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Abstract. Human vital signs are essential information that are closely
related to both physical cardiac assessments and psychological emotion
studies. One of the most important data is the heart rate, which is closely
connected to the clinical state of the human body. Modern image process-
ing technologies, such as Remote Photoplethysmography (rPPG), have
enabled us to collect and extract the heart rate data from the body by
just using an optical sensor and not making any physical contact. In this
paper, we propose a real-time camera-based heart rate detector system
using computer vision and signal processing techniques. The software of
the system is designed to be compatible with both an ordinary built-in
color webcam and an industry grade grayscale camera. In addition, we
conduct an analysis based on the experimental results collected from a
combination of test subjects varying in genders, races, and ages, followed
by a quick performance comparison between the color webcam and an
industry grayscale camera. The final calculations on percentage error
have shown interesting results as the built-in color webcam with the dig-
ital spatial filter and the grayscale camera with optical filter achieved
relatively similar accuracy under both still and exercising conditions.
However, the correlation calculations, on the other hand, have shown
that compared to the webcam, the industry grade camera is superior in
stability when facial artifacts are presented.

Keywords: Computer vision · Heart rate · Photoplethysmography ·
rPPG · Signal processing

1 Introduction and Related Works

Human heart rate and heart rate variability are the crucial parameters corre-
sponding to the functions of the heart. The speed and volume of the blood pulse
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can explicitly indicate various physical conditions of one’s body such as emo-
tions, cardio activity levels, stress, fatigue, and heart diseases [1], and thus these
parameters are usually measured for quick clinical diagnostics in the first place
when necessary. On the other hand, long-term heart rate monitoring is under-
taken when abnormal symptoms such as palpitation and extra systole need to
be in check on a regular basis. Traditional wearable heart rate monitors, such as
FitbitTM and smart watches can measure heart rate and give accurate results,
but they are usually dedicated to just one user and need to be placed close
against the skin of the user. Impressively, the rPPG technology has taken another
approach; by examining the intensity change of a reflective light caused by the
change of blood flow on a person’s face and applying adequate computer vision
and signal processing techniques, determining an approximate value of the heart
rate from a distance using a video camera system has been made possible. Due
to the nature of video signals, the rPPG method can acquire multi-model vital
signs including heart rate, respiratory rate, and facial expression both in real-
time and offline. Therefore, it is ideal for the rPPG to become a cost-efficient
and user-friendly solution in real-world applications.

Academically, computer vision-based methodologies for front face remote
heart rate measurement have already become popular in recent researches. C.
Wang in his paper [2] has conducted a survey on multiple rPPG methods that
can be classified into either intensity-based methods, which focus on facial light
reluctance [3], or motion-based methods, which focus on head movements [4],
and he concluded that intensity-based methods are still much more effective
in terms of speed and accuracy. In [3,5], the authors have compared Signal to
Noise Ratios (SNRs) of the blood pulse in the Red-Green-Blue (RGB) color space
model and have shown that the green channel is the best pick for rPPG heart
rate detection. In [6], an rPPG heart rate detector on the iOS platform using
offline videos had been developed and sufficient usable results were obtained;
however, the author did not mention its real-time performance.

It is also noteworthy that rPPG methods can be tailored at various stages of
the entire process, such as pre-processing, signal extraction, and post-processing
[2]. At the pre-processing stage, Po and his colleagues [7] implemented their
system with an adaptive Region of Interest (ROI) selection method based on
the detected signal qualities and concluded with improved accuracy at a cost of
computational expense in real-time. In [8,9], Rahman’s team proposed real-time
rPPG systems using Independent Component Analysis (ICA) to combat motion
artifacts, but in [10], Demirezen claimed that their work with the nonlinear
mode decomposition method achieved better results than ICA. In terms of opti-
cal modeling, Sanyal in [11] took another approach by using hue parameters from
the Hue-Saturation-Value (HSV) color space model instead of green in the RGB
before applying ICA and also summarized a higher accuracy in the performance
outcomes. In the post-processing stage, the time domain peak-detection or fre-
quency domain algorithms were the most commonly applied methods used in
the past [2], but machine learning and modeling techniques are trending among
most recent research. The types of supervised learning methods can include
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kNN-based modeling [12], cNN-based modeling [13,14], spatial-temporal model-
ing [15], adaptive neural network model selection [16], etc. However, obtaining
a dataset with appropriate ground truth can be a crucial factor for training
accurate models, and real-time performance reduction needs to be addressed
considering the complexity of the model trained [2].

