, and Pb, 
respectively (Luna et al. 2016).

5.3  �Metal Detoxification Mechanisms

The defence mechanism in fungi and most microorganisms, under the influence of 
the contaminant stress, operates through two major mechanisms: (i) the metaboli-
cally active processes viz. biomineralization, biotransformation, bioprecipitation, 
and bioaccumulation and (ii) metabolically passive process like biosorptive pro-
cesses. The metal detoxification in fungi employs primarily the following two steps:

	(a)	 Extracellular mechanism: Incorporates the binding of the metal to the cell wall 
and extracellular material (performed by both live and dead fungal cells); the 
extracellular mechanism is concerned with inhibiting the entry of metal and 
involves biosorptive procedures which is a common feature of both the living 
and the dead fungal biomass.

	(b)	 Intracellular mechanism: Incorporates the intracellular uptake, bioaccumula-
tion, and final compartmentation or sequestration of the metal (can be per-
formed only by live cells). The intracellular mechanisms are concerned with 
reducing the load of the metal in the cytosol. Bioaccumulation procedures are 
energy exhaustive and are only performed in a live system.

Fungi have illustrated some tremendous results in the remediation of heavy metal 
contaminants through biosorptive and bioaccumulation procedures (Singh 2015).

The two processes are discussed in detail in the following sections.
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5.3.1  �Biosorption Versus Bioaccumulation

Bioaccumulation can be referred to as the process by which living cell biomass 
uptake the contaminants from the surroundings, whereas biosorption principally 
involves the use of dead or living biomass for toxicant removal from the environ-
ment. The biosorptive procedures are more feasible and reliable than bioaccumula-
tion procedures. During bioaccumulation, the living cell can transport the toxicant 
into the cell and pile it up intracellular across the cell membrane via the cell meta-
bolic cycle. After reaching the threshold, the metabolic machinery could be dis-
rupted due to an overload of the toxicant, thereby causing untimely death of the 
same, whereas biosorptive procedures seem to escape this as it is a surface phenom-
enon involving the cell wall components, and there is no direct need for active 
live metabolic machinery. Some of the characteristic features of biosorption and 
bioaccumulation have been discussed in Table 5.2.

5.3.2  �Bioaccumulation: Mechanism and Effects

Bioaccumulation involves both extracellular and intracellular processes that com-
prise diverse physical, chemical, and biological mechanisms. A diverse combina-
tion of extracellular chelation, intracellular complexation, and transport mechanism 
operates during bioaccumulation.

5.3.2.1  �Extracellular Chelation and Cell Wall Binding

Fungal cell exudes various organic molecules, in particular di- and tricarboxylic 
acids, to chelate metal ions. Citrate ion has been identified as the most significant 
Al311 complex-forming agent in soil sample obtained from podzolized forest soil. 
Brown rot fungi have often been found to exude oxalic acid in response to Cu toler-
ance. The overproduction of oxalic acid has been observed in Beauveria caledonica 
towards Cd, Cu, Pb, and Zn metal stress. The oxalate crystals produced by the 
mycorrhizae tend to immobilize and detoxify heavy metals. X-ray microanalysis 
(SEM-EDXA) and X-ray powder diffraction studies (XPRD) in wood rooting fun-
gal species such as Fomitopsis cf. meliae and Ganoderma aff. steyaertanum have 
revealed that the oxalic acids extruded by them react with the metals and convert 
them into the lesser toxic metal oxalates, e.g. zinc sulphate into zinc oxalate dihy-
drate, copper sulphate into copper oxalate dihydrate, cadmium sulphate into cad-
mium oxalate trihydrate, and lead nitrate into lead oxalate (Kaewdoung et al. (2016). 
Soil acidification usually results because of the exudation of organic acids. Since the 
growth and metabolism of the metal sensitive fungal isolate are affected more rap-
idly than the metal tolerant isolates, they dissolve lesser amounts of metal contami-
nant. Glomalin proteins secreted by the arbuscular mycorrhizal fungi have been 
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documented to sequester metal ion such as Cu, Pb, and Cd, in the polluted soils. 
Presence of melanin amongst the cell wall components further increases extracel-
lular metal chelation (Bellion et al. 2006).

5.3.2.2  �Intracellular Complexation by Peptides

The presence of metallothionein [MT] like peptides in metal stressed fungal spe-
cies was first reported in Pisolithus tinctorius. Metallothioneins are ubiquitous, 
low-molecular-weight cysteine- and metal-rich proteins with a sulphur-based metal 

Table 5.2  Features of biosorption and bioaccumulation

S. 
no Characteristic Biosorption Bioaccumulation

1 Economical Highly cost-effective, the biosorbents 
mainly comprise of waste biomass obtained 
from industrial, agricultural, and other 
sources. Transportation and other simple 
processing charges are required

Expensive
Maintenance of living system 
is cost-prone

2 pH Process can occur at broad pH range, metal 
ingression is hugely dependent on 
pH. Metal uptake is strongly influenced by 
pH; however, process can be operated under 
wide range of pH conditions

Metal uptake and the living 
cells both are sensitive 
towards extreme pH 
fluctuations

3 Temperature Rarely affects biosorption Severely affects 
bioaccumulation

4 Maintenance Depends on the kind of biomass: living 
biomass or dead is relatively easy

Is complex. External 
metabolic energy is needed in 
maintenance of the living 
cell/biomass

5 Selectivity Poor, enhanced through modification/
processing of biomass

Highly selective

6 Specificity Versatile, the binding sites can 
accommodate a variety of ions

Stringent, the process has low 
substrate to metal specificity, 
is prone to high metal/salt 
conditions

7 Uptake 
capacity

Large, reports illustrate the quantity of 
metal uptake can be as high as the dry 
weight of the dead biomass

Small, high toxicant 
concentration hampers the 
metabolic machinery and 
may even be fatal

8 Uptake rate Fast It is a time-consuming 
process as compared to 
biosorption

9 Reusability High, the biomass can be repeatedly reused 
for repeated with possible reuse over a 
number of cycles

Low, toxicants are 
intracellularly accumulated

10 Toxicant 
recovery

Proper selection of eluents can recover the 
metal from the biomass

Not feasible
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cluster. When exposed to metal stress, fungi synthesize two types of MTs, class II 
type and phytochelatin PC or class III type. PC derivatives are primarily glutathione-
related peptides and are not the gene products (Kameo et al. 2000)

The cellular resistance to heavy metal cytotoxicity inside the fungus is conferred 
by the binding of the MT, OR, PC to the metal ligands. Fungal MT have been reported 
to chiefly consist of copper ions that differ from their vertebrate counterparts which 
bind different metal ions. The major role of these proteins is in imparting homeosta-
sis of trace metals like Zn, Cu or the sequestration of noxious metals like Cd and Hg.

Another compound of importance during metal toxicity in fungi is the non-
protein thiol glutathione which is reported to be increased under Cd exposure in 
Paxillus involutus, as well as g-glutamylcysteine a compound mostly related to a 
metallothionein. The significance of glutathione as a metal chelator is now well-
established intracellular glutathione inhibits the progression of heavy metal-initiated 
cell injury by chelating and sequestering the metal ions themselves (Bellion 
et al. 2006)

5.3.2.3  �Transport Mechanisms Involved in Metal Tolerance

It has been illustrated that metal tolerance in fungi could be attributed to the involve-
ment of certain transport proteins which either extrude lethal metal ions from the 
cytosol out of the cell or by allowing its sequestration in the intracellular compart-
ments such as vacuole (Fig. 5.1). Blaudez et al. (2000) used radiotracer flux analysis 
and reported that the excessive quantity of Cd in the vacuole compartment in ecto-
mycorrhizal fungus Paxillus involutus is because of the cd – conjugated glutathione 
or cd conjugated phytochelatins in the vacuolar compartments. The above process 
is mediated by ATP-binding cassette transporter Hmt1 located on the vacuolar 
membrane or the tonoplast. Mycorrhizal fungi chiefly depict vacuolar compartmen-
tation of heavy metals. Guerrero et  al. (2008) reported that in the extra- radical 
mycelium of Glomus intraradices now Rhizophagus irregularis the metal like Zn, 
Cu, and Cd were compartmentalized into the vacuolar compartments after their 
uptake inside the cell. Yao et al. (2014) also examined the extra-radical mycelium of 
R. irrregularis in symbiotic association with clover and found excessive Cd accu-
mulation in the vacuole. It has been documented that the vacuole deficient fungal 
strains showed increased susceptibility to metal stress resulting in a concomitant 
decrease in the biosorption of Zn, Mn, Co, and Ni metal ions (Ramsay and Gadd 
1997). Increased susceptibility to chromate and tellurite following a gradual 
decrease of the metals in the cytosol was observed in defective mutants and vacuole 
lacking strains of S. cerevisiae, Gharieb et al. (1998), whereas increased tolerance 
to selenite was observed followed by its gradual increase of Se in the cytosol. A 
large number of genes  associated with the metal detoxification mechanism have 
been identified which includes Arr4p which induces tolerance to various metals ion 
species like As3+, As5+, Co2+, Cr3+, Cu2+,  VO3− (Rosen 2002; Shen et  al. 2003). 
Similarly the presence of specific permeases such as MgATP- energized glutathi-
one S-conjugate transporter responsible for the vacuolar sequestration of 

S. Verma and J. Srivastava



127

bis(glutathionato- cadmium) as well as bis(glutathionato-mercury) encoded by the 
yeast cadmium factor (Ycf1) gene is responsible the metal detoxification mecha-
nism in the vacuole tonoplast of Paxillus involutus (Blaudez et al. 2000)

5.3.3  �Biosorption Mechanism and Effects

Biosorption processes basically indulge in physiochemical interactions between the 
metal ions and the functional groups projecting from the cell surface. There is suf-
ficient data envisaging that biosorption by fungi generally follows the Langmuir or 
the Freundlich model, which is in accordance with the primary role of the fungal 
cell wall. Metal tethering involves a two-step procedure. The primary step involves 
stoichiometric interaction between the metal and the reactive functional groups in 
the cell wall, while the secondary step involves a continuous inorganic deposition of 
the metal. The metal binding to the cell wall components is illustrative of complex 
ion exchanger closely resembling to that of resin.

Electrostatic, ion exchange and metal chelation are some of the key interactions 
which occur during biosorption of the heavy metals. The kind of interactions is 
largely determined by the composition of the cell wall and the type of metallic ions. 
The most common functional groups elicited in the biosorption process include 
carboxylate (COOH), sulphydryl (−SH), hydroxyl (−OH), amines (−NH2), and 
phosphoryl groups (−H2PO4) present within the cell wall components such as poly-
saccharide lipids proteins. The binding is usually swift and requires marginal activa-
tion energy (approx. 21 kJ mol−1), thus allowing for repeated metal sorption and 
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desorption cycles by the biosorbent materials. Since biosorption is a surface phe-
nomenon, the ionic state and surface area chiefly determine the biosorption capacity 
of a biosorbent. Fungi emerge as promising candidates as their vast and hugely 
complex cell wall composition offers a wide array of functional groups for metal 
binding thus enhancing their metal sequestration capabilities.

5.3.3.1  �Merits of Fungal Biosorbent

Biosorptive techniques have emerged as frontier techniques in removing heavy 
metal and other possible contaminants as compared to various other techniques 
because of the following features: (a) low operation cost, (b) high efficiency, (c) 
enhanced sensitivity, (d) fewer technological requirements, (e) minimal nutrient and 
growth requirement, and effective regeneration and reuse of the biosorbent material 
with the possibility of metal recovery. Fungi enjoy a majority of the features required 
in a good biosorbent during biosorptive processes. Fungi possess profound metal 
tethering capacities owing to the presence of a diverse range of functional groups 
present in the cell wall matrix. They are comparatively easy to cultivate on a large 
scale when compared to the other biosorbent living systems such as algal biomass 
bacteria and plant products. They require inexpensive cultural media waste, e.g. 
Aspergillus niger (waste from citric acid production) and Saccharomyces cerevisiae 
(brewery industry). Majority of the fungi used as biosorbents are nonpathogenic and 
are safe; therefore, they are easily accepted by the public at large when applied 
practically. Saccharomyces cerevisiae has been acknowledged as a model organism 
to understand the intricacies of biosorptive procedure; the complete availability of 
the genomic sequence and the ease of genetic manipulation offer to understand and 
explore the mechanism of biosorption of metal ion removal in greater depths.

There are several parameters which affect the biosorption capacity of the heavy 
metal, which include biotic factors (such as the type of biomass, biomass concentra-
tion) as well as abiotic factors (such as pH, temperature, and ionic strength).

Biotic Factors

Type of biomass  Biosorption can be achieved by utilizing either dead/living, free/
immobilized, raw/pretreated, wild/mutant, and genetically engineered/non-
engineered biomass. The metal sorption achieved through various biomasses can 
provide us with useful data in understanding the strategies involved in metal detoxi-
fication. A large initial concentration of the metal-solute results in higher ingression 
of the metal ion.

Biomass concentration  A poor ratio of the initial concentration of the metal to a 
high surface area provided by the fungal cells is responsible for the narrow metal 
sorption. The crucial limiting factor is the maximum saturation potential of the fun-
gal biomass. A large amount of the fungal biomass provides greater binding sites for 
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the metal ion, therefore ensuring large uptakes of the metal contaminant. A signifi-
cant increase in cu metal uptake up to 29.83 mg from an artificial solution of 30 mg/
mL was reported when R. arrhizus biomass concentration was scaled from 0.15 g/L 
to 0.50 g (Subudhi and Kar 2008).

Abiotic Factors

pH: It largely affects the chemical association of the metal ligand to the cell wall 
involving hydrolysis, complexation, redox, and biosorption reactions. A high pH 
decreases the metal complex solubility and allows precipitation which lowers the 
metal sorption. The sorption of metal like Cu, Cd, Ni, and Zn is often reduced at an 
acidic pH, while for some metals like Au, Ag, and Hg, the sorption is 
pH-independent.

Temperature: Most sorption processes are not affected in the range 20–35 °C. The 
increase in temperature is associated with an increase in the kinetic energy of the 
molecules, thereby enhancing sorption process, but extreme temperature may harm 
the integrity of the fungal biosorbent and may even cause irreparable damage sug-
gesting that biosorption process should be carefully evaluated and initiated at room 
temperatures. Brady and Ducan (1994) have reported that accumulation of Cu2+, 
Co2+ or Cd2+ by S. cerevisiae in suspension is scarcely affected between 3 and 40 °C.

Ionic strength: Adsorption is decreased with an increase in the ionic strength as 
reported by (Dönmez and Aksu 2002). The competition between the ions and the 
changes in the metal activity are greatly influenced by the ionic strength (Dhankhar 
and Hooda 2011).

5.4  �Biotechnology Perspective in Mycoremediation

Soil heavy metals are very resistant and impact deleterious effect in the environment 
which causes life-threatening diseases. Microbes remediation can be proved as an 
effective method to eliminate the toxicity of heavy metals from soil (Thakare et al. 
2021). Generally, microbes have few basic attributes such as biosorption, bioaccu-
mulation, siderophore formation, bioleaching and biotransformation. Naturally, 
microbes have some limitation in the process, but their attributes can be increased 
through technology. Amongst the various technologies available, high-throughput 
technology impacts valuable contribution in enhancing the knowledge for remedia-
tion. These attributes compel to gain intimate knowledge internally into the genome 
level to explore the mechanism to intensify the potential. Through those candidate 
gene related to heavy metal response used in the engineering for the detoxification 
of heavy metal from soil. Few heavy metals are recalcitrant in their nature due to 
that their degradation is almost impossible there; also, mycoremediation is the most 
possible way to eradicate the heavy metal.
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5.4.1  �Genetic Engineering in Mycoremediation

Natural fungal attributes are limited in uptaking heavy metal, but their efficiency 
can be increased through genetic engineering technology. In terms of biosorption, 
genetic engineering can be done on binding proteins of metal, peptide/anionic moi-
eties present on the cell wall, and chelator in this perspective biomass of fungus also 
plays essential participation in the process, whereas in bioaccumulation, engineer-
ing can be done at the level of gene/protein for more storage of heavy metal. 
Engineering of fungal enzymes, siderophores, transporter gene/channels and imple-
mentation regarding the enhancement for improvement in bioremediation which 
provides the broader range in the clean-up of heavy metals from the soil can be a 
milestone in mycoremediation. These fungal enzymes and other attributes enhanced 
the uphold capacity of heavy metal in the organism through the change in their gene 
level. Fungus possesses several enzymatic systems such as catalase, oxidative, and 
hydrolytic related enzymes. This genetic engineering technology can be used in 
those fungi which do not support in producing candidate enzymes essential for 
heavy metal consumption. Engineering technology is not limited to one aspect this 
can be done on metal-binding proteins their sites and ligands which enhance the 
accumulation of toxic metal.

Many studies reveal that fungus Rhizopus arrhizus, Penidiella sp. T9 for yttrium, 
Aspergillus niger, Aspergillus flavus, screened for cadmium and lead while 
Penicillium notatum for nickel their adsorption capacity measured by atomic 
absorption spectrophotometer. Penicillium spinulum, Phanerochaete chrysospo-
rium, and Penicillium canescens (2195) tested the adsorption capacity of cadmium, 
lead, mercuric, and arsenic; Trametes versicolor, Bjerkandera adjusta, and Pleurotus 
sp., have high capacity of biosorption due to ligninolytic enzymes, viz. laccases, 
catalases, and peroxidases. Suillus bovines, rhizopogon roseolus, and ectomycor-
rhizal fungi in association with Pinus assist in cadmium removal; these symbiotic 
relationships enhanced the process of heavy metal immobilization, Curvularia, 
Aspergillus, Cryptococcus, and Penicillium used for uranium removal from the soil 
through bioadsorption. Acremonium and Pythium fungi species assist in heavy 
metal eradication. Mushrooms also participate in alleviating the heavy metal from 
contaminated site naturally through several enzymes such as oxalic acid, citric acid 
and several ions such as carboxylic, hydroxyl, phosphate, sulfhydryl and MTs pres-
ent in the cell wall to bind the heavy metal. Their efficiency can be more extent 
through high-throughput techniques.

Metallothioneins (MTs) are the largest storage proteins they are ubiquitous, 
polyphyletic super family metal-binding proteins. These metallothioneins have 
small cysteine-rich peptides assist in homeostasis, metal tolerance and detoxifica-
tion. Different fungi have different MTs, fungal MTs genes are either respond to 
single or multiple metal signals, but the range of inducing metals corresponds to the 
metal specificity to specific MTs. These MTs participate in heavy metal binding; 
their binding gets enhanced in the presence of fusion proteins for heavy metal 
sequestration so their engineering assists in the more bioaccumulation. Such as in 
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Saccharomyces cerevisiae, two MTs were identified, CUP1 gene which induced 
only by Cu, Cd, and Ag, while CRS5 second MT gene binds Zn, Cu, and stress 
related to oxidation. These CUP 1 and CRS 5 MTs of S. cerevisiae engineered in the 
inner surface of yeast plasma membrane and also engineering in their fusion protein 
partners such as GST, glutathione-S-transferase, for first CUP1  MT and GSS, 
glutathione synthetase, for second CRS 5 MT for enhance the capacity of MTs, 
Candida glabrata MTs induced by Ag and Cu but not by Cd. Hebeloma mesopha-
eum have three MTs HmMt1(induced by Zn, Cu, and Cd), HmMt2, and HmMt3 
(both induced by Ag); popular fusion soluble proteins include maltose-binding protein 
and glutathione-S-transferase (Diep et al. 2018)). Engineering the overexpression of 
S. cerevisiae protein improves Cd tolerance; same can be done in other fungi to 
broaden mycoremediation. Pleurotus species of mushrooms show higher resistance 
to Cu, Cd, Zn, Ni, Co, and Hg, in fungus Gigaspora margarita (BEG 34) Gmar 
MT 1 metallothionein identified for Cd and Cu tolerance so engineering in this spe-
cies within metallothionenin will enhance the toxic metal uptake. Artificial designer 
proteins and fusion protein can be used as a metalloprotein and its enhancer is used 
to accelerate the binding capacity of heavy metals.

5.4.2  �Participation of Genomics and Transcriptome

Though many fungi are known for their enormous potential in heavy metal remedia-
tion, the genomic data of most of them are unavailable. Fungal genomics widens the 
range of its bioremediation process. Few fungus libraries have already been created 
to study genetic basis through sequences. Theses sequences assist in several types 
of investigation regarding the candidate gene responsible for remediation. 
Transcriptome analysis and genome sequencing is the tool for understanding gene 
expression patterns in fungus for more heavy metal accumulation. Novel fungi 
sequences can be known through whole-genome sequencing. Transcriptome analy-
sis is done for the specific part of the organism. The sequences obtained from the 
next generation reveal several metabolic pathways, genes related to the biological 
function, molecular function and cellular function, and relation of genes in the 
metabolism; ultimately, this advance tool provides vast information related to the 
mycoremediation process. Apart from small and agriculture crop, tree symbiosis 
with fungus also plays an essential role in eradicating the heavy metal from soil 
(Deshmukh et  al. 2016). Genome sequencing of mercury and chromium heavy 
metal resistant fungus Rhodotorula taiwanensis MD1149, basidiomycetes group 
member is already done through the genome information closely related fungus can 
be traced, biological, molecular and cellular genes can be analyzed, several path-
ways came into the existence, genome used in gene editing for broadening the heavy 
metal cleanup (Tkavc et al. 2018). Transcriptome sequencing of Ganoderma reveals 
the presence of degrading enzymes such as oxidoreductase, laccases, xylanases, 
cellulases, chitinase which assist in lignocelluloses degradation their effect increases 
in the presence of Cu2+ heavy metal (Jain et  al. 2020). Genome analysis of 
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legumes–fungus interaction in heavy metals soil confirms the different fungal trans-
porter involved in heavy metal tolerance. Therefore, RNA seq approach utilized in 
Cd tolerant fungus strain Exophiala pisciphila and Cd stress fungus Dark septate 
endophytic fungal strain for the purpose to know about the gene related to the heavy 
metal resistance. Genome analysis revealed about novel transporter natural 
resistance-associated macrophage protein (Nramp) from Exophiala pisciphila 
which assist in more accumulation of Cd2+ heavy metal (Mosa et al. 2016). In that 
naturally growing tree plant near mining sites, soil is Clethra barbinervis Sieb. 
Their roots have symbiosis with three types of fungi: Phialocephala fortinii, 
Rhizodermea veluwensis, and Rhizoscyphus sp., which reduce pressures due to 
heavy metal such as Cu, Zn, Ni, Cd, and Pb from soil. Genome sequencing of plants 
and tress which possess the symbiosis relationship in their roots can be widely used 
in heavy metal eradication (Yamaji et al. 2016) and other fungi such as Penicillium 
canescens, P. simplicissimum, and Talaromyces macrosporus, as well as Talaromyces 
sp. are utilized for Pb(II) uptake from soil (Maini et al. 2019).

De nova transcriptome analysis of Salix sp. root rhizosphere of fungal microbes 
reveals very interesting facts regarding mycoremediation. Transcripts identified in 
rhizospheric interaction indicate the fungal diversity of several families under the 
ground that includes 40,352 distinct contigs of Pyronemataceae (23.8%), 
Hydnangiaceae (11.7%), Tuberaceae (8.0%), Polyporaceae (6.3), Gloeophyllaceae 
(3.3%), Hymenogastraceae (3.3%), Marasmiaceae (2.9%), Serpulaceae (2.7%), 
Psathyrellaceae (2.7%), and Pleosporaceae (2.6%). Another fact related to the 
experiment narrates that contamination of heavy metal downregulated the constitu-
tive fungal expression. In a broader way, along with distinct families, different phy-
lum also exist in the root zone; amongst those Ascomycetes and Basidiomycetes are 
predominantly found. Major species such as Pyronema omphalodes and Tuber 
melanosporum belong to Ascomycota and reflect downregulation of fungal constitu-
tive gene expression and abundance of RAS protein in contaminated sites; unlike 
Ascomycota, the closely related species of Basidiomycota are Hymenogastraceae 
and Strophariaceae (Agaricoid family), Heboloma cylindrosporum (an ECM fungi) 
Galerina marginata (predominantly white rot) and Hypholoma sublateritium (white 
rot) which shows downregulation of fungal constitutive gene expression and upreg-
ulation of same gene in other Basidiomycetes such as Scleroderma citrinum, Paxillus 
involutus, Pleurotus ostreatus, and Trametes versicolor in the contamination site. 
Few genes function were recognized in Basidiomycetes contaminated sites they are 
cryptic plasma membrane proteolipid 3, small hydrophic pmp3 are highly con-
served in stress condition, cytotoxic cation tolerance and sphingolipid synthesis 
related to cell membrane integrity in the adverse condition, during adverse situation 
carbohydrate import, nitrogen transport and metabolism related gene also gets 
upregulated. Apart from these genes, three dioxygenase genes identified in low 
abundance, glutathione peroxidase like protein, and thioredoxin-dependent peroxi-
dase genes are upregulated in the differential gene expression. Carbohydrate trans-
port plays a very essential role in heavy metal stress condition because it is 
responsible for hexose transportation that maintains the energy level in fungus. The 
monosaccharide transporter MST1 is upregulated in Amanita muscaria, Laccaria 
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bicolor, other monosaccharides transporter reported in Serendipita vermifera, 
Piriformospora indica, and analogous of the transporter found in Saccharomyces 
cerevisiae in the form of extracellular glucose sensor rgt2;these hexose transporters 
generally occur in ECM-type Basidiomycetes. These Basidiomycetes possess 
carbohydrate-related enzymes in the upregulated form during heavy metal condi-
tion, amongst that are different contigs of a gene related to glycosyl hydrolase (GH) 
families, a gene to glycosyl transferase (GT), and a gene without any contig related 
to pectin/pectate lyase. The CAZy GH45 belongs to expansin family proteins which 
are the most abundant in ECM-type basidiomycetes; another CAZy GH131 includes 
cellulose-binding module with beta glucanase activity in the Plicaturopsis, Laccaria, 
Jaapia, Tulasnella, and Gelatoporia, Hebeloma, and Jaapia argillacea. Three con-
tigs of GH5 (exo beta 1,3 glucanase), carbohydrate-binding module family 13 
(CMB 13), assist in binding with cell wall of plant for energy extraction Fig 5.2.

Transcriptome analysis identifies the nitrogen related compound transporter in 
ECM fungi such as in Paxillus involutus and Laccaria bicolor. Other classes of gene 
related to protein degradation of macromolecules, amino acid, and heavy metal deg-
radation occurred both in EMC and saprophytic basidiomycetes. Several Ras-like 
proteins Rab-5B, Ras protin, Rab-type small GTPase, GTPase forz1, and sar1-like 
proteins are involved in endocytotic vascular trafficking to reduce the toxicity of 
heavy metals (Gonzalez et al. 2018)

Transcriptome analysis of wheat root possess the symbiosis relation with arbus-
cular mycorrhizal fungi (AMF) Rhizoglomus irregular for the heavy metal remedia-
tion of soil. For this an experiment is conducted with/without AMF and contaminated/
noncontaminated sites. Mycorrhizal fungi have the capability to immobilize metals 
in their biomass, cell wall, plasma membrane, vesicles, vacuoles and the glomalin. 
Plants-AMF interaction increases the upregulation of those genes which either 
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assist in the detoxification or produce secondary metabolite of soil for heavy metal 
remediation. In fact, their symbiosis in contaminated site upregulates the gene 
related to the metal ion binding for sequestration in the microbe organelles (Compos 
et al. 2019) Fig. 5.2.

5.4.3  �Proteomics in Mycoremediation

Proteomics technology also predicts the molecular level in the gene through protein 
analysis. The mechanism to predict the relation between expression of mRNA and 
their corresponding proteins is quite ambiguous, so for widening the proteome level 
it is quite necessary to detail the study of translation and post-translational for more 
understanding. Proteins participate actively in the enzyme formation which play an 
essential part in metabolite level. Populus alba roots have symbiosis with Glomus 
intraradices fungus which enhanced the capacity of Cu and Zn heavy metal absor-
bance; this phenomenon was confirmed through proteomic approaches (Lingua 
et al. 2012). White rot fungus Phanerochaete chrysosporium was investigated for 
protein in the presence of Pb heavy metal. A total of 14 proteins are upregulated and 
21 protein downregulated. These upregulated proteins participate in the production 
of lipid peroxidase, redox metabolism, defence against oxidative damage related to 
heavy metal, transcription, recombination, and DNA repair. Amongst the upregu-
lated protein isoforms of glyceraldehydes 3 phosphate dehydrogenase, alcohol 
dehydrogenase class V in a metal stress situation, mRNA splicing factor, ATP-
dependent RNA helicase, thioredoxin reductase, actin-related protein which induce 
hyperactivation of Ras signalling pathway which assist in metal response in stress 
condition, protein related to amino acid, Ras GTPase protein required in the response 
of heavy metal stress, RNA binding proteins activated in stress carbohydrate, lipid 
transport and metabolism, protein related to G protein assist in signal transduction 
and in heavy metal stress, protein related to the thioredoxin reductase (Yildirim 
et al. 2011) (Fig. 5.2).

5.4.4  �Genome Editing in Fungi

Genome editing is another advance technology which has the capability of DNA 
manipulation (deletion or insertion) and extent the opportunity in heavy metal 
mycoremediation. In the process, guide sequences designed complementary to the 
target sequence which assist in recognition of breaking point and repair through 
homologous recombination. Generally, CRISPER-CAS, TALEN and ZFN are three 
main gene editing methods used. CRISPER CAS is the most prominent technology 
in the modification. There are three types and many subtypes of systems that exist; 
though all types are of CRISPER, still there are specific Cas (DNA endonuclease) 
guided by RNA complementary sequence (approx. 20–30 bp) of targeted sequence 
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to cut at a specific site and afterwards the lesion gets repaired. Gene of interest can 
be manipulated with the help of CRISPER-Cas9 system (Sarma et al. 2021). The 
CRISPER technology is the natural phenomenon of bacteria they scarp the part of 
invading virus nucleic acid as CRISPER array to remember the virus which assist in 
destroying immediately in the next invasion without delay (Jaiswal et  al. 2019) 
CRISPER-CAS 9 system used in a filamentous fungal host cells of Aspergillus 
niger CBS513.88, Penicillium chrysogenum Wisconsin54–1255 for genome editing 
(Meijrink et al. 2016). TALENs (transcription activator-like effector nucleases) are 
in the category of gene modification and editing. In disparity to CRISPER, TALENs 
use TAL protein which is artificial molecular scissor cleaves at specific target site. 
TAL protein is very effective; it binds even very short nucleotide sequence, that is, 
evenone to two nucleotides. Interestingly, nucleases are involved in the binding phe-
nomenon due to the presence of 34 amino acid tandem repeats. TALENs possess 
two protein domains, one for sequencing and the other for recognizing and binding. 
TAL proteins are extracted from Xanthomonas, a pathogenic bacterium where they 
form naturally. In this series, another eukaryotic and prokaryotic genome editing 
manipulator is zinc finger nucleases (ZFNs); here, ZFP proteins are used as scissors. 
ZIP protein used artificial in the system originally obtained from Flavonbacterium 
okeanokoites; in contrast, they are eukaryotic transcription factor that acts as a DNA 
binding domain Fig. 5.2.

5.4.5  �Metagenomics Technique in Fungi

Metagenomics approaches deal with microbial capacity in the heavy metal degrada-
tion from the soil. Metagenomics can be used in both culturable and non-culturable 
microbes because it deals with the DNA extraction, sequencing and analysis of 
related microbes. In Metagenome annotation of genome allowed the identification 
of functional genes involved in the bioremediation. Further metagenome assists in 
the recognition of metabolic pathways involved in the heavy metal rescue from the 
soil. Researchers utilized the metagenome tool in investigating the microbes for 
cadmium in soil. As a result, they found that higher species have a diverse number 
of microbes in the site that decrease the cadmium in the soil and, through KEGG 
pathways, analysed functional annotation of genes from blast; as a result, it con-
cluded that enzymes present in the pathways active during the process, ABC trans-
porter, play an important role in many biological functions involved in coping up of 
cadmium stress apart. In this way, metagenomic is a remarkable tool in the investi-
gation of microbial structure and function related to the Cd exist in the soil. This 
research reveals that Schizosaccharomyces pombe and Saccharomyces cerevisiae 
have potential in detoxification of heavy metals from soil (Feng et  al. 2018). 
Metagenomic evaluation of fungal assemblies enriched within diffusion chambers 
and microbial traps containing uraniferous soils plays an important role in every 
event of the living organism process, the same miracle they did in the removal of 
heavy metal from soil through microbes. Here, metagenome narrated the presence 

5  Mycoremediation: A Novel Approach to Rescue Soil from Heavy Metal Contamination



136

of relative fungal community in uranium contaminated soil, the Ascomycota phy-
lum presence is highest, followed by Basidiomycota phylum and least abundance of 
Zygomycota. At the genus level, Cryptococcus has highest abundant followed by 
Trichoderma in uranium-contaminated soil. Apart from these two, Lecythophora, 
Penicillium, Mortierella, and Aspergillus also assist in rescue in uranium (Jaswal 
et al. 2019) Fig. 5.2.

5.5  �Transporter Gene

Transporters are considered as the first line of defence in metal homeostasis. Major 
transporters are classified under three sections. Channels are the first in the trans-
porter classification; they are simple in nature and comprise only single alpha heli-
cal protein component which facilitates passive diffusion of heavy metal. Due to 
being passive in nature, they do not need any proton motive force or any energy 
molecule for the process of substrate translocation; this channel improved in 
Saccharomyces cerevisiae from the transporter Fps1 for As3+ uptake. These import-
ers belong to the major intrinsic protein superfamily. Second are the secondary car-
riers use the energy in the form of ATP and acts as uniporters, symporters and 
antiporters single component protein. Here, for the accumulation of heavy metals, 
symporters have been used to import As4+ from S. cerevisiae through transporter 
Hxt7 and Pho84. The former is a uniporter belongs to the sugar porter family and 
the latter is a symporter belongs to the PO4−: H+ Family, both belongs to the major 
facilitator superfamily. Uniporters activity depends on the proton motive force they 
use energy from the charge occurs at the across the inner membrane they assist in 
positive charge heavy metal translocation whereas symporter too depends on proton 
motive force as they use the protons to generate the charge difference for energy 
production. Third is primary active transporter that comprises multicomponent pro-
tein complexes containing a transmembrane component for the translocation path-
ways, a cytoplasmic energy coupling ATPase component (approx. 30 kDa) that uses 
phosphoanhydride bond hydrolysis to drive the translocation of substrates and 
sometimes a periplasmic solute-binding component (30–70 kDa) depending on the 
superfamily. These importers also need proton motive force to carry their substrate 
against a concentration gradient using ATP and GTP (Diep et al. 2018). Arbuscular 
mycorrhizal fungi Rhizophagus irregularis establish mutual symbiosis with higher 
plants, and different heavy metal transporter assist in the uptake of heavy metal 
through the fungi. Generally, this fungus shows Cu, Fe, and Zn transporter in the 
fungus. Copper transporter belongs to CTR family utilized for Cu transpotation, 
identifies in R. irregularis genome; P18 ATPase family proteins exist for Cu trans-
port, SIT family proteins for Sid-Fe transportation, OFet family protein used for 
sequestration of reduced Fe through transporter complex comprise from ferroxidase 
and Fe permease, generally fungal vacuoles utilized for storage and detoxification 
site for heavy metal CCC1, a member of VIT family transport Fe/Mn, ZIP family 
mainly for Zn only ATX2 protein for Mn, CDF family protein is for Zn (ZnT1, 
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ZnT2, MSC2, ZRG 17), same CDF family member MMT1 for Fe, MnT1 for Mn, 
NRAMP family for Mn/Fe (SMF1), SMF2 for Mn,SMF3.1, SMF3.2 for Fe. 
Ustilago maydis, S. pombe, A. fumigates, and Fusarium graminesrum able to 
sequester the siderophores-Fe, S. cerevisiae, A. niger and B. cinerea possess (OFeT) 
low-affinity Fe transporter system. For balancing Zn, two transporters are respon-
sible: ZIP (zinc iron permease) and CDF (cation diffusion facilitator). Three Zn 
transporters of CDF family were identified in R. irregularis, Hebeloma cylindrospo-
rum, Oidiodendron maius; ZIP in S. cerevisiae has Zn transporters such as ZRT1, 
ZRT2, ZRT3, ATX 2, and YKE4 and R. irregularis has Zn transporter such as ZRT1 
and ZRT2  in plasma membrane, ATX2 protein is involved in Mn trafficking in 
yeast, YKE4 acts as bidirectional Zn transporter, and VIT transporter is identified in 
Aspergillus, Rhizopus, R. irregularis, S. cerevisiae. The NRAMP family transporter 
occurs in S. cerevisiae, R. irregularis (Tamayo et  al. 2014). Different classes of 
transporters are involved in the uptake of different metal ions. Uptake of heavy met-
als occurs mainly by cation channels and symporters such as ZRT/IRT1 protein 
family which is responsible for iron zinc uptake and copper transporter COPT1 for 
copper uptake. To export these metal ions inside P-type ATPase required exporting 
zinc into the xylem and to shoot, whereas antiporters also release iron into xylem 
through iron exporter ferroportin. Schizosaccharomyces Pombe has vacuolar phyto-
chelatin transporter named as SpHMT1; this transporter requires glutathione for 
function. The first ABC transporter, YCF1P, was identified in S. cerevisiae which 
also requires glutathione chelators for the detoxification of heavy metals such as As, 
Sb, and Cd. For more insightful knowledge, X-ray crystallography and genetic anal-
ysis tools are employed. These ABC proteins play an important role in cellular and 
biological processes; members of the ABC superfamily are conserved in nature. 
These ABC transporters consist of two domains; the first one is core domain that 
consists of two homologous halves, each containing membrane-spanning domain 
with multiple transmembrane spans and cytosolic loop, and the second part is 
nucleotide-binding domain which couples nucleotide hydrolysis to substrate trans-
port. The yeast genome contains 30 ABC proteins; amongst those, 22 proteins are 
related to multiple membrane spans that are part of ABC transporter, while 8 pro-
teins do not possess any membrane spans; they function apart from transportation in 
the cell. Yeast ABC transporters are divided into four families: ABCB, ABCC, 
ABCD, and ABCG, and several transporters classified under family and their loca-
tion vary in the cell organelle according to their function. In family ABCB, MDL1 
is located on the inner membrane of mitochondria and plays an important role in 
oxidative stress. In family ABCC, YCF1 transporter is present on vacuole and assists 
in the accumulation and detoxification of heavy metal, and BPT1 assists only in 
detoxification. In family ABCG, PDR15 presents on the plasma membrane and 
assists in cellular detoxification (Paumi et al. 2009). Evolution and diversity of ABC 
proteins in basidiomycetes reveal more than 1000 genes coding for ABC proteins 
(Kovalchuk and Driessen 2010) and the same type of research done on 27 fungal 
species within fungal kingdom concluded that ABC proteins are highly conserved 
in fungi but reduced in the number of ABC protein in S. cerevisiae and S. pombe, 
while in others, these proteins undergo group-specific diversification (Kovalchuk 
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et al. 2013). Amanita strobiliformis, known mushrooms, have the capacity to uptake 
Cu and Ag heavy metal through the same transporter, same metallothionenins, and 
sequestered in vacuoles. Transcriptome study of P1B-1-ATPase transporter 
which  encode AsCRD1 and AsCCC2  gene. Gene AsCRD1 is involved in the 
increased manifold accumulation of copper and silver heavy metals, whereas 
AsCCC2 assists in the trafficking of Cu from the cytoplasm to Golgi bodies and 
charges the endomembrane system and helps in detoxification (Benes et al. 2018). 
In Ectomycorrhizal fungi Suillus luteus ZIP transporter SIZRT2 was characterized 
for Zn importer located on plasma membrane. Trace amount of Zn is essential, so 
Zn can enter the cytoplasm through ZIP transporter; SIZRT2 contains the histidine-
rich domain which is essential for metal binding (Coninx et al. 2019).

5.6  �Conclusion

Increasing urbanization and global industrialization have adversely impacted the 
environment in substantial ways. Soil pollution has witnessed an alarming threshold 
in recent years. It is thus of paramount importance to not only deal with the soil pol-
lution but also amalgamate such procedures which help in retaining and improving 
the soil fertility and texture. Metal toxicity in the soil is a significant challenge due 
to the persistent and recalcitrant nature of the metals and their toxic effects on the 
living system, more so in the case of human beings.

Mycoremediation technologies are currently at the forefront due to their immense 
diverse potentialities. They are cost-effective and allow for easy maintenance repro-
ducibility and growth requirements. The nonpathogenicity of many species towards 
many living systems particularly humans and the utilization of both dead and living 
fungal biomass is a tremendous advantage and provides an edge over other bioreme-
diation techniques. It has become an essential part of a wider approach called GRO 
(gentle remediation options) which focuses on conserving the net functionality of 
soil along with the risk management. The essence of GRO concept is to provide 
biologically more productive soil with the aid of diverse technologies like phytore-
mediation microremediation along with mycoremediation with or without biologi-
cal (farmyard vermicompost, cow dung, etc.) and chemical additives (fertilizers, 
pesticides, herbicides), although minimalist use of chemical additives is often the 
primary concern of GRO methodologies. GRO is currently popular in certain 
European countries, but it may be more helpful when it has global acceptance and 
is practised worldwide.

The biotechnological tools have come up with a finer understanding of their 
fungal detoxification mechanism and the corresponding involvement of the gene in 
some species, but a more comprehensive knowledge of genetic mechanism in dif-
ferent fungal groups is yet to be explored. Biotechnological tools such as genetic 
engineering, gene editing, metagenomics, transcriptomics, and system biology can 
greatly assist us in our understanding and refining our approach towards the use of 
fungi in improving soil health besides contaminant removal from soil. Thus, fungal 
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species play quintessential role in the removal of heavy metal toxicants and in reju-
venating soil health. Their exquisite feature as a novel bioremediating agents 
demands a more in-depth research at both the molecular and gene level while offer-
ing a wider commercial aspect.
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6.1  �Introduction

Due to consistent increase in urbanisation and industrialisation, our environment 
has been contaminated by a diverse array of perilous chemicals released by various 
industries including pesticides, heavy metals, fuel waste, harmful solvents, alkanes, 
polycyclic aromatic hydrocarbons (PAHs), explosives, dyes, etc. (Gianfreda and 
Rao 2004; Ma et al. 2011). These anthropogenic sources of pollution are affecting 
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naturally existing abiotic components including air, water and soil under the impact 
of modernisation (Gianfreda and Rao 2004). These contaminants are of eminent 
concern for mankind as they exhibit a mutagenic, carcinogenic and cytotoxic effect 
on humans along with having adverse implications on our surrounding environment 
(Gianfreda and Rao 2004; Ma et al. 2011). The majority of risk exerted on humans 
as well as their surroundings is through contamination by heavy metals and radioac-
tive compounds such as lead, zinc, cadmium, selenium, chromium, manganese, 
cobalt, copper, nickel, mercury arsenic, sodium, nitrate, ammonia and phosphate 
(Glick 2003). Large-scale technological advancements lead to the dissemination of 
heavy metals and other pollutants to a much greater extent having detrimental 
effects on not only humans but also our ecosystem worldwide (Luo et al. 2012). The 
elimination of these toxic contaminants from the environment is necessary but is 
still potentially complicated due to the extensive scattering of these pollutants. For 
decades, several groups of researchers are developing contemporary and cost-effec-
tive technological methods using plants to remove these contaminants from the soil 
along with the positive influence on plant growth (Glick 2003). Different methods 
employed for remediation of heavy metal are shown in Fig. 6.1.

The most prevalent traditional method used for treating contaminants is excavat-
ing, pumping then treating, soil washing followed by the addition of chemical reac-
tants, solidification and stabilising, vitrification or transportation to the off-site for 
degradation process involving an excessive amount of energy consumption. For a 
future perspective, more economical, energy-efficient and environmentally friendly 
techniques have been developed (Doty et al. 2007). Bioremediation is based on the 
natural diminution of various contaminants’ influence, and currently, it is more 
acceptable than other technologies and is a safer approach which utilises microbial 
metabolites for the elimination of these undesirable contaminants. Phytoremediation 
(that uses green plants in situ) is particularly enhanced by endophytes (Stępniewska 
and Kuźniar 2013). It is being an inexpensive and safer choice for protecting humans 

Fig. 6.1  Variable remediation methods for heavy metal pollution
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and the environment as compared to conventional approaches for removing con-
taminants from the soil (Luo et al. 2011). Phytoremediation is also an aesthetically 
pleasing mode for eradicating pollutants that uses the natural efficiency of kingdom 
Plantae to decrease the effect of pollutants in the environment (Doty et al. 2007). 
This book chapter focuses on the contribution of plants through phytoremediation 
and importantly plant-microbe interactions that help in promoting growth in plants, 
i.e. studied in depth to inculcate the knowledge about the role of endophytic 
microbes in biodegradation of pollutants as well as maintaining plants as a valuable 
resource.

6.2  �Phytoremediation: A Promising Approach for the Future

Phytoremediation is a comparatively new approach that utilises green plants for the 
treatment of hazardous chemical contaminants from the environmental resources, 
i.e. air, soil and water (Glick 2003; Ho et al. 2013; Macek et al. 2000; Ho et al. 2012; 
Chaudhry et al. 2005; Khan et al. 2015; Rajkumar et al. 2009; Germaine et al. 2006; 
Gerhardt et  al. 2009). Phytoremediation is a versatile, solar-driven pump (Yadav 
et al. 2010) that can extract and accumulate specific compounds from the environ-
ment making it a promising bioresource technology for the future (Yadav et  al. 
2010). Phytoremediation utilises numerous types of plant processes as well as the 
external characteristics of plants for remediating polluted sites (Dixit et al. 2015). 
Phytoremediation is an economical and environmentally friendly technology for 
removing toxic contaminants from polluted sites (Ho et al. 2012, 2013; Ma et al. 
2011; Chen et al. 2014; Khan et al. 2014; Feng et al. 2017; Dixit et al. 2015; Azubuike 
et al. 2016; Germaine et al. 2009 and Arshad et al. 2007; Sarma et al. 2021). It usu-
ally includes the removal of various classes of pollution caused by industrial con-
taminants (Anyasi and Atagana 2015) such as radioactive elements, toxic organic 
chemicals (Macek et al. 2000; Dixit et al. 2015), volatile organic compounds such as 
trichloroethylene (TCE) and BTEX (benzene, toluene, ethylbenzene, xylene) (Wu 
et al. 2009), metal-contaminated soils (Ma et al. 2016; Meharg and Cairney 2000), 
toxic heavy metals (Chaudhry et al. 2005; Dixit et al. 2015), xenobiotic compounds 
(Eapen et al. 2007; Ijaz et al. 2016), recalcitrant chemicals, polyaromatic hydrocar-
bons (PAHs) (Germaine et al. 2009) and agricultural run-off water containing toxic 
chemical fertiliser and nutrients including metals, arsenic, selenium, boron, organic 
pesticides as well as herbicides (Pilon-Smits 2005). Although this technique takes 
an extended time for the treatment of low level of contaminants, nonetheless it is 
efficient in remediating polluted sites in comparison with conventional methods of 
remediation (Ho et al. 2012, 2013) including excavation and incineration from the 
site of contamination, storage at off-site areas, washing of soil and stabilising by in 
situ cappings (Gerhardt et al. 2009). This process is advantageous over conventional 
technologies as it is ten times less expensive (Doty 2008). Plants help in stabilising 
the soil, minimising the amount of polluted dust that may leave the site and enter the 
areas surrounding (Azubuike et al. 2016). The prerequisite for an effective process 
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of phytoremediation is an extensive root growth system of plants (Arshad et  al. 
2007). The plant generally involves a passive process of eliminating contaminants 
through uptake by roots and then translocation from parts below from roots towards 
parts above the soil, i.e. shoots, which is then carried out through vascular tissue via 
xylem flow later on accumulating inside the shoot. The plant utilises its metabolic 
enzymes which metabolise and biodegrade contaminants by acting as filters or traps 
(Kabra et al. 2013). Plants adapt in stress induced by organic pollutants through the 
establishment of a detoxification system inside the cells where the reduction in these 
contaminants occur, which are then catabolised or eradicated, giving plants capabil-
ity in minimising the hazardous effects of the contaminants. This complete process 
is known as the “Green Liver” model. It was first demonstrated in carrot plants, 
proving the ability to degrade phthalate esters. Many enzymes produced by plants 
during their metabolic processes such as glutathione-S-transferase, cytochrome 450 
monooxygenase, glycosyltransferase, etc. help by directly participating for toler-
ance, stabilisation, deposition and detoxification processing of the organic pollutants 
(Feng et  al. 2017). A plant may continue towards absorbing pollutants until it is 
harvested. The important points to be considered while choosing phytoremediation 
plant include its root system (depending upon the depth of pollutant accumulation), 
biomass present above the ground available for consumption of animals, toxicity 
concentration of pollutant to plant, survival rate, growth rate and adaptability of the 
plant towards environmental conditions, monitoring of the site as well as resistance 
to pests and diseases (Azubuike et al. 2016; Sarma et al. 2021).

Phytoremediation is an environmentally friendly mechanism which is utilised to 
remove, hold or modify toxic products into nontoxic contaminants in terrestrial land 
or water employing fast-growing plants. Phytoremediation uses different processes 
for the degradation of toxic contaminants including phytoextraction, phytofiltration, 
phytodegradation, phytostabilisation, phytovolatilisation and rhizoremediation 
which are depicted in Fig. 6.2.

6.2.1  �Phytoextraction

Phytoextraction includes uptake and movement of metal contaminants from the soil 
by roots of plants into the plant parts that are present above the ground based on the 
mechanism known as hyperaccumulation (Ojuederie and Babalola 2017). Plants 
that are good in concentrating the contaminants are known as hyperaccumulators 
(Ma et al. 2011; Doty 2008). A hyperaccumulator especially metals is classified as 
a plant that can accumulate the metals to a level of 1% (10,000 ppm) of zinc; 0.1% 
(1000 ppm) of metals such as copper, cobalt, lead and nickel; and 0.01% (100 ppm) 
of cadmium (Doty 2008; Brown et al. 1994). For instance, a Chinese fern Pteris 
vittata can accumulate arsenic in its fronds and removed efficiently from the soil, 
highly carcinogenic and toxic metal cadmium is concentrated by Thlaspi caerules-
cens (Doty 2008). Hyperaccumulators have received great attention because they 
exhibit good efficacy towards tolerance of heavy metals and their accumulation 
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efficiency is higher as compared to other plants (Dixit et al. 2015). Other examples 
of plants as hyperaccumulators for various contaminants are mentioned in Table 6.1 
given below. On the other hand, non-hyperaccumulator plants did not exceed 
10 ppm, accumulation of metals for metabolic processes, whereas hyperaccumula-
tors can accumulate metals 100-fold greater than non-accumulators (Lasat 1999). 
This process of phytoextraction occurs continuously by the use of hyperaccumula-
tors with enhanced bioavailability by the addition of chelates. The advantage of this 
process is that some valuable metals get bioaccumulated inside plants which can be 
later recovered after phytoremediation of contaminated sites known as phytomining 
(Azubuike et al. 2016).

