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Abstract Today’s electric power grid is a complex, automated, and interconnected
cyber-physical system (CPS) that relies on supervisory control and data acquisition
(SCADA)-based communication infrastructure for operating wide-area monitoring,
protection, and control (WAMPAC) applications. With a push towards making the
grid smarter, the critical SCADA infrastructure like power system is getting exposed
to countless cyberattacks that necessitate the development of state-of-the-art intru-
sion detection systems (IDS) to provide comprehensive security solutions at different
layers in the smart grid network. While considering the continuously evolving attack
surfaces at physical, communication, and application layers, existing conventional
IDS solutions are insufficient and incapable to resolve multi-dimensional cyberse-
curity threats because of their specific nature of the operation, either a data-centric
or protocol-centric, to detect specific types of attacks. This chapter presents a hybrid
intrusion detection system framework by integrating a network-based IDS, model-
based IDS, and state-of-the-art machine learning-based IDS to detect unknown and
stealthy cyberattacks targeting the SCADA networks. We have applied the cyber-kill
model to develop and demonstrate attack vectors and their associated mechanisms.
The hybrid IDS utilizes attack signatures in grid measurements and network packets
as well as leverages secure phasor measurements to detect different stages of cyber-
attacks while following the kill-chain process. As a proof of concept, we present the
experimental case study in the context of centralized wide-area protection (CWAP)
cybersecurity by utilizing resources of the PowerCyber testbed at lowa State Uni-
versity (ISU). We also describe different classes of implemented cyber-attacks and
generated heterogeneous datasets using the IEEE 39 bus system. Finally, the perfor-
mance of the hybrid IDS is evaluated based in terms of detection rate in real-time
cyber-physical environment.
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1 Introduction

Today’s energy infrastructure is undergoing a massive transformation across all gen-
eration, transmission, and distribution systems to provide reliability, efficiency, and
sustainability to the power system network. With a high dependence on advanced
communications, as well as the increasing integration of smart meters and sophis-
ticated controls, electric power systems have evolved into densely interconnected
cyber-physical systems and the existing information technology (IT)-based cyber-
security measures are often ineffective at preventing them. In recent years, sev-
eral WAMPAC applications, such as state estimation, wide-area protection scheme
(WAPS), wide-area voltage controller (WAVC), etc., are developed to provide real-
time monitoring and control as necessary to maintain the stability and reliability
of the power system [1]. Since these WAMPAC applications are not conventionally
designed to handle unexpected cybersecurity threats, any unusual malfunction or
signicant operational delays, triggered through cyber-attacks, can affect the system
observability, reliability, and stability of power system. This motivates the need to
go beyond the traditional paradigm of “security by obscurity” and “bolt-on” secu-
rity measures of retrofitting the existing system with conventional security solu-
tions and develop a suite of layered innovative security solutions to enhance the
grid resiliency against possible cybersecurity threats. Several efforts, such as the
National Institute of Standards and Technology Interagency Report (NISTIR) 7628
[2], DOE Cyber Security Roadmap for Energy Delivery Systems [3], DOE Electricity
Subsector Cybersecurity Capability Maturity Model (ES-C2M2) [4], North Ameri-
can Electric Reliability Corporation Critical Infrastructure Protection (NERC CIP)
Standards [5], and National Electric Sector Cybersecurity Organization Resource
(NESCOR) reports [6], have provided an in-depth understanding to identify cyber-
security vulnerabilities and develop mitigation and preventive strategies. Further, the
IEEE guide published by the Power System Relaying Committee [7] recommends
strong cybersecurity practices and measures, including access controls, firewalls,
cryptography; however, poor security key management, weak cryptography, and
misconfigured firewall rules can degrade the secure operation of the power system.
Therefore, it is highly imperative to thoroughly investigate the cybersecurity vulner-
abilities and develop state-of-the-art detection and defense techniques to neutralize
possible threats and make the grid attack-resilient.
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1.1 Challenges for IDS in Smart Grid

The current IDS solutions in the power system face several challenges in detecting
anomalies accurately and timely by analyzing multi-dimensional data at physical,
network, and application layers, which are elaborated in greater detail below.

(1) Detection Latency: Several WAMPAC applications have a stringent timing
requirement to perform their optimal control operations. Therefore, in order to sup-
port the seamless integration of IDS with the grid infrastructure, detection latency
has to be minimized so that it does not affect the normal operation of the power
system. Also, the operational timing requirement of different applications varies
widely. For example, the centralized wide-area protection scheme (CWAPS) has
a strict timing requirement, typically in the order of 50-150 ms, AGC operates in
approximately 4-8 s, and economic dispatch operates every 5 min. Further, the devel-
opment of attack-resilient infrastructure requires an immediate incident response that
can quickly restore the grid condition to the normal state.

(2) Robustness and Consistency: Since cyber-attacks vary from a nave level to a
sophisticated level, it is not justified to completely rely on the specific types of IDS
to detect all classes of attacks. Although the SIDS shows a high accuracy without
signaling false alarms as compared to the ABIDS, it is only able to detect known
cyber-attacks, and thus it has to be updated regularly with newly discovered attack
signatures. The current existing ABIDS and SIDS show good accuracy; however,
it is difficult to obtain detailed information from them about different classes of
attacks. Further, the advanced persistent threat (APT) actors can leverage their skill
sets, expertise knowledge, intellectual capabilities, and operational tools resources
to perform sophisticated and coordinated cyber-attacks by manipulating cyber and
physical information in spatial and temporal domains. These stealthy cyber-attacks
are difficult to be detected by a signature or anomaly-specific IDS at the network or
host level.