The structure of this paper is as follows. Section 2 describes the used methods
and materials in this study, Sect. 2.10 presents detailed steps to obtain the final
data, Sect. 3 conducts an analysis on the final results, and Sect. 4 draws an open
conclusion for future work.

2 Materials and Methods

This work has been implemented as a hybrid system in which either a regular
built-in color webcam or a FILRTM industrial grade grayscale camera can be uti-
lized as its image input sensor based on the detection of the connected hardware.
The captured facial image frames were converted to grayscale for further signal
extraction and heart rate detection in later stages, and the heart rate results were
updated on the screen rapidly in real-time. In addition, a BTChoicTM blood oxy-
gen and dynamic heart rate bracelet was used as a skin attached device for pro-
viding the ground truth to our results. Subsection 2.1 provides details regarding
our hardware environment, subsection 2.2 describes how the data was collected
for our work, subsection 2.3 explains the selection of color space and channel
input, subsection 2.4 gives a quick overview of the highlighted signal processing
techniques used in our implementation, and subsections 2.5 to 2.10 go through
more details on the multiple stages of the entire signal processing process.

2.1 Hardware Setup

The implementation and tests of this project were performed on a PC with an
IntelTM i5-8250U processor under MicrosoftTM Windows 10 operating system
and Python 3.5 environment. The sensors used for image and data collections
were the BTChoicTM skin contact smart wear bracelet, FLIRTM Blackfly S BW
industrial camera with RainbowTM H3.5 mm 1:1.6 fixed lens and 500–555 nm
light green band-pass filter, and a laptop with a built-in AsusTM USB2.0 HD
webcam.

2.2 Data Collection Setup

Data tests were conducted by a group of 20 volunteers aged between 25–40 years
with mixed races, skin tones, genders, and various amount of facial hair. Each
person was asked to wear the BTChoicTM bracelet to obtain the ground truth
heart rate, and was then told to sit still and breathe normally in front of the
camera at about 0.5 meters away. Three camera hardware setups were used
in our rPPG data collections: a FLIRTM industrial grayscale camera with an
optical green filter; a FLIRTM industrial grayscale camera without an optical
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filter; an AsusTM HD built-in webcam by itself. Approximately 30 s of data
reading was then performed on both the camera and the BTChoicTM bracelet
a under controlled light environment in the lab as shown in Fig. 1. The output
display seemed to be more stabilized over time, thus we took a visually averaged
output as our test result approximately 20 s after the program started. The test
subject was then asked to perform a light exercise such as jogging or push-ups
for approximately 20 s, and then immediately sit back in front of the camera to
take another set of readings.

Fig. 1. Data collection setup.

2.3 Selection of Color Space and Channel

Our original plan was to initially implement and pass raw images, a.k.a. data
in all RGB channels through an ICA stage for selecting the best signal, and
then pass the resulting independent components through the follow-up stages.
According to our previous researches, the signals related to the absorption bands
for oxy- and deoxyhemoglobin on the facial skin have the strongest signal-to-
noise ratio in the yellow and green light color spectrum [2], and even though
many other methods have been explored, the green color data in the RGB color
space remains to be the most popularly used channel for extracting HR [17].
Our implementation using FastICA agreed with the research results by showing
that the projection highly weighted towards the green channel, with fewer con-
tributions from red, and almost none from blue. Thus, with this less significant
improvement on accuracy, we decided to reduce the computation expense for
better performance in real-time by replacing ICA and applying only the green
channel as the selected input in our implementation.

