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Abstract In this chapter, awide-area integratedmethod including a set of algorithms
for transmission lines fault analysis is introduced. The proposed method is based on
extension and modification of state estimation formulation. Thus, the method is
applicable to both symmetrical and asymmetrical networks as well as all fault types
including symmetrical and asymmetrical ones. The method exploits the capacities
of state estimation formulation and the solution algorithm of weighted least squares
(WLS) to reduce the effect of inherent errors on the fault location accuracy and
detection and elimination of bad data in the measurement vectors. For this purpose,
an error model of the measurement chain including instrument transformers and
PMUs is proposed. This model is used to design measuring errors covariance matrix
in the state estimation formulation. The performance of the proposed method has
been investigated through numerous fault events simulated on different locations of
all transmission lines of the IEEE 118-bus test system.

Keywords Asymmetrical faults · Bad data detection · Fault location ·
Measurement chain error · State estimation · Untransposed transmission lines

1 Introduction

Expansion of transmission lines in vast geographical areas has caused these lines
to be more exposed to natural phenomena such as lightning, windstorm, severe
winds, floods, and human factors. These phenomena can lead to permanent faults
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in transmission systems and long duration electricity interruption. That is why fault
location studies have received much attention from the first days of transmission
systems development. The higher accuracy of fault location speed up transmission
line repair process. Consequently, network is restored to the normal state and power
supply is reconnected for subscribers in the shortest possible time leading to higher
system reliability.

A faulty line can usually be identified using protection systems or supervisory
systems such as SCADA.1 After that, finding the exact location of the fault is the
main challenge lying ahead. The motivation behind this chapter is to present an
integrated method which is able to estimate fault location, faulty line discrimination
and fault type identification by using a number of wide-are phasor measurements.
Another motivation is using a known and systematic framework for implementation
of the integrated method and decreasing the effect of the inherent errors related to
the measuring components on the method’s results.

1.1 Literature Review and Background

So that the preliminary research dates back to the 1930s. However, the importance of
thesemethods becamemuchmore evident duringWorldWar II, and countries such as
the United States, Canada, Belgium, France, and Japan obtained great achievements
in this field [1]. An intensive plan was organized to develop fault location methods in
Japan so that a team of professors from the University of Tokyo and representatives
of nine power generating companies started collaborating as a “committee for fault
location on transmission lines” [1]. Alongside these coherent activities in Japan,
industrial companies each conducted separate research in theUnited States; however,
according to a pre-arranged agreement between companies, there was a completely
free exchange of information obtained from research. A comprehensive report by the
AIEE2 was published for the first time in order to review the existing methods and
present future horizons of fault location studies [1]. Primary fault location methods
can be classified into two main categories of visual inspection and fault location
using fixed measurements [1]. Figure1 summarizes this classification.

Primary methods of automatic fault location were unable to locate the fault. Some
methods were only applicable to lines without power, so they could only detect
permanent faults. However, to detect transient faults, the algorithms need either to
be applied automatically to power lines or use the recorded data before the breakers
can be opened. As such, fault location methods can be divided into two main groups:

– Traditional fault location methods
– Automatic fault location methods

1Supervisory Control and Data Acquisition.
2American Institute of Electrical Engineers.
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Fig. 1 Primary fault location methods

1.1.1 Traditional Fault Location Methods

As mentioned earlier, traditional methods include a set of methods that cannot auto-
matically detect the location of the fault in the aftermath of the fault, but patrols
and maintenance teams should locate the fault by the use of equipment. Table1
summarizes the traditional fault location methods used for overhead lines. Although
many methods have been introduced so far, none of them were reliable methods for
locating the fault. With the passage of time and the installation of equipment called
“fault indicator” on the posts or transmission line towers, valuable information was
provided to the users about the location of the fault. Then, the addition of radio fea-
tures to fault indicators has made it possible to transmit fault-related information in
impassable locations and bad weather conditions.