6.2.2  �Phytofiltration

This process includes rhizofiltration that utilises plant roots (Glick 2003; Dixit et al.  
2015) or blastofiltration by the use of seedlings (Dixit et al. 2015) through either 
adsorption or precipitation of pollutants when they are present in a soluble form 
(Kabra et al. 2013). This process usually involves the remediation of polluted under-
ground water. Plants used for this method are not sown directly to the site which is 
to be remediated; instead, they are first grown in clean water using hydroponics 
until a large root system is formed; after its acclimatisation, it is further planted in 
contaminated areas where roots uptake pollutants; and upon obtaining a saturation 
limit, they are harvested and disposed under benign conditions. Further additional 

Fig. 6.2  Different processes of phytoremediation
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Table 6.1  Plant species with phytoremediation capacity of various pollutants

Host plant Substrate degraded References

Pteris vittata Arsenic Doty et al. (2007), 
Pilon-Smits (2005)

Thlaspi caerulescens Cadmium and zinc Doty et al. (2007), Ebbs 
et al. (1997), Mastretta et al. 
(2006), Lasat (1999), Li 
et al. (2012), Pilon-Smits 
(2005)

Salix matsudana, Salix alba Cadmium Doty et al. 2007) 
Salix viminalis Cadmium and zinc Doty et al. 2007)
Populus trichocarpa Trichloroethylene (TCE) Doty et al. 2007)
Populus deltoids 4-Amino-2,6-dinitrotoluene 

(TNT)
Doty et al. 2007)

Leucaena leucocephala, 
Ipomoea batatas

4-Amino-2,6-dinitrotoluene 
(TNT) and trichloroethylene 
(TCE)

Doty et al. 2007), Eapen 
et al. (2007)

Populus nigra Polyaromatic hydrocarbons 
(PAHs) and 4-amino-2,6-
dinitrotoluene (TNT)

Doty et al. 2007)

Salix spp. (EW-20) 4-Amino-2,6-dinitrotoluene 
(TNT)

Doty et al. 2007)

Myriophyllum aquaticum, 
Catharanthus roseus

Royal demolition explosives 
(RDX) & 4-amino-2,6-
dinitrotoluene (TNT)

Doty et al. 2007), Eapen 
et al. (2007), Macek et al. 
(2000)

Thlaspi goesingense Nickel Macek et al. (2000)
Brassica napus 2,4-Dichlorophenol (2,4-D) and 

4-amino-2,6-dinitrotoluene 
(TNT)

Eapen et al. (2007)

Arabidopsis 4-amino-2,6-dinitrotoluene 
(TNT)

Eapen et al. (2007)

Methylobacterium oryzae Royal demolition explosives 
(RDX) and 4-amino-2,6-
dinitrotoluene (TNT)

Eapen et al. (2007)

Panicum virgatum, Medicago 
sativa, Lolium perenne, Vicia 
faba, Schizachyrium 
scoparium

Polyaromatic hydrocarbons 
(PAHs) and polychlorinated 
biphenyls (PCBs)

Eapen et al. (2007), Macek 
et al. (2000), Pilon-Smits 
(2005)

Brassica juncea, B. napus, B. 
rapa

Cadmium and zinc Lasat (1999)

Agrostis capillaris, Festuca 
rubra

Cadmium and zinc Lasat (1999)

Alyssum bertolonii, Alnus 
firma, Brassica napus, 
Nicotiana tabacum, Solanum 
nigrum

Metal hyperaccumulator (nickel, 
copper, zinc and lead)

Li et al. (2012), Pilon-Smits 
(2005)

(continued)
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studies are being carried out to successfully study the plant parts that are efficient in 
accumulating contaminants (Ojuederie and Babalola 2017).

6.2.3  �Phytodegradation

This process includes the biodegradation of organic contaminants metabolically 
through the use of biocatalyst, namely, enzymes (Doty 2008; Pilon-Smits 2005), 
which further reduces mobility (Glick 2003; Dixit et al. 2015) and bioavailability of 
metals in the surrounding environment to prevent their transfer into the food chain 
or underground water (Dixit et al. 2015). Specific enzymes must be utilised under 

Table 6.1  (continued)

Host plant Substrate degraded References

Arabis hirsuta, Acacia 
decurrens, Symplocos 
paniculata

Metal non-hyperaccumulator 
(nickel, copper, zinc, lead and 
cadmium)

Li et al. (2012), Pilon-Smits 
(2005)

Lolium multiflorum, Lotus 
corniculatus, 
Methylobacterium oryzae, 
Burkholderia spp.

Nickel and cadmium Pilon-Smits (2005)

Gluconacetobacter 
diazotrophicus, Salix caprea

Zinc Pilon-Smits (2005)

Brassica napus Lead, copper Li et al. (2012), Ma et al. 
(2016)

Lupinus luteus Heavy metals and organic 
pollutants

Ijaz et al. (2016)

Pisum sativum 2,4-Dichlorophenol (2,4-D) Ijaz et al. (2016)
Populus tremula Volatile toxic compounds: 

trichloroethylene (TCE), vinyl 
chloride, carbon tetrachloride, 
chloroform, benzene

Kang (2014)

Populus alba Volatile toxic compounds: 
trichloroethylene (TCE), vinyl 
chloride, carbon tetrachloride, 
chloroform, benzene

Kang (2014), Yadav et al. 
(2010)

Solanum nigrum Cadmium hyperaccumulator Ma et al. (2016), Luo et al. 
(2011)

Sorghum bicolor Heavy metals (cadmium, lead and 
copper)

Luo et al. (2012), Raskin 
et al. (1997)

Catharanthus roseus 4-Amino-2,6-dinitrotoluene 
(TNT)

Macek et al. (2000)

Poplar trees Trichloroethylene (TCE) Macek et al. (2000)
Betula celtiberica Arsenic Mesa et al. (2017)
Buchloe dactyloides, Azolla, 
rabbitfoot grass

Selenium Pilon-Smits (2005)
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optimum conditions such as temperature and pH for the degradation of pollutants. 
Examples of enzymes used for the degradation of contaminants are nitroreductases 
and dehalogenases. The phytodegradation can be enhanced through the microorgan-
isms present in the rhizospheric region, and the process is termed as rhizodegrada-
tion (Ojuederie and Babalola 2017). Rhizodegradation is accountable for the 
augmented elimination of total petroleum hydrocarbons from the soil by deeply 
rooted trees, whereas the fate of polyaromatic hydrocarbons (PAHs) and other 
related contaminants in the surrounding environment is dependent on biotic and 
abiotic processes (Singh and Jain 2003).

6.2.4  �Phytostabilisation

This process refers to stabilising the polluted soil and sediments at a particular place 
through plantation and immobilisation of pollutants in soils, rendering them into 
harmless state and preventing their further spread into the environment (Ojuederie 
and Babalola 2017). The establishment of plantation and immobilisation prevents 
exposure of toxic site waste to mankind. The hydraulic control method can be 
implied in some of the cases because a larger volume of water transpired via plants 
prevents migration of leachate towards underground water or through stabilising 
pollutants in the sub-surface layer by preventing contact between water and waste 
(Pilon-Smits 2005). The plants that are used in this process should have a broad 
network of roots and a lower rate of mobilisation of metals from roots towards api-
cal shoots. This process can be improved adjusting pH and organic content (adding 
biochar or compost) which in turn improves plant yield and immobilisation of met-
als (Ojuederie and Babalola 2017).

6.2.5  �Phytovolatilisation

When the plants convert toxic contaminants into volatile forms (Glick 2003; Dixit 
et al. 2015), through evapotranspiration (Kabra et al. 2013) or volatilisation from 
the plant leaf, stomata or stem, before releasing into the atmosphere is known as 
phytovolatilisation (Glick 2003; Dixit et al. 2015). A very few pollutants are ade-
quately soluble in water and volatilise enough to reach up to atmospheric concentra-
tion levels through evapotranspiration (Singh and Jain 2003). For instance, tobacco 
plants can transform toxic methyl mercury into a less toxic elemental form of mer-
cury which escapes into the atmosphere through leaves by the process of volatilisa-
tion in a volatile form (Ojuederie and Babalola 2017). This method can also be used 
for volatile organic compounds such as trichloroethylene (TCE) and inorganic com-
pounds such as selenium (Pilon-Smits 2005).
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6.2.6  �Rhizoremediation

Limitations in the process of  phytoremediation leads to using an alternative method 
of remediation i.e. utilising naturally occurring microorganisms in the rhizospheric 
region called rhizoremediation. These microorgainsms may be further isolated by 
enrichment method for biodegradation of selected pollutants by Insitu ioculation 
known as bioaugmentation. The rhizospheric region has inordinate potential to 
remediate contaminants because the microbes that are present in root exudates help 
in stimulation as well as for attaining better soil moisture, aeration and nutrient 
conditions near root region which enhances the capability of the process.

However, the success of any of the approaches of phytoremediation mentioned 
above depends on the optimisation of the remediation potential of native plants 
growing in the polluted sites. It is a time-consuming process that depends on mul-
tiple characteristics such as bioavailability, toxicity and concentration of pollutants 
along with certain properties of plants (Azubuike et al. 2016). It can be converted 
into an efficient biotechnological approach. Moreover, for effective biodegradation 
of organic chemicals, plants are dependent on the microbes associated with them 
(Weyens et al. 2009a). Synergistic association of endophytic microbes with their 
host plant forms symbiotic relationships in which the plant helps the microbe by 
supplying nutrients and providing protection, and on the contrary, microbes provide 
some essential nutrients to the plants (Newman and Reynolds 2005). Several studies 
have demonstrated that endophytes speed up the phytoremediation techniques 
effectively through close interaction with plants that act as a host for it (Stępniewska 
and Kuźniar 2013). Recently, bacterial endophyte-assisted phytoremediation is rec-
ommended highly for eradicating pollutants at polluted sites (Ma et al. 2016).

6.3  �An Introduction to Endophytes

Interaction among plants and microorganisms is a fundamental part of the terrestrial 
ecosystem (Wu et al. 2009). Therefore, plant and endophyte synergism provides a 
magnificent way to restore the polluted ecosystem (Ijaz et al. 2016). Endophytes are 
the microorganisms colonising the plant (Patle et al. 2018; Deng and Cao 2017; Li 
et al. 2012; Stępniewska and Kuźniar 2013) and live inside the microenvironment of 
the host plant (Patle et al. 2018), beneath the epidermal cell layers (Ma et al. 2016) 
where it receives protection from the stress of the environment, experiences less 
competition from other microorganisms, remediates the contaminated soil (Patle 
et al. 2018) through synthesis of natural products, promotes plant growth (Anyasi 
and Atagana 2015; Dowling and Doty 2009), helps in nitrogen fixation of plants 
(Doty et al. 2009; Taghavi et al. 2009; Feng et al. 2017) and reduces phytotoxicity 
(Taghavi et  al. 2009; Soleimani et  al. 2010). Endophytes may act as biocontrol 
agents (Ryan et  al. 2007; Sgroy et  al. 2009; Patle et  al. 2018; Feng et  al. 2017; 
Dobbelaere et al. 2003; Verma et al. 2011; Gaiero et al. 2013; Rashid et al. 2012), as 
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these microbes get carbohydrates from plants and improve abiotic and biotic stress 
of the plants (Li et al. 2012; Khan et al. 2014; Feng et al. 2017). Endophytes gener-
ate a close linkage inside plant tissues that facilitates the exchange of nutrients and 
enzyme activity. A variety of endophytes produces phytohormones, which help in 
growth-promoting mechanisms, to maintain a dynamic balance of hormones in host 
plants and modulates stress response of hosts. These phytohormones such as  
indole-3-acetic acid (auxin) also help in the colonisation of endophytes in plants, 
probably by interference with the defence mechanism of the host plant (Feng et al. 
2017). Endophytes can also be helpful to the host for the production of natural prod-
ucts that could be used for medicinal, agricultural or industrial purposes. An endo-
phytic organism not only improves the process of phytoremediation but also 
enhances soil fertility through solubilisation of phosphate present in soil and nitro-
gen fixation (Patle et al. 2018; Mishra et al. 2015).

6.4  �History of Endophytic Microorganisms

The term “endophyte” was first coined by de Bary in 1886 for microorganisms 
including fungi, yeast and bacteria that reside in tissues of a plant. Further in 1887, 
Victor Gallipe postulated that microorganisms that are present in soil can penetrate 
healthy tissues of plants. After 120 years, Carol during 1986 postulated that fungi 
which are responsible for asymptomatic infections completely in the host plant tis-
sues are endophytes. In 1991, Petrini studied all microorganisms that may colonise 
plant tissues without any viable symptoms. Later in 1992, Hirsch and Braun named 
a group of microorganisms that can colonise plant tissues without resulting in any 
sort of infection as endobionts. During the period between 1933 and 1989, intensive 
studies were carried out on the development of research of endophytes that are typi-
cally focused on different species of grass. Recently in 2005, Posada and Vega gave 
a new definition to endophytes and used the term to describe all the microorganisms 
that inhabit inside different plant parts. In the year 2008, Sánchez and Márquez used 
this technique as an effective sterilisation tool for isolating endophytic organisms 
from spp. of grass Dactylis glomerata. Nowadays, researchers are focused on the 
isolation procedures of endophytes, studying the biodiversity of endophytes, sec-
ondary metabolites produced and endophyte-host interaction mechanisms 
(Stępniewska and Kuźniar 2013; Mishra et al. 2015). In 2010, Sikora defined endo-
phyte as an organism that colonises into the internal tissues of a plant during its 
lifetime, where it can prove to be either helpful, neutral or detrimental. There is an 
extensive amount of research carried out on endophytes during the past which incul-
cates millions of plant species in number and their existence under specified circum-
stances in plant cell microtubule and intercellular spaces (Anyasi and Atagana 
2015). The community structure of endophytic microbes within the plant is very 
much dynamic, depending upon both biotic and abiotic surrounding factors inclu-
sively condition of the soil, biogeography of the region and inter- and intraspecies 
(plant and microbe) interactions (Deng and Cao 2017; Chadha et al. 2015).
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6.5  �Endophytes: A Synergistic Approach 
Towards Phytoremediation

Endophytic microbes play a valuable role in phytoremediation in comparison to that 
of rhizospheric microorganisms (Doty 2008; Santoyo et al. 2016; Deng and Cao 
2017). The microbes present in the rhizosphere colonise themselves within the close 
vicinity of plant roots, while endophytic bacteria inhabit within the plant (Khan 
et al. 2015; Feng et al. 2017). This colonisation by endophytes can be carried out 
inside the tissues or throughout the plant with colonies of bacteria and biofilms 
inhabiting in intercellular spaces or either inside the vascular tissues (Germaine 
et al. 2004). The contaminants that are highly soluble in water can readily enter into 
the stream of xylem before any action of rhizospheric organisms (Weyens et  al. 
2009a; Ijaz et al. 2016) through the apoplastic pathway (van der Lelie et al. 2009; 
Ijaz et al. 2016). The population of microbes present in the rhizosphere is not easy 
to control and also there is a competition among these organisms, the reduction in 
the desired strains occurs until or unless selective metabolic processes are carried 
out for remediating a contaminant (Doty 2008; Santoyo et al. 2016). On the other 
hand, endophytes that reside naturally in the plant reduce the competition with the 
other microorganisms (Doty 2008). Endophytes have been studied over a wide 
range of geographic areas as well as in variable climatic zones (Li et al. 2012; Ijaz 
et al. 2016), and they are found ubiquitously among the plants that are examined 
(Taghavi et al. 2009; Li et al. 2012; Ijaz et al. 2016; Santoyo et al. 2016; Feng et al. 
2017). The interface occurring between the roots of plants and microbes has a 
greater significance on the growth and survival capability of plants (Deng and Cao 
2017). Endophytes have the inbuilt capability to degrade pollutants, and for the 
promotion of plant growth, therefore endophyte-assisted phytoremediation of 
organic contaminants and heavy metals could be successfully utilised, keeping in 
view beneficial traits of endophytes (Feng et al. 2017; Khan et al. 2014; Sarma et al. 
2021). Naturally occurring endophytes have the efficiency for phytoremediation of 
contaminants from polluted soil and groundwater; contaminant-degrading endo-
phytic microbes were isolated and studied from the plants that were growing in 
polluted areas (Kang et al. 2012). The essential association among plants and endo-
phytic organisms complement each other naturally by stimulation of biological 
activities as well as in the enhancement of efficiency of the process of phytoreme-
diation alongside enhancing the production of the biomass (Kang et al. 2012).

6.6  �Organisms Involved 
in Endophyte-Assisted Phytoremediation

According to prior research conducted, more than 129 different bacterial endo-
phytes have been isolated from various crop plants. Endophytes include bacteria, 
fungus as well as actinomycetes that are observed in various plant species and are 
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extensively studied. In recent times, it has been proposed that phytoremediation of 
organic compounds can be enhanced by actively degrading compounds translocated 
by the plants (Moore et al. 2006). Bacterial endophytes may act more efficiently 
than bacteria added for the bioaugmentation process into the soil; many bacterial 
species which have been isolated and examined from grapevine were resistant to 
many heavy metals including lead, nickel, mercury, zinc and manganese 
(Stępniewska and Kuźniar 2013). Moreover, endophytes especially endophytic bac-
teria improvise the adaptation and growth of plants through plant growth activities 
and simultaneously increasing the process of phytoremediation (Khan et al. 2014) 
involving both Gram-negative and Gram-positive bacteria (Anyasi and Atagana 
2015). Endophytes especially bacteria have been studied after isolation from vari-
able species of plants, which helps in the stimulation of growth of the host plant 
through various mechanisms involving biological control (Ma et al. 2011), induc-
tion of systemic resistance of plants towards pathogens (Ma et al. 2011; Ryan et al. 
2007), production of plant growth regulators or promoters (Moore et al. 2006 Ma 
et al. 2011), improvement in uptake of water (Ma et al. 2011; Feng et al. 2017) and 
mineral nutrients (Ma et  al. 2011). Endophytic actinomycetes are also important 
microorganisms that were isolated from the medicinal plants (Anyasi and Atagana 
2015). The endophytic fungus also plays a significant role in organic and inorganic 
modifications, cycling of elements, mineral formation and fungal interactions with 
metal or clay, and apart from this, endophytic fungus showed a greater efficiency for 
the enhancement of phytoremediation. Furthermore, endophytic fungus possesses 
metal chelation systems to accelerate their tolerance capacity towards heavy metals 
maintaining a higher rate of biomass production which is suitable for the process of 
biodegradation (Deng and Cao 2017). Endophytic microorganisms are believed to 
interact very closely with the host in which they inhabit, and under adverse modifi-
cations in the surrounding environment, they are even more protected (Deng and 
Cao 2017). Endophytes have an intensive obligation to depend strictly on the host 
plants for survival in nature or either through a facultative method in which microbes 
complete one stage of their life cycle outside the plant entering plant system in later 
stage (Li et al. 2012; Rajkumar et al. 2009; Hardoim et al. 2008). Various examples 
of endophytic organisms involved in the process of phytoremediation are mentioned 
below in Table 6.2.

6.7  �Metabolic Substances or Products of Endophytes That 
Promotes Phytoremediation

Bacterial endophytes have a greater efficiency for the enhancement in solubilisation 
of mineral and metals from the soil, by secretion of metal-specific chelating ligands 
called siderophores (Ma et al. 2016; Rajkumar et al. 2012). In recent investigations, 
it has been studied that bacterial endophytes release organic acids that are involved 
in the uptake of heavy metals from the soil which increases nutrient uptake 
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Table 6.2  Endophytic organisms inhabiting plant and types of substrate degraded

Host plant
Endophytic organism 
associated Substrate degraded References

Populus 
trichocarpa, 
Populus 
deltoides

Rhizobium tropici Royal demolition explosives 
(RDX) and 4-amino-2,6-
dinitrotoluene (TNT)

Doty et al. (2009), 
Doty (2008), Van 
der Lelie (2009)

Salix sitchensis Burkholderia, Rahnella, 
Acinetobacter, 
Pseudomonas, 
Herbaspirillum, 
Sphingomonas

4-Amino-2,6-dinitrotoluene 
(TNT)

Doty (2008)

Populus vittata Arbuscular mycorrhizae 
fungi

Arsenic Doty (2008)

Populus 
trichocarpa, 
Populus 
deltoides

Pseudomonas putida 2,4-Dichlorophenol (2,4-D) Doty (2008)

Alyssum 
serpyllifolium

Pseudomonas sp. Nickel Khan and Doty 
(2011), Li et al. 
(2012), Ma et al. 
(2016)

Nicotiana 
tabacum

Sanguibacter spp. Cadmium Li et al. (2012)

Lolium perenne Herbaspirillum 
seropedicae

Nickel Li et al. (2012)

Solanum 
lycoperisicum

Methylobacterium oryzae, 
Burkholderia spp.

Nickel, cadmium Li et al. (2012)

Megathyrsus 
maximus

Pantoea spp. Copper Li et al. (2012)

Brachiaria 
mutica, 
Leptochloa 
fusca

Acinetobacter spp.
Pseudomonas aeruginosa

Oil degradation Li et al.(2012), 
Fatima et al. 
(2016)

Festuca 
arundinacea, 
Festuca 
pratensis

Neotyphodium 
coenophialum, 
Neotyphodium uncinatum

Polyaromatic hydrocarbons 
(PAHs)

Feng et al. (2017)

Chrysopogon 
zizanioides

Achromobacter 
xylosoxidans

Heavy metals (cadmium, 
zinc, nickel, arsenic and 
lead), monoaromatic 
hydrocarbons

Ho et al. (2013)

Astragalus 
bisulcatus
Stanleya 
pinnata

Bacillus, Pseudomonas, 
Staphylococcus
Pantoea, Paenibacillus, 
Arthrobacter, Advenella, 
Variovorax

Selenium Ijaz et al. (2016)

(continued)
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Table 6.2  (continued)

Host plant
Endophytic organism 
associated Substrate degraded References

Typha 
domingensis

Microbacterium 
arborescens, Bacillus 
pumilus

Textile effluent Ijaz et al. (2016)

Festuca 
arundinacea, 
Lolium perenne

Neotyphodium Zinc Ijaz et al. (2016)

Prosopis 
juliflora

Microbacterium 
arborescens, Pantoea 
stewartii, Enterobacter

Heavy metals Ijaz et al. (2016)

Arabidopsis Enterobacter cloacae 4-Amino-2,6-dinitrotoluene 
(TNT)

Ijaz et al. (2016)

Poplar trees Methylobacterium populi Trichloroethylene (TCE) 
and royal demolition 
explosives (RDX)

Khan et al. (2014)

Hybrid poplar Enterobacter spp. Trichloroethylene (TCE) Khan et al. (2014)
Pisum sativum Pseudomonas putida 2,4-Dichlorophenol (2,4-D) Khan et al. (2014)
Lupinus 
arboreus

Burkholderia cepacia Toluene Khan and Doty 
(2011)

Arabidopsis 
thaliana

Achromobacter 
xylosoxidans

Phenolic pollutants Khan and Doty 
(2011)

Phytolacca 
acinosa, 
Solanum 
nigrum

Bacillus spp. Heavy metals Luo et al. (2011)

Populus 
trichocarpa, 
Salix sitchensis

Burkholderia, Rahnella, 
Sphingomonas, 
Acinetobacter

Nitrogen Ma et al. (2016)

Brassica napus Pseudomonas fluorescens, 
Microbacterium

Lead Ma et al. (2016)

Alnus firma Bacillus spp. Cadmium Ma et al. (2016)
Triticum 
aestivum

Methylobacterium oryzae, 
Burkholderia spp.

Nickel and cadmium Ma et al. (2016)

Alyssum 
bertolonii, 
Alyssum murale

Pseudomonas spp. Nickel Ma et al. (2016), 
Mastretta et al. 
(2006)

Solanum 
nigrum

Agrobacterium rhizogenes Polychlorinated biphenyls 
(PCBs)

Macek et al. 
(2000)

Poplar spp. Pseudomonas, Bacillus, 
Enterobacter, 
Stenotrophomonas, 
Arthrobacter

BTEX Compounds Mastretta et al. 
(2006), Phillips 
et al. (2008)

(continued)
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Table 6.2  (continued)

Host plant
Endophytic organism 
associated Substrate degraded References

Populus 
trichocarpa, 
Populus 
deltoides

Gammaproteobacteria,
Pseudomonas spp., 
Xanthomonas spp., 
Acinetobacter spp., 
Enterobacter spp.
Betaproteobacteria
Arthrobacter spp., Bacillus 
spp., Paenibacillus spp., 
Agreia spp.

BTEX compounds Mastretta et al. 
(2006)

Oryza sativa Bradyrhizobium, 
Rhizobium

Mastretta et al. 
(2006)

Medicago 
sativa

Rhizobium meliloti Mastretta et al. 
(2006)

Meloidogyne 
incognita

Pseudomonas chlororaphis Mastretta et al. 
(2006)

Vitis vinifera Xylella fastidiosa Mastretta et al. 
(2006)

Lupinus luteus Burkholderia cepacia, 
Pseudomonas putida

Nickel, BTEX (benzene, 
toluene, ethylbenzene, 
xylene) compounds, 
trichloroethylene (TCE), 
2,4-dichlorophenol (2,4-D); 
4-amino-2,6-dinitrotoluene 
(TNT)

Weyens et al. 
(2011), Moore 
et al. (2006), Wu 
et al. (2009), 
Phillips et al. 
(2008), Weyens 
et al. (2009b)

Arabidopsis Pseudomonas putida 4-Amino-2,6-dinitrotoluene 
(TNT), polychlorinated 
biphenyls (PCBs)

Dowling and Doty 
(2009), Wu et al. 
(2009)

Thlaspi 
goesingense

Gammaproteobacteria
Pseudomonas spp., 
Xanthomonas spp., 
Acinetobacter spp., 
Enterobacter spp.

Nickel Rajkumar et al. 
(2009)

Thlaspi 
caerulescens

Methylobacterium, 
Sphingomonas

Nickel Rajkumar et al. 
(2009)

Alyssum 
bertolonii

Pseudomonas spp., 
Micrococcus spp., 
Microbacterium spp., 
Curtobacterium spp.

Nickel, chromium, zinc, 
copper

Rajkumar et al. 
(2009)

Nicotiana 
tabacum

Pseudomonas fluorescens Cadmium Rajkumar et al. 
(2009)

Brassica napus Microbacterium spp. Nickel Rajkumar et al. 
(2009)

Lycopersicon 
esculentum

Methylobacterium oryzae, 
Burkholderia spp.

Nickel and cadmium Rajkumar et al. 
(2009)

(continued)
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Table 6.2  (continued)

Host plant
Endophytic organism 
associated Substrate degraded References

Pisum sativum Pseudomonas spp. 2,4-Dichlorophenol (2,4-D) Ryan et al. (2008), 
Stępniewska and 
Kuźniar (2013)

Lycopersicon 
esculentum

Gammaproteobacteria
Pseudomonas spp., 
Xanthomonas spp., 
Acinetobacter spp., 
Enterobacter spp.

2,4-Dichlorophenol (2,4-D) Santoyo et al. 
(2016)

Vitis vinifera Bacillus spp. 2,4-Dichlorophenol (2,4-D), 
heavy metals

Stępniewska and 
Kuźniar (2013)

Solanum 
nigrum

Serratia nematodiphila Cadmium Stępniewska and 
Kuźniar (2013)

Festuca 
arundinacea, 
Festuca 
pratensis

Neotyphodium 
coenophialum, 
Neotyphodium uncinatum

Polyaromatic hydrocarbons 
(PAHs)

Stępniewska and 
Kuźniar (2013)

Phragmites 
australis, 
Ipomoea 
aquatic

Achromobacter 
xylosoxidans

Aromatic compounds Stępniewska and 
Kuźniar (2013)

Sphagnum spp. Methylocella palustris Methane Stępniewska and 
Kuźniar (2013)

Pinus nigra, 
Salix caprea

Rhodococcus spp. Polychlorinated biphenyls 
(PCBs)

Wu et al. (2009)

Sinorhizobium 
meliloti

Pseudomonas fluorescens Polychlorinated biphenyls 
(PCBs)

Wu et al. (2009)

Salix caprea Streptomyces, Agromyces 
terreus

Cadmium and zinc Wu et al. (2009)

Helianthus 
annuus

Pseudomonas putida Cadmium Wu et al. (2009)

M. sativa Pseudomonas fluorescens, 
Hebeloma crustuliniforme

Polychlorinated biphenyls 
(PCBs)

Wu et al. (2009)

P. canadensis Paxillus involutus Cadmium Yadav et al. 
(2010)

Eucalyptus 
camaldulensis

Ochrobactrum 
intermedium

Lead Kabra et al. (2013)

Populus nigra Pseudomonas putida Diesel oil Kabra et al. (2013)
Brassica juncea Bacillus subtilis Nickel Kabra et al. (2013)
Zinnia 
angustifolia

Exiguobacterium aestuarii Remazol Black B Kabra et al. (2013)
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additionally (Ma et al. 2016). Siderophores are the compounds that have low molec-
ular mass with the higher rate of association constants to complex with iron (Fe), 
but these chelates also form complexes with other metals, namely, aluminium (Al), 
cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) (Das et al. 2007). The forma-
tion of siderophores by microorganisms is generally regulated by various factors 
such as availability of iron, pH of the soil, nutrient availability and the type of heavy 
metals present along with its concentration in the soil. On the other hand, it is stated 
after various investigations by the researchers that siderophore formed does not 
always result in enhanced metal uptake by the host plants. Due to variation in the 
inherited ability of a host to take up metals from the surrounding, it directly relies 
on the availability of metal in soil, type of host plant and their potential of transport-
ing metal from root to the upper parts of the plant, i.e. shoot (Rajkumar et al. 2012).

Poorly soluble metals are made bio-available by production and release of the 
low molecular weight compounds i.e. biosurfactants by the endophytic bacteria into 
the niches of the host as root exudates which enhance the rate of phytoremediation 
(Chaudhry et al. 2005; Ma et al. 2016). Evidence from the previous studies suggests 
that the organic chemicals secreted by the root exudates such as organic acids, 
amino acids and phenolic compounds play an active part in the communication car-
ried out between root and microbes (Abhilash et al. 2012). These are an amphiphilic 
molecule that comprises two moieties, i.e. hydrophilic and hydrophobic, forming a 
diverse range of chemical structures including glycolipids, mycolic acid, lipopep-
tides, polysaccharide-protein complexes, fatty acids, phospholipids, etc.  These bio-
surfactant molecules interact and form a complex with insoluble metals on the 
interface of soil particles present in the rhizosphere and is followed by desorption of 
metals from the matrix of soil and change in the mobility as well as bioavailability 
of metal in the soil (Ma et al. 2016). The specific endophytic microbes that colonise 
host plants may stimulate a certain level of transcription genes that are responsible 
for the degradation of pollutants, thus exerting a vital impact on the metabolism of 
degrading enzymes. These endophytic organisms represent a vast range of enzymes 
that are required for the identification of pollutants and enhancing the process of 
phytoremediation of polluted sites. On exposure to organic pollutants, some of the 
endophytic microbes can stimulate and regulate the enzymes produced in plants or 
endophytes themselves, thus increasing the metabolism of organic contaminants 
(Feng et al. 2017). These contaminant-biodegrading enzymes include peroxidases, 
nitrilases, laccases, dehalogenases, monooxygenases and nitroreductases present 
inside both the host plant and endophytic microbes (Feng et  al. 2017; Macek 
et al. 2000).

6.8  �Endophytes: A Boon in Plant Growth Promotion

Plants persistently undergo interactions with a large variety of bacterial populations 
colonising as rhizobacteria, epiphytes and endophytes (Bai et  al. 2002). Among 
these endophytes are the microbes which are protected from stresses of the 
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environment (Bai et  al. 2002; Compant et  al. 2005) and competition of other 
microbes by the plant enacting as host. Moreover, they are ubiquitous inside the tis-
sues of the plant (Bai et al. 2002; Sheng et al. 2008). The distribution of endophytic 
organisms in plants relies on both their ability to inhabit and the location of resources 
of plants (Gaiero et al. 2013). Endophytic microbes are reported to undergo active 
or passive processes of translocation inside their host plant, from outer rhizoplane 
to the cortical region of the root system. On reaching the cortex of root, the endo-
dermis portion permits only a few bacteria to pass through it. Endophytic organisms 
secrete a specific cell wall-degrading enzyme that helps them to disrupt the endo-
dermal cell layers, or it passively enters the endodermis during the process of sec-
ondary growth of plant roots. After entering the pericycle through the endodermis 
barrier, it reaches the xylem vessels of their host (root cortex-endodermis-pericycle-
xylem). There are some systemic species of endophytic bacteria which utilise inter-
cellular spaces of plants (Compant et  al. 2010). The plant growth-promoting 
bacterial endophytes colonise plant tissues forming a close linkage that helps in 
facilitating the exchange of nutrients and activity of enzymes (Hassan 2017). The 
bacteria that act as plant growth-promoting endophytes enter and inhabit the healthy 
tissues of a plant without causing any symptoms of disease in the host (Barka et al. 
2002; Waqas et al. 2012; Hassan 2017; Ji et al. 2014). Many isolates of the bacteria 
play a vital role to protect the plant from soil-borne pathogens (Barka et al. 2002; de 
Melo Pereira et al. 2012; Jha and Kumar 2009) including a broad range of parasites 
such as fungi, bacteria, viruses, nematodes and insects (Ji et al. 2014) through pro-
ducing hydrogen cyanide, siderophores and antibiotics (de Melo Pereira et al. 2012) 
and resulting in the higher yield and productivity of crops (Barka et al. 2002).

Firstly Honma and Shimomura initiated work and characterised the ACC deami-
nase enzyme and showed that it is involved in the promotion of plant growth by the 
bacteria. The compound aminocyclopropane-1-carboxylic acid is involved in the 
biosynthesis of ethylene, by acting as an intermediate converting methionine into 
ethylene (Ma et  al. 2011). The enzyme (ACC) aminocyclopropane-1-carboxylic 
acid deaminase is produced by endophytic microbes (Ali et al. 2014; Hardoim et al. 
2008; Ma et al. 2011; Weilharter et al. 2011) which cleaves ACC into ammonia and 
alpha-ketobutyrate (Hardoim et  al. 2008; Rashid et  al. 2012; Souza et  al. 2015; 
Santoyo et al. 2016) decreasing the production of plant growth-regulating gaseous 
hormone ethylene produced endogenously (Ali et al. 2014; Souza et al. 2015) and 
is secreted in a very low amount under normal conditions and helps to carry out 
functions involving root initiation in plants, ripening process of fruits, germination 
of seeds, wilting of flowers, abscission of leaves, biosynthesis of plant hormones 
and stress signalling. When a plant undergoes abnormal conditions, it starts produc-
ing a significantly high level of ethylene biosynthesis; this condition is called “stress 
ethylene” (Ali et al. 2014). This stressful condition may cause wounding, flooding, 
drought, salinity, temperature extremes and insect predation (Ali et  al. 2014; 
Santoyo et al. 2016). Under these conditions of stress, the endophytic organisms 
exhibit ACC deaminase activity which can be beneficial in lowering ethylene stress 
(Ali et al. 2014; de Melo Pereira et al. 2012; Jha and Kumar 2009; Sgroy et al. 2009; 
Sheng et  al. 2008). The endophytic bacterium uses the ammonia produced from 
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ACC which is a sole source of nitrogen and decreases the level of ACC in the plant 
along with the reduction in ethylene level. On the other hand, when ACC using 
bacteria is absent, ACC is oxidised by enzyme ACC oxidase catalysing the forma-
tion of ethylene hormone, carbon dioxide and cyanide (Ma et al. 2011). The enzyme 
ACC deaminase produced by the endophytic bacteria is usually taken through stems 
of plucked flowers that lead to delaying senescence for many days (Santoyo et al. 
2016). The most phylum, i.e. Proteobacteria involving all the three classes Alpha-, 
Beta- and Gammaproteobacteria, dominates in the diversity of endophytic microbes, 
while the occurrences of other classes of bacteria including Bacteroidetes and 
Planctomycetes are less commonly found as endophytic bacteria. The bacterial gen-
era Pseudomonas, Bacillus, Burkholderia, Stenotrophomonas, Micrococcus, 
Pantoea and Microbacterium are the most common genera that are found to be 
inhabited as endophytes in plants (Santoyo et al. 2016). Endophytes are capable of 
many processes which are responsible for direct plant growth promotion which 
includes:

	1.	 Solubilising the nutrients that are in the immobilised state, for example, phos-
phorus (P) and zinc (Zn) (Ali et al. 2014; de Melo Pereira et al. 2012; Gaiero 
et al. 2013; Hardoim et al. 2012; Jha and Kumar 2009; Li et al. 2008; Rashid 
et al. 2012; Walitang et al. 2017; Zhu and She 2018).

Phosphorus is a necessary macronutrient which participates as a structural 
part of nucleic acid, phosphates and energy-producing element, i.e. ATP, in the 
plants. Plants absorb the phosphorus in soluble form from the soil (Souza et al. 
2015). The endophytic bacteria provide solubilised form of phosphates to the 
plants and in turn gain root-borne organic compounds such as sugars and organic 
acids for their growth (Otieno et al. 2015). The plant growth-promoting endo-
phytic bacteria that have been studied for solubilisation of phosphorus are 
Achromobacter xylosoxidans and Bacillus pumilus (Gaiero et al. 2013).

	2.	 Association in nitrogen fixation (Shishido et al. 1999; Ali et al. 2014; de Melo 
Pereira et  al. 2012; Gaiero et  al. 2013; Hardoim et  al. 2012; Li et  al. 2008; 
Santoyo et al. 2016; Walitang et al. 2017; Zhu and She 2018).

There are many examples in which the plant growth-promoting endophytic 
bacteria have been studied that are responsible for nitrogen fixation such as 
Azospirillum spp. (Souza et al. 2015; Gaiero et al. 2013), Pantoea agglomerans 
and Azoarcus spp. (Gaiero et al. 2013). Studies have shown that endophytic bac-
terium Gluconacetobacter diazotrophicus gene gum D is involved in the biosyn-
thesis of exopolysaccharide which is required for biofilm formation and 
subsequently to colonise plant. It was observed later that this bacterium is 
involved in the fixation of nitrogen in plants (Santoyo et al. 2016).

	3.	 Production of the hormones in plants (Shishido et al. 1999; Ali et al. 2014; de 
Melo Pereira et al. 2012; Jha and Kumar 2009; Ji et al. 2014 Kuklinsky-Sobral 
et al. 2004) called as plant growth regulators (Dobbelaere et al. 2003; Santoyo 
et al. 2016).

The hormones that are produced by endophytic bacteria associated with plant 
include auxins (indole-3-acetic acid, gibberellic acid) (Ma et  al. 2011; Sgroy 
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et al. 2009), cytokinins (zeatin) (Sgroy et al. 2009) and gibberellins that stimu-
late germination, growth, reproduction and protection under both stressed and 
non-stressed situations (Ma et al. 2011; Santoyo et al. 2016).

	4.	 Production of iron chelating-agents called siderophores (Ali et al. 2014; Jha and 
Kumar 2009; Ji et al. 2014; Santoyo et al. 2016; Sgroy et al. 2009).

Endophytic bacteria such as Burkholderia, Fusarium verticillioides, 
Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis have 
been studied and are found responsible for producing siderophores ultimately 
helping in plant growth promotion (Souza et al. 2015).

	5.	 Sulphur oxidation.
	6.	 Production of metabolically active enzyme (ACC) aminocyclopropane-1-

carboxylic acid deaminase (Ali et al. 2014).
	7.	 Producing growth stimulants that are volatile in nature, for example, acetoin and 

2,3-butanediol (Santoyo et al. 2016).

On the other hand, indirect ways of plant growth promotion include:

	1.	 Antibiosis
	2.	 Induced systemic resistance (Shishido et al. 1999; Kuklinsky-Sobral et al. 2004;   

Ramamoorthy et al. 2001; Rashid et al. 2012)
	3.	 Competition for limited sources
	4.	 Production of hydrogen cyanide (HCN)
	5.	 Producing a diverse array of enzymes that plays a role in cell wall degradation

Several bacterial endophytes that are efficient in plant growth promotion are 
sequenced including Azoarcus spp., Azospirillum lipoferum, Azospirillum spp. 
B510, B. phytofirmans, Burkholderia spp., Gluconacetobacter diazotrophicus, 
Pseudomonas putida, Pseudomonas stutzeri, Serratia proteamaculans and 
Stenotrophomonas maltophilia. All these species have various gene encoding for 
plant growth-promoting traits which are mentioned above (Santoyo et al. 2016).

6.9  �Modification of Endophytes by the Use 
of Various Techniques

In comparison with conventional physiochemical-based approaches, the utilisation 
of genetically engineered plant-based bioremediation of heavy metals is a leading 
approach because it is environment-friendly as well as causes fewer health hazards 
(Dixit et  al. 2015; Thakare et al. 2021). The genetic engineering of the plant by 
insertion or overexpression of particular genes into the genome of host plants deliv-
ers an effective method to improve phytoremediation capability of plants (Kang 
et al. 2012; Sarma et al. 2021). These modifications of host plant species can be 
achieved by transgenic methods which include enhanced uptake of metals, transpor-
tation and biodegradation of contaminants along with plant growth and develop-
ment of the root system. There are multiple examples of successfully incorporated 
genes of microbes into the host tissue of plants for enhanced phytoremediation 
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(Abhilash et al. 2012). For instance, genetically modified plants including willows, 
poplar and Jatropha could be used for two purposes: biodegradation, i.e. phytore-
mediation, as well as the production of bioenergy (Dixit et al. 2015; Abhilash et al. 
2012). Likewise, bacterial reductase-containing transgenic plants can increase the 
process of volatilisation of selenium (Se) and mercury (Hg) along with the accumu-
lation of arsenic in shoots of plants (Dixit et al. 2015). The studies demonstrated 
that the genetically engineered endophytic bacteria could be utilised to decelerate 
the phytotoxicity of organic pollutants (van der Lelie et al. 2005). The expression of 
the genes responsible for contaminant degradation in efficient bioenergised plants 
should decrease the organic contaminant load in the tissue of plants as well as facili-
tate the usage of the product of plants generated from the plantation for phytoreme-
diation. Taking an example of poplar plants that have been modified genetically 
using the catabolic gene of microbes for enhanced bioremediation and the genes 
particularly, microbial mercuric reductase genes expressed by poplar plants have 
proved increased resistance to mercury (Hg) (Abhilash et al. 2012). The genes that 
encode toluene monooxygenase (TOM) of Burkholderia cepacia strain G4 that oxi-
dises trichloroethylene (TCE), vinyl chloride and dichloroethylenes were inserted 
into bacteria particularly from the rhizospheric zone of poplar trees for the enhanced 
efficiency of trichloroethylene (TCE) metabolism. The endophytes were engineered 
for the enhancement of metal remediation including nickel tolerance genes (ncc-nre 
nickel-cadmium-cobalt resistance) from Ralstonia metallidurans 31A into two 
endophytes named Burkholderia cepacia and Herbaspirillum seropedicae with 
TOM system; the genes are inserted into the chromosomes of the endophytes. These 
ncc-nre-containing engineered endophytes were inoculated into the host plant 
Lupinus luteus and Lolium perenne seeds, and further modified endophytic microbes 
have enhanced resistance towards toxic effects of nickel in the inoculated plants 
(Doty et al. 2009). The endophytes that are being engineered with genetic informa-
tion required for catabolism may increase the biodegradation of the contaminants in 
the vascular system of plants. These genetically engineered plants having recombi-
nant endophytic microbes, particularly bacteria with engineered catabolic path-
ways, are responsible for effective colonisation and protection against the phytotoxic 
effect of contaminant naphthalene when compared with the normal plants which are 
not inoculated with modified endophytes. For example, Burkholderia cepacia 
VM1468 is a genetically engineered endophyte when inoculated into poplar and 
yellow lupine plants increases biomass and decreases phytotoxicity as well as 
evapotranspiration of toluene and trichloroethylene (TCE) (Feng et al. 2017). Some 
of the complex organic contaminants such as polyaromatic hydrocarbons (PAHs) 
require a multienzyme system for their degradation. Recently a fruitful attempt was 
carried out to from the multigene system to produce an active enzyme system com-
plex for the process of phytoremediation including four genes that encode for naph-
thalene dioxygenases responsible for the metabolism of polyaromatic hydrocarbons 
(PAHs) in Pseudomonas putida G7 were genetically engineered in host plant 
Arabidopsis thaliana via expression cassette followed by the enhanced capacity of 
assimilation of target contaminants through the transgenic plant (Ijaz et al. 2016). 
The genes can be modified in both plants and bacteria; the genetic engineering of 
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these organisms is a comparatively easier process than the manipulation of genes in 
higher organisms (Ijaz et al. 2016).

A designer plant utilises the combination of host plants, bacteria as well as fun-
gus present in soil and endophytic bacteria that helps to eliminate the contaminants 
present in the soil. This approach avails a strong mode for the production of a cus-
tomised system of plants, in which microorganisms present on roots help in the 
degradation of complex organic pollutants; on the other hand, the microorganisms 
that are efficient in biodegradation of pollutants are introduced into the host plants, 
where they reduce these contaminants to a greater extent. If this technology is 
implemented in fields successfully, it could greatly enhance the process of removal 
of pollutants from the contaminated soil and plant tissues alongside boosting plant 
biomass growth for the production of bioenergy via pyrolysis. Metals accumulated 
in the tissues of a plant could be extracted in the form of biochar which is produced, 
while the process of pyrolysis of this biochar can be further used in fields to impro-
vise the nutrient content in soil (Abhilash et al. 2012). A diverse array of microbial 
populations is efficient for gene exchange as well as gene rearrangements. The wide 
range of catabolic pathways that are being encoded by genes are generally situated 
on plasmids or transposons which are self-transferable entities, and this property 
makes possible horizontal gene transfer among an endogenous community of bac-
teria. Horizontal gene transfer is a non-vertical transfer of genes between two or 
more organisms to bring novel evolution and adaptation of bacteria into new envi-
ronments. The natural transfer of genes through horizontal gene transfer carries a 
vast efficiency in developing genetically engineered endophytic bacteria that pos-
sess accurate genes for catabolism as well as heterologous expression, particularly 
when both the recipient and the donor belong to the similar species. The heterolo-
gous expression in the community of endophytic organisms followed by horizontal 
gene transfer is successful when the genetic information is generally carried on 
vectors over a broad range of hosts. This not only eradicates the need for selection 
as well as isolation of suitable endophytic strain from the plant that acts as host but 
also there is no need to optimise and establish the endophytic inoculum which is 
aimed to persist in endogenous populations (Ijaz et al. 2016).

The recent advancement in the genomics provides opportunities to explore the 
maximum benefits of bioremediation approaches and allows manipulation towards 
tolerance, accumulation and biodegradation efficiency of host plant-microbe against 
various contaminants (Dixit et al. 2015; Abhilash et al. 2012). The metagenomics 
analysis of hyperaccumulator plants is carried out to identify the full bacteria popu-
lation present in the rhizospheric and endosphere region. The DNA is extracted 
without culturing bacteria present in these regions and is used for the construction 
of 16S RNA libraries of a clone. Metagenomics coupled with next-generation 
sequencing methods such as pyrosequencing has made it feasible to examine the 
complex structure of microbial systems in the environment and assign their gene 
function. Moreover, functional metagenomics and transcriptomics when combined 
with microarray technology and RNA sequence analysis may assist to identify the 
genes, gene products and biodegradation pathways that are potentially required in 
the host plants for hyperaccumulator bacterial interactions and for analysing the 
plant-rhizome interactions that occur at the level of transcriptomics. These studies 
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will increase the knowledge about host plant-endophytic microbe interactions as 
well as will bring out progress in novel technologies of phytoremediation (Ijaz et al. 
2016; Sarma et al. 2021). To sum up, the above-mentioned details of genetic engi-
neering and genetic modification of endophytic microbes, especially bacteria, are 
easy in comparison to plants. Gene expression within the endophytic microbes is 
also helpful as a tool for monitoring the sites of contamination. Nevertheless, releas-
ing the concept of recombinant bacteria into the environment must be tackled to 
assure the public that science is not harming their surroundings with these modifica-
tions in the organisms.

6.10  �Conclusion

To conclude, removing toxic chemical pollutants that are harming the natural 
resources of our environment is necessary for better survival of all forms of life and 
to maintain an ecological balance on earth. Bioremediation has proved beneficial 
for resolving this critical matter of concern. Phytoremediation is a better field of 
interest for researchers working in this area, as it is an alternative plant-assisted 
technology of bioremediation. Endophytic organisms are now being targeted for a 
more precised field of bioremediation, i.e. endophyte-assisted phytoremediation. 
This technique has been a boon for the degradation of hazardous contaminants pres-
ent in the environment. Many plants help in the remediation of heavy metals present 
in the soil, water or air. Endophytic organisms and plants in association exhibit a 
combined action towards organic as well as inorganic contaminants, the results of 
this synergistic approach have not only influenced the improvement in biodegrada-
tion process but have also been advantageous for both plants and endophytic 
microbes. Scientists are focusing on improvising this mutualistic relationship to 
strengthen up the degradation practices through genetic engineering, designer plant 
and omics tools. The plant-microbe interaction will be encouraging technology to 
combat the rising pollution around the globe because this technology not only reme-
diates the contaminants but also improves the condition of plants via its plant growth 
promotion activity. Thus, endophytic organisms will be a future alternative for fer-
tilisers because of their beneficial powers as biofertilisers and a cleaner way for 
bioremediation.

References

Abhilash PC, Powell JR et al (2012) Plant–microbe interactions: novel applications for exploita-
tion in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant 
growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 
80:160–167

Anyasi RO, Atagana HI (2015) Endophytes: an Indicator for improved phytoremediation of envi-
ronmental pollutants. Journal of Environmental Indicators, 9:27

6  Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion…



166

Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoreme-
diation. Trends Biotechnol 25(8):356–362

Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classifica-
tion based on site of application: principles, advantages, limitations and prospects. World J 
Microbiol Biotechnol 32(11):180

Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus 
strains from soybean root nodules. Can J Microbiol 48(3):230–238

Barka EA, Gognies S, Nowak J et al (2002) Inhibitory effect of endophyte bacteria on Botrytis 
cinerea and its influence to promote the grapevine growth. Biol Control 24(2):135–142

Brown SL, Chaney RL, Angle JS et al (1994) Phytoremediation potential of Thlaspi caerulescens 
and bladder campion for zinc-and cadmium-contaminated soil. J Environ Qual 23(6):1151–1157

Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associ-
ated with tomato roots from central Himalaya, India and their interaction with Piriformospora 
indica. International Journal of Pharma and BioSciences 6(1): 333–343

Chaudhry Q, Blom-Zandstra M et al (2005) Utilising the synergy between plants and rhizosphere 
microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci 
Pollut Res Int 12(1):34–48

Chen B, Shen J, Zhang X et al (2014) The endophytic bacterium, Sphingomonas SaMR12, improves 
the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9(9):e106826

Compant S, Reiter B, Sessitsch A et  al (2005) Endophytic colonization of Vitis vinifera L. by 
plant growth-promoting bacterium Burkholderia sp. strain PsJN.  Appl Environ Microbiol 
71(4):1685–1693

Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and 
endosphere of plants: their role, colonization, mechanisms involved and prospects for utiliza-
tion. Soil Biol Biochem 42(5):669–678

Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K and Varma A (2007) Fungal sidero-
phores: structure, functions and regulations. In: Varma A and Chincholkar SB (eds.), Microbial 
Siderophores, Springer-Verlag Berlin Heidelberg 12: 1–42

de Melo Pereira GV, Magalhães KT, Lorenzetii ER (2012) A multiphasic approach for the identi-
fication of endophytic bacterial in strawberry fruit and their potential for plant growth promo-
tion. Microb Ecol 63(2):405–417

Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: 
a review. Chemosphere 168:1100–1106

Dixit R, Wasiullah, Malaviya D et al (2015) Bioremediation of Heavy Metals from Soil and 
Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. 
Sustainability, 7:2189–2212.

Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in 
the rhizosphere. Crit Rev Plant Sci 22(2):107–149

Doty SL, James CA, Moore AL, et al (2007) Enhanced phytoremediation of volatile environmental 
pollutants with transgenic trees. Proceedings of the National Academy of Sciences, USA 104: 
16816–16821.

Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New 
Phytol 179(2):318–333

Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native black cottonwood and 
willow. Curr Microbiol 47:23–33. https://doi.org/10.1007/BF03179967 

Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin 
Biotechnol 20:1–3

Eapen S, Singh S, D’souza SF (2007) Advances in development of transgenic plants for remedia-
tion of xenobiotic pollutants. Biotechnol Adv 25(5):442–451

Ebbs SD, Lasat MM, Brady DJ et al (1997) Phytoextraction of cadmium and zinc from a contami-
nated soil. J Environ Qual 26(5):1424–1430

Fatima K, Imran A, Amin I et al (2016) Plant species affect colonization patterns and metabolic 
activity of associated endophytes during phytoremediation of crude oil-contaminated soil. 
Environ Sci Pollut Res Int 23(7):6188–6196

S. Gupta et al.

https://doi.org/10.1007/BF03179967


167

Feng NX, Yu J, Zhao HM et al (2017) Efficient phytoremediation of organic contaminants in soils 
using plant–endophyte partnerships. Sci Total Environ 583:352–368

Gaiero JR, McCall CA, Thompson KA (2013) Inside the root microbiome: bacterial root endo-
phytes and plant growth promotion. Am J Bot 100(9):1738–1750

Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremedia-
tion of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

Germaine K, Keogh E, Garcia-Cabellos G (2004) Colonisation of poplar trees by gfp expressing 
bacterial endophytes. FEMS Microbiol Ecol 48(1):109–118

Germaine KJ, Liu X, Cabellos GG et  al (2006) Bacterial endophyte-enhanced phytoremedia-
tion of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 
57(2):302–310

Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene 
phytoprotection and phytoremediation. FEMS Microbiol Lett 296(2):226–234

Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of pol-
luted soils: a review. Enzyme and Microbial Technology, 35(4), 339–354. doi:10.1016/j.
enzmictec.2004.05.006 

Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environ-
ment. Biotechnol Adv 21(5):383–393

Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their 
proposed role in plant growth. Trends Microbiol 16(10):463–471

Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice 
endophytes on early plant growth stages. PLoS One 7(2):e30438

Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated 
from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695

Ho YN, Mathew DC, Hsiao SC et al (2012) Selection and application of endophytic bacterium 
Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollut-
ants. J Hazard Mater 219:43–49

Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant–microbe phytoremediation system: 
combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxi-
dans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

Ijaz A, Imran A, ul Haq MA et al (2016) Phytoremediation: recent advances in plant-endophytic 
synergistic interactions. Plant Soil 405(1–2):179–195

Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium 
Achromobacter xylosoxidans from wheat plant. Microb Ecol 58(1):179–188

Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting 
endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

Kabra AN, Khandare RV, Govindwar SP (2013) Development of a bioreactor for remedia-
tion of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res 
47(3):1035–1048

Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoreme-
diation. Biotechnol Lett 36(6):1129–1139

Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid 
poplar. Appl Environ Microbiol 78(9):3504–3507

Khan Z, Doty S (2011) Endophyte-assisted phytoremediation. Plant Biol 12:97–105
Khan Z, Roman D, Kintz T et al (2014) Degradation, phytoprotection and phytoremediation of phen-

anthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228
Khan MU, Sessitsch A, Harris M et al (2015) Cr-resistant rhizo-and endophytic bacteria associ-

ated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-
degraded soils. Front Plant Sci 5:755

Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2004) Isolation and characterization of soybean-
associated bacteria and their potential for plant growth promotion. Environ Microbiol 
6(12):1244–1251

6  Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion…



168

Lasat MM (1999) Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/
Metal Interaction and Assessment of Pertinent Agronomic Issues, Journal of Hazardous 
Substance Research: Vol. 2. https://doi.org/10.4148/1090-7025.1015 

Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant 
growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of 
China. Soil Biol Biochem 40(1):238–246

Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal 
Divers 54(1):11–18

Luo S, Wan Y, Xiao X et al (2011) Isolation and characterization of endophytic bacterium LRE07 
from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl 
Microbiol Biotechnol 89(5):1637–1644

Luo S, Xu T, Chen L et al (2012) Endophyte-assisted promotion of biomass production and metal-
uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. 
SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and 
endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy 
metal phytoremediation. J Environ Manag 174:14–25

Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environ-
mental remediation. Biotechnol Adv 18(1):23–34

Mastretta C, Barac T, Vangronsveld J et al (2006) Endophytic bacteria and their potential applica-
tion to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng 
Rev 23(1):175–188

Meharg AA, Cairney JW (2000) Ectomycorrhizas—extending the capabilities of rhizosphere 
remediation? Soil Biol Biochem 32(11–12):1475–1484

Mesa V, Navazas A, González-Gil R et al (2017) Use of endophytic and rhizosphere bacteria to 
improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula 
celtiberica. Appl Environ Microbiol 83(8):e03411–e03416

Mishra M, Prasad R, Varma A (2015) Endophytic fungi: Biodiversity and functions. International 
Journal of Pharma and BioSciences 6(1): 18–46

Moore FP, Barac T, Borremans B (2006) Endophytic bacterial diversity in poplar trees growing on 
a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytore-
mediation. Syst Appl Microbiol 29(7):539–556

Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bac-
teria in plants. Trends Biotechnol 23(1):6–8

Ojuederie O, Babalola O (2017) Microbial and plant-assisted bioremediation of heavy metal pol-
luted environments: a review. Int J Environ Res Public Health 14(12):1504

Otieno N, Lally RD, Kiwanuka S (2015) Plant growth promotion induced by phosphate solubiliz-
ing endophytic Pseudomonas isolates. Front Microbiol 6:745

Patle PN, Navnage NP, Ramteke PR (2018) Endophytes in plant system: roles in growth promo-
tion, mechanism and their potentiality in achieving agriculture sustainability. Int J Chem Stud 
6:270–274

Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activ-
ity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40(12):3054–3064

Pilon-Smits E. A. H. (2005). Phytoremediation. Annu. Rev. Plant Biol. 56, 15–39. 10.1146/
annurev.arplant.56.032604.144214 

Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy 
metal phytoextraction. Chemosphere 77(2):153–160

Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes 
in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

Ramamoorthy V, Viswanathan R, Raguchander T (2001) Induction of systemic resistance by plant 
growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20(1):1–11

S. Gupta et al.

https://doi.org/10.4148/1090-7025.1015


169

Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-
promoting bacterial endophytes. Appl Soil Ecol 61:217–224

Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants 
from the environment. Curr Opin Biotechnol 8(2):221–226

Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and appli-
cations. FEMS Microbiol Lett 278(1):1–9

Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant 
growth-promoting bacterial endophytes. Microbiol Res 183:92–99

Sarma H, Forid N, Prasad R, Prasad MNV, Ma LQ, Rinklebe J (2021) Enhancing phytoremedia-
tion of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. Journal 
of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2021.125493

Sgroy V, Cassán F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant 
growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the 
halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

Sheng XF, Xia JJ, Jiang CY et  al (2008) Characterization of heavy metal-resistant endophytic 
bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead 
accumulation of rape. Environ Pollut 156(3):1164–1170

Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-
promoting rhizobacteria. FEMS Microbiol Ecol 29(2):191–196

Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. App Microbiol 
Biotechnol 63(2):128–135

Soleimani M, Afyuni M, Hajabbasi MA (2010) Phytoremediation of an aged petroleum contami-
nated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090

Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in 
agricultural soils. Genet Mol Biol 38(4):401–419

Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms-promising applications in bioreme-
diation of greenhouse gases. App Microbiol Biotechnol 97(22):9589–9596

Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic 
bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ 
Microbiol 75(3):748–757

Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding 
the holistic approach to plant-microbe remediation technologies for removing heavy metals 
and radionuclides from soil. Current Research in Biotechnology https://doi.org/10.1016/j.
crbiot.2021.02.004

van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) Response to Newman: new uses of 
endophytic bacteria to improve phytoremediation. Trends Biotechnol 23(1):8–9

van der Lelie D, Taghavi S, Monchy S et al (2009) Poplar and its bacterial endophytes: coexistence 
and harmony. Crit Rev Plant Sci 28(5):346–358

Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of sider-
ophore producing endophytic Streptomyces from Azadirachta indica A Juss. J Basic Microbiol 
51(5):550–556

Walitang DI, Kim K, Madhaiyan M (2017) Characterizing endophytic competence and plant 
growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC 
Microbiol 17(1):209

Waqas M, Khan AL, Kamran M (2012) Endophytic fungi produce gibberellins and indoleacetic 
acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773

Weilharter A, Mitter B, Shin MV (2011) Complete genome sequence of the plant growth-promoting 
endophyte Burkholderia phytofirmans strain Ps JN. J Bacteriol 193(13):1–2

Weyens N, van der Lelie D, Taghavi S et al (2009a) Phytoremediation: plant–endophyte partner-
ships take the challenge. Curr Opin Biotechnol 20(2):248–254

Weyens N, van der Lelie D, Taghavi S et  al (2009b) Exploiting plant–microbe partnerships to 
improve biomass production and remediation. Trends Biotechnol 27(10):591–598

6  Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion…

https://doi.org/10.1016/j.jhazmat.2021.125493
https://doi.org/10.1016/j.crbiot.2021.02.004
https://doi.org/10.1016/j.crbiot.2021.02.004


170

Weyens N, Truyens S, Saenen E et  al (2011) Endophytes and their potential to deal with co-
contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoreme-
diation. Int J Phytoremediation 13(3):244–255

Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for 
applications in plant-growth promotion and disease control, production of useful compounds, 
remediation and carbon sequestration. Microb Biotechnol 2(4):428–440

Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars 
for enhanced phytoremediation abilities. Ecotoxicology 19(8):1574–1588

Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria 
from the psammophyte Ammodendron bifolium. Can J Microbiol 64(4):253–264

S. Gupta et al.



171© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2021
R. Prasad et al. (eds.), Mycoremediation and Environmental Sustainability, 
Fungal Biology, https://doi.org/10.1007/978-3-030-54422-5_7

Chapter 7
Microbial Remediation: A Natural 
Approach for Environmental Pollution 
Management

Vankayalapati Vijaya Kumar

Contents

7.1  �Introduction�   172
7.2  �Advantages of Bioremediation�   172
7.3  �Disadvantages of Bioremediation�   173
7.4  �Microbial Remediation�   173

7.4.1  �Bacteria�   174
7.4.2  �Fungi�   174

7.5  �Factors Affecting Microbial Bioremediation�   174
7.5.1  �Biological Factors�   175
7.5.2  �Environmental Factors�   175
7.5.3  �Soil�   175
7.5.4  �Temperature�   175
7.5.5  �pH�   175
7.5.6  �Oxygen Concentration�   176
7.5.7  �Moisture Content�   176
7.5.8  �Nutrients�   176

7.6  �Bioremediation by Bacteria�   176
7.6.1  �Bioremediation by Aerobic Bacteria�   176
7.6.2  �Bioremediation by Anaerobic Bacteria�   179
7.6.3  �Bioremediation by Methylotrophs�   179

7.7  �Bioremediation by Fungi�   180
7.7.1  �Mechanisms of Remediation by Fungi�   180
7.7.2  �Ligninolytic Fungal Degradation�   180
7.7.3  �Soil Fungal Biosorption�   181
7.7.4  �Mycorrhizal Fungal Degradation�   182

7.8  �Conclusion and Future Prospects�   182
�References�   183

V. V. Kumar (*) 
Natems Sugar Private Limited, Gachibowli, Hyderabad, Telangana, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54422-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-54422-5_7#DOI


172

7.1  �Introduction

The dependence of humans on industries and agriculture for their needs such as 
clothing, shelter, and food led to the release of many unwanted contaminants into 
the environment which caused the environmental pollution. The industrialization 
has caused the burning of fossil fuels, which releases carbon dioxide, carbon mon-
oxide, oxides of nitrogen and sulfur, particulate matter, and heavy metals. By the 
excessive use of chemicals in agriculture, such as fertilizers, pesticides, synthetic 
organic chemicals, heavy metals have been accumulated in the environment result-
ing in environmental pollution (Steph 1988; Prasad 2021). The accumulation of 
these chemicals from agriculture in ponds/rivers through runoff streams caused 
eutrophication, leading to oxygen depletion conditions, harming the aquatic life.

Bioremediation is defined as the process of stimulation of microorganisms for 
faster degradation of hazardous organic pollutants to environmentally safe levels in 
soil, sediments, substances, materials, and groundwater. Inorganic pollutants such as 
heavy metals are either precipitated or immobilized using the bioremediation tech-
niques (Pandey and Fulekar 2012). Bioremediation is also defined as the process 
whereby organic wastes are biologically degraded under controlled conditions to an 
innocuous state or to levels below concentration limits established by regulatory 
authorities (Mueller et al. 1996). Bioremediation mainly employs the use of living 
organisms, mainly microorganism for degrading the toxic pollutants to less toxic forms.

Bioremediation is of two types such as in situ, when bioremediation carried out 
in the same site where the pollutants/contaminants are accumulated, and ex situ 
when the bioremediation is performed at a site away from the site of occurrence of 
pollutants/contaminants, and this involves the additional cost of transportation. In 
situ bioremediation strategies include biosparging, bioventing, and bioaugmenta-
tion, and ex situ bioremediation strategies include land farming, composting, biore-
actors, and biopiling (Kumar et al. 2011; Vijaya Kumar 2017).

Bioremediation by employing the microorganisms is called microbial bioreme-
diation. When plants are used in bioremediation, it is called phytoremediation, and 
when mycorrhizal fungi are used in bioremediation, it is known as mycorrhizoreme-
diation. Mycorrhizoremediation is the advanced form of phytoremediation, in 
which the mycorrhizal fungi living in the plant roots participate in bioremediation 
process. This chapter highlights the role of microorganisms (bacteria, fungi, and 
mycorrhizal fungi) in bioremediation process.

The advantages and disadvantage of bioremediation are given below.

7.2  �Advantages of Bioremediation

	1.	 Bioremediation is a natural process and is recognized by the public as the accept-
able way of waste treatment process.

	2.	 In the presence of contaminant/pollutant, the microorganisms increase in their 
number and degrade the contaminant. The number of microorganisms will 
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decrease upon the degradation of contaminant. The harmless degradation prod-
ucts include water, carbon dioxide, and microbial biomass.

	3.	 Many contaminants that are considered as hazardous legally can be completely 
degraded to non-hazardous form without leaving any residues.

	4.	 Bioremediation can be performed at the same site where the contaminants are 
present, avoiding the transportation costs off site and alleviating the potential 
health risks to humans and the environment arising during the transportation of 
contaminants.

	5.	 Bioremediation is inexpensive compared to the conventional remediation meth-
ods such as incineration, etc.

7.3  �Disadvantages of Bioremediation

	1.	 Bioremediation is limited to the compounds that are biodegradable. All the com-
pounds are not susceptible to complete and faster degradation.

	2.	 Sometimes the degradation products are more toxic than the parent compounds.
	3.	 Bioremediation is extremely specific and requires favorable conditions such as 

sufficient microbial populations, suitable environmental conditions for growth, 
and accessibility to the essential nutrients and contaminants.

	4.	 Scale-up from bench-/pilot-scale studies to field-level studies is difficult.
	5.	 Bioremediation takes longer time compared to other treatment options, for 

example, excavation, removal of soil, or incineration.
	6.	 Pollutants may be present at any state such as solid, liquid, or gaseous state.
	7.	 More studies/research is required to adopt strategies for developing bioremedia-

tion technologies suitable for sites where the contaminants are not uniformly 
distributed and complex mixtures of contaminants are present at the same site 
(Kumar et al. 2011; Santra 2010; Sharma 2012; Mary Kensa 2011).

7.4  �Microbial Remediation

Many microorganisms, belonging to bacteria and fungi, are involved in the reme-
diation of environmental pollution. The important inorganic contaminants com-
prise of heavy metals generated from various industries such as mining, metallurgy, 
chemical processing, and power plants. The enormous usage of organic compounds 
such as biocides, polymers, crude oil, explosives, flame retardants, polymers, sol-
vents, and chlorinated organic compounds has polluted the environment (Srivastava 
et  al. 2014). The following groups of microorganisms are involved in 
bioremediation.
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7.4.1  �Bacteria

Both aerobic bacteria and anaerobic bacteria are identified for their capacity to 
degrade pollutants.

	(a)	 Aerobic bacteria: Pseudomonas, Sphingomonas, Rhodococcus, Alcaligenes, 
and Mycobacterium are able to degrade alkanes and polyaromatic compounds 
which are the ingredients in pesticides and hydrocarbons. These bacteria utilize 
contaminants as the only source of carbon and energy. The other bacteria that 
degrade the contaminants include Bacillus, Acinetobacter, Arthrobacter, 
Citrobacter, Corynebacterium, etc.

	(b)	 Anaerobic bacteria: There is a growing interest recently in using anaerobic bac-
teria for degradation of polychlorinated biphenyls (PCBs) and dechlorination of 
trichloroethane and chloroform. The anaerobic bacteria belonging to 
Desulfitobacterium, Desulfuromonas, Dehalospirillum, Dehalobacter, and 
Dehalococcoides are able to degrade the organohalide contaminants.

	(c)	 Methylotrophs: These bacteria utilize methanol as a sole carbon source. Due to 
carbon recycling across the globe, methane and methanol formed as intermedi-
ates in the atmosphere. Methanol is also generated by the decay of lignin and 
pectin from plant parts. Methylosinus, Methylobacterium, Methylocapsa, 
Methylovirgula, Ochrobactrum, etc. are the few methylotrophic bacteria 
involved in the bioremediation of methane or methanol.

7.4.2  �Fungi

Fungi degrade a variety of contaminants such as lignocellulosic wastes originating 
from forestry, pulp and paper industries, food and agriculture industries, municipal 
wastes, etc. (Prasad 2017, 2018). The fungi belonging to the genera Phanerochaete, 
Armillaria, Pleurotus, Trametes, Ganoderma, Laetiporus, Serpula, Fibroporia, 
Phaeolus, Fomitopsis, Chaetomium, Ceratocystis, etc. degrade the lignocellulosic 
waste. The other soil fungi that reduce the heavy metal contamination by biosorp-
tion include Mucor, Aspergillus, Rhizopus, Saccharomyces, Botrytis, Neurospora, 
Phanerochaete, etc.

Mycorrhizal fungi living in association with the plant roots reduce the heavy 
metal contamination in the soil by accumulating the heavy metals either in the roots 
or in their hyphae (Kamal et  al. 2010; Kumar et  al. 2011; Vijaya Kumar 2017; 
Abatenh et al. 2017; Matthew Lee et al. 2015).

7.5  �Factors Affecting Microbial Bioremediation

For effective degradation of pollutants, various biological and environmental factors 
play a key role. Microorganisms through their enzymatic pathways act as biocata-
lysts and expedite the biochemical processes in degrading the desired pollutants. 
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Nutrients (nitrogen and phosphorus), oxygen, and electron acceptors promote the 
microbial growth.

7.5.1  �Biological Factors

The presence of sufficient quantities of microorganisms and the secretion of specific 
enzyme are essential for the degradation of pollutants. The availability of contami-
nants to the microorganisms is also important for effective degradation of pollutants.

7.5.2  �Environmental Factors

The environmental factors such as type of soil, temperature, pH, the presence of 
oxygen or other electron acceptors, soil moisture, and nutrients are important in the 
efficient degradation of pollutants.

7.5.3  �Soil

Soils containing high concentration of contaminants (above 5%) are agitated in 
water solution with interface-active agents and then separated from oils, and then 
the bioremediation process can be started to remove the pollutants. The bioremedia-
tion process can be initiated immediately in soils containing about 2% heavy oils, 
and it takes 6 months to 1 year for the cleanup of soil, whereas it will take 1 or 
2 months to clean up the soils containing less than 0.8% of the oils.

7.5.4  �Temperature

Temperature is an important factor for growth and multiplication of microorgan-
isms. The enzymes secreted by microbes need an optimum temperature for their 
activity. The high temperature leads to the drying of microbes due to dehydration, 
whereas lower temperature reduces the microbial growth, multiplication, and 
enzyme activity. The optimum temperature for microbial activity for bioremedia-
tion is 20–30 °C.

7.5.5  �pH

pH is an important factor for microbial growth and optimum enzyme activity for 
pollutant degradation process. The pH of the acidic soils can be raised by adding 
lime. The optimum pH for bioremediation by microorganisms is 6.5–7.5.
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7.5.6  �Oxygen Concentration

Some microbes (aerobic) require oxygen for their growth and accelerate the biodeg-
radation process. The optimum oxygen concentration is above 0.2 mg/L dissolved 
oxygen, more than 10% air-filled pore space for aerobic degradation.

7.5.7  �Moisture Content

Adequate moisture is required for the growth of microbes and for degradation of 
pollutants. Water holding capacity of 25–28% is required for the microbial activity 
in bioremediation process.

7.5.8  �Nutrients

Various nutrients in the form of carbon, hydrogen, oxygen, nitrogen, phosphorus, 
sulfur, and other minerals are required for the growth and multiplication of the 
microorganisms in the contaminated soils. The nutrients are supplied in the form of 
fertilizers. Carbon is the most essential element required in greater quantities than 
the other elements. It constitutes more than 95% of the weight of the cells. 
Phosphorus and sulfur represent 70% of the rest. The carbon-to-nitrogen nutritional 
requirement ratio is 10:1, and the ratio of carbon to phosphorus is 30:1. The opti-
mum (nutritional requirement) C:N:P ratio for oil degradation is 100:10:1 (Vidali 
2001; Sasikumar and Papinazat 2003; Sharma 2012).

7.6  �Bioremediation by Bacteria

Many aerobic and anaerobic bacteria degrade a variety of contaminants such as 
alkanes and polyaromatic compounds in pesticides and hydrocarbons, polychlori-
nated biphenyls, organohalides, etc.

7.6.1  �Bioremediation by Aerobic Bacteria

7.6.1.1  �Heavy Metal Bioremediation

Microorganisms require metal ions in various biochemical processes. The presence 
of metal ions in higher concentration inhibits the microbial growth by forming com-
plexes in the microbial cells. Bacteria develop resistance to heavy metal toxicity by 
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siderophore production and compartmentalization inside the cells, formation of 
complexes, and synthesis of binding proteins such as metallothioneins (MTs) and 
phytochelatins (PCs) (Rajendran et  al. 2003). Endophytic bacteria reduce heavy 
metal toxicity by precipitation, buildup of heavy metals, and sequestration, adsorp-
tion, and biotransformation to less toxic forms.

The removal of various heavy metals such as arsenic, copper, chromium, lead, 
and strontium was demonstrated by Achal et al. (2011, 2012, 2013). Sporosarcina 
ginsengisoli bacterium isolated from the arsenic-contaminated soil removed 96.3% 
of exchangeable arsenic from the liquid solution. Similarly, the bacterium Kocuria 
flava isolated from mining soil showed higher urease and tolerance to copper. The 
maximum removal of copper was due to high calcite precipitation through more 
degradation of urea by urease production. These bacteria also removed lead from 
the contaminated soil through microbial induced calcite precipitation through ure-
ase production. Cadmium bioremediation was demonstrated by Kang et al. (2014) 
by using the bacterium Lysinibacillus sphaericus through urease production and 
calcite precipitation. 99.95% of cadmium was removed from sand and is converted 
into stable biomineral in 48 hours. Similar results of the removal of chromium from 
contaminated soil by the bacteria Bacillus cereus were demonstrated by Kumari 
et al. (2014). The Pisum sativum seeds were planted in the soil containing chro-
mium and treated with Bacillus cereus, and the uptake of chromium was measured. 
The Pisum plants from the treated soil showed negligible uptake of chromium com-
pared to the controls.

Osman et  al. (2015) reported the reduction of heavy metals by the bacteria 
(Myroides spp. and Micrococcus spp.) identified from the water and soil samples of 
the downstream of Galing River, Kuantan, Malaysia. These bacteria reduced the 
concentrations of heavy metals such as zinc, lead, arsenic, cadmium, manganese, 
selenium, and indium when these bacteria were cultured in the basal salt medium 
mixture with these heavy metals (1 ppm each) for 7 days. In Myroides spp.-inocu-
lated medium, the highest reduction was observed in zinc from 1 ppm (control) to 
0.513 ppm (in bacteria inoculated) followed by cadmium 1–0.523 ppm and sele-
nium 1–0.533  ppm. In Micrococcus spp.-treated medium mixture, the highest 
reduction was observed in selenium 1–0.205 ppm, followed by lead 1–0.405 ppm 
and cadmium 1–0.493 ppm.

Sarkar and Ghosh (2012) reported the isolation of solvent-tolerant strain of 
Bacillus thermophilus PS11 from the soil by cyclohexane enrichment. The strain 
was adapted to the solvent by accumulating it in the cytoplasm during the initial 
48 hours of incubation, and this accumulation was confirmed by transmission elec-
tron microscopy. Upon further incubation up to 96  hours, the decline in solvent 
accumulation and the reorganization of the cell membrane were observed. During 
the initial growth of 12 hours, it accumulated 50 nm/ml of uranium exhibiting metal 
resistance capability. This bacterial strain was also tolerated the other solvents such 
as isooctane, toluene, benzene, chloroform, etc.
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7.6.1.2  �Polycyclic Aromatic Hydrocarbon Bioremediation

The bioremediation of polycyclic aromatic hydrocarbon was confirmed by Al-Haditi 
et  al. (2017) in Iraq. They have screened 105 samples from municipal drinking 
water, soil, and surface water sample from Shatt Al-Arab waterway area, Basrah, 
Iraq, polluted with diesel oil. They got 10 isolates of Acinetobacter from 3 sources 
and identified as A. lwoffii (8%), whereas A. calcoaceticus (2%) was isolated from 
soil only. A. lwoffii and A. calcoaceticus bacteria (1 × 108 cells/ml) were inoculated 
in mineral salt medium (250 ml.) supplemented with 0.1 gm of PAH. The bacterial 
cell count and PAH reduction were measured in 2, 4, and 8 weeks, respectively. In 
A. lwoffii inoculated medium, the cell count was reduced from the initial 5 × 108 cells/
ml to 0.6 × 102 cells/ml, and the PAH concentration was reduced from 0.1 to 0.003 g, 
while in A. calcoaceticus inoculated medium, the cell count was reduced from the 
initial 5 × 108 cells/ml to 0.2 × 102 cells/ml, and the PAH concentration was reduced 
from 0.1 to 0.001 gm in 2 months of incubation.

Similar results of 4T engine oil degradation (84–86%) by the bacterium 
Acinetobacter calcoaceticus BD4 isolated from a coastal area in Mumbai were 
obtained by Sihag et al.(2013). In this experiment 1% 4T engine oil was used as a 
carbon source. During the degradation of hydrocarbons, maximum CO2 (792 μ mol) 
evolved on the 30th day, and thereafter, the CO2 evolution was reduced.

7.6.1.3  �Herbicide and Pesticide Degradation

The biodegradation ability of Arthrobacter in the degradation of herbicides (pendi-
methalin, thiobencarb, and bromoxynil) was studied by Ashour et al. (2005). They 
have identified Arthrobacter from the 25 bacterial isolates that were isolated from 
the heavily polluted soil from 7 different soil samples collected from the ware-
houses of herbicides in Egypt. One ml of bacterial sample containing 108 cells were 
inoculated in 100 ml of nutrient broth containing different concentrations of herbi-
cides (up to 250 ppm) and incubated for 7 days on shaker incubator. The growth of 
Arthrobacter was severely affected by bromoxynil, followed by thiobencarb and 
pendimethalin. In the presence of pendimethalin, the specific growth rate (μ hr−1) of 
Arthrobacter was reduced from 0.294 in control to 0.077 in 250 ppm, and the dou-
bling time was increased from 2.36  hours in control to 8.97  hours in 250  ppm. 
Similarly, the specific growth rate and doubling time in thiobencarb and bromoxynil 
in control and treated medium were 0.295 and 0.055 μ h−1 and 2.36 and 12.55 h and 
0.294 and 0.047 μ  h−1 and 2.36 and 14.89  h, respectively. Mandal et  al. (2012) 
reported the degradation of more than 2,00,000 tons of oil sludge by consortium of 
bacteria isolated from various hydrocarbon-polluted sites in India by using ex situ 
and in situ remediation techniques. The initial total petroleum hydrocarbon (TPH) 
from 5% to 52% present in the polluted soil was reduced to less than 1% in 2–12-
month period.
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7.6.2  �Bioremediation by Anaerobic Bacteria

Anaerobic bacteria are useful in the degradation of organohalides. Organohalides 
are the organic compounds containing C1 and C2 aliphatics and dioxins which are 
complex polyaromatic compounds. They are the recalcitrant contaminants polluting 
soil and water. The organohalides include hexachlorobenzene (HCB), trichloro-
methane (TCM), polychlorinated biphenyls (PCBs), perchloroethene (PCE), tri-
chloroethene (TCE), dichloroethanes (DCA), polybrominated diphenyl ethers 
(PBDEs), chlorinated/brominated phenols, and dioxins. They are used in a variety 
of applications such as in the manufacture of polyvinyl chloride (PVC), perchloro-
methane as dry cleaning solvent, and trichloromethane (chloroform) as precursor in 
chlorofluorocarbon refrigerant gases (Matthew Lee et al. 2015; Jugder et al. 2016).

The dehalogenation of various halogenated substrates by using the bacteria 
Dehalococcoides isolated from the contaminated groundwater from the area of 
Bitterfeld-Wolfen, Germany, was reported by Kaufhold et al. (2012). The isolated 
bacteria converted chlorinated ethenes to ethane. These bacteria also converted 
vinyl bromide (VB) and 1,2-dichloroethane to ethane. 1,2,3,4- and 
1,2,3,5-tetrachlorobenzene (TeCB) and penta- and hexachlorobenzene (PeCB and 
HCB) are converted to trichlorobenzenes (TCB), lindane is converted to monochlo-
robenzene (MCB), and pentachlorophenol (PCP) was converted to 
2,3,4,6-tetrachlorophenol (TeCP).

Similarly, the Dehalobacter sp. strain TeCB1 isolated from the groundwater near 
Sydney dehalogenated the 1,2,4,5-tetrachlorobenzene to 1,3- and 
1,4-dichlorobenzene. During this reductive chlorination process, 
1,2,4-trichlorobenzene was formed as an intermediate product (Alfan-Guzman 
et  al. 2017). Drzyzga and Gottschal (2002) demonstrated the dependence of 
Desulfitobacterium frappieri TCE1 growth on the activity of Desulfovibrio fructo-
sivorans. When both the bacteria Desulfitobacterium frappieri TCE1 and 
Desulfovibrio fructosivorans are cocultivated at different concentrations of sulfate 
and without sulfate, the growth of TCE1 strain outnumbered the sulfate-reducing 
bacteria at 2.5 mM sulfate concentration, and trace amounts of PCE were degraded, 
whereas at 1 mM sulfate and without sulfate, the TCE1 strain degraded the PCE to 
cis-dichloroethane (cis-DCE).

7.6.3  �Bioremediation by Methylotrophs

Methylobacteria utilize C1 compounds as a source of carbon and energy and play a 
key role in global carbon recycling and reduce the greenhouse gas emissions. 
Tambekar et al. (2014) reported that the bacterium Ochrobactrum oryzae isolated 
from the alkaline Lonar lake in the Buldhana district of Maharashtra, India, utilized 
maximum amount of methanol (78%) in 96 hours. At pH 7 and pH 8, the highest 
methanol degradation (0.042 mg/h) was noted in 72 hours.
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Tambeker and Rajgire (2015) identified Pseudomonas aeruginosa (DHT 2) and 
Enterobacter cloacae (DHT 8) from sediment samples collected from the alkaline 
Lonar lake by using 2% methanol as carbon source in minimal salt medium. P. aeru-
ginosa utilized 78% (rate of utilization 0.0406 mg/ml), and E. cloacae utilized 75% 
of methanol (rate of utilization 0.0390 mg/ml) in 96 hours.

7.7  �Bioremediation by Fungi

Mycoremediation is the term used when fungi are used in the bioremediation pro-
cess. In the forests the fallen leaf and wood litter contain many nutrients locked in 
them, which cannot be utilized by the plants. The fungi are the fastest decomposers 
of the forest litter which degrade the dead wood and leaves and release the nutrients 
locked in the litter and supply them to the plants and other living biota. The vegeta-
tive part of the fungus – the mycelium which is a thread-like structure – releases a 
diverse extracellular enzymes and acids, which degrade cellulose and lignin, the 
important constituent of plant fiber. During the breakdown of lignin and cellulose, 
humus is formed which helps in the growth of the plants (Rhodes 2014).

7.7.1  �Mechanisms of Remediation by Fungi

Fungi degrade various lignocellulosic materials by the secretion of enzymes such as 
ligninolytic enzymes (oxidases and peroxidases) and extracellular cellulolytic 
enzymes. These enzymes act as biocatalysts and help in the degradation of lignin 
and cellulose.

Biosorption of metals from aqueous solution by fungi is achieved by surface 
binding which includes ion exchange reactions and formation of complexes with the 
functional groups existing on the cell surfaces.

Based on the participation of various fungi in pollutant degradation, the remedia-
tion process is categorized into:

•	 Ligninolytic fungal degradation
•	 Soil fungal biosorption
•	 Mycorrhizoremediation (mycorrhizal fungal degradation)

7.7.2  �Ligninolytic Fungal Degradation

Lignocellulosic wastes are primarily generated from various industries such as pulp 
and paper industry, food, and agriculture. It is the major component of plants. These 
fungi also degrade various other pollutants such as polycyclic aromatic hydrocar-
bons (PAHs), pesticides, etc.
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The fungi degrading the lignocellulosic materials are classified into three groups 
such as white rot fungi, brown rot fungi, and soft rot fungi (Hickman et al. 2011).

White rot fungi belonging to the genera Phanerochaete chrysosporium, 
Armillaria spp. (honey mushroom), Pleurotus, and other oyster mushrooms, 
Trametes versicolor (turkey tail), Trametes hirsute (hairy turkey tail), Ganoderma 
applanatum (artist’s conk), and Fomes fomentarius (tinder fungus) degrade the cel-
lulose and lignin in the wood.

Brown rot fungi belonging to the genera Laetiporus sulphureus (sulfur fungus), 
Serpula lacrymans (true dry rot), Fibroporia vaillantii (mine fungus), Phaeolus 
schweinitzii, and Fomitopsis pinicola are the degraders of cellulose and hemicellu-
lose in wood.

Soft rot fungi belonging to the genera Chaetomium, Ceratocystis, and 
Kretzschmaria deusta degrade cellulose, hemicellulose, and lignin.

Zhu et  al. (2011) reported the degradation of lignocellulose, production of 
enzymes, and protein enrichment in the solid-state fermentation of corn stover by 
Trametes versicolor. Under optimal conditions, high laccase activity (20-fold 
increase, 45.1 U/g of corn stover), moderate xylanase activity, and little carboxy-
methyl cellulase (CMCase) activity were recorded. The highest degradation of lig-
nin up to 34.8%, followed by hemicellulose 21.9%, and the low cellulose degradation 
of less than 10.5 were observed. Bishnoi et al. (2008) demonstrated the degradation 
of five PAHs in unsterile and sterile soil using the Phanerochaete chrysosporium 
isolated from the soil sample of petroleum refinery. At optimum conditions of pH 
7.0, temperature 30 °C, and 5 μg/gm of PAH concentration, the maximum degrada-
tion occurred in 42 days. In sterile soil, the maximum degradation occurred in phen-
anthracene (98.96%), followed by anthracene (92.60%), pyrene (92.2%), 
acenaphthene (83.8%), and fluoranthene (79.8), whereas in unsterile soil, the low 
degradation was noticed (38.94–62.89%).

Mtui and Masalu (2008) reported the extracellular enzymes (manganese peroxi-
dase 2.5 U/ml and lignin peroxidase 1 U/ml) produced by Laetiporus sulphureus 
isolated from mangrove forests, and it has the ability to oxidize the rhemazol bril-
liant blue-R (RBB-R) dye and phenol and removed 90% of the color from raw tex-
tile effluents in immobilized culture.

7.7.3  �Soil Fungal Biosorption

Many soil fungi, for example, Mucor sp., Aspergillus carbonarius, Aspergillus 
niger, Rhizopus sp., Saccharomyces cerevisiae, Botrytis cinerea, Neurospora 
crassa, etc., are having the capability of biosorption of heavy metals.

Ahmad et al. (2005) isolated Aspergillus and Rhizopus sp. from the agriculture 
field treated with sewage/industrial effluent in Aligarh city. They have used dead 
biomass of the above fungus for biosorption experiment for the metals cadmium 
(Cd) and chromium (Cr). Aspergillus and Rhizopus biosorbed 6.20–9.5 mg/g of Cr 
and 2.3–8.21  mg/g of Cd. The biosorption capacity of Rhizopus sp. is higher 
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compared to Aspergillus sp. Similarly, Mucor racemosus isolated from the polluted 
water in Northern delta of Egypt was used to study the biosorption of copper (Cu), 
zinc (Zn) and lead (Pb) by El-Morsy et al. (2013). The highest uptake was noticed 
for Cu (60.13 mg/g), followed by Zn (57.67 mg/g) and Pb (21.97 mg/g) at 200 mg/l 
biomass.

7.7.4  �Mycorrhizal Fungal Degradation

Mycorrhizal fungi are having symbiotic association with plants roots and are having 
the capacity to degrade the organic pollutants and accumulate heavy metals by 
avoiding them reaching the food web. The different types of mycorrhiza include 
ectomycorrhiza, endomycorrhiza (arbuscular mycorrhiza, AM), ectendomycor-
rhiza, ericoid mycorrhiza, monotropoid mycorrhiza, arbutoid mycorrhiza, and 
orchidoid mycorrhiza.

Arbuscular mycorrhizal fungi play a key role in imparting heavy metal tolerance 
by the plants. The heavy metals bind to the chitin, cellulose, cellulose derivatives, 
and melanin. The high concentration of S&N in polyphosphate granules signifies 
the existence of heavy metal-thiolate binding by metallothionein-like peptides. The 
cell wall proteins of AM fungi have the capability to sequester the heavy metals by 
absorption. The glomalin present on the hyphae of AM fungi can increase the 
sequestering of the heavy metals. Glomalin plays a key role in the sorption and 
sequestering of heavy metals, reducing their bioavailability (Galli et al. 1994).

Al-Garni (2006) reported the increased tolerance of cowpea plants in a pot cul-
ture experiment supplemented with zinc (Zn) and cadmium (Cd) at various concen-
trations, inoculated with or without AM and Rhizobium. The metals accumulated in 
the roots of cowpea plants. The dry weight, leaf number and area, plant length, leaf 
pigments, total carbohydrates, and total P&N increased in cowpea plants, indicating 
the stoppage of heavy metals reaching the aerial portion of the cowpea plants.

Huang et al. (2007) studied the impact of Glomus caledonium on atrazine accu-
mulation and metabolism in maize in the pot culture experiment. More atrazine was 
accumulated in the roots of mycorrhiza applied maize plants compared to the non-
mycorrhizal plant roots. In shoots the less deposition of atrazine was noticed in 
mycorrhiza applied plants compared to the control plants.

7.8  �Conclusion and Future Prospects

Pollution control is the major task in the present scenario. Even though measures are 
being taken by governments and industries for treating the effluents in a scientific 
manner, they are yielding short-term results. The drawback in implementing the 
pollution-preventing devises is due to their higher initial establishment costs, as 
well as operating costs. Bioremediation is a natural and cost-effective treatment 
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process, which uses microorganisms and plants. Bioremediation is not widely used 
for reclamation of polluted soils due various reasons such as lack of awareness, non-
availability of suitable inocula for the contaminated sites, difficulties in replication 
of the lab results at field level, etc. The required microbes can be easily produced 
and supplied for the bioremediation processes in large scale in a shorter period of 
time. Analyzing various soil parameters and creating the field conditions at the labo-
ratory level will give a better understanding of bioremediation process.
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8.1  �Introduction

Bioremediation is an environmentally friendly process using many different 
microbes to weaken and detoxify harmful pollutants in a parallel or sequential man-
ner. Microorganisms (e.g., fungi and bacteria), green plants, or combinations of 
them used together can convert toxic pollutants into carbon dioxide (CO2) and water 
(H2O), inorganic salts, microbial biomass, and other products that are less toxic—in 
effect, accelerating natural metabolic processes that result in these outcomes 
(Egamberdieva et  al. 2008; Gupta and Sinha 2007; Pawar 2012; Mohammadi-
Sichani et al. 2019).

In recent years, interest in exploring microbial biodegradation of toxins has been 
amplified by human attempts to achieve a sustainable approach to purification and 
restoration of polluted habitats. Cleaning up polluted soil and water by use of organ-
isms—including fungi, bacteria, and their enzymes—is a cost-efficient, sustainable, 
and natural approach (in comparison with other typical techniques) (Kumar and 
Dwivedi 2019). In bioremedial technologies, microbes are introduced to improve 
decomposition or elimination of organic and inorganic pollutants and harmful con-
taminants. Pollutant bioremediation can be achieved by various methods such as 
natural attenuation, biostimulation, bioaugmentation, or combinations of these 
methods (Bisht et al. 2019). Because of their consistent morphology and versatile 
metabolic ability, fungi play crucial roles as degraders and symbionts in the envi-
ronment as a whole, including soil and aquatic habitats; thus, they are particularly 
suitable for bioremediation. Mycoremediation is a method of bioremediation using 
fungi to decontaminate contaminated areas. Arbuscular mycorrhizal fungi (AMF) 
primarily perform their functions in soil, achieving and altering the soil microbial 
balance. AMF primarily enhance soil microbe growth and restrict plant pathogen 
proliferation. Because of their symbiotic nature, AMF depend on plant roots to pro-
vide them with the carbon and sugar they need in order to grow and proliferate. 
Eventually, as the plants and fungi grow together, they both benefit from their asso-
ciation. Mycorrhizal combinations make plants soil tolerant, enhance their growth, 
and keep them healthier than nonmycorrhizal plants. The main division of the book 
provides an overview of bioremediation and main emphasis of this book is on 
microbial process because the cycling of organic compounds in the environment is 
an important part of bioremediation (Zhang et al. 2019).

8.2  �Mechanisms of Bioremediation

Bioremediation is a biological degradation mechanism using microbial capacities to 
minimize the concentrations and toxicity of a large variety of contaminants, whereby 
areas contaminated with harmful pollutants are treated with the help of microbial 
processes. Microorganisms interact physically and chemically with pollutants, lead-
ing to structural changes or total disintegration of those pollutants. An amalgam of 
electrons and electron acceptors can be used to accelerate their metabolism by 
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microbes. Microbes utilize organic matter from pollutants for their proper growth 
and development. Moreover, proliferation of other important nutrients (including 
nitrogen and phosphorus), as well as minor nutrients (including sulfur and trace ele-
ments) occurs (US National Research Council 2000; Qin et al. 2013; Lacerda et al. 
2019; Magnin et  al. 2019). Microbes also acquire energy by catalyzing energy-
efficient chemical reactions that dissociate chemicals from contaminants and trans-
mit electrons (Friesen 2013). These types of reaction are known as oxidation and 
reduction reactions. In natural conditions, it has often been observed that transfor-
mation of molecules and other xenobiotics accompanies their degradation (Fig. 8.1). 
This process includes phenomena such as co-oxidation, gratuitous metabolism, co-
metabolism, and free or accidental metabolism (Tegli et al. 2014; Zengguang et al. 
2015). Co-metabolism is a type of metabolism in the presence of an organically 
active substrate as the primary carbon and energy source, without any nutritional 
gains. This type of metabolism is a regular microbial activity (Pickering 2000). The 
metabolic enzymes secreted by bacteria break down the complex organic materials 
around them to make digestion easier (Segura and Ramos 2013; Kameshwar and 
Qin 2019). Such enzymes are usually nonspecific and can function on various types 
of substrate, including substrate materials that are not beneficial to the bacteria 
themselves (Ganley et al. 2004; Neifar et al. 2015).

Microbes utilize contaminants as sources of carbon for their growth and repro-
duction. In this way, they break down the contaminants and transform them into 
simpler compounds. From this breakdown of contaminants, they obtain energy to 
reproduce and give rise to new microbial cells. The microorganisms degrade chemi-
cal bonds and release electrons, which are then used in production of new microbial 
cells. When a chemical compound loses electrons, it becomes oxidized, and when it 
gains electrons, it becomes reduced. This phenomenon is known as a redox reaction, 

Fig. 8.1  Bioremediation mechanisms
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where reduction and oxidation occur simultaneously. Most living organisms use 
oxygen (O2) as an electron acceptor. Thus, we can conclude that organisms degrade 
organic compounds into simpler molecules such as H2O and CO2 in the presence of 
O2; this process is known as aerobic respiration. As a result of evolution, some 
microorganisms do not require O2 to break down chemical compounds (Villela et al. 
2019). In their processes, contaminants are degraded by nitrate (NO3

−) and sulfate 
(SO4

2−), and the end products are nitrogen gas (N2), hydrogen sulfide (H2S), and 
methane (CH4); this process is known as anerobic respiration. The energy released 
in this process is utilized in cell synthesis. Fermentation is a process in which reac-
tions occur in the absence of oxygen, where microbes convert contaminants into 
simpler by-products such as ethanol, hydrogen, and carbon. In this reaction, the 
contaminants behave as electron acceptors and electron donors (Cecchi et al. 2019).

Some microorganisms convert contaminants into simpler forms that have no 
beneficial requirements, and this phenomenon is known as secondary utilization. 
One other phenomenon that occurs simultaneously is co-metabolism, in which the 
by-products help to detoxify the effects of the reaction. When bacteria are used in 
degradation of CH4, certain enzymes are produced that degrade the chlorinated sol-
vent, which plays no vital role in the growth of the bacteria. Here, the chlorinated 
solvent serves as a secondary substrate, as it has no role in the maintenance of bacte-
rial growth. Another variation due to evolution is reductive dehalogenation, in which 
halogen atoms in the compound are replaced by hydrogen atoms. Here, detoxifica-
tion of the halogen atom occurs, with addition of two electrons to the organic chem-
ical compound in the presence of lactate, glucose, and acetate, acting as electron 
donors. In this reaction, there is no release of energy, but the reaction has a detoxify-
ing effect, with removal of a toxic compound, and this is beneficial for production 
and proliferation of new cells.

Nowadays, various bioremediation methods are used to convert toxic organic 
materials in pesticides, industrial waste, oil spills, etc. into harmless compounds by 
degrading them. Their transformation into CO2, H2O, N2, hydrochloric acid (HCl), 
etc. is known as mineralization, and this is the ultimate goal of bioremediation. 
Heavy metals and radioactive cations are physically removed by phytoremediation 
or mycoremediation through harvesting of the entire plant or fungus, although they 
cannot be decomposed (Ceci et al. 2019). Degrading microorganisms obtain carbon, 
nitrogen, or energy from pesticide molecules. Thus, the most important pesticide 
degradation process in soil is microbial metabolism. Fungi are known to play a vital 
role in leaf litter degradation; moreover, they are the only organisms on earth that 
decompose wood. Lignin and cellulose are essential components of plant fiber, 
which is decomposed into humus by extracellular enzymes and acids exuded from 
fungal mycelia. It is possible to increase the rate of degradation by supplying nitro-
gen, phosphorus, potassium, and other inorganic elements.  Decomposition of 
starches, celluloses, hemicelluloses, other sugar polymers, and pectins is carried out 
by molds such as Aspergillus and Botrytis. They are also capable of degrading fats, 
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oils, chitin, and keratin. These molds can be used for biodegradation, in which they 
degrade paper and textile raw materials such as cotton, linen, and jute. Fungi such 
as Mucor thermohyalospora, Cladosporium oxysporum, Phanerochaete chrysospo-
rium, Trichoderma harzianum, and Aspergillus spp. (e.g., Aspergillus niger and 
Aspergillus terreus) have the ability to degrade endosulfan, which causes problems 
in the environment and in living organisms. Fungi can transform pesticides into 
innocuous substances via certain processes such as esterification, hydroxylation, 
deoxygenation, and dehydrogenation. A few examples are mentioned below. 
3-Phenoxybenzoic acid is hydroxylated into 3-hydroxy-5-phenoxybenzoic acid, 
which is further deoxygenated into gallic acid and phenol. A fungal strain of 
Rhizopus oryzae (CDBB-H-1877) can be used for biosorption of pentachlorophenol 
through dechlorination and methylation. Aspergillus and Zygomycetes fungi can 
decolorize and detoxify textile wastewater. Polychlorinated biphenyls (PCBs) are 
degraded by nonligninolytic enzymes produced by fungi such as Penicillium digita-
tum, Penicillium chrysogenum, Fusarium solani, and Scedosporium apiospermum. 
White rot fungi are preferred as robust and protective tools in soil bioremediation, 
as they can tolerate high concentrations of pollutant chemicals. Reports have shown 
that brown rot fungi degrade cellulose, leaving lignin undissolved as brown depos-
its, while white rot fungi digest lignin, leaving cellulose intact and giving a bleached 
appearance to wood. Some white rot fungi are also capable of degrading persistent 
xenobiotic compounds. They include Pleurotus ostreatus, Pleurotus tuber regium, 
Pleurotus pulmonarius, Agaricus bisporus, Lentinula edodes, Bjerkandera adusta, 
Irpex lacteus, and Trametes versicolor. In addition, these white rot fungi can degrade 
pesticides, phenols, chlorophenols, polychlorinated biphenyls and dioxins, heavy 
metals, dyestuffs, and effluent from pulp and paper mills (Singh 2006). They are 
also capable of degrading environmental pollutants such as CO2, dichlorodiphenyl-
trichloroethane (DDT), lindane, and chlordane. This wide range of activity of white 
rot fungi is due to (1) production of lignin peroxidase (LiP), manganese peroxidase 
(MnP), lactase, and various hydrogen peroxide (H2O2)–producing enzymes and 
(2) their mycelial growth habit, which allows rapid colonization of substrates and 
hyphal extension, enabling penetration of soil to reach pollutants (Park et al. 2020). 
LiP and MnP are also produced by Phanerochaete chrysosporium. Studies have 
shown that Lentinus subnudus has the ability to degrade both metolachlor and hep-
tachlor by up to 94% and atrazine by up to 78%. Phanerochaete ostreatus has the 
potential to degrade heptachlor and heptachlor epoxide by up to 89% and 32%, 
respectively. Aldrin and Dieldrin pesticides can be degraded by Phlebia acantho-
cystis, Phlebia brevispora, and Phlebia aurea. Degradation of effluent from textile 
industries has been carried out using several hyphomycetes, ascomycetes, and 
basidiomycetes fungi isolated from marine environments.
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8.3  �Bioremediation of Contaminated Land

Use of microbes for disintegration of contaminants in soil, as well as in water, can 
be defined as bioremediation. For efficient mycoremediation, it is important to 
perform screening to select suitable fungal species that can degrade the relevant 
contaminants. Bioremediation can be done using in situ or ex situ approaches (Akcil 
et al. 2015). The main difference between these two methods is that bioremediation 
performed on-site as classified as in  situ, while bioremediation performed after 
physical removal of the contaminant substance from the site is classified as ex situ 
(Margesin et al. 2003). Ex situ treatment for cost-efficient remediation of soil pol-
lutants requires chemicals and incineration (Rodriguez et al. 2008; Gillespie and 
Philp 2013; Mishra and Malik 2014). The main objective of bioremediation is to 
mineralize pollutants through their transformation into CO2, H2O, N2, HCl, etc. It is 
difficult to decompose heavy metals and radioactive ions, as they are converted into 
less soluble forms. One example is oxidation of uranium(IV) into uranium dioxide 
(UO2), a less dangerous form that can be removed physically with the help of phy-
toremediation or mycoremediation, which may include use of co-cultivation of 
fungi and plants (Richardson et al. 1992; Graham and Eissenstat 1998; McGrath 
and Zhao 2003; Megharaj et al. 2011; Haq et al. 2020; Thakare et al. 2021).

8.4  �Bioremediation Potential of Fungi

Fungi have been shown to play significant roles in bioremediation of contaminants 
such as persistent organic pollutants (POPs), textile dyes, coal, chemicals used in 
paper production and leather tanning, pharmaceuticals and personal care products 
(PPCPs), polycyclic aromatic hydrocarbons (PAHs), and pesticides (Prasad 2017, 
2018). Various reports have described use of fungi from different groups—includ-
ing Aspergillus, Penicillium, and alkalophilic white-rod fungi—for bioremediation 
and decolorization of textile dyes, sugar industry effluent, chemicals used in kraft 
pulp mills, and leather tanning effluent, indicating the diverse substrate choices of 
these fungi (Redman et al. 2001; Redman et al. 2002; Rockne and Reddy 2003). 
Substantial removal of petrol and diesel contaminants from soil by short-term incu-
bation of Aspergillus niger and Phanerochaete chrysosporium with petroleum 
hydrocarbons was shown in conjunction with total organic carbon (TOC) elimina-
tion, which helps in bioremediation (Fig. 8.2) (Timmis 2010; Redman et al. 2011; 
Echeveria et al. 2020).

8.5  �Use of Fungal Enzymes in Bioremediation

Cellulases, xylanases, amylases, proteases, lipases, laccases, peroxidases, catalases, 
chitinases, etc. are fungal enzymes with industrial value and can be used in organic 
waste management—for example, in organic fractionation (Betancor et al. 2013; 
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Narayanan et al. 2013; Claus 2014). White rot fungi give rise to one or more types 
of enzyme, depending on the species and environmental conditions. Their role is not 
limited to degradation of natural lignocellulose substrates; they can also be used in 
bioremediation requiring degradation of numerous xenobiotic compounds, includ-
ing dyes (Nigam 2013; Kumar et al. 2017). The ligninolytic enzymes secreted by 
white rot fungi are classified into two categories—MnPs and LiPs—which can be 
used for lignin oxidation in fungal cells. Laccases and certain fungal class II peroxi-
dases produced by white rot basidiomycetes are well known to degrade organic 
pollutants (Naranjo-Briceño et al. 2013; Quintella et al. 2019).

