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Abstract. The point-cloud alignment methods help robots to map their environ-
ment, recognize target objects and estimate rigid-body object poses from the 3D
vision sensor data. In this paper, we propose a robust and computationally efficient
approach for point-cloud alignment. Unlike the feature descriptor-based pose clas-
sifiers or regressionmethods, the proposedmethod can process an unordered point
cloud by mapping it uniquely onto a particular 2D space determined based on the
point cloud from the object. The model training is fully unsupervised and relies
on optimizing the projection results based on a loss function. Specifically, the
proposed 2Dmapping enables the model to recognize objects with a simple linear
classifier to increase computational efficiency. Then, the proposed method calcu-
lates the object pose in the continuous space rather than classifying the point cloud
into discrete pose labels. The experiments and comparison with a well-established
descriptor-based point-cloud alignment method show that the proposed method
has a good performance and is robust to missing points of the point cloud. The
higher performance in recognition and pose estimation precisionmake themethod
suitable for industrial robotic and automation applications.

Keywords: Unsupervised learning · Point cloud alignment · Object
recognition · Object pose estimation

1 Introduction

Aligning point clouds collected by 3D sensors such as scanning LiDARs and RGB-D
cameras to the standard models has potential for frontier robot applications such as
object grasping, 3D scene registration, and robot navigation. To successfully align point
clouds, the algorithm needs to i) recognize the object frommultiple potential candidates,
and ii) estimate the rigid body pose from the input point cloud. However, point-cloud
alignment is still an open research topic since with a large number of candidate objects
there will be a large number of similar and confusing features so that the algorithm needs
to be robust to noise and missing points.

In this paper, we focus on the point cloud alignment topic. Typically, the shapes of
all candidates are known. Hence, it is reasonable to assume that the CAD models or 3D
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scans of the target objects are given. Our goal is then to recognize the object category
and estimate the object pose based on a point cloud, simultaneously.

The intuitive methods to align point cloud builds on the shape descriptors which
encode local geometry into a feature vector. Then, the corresponding points are paired
based on the feature vector similarity, and the relative 6 degree-of-freedom pose is solved
with respect to the rigid body translation determined by point pair matching. One of the
problems is that point pairing process requires high-dimension searching, and the search
time grows fast with the increasing number of candidate object features. Thus, the point
pairing-based method is not well-suited for big data applications. Another problem is
that the descriptor- and matching-based point cloud alignment methods highly depend
on the quality of the point cloud and repeatable local features. Thus, poor quality point
clouds can compromise the performance and leads to incorrect object recognition results.
Also, local similarities between different objects can cause difficulties for point-cloud
alignment.

Inspired by human recognition i.e., manipulating an object until the most obvious
perspective is achieved, this paper introducesDeepPointCloudMappingNetwork (DPC-
MN) that is designed as an end-to-end solution to obtain an optimal unique representation
for the object point cloud regardless of its pose. Then, the points can be automatically
paired based on their unique representation shown in Fig. 1. The DPC-MN point-cloud
alignment offer two advantages i) the intra-class differences caused by various poses
are omitted so recognition of the object category can be more robust, and ii) pairing is
accelerated since the high-dimension searching process is removed.

Fig. 1. The DPC-MN model pairs points of the point clouds of an object taken from different
poses. P1 and P2 are the point clouds, M is a unique representation of the object, and p is a point
in the point cloud.

One of the novelties of the DPC-MNmodel is that the point-cloud alignment is end-
to-end processed by the deep learning technique and fundamentally different from the
feature descriptor cascade. Aligning point clouds via the deep learning-based method
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is also more robust than the descriptor cascade since the feature extraction ability is
learned from data instead of using a prior knowledge.

Another novelty is that the DPC-MNmodel can be trained unsupervised, i.e. the pose
labels are not required for pose estimation. Almost similar to reinforcement learning,
the proposed method learns a proper action i.e., mapping the point cloud into a unique
2D view. Then, the degree of self-occlusion of the mapping is used as the optimization
objective that enables the convergence of the model training. In the end, the perfor-
mance of the proposed method is also boosted by the use of machine learning and GPU
accelerating technique.

The contribution of this paper can be summarized as,

1). The DPC-MN model is proposed. In this way, the point-cloud alignment is end-to-
end processed by the deep learning technique and fundamentally different from the
feature descriptor cascade.

2). TheDPC-MNmodel canbe trainedunsupervised, i.e. the pose labels are not required
for pose estimation.

The rest of the paper is organized as follows. Section 2 reviews the previous work
related to pose estimation based on the 3D data. Section 3 shows the analysis of the deep
point cloud mapping network model. In Sect. 4, the proposed model is verified using a
3D shape dataset available online. Section 5 summarizes the concluding remarks of this
work.