1.1.2 Automatic Fault Location Methods

Despite all the efforts made in different and unusual fault location methods, auto-
matic fault location methods are still the most effective. These methods determine
the physical location of the fault by processing the voltage and current waveforms.
Most of the methods known today are among the automatic fault location methods.
Automatic fault location methods can be categorized in terms of different aspects
such as selection of appropriate frequency of under-study quantities, location of
electrical quantities extraction, and choice of time/frequency domains. Meanwhile,
in general, they can be divided into three main groups [2, 3], including traveling
waves based methods, artificial intelligence-based methods, and main-frequency
component-based methods. Each of the above-mentioned groups can be divided into
two sub-sets of single-ended and two-ended in terms of used electrical quantities in
the algorithm.
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Decision making in traveling waves approaches is based on the analysis of the
position-time graphs and the motion of the voltage and current waves [4, 5]. In this
group ofmethods, several factors such as hard detection of initial travelingwave front
and reflection wave front are considered as major challenges [4]. Numerous methods
have been introduced to solve these challenges with defining new criteria [4, 6, 7]. In
recent years, with the development of artificial intelligence-based methods in power
system studies, thesemethods have also been used in fault location algorithms. These
methods estimate fault location using tools such as support-vectormachine (SVM) [8,
9] and extracting different characteristics of network signals [10]. The computational
difficulties as well as the costs incurred to the power system in traveling wave-
based methods and artificial intelligence-based ones have made impedance-based
methods still very popular among researchers. Impedance method is considered as
the most famous main-frequency component-based method. Impedance methods
calculate the fault location directly through voltage and current phasors [11]. They
calculate the fault location through the obtained data and without requiring any
special hardware/software and as a result are highly economical [12]. However, they
have disadvantages due to their dependence on faulty transmission line parameters
and fault impedance [13]. Due to this dependence on various parameters, many
studies have been conducted on the vulnerability of this group of algorithms [14].
Various types of impedance methods are investigated in [15] and different strategies
are presented to improve their performance and reduce their errors. In contrast to two-
ended methods, impedance-based methods that just use faulty single-ended data, do
not require a communication link between the sending and receiving ends. On the
other hand, less dependence on parameters in the two-ended methods results in an
increase in the accuracy [15–18]. In addition to the introduced methods, a number of
impedance-basedmethods have focused on determining fault location in the presence
of high fault impedances. The main focus of these methods is on the phase to ground
faults. As an instance, the method used in [19] uses the electrical quantities of both
terminals and the faulty line parameters to estimate the fault location. Some methods
such as [20, 21] estimate fault location by determining theThevenin equivalent circuit
of the network [20, 21]. Although thesemethods are the one-endedmethods, they are
able to greatly reduce the parameter dependency by taking advantage of equivalent
circuit and statistical theories. Recently, impedance methods have been extended for
multi-terminal transmission lines [22, 23] and nonhomogeneous transmission lines
[24]. In the 80’s, after introducing phasor measurement units (PMUs) [25], access
to concurrent synchronous data was provided throughout the network. In addition
to measuring the magnitude of voltages and currents, the equipment is also able to
extract their phases. Additionally, the accuracy of PMUs measurements is far higher
than that of other conventional measurement devices. The emergence of PMUs has
led to the creation of another group of fault location algorithms called wide-are fault
locationmethods (WAFL). This group ofmethods is able to estimate the fault location
by measuring some of the network voltages and currents from different points, not
necessarily the bus connected to the faulty line [26–30]. The wide area methods
gained their popularity mainly due to their capability to decide on the location of the
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occurred fault based on scattered information from the voltage and current phasors in
the network [31, 32]. Some WAFL approaches have been introduced such as hybrid
(synchronized and unsynchronized) measurements and non-iterative methods [33–
35].

1.2 Contributions

This studywas carried out to overcome some common challenges of the fault location
methods proposed over the last few decades. The error in estimating the fault loca-
tion introduced by bad data and inherent errors in the measurement chains are some
of these challenges. For this purpose, a novel algorithm based on the well-known
formulation of system state estimation is proposed for fault location. The other chal-
lenge in fault location algorithms is how to encounter network asymmetries and
asymmetric faults. In order to determine the fault location in the cases where the
network is asymmetric, e.g. due to lack of fully transmission system transposition,
and occurrence of asymmetric faults (single-line-to-ground, line-to-line, and dou-
ble line-to-ground), the proposed algorithm is based on three-phase state estimation
formulation. The proposed method is also able to determine the fault occurrence,
fault type, and phases that contribute to fault, along with fault location. Therefore,
the proposed method includes a set of algorithms based on the three-phase state
estimation.

