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Abstract Accurate identification of electromechanical oscillations on power
systems and determination of its stability condition is a fundamental process in
order to carry out an appropriate control action to prevent the partial loss or complete
blackout of the system.However, the non-linear characteristics ofmeasured variables
often lead to incorrect information about the development of the electromechanical
oscillations, making wide-area monitoring a challenging task. In addition, signifi-
cant amount of information in extra large power systems is produced, which has to
be stored on local servers requiring large amounts of central processing unit (CPU)
storage. For these reasons, algorithms for Big Data problems in power systems are
required and the methods presented on this chapter introduce some potential solu-
tions. In this context, different data-driving methods based on spectral analysis of
linear operator are presented for the analysis of electromechanical oscillations from
a spatio-temporal perspective. These algorithms have the ability to process spatio-
temporal data simultaneously, making possible to characterize inter-area and global
oscillations (from 0.1 Hz to 1.0 Hz). To validate the effectiveness of the proposed
approaches, two test systems with different structural and generation capacities are
analysed: the Mexican Interconnected (MI) system and the initial dynamic model of
Continental Europe from ENTSO-E. First, data collected from a transient stability
study on the MI system are used to illustrate the ability of data-driving methods
to characterize modal oscillations on longitudinal systems; where several inter-area
modes produce interactions of different electrical areas. Then, simulation results from
the initial dynamic model of ENTSO-E are analysed to characterize the propagation
of its global electromechanical modes across Europe, which have been denominated
as the North-South and East-West modes with frequencies of approximately 0.15 Hz
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and 0.25 Hz, respectively. The second analysis include the interconnection of Turkey
(TR) to Continental Europe in December 2010, which derived on the grow of size
and complexity of the original system having as result a decrease in the frequency
value for the East-West mode and the introduction of a third inter-area mode on the
system. The chapter concludes comparing the results of the proposed approaches
against conventional methods available in the literature.

Keywords Central processing unit · WAMs · Mexican interconnected system ·
PMUs · Smart grid · Interconnected power systems

1 Introduction

Interconnections among different electrical power systems (EPS) offers signifi-
cant technical, economic and environmental advantages. In the same way, energy
exchange over distant regions provides flexibility in terms of maintaining the balance
between generation and demand as result of the energy transfer condition [1, 2].

On the other hand, despite the advantages offered by these interconnections, there
are several technical and economic limitations related to it. Particularly when the
energy has to be transferred over long distances (generally over more than 100 km),
which in power systems commonly represents spanning over one or more countries
[3]. The interconnection of the EPS represents a complex problem for the system
operators and is the main cause of low frequency oscillations when negative events
such as trip of generation units, load variation or three-phase faults on transmission
lines occur [4].

The presence of this type of oscillations, commonly referred as electromechanical
oscillations, is a typical problem of interconnected systems around the world [3]. The
electromechanical oscillations, which are the responsible of the low frequency oscil-
lations can be classified as: local, inter-area and inter-continental oscillation modes,
respectively [4]. These modes are characterized by its frequencies range, the number
of participating and the location of generation units involved during the oscillatory
process. Local modes oscillate between ~0.8 and 2Hz and the participatingmachines
are located in the same power station, which can accommodate up to 10 generation
units. Inter-area modes range from ~0.25 to 0.7 Hz are characterized by oscillations
between large groups of machines, which are located at different defined regions,
especially when the interconnection in the system is weak. Intercontinental oscil-
lation modes present a similar pattern as inter-area modes, however, the oscillation
frequency is lower (between ~0.1 and 0.2 Hz) and involves large groups of machines
during the oscillatory process, which are located on different countries [1, 2].

The effect and behaviour of low-frequency oscillations on interconnected power
systems depends on different factors such as size of the areas conforming the
interconnected system, the geographic distance between areas, the generation and
power transfer capacity between the different areas, the demand of the loads, the
synchronous machine type and the network topology. Identification of inter-area
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oscillations in large power systems represents an extra degree of complexity due to
the processing capacity required from classical analysis tools, which are affected by
the volume, speed and variety of the input data generated from numerical simulation
based on models or monitoring systems [2, 5]. For these reasons, it is necessary to
use new alternative approaches for the analysis of large dimensional power systems.

The recent development of wide area monitoring systems (WAMS) has open the
opportunity to observe and track variables such as frequency and voltage magnitudes
and angles of the voltage and current at strategic locations such as directly on the
generation units, relevant loads andEPS compensation [6]. The fast recording (5–120
samples/s) achieved by phasor measurement units (PMUs), which is data including
also the time stamp open new opportunities to develop tools for monitoring, analysis
and control of electromechanical oscillations on EPS [7, 8]. However, is not straight-
forward to accomplish these tasks given the challenges related to these devices such
as having partial observability of the system, the limitation for the detection and
prediction of an instability condition in case of a disturbance and the capacity to
process the data correlating the spatio-temporal information contained in the EPS.

The development and improvement of analytical tools [6–8] represents a difficult
task due to the particular characteristics inherentwithin these datasets such as volume,
variety and speed on which the data is generated, such as computer simulations or
real measurement systems. These characteristics vary depending on the order (nodes,
generators, among others), of the dynamic model of the EPS, the sampling and
simulation time. Furthermore, the volume of data obtained from the measurement
recordings varies depending on the number of PMUs placed in the network, as well
as the sampling frequency and the window size collected. Therefore, one of the
alternatives adopted in recent years to address this issue is the inclusion of data
mining and data-driven techniques for evaluation of the security of the EPS, fault
detection, as well as monitoring and analysis of electromechanical oscillations [8].

The aforementioned challenges motivate the development of algorithms with
potential to process data that consider the spatio-temporal information available
in the EPS. The proposed approach should include the ability to process volume,
variety and speed within the data in order to capture the dynamic behaviour that
occurs during an electromechanical oscillation. Similarly, the proposed methods
should provide analytical information to understand themechanismof propagation of
the electromechanical oscillations. Upon this premise, this chapter presents different
alternative approaches, to extract relevant modal characteristics of electromechanical
oscillations that help to analyse this phenomenon on large interconnected electrical
power systems.
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2 Dynamic System Analysis Based on the Koopman
Operator

The basis of the method referred as dynamic mode decomposition (DMD) is in fact
the theory of the Koopman operator, which was introduced in 1931 for the analysis
of Hamiltonian systems in discrete time [9]. DMD can be used as one algorithm
for finding Koopman modes from spatio-temporal data. Each Koopman mode may
be associated to a unique frequency and growth rate and interpreted as a nonlinear
generalization of global eigenmodes of a linearized system. Based on the original
definition of the Koopman operator in continuous time [10]:

Consider a continuous time dynamic system:

dx
dt

= f (x) (1)

where x ∈ M is the state within a manifold M of dimension N . The Koopman
operatorK is a linear operator of infinite dimension, which operates on all observable
functions g : M → C such that

Kg(x) = g( f (x)) (2)

it is established that the Koopman operator performs a transformation from the
representation in state space that considers a non-linear dynamic of finite dimen-
sion, towards the Koopman representation that considers a linear dynamic of infinite
dimension.

