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5.1  Introduction

The early assessment of fetal well-being is the major objective of fetal monitoring 
during pregnancy and labor. The latter is specifically useful for identifying fetuses 
at risk of hypoxia (oxygen deficiency) during labor. In this context, fetal electrocar-
diography is one of the emerging technologies, which dates back to 1906 [27] but 
has gained much more attention during the past two decades. The technology has 
significantly evolved throughout the past 50 years, from naive visual inspection to 
multichannel automatic methods of noninvasive fetal electrocardiogram (fECG) 
extraction, using advanced signal processing methods [41, 77]. The method has 
become more popular in recent years due to its relatively low cost and advances in 
the required signal acquisition and signal processing techniques. In this context, 
both invasive methods used after amniotic sac rupture during labor and noninvasive 
methods using maternal abdominal leads throughout pregnancy (especially during 
the third trimester) have been used. Although invasive fECG recording using fetal 
scalp leads has a higher signal-to-noise ratio (SNR) and requires less processing as 
compared with noninvasive signals captured from the maternal abdomen, due to the 
potential risks of invasive methods for both the mother and the fetus(es), it is not so 
popular. On the other hand, despite its advantages, noninvasive fECG extraction is 
hampered by many practical challenges including (1) the significantly lower SNR of 
the fECG as compared with the maternal ECG (mECG), which superposes over the 
abdominal leads; (2) device and measurement issues related to noninvasive fECG 
acquisition using single or multiple maternal abdominal sensors; (3) the indirect 
access to the fetal heart through multiple maternal body layers, which act as a vol-
ume conductor; (4) artifacts and variations in fECG shape due to fetal movements; 
(5) baseline wanders of the data due to maternal respiration; and (6) measurement 
and environmental noises such as maternal muscle and uterine contractions, power- 
line noise, and artifacts due to other bedside monitors and devices such as the infu-
sion pumps. Most of these noises overlap with the fECG in time, frequency, and 
space (leads), making fECG extraction a nontrivial challenge, which requires 
advanced signal processing.

To date, various methods have been developed for fECG extraction with various 
degrees of success, including adaptive filtering [7, 32, 56, 59, 67, 69, 89, 97, 104], 
Kalman filtering [65, 82, 84], singular value decomposition [45], blind and semi- 
blind source separation using independent and periodic component analyses [28, 
74, 83, 108], and wavelet transforms [47, 55, 101]. Some of these techniques, such 
as Kalman filters, singular value decomposition, wavelets, and adaptive filters (used 
in line-enhancement mode) have been applied to both single and multichannel 
abdominal ECG recordings. In contrast, other techniques such as independent com-
ponent analysis or adaptive noise cancellation using an external reference require 
two or more channels of measurements. Multichannel techniques based on blind 
and semi-blind source separation have proved to be very effective to overcome the 
aforementioned challenges. Nevertheless, various aspects of noninvasive fECG 
extraction are still open problems and require further studies—for example, issues 
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related to long-time online fECG monitoring (required for fetal Holter monitoring), 
problems due to fetal movements during signal acquisition, variations in fECG mor-
phology (again due to fetal motion and fetal positioning with respect to the body 
surface leads), and fECG extraction in low SNR using few numbers of channels. 
There are also several post-fECG extraction issues including fetal R-peak detection, 
heart rate (HR) calculation, fECG morphology extraction, and clinical parameter 
extraction (QT interval, ST-level calculation, etc.) from noisy fECG signals. From 
the clinical and industrial perspective, the size and cost of the device, the technol-
ogy, and the number of maternal abdominal leads (preferably only a few leads 
placed close together in a patch of electrodes) are also of great importance.

In this chapter, the major signal processing techniques, which have been devel-
oped for the modeling, extraction, and analysis of the fECG from noninvasive 
maternal abdominal recordings over the past 50 years, are reviewed and compared 
with one another in detail.

5.2  Noninvasive Fetal Electrocardiography Data Model

5.2.1  Volume Conductor Model

The physics of the problem of noninvasive fECG measurement from the maternal 
abdomen follows the general principles of volume conduction theory [43]. The 
properties of the propagation media from the fetal heart to the maternal abdomen 
have been explored in previous studies [66, 74]. The major aspects of the problem, 
which influence the fECG data model and extraction techniques, can be summa-
rized as follows [41]:

 1. Negligible electric displacement current: The electromagnetics of the problem is 
quasi-static. Therefore, the electric and magnetic fields are decoupled, the elec-
tric field is proportional to the gradient of the electric scalar potential, and the 
divergence of the current density is zero.

 2. Linear propagation media: Superposition holds for the electrical potentials due 
to the maternal heart, fetal heart, and other sources of biopotentials.

 3. Negligible capacitive component of the body tissues’ electrical impedance: Due 
to the relatively low frequency range of interest (below 10 kHz), the tissues are 
to a very good approximation resistive and the capacitance is negligible.

 4. Spatial distribution of the heart: The source signals are non-punctual, and differ-
ent lead configurations provide different views of the heart, conveying differ-
ent— although rather redundant and correlated— information. Therefore, the 
cardiac source may only be approximated by a current dipole in the far-field.

 5. Non-homogeneous volume conductor: Low-conductivity layers, such as the ver-
nix caseosa, which form throughout pregnancy (mainly between weeks 28 and 
32 of gestation [77]), can change the preferred electrical propagation pathways, 
resulting in morphological variations on the maternal body surface [66, 94].
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 6. Morphological variability: During a signal recording session, although the fECG 
morphology is consistent with respect to the fetal body (as in adult ECG)—due 
to fetal motions such as rotations, movements of extremities, and hiccups—the 
extracted fECG morphology can change with respect to the maternal body coor-
dinate system and the maternal body surface sensors. Moreover, minor fetal and 
maternal movements, such as maternal respiration, somehow modulate the fetal 
cardiac signals acquired from the maternal abdomen.

These properties imply that temporal parameters such as the R-peak locations, heart 
rate, and PT and QT intervals can be very accurate, but parameters, such as the 
R-wave amplitudes and T-to-R ratios, which rely on amplitudes and ratios of ampli-
tudes are totally unreliable since they can easily change with fetal positioning, ges-
tation age, or a change of lead configurations. Nevertheless, relative variations of 
amplitude-based parameters can still be accurate between successive fetal heart 
beats and during real-time monitoring. For example, phenomena such as T-wave 
alternans (TWA) which require the comparison of the T-wave amplitudes between 
successive beats are still reliable (up to the signal quality).

Note that items 1–4 listed above are also applicable to adult ECG and the mECG 
that superposes over the abdominal leads. Based on these properties, the problem of 
noninvasive fECG acquisition from an array of maternal abdominal sensors can be 
mathematically formulated as follows:

 
x H s H s H v nt t t t tm m f f v( ) = ( ) + ( ) + ( ) + ( )  

(5.1)

where x(t) ∈ Rn is the n channel of maternal body surface measurements acquired 
differentially with respect to one or more reference channels, sm(t) ∈  Rm is the 
mECG source component, sf(t) ∈ Rl is the fECG source component, v(t) ∈ Rk rep-
resents the structured (correlated or low-rank) noise corresponding to other biopo-
tential sources (such as maternal muscle contractions) or device noise, and n(t) ∈ Rn 
is the unstructured (full-rank) measurement noise, which corresponds to sensor- 
wise noise that is uncorrelated from the other signals and structured noises. In the 
data model (5.1), Hm ∈ Rn × m, Hf ∈ Rn × l, and Hv ∈ Rn × k are the lead-field matrices, 
which map the source components to the body surface electrode recordings. The 
model may be further extended to consider minor maternal body motions (e.g., due 
to respiration) and fetal movements by considering Hm, Hv, and Hf to be the func-
tions of time. Also in multiple pregnancies, similar terms can be added to (5.1) for 
the other fetuses [81].

The spatial distribution of the cardiac source implies that in (5.1), m and l theo-
retically tend to be infinity. However, as we get farther from the cardiac sources, 
far-field approximations are applicable and the cardiac sources behave more like 
dipoles [58]. Therefore, in practice, each of the cardiac sources can be approxi-
mated up to finite effective number of dimensions [88]. In [80], it was quantitatively 
shown that for adult ECG, taking m between 5 and 6, and for fetal ECG, assuming 
l between 1 and 3, are sufficient to retrieve the major energy fraction of the maternal 
and fetal ECG components (from the maternal abdominal lead recordings). 
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Apparently, the effective number of dimensions also depends on the sensor position 
with respect to the maternal and fetal hearts. For example, if the maternal abdominal 
leads are placed rather distanced from the maternal chest, or if the fetal position is 
such that the shortest conductive path between the differential sensor pairs does not 
pass through the fetal heart (i.e., the fetal cardiac electrical fields do not result in 
significant potential differences between the recording differential pair leads), the 
effective number of dimensions reduces. In this case, the fECG is not retrievable 
from the abdominal leads, even by using the most advanced signal processing tech-
niques. It is later shown that the effective number of dimensions and the number of 
maternal body sensors are specifically important for multichannel fECG extraction 
algorithms. Some general guidelines for selecting the sensor locations for better 
fECG retrieval are presented in Sect. 5.3.3.