To tackle the mentioned challenges and goals, the basic three-phase state estima-
tion algorithm is modified by considering the fault location as a hypothetical bus on
which is not feasible to install a PMU. The voltage phasor of this hypothetical bus,
the injected current (fault current) and the fault location are also added to the problem
variables. Thus, the achievements presented in this innovative study are summarized
as follows:

Proposing a set of algorithms based on the modified three-phase state estimation
for fault detection, faulty line discrimination, fault location estimation and fault
type and faulty phase(s) identification.
Exploiting the capacities of three-phase state estimation for locating all kinds of
symmetrical and asymmetrical faults on transposed and untransposed lines.
Presenting an error model of the measurement chain including instrument trans-
formers and PMUs.
Reducing the effect of inherent errormeasurement chain on the fault location accu-
racy and detecting and eliminating bad data in the measurement vectors based on
the design of measuring errors covariance matrix in the state estimation formula-
tion.



Wide-area Transmission System Fault Analysis … 455

2 Three-Phase State Estimation

The most common faults in power systems are asymmetrical faults [36] and also
transmission systems are mainly asymmetric due to lack of fully lines transposition.
Thus, the formulation of three-phase state estimation has been expanded in this study
for the possibility of considering asymmetric faults, incomplete lines transposition
and network asymmetries.

The purpose of power system state estimation is to calculate the magnitude and
phase angle of the voltage of all network buses (state variables) using the quantities
measured at different points in the network. The general form of three-phase state
estimation equations are as follows:

z =

⎡
⎢⎢⎢⎢⎢⎢⎣

z1
z2
.

.

.

zm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h1(x1, x2, ..., xn)
h2(x1, x2, ..., xn)

.

.

.

hm(x1, x2, ..., xn)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
.

.

.

em

⎤
⎥⎥⎥⎥⎥⎥⎦

= h(x) + e (1)

In (1), m shows the number of three-phase PMU measurement blocks. Thus, the
vector of system measurements z includes magnitude and phase angle of buses volt-
ages and lines currents and has the order of 3m × 1. The vector of measurement
functions, h(x), includes relationships between measurements and state variables.
The order of h(x) is 3m. Assuming there are Nbus buses in the network, the number
of the state variables n is equal to 6Nbus including three magnitudes and three-phase
angles for voltage phasor of each bus. The vector of state variables is denoted by
x = [

x1 x2 ... xn
]T
. The measurement errors vector is of the order of 3m × 1 and is

denoted by e.
One of the most commonly used methods for solving state estimation problem

is weighted least squares (WLS) method [37]. The purpose of WLS estimator is to
minimize the value of objective function of (2):

J (x) = [
z − h(x)

]T
.R−1.

[
z − h(x)

]
(2)

where, matrix R is the measurement errors covariance matrix.

R = Cov(e) = E
[
e.eT

] = diag(σ2
1, σ2

2, ... , σ2
m) (3)

Diagonal matrices σ2
i s indicate the variance of the measurements related to the i-th

three-phase measurement block.

σ2
i =

⎡
⎣

σ2
ia

0 0
0 σ2

i b
0

0 0 σ2
ic

⎤
⎦ . (4)
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The necessary condition for optimal solution of J (x) is as (5):

g(x) = ∂ J (x)

∂x
= 0 (5)

or
− HT .R−1.

[
z − h(x)

] = 0 (6)

where H(x) = ∂h(x)
∂x is the Jacobian matrix of measurement functions. Using Tay-

lor expansion and considering the linear approximation of h(xk + �xk) ∼= h(xk) +
H(xk).�xk , (6) can be written as:

HT (xk).R−1.H(xk).�xk = HT (xk).R−1.
[
z − h(xk)

]
(7)

where �xk = xk+1 − xk and xk+1 and xk denote the solutions of (k + 1)-th and k-th
steps of (7). By defining the gain or information matrix as

G(x) = HT .R−1.H (8)

and rearranging (7), the unknown x is obtained by the iterative solution of (9):

xk+1 = xk − G(xk)
−1

.g(xk) (9)

The iteration process is continued until
∣∣�xk

∣∣ < εwhere ε and k are the convergence
threshold of the problem solution and the iteration number in problem solution pro-
cess, respectively.

3 The Proposed Method to Determine Matrix R

Determining the power system status requires measuring a number of network elec-
trical quantities. Figure3 shows how to extract the electrical quantities. The process
shown in Fig, 3 is called “measurement process” or “measurement chain”. Eachmea-
surement chain consists of two main components, namely an instrument transformer
and a measuring device. Therefore, the measurement accuracy is directly affected
by the accuracy of both instrument transformers and measuring devices. Equipment
errors include the errors related to their inherent limitations and systematic or biased
errors due to their failure or other reasons.