In this case, the f (∗) term represents the dynamic of the system and the Koopman
operator can be defined as a dynamic system in discrete time [11]. From (1), it can
be induced a discrete system given by the flow map F : M → Mmapping the state
x(t0) to a future time x(t0 + t):

F(x(t0)) = x(t0 + t) = x(t0) +
t0+t∫

t0

f (x(τ ))dτ (3)

From the previous definition, the dynamic system is induced in discrete time as
follows:

xk+1 = F(xk) (4)

where the discrete time vector is defined as xk = x(kt) and F represents the flowmap
in discrete time. The analogue operation for the discrete timeKoopmanoperatorK for
the observable function g is based in the continuous time Eq. (2) and it is formulated
using the following expression:
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Kg(xk) = g(F(xk)) = g(xk+1) (5)

where K denote the discrete time Koopman operator. By considering the spectral
decomposition of the Koopman operator as an eigenvalue problem it is possible to
represent the dynamic solution of the system:

Kϕk = λkϕk (6)

where ϕk are the Koopman’s eigenfunctions. Expanding these eigenfunctions ϕk
based on the solution of theKoopman operator it is possible to represent the evolution
of the dynamic of the system through expansion of the nonlinear observable functions
g in terms of ϕk :

g(x) =

⎡
⎢⎢⎢⎣

g1(x)

g2(x)
...

gm(x)

⎤
⎥⎥⎥⎦ =

∞∑
k=1

ϕk(x)vk ! (7)

where vk is the mode kth associated to ϕk . Considering the eigenvalue problem
described on (6), with the definition (7) it is possible to represent the dynamic
evolution of the system using the following equation:

Kg(x) =
∞∑
k=1

Kϕk(x)vk =
∞∑
k=1

λkϕk(x)vk = g(xk+1) (8)

This expression represents the solution of the operator K in terms of the modes vk

and the eigenvalues λk of the system by means of an infinity sum. The dimensional
problem can be tackled with a finite sum of modes that approximate the spectral
solution of Koopman.

In the following section, amethodology to approximate a linearKoopmanoperator
using considerations such as the measurements of the system under investigation is
provided.

2.1 Schematic Visualization of Finite Dimensional
Approximation of the Koopman Operator

To approximate the operator of infinite dimensionK, in [12] is considered one restric-
tion in the group of nonlinear observable functions g in the form of an invariant
subspace defined asRN , which includes eigenfunctions of the Koopman operator K .
With this restriction, the formation of a finite dimension operator K is induced and
also the observation functions in the subspace RN are mapped.
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Figure 1a represents the transition of the flow map in state space x to the flow

map of nonlinear observable functions g =
[
g1 g2 . . . gm

]T
restricted by a finite

subspace R
N through the Koopman operator K . The space R

N can be interpreted
as a delineation from which the mapping of the states of the system operate. On the
other hand, Fig. 1b represents the sequence of the observation functions mapping
g(xk) = yk conducted by the operator K . In this case, the mapping of the operator
K approximates the original trajectory on a linear space of infinite dimension. The
mapping effect of the Koopman operator on dynamic systems has been numerically
illustrated at Ref. [12].

Through this finite dimensional approximation, the DMDmethod was developed
as an alternative to approximate themodes of theKoopmanoperator K . The following
sectionpresents the relationship of theKoopmanmodal decompositionwith theDMD
model.

Fig. 1 Schematic visualization of the Koopman operator mapping in the invariant subspace RN :
a represents a linear space of finite dimension onwhich the operatorK acts and bmapping equivalent
of the observable functions y and the states x [12]
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Fig. 2 Transition of DMD model approximation to Koopman model [12]

2.2 Dynamic Mode Decomposition (DMD) as Approximation
to the Koopman Operator

As introduced on Sect. 2.1, DMD approach only requires the vector measurement

of the states of the system, which is defined as xk = [
x1(tk) x2(tk) . . . xm(tk)

]T ∈
R

m, k = 1, 2, . . . , N , to approximate the dynamic of the system by means of the
linear operator A ∈ R

mxm :

xk+1 = Axk (9)

In (9), the operator A represents the approximation of the DMD model to the
finite dimensional operator K in discrete time through a noise-free process [13]. The
assembling of the DMDmodel as an approximation to the Koopman model is shown
on Fig. 2.

From Fig. 2 it can be observed that the Koopman model is put together from
nonlinear observable functions yk = g(xk), from which the columns of the matrices
Y N−1

1 and Y N
2 are formed as follows:

Y N−1
1 =

⎡
⎢⎢⎢⎣

y1(t1) . . . y1(tN−1)

y2(t1) . . . y2(tN−1)
...

. . .
...

ym(t1) . . . ym(tN−1)

⎤
⎥⎥⎥⎦ = [

y1 . . . yN−1

] ∈ R
mxN−1 (10)
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Y N
2 =

⎡
⎢⎢⎢⎣

y1(t2) . . . y1(tN )

y2(t2) . . . y2(tN )
...

. . .
...

ym(t2) . . . ym(tN )

⎤
⎥⎥⎥⎦ = [

y2 . . . yN
] ∈ R

mxN−1 (11)

where N is the total number of snapshots and m is the total number of observations
or states respectively.

In this case, the columns of yk corresponding to the spectral analysis of Koopman
represent the transition in the physical space of the mapping to a space of observable
functions. Within this space, a representation of the dynamic of the system using (8)
can be created. Using this representation, the intrinsic properties of the dynamic of
the system represented in (1) are meet. Moreover, the eigenfunctions define a change
of coordinates that linearize the system and where the observable functions yk define
a lineal evolution of the characteristic space.

In contrast, the DMD model is developed from direct measurements of the state
vector xk , from which the matrices XN−1

1 and XN
2 are derived:

XN−1
1 =

⎡
⎢⎢⎢⎣

x1(t1) · · · x1(tN−1)

x2(t1) · · · x2(tN−1)
...

. . .
...

xm(t1) · · · xm(tN−1)

⎤
⎥⎥⎥⎦ = [

x1 · · · xN−1

] ∈ R
mxN−1 (12)

XN
2 =

⎡
⎢⎢⎢⎣

x1(t1) · · · x1(tN )

x2(t1) · · · x2(tN )
...

. . .
...

xm(t1) · · · xm(tN )

⎤
⎥⎥⎥⎦ = [

x2 · · · xN

] ∈ R
mxN−1 (13)

The relation between the models deduced with DMD and Koopman is based on
the following two criteria:

1. The spectral decomposition of the operator A through the eigenvalue problem:

AW = Wλk (14)

where λk and W represent the eigenvalues and eigenvectors, respectively.

2. From the spectral decomposition of A, the Theorem from [9] is presented:
“Take ϕk as the eigenfunctions of K and eigenvalues λk , and assume ϕk ∈
span

{
g j

}
, such that

ϕk(x) = w1g1(x) + w2g2(x) + · · · + wmgm(x) (15)
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For some W =
[
w1 w2 . . . wm

]T ∈ C
m . If W ∈ R(X), where R is the rank of

the matrix X , then W is a left eigenvector of the operator A with eigenvalues λk

such that W∗A = λkW∗.”

In this case, the associated eigenvectors W to the operator A are used to approx-
imate the Koopman eigenfunctions ϕk and the eigenvalues λk represent an approx-
imation to the eigenvalues λk associated to the operator K by means of the DMD
algorithm.

After the relation between the DMD and the Koopman models have been
presented, in the next section the different forms to compute the operator A and
the potential applications of the DMD method are introduced.

2.3 Standard Approximation of the Operator A

Taking the formulation depicted on [13, 14] as reference, the development of the
approximation of the operator DMD in a general form is introduced. From (9) and
with the help of the Krylov sequence [15]:

X = [
x1 Ax1 A2x1 . . . AN−1x1

] = [
x1 x2 x3 . . . xN

]
(16)

XN−1
1 = [

x1 Ax1 A2x1 . . . AN−2x1
] = [

x1 x2 x3 · · · xN−1

]
(17)

XN
2 = [

Ax1 A2x1 A3x1 . . . AN−1x1
] = [

x2 x3 x4 . . . xN

]
(18)

in this case, Eq. (16) shows the succession from x2 = Ax1, x3 = Ax2 = A(Ax1) =
A2x1 to xk = Axk−1.