5.2.2  Morphological Model

5.2.2.1  Template-Based Models

Mathematical modeling of the ECG waveform has vast applications in ECG device 
test instruments and for educational purposes. To date, the beat-wise ECG morphol-
ogy has been modeled by various mathematical functions including Bessel func-
tions [93], Hermite polynomials [48], and Gaussian functions [39, 61]. The latter 
has an intrinsic dynamic mechanism for generating continuous ECG waveforms, 
which will be later discussed in details. Other wave-based models can generate a 
continuous ECG by replicating a fixed waveform that resembles the beat-wise ECG 
morphology. Accordingly, a single-channel ECG can be modeled as follows:

 
ecg t h t T T nT

n
n n n n( ) = å -( ) = +; ,g h

 
(5.2)

where Tn denotes the R-peak locations, T is the average RR-interval, ηn is the 
RR-interval deviation, h(t; ⋅) is the ECG morphology, and γn denotes the beat-wise 
variations of the ECG morphology considered as a model parameter. It is shown in 
the sequel that this simple pseudo-periodic model can be used for removing mECG 
interferences from the fECG. The limitation of this model is that the natural beat- 
wise variations of the heart rate, which result in the shortening or prolongation of 
certain segments of the ECG, are not explicitly considered in this model. In fact, a 
more accurate model should permit the compression and expansion of the ECG 
morphology, as the heart rate evolves over time. Based on this requirement, the 
notion of cardiac phase has been introduced for modeling and development of ECG 
filtering and later used for mECG cancellation and fECG extraction from multi-
channel abdominal recordings.
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5.2.2.2  The Notion of Cardiac Phase

The cardiac cycle, or the period from one sinoatrial (SA) node activation to the next, 
consists of a period of relaxation (diastole), during which the heart is filled with 
blood, followed by a period of contraction (systole), as shown in Fig. 5.1. For a 
normal heart, the contraction and relaxation phases are subject to continuous 
change, controlled by the autonomic nervous system, and these changes do not nec-
essarily take place “linearly” along the beats. In other words, when the heart rate 
changes, the different segments of the ECG are not scaled to the same extent. 
Specifically, it is believed that when the heart rate increases, e.g., due to physical 
activity, tachycardia, and bradycardia, the duration of the action potentials and the 
period of the systolic phase also decrease, but not as much as the variations of the 
diastolic phase of the ECG [36]. Alternation in the cardiac cycle duration depends 
on various physiological factors, which can be modeled using the notion of cardiac 
phase. As proposed in [83], the cardiac phase θ(t) ∈ [−π, π] (or alternatively [0, 2π]) 
can be used as a variable for the mathematical representation of the pseudo-periodic 
behavior of the heart over different beats. As illustrated in Figs. 5.2 and 5.3, each 
electrophysiological state of the heart over a full cardiac cycle can be mapped to a 
unique value between [−π, π]. In other words, the linear phase θ(t) provides a means 
of phase-wrapping the RR-interval onto the [−π, π] interval. Therefore, the ECG— 
regardless of its RR-interval deviations— is converted to a polar representation, in 
which the ECG components in different beats, such as the P, Q, R, S, and T-waves, 
are more or less phase-aligned with each other, especially over the QRS segment 
(Fig.  5.4). As a result, identical contraction or relaxation states of the heart are 
mapped to identical values of θ(t). For example, by convention, the peak of the sys-
tole (the R-peak) can be fixed to θ(t) = 0. This convention maps the ventricular 
diastolic state of the heart to negative phases and the ventricular systolic state to 
positive phases. In this case, the phase-wrapping from −π to π takes place just after 

Fig. 5.1 The cardiac states across successive beats versus the ECG
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the T-wave offset, and at the beginning of the relaxation period of the heart, where 
the ECG level is at its isoelectric point or baseline (cf. Figs. 5.1 and 5.2).

From the cardiac phase signal, some other quantities can be calculated, which 
have been extensively used in the literature, for modeling and denoising adult and 
fetal ECG signals:

• Cardiac angular frequency and instantaneous heart rate: The cardiac angular 
velocity ω(t) in rad/s and the instantaneous heart rate in Hz are defined as 
follows:

 
w p

q
t f t

d t

dt
( ) = ( ) = ( )

2
 

(5.3)

• Therefore, the conventional RR-interval can be considered as the average of the 
reciprocal of f(t), over one beat. Note that both f(t) and ω(t) are rather abstract 
quantities for conventional ECG analysis, in the sense that only the RR-interval 
is known as a clinical index (the duration between the onsets of successive 

Fig. 5.2 The cardiac cycle 
phase-wrapped on the unit 
circle using the phase 
signal. The heart sounds S1 
and S2 are also 
demonstrated for reference 
to the mechanical activity 
of the heart

Fig. 5.3 The cardiac phase using a linear phase. (Adapted from [83])
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 ventricular systoles). Nevertheless— again in an abstract sense—f(t) and ω(t) 
can be considered as the speed of cardiac dipole rotation in the myocardium.

• Time-varying cardiac period: In each ECG cycle, the sample at the time instant 
t has a dual sample in other beats, which have the same phase value. We define 
the distance between sample t and its dual sample in the previous beat as the 
time-varying period, which is denoted by τt and mathematically defined as 
follows:

 
t q t q

tt t t= -( ) = ( ){ }
>

argmin
0  

(5.4)

5.2.2.3  Dipolar Models

According to dipolar models of the heart [57, 58], the signals acquired from differ-
ent body surface leads are projections of the cardiac dipole vector onto the record-
ing electrode axes. Due to the properties of the fetal and maternal body volume 
conductors, detailed in Sect. 5.2.1, the signals acquired by all body surface leads are 
quasi-periodically time synchronous with the cardiac phase. These properties have 
been used in the literature to develop synthetic models for generating maternal and 
fetal cardiac waveforms. The first modeling framework, explicitly focused on the 
fECG, was developed in [66]. This study was based on maternal body surface poten-
tials modeling using finite elements methods and assuming a dipolar model for the 
fetal heart. Another popular model is based on the single-channel ECG model pro-
posed by McSharry and Clifford [18, 19, 61, 79], which was later extended to the 
fECG in [81]. Accordingly, the following dynamic model has been proposed for 
simulating the three dipole coordinates of the vectorcardiogram (VCG), which is 
denoted by s(t) = [x(t), y(t), z(t)]T:.
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where Dq q q pi
x

i
x= -( ) ( )mod 2 , Dq q q pi

y
i
y= -( ) ( )mod 2 , 

Dq q q pi
z

i
z= -( ) ( )mod 2 ,  ω = 2πf are the cardiac angular velocities and f is the 

instantaneous heart rate, as defined in (5.3). Mathematically, the first equation in 
(5.5) generates a circular trajectory, which rotates with the frequency of the heart 
rate. In other words, each cycle of θ sweeping from 0 to 2π corresponds to one car-
diac cycle, and the other equations model the dynamics of the three coordinates of 
the source vector s(t) as a summation of Gaussian functions with amplitudes ai

x , 
ai

y , and ai
z , widths bi

x , bi
y , and bi

z , each located at rotational angles qi
x , qi

y , and 
qi

z . The intuition behind this set of equations is that the baseline of each of the 
dipole coordinates is pushed up and down, as the trajectory approaches the centers 
of the Gaussians, resulting in a moving vector in the (x, y, z) coordinate space. In 
practice, by adding some deviations to the parameters of (5.5), for example by con-
sidering them as random variables rather than deterministic constants, more realistic 
ECG with inter-beat variations can be generated.

The above model of the rotating dipole vector is rather general, since due to the 
universal approximation property of Gaussian mixtures, any continuous function 
such as the dipole vector coordinates can be modeled with a sufficient number of 
Gaussian functions, up to an arbitrarily close approximation [11]. Moreover, the 
model is a very good choice for ECG signals of both adults and fetuses, for which 
the Gaussian kernels can be eventually related to clinical parameters of the 
ECG. Equation (5.5) can also be thought as a model for the orthogonal lead VCG 
coordinates, with an appropriate scaling factor for the attenuations of the volume 
conductor. This analogy between the orthogonal VCG and the dipole vector was 
used in [81] to estimate the parameters of (5.5) from the three Frank-lead VCG 
recordings.

By placing the resulting cardiac source models of the maternal and fetal cardiac 
dipoles in (5.1), realistic mixtures of maternal abdominal signals are obtained. In 
Figs. 5.5 and 5.6, a sample signal corresponding to the cardiac dipole coordinates 
and the resulting three-dimensional vectorcardiogram loop are shown for illustra-
tion. A multichannel signal generated by this technique plus synthetic noise is also 
shown in Fig.  5.7. The functions required for generating synthetic maternal 
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abdominal signals are available online in the website mentioned in [76], with the 
parameter set listed in [81]. Accordingly, the number of the Gaussian functions used 
for modeling the maternal and fetal ECG are not necessarily the same for the differ-
ent channels and they can be selected according to the shape of the desired channel. 
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Fig. 5.5 Synthetic ECG signals generated by the VCG model in (5.5)

Fig. 5.6 Typical synthetic VCG loop. Each clinical lead is produced by mapping this trajectory 
onto a one-dimensional vector in this three-dimensional space
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Databases of synthetic maternal and fetal cardiac signals generated by this method 
are available online for algorithm evaluation [2, 76].

5.3  Digital Noninvasive Fetal ECG Acquisition

5.3.1  Acquisition Front-End Requirements

To date, there are no standards or widely accepted protocols for fECG acquisition. 
Nevertheless, the common properties of the fetal and adult ECG and the existing 
open-access fECG databases can be used to set some baselines. It is known that the 
effective bandwidth of adult ECG is between 0.05 and 150 Hz, with a maximum 
span of ±5 mV in magnitude, besides the common-mode and electrode offset volt-
ages, as shown in Fig. 5.8. It is recommended that the front-end noise of adult ECG 
devices should be below 30 μV in root mean square (RMS) [24]. On the other hand, 
in the currently available maternal abdominal datasets, the fECG can be10–20 times 
smaller than the mECG. At the same time, due to the sharper QRS and higher heart 
rate of the fetus as compared with the adult ECG, the fECG is wider in bandwidth. 
As a baseline, a bandwidth between 0.05 and 250 Hz covers the dominant band-
width of the fECG. In this range, the most informative band is from 10 to 70 Hz, 
which is used for fetal heart rate detection, while the full bandwidth is recommended 
for fECG morphological analysis.

According to the sampling theorem, the sampling frequency of a signal should 
be above twice the maximum frequency of the input signal (known as the Nyquist 
rate) to avoid aliasing and to guarantee information retrieval. But for biomedical 
applications, signal visualization is an integral aspect of the analysis, and sampling 
at the minimal Nyquist rate does not result in visually agreeable signals. Therefore, 
biomedical signals are commonly over-sampled above the Nyquist rate for better 
visualization and possible SNR improvement during post-processing.