(3) Data Management: The current operational technology (OT) environment is
inundated with an overload of network information and power measurements that
frequently lead to the challenge of Big data, which is difficult to handle from the
conventional IDS perspective. The current big data challenge is driven by volume,
velocity, and veracity of data. Volume in the smart grid environment includes line
flows, relay status, phasor measurement, network packets, etc. that significantly con-
tribute to the large volume of data. Velocity refers to the sampling rate at which data is
processing at substation and control center networks; and variety refers to the com-
plex data problem, including multi-dimensional structure data, high dimensional
data, and data from multiple independent sources. Further, since the current grid
infrastructure depends on multiple hardware and software resources for handling
grid measurements and network traffic, there exists no real-time sensing platform
that can allow the processing of heterogeneous datasets to facilitate the operation of
different types of IDSs.
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1.2 Related Work

In recent years, there has been a strong urge in the development of IDS pertinent
to the cyber-physical security in the smart grid environment. Several researchers
with different backgrounds have proposed different types of IDSs, such as model-
based, rule-based, protocol-specific, machine learning or data-mining-based IDS,
etc. for the smart grid cyber-physical security. In [8] and [9], the authors have pro-
posed a model-based IDS using real-time load forecast information to detect faulty
SCADA measurements in the context of automatic generation control (AGC) in the
power system. In [10], a decision tree-based supervised machine learning algorithm
is applied to detect malicious tripping of relays. In [11], the authors have shown how
the model-based IDS can be developed in a centralized manner using load forecasts
and secure phasor measurements for the state estimation. Although the centralized
IDS is developed pertinent to the energy management system (EMS) applications like
state estimation, automatic generation controller (AGC), etc., the multi-agents-based
distributed IDS is also proposed in [12] to avoid a single point of failure while detect-
ing anomalies in the decentralized protection scheme. Apart from the anomaly-based
IDSs, several signature-based IDSs [13]-[16] are also proposed that perform deep
packet inspection on the SCADA and synchrophasor communication protocols to
detect cyber intrusions in real-time. Further, in [14], the authors show how two open-
source IDS tools-Snort and BRO, can be utilized in detecting a data integrity attack
using the timing information of two consecutive network packets and compared
their performances in terms of accuracy and latency rates. Although the rules-based
IDS works well in detecting malicious network traffic using cyber logs, it requires an
intensive knowledge and rigorous analysis for developing rules and is apposite for the
big-data problem. Meanwhile, several research efforts have shown the application of
machine learning algorithms and data mining techniques in detecting malicious and
non-malicious events like line faults. Pan et al. presents a learning-based IDS using
the common path mining technique to classify cyber-attacks, normal operations, and
physical disturbances [17]. The common path mining technique learns temporal pat-
terns for different scenarios using synchrophasor measurements and audit logs in an
automated way.

2 Intrusion Detection System in Smart Grid

2.1 Smart Grid Communication Architecture

The smart grid network consists of multiple communication architectures that are
interconnected through physical and application layers to facilitate real-time mon-
itoring of the grid network and protect the grid’s health on spatial and temporal
levels. These communication architectures can be classified into three major cate-
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gories: SCADA network, synchrophasor network, and advanced metering infrastruc-
ture (AMI) network.

(1) SCADA Network: Consists of a remote terminal unit (RTU), as a substation
gateway that receives measurements from sensors, transducers, and instruments,
which are located at remote grid stations as field devices and transmit data to the
control center for real-time monitoring and control of generation, transmission, and
distribution systems every few seconds. Several communication protocols like IEC
61850, IEC 60870, Modbus, Distributed Network Protocol 3 (DNP3), etc. are utilized
to support SCADA-based wide-area applications.

(2) Synchrophasor Network: Includes phasor measurement units (PMUs), pha-
sor data concentrators (PDCs), global positioning system (GPS) clocks, Transmission
Control Protocol/Internet Protocol (TCP/IP) network infrastructure, and data stor-
age and collection system. The traditional SCADA system fails to provide faster and
high-resolution measurements that are necessary for wide-area dynamic monitoring
and control of the power system. These limitations can be overcome by deploy-
ing PMUs in the field-area network (FAN) that provides phasor measurements at a
sampling rate of 30 to 120 samples/second to support mission-critical applications.
Further, there has been a rapid shift in extending the SCADA EMS to incorporate
synchrophasor-based wide-area control applications like a wide-area voltage con-
troller (WAVC), oscillation damping, etc. [18]. The authors of [19] present the design
and architecture of synchrophasor-based WAPS for different types of applications,
including voltage instability, oscillation monitoring, thermal overloading, etc.

(3) AMI Network: Includes smart meters, data aggregator, data manager, and
communication network that facilitates the bi-directional communication between
smart meters and grid utilities for exchanging information related to power con-
sumption, outage reporting and awareness, and price updates. During normal oper-
ation, data aggregators (DAs) receives real-time consumption information from
smart meters and sends necessary commands through the neighborhood-area net-
work (NAN). Further, smart meters also communicate with devices, located on the
customer’s premises, through the home-area network (HAN). ANSI C12 series is
the most commonly used communication protocol in the US, while IEC62056 pro-
tocols dominate the AMI market in the EU to support the information exchange in a
wide-area network (WAN), NAN, and HAN of AMI [20].

Fig. 1 clearly illustrates attack surfaces, as shown by lightning bolt symbols, in the
grid network that can be exploited by attackers based on the existing vulnerabilities
at device, network, and application levels. Since the communication protocols in the
grid network are not encrypted, there is numerous possible scope of cyber-attacks,
despite the existing defense mechanisms, such as firewall, a virtual private network
(VPN), etc. For example, an attacker can sniff the clear text communication packets
going between the control center and substation networks to perform data integrity
attacks over WAN. An attacker can also sniff wide-area communication packets to
develop a network footprint, and later perform Man-in-the-Middle (MITM) or denial
of service (DoS) attacks to undermine the system observability and controllability.
In AMI, the deployed smart meters operate as an interface between the utility’s
network and HAN or NAN, which makes them an ideal target for cyber-attacks.
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Fig. 1 High-level schematic architecture of the smart grid

Also, several vulnerabilities have been reported in smart meters installation. For
example, a control unit system in smart meters is subjected to reverse engineering,
side-channel, and data-integrity attacks. Further, at the national level, the advanced
and nation-sponsored attackers can perform stealthy and coordinated cyber-attacks,
such as compromising control centers that are difficult to detect using conventional
security methods.