This technique is based on Arnoldi’s method [15], which is related to the solution
of a polynomial approximation problem. This technique assumes that the polynomial
operator is invariant and the system measurements are linearly independent. With a
sufficiently large number of snapshots it is considered that the last vector xN can be
represented as a linear combination of the previous snapshots [14], as indicated in
the following expression:

xN = c1x1 + c2x2 + · · · + cN−1xN−1 + r (19)

From Eq. (19), a more compact form of the expansion of vector xN by means of
the coefficient vector c = [

c1c2 . . . cN−1
]T ∈ R

N−1 is shown.

xN = XN−1
1 c+ r (20)
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The expansion of the sequence XN
2 can be represented using the following

equation:

XN
2 = [

x2 x3 x4 . . . XN−1
1 c

] + r (21)

and in matrix form using the companion matrix S:

XN
2 = SXN−1

1 + r (22)

where the structure of the S matrix is shown in the following expression:

S =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
. . .

...
...

0 0 . . . 1 cN−1

⎤
⎥⎥⎥⎥⎥⎦

∈ R
N−1xN−1 (23)

On the other hand, by approximating the sequence XN
2 using the operator A

through XN
2 = AXN−1

1 and taking (22) it can be shown that:

XN
2 = AXN−1

1 = SXN−1
1 + r (24)

Conversely, two of the approximations for obtaining the companion matrix S are
presented by means of the following algorithms [16]:

• Pseudoinverse

The solution through pseudoinverse matrix, also known as the Moore–Penrose
matrix, is a generalization of the inversematrix and represents the best approximation
of the solution to the mean square error corresponding to the following optimization
problem:

r = ∥∥XN
2 − XN−1

1 S
∥∥
2 (25)

The solution to this optimization problem focused on the Companion matrix is
given by the following equation:

S = XN†
2 XN−1

1 ∈ R
N−1xN−1 (26)

where † represents the Moore–Penrose matrix. With this expression, an approxima-
tion of the operator A is obtained through the Companion S matrix in an N − 1
dimension.
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• Orthogonal Projection Matrix

In this technique, the approximation of operator A is obtained from a low order
model using a reduction technique such as proper orthogonal decomposition (POD).
The basis of this technique is the singular value decomposition (SVD).

The SVD decomposition is based on a matrix representation M ∈ R
mxN using

two orthogonal unitary matrices U ∈ R
Nxm and V ∗ ∈ R

NxN , which are denomi-
nated left and right singular vectors respectively, and a diagonal matrix Σ ∈ R

mxm ,
which contains the singular values of the matrix in descending order. It is possible to
compute a reduced version of the SVDdecomposition using the first r singular values
of �, where the dimension of U , V ∗ and Σ is reduced to Ũ ∈ R

Nxr , Ṽ
∗ ∈ R

r xr and
Σ̃ ∈ R

r xr .
From the SVD decomposition of the sequence XN−1

1 :

XN−1
1 = UΣV ∗ = [

Ũ
][

Σ̃0
][ Ṽ

∗

Ṽ
∗
s

]
(27)

The approximation of the sequence XN
2 is posed through the operator A using the

following equation:

X̃ N
2 ≈ AŨΣ̃ Ṽ

∗
(28)

As mentioned in [14], a representation of A is obtained in the base covered by
the left singular vector’s modes of the sequence XN−1

1 by means of the following
expression

S̃ � Ũ
∗
AŨ

∗ = Ũ
∗
XN

2 Ṽ Σ̃
−1

(29)

This approach seeks a reduced representation based on r dominant modes that
capture the larger energy content in the dynamic of the system.

3 DMD Based Data-Driving Methods for Simultaneous
Processing of Spatio-Temporal Data

Nowadays, the application of data-driven techniques in the modelling and control of
physical systems is a field that has evolved rapidly due to the potential to work with
measurements, either from historical data, numerical simulations or experimental
data [12, 14]. DMD is one of themethods that has the potential to obtain the dynamics
of complex and large systems. The DMD method was introduced by Schmid &
Sesterhen for the analysis of dynamic fluids and was defined in [14] as a form to
decompose complex flows into a representation based on coherent spatio-temporal
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structures. However, DMDhas beenwidely used for the analysis of nonlinear dynam-
ical systems, such as stock market [17], neuroscience [18], climate phenomena
[19], thermodynamic process [20], foreground/background video separation [21]
and more.

In the context of power system applications, DMD is one of the most recent
post-processing tools for application on power system, where a large volume of
data is collected from diverse monitoring systems (WAMS, SCADA, AMI), taking
advantage of its ability to process simultaneously spatio-temporal data. Based on the
pointed-out ability, DMD has been applied on ring-down modal identification anal-
ysis, [13, 22–26] state estimation and prediction and control [27], coherency iden-
tification [28–31], distortion harmonic identification [32], short-term electric load
forecasting [33], voltage analysis [34] and various other power system applications
[35].

In this chapter a comparison among DMD variants is carried out; its perfor-
mance is evaluated through various experiments conducted on different power system
scenarios with different interconnected system network. The effectiveness of the
DMD based method is verified by comparing the results with conventional power
system stability methods. The promising results suggest that the some of the DMD
approach can be used as an efficient candidate for estimating the power system
frequency and amplitude, damping rate, coherency groups identification on large
interconnected power systems.

3.1 SVD Based DMD (SVD-DMD)

One form of interpreting the dynamic behaviour of a system can be obtained from the
modal decomposition of the S̃ operator by taking the orthogonal projection matrix
as a basis

S̃
SV D = ϒ SV D�SV Dϒ SV D−1 (30)

where ϒ SV D represents the matrix of the left eigenvectors, ϒ SV D−1 is the matrix of
the right eigenvectors and �SV D is a diagonal matrix of eigenvectors and are defined
by the following expressions:

�SV D ∈ R
mxm =

⎡
⎢⎣

λSV D
1 . . . 0
...

. . .
...

0 · · · λSV D
m

⎤
⎥⎦ (31)

ϒ SV D ∈ R
mxm =

⎡
⎢⎢⎣

...
...

...

vSV D
1 · · · vSV D

m
...

...
...

⎤
⎥⎥⎦ (32)
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With the modal decomposition of the operator S̃ the analytical solution to the
problem of reconstructing data is presented:

X̃
N
2 ≈ �SV D�SV D�SV D(t) (33)

where the structure �SV D represents the spatial term of the dynamic of the system
and is defined as follows:

�SV D ∈ C
mxm = Ũϒ SV D = [

φSV D
1 . . . φSV D

m

]
(34)

and the structure �SV D(t) represents the temporal evolution of the modes of the
system and is defined as [13]:

�SV D(t) ∈ C
mxN−1 = ϒ SV D−1�̃Ṽ∗ =

⎡
⎢⎢⎢⎢⎢⎣

m∑
k=1

Υ SV D−1
1k aSV D

k (t)

...
m∑
k=1

Υ SV D−1
1m aSV D

k (t)

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
ãSV D
1 (t)

...

ãSV D
m (t)

⎤
⎥⎦

(35)

Figure 3 shows a schematic representation of the spatio-temporal structure asso-
ciated to the dynamic of the system through the solution of the data reconstruction
problem.