As for the amplitude, fECG acquisition systems should have a broad dynamic 
range to permit fECG acquisition without overflow or saturation due to interfering 
signals such as the mECG and power-line noise, as demonstrated in Fig. 5.9. In 
Fig. 5.10, the amplitude and frequency range of the fECG are compared with other 

Fig. 5.7 Typical multichannel ECG generated by a synthetic maternal-fetal ECG generator
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biosignals and artifacts. Accordingly, the fECG spectrally overlaps with the inter-
fering biosignals and is significantly weaker in amplitude. Therefore, classical fre-
quency domain filtering is ineffective, especially for the mECG, which is the 
dominant biomedical interfering signal for the fECG.

5.3.2  Analog-to-Digital Conversion Requirements

The procedure of analog-to-digital signal conversion inevitably adds quantization 
noise to the signal and reduces the signal-to-noise ratio (SNR). It is therefore impor-
tant to keep the quantization noise below or at the same level as the analog signal 
noise level to avoid significant signal quality degradation. The SNR due to the quan-
tization procedure can be calculated from the standard equation:

 
SNR dB OSR( ) = + + ( )6 02 1 76 10 2. . logb

 
(5.6)

time(s)

-400

-200

0

200

400

600

800

1000

1200

am
pl

itu
de

(m
V)

mECG

Frontend saturation

Motion artifacts
Powerline noise

fECGfECGfECGfECG
76543210

Fig. 5.9 A typical segment of maternal abdominal recordings containing various signals and 
noises. The dynamic range of the digital front-end should be such that the acquired signals would 
not overflow due to interfering signals such as the maternal ECG. Refer to the text for further details

ECG

Fig. 5.8 The dynamic range of analog ECG frontends. (Adapted from [98])
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where b is the number of analog-to-digital converter (ADC) bits and OSR = fs/BW 
is the over-sampling ratio, which is the ratio of the sampling frequency fs and the 
bandwidth (BW) of the input signal. The SNR improvement due to the OSR term in 
(5.6) is only obtained by post-filtering if the signal is sampled above the minimal 
Nyquist rate. Note that the standard SNR equation (5.6) is based on the assumption 
of a sinusoidal input signal with close- to full-scale amplitude range (typically 1 dB 
below the ADC full-scale level) applied to a symmetric voltage referenced ADC 
with uniform quantization levels and assuming that the quantization noise is uni-
formly distributed over the entire Nyquist bandwidth [46]. This standard procedure 
enables the manufacturers and circuit designers to have a unified comparison 
between different ADC devices.

It should also be noted that in digital electronics circuits design, the maximum 
SNR expected from the nominal number of ADC bits is not achievable. In fact, 
depending on the ADC technology, sampling frequency, and the printed circuit 
board (PCB) design and quality, the effective number of bits (ENOB) is what is 
obtained in practice:

 
b =

-SNR dBreal 1 76

6 02

.

.  
(5.7)

where SNRreal is the SNR that is obtained in practice and b  is the ENOB, which is 
not necessarily an integer value. For example, an ADC with 16 nominal bits may 
practically have 13.5–14 ENOBs. The ENOB is one of the standard properties of all 
ADC, which is documented in the datasheets of ADC devices by the manufacturers. 

Fig. 5.10 The amplitude and frequency range of the maternal electrocardiogram (mECG), electro-
encephalogram (mEEG), electrooculogram (mEOG), electromyogram (mEMG), electrohystro-
gram (mEHG), and the fetal ECG (fECG). Accordingly, different biosignals interfere with the fetal 
ECG [31, 81, 91, 102]. Note that the fECG amplitude depends on the sensor position, fetal posi-
tioning, and age
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Considering that beyond the ADC chip technology the ENOB also depends on the 
circuit design quality, it is measured in practice by sweeping close- to full-scale 
sinusoidal signals within the Nyquist band of the manufactured circuit front-end (by 
applying a signal generator to the ADC front-end) and by logging the samples 
acquired by the ADC. The real SNR (SNRreal) can be eventually calculated by ana-
lyzing the sampled signals in software. This is a standard procedure that is per-
formed during the design and quality control of all (including medical) equipment. 
The overall recommended front-end specifications for noninvasive fECG acquisi-
tion are summarized in Table 5.1.

5.3.3  Sensor Placement

In order to maximize the chance of retrieving the fECG from maternal abdominal 
leads, it is common to use multiple leads spread over the abdomen, lower back, and 
the two sides of the maternal body. The sensors should ideally be close to the fetus 
and the referencing of the leads should be such that the electrical fields due to the 
fetal heart pass through the differential pairs used for acquisition. To date, the num-
ber of abdominal channels used for research and clinical usage are very diverse, 
ranging from as few as one to as many as 144 abdominal channels. From the elec-
tronic and manufacturing perspective, using a few leads placed close together in a 
patch of disposable or reusable electrodes is very advantageous, as compared with 
using numerous electrodes distributed all over the maternal abdomen and back. 
However, as explained throughout this chapter, a group of sensors placed close to 
each other are prone to becoming highly dependent and result in mathematically 
low-rank and non-invertible mixture of signals, which is inappropriate for multi-
channel fECG extraction. Therefore, there is a compromise between the simplicity 

Table 5.1 The recommended front-end specifications for fetal ECG acquisition

Property Range

Bandwidth (−3 dB cutoff 
frequency)

Acceptable: 0.05–250 Hz
Preferred: 0.05 Hz to 1 kHz (for better fECG-noise 
separability)

Amplified analog voltage range 3–5 V (preferably differential pairs)
Analog-to-digital resolution Low resolution: 16 bits

High resolution: 24 bits
Sampling frequency Minimum: 500 Hz

Acceptable: 1 kHz
High resolution: 5–10 kHz

Sampling sequence Preferred: simultaneous
Acceptable: sequential (multiplexed); only at high sampling 
frequencies

Number of channels Between 8 and 32 with dedicated mECG channels used as 
reference
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of the acquisition system and the robustness to fetal positioning. The major fECG 
acquisition technologies use between 8 and 32 channels, including one or more 
reference leads for the mECG acquired from maternal chest leads.

5.4  Single-Channel Fetal Electrocardiogram Extraction

Single-channel fECG extraction algorithms refer to the category of methods that use 
a single maternal abdominal channel and possibly a set of reference electrodes for 
acquiring the mECG from the maternal chest. An interesting comparative survey on 
the advantages and limitations of these methods was conducted in [8]. In this sec-
tion, some of the major algorithms of this class of techniques are reviewed in fur-
ther detail.

5.4.1  Naive Fetal Electrocardiogram Detection and Extraction

Before the advances in digital signal processing in recent decades, fECG detection 
was performed over raw paper prints of abdominal recordings, without any process-
ing. For instance in [50], by visual inspection, several cases were reported in which 
due to the vertex presentation of the fetus, the fetal R-peaks appeared as positive 
peaks while the maternal R-peaks had negative peaks. It is evident that such studies 
remained discrete and subjective, since due to the low SNR, fECG detection by 
visual inspection is not always applicable and highly dependent on the fetal presen-
tation and gestational age. Nevertheless, visual inspection remains as the first intui-
tive test for machine-based fECG extraction algorithms.

5.4.2  Template Subtraction and Cyclostationary Random 
Process Theory

Template subtraction is the most basic method for mECG cancellation from mater-
nal abdominal recordings [1, 54]. Despite its simplicity, it was shown in [41] that 
using the theory of cyclostationarity, this technique can be the optimal cyclostation-
ary Wiener filter, when applied properly by compensating the inter-beat variations 
of the mECG. The proof was inspired by the problem of pulse amplitude demodula-
tion, a well-known method in the context of telecommunications [35, Ch. 4].

Let us consider the signal x(t) = ∑ncng(t − nT), where g(⋅) is an arbitrary known 
function and cn is a stationary time-sequence. It can be shown that the problem of 
optimal filtering of x(t), which is a wide-sense cyclostationary random process, 
from the additive mixture z(t) = x(t) + η(t) (where η(t) is a stationary noise) reduces 
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to the problem of minimum mean square estimation of cn and repeating g(⋅) at mul-
tiples of T, using the estimated amplitude [35, p. 253], [41].

The above example is closely related to ECG denoising using a data model of the 
form (5.2). Accordingly, if the inter-beat variations of the ECG were negligible, an 
ECG would be a wide-sense cyclostationary process. In that case, one could opti-
mally— in the Wiener filtering sense— filter the ECG as demonstrated in Fig. 5.11: 
(1) detect the R-peaks, (2) perform synchronous averaging (or robust weighted 
averaging [52]) to find the average ECG beat, and (3) reconstruct the denoised ECG 
by repeating the average beat at the R-peak locations [41]. Now suppose that 
z(t) = x(t) + η(t) is a signal acquired from a maternal abdominal lead, x(t) is the 
mECG and we are interested in the background signal η(t), which is the fECG plus 
other noises. In this case, the above algorithm simply reduces to template subtrac-
tion: construct a maternal ECG template and subtract this template by aligning it 
under the maternal R-peaks of the abdominal leads. However, since in reality the 
ECG has RR-interval deviations and morphological variations, instead of simple 
template subtraction that does not account for beat-wise heart rate and morphologi-
cal variations, it is better to make the procedure beat-wise adaptive to compensate 
the beat-wise variations of the ECG (parametrized by γn in the data model (5.2)).

For example, the cardiac phase signal introduced in Sect. 5.2.2 can be used to 
compensate the RR-interval deviations by time-warping [83]. The minor beat-wise 
variations can further be compensated using classical beat alignment techniques [5, 
92]. The template subtraction may also be made beat-wise adaptive, using Kalman 
filtering schemes as detailed in Sect. 5.4.4. In fact, by applying such beat alignment 
techniques, the beat-wise deviations parametrized by γn in (5.2) are compensated 
and the resulting signal would become cyclostationary. As a result, the optimal 
cyclostationary Wiener filter for removing the mECG from maternal abdominal 
recordings is basically a template subtraction in the transformed domain (after com-
pensating the beat-wise deviations of the mECG).