2 Literature Review

2.1 Descriptor-Based Recognition and Pose Estimation

Descriptors provide a means to quantify the local and global information of the point
cloud. Rusu et al. [1] proposed the VFH global shape descriptor which is based on
the histogram of the object normals and invariant to object rotation. Aldoma et al. [2]
introduced the CVFH feature descriptor which solved the mass center shifting problem
by pre-clustering the object point cloud. Most global feature descriptors such as VFH
and CVFH are invariant to the object rotation. The rotation invariant property improves
recognition accuracy but also blurs the features compromising the object pose estima-
tion. The CVFH is extended to pose estimation by adopting an additional camera roll
histogram [2].

In contrast to the global feature descriptors, local feature descriptors emphasize the
local geometry of the object surface. Li et al. [3] used a cascade of 3D key point detection,
key point description, and key point matching. Their method can align CAD models in
the dataset with the point cloud. The cascade is known as the standard framework for
pose estimation with local features [4, 5].

One of the most powerful local feature descriptors for pose estimation is the point
pair feature (ppf) [6]. Drost et al. [5] proposed the ppf constructed by repeatedly sampling
two points from the point cloud and calculating four elements of the feature vector. Each
pair of a ppf can estimate a rigid body transformation from the source and the target point
cloud, and a voting strategy can be used to find themost likely pose among the calculated
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poses. Choi et al. [7, 8] extended the idea of ppf to the point-point pair, the point-surface
pair, the surface-surface pair, and the color point pair to improve the results. In addition
to designing a better feature, Hinterstoisser et al. [9] improved the voting scheme of
pose estimation by introducing smart sampling. The ppf methods are dominant among
the local feature-based pose estimation methods. However, the computational load of
sampling and voting procedures grows fast as the number of object points increases.

2.2 Processing the Raw Point Cloud with Deep Learning

The proposedmethod offers two key features: i) the model uses raw point clouds, instead
of latticing the shape, and ii) it can be trained via unsupervised learning. Neural networks
capable of processing raw point clouds have recently drawn a lot of attention. Our
previous work [10] proposed a point convolution network which recognizes objects
from point cloud via the defined point convolution operation. Qi et al. [11] proposed the
PointNetwhich yields high performance on both the object recognition and segmentation
domains.Wang et al. [12] proposed the O-CNNmodel that leverages on the Oct-tree data
structure of the point cloud. Klokov et al. [13] came up with the kd-tree based raw-point
network.

However, all of these works [10–13] are based on supervised learning which requires
a large labeled dataset and aims to generalize the object recognition to unseen objects
within known categories. The proposed method in this paper is based on unsupervised
learning which doesn’t require labeled dataset to train the model. Furthermore, the
proposed method focuses on object pose estimation using neural networks which have
received far less coverage in the published literature. Descriptors provide a means to
quantify the local and global information of the point cloud. Rusu et al. [1] proposed
the VFH global shape descriptor which is based on the histogram of the object normals
and invariant to object rotation. In contrast to the global feature descriptors, local feature
descriptors emphasize the local geometry of the object surface. Li et al. [3] used a cascade
of 3D key point detection, key point description, and key point matching. Their method
can align CAD models in the dataset with the point cloud. The cascade is known as the
standard framework for pose estimation with local features [4, 5].

One of the most powerful local feature descriptors for pose estimation is the point
pair feature (ppf) [6]. Drost et al. [5] proposed the ppf constructed by repeatedly sampling
two points from the point cloud and calculating four elements of the feature vector. Each
pair of a ppf can estimate a rigid body transformation from the source and the target point
cloud, and a voting strategy can be used to find themost likely pose among the calculated
poses. Choi et al. [7, 8] extended the idea of ppf to the point-point pair, the point-surface
pair, the surface-surface pair, and the color point pair to improve the results.

2.3 Point Cloud Recognition Using Deep Learning

The proposedmethod offers two key features: i) the model uses raw point clouds, instead
of latticing the shape, and ii) it can be trained via unsupervised learning. Neural networks
capable of processing raw point clouds have recently drawn a lot of attention. Our
previous work [10] proposed a point convolution network which recognizes objects
from point cloud via the defined point convolution operation. Qi et al. [11] proposed the
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PointNetwhich yields high performance on both the object recognition and segmentation
domains.Wang et al. [12] proposed the O-CNNmodel that leverages on the Oct-tree data
structure of the point cloud. Klokov et al. [13] came up with the kd-tree based raw-point
network. However, all of these works [10–13] are based on supervised learning which
requires a large labeled dataset and aims to generalize the object recognition to unseen
objects within known categories.