In this case, the spatio-temporal structure shown on Fig. 3 displays the principal
components, a spatial component φ, a temporal component ãk and a weighting factor
λ. With these three components, the associated characteristics of the spatio-temporal
structure of the dynamic of the system can be identified.

Identification of frequency and damping associate to mode φSV D
j can be

represented as follows [13]:

f SV D
j = �{

log
(
λSV D
i

)}
�t
2π

(36)

Fig. 3 Spatio-temporal modal decomposition structure of data by SVD-DMD
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ζ SV D
j = �{

log
(
λSV D
i

)}
/�t (37)

On the other hand, due to the spatial structure of the dynamic of the system
associated to the modes of the system defined as φSV D

j a participation factor related
to each mode at instant t0 can be calculated using the normalized magnitude of
each mode

∥∥φSV D
j

∥∥. Similarly, the existing groups can be visualized with a similar
dynamic behaviour using the phase ∠φSV D

j .
One form of visualizing the participation factors for each state of the system is

through the time structure associated with the expression (35). When the energy
resulting from each temporal term defined on Eq. (38) is considered

Ẽ SV D
k = ∥∥̃aSV D

k (t)
∥∥ (38)

the relation mode-state is defined as in the Ref. [13]:

X̃
NSV D
2 =

⎡
⎢⎣

αSV D
11 αSV D

1 j αSV D
mm

...
. . .

...

αSV D
m1 αSV D

mj αSV D
mm

⎤
⎥⎦ (39)

αSV D
i j = ∣∣φSV D

i j λSV D
j Ẽ SV D

k (t)
∣∣ (40)

where the term αSV D
i j is a measure of the participation factor of mode φSV D

j in the
states of the system.

It is important to note that the use of each variant depends on the characteristics
of the dataset X , whether m < N or m > N , since the matrix structure in each case
will be different. One of the application approaches to the S̃ variant allows a compact
representation in the sense of the use of a certain amount of singular values, unlike
the Companion S matrix, which focus its approximation on the number of available
snapshots.

In the same way, in the modal identification approach, by means of the operator S̃
the modal analysis is based on the selection of the r singular values with the largest
energy content considered in the SVD decomposition. In this case a full range matrix
is assumed, i.e. r = m; on the other hand, the operator S considers N − 1 modal
components. This part represents an advantage in the selection and display of a
certain number of modal components for on-line applications.

Recently, one of the trends in the search for a solution to the problem of calculating
the approximation to operator A based on (15) is through the use of optimization
methodologies. This approach aims to improve the extraction of the dominant modal
characteristics associated with the dynamics of the system. Several DMD algorithms
have been developed with the inclusion of optimization methodologies applied to
different fields of knowledge, with different analysis approaches and different objec-
tives. In the following section seven approximations to the operator A based on
optimization methodologies are presented.
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As discussed before, the conventional approaches for approximating the operator
A are mainly based on a polynomial variant S and a reduced variant S̃, which is
stablished on an orthogonal projection. From thesematrices, several works have been
developed on diverse applications and proposing DMD algorithms with optimization
methodologies that have converge to different results [36–38].

In the following sections, three methodologies based on optimization within
the DMD method are presented. The analytical solution to the data reconstruction
problem of each methodology is presented, and as an additional point, the mathe-
matical formulation to obtain the characteristics of frequency, damping, mode shape,
modal energy and participation factors in three of the methodologies is presented in
the subsequent sections.

3.2 Optimal Mode Decomposition (OMD)

This methodology introduced by Goulart et al. in [36, 39] is a variant of the DMD
technique that workswith projections in low rankmatrices. Themathematical formu-
lation is proposed by means of an objective function that aims to identify a low
dimensional subspace in a large dimensional system in which the trajectories of
the system are optimally characterized. The formulation of the objective function is
expressed by the following formulation:

min
O

∥∥XN
2 − OXN−1

1

∥∥2

2 (41)

where the operator OMD O is defined as O = LMLT , matrix L is a base of Stiefel
type is defined as L ∈ R

r xr |LT L = I, r ≤ m and r is the rank of the matrix, in this
case, a full rank is assumed such that r = m. The main objective is to maximize the
base L through the following formulation:

max
L

∥∥LT XN
2 QL

∥∥2

F (42)

QL = XN−1T
1 L

(
LT XN−1

1 XN−1T
1 L

)−1
LT XN−1

1 (43)

This optimization problem is solved using the ascending gradient-based algorithm
described in detail in [39].

Alternatively, the matrix M represents an approximation of the operator S̃ and is
dependant of the base L. The assembling of this matrix is based on the solution to
the following equation:

M(L) = LT XN
2 XN−1T

1 L
(
LT XN−1

1 XN−1T
1 L

)−1
(44)



204 E. Barocio et al.

This relationship is associated with the development of the optimization problem
formulated in [36] where the dependence of the operator M with the orthogonal base
L and the matrices XN−1

1 y XN
2 is stressed. Comparing this approach as an analogue

formulation of the DMD method, substituting the base L with Ũ on Eq. (44) and
considering the orthogonal characteristics of Ũ , it can be proved that:

M(U) = Ũ
T
XN

2 XN−1T
1 Ũ

(
Ũ

T
XN−1

1 XN−1T
1 Ũ

)−1 = Ũ
∗
XN

2 Ṽ Σ̃
−1 = S̃ (45)

After finding the solution to the optimization problem, the analytic solution to the
problem of data reconstruction is presented with the following expression:

X̃
N
2 = OXN−1

1 = LMLT XN−1
1 (46)

Equation (46) can be represented through mode decomposition of the operator

M = Υ OMDΛ̃
OMD

Υ OMD−1, which result on the following equation:

X̃
N
2 = LϒOMD�̃

OMD
ϒOMD−1LT XN−1

1 = �OMD�̃
OMD

�(t)OMD (47)

From Eq. (56) a spatial component can be defined using the mode matrix �OMD ,
which is defined as follows:

�OMD = LϒOMD (48)

Similarly, a temporal component can be defined as Γ (t)OMD and represents the
temporal evolution of the modes, which can be defined as follows:

Γ OMD(t) = Υ OMD−1LT XN−1
1 =

⎡
⎢⎢⎢⎢⎢⎣

m∑
k=1

Υ OMD−1
1k aOMD

k (t)

...
m∑
k=1

Υ OMD−1
mk aOMD

k (t)

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
ãOMD
1 (t)

...

ãOMD
k (t)

⎤
⎥⎦

(49)

where the term aOMD
k is defined through the relationship of aOMD

k = LT
i x j , LT

i
represent the columns of LT and x j are the rows of X

N−1
1 .

The variable φOMD
j is the participation factor of the jth mode at time t0 through

the normalized magnitude of the same mode
∥∥φOMD

j

∥∥. Similarly, different groups
existing in the time series that follow a similar dynamic behaviour can be observed
with the phase ∠φOMD

j . Identification of particular characteristics such as frequency
and damping associated to a particular mode φOMD

j are defined by means of the
following expressions [13]:
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f OMD
j =

�
{
log

(
λOMD
j

)}
�t
2π

(50)

ζ OMD
j = �{

log
(
λOMD
j

)}
/�t (51)

On the other hand, if we consider the energy extracted from each temporal term
of Eq. (49) by means of the expression:

Ẽ OMD
k = ∥∥̃aOMD

k (t)
∥∥ (52)

the relationship mode-state is defined:

X̃
NOMD

2 =
⎡
⎢⎣

αOMD
11 αOMD

1 j αOMD
mm

...
. . .

...