2.2 Intrusion Detection System Taxonomy

IDS is based on the notion that the system behavior during cyber-attacks would be
different from legitimate behavior. Several types of IDSs are developed to detect
anomalies accurately and timely at physical, cyber, and application layers in the
power system. Fig.2 shows the taxonomy of IDS based on their locations and the
nature of operations in the grid network. Based on the location-based taxonomy, it
can be classified into two different types: Network and Host-based IDSs.
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Fig. 2 Taxonomy of intrusion detection system (IDS) in the power system

(1) Network-based IDS (NIDS): This IDS inspects the communication traffic to
detect security breaches in the grid network. Different techniques like port-mirroring,
network taps, switched port analyzer, etc. are developed by the network infrastructure
vendors to facilitate packet sniffing in the context of NIDS. It can be classified into
two broad categories: WAN IDS and FAN IDS.

e WAN IDS (WIDS): This IDS is deployed over WAN that sniffs the network traffic
and detects anomalies using the statistical or baseline models and attack signatures.
Potential challenges related to the WIDS are network data overload, quality of
service (QoS), and encryption, and signature lag time.

e FAN IDS (FIDS): This IDS passively monitors network traffic of smart meters
and actuators in a local area network (LAN), FAN, or NAN and detects anomalies
in real-time. It is generally deployed at the field level, made tamper-resistant, and
supported extra computational power and memory to forward the detected alerts
to gateways and central IDS deployed at the utility control center.

(2) Host-based IDS (HBIDS): It is deployed at operating and application systems
and operated through an internal computing system to monitor and analyze traffic
patterns at the system level. Based on its location in the grid network, it can be
classified into broad categories: Centralized IDS and distributed IDS.

e Centralized IDS (CIDS): It requires global measurements to analyze cyber and
physical events; and hence, it is deployed at the control center level and provides
much accurate and consistent detection performance because of its global view
of the grid network. It can also be utilized to develop application-specific IDS for
the EMS like bad data detection in the synchrophasor network [21] by monitoring
incoming measurements and outgoing control signals. However, it is also an ideal
target for cyber-attacks and can lead to a single point of failure, if compromised
that can render the whole EMS control center vulnerable to cyber threats.

e Distributed IDS (DIDS): It overcomes the limitation of a “single point of failure”
by introducing multiple autonomous IDS agents that are deployed at the substation
levels. In DIDS, it is crucial to consider an efficient communication topology like a
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mesh network and communication standard with an anomaly detection algorithm
for optimal and reliable performance of DIDS. A recent survey in [22] has shown
the efficiency of a mesh network topology and communication standard like Zig-
bee [23] can be efficiently utilized to provide low-cost and low power-standard
communication within the wireless network.

According to the nature-based taxonomy, we have classified IDS into different
types: signature and anomaly-based IDSs.

(1) Signature-based IDS (SIDS): This IDS detects anomalies based on the notion
of comparing incoming network traffic to the known trails of malicious packets that
are stored in the attack signature database. Since it relies solely on the database of
known attack signatures, it cannot detect unknown or new attacks that do not match
with the existing attack signatures. Several IDS tools, such as Snort, BRO (Zeek),
Firestorm, Spade, etc., can be utilized in developing signature-based IDS in real-time
based on the defined rules.

(2) Anomaly-based IDS (ABIDS): It identifies malicious events based on devi-
ations in the normal system behavior instead of looking into the library of known
attack patterns. Based on the statistical profiling, it develops a baseline of normal
cyber and physical activities and sends alert messages in real-time to the control
center operators if the system deviates from the defined baseline. Different types of
IDSs, such as model-based IDS, machine learning-based IDS, multi-agents-based
IDS, etc. can be an integral part of anomaly-based IDS for detecting attacks in the
power system.

e Model-based IDS (MIDS): This IDS leverages protocol information and historical
and redundant measurements for developing a prediction model, and malicious
and unknown attacks are detected based on behavior-based rules that are defined
during the statistical and temporal correlation analysis of incoming data streams.
Behavior-based rules include timing-based rules, range-based rules, transmission
line status-based rules as well as rules defined based on the coordination and
correlation of different events.

e Learning-based IDS (LIDS): This IDS applies several state-of-the-art machine
learning algorithms like supervised and unsupervised algorithms, and data mining
techniques to detect unknown, stealthy, and coordinated cyber-attacks. It relies
on an immense volume of power system data to develop a non-linear complex
relationships as necessary to distinguish between natural disturbances, malicious,
and non-malicious events. This IDS involves data pre-processing, input feature
selection, training, and real-time testing of different participating classifiers, and
based on their performances, the best classifier is selected for optimal decision
making.

(3) Hybrid IDS (HIDS): This IDS integrates the conventional signature-based
IDS with anomaly-based IDS on a common platform to provide better accuracy in
detecting multi-level intrusions by utilizing both network and power system infor-
mation while exhibiting a minimum detection latency. This IDS also overcomes the
weakness of other previously discussed IDSs by leveraging the best qualities of other
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IDSs while simultaneously monitoring physical, network, and application layers to
minimize the attack surface in the grid network.

3 Hybrid Intrusion Detection System: A Potential Solution

Since it is imperative to thoroughly investigate possible cyber-attacks in the grid
network to minimize attack surfaces, it is imperative to develop a comprehensive
and robust IDS that can provide an optimal detection performance with a minimum
detection latency while addressing the discussed IDS challenges. The HIDS provides
one of the promising solutions that incorporates both grid measurements and network
traffic information to minimize blind spots from the traditional IDS and capture
possible intricacies at physical, cyber, and application layers [24]. In particular, the
mechanism of HIDS combines network logs-based and data-driven approaches to
detect different types of malicious events in the system operations.