Fig. 5.11 Demonstration of the concept of optimal cyclostationary Wiener filtering for mECG 
cancellation
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5.4.3  Adaptive Filters for fECG Extraction

Adaptive filters are one of the popular filters used for mECG cancellation and fECG 
extraction. The procedure consists of training an adaptive filter for either removing 
the mECG using one or several maternal reference channels [67, 104] or directly 
training the filter for extracting the fetal QRS waves [32, 69]. Ad hoc, adaptive fil-
ters such as partition-based weighted sum filters [89] and least square error fittings 
[59] have also been used for this purpose. A comparative study of template subtrac-
tion and several adaptive filters including the least mean squares (LMS), recursive 
least squares (RLS), and an ad hoc filter coined echo state neural network (ESN) 
was reported in [7, 8].

As demonstrated in Fig.  5.12, adaptive filtering methods for mECG removal 
either require a reference mECG channel that is morphologically similar to the con-
taminating waveform or require several channels to approximately reconstruct any 
morphological shape from the reference channels using adaptive [104], neural net-
works or neuro-fuzzy inference systems [4]. Both of these approaches are practi-
cally inconvenient and have limiting performance since the morphology of the 
mECG contaminants highly depends on the electrode locations, and it is not always 
possible to reconstruct the complete mECG morphology from a (linear) combina-
tion of the reference electrodes, especially due to the limitations of finite dimen-
sional dipole model of the heart, detailed in Sect. 5.2.1.

5.4.4  Kalman Filters for fECG Extraction

Adaptive methods of mECG cancellation should ideally not rely on the electrode 
placement and the mECG morphology of the reference channel. This objective has 
motivated the development of Kalman filters for fECG extraction [63, 64, 74, 82, 

Fig. 5.12 Adaptive filters for maternal ECG cancellation. (Concept adapted from [4])
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84]. The Kalman filter and its extensions are adaptive in their nature and are there-
fore ideal for ECG signals with beat-wise morphological variations.

In [82], an extended Kalman filter (EKF) was suggested for denoising ECG sig-
nals recorded from noisy data. The process model required for this EKF was based 
on an extension of the McSharry-Clifford synthetic ECG model [61, 79]. The EKF 
formulation was later used in [74, 84] for removing mECG artifacts from maternal 
abdominal recordings. Accordingly, following the volume conduction and dipolar 
data models (5.1) and (5.5), we can assume that the maternal abdominal signals 
consist of the mECG sm(t), fECG sf(t), and background noise ν(t). For normal ECG, 
the mECG and fECG components are pseudo-periodic random processes, which 
can be described by a set of dynamic equations. For example, by using the nonlinear 
state-space model proposed in [82] for mECG modeling, the following set of pro-
cess and observation equations can be written for the maternal body surface recorded 
signals x(t):

• Process equations:
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• Observation equations:
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where q q q p
˜

modi it t( ) = ( ) -éë ùû ( )2  and ωm(t) = 2πfm(t)/fs are the maternal nor-
malized angular velocities, fm(t) is the instantaneous maternal heart rate in Hertz, fs 
is the sampling frequency in Hertz, αi, bi, and θi are the amplitude, width, and center 
parameters of the ith Gaussian kernel, and k is the number of Gaussian kernels used 
for modeling the mECG morphology. In (5.8) and (5.9), θ(t) and sm(t) are the state 
variables, ϕ(t) is the cardiac phase measurement obtained by maternal RR-interval 
calculation and a linear phase map as demonstrated in Fig. 5.3, x(t) is the maternal 
abdominal ECG measurement, w(t) denotes the process noise, ν(t) is the phase 
measurement noise, and η(t) is the ECG measurement noise. According to the pro-
cedure detailed in [82], this model can be used in an EKF for estimating the mECG 
ˆ .s tm ( )  At the same time, the residual signal x t s tm( ) - ( )ˆ  (known as the innovation 

process of the Kalman filter) is an estimate of sf(t) + η(t). The source codes required 
for implementing this method— and the other methods detailed in this chapter— 
are available online in the open-source electrophysiological toolbox (OSET) [76].

An advantage of the Kalman filtering framework is that, besides signal estimation 
and denoising, it intrinsically provides confidence intervals for the estimations as well. 
By defining x(t) = [θ(t), s(t)]T as the state vector at instant t and x̂ t( )  as the posterior 
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estimate of x(t), the posterior error of the estimation is defined as e x xt t t( ) = ( ) - ( )ˆ  

with a covariance matrix P e e e et t t t t T( ) = ( ) - ( ){ }( ) ( ) - ( ){ }  ( { ) . The matrix 

P(t) is an essential part of all the different variants of the Kalman filter and is calculated 

and updated as the filter propagates in time. The eigenvalues of this matrix can be used 
to form an error likelihood ellipsoid (also known as concentration ellipsoid [100]) 
that represents the region of highest likelihood for the true state vector x(t). This 
likelihood ellipsoid provides a confidence region for the estimated signals.

The overall procedure for removing mECG signals by using the Kalman filtering 
framework is illustrated in Fig. 5.13 and may be summarized as follows:

 1. Baseline wander removal. For the reliable extraction of the average mECG tem-
plates, the baseline wander of the noisy records should be removed beforehand.

 2. mECG R-peak detection. These peaks are required for constructing the phase 
signal θ(t), which in turn is needed for synchronizing the noisy ECG with the 
dynamic model in (5.8). They are also used for extracting the mean mECG by 
synchronous averaging over the maternal heart beats. Depending on the power of 
the contaminating mECG, as compared with the background signals and noise, 
the maternal R-peaks may be detectable from the noisy recordings or from an 
arbitrary chest lead or abdominal channel synchronously recorded with the noisy 
dataset.

 3. mECG template extraction. Using the R-peaks, the ensemble average (EA) and 
standard deviation of the mECG are extracted through synchronous averaging. 
Several methods have been proposed in the literature for synchronous averaging. 
One of the most effective approaches is the robust weighted averaging method 
[51], which outperforms conventional EA extraction methods and is useful for 
noisy nonstationary mixtures.

 4. Model fitting. As proposed in [20, 82], by using a nonlinear least square estima-
tion, the parameters of the Gaussian kernel defined in (5.8) are found, such that 
the model will best fit the mean mECG waveform.

 5. Covariance matrix calculations. The standard deviation of the average mECG is 
used to find the entries of the process and observation noise covariance matrices, 
as required for (extended) Kalman filtering.

x ( t)

ŝm ( t) v̂( t)

θk

Fig. 5.13 The overall denoising scheme. As shown in this figure, the R-peaks of the contaminating 
signals (CC) may be detected either from an arbitrary reference ECG or from the noisy biosignal 
after baseline wander (BW) removal. (Adapted from [84])
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 6. Filtering. Having the required model parameters, the mECG may be estimated 
by the EKF framework and the desired background signal (fECG plus noise) is 
found from ˆ ˆv t x t s tm( ) = ( ) - ( ) .

 7. fECG post-processing. The residual signals containing fECG and noise are post- 
processed for improving the fECG signal quality. Various methods such as an 
adaptive filter, a wavelet denoiser, or even a secondary EKF stage (this time 
customized for fECG denoising) can be used in this stage.

Note further that for online applications or denoising long nonstationary datas-
ets, all the dynamic model parameters and the covariance matrices can be updated 
over time, by recalculating them from the most recent cardiac beats. Further details 
regarding the Kalman filter–based approach and its extensions such as the extended 
Kalman smoother (EKS), unscented Kalman filter (UKF), and H-infinity filter can 
be followed from [42, 63, 82, 84].

In Fig. 5.14a, the first channel of the DaISy fECG dataset is used for illustration 
[29]. The mECG estimate and the fetal residual components are depicted in 
Fig. 5.14b, c. As a post-processing step, the extended Kalman filtering algorithm is 
applied to the residual fetal components, this time by training the filter parameters 
over the fECG. The post-processed fECG are depicted in Fig. 5.14d. From these 
results, it is seen that the Kalman filter is very effective for the extraction of fECG 
components from noisy maternal abdominal mixtures, even from as few as a single 
channel. However, as noticed from Fig. 5.14d, between t = 6 s and t = 7 s, the filter 
has failed to discriminate between the maternal and fetal components when the 
ECG waves of the mother and fetus have fully overlapped in time. The reason is that 
when the maternal and fetal components coincide in time, there are no other a priori 
information for separating the maternal and fetal components. This is in fact an 
intrinsic limitation of single-channel methods, which motivates the application of 
multichannel recordings.