The inherent errors of the equipment in themeasurement chain are declared by the
equipment manufacturer. These errors should be in accordance with the national or
international standards. The measurement error exists on both magnitude and phase
angle of voltage and current signals (Fig. 2).
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Fig. 2 A typical measurement chain in power system

Table 2 Maximum error of measurement devices [40]

Conventional measurements PMU measurements

Active power Reactive power Voltage Current Phase angle

±3% ±3% ±0.02% ±0.03% ±0.54◦

IEEE C57.13 standard has provided accuracy classes for instrument transformers
[38]. Accordingly, the maximum error of voltage and current transformers depends
on the power system operating condition.

For fault location, it is necessary to examine the network quantities during the
fault. The protective instrument transformers are used to obtain the abnormal voltage
and current during the fault. The maximum permissible error and the accuracy class
for this equipment are given in [39]. Table 2 also shows the maximum possible error
of measurement equipment in accordance with IEEE C37.118.1 standard [40]. To
identify the accuracy of measurement chain, it is necessary to consider the maximum
possible error occurring in both the intermediary transformers andmeasuring devices
to determine the error of measurement chains. In the following, we examine the error
of each measurement chain in terms of errors of its components.

For this purpose, popular statistical distributions for equipment error are used.
Due to the features such as continuity, symmetric feature, and ultimately zero mean
in standardmode, standard normal distribution has been used formodeling the errors.
In other references, the standard normal distribution is also called error distribution
[36]. Many engineering applications also use standard normal distribution to model
the errors.

In the measurement chain shown in Fig. 3, the relationship between converted
quantities (Ftrans f ) and actual quantities of the network (Fnetwork) is given by (10).
The final value of quantities in the output of the measurement process used in the
algorithms is also expressed as (11):

Ftrans f = Fnetwork + N (0, uF
IT ) (10)

Fmeas = Ftrans f + N (0, uF
PMU ) (11)

where N (0,σ2) expresses a normal distribution with the mean 0 and the variance
σ2. In (10) and (11), uF

IT , and u
F
PMU represent the standard uncertainty in the output
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+-

10

Fig. 3 Standard normal distribution and parameters definition

quantities of voltage/current transformers and PMUs, respectively. Furthermore, F is
used to represent themeasured quantities including V (voltagemagnitude), I (current
magnitude), θV (voltage phase angle), and θ I (current phase angle). I T is also used
to represent voltage transformer (VT) or current transformer (CT). Therefore, it is
expected that the converted quantities and measured values lie within the confidence
intervals:

(1 − eIT )Fnetwork < Ftrans f < (1 + eIT )Fnetwork (12)

Ftrans f (1 − ePMU ) < Fmeas < Ftrans f (1 + ePMU ) (13)

where eFIT and eFPMU are the maximum possible error of magnitude or phase angle
for the instrument transformers and PMUs, respectively. It should be noted that due
to the stochastic nature of the measuring process, the obtained quantities may not be
contained in the confidence interval. The probability of the obtained quantities being
within the confidence interval is defined as level of confidence (p). For example, con-
sider a voltage magnitude measurement, it is expected that the obtained value reflects
the confidence interval 0.98

∣∣Vtrans f

∣∣ < |Vmeas | < 1.02
∣∣Vtrans f

∣∣ that is 99.73%. In
the other words:

Prob(0.98
∣∣Vtrans f

∣∣ < |Vmeas | < 1.02
∣∣Vtrans f

∣∣) = 99.73% (14)

It means that from each 1,000 measured samples, 3 samples are out of the con-
fidence interval. Since in a power system, samples are continuously extracted, their
behavior can be described by the standard normal distribution. The confidence inter-
val, confidence level and its relation are shown in Fig. 3.
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Table 3 Value of the coverage factor kp that produces an interval having level of confidence p
assuming a standard normal distribution

Level of confidence p (%) Coverage factor kp

90 1.645

95 1.96

95.45 2

99 2.576

99.73 3

Uncertainties of voltage and current magnitudes in the standard normal distribu-
tion are obtained by the following equations [36]:

uF
IT .kp = eFIT |Fmeas | (15)

uF
PMU .kp = eFPMU |Fmeas | (16)

where kp represents coverage factor and |Fmeas | is themagnitude of voltage or current
sent to the control center. The different kps corresponding to various values of p are
presented in Table 3. If F means the voltage or current phase angle, uncertainties in
the standard normal distribution are presented as follows:

uF
IT .kp = eFIT (17)

uF
PMU .kp = eFPMU (18)

By substituting (10) in (11), equation (19) is obtained.

