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Abstract. Recently, fingerprint recognition systems are widely deployed in our
daily life. However, spoofing via using special materials such as silica, gelatin,
Play-Doh, clay, etc., is one of the most common methods of attacking fingerprint
recognition systems. To handle the above defects, a fingerprint liveness detec-
tion (FLD) technique is proposed. In this paper, we propose a novel structure to
discriminate genuine or fake fingerprints. First, to describe the subtle differences
between them and make full use of each algorithm, this paper extracts three types
of different fine-grained texture features, such as SIFT, LBP,HOG.Next, we devel-
oped a feature fusion rule, including five fusion operations, to better integrate the
above features. Finally, those fused features are fed into an SVM classifier for the
subsequent classification. Experimental results on the benchmark LivDet 2013 fin-
gerprints indicate that the classification performance of our method outperforms
other FLD methods proposed in recent literature.

Keywords: Fingerprint liveness detection · Feature fusion · SIFT · LBP · HOG ·
SVM

1 Introduction

With the rapid development of multimedia and digital imaging technology, it is recently
possible to collect large amounts of high-resolution images using sophisticated digital
cameras or other high-resolution sensors. Because of the convenience and security of
biometrics, biometric recognition techniques have a broad application prospect in the
field of identity authentication and network security. There are a variety of biometric
authentication methods, including fingerprint, face, and iris, among which fingerprint
recognition is the most common. Fingerprints are characterized by uniqueness, stability,
and invariability. Moreover, compared with traditional authentication methods, finger-
print recognition requires no password to be remembered. Accordingly, personal identi-
ties can be associated with a fingerprint [1]. Afterward, we can verify the authenticity of
a user’s identity by comparing his or her fingerprint features with pre-saved features in a
database. Fingerprints are claimed to be safe and hard to steal and copy. However, with
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the increasing demand for high-level security in some smart devices, research points
out that these fingerprint authentication devices are unsafe and easily spoofed by some
artificial replicas made from wax, moldable plastic, Play-Doh, clay or gelatin [2] when
the simulation performance is high enough and the texture is clear enough. Thus, the
security of fingerprint recognition systems is threatened. To cope with the above issues,
a fingerprint liveness detection (FLD) [3] method has been proposed.

SIFT [4] (Scale-Invariant Feature transform) has the characteristics of invariant rota-
tion, invariant scale and invariant brightness, which are conducive to the effective and
efficient expression of target texture information. However, it fails to extract those fea-
tures from smoothing targets. LBP [5] (Local Binary Pattern) has the advantages of
invariant rotation and invariant gray to some extent. However, it does not meet invariant
scale. HOG [6] (Histogram of Oriented Gradient) can represent the structural texture
information of an edge (gradient), and it can reflect the local shape information. Because
of the neglect of the influence of light brightness in the image, the extracted feature adopt-
ing HOG contains a lot of noise. In addition, due to the use of block and unit processing
ideas, the relationship between the center and adjacent pixels is well represented. In
order to describe the subtle differences between genuine or fake fingerprints and take
advantage of each feature algorithm, this paper proposes a novel structure for fingerprint
liveness detection.

The remainder of this paper is organized as follows. Section 2 describes the related
work to FLD in recent years. Section 3 presents theMethodology. Experiments are given
in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Related Work