αOMD
m1 αOMD

mj αOMD
mm

⎤
⎥⎦ (53)

αOMD
i j = ∣∣φOMD

i j λOMD
j Ẽ OMD

k (t)
∣∣ (54)

where the term αOMD
i j is a measure of the participation factor of mode φOMD

j on the
states of the system.

3.3 Nuclear Norm Regularised DMD (NNR-DMD)

This methodology, originally presented in Ref. [37], presents a DMD algorithm
based on the use of the nuclear norm regularised. The goal of the objective function
is to determine a low-rank representation of the S̃ matrix that captures the dynamics
inherent in the data sequence through the following objective function:

min
1

2
F

∥∥∥Ũ∗
XN

2 − S̃
NN R

Σ̃ Ṽ ∗
∥∥∥2

2
+ μ

∥∥S̃N N R
∥∥∗ (55)

where the constantμ represents a penalization term to the nuclear norm ‖·‖∗ in order
to introduce a sparse methodology in the objective function.

The purpose of this formulation is to obtain an S̃
NN R

operator. By introducing
the penalization term μ the problem becomes non-restrictive and the solution to the
optimization problem is a system of equations obtained using the Split-Bregman

method, which is described in detail in [37]. The solution of the S operator S̃
NN R

is
shown below:

S̃
NN Rk+1 =

[
Ũ

∗
XN

2

(
Σ̃ Ṽ

∗)∗ + μ
(
Hk − Bk

)](
Σ̃ Ṽ

∗(
Σ̃ Ṽ

∗)∗ + ηI
)

(56)
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where the termsμ, η, H and B are products resulting from the Split-Bregmanmethod
and the terms Ũ , Σ̃ y Ṽ

∗
are products of the SVD decomposition from Eq. (26). The

solution of this iterativemethod is based on the Split-Bregman algorithm considering
two different criteria: maximum number of iterations and an error criterion defined
in Ref. [37].

By obtaining the solution to the optimization problem, the analytical solution to
the data reconstruction problem is obtained by means of the following expression:

X̃
N
2 ≈ �NN RBΓ (t)NN R (57)

where part of Eq. (57) can be defined as spatial through the modal matrix �NN R

defined by the following equation:

�NN R = ŨϒNN R (58)

and where ϒNN R is calculated from the modal decomposition of the S̃
NN R =

Υ NN RΛ̃
NN R

Υ NN R−1 operator and the matrix Γ (t)NN R ∈ C
mxN−1 represents the

temporal evolution of the modes and is defined as follows:

Γ NN R(t) = T̃
NN R =

⎡
⎢⎢⎢⎢⎢⎣

m∑
k=1

aNN R
k (t)

...
m∑
k=1

aNN R
k (t)

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
ãNN R
1 (t)

...

ãNN R
k (t)

⎤
⎥⎦ (59)

where the term aNN R
k is described as aNN R

k = T̃
NN R
j and the term T̃

NN R
j corresponds

to the rows of the matrix T̃
NN R

. The weight of the temporal structure corresponds
to the element bi of matrix B := diag(b) ∈ R

mxm , which represents the weight in
descending order of relevance associated to each mode φNN R

j and is calculated using
the sparse DMD approach. The mode frequency and damping rate is computed as:

f N N R
j =

�
{
log

(
λNN R
j

)}
�t
2π

(60)

ζ NN R
j = �{

log
(
λNN R
j

)}
/�t (61)

On the other hand, the energy extracted from each temporal term is considered
by means of the expression:

Ẽ N N R
k = ∥∥̃aNN R

k (t)
∥∥ (62)

and the relation mode-state is defined as:
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X̃
NNN R
2 =

⎡
⎢⎣

αNN R
11 αNN R

1 j αNN R
mm

...
. . .

...

αNN R
m1 αNN R

mj αNN R
mm

⎤
⎥⎦ (63)

αNN R
i j = ∣∣φNN R

i j Ẽ N N R
k (t)

∣∣ (64)

where the term αNN R
i j represents a measure of the participation factor of mode φNN R

j
on the states of the system.

3.4 Sparse-Promoting DMD (SP-DMD)

In the work developed in [38], a variant of the DMD algorithm is proposed. The
alternative approach seeks to compensate the quality of the approximation in the
formulation of the sequence of matrices and the number of modes used for the repre-
sentation of the dynamic of the system. The process is carried out through expo-
nential sequence of eigenvalues and eigenvectors based on a sparse methodology. In
this case, the formulation of to the problem is based on finding the modal amplitude
vector b such that weights the modal components in the most optimal form in the
objective function J(b) described in the following equation:

J(b) = b∗Gb − q∗b − b∗q + s (65)

where the terms G, q, s are defined by the following equations:

G = (Ṽ
∗
Ṽ ) ◦ (T̃ T̃

∗
) (66)

q = diag
(
T̃Υ Σ̃

∗
Ṽ

)
(67)

s = tr
(
Σ̃

∗
Σ̃

)
(68)

These terms correspond to the development of the problem presented in [38] and
are based on the SVD decomposition presented in Eq. (26).

The algorithm for solving Eq. (65) is based on a sparse methodology by
formulating a new objective function:

min J(b)
b

+γ

r∑
k=1

|bk | (69)

Previous equation represents a convex problem with the aim of finding a vector
b and to determine the components that identify the modes with more influence on
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the system. The parameter γ has a direct impact on the number of components with
a zero value that are obtained in the structure of vector b. Thus, as the value of the
parameter γ increases, the amount of zero components increases. The methodology
proposes to solve this optimization problem is based on an ADMM method, and is
presented in detail in the Ref. [38].

When the solution to the optimizationproblem is calculated, the analytical solution
to the data reconstruction problem is obtained by means of the following expression:

X̃
N
2 ≈ �SP BΓ (t)SP (70)

From (70) a spatial term is decoupled using the modal matrix �SP defined in the
following equation:

�SP = Ũϒ POD (71)

in this case, the modal matrices �SP = �POD are equivalent. Matrix Γ (t)SP repre-
sents a temporal structure during the process of reconstructing the signal and is
defined as follows:

Γ SP(t) = T̃ =

⎡
⎢⎢⎢⎢⎢⎣

m∑
k=1

aSP
k (t)

...
m∑
k=1

aSP
k (t)

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
ãSP
1 (t)
...

ãSP
k (t)

⎤
⎥⎦ (72)

where the term aSP
k is defined as aSP

k = T̃ j and T̃ j corresponds to the rows of the
matrix T̃ . The weight of this temporal structure corresponds to the element bi from
matrix B := diag(b) ∈ R

mxm .
The identification of the frequency and damping characteristics associated to the

mode φSP
j , following expressions (36) and (37), that is f SPj = f POD

j y ζ SP
j = ζ POD

j .
In this case, by considering the energy extracted from each temporal term by the

expression:

Ẽ SP
k = ∥∥̃aSP

k (t)
∥∥ (73)

The relation mode-state is defined:

X̃
NSP
2 =

⎡
⎢⎣

αSP
11 αSP

1 j αSP
1m

...
. . .

...

αSP
m1 αSP

mj αSP
mm

⎤
⎥⎦ (74)

αSP
i j = ∣∣φSP

i j Ẽ SP
k (t)

∣∣ (75)
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where the term αSP
i j represents a measure of the degree of participation of φSP

j mode
in the system states.

3.5 Summary of Different DMD Approaches

Most of the DMD algorithms with optimization presented in this chapter consider
the approximation of a low order operator as in the case of S̃, with the exception of
the Optimal Mode Decomposition (OMD) approach.