The FLIRTM grayscale camera filters out non-green color spectrum using the
equipped optical filter in the analog domain, while the built-in color webcam
produces all color channels, from which the green channel was selected in the
digital domain. Thus, it was necessary to perform a comparative analysis between
these optical and digital filters later in this paper.
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2.4 Applied Key Techniques

To perform feature extraction together with signal processing in real-time, the
overall system needs to be optimized so that the image data collection perfor-
mance will satisfy the demand of correct heart rate determination within the
reasonable frequency spectrum. According to the Nyquist Theory, to correctly
determine a 3 Hz or 180 beats per minute (bpm) heart rate, a video frame rate
of at least 6 frames per seconds (fps) is needed. To increase the accuracy and
efficiency of the detection, we had utilized OpenCV face detection together with
the Dlib facial landmark prediction engine for a fast and accurate facial ROI
image extraction. Next, the facial alignment, value outlier correction, and Gaus-
sian average filter were applied at pre-processing to combat lens distortion and
motion movement artifact. Once a signal data was extracted, it was then fed
through a multi-stage conditioning and shaping process. Finally, temporal filter-
ing, Fast Fourier Transform, and power density selection techniques were used
to accelerate calculation and produce end results from the frequency domain, as
described in Fig. 2.

Fig. 2. Signal processing flow chart diagram for heat rate calculation.

2.5 Feature Extraction

The key feature we aimed to extract in our proposed method was the time-series
data obtained from spatially averaged grayscale values in multiple ROIs that
could represent the slight intensity changes of reluctant light caused by facial
blood volume changes, particularly in the green color spectrum.
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2.6 Face Detection and Facial Landmark Prediction

The OpenCV library is widely accepted for its fast face detection using Haar
Cascade classifier [18]. We have combined this classifier together with a Dlib
pre-trained 68-points facial landmark prediction engine to efficiently detect facial
bounding boxes and to also crop out selected ROI regions from raw video frames.
To speed up the face detection process, the image was downsized to only a quarter
of its original size. Once the position of the face box was determined, a face image
frame was cropped from the original video frame to retain high resolution, and
it was then resized to a 256 by 256 pixels matrix to equalize the size of the input
data. Next, to correct the face pose for the landmarks’ prediction and minimize
the artifacts caused by body movement, a facial alignment process using Imutils
library [19] was followed to straighten up the face if the detected face pose was
tilted or rotated.

2.7 ROI Selection and Data Collection

To find rich blood vessels, uniformly distributed skin tone, and minimal facial
expression movements on the face, three ROIs were selected using rectangular
boxes for achieving better signal to noise ratio (SNR) at the following locations:
two on the cheeks from each side and one on top of the forehead just above the
eyebrows (See Fig. 3). All the selected ROI image data were then cropped and
stored for further processing; the ROI image data collected from the FLIRTM

camera output was directly reformatted into an 8-bit grayscale data array, while
the green channel data from the built-in webcam had to be extracted from the
RGB color space before doing so. The formatted data was also filtered through
an outlier filter, which replaces any high contrast pixel with the mean value of
the array if the standard deviation is 1.5 times higher or lower than the mean
value, and was then smoothed by a Gaussian filter for further noise reduction.

An average value for each ROI data was then continuously calculated and fed
into a corresponding buffer with a total size of 75. Once 75 useful rPPG frames
were collected and calculated, the buffer was filled up and ready for the next
process.

Fig. 3. Face detection, landmarks prediction, and face pose alignment.
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2.8 Data Buffer Shaping and Conditioning

The data buffer was detrended to avoid the interference of light change during
processing, and interpolated by 1 to smooth the change. It was then fed through
a hamming filter to become more periodic for spectral leakage prevention, and
was eventually normalized according to its average value. Next, the normalized
data were amplified by a factor of 10 for boosting small temporal changes accord-
ing to a pre-designed gain from Eulerian Video Magnification [20], and another
Gaussian filter was applied here to further smoothen the data fluctuation.

2.9 FIR Band-Pass Filtering and Power Spectrum Density Selection

The Fast Fourier Transform is utilized to transfer the conditioned data in the
buffer from the time domain into the frequency-power density spectrum. Here a
6th order FIR Butterworth filter with a low cut-off at 0.667 Hz and high cut-off
at 3 Hz is applied to remove any data from outside the corresponding reasonable
spectrum of the human heart rate frequencies, i.e. 40 bpm to 180 bpm. Finally,
within the pass band range, the frequency indexes for the highest power density
are picked to represent the desired heart rate on each ROI.