Fmeas = Fnetwork + N (0, uF
IT ) + N (0, uF

PMU ) (19)

As instrument transformers andPMUs are separate equipmentwith different phys-
ical structures and tasks, it is very close to reality to assume that they are indepen-
dent. Thus, according to (19), the standard uncertainty of a measurement chain can
be obtained from the two related normal distributions using the moment-generating
function of those normal distributions. The moment-generating function for a typi-

cal normal distribution with the mean μ and the variance σ2 is defined as eμ.t+ σ2 .t2

2 .
According to the statistical theorems, if two independent random variables are com-
bined, the moment-generating function for the new random variable is obtained from
the product of moment-generating functions of the independent variables [36].

ϕchain(t) = ϕI T (t).ϕPMU (t) (20)

In (20), ϕI T (t) and ϕPMU (t) are moment-generating functions for instrument
transformers and PMUs, respectively. For all equipment, the probability distribution
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Table 4 Integrated error of measurement chain, including the accuracy classes of protection trans-
ducers and PMUs

Voltage Measurement Chain Current Measurement Chain

Accuracy
class

Voltage error
(%)

Phase
displacement
(min)

Accuracy
class

Current error
at rated
primary
current (%)

Phase
displacement
at rated
primary
current (min)

3P ±3.67 ±120.0013 5P ±1.00045 ±60

6P ±6.33 ±240.00061 10P ±3.00015 –

function is a standard normal distribution, meaning that the mean value for all of
them is zero (μ = 0). Therefore, the moment-generating function of a measurement
chain can be expressed as:

ϕchain(t) = e0.5σ
2
I T .t2 .e0.5σ

2
PMU .t2 (21)

or
ϕchain(t) = e0.5(σ

2
I T +σ2

PMU )t2 (22)

It concludes that the distribution of combination of two normally distributed inde-
pendent variables is another normal distribution which has mean μchain and standard
deviation σchain as:

μchain = μI T + μPMU = 0

σchain =
√

σ2
I T + σ2

PMU

(23)

Therefore, using (10) to (23), the error of a measurement chain can be calculated
directly via (24) and the related weight coefficients can be obtained through (15) to
(18).

eFTotal =
√

(eFIT )
2 + (eFPMU )

2
(24)

The maximum errors of the measurement chains given in Table 4 have been
calculated by (24) based on the maximum allowable errors of voltage and current
given in Table 2. In most of the studies in the literature, just the PMU errors have
been considered to evaluate the performance of fault location algorithms. However,
according to Table 4, the main part of measurement error is related to the IT error,
i.e. the integer part of the combined error is related to the IT errors, while its decimal
part is due to the PMU errors. As shown in Table 4, IT errors are much higher than
PMU errors and it is unreasonable to ignore them.

The new approach proposed in this section can be used for calculating the maxi-
mum combinational error of each measurement chain.
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4 Modified Three-Phase State Estimation Formulation for
Fault Location

In this section a new method for recognition of fault occurrence, discrimination of
the faulty line, estimation of fault location and identification of fault type is proposed
based on three-phase state estimation for all fault types including three-phase faults,
line-to-line faults, double line-to-ground faults, and single-line-to-ground faults.

Installed PMUs provide the magnitude and phase angle values of the measured
quantities to the algorithm. To explain the proposed algorithms, Fig, 4 is presented.
Figure4a shows transmission line i j when a fault f occurs at distance d f from bus
i . Figure4b shows three-phase details of Fig. 4a for a single-line-to-ground fault
including phase c.

4.1 Fault Location as a Hypothetical Bus

In the proposed algorithm, the fault point (point f ) on the faulty line (line i j) is
considered as a hypothetical bus during the fault. As a result, the original Nbus-bus
system can be considered as a Nbus + 1-bus system and the fault current is recognized
as the injected current to the hypothetical bus.