Figure 3 shows the high-level schematic architecture of HIDS that integrates the
existing conventional SIDS with the state-of-the-art LIDS and MIDS to accurately
detect multi-level intrusions at physical, network, and application layers in real-time,
and also minimize detection latency by assessing the network integrity in real-time.
It consists of four layers: Layer 1 presents a SIDS that detects anomalies based on
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Fig. 3 High-level schematic architecture of HIDS in the smart grid
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the known attack signatures using cyber logs; Layer 2 presents a MIDS that relies
on the spatio-temporal behavior of power system to develop threshold-based rules
to detect anomalies, and Layer 3 is a LIDS that applies the state-of-the-art machine
learning approaches and data-mining techniques to detect stealthy and coordinated
cyberattacks and provide a detailed classification of different events; Layer 4 presents
an alert management system (AMS) that manages alerts, coming from all three
intrusion detectors, and provides a final event identification to the control center
operator.

(a) Signature-based IDS: This layer monitors and analyzes SCADA network traf-
fic and consists of several components that analyze various levels of communications
traffic to detect anomalies in the grid network, as shown in Fig.4. Access-control
white-listing ensures legitimate traffic in the SCADA network by white-listing media
access control (MAC) addresses, internet protocol (IP) addresses, and port numbers
in the hardware, network, and transport layers. The protocol white-listing filters spe-
cific SCADA protocols and related function codes. Further, signature-based rules are
applied to detect anomalies based on the known attack signatures like ping scanning
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detection, Nmap scanning detection, address resolution protocol (ARP) spoofing
detection, denial of service (DoS) attack detection, etc., which are publicly available
in open-source IDS databases. Finally, the generated alert messages during network
intrusions are directly forwarded to the AMS to provide situational awareness about
network intrusions to the control center operator.

(b) Model-based IDS: This layer performs an in-depth analysis of SCADA com-
munication protocols and analyzes spatio-temporal behaviors of power systems to
define normal and legitimate behavior models. In particular, it filters the SCADA
communication packets, computes incoming packet rate, and extracts digital and
analog values to develop behavior-based rules. Several behavior-based rules can be
developed based on the timing of packets, range of power system variables, relays
status, and a combination of behavior-based rules in a coordinated fashion, as shown
in Fig.5, to detect malicious and unknown threats. In this layer, once an anomaly
is detected, the generated alert messages are fed to the machine learning classifiers
as input features to accurately detect and classify cyber-physical events, including
cyber-attacks and line faults.

(c) Learning-based IDS: This layer applies machine-learning algorithms and
data mining techniques to detect stealthy and coordinated cyber-attacks using multi-
source heterogeneous system data and also differentiates cyber-attacks from natural
disturbances like line faults, to provide intelligent decision support to the control
center operator. For building the classification model, the SCADA and synchropha-
sor measurements, along with the cyber logs, are collected from the grid network
and forwarded to the data aggregator at the control center. Fig. 6 shows the high-level
methodology for developing machine learning-based IDS that includes two phases:
offline process and online process. During the offline process, a library of heteroge-
neous datasets from a multi-source system has been generated for different events
that are labeled later in the integer format to facilitate the supervised learning process.
Afterward, data pre-processing steps are carried out to improve the data quality by
formatting and sampling it to develop approximate models with data cleaning to filter
inconsistent values and eliminate rows with a missing data. Further, the data trans-
formation module is applied to normalize datasets for enhancing smoothness and
homogeneity among samples followed by features selection and extraction, which
filter irrelevant information and unreliable data that may affect the learning process
and events prediction. Several feature selection techniques, such as filter (Pearson
Correlation, Chi-Square, etc.), wrapper (best-first search method, backward elimi-
nation, etc.), and embedded methods (decision tree, L1 (LASSO) regularization) can
be applied for selecting relevant features. The selected input features are utilized
for developing, training, and updating machine learning models with new scenarios
or cases when models are not online. Finally, during the online process, the trained
model is deployed for testing multi-events classification, detecting malicious and
benign events, and sending output logs to the AMS for final events identification and
visualization.

(d) Alert management system (AMS): It receives alert messages from all three
IDSs: NIDS, MIDS, and LIDS, and manages them through log parsers by performing
real-time logical processing based on defined logic rules to prioritize alert types.
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Fig.7 shows the log publishers X, Y, and Z, which are generated from network-
based, model-based, and learning-based IDSs, and fed to the decision logic. The
decision logic consists of two rules, i.e. rule 1 and rule 2.

Rule 1: It receives alerts from the Log Publisher X for SIDS and forwards them
to the aggregator (B, C) as an output B. For example, if the output of rule 1 is x1,
then B is also set to x 1.

Rule 2: It receives alerts from the Log Publishers Y and Z for MIDS and LIDS
and compares their alert logs to provide a final identification of events. If the alert
outputs are conflicting, then LIDS is given a higher preference because of its advanced
capability and sophistication in learning different types of events. For example, if Y
isylandZis z1,if yl = z1, then Cis set to y1 or z1. If y1 is not equal to z1, then
Cissetto z1 and z1 alert log is forwarded to the aggregator (B, C).
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The final alert logs that are coming from the aggregator (B, C) are displayed
through real-time visualization dashboard and it can also be utilized for developing
intrusion mitigation and prevention system (IMPS). The visualization dashboard
also supports different sets of features to provide comprehensive visibility of the
aggregated datasets and support event analysis based on the aggregated logs in real-
time.