8.6  �Mycoremediation Using Fungi

The name white rot fungi refers to the secretion of enzymes that break down cellu-
lose and lignin, giving the cellulose a white color. About 30% of the bioremediation 
linked to literature, by means of fungi (Cruz-Hernández et al. 2013). Bacteria must 
be adapted for synthesis of specific enzymes that can achieve degradation of the 
relevant pollutant(s). Various organic molecules, including untraceable and persis-
tent components such as PAHs, are susceptible, to differing degrees, to various 
strains of the white rot fungi that can degrade them (Egamberdieva and Lugtenberg 
2014; Sayyed et al. 2020). Soil polluted with crude oil can be mixed with a lignocel-
lulose substrate—for example, sawdust or maize cob—allowing the fungal species 
to proliferate in the soil and decompose the crude oil. Moreover, white rot fungi 
have been shown to effectively disintegrate harmful elements such as dioxins, pes-
ticides, phenols, chlorophenols, polychlorinated biphenyls, effluent, dyestuffs, and 
heavy metals.
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8.7  �Advanced Technologies Used in Fungal Bioremediation

In the field of fungal bioremediation, many technical advances have been made in 
order to overcome the associated shortcomings. These developments include use of 
enzymes to reduce the bioremediation time and simplify the process, with greater 
control over fungal biomass. Bioremediation using immobilized fungi in various 
bioreactors such as rotating biological contactors and fluidized bed reactors has 
recently been introduced (Tordoff et  al. 2000; Lien et  al. 2015; Roccuzzo et  al. 
2020). Bioremediation of benzo[a]pyrene under nutrient-enhanced conditions 
(involving ligninolysis) results in PAH oxidant monooxygenesis, which was also 
removed during a subsequent nonligninolytic process (Joutey et al. 2013; Tian et al. 
2019). Bioremediation of wastewater sludge from sewage treatment plants, mixed 
with a filament inoculum in a broad-scale bioreactor, has been shown to be sustain-
able and environmentally friendly when performed using a continuous process 
(Connell and Staudigel 2013; Yadav et  al. 2019; Singh et al. 2020). In a further 
innovative approach to removal of PAHs by establishing permeable new reactive 
biobarriers of Trichoderma longibrachiatum on nylon sponges, 90% removal was 
achieved over a period of 14 days (Tyagi et al. 2011; Li et al. 2013).

8.8  �Bioremediation Using Fungal Cytochromes

Fungi have complex enzyme detoxification mechanisms in their bodies for oxida-
tive and hydrolyte detoxification. In addition to these structures, some fungi have 
intracellular Genome networks consisting of cytochrome P450 monooxygenases 
and glutathione transferases, which enable them to cope with various different pol-
lutants. The fungal cytochrome P450 system is a flexible catalyst for region-specific 
and stereospecific oxidation of nonactivated hydrocarbons. Eradication of pollut-
ants can be achieved by use of molecular instruments to generate cytochrome P450 
monooxygenases quickly and abundantly, including by use of a wide range of yeast 
expression systems with a viral vector (Arxula adeninivorans) (Tangahu 2011; 
Singh et al. 2013).

8.8.1  �Factors Affecting Bioremediation

The availability of nutrients affects the process of microbial detoxification of con-
taminants. Insufficiency of nutrients can directly inhibit the proliferation and 
enzyme activity of pollutant-degrading organisms. For cell metabolism and efficient 
proliferation in contaminated environments, microbes require nutrients such as 
nitrogen, phosphorus, potassium, and minerals (Sagarkar 2013).
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Environmental conditions such as the pH, temperature, salinity, oxygen level, 
and availability of water vary from site to site and can inhibit development of the 
contaminant-degrading microbes that are needed to drive the bioremediation pro-
cess. Pathogen break down complex organic pollutant matter and grow on them and 
microbes can metabolize more contaminants under optimal environmental condi-
tions (Egamberdieva and Lugtenberg 2014).

Some specific organism they interact organic pollutant and they utilize for proper 
growth and devlopment and decontaminats the pollutant.

The ability of the microbial community to remove pollutants from a contami-
nated site depends on the numbers of microbes at the site and their catabolic effec-
tiveness. The presence of soil pathogens can be regulated by both environmental 
and nutritional factors.

8.9  �Phytoremediation Using Arbuscular Mycorrhizal Fungi

Bioremediation is a method using microbes to treat contaminated soil. In the gen-
eral phytoremediation cycle, the combination of AMFs and plants—also known as 
root–colonizer symbiosis—is involved in soil remediation. AMFs have been found 
to reduce metal toxicity to plants through a decrease in the rate of root-to-shoot 
translocation (Fan and Liu 2011). Phytoextraction requires plants that are capable of 
storing significant amounts of heavy metals and discard oraganic pollutant and 
remove complex substance into simple substances. Organic pollutants (such as 
PAHs) are transformed by the microbial activity that is commonly seen around plant 
roots (Gianinazzi et al. 2010). PAHs are degraded by exudates from plant roots and 
make detoxify pollutant substances. In a case study in which different methods of 
soil quality improvement were assessed, noninoculated soil and soil inoculated with 
a single AMF mix (indigenous AMF) were studied (Kumar et al. 2008, 2017; Sim 
et al. 2019). The AMF in the soil inoculated with the indigenous mix were found to 
be effective in soil quality improvement. The presence of AMF nodules in the soil 
increased plant growth, water infiltration, and soil aeration through soil agitation. 
Phosphorus inoculation in rhizosphere of crops by AMF (Francis and Read 1995; 
Tang 2019).

8.9.1  �Fungi as Symbionts

In various parts of the world, systematic use of large quantities of fertilizers contain-
ing phosphorus has contributed to accumulation of phosphorus in various soil types. 
Plants roots can be utilize the phosphorus from soil that converted into soluble form 
by Arbuscular Mycorrhizal Fungi (AMF). AMF hyphae perform two main func-
tions: (1) they serve as a system that absorbs nutrients, and (2) newly formed roots 
act as plows, breaking the soil hyphal network and hindering its functions (Rodriguez 
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et al. 2009; Mishra et al. 2020). Monoculture of a single crop dominates production 
of certain fungi that are capable of growing in symbiosis and leads to declines in 
various other AMF. Continuous monoculture of a single crop with the same AMF 
species results in decreased yields. There are a few crops that inhibit root coloniza-
tion by AMF (Ruiz-Lozano 2003; Franken 2012), such as Brassica perviridis 
Asiatic plant cultivated for its swollen root crown and edible foliage. If Brassica 
crops are grown in the same rotation, AMF growth in the soil is suppressed. 
Therefore, an interspersed mixture of supplemental plants is needed to facilitate 
AMF growth to support AMF inoculants in cultivation of these crops. After 8 years 
of transition from conventional to organic farming in the farming systems trial at the 
Rodale Institute in the USA, it became clear that larger quantities of fungal spores 
were produced in organic farming than in traditional farming (Ruiz Sanchez et al. 
2010; Kumar et al. 2018).

8.10  �Conclusion

Bioremediation is a versatile and environmentally friendly treatment solution and a 
rapidly growing practice. The capacity of microbes to deal with environmental pol-
lutants can be used to disintegrate and/or detoxify them into less harmful forms (US 
Environmental Protection Agency 1999). Recent research to improve our under-
standing of bioremediation mechanisms and genomic developments has shown that 
whole-genome studies can help to explain and explore bioremediation pathways. 
Land that is polluted or otherwise unfit for agriculture can be remediated via use of 
arbuscular mycorrhizal fungi (AMF) to make it suitable for agriculture. The yield 
and nutritional value of crops are also increased by use of AMF. Strong degraders of 
polycyclic aromatic hydrocarbons are found in AMF. Because of their sensitivity to 
a great variety of pollutants, AMF can also be used in bioassays to test soil and its 
toxicity levels.
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9.1  �Introduction

Humic substances are considered a chemically heterogeneous group and a major 
component of natural organic matter. As a part of practically all terrestrial and 
aquatic environments and their distinct physicochemical properties, the role of 
humic substances in the ecosystem is highly diversified (Evangelou and Marsi 2001; 
Trevisan et al. 2010). They can promote extracellular electron transfer where they 
can serve as both an electron donor and acceptor (Keller et  al. 2009; Tian et  al. 
2018). They also facilitate transformation of various elements, including potentially 
toxic metals and metalloids, due to their heterogeneous chemical composition, sur-
face properties and differences in physical appearances (dissolved, colloidal or 
solid-phase state) (Burlakovs et al. 2013); and finally, they intimately interact with 
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various biological and mineral surfaces, which ultimately leads to changes in activ-
ity of indigenous microbial communities, as well as bioavailability of elements 
(Rieuwerts et al. 1998; Pospíšilová et al. 2011). Implication of these interactions is 
in particular interest of geochemists and ecotoxicologists who explore mobility, 
availability and transformation of hazardous elements in the environment in order to 
predict behaviour and effects of these substances at the contaminated sites. Thus, 
this short review provides an insight into mutual interactions of metals and metal-
loids with humic substances, which are linked to the presence of microorganisms.

9.2  �Redox Transformation of Metals and Metalloids by 
Humic Substances

Humic substances’ involvement in redox transformation of metals and metalloids in 
near-surface environments is critical for mobility and bioavailability of various 
nutrients, as well as potentially toxic metals and metalloids (Singh et al. 2020). The 
most studied redox transformation enabled by the presence of humic substances is 
that of chromium(VI).

The chromium(VI) reduction by humic substances (as well as by their precur-
sors) is favourable in acidic environments (Nakayasu et  al. 1999). Although this 
process is not restricted to acidic conditions and reduction occurs at neutral and 
slightly alkaline environments as well, pH significantly affects the chromium(VI) 
transformation rate. Wittbrodt and Palmer (1997) reported that the apparent reduc-
tion rate coefficient decreases by three orders with increasing solution pH from 
value of 2 to 7. Due to decrease in number of repulsive interactions between 
chromium(VI) oxyanion and humic substances’ surfaces at low pH, the sorption, a 
prerequisite for successful reduction, is enhanced. Thus, the subsequent electron 
transport is facilitated, and chromium(VI) reduction rate increases (Hsu et al. 2009).

Aldmour et al. (2019) suggested that the first step in chromium(VI) reduction 
mechanism by humic substances is controlled by chromate-ester formation, most 
likely between chromium(VI) and phenolic and hydroxyl moieties of humic sub-
stances. More statistically complex two-dimensional correlation spectroscopy anal-
ysis of the various spectral data reported by Zhang et al. (2017) indicated that after 
electrostatic attraction of chromium(VI) toward humic acids’ surfaces, the com-
plexation of chromium(VI) by carboxyl and ester groups of undissolved humic 
acids takes place under acidic conditions; this is followed by reduction to 
chromium(III) by polysaccharides and phenols. Also, thiols have been reported to 
contribute to the chromium(VI) reduction (Scaglia et al. 2013). Hence, the humic 
substances with higher densities of polar functional sites, including carboxylic and 
phenolic groups, have greater capacities for chromium(VI) retention and reduction 
(Chen et al. 2011).

Aforementioned mechanism expects the presence of adjacent electron donor 
group (hence, the suggested phenols or polysaccharides as reductive agents) and, 
thus, can be described as indirect mechanism. Another distinguishable mechanism 
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of chromium(VI) reduction by humic substances, recognized by Janoš et al. (2009) 
as “direct” reduction, is its redox transformation in the aqueous phase after interact-
ing with electron donor functional group. This is followed by ion-exchange binding 
of chromium(III) with humic substances’ surface groups, or the reduced chromium 
product remains in the aqueous phase. In case of humic acids, after reduction, the 
generated chromium(III) forms inner and outer sphere complexes with hydroxyl 
and carboxyl groups, respectively (Wu et al. 2017). Similarly, Krajnc et al. (1995) 
concluded that the formed chromium(III) is coordinated in fulvic acids by carbox-
ylic groups and also hypothesized that some other functional groups are involved, 
most likely phenolic and alcoholic groups. However, fulvic acids form soluble high-
molecular hydroxofulvate complex compounds of chromium(III) and its hydrolytic 
species. Thus, the presence of fulvic acids significantly increases the chromium(III) 
solubility, which may facilitate its migration in natural environments (Koshcheeva 
et al. 2007), while its sorption onto high-molecular-weight organic matter efficiently 
decreases chromium’s environmental mobility (Kyziol et al. 2006).

Similarly to chromium(VI), copper(II) has been shown to be reducible by humic 
substances to copper(I) even under oxic conditions; and there, it is stabilized by the 
three- to fourfold coordination (Fulda et al. 2013). Under anoxic conditions, it can 
be reduced even further into elemental copper (Maurer et  al. 2013). Exceptional 
reducing and stabilizing properties of humic acids have been successfully applied 
also for synthesis of copper nanoparticles, which have been found extremely stable 
and resisting oxidation for several months even after exposure to air (Wang et al. 
2015). Unfortunately, while the most recent publication regarding copper immobi-
lization provides interesting information on effects of solid mineral phases on humic 
acids’ sorption properties (Ding et al. 2019; Menad et al. 2019), they usually omit 
the speciation analysis or thermodynamic calculations of copper species distribu-
tion in solid and aqueous phases. Thus, the quantification of the copper(II) reduction 
process is rare (Maurer et al. 2013).

Mercury(II) also undergoes both immobilization via strong complexation with 
humic substances, forming thermodynamically stable complexes via ionic binding 
(Vudamala and Chakraborty 2016), and abiotic reduction by humic substances to 
elemental mercury via photochemically and nonphotochemically induced reactions 
(Amyot et al. 1997; Jiskra et al. 2015). However, the abiotic reduction rate is pos-
sibly less significant in soils and sediments at the interfaces of solid phases com-
pared to biotic transformation of mercury (Allard and Arsenie 1991). In the aquatic 
environments, the high reductive capacities of dissolved aquatic humic substances 
(Scott et al. 1998) play significant role in abiotic formation of elemental mercury, 
especially at low humic substances’ concentrations (Rocha et al. 2000).

As the interaction of mercury and humic substances via complexation and reduc-
tion has competitive character, the predominance of each process significantly 
affects the mobility and bioavailability of mercury in both oxic and anoxic environ-
ments (Gu et  al. 2011; Jiang et  al. 2014). Mercury(II) abiotic reduction occurs 
largely by the action of reduced quinones or semiquinones, while, surprisingly, the 
oxidation of mercury by humic substances takes place simultaneously due to oxida-
tive capacity of thiol moieties under anoxic conditions (Zheng et al. 2012, 2013; 
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Chakraborty et al. 2015). Thus, besides metal(loid)s’ reduction, humic substances 
can also serve as an electron acceptor in redox transformations of metals and 
metalloids.

This dualistic character of humic substances has some severe environmental con-
sequences. While it has been shown that the humic substances behave like an elec-
tron shuttle for arsenic(V) reduction under anoxic conditions (Qiao et  al. 2019), 
Fakour and Lin (2014) noted that the arsenic(III) oxidation by humic acids is favour-
able process in oxygenated systems. The latter is advantageous, as the arsenic(V) 
forms more stable bounds with humic substances and mineral surfaces (Buschmann 
et  al. 2006) and is considered less environmentally mobile, as well as less toxic 
compared to arsenic(III) (Hughes 2002). However, Zhai et al. (2019) indicated that 
humic acids are also capable of reducing arsenic(V) to arsenic(III), which is most 
likely enabled by quinone moieties (Palmer and von Wandruszka 2010). Furthermore, 
besides being redox-active agents themselves, humic acids are associated with min-
eral phases and microorganisms that may directly contribute to arsenic redox trans-
formation and channel the electron transfer (Redman et  al. 2002; Jiang and 
Kappler 2008).

9.3  �Microbially Induced Oxidation and Reduction 
of Humic Substances

As indicated, humic acids play significant, and in some cases essential, role in redox 
transformation of various elements directly as an electron donor/acceptor or as an 
electron shuttle (Lee et al. 2019). Ratasuk and Nanny (2007) suggested three main 
redox-active groups in humic substances – two distinct quinone redox sites and one 
non-quinone redox site (e.g. thiols and disulphides). Similarly, using sophisticated 
electrochemical in situ FITR spectroscopic (EC-FTIRS) technique coupled with 
2D-COS, Yuan et al. (2018) concluded that the quinones and phenols are the major 
active redox sites in terrestrial solid-phase humic substances. Aeschbacher et  al. 
(2012) noted that the phenolic moieties serve as a major electron-donating group in 
humic substances. He also concluded that the electron-donating capacities of ter-
restrial humic substances tend to be smaller, while their electron-accepting capaci-
tates are higher compared to aquatic natural organic matter and humic substances.

The electron-transferring capacity of humic acids can be determined chemically 
by using a reductive system. This experimental approach comprises the measure-
ment of redox sites in humic acids by repeating sequential reduction and oxidation 
of the same sample, usually applying Pd(powder)/H2 as a reductive system and the 
air for oxidation. Electrochemical approach to accurately determine redox proper-
ties of humic substances was also proposed using direct or mediated electrochemi-
cal reduction (Aeschbacher et al. 2010). Among other methods, there is also unique 
biological approach to determine electron-accepting capacity of humic substances. 
This relates to reported capability of diverse microbial groups to reduce humic 
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substances in various environments (Coates et al. 1998). Thus, Scott et al. (1998) 
successfully applied metal-reducing strain Geobacter metallireducens and acetone, 
which served as an electron donor for strain metabolism, to determine reducing 
capacity of various humic substances. This method was originally proposed by 
Lovley et al. (1996) applying poorly crystalline iron(III) as the electron acceptor. 
Coates et al. (1998) also highlighted that humic acids can be utilized as an exclusive 
terminal acceptor by bacterial species of Geobacteriaceae family.

The process of humic substances’ reduction is not restricted to iron(III)-reducing 
bacteria but has been reported for various physiologically distinctive microbial 
groups (Martinez et al. 2013). Fermenting bacteria, including Propionibacterium 
freudenreichii, Lactococcus lactis and Enterococcus cecorum, are capable to funnel 
electrons from anaerobic oxidation of organic substrates to humic acids (Benz et al. 
1998). Similar potential has been shown for hyperthermophilic microorganisms and 
methanogenic archaea (Lovley et al. 2000), as well as halo-respiring and sulphate-
reducing bacteria (Cervantes et al. 2002).

The biologically induced redox transformation of humic substances, utilized by 
microorganism to transfer electrons to mineral surfaces (Roden et  al. 2010), has 
severe consequences in geochemistry of various elements in subsurface environ-
ments. As indicated, the iron-reducing bacteria are capable to utilize humic sub-
stances as an electron shuttle in the process of respiration and subsequent transfer of 
electrons from humic substances to solubilize crystalline and low-crystalline 
iron(III) phases (Lovley and Phillips 1986; Nevin and Lovley 2000). Chen et al. 
(2003) noted that the content of polycondensed and conjugated aromatic moieties of 
natural organic matter is critical factor affecting iron(III) reduction in circumneutral 
and slightly acidic pH conditions. The presence of humic acids also significantly 
enhanced reduction of manganese(IV) from MnO2 ores by dissimilatory manganese-
reducing microbial consortia (Aishvarya et al. 2019). Furthermore, the coupling of 
redox cycles of iron and dissolved organic matter enhances chromium(VI) reduc-
tion in the presence of quinone-reducing bacteria when compared to the individual 
cycles (Huang et al. 2016). Arsenic(V) reduction was also promoted by the microbi-
ally reduced humic substances in arsenic-contaminated paddy soil (Qiao et al. 2019).

The reduced quinone moieties in humic substances do not serve only as an 
electron-donating substrate for mineral surfaces but also as a substrate for bacterial 
respiration. Therefore, oxidation of humic substances has been hypothesized to be 
coupled with significant percentage of nitrate reduction process in agricultural soils 
(Van Trump et al. 2011). Involvement of humic acids as an electron shuttle or donor 
during denitrification process was also confirmed by Dong et al. (2017). Stern et al. 
(2018) proposed that humic acids could donate electron for dissimilatory iron 
reduction. Interestingly, electron shuttling via humic substances has been reported 
coupling acetate oxidation by Geobacter sulfurreducens and nitrate reduction by 
Thiobacillus denitrificans (Zheng et al. 2019).

This highlights environmental role of redox-active humic substances as an elec-
tron transfer network connecting various microbial physiological groups and min-
eral and other spatial electron acceptors. Thus, the humic substances can affect 
extracellular electron transfer which positively correlates with physiochemical 
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properties of humic acids, including their electron-accepting capacity and wettabil-
ity (Yuan et al. 2017).

Fungal enzymatic oxidative transformation is a redox mechanism that affects the 
stability of humic substances as well, usually increasing their low molecular weight 
fraction and hydrophilic constituents (Fedoseeva et al. 2019; Řezáčová et al. 2006). 
In some cases, polymerization of humic substances occurs, which mostly involves 
ascomycetes (Grinhut et al. 2007). Fungal oxidative biodegradation is considered a 
cometabolic process where decomposition of humic substances is associated with 
the presence of easily metabolizable carbon source (Zavarzina et  al. 2004). 
Biodegradation and transformation involve activity of some nonspecific oxidizing 
enzymes, such as laccase and manganese peroxidase (Zahmatkesh et al. 2017) and 
small extracellular oxidants as well (Rojas-Jimenez et  al. 2017). As a result, the 
chemical modification of humic substances’ active functional groups may appear 
(Xiao et al. 2018). This affects their natural metal-binding capacity and, thus, the 
bioavailability of metals and metalloids in the contaminated substrates (Burlakovs 
et al. 2013).

9.4  �Sorptive Interactions of Humic Substances 
with Metal(loid)s and Microbial Surfaces

Regardless of the particular mechanism of the redox transformation of metals and 
metalloids by direct or indirect action of humic substances, these processes gener-
ally result in two possibilities – release or immobilization of newly formed chemical 
entities of metals and metalloids. Especially in the case of solid surfaces of humic 
substances, the immobilization efficiency is often characterized by the sorption per-
formance of particular humic substance (Kerndorff and Schnitzer 1980). 
Furthermore, humic substances also play a role as a sorbate and accumulate onto 
naturally occurring inorganic surfaces of amorphous and mineral phases (Weng 
et al. 2007; Gardošová et al. 2011), as well as materials of biological origin, includ-
ing microorganisms (Campbell et al. 1997; Urík et al. 2014).

Because of their highly irregular and heterogeneous structural and elemental 
composition, humic substances provide various distinguishable organic fractions. 
For example, hydrophobic free and bound lipid classes, as well as hydrophilic con-
stituents of proteinaceous materials and carbohydrates, can be identified in humic 
acids (Allard 2006). Thus, besides carboxylic, phenolic and aliphatic hydroxyl 
groups (Dell’Agnola and Ferrari 1971), humic substances can also provide various 
S- and N-functional groups, including sulfhydryl and amino groups (Vasilevich and 
Beznosikov 2015).

Due to prevalence of carboxylic and phenolic functional groups, it is expected 
that the affinity of metallic cations, such as copper(II), cadmium(II), nickel(II), mer-
cury and lead(II), towards humic substances is high (Kerndorff and Schnitzer 1980; 
El-Eswed and Khalili 2006; Vetrova et al. 2014). Thus, various models suggest that 
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the humic substances form relative stable complexes and that the soil organic matter 
provides main sorption sites for metallic cations in soil surface horizons and sub-
soils (Weng et  al. 2001; Tiberg et  al. 2018). However, the precise modelling is 
highly affected by the soil composition and mostly influenced, besides organic mat-
ter quality (Weng et al. 2002), by the presence and abundance of metallic oxides and 
oxyhydroxides (Cancès et al. 2003). Therefore, usually simplified methods to evalu-
ate the sorption behaviour of humic substances are used which omit the complex 
soil environment completely and focus on the sorption of desired metals and metal-
loids onto (immobilized) humic substances from aqueous solutions (Urík et  al. 
2014; Vetrova et al. 2014).

The humic substances’ complex interactions with solid surfaces of silicates, min-
eral oxides and oxyhydroxides include sorption and aggregation via cation bridging, 
as well as specific ligand exchange mechanism (Parfitt et al. 1977; Chorover and 
Amistadi 2001; Gardošová et al. 2012). This interaction consequently affects immo-
bilization of metals and metalloids in soils and sediments, since it changes the reac-
tivity and availability of sorption sites and decreases the minerals’ surface charge 
(Chorover et al. 1999).

Wang and Mulligan (2006) indicated that humic substances enhanced leachabil-
ity of arsenic in soils. This was most likely due to their competitive interaction for 
sorption sites on the solid mineral surfaces. Besides the site competition, the elec-
trostatic repulsive interactions between sorbed humic substances and negatively 
charged ions of metals and metalloids take place at the near-mineral surfaces (Weng 
et al. 2009). Verbeeck et al. (2019) concluded that the soil organic matter has nega-
tive effect on soil-binding capacity for antimony(V) as the preferential sorption sites 
located on aluminium and iron oxides and oxyhydroxides are competitively blocked 
by organic matter. On the contrary, Dousova et  al. (2015) demonstrated that 
antimony(V) is effectively immobilized in organic O horizons indicating formation 
of complexes with the surface of co-occurred organic matter, or it is complexed in 
iron-organic matter aggregates. This most likely relates to different acidity of soils 
used in previously mentioned works as the pH controls surface charge. Thus, it also 
plays significant role in sorption of metals and metalloids in the soils. It has been 
suggested that metals bind directly to iron and manganese oxyhydroxides’ surfaces 
in circumneutral environments, while in acidic region the binding to the functional 
groups of humic substances is preferential (Tessier et al. 1996).

Furthermore, the sorptive interactions may also affect redox transformation and 
subsequent complexation of metals and metalloids by humic substances. As no sig-
nificant shifts in peaks were found in excitation/emission matrices of humic acids 
and fulvic acids in the presence of chromium(VI) and iron(0) fillings, Mak and Lo 
(2011) concluded that zero-valent iron was exclusive reducent of chromium(VI). 
Therefore, most likely as a result of sorptive inhibition of iron fillings’ surface or its 
passivation via complexation, the humic acids decreased the observable 
chromium(VI) reduction rate constant by up to 9% (Liu et al. 2008)

Sorption of humic substances onto microbial biomasses’ surfaces is most favour-
able in acidic solutions, where neither the humic acids nor microbial surfaces are 
charged (Fein et al. 1999). Tikhonov et al. (2013) suggested that size exclusion also 
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plays significant role in humic acids’ absorption by bacteria, since outer cell wall 
layer of Gram-negative bacteria hinders the uptake of humic acids with molecular 
weight over 20 kDa, while in Gram-positive bacteria, humic acids diffuse into the 
peptidoglycan layer easier.

The intimate interactions between humic substances and microorganism affect 
the microorganism both directly and indirectly. The physiological effect of humic 
substances is complex. They can serve as a carbon and energy source for some 
microbial groups (Tikhonov et al. 2010), while it can also suppress growth of other 
microbial species (Loffredo and Senesi 2009). Despite their direct physiological 
action (Visser 1985), capability of humic substances to form stable complexes with 
potentially toxic metals and metalloids may mitigate the mobility and bioavailabil-
ity of hazardous compounds for soil organisms (He et al. 2017) and allow them to 
grow in unfavourable environments (Urík et al. 2018). Therefore, the presence of 
humic substances seems essential with regard to efficient decrease of the reactive 
content of pollutants (Fonesca et al. 2013) as the microbial surfaces are generally 
negatively charged at pH values above 3 (Harden and Harris 1953) and, thus, easily 
interact with metal cations under normal environmental conditions. This was clearly 
demonstrated by Perelomov et al. (2018) who showed that the humic substances 
decreased toxicity of zinc(II) and lead(II) for bacterial Pseudomonas chlororaphis, 
P. fluorescens and Rhodococcus sp. strains. Similarly, Malcová et al. (2002) high-
lighted the role of fulvic acids in mitigation of manganese(II) and lead(II) toxic 
effects on arbuscular mycorrhizal fungus Rhizophagus irregularis (formerly Glomus 
intraradices) and three strains of filamentous fungi (Fusarium solani, Cladosporium 
sphaerospermum and Gliocladium roseum). Also Abdel Aziz et al. (2016) suggested 
that sorption of caesium(II) and lead(II) onto both F. oxysporum strain’s and humic 
acids’ surfaces decreased the bioavailability of these toxic metals for lettuce.

The aforementioned effect is of particular importance in the acidic environments 
where the biological surfaces may provide sorption sites with high affinity for toxic 
element, such is the case of binary mineral-microbial composites of goethite-
Burkholderia cepacia (Templeton et al. 2003) and amorphous hydrous ferric oxide-
Shewanella alga (Small et al. 1999). Du et al. (2016) indicated that the bacterial 
surfaces still provided binding sites with higher affinity for cadmium(II) even in the 
presence of humic acids and montmorillonite at mid-low pH. However, even the 
majority of copper(II) was bound to bacterial surface in goethite-humic acid-
P. putida system, the humic acid component in this ternary aggregate was capable 
to block sorption sites on bacterial surfaces to some extent (Du et al. 2017).

9.5  �Concluding Remarks

The complicated nature of mutual interactions of humic substances, microorganism 
and metal(loid)s highlights the scientific struggle to grasp the complexity and an 
overall picture of metals’ and metalloids’ behaviour in the environment. Although 
we have intentionally simplified these interactions to redox and/or sorptive 
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behaviour of these components, there is still great uncertainty in an impact of the 
biochemically active microorganisms on this system (e.g. via selective bioaccumu-
lation). Nevertheless, in this review, we have highlighted that the humic substances 
provide active redox and sorption sites for various environmentally significant con-
taminants and that the microbial interaction with humic substances and mineral 
surfaces plays vital role in mobility and transformation of metals and metalloids. 
Therefore, we hope that this short review will inspire the reader to explore new 
ideas regarding microbial and humic acid involvement in the natural geochemical 
cycles, as well as their implication for the remediation of contaminated sites.
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10.1  �Introduction

Soil is a highly dynamic medium, essential in ensuring the survival and continuation 
of all life on Earth (Liu et al. 2010; Montanarella et al. 2016). Soils are, unfortu-
nately, constantly exposed to soil deterioration factors such as erosion, compaction, 
deprivation of soil organic carbon, loss in soil biodiversity, acidification, saliniza-
tion, and contamination/pollution. As a result, soils are degraded and have poor 
quality and functions (Lal 2015). Soil degradation is more serious in the tropical and 
subtropical regions, especially in developing countries (Lal 2015), where approxi-
mately 60% decrease in ecosystem functions were reported from 1950 to 2010 
(Leon and Osorio 2014).

Soil pollution occurs when xenobiotic compounds or chemicals exist at levels 
above the ordinary threshold levels, causing detrimental effects to living organisms 
and reducing and degrading soil quality (Mirsal 2008; Wong 2012; Masindi and 
Muedi 2016; Rodríguez-Eugenio et al. 2018). Soil pollutants are normally derived 
from two major sources: (a) natural or geogenic, due to soil formation and nature of 
the soil parent materials, and (b) anthropogenic, due to human intervention or activ-
ities (Fig. 10.1) (Petruzzelli et al. 2010; Barbieri et al. 2018; Rodríguez-Eugenio 
et al. 2018). Of the two, anthropogenic soil contamination is of greater concern as it 
is accelerated by (a) industrialization, manufacturing, and energy-related processes; 
(b) urbanization, where over the past few decades, the urban population has sur-
passed rural population in year 2008 (Fig. 10.2); (c) expansion of human population 
with the world population projected to be over nine billion by year 2050 (Fig. 10.2); 
and (d) agricultural activities or intensification (Pain et  al. 1991; Chaney and 
Oliver 1996).

Pain et al. (1991) and Chaney and Oliver (1996) have summarized a few com-
mon sources of agricultural pollutants. They include fertilizers, limestone, organic 

Fig. 10.1  Soil pollutions, sources, and types of common pollutants. (Sources from: Alves et al. 
(2016), Saha et al. (2017), Chaney and Oliver (1996), Lal (2015), Masindi and Muedi (2018), Pain 
et al. (1991), Rodríguez-Eugenio et al. (2018), Su et al. (2014) and Ye et al. (2017))
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contaminants, animal manures, residential or urban solid wastes, aerosol pollution 
from the smelting facilities, and contaminations from mining and smelting facilities 
through water and wind routes. These pollutants degrade agricultural soils making 
them less suitable for crops (Pain et al. 1991; Chaney and Oliver 1996; Abbasi et al. 
2014). Soil pollution, if not manage efficiently and strategically, will be a major 
limiting factor in achieving high and sustainable agricultural production in the 
future (Lal 2015; Aragón and Rud 2016).

Polluted soils can be managed by adopting the physicochemical or the biological 
approach. The physicochemical soil remediation can be conducted in situ or ex situ, 
which includes a variety of techniques. Some common physicochemical approaches 
include soil removal/replacement, isolation and containment of polluted soils via 
capping with synthetic membranes (barrier technology) (Mulligan et  al. 2001), 
solidification/stabilization of soil pollutants via immobilization or encapsulation 
with monomer (Tajudin et al. 2016), alteration of the pollutant properties through 
chemical reaction (Tajudin et al. 2016), vitrification through immobilization of pol-
lutants through thermally enhanced solidification/stabilization process (Mallampati 
et al. 2015), and chemical oxidation or reduction activities (Su et al. 2014; Ye et al. 
2017). Although most of the conventional remediation techniques are effective, they 
are costly, laborious, and not applicable for large-scale field conditions. Furthermore, 
physicochemical remediation approaches also result in the generation of hazardous 
waste and the loss of soil fertility (low sustainability), and the techniques are often 
highly complex and therefore have low acceptance from the public (Khalid 
et al. 2017).

As an alternative, biological remediation is explored as this approach is less 
destructive, environmental-friendly, safe, and economical and has high public 
acceptance (Khalid et al. 2017; Mishra 2017). Biological remediation is typically 
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via microbial remediation or phytoremediation. Various species of fungi and bacte-
ria, as well as the phytoremediator plants, have been used for bioremediation 
(Madigan 2000; Selbmann et al. 2013). Over the past three decades, studies with a 
more holistic and versatile approach aimed at soil bioremediation have been initi-
ated. The use of xenobiotic-tolerant microbial agents armed with growth-promoting 
and biocontrol traits is explored (Jacobsen 1997; Harman et  al. 2004; Zafra and 
Cortés-Espinosa 2015; Gkorezis et al. 2016; Ting and Jioe 2016; Sim et al. 2019a).

This chapter proposes the prospect of exploring microbial biocontrol agents for 
the removal of pollutants (toxic metals, metalloids) from soils. Microbial biocontrol 
agents, especially fungi and bacteria, are often introduced into soils (specifically 
agricultural soils) to control the development of plant diseases or to improve plant 
growth (Varma et al. 2017). They are introduced into soils which may be subjected 
to various agrochemical pollutants. The discovery of metal-tolerant microbial spe-
cies from phytoremediator plants and soil and the use of these potential biocontrol 
agents will be discussed. This approach promotes the search and adoption of bio-
control candidates as bioremediators to control disease and manage soil pollution at 
the same time. This chapter will therefore describe the microbial biocontrol agents 
and their potential, mechanisms, and applications for the remediation of polluted 
soils, particularly agricultural soils.

10.2  �Soil Pollution

Soil pollution has become one of the most alarming global environmental issues, 
with more contaminated soils revealed in the past three decades due to industrializa-
tion, urbanization, globalization, expansion in human population, and intensifica-
tion of agricultural activities (Norse and Ju 2015; Rodríguez-Eugenio et al. 2018; Yu 
and Wu 2018; Li et al. 2019; Behera and Prasad 2020). In 2014, China has surveyed 
and reported approximately 19.4% of its agricultural soils have been polluted by 
heavy metals, polycyclic aromatic hydrocarbons (PAHs), and dichlorodiphenyltri-
chloroethane (DDT) (Chen et al. 2014; Li et al. 2019). Soil pollutants are catego-
rized into organic, inorganic, and biological types (Masindi and Muedi 2016) 
(Table 10.1). Organic and inorganic pollutants are the most common contaminants 
reported in agricultural soils.

10.2.1  �Organic Pollutants in Agricultural Soils

Organic pollutants are environmental pollutants that can be oxidized, degraded, and 
utilized by living organisms (Masindi and Muedi 2016). They originate from indus-
trial, manufacturing, and petrochemical industries and agricultural activities. The 
main constituents of the organic pollutants in agricultural soils are persistent organic 
pollutants (POPs), PAHs and petroleum-based pollutants, as well as various types of 
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pesticides (Khanif and Salmijah 1996; Manz et  al. 2001; Padilla-Sánchez et  al. 
2014; Sun et al. 2018). Organic pollutants are persistent, have long half-life and low 
degradability, and are lipophilic and hydrophobic in nature. These characteristics 
have enabled organic pollutants to accumulate in human and animal fatty tissues 

Table 10.1  Types of soil pollutants, their sources/contributors, and their detrimental effects

Types Pollutants Sources/contributors
Negative and 
hazardous effects References

Organic Persistent organic 
pollutants (POP) 
(chlorinated and 
brominated 
aromatic 
hydrocarbons, 
organochlorine-
based pesticides, 
and dioxins)

Industrial chemicals, 
industrial products, 
chemical 
manufacturing, 
agrochemicals, 
agricultural practices

Persistence in the 
ecosystem and long 
half-life, 
biomagnification in 
food chains, 
carcinogenic, 
mutagenic, 
teratogenic, affect 
health and 
reproduction of 
humans and animals

El-Shahawi 
et al. (2010), 
Jones and de 
Voogt (1999), 
Colborn et al. 
(1993)

Polycyclic aromatic 
hydrocarbons 
(PAHs) and 
petroleum-based 
hydrocarbons

Cao et al. 
(2017), 
Cocârţă et al. 
(2017), and 
Marinescu 
et al. (2010)

Pesticides 
(herbicides, 
insecticides, 
fungicides, 
nematicide, 
rodenticide, and 
others)

Adverse effects to 
non-targeted 
organisms and 
vegetation, affecting 
the health of human 
and wildlife

Wasim Aktar 
et al. (2009), 
and Colborn 
et al. (1993)

Inorganic Heavy metals and 
metalloids

Wastes from 
industrial, 
agricultural, and 
domestic sectors, 
human activities or 
intervention (mining, 
smelting, chemical 
processing and 
manufacturing), 
agrochemicals, 
natural processes

Impairment of human 
and animal health, 
affect human and 
wildlife reproduction, 
affect the soil health 
and sustainability of 
the ecosystem, 
biomagnification in 
food chains

Colborn et al. 
(1993), 
Masindi and 
Muedi (2016), 
Rhind (2009), 
Salomons 
et al. (1995), 
and Wong 
(2012)

Biological Microbial agents 
(fungi, bacteria, and 
viruses); macro-
organisms (mites, 
nematodes, and 
cockroaches); 
others (pollens and 
animal urine and 
saliva)

Human activities or 
actions, animal 
faeces, domestic 
wastewater, livestock 
manure

Biohazards, 
pathogenic to human 
and wildlife, 
impairment of 
environment and 
ecosystem quality and 
services; food 
contamination and 
poisoning

Elliott (2003), 
Masindi and 
Muedi (2016), 
Rodríguez-
Eugenio et al. 
(2018)
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(Rhind 2009) and biomagnify in the food chains or food webs (Kelly et al. 2007). 
Exposure to POPs, PAHs, and pesticides increases the risk of cancers (Dich et al. 
1997), disrupts the development of respiratory and immune systems (Gascon et al. 
2013), and affects reproductive systems and fertility in humans and animals (Rhind 
2009; Ramesh and Archibong 2011). Organic pollutants also implicate soil micro-
bial diversity, stability, and ecosystem service and functions (Hafez and Elbesawy 
2009; Tejada et al. 2015).

10.2.2  �Inorganic Pollutants in Agricultural Soils

Inorganic pollutants are typically contaminants originating from natural minerals. 
They are generated from agricultural activities, human interferences, and natural or 
geogenic activities (Masindi and Muedi 2018). The main constituents of the inor-
ganic pollutants are impurities in phosphorus fertilizers and limestones, manures 
from livestock, domestic or human solid wastes, contaminations from mining or 
smelting facilities, and pesticides (Pain et al. 1991; Chaney and Oliver 1996; Khanif 
and Salmijah 1996; Kelepertzis 2014; Su et al. 2014; Alves et al. 2016; Yang et al. 
2018). Metals, metalloids, and nuclides are some of the common inorganic pollut-
ants which are non-degradable through biological or chemical means (Knox et al. 
2000). Approximately ten million surveyed sites around the world revealed that they 
are contaminated by various pollutants, with the primary source attributed to metals 
and/or metalloids (He et al. 2015).

Metals, in minute amounts, are essential for various stages of plant and human 
development and reproduction (Emamverdian et  al. 2015). These include cobalt 
(Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and 
zinc (Zn). In high concentrations though, these metals can cause health risks and 
toxic effects to living organisms (Alves et al. 2016). On the other hand, heavy met-
als, namely, arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), and mercury 
(Hg), are the non-essential metals with high atomic number and are highly hazard-
ous. These metals can cause toxicity and detrimental effects even at low concentra-
tions (Peralta-Videa et  al. 2009). Due to the non-biodegradable, hazardous, and 
persistent nature of the pollutants, metals (either singly or in combinations) are 
highly toxic to humans and animals when ingested, consumed, or inhaled (Colborn 
et al. 1993; Rhind 2009; Ali and Khan 2018; Masindi and Muedi 2018) (Table 10.1). 
Metals, particularly heavy metals, cause denaturation of protein synthesis, inhibi-
tion of cell division and enzymatic activity, and disruption to DNA transcription and 
cell membrane formation, which are all severe implications to biological organisms 
(Khan et al. 2009; Rhind 2009).

Coexistence of two or more inorganic pollutants (any combination of organic 
and inorganic contaminants) will aggravate the negative effects, even when concen-
trations are much lower compared to when the pollutant is present on its own (Rhind 
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Table 10.2  The standard regulatory or intervention thresholds of a few essential metals and non-
essential hazardous heavy metals in agricultural soils

Country

Metal/heavy metal concentration (mg/kg)

References

Non-essential hazardous heavy 
metals Essential metals
As Cr Hg Pb Cd Ni Cu Zn Co

Europe (EU) 
(2002)

– 150 – 300 3 75 140 300 – European Union 
(2002)

Netherlands 
(1995)

55 380 10 530 12 210 190 720 – Van den Berg 
(1995)

China (2007) 25–30 200–
300

0.5 80 0.3 50 100–
200

250 – EPMC (2015)

Taiwan (2000) 60 250 5 500 5 200 200 600 – TEPA (2000)
India (1998) 250–

500
3–6 75–

150
135–
270

300–
600

Awasthi (1998)

FAO/WHO 
(2001)

20 100 – 100 3 50 100 300 50 FAO/WHO 
(2001)
Chiroma et al. 
(2014)

Nigeria (2002) 200 20 85 35 100 140 0.3 – – DPR-EGASPIN 
(2003)

2009). Standard regulatory thresholds for a few major heavy metal and metal pollut-
ants have been established and used in environmental assessments, monitoring, and 
management of metal pollutants in agricultural sectors (Table  10.2) (Chen et  al. 
2007; He et al. 2015). Apart from the regulated metal limits for agricultural soils, 
other information related to various characteristics and properties of metals, and 
polluted sites, type of other pollutants (single metal or multiple or combination of 
both inorganic and organic sources), distribution of the pollution, soil physicochem-
ical and biological features, and hydrogeological details, are also important for soil 
remediation (Das et al. 2012; Su et al. 2014).

10.3  �Soil Remediation

Soil remediation approaches can be categorized into two broad groups; the physico-
chemical and biological remediation techniques (Table 10.3). Traditional and con-
ventional physicochemical remediation techniques have been demonstrated to be 
highly effective for small- to medium-scaled areas. However, physicochemical 
approaches are less economical and cause more disturbance to the targeted sites. 
Furthermore, these technologies also interfere with existing soil biological and 
chemical quality and properties and are less practical for vast areas of affected 
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agricultural soils (Table 10.3) (Lynch and Moffat 2005; Lim et  al. 2016; Khalid 
et al. 2017; Sun et al. 2018). Therefore, there is a need to explore, assess, and adopt 
soil remediation methods that are more environmental- and user-friendly, sustain-
able, less destructive to the soil functions and properties, and applicable for large-
scale application (Lynch and Moffat 2005; Sun et  al. 2018; Behera and Prasad 
2020). This approach is known as bioremediation.

Table 10.3  Physiochemical and biological remediation techniques or technologies for remediating 
soil pollution and their respective advantages and disadvantages

Physiochemical Biological

In situ Ex situ In situ Ex situ
Containment and barrier Landfilling Phytoremediation Landfarming
Encapsulation Soil washing Microbial remediation Biopile
Solidification/stabilization Physical separation Phytobial remediation Windrow
Electrokinetic/vitrification Pyrometallurgical Bioventing Bioreactor
Soil flushing Oxidation and 

reduction
Biosparging

Nanomaterials Composting
(a) �Required shorter treatment 

time
Advantages (a) �Generally high to very high public 

acceptability
(b) �Highly effective for 

multiple metals pollution
(b) Medium- to large-scale

(c) �Highly effective for high to 
very high level of pollutants

(c) Economic and environmental-friendly

(d) Less laborious and user-friendly
(e) Low energy input (energy saving)
(f) �Less disruptive to the soil properties 

and fertility
(a) �Generally low to very low 

public acceptability
Disadvantages (a) Required longer treatment time

(b) Small- to medium-scale
(c) �Expensive equipment and 

facilities required

(b) �Low to moderately effective for 
multiple metals pollution

(c) �Constant monitoring of the sites 
required

(d) Costly and laborious (d) �Dependent on the growth condition of 
bioremediators

(e) �Destructive to the soil 
functions and fertility

(e) �Dependent on the metal-tolerant 
capacity of bioremediators

(f) �May release some other 
chemical compounds

(f) �Dependent on the metal solubility in 
soil

(g) �Some required high input 
of energy

(g) �Effectiveness restricted to low to 
medium level of pollutants

(h) Plants can be vulnerable to diseases
(i) �Suitability and efficacy will be 

affected by soils and climate

Sources: Azubuike et al. (2016), Jin et al. (2018), Khalid et al. (2017), Sabir et al. (2015), Su et al. 
(2014), Masindi and Muedi (2018), Mulligan et al. (2001) and Ye et al. (2017)
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10.4  �Bioremediation

Biological remediation refers to the exploitation of living organisms for metaboliz-
ing, removing, degrading, transforming, and attenuating the pollutants through cata-
bolic, metabolic, and biological activities (BBSRC 1999; Lynch and Moffat 2005; 
Griffin 2014). Transformation, immobilization, attenuation, and detoxification of 
toxic metal(loid)s by bioremediators (plants and microorganisms) are achieved 
through a few common biological mechanisms. These mechanisms include 
reduction-oxidation processes, methylation/chelation, biosorption, and bioaccumu-
lation (Dixit et al. 2015; Ye et al. 2017; Prasad and Aranda 2018; Thakare et al. 
2021). Bioremediation can encompass phytoremediation, microbial remediation, 
and macro-organism or animal remediation, depending on the type of organisms 
used (Su et al. 2014; Song et al. 2017; Prasad 2017, 2018). Of these, phytoremedia-
tion and microbial remediation are the two bioremediation techniques that are more 
commonly explored and adopted.

10.4.1  �Phytoremediation

Phytoremediation was first adopted in 1983 for the decontamination of metal(loid)
s using plants. These methods comprise phytoextraction or phytoaccumulation, 
phytovolatilization or phytoevaporation, phytostabilization or phytodeposition, and 
phytofiltration (Sabir et al. 2015; Khalid et al. 2017; Mishra 2017; Ye et al. 2017). 
Phytoextraction or phytoaccumulation refers to the removal of metals from the soils 
by plants through roots, in which the metal(loid)s will then be translocated to and 
accumulated in the aboveground plant parts. Phytovolatilization or phytoevapora-
tion on the other hand is specific to only a few heavy metals, namely, Hg, Se, and 
As. These heavy metals can be biotransformed into volatile compounds via micro-
bial regulated activity, and the transformed compounds are gradually removed via 
plant transpiration. Phytostabilization or phytodeposition refers to removal of met-
als via immobilization in which movement of metals to other sites is minimized. 
The last approach, phytofiltration, is used to extract metal pollutants from the aque-
ous environments and mostly involves aquatic plants. To date, there are over 500 
vascular plant species (terrestrial or wetland plant species) from approximately 50 
families that are established with hyperaccumulation capability and studied for phy-
toremediation of heavy metals in soils (Li et al. 2011; van der Ent et al. 2012; Gall 
and Rajakaruna 2013; Su et  al. 2014; Neilson and Rajakaruna 2015; Sarma 
et al. 2021).
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10.4.2  �Microbial Bioremediation

Microbial bioremediation is the use of microbial agents in removing pollutants from 
the polluted environment (Garbisu and Alkorta 1997). Microorganisms, through a 
series of metabolic and enzymatic processes, are able to transform metal(loid)s 
from the existing oxidative state to other chemical forms with reduced toxicity/
reactivity. The transformed forms are then either highly soluble in water and have 
low toxicity or have low bioavailability as they are less water-soluble (Garbisu and 
Alkorta 1997; Gadd 2010; Coelho et  al. 2015). Common microbial remediation 
approaches adopted for remediating soil metal(loid)s pollution are bioaugmenta-
tion, biostimulation, and bioattenuation (Mishra 2017; Ye et al. 2017; Emenika et al. 
2018). Bioaugmentation refers to the introduction of indigenous or foreign metal-
tolerant microbes, either from a specific group or a consortium of microbial agents, 
to transform or remove the metal(loid)s. Biostimulation, on the other hand, involves 
alteration of the existing environment through supplementation of essential nutri-
ents, growth hormones or promoters, and/or optimum growth conditions to promote 
proliferation of the indigenous metal-tolerant microbes for remediating the con-
taminated soils. The last approach, bioattenuation, encompasses utilization of natu-
rally occurring microbes to reduce or transform metals into non-toxic or less toxic 
forms, and the process is carried out without human intervention. Various metal-
tolerant bacterial, fungal, and algal agents have been studied for soil microbial bio-
remediation. A brief summary on the microbes explored for metal(loid)s remediation 
has been outlined in Table 10.4 and elaborated in Sect. 10.5.

10.4.3  �Integrated Bioremediation Approach

Microbial-mediated or microbial-assisted phytoremediation (also known as phyto-
bial remediation) (Harman et al. 2004) has gained attention in the recent decades. 
Phytobial remediation is established through introduction of beneficial symbiotic 
microbes or endophytic microbes into the root system or other plant tissues of the 
phytoremediators to improve plant growth, metal tolerance, and remediation effi-
cacy (Lynch and Moffat 2005; Abhilash et al. 2012; Phieler et al. 2013; Waigi et al. 
2017). Plant growth-promoting bacteria (PGPB), endophytic microorganisms (bac-
terial or fungal endophytes), and mycorrhizal strains are among the common micro-
bial strains studied for integrated bioremediation approaches (Phieler et al. 2013). 
This approach has yielded successful outcomes. For example, the introduction of 
the metal-tolerant rhizospheric Trichoderma virens PDR-28 improved accumula-
tion of metals in maize (Zea mays) roots and shoots and reduced metal residues in 
the soils (Babu et al. 2014). This Trichoderma strain was incorporated into the phy-
tostabilization technique as well, to aid in removing and immobilizing metals in 
soils. The use of T. virens PDR-28 also improved the production of dry root and 
shoot biomass in maize. In another study, Mao et  al. (2016) integrated the 
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electrokinetic field remediation approach with phytoremediation and observed an 
increase in the translocation of metals from roots to shoots of mustard (Brassica 
juncea) and spinach (Spinacia oleracea). The combination of electrokinetic field 
remediation and phytoremediation improved the bioaccumulation of Pb, As, and 
cesium (Cs). This study has illustrated the enhanced metal remediation by incorpo-
ration of physical and biological remediation techniques.

10.5  �Microbes for Bioremediation

Various microorganisms have been studied for applications in bioremediation. 
Bacterial and fungal agents are the most commonly studied for metal bioremedia-
tion with more than 200 publications annually in the past one decade. On the other 
hand, algae and yeast are less common.

10.5.1  �Bacteria

Bacteria, being one of the most dominant inhabitants in the soils, are ubiquitous in 
the environment and very versatile, capable of thriving in diverse and extreme envi-
ronments (Rampelotto 2013). To survive in environments polluted by metal(loid)s, 
bacteria evolve and adapt to polluted environments. Their mechanisms of adapta-
tion may include various passive intra- and extracellular metal-sequestrating mech-
anisms and energy-driven metal efflux transporters or pumps to modulate the toxic 
metal ions (Nies 1999; Ma et al. 2009; Choudhary et al. 2017). Three commonly 
known metal(loid)s transportation systems are CBA (capsule biogenesis/assembly 
family); P-type ATPases; and cation diffusion facilitator (CDF) (or chemiosmotic 
ion-proton exchangers). CBA is a transmembrane pump with three major compo-
nents: resistance-nodulation-division (RND) protein, membrane fusion protein 
(MFP), and outer membrane factor (OMF), used to sequestrate metals off the outer 
cell membrane from the cytoplasm or periplasm (Franke et  al. 2003). P-type 
ATPases utilize ATP energy to transport metal ions out from cytoplasm into peri-
plasm (Rensing et al. 1999). CDF, on the other hand, is employed to pump metal 
ions from cytoplasm into the periplasm (Nies 1999). Bacteria also produce sidero-
phores, iron-chelating compounds, and specific metal-binding proteins (e.g. 
metallothioneins) to immobilize metal(loid)s, facilitate ion complexation, and 
maintain homeostasis of metal ions (Cobbett and Goldsbrough 2002; Blindauer 
2011; Schalk et al. 2011; Saha et al. 2013).