As noted before, an important feature of Bayesian filtering is the ability of pre-
dicting the accuracy of the estimates. For the Kalman filter, this is readily achieved 
through the calculation of the error covariance matrix P(t). Suppose that the entry of 
the covariance matrix P(t) corresponding to the ECG estimate is denoted as σ(t)2 
and the ECG estimation error is Gaussian, then the estimated ECG is bounded 
within the ±σ(t) envelope in 68% of the sample points. This is due to the fact that 
approximately 68% of the values drawn from a Gaussian distribution are within one 
standard deviation away from the mean, about 95% of its values are within two 
standard deviations, and about 99.7% lie within three standard deviations. These 
probabilities are different for non-Gaussian errors obtained by a nonlinear estimator 
such as the EKF. However, the ±σ(t) envelope can still be used as an approximate 
measure of error spread [100, p. 79]. In Fig. 5.15, several beats of the fECG before 
and after post-processing by an extended Kalman filter, together with their corre-
sponding ±σ(t) and ±3σ(t) envelopes, are plotted. It is seen that the error envelopes 
provide the confidence region of the denoised fECG.
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Fig. 5.14 The first channel of the DaISy dataset [29], recorded from a maternal abdominal lead 
before and after the EKF procedure. (Adapted from [74]). (a) Original. (b) EKF of the maternal 
ECG. (c) Residual fetal signal. (d) Fetal signal after post-processing
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5.5  Multichannel Fetal Electrocardiogram Extraction

Due to the limitations of single-channel fECG analysis detailed in the previous sec-
tion, advanced fECG extraction algorithms are commonly multichannel. Some of 
the advantages of multichannel fECG acquisition and analysis are as follows:

• Improved SNR due to spatial filtering and joint analysis of multiple channels
• Robustness to fetal position and displacement due to the spatial diversity of 

the leads
• Robustness to the possible detachment of a few of the electrodes
• Ability to extract the fECG even during overlapping of ECG waves of the mother 

and fetus
• Obtaining multiple perspectives of the fetal heart

Reconsidering the maternal abdominal recordings data model (5.1), in the multi-
channel case, it can be represented in the following matrix form:
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where p ≜ m + l + k is the total effective number of sources due to the maternal and 
fetal ECG and structured noises, A = [a1, …, ap] ∈ Rn × p is the overall source-sensor 
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Fig. 5.15 Several fetal ECG beats adapted from Fig. 5.14, before and after the post-processing 
EKF, together with the ±σ(t) and ±3σ(t) confidence envelopes. (Adapted from [74])
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mixing matrix (or the lead-field matrix), and s(t) = [s1(t), …, sp(t)] ∈ Rp contains all 
the cardiac sources and structured noise components.

The objective of multichannel analysis is to recover an estimate of s(t) (or more 
specifically sf(t)) from x(t), using the available assumptions regarding the mECG, 
fECG, and noises. A classical approach to solving this problem is to estimate the 
matrix B ∈ Rp × n, such that BA = I. Therefore,

 
y Bx s Bnt t t t( ) = ( ) = ( ) + ( )  

(5.11)

which is a noisy estimate of the source vector s(t). Since both the source vector s(t) 
and the mixing matrix A are unknown, the problem is categorized as a blind or 
semi-blind source separation (BSS) problem [26]. In this problem, if the number of 
observed channels is equal to or greater than the effective number of sources, i.e., 
n ≥  p, and A is non-singular, then the observed mixture is determined or over-
determined. Therefore, noting that sm(t), sf(t), and v(t) can be considered as groups 
of statistically independent sources with inter-independence and intra- dependencies, 
BSS algorithms such as (noisy) independent component analysis (ICA) [13, 28, 
108], semi-blind source separation algorithms such as periodic component analysis 
(πCA) [83], and more recently nonstationary component analysis (NSCA) [42] have 
been effectively used to solve this problem. The general challenges of this problem 
are as follows:

 1. Amplitude and sign ambiguity: An intrinsic ambiguity of the multichannel data 
model (5.10) is that the source vector amplitude and sign may not be retrieved 
merely from the measurements x(t). This can be explained by the fact that 
exchanging an arbitrary non-zero scaling factor α and 1/α between the kth col-
umn of the matrix A and the source sk(t) does not change the measurements. 
Therefore, there is no way to retrieve the source amplitudes and sign from the 
measurements alone.

 2. Estimated source order: Retrieving the order of sources is another limitation that 
may not be resolved from the measurements alone (without other priors or con-
straints). The reason is that taking an arbitrary permutation matrix P, As(t), and 
APPTs(t) is identical.

 3. Noisy mixtures: It is clear from the right-hand side of (5.11) that even if the sepa-
ration matrix B is perfectly estimated, i.e., BA = I, due to the noise term Bn(t), 
then the resulting mixture can remain noisy, except for the non-probable special 
case that the observation noise lies in the null space of the separation matrix B, 
resulting in Bn(t) = 0. Otherwise, the noise can even be amplified and the desired 
components, such as the fECG, may in cases be totally obscured by noise. In 
fact, the problem due to full-rank observation noise is twofold. On the one hand, 
the noise hampers the estimation of the separation matrix. On the other hand, it 
remains or is even amplified during source separation. Therefore, whenever pos-
sible, it is better to minimize or remove the channel-wise full-rank noise before 
source separation. In the latter case (channel-wise noise removal), any process-
ing of the multichannel data should be performed by using filters that 
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 approximately have a linear phase (constant group delay) over the bandwidth of 
interest. Moreover, the difference between the group delays of the filters applied 
to different channels should be negligible, as compared with the sampling time 
of the data, to avoid the displacement of the components of different channels 
during preprocessing. This is a fundamental requirement for synchronous multi-
channel analysis, which has been underemphasized in the literature.

 4. Non-punctual sources: The heart is not a punctual source. This fact has several 
implications on fECG extraction, including the following: (1) the fECG mor-
phology can change as the fetus moves with respect to the maternal body surface 
leads; (2) during source separation, depending on the heart-sensor distance and 
the SNR of the measurements, more than one source is associated with the 
mother and the fetus. The notion of effective number of sources detailed in Sect. 
5.2.1 corresponds to this fact. It has been previously shown that even though, 
among the extracted sources, only a few might visually resemble the fECG, 
when one applies synchronous averaging to the different channels extracted by 
BSS algorithms (by aligning the R-peak positions and averaging over several 
beats), the fECG emerges from all channels. This point was first illustrated in 
[80] and justified in [74] using multi-pole expansion of body surface potentials. 
An example of adult and fetal ECG obtained by synchronous averaging after 
applying a typical ICA algorithm is shown in Fig. 5.16. This implies that for non- 
punctual sources, perfect separation of the sources (maternal and fetal ECG) is 
not fully achieved. However, in practice, the number of cardiac source signals 
extracted from multichannel ECG— including maternal abdominal recordings— 
are limited by the number of channels, distance to the heart, and the SNR of the 
recordings.

 5. Low-rank measurements: If the number of abdominal channels are insufficient 
(n < p) or when the maternal-fetal mixture is singular (e.g., due to the closeness 
of the sensors or special fetal positioning in the womb), the signal mixture is 
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Fig. 5.16 An illustration of the concept of non-punctuality of the cardiac sources resulting in 
multidimensionality of the components extracted from adult and fetal ECG. Synchronous averag-
ing has been performed over the different channels extracted by independent component analysis 
to demonstrate the existence of the ECG components in all channels. (a) Adult ECG. (b) Fetal ECG
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under-determined. In this case, due to the rank-deficiency of the mixture, linear 
transforms are unable to separate the maternal and fetal subspaces [41, 86].

 6. Time-variant mixtures: When the mixing matrices Hm and Hf are functions of 
time, e.g., due to fetal movement during signal acquisition, the sources may no 
longer be retrieved by stationary source separation algorithms. In this context, 
adaptive source separation algorithms are required [16]. These methods have 
also been specifically used for online fECG extraction [33, 41].

In the sequel, some of the different approaches of fECG extraction from multi-
channel recordings are reviewed.

5.5.1  Independent Component Analysis

Independent component analysis (ICA) is the most common class of algorithms for 
solving blind and semi-blind source separation (BSS) problems such as (5.10), 
where both the mixing matrix A and the source vector s(t) are unknown (with or 
without noise) [26]. The problem of retrieving the sources and mixing matrix at the 
same time is clearly ill-posed. Therefore, additional assumptions and priors about 
the source and/or mixture are required. In ICA, one seeks linear mixtures of the 
form y(t)  =  Bx(t), which maximize some measure of statistical independence 
between the estimated sources, also known as a contrast function.

Many ICA algorithms attempt to solve the problem in several phases, for exam-
ple by first pre-whitening and sphering the data by principal component analysis 
(PCA) (Fig. 5.17). Pre-whitening acts as an intermediate step for achieving inde-
pendence and only leaves the estimation of a rotation matrix to achieve 
independence.

An algebraic approach to ICA is to seek the separation matrix B, such that it 
diagonalizes a set of matrices containing second- or higher-order statistics derived 
from the multichannel recordings [26]. For signals with temporal structure, there 
are various algorithms that use this algebraic approach. Considering that no more 
than two matrices can be simultaneously diagonalized by using a single linear trans-
form, many algebraic algorithms have been developed for the approximate joint 
diagonalization of such matrices. The first and most widely used algorithm in this 
context is known as joint approximate diagonalization of eigenmatrices (JADE) 
[15, 17]. To date, fECG extraction has been one of the classical biomedical applica-
tions for testing and comparing various ICA algorithms. Some of the pioneer con-
tributions in this area include the following studies: [13, 28, 108].

Fig. 5.17 General scheme of ICA algorithms with spatial pre-whitening
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5.5.2  Independent Subspace Analysis

Independent subspace analysis (ISA) has been introduced as a variant of ICA for 
problems in which one deals with groups of signals having inter-group indepen-
dence and intra-group dependencies. ISA was first introduced in [25] and mathe-
matically developed in [13], where the notion of ICA was generalized to the notion 
of multidimensional ICA. Accordingly, ISA relies on the idea of vector-valued com-
ponents rather than scalar source signals. The first—and most commonly studied—
application of ISA has been for fECG extraction. Throughout the chapter, we have 
learned that the cardiac signals of either the mother or the fetus are generally multi-
dimensional. Therefore, the maternal and fetal ECG components form signal sub-
spaces with internal dependencies, while the components of the maternal and fetal 
subspaces are independent from each other.

ISA may be realized by applying an initial ICA step on mutichannel observations 
and then empirically regrouping the independent components that belong to the 
same subspace from prior knowledge of the subspace structures to achieve a canoni-
cal representation of each subspace. In fact, there is an intrinsic ambiguity in 
retrieving the components inside the subspaces, which may not be resolved with the 
same measure of independence used for subspace separation. In other words, from 
the source separation viewpoint, no representation of the extracted mECG and 
fECG components inside their signal subspaces can be considered to be better than 
the other. Therefore, the components that belong to the same subspace are regrouped 
after the initial ICA step. However, the challenges of ISA are as follows:

 1. Finding the dimensions of each subspace [13]
 2. Automatic regrouping of the components [6, 95, 103]
 3. Studying  the impact of subspace distances and noise on the stability of the 

extracted subspaces [37, 62].