3.1 Cyber Kill Chain Mapping with HIDS

Since the attacker’s skills, intellectual capabilities, and operational resources vary
from a nave to a sophisticated level, it is imperative to have a comprehensive under-
standing of several attack processes and mechanisms. The cyber kill-chain model
presents possible footsteps that can be utilized by attackers to successfully execute
severe and stealthy cyber-attacks. For example, the real cyber-attack on Ukraine’s
power grid in 2015 [25] followed a similar cyber kill chain model, where the attack-
ers performed a sequence of steps to understand the operational technology (OT)
network and SCADA distribution system followed by shutting down multiple online
distributed substations. Therefore, the development of the cyber kill chain model
reduces the likelihood of adversary success while optimizing available resources and
minimizing investments in cybersecurity. Further, it assists to better understand the
end-to-end decision-making process from the adversary’s perspective while engag-
ing them to create desired effects; hence it is possible to develop a robust intrusion
detector that can provide consistent and accurate performance in detecting cyber-
attacks. Figure 8 shows an abstract-level presentation of the cyber kill chain in the
context of SCADA cyber-physical security. Several tools, tactics, and procedures
(TTP) can be utilized in a sequence of steps as per the attack mechanism to perform
successful stealthy cyber-attacks. The model consists of various processes or stages
that are elaborated here, as discussed in [13].

1. Reconnaissance: In this stage, an attacker tries to collect substantial and rele-
vant information of the target to develop the blueprint of network architecture.
The attacker can perform ping scanning, port scanning, service scanning, etc. as
attack mechanisms to complete this stage. Several scanning tools like Ping Scan-
ner, Nmap, Zenmap, etc. can be leveraged to identify alive hosts, map network
addresses, and figure out the up-to-date network architecture.

2. Access and Exploitation: In this stage, an attacker tries to communicate or connect
to a target to discover potential vulnerabilities. Later, the obtained information
about the existing vulnerabilities can be exploited to gain a foothold or the priv-
ilege escalation to launch a successful attack. The vulnerability assessment or
penetration testing can be used as an attack mechanism; and tools like OpenVAS,
Metasploit, Nessus, etc. can be utilized to complete this stage.

3. Attack Launch/ Execution: Before reaching this stage, an attacker must ensure
that he has obtained the necessary privileges to execute or launch different types



Cyber Kill Chain-Based Hybrid Intrusion Detection System for Smart Grid 585

Cyber Kill Chain

Attack A“afk v I:ner i/ Execution Persisten ce
Process | Reconnaisance Discovery

| ! L |

Attack | PortScanning, Vulnerability D“;;‘e:'i:‘;g::ty» B;:l;l::l:::iob:ta
Mechanism| Service Scanning scanner N
—_— ~ Servicg;DoS Coordinated Attacks
Network Hybrid Intrusion
L Detection Engine

No action
required

Fig. 8 Cyber kill-chain mapping with the hybrid IDS

of attacks on system measurements, control signals, wide-area communication
network or operating field devices to disrupt the grid stability.

4. Persistence: This is the final stage where an attacker creates an additional back-
door or access channel to maintain his persistence access to the compromised
system that can be exploited later for attack repetition or launching multiple
attacks in a coordinated fashion.

Since our main objective is to detect all kinds of attacks, irrespective of the
attacker’s intelligence, different components of HIDS are developed around the kill
chain and mapped with its different stages to detect attackers at an initial stage and
predict their next move. Note that any disruption in the process/stage can break the
chain process, and thus, it may interrupt the attacker’s objective of destabilizing the
grid network. Also note that the sequence of chain model can be modified, changed,
and expanded depending upon the scenario, security investigation, and OT organi-
zation.

4 Case Study: Hybrid IDS for Wide-Area Protection
Scheme

4.1 Problem Formulation

A centralized wide-area protection scheme (CWAPS), also known as a remedial
action scheme (RAS), is an automatic protection system that performs corrective
actions to prevent widespread outages and maintain the system’s stability and relia-
bility during disturbances. The corrective actions, as defined by the NERC guideline
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[26], include a change in generation and load (MW or MVAR) and system configu-
ration. Seethalekshmi et al. presents the requirements of WAPS and explains how the
WAPS overcomes the major drawbacks of the SCADA-based localized protection
scheme [27]. According to the 2008 design guide of the Western Electricity Coor-
dinating Council (WECC), RAS is divided into four different types: event-based,
parameter-based, response-based, and a combination of the above [28]. The event
and parameter-based schemes are open-loop faster schemes, which take inputs as
relays status, line currents, voltages, etc. and perform corrective actions by shedding
the load, generation, and other pre-defined actions. The response-based scheme is a
close-loop slower scheme that examines the dynamic behavior while performing cor-
rective actions. In particular, the RAS is mainly utilized during transient instability,
voltage instability, and thermal overloads.

Fig.9 shows possible attack surfaces in CWAPS architecture at physical, cyber,
and application layers, as well as measurement and control sides. Since the CWAPS
relies on the SCADA and synchrophasor communication networks that are inter-
acting with data sharing devices for normal operation, the existing cybersecurity
vulnerabilities can be exploited by attackers to launch simple or elaborated classes
of cyber-attacks like denial of service (DoS), data integrity, etc. [29]. Moreover, it
cannot prevent themselves from legitimate users who misuse their privileges to per-
form malicious activities. Therefore, there is a compelling urge to develop a HIDS
for CWAPS that can detect attacks at an earlier stage to break the life-cycle of cyber-
attacks.

In this work, we have implemented an event and parameter-based CWAPS that
consists of a centralized RAS controller (CRASc). The CRASc, initially at an armed
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stage, collects phasor data at a regular interval in terms of relays status, power
line flows, and generator output. During a single line outage, the CRASc is trig-
gered, it checks the operational transfer capability (OTC) of the remaining adjacent
lines that are directly connected to the generator. If the current line flows exceed its
maximum operational transfer capability (OTC_max) limit, it performs corrective
action by shedding generation to prevent the thermal overloading in other adjacent
lines. Note that we have considered a thermal overload limit while computing the
OT C,ax, other factors like voltage and angular stabilities are ignored in this work.
The OT C,ax limit of each transmission line is provided through the predefined
action table that also provides information about how much generation has to be
reduced for the specific line contingency. Apart from the generation shedding, it
is also allowed to restore the generation once the fault/contingency is cleared, as
mentioned in [26].

4.2 Scenarios and Data Generation

This subsection presents several types of events, including malicious (cyber intru-
sions) and non-malicious events (line faults), which are considered to develop a robust
hybrid IDS that can provide accurate and consistent results. Moreover, a library of
the system database is generated for different scenarios for testing, validation, and
evaluation.