Since there is no measurement equipment on the hypothetical bus, in the modified
state estimation problem seven new state variables including themagnitude and phase
angle of three-phase voltages of the hypothetical bus along with the fault position
are added to the original state variables vector. Therefore, in the modeling of the

Fig. 4 Transmission line i j
during a fault occurred at
distance d f from the i-th bus
a Single line diagram b
Single-line-to-ground fault
on phase c
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fault location problem based on the state estimation procedure, the vector of the state
variables, xmodi f ied is expressed as:

xmodi f ied =
⎡
⎣xT original | θ

V
f ph

T
V

T
f ph d f︸ ︷︷ ︸

xadded

⎤
⎦

6Nbus+7

(25)

where θ
V

f ph , V fph , and d f are the phase angle and magnitude vectors of three-phase
voltages at the hypothetical bus f and the fault location, respectively. It is observed
that the number of state variables added to the modified problem is constant for all
fault types. In this case, the Jacobian matrix is modified as (26).

Hmodi f ied =
[
Horiginal

∣∣∣ ∂h(xmodi f ied )

∂xadded

]
(26)

where H is the Jacobian matrix of original Nbus-bus system and Hmodi f ied is the
modified Jacobian matrix corresponding to xmodi f ied for the fault location purpose.
As the number of network measurements before and during the fault are constant,
the number of rows of matrix Hmodi f ied does not change with respect to H , and the
number of columns which are added to matrix H are equal to the number of variables
added to the state variables.

4.2 Bad Data Detection

One of the advantages of state estimation formulation is the systematic capability for
dealing with measurement errors. The inherent errors of the measurement chain are
modeled by the covariance matrix of errors. On the other hand, due to reasons such as
components failure, being under vibration or inappropriate installation environment,
some measurement equipment might encounter errors much higher than those listed
in Table 4. This kind of resulted data is called bad data. In this study, the largest
residual vector is used to identify bad data. For this purpose, after solving themodified
state estimation problem, the measurement residual vector is calculated using (27):

r (̂x) = z − h(̂x) (27)

where x̂ indicates the final value of state variable vector. In order to determine
the normalized residual vector, the residual of the covariance matrix must first be
calculated as:

�(̂x) = R − H (̂x).G−1(̂x).Ht (̂x) (28)

Then, the elements of the normalized measurement residual vector are calculated as:
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r Niph (̂x) = ri ph (̂x)√
�i i ph (̂x)

(29)

where, �i i ph indicates the elements of residual covariance diagonal matrix (�) cor-
responding to the i-th measurement and ri ph is the i-th element of the measurement
residual vector. After calculating the normalized measurement residual vector, its
largest element is determined and selected.

If the value of the largest element of the normalized residual vector (r Nmax) is
greater than the pre-determined threshold (

∣∣r Ni
∣∣ > β), this means that the measure-

ment corresponding to this element contains bad data. For bad data detection by the
largest residual vector, the distinctive threshold β is usually selected equal to 3 in
the literature such as [36, 37]. The choice of β = 3 as the threshold in references is
based on the experiences related to huge tests and stochastic theories. In addition we
have tested the threshold β equal to 3 by too much fault scenarios on different test
system for the measurement chains errors more than those given in Table 4. For all
studied scenarios, the elements corresponding to the failed measurement in the mea-
surement residual normalized vector have been greater than 3. When the bad data is
detected, the two following actions can be performed to improve the state estimation
results; correcting bad data using estimated values of the state variables or solving
the modified state estimation problem again by removing the faulty measurement
from the measurement values vector, in case of data redundancy.

4.3 Observability and Data Redundancy

The magnitude and phase angle of three-phase voltages at Nbus buses, magnitude
and phase angle of the hypothetical bus at fault point and the distance of fault point
from one end of the faulty line for three phases should be determined by WLS algo-
rithm. Thus, the number of the variables in the proposed fault location formulation is
6Nbus + 7. In the fault location problem based on the state estimation technique, sim-
ilar to a conventional state estimation problem, the best solution is obtained when the
problem is in the over-determined condition. The over-determined condition refers
to the condition in which the number of the measurements (3m) in the network is
greater than the number of the variables (n = 6Nbus + 7). However, in order to take
advantage of detecting and removing bad data, the number of measurements must be
more than the variables (3m � 6Nbus + 7). Thus the redundancy of measurements
determined the number of bad data which can be detected. The redundancy technique
can be realized by more measurements or using two or several data sets related to
different time instants during the fault period.
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4.4 Proposed Algorithm

The proposed fault location algorithm is based on three-phase state estimation which
requires three-phase model of the network and transmission lines and three-phase
PMUmeasurements including voltage and current phasors. Thus, the proposed algo-
rithm uses the network data and PMU measurements for detection of faulty line,
accurate estimation of fault location and identification of fault type according to the
following steps as shown in Fig. 5.