In Sects. 3.2 and 3.3 the main objective is the calculation of the approximation
to the operator S̃ directly. In the case of Sect. 3.4, the main objective is to obtain
the vector of the amplitudes that adequately weights the modal components of the
system. Different conditions are presented for the solution of the problem associated
with the objective function of each section. In Sects. 3.3 and 3.4 regularization and
penalty parameters are introduced for the formulation of non-restrictive optimization
problems. In Sects. 3.3 and 3.4 a sparse parameter γ is introduced in the solution
algorithm to identify the dominant modes of the system. In Sect. 3.3, two dimen-
sionless parameters μ and η are introduced which are part of the solution of the
optimization problem.

On the other hand, the analytical solution to the problem of reconstructing signals
by means of modal components presents a different vision on different sections
presented. In the case of the alternatives selected for evaluation, twomain components
are presented: a parameter associated to the spatial structure, in this case the modal
matrix �, and a parameter associated to the temporal structure Γ (t). In Sects. 3.3
and 3.4 the temporal structure Γ (t) is constructed using the Vandermonde T matrix
and the amplitude matrix B calculated from the disperse-based method. In Sect. 3.2
the time structure �(t) is formulated from the modal decomposition of the operator
M and the base L.

4 Wide Area Monitoring of Inter-area Oscillations Modes
in a Longitudinal Interconnected System

The identification of inter-area oscillations presents an extra degree of complexity in
large interconnected systems due to the volume and variety of information collected.
Conventional tools for stability analysis based onmathematicalmodels are limited by
their accuracy and updating of their parameters. Similarly, the algorithms proposed
to monitor spatio-temporal data from a wide area monitoring system are limited by
the processing capacity of large volume of data. Therefore, it is necessary to propose
new alternatives for the analysis of large interconnected electrical systems.
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4.1 Description of Mexican Interconnected System

The test system used in this section, approximates the Mexican Interconnected
(MI) system, which is distributed in seven electrical areas. The MI system has
a longitudinal configuration characterized by long transmission lines and remote
generation sources. As a consequence, SVC are the support voltage devices to
improve the dynamic stability and voltage considerations. The network configu-
ration requires implementation of several supplementary control schemes to meet
the performance requirements. The overall generating capacity in the MIS is about
75.91GWcomprising 22.87GWto renewable energy and the rest correspond to fossil
energy. The bulk transmission system consists of 58,588 kmof prevailing 400/230 kV
lines, which is complemented by a network of 161 and 69 kV sub-transmission lines.
The average demand of the MI system increases annually at a rate of about 7.1%.
TheMI system is characterized by a longitudinal infrastructure transmission system,
supported in long transmission lines that help to import generation from neighbours
areas; exciting undamped or poorly damped power oscillations when there are high
power transfers from the areas I, II, III and VI, VII systems to areas IV and V. Based
on this, the system studies carry out in this research assume that dynamic model of
the generators are represented by a two-axis dynamic model, [5, 13] controlled with
a simple excitation system. The loads of the system are assumed to be constant and
SVCs are modelled to provide voltage support when required due to long transmis-
sion lines helping to interconnect all areas in the system. Figure 4 shows a simplified
representation of the MI system control areas and illustrates the dynamic interaction
of the different electrical areas.

Fig. 4 Illustration of slowest electromechanical modes on the MI system [40]
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Only 45 major generators distributed along theMI system were considered in this
study. The interaction of the different electrical areas is caused by the presence of
inter-area modes, which are excited by disturbances on the specific localization of
the system [5, 41]. The equivalent of MI system is characterized by three inter-area
modes involving the participation of different areas of the system [41].

4.2 Power System Stability Analysis Using Conventional
Tools

The scenario for study is a three-phase fault event between the LGV-PBD transmis-
sion line located in area V at north-east of the country. This perturbation, stimulates
the onset of the three inter-area modes, illustrated in Fig. 4. The dynamic responses
are measured at the generator terminals and the angles signals �δi are referenced to
generator number 1 and collected. Figure 5 shows the transient responses of the refer-

enced nodal angles X�δ = [
�δ1 �δ2 . . . �δ41 �δ45

]T ∈ R
45x2000, corresponding

to 20 s of simulation, with an integration step of �ti = 0.01 s and a sampling
frequency fs = 1/�ti of 100 Hz. The simulation was performed in Power System
Toolbox (PST) open software [42]. From Fig. 5, the presence of inter-area oscilla-
tions can be clearly observed. In particular, a slow growing oscillation can be seen,
suggesting an unstable condition of the system.

As a first approximation to the identification of the modal components associated
with the oscillatory process observed in Fig. 5a; the fast Fourier transform (FFT) is
applied to each of the signals�δi , to estimate their spectral content. Figure 5b shows
the magnitude of each spectral component associated with each signal from �δi .
Figure 5b shows three dominant frequencies obtained by the FFT: 0.39 Hz, 0.58 Hz
and 0.782 Hz, respectively. The frequency components with the largest magnitude of
the FFT are associated with the frequencies of 0.390 Hz and 0.781 Hz respectively.
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Fig. 5 a Dynamic response of the referenced nodal angle signals from 45 generators [42] and
b spectral decomposition of the corresponding signals �δi using the FFT
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Generators #11 to 45 present a dominant frequency of 0.390 Hz. On the other hand,
generators #1 to #10, #13 to #26 and #35 to #40 present a dominant frequency of
0.781 Hz. The results depicted on Fig. 5b suggest the presence of different coherent
generators groups during the oscillatory process.

To gain more insight about the oscillation development on the MI system, a small
signal stability analysis (SSSA) is performed. Figure 5b presents the frequency of
the inter-area modes and their damping ratio coefficients resulted from the analysis.

FromFig. 5b, threemodes of interest (0.385, 0.560 and 0.729Hz) can be observed,
which are indicated by red rectangular symbols. In particular, it can be seen that the
0.385 Hz mode has a damping coefficient of -0.0060, indicating the presence of
an unstable electromechanical mode. The result agrees with the transient response
depicted previously on Fig. 5a.

To visualize the separationmechanism and the interaction between electrical areas
during an inter-area oscillation, mode shape is calculated using the right eigenvectors
obtained from the decomposition by eigenvalues of the state matrix [42]. Figure 7
shows the mode-shape for the 3 modes of interest highlighted on Fig. 6.

Figures 7 shows the oscillation patterns involving different electrical areas of
the system MI system under investigation. Figure 7a shows the oscillation pattern
corresponding to the lowest frequency component and the interactions of the electric
areas I, II and II against areas III, IV, VI and VII. While Fig. 7b depicts a different
oscillation pattern, composed by the interaction of areas VII against IV and VI,
respectively,which are located in the southeast of the country. Finally, Fig. 7c displays
the interaction of areas IV against the area VI, involving a large number of hydraulic
generators.
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Fig. 6 Inter-area modes of MI system equivalent
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Fig. 7 Mode shape of modes inter-area showing the major coherent groups: a mode shape of
0.385 Hz, b mode shape of 0.560 Hz and c mode shape of 0.729 Hz

Table 1 Inter-area modes of MI system equivalent

# mode Eigenvalue Frequency (Hz) Damping ratio ζ Mode-shape

1 −0.016 + j2.42 0.385 −0.0060 I, II, V versus III, IV, VI, VII

2 −0.080 + j3.51 0.560 0.022 VII versus IV, VI

3 −0.111 + j4.58 0.729 0.023 IV versus VI

Table 1 shows a descriptive synthesis of the inter-area oscillation modes identified
in the system according to previous studies.