In modern times, fingerprint recognition systems are widely deployed in mobile devices,
such as tablets, laptops, and smart cellphones. However, one of the common problems
with these devices is that they neglect to verify the authenticity of fingerprints before
identification. Namely, they do not have the ability to distinguish between genuine and
fake fingerprint images [7], which has led to the emergence of FLD technology to solve
the problems of spoofing attacks. Researchers and scholars have devoted considerable
effort to differentiating genuine fingerprints from fake ones during the past several years
by analyzing different physical or psychological traits [7]. Through the research of
FLD methods at home and abroad, we note that the existing FLD methods fall into
two categories: hardware-based FLD methods and software-based FLD methods. Some
recent studies have depicted that anti-spoofing FLD methods based on hardware can
discriminate those genuine fingerprints from fake ones only by measuring physiologi-
cal characteristics, such as pulse oximetry, skin resistance, blood oxygen, temperature,
electrocardiogram, etc. Although the above biometrics can recognize genuine and fake
fingerprints, the drawback is that these instruments are bulky, expensive and require
trained professionals to perform measurements [8]. Hence, to save costs and simplify
operations, an ideal anti-spoofing detection method is to exploit as few additional hard-
ware devices as possible and assign all thework to the computer, and somenovel software
based FLD methods without any additional sensors are proposed. Moreover, late main-
tenance based on a software detection strategy is also very convenient only via a simple
software upgrade.
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Texture is an important visual trait that describes the homogeneity phenomenonof the
image, and it reflects the arrangement property of the surface structure with slow change.
It can reflect different texture phenomenon for those genuine and fake fingerprints, such
as morphology, smoothness, and orientation; hence, the texture representation has been
used in FLD and is the main content of this paper. At present, how to better represent
the texture pattern of the fingerprints and achieve a higher classification accuracy is
the hotspot of FLD. Recently, Abhyankar et al. [9] proposed a novel FLD method by
combining the multiresolution texture analysis and the interring frequency analysis.
They attempted to use different texture information to quantify how the pixel value
distribution of the fingerprints change when the physical structure changes. Next, two
feature extraction methods, including a multiresolution texture analysis and a ridge-
frequency analysis, are utilized. Finally, they exploit the Fuzzy C-means classifier for
those combined features to distinguish genuine fingers from fake ones. In 2012, Yuan
[10] assessed the recently introduced Local Phase Quantization (LPQ) algorithm and
applied it to FLD. A series of experiments based on several common feature extraction
algorithms were performed, including LPQ, LBP, LBP’s variants [11], and results also
demonstrated that LPQ based detection performance was optimal.

3 Methodology

3.1 Feature Extraction

In order to distinguish the genuine fingerprints from the fake ones, the key is to extract the
differentiable features between them. Accordingly, this paper designs a novel fingerprint
liveness detection structure analyzing three epidemic feature extractors, including SIFT,
LBP, and HOG, to extract subtle differences between them. On one hand, the above three
methods can extract some different fine-grained (local) texture features of fingerprints;
On the other hand, after feature fusion, the advantages of each algorithm can be fully
utilized to make up for the detailed information that cannot be observed by a single
feature. Experimental results also demonstrate that the performance of feature fusion is
better than that of a single feature extractor.

SIFT: Scale-invariant feature transform, which is a kind of local feature descriptor,
can detect the key subtle information between genuine and fake fingerprints. As a stable
local feature descriptor, SIFT remains unchanged when these images are rotated and
zoomed, even when the intensity changes. First, the image scale is reconstructed using
the gray-scale transformation to gain the multi-scale space representation sequences
of images, and the main contour of the scale space is extracted from these sequences,
which are regarded as a feature vector to realize the extraction of key points in edge
and corner detection at different resolutions. Then, to ensure that the detected key points
are local extremum points in the scale space and two-dimensional image space, each
pixel point is compared with its adjacent pixel points. In addition, the stable extremum
points are extracted in different scale space to guarantee the scale invariance of the key
points. Moreover, to make the key points invariable to the image angle and rotation, the
direction assignment is operated by finding the gradient of each extremum. Finally, the
key point descriptor is to generate a unique vector by dividing the pixel area around
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the key point into blocks, calculating the gradient histogram within the key point. This
vector is an abstract representation of the image (Fig. 1).
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Fig. 1. Flow chart of fingerprint liveness detection based on multi-modal fine-grained feature
fusion.

During the above calculation, the scale space L(x, y, σ) denotes convolutional oper-
ation between an original image I(x, y) and a variable-scale 2D Gauss function G(x, y,
σ). The two-dimensional Gaussian distribution formula is as follows:

G(xi, yi) = 1

2πσ 2 exp

(
− (x − xi)2 + (y − yi)2

2σ 2

)
(1)

The scale space of the image is the calculation of convolution operation using two-
dimensional Gaussian distribution and the original image. The scale space expression is
as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2)

LBP: LBP [12, 13] is an operator used to describe local texture features of images,
and it has the obvious advantages of rotation invariance and gray invariance. The goal is
tomeasure the local contrast of the fingerprints and describe the local texture information
of the image.

Before constructing the local texture, we need to preprocess the given image, then
transform the image into grey-scale image and analyze the relationship between central
pixel and adjacent pixels. The LBP operator is defined in the window of size 3 × 3, and
the threshold is the central pixel in the window. Next, the central pixel is compared with
its adjacent 8 pixels. If the adjacent pixel is larger than the central pixel, the position of
the pixel is marked as 1; otherwise it is marked as 0. In this way, an 8-bit binary number
has been generated by comparingwith the adjacent 8 points in awindow of size 3× 3 and
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arranging them in sequence to form a binary number. Take this value as the new value of
the pixel in the center of the window to reflect the texture information. It worth nothing
that there are 256 kinds of LBP values and each value can represent a different texture.