4.2.1 Physical Line Faults

It involves different types of faults, including symmetrical and asymmetrical faults
that can happen on transmission lines. In this case, we have considered 5 different
types of faults: line to ground (L-G), double line to ground (LL-G), three phases to
ground (LLL-G), line to line (L-L), and 3 phase faults (L-L-L). The unsymmetrical
faults, (L-G), (LL-G), (L-L) are more frequent and cause uneven flows of current
and phase shifts in a 3-phase power system. The symmetrical faults, (LLL-G) and
(L-L-L) cause the short-circuiting of three phases and often to the ground. These
faults are very rare but have a severe impact on the system’s stability.

4.2.2 Cyber Attacks

We have considered several types of cyber intrusions around the kill-chain model,
irrespective of the attacker’s intelligence that can have a potential impact on system
stability. We have classified attack vectors into two different types: IT-based attacks
and SCADA-based attacks. Both are discussed in details in the remainder of this
section
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IT-Based Attacks: 1T-based attacks include traditional host and network-based
attacks-including scanning attacks (e.g., ping and Network Mapper (NMAP) scan-
ning), DoS attacks, and spoofing attacks (e.g., IP spoofing, ARP poisoning)—that
can be deployed in the SCADA environment to develop a blueprint of the network
architecture and compromise power system devices.

SCADA-Based Attacks: SCADA-based attacks include those attacks that are
defined in the OT environment pertinent to the SCADA power system. These
attack vectors target insecure SCADA communications protocols, field devices,
computers, and several other digital access points to inflict severe damage on the
grid infrastructure. We consider three different attack vectors:

(a) Malicious tripping attack: This attack vector involves the malicious tripping
of a physical relay that can be performed in several ways, such as unauthorized
access to the control center, altering the setting of physical relays, etc. During a
MITM attack between substation and control center networks, the false tripping
command packets are injected to trip a circuit breaker and disconnect power
system components.

(b) Pulse attack: This attack vector involves periodically changing an input
control signal by adding the pulse attack parameter, A ., for a small-time inter-
val, (¢1). It retains the original input for a remaining interval, (T — 1), for the
given time period, (7'), as shown in Eq. 1.

(c) Ramp attack: This attack vector involves adding a time-varying ramp signal
to the input control signal based on a ramp signal parameter, A4, as shown in
Eq.2.

Pi(1+ )\pulse)(t =1n)

P(t=T—1) M

Ppulse =

Pramp =P+ )‘«ramp * 1 (2)

4.3 Hybrid IDS Components

This subsection presents the three components of HIDS where SIDS is utilized to
detect IT-based attacks, and MIDS and LIDS are deployed to detect SCADA-based
attacks as well as physical disturbances.

4.3.1 Signature-Based IDS Component

For SIDS, we have defined several rules for detecting IT attacks, as shown in Table 1.
Table 1 shows detailed information about IDS rules corresponding to different stages
of attacks based on the kill chain model. In this table, rule 1 and rule 2 belong to the
reconnaissance (stage 1), rule 3 belongs to the access (stage 2), and rule 4 belongs to



Cyber Kill Chain-Based Hybrid Intrusion Detection System for Smart Grid 589

Table 1 Snort rules for signature-based IDS
Rules Attack Snort IDS Rules

Rulel Ping Scanning (Reconnaissance) Alert icmp $ EXTERNAL_NET any ->
(IP of your substation RTU) any
(msg:ICMP to Substation; content:| 10
11 12 13 14|; sid: 9000547, rev:1;)

Rule 2 Nmap Scanning (Reconnaissance) alert tcp any any -> (IP of your
substation RTU) 22 (msg:NMAP TCP
Scan;sid:10000005; rev:2; )

Rule 3 Telnet Access (Access) Alert tcp $ EXTERNAL_NET any-> (IP
of your substation RTU) 23
(msg:Incoming Telnet ; content; root;
nocase; sid: 9000546, rev:1;)

Rule 4 DOS Attack (launch) Alert tcp $ EXTERNAL_NET any -> (IP
of your substation RTU) 20000
(msg:Warning DoS attack incoming;
threshold:type threshold, track by src,
count 100, seconds 5; sid: 9000547,
rev:1;)

the launch stage (stage3). Note that we have utilized the Snort IDS tool to analyze the
SCADA traffic through network interfaces and later develop these rules as discussed
in [13].

Rule 1: It detects the ping scanning attack on the substation network by capturing
incoming network traffic on the specified network internet protocol (IP) address for
the Internet Control Message Protocol (ICMP) protocol.

Rule 2: This rule detects the Nmap scanning attack whenever an attacker performs
TCP-based Nmap scanning on the substation RTU on port 22.

Rule 3: This rule detects an unauthorized Telnet session through a root login to
the substation RTU at port 23.

Rule 4: This rule detects a DoS attack on the substation network targeting the
distributed network protocol 3 (DNP3) communication on port 20000. In this rule,
an alert is generated after the first 100 SYN packets (SYN flood) within a sampling
period of 5 s.