The three-phase fault in areaVexcites the three inter-area oscillationmodes.Mode
#1 is the more complex mode because it involves participation of all electrical areas
of the system and presents a dominant participation during the unstable oscillation
process. In the following section a complementary analysis is performed using a
space-time processing technique that allows to obtain a spectral analysis from the
processing of the data collected from the simulation.

4.3 Spectral Analysis Based on SVD-DMD

Now, from the space-time decomposition simulation data given by X�δ; the SVD-
DMD described at Sect. 3.1 is applied. The nature of system behaviour can be found
by examining the empirical Ritz values, λ and their associated magnitudes [13, 14].
Figures 9 shows a plot of the empirical Ritz values, λ and their associated energy
obtained from the norm of the time-dependent coefficients,

∣∣∣∣̃aSV D
1 (t)

∣∣∣∣, in (35).
As seen in Fig. 8a all the empirical Ritz values are on the unit circle λ j ≈ 1.0,

indicating that the states of the dynamic system converge to a stable condition.
Analysis of the relative energies in Fig. 8b, show that the modes with the largest
energy contributions are those with frequencies of 0.384 Hz and 0.718 Hz, which are
frequencies associated to the oscillation inter-area modes. The third identified mode
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Table 2 Comparison ofmodal estimates for scenario: Timewindow0–20 s and sampling frequency
of 100 Hz

# of mode based on DMD nomenclature FFT frequency SSSA f ξ SVD-DMD f ρ/2π

#27 0.390 0.385 –0.0060 0.384 –0.0040

#36 0.585 0.560 0.022 0.560 0.022

#31 0.781 0.729 0.024 0.718 0.019

with an approximate frequency of 0.515 Hz, represents the last inter-area mode and
has a marginal impact during the oscillatory process.

Table 2 compares the modes estimation resulting from the application of SVD-
DMD against conventional eigenvalue analysis. The results of modal estimated of
frequencies obtained with SVD-DMD are in good agreement with the estimation
from SSSA, however SVD-DMD estimation damping ratio are underestimated for
mode #27 and #31 respectively.

In both methods, SSSA and SVD-DMD the, mode #1 produces a slow unstable
oscillatory condition, while mode #2 and #3 are very well damped.

Clusters of coherent generators can be identified from the spatial signatures of

SVD-DMD, contained in the modal vector �
{
φSV D
j

}
. Figure 9a shows score plot

for the three dominant modes obtained using SVD-DMD described at Sect. 3.1.
SVD-DMD technique identifies three groups of coherent generators that involve all
geographical areas.

From (39), a spatial (temporal) contribution factor that measure the contribution
of each sensor to each state, can be defined. The strength of spatial contributions
from each sensor to the observed data can be characterized and visualized. Figure 9b
depicts a 2-D representation of the participation measures in (39) as a function of the
sensor locations. Examination of Fig. 9b shows that mode #27 is strongly observable
at sensors number #11 to #45, although the sensors #25 to #33 present the highest
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Fig. 9 Twoways to visualize the inter-areamode interaction: a coherency identification and b factor
participation

participation factor in the system. This result has a strong relationship with the result
depicted on Fig. 6.

4.4 Computational Effort and Time Window Simulation
on Modal Parameter Estimation

Detailed simulations were conducted to assess the computational cost of SVD-DMD
analysis for a study using a realistic dataset. Figure 10a shows the CPU time required

Fig. 10 aCPU time as a functionof the samplingwindow,b timewindoweffect onmodal frequency,
c time window effect on modal damping ratio estimation
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to characterize the system behaviour for the scenario described before. Figure 10a
shows a comparison of the CPU time for SVD-DMD analysis as a function of the
size of the observation window. Previous results have illustrated that SVD-DMD is
faster that Arnoldi-Koopman analysis for a similar sampling frequency [13, 43].

Based on the simulation results, it can be noted that the CPU time required by the
SVD-DMD analysis is competitive in comparison with different modal estimation
techniques [13]. In general, short time observation windows may degrade the quality
of the estimation and result in various numerical problems, which is a common
problem among other estimation techniques such as the Koopman mode analysis.
Both observations are depicted at Fig. 10b, c respectively.

The following section presents a comparison of variants of the DMD technique
in a larger interconnected continental system.

5 Wide-Area Monitoring of Global Oscillations Modes
on Interconnected Continental System

As mentioned in previous sections, the presence of inter-area oscillations is a
common problem around the world related to the interconnection of large and distant
areas. This problem is more evident when groups of generators located on different
geographical areas oscillate against each other. The objective in this section is to
present a spectral analysis focused on identifying themodal characteristics associated
with a disturbance taking place on an interconnected continental power system.

The following section presents a case study based on simulation data of an event
in a given region of the European power system.

5.1 Description of the Power System from Continental
Europe

The system under investigation is based on the studies carried out in the papers
presented in [2, 44]. A representative schematic diagram of the test system is depicted
on Fig. 11, where the selected regions are indicated; Spain (ES), Switzerland (CH),
Germany (DE), Italy (IT) and Turkey (TK). The aforementioned countries have been
selected based on the experience of the analysis described in [2, 44, 45] the level of
detail in which these countries have been modelled.

Table 3 displays the distribution of generation units corresponding to each region.
Additionally, Table 4 shows the distribution of regions associatedwith each cluster

identified in previous works [47].
In this subsection the exposure of the system to a three-phase fault of 100

sample/sec length in the region of France and applied at instant t = 6 s is presented.
The fault leads to the disconnection of a 1.4 GW generation unit on its three phases.
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Fig. 11 Schematic illustration of ENTSO-E regions of continental Europe considered in this
analysis [46]

Table 3 Number of generators per country

Country CH DE IT ES TR Total

# of generators 20 292 144 70 127 653

Table 4 Number of clusters
and the associated countries

Group c1 c2 c3

Country ES DE, CH, IT TR

The simulation was performed in the professional software DIgSILENT PowerFac-
tory 2018 SP1with a sampling frequency fs = 100 Hz according to the recommenda-
tion of the IEEE standard for synchrophasor measurements in SEP C37.118.1-2011
[48]. The response of the frequency signals is displayed on Fig. 12.

Figure 12 shows the recording of 70 s of simulation at a frequency of 100 Hz,
and it can be observed that the system converges to a new equilibrium point
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Fig. 12 Frequency responses associate at each region CH, DE, IT, ES and TR to the loss of a large
generator of 1.4 GW in France

approximately from the instant t = 60 s. By considering the global set of the
frequency signal response on each of the selected countries the data matrix X =[
CH DE IT ES T R

]T ∈ R
653x7000 is assembled. Figure 13 shows more clearly

the oscillatory behaviour of the signals in the region ofTurkey (TR) against the signals
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on the other regions. This behaviour in the dynamic response of the frequency signals
suggests the presence of low frequency oscillation modes.

5.2 Spectral Analysis Based on FFT Approach

The records from the WAMS system installed in the corresponding region of areas
under investigation confirm the presence of two modes, which have frequency range
of inter-area oscillation modes. These modes are the result of the power transfers
between large geographical distances in continental Europe [2, 44]. Due to the struc-
ture of this network, two predominant low frequency global modes between 0.2 Hz
(Global Mode #1) and 0.3 Hz (Global Mode #2) exist on the system. The intercon-
nection with Turkey in December 2010 [45] increased the size and complexity of the
original system, and as a consequence a new additional mode (Global Mode #3) of
0.15 Hz was incorporated.