Because LBP records the difference between the central pixel and its adjacent pixel,
when the light changes cause the gray value of the pixel to increase and decrease at the
same time, the change in LBP is not obvious. Therefore, it can be considered that LBP is
not sensitive to the change of illumination. LBP only detects the texture information of
images, so it can further make histogram statistics of LBP which are used as the feature
operator of texture analysis. Generally, the image after LBP operation is divided into
many square regions, such as 4 × 4, 10 × 10 or 16 × 16, and we can get 16, 100, 256
histograms representing the feature of fingerprint images by means of the above regions.

(a) (b)

(c) (d)

Fig. 2. True, fake fingerprints and their visualizations using HOG. (a) True fingerprint. (b) True
fingerprint visualization. (c) Fake fingerprint. (d) Fake fingerprint visualization.

HOG [14] is short for histogram of oriented gradient, and it consists of local features
formed by calculating the gradient histogram of the given images. Since HOG denotes
the structural feature of an edge (gradient), it can describe the local shape information;
thus, it is a commonly used feature descriptor. The quantization of position and direction
space can restrain the influence of translation and rotation to some extent. Moreover,
after normalizing the histogram in the local region, the influence of illumination change
can be partially offset.

The detailed implementation steps are as follows:

Step 1: Before calculation, grayscale and gamma correction are carried on reducing the
influence of local shadow and light changes in the image. Meanwhile, to some extent,
the interference of noise is suppressed;
Step 2: To obtain a histogram of gradient, the horizontal and the vertical gradients of
the image by the convolution of the filter and the image are calculated;
Step 3: Next, the magnitude and direction of each pixel are calculated;
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Step 4: After that, each cell consists of 4 × 4 pixels, and the histogram of gradients is
computed for each pixel in the cell;
Step 5: Before feature generation, to make the generated feature robust to light, shadow
and edge changes, it is necessary to normalize the HOG features of the block. Finally,
make 4 × 4 cells denote a block and concatenate the features of the block to get the final
feature of image, which is employed for subsequent classification.

As shown in Fig. 2, visual images of the genuine and fake feature fingerprints using
the HOG method are listed. Among them, the genuine fingerprint features are evenly
distributed, the fake fingerprints are damaged more, and there are stains and other fuzzy
states.

3.2 Feature Fusion Rule

By analyzing the features extracted using the above three algorithms, the ways of feature
fusion are diverse. Thus, to describe the difference between genuine and fakefingerprints,
in this paper, we develop a new feature fusion rule to fuse the extracted features. Because
the dimensions of extracted features are different, it is difficult to directly splice them.
Hence, to piece together these features of different dimensions, we need to make up 0
for the features of the above different dimensions before concatenation. In this paper,
five types of different feature fusion rules are set, including an addition operation, max-
imum operation, minimum operation, average operation and concatenation operation.
Table 1 reports the specific operation for each feature fusion rule, where F denotes the
feature, the SIFT, LBP and HOG in the subscript are the corresponding features, and
the addition operation, maximum operation, minimum operation, average operation and
concatenation operation are abbreviated as Add, Max, Min, Ave and Con. The detailed
operations are shown in Table 1.

Table 1. Feature fusion rules of different fusion operations.

Operation Addition Maximum Minimum Average Concatenation

Rule [Add(FSIFT +
FLBP +
FHOG)]

[Max(FSIFT,
FLBP, FHOG)]

[Min(FSIFT,
FLBP, FHOG)]

[Ave(FSIFT +
FLBP +
FHOG)]

[Con(FSIFT,
FLBP, FHOG)]

3.3 Parameter Optimization

After fusing the features using our proposed rule, the generated features will be fed into
an SVM (Support Vector Machine) classifier for the subsequent training and testing.
However, in order to obtain a better model classifier, it is necessary to perform parameter
optimization before model training.

SVM is a learning method based on the criterion of structural risk minimization,
which is divided into two categories: linear SVM and nonlinear SVM, depending on the
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nuclear function used. To eliminate the influence of outliers between features and limit
the features to a certain range, a standardization operation should be performed first so
as to eliminate the adverse effects caused by outliers’ samples and dimensions. Then, to
gain a robust and effective model classifier, optimization of the parameters C and gamma
(that is <C, g>) for the fused features, which are constructed via our proposed fusion
rule, is necessary. Figure 3 gives the result images of parameter optimization in the
Biometrika dataset, and we can obtain the optimal parameter pair (<C, g>) from each
figure. Finally, these fused features are trained via an SVM classifier with the optimal
parameter pair <C, g>.