Metal-tolerant bacterial strains, from genera Bacillus, Azotobacter, Pseudomonas, 
Rhizobium, Streptomyces, Amycolatopsis, Acinetobacter, Klebsiella, Comamonas, 
Cupriavidus, and Kluyvera, have been isolated from various polluted ecosystems 
(Table  10.4). These microbes showed promising potential for bioremediation 
through bioaugmentation, bioaccumulation, phytoremediation, and 
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phytovolatilization (Burd et al. 2000; Tunali et al. 2006; Nanda and Abraham 2011; 
Ahemad and Malik 2012; Hookoom and Puchooa 2013; Siripornadulsil and 
Siripornadulsil 2013; Abo-Amer et al. 2014; Das et al. 2014; Choudhary et al. 2017; 
Emenike et al. 2018).

10.5.2  �Fungi

Biosorption (passive) and bioaccumulation (active) are the common mechanisms 
adopted by fungi to remove, detoxify, or transform metal(loid)s in the polluted envi-
ronments (Singh et al. 2018). Fungal cell walls have multiple functional groups, 
namely, sulfhydryl, carboxyl, hydroxyl, amine, and phosphate, to facilitate the 
adsorption and complexation of metal(loids) (Gupta et al. 2000). Fungal cell walls 
also consist of carbohydrates (e.g. polysaccharide and glycoproteins) (Ahluwalia 
and Goyal 2007) and other components (e.g. chitin and chitosan) (Das et al. 2008), 
which are important in chelating and sequestrating metal(loids) (Gadd 1990) and in 
metal binding (Abbas et al. 2014). The biosorption process is generally more rapid 
compared to the energy-driven bioaccumulation process. Furthermore, biosorption 
is not affected by metal toxicity and is not metabolic-dependent (Gadd 1990; Abbas 
et al. 2014). On the other hand, bioaccumulation mechanisms, which require living 
cells, utilize metal transportation services to modulate ion metals (Abbas et  al. 
2014). Ascomycetous and basidiomycetous fungi utilize intra- and extracellular 
enzymes, namely, laccases, tyrosinases, and peroxidases, to metabolize metals 
(Baldrian 2006; Halaouli et al. 2006; Hofrichter et al. 2010). In addition, fungi also 
produce organic acids (e.g. oxalic and citric acids) to assist in the immobilization of 
metal ions (via complexation and formation of insoluble metal oxalates) for detoxi-
fication (Gadd 1999; Franceschi and Nakata 2005).

A wide array of fungal species (i.e. Bipolaris, Diaporthe, Phomopsis, 
Saccharicola, Trichoderma, Rhizopus, Aspergillus, Mucor, Rhizomucor) and 
mycorrhizae have been isolated from metal-polluted agricultural soils and the phy-
toremediator plant (Phragmites sp.). These isolates have demonstrated potential as 
bioremediators for remediating metal-contaminated agricultural soils (Sambandan 
et al. 1992; Ahmad et al. 2005; Iram et al. 2009; Srivastava et al. 2011; Iram et al. 
2012; Babu et al. 2014; Chen et al. 2015; Singh et al. 2015a; Sim et al. 2018, 2019b) 
(Table 10.4). Some of these metal-tolerant fungal strains can be integrated into phy-
toremediation system for agricultural soils polluted with metal pollutants.

10.5.3  �Consortium of Microbial Agents

Both bacteria and fungi can be applied together as a mixed consortium to enhance 
removal of metal(loid)s. The consortium or combination of microbial agents, either 
bacterial-bacterial, fungal-fungal, or bacterial-fungal mixtures, is capable of 

Y. K. Goh and A. S. Y. Ting



231

minimizing toxic effects towards host plant while improving plant growth. Mishra 
et al. (2016) reported that the combination of arbuscular mycorrhizal fungi (AMF) 
and plant growth-promoting rhizobacteria (PGPR), such as the use of Glomus, 
Acaulospora, and Scutellospora, and a different combination of Streptomyces, 
Azotobacter, Pseudomonas, and Paenibacillus were able to improve iron absorption 
and phytoremediation, respectively. This is when compared with the use of single 
AMF or PGPR.  Sim and Ting (2017) elucidated the combination of bacterium 
Stenotrophomonas maltophilia and fungus Saccharicola bicolor from the phytore-
mediator plant Phragmites sp. and observed improved metal biosorption for metals 
from single- and multi-metal ions (Pb, Cu, Zn, and Cd), compared to when S. bicolor 
was applied singly.

10.6  �Metal-Tolerant Biological Control Agents (BCAs) 
for Bioremediation

Microbial agents with tolerance to pollutants and also with disease suppression trait 
make ideal candidates for agricultural and bioremediation uses. The discovery of 
metal-tolerant endophytic fungi from phytoremediator plant and other potential 
metal-tolerant bacterial and fungal species from metal-laden environments or media 
with disease suppression trait has showed the possibility of using biocontrol agents 
for bioremediation (Table 10.5). Biological control (or biocontrol) is defined as the 
use or introduction of desirable living organisms to suppress the growth and activity 
of the undesirable organism (e.g. weeds, pests, plant pathogens) (Gnanamanickam 
et al. 2002; Pal and McSpadden Gardener 2006). Common biological control mech-
anisms employed are direct interactions via mycoparasitism and predation, antimi-
crobial mechanisms (antibiotic compounds, degrading enzymes), and indirect 
interactions via competition and induction of host defensive mechanisms (Whipps 
2001; Pal and McSpadden Gardener 2006; Cortes-Penagos et al. 2007).

Rhizospheric soils and various metal-polluted samples or substrates have been 
explored extensively to bio-prospect for potential BCAs to be used in bioremedia-
tion (Table 10.5). Sayyed and Patel (2011) isolated two Ni- and Mn-resistant bacte-
rial strains with biocontrol trait, namely, Alcaligenes sp. and Pseudomonas 
aeruginosa, from Indian soils. Alcaligenes sp. and P. aeruginosa strains with anti-
microbial and siderophoregenic activities inhibited the growth of pathogens such as 
Aspergillus niger, A. flavus, Fusarium oxysporum, Cercospora arachichola, 
Metarhizium anisopliae, Pseudomonas solanacerum, and Alternaria alternata in 
in vitro bioassays. In a separate study, Pb-tolerant P. aeruginosa from surface water 
of Mandovi estuary in India was equipped with the metallothionein gene (bmtA – 
for metal sequestration) and hydrogen cyanide and siderophore production capabili-
ties (Naik et al. 2012). Pb accumulation in the root of P. sativum L. was reduced by 
51.69% in the treatment with Pb-tolerant P. aeruginosa. This bacterium also 
improved seed germination and plant growth with 48.83% and 43.83% root and 
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shoot growth improvements, respectively. This P. aeruginosa strain also demon-
strated tolerance towards Cd and Hg. In another study, two strains of P. protegens 
were isolated from waters containing agricultural effluents in Algeria (Leila et al. 
2016). These two isolates showed metal resistance, plant growth-promoting (PGP) 
characteristics (i.e. phosphate-solubilizing ability, production of phytohormones), 
and the ability to suppress pathogens via production of chitinase and cell wall-
degrading enzymes. These mechanisms were effective in inhibiting mycelial growth 
of Botrytis cinerea, Verticillium dahliae, F. graminearum, A. niger, and A. flavus 
with 48–88% inhibition. In addition, these bacterial strains also improved plant 
growth and seed germination in Hordeum vulgare L. (barley) (Leila et al. 2016). In 
separate study by Carlot et  al. (2002), Cd-tolerant PGP Serratia plymuthica was 
isolated from soils polluted with metals. This isolate suppressed the growth of 
pathogenic Phytophthora megasperma while able to adsorb and accumulate Cd. 
Aka and Babalola (2016) further discovered three metal-tolerant bacterial strains 
(P. aeruginosa, Alcaligenes faecalis, and B. subtilis) with the ability to tolerate high 
Cd, Cr, and Ni, from mine tailings in South Africa. These bacterial strains were also 
able to increase the solubility of heavy metals in soil (Cr, 50%; Cd, 50%; and Ni, 
44%), enhancing metal accumulation by the metal accumulator Brassica juncea 
L. (canola). Pseudomonas aeruginosa improved Cr accumulation in plant root and 
shoot tissues by 56% and 73%, respectively. Furthermore, through inoculation of 
B. subtilis, Ni accumulation in root and shoot tissues increased by 55.9% and 32%, 
respectively. Alcaligenes faecalis improved Cd accumulation in root and shoot 

Fig. 10.3  Various types of mechanisms and activities provided by the potential metal-tolerant or 
metal-resistant microbial biocontrol agents to the plant hosts in exchange for nutrient and energy 
sources and protection from the plant hosts. Mechanisms that contribute to metal-tolerant or metal-
resistant microbial agents also included. (References: Deketelaere et  al. (2017), Purohit et  al. 
(2018), Taj and Rajkumar (2016) and Wu et al. (2009))
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tissues by 73% and 14%, respectively. These microbes could be the potential bio-
control candidates to be incorporated into phytoextraction remediation approach.

In other studies, metal-tolerant endophytes from phytoremediator plants have 
been discovered to have both metal tolerance and biocontrol activities. Sim et al. 
(2018, 2019b, 2019c) established this when the metal-tolerant endophytic Diaporthe 
miriciae and Trichoderma asperellum isolated from Phragmites sp. (phytoremedia-
tor) were found to inhibit the growth of Ganoderma boninense in bioassays under 
metal stress. Trichoderma asperellum inhibited the growth of G. boninense through 
mycoparasitism, whereas D. miriciae adopted competitive exclusion to inhibit the 
growth of G. boninense. Both fungal isolates produced secondary metabolites (e.g. 
alkaloids, sterols, and terpenoids) with antifungal activities to suppress G. boni-
nense as well. These fungal endophytes reduced basal stem rot disease incidences 
and severity in oil palm (Elaeis guineensis) seedlings when challenged with G. boni-
nense. Diaporthe miriciae demonstrated better reduction in G. boninense disease 
scores compared to T. asperellum under in vivo experiment.

Other Trichoderma species, namely, T. harzianum, T. viride, T. atroviride, and 
T. pseudokoningi, with metal-, cyanide-, or metallocyanide-tolerant traits, have also 
been studied for their potential in remediating metals and other xenobiotic pollut-
ants (Harman et al. 2004; Lynch and Moffat 2005; Tripathi et al. 2013). Trichoderma 
harzianum with biocontrol traits improved plant growth and seed germination in 
soils amended with cyanide as this isolate is known to detoxify cyanide and metal-
locyanide (Ezzi and Lynch 2002; Lynch and Moffat 2005). Rawat and Tewari (2011) 
examined two isolates of T. virens, one T. viride, and one Aspergillus flavus, for their 
potential in antagonizing and parasitizing Sclerotium rolfsii and Rhizoctonia solani 
fungal pathogens of Cicer arietinum L. (chickpea). They found these BCAs were 
able to undergo phosphate solubilization under different abiotic stresses, namely, 
Cd, pH, and temperature stress. All tested fungal isolates produced siderophore and 
NH3, while only T. virens and A. flavus produced hydrogen cyanide (HCN). 
Trichoderma viride retained its phosphate-solubilizing capability despite Cd amend-
ments (0–1000 μg/mL).

Studies on highly versatile microbes with multiple traits (Fig.  10.3), namely, 
disease-suppressing and metal(loid)-tolerant, are crucial to bio-prospect for poten-
tial BCAs for bioremediation. These microbes can also be incorporated into the 
agricultural systems polluted with metal(loids) to sustain plant growth, survival, and 
crop production and minimize economic losses due to pest and diseases.

Microbes also improve survival, growth, nutrient solubility, and nutrient uptake 
of the host plant through production of the following valuable compounds – phyto-
hormones, siderophores, indole acetic acid (IAA), 1-aminocyclopropane-1-
carboxylate (ACC) deaminases, and organic acids (Ojuederie and Babalola 2017) 
(Fig.  10.3). Microbial ACC deaminases are commonly reported in bacteria and 
fungi to assist plants to survive under abiotic stresses via ACC (the precursor of 
ethylene) metabolism (Singh et al. 2015b). ACC will be converted into ammonia 
and α-ketobutyrate (readily accessible molecules for the microbes to grow) to 
reduce the accumulation of stress ethylene and improve plant growth. Various 
metal-tolerant bacterial and fungal species with biocontrol traits have been studied 
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for their potential in improving seed germination, plant growth, survival of the 
plant, and efficiency of nutrient use under metal-stressed conditions. Metal-tolerant 
bacterial Pseudomonas protegens produced 3.1–4.0 μg/mL of IAA (in 500 μg/mL 
of L-tryptophan) and solubilized phosphate (Leila et al. 2016). Pseudomonas prote-
gens also significantly improved the growth whereby shoot (fresh weight from 0.06 
to 0.1 g and dry weight from 0.025 to 0.04 g) and root (fresh weight from 0.047 to 
0.075 g and dry weight from 0.016 to 0.03 g) were enhanced in Hordeum vulgare 
L. Vivas et al. (2003) reported that the inoculation of both Pb-tolerant Brevibacillus 
sp. and arbuscular mycorrhizae in the Trifolium pratense L. improved shoot and root 
dry weight when cultivated in Pb-amended soils.

10.7  �Benefits and Challenges of Using BCAs 
for Bioremediation

Adoption of BCAs for bioremediation does have its merits. Incorporation of BCAs 
into bioremediation systems can be environmental-friendly and capable of main-
taining or improving soil fertility and functions (Ye et al. 2017). Furthermore, indig-
enous metal-tolerant or metal-resistant BCAs isolated from metal-polluted soils can 
be reintroduced back into original environment to facilitate the bioremediation pro-
cess and protect the crops from pest and diseases. These BCAs can also ameliorate 
the adverse effects caused by heavy metals, improve the growth of the crops, and 
sustain crop production. In addition, BCAs with multiple biocidal properties, 
namely, fungicidal, bactericidal, and insecticidal, can be the potential candidates for 
managing both pest and disease (Leila et al. 2016) at the same time. For phytoreme-
diation, metal-tolerant or metal-resistant BCAs with the ability to promote plant 
growth, immobilize soluble complexes, solubilize accessible metal complex, and 
accumulate metal(loid)s were isolated and studied for bioremediation. These 
microbes can be utilized for phytostabilization, phytoextraction, and phytovolatil-
ization processes and protect the host plant from pest and diseases at the same time. 
Meanwhile, for the agricultural soils with heavy metal pollution, metal-tolerant or 
metal-resistant BCAs can be used for minimizing the metal uptake by plant and 
improving the seed germination, survival, and growth of the crops.

Unfortunately, the adoption of BCAs for bioremediation processes does have its 
own limitations. Suitability of the microbial-mediated bioremediation approaches 
was reported to be generally low in highly contaminated sites (Prasad and de 
Oliveira Freistas 2003). Furthermore, most of the studies conducted are mainly 
under artificial or controlled conditions, namely, laboratory, glasshouse, or small 
experimental plots (Ye et al. 2017). Therefore, it is essential to conduct experiments 
in the original contaminated sites to assess the potential of BCAs for bioremedia-
tion. Microbial population and activity can be affected by various soil types, condi-
tions, and properties (Prasad and de Oliveira Freistas 2003). Survival, growth, 
proliferation, and also the competitiveness of the introduced microbial agents in the 
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actual contaminated fields differ and warrant more detailed studies (Waigi et  al. 
2017). Coexistence of organic and inorganic pollutants or multiple heavy metals 
may pose adverse effects on BCAs and the host plant. These phenomena may also 
reduce the efficacy of BCAs in disease control and decrease the efficiency of 
microbial-mediated phytoremediation (Rhind 2009; Ye et al. 2017).

10.8  �Conclusions and Future Prospects

Bioremediation is an environmental-friendly, sustainable, and cost-effective tech-
nology that has great potential to be adopted in remediating the contaminated soils. 
Microbial-mediated phytoremediation or phytobial remediation has attracted atten-
tion in recent decades due to the potential use of microorganisms with various 
important roles and traits (Mishra et al. 2017; Ojuederie and Babalola 2017; Waigi 
et al. 2017; Hrynkiewicz et al. 2018; Singh et al. 2018). The use of metal-tolerant 
BCAs will serve as metal ameliorator to reduce metal toxicity, as well as to improve 
plant growth, reduce metal accumulation, and sustain the yield for agricultural crops.

Sim et al. (2018, 2019b, c) isolated metal-tolerant D. miriciae and T. asperellum 
endophytic fungi from the phytoremediator Phragmites sp. (leachate treatment 
site). These endophytes were able to slow down the development of disease symp-
toms in E. guineensis seedlings challenged with G. boninense in metal-spiked soils 
in the nursery set-up. Both D. miriciae and T. asperellum could be potential BCAs 
for agricultural applications, such as for protecting oil palm from G. boninense and 
for phytobial remediation in the metal-stressed soils. This is the first experiment 
conducted in the nursery settings to study the potential of metal-tolerant BCAs in 
suppressing G. boninense. Most of other previous studies on metal-tolerant BCAs 
evaluation were mainly conducted in the laboratory set-up or in vitro conditions to 
determine the capability of potential microbial agents in controlling plant patho-
gens. Therefore, more detailed nursery and field experiments with potential BCAs 
for bioremediation should be conducted to assess the efficacy of BCAs in remediat-
ing the polluted soils (Ye et al. 2017).

Rhind (2009) and Ye et al. (2017) emphasized the importance of potential detri-
mental effects from coexistence of organic and inorganic pollutants or multiple 
heavy metal(loids) on the efficacy of bioremediation and survival and growth of 
bioremediators. Therefore, more in-depth studies are required to understand the 
effects of metal(loids) and organic pollutant coexistence on the efficacy of potential 
BCAs with bioremediation capability. Combination of either conventional and bio-
logical or multiple remediation technologies for cleaning up the soils with co-
contaminants has been proposed for improving the remediation process (Ye et al. 
2017). Megharaj and Naidu (2017) and Jin et al. (2018) suggested the utilization of 
conventional physicochemical remediation followed by biological remediation 
methods to improve the soil quality. It is worthwhile to explore further on the adop-
tion of multiple remediation technologies, by integrating biological and non-
biological techniques together with the BCAs, for remediating soil pollutants.
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Furthermore, an array of ‘-omics’ researches, namely, metagenomics, transcrip-
tomics, proteomics, and metabolomics (Malla et al. 2018), have been initiated for 
understanding multi-trophic relationships and cell function in the ecosystem. The 
‘-omics’ technology can be adopted to generate information on the metabolic net-
works and corporations among the microorganisms and microbial groups or com-
munities in the polluted soils. Information produced through various ‘-omics’ 
studies will be beneficial for the selection of potential BCA/bioremediators and 
understanding of pathways for BCA-mediated bioremediation. All the additional 
future researches and information on metal-tolerant microbial bioremediators with 
biological control trait will be beneficial for improving efficacy of biocontrol and 
bioremediation in the soils with metal pollutants. These studies and information will 
enhance formulation of metal-tolerant BCAs, minimize the limitations of BCAs, 
and select for the highly metal-tolerating microbial candidates.
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11.1  �Introduction

Extension dealing and proceed share directly or indirectly escalate the introduction 
of insect pests into new areas, where they become serious pests. Continued use of 
inorganic insecticides by farmers (mainly for management of pests) over a period of 
years causes environmental and human health problems despite initially achieving 
success and being economically viable. Integrated pest management (IPM) involves 
surveying, recognition, and effective action for pest management. Treatment is gen-
erally started after proper inspection and identification of pests, with consideration 
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of economic viability and environmental safety, including use of safe, pest-specific 
chemicals with limited persistence in the environment. Biological control is a valu-
able tool in integrated pest management. It came out proposition to modify as the 
welfare matter by covering all pest management alternatives into deliberation and 
encourages an equitable action plan that is eco-friendly, workable, inexpensive, and 
culturally appropriate, utilizing different frameworks for management of insect 
pests that cause problems in crop production (Dara 2019).

Pests are accountable for approximately 25–42% of losses in crop production. 
Substantial utilization of synthetic chemical pesticides causes pests to develop 
resistance against the chemicals and creates environmental pollution and hazards to 
the health of humans and other organisms. As a result, there is now a call to decrease 
chemical utilization in agricultural crop production, giving momentum for expan-
sion of different ways of reduction pest populations. An acceptable alternative to 
chemical control is biocontrol, using microbes to destroy pests without causing 
harmful effects on the health of humans and the environment. Because of the com-
plex modes of activity of microbes, it is difficult for pests to develop resistance 
against effective microbes even when they are used frequently. Use of bacteria, 
fungi, viruses, nematodes, and other microbes is now widespread and is achieving 
excellent results. Among all of these different types of microbe, fungal microbial 
agents have the greatest potential because of their easy transportability in appropri-
ate formulations, the extensive number of pathogenic strains available, simple engi-
neering skill and overexploitation of endogenous proteinous or exogenous 
contamination (St  Leger and Wang 2009; Wang and St  Leger 2007a; Butt et  al. 
2001; St Leger et al. 1996). Reason behind wide host assortment, direction of patho-
genomic and capacity to control sap feeders and soft-bodied pests such as aphids 
(which feed on plants), mosquitos (which feed on human blood and act as a vector 
for disease), whitefly, jassids, thrips (which are phytophagous in crop ecosystems) 
(Thomas and Read 2007; Fan et  al. 2007; Qazi and Khachatourians 2005; Butt 
2002), and solid feeders such as various type of caterpillar (de Faria and Wraight 
2007; Hajek and St Leger 1994). Several major pests belong to the orders Coleoptera, 
Lepidoptera, Orthoptera, Thysanoptera, Hemiptera, and Hymenoptera. Crop eco-
systems that have been a targeted by different manage tactics covering microbial 
techniques with native or exotic biopesticides. Molds descend from a group of 
ancestral organisms that depended on complex organic substances for their nutri-
tion, and they are eukaryotic pathogens of pests, utilizing the bodies of target hosts 
to complete part of their life cycle (Wraight et al. 2007; Samson et al. 1988). More 
than 700 entomopathogenic species have now been identified in the Chromista 
kingdom (Goettel et al. 2000). Other major valuable species include members of the 
Ascomycota phylum, the Hypocreales order, the Neozygitales order, and 
Entomophthora (which belongs to the Entomophthorales order). These fungi are 
outstanding candidates for microbial pest management (Hajek 1997; Roy et  al. 
2010). Even so, only a few members of these taxa—such as Beauveria bassiana 
Petch, Metarhizium anisopliae (Metschn.), Lecanicillium lecanii (Zimm.), and 
Isaria fumosorosea (Wize)—are vigorously marketed for application as biopesti-
cides to obtain high yields of good-quality crops (Humber 2010). The significance 
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of entomopathogenic fungi in relation to agriculture and forest pests has recently 
been highlighted (Augustyniuk-Kram and Kram 2012).

11.2  �Entomopathogenic Fungi

Entomopathogenic fungi can be extensively sprayed in both limited and broad host 
ranges for biocontrol of arthropods and insects on plants. These fungi were the first 
organisms to be applied as biopesticides for management of pests. Ninety genera, 
including more than 700 species, have been recognized as infective agents that can 
be used against insect pests (Khachatourians and Sohail 2008). The Ascomycota 
and Zygomycota are two important phyla in this regard. In the past, ascomycete 
fungi were classified into two subgroups: Ascomycota and Deuteromycota. The 
Deuteromycota (also known as “imperfect fungi”) have no sexual stage in their life 
cycle. Molecular and cultural research has shown that some of these (which were 
previously formally classed among the Hyphomycetes in the Deuteromycota) are 
asexual Ascomycota that belong to the order Hypocreales in the family 
Clavicipitaceae (Hodge 2003; Fukatzu et al. 1997; Krasnoff et al. 1995). In the divi-
sion Zygomycota, the majority of entomological fungi are part of the order 
Entomophthorales (Roy et al. 2006). Because they are saprotrophic in nature, these 
fungi fulfill their nutritional requirements by being rhizophagous and phyllopha-
gous. Endophagous saprotrophic, hemibiotrophic, necrotrophic on greenery, fungal 
parasitic and few among them take on various econutritional food material.

11.3  �Life Processes of Entomologically Useful Molds

During their life cycles, molds develop from spores and grow into mature fungi that 
produce spores. The life cycle of these fungi comprises two stages: normal growth 
of mycelia occurs in the stage of externally body on insect pests as well as yeast 
manners promising stage mainly fluid material of target host body such modifica-
tion occurred manner of dimorphism way of growing in Beauveria bassiana (Alves 
et al. 2002), and elliptical blastospore-like propagules are produced by Metarhizium 
flavoviride (Fargues et al. 2002). The life cycle processes of green muscardine fun-
gus have been studied in fluid media (Uribe and Khachatourians 2008). Beauveria 
bassiana  absence in particular insect body grows via vegetative life-form of asex-
ual condition connected emergence of thread form development and formation of 
fruiting bodies called sympoduloconidia. Beauveria conidiospores grow on the 
integument of the host insect and penetrate the cuticle as the fungal structure 
expands. It undergoes a change in its external shape, like a yeast stage, and creates 
mold fruiting bodies during its expansion, which are transported throughout the 
insect’s body via its blood and kill it. When it is fully grown, the mold grows fully 
turn blackish to well develop mold structure convert in to saprotrophic decomposing 
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stage. The capability to change into a yeast form may be a precondition for patho-
genesis of entomopathogenic fungi. Verticillium lecanii, Beauveria bassiana, and 
Metarhizium anisopliae are assiduously deliberate as normal bioagents and valu-
able for control of plant lice and other soft-bodied pests that feed on crops (Li and 
Sheng 2007; Thomas and Read 2007; Roberts and St Leger 2004; Milner 1997). 
White muscardine disease is caused by important entomopathogenic fungi, which 
contaminate nearly 95% of winged plant lice, particularly green peach aphids 
(Myzus persicae) (Chen et al. 2008). Both types of entomopathogenic fungus have 
dual biocontrol attributes, as they act as bioagents on target pests and as pathogens 
on plants (Goettel et  al. 2008; Bonnie et  al. 2009). Formulations of Verticillium 
lecanii can be applied for management of sucking pests, and it is also effective as an 
antagonistic mold for curing plant diseases such as powdery mold (Miller et  al. 
2004; Askary et  al. 1997; Dik et  al. 1998), decaying green fungus, Fusarium, 
Verticillium dahliae, and Pythium ultimum (Spencer and Atkey 1981; Benhamou 
and Brodeur 2000, 2001; Kusunoki et al. 2006). Tritirachium shiotae is announce as 
limiting of the expansion of this fungus outside of test tube, mass multiplication 
endophytically many crops and persuade integral resistance when microbes con-
taminate crops and decreases infections caused by soilborne microbes such as 
Fusarium, Pythium and Rhizoctonia (Ownley et  al. 2010). Microspores of these 
molds are commonly eco-friendly, with insignificant or only minor toxicity to mam-
mals and no residual effects (see Fig. 11.1) (Copping 2004), and they are effective 
fungal biopesticides against plant lice (Milner 1997; Shah and Pell 2003). To date, 
a few mycobiopesticides have been formulated and utilized in different countries, 
including the USA (Goettel et al. 2005; Kiss 2003). Mycobiopesticides have a broad 
range, without affecting other bioagents used against their target host or affecting 
economically important microbes with beneficial effects. They can also be used to 
manage different pests and plant diseases at the same time (Wraight and Carruthers 
1999). Molds that are effective for management of agricultural pests are listed in 
Table 11.1.

11.4  �Modes of Action of Fungi

The molds used to control insect pests are pathogenically dissimilar to bacteria and 
viruses. Normally, they enter the target host by damaging its cuticle. The integu-
ment is made up of polysaccharide glucosamine polyose fibrils inset with pigments, 
proteins, lipids, and N-acyl catecholamines (Richard et al. 2010). Extracellular fluid 
containing enzymes, lipases, proteases, and chitinases is released and degrades the 
main components of the cuticle (i.e., lipids, proteins, and chitin), allowing penetra-
tion of the fungus (Wang et al. 2005; Cho et al. 2006a). Lipase enzymes have com-
plicated pathogen virulence and play various roles in the process of microbial 
infection (Stehr et al. 2003). Successful contamination is directly related to release 
of the extracellular enzymes (Khachatourians 1996). Such fungi are trusted for 
unemotional force and the action of enzymes are evolved hemocoel of the insect and 
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enter via opening of the cuticle. An overview of the actions of chitinase, protease, 
and lipase enzymes in this pathological process is shown in Fig. 11.2. Exoenzymes 
produced by entomological molds have been shown to release toxic proteins and 
metabolites in vitro and in field conditions. At that place have few harmful content 
in extracted fungi with tiny collateral metabolites, cyclic peptides, and macroparti-
cle proteins. White muscardine fungi have been shown to produce low molecular 
weight cyclic peptides and A-type and C-type cyclosporines with toxic attributes, 
such as bassianolide, enniatins, beauvericin (Vey et al. 2001; Roberts 1981), and 
oosporein, as well as cyclic peptides with immunosuppressant actions. A few 
biopesticides containing cyclic peptides such as beauvericin and bassianolide have 
been extracted from the same molds. One fungal strain has been used to create the 
high molecular weight toxic compound hirsutellin  A for natural management of 
pests (Enrique and Alain. 2004). However, the main problem limiting the market-
ability of mycobiopesticides is that they take more time to kill their target hosts than 
chemical pesticides do (St Leger and Wang 2009). Great worked carried in point of 
view enhance as well as ameliorate acerbity of such mold to a bigger expanse than 

Fig. 11.1  Life cycle of an entomopathogenic fungi
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Table 11.1  Commercially available entomopathogenic fungi used to control target pests

Fungal species Trade names Producers Origins Target pests Hosts

Culicinomyces 
clavisporus

Austria, 
Belgium

Mosquito 
larvae

Humans

Hirsutella 
thompsonii

Mycar Austria, 
Belgium

Citrus rust 
mites

Citrus

Metarhizium 
anisopliae

Meta-Sin, Green 
Muscle, Bioblast, 
Biomagic

Spittle bugs, 
sugarcane 
froghoppers, 
locusts, brown 
planthoppers, 
termites

Sugarcane, 
rice

Nomuraea 
rileyi

Lepidopteran 
larvae

Cotton

Verticillium 
lecanii

Vertalec Aphids, coffee 
green bugs, 
greenhouse 
whiteflies, 
thrips

Greenhouse 
crops

Beauveria 
bassiana

Bio-Power Stanes India Mites, coffee 
green bugs

Tea, coffee

BotaniGard ES, 
BotaniGard 22WP

Laverlam 
International, 
Betel

USA Scarab beetle 
larvae

Sugarcane

Boverol Fytovita Czech 
Republic

Conidia Live Systems 
Technology

Columbia

Naturalis Intrachem Italy Aphids, spittle 
bugs, 
sugarcane

Beauveria 
brongniartii 
(Beauveria 
tenella)

Beauveria 
Schweizer

Lbu (formerly 
Eric 
Schweizer 
Seeds)

Switzerland Greenhouse 
whiteflies, 
thrips, 
mosquito 
larvae

Polyhouse 
pests

Betel Arysta France Scarab beetle 
larvae

Pasture

Biolisa-Kamikir Nitto Denko Japan
Engerlingspilz Andermatt 

Biocontrol
Switzerland

Melocont-
Pilzgerste

Agrifutur-
Kwizda

Italy, 
Austria

Hirsutella 
thompsonii

Mycohit Mites Citrus

Data sources: Butt et al. (2001), Wraight et al. (2001), Copping (2004), Zimmermann (2007), and 
Khachatourians (1986)

S. A. Dwivedi and A. Tomer



253

its personal action that accelerates application of formulated products present in 
market. Excellent quantity of transcribe and gene modification work of entomo-
pathogenic molds contamination procedure let out availability few different genes 
participate in the pathogenic action in the same way as chitinase enzymes (Cho 
et al. 2006b, 2007; Wang et al. 2005; Bagga et al. 2004). Guanine nucleotide–bind-
ing protein and its regulator (Fang et al. 2007, 2008), adhesin, aid the attachment of 
spores. A perilipin-like protein regulates appressorium turgor pressure and differen-
tiation, and a cell protective coat protein helps the pathogen to avoid being recog-
nized by the host’s immune system (Wang and St Leger 2006). Likewise, increased 
virulence of entomopathogenic mold is seen with overexpression of virulence genes 
such as protease PR1A and subtilisin protease PII (Ahman et al. 2002; St Leger 
et al. 1996). A hybrid chitinase containing a chitin-binding domain (Wang and St 
Leger 2007b; Fan et  al. 2007) alter tarantula nerve toxic peptide, applying the 
genetic code of Metarhizium particular under management of gene MC11 advocate 
for mold change. The 50% lethal concentration (LC50) of the transgenic strain 
AaIT-Ma549 was decreased 22-fold when this strain was tested on Carolina sphinx 
moths (Manduca sexta) and 9-fold when it was tested on mosquitos (Wang and St 
Leger 2007b). When the AaIT-Ma549 strain was tested on coffee borer beetles 
(Hypothenemus hampei), the LC50 was decreased 15.7-fold and the mean survival 
time was reduced by 20% (Pava Ripoll et al. 2008).

11.5  �White Muscardine Fungi (Beauveria bassiana 
(Clavicipitaceae))

This is a valuable microbe for use against insect pests. It has been used to develop 
biopesticides for management of many key pests that cause problems for agricul-
tural crops and animals, and also for management of aquatic pests (Faria and 
Wraight 2007; Charnley and Collins 2007). These biopesticides are utilized mainly 

Fig. 11.2  Mode of action of an entomopathogenic fungi
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against key lepidopteran, orthopteran, and hemipteran pests. Of the mycobiopesti-
cides that are used commercially, 33.9% are based on Beauveria bassiana, 33.9% 
on Metarhizium anisopliae, 5.8% on Isaria fumosorosea, and 4.1% on Beauveria 
brongniartii. The increasing contribution of Beauveria bassiana to the biopesticide 
market means that the main obstacles that restrict its utilization as a mycobiopesti-
cide are being overcome. Acting biotic strains of such mold frequently absence of 
enough antagonism to misfortune (St Leger and Wang 2009; Rangel et al. 2005; 
Ying and Feng 2004) inherited manipulate requisite upgrade their effectiveness as 
well as natural strength (Roberts and St  Leger 2004). The significance of white 
muscardine, caused by Beauveria brongniartii, is easy to understand. Experimental 
work has been performed to develop more advanced formulations and to utilize 
mold inoculates to improve the potency of fungal biopesticides by gene moderation. 
Research on the potency of entomological molds has improved our understanding 
of the most relevant integument-degrading enzymes, which can then be further 
developed through overexpression in engineered strains for greater lethality to 
pests. It is likely that overexpression of the chitinase gene Bbchit1 increases the 
effectiveness of Beauveria bassiana against populations of Myzus persicae plant 
lice (St Leger and Wang 2009; Wraight et al. 2001; St Leger et al. 1996).

11.6  �Fungi Utilized for Bioremediation

Molds can live in various environmental conditions. Complex soil matrices are the 
main setting for mold colonization, together with fresh as well as marine water that 
represent steady colonize of mold. They mostly flourish in soils in various weather 
conditions covering extremely virulent strains of antagonist via scattering of fruit-
ing bodies in the air, which assists in maintaining the equilibrium of the environ-
ment (Anastasi et al. 2013). It has been reported that some fungi live in effluent 
treatment plants (ETPs) and treated sewage water (Badia-Fabregat et  al. 2015; 
Zhang et al. 2013). The variety of their habitats and their capacity to produce a host 
of enzymes makes fungi capable of being useful for bioremediation in different 
settings. Molds degrade chemical molecules by causing minor structural modifica-
tions. This means they can detoxify insecticide residues in soil, in some instances 
enabling additionally degradation of such residues by bacteria. Some molds—such 
as Auricularia auricula, Flammulina velupites, Agrocybe semiorbicularis, Coriolus 
versicolor, Pleurotus ostreatus, Stereum hirsutum, Dichomitus squalens, Avatha, 
and Hypholoma fasciculare colorless—have the capability to degrade different 
groups of pesticides such as phenylureas, dicarboximides, phenylamides, triazines, 
and chlorinated and organophosphorus compounds. Some group of pesticides—
such as dichlorodiphenyltrichloroethane (DDT), gamma-hexachlorocyclohexane, 
dieldrin, aldrin, heptachlor, chlordane, lindane, mirex, atrazine, diuron, terbuthyla-
zine, and metalaxyl—have been shown to be degraded to various extents by white 
rot mold. This is sort out from soil habitat can decrease oil contamination (Das and 
Chandran 2011).
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11.7  �White Rot Mold (Ceriporiopsis subvermispora)

This is the main biodegrader of ligneous substances in the environment and plays a 
vital role in the carbon cycle. Human use of endocrine-disrupting chemicals, phar-
maceuticals, and personal care products results in environmental effects such as 
bioaccumulation, severe toxicity to aquatic organisms, and possibly also unfavor-
able effects on human health. These problems have caused widespread concern and 
drawn considerable attention to the potential for degradation of these environmental 
contaminants by this type of fungus. Most of this research work has explored pos-
sibilities for bioremediation using the fungi Trametes versicolor, Bjerkandera 
adjusta, Pleurotus spp., and Phanerochaete chrysosporium, which produce various 
ligninolytic enzymes such as laccases and peroxidases (dos Santos Bazanella et al. 
2013). The ligninolytic enzymes produced by white rot mold have been utilized for 
modification of a variety of forms of organic toxic waste (such as pesticides in pol-
luted wastewater) by enhancing the microorganisms’ activity in a biopurification 
system (Rodríguez-Rodríguez et al. 2013) unsettled to constricted entry enzymes 
ligninolytic for lignin particles are accumulated to exterior of lignocellulosic 
threads, compulsion purify is tested for detachment of thread in lignocellulosic sub-
stance. This approach intensifies the ligninolytic ability of enzymes produced by 
Ceriporiopsis subvermispora. In one study, this fungus was shown to manifest 
greater removal of lignin woody tissue when grown on pressure-refined Miscanthus 
than when grown on milled Miscanthus (Baker et al. 2015). Extracellular lignino-
lytic enzymes from fungi have the ability to adsorb color. Reports have described 
decolorization of Direct Blue  14 by species of Pleurotus and decolorization of 
Remazol Brilliant Blue-R by Agaricomycetes, a class of white rot fungus from the 
Amazon forest (Singh et al. 2013; dos Santos et al. 2015). Use of fungi such as 
Hirschioporus larincinus, Phanerochaete chrysosporium, Phlebia tremellosa, 
Coriolus versicolor, and Inonotus hispidus has been described for decolorization of 
colorant sewage spell 38 species of white rot fungi is express reason of decrease in 
total phenolics (60%) and color (B70%) from brown mill wastewater. Likewise, 
such types of fungus have been utilized for treatment of cresolate-polluted soil with 
bioaugmentation of two strains: Lentinus tigrinus and Trametes versicolor (Ntougias 
et al. 2015; Llado et al. 2013). In cresolate-polluted soil containing residual intrac-
table crude oil, hydrocarbons, and high molecular weight fragment remains after 
biopiling treatment, effective decreases in the remaining contaminants can be 
achieved through biostimulation with the help of a lignocellulosic substratum bio-
augmented with a suitable mold. There is always the possibility that such treatment 
will encourage growth of a community of more potent microorganisms, and so 
appropriate studies should be performed on a small scale prior to field utilization. In 
adding use enzyme ligninolytic for bioremediation of different compounds, another 
attributes asses has engage by fungi for discrediting of exchange of living composite 
at increase expulsion of planning (Fan et al. 2013; Purnomo et al. 2013; Cutright 
and Erdem 2012). Bearing in mind the attributes that are effective in bioremedia-
tion, enhancement of laccase production by the fungi T. versicolor and Pleurotus 
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ostreatus was studied via solid-state fermentation using orange peel waste come 
after by more distant treated of its capability for bioremediation of polycyclic aro-
matic hydrocarbons (PAHs) such as pyrene and phenanthrene (Rosales et al. 2013). 
Although a higher concentration of laccase was produced with use of Trametes 
versicolor media (3000  U/L) than with Pleurotus ostreatus media (2700  U/L), 
Pleurotus ostreatus manifested superior removal of phenanthrene and pyrene. Best 
comprehension as well as misuse of bioremediation strength mold to the complete, 
require for more experiment on that type fungi at genomic parameter.

11.8  �Roles of Microbes in Biodegradation of Pesticide 
Molecules in the Environment

Various types of microbes have the capability to biodegrade pesticide residues. This 
is because different pesticides are generally utilized on agricultural crops, and soil 
is the substratum that is mainly contaminated by pesticide molecules, apart from 
pesticide production effluent, sewage sludge, activated sludge, wastewater, natural 
freshwater, sediment, the surroundings of pesticide manufacturing plants, and a few 
living organisms. Generally, microbes that are recognized as biodegrading chemi-
cals come from a extensive variety of environments polluted with different pesti-
cides. At present, in various laboratories around the world, there are collections of 
microbes selected for their ability to be cultured and to biodegrade pesticide com-
pounds in the environment. Screening and identification of microbes that are capa-
ble of degrading pesticide compounds have been enhanced by newly developed 
techniques for polluted weather, count wastes prior to the final deposition. The 
activities of microorganisms reduce pollution in valuable ecosystems. Progress in 
pollutant degradation biotechnology depends on the basic sciences of microbiology 
and analytical geochemistry, which is used to assess the status of habitats. Latest 
key detection promotes information aromatic hydrocarbon biodegradation have 
depends on the attributes of microbes, pure-culture separate, laboratory enhance-
ment media as well as polluted area of field. Recently developed systematics and 
molecular implements have intensified our awareness of the mechanisms (how), the 
events (what), and the specifications (who) of the microbes that are active in reduc-
ing pollution in organic systems. Pesticides that can be biodegraded by microbes are 
listed in Table 11.2.

11.9  �Pesticide Biodegradation Mechanisms Used by Fungi

Microbes have the capacity to interrelate, both chemically and physically, with 
media in order to structurally modify or fully biodegrade selected particles. Among 
the different types of microbe, fungi and bacteria are the key participants in 
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biodegradation of chemical compounds (Briceño et al. 2007). Fungi usually bio-
transform pesticides and other xenobiotics by making minor structural modifica-
tions in their molecules that make them nontoxic. The biotransformed chemicals are 
released into the soil, where they are vulnerable to additional degradation by bacte-
ria (Diez 2010). Fungi and bacteria are appraised as the extracellular enzyme releas-
ing microorganisms for superiority. It has been suggested that white rot mold 
encourages the activity of biodegrading microbes, mostly against composites that 

Table 11.2  Examples of pesticides that can be degraded by microorganisms

Types of 
microorganism Microorganism species Pesticides

Bacteria Pseudomonas Aldrin, chlorpyrifos, 
dichlorodiphenyltrichloroethane, endosulfan, 
endrin, BHC, monocrotophos (Verma et al. 2014); 
coumaphos (Upadhyay and Dutt 2017); diazinon, 
methyl parathion, parathion (Verma et al. 2014; 
Upadhyay and Dutt 2017)

Bacillus Parathion glyphosate, methyl parathion, 
chlorpyrifos (Verma et al. 2014; Upadhyay and 
Dutt 2017); coumaphos (Upadhyay and Dutt 2017); 
diazinon, dichlorodiphenyltrichloroethane, dieldrin, 
endosulfan, endrin, monocrotophos, polycyclic 
aromatic hydrocarbons (Verma et al. 2014)

Alcaligenes Chlorpyrifos (Verma et al. 2014); endosulfan 
(Jayabarath et al. 2010)

Flavobacterium Diazinon, glyphosate, methyl parathion, parathion 
(Upadhyay and Dutt 2017)

Fungi White rot fungi, 
Rhizopus, Cladosporium, 
Aspergillus fumigatus, 
Penicillium, Aspergillus 
spp., Fusarium, Mucor, 
Trichoderma, Mortierella

Alachlor, aldicarb (Hai et al. 2012); atrazine (Hai 
et al. 2012; Elgueta et al. 2016); pentachlorophenol, 
malathion, carbofuran, chlordane, chlorpyrifos, 
dichlorodiphenyltrichloroethane, 
2,4-dichlorophenoxyacetic acid (Maloney 2001); 
diuron (Bending et al. 2002); endosulfan (Bhandari 
2017; Romero-Aguilar et al. 2014; Kataoka et al. 
2010); fenvalerate (Birolli et al. 2016); fenitrothion, 
fenitrooxon (Baarschers and Heitland 1986); 
fipronil (Wolfand et al. 2016); heptachlor epoxide 
(Xiao et al. 2012); lindane (Maloney 2001; Sagar 
and Singh 2011); metalaxyl (Martins et al. 2017); 
terbuthylazine (Bending et al. 2002)

Actinomycetes Micromonospora, 
Actinomyces, Nocardia, 
Streptomyces

Aldrin (Verma et al. 2014); carbofuran (Jayabarath 
et al. 2010); chlorpyrifos (Verma et al. 2014; 
Briceño et al. 2018); diazinon (Briceño et al. 2018); 
diuron (Esposito et al. 1998)

Algae Small green algae Phorate, parathion (Tang 2018)
Chlamydomonas Atrazine (Kabra et al. 2014); fenvalerate (Day and 

Kaushik 1987)
Diatoms Dichlorodiphenyltrichloroethane, patoran (Shehata 

et al. 1997)
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are not easily broken down by bacteria. This capacity arises from mass formation of 
extracellular enzymes that act on a wide variety of organic composites. A few of 
these are involved in degradation of lignin, such as manganese peroxidases, lignin 
peroxidases, laccases, and oxidases. Some bacterial degrading pesticide molecules 
have sort out and increase in size rapidly recorded. Three major enzyme families 
involved in pesticide resistance are glutathione S-transferases (GSTs), cytochrome 
P450 monooxygenases, and esterases (Bass and Field 2011).

11.10  �Genetic Modifications for Pesticide Degradation

In order to inspect genetic assist in pesticide molecule biodegradation, some 
research having special prominence part of declining genes as well as utilization of 
fingerprint DNA technology, has describe. A classification of pesticides on the basis 
of their composition is given in Table 11.3. Its residues discrediting genes found in 
of only a few microbes having this attributed. The majority of genes that control 
biodegradation are found on the chromosomal body; only in a few cases do such 
genes occur in transposons or plasmids. The latest progress in metagenomics and 
full genome succession has pioneered new directions for discovery of novel toxic 
waste degradation genes and their governing components from culturable and non-
culturable microbes in the environment. Plasmids and transposons adoptable genetic 
component have reflected to make secret enzymatic that control degradation of a 
few types of pesticide residue. The discovery of pesticide molecule–degrading 
microorganisms and description of genes encoding enzymes that degrade pesticide 
compounds, combinations of new methods for screening, and examination of 
nucleic acids from soil microbes provides new insights into the molecular mecha-
nisms that enable them to evolve more potent ability to degrade pesticide residues.

11.11  �Plan of Action for Intensifying Effectiveness 
for Pesticide Degradation: Cell Immobilization

It engages for biological control decline of pesticide compounds since, grants to 
chance provide for catalytic action for prolong duration. Fully cell immobilize has 
reflect into astonish lead on regular biocontrol applying free cells, probability utilize 
a density of high cell, avoid washout cell, smoothly good infusion rates, uncompli-
cated sorting of cells through reaction system, frequent application of cells, get 
better defense of cells from rough climatic conditions. Previous reports have pro-
posed that these increased productiveness outcomes of cellular or genetic quality 
are due to immobilization. There is evidence that immobilized cells are much more 
tolerant of disruptions in climatic conditions and less vulnerable to toxic materials, 
making immobilized cell systems particularly attractive for treatment of compounds 
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such as pesticide residues (Ha et al. 2008). The reason why immobilized cells are 
more efficient at degradation is that they are protected from inhibitory substances in 
the substrate solution. In repeated operations, the rates of degradation of successive 
batches increase; this suggests that over time, the cells become better adapted to the 
reaction conditions (Ha et al. 2009).

11.12  �Conclusion

Entomopathogenic fungi have excellent potential for specificity in pest manage-
ment without harming the predators of those pests and useful parasites. Unlike 
widespread application of pesticides, use of appropriately selected fungi for pest 
control poses no risk to the health of ecosystems or mammals. Because they have 
different modes of entry into insect bodies, the insects are unable to develop resis-
tance to them, and they are effective for pest management over a long duration by 
having genes release toxic formation in host responsible good capability for addi-
tional evolution of biotechnical experimental works. Several endophytic fungi play 
a crucial role in activating the defence system in host. Selection of appropriate fungi 

Table 11.3  Classification of pesticides on the basis of their chemical composition

Groups Main composition

Organochlorines Carbon atoms, chlorine, hydrogen, and occasionally oxygen; they are 
nonpolar and lipophilic

Organophosphates Molecules contain a central phosphorus atom; in comparison with 
organochlorines, these compounds are more stable and less toxic in the 
environment; organophosphate pesticides can be aliphatic, cyclic, and 
heterocyclic

Carbamates Chemical structure based on a plant (Physostigma venenosum) alkaloid
Pyrethroids Compounds similar to synthetic pyrethrins (alkaloids obtained from 

Chysanthemun cinerariefolium petals)
Botanical origin Products derived directly from plants, not chemically synthesized
Biological agents Viruses, microorganisms, or their metabolic products
Copper compounds Inorganic compounds of copper
Thiocarbamates Different from carbamates in their molecular structure, containing an 

S-group in their composition
Organotin 
compounds

Molecules contain a central tin atom

Organosulfur 
compounds

Molecules contain a central sulfur atom; very toxic to mites and insects

Dinitrophenols Recognized by the presence of two nitro groups (NO2) bonded to a phenol 
ring

Urea derivatives Include urea bound to aromatic compounds
Diverse 
composition

Triazines, talimides, carboxyamides, trichloroacetic and trichloropicolinic 
acid derivatives, guanidines, naphthoquinones

Data source: Ortiz-Hernández (2002)
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for use in a particular habitat achieves more durable results in defeating pests. 
Microbial degradation work on pesticide molecules had been considerable expand 
with pesticide substance decline microbial strains recognized but its utilization for 
microbial bioremediation restricted, for less degradable effect in habitat. 
Mineralization and metabolism are key mechanisms in degradation of pesticide 
compounds, as well as their intermediate outcomes; the overall and component 
structures of pesticides determine the ways in which they are degraded in the micro-
bial habitat. Their chemical components determine their solubility, and attributes 
such as particle attraction, the dimensional structure, chemical functional groups, 
and attraction/repulsion between molecules determine whether pesticide com-
pounds can be ingested by microbes. Leading research work in this area is focused 
on microbial degradation of pesticides by highly effective cultures combining pes-
ticide-degrading bacteria and fungi, inability of degrading microorganisms, novel 
experiments with pesticide compound–degrading molds, and insecticide molecule 
biodegradation strategies.
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12.1  �Introduction

The majority of plant species in terrestrial ecosystems establish more or less close 
relationships with rhizospheric microorganisms that somehow make it easier for 
them to live in normal or stressful environments. The numerous microorganisms 
that inhabit the rhizosphere include symbiotic nitrogen-fixing bacteria, mycorrhizae 
and plant-growth-promoting rhizobacteria (Prasad et al. 2015). However, the micro-
organisms natural role have been marginalized due to modifications induced by 
tillage and the excessive use of inorganic fertilizers, herbicides and pesticides. 
Current methods of crop production have created a series of environmental and 
human health problems. Nowadays, the increase in the appearance of emerging, 
pre-emergent and endemic pathogens and weeds challenges our ability to protect 
the growth and health of crops (Miller et  al. 2009). That is why, among other 

S. P. Álvarez (*) 
Facultad de Ciencias Agrícolas y Forestales, Universidad Autónoma de Chihuahua, 
Chihuahua, Mexico 

E. F. H. Ardisana 
Instituto de Posgrado, Universidad Técnica de Manabí, Portoviejo, Ecuador

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54422-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-54422-5_12#DOI


268

reasons, there is a growing demand for more ecological strategies in agriculture. 
Plant biotechnology has contributed to the development of new crop varieties toler-
ant or resistant to diseases, drought and salinity, and that are of greater nutritional 
value (Garg and Chandel 2010).

For about 150 years, it has been shown that bacteria and fungi have an intimate 
relationship with plants; some are pathogenic, others are neutral, while many of 
them are beneficial. The rhizosphere of plants is highly colonized by microorgan-
isms; of all of them, between 1 and 35% of the arable crops, show antagonism 
against pathogens, while two-thirds promote plant growth (Singh et al. 2011). The 
latter can provide both macro- and micronutrients, release phosphorus from organic 
compounds, modify the pH of the soil, especially that surrounding the root, thereby 
increasing the availability of phosphorus and other elements (Berg 2009).