For fECG extraction, previous studies have focused on the feasibility of extracting 
the independent subspaces [13, 28] and regrouping strategies [6].

5.5.3  Generalized Eigenvalue Decomposition

Although ICA and ISA are very effective for fECG extraction, they do not make 
explicit use of the pseudo-periodicity of the maternal and fetal ECG and the fact that 
multiple sources may correspond to the mECG and the fECG (due to the non- 
punctuality of the cardiac sources detailed before). In order to be used in fully auto-
mated algorithms, it is also convenient to be able to rank the extracted sources 
corresponding to the mECG and/or fECG automatically. These requirements 
resulted in the development of source separation algorithms, which are specifically 
customized for cardiac signals. Algorithms such as periodic component analysis 
(πCA) [83] and nonstationary component analysis [42] were developed for this 
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purpose. These methods are based on an algebraic transform known as generalized 
eigenvalue decomposition, which was previously used in one of the basic source 
separation algorithms known as AMUSE [99].

For real symmetric matrices A, B ∈ Rn × n, generalized eigenvalue decomposition 
(GEVD) of the matrix pair (A, B) consists of finding W ∈ Rn × n and Λ ∈ Rn × n, 
such that
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(5.12)

where Λ =  diag (λ1, …, λn) contains the generalized eigenvalues corresponding to 
the eigenmatrix W = [w1, …, wn], with real eigenvalues sorted in descending order 
on its diagonal. Symmetric positive definite matrix pairs have real positive eigenval-
ues and the first eigenvector w = w1 maximizes the Rayleigh quotient [96]:
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It can be shown that all ICA methods based on pre-whitening can be eventually 
converted into a GEVD problem of two (problem-specific) matrices [83]. Therefore, 
in semi-blind source separation problems, in which prior knowledge regarding the 
underlying components exists, the problem of source separation can be considered 
as a matrix design problem. The performance of GEVD-based source separation 
and generic methods for choosing the proper matrix pair have been addressed in 
previous research works [105, 107].

GEVD can, for example, be used for the separation of temporally correlated (or 
periodic) sources from other signals. For example, for a zero-mean wide-sense sta-
tionary or cyclostationary real observation vector x(t), the covariance matrix is:

 
C x xx t

T
t tt t( ) = +( ) ( ){ }

 
(5.14)

where t ×{}  indicates averaging over t. The AMUSE algorithm is a source separa-
tion algorithm that jointly whitens the data and diagonalizes Cx(τ) for some arbi-
trary τ, i.e., the solution of the GEVD problem of the matrix pair (Cx(τ), Cx(0)) [70, 
99]. What hampers the performance of GEVD for source separation is the fact that 
real-world sources are rarely fully periodic. Therefore, more advanced source sepa-
ration algorithms use (approximate) joint diagonalization of more than two matri-
ces, which are more robust to data outliers and computational errors as compared 
with AMUSE [10, 14]. In this context, the second-order blind identification (SOBI) 
algorithm is an example of a time-domain algorithm that whitens the data and 
approximately diagonalizes Cx(τ) for several time-lags τ [10]. Similar time-domain 
methods have also been proposed for cyclostationary sources, in which the data is 
again pre-whitened and matrices corresponding to cyclostationary statistics of the 
dataset are (approximately) diagonalized [34]. An alternative approach is to use 
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signal priors such as the pseudo-periodicity and “bumpy” shape of the ECG, as 
detailed below.

5.5.4  Periodic Component Analysis

In (pseudo-)periodic component analysis (πCA),1 the matrix pair (C1, C0) is jointly 
diagonalized by GEVD, where C0 = Cx is the covariance matrix of x(t) and C1 is the 
variable-period version of the lagged-covariance matrix (5.14), using the time- 
varying period of the ECG defined in (5.4):

 
C x x1 = +( ) ( ){ }t t

T
t tt

 
(5.15)

In order to assure the symmetry of C1 and the realness of its eigenvalues, the follow-
ing step is applied before GEVD:
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Next, considering W as the joint diagonalizer of the matrix pair (C1, C0), the linear 
transform

 
y W xt tT( ) = ( )  

(5.17)

extracts uncorrelated sources y(t) = [y1(t), …, yn(t)]T with maximal correlation at 
time-variant periods τt, which is the heart rate of interest. Therefore, y(t) ranks the 
sources in order of similarity with the desired heart rate. In other words, y1(t) is the 
most periodic component and yn(t) is the least periodic with respect to the R-peaks 
of the ECG. This method is flexible in the cardiac period used for source separation. 
For instance, for fECG extraction, let θm(t) and θf(t) be the maternal and fetal ECG 
phases found from the maternal and fetal R-peaks (as defined in Sect. 5.2.2.2) and 
Cm and Cf represent the lagged covariance matrices of the maternal and fetal heart 
rates found by averaging (5.15) over the maternal and fetal periods t t

m  and t t
f , 

respectively. Then different variants of GEVD are obtained if the matrix C1 used in 
GEVD is set to any of the following matrices [83]:

 
C C C C1 0, ,( ) = ( )m x  

(5.18a)

 
C C C C1 0, ,( ) = ( )f x  

(5.18b)

1 The term πCA was originally coined in [87], for extracting periodic signals, which resulted in 
GEVD of a pair matrices as in AMUSE [99].
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C C C C1 0, ,( ) = ( )m f  

(5.18c)

If we assume the data to be pre-whitened, the diagonalization of the matrices defined 
in (5.18) is respectively equivalent to finding (a) the most periodic components with 
respect to the mECG, (b) the most periodic components with respect to the fECG, 
and (c) the most periodic components with respect to the mECG while being the 
least periodic components with respect to the fECG. In this latter case, the extracted 
components should gradually change from the mECG to the fECG, from the first to 
the last component, but the components are not necessarily uncorrelated. It should 
of course be noted that the last two cases are difficult to implement in practice, as 
they require the prior extraction of the fetal R-peaks to form the Cf matrix. Another 
reservation is for abnormal maternal cardiac signals, for which the signals are no 
longer regular or pseudo-periodic and a measure of pseudo-periodicity can fail for 
mECG and fECG source separation.

5.5.5  Nonstationary Component Analysis

The reservations regarding possible abnormal mECG and the difficulty of fECG 
R-peak identification in noise have motivated source separation algorithms that are 
merely based on rather regular spiky or bumpy shapes of the maternal and fetal 
ECG. The theory is based on source separation algorithms for variance- nonstationary 
source mixtures, which is a special case of methods known as nonstationary com-
ponent analysis (NSCA) [42, 71, 106]. Accordingly, let us consider multivariate 
signals x(t) ∈ Rn ( t Î ), where   denotes the set of available discrete-time sam-
ples and P TÌ  is a subset of these samples, which are considered as being non-
stationary or odd events that do not follow the (average) background model in 
certain aspects. For our application, they can correspond to the maternal or fetal 
QRS complexes. In this case, a sample-wise hypothesis test can be performed for 
the identification of the temporally nonstationary events:
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Denoting the subset of samples that satisfy the alternative hypothesis H1 with ,  a 
special case of GEVD is obtained by finding the matrix W, which satisfies (5.12) for 

A x x= ( ) ( ){ }u

T
u u  and B x x= ( ) ( ){ }t

T
t t , where t ×{}  and u ×{}  denote 

averaging over all time samples t Î  and uÎ,  respectively. Using this matrix, 
the linear transform y(t) = WTx(t) extracts n uncorrelated channels with maximal 
energy over the subset of time samples uÎ.  Applying this method for ECG 
extraction, W retrieves uncorrelated linear mixtures of x(t) with maximal energy 
during the QRS complex.
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As detailed in [42], in the simplest case, the nonstationary sample set   can be 
identified by thresholding the time-varying power of an arbitrary reference channel 
r(t) (which can even be one of the channels of x(t), or a mixture of them) over a 
sliding window of length w:
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The ratio of Pw(t) for two windows of lengths w = w1 and w = w2 (w2 ≫ w1) can be 
used as a measure for detecting fast local nonstationary epochs within a slowly 
varying (or stationary) background activity:
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(5.21)

which is the local power envelope (LOPE) of the reference channel. For a global 
measure, the denominator P tw2

( )  can be replaced with the average signal power 
P∞. The values of ρ(t) significantly smaller or larger than 1 correspond to time 
epochs that are different (nonstationary) from the background activity. The rationale 
behind the above definition is that a stationary signal, such as the non-ECG back-
ground signals and noises, has a consistent energy profile over time, and notable 
deviations of the LOPE from unity (with appropriate window lengths w1 and w2) are 
indicators of nonstationary epochs such as the maternal and fetal QRS complexes. 
Therefore, the LOPE can be used to extract the time epochs of the maternal or fetal 
QRS as follows:

 
q r z r zLPE or= ( ) ³ ( ) £ Î{ }t t t tu l| , 

 
(5.22)

where ζu and ζl are predefined upper and lower thresholds satisfying ζu > 1 > ζl ≥ 0. 
In [42], other indexes based on the innovation process of an extended Kalman filter 
trained over the mECG were proposed for the identification and extraction of 
the fECG.

5.5.6  Approximate Joint Diagonalization Using 
ECG-Specific Priors

Maternal and fetal ECG source separation from background noise can benefit from 
the advantages of methods such as πCA and NSCA at the same time. Suppose that 
the matrices Ci (i = 1, …, K) are positive semi-definite matrices containing second- 
or higher-order statistics regarding the maternal and fetal ECG. For example, the 
matrices can be the lagged-covariance matrices corresponding to the maternal or 
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fetal heart, or the covariance matrices obtained by energy thresholding, as in 
NSCA. We may now seek the joint approximate diagonalizer W ∈ Rn × n, such that 
the matrices

 W C WT
i i i K= = ¼L , , ,1  (5.23)

are “as diagonal as possible.” It is known that for K > 2, the diagonalization is only 
achieved approximately by using different variants of approximate joint diagonal-
ization (AJD). Depending on the application and diagonalization algorithm, in order 
to achieve uncorrelated sources, the total covariance matrix 
C x m x mx x x

T
t t= ( ) -( ) ( ) -( ){ }  (m xx t= ( ){ } ) may also be among the set of 

matrices to be diagonalized.2 The approach based on AJD is more robust as com-
pared with πCA and NSCA, which only work with two matrices. It is also more 
effective than JADE and other generic ICA algorithms, as it uses specific features of 
the ECG of the mother and the fetus. However, the order of sources is no longer 
guaranteed in AJD.