Fig. 3. Parameter optimization figures under different feature fusion operation in the Biometrika
data set. (a) addition operation; (b) maximum operation; (c) minimum operation; (d) average
operation; (e) concatenation operation.

Table 2. The image distribution of the LivDet2013 data set.

Dataset ID Sensor Size Samples in
training set

Samples in
testing set

Live Spoof Live Spoof

Liv2013-1 Biometrika 352 ×
384

1000 1000 1000 1000

Liv2013-2 CrossMatch 800 ×
750

1250 1000 1250 1000

Liv2013-3 Italdata 480 ×
640

1000 1000 1000 1000

Liv2013-4 Swipe 1500 ×
208

1221 979 1153 1000

4 Experiments

4.1 Database

The detection performance of our proposed schema is verified using the benchmark
fingerprint image set LivDet2013 [1], which consists of a total of 16853 genuine and fake
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fingerprints and constructed via adoption of four different flat optical sensors, including
Biometrika, CrossMatch, Italdata and Swipe. In addition, two types of fingerprints are
included: A training dataset with a total of 8450 images and a testing dataset with a total
of 8403 images. The training image set is used to learn and obtain a model classifier,
and the performance evaluation of the model classifier is evaluated using the testing
dataset. Note that it is hard to observe the slight difference between the real fingerprints
and the fake ones by the naked eye. The detailed distribution of the LivDet 2013 dataset
is shown in Table 2. From Table 2, we can find that the ratio of genuine fingerprints
and fake fingerprints is 1:1 approximately, and the sizes/scales of given fingerprints are
varied from 315 × 372 to 1500 × 208.

4.2 Experimental Process and Performance Evaluation

First, to eliminate the influence of light and other factors for the fingerprints, an image
gray processing operation has been performed. Next, the features of the fingerprints
are extracted using three feature extraction algorithms, including SIFT, LBP and HOG.
The features extracted based on the above three algorithms are only sensitive to some
feature changes, but not to other features. Hence, the classification performance of the
fingerprint liveness detection adopting a single feature method is unsatisfactory, and the
experimental results confirm this point in this paper. To solve the problem, one possible
solution is to fuse the features tomake up for the shortcomings of a single featuremethod.
Thus, the feature fusion operation, combined with the strengths of each algorithm, can
reach the goal of complementary weaknesses. In addition, feature fusion for multiple
different algorithms can also enhance final performance.

The specific feature fusion rules involved in this paper are classified into five types:
addition operation, maximum operation, minimum operation, average operation and
concatenation operation. Due to the difference between the above three algorithms, the
dimensions of the feature extracted are inconsistent. To perform successfully the above
five feature fusion operations, insufficient parts need to be filled with 0.

Since the distribution and range of each feature are different, it is necessary to map
these features extracted to the same interval by normalization operations to make the
components of features consistent. Moreover, rescaling to the appropriate range can
make training and testing faster. Before gaining a robust model classifier, parameter
optimization needs to be carried out to find the optimal parameter pair <C, g> ; the
optimal parameter is then exploited for the subsequentmodel training and testing. Finally,
the classification result is obtained by using a trained model classifier.

In order to verify the performance of the feature extraction algorithm in the paper,
we adopt average classification error (ACE) [15–17] as a metric. The formula is defined
as follows:

ACE = FAR + FRR

2
(3)

In formula 3, FAR denotes the probability that a fake fingerprint is mistaken as the
genuine fingerprint, and FRR is the probability that a genuine fingerprint is mistaken as
the fake one. The outcome of fingerprint liveness detection may be any value between
0 and 100. Suppose that the given threshold is 50, and the value of a detected image is
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more than 50. This image can be recognized as a genuine fingerprint. If not, it will be
recognized as a fake fingerprint. Finally, we can obtain the performance of our proposed
algorithm by using formula 3.

4.3 Results

First, we analyze and evaluate the performance of our method on the LivDet 2013
dataset when adopting different feature fusion rules, including addition operation, max-
imum operation, minimum operation, average operation and concatenation operation.
The results are reported in Table 3. From Table 3, we can find that, in general, the detec-
tion performance after feature fusion is better than that of a single feature algorithm.
For example, in the Biometrika dataset, the classification accuracies of SIFT, LBP and
HOG are 86.7, 94.0 and 93.8 respectively. After performing the feature fusion operation,
the classification accuracy of LBP+HOG is 99.9. Namely, feature fusion can improve
the detection performance of genuine and fake fingerprints. In the CrossMatch dataset,
the classification results of SIFT, LBP and HOG are 88.8, 90.6 and 90.5, respectively.
After performing the feature fusion operation, the classification accuracy of SIFT+LBP
is 93.6, and the FLD performance has been further improved. In addition, the time after
testing all datasets is also listed in Table 3, and is quite acceptable. Moreover, the task
of testing a fingerprint is basically done without our even knowing it, showing that our
method is also applicable to real life.