3 Method

3.1 Deep Point Cloud Mapping Network Architecture (DPC-MN)

The mapping function g is formulated by the neural network. Given a point cloud P, the
mapping function will be invariant to the permutation of P. Inspired by the ideas of NiN
[18] and PointNet [11], we adopted a 1 × 1 convolution kernel to process and extract
the features of the point cloud. However, the extracted features are used to generate the
mapping matrix instead of classifying the object. The architecture of the DPC-MN is
shown in Fig. 2. The network aims to learn an appropriate projection matrix based on
the features of the whole point cloud. The average pooling is used to generate the global
feature of the point cloud because it is a symmetric operation and invariant to the set
order of the point cloud.

Fig. 2. The architecture of DPC-MN. The 1 × 1 convolution is noted by conv. (m, n) means the
input feature dimension is m and the output feature dimension is n. The linear means the output
feature is calculated by a fully connected layer. All layers are activated by the ReLU non-linear
function. The Reshape block reshapes the 512-dimension feature into the 256 × 2 matrix and the
mark × means to multiply the 256 dimensions “point cloud” with the 256 × 2 matrix. All of the
layers are activated by the ReLU non-linear function.

3.2 Loss Function

The goal of the loss function is to map point cloud in different poses into the same 2D
representation. In this way, the recognition of point cloud is simplified since the variation
caused by the poses is removed. Three principles are designed to obtain the idealized



End to End Robust Point-Cloud Alignment 163

properties of themapping function: 1) neighborhood points in the point cloud aremapped
into a tight area in 2D space, 2) the overlap of mapped shape must be minimum. 3) point
clouds in different poses are mapped into the same 2D representation.

The anchor point cloud Pa is the original data collected from the 3D sensor or
rendered from the CAD model. Based on the first principle, the positive point cloud Pp
is generated by shifting each point in the anchor point cloud Pa within a small random
δ. The negative point cloud Pn is generated by shuffling the anchor point cloud Pa so
the operation is equivalent to randomly select 2 points for numbers of times. Based on
the first and second principles, the function Lm is shown in (1).

Lm = 1

N

∑
max

([
ε + ∥∥Ma − Mp

∥∥
2 − ‖Ma − Mn‖2

]
,0

)
(1)

where ε is a margin value, and Ma, Mp, Mn are the output generated by applying the
proposed DPC-MN to Pa, Pp, and Pn, respectively.

Based on the third principle, the Lp is defined as,

Lp = 1

N

∑
‖Ma − Mi‖2 (2)

The loss function f is,

f = Lm(Ma,Mp,Mn) + λ · Lp(Ma,Mi) (3)

where λ is a hyperparameter that adjusts the weight of Lm and Lp.

3.3 Object Recognition and Pose Estimation

First, the model output M is regularized into a 64 × 64 2D grid based on the (u, v)
values in M. The (u, v) value is rounded into closest integer number and taken as 2D
coordinates of the bin in the grid. Then, the value of the bin will accumulate one unit
for every (u, v) assigning to the bin. Based on the steps, the M can be converted into a
2D grid-based representation. The recognition runs on the 2D grid representation with
a linear classifier. The classifier is defined by,

yi = e

j= k∑
j= 1

wijxj

∑
i
e

j= k∑
j= 1

wijxj

(4)

where j is the index for the pixel in the 2D grid, i indicates the category, x is the 2D
grid representation, and wij is trainable parameters for the recognition. yi is the output
score for the category i. The linear classifier can be easily trained because of the simple
one-layer linear structure.

The pose of the object is calculated by finding the corresponding points in two point
clouds. Because the point cloud is an N × 3 matrix, we use left matrix multiplication
instead of the standard form. The optimized solution of R is given in (11). The Single
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Value Decomposition (SVD) method is used to ensure that R is an orthogonal matrix.
The solution is based on the least squares method.

R̂ = argmin(
∥∥∥Ŝpi − Spi

∥∥∥
2
) = (STpj · Spj)−1 · STpj · Spi (5)

R̃ = U · VT ,where(U , S,VT ) = svd(R̂) (6)

4 Experiment Results

A. Experiment Configuration

The whole model ran on a workstation with an Nvidia GTX1070 GPU, E5 CPU, and
27 GBmemory. The training and testing CADmodels were taken from the ModelNet40
dataset [19]. Firstly, the point cloud is augmented by rotating about x, y, and z axes. The
rotation angle is uniformly generated from 0 to π/2. For training of the network, the
angle is incremented by π/24. For testing of the network, the angle is incremented by
π/10. Thus, the training and testing datasets have no intersections.

The model is optimized by the SGDM solver. The learning rate is 0.001 and the
momentum is 0.90. The training batch size is 16 and the maximum training epoch is 300
based on our configuration. The loss weight λ is 0.3. The training time for each epoch
was about 380 s, and the model took around 40 epochs to converge.