5.5.7  Illustration

The DaISy fECG dataset is used for illustration [29]. This sample data consists of 
five abdominal and three thoracic channels recorded from the abdomen and chest of 
a pregnant woman at a sampling rate of 250 Hz. The eight channels of the dataset 
are depicted in Fig. 5.18.

The result of applying independent subspace decomposition [13], using the 
JADE algorithm [15, 17], is depicted in Fig. 5.19. Accordingly, the first, second, 
third, and fifth components correspond to the mECG subspace, the fourth and eighth 
components correspond to the fECG, and the sixth and seventh components 
are noise.

By performing R-wave detection on the last maternal thoracic channels of 
Fig. 5.18 (channel eight), the mECG phase θm(t) is calculated as detailed in Sect. 
5.2.2.2. Next, the time-varying mECG period t t

m  is calculated, from which the 
matrix Cm and the generalized eigenmatrix W (the joint diagonalizer) of the (Cm, 
Cx) pair are found and their columns are sorted in descending order of the corre-
sponding eigenvalues. The resultant periodic components calculated from (5.17) are 
depicted in Fig. 5.20. Accordingly, the first component, which corresponds to the 
largest eigenvalue, has the most resemblance with the mECG, while as the eigenval-
ues decrease, the signals become less similar to the mECG. Although two of the 
extracted components (components six and seven) are the fetal components, the 

2 Enforcing the diagonalization of Cx guarantees decorrelation of the extracted sources at a cost of 
consuming n(n − 1)/2 degrees of freedom of the matrix W. This is why some BSS algorithms do 
not enforce whitening or sphering but rather include the covariance matrix among the approxi-
mately diagonalized set of matrices at a cost of reduced performance [49].
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extraction of the fECG has not been explicitly enforced by the algorithm. This can 
be explained by considering that πCA is ranking the extracted components accord-
ing to their resemblance with the mECG period, while the fetal components do not 
resemble the mECG  when they are averaged synchronously with respect to the 
maternal R-peaks. Therefore, the order of appearance of the fECG among the 
extracted components is unprecedented,  merely as components that are uncorre-
lated with the mECG and the other signals.

As explained in Sect. 5.5.4, it is also possible to consider the fECG periodicity in 
the matrix Cf, which requires the fetal R-peaks for extracting the time-varying fetal 
period t t

f . To illustrate this case, the fECG component extracted by JADE in the 
fourth channel of Fig. 5.19 is used for fetal R-peak detection and phase calculation. 
Having calculated the fECG phase θf(t), GEVD is applied to (Cf, Cx) to extract the 
periodic components of the fECG. The resultant periodic components are depicted 
in Fig. 5.21. In this case, it is observed that the extracted components are ranked 
according to their resemblance with the fECG.

The next results correspond to the last type of covariance matrix defined in (5.18) 
by performing GEVD over the matrix pair (Cm, Cf) and calculating the periodic 
components from (5.17). The resulting components are depicted in Fig. 5.22. As 
expected, the first component mostly resembles the mECG, the last component the 
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Fig. 5.18 The DaISy dataset consisting of five maternal abdominal and three thoracic chan-
nels [29]
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fECG, and the intermediate components are blended from the maternal to fetal ECG 
plus noise. Note that in this case, the extracted components are no longer uncorre-
lated, since the covariance matrix of the data has not been diagonalized.

The next illustration corresponds to the NSCA algorithm. In this case, the local 
power envelope index detailed in Sect. 5.5.5 is used to detect the local power enve-
lope from the first channel of Fig. 5.18. Considering a typical fetal QRS length of 
approximately 50 ms, the sliding window lengths of the nonstationarity detector in 
(5.21) were set to w1 = 10 ms and w2 = 200 ms. The local power envelopes detected 
by these window lengths can belong to either the mECG or fECG. Therefore, the 
local peak envelopes of the mECG were independently detected from the last mater-
nal thoracic channel (as a channel which does not have any dominant fetal R-peak 
due to the electrode location). For this channel, the sliding window lengths were set 
to w1 = 20 ms and w2 = 400 ms, which are adapted for detecting the mECG segments 
by thresholding. Next, according to the fusion technique explained in [42], the tem-
porally nonstationary epochs of channel one were excluded from the nonstationary 
epochs of channel eight, resulting in time instants, which mainly correspond to the 
fECG and not the mECG. The resulting nonstationary time epochs were used to 
calculate the required NSCA covariance matrix according to the hypothesis test 
(5.19). Finally, GEVD was performed on the covariance matrices and the sources 
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Fig. 5.19 Independent components extracted from the dataset of Fig. 5.18, using the JADE algo-
rithm. Notice that components 1, 2, 3, and 5 correspond to the maternal subspace and components 
4 and 8 to the fetal subspace

5 Noninvasive Fetal Electrocardiography: Models, Technologies, and Algorithms



132

were obtained from (5.17). The results of this method together with the detected 
nonstationary time epochs are shown in Fig.  5.23, where it is observed that the 
fECG is successfully extracted and the components are ranked from top to bottom 
according to their similarity to the fECG. Furthermore, it is seen that the method has 
been able to extract the fECG even during the temporal overlaps of the mECG and 
fECG, despite the fact that some of the fetal QRS peaks have not been considered 
among the temporally nonstationary epochs (notice the missed fetal R-peaks at 
t = 1.0, 1.8, 4.0, and 4.8 seconds in the nonstationary epochs of Fig. 5.23a). Further 
details regarding this example can be found in [42].

5.6  Advanced Methods for Fetal ECG Extraction

In this section, some of the advanced methods, which have been developed in the 
literature for fECG extraction under special circumstances, such as low-rank and 
time-variant mixtures are reviewed.
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Fig. 5.20 Periodic components extracted by πCA, from the dataset of Fig. 5.18, with maternal 
ECG beat synchronization. The maternal ECG contribution has reduced from top to bottom

R. Sameni



133

5.6.1  Low-Rank Measurements and Nonlinearly Separable 
Fetal and Maternal ECG

As noted throughout the chapter, due to the number and placement of the electrodes, 
and also the fetal positioning, the maternal abdominal recordings can become rank 
deficient. As a result, in some cases, the fetal and maternal ECG may remain insepa-
rable using any of the aforementioned linear transforms. In these cases, nonlinear 
methods can be used to separate the maternal and fetal subspaces, or additional 
synthetic channels can be added to compensate the rank deficiency of the mixtures.

In order to solve the non-separability of the mECG, it has been proposed to syn-
thetically generate q excess “clean” mECG channels—i.e., synthetic channels that 
resemble the mECG, but do not have any fECG—and to augment the excess chan-
nels as auxiliary channel(s) xa(t) ∈ Rq with the original measured signals [41]:
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where x t n q( )Î + . It was shown in [41] that the q additional synthetic channels 
amend the rank deficiency of the problem and help in obtaining a determined or 
over-determined mixture from which the fECG could be extracted using conven-
tional ICA, πCA, or NSCA algorithms. Apparently, the auxiliary channel 
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Fig. 5.21 Periodic components extracted by πCA, from the dataset of Fig. 5.18, with fetal ECG 
beat synchronization. It is observed that the fetal ECG contribution reduces from top to bottom
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generation and augmentation is a nonlinear procedure, which utilizes the maternal 
signals’ null space. To implement this method, a channel that resembles the mater-
nal abdominal leads, but is not exactly the same as the other abdominal recorded 
channels, is needed, which at the same time prevents the multichannel data from 
becoming singular and does not contain any traces of the fECG.

The ECG cyclostationarity detailed in Sect. 5.4.2, together with the realistic 
ECG generator described in 5.2.2, provides the means of constructing the required 
synthetic maternal abdominal ECG. For this, a set of reference channels are selected. 
Next, the average mECG morphology is calculated by weighted averaging [52]. 
Either the average morphology is repeated directly at the positions of the maternal 
R-peaks to construct a synthetic auxiliary channel (according to Sect. 5.2.2) or the 
mECG is extracted by single-channel adaptive or extended Kalman filtering, as 
detailed in Sects. 5.4.3 and 5.4.4. The resulting mECG channels are next augmented 
with the original channels according to (5.24). The augmented data is finally given 
to multichannel source separation algorithms to recover the maternal and fetal ECG 
components. Note that this technique may not generally be proved to resolve the 
problem of rank deficiency, as it is data dependent. However, as demonstrated in 
[41], it has been shown to resolve the rank deficiency of some of the most popular 
fECG datasets available online, which have few number of channels and conven-
tional multichannel BSS algorithms have failed [72, 73]. For illustration, a sample 
data adapted from the abdominal and direct fetal electrocardiogram (ADFECG) 
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Fig. 5.22 Periodic components extracted by πCA from the dataset of Fig. 5.18, with maternal and 
fetal ECG beat synchronization. The maternal (fetal) ECG contribution reduces (increases) from 
top to bottom
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database [72] is shown in Fig. 5.24. As shown in this figure, the maternal and fetal 
ECG were not fully separable by applying JADE on the original four channels, 
since traces of the mECG exist in the fECG component. However, by adding an 
auxiliary channel according to the procedure detailed in [41], JADE has achieved in 
fully separating the mECG and fECG.
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Fig. 5.23 The result of NSCA for the sample data of Fig. 5.18. (a) The reference mECG local 
power envelope time epochs (top panel), an abdominal channel local power envelope time epochs 
(middle panel), and the merged local power envelope time epochs after excluding the mECG time 
epochs (bottom panel). The nonstationary epochs are shown as red pulses. (b) The NSCA result. 
(Adapted from [42])
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5.6.2  Maternal-Fetal Subspace Decomposition by Deflation