As a first approach to identify the frequency components present in the system,
the classical FFT tool is used. Figure 13 shows the calculation of the FFT applied to
the 653 signals of the X data set:

Figure 13 illustrates the presence of three main low frequency components, in this
case two of them corresponding to Global Modes #1 and #2. Figure 13 represents
a first attempt to achieve modal identification on the response of frequency signals
corresponding to the countries under analysis.

5.3 Spectral Analysis Based on Variants of DMD

One of the objectives in spectral analysis of PES is the identification of the dominant
modes existing in the dynamics of the system. Figure 14 shows the result of the mode
identification and their modal energy level calculated using Eqs. (38), (52), (62) and
(70).

Figure 14 shows the 653 dynamic modes associated with the spatial structure m
of the DMD operator. It can also be noted from the results of the different DMD
variants that only a reduced number of them present a significant contribution to the
dynamic behaviour of the system. In the case of the approaches OMD and SVD-
DMD, approximately 25 modes that have different level of energy are identified.
On the other hand, the results corresponding to approaches such as SP-DMD and
NNR-DMD identify 20 dominant modes.

The difference between the number of identified modes on the different
approaches correspond to the analytical solution of the reconstruction of data. Unlike
the SVD-DMD and OMD methods, which have a temporal structure dependent on
the modal decomposition of the DMD operator, sparsity-based approaches identify
dominant modes in the system and assign a weight equal to zero to the remaining
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modes. Figure 15 displays the evolution in time of the modes with largest energy
content, which have been depicted on Fig. 14.

Figure 15 depicts the behaviour of the components ãNN R
k (t) y ãSP

k (t), which
depend on the Vandermonde matrix T̃ , while the components ãSV D

k (t) and ãOMD
k (t)

are dependent of the right eigenvectors as result of the modal decomposition of the

operators S̃
SV D

and M respectively.
In such a case, modes whose frequencies are approximate the same as Global

Modes #2 and #3 are identified. Table 5 shows the mode number and its damping.
With the results presented inTable 5 it is possible to observe the temporal evolution

of these modes on Fig. 16.
The temporal evolution of the modes corresponds to the oscillation that dissipates

and reaches a new point of equilibrium, as shown in the response of the frequency
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Fig. 15 Comparison of coherency identification DMD variants: a SVD-DMD �SV D(t), b NNR-
DMD �NN R(t), c OMD �OMD(t) and d SP-DMD �SP (t)

signals in Fig. 16. In this case, the components ãNN R
k (t) and ãSP

k (t) show an oscilla-
tion of lower amplitude corresponding to the structure of the Vandermonde matrix,
where it is observed that the component corresponding to the frequency of the Global
mode of 0. 15Hz presents an abrupt increase and fast settling. Unlike the components
ãSV D
k (t) and ãOMD

k (t) that base their response on the modal decomposition of the

operators S̃
SV D

and M, and that their oscillatory response has small amplitude and
short oscillation time.

An important parameter in the modal analysis corresponds to the participation
factors. Figure 17 shows the influence of the modes at each measurement point by
means of the participation factors calculated from each different methodology.

As depicted on Fig. 17, the most influencing modes on the dynamic behaviour of
the system, correspond to the modes identified first on the different variation of the
analysis. The most susceptible areas are identified in a sensor range between #1 and
#20, corresponding to the region of Switzerland (CH) and between the sensors #460
and #520, corresponding to Spain (ES) and Italy (IT) regions. Moreover, the modes
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Fig. 16 Comparison of temporal amplitudes associated to dominant dynamic modes (0.15 and
0.39 Hz): a SVD-DMD ãSV D

K (t), b NNR-DMD ãNN R
k (t), c OMD ãOMD

K (t) and d SP-DMD
ãSPk (t)

with the largest impact are in a range between #1 and #20. In this case, the SP-DMD
and the NNR-DMD restrict the participation factors to a limited number of modes,
identifying more clearly the critical areas in the system. The dominant participation
factors are located among generators #480 to #510 corresponding to TR.

On the other hand, from the data presented in Table 5; Figs. 18 shows the formation
of clusters by grouping the modal components associated with inter-area frequencies
by means of the �{φ} structure.

As shown in Fig. 18, three main clusters are identified: c1, c2 and c3 as shown in
Table 5. The distribution of the clusters corresponds to the response of the frequency
signals observed in Fig. 18 where it is possible to identify three oscillation groups.
In this case, a spatial distribution presenting three oscillation groups in the dynamic
behaviour of the system is observed. However, the structure of theM operator corre-
sponding to theOMDvariant presents a different spatial structure due to the searching
space within the gradient methodology. The formulation described in the rest of the
variants presents a similar structure due to the characteristics of the S̃ operator, which
depends on the SVD decomposition.

One approach to evaluate the performance of the different algorithms presented
here, is the computational time associated to the calculation of the DMD operator
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Fig. 17 Participation factors that relate the # of sensors and # of modes: a SVD-DMD αSV D
i j ,

b NNR-DMD αNN R
i j , c OMD αOMD

i j and d SP-DMD αSP
i j

and include the reconstruction signal process for each DMD variant. Table 6 shows
the processing times for the dataset X .

In this case, themethodwith the slowest processing time corresponds to the NNR-
DMDmethod that integrates the weighting methodology corresponding to the sparse
DMD variant as a solution to the problem of signal reconstruction. The computa-
tional time is an important parameter related to the processing capacity that must
be considered when analysing large systems. Additionally, with the development of
online algorithms the processing time is an important feature for the development of
new tools for real-time application.
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Fig. 18 Comparison of coherency identification DMD variants: a SVD-DMD, b NNR-DMD,
c OMD (t) and d SP-DMD

Table 6 Comparison of DMD variant of CPU time simulated data

SVD-DMD NNR-DMD OMD SP-DMD

CPU time (s) 9.77 64.61 30.98 15.78

6 Conclusions

In this chapter, four variants of the DMD method were described. These alternative
algorithms are based on a polynomial variant S and a reduced orthogonal projection
matrix S̃, that are used to approximate the Koopman operator A. In this form, DMD
algorithms with optimization methodologies and their respective application were
shown.
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It has been demonstrated that the processing time depends mostly on the volume
of the dataset under analysis. The variant representing the shortest processing time
corresponds to the algorithm SVD-DMD. While the NNR-DMD variant resulted on
the slowest algorithm among the others due to the double optimization process that
is required.

One of the advantages observed when using a method based on sparsity to assign
weights is the clear visualization of dominant components. Thismeans, that themodal
amplitude matrix shows only a limited number of components that have the largest
effect on the dynamic of the system. This effect can be reflected in the visualization
process of the participation factors. Modes that affect sensitive areas on the system
are easily identified. However, the parameter γ immerse on the optimization problem
must be correctly calibrated.

Participation factors represent a quantitative measure that is used to display the
most affected areas on the system, the impact of the dominant modes on the states of
the system and their geographical location. It has been observed that as the dimension
of the system increase, the identification of these areas becomes more challenging
and restrictive, because a smaller number of the dominant modes are visible.

The temporal evolution of the oscillationmodes associatedwith the low frequency
components in the system dynamics is an initial approximation within the system
dynamics and affects the duration of the transient event. The behaviour resulting from
the effect of the Vandermonde matrix, depends on the weighting of the eigenvalues
raised to an exponential depending on the number of snapshots considered in the
modal analysis, so the oscillatory behaviour depends partly on the location of the
identified number of modes. On the other hand, the behaviour observed in the SVD-
DMDandOMDvariants depends on themodal decomposition of the S̃ yM operators,
respectively. In this case, through these variants, the duration of the oscillatory effects
associated with characteristic related to the dominant modes can be more easily
visualized.
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