These days sustainable agriculture has gained more attention, because it guaran-
tees productivity of plants and animals using their natural adaptive potentials, with 
a minimal disturbance to the environment (Noble and Ruaysoongnern 2010). To 
accomplish this goal, it is necessary to reduce the use of harmful agrochemicals 
(mineral fertilizers, pesticides) and to use more environment-friendly preparations 
of symbiotic microorganisms, which could improve the nutrition of crops and cattle, 
as well as their protection from biotic (pathogens, pests) and abiotic (salinity, 
drought) stresses (Yang et al. 2009). Consequently, agricultural microbiology is a 
great research field to transfer and apply knowledge to the agricultural biotechnolo-
gies (Mohammed et al. 2008).

12.2  �Beneficial Fungi in Agriculture

Biotechnology is in use for more than thousand years in the production of beer, 
bread, wine, through the fermentation of sugar and starch. In the twentieth and 
twenty-first centuries, biotechnology has evolved and is being used in the synthesis 
of many useful molecules and has become a very productive industry (Show et al. 
2015); for example, the estimated market volume for plant-degrading enzymes from 
filamentous fungi in 2016 was €4.7 billion, and it is expected to reach up to €10 bil-
lion within the next decade (Meyer et al. 2016).

Several microorganisms are found in agricultural soils, and they can have differ-
ent applications which tend to improve plant development, such as biofertilizers and 
biopesticides (Prasad et al. 2020). These microorganisms that live in the soil can 
help plants in nutrients uptake and a symbiotic relationship is established where 
plants provide their waste by-products for the microbes as food and microbes help 
the plant to “take up” essential energy sources (Mosttafiz et al. 2012).

Fungi are eukaryotic organism that in agriculture behave as pathogens of many 
crops (Magnaporthe oryzae, Botrytis cinerea, Puccinia spp, Fusarium gra-
minearum, Fusarium oxysporum, Blumeria graminis, Colletotrichum spp, Ustilago 
maydis, and some others) (Dean et  al. 2012) and entomopathogens [Verticillium 
lecanii, Beauveria bassiana, Metarhizium anisopliae (Li and Sheng 2007), 
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Paecilomyces fumosoroseus (Chan-Cupul et al. 2010), Trichoderma spp (Zeilinger 
and Omann 2007)]. Insect populations are regulated mostly by entomopathogenic 
fungi and the first study was about the silkworm industry (Steinhaus 1975). 
According to Steinhaus (1975), Bassi in 1835, demonstrated the germ theory using 
silkworms and muscardine fungus, which was later named Beauveria bassiana in 
his honour.

12.2.1  �Mycoinsecticides

The increasing soil and environmental contamination, and the use of chemical pes-
ticides, has increased pest resistance; the need of controlling pests efficiently with 
non-harming techniques has led to the improvement of friendly insect control meth-
ods, such as the use of entomopathogenic fungi that are biological control with a 
wide host range. These fungi are distributed in a group of over 90 reported genera 
with approximately 750 species from different insects, and they do not inflict any 
damage to the environment (Rai et al. 2014).

Fermentation is the process commonly used to produce fungi massively, spores 
are stored and packed for further field application. The fungi spores contain enzymes 
that break down the outer surface of the insects’ bodies inducing death after they 
grow; this allow that fugi become into a useful strategy  for long-term insect control. 
These bioinsecticides act in several ways at the same time, which makes the insects 
almost impossible develop resistance (Zarafi and Dauda 2019).

Bioinsecticides do not persist long in the environment and have shorter shelf-
lives; they are effective in small quantities, safer to humans and animals compared 
to synthetic insecticides; they are very specific, often affecting only a single species 
of insect and have complicated modes of action; they are slow in action and the tim-
ing of their application is relatively critical. Use of fungi as insecticides has been 
utilized effectively to control devastating insect pests (Zarafi and Dauda 2019). 
Some examples of fungi controlling insects are as follows:

•	 The pathogenicity and virulence of fungi ranging from Metarhizium anisopliae 
to Blissus antillus (Hemiptera: Lygaeidae) eggs under field conditions were 
determined and verified that those formulated in mineral oil and in Tween 80 
generated 63.5% and 27.1% of mortality, respectively (Samuels et al. 2002).

•	 The effectiveness of three entomopathogenic fungi (Beauveria bassiana, 
M. anisopliae and Paecilomyces fumosoroseus) for the control of pests in vege-
table crops was evaluated. The fungi were emulsified in diatomaceous earth in 
proportion 1:10 and was applied in a concentration of 1.2  ×  1012 spores ha−1 
generating mortality higher than 80% after 72  hours of application (García-
Gutiérrez and González-Maldonado 2010).

•	 The effectiveness of B. bassiana production in liquid medium for the control of 
the coffee berry borer (Hypothenemus hampei) was evaluated, finding that the 
culture medium consisting of sugar, yeast extract and peptone is where the best 
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growth of the fungus occurs on the fourth day, without being affected by the 
initial pH, nor the temperature of 28 °C; also, it generates mortality of 86.7% 
(Mata and Barquero 2010).

•	 Fifteen strains of the entomopathogenic fungi Beauveria bassiana and 
Metarhizium anisopliae were evaluated on adult one-day-old fruit fly Anastrepha 
obliqua and no significant differences were found in mortality. Mortality of 
34–48% during the first 120  hours of evaluation was obtained by applying 
B. bassiana and M. anisopliae in a targeted manner to young adults under the 
canopy of trees (Osorio-Fajardo and Canal 2011).

•	 Autochthonous isolates of Beauveria spp. controlled the white worm 
(Premnotrypes vorax Hustache) in a 77%; this insect causes considerable losses 
in the cultivation of potatoes, which can reach up to 100% depending on the level 
of infestation and crop management (Villamil et al. 2016).

•	 Beauveria bassiana and Metarhizium anisopliae were used to control the Red 
Palm Weevils (Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), 
a major/main palm pest in the Mediterranean Basin (Yasin et al. 2017).

•	 Another entomopathogenic fungi that is a dimorphic hyphomycete that can cause 
epizootic death in various insects is Nomuraea rileyi. Several insect species 
belonging to Lepidoptera including Spodoptera litura and some belonging to 
Coleoptera are susceptible to N. rileyi (Ignoffo 1981). Also, several insects are 
hosts of N. rileyi such as Trichoplusiani, Heliothis zea, Plathypena scabra, 
Bombyx mori, Pseudoplusia includes and Anticarsia gemmatalis.

These days it is necessary to understand entomopathogenic fungi ecology out-
side of the insect host, specifically fungi strategies and their role in the ecosystem. 
Some discoveries suggesting that the way to control insect with entomopathogenic 
fungi must be reviewed. As an example, M. anisopliae strain compete for the rhizo-
sphere and this depends on the plant community and not on the insect host presence 
(Hu and St. Leger 2002), whereas B. bassiana strains exist as endophytes in several 
crops and have the potential for insect and plant disease suppression (Vega 2008).

12.2.2  �Mycoherbicides

Weeds are unwanted plants when they grow around crops. The intensive uses of 
herbicides to their elimination and the resistance that weeds develop against these 
products has created the necessity to look for new and friendly strategies. The appli-
cation of fungi to control weeds opens a new field to get this goal because the use of 
microorganisms is friendly with the environment, they are more specific to the tar-
get and less expensive that traditional herbicides. The fungi genera that have been 
used effectively are Colletotrichum, Phoma and Sclerotinia (Harding and 
Raizada 2015).

Bioherbicides as definition are products made of phytopathogenic microorgan-
isms or microbial phytotoxins useful for weed control, and they are used in similar 
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way to conventional herbicides (Boyetchko et al. 2002; Boyetchko and Peng 2004). 
The active ingredient in a bioherbicide is, however, a living microorganism that usu-
ally is a fungus, so the term mycoherbicide is frequently used in these cases (Auld 
and McRae 1997).

The majority of the weeds control in North America has been based on fungi 
formulations, but just a few of these products were successful in the long term. Here 
is a list of several examples: a formulation called BioMal that was made with 
Colletotrichum gloeosporioides f.sp. malvae, introduced for the control of round 
leaf mallow (Malva pusilla L.) (Mortensen 1988; PMRA 2006); another formula-
tion, Sarritor, includes Sclerotinia minor for the control of dandelion (Taraxacum 
officinale (L.) Weber ex F.H.  Wigg., Prim. FL.  Holsat), white clover (Trifolium 
repens L.) and broadleaf plantain (Plantago major L.) in turf (PMRA 2010).

In Brazil, fungi were selected for production of secondary metabolites with her-
bicidal activity using biological resources of the Brazilian Pampa biome; for this 
purpose, phytopathogenic fungi were isolated from infected tissues of weeds and 
the phytotoxicity of fungal metabolites was evaluated using a biological test with 
Cucumis sativus L. Thirty-nine fungi were isolated, and 28 presented some phyto-
toxic symptoms against the target plant. The best strain was identified through 
molecular studies. Fungus VP51 belonging to the genus Diaporthe showed the most 
effective herbicidal activity (Castro de Souza et al. 2017).

Hoagland et al. (2007) studied a strain of Myrothecium verrucaria, isolated from 
sicklepod (Senna obtusifolia L.), a plant that has bioherbicidal activity against 
kudzu (Pueraria lobata (Willd.) Ohwil) and some other weeds. Those authors found 
that M. verrucaria caused great reductions of kudzu plant biomass production at 
30 °C, compared to 20 °C or 40 °C, under experimental conditions.

In a study carried out in West Africa, Fusarium oxysporum (PSM 197) controlled 
91.3% of Striga asiatica (L.) Kuntze (a hemiparasitic plant in the broomrape fam-
ily), 81.8% of S. gesneroides and 94.3% of S. hermonthica (Marley et al. 2005). An 
isolate from Italy of M. verrucaria produced trichothecenes (a very large family of 
chemically related mycotoxins produced by various species of fungi) that could 
inhibit seed germination of the parasitic plant Orobanche ramosa Delile ex Decne. 
1824 (Andolfi et al. 2005). Another study with M. verrucaria in the south-eastern 
United States showed that this fungus is very virulent against Portulaca oleracea L., 
Sesuvium portulacastrum L., Euphorbia maculata L. and Euphorbia prostrata 
Aiton in cultivated tomato (Lycopersicon esculentum L.) (Boyette et al. 2007).

Microsphaeropsis amaranthi and a mixture of Microsphaeropsis amaranthi and 
Phomopsis amaranthicola were used to control eight Amaranthus species, and as a 
result, severe disease ratings were showed 15 days after treatment (DAT), and mor-
tality ranged from 74% to 100% (Ortiz-Ribbing and Williams 2006).

Microsphaeropsis amaranthi and P. amaranthicola have been used as bioherbi-
cide for the control of water hemp [Amaranthus rudis (Moq.) J. D. Sauer] and pig-
weeds (Amaranthus spp.); these are weeds that affect many crops and have become 
resistant to several herbicides. Results showed significant reductions in weed bio-
mass when one or both of the fungal organisms were used; nevertheless, it is 
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necessary to control leaf surface moisture and air temperatures following applica-
tion because inconsistencies in field results may occur (Ortiz-Ribbing et al. 2011).

According to Hetherington et  al. (2002), bioherbicides can improve seedlings 
growth through the infection and delay of the growth of weed.

12.2.3  �Fungal Symbiosis

Since plants first colonized terrestrial ecosystems developed several strategies to 
survive biotic and/or abiotic stresses; among these strategies are symbiosis that they 
can establish through root systems with microorganisms (Gianinazzi-Pearson 1984; 
Varma et al. 2020). In this relationship, both plant and microorganisms get some-
thing necessary for their growth and development (Fig. 12.1).

The majority of crops are capable of forming symbiosis associations with soil 
fungi; to facilitate or improve such association, the crops or the fungi can be geneti-
cally modified, so it is necessary to identify the genes involved in this relationship 
(Behie and Bidochka 2013). One study made in Medicago truncatula Gaertn. 
showed that 29 genes were upregulated during mycorrhizal association, 11 of which 
were not upregulated in plants during bacterial colonization, suggesting that only 
certain genes play a role in plant-fungal interactions (Weidmann et al. 2004). In this 
sense, some genes have been identified such as MtScp1, a gene that encodes a 
carboxypeptidase-related transmission of fungal specific signals; mad229 and myc 
control the regulation of molecules secreted from the fungus prior to association 
that stimulate root development and expression of plant genes required for intercel-
lular fungal interaction (Bucher et al. 2009).

Mycorrhizae are fungi that establish a symbiotic relationship with the roots of 
terrestrial plants and seven associations can be identified: (1) Ectoendomycorrhizae: 

SYMBIOSIS 

FUNGI-PLANT

Facilitate water 
uptake

Facilitate nutrient 
uptake

Carbohydrate 
source

Fig. 12.1  Symbiotic 
relationship between plant 
and soil fungi
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association of Ascomycetes and the genera Pinus and Larix of Coniferae (Yu et al. 
2001); (2) Ericoid: they are unique mycorrhizae to the families of order Ericales 
(Cairney and Ashford 2002); (3) Arbutoid: typical arbutoid mycorrhizae are formed 
with two genera of Ericaceae family (Arbutus and Arctostaphylos) and several gen-
era of the family Pyrolaceae (Molina and Trappe 1982); (4) Monotropoid: plants 
that have this kind of mycorrhizae are non-photosynthetic, but this fungi can associ-
ate with neighbouring trees that are photosynthetically active to get their photosyn-
thates (Björkman 1960); (5) Orchid: they only exist in the Orchidaceae family 
(Smith and Read 1997); (6): Ectomycorrhiza has three characteristics that are typi-
cal of these mycorrhizae: (a) the formation of a hyphae mantle on portions of the 
laterals roots, (b) the formation of the Hartig net between the roots cells and, (c) 
hyphae that emanates from the mantle and grow in the soil (Peterson et al. 2004); 
(7) Arbuscular: association between most of vascular plants roots and fungi from a 
new phylum named Glomeromycota (Schübler et al. 2001). The last two mycorrhi-
zae described are the most abundant in earth.

Mycorrhizae can protect plants against root pathogens and toxic stresses, and 
another important role that these fungi could play is the restoration and the improve-
ment of revegetation in soils mined, even when this practice is not well imple-
mented in many parts of the world (Prasad et al. 2017; Varma et al. 2017). One of 
the main results of soil damage is the destruction of mycorrhizal fungal network, so 
the restoration of these fungi is essential for the soil habitat (Quoreshi 2008). In 
vitro culture is an important tool to achieve this result because with this technique, 
it is possible to obtain a great volume of inoculum and to transport it cheaply 
(Ceballos et al. 2013).

Ceballos et al. (2013) evaluated the in vitro production of Rhizophagus irregula-
ris (mycorrhizal fungus) and its effect on cassava yield; though good production 
was obtained, no greater return on investment than conventional cultivation was 
achieved.

The inoculation effect of nine consortiums of arbuscular mycorrhizal fungi 
(AMF) in coffee seedlings of Coffea Arabica (Caturra variety) was compared with 
a control without inoculation during seven months under greenhouse conditions; 
three of the nine consortia studied were more efficient during the growth and devel-
opment of coffee plants seedlings (Del Aguila et al. 2018).

12.2.4  �Fungi and Biodegradation

Biodegradation can be defined as the decomposition of dead plant and animals by 
microorganisms (Kakde and Jamdhade 2009). Plant biomass contributes with 
sources of carbon on earth and fungi are efficient degraders of this biomass (Mäkelä 
et al. 2014). Fungi also can degrade polysaccharides in the environment, and 218 
have been sequenced, allowing the identification of genes and proteins implicated in 
this degradation (Berlemont 2017).
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The degradation of polysaccharides such as xylan and cellulose from plants and 
chitin produced by fungi is very important for several ecosystem processes that 
include nutrient cycles (like carbon cycle) (Nielsen et al. 2011) and the nutrition of 
animals (herbivores) (El Kaoutari et al. 2013). Cellulose, xylan and chitin are hydro-
lyzed mainly by microorganisms such as bacteria and fungi through different ways 
like enzymes that sometimes can be associated with non-catalytic domain (multi-
domain glycoside hydrolases [GHs]) (Hervé et al. 2010; Várnai et al. 2013), multi-
activity GHs and synthesis of some multi-protein complexes named cellulosomes 
(Gefen et al. 2012). Multi-domain GHs and cellulosomes can degrade biopolymers 
(VanFossen et al. 2011; Talamantes et al. 2016), so it is possible to use them for 
successful processes like biofuel industries.

There are several enzymes that can degrade plant polymers; such enzymes are 
produced by fungi and they belong to six groups: the glycoside hydrolases (GHs), 
glycosyltransferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases 
(CEs), auxiliary activities (AAs) and carbohydrate-binding modules (CBMs) 
(Aspeborg et al. 2012).

Pesticides, that can persist in soils for many years, could be degraded by micro-
organisms. This is possible because physical, chemical and biological processes 
such as accumulation in plants, volatilization and others are associated with several 
soil characteristics like pH, salt content and presence of organic matter (Boivin 
et al. 2004).

White rot fungi are widely used for bioremediation processes that use microor-
ganisms to degrade contaminants such as heavy metals and pesticides in soil and 
water. These fungi (white rot) degrade lignin and others polymers using enzymes 
(Pointing 2001) that are extracellular oxidases and peroxidases: lactases, manga-
nese peroxidases, lignin peroxidases, among others (Novotný et al. 2004).

Brown rot fungi are also used with the same purpose that white rod. These fungi 
can degrade cellulose and hemicellulose (Schlosser et al. 2000; Newcombe et al. 
2002). One example of bioremediation by these fungi is the degradation of DDT by 
Fomitopsis pinicola and Daedalea dickinsii, which can transform DDT to DDE 
1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene and DDD (1,1-dichloro-2,2-bis 
(4-chlorophenyl) ethane) via the Fenton reaction (Purnomo et al. 2010, 2011).

To biodegradate pentachlorophenol, several fungi have been used like 
Phanerochaete chrysosporium, Berjkandera adusta and Pleurotus ostreatus, get-
ting the highest percentage (96%) with P. chrysosporium (Lamar et  al. 1990; 
Ruttimann and Lamar 1997). Trametes hirsuta, Pleurotus eryngii and P. chrysospo-
rium have been used for the degradation of lindane (insecticide) and the best results 
were obtained with T. hirsute (10.6% to 96%) (Singh and Kuhad 1999; Quintero 
et al. 2007).

Tejomyee and Pravin (2007) studied the biodegradation of the insecticide endo-
sulfan, and they demonstrated that Aspergillus niger can eliminate a concentration 
of 400 ppm endosulfan after 12 days of incubation. According to Kamei et al. (2011) 
T. hirsute is able to remove up to 90% of endosulfan and endosulfan sulfate after 
14 days of incubation.
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12.3  �Beneficial Bacteria in Agriculture

Many microorganisms coexist in soils, and the survival capacities of some of them 
are being studied with increasing interest, mainly as alternatives for the control of 
pathogenic fungi. Plant-growth-promoting bacteria (PGPB) are recognized for their 
bio-stimulating, biofertilizing and stress-regulating capacity in vegetables 
(Lugtenberg and Kamilova 2009; Prasad et al. 2015, 2020; Basu et al. 2021). These 
bacteria are able to colonize the rhizosphere of the plant and survive in it (Raaijmakers 
et al. 2009) through mechanisms that allow them to compete successfully with other 
microbes. For these reasons, they have been studied as potential antagonists/bio-
logical controllers of plant pathogens.

Undoubtedly, the bacterial genus that has generated the most research and appli-
cations in terms of biological control is Bhurkolderia sp. However, in recent years, 
interest has developed in other genera of bacteria that also show potential in 
this regard.

12.3.1  �The Genus Burkholderia

Although the bacteria that grow in the rhizosphere are a useful source for the protec-
tion of plants against pathogenic fungi, it would be preferable for the resistance to 
be present inside all plant tissues. Certain bacteria – among which are several of the 
genus Bhurkolderia – are able to grow and develop inside the plant, which is why 
they are called endophytic bacteria. This characteristic means that they can interact 
with the plant more effectively than those that live in the rhizosphere. Thus, the 
biocontrol metabolic products expressed by the endophytic bacteria could act more 
efficiently in the protection of plants against pathogenic microbes or predators.

The genus Burkholderia groups bacteria that usually grow in the rhizosphere of 
numerous plants; consequently, several of their species have been observed with 
interest to know how they can compete with other bacteria and mainly with phyto-
pathogenic fungi. The identification of the antagonist mechanisms and the metabo-
lites participating in this competition could help the formulation of biopesticides. 
But also, several of the species of the genus are able to grow in an endophytic man-
ner. Burkholderia phytofirmans PsJN, for example, can migrate to the aerial parts of 
the grape plants and form a biofilm on the leaf surface that restricts the growth of 
the Botrytis cinerea mycelium (Miotto-Vilanova et al. 2016).

Simonetti et  al. (2018) isolated the T16 line of Burkholderia ambifaria that 
grows in the rhizosphere of barley plants (Hordeum vulgare). This line uses fusaric 
acid (the main toxic metabolite produced by Fusarium spp.) as the sole source of 
carbon, nitrogen and energy for its own growth in vitro, and is also able to detoxify 
fusaric acid in barley seeds. Before, Utsumi et al. (1991) had obtained similar results 
in vitro for a line of Burkholderia cepacia.
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Through comparison with the genome of other bacteria, Ali et al. (2014) identi-
fied genes putatively responsible for the endophytic behaviour of several 
Burkholderia species. On the other hand, it is known that the different Burkholderia 
lines can live in different environments, because they have a large, complex 
(4.6–9  Mb) and variable genome, with three chromosomes and large plasmids 
(Esmaeel et al. 2016). As for the metabolites involved in the antagonistic activity of 
Burkholderia, Esmaeel et al. (2017) cite a group of authors who have detected sev-
eral substances with different properties; among these, the lipopeptides synthesized 
by several lines of B. cepacia, B.ambifaria and B. contaminans have specifically 
antifungal activity.

Several authors (cited by Haidar et al. 2016) have reported the antagonistic activ-
ity of endophytic bacterial genera such as Bacillus, Pseudomonas, Streptomyces 
and Bhurkolderia, among others, against Botrytis cinerea, a necrophyte fungus that 
inflicts large losses among the plantations of grapes and strawberries. Among the 
ways in which this antagonism occurs are the synthesis of various antifungal com-
pounds such as antibiotics and lytic enzymes that destroy the cell walls of fungi, the 
induction of resistance in the host and competition for nutrients (Koch et al. 2021).

Some of these genera – but not Bhurkolderia – have been used in the formulation 
of biopesticides for the control of B. cinerea. However, it has been shown that 
Bhurkolderia produces metabolites capable of controlling various fungal species. 
Mahenthiralingham et  al. (Mahenthiralingam et  al. 2011) and Masschelein et  al. 
(2017) report that the various species and lines of the genus synthesize several sub-
stances (pyrrolnitrin, occidiofungin, cepafungin and burkholdines) and other com-
pounds such as the cepacines that have a broad spectrum of action. Although the 
focus of these two studies was mainly on the medical applications of such products, 
the production of these antifungal metabolites demonstrates the potential of the 
Burkholderia genus as biological control in agriculture.

Rika Fithri et al. (2014) tested the application of several isolates of Burkholderia 
sp. in the attempt to control the root rot in oil palm, caused by the fungus Ganoderma 
boninense. As part of this investigation, they detected the synthesis of pyrrolnitrin 
in the Burkholderia 312 isolate, which led to the best results in the plants. Pyrrolnitrin 
is a secondary metabolite derived from tryptophan (Kirner et  al. 1998) that has 
strong antibiotic activity on various fungi. Ramli et al. (2016) found that the isolates 
of three endophytic bacteria, including Burkholderia cepacia, were able to control 
the in vitro development of G. boninense, and to delay the onset of disease symp-
toms in the oil palm when the seeds had been pre-treated with these 
microorganisms.

Bach et al. (2016) analysed the bacterial properties of Bacillus mycoides B38 V, 
Burkholderia cepacia 89 and Paenibacillus riograndensis SBR5, microbes of the 
PGPB type isolated from Brazilian soils. It was observed that the three bacteria 
produce amylases, catalases, esterases and proteases. Aktuganov et al. (2008) have 
reported that these extracellular enzymes can affect the cell walls of pathogenic 
fungi. In addition, in the assays by Bach et  al. (2016), Burkholderia cepacia 89 
showed antagonistic activity against several filamentous fungi; under greenhouse 
conditions, the combined inoculation of wheat plants with this bacterium and the 
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pathogens Bipolaris cynodontis, Drechslera tritici-repentis and Fusarium gra-
minearum led to dry weight values of roots and stems superior to plants inoculated 
only with pathogens. These values were also higher than those of the plants treated 
only with fungicides, possibly due to the growth-promoting effect that the PGPBs 
also provide. Additionally, Burkholderia cepacia 89 produced a metabolite with 
antifungal activity, which can become an important biological fungicide.

The effectiveness of the line JP2-270 of Burkholderia cepacia, isolated from the 
rhizosphere of rice, in the control of the fungus Rhizoctonia solani was demon-
strated by Song et al. (2018). The analysis of the genome showed that the gene bysR 
(DM992_17470) is essential for the antifungal activity of B. cepacia JP2-270 
against R. solani. The nature of this gene, which belongs to the lysR family of tran-
scriptional regulators (Lu et al. 2009), allows to suppose that the antagonist activity 
is exerted through an affectation to the synthesis processes of secondary metabo-
lites. This gene could then become a potential target for its use in genetic engineer-
ing in order to take advantage of the controlling potentials of B. cepacia JP2-270 
(Song et al. 2018).

Kim et al. (2019) studied the activity of Burkholderia stabilis, endophytic bacte-
ria isolated from ginseng (Panax ginseng), on several pathogens. Both the bacteria 
and their extracts were able to control the development of B. cinerea, R. solani, 
A. panax, Phytium sp. and in particular of Cylindrocarpon destructans, the main 
pathogen of ginseng, which causes severe root rot. The separation of B. stabilis 
extracts by column chromatography allowed to collect a fraction that inhibited the 
growth of the five pathogens; another of the fractions was also able to control 
C. destructans.

Mullins et al. (2019) demonstrated that cepacin A synthesized by Bhurkolderia 
ambifaria is an efficient metabolite in the biological control of Pythium ultimum, a 
pathogenic fungus that causes decay in hundreds of useful plant species such as 
potatoes, wheat and soybeans. Sandani et al. (2019) identified five isolates of four 
bacteria (Pseudomonas aeruginosa, Burkholderia arboris, Burkholderia gladioli 
and Burkholderia rinojensis) capable of 100% effective inhibition of germination of 
the spores of Colletotrichum truncatum, a pathogenic fungus responsible for 
anthracnose in chili pepper. In addition, the metabolites secreted by the isolates 
controlled the development of the disease to a large extent. These compounds, of 
diffusible nature, could be of various types, such as antibiotics, hydrolytic enzymes 
of cell walls or other secondary metabolites (Beneduzi et al. 2012).

What has been reviewed up to here suggests that Burkholderia is useful and can 
be applied as a biological fungal control agent, given the effects demonstrated as an 
antagonist of various fungi. In fact, in the 1990s, several Burkholderia lines began 
to be used as fungi biocontrol in American agriculture. However, risk studies 
(derived from their pathogenic potential to animals and people) advised their with-
drawal from the market (Eberl and Vandamme 2016). What happens is that the 
genus Bhurkolderia can cause opportunistic infections to the plants, becoming a 
pathogenic agent. This would limit its generalized application as biological control; 
however, Bolívar et  al. (2016) indicate that the genus is divided into two large 
groups, the so-called Bhurkolderia cepacea complex (BCC) constituted by 
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opportunistic pathogenic species, and another phylogenetically distant group com-
posed of beneficial species, promoters of growth and with biotic activity against 
known pathogens. Also, Eberl and Vandamme (2016) point out that the genus can 
be divided into two clades genetically separated from each other: one which con-
tains pathogenic species to plants, animals and humans, and other grouping species 
that promote plant growth and protection of plants against numerous pathogens. It 
has even been proposed and accepted to rename this second group as a new genus 
(Paraburkholderia) (Sawana et al. 2014; Oren and Garrity 2015).

Regardless of the potential dangers of using Bhurkolderia in agriculture, the pos-
sibility of modifying the genome of the genus with useful characteristics opens up 
new possibilities of employment in plant production. Li et al. (2017) introduced the 
cry218 gene of Bacillus thuringiensis by electroporation into the genome of 
Burkholderia pyrrocinia JKSH007, which lives as endophyte in the poplar. The 
transgenic bacterium thus obtained was effective in the control of the larvae (second 
instar) of Bombyx mori (silkworm) which is a lepidopteran used as a model in these 
investigations. Consequently, it could potentially be used for the control of harmful 
lepidoptera.

12.3.2  �Other Bacterial Genera

In addition to Bhurkolderia sp., other bacterial genera have been studied with the 
aim of using them directly as biological controls or of using the metabolites that 
they synthesize and that have an antagonistic effect with pathogenic microbes. The 
main approaches have been directed towards the genera Pseudomonas sp. and 
Bacillus sp.

Several species of the genus Pseudomonas exhibit antifungal activity, and have 
been used for the control of various pathogens in beet, tobacco, cucumber, cotton, 
wheat, rice, eucalyptus and other species (several authors, cited by Sindhu et al. 
2016). Pseudomonas aeruginosa and Pseudomonas viridiflava were useful in the 
control of Lasiodiplodia theobromae, the main causal agent of crown rot in banana 
(Thangavelu et al. 2007). Other species are able to act as antagonists only under 
certain conditions; for example Pseudomonas fluorescens controls Rhizoctonia 
solani and Pythium aphanidermatum when the culture medium is rich in nitrogen, 
but not when it is rich in carbon (Michelsen and Stougaard 2012).

From wheat leaves, Müller et al. (2015) isolated 20 lines of Pseudomonas fluo-
rescens and Pseudomonas gessardii, carriers of the gene phlD, which codes for the 
synthesis of the antibiotic 2,4-diacetylphloroglucinol, and are able to suppress 
in vitro Fusarium and Alternaria, important pathogens of this and other crops. The 
role of antibiotics such as pyrrolnitrin is decisive in the control of other microbes by 
P. fluorescens, as in the case of the prevention of damage caused by R. solani in cot-
ton (Hill et al. 1994) or phenazine in the control of F. oxysporum and G. graminis 
(Chin-A-Woeng et al. 2003). The production of phenazine by species of the genus 
Pseudomonas is the control route of several fungi (Suryadi et al. 2014; Parvin et al. 
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2016; Irma et al. 2018). The MP12 line of Pseudomonas protegens, isolated from 
the soil and identified by Andreolli et al. (2019), carries phlD, pltB and prnC genes, 
which encode the synthesis of 2,4-diacetylphloroglucinol, pyoluteorin and pyrrolni-
trin, respectively. This bacterium inhibits the in vitro growth of several phytopatho-
genic fungi of the vine: Phaeomoniella chlamydospora and Phaeoacremonium 
aleophilum, and these are responsible for the esca disease, not controllable by the 
methods available in agriculture.

The ability of Pseudomonas to colonize different organs of the plant, its versatil-
ity in terms of the use of organic substrates exuded by seeds and roots, the diversity 
of metabolites that they synthesize and their compatibility with other biological 
control agents and chemical pesticides make this genus a powerful candidate for its 
use in the control of damage caused by pathogens (Sindhu et al. 2016).

Within the genus Bacillus, both those who live in the rhizosphere and in an endo-
phytic form have been studied for purposes of biological control. In wheat, three 
endophytic isolates of Bacillus subtillis and one of Bacillus megaterium inhibited 
the in vitro growth of Fusarium graminearum; the B. megaterium isolate is the most 
effective in field conditions (Pan et al. 2015). In corn, Figueroa-López et al. (2016) 
found three rhizospheric isolates of species of the genus (B. megaterium, B. cereus 
sensu lato and Bacillus sp.) that reduce the damage caused by Fusarium verticillioi-
des, apparently thanks to the synthesis of glucanases, proteases, chitinases and sub-
stances that stimulate growth, such as siderophores and auxins.

Two endophytic isolates, one from Bacillus cereus and the other from Bacillus 
mojavensis, inhibit the development of F. proliferum, F. verticillioides and F. fujiku-
roi, rice pathogens (Etesami and Alikhani 2017). Melnick et al. (2008) were suc-
cessful in controlling Phytophthora capsici in cocoa by applying B. cereus isolated 
from tomatoes and potatoes, and also Bacillus sp. from the cocoa plants themselves; 
equivalent results in the control of Moniliophthora roreri with Bacillus sp. in cocoa 
were obtained by Villamil et al. (2015). The genus Bacillus is able to synthesize 
lytic enzymes that, by destroying the cell walls of pathogens, impedes their growth 
(Tirado-Gallego et al. 2016).

Finally, the known toxicity of certain proteins of Bacillus thuringiensis on insects 
is another promising route (Malathi et al. 2006; Sujatha et al. 2009), taking advan-
tage in this case of the facilities of genetic engineering. However, genetic engineer-
ing processes to control insects with Bacillus thuringiensis must be carried out with 
great foresight, since Bt toxins can be dangerous for useful insects such as the silk-
worm (Kumar et al. 2016). Although it is feared that insects may develop resistance 
to B. thuringiensis toxins, Badran et  al. (2016) have discovered mechanisms to 
obtain new Bt toxins that do not adhere to their traditional receptors but to new 
adhesion sites in Trichoplusia ni. In this way, the resistance to the Bt toxins that 
already begins to appear in the field could be overcome.

The potentialities of the genus Bacillus as a biological control agent are given not 
only by its antagonistic capacity, but because it produces stable endospores that are 
able to withstand high temperatures and desiccation (Sindhu et al. 2016).

The production of antibiotics and hydrolytic enzymes are not the only mecha-
nism important in the biological control of diseases that some bacteria exert. In 
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addition to these, other mechanisms are known, such as the production of phyto-
alexins, the induction of systemic resistance, the synthesis of secondary metabolites 
of various types and the production of siderophores (Sindhu et al. 2016). The genera 
Arthrobacter, Curtobacterium, Enterobacter, Microbacterium, Stenotrophomonas 
and even Pseudomonas, which are able to control the damage caused by Xanthomonas 
axonopodis pv. passiflorae, do it through competition for iron and nitrogen com-
pounds (Halfeld-Vieira et al. 2014).

Indirectly, in addition, the protection of the plants can be carried out in ways that 
improve their constitution and nutritional status, which makes them more resistant 
to pathogenic infections. The genus Rhizobium form nodules in the roots of Fabaceae 
(Fig. 12.2), reducing atmospheric N2, which is very stable and relatively inert, to 
ammonium ions (NH4

+) easily assimilated by most plant species (Marquina et al. 
2011). This association between bacteria and plants from Fabaceae family is an 
efficient process in the biological fixation of atmospheric nitrogen (BFAN). 
According to Ángeles-Núñez and Cruz-Acosta (2015), nitrogen fixation could vary 
from 24 to 584 kg ha−1 and may supply up to 90% of the needs of the plant. Also, 
BFAN can reduce drastically the application of nitrogen fertilizers, which brings 
less contamination of soil and water, also reducing production costs (Yadegari and 
Rahmani 2010; Granda et al. 2014). The final result is a vigorous and healthy plant, 
more able to defend itself from pathogenic infections.

Rhizobium characterization studies have been carried out in order to know their 
growth and nodulation properties with a view to their use in agriculture. 
Morphological and biochemical traits from several Rhizobium strains (9 of them 
from wild common bean roots and 11 from domesticated bean roots from Western 
Mexico) were characterized by López-Alcocer et al. (2017). Results from the mor-
phological characterization showed that all strains had a rapid growth (2–3 days), 

Fig. 12.2  Nodules of 
Rhizobium (www.
farmersjournal.ie)
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white colour and smooth border; 14 had a convex shape, and 12 were translucent. 
With respect to biochemical characterization, all strains grew at a pH of 6.0 or 
higher, and when a pH from 4.0 to 5.5 was fixed, four strains did not grow. A great 
variability between strains was found in this study showing generally rapid growth, 
tolerance to acid pH values, tolerance to moderate concentrations of sodium chlo-
ride, susceptibility to heavy metals and resistance to antibiotics, which is consistent 
with bacteria of the genus Rhizobium (López-Alcocer et al. 2017).

Gómez-Padilla et  al. (2017) characterized six bacteria isolated from roots of 
Vigna unguiculata; they were subjected to different salt concentrations (0.17–6.6 
dSm−1 of NaCl), pH levels (4.5–9.0) and temperatures (28–45 °C). The variation of 
16S rRNA gene was examined by amplified 16S rDNA restriction analysis 
(ARDRA) and direct sequencing to show genetic diversity. Three isolates (VIBA-1, 
VIBA-2 and VIBA-6) achieved similar results as the control with 2.6 and 3.4 dSm−1 
of NaCl. All of the isolates could grow at pH 7 and 9 and could grow until 40 °C, 
meanwhile only two of them (VIBA-4 and VIBA-5) grew at 45 °C. VIBA-1 was 
closely related to Bradyrhizobium liaoningense, VIBA-4 to Rhizobium radiobacter 
and the remaining to Bradyrhizobium yuanmingense. All of them, with the excep-
tion of VIBA-4, were able to nodulate in the plants when they were inoculated.

Bacteria producing organic acids such as lactic acid and acetic acid are used in 
the biopreservation of plant products (Trias et al. 2008a) mainly because the low pH 
prevents the growth of fungi that rot the edible fruits and leaves. Enterococcus, 
Lactobacillus, Leuconostoc, Lactococcus and Pediococcus produce various antifun-
gal compounds, among which are protein molecules, peptides, fatty acids, organic 
acids and reuterin, a metabolite resulting from the degradation of glycerol. Although 
the use of these bacterial genera as biological controls of fungi has not been widely 
studied, their antagonist activity has been reported in some cases (Sathe et al. 2007; 
Rouse et al. 2008; Trias et al. 2008b; Lan et al. 2012, and others) which allows con-
sidering them as potential candidates for this purpose. In addition, unlike other 
microorganisms such as Bhurkolderia, there are no reports of toxicity to plants, 
animals or humans related to these bacterial genera, and they are easy to isolate 
from different environments, including the aerial parts of plants (Gajbhiye and 
Kapadnis 2016).

An important and recent application of the properties of bacteria is the control of 
weeds. Four main reports were pioneers in this topic: a limited effect of P. fluores-
cens strain D7 on Bromus tectorum (Kennedy et al. 1991), the control of Poa annua 
and Poa attenuata by Xanthomonas campestris pv. poae JT-P482 (Imaizumi et al. 
1997), the antagonist activity of P. fluorescens strain BRG100 on Setaria viridis 
(Quail et al. 2002) and the inhibition of 29 species between monocotyledonous and 
dicotyledonous plants by P. fluorescens strain WH6 (Banowetz et  al. 2008). In 
recent years, several reports have appeared on the herbicidal activity of other genera 
(Patil 2014; Sayed et al. 2014; Juan et al. 2015; Boyette and Hoagland 2013, 2015). 
Recently, P. fluorescens strain BRG100 has been used successfully in the formula-
tion of a bioherbicide (Agriculture and Agri-Food Canada 2019).

The use of bacteria for the control of insects and other invertebrates has also been 
limited to some genera (Lacey et al. 2015). First, there are the subspecies of Bacillus 
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thuringiensis, which in addition to their well-known success in the suppression of 
lepidoptera have achieved success in nematodes (Carneiro et al. 1998; Wei et al. 
2003; Khan et al. 2010), coleoptera (Suzuki et al. 1992) and hymenoptera (Porcar 
et al. 2008). In 2014, only four biopesticides (three based on B. thuringiensis and 
one based on B. firmus) were registered in Europe for use in the greenhouse (Gwynn 
2014); the subspecies israelensis, japonensis and galleriae (all of B. thuringiensis) 
began to be used experimentally for the control of insects in peanuts, vegetables, 
grass and turf (Kergunteuil et al. 2016). However, future employment prospects are 
broad, since 150 proteins of B. thuringiensis toxic to insects have been isolated 
(Crickmore et al. 2018). The toxins of B. thuringiensis have been the main base for 
the creation of transgenic crops resistant to lepidoptera, although their biosecurity 
for other insects and humans has been questioned; they also have the fact that they 
generate resistance in the target insects (Lacey et al. 2015). However, the above-
mentioned results of Badran et al. (2016) promise substantial improvements in this 
last direction.

A promising prospect – at least for greenhouse plants – seems to be the combined 
use of bacterial biopesticides with the natural enemies of insects, in particular using 
the former as correction tools in cases where the latter do not work at all to the 
extent to which it is needed (Gonzalez et al. 2016).

12.4  �Conclusions and Future Outlook

Fungi and bacteria can play an important role in agriculture on the basis of their 
properties that help commercial crops to acquire nutrients and water through sym-
biotic associations, stimulating their growth and development and/or protecting 
them against infections of other microbes, competition with undesirable vegetation 
and attacks from other predatory organisms.

Biotechnology has been useful in the identification and characterization of useful 
fungi and bacteria and their metabolites, as well as in the formulation of bioinsecti-
cides, biofungicides and bioherbicides that begin to be used in a larger or smaller 
scale. The possibilities opened by the use of genetic engineering in the transforma-
tion of beneficial microorganisms make it a useful tool for the more exact and tar-
geted application of these microbes and the products obtained from them.
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13.1  �Introduction

Plant stress is a condition wherein the normal growth and development of a plant is 
severely hampered due to certain external conditions (Verma et al. 2013). Stress in 
plants can result in a cascade of changes ranging from altered gene expression, cel-
lular metabolism, plant productivity, etc. A plant stress more often than not is an 
indication of an abrupt environmental change. Notwithstanding the previous state-
ment, prolonged stress exposure may result in plants adapting various strategies to 
counter the altered conditions for the sake of their survival during a period of time 
(Verma et al. 2013). Plant stress can either be biotic stress or abiotic stress. Biotic 
stress exposed to plants is a biological unit like disease, insect, and phytopathogens, 
while abiotic stress imposed on plants by environment may be either physical or 
chemical. Abiotic and biotic stresses contribute 50% and 30%, respectively, to 
losses in agricultural productivity worldwide (Chodak et al. 2015).

It is pertinent to mention here that plants are not an isolated entity growing in total 
seclusion, rather plants grow in a dynamic environment with various interactions 
among them and other biotic and abiotic factors. In this context, it is important to 
highlight that most plants in natural ecosystems have symbiotic associations with 
fungi. Symbiosis (from the Greek sumbiōsis, living together) was first described by 
Anton de Barry and later interpreted by Hertig et al. (1937). Modern day studies 
indicate that almost all plant life on earth is inextricably linked with fungi. These 
fungi are necessary for maintaining the structure, function and health of the plant. In 
this scenario, studying them becomes even more essential to understand the effect of 
fungi on plant stress. In fact, symbiotic fungi have shown to impart stress tolerance 
and adaptations in plants for thriving in difficult conditions (Rodriguez et al. 2003).

Plant fungal symbionts can either be endophytes or mycorrhiza. Endophytes reside 
inside plant tissues and are found in root, stem or leaf, whereas mycorrhizal fungi are 
found in close association with the roots extending into the rhizosphere. Carroll 
(1988) have divided endophytic fungi into two main classes. Class I comprises of the 
constitutive mutualists, which infect grasses only and show vertical transmission via 
seeds. These are systemic in nature (e.g. Epichloë/neotyphodium). Class II contains 
the inducible mutualists, which infect a wide range of plants and show horizontal 
transmission (e.g. Aspergillus niger, Aspergillus terreus, Aspergillus ochraceous and 
Trichoderma viride). Fungal symbionts exhibit different modes of lifestyles like 
mutualism, commensalism and parasitism (Rodriguez et al. 2003; Varma et al. 2020). 
Among all the above-mentioned lifestyles, mutualism/symbiosis is considered to be 
the most effective in conferring host fitness benefits that will ultimately result in stress 
tolerance and higher plant productivity. Plant association with fungus helps to reduce 
the deleterious effects of stress on plants by improving absorption and translocation of 
nutrients, aiding in nutrient cycling etc. (Kumar and Verma 2018; Prasad et al. 2020).

Plants have evolved and adapted to persist and thrive in stressed conditions by 
forming symbiotic relations with organisms like fungi that have imparted these 
plants a tool necessary to tide over the unfavourable conditions (Chadha et al. 2015). 
Plant-fungal associations are not only economically sound but also environment 
friendly in terms of combating various plant stresses (Kumar and Verma 2018). In 
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this chapter, we will discuss the various strategies and mechanisms that involve 
plant-fungal symbiosis for countering various biotic and abiotic stresses.

13.1.1  �Arbuscular Mycorrhizal Fungi: Mechanism of Action

Arbuscular mycorrhizal fungi (AMF) not only supply essential inorganic nutrients 
to plants but also upregulate plant defence mechanisms against various environmen-
tal stresses. AMF provides plant with unique strategies to cope with stressful condi-
tions by playing a crucial link between the plant and the fungi, resulting in an 
increased photosynthetic rate as well as higher gas-exchange-related traits (Birhane 
et al. 2012). Most AMF members belong to the sub-phylum Glomeromycotina of 
the phylum Mucoromycota (Spatafora et  al. 2016). Paraglomerales, Glomerales, 
Diversisporales and Archaeosporales which collectively include 25 genera are the 
four orders that have been identified in the sub-phylum Glomeromycotina (Redecker 
et al. 2013). Most bryophytes, pteridophytes and flowering plants, that is ranging up 
to 90%, can form AMF associations (Zhu et al. 2010a, b; Ahanger et al. 2014). AMF 
can form arbuscules, vesicles and hyphae in roots along with spores and hyphae in 
the rhizosphere (Bowles et al. 2016). Fungal hyphae extensively increase the absorp-
tive surface area of the plant roots, thereby enhancing both water and nutrient 
absorption. Not only this, fungal hyphae also enhance the soil quality and texture 
along with aiding in the process of decomposition of organic matter (Zou et  al. 
2016; Paterson et al. 2016; Thirkell et al. 2017). Moreover, AMF also increase the 
translocation of photo-assimilates to the various plant parts and may also increase 
the “sink effect” by positively influencing atmospheric CO2 fixation in plants.

AMF association apart from providing nutrients and minerals also defends plants 
against several fungal pathogens (Jung et al. 2012; Smith and Read 2008). Under 
abiotic stress, many nutrients relocate from fungus to the plant itself, thus helping 
the host to tide over unfavourable conditions (Plassard and Dell 2010). Many physi-
ological functions of plants including growth, CO2 assimilation, relative water con-
tent (RWC), PSII efficiency, stomatal conductance, leaf water potential, etc., are 
regulated by AMF association (Chandrasekaran et al. 2019; He et al. 2017). Thus, 
under abiotic stress, these functions are adjusted by the fungal partners to increase 
the plant efficiency during fluctuating environmental conditions. Barzana et  al. 
(2012) observed AMF association to strengthen water stress tolerance of plants by 
altering the physiology of the shoot system. In case of drought or salinity stress, 
AMF can increase plant dry matter along with higher water moisture uptake, result-
ing in better plant tolerance. It is evident that a plant with better growth will possess 
greater vigour to tolerate abiotic stresses. In this context, plants with AMF associa-
tion had improved uptake of almost all nutrients with decreased uptake of Na+ and 
Cl−, resulting in growth stimulation (Evelin et al. 2012). Similarly, uptake of mac-
ronutrient N is greatly increased due to extensive underground network of fungal 
mycelia. In addition to greater absorption of N, almost 20–75% of the N absorbed 
by the AMF is directly translocated to the plant (Hashem et  al. 2018; Ahanger 
et al. 2014; Hameed et al. 2014; Tanaka and Yano 2005; Govindarajulu et al. 2005). 
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Wang et al. (2018) observed that AMF during salt stress affects the N:P ratio in plant 
to maximize plant’s performance under stress. Under high metal stress, the translo-
cation of metal ions with the help of AMF association further strengthens the role 
played by AMF in abiotic stress mitigation. AMF like Glomus mosseae and 
Rhizophagus irregularis showed a significantly higher metal translocation in the 
plant shoot (Ali et al. 2015; Zaefarian et al. 2013). Also, it has been shown by Asrar 
et al. (2012) that the concentration of macronutrients such as N, P, K, Ca and Mg 
can be increased by specific fungal association under conditions of drought in 
Antirrhinum majus. Moreover, Bati et al. (2015) showed that plant-AMF associa-
tion also aids in restricting the high accumulation of Na, Mn, Mg and Fe in roots. 
Rouphael et al. (2015) reported that pH regulation could aid in the diminution of 
abiotic stress by AMF, thereby conserving its horticultural value.

AMF association in case of biotic stress follows a similar pattern to that of abi-
otic stresses, with alteration of plant physiology resulting in heightened state of 
plant defence mechanism. In plants, phytohormones like salicylic acid (SA), jasmo-
nate (JA), ethylene (ET) and abscisic acid (ABA) are in the frontline of plant defence 
response (Pieterse et al. 2009). In case of plants with AMF association, the level of 
these hormones appears to be altered (López-Ráez et al. 2010). AMF association 
activates phenylpropanoid and oxylipin metabolism along with accumulation of 
reactive oxygen species and plant-defence-related enzymes (López-Ráez et  al. 
2010). Similarly, Pozo et  al. (2009) had shown that mycorrhizal association in 
tomato accentuated the expression of defence-related genes which were known to 
get activated by JA (jasmonate) under biotic stresses.

13.2  �Biotic Stress in a Nutshell

Biotic stress in plants is caused by various living organisms like insects, arachnids, 
nematodes, viruses, bacteria, fungi and weeds, Fig. 13.1. These organisms may, in 
extreme cases, starve the host plant of its nutrients, ultimately resulting in the plant’s 
death. Economically, biotic stress is a major contributor for agricultural yield loss, 
resulting in food shortage and poor nutrient quality. In the continuous race for sur-
vival, plants have devised various strategies to counter such biotic stresses. These 
defence mechanisms help plants to perpetuate their species even in harsh conditions.

13.2.1  �Role of Fungal Endophytes in Alleviating Plant 
Biotic Stress

Endophytic fungi (EF) are organisms that reside inside a healthy plant tissue with-
out inflicting any morbid change in the structure or causing any diseases for most 
part of its life cycle (Rajamanikyam et al. 2017). An endophytic fungus generally 
lives in its mycelial form in biological association with the living plant and is found 
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in all kinds of plants: trees, grasses, algae and herbaceous plants. EF is an important 
source of a plethora of plant metabolites. These bioactive compounds not only play 
a key role in suppressing biotic stress, but they may also trigger plant immune 
responses against invading pathogens (Rajamanikyam et al. 2017).

Endophytic fungi mainly consist of members of the Ascomycota or their mito-
sporic fungi, as well as some taxa of the Basidiomycota, Zygomycota and Oomycota, 
as depicted in Fig. 13.2.

13.2.2  �Classification of Plant Pathogens Causing Biotic Stress

Biotic stresses caused by agents like pests, microbes, and insects decrease not only 
the productivity of the plant but also severely impact the health of the plant in gen-
eral. Chadha et al. (2015) have broadly classified the different types of plant patho-
gens interacting with fungal endophyte into three categories: endophyte and 
nematode, endophyte and plant pathogenic fungi and endophyte with other plant 
pathogens, as depicted in Fig. 13.3.

13.2.2.1  �Impact of Fungal Endophytes on Biotic Stress Amelioration 
Caused by Nematodes

According to Zabalgogeazcoa (2008), The occurrence of inhibitory effect is due to 
the translocation of fungal alkaloids from the aerial parts (where the plant is infected 
with the endophyte) to the roots, as shown by Timper et al. (2005). Plants infected 

Fig. 13.1  Various agents responsible for biotic stress and their effect on plants
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with Neotyphodium strains that did not produce ergot alkaloids were unable to 
defend themselves against Pratylenchus sp. (nematode) in contrast to the plants 
infected with ergot alkaloid producing endophyte (Timper et al. 2005). According 
to Timper et al. (2005), translocation of fungal alkaloids forms aerial parts to roots 
imparted plants toward off these nematodes as Neotyphodium strains deficient in the 
production of ergot alkaloids were not able to protect themselves against nematodes 
like Pratylenchus sp.

Though there are doubts as to whether ergot alkaloids are essential for plant 
defence against nematodes, but nevertheless, Neotyphodium sp. are known to pro-
duce various types of alkaloids exhibiting anti-herbivore activity along with the 
production of phenolic compounds (Malinowski and Belesky 2000). Although, the 
exact mechanism is still not known, but it is safe to say that Neotyphodium endo-
phytes protect plant from various nematodes, exhibiting alleviation of biotic stress.