In [74, 85, 86], a deflation-based procedure, known as denoising by deflation 
(DEFL), was proposed for the general problem of rank-deficient and noisy source 
separation, with special interest in noninvasive fECG extraction. DEFL is a sub-
space denoising algorithm, which separates the undesired signals of multichannel 
noisy data using a sequence of linear decomposition, denoising, and linear re- 
composition in successive iterations. The overall block diagram of DEFL for mECG 
cancellation is shown in Fig. 5.25. Accordingly, the linear decomposition unit is 
generally a GEVD procedure such as πCA (or NSCA), using the R-peaks of the 
mother. The outputs of this unit are ranked in descending (ascending) order of 
resemblance with the signal (noise) subspace. This block concentrates the compo-
nents of the maternal subspace in the first few components of its output. The unit is 
followed by a linear or nonlinear monotonic denoising filter that is applied to the 
first L components (1 ≤ L < N) of the previous block. This filter can be any of the 
single-channel filters detailed in Sect. 5.4, applied to each channel separately, or a 
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(d) JADE on augmented channels

Fig. 5.24 (a) A segment of four abdominal channels of the ADFECG database; (b) the result of 
JADE on the original data segment; (c) the data segment augmented with an auxiliary mECG chan-
nel added as the first channel; (d) the result of JADE on the augmented data segment. (Adapted 
from [40, 41])
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multichannel filter applied to the first L components together. However, such denois-
ing could have been directly applied to the original data x(t), but by applying it after 
the linear decomposition step, we benefit from the improved signal quality of the 
first few components extracted by the linear decomposition block. This improve-
ment is the direct consequence of maximizing the πCA or NSCA cost functions 
during the GEVD procedure. Finally, the residual signals of the L denoised compo-
nents and the other N − L unchanged components are transformed back to the obser-
vation space, using the inverse of the linear decomposition matrix. In each iteration 
of the algorithm, portions of the mECG, fECG, and noise subspaces are separated, 
and the procedure is repeated until the output signals satisfy some predefined mea-
sure of signal/noise separability.

According to Fig. 5.25, each iteration of DEFL can be summarized as follows:

 
y W G W xi i

T
i
T

it t L( ) = ( )( )- ;
 

(5.25)

where xi(t) is the input data of the ith iteration (x1(t) = x(t)), yi is the output of the 
iteration, G(⋅; L) is the denoising operator applied to the first L channels of the 
input, and Wi is the spatial filter (πCA or NSCA).

The concept behind (5.25) is analogous to wavelet shrinkage used for single- 
channel denoising. An important property of the DEFL algorithm is that, unlike 
most ICA-based denoising schemes, the data dimensionality is preserved. Moreover, 
due to the denoising block between the linear projection stages, it overall performs 
as a nonlinear filtering scheme, which can deal with full-rank and even non-additive 
noise mixtures. An adaptive version of this algorithm has also been developed for 
online fECG extraction [33].

5.6.3  Block-Wise and Online Fetal ECG Extraction

For long multichannel data records, the batch processing requires a huge amount of 
memory and processing time. Moreover, during long recording sessions, it often 
happens that the fetus moves, which means that the fetal position changes with 
respect to the fixed maternal abdominal sensors. Therefore, stationary source 

Fig. 5.25 The DEFL algorithm for separating the mECG from abdominal recordings in highly 
noisy and rank-deficient scenarios [85, 86]
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separation algorithms, which as in (5.10) assume a constant mixing matrix A, will 
fail or result in partial fECG source separation. To resolve this issue, the data is 
partitioned and processed block-wise, or algorithms specific for online processing 
are used.

5.6.3.1  Block-Wise Analysis

Depending on the application, the maternal abdominal data can be partitioned into 
overlapping or non-overlapping blocks, and any of the fECG extraction schemes 
detailed in previous sections is applied to each block. This is the most popular 
method, as it does not require any change in the algorithms used for fECG extrac-
tion. However, the challenge is how to automatically identify and recombine the 
extracted fECG of successive blocks. Especially, as noted in Sect. 5.5, ICA algo-
rithms, which are one of the most popular methods for fECG extraction, do not 
guarantee to preserve the order and amplitude of the sources over different data 
blocks. As a result, for non-supervised algorithms, a post-fECG extraction unit is 
required, which automatically detects, normalizes, and aligns the fECG of succes-
sive blocks. Automatic signal quality indexes have been proposed in the literature 
for adult ECG signal quality assessment [3, 22, 53]. In [41], several signal quality 
indexes were specifically proposed for the fECG and successfully tested over sev-
eral available datasets.

5.6.3.2  Online Source Separation

An alternative solution for processing long fECG data records is to use sample-wise 
online source separation algorithms. Adaptive source separation algorithms are well 
known in the blind source separation literature. One of the most popular algorithms 
in this context is known as equivariant adaptive source separation via indepen-
dence (EASI) [16]. In this method, the separating matrix at time instant t, denoted 
by B(t), is adaptively updated using an equivariant serial update:

 
B B H y Bt t t t t+( ) = ( ) - ( ) ( )( ) ( )1 l

 
(5.26)

where λ(t) is an update factor, y(t) = B(t)x(t) is the adaptive estimate of the indepen-
dent sources, and H(⋅) is a nonlinear function of the estimated sources cumulants 
[16]. For time-varying mixtures, the mixing matrix A defined in (5.10) becomes 
time-variant and the algorithm seeks the demixing matrix such that B(t)A(t) 
approaches identity, i.e., where ∥H(y(t)) ∥  → 0. This approach also works for the 
cases, in which the variations are due to the sources rather than the mixture. For 
instance, suppose that the mixing matrix A(t) = A is constant, but the sources are 
nonstationary. As a result, the function H(⋅) deviates from zero as the recursion 
reaches the nonstationary epochs of the signals. Various source separation 
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algorithms, which use sample-wise updates (instead of global averaging), can be 
used for online fECG extraction [38, Ch. 3.2], [26, Ch. 4.5].

Finally note that for an online implementation of GEVD-based algorithms (such 
as πCA and NSCA), the covariance matrices Cx and Cm are both updated in time, i.e.,
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(5.27)

where α, β ≤  1 are forgetting factors and τt is the time-variant heart-rate period 
defined in (5.4). Further details regarding the various online variants of fECG 
extraction algorithms can be followed from [12, 33, 41].

5.7  Fetal ECG Post-processing

5.7.1  Fetal R-Peak Detection

After extracting the fECG from maternal abdominal recordings, the next step is to 
extract clinical parameters from the fECG. The fetal heart rate (fHR) is the first and 
most commonly used parameter, which in turn requires the detection of the fECG 
R-peaks. In this context, classical R-peak detectors, such as local peak search over 
sliding windows or the well-known Pan-Tompkins method used in adult ECG [68], 
are the most common. However, considering the relatively low SNR of the fECG 
and its limited morphological shapes, specific fetal R-peak detectors have been 
developed that are robust to noise [12, 41]. These methods are based on a matched 
filter using fixed or adaptive QRS-like templates. A wide range of these techniques 
were studied and compared with one another during the annual Physionet/
Computing in Cardiology Challenge 2013 [90].

After fetal R-peaks, the fHR time series is commonly post-processed to refine 
the calculated heart rate time series and to correct the excess and missing R-peaks. 
These corrections have been commonly performed by rule-based methods, which 
correct the outlier R-peaks (and the corresponding heart beats), while keeping the 
normal beats unchanged [30, 40, 90].

5.7.2  Fetal ECG Enhancement

Depending on the signal quality, after mECG cancellation, the fECG might be 
directly detectable from one or more of the residual channels, or additional stages 
may be required for extracting the fECG from the residual background noise. As 
detailed in Sect. 5.4, numerous techniques have been proposed for ECG denoising, 
including Kalman filters [78, 79, 82], wavelet denoisers [44, 75], filtering using 
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piecewise smoothness priors [75], etc. An example of such post-processing for 
fECG enhancement is demonstrated in Fig. 5.14.

For morphological analysis due to the relatively low SNR of fECG signals— 
even after mECG and background noise cancellation— the SNR improvement 
obtained by post-processing filters can still be insufficient for reliable fECG param-
eter extraction. In this case, an effective approach is to use synchronous weighted 
averaging of successive beats [52]. This procedure is known to improve the SNR by 
a factor of K, where K is the number of averaged beats.

5.7.3  Fetal ECG Morphological Parameter Extraction

To date, the morphological parameters of the fECG and their relationship with the 
well-being of the fetus are still under study. Researchers have extracted parameters 
such as the QT-interval [7, 9, 23] and the ST-segment [21, 60]. The typical bench-
mark for these studies is commonly the invasive fECG obtained from the fetal 
scalp electrodes acquired during labor. However, it is currently difficult to evaluate 
the fECG parameters independently since there are very few open-access fECG 
databases with expert annotations. Considering that the technology of fECG acqui-
sition and processing is emerging as a standard procedure, it is foreseen that fetal 
ECG- based parameter extraction will be the main focus of research in future 
studies.

5.8  Conclusion

In this chapter, some of the major technologies and algorithms used for the acquisi-
tion and noninvasive processing of fetal electrocardiogram signals from maternal 
abdominal recordings were reviewed. The recent advances in this domain, espe-
cially during the past decade, demonstrate that the technology is emerging as a sta-
ble and reliable alternative for invasive methods. A promising future trend is to 
combine this technology with other low-cost fetal cardiac monitoring modalities 
such as the phonocardiogram (PCG) and the Doppler technology. The extension of 
these technologies to multiple pregnancies and pathological cases and its combina-
tion with other vital aspects such as the development of the fetal central nervous 
system (CNS) and cerebral growth are among the future challenges of this domain. 
The availability of open-access data with clinical annotations and open-source 
devices and algorithms are among the requirements that can significantly accelerate 
the development of this technology.
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