2.10 Heart Rate Calculation

The heart rate calculated from each ROI can be slightly different due to the
varying SNRs and facial light conditions. The average of the final results was
obtained by using a moving average filter with a window size of 20 values. Accord-
ing to our lab test feedback, among all the three results, the one with the least
standard deviation over time seemed to have the closest value compared to our
ground truth data, and thus, we selected this as the final output on the screen.
In real-time, the screen will usually be updated approximately every 2 to 3 s.

3 Results Evaluation and Discussion

In this section, we have provided intermediate outputs at various stages of the
entire data process, the end results obtained from multiple voluntary subjects,
as well as our limited observation and analysis.

3.1 Intermediate Outputs

Intermediate data outputs were obtained from the FLIRTM grayscale camera
with an optical green filter setup. Figure 4 shows a one-minute raw data averaged
by the ROI region selected on the forehead of the test subject. From the data,
we could see some clear ECG ripples accompanied by large fluctuation and noise
DC trends. Next, Fig. 5 shows conditioned data with 8 clear heartbeat peaks in
a data buffer filled by a 75-frames window. The detected frame rate was about
10 fps during the test, thus approximately 7 s was required to fill the buffer
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window, yielding a heart rate of 68.5 bpm. Furthermore, in Fig. 6, the spectrum
power density chart, calculated using the same data from the buffer window,
indicates a peak of strong signal at close to 70 bpm. Both bpms estimated from
Fig. 5 and Fig. 6 are close to the ground truth result, 67 bpm, obtained from the
contact hand bracket in Fig. 7. In addition, the plot in Fig. 8 gives a continuous
bpm output for a length of roughly 50 s after 10 s of the start of the test. The
relatively flat line shows a stable reading across the entire testing period. In
short, the above figures have shown the capability of our system to produce a
reasonable accuracy within 5% as compared to our skin-contacted ground truth.

3.2 Group Test Observation and Results

Table 1 and Table 2 show the detected heart rate results from both the sitting still
and exercising conditions. Table 3 compares the percentage error with respect to
the hand brace ground truth reading under each condition. Table 4 compares the
overall correlation values with respect to the hand brace ground truth reading
under each camera setup.

3.3 Evaluation: Sit Still vs. After Exercise

The calculated percentage error values with respect to our ground truth data
for the FLIRTM camera with filter, without filter, and Webcam detection under
sitting still conditions were 4.9%, 6.0%, and 4.2%, respectively, whereas the
values were 9.9%, 10.0%, and 12.4% right after light exercise. The percentage
error calculation formula is given by:

Percentage Error = |Camera Reading − Ground Truth Reading

Ground Truth Reading
| × 100%

By purely examining the numbers, it can be observed that the results from
the three setups are fairly close to each other, and the slightly larger deviation
after exercise is possibly due to motion artifacts such as heavy breathing. Inter-
estingly, even the built-in color webcam achieved accurate results regardless of
having a smaller number of effective pixels, and the difference between the opti-
cally filtered grayscale camera and the webcam was negligible at times. This is
contradictory to our original thoughts—we expected a higher accuracy output
from the grayscale camera since it comes with a high resolution and a more sensi-
tive image sensor. In fact, we found the reduced resolution on selected ROIs to be
a contributing factor in stabilizing the output reading because the image output
at the data acquisition stage was already heavily compressed and averaged by
the camera’s internal processor. Since the experiments were conducted under an
indoor artificial light environment and each detection result was marked down
by visual inspection over a period of roughly 30 s, this did not fully represent
the actual performance of the system.
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Fig. 4. A 60-s window: averaged inten-
sity values obtained by one ROI Area
vs. Time.

Fig. 5. An 8-s window: Normalized and
Conditioned Intensity Values vs. Time.

Fig. 6. Frequency spectrum from 50 Hz
to 150 Hz: Amplified Power Density
Values vs. Heart Rate.

Fig. 7. A 72-s window: Estimated
Heart Rate vs. Time.