Fig. 13.2  Classification of endophytic fungi and existence in plant cells

Fig. 13.3  A classification of various types of plant pathogens interacting with fungal endophyte
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13.2.3  �Impact of Fungal Endophytes on Biotic Stress 
Amelioration Caused by Fungal Pathogens

A diverse range of fungal endophytic species produce antibiotic substances which 
have the capacity to stop the growth of many plant pathogenic fungi (Zabalgogeazcoa 
2008; Koch et al. 2021). It was observed that if six species of fungal endophytes 
commonly isolated from cocoa (Theobroma cacao L.) trees were used to inoculate 
leaves of endophyte free seedlings of the same plant species, the effect of leaf dis-
ease caused by Phytophthora sp. was drastically reduced. One plausible mechanism 
for plant defence in the above said case could be due to a direct competition between 
the endophytes and fungal pathogen (Arnold et al. 2003). The already present fun-
gal endophyte occupies most of the leaf tissue required for fungal pathogen along 
with producing zones of inhibition restricting the growth of fungal pathogen, 
thereby decreasing the impact of biotic stress. Similarly, in another study, it has 
been seen that fungal endophyte infection may result in changed plant biochemistry 
such that it could be used against plant pathogens. Root endophyte Piriformospora 
indica has a diverse range of hosts which includes cereals, pulses, vegetables and 
medicinal plants (Vadassery et al. 2009; Bagde et al. 2010a,b, 2011; Prasad et al. 
2008, 2013). Cereals like barley when inoculated with this endophyte showed resis-
tance to a vascular pathogen Fusarium culmorum and Blumeriagramini (Waller 
et al. 2005; Gill et al. 2016).

Fungal endophytes may also be mycoparasites by nature as in the case of 
Acremonium strictum isolated from Dactylis glomerata L. The fungus Acremonium 
strictum is a mycoparasite of Helminthosporium solani, which invades potato plants 
(Rivera-Varas et  al. 2007). Interestingly, among all the fungal species that infect 
plants only a relatively small proportion causes disease, that is acts as pathogens, 
thus indicating that part of plant disease cycle is shared by pathogens of endophytes. 
Once a plant is infected by a fungus, the fungus can either act as a pathogen or an 
endophyte, though majority of them behave as endophytes. In some cases, mutation 
in a single locus converts pathogens such as Colletotrichum magna to a mutualistic 
endophyte (Freeman and Rodriguez 1993). However, in some cases, the above-
mentioned fungal species behave as pathogen in cucurbits or as an endophyte in 
other plant species (Redman et al. 2001)

13.2.3.1  �Impact of Fungal Endophytes on Biotic Stress Caused by Other 
Plant Pathogens

Effects of endophytes on plant pathogens like bacteria and virus are not numerous 
compared to other plant pathogens. Viruses like barley yellow dwarf virus (BYDV) 
showed reduced pathogenicity in Lolium pratense infected by endophyte 
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Neotyphodium compared to plants not infected by this fungal endophyte. The 
release of toxic fungal alkaloids from Neotyphodium sp. inhibits the aphid vectors 
carrying the BYDV pathogen, as aphid reproduction was significantly lower in 
plants infected by these endophytes (Lehtonen et al. 2006).

13.2.4  �Mechanism of Biotic Stress Alleviation in Plants via 
Fungal Endophytes

The myriad of ways via. which the fungal endophytes can alleviate biotic stress in 
plants can be broadly classified into three main groups: (a) direct inhibition of plant 
pathogens, (b) indirect inhibition of plant pathogens, (c) ecological effects (Gao 
et al. 2010).

13.2.4.1  �Direct Inhibition of Plant Pathogens Causing Biotic Stress

In direct inhibition, endophytes suppress pathogens by producing antibiotics, lytic 
enzyme secretion, etc. Direct interactions between pathogen and fungi are quite 
complex and vary from species to species (Gao et al. 2010).

Antibiotics Produced by Endophytes and Their Role in Biotic Stress Tolerance

Fungal endophytes have an innate capacity of producing diverse range of second-
ary metabolites exhibiting strong antifungal and antibacterial properties which stop 
the growth of many plant pathogens (Gao et al. 2010). Such endophytes have the 
capacity to produce multiple kinds of antibiotics including terpenoids, alkaloids, 
aromatic compounds and polypeptides. For example Phomopis cassia, an endo-
phytic fungus isolated from Cassia spectabili, produces five cadinene sesquiter-
penes, and among them 3,11,12-trihydroxy cadinene acts as the strongest antifungal 
compound against Cladosporium sphaerospermum and Cladosporium cladsporioi-
des (Gao et al. 2010).

Lytic Enzymes Secreted from Endophytes and Their Role in Biotic Stress 
Tolerance

In order to effectively penetrate their hosts, endophytes release various enzymes to 
hydrolyze the rigid cell wall and cell surface. These enzymes also show the ability 
to degrade the cell walls of fungi and oomycetes pathogens, thus barring their entry. 
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Among the many enzymes produced, few prominent ones are chitinases, cellulases 
and 1,3-glucanase (Gao et al. 2010).

13.2.4.2  �Indirect Inhibition of Plant Pathogens Causing Biotic Stress

Plants during evolution have developed two types of resistance against biotic 
stresses: non-specific (general) resistance and specific resistance (Gao et al. 2010). 
Since, it is known that fungal endophytes may evolve from plant pathogenic fungi, 
plant defence can be activated with the help of fungal endophytes similar to plant 
pathogens. This defence results from plant resistance enhancement and secondary 
metabolite production.

Role of Endophytes in Induction of Plant Resistance to Biotic Stress Alleviation

Fungal endophytes like Fusarium solani found in the roots of tomato are responsi-
ble for inducing systematic resistance against tomato foliar pathogen Septoria lyco-
persici and expressed PR gene, PR5 and PR7 in its roots (Kavroulakis et al. 2007). 
Similarly, endophyte Neotyphodiumlolii decreased lesions caused on leaves due to 
pathogens by activating enzymes superoxide dismutase (SOD) and peroxidase 
(POD) (Tian et al. 2008).

Role of Endophytes in Stimulation of Plant Secondary Metabolites for Biotic 
Stress Alleviation

Secondary metabolites more commonly called plant natural products are not essen-
tial for plants survival but play major role in plant defence and allelopathic interac-
tions. Secondary metabolites known as phytoalexins are low molecular weight 
antimicrobial molecules (Smith 1996), containing many flavonoids, terpenoids etc., 
and are central to plant defence. These phytoalexins were first discovered in Orchis 
morio and Loroglossumhircinum in response to a fungal attack.

Role of Endophytes in Promoting Plant Growth and Physiology for Biotic 
Stress Alleviation

Endophytes may also control plant physiology and contribute in plant defence 
against biotic stresses (Giménez et al. 2007). Increased plant growth is an indica-
tion of strong plant vigour, thus helping plants to tide over biotic stresses. Fungal 
endophytes like Colletotrichum sp. found in Artemisia annua produce 
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phytohormones like indole acetic acid (IAA) to regulate plant biotic response 
(Lu et al. 2000).

13.2.4.3  �Ecological Effects and Their Role in Biotic Stress Alleviation 
Through Fungal Endophytes

The interaction of plant pathogen and fungal endophyte for the use of limited 
resources and space for growth results in formation of a niche for each of the com-
peting member. Sometimes, as seen in the case of endophytes, this niche may not 
permit the fungal pathogen altogether to infect the plant host or in some cases the 
endophyte may use this as an opportunity to kill the pathogen and obtain its nutri-
tion. Thus, ecological niche both at occupational and nutritional level works simul-
taneously (Table 13.1).

Impact of Occupational Endophytic Ecological Niche on Biotic Stress 
Alleviation

Endophytes occupy a specific niche inside their host such that an equilibrium 
between the host and fungal endophyte gets established. Endophyte obtains nutri-
tion from its host, whereas the host benefits from the various exudates and leachates 
that protect the host against other pathogens. Fungal endophytes rapidly colonize 
and exhaust the substrates so that pathogens found it difficult to establish them-
selves for longer period of time (Pal and Gardener 2006). As a defence response, 
plants produce lignin and other exudates to stop further infection by endophytes 
(Harman et al. 2004). Thus, plant adaptation to prevent endophyte infection becomes 
a barrier for fungal pathogen too.

Impact of Endophytic-Hyper-Parasitism and Predation on Biotic Stress 
Alleviation

Fungal endophytes protect their host plant from biotic stress by directly attacking 
the plant pathogen (Tripathi et al. 2008). Trichoderma sp. is a good example as it 
directly parasitizes hyphae of fungal pathogens like Rhizoctonia solani. Such 
responses of endophytes also constitute bio-control methods (Grosch et al. 2006).

Predation though like parasitism is a more general method to eliminate plant 
pathogens. The same endophyte Trichoderma under nutrient-deficient conditions 
produces enzymes to assimilate fragments of fungal pathogen (Benhamou and 
Chet 1997).

A. Sharma et al.



301

Ta
bl

e 
13

.1
 

Pl
an

t-
en

do
ph

yt
e 

as
so

ci
at

io
ns

 in
 c

om
ba

tin
g 

va
ri

ou
s 

bi
ot

ic
 s

tr
es

se
s

B
io

tic
 s

tr
es

s
E

nd
op

hy
te

 g
en

us
E

nd
op

hy
te

 f
am

ily
Pl

an
t s

pe
ci

es
M

ec
ha

ni
sm

R
ef

er
en

ce

P
ra

ty
le

nc
hu

s 
sp

.
N

eo
ty

ph
od

iu
m

 s
p.

C
la

vi
ci

pi
ta

ce
ae

G
ra

ss
es

Pr
od

uc
tio

n 
of

 a
nt

i-
he

rb
iv

or
e 

al
ka

lo
id

s 
an

d 
ph

en
ol

ic
 p

ro
du

ct
io

n 
in

 in
fe

ct
ed

 r
oo

ts
T

im
pe

r 
et

 a
l. 

(2
00

5)

F
us

ar
iu

m
 c

ul
m

or
um

P
ir

if
or

m
os

po
ra

 
in

di
ca

Se
ba

ci
na

ce
ae

A
ra

bi
do

ps
is

 a
nd

 
ce

re
al

s
A

lte
re

d 
pl

an
t b

io
ch

em
is

tr
y 

to
 in

du
ce

 p
la

nt
 

de
fe

nc
e

W
al

le
r 

et
 a

l. 
(2

00
5)

H
el

m
in

th
os

po
ri

um
 

so
la

ni
A

cr
em

on
iu

m
 

st
ri

ct
um

In
ce

rt
ae

 s
ed

is
D

ac
ty

li
s 

gl
om

er
at

a 
L

M
yc

op
ar

as
iti

sm
R

iv
er

a-
V

ar
as

 e
t a

l. 
(2

00
7)

B
Y

D
V

 v
ir

us
N

eo
ty

ph
od

iu
m

 s
p.

C
la

vi
ci

pi
ta

ce
ae

L
ol

iu
m

 p
ra

te
ns

e
In

hi
bi

tio
n 

of
 a

ph
id

 v
ec

to
rs

 c
ar

ry
in

g 
B

Y
D

V
 

du
e 

to
 to

xi
c 

al
ka

lo
id

s 
re

le
as

ed
 f

ro
m

 
en

do
ph

yt
e

L
eh

to
ne

n 
et

 a
l. 

(2
00

6)

C
la

do
sp

or
iu

m
 

sp
ha

er
os

pe
rm

um
P

ho
m

op
is

 c
as

si
a

V
al

sa
ce

ae
C

as
si

a 
sp

ec
ta

bi
li

Pr
od

uc
tio

n 
of

 a
nt

if
un

ga
l c

ad
in

en
e 

se
sq

ui
te

rp
en

e 
by

 e
nd

op
hy

te
s

G
ao

 e
t a

l. 
(2

01
0)

Se
pt

or
ia

 ly
co

pe
rs

ic
i

F
us

ar
iu

m
 s

ol
an

i
N

ec
tr

ia
ce

ae
So

la
nu

m
 

ly
co

pe
rs

ic
um

E
xp

re
ss

io
n 

of
 P

R
 g

en
es

: P
R

5 
an

d 
PR

7 
in

 
ro

ot
s

K
av

ro
ul

ak
is

 e
t a

l. 
(2

00
7)

F
us

ar
iu

m
 o

xy
sp

or
um

Pe
ni

ci
ll

iu
m

 
ci

tr
in

um
T

ri
ch

oc
om

ac
ea

e
M

us
a 

sp
.

H
ig

he
r 

le
ve

l o
f 

en
zy

m
e 

pr
od

uc
tio

n 
in

 
ba

na
na

T
in

g 
et

 a
l. 

(2
01

2)

P
yr

en
op

ho
ra

 tr
it

ic
i

C
ha

et
om

iu
m

 
gl

ob
os

um
C

ha
et

om
ia

ce
ae

Tr
it

ic
um

 a
es

ti
vi

um
A

ct
iv

at
io

n 
of

 h
os

t d
ef

en
ce

Is
tif

ad
ah

 a
nd

 
M

cG
ee

 (
20

06
)

P
uc

ci
ni

a 
re

co
nd

it
a

P
ho

m
as

p.
D

id
ym

el
la

ce
ae

Tr
it

ic
um

 a
es

ti
vu

m
R

el
ea

se
 o

f 
in

hi
bi

to
ry

 s
ub

st
an

ce
s 

al
on

g 
w

ith
 

ac
tiv

at
io

n 
of

 h
os

t d
ef

en
ce

D
in

gl
e 

an
d 

M
cG

ee
 

(2
00

3)
P

la
sm

od
io

ph
or

a 
br

as
si

ca
e

H
et

er
oc

on
iu

m
 

ch
ae

to
sp

ir
a

A
nt

en
nu

la
ri

el
la

ce
ae

B
ra

ss
ic

a 
ca

m
pe

st
ri

s
N

ot
 k

no
w

n
U

su
ki

 e
t a

l. 
(2

00
2)

P
lu

te
ll

ax
lo

st
ll

a
A

cr
em

on
iu

m
 

al
te

rn
at

um
In

ce
rt

ae
 s

ed
is

B
ra

ss
ic

a 
ol

er
ac

ea
 

va
r. 

ge
m

m
if

er
a

In
hi

bi
tio

n 
of

 la
rv

al
 g

ro
w

th
R

ap
s 

an
d 

V
id

al
 

(1
99

8)
H

el
ic

ov
er

pa
 a

rm
ig

er
a

A
cr

em
on

iu
m

 
st

ri
ct

um
In

ce
rt

ae
 s

ed
is

Ly
co

pe
rs

ic
um

 
es

cu
le

nt
um

D
ec

re
as

ed
 d

ev
el

op
m

en
t o

f 
pu

pa
e 

an
d 

la
rv

a
Ja

llo
w

 e
t a

l. 
(2

00
4)

M
el

io
do

gy
ne

 in
co

gn
it

a
F

us
ar

iu
m

 
ox

ys
po

ru
m

N
ec

tr
ia

ce
ae

Ly
co

pe
rs

ic
um

 
es

cu
le

nt
um

In
hi

bi
tio

n 
th

ro
ug

h 
re

le
as

e 
of

 a
nt

im
ic

ro
bi

al
 

co
m

po
un

ds
H

al
lm

an
 a

nd
 S

ik
or

a 
(1

99
4,

 1
99

6)

13  Plant-Fungal Association: An Ideal Contrivance for Combating Plant Stress…



302

13.2.5  �Role of Mycorrhizal Fungi in Plant Biotic 
Stress Alleviation

The most widely studied plant fungal interaction is mycorrhiza, which is the quint-
essential symbiotic relation. This relation between plant roots and fungus is wide-
spread in nature. Many fungi form such associations but arbuscular mycorrhizal 
fungi (AMF) of phylum Glomeromycota are the most important (Gosling et  al. 
2006). More than 80% of land plant families form AMF type association. AMF 
consist of an external network of fungal mycelia and an internal phase which pen-
etrate the cortical cells of the root (Prasad et al. 2017). Fitter and Moyersoen (1996) 
defined AMF association as “a sustainable non-pathogenic bio-trophic interaction 
between a fungus and a root”.

AMF associations represent an evolutionary strategy that led to sharing of func-
tions and responsibilities of both plant and fungal symbionts (Varma et al. 2017a, 
b, c). The changes in the physiology have a significant impact on plant response to 
biotic stress. In the following sections, some major impacts of AMF on biotic stress 
alleviation are discussed.

13.2.5.1  �Impact of AMF on Biotic Stress Alleviation Caused by 
Soil-Borne Pathogens

AM symbioses are known to protect plants from soil-borne pathogens. Diseases like 
wilting or root rot caused by fungi such as Macrophomina, Fusarium, Verticillum, 
Rhizoctonia and oomycetes like Pythium, Phytophtohra and Apahnomyces can be 
suppressed to some extent by AM symbioses. Mycorrhizal plants defend against 
these biotic stresses by using many different mechanisms. Competition between the 
AMF and pathogen for both the photosynthates and space for growth has been dem-
onstrated. Cordier et al. (1998) depicted that tomato roots with arbusculated cells 
were able to exclude Phytophthora.

13.2.5.2  �Impact of AMF on Biotic Stress Alleviation Caused by Root 
Parasitic Plants

Plants like Striga and Orobanche are plant parasites severely impacting agricultural 
crops. These plants act as obligate parasites and attach themselves to the roots of 
their host and exhaust them of their nutrients (Bouwmeester et al. 2003). Lopez-
Raez et al. (2009) showed that growth of hemiparasite Striga hermonthica found in 
African fields was inhibited when its host maize and sorghum were inoculated with 
AMF. Thus, AMF are advised for integrated management of parasitic weeds.
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13.2.5.3  �Impact of AMF on Biotic Stress Alleviation Caused by 
Phytophagous Plants

Insect herbivory is a common biotic stress encountered by many plants. 
Mycorrhizal association is known to influence such stresses, but the lifestyle and 
feeding mechanism of the insects also greatly determine the insect herbivory per-
formance (Hartley and Gange 2009; Koricheva et al. 2009). Hartley and Gange 
(2009) deduced that mycorrhiza have strong negative effects on rhizophagous 
insects, but such effects are variable in shoot-feeding insects. One reason for such 
variability is due to the fact that generalist insects are sensitive to improved 
defence capacity of the plant due to AM association, whereas specialist insects 
circumvent such defences and in turn possibly benefit from improved nutritional 
status of the plant.

13.2.6  �Molecular Mechanism of Fungal Endophytes 
to Biotic Stress

Environmental changes along with the increment of various biotic stresses have 
led to the accumulation of various adaptations in plants to maximize their chances 
of survival. One such adaptation is the use of endophytic fungi for evading biotic 
stresses such as pathogenic fungi, bacteria, nematodes and herbivory. Among the 
many endophytic fungi which can alleviate these stresses, none is more studied 
than Piriformospora indica (Johnson et  al. 2014). P. indica is root-colonizing 
endophyte which lacks host specificity and is similar to AMF but unlike AMF, it 
can be cultured on an artificial medium (Johnson et al. 2014; Prasad et al. 2005). 
Various studies on the interaction between host plant and P. indica have been 
shown to upregulate many defence-related genes including those belonging to the 
pathogenesis related PR genes like jasmonate (VSP, PDF1.2, LOX2) and ethylene 
(ERF1) which play the role of signalling genes during a pathogenic attack (Camehl 
et al. 2010; Molitor et al. 2011). In addition to these genes, colonization of the 
plant by P. indica could lead to the induction of reactive oxygen species (ROS) 
scavenging genes and enzymes in leaves (Johnson et al. 2014; Nath et al. 2016). 
In one study, after infection of plant by P. indica, an influx in Ca2+, short ROS 
burst, sudden apoplastic alkalization, CDPK and MAPK activation along with 
induction of defence genes was observed in the early stages both in Arabidopsis 
and barley independently (Johnson et al. 2014; Nath et al. 2018).
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13.3  �Abiotic Stress: A Havoc for Plant Growth

Plants are prone to a wide range of abiotic stresses which show detrimental effects 
on their growth and productivity. These stresses can reduce the plant survival, yield 
and biomass production to up to 70% and, thus, form a major threat to the global 
food security (Kumar and Verma 2018). The major abiotic stresses affecting plants 
are drought, salinity, heat, cold and heavy metals (Fig. 13.4). The various abiotic 
stresses and their possible mechanism to cope up under stress condition are dis-
cussed in detail below.

13.3.1  �Drought and Its Impacts on Plant Growth

Drought is a serious abiotic environmental stress which results due to water scarcity 
owing to a period of below average rainfall. It often lasts longer and is more severe 
than dry spells. It adversely affects plant growth and productivity by hindering 
nutrient assimilation, ion uptake, activity of enzymes, etc. (Ahanger et  al. 2017; 
Ahanger and Agarwal 2017). Water-deficit plants have reduced cell size, decreased 
membrane integrity, reduced rate of transpiration, photosynthesis, etc. They also 
produce reactive oxygen species which may lead to leaf senescence, protein degra-
dation, lipid peroxidation, membrane injury and cell death (Tiwari et al. 2015).

However, plants associated with mycorrhizal fungi can tolerate drought stress 
because of the increased absorption of water and minerals. The fungal hyphae sig-
nificantly increase the absorptive surface area of these plants. Also, trehalose 

Fig. 13.4  Various abiotic stress and their effect on plants
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production by fungi (Jiménez Zacarías et al. 2004; Farías-Rodríguez et al. 1998), 
along with increased synthesis of antioxidants like peroxidase (POD), catalase 
(CAT), superoxide dismutase (SOD), etc., also aids in protecting the plant from 
oxidative stress caused due to drought conditions (Ruiz-Lozano 2003). Fungi are 
also reported to positively affect the processes of growth, cell expansion, stomatal 
opening, etc. (Dar et al. 2018).

Maize, wheat, barley, onion, strawberry, soybean, etc., are some of the plants 
where the role of AMF in combating drought stress has been extensively studied 
(Mena-Violante et al. 2006; Moradtalab et al. 2019; Yooyongwech et al. 2016; Ruiz-
Lozano et al. 2015). Most AMF members belong to family Glomeraceae which is 
also regarded as the “Global Family” in terms of forming association with plants 
(Bahadur et al. 2019). Basidiomycete member, Piriformospora indica, belonging to 
family Sebacinaceae is also reported to alleviate drought stress in plants like 
Arabidopsis sp., Brassica campestris sp. Chinensis etc. (Sherameti et al. 2008; Sun 
et al. 2010). Amiri et al. (2017) reported that mycorrhizal association increased the 
concentrations of P, N and Fe in Pelargonium graveolens L. under drought stress. 
The concentrations of K, P, Zn and Mn were also found to be higher in AMF-
associated Pistachio plants grown under water scarce conditions (Bagheri et  al. 
2012). In AMF-inoculated Poncirus trifoliata and Rosmarinuso cinalis plants, sto-
matal conductance was reported to increase in conditions of water scarcity (Bahadur 
et al. 2019). Wu et al. (2019) reported that association of trifoliate orange (Poncirus 
trifoliata) with mycorrhizal fungi Funneliformis mosseae changed the composition 
and unsaturation of fatty acids to combat stress. Also, strigolactone level was found 
to increase in tomato and lettuce to cope up with drought stress (Ruiz-Lozano 
et al. 2016).

13.3.1.1  �Mitigation of Drought Stress at the Genic Level

Genes involved in combating drought tolerance are mainly divided into two main 
categories (Seki et  al. 2002). The first category includes proteins which directly 
regulate abiotic stress, while the second category comprises of proteins which play 
an indirect role in stress tolerance by controlling the functioning of stress-responsive 
genes along with aiding in signal transduction (Shinozaki et al. 2003). Under condi-
tions of drought stress, the amounts of plant hormones like abscisic acid, jasmo-
nates, and strigolactones vary considerably (Fernández-Lizarazo and 
Moreno-Fonseca 2016). Xu et al. (2018) reported the increased expression of 14-3-3 
genes (TFT1-TFT12) involved in abscisic acid signalling pathway in drought-
affected, AMF-associated Solanum lycopersicum plants. Similarly, Oelmüller et al. 
(2009) while working with Chinese cabbage observed several changes in the plant 
in response to treatment with polyethylene glycol (stimulates drought-like condi-
tions). Activity of drought-associated genes like CBL1, RD29A, DREB2A and 
ANAC072 and antioxidant enzymes like SOD, POD and CAT was identified to 
increase in several folds. Also, an enhancement was seen in the concentration of 
CAS protein and CAS mRNA level for Ca2+-sensing regulator linked with the thy-
lakoid membrane.

13  Plant-Fungal Association: An Ideal Contrivance for Combating Plant Stress…



306

13.3.2  �Salinity Stress and Its Implication in Agriculture

Almost 7% of the earth’s surface is occupied by saline soils (Ruiz-Lozano et al. 
2001). Fertilizers used in agriculture and soluble salts in water (Al-Karaki 2000; 
Copeman et al. 1996; Abrol 1986) accompanied by high temperatures and water 
stress lead to high salt content  – approximately 0.1% of the total soil (Richards 
1954; Juniper and Abbott 1993) in most of the areas (Cantrell and Linderman 2001; 
Al-Karaki 2006; Mouk and Ishii 2006). Salinity is a serious problem that causes 
poor microbial activity because of osmotic stress and toxicity, leading to low water 
potential. Anions such as NO3

− (nitrate), Cl− (chloride) and cations like K+ (potas-
sium), Na+ (sodium), Ca2+ (calcium) are primarily responsible for saline soils. Salt 
stress has both direct and indirect effects on crop productivity. Directly, it decreases 
the amount of available water to plants due to the reduction of osmotic potential of 
soil solution, leading to conditions of a physiological drought (Feng et al. 2002; 
Jahromi et  al. 2008). Plant productivity, germination rates, water and mineral 
uptake, ecological and physiological balance are all adversely affected. Also, the 
activity of nitrogenase enzyme is severely affected by salt stress, thereby showing 
detrimental effects on crop yield, nitrogen fixation and nodule formation. Indirect 
effects include imbalance in nutrient uptake and transport (Adiku et  al. 2001; 
Marschner 1995), membrane disruption, damaged structure of macromolecules, 
enzymes and organelles, etc., due to Na+ and Cl− toxicity (Feng et al. 2002; Juniper 
and Abbott 1993).

However, the positive impact of AMF on alleviating salt stress has been exten-
sively studied. El-Nashar (2017) and Ait-El-Mokhtar et  al. (2019) have recently 
reported an increase in growth rate, stomatal conductance, rate of photosynthesis 
and an improvement in leaf-water relations in AMF-associated Antirrhinum majus 
plants under conditions of saline stress. Shukla et al. (2012) demonstrated the role 
of Trichoderma harzianum in alleviating salt stress in rice plants. Borde et al. (2010) 
and Elhindi et al. (2017) have independently reported the positive effects of AMF in 
Ocimum basilicum L. and Allium sativum plants under salt stress, respectively. 
Navarro et al. (2014) reported a decline in the absorption rates of Na+ and Cl− in 
Citrus plants under saline conditions. Gomez-Bellot et al. (2015) demonstrated an 
increase in the levels of Ca2+, K+ and P in AMF-associated Euonymus japonica 
under salt stress. Increased nitrogen concentration in AMF-associated plant root and 
shoot along with enhancement in fresh and dry weights under moderate salt stress 
has also been reported (Wang et  al. 2018). Various researchers like Cekic et  al. 
(2012); Aroca et  al. (2013); Hameed et  al. (2014); Talaat and Shawky (2014); 
Hashem et al. (2018); Santander et al. (2019), etc., have independently shown an 
increase in the concentrations of chlorophyll, strigolactone, cytokinin, jasmonic 
acid, salicylic, Ca2+, P, N, Mg2+, and K+ and osmolyte proline in plant species like 
Capsicum annuum, Lactuca sativa and Cucumis sativus.
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13.3.2.1  �Molecular Mechanism of Salt Tolerance 
in AMF-Associated Plants

Baltruschat et al. (2008) reported that plants may alleviate salinity stress by mecha-
nisms involving lipid desaturation. This research was further supported by Zhao and 
Qin (2005) who showed that application of unsaturated fatty acids can alleviate 
NaCl stress in Hordeum sp. Also, Zhang et al. (2002) and Liang et al. (2005) inde-
pendently demonstrated the decline in concentration of oleic acid in stressed barley 
roots. Similar results are observed in barley leaves when inoculated with P. indica 
(Baltruschat et al. 2008). The activities of GR, DHAR, CAT, MDHAR and APX are 
also observed to increase in stressed barley roots. Miller et  al. (2007) made an 
astounding observation in Arabidopsis double mutants showing enhanced stress tol-
erance despite lacking thylakoid and cytosolic APX, thus concluding that reactive 
oxygen species likes peroxidases might be responsible for initiation of abiotic stress 
signal in conditions of salt stress. The activity of DHAR and ratio of reduced to 
oxidized ascorbate was reported to be improved in Hordeum sp. (Waller et al. 2005). 
However, opposite results were reported in case of salt-stressed barley where there 
was a decline in both the above-said parameters (Baltruschat et al. 2008). Similarly, 
Mittova et  al. (2004) had demonstrated an increase and decrease in the ratio of 
ascorbate to DHAR in salt-tolerant L. pennellii and salt-sensitive L. esculentum, 
respectively.

13.4  �Temperature Fluctuations: A Bane for Plants

Thermal stresses including both heat and cold stress are wreaking havoc on the plant 
growth and development. Varied temperatures lead to reduced germination and pho-
tosynthesis rates, loss of plant vigour, retarded growth, yield and biomass produc-
tion, cell death, abnormal enzyme activity, increase in oxidative stress, abscission 
and senescence of leaves, wilting and thermal damage of plant parts and discoloura-
tion of fruits (Wahid et  al. 2007; Hasanuzzaman et  al. 2013). For example cells 
become more rigid during cold stress, while heat stress increases the fluidity of 
cells. Plants adopt different strategies to counter heat stress like production and 
accumulation of enzymes and osmolytes. The concentration of jasmonic acid (JA) 
is also found to elevate significantly during stress condition. Heat shock proteins 
(HSP100, HSP 90, HSP70, HSP 60, HSP20) and ROS-scavenging enzymes (ascor-
bate peroxidase and catalase) are major functional proteins synthesized enormously 
during temperature stress in plants (Qu et al. 2013; Kotak et al. 2007).

Maya and Matsubara (2013) showed the positive effects of AMF Glomus fas-
ciculatum on plant growth and development under heat stress. Also, numerous 
reports suggest better growth rates in some AMF-associated plants when grown at 
low temperature (Chen et  al. 2013; Liu et  al. 2013; Abdel Latef and Chaoxing 
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2011a, b; Zhu et al. 2010a, b). AMF association aids the plants in surviving under 
cold stress along with enhancing their growth and development (Gamalero et al. 
2009; Birhane et  al. 2012). AMF helps the plant by strengthening its immunity 
owing to increased production of secondary metabolites and various proteins (Abdel 
Latef and Chaoxing 2011a, b). It also aids the plant in efficiently retaining moisture 
(Zhu et al. 2010a, b). Also, AMF-associated plants have improved rates of chloro-
phyll production (Abdel Latef and Chaoxing 2011a, b; Zhu et al. 2010a, b), better 
osmotic adjustment capacity and gas exchange potential along with enhanced plant-
water relationship (Zhu et al. 2012).

13.4.1  �Heavy Metals and Their Deleterious Effects on Plants

Non-degradable, metallic elements with density higher than 4  g/cm3 are called 
heavy metals. These are also hazardous at even low concentration (Ma et al. 2016a, 
b; Duruibe et al. 2007). Heavy metals (HMs) like Cu, Fe, Zn, Co and Mn constitute 
the mineral micronutrients and are essential for the proper growth and functioning 
of plants. However, increased concentration of these heavy metals results in the 
production of reactive oxygen species which have various negative effects on the 
plant (Palmer and Guerinot 2009; Puig and Penarrubia 2009). Approximately 
30–35% reduction in length, mass and shoot and root ratio is observed in plants 
grown under conditions of heavy metal stress.

HM toxicity in plants results from increased absorption of both essential and 
non-essential metals from the soil. Nowadays, microbe-mediated phytoremediation 
is gaining wide attention because of its sustainability, cost efficiency and 
environment-friendly nature (Broos et  al. 2004; Thakare et al. 2021). AMF-
associated plants are shown to easily thrive in excess metal stress conditions. 
Hashem et al. (2016) showed the positive effects of AMF by decreasing the amount 
of hydrogen peroxide and malonaldehyde under conditions of cadmium stress. 
Similarly, clone of Schizosaccharomyces pombe has been reported to improve 
sequestering of heavy metals from polluted environments (Yong et  al. 2014). 
However, the impact of AMF varies considerably with change in plant species, fun-
gal species and the heavy metal involved. AMF can, thus, both decrease and increase 
the heavy metal concentration in plants, depending on the prevalent conditions (de 
Souza et al. 2012; de Andrade et al. 2008; Carvalho et al. 2006; Joner and Leyval 
2001). Interestingly, it has also been observed that AMF can simultaneously increase 
and decrease the heavy metal concentration in root and shoot respectively (Wu et al. 
2016a, b; Sheikh-Assadi et  al. 2015; Chen et  al. 2005; Joner and Leyval 1997). 
Joner and Leyval (1997) demonstrated that increased accumulation of Cd in roots of 
Trifolium subterraneum. Contrary to this, researchers like Tullio et al. (2003); Li 
and Christie (2001); Heggo et al. (1990) have shown reduced uptake of heavy metal 
in AMF-associated plants. Reduced Zn uptake in root and shoot concentrations has 
been reported in mycorrhizal tomato (Watts-Williams and Cavagnaro 2014) and red 
clover (Li and Christie 2001) when grown under high Zn conditions. Several 
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researchers like Chen et al. (2013); Christophersen et al. (2012); Ultra et al. (2007); 
Gonzalez-Chavez et al. (2002) have obtained similar results for metalloid Arsenic as 
well. Table 13.2 shows the various plant-AMF associations in combating the above-
mentioned abiotic stresses.

13.5  �Conclusion and Future Perspective

Plant stress is one of the major culprits for damaging plants, often rendering them 
unfit for consumption. Use of pesticides and fertilizers has, to a certain extent, 
helped in containing biotic and abiotic stress, respectively, but its overuse has now 
led to new problems, not to mention its harmful impact on environment. In this 
scenario, it becomes essential to identify a more viable solution to the problem. 
Many bio-control agents are known to inhibit plant stress. Among them, fungi can 
play a pivotal role. Their close association with plants either in the form of endo-
phytes or as mycorrhiza makes them ideal for stress alleviation. Also, due to their 
various other allied processes, plants become more vigorous and can thrive in harsh 
conditions. Many fungi like Trichoderma sp. are already used powerful bio-control 
agents to ward off pathogens responsible for biotic stress injuries. More studies are 
important in this field as a cursory glance is enough to realize that fungi are one of 
the largest groups of plant pathogens inflicting a major chunk of all the stresses. 
Thus, it becomes critical to understand these pathogens, since they may act as a 
stress-alleviating agent in some plants or in the same members but in different con-
ditions. Similarly, fungal members mainly belonging to sub-phylum 
Glomeromycotina are ideal in combating many abiotic plant stresses. Thus, a com-
prehensive study into the role of these fungi in plant stress alleviation can be a pana-
cea for our current challenges.
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14.1  �Introduction

Environmental pollution is one of the most serious global problems facing today. 
Industrialization and uncontrolled use of chemical pesticides leads to release of 
toxic compounds directly into the environment. This causes various adverse effects 
on our environment and our earth’s ecosystem. Earlier, conventional methods were 
used to dispose waste materials, and through these methods, toxic wastes were dis-
posed in pits dug in soil. The disadvantages of these conventional methods include 
the need of a new place each and every time and the serious problem of soil and 
water pollution caused by the disposed wastes. These led to the development of 
newer technologies that used high-temperature incineration and chemical decompo-
sition. Although these methods are very effective, they are uneconomical and lead 
to air pollution. All these pollutions pose a serious threat to human health (Fig. 14.1).

14.2  �Bioremediation

Bioremediation is defined as “the process whereby organic wastes are biologically 
degraded under controlled conditions to an innocuous state, or to levels below con-
centration limits established by regulatory authorities” (Mueller et al. 1996). It is an 

Fig. 14.1  Various harmful effects of soil, water, and air pollution on human health. (http://mpen-
vis.nic.in/index1.aspx?lid=1470&mid=1&langid=1&linkid=1044)
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approach in which efficient microbes are used to degrade toxic material in the envi-
ronment. Bioremediation is a molecular biology tool by which we modify microor-
ganism in such a way that it enables to use these compounds as an energy source and 
degrade them or to convert them into nontoxic compounds. This transformation of 
organic contaminants by microbes usually occurs because they use these contami-
nants for their growth and reproduction. Organic contaminants serve as source of 
carbon, i.e., they serve as the key constituent of a new cell and also provide electrons, 
which help microbes to obtain energy (https://www.nap.edu/read/2131/chapter/4).

In the environment, biodegradation of a compound is the result of action of mul-
tiple organisms. Microorganisms used in bioremediation are either indigenous to 
contaminated site or may be isolated from somewhere under stress conditions and 
brought to the contaminated site. The process under which we imported microbes to 
contaminated site is known as bioaugmentation. There are various techniques similar 
to bioremediation like phytoremediation, mycoremediation, bioventing, bioleaching, 
land farming, bioreactor, composting, bioaugmentation, rhizofiltration, and biostimu-
lation (Vidali 2001; Behera and Prasad 2020). Among all these techniques, bioreme-
diation is effective, consumes less time, cost-efficient, and is a popularly accepted 
technique. One of the major advantages of this technique that it is carried out on the 
contaminated site. Due to rapidly increasing research in the field of bioremediation, 
it has been used at a number of sites worldwide (Elekwachi et al. 2014). For an effec-
tive bioremediation, (1) microbial enzyme must convert the toxic compound into 
nontoxic metabolites and end products and (2) environmental conditions should pro-
mote the microbial growth and activity. We may manipulate the environmental condi-
tions, which favors the microbial growth so that bioremediation occurs at faster rate.

14.2.1  �Types of Bioremediation Techniques

On the basis of site of application, degree of saturation, and aeration of an area, 
bioremediation techniques are mainly divided into two groups: in situ and ex situ 
(Vidali 2001).

14.2.1.1  �In Situ Technique

Bioremediation take place at the contaminated site with minimal disturbance. Due 
to less disturbance, it is most desirable and less expensive technique. In this tech-
nique, we generally add nutrients at the contaminated site, which increase the deg-
radation ability of already present microorganisms (USEPA/625/K-96/001; US 
EPA/540/2-90/002). Based on the mode of remediation, in situ techniques are 
divided into different types.

Bioventing  In this technique, air and nutrients are supplied at the contaminated site 
through well to increase the degradation ability of indigenous microbes. It requires 
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low air flow rate to minimize the volatilization and increase the release of contami-
nants to the atmosphere. This technique is generally applied where the contamina-
tion is deep under the soil/water surface. Sometimes nitrogen and phosphorus also 
added to maximize the rate of degradation. In some cases where contamination 
reaches the ground water, hydrogen peroxide is added through injection.

Biosparsing  In this technique, we increase the oxygen concentration of ground 
water table by injecting air with pressure. This will enhance the mixing at saturated 
zone, thus increasing the contact between soil and groundwater, which further 
increases the biological degradation. This requires low cost for installing air injec-
tion point of small diameter, which allows flexibility in the construction of the system.

Bioaugmentation  In this technique, Culture microorganisms has been added to the 
contaminated site. In this technique, degradation rate depends upon two main fac-
tors: (1) either the imported microbes compete with indigenous microbes and attain 
useful population level or not, (2) in most soil environment, which has long-term 
exposure to biodegradable waste, indigenous microorganisms are effective 
degraders.

14.2.1.2  �Ex Situ Techniques

These techniques generally involve excavation (soil) and pumping (water) of con-
taminated site. The following techniques are generally used under this category.

Land Farming  This technique involves the stimulation of indigenous microorgan-
isms. During this technique, we excavate the contaminated soil and spread over a 
prepared bed and till periodically until the contaminants are completely degraded. 
This will facilitate aerobic degradation. This technique has received much attention 
due to low monitoring and maintenance cost and clean-up liabilities. This technique 
is effective to the superficial treatment of soil up to 10–35 cm.

Composting  During this technique, amendment of manure or agriculture waste 
(straw, hay or corn cobs) is done in contaminated soil. This will support the micro-
bial population of detritus-eating organisms by maximizing the water and air levels 
and increase the degradation rate. It is a multistep, closely monitored process having 
measured input of water and air (carbon- and nitrogen-rich material). There are 
three main stages of composting cycle. In the first stage, mesophilic microorgan-
isms thrive at 25–45 °C and due to high temperature, physical breakdown of biode-
gradable compounds begins. After this, second stage begins, in which temperature 
increases up to 65  °C, mesophilic microbial community turns into thermophilic. 
They break down protein, fats, and complex carbohydrates. At this stage, we also 
provide additional oxygen and new sources for breakdown. Finally, at the third 
stage, which typically of several months, thermophillic microorganism break down 
all most all the compounds and temperature begin to drop this will takes several 
months and then again mesophilic microbes resume and complete the process by 
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breaking the remaining organic compound into humus (https://www.livescience.
com/63559-composting.html).

Biopiles  In this technology, excavated soil was mixed with soil amendments and 
enclosed in above-ground treatment enclosure. Biopile system consists of treatment 
bed, an aeration system, irrigation system, and a leachate collection system. 
Physicochemical parameters like oxygen, moisture, nutrients, heat, and pH are con-
trolled in order to enhance the rate of biodegradation. In biopile system, air and 
nutrient are provided through irrigation and nutrient system present below the ground 
level. This system is generally 20 feet in height covered with plastic sheet to control 
evaporation, volatilization, and run-off, as well as it acts as solar heater. If there are 
volatile compounds present in the soil, they volatilize and present in air stream; thus, 
regular air treatment is required. It is a short-term technology and runs from few 
weeks to fewer months (http://www.cpeo.org/techtree/ttdescript/biopil.htm).

Bioreactor  It is a highly controlled technology to treat contamination in soil and 
ground water. This may be an open or closed system. In batch- or continuously fed 
reactors, pH, nutrient level, and agitation can be controlled, which optimized the 
microbial activity and thus degradation of contaminants. There are two types of 
bioreactors, compost-based bioreactor and Slurry bioreactor. Compost based biore-
actor is a closed in vessel approach in which biodegradation takes place due to high 
temperature (Cookson 1995). This can be applied to soil, lagoon, and municipal 
sludge having biodegradable organic contamination. Composting also is useful for 
explosives, pentachlorophenol (PCP), polycyclic aromatic hydrocarbons (PAHs), 
ethylene glycol, and insecticides. Composting is well performed in enclosed reac-
tor, and the curing may be accompanied in a reactor or an exterior pile (Norris 
1994). Slurry-based bioreactors are used to remediate a mixture of water and exca-
vated soil. It provides three-phase (solid, liquid, and gas) mixing condition, which 
increases the rate of bioremediation of soil-bound as well as water-soluble pollut-
ants. Generally, the rate and extent of biodegradation is greater in bioreactor because 
it is more manageable and predictable than other techniques. In spite of this, con-
taminated soil requires pretreatment like excavation or contaminant that can be 
stripped via soil washing or physical extraction (https://www.hawaii.edu/abrp/
Technologies/slurry.html).

14.3  �Advantages and Disadvantages

14.3.1  �Advantages of Bioremediation

•	 It is a natural process carried out by naturally occurring microorganisms, which 
produce harmless products: carbon dioxide, water, and microbial biomass.

•	 It results in complete mineralization of harmful compounds at the contaminated 
site, which decreases the further treatment or disposal of contaminated material.
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•	 It can be carried out at the site of contamination, which reduces the cost of trans-
portation and potential threats to human health and the environment that may 
arise during transportation.

•	 It is environment friendly and economically cheaper technique for the removal of 
hazardous waste.

14.3.2  �Disadvantages of Bioremediation

•	 Bioremediation is limited to biodegradable compounds only. All compounds are 
not susceptible to complete degradation.

•	 Sometimes, metabolites are more toxic than their parent compounds.
•	 It is highly specific biological process and requires suitable environment for 

metabolically capable microorganisms with appropriate level of nutrients.
•	 Sometimes, results from pilot-scale studies to field-scale studies may vary due to 

naturally occurring environmental conditions.

14.4  �Need of Nanotechnology in Bioremediation

Further research is needed to develop such bioremediation technologies, which are 
suitable for remediation of complex mixture of contaminants. In recent years, nano-
technology is a topic of extensive research, involving all forms of life science (Baker 
and Satish 2012). It is an umbrella term covering wide variety of technologies, 
which comprise processes and structures at nanoscale (Abbasi et al. 2009). Richard 
Feynman, in 1960, introduced the concept of nanotechnology, which grew faster 
worldwide in the area of science and technology research and is known as “Next 
Industrial Revolution” (Feynman 1960; Roco 2005).

The potential use of nanotechnology has been divided into three categories: 
treatment and remediation, sensing and detection, and pollution prevention. Here 
we discuss the potential role of nanotechnology in site remediation. While selecting 
a remediating technology, we should focus on many factors like efficiency and 
coast, its ease to use, time required, availability of resources, etc. Nowadays, vari-
ous technologies are available for the bioremediation of toxic compounds at the 
contaminated site, but use of single technology may be expensive and not effective 
as much. It does not sustain in the environment for longer period (Kim et al. 2011; 
Le et al. 2015; Nemecek et al. 2016). Thus, it is necessary to combine two or more 
remediation technologies and develop a new technology, which overcomes the gap 
of each other. This reduces the cost of the effective technology, time, and resources 
requirement (He et al. 2006; Dinesh et al. 2012; Koenig et al. 2016). Thus, based on 
all these facts about remediation technology, the concept of nanobioremediation is 
generated, which involves the use of fat and expensive physicochemical technology 
followed by cheap and slow biological technology. This is a viable and sustainable 
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alternative to in situ and ex situ bioremediation technologies and an emerging field, 
which is commercially applied in various clean-up sites around the world (Pandey 
et al. 2015; Prasad and Aranda 2018).

14.5  �Different Types of Nanoparticles and Their Role 
in Bioremediation

Nanotechnology is the branch of science, which deals with various approaches of 
nanoparticle. In nanotechnology, the two mostly used terms are nanomaterial and 
nanoparticle. Although these both terms are synonyms, the American Society for 
Testing and Materials (ASTM) has stated that a “nanoparticle (NP) is a sub-
classification of ultrafine particle with lengths in two or three dimensions greater 
than 0.001 lm (1 nm) and smaller than about 0.1 lm (100 nm) and which may or may 
not exhibit a size-related intensive property” (ASTM 2012). On the other hand, the 
European Union stated that “nanomaterial means a natural, incidental or manufac-
tured material containing particles, in an unbound state or as an aggregate or as an 
agglomerate and where, for 50% or more of the particles in the number size distri-
bution, one or more external dimensions are in the size range 1–100 nm” (http://
ec.europa.eu/environment/index_en.htm).

Nanoparticle is ultrafine aggregates of atomic and molecular particle with size 
10−9 m (<100 nm) (Prathna et al. 2010). These are also known as nanoscale particle 
(NSPs). Their activity depends upon their chemical composition and shape and size 
of particle. Due to their small size, their physicochemical properties are signifi-
cantly different from their parent compounds. They are more reactive then their 
parent compounds. Nanoparticle are generally classified into two groups: organic 
and inorganic nanoparticles. Organic nanoparticle are carbon nanoparticle (den-
drimers, liposomes, and micelles), while inorganic are metallic (gold NPs, Qdots), 
magnetic, and semi-conductor nanoparticles (silicones and germanium). Ruffin 
Castiglione and Cremonini discovered three types of nanoparticles on the basis of 
their manufacturing process: natural, incidental, and engineered (Ruffini-Castiglione 
and Cremonini 2009). Bionanoparticles develop from naturally occurring parent 
materials such as mineral composite and volcanic or lunar dust, while incidental 
NPSs develop as a result of anthropogenic activities, thatis, diesel exhaust, coal 
combustion, and welding fumes. Engineered nanoparticles are metal-based engi-
neered nanoparticles, which include nanogold, nanoiron, and nanocadmium. (Lin 
and Xing 2007).

Today, researchers have developed an efficient, cost-effective, and eco-friendly 
alternative to existing parent material and demonstrated their use in both resource 
conservation and environmental remediation (Friedrich et al. 1998; Dimitrov 2006; 
Dastjerdi and Montazer 2010). This is known as green approach or biological syn-
thesis of nanoparticle in which plant- and microbes-based nanoparticles are pro-
duced, which show significant importance and numerous application in the area of 
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medicine, agriculture, and electronics (Mishra et  al. 2014; Kasthuri et  al. 2009). 
Green technology is the widely accepted technology for the synthesis of nanopar-
ticles due to its ecofriendly nature, cost effectiveness, and stability in nature (Ingale 
and Chaudhari 2013). Due to the insignificant role of chemically synthesized 
nanoparticles in bioremediation, in this chapter, we are only concerned with the 
biological methods of nanoparticle production instead of chemical synthesis. 
Biological synthesis of nanoparticle includes plants, bacteria, algae, yeast, and 
fungi (Prasad et al. 2016, 2018; Srivastava et al. 2021). Figure 14.2 shows the flow-
chart representation of biosynthesis of nanoparticle (Thakkar et al. 2010; Rauwel 
et al. 2015).

14.5.1  �Plant-Based Nanoparticles

These nanoparticles are processed from single-step synthesis process from various 
plant parts such as leaf extract, seed extract, plant resins and oils, secondary metab-
olites, and gums (Prasad 2014; Haleemkhan and Naseem 2015). It includes the use 
of natural capping agent and lack of toxicants (Gurunathan et al. 2009). Plant-based 
nanoparticles are advantageous over microbial based due to their easy availability 
and safe handling. They also process variables of secondary metabolites and require 
less time for reduction, therefore better option for NPSs synthesis than microbial-
based ones. By the application of plant tissue culture technique and downstream 
processing approach, it is possible to synthesize metallic as well as oxides nanopar-
ticle for industrial purpose. Nanoparticles differ in their effect on the basis of plant 
type from which they are processed, as well as their mode of action, size, and con-
centration (Manzer et al. 2015). Research on plant-based nanoparticle is at its initial 
stage. This will require more understanding of biochemical, physiological, and 
molecular mechanism of plants. Further research is needed to evaluate and uncover 
the mode of action of NPSs and their interaction with biomolecule as well as with 

Fig. 14.2  Flowchart representation of key steps involved in biosynthesis of nanoparticles
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gene expression in plants. Example: Leaves extract of Mentha, Ocimum, and 
Eucalyptus were reported for the synthesis of gold nanoparticles (Haleemkhan and 
Naseem 2015).

14.5.2  �Microbe-Based Nanoparticle

Microbes have high tolerance and reproduction power; due to this reason, they are 
commercially used for decontamination process. Microbial synthesis of nanoparti-
cle with different shapes and sizes is an important aspect of nanobiotechnology. It 
is bottom-up approach where the synthesis of nanoparticle occurs due to oxidation/
reduction reaction. Microbial enzyme reduces the metal compound and biologically 
generated nanoparticle with higher catalytic reactivity and specific surface area 
(Prathna et al. 2010; Riddin et al. 2010). It is a dose-dependent process and also 
related to the type of microbes used. Biomolecules secreted by specific microbe 
responsible for the reduction of metal such as peptides and polysaccharides. 
Bionanoparticles are stable and do not aggregate due to presence of capping agent 
secreted by respective microbes such as proteins and sulfated polysaccharides 
(Singaravelu et al. 2007). Microbial synthesis of NPSs is at much slower rate as 
compared to plant based. Microbial-based NPSs may be synthesized either by bac-
teria, algae, fungi, and yeast (Prasad et al. 2016).

14.5.2.1  �Bacteria-Based Nanoparticle

Bacterial strains, which have the ability to precipitate metal at nanometer scale, are 
considered as a potential source of nanoparticle production. Metals, like gold, sil-
ver, platinum, palladium, titanium, iron, zinc, aluminum, magnetite, cadmium sul-
fide, etc., are used for this purpose. Enzymes, vitamins, polysaccharides, and 
polymers produced by bacterial species catalyze specific reaction, leading to the 
production of inorganic nanoparticles (Iravani 2014). Nanoparticle may be synthe-
sized via extracellular or intracellular process. Extracellular biosynthesis of NPSs is 
widely in use due to its low cost and no downstream processing requirement (Mishra 
et al. 2014). During the extracellular biosynthesis, secondary metabolites present in 
cell-free extract are responsible for redox reaction after the addition of precursor 
molecule. Due to variation in biological and physical parameters, particle character-
istics can also vary. These properties may be controlled by optimization of growth 
condition of the required bacterial strain, which further controls the cellular and 
enzyme activity (Iravani 2014). These particles are further characterized by SEM, 
TEM, FTIR, etc. Example: Bacillus subtilis is well reported for the synthesis of 
silver nanoparticles (Saifuddin et al. 2009) (Fig. 14.3).
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14.5.2.2  �Yeast- and Fungi-Based Nanoparticle

Fungi play promising role in the production of NPSs as they are excellent sources 
of extracellular enzymes compared to bacteria. They secrete higher amount of pro-
teins and result in the higher production of well-defined dimensional nanoparticles 
with monodispersity (Mohanpuria et al. 2008). Instead of culture, isolated proteins 
are also used for the synthesis of nanoparticles. Fungi have an edge over other bio-
logical systems for NPS production due to its higher growth rate, and they are easy 
to culture, easy to handle, require less time, and cost-effective (Vahabi et al. 2011; 
Prasad 2016, 2017; Abdel-Aziz et al. 2018; Aziz et al. 2016, 2019). All these prop-
erties are responsible for its better industrial application over the bacteria. Besides 
all these properties, there is one drawback with the fungal synthesized nanoparticles  
i.e  the fungal enzyme reduces salt into its metallic nanoparticles due to its catalytic 
effect (Oksanen et al., 2000). Example: Fusarium oxysporum is well reported for 
the synthesis of gold and silver nanoparticles (Popescu et al. 2010).