Table 3. Average classification accuracy and testing time of different feature fusions in the
LivDet2013 fingerprint set.

Feature
fusion

Average classification correct accuracy Testing time(s)

Biometrika Crossmatch Italdata Swipe Biometrika Crossmatch Italdata Swipe

SIFT 86.7 88.8 85.2 91.2 9 19 15 12

LBP 94.0 90.6 90.6 93.3 23 10 73 43

HOG 93.8 90.5 96.6 92.3 42 9 37 59

SIFT+LBP 84.9 93.6 95.6 97.9 33 45 62 25

SIFT+HOG 78.4 86.4 85.9 95.7 13 25 33 11

LBP+HOG 99.9 84.0 91.5 96.2 20 34 54 15

Add(SIFT,
LBP, HOG)

99.6 92.4 94.3 96.5 12 22 25 10

Max(SIFT,
LBP, HOG)

98.8 83.9 95.0 96.6 3 21 24 9

Min(SIFT,
LBP, HOG)

98.1 56.5 72.3 79.3 15 7 10 80

Ave(SIFT,
LBP, HOG)

95.4 94.2 94.7 93.7 14 17 17 14

Con(SIFT,
LBP, HOG)

99.9 94.0 94.9 97.3 19 51 45 12
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Table 4 lists the detailed comparison results when adopting different concatenation
operations. In Table 4, the ACEs of our proposed method are the lowest. To compare
the performance of different algorithms, the optimal results for each sensor are all high-
lighted in bold in each row. The result of the Biometrika sensor in LivDet 2013 is close
to 0, and the ACE of our method is 0.02 lower than the second result of [21]. The FLD
method based on convolutional neural networks (CNN) achieves the state-of-the-art per-
formance in Crossmatch, but it has some drawbacks. For example, the training time of
the model is long, the interpretability of the features based on CNN is weak, a large
number of training samples are required, and it relies on high-performance comput-
ers. However, the texture feature algorithms, which can capture these subtle differences
between genuine and fake fingerprints, are used to solve those shortcomings of CNN.
In addition, our results of Italdata and Crossmatch are 2.75 and 2.8 higher than the two
results of [20, 21] in Table 4, respectively; however, the results of Biometrika and Swipe
sensors are 0.7 and 2.55, respectively, lower than that of [20, 21]. Table 3 shows that
different feature fusion methods should be used to obtain a better detection performance
when the types of fingerprint scanners are known.

Table 4. The comparisons of the ACE of different algorithms in LivDet 2013.

Algorithm
name

Average classification error rate ACE in (%)

Biometrika Crossmatch Italdata Swipe Average

Our method 0.1 6.0 5.1 2.7 3.48

ULBP [19] 10.68 46.09 13.7 14.35 21.21

Winner [1] 4.7 31.2 3.5 14.07 13.37

HIG-MC
[18]

4.3 39.96 10.6 32.41 21.92

UniNap [1] 4.7 31.2 3.5 14.07 13.37

HIG-BP
[18]

3.9 34.13 8.3 14.44 15.19

PHOG [20] 3.87 9.92 6.7 9.05 7.24

MSDCM
[20]

3.55 20.84 2.35 5.25 7.59

CNN-Rand
[21]

0.8 3.2 2.4 7.6 3.5

5 Conclusion

It is well known that the SIFT feature descriptor is characterized by invariant rotation,
scale and brightness; The HOG feature descriptor ignored the influence of light on the
image, reducing the dimension of the feature for the image; The LBP feature descriptor
is insensitive to light and fast to operate. Combining the advantages of SIFT features,
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LBP features, and HOG features can make up for the shortcomings of each algorithm
and improve the final detection performance. Finally, these fused features are fed into
the SVM classifier for the subsequent training and testing. Contrasted by experiment,
the classification performance based on fused features by using SIFT, HOG and LBP is
better than other FLD methods, and our method is more suitable for fingerprint liveness
detection to prevent spoof attacks related to these artificial replicas.
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