Fig. 8. Reference data: skin contact hand brace for ground truth heart rate detection.
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Table 1. Sit still test results (all units are in bpm).

Test subjects FLIRTM with filter FLIRTM without filter Webcam Hand brace

Subject #1 66 60 62 64

Subject #2* 84 87 (unstable) 87 (unstable) 90

Subject #3 65 60 70 74

Subject #4*** 71 71 (unstable) 70 79

Subject #5** 66 63 67 (unstable) 68

Subject #6 72 59 (unstable) 71 71

Subject #7 72 68 (unstable) 72 71

Subject #8 72 78 75 74

Subject #9 74 70 70 71

Subject #10* 60 63 62 62

Subject #11 76 69 72 80

Subject #12 70 71 68 71

Subject #13 88 88 87 84

Subject #14 96 95 96 93

Subject #15 72 78 74 75

Subject #16 72 74 76 75

Subject #17 64 64 68 64

Subject #18 60 64 65 70

Subject #19* 81 (unstable) 82 (unstable) 80 (unstable) 74

Subject #20 76 73 80 73

*with sunscreen and makeups **large amount of facial hair ***failed reference reading

Table 2. Light exercise test results (all units are in bpm).

Test subjects FLIRTM with filter FLIRTM without filter Webcam Hand brace

Subject #1 95 90 88 91

Subject #2* 98 90 105 74

Subject #3 96 92 92 96

Subject #4*** 96 90 93 No reading

Subject #5** 100 (unstable) 58 (incorrect) 55 (incorrect) 86

Subject #6 90 78 (unstable) 90 88

Subject #7 83 84 96 95

Subject #8 90 107 102 96

Subject #9 80 85 80 90

Subject #10* 80 (unstable) 75 (incorrect) 76 110

Subject #11 93 88 85 87

Subject #12 100 94 65 (incorrect) 90

Subject #13 94 97 99 95

Subject #14 106 108 85 (incorrect) 100

(continued)
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Table 2. (continued)

Test subjects FLIRTM with filter FLIRTM without filter Webcam Hand brace

Subject #15 108 110 102 95

Subject #16 90 88 85 95

Subject #17 96 95 101 95

Subject #18 91 88 82 83

Subject #19* 93 (unstable) 72 (unstable) 100 (unstable) 82

Subject #20 80 88 88 86

*with sunscreen and makeups **large amount of facial hair ***failed reference reading

Table 3. Percentage error comparison table.

Percentage error with respect to reference

FLIRTM with Filter FLIRTM without filter Webcam

Sit still 4.9% 6.0% 4.2%

After exercise 9.9% 10.0% 12.4%

3.4 Evaluation: Correlation for Each Camera Setup

Figure 9, 10, 11, 12, 13 and 14 show the scatter plots for comparison with linear
regression lines and the correlation values calculated based on the result data
selection and camera setup. The red dots and lines represent the results by the
FLIRTM camera with a filter on, blue represents results by FLIRTM without
a filter, and pink represents results from the webcam. It may be hard to dis-
tinguish which setup would have an advantage in accuracy as compared to the
reference by simply looking at the plot at the first place, however, by a closer
examination, one can see that the correlation values give the information about
which comparison is the best, and this confirms that the webcam performs less
accurately compared to the FLIRTM camera.

The test results from subjects with heavy facial artifacts, makeup, sunscreen,
and failed reference readings are treated as data outliers due to their instability
in this experiment. In Table 4, we calculated the Pearson Correlation coefficient
values in two groups, either using all test results or using results without out-
liers. The Pearson Correlation coefficient lies within the range of +1 to −1, with
a number 0 considered to have no association between the two data sets. The
readings from the FLIRTM camera with optical filter generated the highest cor-
relation value of 0.75, which indicates a strong accuracy as compared to the

Table 4. Calculated correlation values with respect to hand brace ground truth.