14.5.2.3  �Algae-Based Nanoparticles

Algae are known as bionanofactories because both live and dead biomass of algae 
are utilized for the synthesis of metallic nanoparticle (Davis et al. 1998). The study 
that deals with the synthesis of nanoparticles from algae is known as phyconano-
technology, a new branch of science and technology. Algae-based synthesis of 
nanoparticle requires less time as compared to other biosynthesizing methods 
(Thakkar et al. 2010; Rauwel et al. 2015; Aziz et al. 2014, 2015). Seaweeds like 
Sargassum wightii and Fucus vesiculosus have also been reported for synthesizing 
AgNPs of different sizes and shapes (Singaravelu et al. 2007; Mata et al. 2009). 
Microalgae such as diatoms (N. atomus and D. gallica) have also shown the ability 

Fig. 14.3  Microbial biosynthesis of metal nanoparticles
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to synthesize gold, and silica–gold bionanocomposites (Mubarak Ali et al. 2013). 
Marine algae are also miserably explored for the synthesis of nanoparticles. For 
example: Chlorella vulgaris has strong binding capability toward tetrachloroaurate 
ions to form algal-bound gold. Approximately 88% of algal-bound gold attained 
metallic state, accumulated in the form of tetrahedral, decahedral, and icosahedral 
crystalline structures on the inner and outer parts of cell surface (Jianping et  al. 
2007). Spirulina platensis has been reported for the extracellular synthesis of gold, 
silver, and Au/Ag bimetallic NPs, while T. kochinensis for extracellular synthesis of 
gold nanoparticles (Chakraborty et al. 2009; Mata et al. 2009; Senapati et al. 2012).

14.6  �Role of Nanotechnology in Bioremediation

Nanotechnology increases its utility day by day in the field of bioremediation. It 
remediates the contaminant in a very cost-effective manner. There are various 
mechanisms, which have been applied to decontaminate the heavy metals and poly-
cyclic aromatic hydrocarbons (Prasad and Aranda 2018). Many of them are com-
mercialized in the present-day market.

14.6.1  �Mechanism Used to Remediate the Pollutants

Nanoiron and its derivatives  Nanoscale zerovalent iron is widely used for the 
removal of highly mobile and toxic heavy metal in the soil as well as in the ground 
water. It rapidly immobilizes Cr (VI) and Pd (II) and reduces them to Cr (III) and Pd 
(0), while in case of iron, Fe oxidizes into goethite (𝛼-FeOOH) (Ponder et al. 2000). 
Iron nanoparticle supported with polyacrylic acid (Fe/PAA) and hydrophilic anionic 
carbon (Fe/C) have been reported as a reactive material for the degradation of halo-
genated chlorinated hydrocarbon (Schrick et  al. 2004). Nickel-iron nanoparticles 
having high surface area have also been studied for the degradation of trichloroeth-
ylene (TCE). Organochlorine compounds like PCP (penta chlorophenol), DDT, 
DDD, and DDE were also reported for their anaerobic degradation by zerovalent 
iron at 20 °C in the presence of nonionic surfactant Triton X-114 (Sayles et al. 1997).

Dendrimers  Dendrimers are the highly branched monodispersive macromolecule 
that consists of central core, interior branch cell, and terminal branch cell (Tomalia 
et  al. 1985; Newkome et  al. 1985; Undre et  al. 2013a, b). First dendrimer was 
reported by Buhleier et al. (1978). Dendrimer is a Greek word: it means branch of a 
tree having many void spaces due to which it easily interacts with other substances 
and is also used to enhance catalytic activity (Undre et al. 2013a, b). It is more reac-
tive, less toxic with larger surface area due to which it has its application in water 
treatment and textile industries. Today, TiO2 porous ceramic filters impregnated 
with alkylated poly(propylene imine) dendrimer, poly(ethyleneimine) hyper-
branched polymer, or 𝛽-cyclodextrin are also developed for removal of organic pol-
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lutants. They have hybrid organic/inorganic filters modules with high mechanical 
strength and larger surface area (Guo et al. 2012).

Nanocrystals and Carbon Nanotubes  Carbon-based nanoparticles such as car-
bon nanotubes, for example, single-walled carbon nanotubes (SWCNTs), multi-
walled carbon nanotubes (MWCNTs), and hybrid carbon nanotubes are effective 
pollution preventive strategies. These are renewable energy technologies acting as 
sorbents, antimicrobial agents, depth filters, high flux membrane, and environmen-
tal sensors (Mauter and Elimelech 2008). BET isotherm expression indicates that 
SWNCTs are rapid and efficient adsorbent for ethylbenzene and have good poten-
tial for the maintenance for high-quality water (Bina et al. 2012). Recently, CDco-
hexamethylene-/toluene-di-isocyanate polyurethanes modified CNTs have been 
developed with high potential for removing organic (p-nitrophenol) as well as inor-
ganic contaminants (Cd2+, Pb2+). Carbon nanotubes immobilized with calcium algi-
nate (CNTs/CA) were also used for copper adsorption, and it was observed that it 
has 69.9% Cu removal efficiency even at pH 2.1 (Li et al. 2010). MWCNTs were 
also used in waste water treatment to remove nickel ions (Gong et al. 2009).

Single-Enzyme NPs  Enzymes are highly specific and effective proteins used as 
biocatalyst in the field of bioremediation. Due to oxidation reaction, they lose their 
catalytic activity after a short period of time and remain unstable, which limits its 
application as a cost-effective alternative to synthetic catalyst. Recent research has 
proved that magnetic FeNPs attach with enzyme and increases the catalytic activity, 
stability, and reusability of enzymes. For example: The activity of MNP attach tryp-
sine and peroxidase increases from hours to weeks and are more stable, efficient and 
economical. Magnetic nanoparticles inhibit the enzyme oxidation and increase its 
life, which makes them more productive (Qiang et al. 2007).

14.6.2  �Engineered Polymeric NPs

Engineered polymeric nanoparticles are currently used in bioremediation of hydro-
phobic contaminants, for example: polycyclic aromatic hydrocarbons (PAHs). 
Polymer NPs limit the solubility and mobility rate and also reduce the bioavailabil-
ity of PAHs by its sequestration to soil or by partitioning in nonaqueous phase liq-
uids (NAPLs). In case of phenanthrene (PHEN),  hydrophobic organic contaminants 
poly(ethylene)glycol-modified urethane acrylate (PMUA) precursor chain has been 
developed which not only enhance the bioavailability of PHEN but also increase its 
mineralization rate. The properties of PMUA NPs to remain stable in the presence 
of active heterogeneous bacterial population enable them to be reused after the par-
ticles bounded PHEN are degraded by bacteria (Tungittiplakorn et al. 2005).
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14.6.3  �Biogenic Uraninite NPs

Today, scientists have great interest in the production of biogenic uraninite due to its 
small particle size, biological origin, molecular scale structure, energetics, and sur-
face area. Due to all these properties, it appears similar to coarse particles, abiotic, 
stoichiometric UO2 and has potential role in bioremediation of subsurface U(VI) 
contamination (Bargar et al. 2008).

14.6.4  �Nanoparticle as a Biosensor

Before applying any bioremediation technique, we should first sense the pollutant 
in the environment, which makes our work easier. In this direction, various tech-
niques have been developed, but to determine exact position and composition of 
contaminant is impossible. Nowadays, nanotechnology plays an important role in 
improving the sensitivity of the sensor by targeting the binding between the con-
taminant and the recognition element or optimizing the transduction and electronic 
interface to the sensing layer. Contaminant may be organic, inorganic, or biological. 
Immobilized enzymes in carbon nanotubes, single enzyme nanoparticles, or poly-
meric nanoparticles are used as environmental biosensors (Kim et al. 2006). For 
example: Tyrosinase (TYR, EC 1.14.18.1) is a copper-containing oxidorectase 
enzyme, which catalyzes the o-hydroxylation of monophenol (cresolase activity) as 
well as oxidoreduction of o-diphenols to o-quinones (catecholase activity) (Seo 
et al. 2003). It displays great potential as a sensor against mono- and diphenolics 
compounds (Alkasir et al. 2010). Laccase enzyme is also used as a biosensor against 
catechol, a hazardous phenolic compound (Tang et al. 2008).

14.7  �Remediation of Water Pollutants

Water is basic need of day-to-day life. It is linked with economic development. 
According to Leonardo Da Vinci “water is the vehicle of nature”. Due to rapidly 
increasing industrialization and urbanization, various hazardous chemicals are 
directly mixed with water. The major contaminants are pesticides, organochlorine 
compounds, and heavy metals (Behera and Prasad 2020a). Instead of conventional 
methods of water treatment, nanotechnology presents better way with less time con-
suming, cost effective, and in efficient manner. Due to small particle size, adsorp-
tion efficiency increases significantly with increase in surface area energy (Prasad 
and Thirugnanasanbandham 2019).

Zerovalent iron nanoparticles are widely used for dechlorination in waste water 
treatment plants as the iron acts as reducing agent (Chuang et al. 1995). Chlorinated 
hydrocarbons have the same oxidation potential as oxygen and thus acts as electron 
acceptor. During dechlorination, ground water oxidizes the iron nanoparticle from 
Fe0 to Fe2+ (ferrous iron) with the release of two electrons. As the surface area of 
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iron nanoparticle increases, the rate of carbon to act as electron acceptor also 
increases, which results in the release of chloride ion (Junyapoon 2005). Coating of 
iron nanoparticle with catalytic metal, such as Pd, Ni, Ag, and Pt, will not only 
increase the dichlorination process but also inhibit the formation of toxic by-
products (Xu and Zhang 2000; Schrick et al. 2002). These are widely used in envi-
ronmental decontamination process as they detoxify organic and inorganic 
contaminants due to their redox activity. Iron nanoparticles are also employed for 
the removal of heavy metal such as (III), Cu (II) Pb (II), Hg (II), Cd (II) from water. 
Nanoparticles of iron oxides, that is, magnetite (Fe3O4), maghemite (γ-Fe2O3), and 
hematite (Fe2O3)-based nanoabsorbents, also have their application in removal of 
heavy metals from wastewater (Dave and Chopda 2014).

CNTs (carbon nanotubes) and MWCNTs (Multi-walled carbon nanotubes) are 
also used as good absorbers for metals, like Cu, Ni, Pb, Ag etc., as well as volatile 
organic compounds and dyes like ethidium bromide, eosin bluish, etc. (Li et  al. 
2003; Fugetsu et  al. 2004; Liang et  al. 2005; Chen and Wang 2006; Ding et  al. 
2006). CNTs also showed positive relationship with pH as their absorbance capacity 
increases with increase in pH. Titanium dioxide NPs also have great catalytic and 
redox activity due to their optical properties (Obare and Meyer 2004). Due to this 
property, they are also applied in purification of water involving both oxidation/
reduction reaction in presence of UV light. In presence of UV light, they photocata-
lyze the organic contaminants as well as reduce the toxic metal ions: Cr (VI), Ag (I), 
and Pt (II) (Savage and Diallo 2005). Recently, N-doped TiO2 NPs are also used to 
degrade methylene blue under visible light conditions (Asahi et al. 2001).

Van der Bruggen and Vandecasteele (2003) have reviewed the concept of desali-
nation of water by using nanofiltration to remove cations, natural organic matter, 
biological contaminants, organic pollutants, nitrates, arsenic, and microbes from 
groundwater and surface water; U (VI) can be removed from sea water by nanofil-
tration and reverse osmosis (Van der Bruggen and Vandecasteele 2003). For exam-
ple: carbon nanotubes filter are successfully used for removing pathogenic microbes 
from contaminated water, such as Escherichia coli, Staphylococcus aureus and 
Poliovirus sabin 1 (Srivastava et  al. 2004). Fe- and Mn-doped alumina ultrafine 
membranes consisting of alumina (A-alumoxanes) nanoparticles (7–25 nm) also are 
used against chlorinated hydrocarbons (DeFriend et al. 2003). Silver nanoparticles 
embedded with cellulose acetate fibers also are found to be effective against 
Staphylococcus aureus, E. coli, Klebsiella pneumonia, and Pseudomonas aerugi-
nosa (Son et al. 2004). MgO nanoparticles are an effective biocide applied against 
Gram-positive bacteria (E. coli), Gram-negative bacteria (Bacillus megaterium), 
and bacterial spores (Bacillus subtilis).

Dendrimers are also used to remove organic and inorganic solutes, radionuclides, 
microbes, and toxic metal ions during the purification of drinking water. For exam-
ple: Ag (I) and quaternary ammonium chlorides have been successfully applied as 
antimicrobial agents. They are found in different forms dendrimers, dendrigraft 
polymers, random hyperbranched polymers, and dendrons (Balogh et  al. 2001; 
Chen and Cooper 2002).
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14.8  �Remediation of Soil Contaminants

Soil contributes 70% to Indian economy as it is a key constituent of agriculture. Soil 
contamination occurs due to various anthropogenic activities, industrialization, and 
urbanization (Behera and Prasad 2020b). Contaminants may be either organic or 
inorganic, and based on this, remediation strategy may be applied.

Inorganic Contaminants  Persistence of heavy metals is the major source of inor-
ganic contaminants. It is generally caused by industries, coal combustion, electro-
plating, municipal incineration, fuel production, etc. Adsorbance of heavy metal 
through iron nanoparticle is the best way to decontaminate them from soil. For 
example: Mercury (Hg2+) and its derivative come from seed treatment and dental 
filling is the major contamination of soil. Chromium used in various industries, that 
is, textile, electronic, electroplating, etc., gets discharged in a very large quantity in 
the environment in a very insignificant manner. Cr (VI) is a very toxic and mobile 
state of chromium (Kimbrough et al. 1999). Zerovalent Fe0 nanoparticles adsorb 
these heavy metals and oxidize them into nontoxic state. There are several indige-
nous microbes present in the contaminated soil, which adsorb heavy metals and 
convert them into nanoparticles, which generally are used for industrial purpose 
(Salvadori et  al. 2014; Thakare et al. 2021). For example: The dead biomass of 
H. lixii is an efficient adsorbent for copper ions and converted them into nanoparti-
cle (Salvadori et al. 2013).

Organic Contaminants  Incomplete combustion of fossil fuel leads to the produc-
tion of highly toxic organic contaminants, that is, polycyclic aromatic hydrocarbon, 
into the environment (Gibson and Subramanian 1984; Johnsen et  al. 2005). 
Anthracophyllum discolour, a white rot fungus, secretes enzyme, that is, manganese 
peroxidase, lignin peroxidase, and laccase. These enzymes are reported for their 
role in PAHs degradation (Collins et al. 1996; Steffen et al. 2002). This fungus is 
also responsible for the secretion of nanoclay having their potential role in degrad-
ing PAHs in aqueous system also. Cultured microbial cells immobilized on nanopar-
ticles are more effective than immobilization occurs on any other media. Iron 
nanoparticles (Fe3O4) functionalized with ammonium oleate when coated on the 
surface of Pseudomonas delafieldii, by applying an external magnetic field, has 
been clubbed at one place, and separated from the solution. They were recycled for 
the treatment of the same substrate. The microbial cell of P. delafieldii desulfurizes 
dibenzothiophene (organic sulfur) from the fossil fuel (Shan et al. 2005). Dyes used 
in textile industries are heterocyclic organic compounds responsible for soil, air, and 
water pollution. They hinder the incidence of sunlight, which reduces the photosyn-
thesis rate and decreases the release of oxygen. This has become a serious issue for 
plant and water animals. For example: Methylene blue degrades titanium dioxide 
(photocatalyst) in the presence of sunlight and also decomposes pathogenic bacte-
ria, that is, P. aeruginosa, E. coli, and ammonia (Jang et al. 2001).
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14.9  �Remediation of Air Contaminants

Greenhouse gases include CO2, CH4, N2O, and CFCs, which cause serious threat to 
our environment and cause global warming (IPCC 2014; Behera and Prasad 2020c). 
Nanotechnology plays an important role in the adsorption of these contaminants 
from the environment via noncovalent forces such as hydrogen bonding, electro-
static forces, π–π and hydrophobic interactions, and van der Waals forces (Ren et al. 
2011; Gupta and Saleh 2013; Wang et al. 2013; Bergmann and Machado 2015). For 
example: CNTs, due to their high electric and thermal conductivity, high strength, 
and specific adsorption capacity, increase the combination of one or more functional 
groups on the surface and thus increase the adsorption capacity (Gupta and Saleh 
2013; Wang et al. 2014). Interaction between solid surface and molecule depends on 
the pore size and its geometry. Likewise, CNTs are more graphitic in nature than 
activated carbon; thus, they have more adsorption capacity (Ren et al. 2011). Today, 
concept of self-cleaning is very much exploited. In this technique, nanoparticles of 
titanium oxides are coated on the surface, which becomes self-capable to decon-
taminate the air contaminants (nitrogen oxides and VOCs) (Shen et al. 2015). To 
increase the efficiency of these TiO2, CNTs, and graphene, nanosheets have been 
used which facilitate the movements of electron and inhibit electron and hole 
recombination (Low et al. 2017).

14.10  �Conclusion

Global environmental pollution is increasing day by day and is becoming a major 
concern. To overcome this problem, bioremediation is a cost-effective and eco-
friendly way. Various potential in situ and ex situ technologies have been used to 
overcome these problems, but they also have their own drawbacks. To overcome 
these, nanotechnology has emerged as a powerful tool. Being on its developmental 
stage, it is considered as potential tool for bioremediation. Nanobioremediation is 
an efficient tool to compete with the global pollution problem. Zerovalent iron, 
gold, silver, titanium dioxide, quantum dots, and carbon nanotubes can not only 
help to remediate these contaminations but also play a role of sensor for various 
types of toxic contaminants also. Plants and microbially synthesize nanoparticles 
also have an advantage for environmental remediation as a green technology. 
Nanobioremediation is a nanorenovogen to remediate the environmental pollution.

14.11  �Future Prospects

Though the field of nanobioremediation is rapidly developing, the mechanism of 
remediation still needs to be understood. Despite being a great tool of bioremedia-
tion, microbes also synthesize nanoparticles, thus exploring the field of 
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nanobioremediation. This nascent field of green technology is in cradle and needs to 
bloom up to overcome this global problem of pollution. These technologies are bet-
ter option to replace conventional technologies but also have their own potential 
risk. Toxicity due to nanomaterial is still unclear. We have to uncover these research 
gaps to make nanobioremediation a promising tool and, thus, have environmental 
sustainability.
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15.1  �Introduction

An endophytic relationship is the occurrence of an interdependent conjunction of a 
plant and a microbe wherein the microorganism resides in the plant tissue asymp-
tomatically. However, it may cause biological changes in the plant by producing 
diverse chemical entities, such as plant growth hormones, or by harmonizing the 
gene expression of defense and other secondary metabolic pathways of the host. 
Novel biologically active secondary metabolites—viz., alkaloids, benzopyranones, 
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chinones, flavonoids, phenolic acids, quinones, steroids, terpenoids, tetralones, xan-
thones, and similar compounds—are produced by endophytes (Tan and Zou 2001). 
These secondary metabolites are known for their pharmaceutical properties, along 
with their varied utility as antimicrobial agents, antioxidants, antiparasitic agents, 
anticancer agents, immune modulators, and pigments (Wang et al. 2011; Zhao et al. 
2011; Deshmukh et al. 2015; Kalra et al. 2020; Vasundhara et al. 2016; Mishra et al. 
2020). Fungal endophytes play a pivotal role in secondary metabolite production, 
which has also been ascertained from the fact that inducing factors produced by 
both host plants and endophytic fungi increase the aggregation of bioactive com-
pounds when used in consolidation (Bagde et al. 2010; Prasad et al. 2008, 2013; 
Prasad 2017).

Thus, the mutual relation and corresponding effects of the plant and the endo-
phyte on each other need to be studied by utilizing genetic and metabolic engineer-
ing approaches. Advanced endophytic research using an omics-based approach not 
only serves as a source of novel scaffolds for future production of natural pharma-
cological products but also could act as a reservoir for sustainable production of 
these metabolites without harming natural resources (Fig.  15.1) (Komaraiah 
et al. 2003).

Endophytic fungi are diversified polyphyletic ascomycetes that dwell inside host 
plant tissue, at most for a part of their life cycle, without inducing any immediate 
obvious effects on the plants (Hyde and Soytong 2008; Debbab et al. 2013). They 
are believed to interact mutualistically with their host plants, mainly by increasing 
host resistance to herbivores (Faeth and Fagan 2002). They play pivotal roles in 
ecological transformations such as nutrient cycling and decomposition, and have 
advantageous symbiotic relationships with the roots of many plants (Sun et al. 2011).

Endophytes have both antagonistic and mutualistic relationships with their host 
plants. However, for coexistence and evolution, both the host and the fungus need to 

Fig. 15.1  “Omics”-based approaches for sustainable discovery of novel secondary metabolites 
through harnessing of endophytes
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351

have strongly balanced morphology, physiology, and life cycle characteristics 
(Saikkonen et al. 1998; Chadha et al. 2014; Mishra et al. 2015). This mutual rela-
tionship depends on a fragile equilibrium between the two parties; if one party 
weakens, the relationship is broken. This relationship can be maintained using three 
key elements. Firstly, some endophytic fungi produce plant growth regulators, 
which assist the growth of the host plants (Waqas et al. 2012; Prasad et al. 2020). 
Secondly, endophytes produce a plethora of bioactive secondary metabolites, which 
increase the hosts’ resistance against various stresses (Firáková et  al. 2007; 
Rodriguez et al. 2009; Gill et al. 2016). Lastly, these endophytes boost the accumu-
lation of secondary metabolites, including pharmacologically important com-
pounds, originally produced by the host plant (Bajaj et al. 2018). This greatly helps 
in protecting part of the host plant or the entire plant from being used up for phar-
maceutical use (Fig. 15.2) (Shwab and Keller 2008).

Endophytic fungi are prolific producers of metabolites and have the capability to 
produce compounds that are isolated exclusively from higher plants. Recent studies 
have shown that 51% of secondary metabolites obtained from endophytic fungi 
remain uncharacterized, in comparison with 38% of those isolated from soil fungi. 
Therefore, endophytic fungi should be exhaustively explored, as the majority of 
them still remain cryptic (Strobel 2003).

Natural resources, especially medicinal ones belonging to the vegetable king-
dom, have been extensively explored and exploited to furnish raw materials for the 
pharmaceutical and cosmeceutical industries. This consequently has led to the dimi-
nution and extinction of plant resources to a great extent. One of the major draw-
backs is that in many cases, the planting and harvesting cycle takes more than 
12 months and, even with support from expensive techniques such as plant tissue 

Fig. 15.2  The well-established advantageous relationship between endophytic fungi and their 
host plants
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culture, metabolic engineering produces very low-yield results, which are quite 
inadequate to meet the demand. In contrast, endophytes are untapped sources of 
novel natural bioactive compounds and their analogues, which could sustainably 
reduce the burden on these environmental resources. These endophytes can compe-
tently produce bioactive metabolites, which are also biosynthesized by their respec-
tive host plants. These include the insecticides azadirachtin A and B (Kusari et al. 
2012), the anticancer drug baccatin (Zaiyou et  al. 2013) and its analogue 
10-deacetylbaccatin (Zaiyou et al. 2013; Sreekanth et al. 2009), camptothecin and 
its structural analogues 10-hydroxycamptothecin and 9-methoxycamptothecin 
(Shweta et al. 2010), the antidepressant compounds emodin and hypericin (Kusari 
et al. 2009b), the anticancer agent paclitaxel (Stierle et al. 1993), the anticancer drug 
precursor podophyllotoxin (Eyberger et al. 2006) and its analogue with additional 
antiviral properties deoxypodophyllotoxin (Kusari et  al. 2009a), the anticancer 
drugs vincristine and vinblastine (Kumar et al. 2013), and the withanolides—a large 
group of steroid compounds with utility in numerous pharmaceutical applications 
such as cardiovascular and anti-Alzheimer drugs (Sathiyabama and Parthasarathy 
2018) (Table 15.1).

The quest for new bioactive metabolites for use in pharmaceuticals and nutraceu-
ticals is an ongoing process that requires constant optimization (Dreyfuss and 
Chapela 1994). With contemporary progress in drug discovery, bioinvestigation of 
fungal endophytes for identification of pharmaceutically important novel metabo-
lites has been the prime objective globally. Fungal endophytes have unquestionably 
been recognized as potential candidates for biosynthesis of plant metabolites. 
Nevertheless, no major breakthrough has been achieved for biotechnological pro-
duction of these bioactive metabolites through use of endophytes. For better under-
standing and utilization of endophytes for commercial production of well-known 
metabolites, there is a great need to study the metabolomes and genetic makeup of 
endophytes with respect to the associated plant metabolomes. Previously, screening 
of approximately 10,000 natural metabolites would result in one commercial prod-
uct. However, with the advent of combinatorial chemistry (i.e., structural chemistry 
along with natural product screening), we are now able to screen a million bioactive 
structures a day. Metabolomics-based studies are providing new findings regarding 
the evolution and chemistry of plant–fungus interactions (Kaul et al. 2016).

Although the biosynthetic pathways responsible for secondary metabolite pro-
duction have a genetic basis, the gene clusters that account for metabolite produc-
tion remain cryptic under laboratory conditions. Large-scale production of these 
metabolites is greatly afflicted by exhaustion in growth cultures. A spectrum of 
silent pathway–targeted and pleiotropic approaches—such as alteration of culture 
conditions, co-cultivation with different microorganisms, use of chemical elicitors, 
and genetic alterations—have been employed to activate reticent gene clusters 
responsible for bioactive metabolite production.

Genomics has evolved as a potent tool for exploring novel natural products, with 
a plethora of advantages over trivial approaches. For instance, by predicting the 
structural aspects of silent biosynthetic gene clusters, it promotes dereplication and 
inhibits rediscovery of previously known compounds, significantly accelerating the 
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process of spectroscopic structural elucidation of new compounds. In parallel, com-
binatorial use of genome sequencing with transcriptomics alongside genetic manip-
ulation promotes rational approaches for maximal and diversified utilization of a 
strain for bioactive metabolite production.

With the help of multidisciplinary biotechnological approaches—bioinformat-
ics, molecular genetics, genome mining, metabolomics, etc.—we can sustainably 
explore the hidden treasures of diversified fungal endophytes without diminishing 
their host flora. Integration of all of these approaches into endophytic research, 
together with traditional approaches, not only leads to discovery of novel metabo-
lites but also helps to expedite identification of novel sources for recovery of known 
useful metabolites (Kaul et al. 2016).

This chapter presents a comprehensive picture of use of both metabolomic and 
genomic approaches to harness the entire biosynthetic potential of endophytic 
fungi. It highlights the importance of metabolomics in identifying novel metabolites 
from endophytic fungi. Moreover, metabolic screening of known metabolites from 
new endophytic sources may increase the chances of obtaining specific metabolites 
in bulk quantities without harming the environmental sources of those metabolites. 
Insights into novel methods for activating these cryptic gene clusters, their regula-
tion, and their expression can lead to exploration of novel bioactive metabolites.

15.2  �Use of Metabolomics in the Study of Fungal Metabolites

Metabolomics is considered an extension of analysis and identification of the whole 
repertoire of biomolecules synthesized in an organism, and is an important and 
expeditiously evolving part of new systems biology. Metabolite profiling of micro-
bial, plant, and natural resource metabolites has been part of fundamental research 
in biological studies since the 1960s (Want et al. 2005). Recent studies have high-
lighted the importance of metabolomics as a chief contributor in systems biology–
based studies and have provided a holistic overview of the biochemical status of 
biological systems (Sévin et al. 2015). However, in comparison with other omics-
based techniques, metabolomics is considered a comparatively young discipline. 
Metabolomic techniques, together with other drug discovery methods, can be 
implemented to obtain a wide array of novel and sustainable sources of pharmaco-
logically active drugs (Rochfort 2005). These processes not only help in the search 
for novel molecules but also are helpful in expediting the process of drug discovery. 
The capacity of metabolomics to provide significantly larger numbers of molecules 
than other standardized techniques has made it a vital tool for the future of drug 
development, molecular medicine, and drug target discovery.

High-throughput analysis of metabolic profiling and simultaneous comparison of 
various fungal samples provide critical insight into the fundamental role of these 
metabolites in cellular processes (Aldridge and Rhee 2014). Utilization of this infor-
mation under laboratory conditions may assist in triggering the capacity of fungi to 
enhance the production of specific metabolites. Metabolomics has made a 
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substantial impact on the drug discovery and development process by providing 
manifold advantages. The foremost benefits are its precision and accuracy in qualita-
tive and quantitative analyses of biochemical modifications (Bedair and Sumner 
2008). In recent decades, remarkable progress has been achieved in improvement of 
the sensitivity and resolution of various analytical methods used in natural product 
discovery. Robust hyphenation systems make possible coherent work between chro-
matographic and spectroscopic instruments and thus enable identification of even 
trace-level metabolites in complex mixtures of compounds. Metabolomic mapping 
provides another advantage in that identified metabolites can then be linked with 
genetic and biochemical pathway information for exploration of genetic information 
for the purpose of production of specific metabolites (Oppong-Danquah et al. 2018).

On the other hand, untargeted metabolomics provides the fingerprint of the entire 
metabolome of an organism under study using mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) data (Kluger et  al. 2015). This technique aids under-
standing of the complete biochemical potential of the fungus under study. Taking 
into account the vast structural diversity found in fungal metabolites, which belong 
to various chemical classes of metabolites, it is obvious that no single analytical 
technique is able to study the entirety of these molecules with equal sensitivity and 
precision. Thus, untargeted metabolomics–based experiments should be designed in 
a way to capture the maximum number of metabolites as compared with experimen-
tal targeting of specific metabolites. Also, the quantities of raw data created using a 
metabolomic strategy are huge and cannot be evaluated manually (Gertsman and 
Barshop 2018; Cambiaghi et al. 2017). This often represents the major bottleneck in 
metabolomic work flows. However, various recently developed novel computational 
tools can facilitate processing and statistical analysis of the big data that are generated.

The key focus areas of metabolomics-based studies in endophytic research are 
(i) to achieve a more comprehensive view of secondary metabolite profiling (Son 
et al. 2018), (ii) to discover novel sources of host-based metabolites (Zhang et al. 
2015), (iii)  to link natural products to biosynthetic pathways (Trautman and 
Crawford 2016), (iv) to disclose minor or hidden metabolites in secondary metabo-
lomes, and (v) to uncover host–fungus interactions and regulatory mechanisms of 
specific metabolites (Pusztahelyi et al. 2015). The next subsections of this chapter 
discuss various metabolomic techniques, classified into the groups of targeted and 
untargeted metabolomic studies, with the objectives of sustainable supply and iden-
tification of novel molecules, respectively.

15.2.1  �Targeted Metabolomics

Although untargeted/global metabolomics has been strongly emphasized in recent 
years because of its capacity to discover novel bioactive scaffolds, application of tar-
geted metabolomics aimed at specific classes of metabolites also offers some benefits 
in addressing the necessity of specific groups of metabolites for certain applications. 
Targeted analyses are carefully designed to seek information regarding a specific set 
of metabolites from a complex mixture of metabolites from various novel sources, 
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with the purpose of obtaining good and sustainable yields of them. Targeted metabolic 
investigations are usually hypothesis-driven studies with a particular rationale for the 
selection of the targeted group of metabolites (Roberts et al. 2012). The approaches 
used in such studies mainly target selective extraction of specific compounds from the 
biological sample and/or selection of detector systems in a manner that targets the 
analysis of specific metabolites. For example, MS-based studies such as high-perfor-
mance liquid chromatography (HPLC) separation with electrospray ionization (ESI) 
and tandem MS (HPLC-ESI-MS/MS) and gas chromatography (GS) with MS (GC-
MS) target identification of compounds on the basis of fragmentation patterns and 
specific ions formed during ionization of the compounds (Xiao et al. 2012).

Some studies targeting host-specific metabolites from endophytic fungi obtained 
from particular host plants employ experiments based on targeted metabolomics. In 
a recent experiment, endophytic fungi isolated from the medicinal herb Hypericum 
perforatum (St. John’s wort) were analyzed for production of the metabolite hyperi-
cin. With the help of HPLC with ultraviolet absorption (HPLC-UV) and ultra-HPLC 
with high-resolution MS (UHPLC-HRMS) techniques in full scan and MS/MS 
mode, researchers were able to identify its suspected precursor, emodin, in three 
strains and hypericin in one strain. The isolate that yields both emodin and hypericin 
was identified as Epicoccum nigrum, whereas strains yielding only emodin belong 
to the species Alternaria alternata (Kusari et al. 2008).

15.2.2  �Untargeted Metabolomics

Because of their high sensitivity, chromatographic techniques coupled with MS and 
NMR have been recognized as the paramount techniques for untargeted/global 
metabolomic study of fungal metabolites. These techniques are used for metabolic 
profiling of biological systems with remarkable precision and sensitivity. High-
resolution data sets provided by both techniques have revolutionized research on 
fungal metabolites (Forseth and Schroeder 2011; Wolfender et  al. 2015). 
Implementation of novel computational algorithms involving appropriate data min-
ing and spectral interpretation for the purpose of decoding such complex data is the 
need of the hour. Various other analytical strategies such as dereplication, advance-
ments in analytical technologies, and availability of suitable databases are critical 
aspects for successful recovery of fungal metabolites.

15.2.3  �Dereplication

Dereplication is used at the early stage of screening and aims to detect and eliminate 
bioactive metabolites that have previously been identified from a specific fungus. 
MS-based and NMR-based techniques are extensively used for identifying known 
metabolites prior to the bioactivity-guided isolation study process. Rapid identifica-
tion of already known metabolites at the early stage of a screening campaign is 

15  Exploring Endophytes Using “Omics”…



364

particularly helpful to detect pan-assay interference compounds (PAINS; some-
times referred to as “frequent hitters”) (Baell 2016). This kind of work is ultimately 
helpful to prioritize isolation procedures targeting novel scaffolds and eliminate 
redundant isolation work on already well-studied natural products. MS is a rapid, 
sensitive, and accurate technique, and is the one most commonly used in dereplica-
tion-based studies. The combination of liquid chromatography with high-resolution 
mass spectrometers (such as Fourier transform (FT), time-of-flight (TOF), or 
Orbitrap devices) presently constitutes the most rugged “high-throughput screen-
ing” forum for online identification of metabolites in natural resources (Hubert et al. 
2017). In a recent investigation of antifungal metabolites from an endophytic 
extract, dereplication-based study was conducted on an accurate mass obtained 
from UPLC-MS, employing the METLIN database. Several bioactive components 
in the fractions were exhaustively characterized, and systematically demarcated 
chromatographic and hyphenated spectroscopic techniques led to identification of 
the well-described antifungal metabolite sulfamethazine (a sulfonamide derivative) 
(Chowdhary and Kaushik 2019).

On the other hand, NMR-based studies provide much richer structural informa-
tion on a compound than MS or UV detection. One of the major setbacks associated 
with mass-based studies is the limitation of identifying regioisomers or stereoiso-
mers of known compounds (Pérez-Victoria et al. 2016). The advent of various cryo-
genic and capillary probes and high-field magnets counterbalance the previously 
recognized lower sensitivity of NMR.  Thus, identification of minor compounds 
within mixtures becomes possible.

15.2.4  �Computational Data Mining

As mentioned earlier, the major challenge in metabolomics-based study is metabo-
lite annotation. Characteristically, an indeterminately large number of metabolites 
or mass data can be obtained in an untargeted metabolomic experiment. 
Simplification of these data and annotation of all of those metabolites is very chal-
lenging (Schrimpe-Rutledge et al. 2016). Recent progress in this direction has high-
lighted the emergence of various computational tools and generation of large 
numbers of online public tandem mass spectral databases. Apart from the compe-
tence of computational tools in simplification of data, the success of any metabolo-
mic study or dereplication approach is based on the availability and quality of the 
database and/or libraries used for identification of metabolites (Hubert et al. 2017).

Preprocessing of raw data—which includes noise filtering, peak alignment, base-
line correction, peak extraction, feature detection, normalization, and deconvolu-
tion—is a prerequisite step to reduce interference factors (Gorrochategui et  al. 
2016). A number of software packages such as MZmine, MetAlign, METIDEA, 
XCMS, MSFACTS, and AMDIS can be used for the aforementioned preprocessing 
(Schlotterbeck et al. 2006). Numerous instruments are equipped with their own reg-
istered software, which helps to facilitate processing and analysis of samples. 
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Examples of such software are Progenesis QI, MarkerLynx, and MassLynx, owned 
by Waters (Milford, MA, USA) (Yao et al. 2020); MassProfiler and MetAlign, asso-
ciated with Agilent Technologies (Santa Clara, CA, USA) (Lommen 2009; Robbat 
et al. 2017); and SIEVE and MarkerView, associated with Thermo Fisher Scientific 
(Waltham, MA, USA) (Völker-Albert et al. 2016).

Preprocessed data are subsequently analyzed using various bioinformatic and 
multivariate statistical analyses. These include various unsupervised methods and 
supervised methods. Unsupervised analyses mainly include hierarchical cluster 
analysis (HCA) and principal component analysis (PCA) (Granato et  al. 2018). 
Supervised analyses include multiple univariate data analysis (MUDA), orthogonal 
partial least-squares discriminant analysis (OPLS-DA), partial least-squares dis-
criminant analysis (PLS-DA), neural networks (NNs), and linear discriminant anal-
ysis (LDA) (Chen et al. 2019). As yet, no established metabolic database comparable 
to those available for genomics and proteomics is available. There is a great need for 
more databases specifically for fungal metabolites. Some recently established 
chemical databases that facilitate the structural elucidation process and serve as a 
foundation for known and well-researched metabolites are KEGG, mzCloud, 
PubChem, and DNP (Mohimani et al. 2018).

15.2.5  �Media Optimization and Co-culturing

Systematic alteration of cultivation parameters and the cultivation environment—
the media composition and type, temperature, pH value, level of hydration, etc.—
has been found to be the most effective and modest approach for enhancement of 
production of specific metabolites from endophytic fungi and is known as “one 
strain, many compounds” (OSMAC) (Bode et  al. 2002). This approach is also 
useful to elucidate the whole profile of an endophyte, as some gene clusters that 
normally behave as silent genes in standard laboratory settings become activated 
under stress conditions and produce specific or novel metabolites. Besides this, 
the yield of some specific metabolites can be increased greatly by optimization of 
the medium. For example, one study (Chaichanan et al. 2014) found that the yield 
of exopolysaccharide (EPS) (Mahapatra and Banerjee 2013) from an endophytic 
fungus named Xylaria sp. Acra L38 was increased using this method. Another 
study (Li et al. 2012) reported that the EPS yield from Berkleasmium sp. Dzf12 
was increased 6.29-fold (from 2.22 g/L to 13.97 g/L) by medium optimization in 
comparison with use of the original basal medium. In another study (Peng et al. 
2011), a novel cyclopentanol pyridine alkaloid was identified from the mangrove-
derived endophyte Wallemia sebi PXP-89 when the normal growth medium was 
replaced with 10% NaCl broth.

Co-cultivation, or co-culturing, is an another approach in which two or more 
strains are cultivated together, with the purpose of amplifying production of specific 
metabolites or detecting novel cryptic metabolites that are usually not produced in 
an axenic culture (Bertrand et al. 2014; Marmann et al. 2014). These effects can be 
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achieved through epigenetic modifications of the producer strain by the co-cultivated 
strain or activation of specific enzymes or silent biosynthetic pathways that may 
trigger metabolite precursors and yield new metabolites. Thus, the cross-talk 
between the co-cultivated species not only increases the chemical diversity but also 
provides a conceptual framework for revealing novel bioactive compounds. In one 
study, co-cultivation of the endophytic strain Acremonium sp. Tbp-5 (isolated from 
Taxus baccata L.) with Mycogone rosea DSM 12973 led to identification of new 
lipoaminopeptides (Degenkolb et al. 2002).

15.3  �Use of Genomics to Reveal Silent Secondary 
Metabolite–Producing Gene Clusters

15.3.1  �Genome Mining

DNA libraries are well capable of revealing key information leading to the study of 
genetic sequences encoding the biosynthetic pathways responsible for formation of 
unexplored metabolites. Use of DNA libraries can open new pathways to novel 
bioactive compounds and gene clusters for known metabolites as well (Van Lanen 
and Shen 2006).

Data from genomic studies on endophytic fungi have revealed that they pos-
sess many more genetic clusters for biosynthesis of bioactive metabolites than 
those that have already been identified. Signature genes are the foundation for 
genetic clusters that encode diverse bioactive metabolites—viz., nonribosomal 
peptide synthetases, terpene synthases, and polyketide synthases. These also 
consist of modifying enzymes that tailor the scaffold of bioactive metabolites—
e.g., acyltransferases, oxidoreductases, glycosyltransferases, and methyltrans-
ferases (Osbourn 2010). Through employment of a genome-mining approach in 
Aspergillus spp., almost 40 silent gene clusters for bioactive metabolites were 
revealed per genome. It was also found that Aspergillus nidulans is capable of 
producing 32 different polyketide synthetases (PKSs), 14 nonribosomal pep-
tides, and two indole alkaloids (Brakhage et al. 2008).

Novel derivatives and first-rate natural products can be produced by utilization of 
these genome manipulation approaches in filamentous fungi. These approaches also 
assist in comparison and elucidation of fully or partially discovered biosynthetic 
pathways responsible for a particular metabolite that is common, known in different 
plant taxa, and produced by endophytes (Van Lanen and Shen 2006; Kusari and 
Spiteller 2011). Additionally, genome mining conjugates the genes used in biosyn-
thesis and exploration of new secondary metabolites; these further aid in acquisition 
of the entire data set needed for producing analogues of natural compounds, using 
structure–activity relationships.
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15.3.2  �Study of Fungal Genome Sequences

Complete genomic sequences and their data are the major prerequisites for applying 
genome mining as a tool for novel natural product discovery. Previously, acquisition 
of these data was tedious and expensive, but, with rapid advancement in DNA 
sequencing and technology, genome mining as an approach has become part of the 
arsenal of every natural product laboratory. It has made thousands of cryptic bioac-
tive metabolite gene clusters available for study. These strategies for analyzing the 
products of these cryptic metabolic gene clusters come with both pros and cons, 
depending on the accuracy of the bioinformatic studies, the physiochemical nature 
of the natural product being used, the size of the cluster, and its expression in vivo. 
All of these factors should be carefully considered prior to commitment to any par-
ticular approaches. Presumably, novel strategies for metabolic product discovery 
will continue to be added to the already available versatile pool; nevertheless, the 
potentiality of this approach has already been established. With further research and 
observations, this will definitely become an intrinsic part of natural product labora-
tories globally. With the increasing number of fungal genomes being sequenced 
(Grigoriev et al. 2014) and mining strategies being employed for biosynthetic gene 
clusters, and with their identification becoming widely accessible, the number of 
characterized biosynthetic pathways and newly discovered products is likely to 
increase rapidly in the future.

15.3.3  �In Silico Predictors

Bioinformatic tools are principally designed to anticipate the assembly of nonribo-
somal protein synthetases (NRPSs) and/or polyketide synthetases (PKSs) and their 
corresponding substrates, alongside the physiochemical properties of potential nat-
ural products. This approach is solely based on the fundamentals of synthesis of 
these multimodular enzyme systems. It subsequently facilitates isolation of metabo-
lites from a particular endophytic fungal strain (Scherlach and Hertweck 2006). The 
ClustScan Database (CSDB) and Recombinant ClustScan Database (rCSDB) are 
the major databases that focus on NRPS and PKS gene clusters (Schmitt et  al. 
2004). A frequently discussed database that supervises the tailoring of enzymes in 
the design of PKS and NRPS biosynthetic gene clusters is the Database of 
Biosynthesis Clusters Curated and Integrated (DoBISCUIT). Apart from these, 
SEARCHPKS, MAPSI, and Natural Product Domain Seeker (NaPDos) are soft-
ware packages that address particular enzyme classes (Ichikawa et  al. 2012). 
Chemical and structural data on these metabolites are accessible via databases such 
as the Human Metabolome Database (HMDB) (Wishart et  al. 2009), METLIN 
(Smith et al. 2005), and the Madison Metabolomics Consortium Database (MMDB) 
(Cui et al. 2008).
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15.4  �Use of Methods to Unravel Cryptic Gene Clusters 
for Improved and Sustainable Production of Bioactive 
Secondary Metabolites

Secondary metabolites produced by endophytic fungi hold great promise for varied 
usage in the pharmaceutical industry; however, the amounts of metabolites that are 
produced are usually very small. Therefore, various strategies such as the OSMAC 
approach (using modification of the composition of the culture medium, tempera-
ture, or agitation conditions) and co-culturing methods (using interspecies cross-
talk for increased and diversified production) are required in order to increase the 
yield of bioactive metabolites from microorganisms.

Many studies have shown that biosynthetic gene clusters in microorganisms are 
poorly expressed under normal laboratory conditions (Scherlach and Hertweck 
2009). To activate such silent gene clusters, chemicals that act as DNA methyltrans-
ferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors, which in turn 
stimulate genes at the transcriptional level, are being extensively used to increase 
the chemical diversity and enhance the yield of the spectrum of natural compounds 
produced by these microorganisms. Some details of these methods are highlighted 
in the following subsections.

15.4.1  �Epigenetic Modifications

Recent studies have confirmed that epigenetic modulators such as DNMT inhibitors 
and HDAC inhibitors lead to upregulation and expression of silent/cryptic genes in 
endophytic fungi that are normally poorly expressed under laboratory conditions. 
Histone modification is a method used to activate silent gene clusters by treating 
fungi with inhibitors of histone acetyltransferase (HAT) or DMAT. HAT removes 
acetyl groups from the amino tails of histones and maintains chromatin in a state 
that is inaccessible to the transcriptional machinery (Bulger 2005). Compounds 
such as 5-azacytidine (a DMAT inhibitor) and suberoylanilide hydroxamic acid 
(SAHA; an HDAC inhibitor) have been used in several laboratories to activate silent 
biosynthetic pathways. This technique does not require strain-dependent genetic 
manipulation and can thus be applied to any fungal strain (Williams et al. 2008).

Genetic studies have confirmed the presence of secondary metabolites’ biosyn-
thetic genes as cryptic gene clusters on fungal chromosomes. However, because 
these genes are silent under normal laboratory conditions or are expressed only 
marginally, it is a challenging task to understand the biology of these genes. 
Activation of these genes is controlled by complex regulatory networks involving 
multiple transcriptional factors, which respond to environmental stimuli such as 
nutritional, physical, and interactive signals (Brakhage 2013). For induction of sec-
ondary metabolite production and enhanced accumulation in fungi, manipulation of 
global gene regulators, such as deletion or overexpression, has also been used (Bok 
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and Keller 2004). Molecular biology approaches such as generation of gene knock-
outs, promoter exchange, overexpression of transcription factors, or use of other 
pleiotropic regulators are among the successful strategies used for induction of 
silent biosynthetic pathways (Brakhage and Schroeckh 2011).

15.4.2  �CRISPR-Cas9-Based Approaches: 
The Genome-Editing Era

Since its introduction, use of CRISPR-Cas9 (clustered regularly interspaced short 
palindromic repeats–CRISPR associated protein 9) has revolutionized the technique 
of genome editing (Sarma et al. 2021). It has empowered the world with more preci-
sion for modifying genomic sequences (Knott and Doudna 2018). Two key ele-
ments of the CRISPR-Cas9 type II method for gene targeting and cleavage are the 
RNA guide (subgenomic messenger RNA (sgRNA)) and the Cas9 endonuclease. 
sgRNA (chimeric RNA strands) guides Cas9 to the genetic target in the genome 
whose expression needs to be intercepted. Cas9 binds to the target and produces a 
double-stranded nick, and this in turn activates the cell repair enzyme system—a 
nonhomologous end-joining system— which ensures flawless sealing of the nicks, 
avoiding any extra insertions or deletions of nucleotide(s). Such insertions and dele-
tions alter the reading frame, leading to nonsense sequences and or untimely intro-
duction of stop codons, thereby arresting the transcription of the target genetic 
sequence (Bono et al. 2015). In fungi, application of this has provided the necessary 
proof of concept; after its employment in the host, the target gene can be tuned 
through changes in the sequences of sgRNA (Konermann et al. 2015). Apart from 
this, one of the fascinating aspects is that it can execute deletions without prerequi-
site markers by employing transitory expression plasmids, which replicate under 
antibiotic stress.

Genetic modulation of biosynthetic metabolic pathways can induce otherwise 
cryptic secondary metabolites, thus providing novel fungal strains with reinforced 
bioactivity. Studies have reported that changes in environmental conditions induce 
synthesis of bioactive secondary metabolites by clustered genes. However, in most 
instances, these genetic clusters remain cryptic (Osbourn 2010). Studies done by 
Bok et al. (2009) confirmed the expression and yield of novel secondary metabolites 
by suppressing the transcription factor responsible for methylation of lysine 4 of 
histone H3 in Aspergillus nidulans. Similarly, a significant improvement in bioac-
tivity against Fusarium oxysporum and Rhizoctonia solani was reported when the 
ace1 gene was silenced, resulting in induction and upregulation of four polyketide 
biosynthetic gene clusters in Trichoderma atroviride that regulate production of 
antibiotics and other bioactive secondary metabolites (Fang and Chen 2018). 
Subsequently, this approach was used to induce activation of unexplored clusters in 
the studied fungal strains by using CRISPR-Cas9, aiding the exploration of novel 
bioactive secondary metabolites that can cross-talk with plants or phytopathogens. 
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Thus, the CRISPR-Cas system not only efficiently provides an easy and economical 
pathway to execution of genomic analysis but also facilitates production of unique 
fungal genotypes and could be a key player in galvanizing plant defenses against 
plant pathogens (Katayama et al. 2016; Nødvig et al. 2015; Schuster et al. 2016; 
Zhang et al. 2016; Liu et al. 2017; Wenderoth et al. 2017; Weyda et al. 2017; Wang 
et al. 2018). Thereby, it could strongly bolster sustainable biocontrol of endophytic 
fungal strains, which could be effectively utilized to avoid introduction of trans-
genes into the environment.

15.5  �Conclusion

Filamentous fungi are abundant sources of bioactive secondary metabolites with 
prominent potential to be administered as medicinal drugs for treating various dif-
ferent human diseases.

These secondary metabolites have the potential for use as antimicrobial agents, 
antioxidants, pigments, and toxins in key applications in the pharmaceutical, nutra-
ceutical, and biomedical industries.

This chapter has provided a broad insight into current genetic and metabolomic 
approaches for development of novel bioactive secondary metabolites. The metabo-
lomic approach aids in identification and characterization of unique metabolites. 
The explored fungal strains are usually unable to produce adequate quantities of 
these metabolites, but gene-editing tools for gene cloning, tailoring, and deletion 
enable native strains to supply novel metabolites in larger quantities, which could 
potentially be scaled up to meet the growing global demand for these natural prod-
ucts. Additionally, these robust approaches anticipate the structural aspects of silent 
biosynthetic gene clusters, greatly facilitating dereplication and avoiding re-
exploration of already known compounds or compound classes. This automatically 
speeds up the process of spectroscopic elucidation of the structures of novel 
metabolites.

The genome-based advent of bioprospecting and production of new bioactive 
compounds is promising, but the major hurdle lies in comprehension of the regula-
tory pathways that drive the expression of these silent/cryptic genes. Acquisition of 
knowledge on different strategies for the identification of gene clusters and induc-
tion of these silent gene clusters is the need of the hour. Nevertheless, although these 
omics-based approaches hold great promise as potential tools, key challenges 
include the cost effectiveness of application of combinatorial methods for screening 
and characterization of novel metabolites. Moreover, these approaches require high-
end tools for throughput screening of the whole cellular genome and proteome in 
less time. With these challenges in mind, tenable exploitation of integrated omics-
based approaches can be made more efficient, and sustainable production of hith-
erto unavailable plant compounds can be achieved by employing endophytes as a 
resource.
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