4.3.2 Model-Based IDS Component

For MIDS, we have considered three behavior-based rules: range-based detection,
status-based detection, and timing-based detection, by defining thresholds in the Zeek
(BRO) analyzer function and Snort IDS for the DNP3 communication to detect pulse
attack, tripping attack, and ramp attack, as shown in Table 2 and 3, also discussed in
[13, 14, 24].
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Table 2 Zeek scripts for model-based IDS in DNP3

Alert ID | Model-based Rules (Attack) Zeek IDS Scripts
Alert ID 1| Range-based Detection (Pulse event dnp3_analog_input_SPwFlag(c:
Attack) connection, is_orig: bool, flag:

count, value: count){ if ( value '= 0 && value
< 3000000000 && value = 1065353216) { if
(value < 1123679256 |||| value >
1200000000){ ¢ $Sdnp3S$alert = 1; }}}

Table 3 Snort rules for model-based IDS in DNP3

Alert ID | Model-based Rules (Attack) Snort IDS Rules

Alert ID 2| Status-based Detection (Tripping Attack) | Alert tcp !(IP from your control center)
any -> (IP of your substation RTU)

20000 (msg:Unauthorized Relay Trip;
content |00 81| ;rev:i;)

Alert ID 3| Timing-based Detection (Ramp Attack) | Alert tcp (IP from your control center)
any -> (IP of your substation RTU)
20000 (msg:Ramp attack ; content : |00
81|; threshold:type threshold, track by
src, count 2, seconds 0.3; sid: 9000547,
rev:1;)

Range-based detection: In this case, a minimum threshold value is defined based
on the analog value that is extracted from the DNP3 SCADA communication pro-
tocol. Table2 shows a range-based detection in the Zeek script that generates an
alert with an alert ID 1 if the generated output power goes below the defined initial
generation. For example, if the output power of generator 1 is 135.4 MW, then an
alert is triggered if the generation reduces to the minimum threshold of 108.32 MW
(0.8 #135.4) that is equivalent to 1123679256 as an unsigned 32-bit integer, one of
the few available data types in Zeek (Bro) IDS [23].

Status-based detection: It triggers an alert in Snort IDS with an alert ID 2 if the
line status changes from 1 to O to notify the control center operator that the specific
relay is tripped.

Timing-based detection: This rule is defined based on the statistical analysis
of two consecutive control signal packets. We assign the minimum threshold value
to 0.3 seconds for two consecutive normal DNP3 packets based on the high-speed
auto-reclosing time, as discussed in [14], and an alert ID 3 is triggered in the Snort
IDS.
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4.3.3 Learning-Based IDS Component

This component of hybrid IDS applies machine-learning algorithms and data mining
techniques to detect the last stage (Persistence) of kill chain model that includes
stealthy and coordinated cyber-attacks. This approach utilizes secure phasor mea-
surements that are communicated over a separate WAN like the NASPI network
(NASPInet) with inherent cybersecurity features, and alert logs, obtained from the
model-based IDS, to accurately detect attacks and provide the detailed classification
of them while distinguishing them from natural disturbances like line faults. The
detailed classification and clarification of cyber-physical events provide a compre-
hensive understanding of incidents and also assist the control center operator to take
intelligent decisions.

Fig. 10 shows the methodology for developing LIDS to perform multi-events clas-
sification. For building the classification model, the phasor measurements, including
generator bus voltage magnitude (Vm,) and line bus voltage magnitudes (Vm;,
Vm ), where subscripts i and j represent the sending and receiving ends of the
transmission lines, are collected from the deployed PMUs. Apart from PMU mea-
surements, the learning-based IDS also receives the generated alert logs (Y) from
model-based IDS as input features. The offline process is applied, as outlined in
Fig. 10 from connector A to B, for training and updating model and developing the
final machine learning model. During the offline process, a library of the dataset
has been generated for different events, including cyberattacks, line faults, and nor-
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Fig. 10 Machine learning-based IDS using PMU measurements
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mal events, which are labeled later in the integer format, as part of the supervised
learning. Afterward, data preprocessing steps are carried out that involve normal-
ization, transformation, and features selection and extraction, which filter out the
irrelevant information and unreliable data that may affect the learning process and
events prediction. Further, the Pearson Correlation-based feature selection technique
is applied to select the relevant features. The obtained dataset is split into training
and testing datasets. It is appropriate to note that due to the space limitation, we are
not discussing the details of different scenarios required for generating the labeled
datasets. Overall, we have generated datasets for the five events: normal (0), line
faults (1), malicious tripping attack (2), pulse attack (3), and ramp attack (4). Finally,
the trained model is deployed for performing multi-events classification and sending
output logs to the operator.

4.4 Experimental Setup

Fig. 11 shows the hardware in the loop (HIL)-based cyber-physical system (CPS)
testbed for attack-detection experiments in CWAPS. We have modeled the IEEE 39
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Fig. 11 Experimental setup for attack-detection experiments
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bus system in ARTEMiS/SSN (eMEGASIM), and simulated in the real-time digital
simulator (OPAL-RT). We have deployed virtual PMU models (vPMUs) to gener-
ate synthetic phasors, and computed the relevant features inside the simulator. The
computed relevant features are sent to the hardware local phasor data concentrator
(LPDC), deployed at the substation network, which forwards the data to the software-
based super PDC (Open PDC) at the control center over the WAN. The super PDC
saves the data in a local comma-separated values (CSV) historian as well as in the
MySQL database. The stored data is used for generating the labeled database and
further training and testing machine learning model, as a part of the LIDS. In this
experiment, the CRAS controller is running in the python script, which is communi-
cating with the substation RTU through the Kepserver’s OPC Unified Architecture
(UA) client-server interfaces. The substation RTU, as shown in a pink box, is commu-
nicating with a simulator using the DNP3 (OPC server) SCADA communication. The
software OpenPDC collects the phasor measurements and forwards it to the LIDS.
Also, the CWAPS controller receives phasor measurements through the MySQL in
real-time, and sends the control signal back to the substation network through the
SCADA communication to provide an appropriate response, if necessary, to close
the loop. Also, SIDS and MIDS are deployed over the WAN that sniffs the SCADA
traffic and detects possible anomalies.

Fig. 12 shows the CRAS-enabled modified IEEE 39 bus system that is divided
into two major areas, where the area 2, working as a primarily generation area, is
supplying generation to the area 1 through the tie-lines L15-16 and L16-17. During
the tripping of line L16-17, the line L15-16 gets overloaded. Therefore, the CRAS
controller sheds the generation at bus 35, as shown by black colored arrow, and the
equal amount of load is shed at bus 18 to maintain the system frequency. To perform
the HIL experiment, relay 1 and relay 2 is mapped to lines L.15-16, and L16-17 [30].