Correlation values with respect to reference

FLIRTM with Filter FLIRTM without Filter Webcam

All data 0.7517 0.7286 0.5934

Data outliers excluded 0.8871 0.8870 0.8102
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Fig. 9. Scatter plot - FLIRTM with fil-
ter (All Data).
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Fig. 10. Scatter plot - FLIRTM with
filter (Outliers Removed).
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Fig. 11. Scatter plot - FLIRTM with-
out filter (All Data).
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Fig. 12. Scatter plot - FLIRTM with-
out filter (Outliers Removed).
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Fig. 13. Scatter plot - webcam (All
Data).
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reference reading among all the three setups. The lowest correlation value was
0.59 from the color webcam, which still indicates a good performance but with
relatively large deviations. Interestingly, once we exclude the data obtained from
the outliers, the correlation values increased to a much stronger level: 0.8871 for
FLIRTM with filter, 0.8870 for FLIRTM without filter, and 0.8102 for the web-
cam. This would be an indication that the accuracy of the proposed system can
be heavily reduced due to the presence of the above artifacts and should be
properly dealt with while incorporating it in real-world applications.

In reality, when the optical filter was equipped, we noticed that the actual
heart rate outputs had more stable readings and less fluctuation over time, and
this was reasonable because the camera was receiving signals only from the
green color spectrum where the signal for blood volume intensity change was
strong. The results color webcam and the unfiltered grayscale camera appeared
to be more unstable most of the time, and sometimes even incorrect due to
the heavy noise inside the selected spectrum band. Additionally, it was obvious
that the webcam struggled to produce stable results when we dimmed the light
output in the room. The smaller aperture on the webcam with less effective pixels
contributed much more noise as compared to the industrial FLIRTM camera,
thus making this setup less desirable in a darker environment.

We also noticed that several factors could affect and reduce the accuracy of
the results, and these should be taken into consideration in both laboratory and
real-life environments:

– Makeup and sunscreen: Large fluctuations or even incorrect readings were
observed in the heart rate of people wearing heavy makeup and sunscreen on
their faces, due to the block of the reflective light change on blood oxygen
saturation that was received by the camera.

– Facial hair: The heart rate of people with large amounts of facial hair can
sometimes be hard to detect.

– Length of the face: People belonging to different races may have distinct
facial length variations, and this may contribute to size variation of the ROIs
selected by the Dlib facial landmarks engine.

– Head movements: Heads with regular horizontal movements introduced
more fluctuation as compared to that of vertical movements. People who sat
still had the most stable readings.

– Sitting distance: Even though the subjects were asked to sit at a distance of
approximately 50 cm from the camera, this distance could vary slightly upon
the actual execution during the tests.

– Physical heart condition: People with stronger heart conditions could have
more blood volume pumped into their facial blood vessels, thus creating a
higher signal to noise ratio, resulting in more stable detection.

– Exercise intensity: Exercises conducted by subjects depended on their per-
sonal preferences and the load to each of their hearts can also be different.

– Speed of rest recovering: Some people are able to calm down quickly after
exercise, while others may take more time for it. Usually, heart rate readings
gradually decrease after exercise, but the time to take a measurement could
vary from person to person.
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As future work, we will explore how to overcome the limitation of why the
lightness of skin tone affects the accuracy of the system.

4 Conclusion

Multimedia in medicine has gone a long way in providing efficient clinical assis-
tance. While a single image can provide rich information for a physical exam [21],
a series of video sequences has proven to be much more useful for an in-depth
clinical analysis [22]. In this paper, we have proposed a real-time rPPG system
that is capable of detecting the vital signals of the heart rate by using either
an optically filtered grayscale camera or a digitally filtered color camera sequen-
tially from a distance. Then, we compared the experimental results on several
subjects under a pre-setup indoor environment with the help of data collected by
a skin-contact reference device. The obtained results show that while the built-in
color camera can be great for handy heart rate detection given enough luminance
on a sit still subject, the pre-optically filtered grayscale camera is more robust
to facial and motion artifacts and can outperform a regular camera under less
ideally lighted condition. In addition, we have also identified several factors that
may reduce the accuracy of our proposed rPPG system, such as makeup and sun-
screen, which heavily block light reflection from the face. Therefore, our future
work will be focused on improving the accuracy of this study, dealing with more
difficult reading scenarios such as sunscreen and heavy makeup, as well as com-
bining other approaches possibly in machine learning fields for achieving better
results.
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