The input models and the mapped result M for each input model are visualized in
Fig. 3(a) and Fig. 3(b), respectively. The view is randomly selected from the test set
because the mapped views for objects in different poses are completely identical.

(a). The input models 

(b). The mapped results 

Fig. 3. The input models and mapped results
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4.1 Recognizing Objects from Different Poses

The classifier is trained on the workstation with a GPU accelerator. Because all of the
poses are mapped into a unique view, the model took only 2 epochs to converge and the
linear classifier took 0.1 s to finish one epoch. Thus, the training time for classification
was negligible.

The point cloud sparsity is a common problem for 3D sensors. The point cloud
sparsitymay be caused by the low resolution of the sensor or the inappropriatemeasuring
distance. The recognition experiment is designed to simulate the sparsity of 3D sensors
and verifies the robustness of the recognition algorithm. To simulate the sparsity, 10%
to 90% points were randomly selected from the original complete point cloud. Figure 4
shows the downsampling point cloud for a single pose, but downsampling has been
applied to the entire test dataset.

Fig. 4. Point cloud downsampling with different sampling rates

We used the linear classifier that trained on the complete point cloud to process
the incomplete data. The classifier is not trained with augmented incomplete data. The
proposed method is compared with the Point Pair Feature (PPF)-based point cloud
alignment method in Fig. 5. The result shows that the proposed method is remarkably
robust tomissing points. Evenwith only 10%of the points, themethod can still recognize
objects from different poses with acceptable accuracy (more than 80%).

4.2 Estimating Object Poses

The object pose is calculated based on the cascades described in Sect. 3E. For each
testing instance, the mapped result M is saved with the input point cloud P as a pair. The
input point cloud P for each instance is shuffled to simulate the unordered data collected
by 3D sensors.
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Fig. 5. The recognition accuracy under different downsampling rates

For each test object, the pose is calculated based on the 2D views of the standard
pose and the test object. The standard pose refers to the reference (zero) angles, and then
the test object can rotate about any arbitrary axes and at any angles. The rotation matrix
R which can transform the test object to the standard pose is calculated based on (12).

The accuracy of 3D object poses is quantified by the error of the point cloud align-
ment. The test object rotates to the standard pose with the calculated rotation matrix
R. Then, the nearest neighborhood searching tree is built to match the nearest points
between the test object and the standard pose point cloud as the ICP algorithm does.
The mean distance is taken as the quantified error of pose estimation. Figure 6 shows
the errors of pose estimation in different poses. For each test object, 125 poses are tested
as described in Sect. 3. The average error is around 0.1 unit of the object scale which is
only 10% compared to the object scale. Alignment error is 1.0 unit means that the object
is not successfully recognized. The proposed method is compared with the Point Pair
Feature (PPF)-based point cloud alignment method in Fig. 6. The result shows that the
proposed method has a better pose estimation precision and is more robust compared
to the PPF-based method. Fine tuning algorithms such as ICP can reduce the error with
further processing.

A real-world object alignment experiment is conducted to validate that the proposed
method can be used in the sensor scanning data. A drill is scanned using a Kinect sensor.
The drill model is 3D reconstructed and represented by the point cloud. Then 4 different
rigid body poses of the drill is used to validate the method and the drill is scanned by
the kinect sensor. The proposed method can automatically align the reconstructed 3D
model to the real-world scanning data, shown in Fig. 7.
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Fig. 6. The error under different poses and categories. The proposed method is compared with
the Point Pair Feature (PPF)-based point cloud alignment method in Fig. 6. The result shows that
the proposed method has a better pose estimation precision and recognition accuracy. Fine tuning
algorithms such as ICP can reduce the error with further processing.

Fig. 7. The real-world experiment on point cloud alignment.

5 Conclusion

In this paper, we proposed a novel idea and an effective method for aligning point clouds
and help robot to simultaneously recognize objects and estimate the pose of rigid-body
objects. An object in different poses can be mapped into a unique 2D view from its 3D
point cloud representation. Based on this idea, the 2D view can dramatically facilitate
object recognition and pose estimation performance in terms of efficiency and accuracy.
Deep Point Cloud Alignment Network (DPCAN) method is proposed to implement the
unique 2D view mapping function. The network can be trained unsupervised by both
CAD models and real point clouds of target without the need to labeling the training
datasets. The proposed network is verified to be robust against missing points of the test
data. Experiments showed that themodel has acceptable accuracy and robustly recognize
more than 80% of the objects even when only 10% of the points of the point clouds were
used. Based on the proposed method, the pose can be calculated continuously instead
of estimating the pose at discrete pose labels. The accuracy of the pose estimation is
about 10% of the object scale which means the proposed DPCAN is sufficient for many
industrial robotic and automation applications
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