For implementing IT-based attacks, the installed Kali Linux machine is listening
to the network traffic between the control center and substation network. We have
utilized the pre-installed tools, Nmap, and ping command, in the Kali machine to
perform the attack reconnaissance. The DoS attack is performed by sending a huge
number of random packets to the RTU through the TCP SYN flooding attack using
hping tool.

For implementing SCADA-based attacks, we have performed the malicious trip-
ping attack on the relay 2 to trip the line L16-17 by replaying the tripping packet
using the python script through the MITM between the substation and local control
center. For executing ramp and pulse attacks on generator 35 (G35), the malware,
Trojan Horse, is installed in the OPC server-based substation RTU, which provides
backdoor access to the attacker. The attacker closes the legitimate RTU program
and initiates python script-based malicious logic, which periodically sends the con-
trol signal to the simulator targeting the generator (G35) to initiate ramp and pulse
attacks. We have also simulated 3 phase to ground faults followed by the normal
tripping of the line L.16-17, and multiple simulations are performed for different
cases as discussed in [6]. Note that in this work, we assume that the attacker is only
looking to compromise insecure SCADA network and the synchrophasor network is
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Fig. 12 CRAS enabled modified IEEE 39 bus system

secure with inherent cybersecurity features and the detection results are provided in
the next section.

4.5 Results and Discussions

Table 4 shows the performance of HIDS as well as its comparison with an individual
SIDS in terms of accuracy rate. It can be observed that the SIDS is able to detect IT
attacks including ping scanning, Nmap scanning, DoS attack, and Telnet access attack
with an accuracy rate of 100%; however, it fails to identify stealthy SCADA-related
attacks and physical disturbances like line-to-ground faults. The HIDS merges LIDS
with SIDS and MIDS to detect IT and OT attacks with an accuracy rate of 100%
and 98.71%. Further, it is also able to detect physical disturbances with an accuracy
rate of 97.94% using machine learning-based random forest classifier during 70%
training and 30% testing datasets.

Note that while developing the LIDS, different machine learning classifiers were
applied—such as decision tree (DT), random forest (RF), and support vector machine
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Table 4 Accuracy Rate of several IDSs

IDSs IT Attacks OT Attacks Line Faults
Network-based IDS (%)| 100% X X

Hybrid IDS (%) (Net- 100% 98.71% 97.94%
work+Model+Learning)

Table 5 Average accuracy rate for different classifiers during Case 1 and Case 2 experiments

Parameters Case 1 Case 2
70% Training and 30% Testing

Decision Tree (DT) 88.5 79.8

Support Vector Machine 91.3 89.2

(SVM)

Random Forest (RF) 96.33 95.4
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Fig. 13 Average accuracy rate for different classifiers during case 2

(SVM)—to select the best classifier. Table5 shows the average accuracy rate of
different classifiers during case 1 and case 2 experiments for 70% training and 30%
testing datasets. Note that case 1 represents the scenario when PMU measurements
and cyber alerts, generated from MIDS, are utilized as input features, whereas input
features for case 2 include only PMU measurements. Table5 also shows that the
RF exhibits a higher accuracy rate as compared to other classifiers with an average
accuracy of 96.33% in case 1 and 95.4% in case 2.

Fig. 13 shows the average accuracy rate of different classifiers during testing in
case 2 where the training and testing datasets were varied from 80% training and 20%
testing to 20% training and 80% testing datasets to analyze the robustness of different
classifiers and it clearly illustrates the consistent performance of RF as compared
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to DT and SVM. Fig. 14 represents the average accuracy rate of RF for different
training datasets for both cases: case 1 and case 2. It clearly presents the consistent
and reliable performance of RF, as its accuracy in detecting different events during
testing is higher than 95% for case 1 and 93% for case 2, even when the training
dataset is reduced to 20% in both cases. Further, we observed that the performance
of each classifier improves by including power and cyber information for different
datasets, as shown in case 1 with respect to case 2.

Fig. 15 shows the processing time of RF for different % of training datasets for
both cases. It can be observed that the processing time (sec) for training the model
was higher in case 1 as compared to case 2, which is amplified during the higher %
of training datasets. Note that the RF exhibits a larger processing time in classifying
events as compared to the DT because of a large number of associated decision trees
in RF and the final prediction is made based on the majority vote, as discussed in
[24].

5 Conclusion

Developing an intrusion detection system for the smart grid cybersecurity is a chal-
lenging task as it requires an in-depth understanding of power system related appli-
cations, grid network architectures, and comprehensive knowledge of cutting-edge
technologies. In this chapter, we presented a systematic approach for developing
a hybrid IDS by integrating conventional network security solutions with state-of-
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Fig. 15 Processing time of random forest (RF) for different training datasets

the-art machine learning and model-based intrusion detection approaches to detect
advanced and persistent intruders at different stages while following the kill-chain
model. Initially, this chapter discussed different types of IDSs and highlighted the
existing challenges of developing IDS in the smart grid network. As a proof of con-
cept, one case study was presented where hybrid IDS is applied in a centralized wide-
area protection scheme to detect different types of cyberattacks, including IT- and
SCADA-based attacks. In particular, Snort and Zeek IDS tools were applied in devel-
oping signature and model-based IDSs, and machine learning-based classification
algorithms, including decision tree, random forest, and support vector machine, were
applied for developing the learning-based IDS. Further, several steps were described
to implement these cyber-attacks in the CPS testbed environment by utilizing the
resources available at Jowa State University PowerCyber laboratory. Experimental
results showed the superior performance of hybrid IDS to accurately detect different
classes of anomalies and physical disturbances. Our case study also showed that
the random forest-based classifier exhibited a higher accuracy rate as compared to
the other machine learning classifiers, and a combination of grid measurements and
alert logs, generated from model-based IDS, also assisted in providing a detailed
classification of different events. The potential avenue for future work is to develop
a library of novel IDSs for other SCADA protocols, such as GOOSE, Modbus, and
smart energy profile (SEP) 2.0 protocols.
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