4.4.1 Detection of Faulty Line

Step 1: If some transmission lines are disconnected from the network, the probable
fault incident investigation and possible faulty line discrimination processes are ini-
tiated.
Step 2: Under normal operation (prior to the line trip), the system situation includ-
ing the network configuration (breakers status) and system operation quantities are
specified by the measurement and monitoring systems. When a fault is occurred
on a transmission line, the network configuration becomes different with the initial
network configuration. The step 2 of the algorithm considers the initial network con-
figuration along with the last set of data before fault clearing by opening the faulty
line circuit breakers for achieving three-phase state estimation.

For more explanation, assume the circuit breakers are opened after 5 cycles from
the fault occurrence instant. Thus, if the reporting rate of PMUs be one sample per
cycle, then there are 5 set of phasor samples provided by PMUs during the fault.
Since there is not compatibility between the system configuration (related to the
normal situation) and the measurements used in the state estimation study, the bad
data are detected and consequently the current measurements corresponding to the
maximum normalized residual vector indicates the faulty line.

Briefly, using the initial network configuration (prior to lines disconnection) and
the last set of data before circuit breakers tripping, three-phase state estimation is
executed according to (1)–(9). According to (27)–(29) and using the bad data detec-
tion process for state estimation results, the normalized residual vector of current
measurements would be calculated. The existence of bad data can be due to fault
occurrence and the lack of conformity between the network configuration and data
used in the executed state estimation. Therefore, there are two possible cases:

1. If bad data is not detected in current measurements, it can be concluded that
the fault occurrence is not the cause of circuit breakers tripping.

2. If bad data is detected in current measurements, it means a fault has occurred
and the current measurements corresponding to the maximum normalized residual
vector indicate the faulty line.
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Fig. 5 Flowchart of
proposed method

Faulty line  is detected

Step 1

Step 2

Step 2

Step 5

Step 2

Three-phase state estimation based on measured 
data (1)-(9)

Step 2
Fault occurrence detection based on bad data 

analysis for current measurement (section 4.B)  
(27)-(29)

Existence 
of bad data among current 

measurement?

No fault 
condition

Step 3

Step 3

Step 3

Existence of bad 
data?

Step 4
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4.4.2 Estimation of Fault Location

Step 3: According to (15)–(18) the covariance matrix is calculated based on the
maximum possible errors of the measurements given in Table4. Then the modified
three-phase state estimation problem based on (25)–(26) is solved by considering
the new state variables added to the state vector.
Step 4: Based on the content of Sect. 4.2, bad data analysis is performed to detect the
corresponding faulty measurement. If any bad data is detected in the measurements
vector, the faulty measurements are removed and the calculation begins again from
step3.This process continues until all faultymeasurements are detected and removed.
Finally, the fault location is determined with the required accuracy.

4.4.3 Identifying Fault Type

Step 5: By calculating the modified state vector in (25), the fault location is exactly
detected, and also the three-phase voltages of fault point V fph are calculated. By
investigating V fph , Viph , Vjph and currents Ii f ph , I j f ph (Fig. 4) during the fault, the fault
type and the phase or phases contributing to the fault can be identified according to
the power system short circuit theory.

5 Simulation Results

The performance of the proposed method has been investigated using several IEEE
test systems. Since the transmission network of these systems are inherently sym-
metrical network, to demonstrate the benefit of the proposed method, the symmetric
networks are converted to asymmetric networks in the following steps according to
[36].

1. Based on Z1 (positive sequence impedance) of the lines given by the data set of
networks, Z2 (negative sequence impedance) and Z0 (zero sequence impedance)
of the network lines are set as:

Z2 = Z1

Z0 = 3Z1
(30)

2. The sequence impedance matrix (Z012) for each transmission line is formed as:

Z012 =
⎡
⎣
Z0 0 0
0 Z1 0
0 0 Z2

⎤
⎦ (31)
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3. The phase impedance matrix (Zabc) for each transmission line is calculated as:

Zabc =
⎡
⎣
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

⎤
⎦ = T−1.Z012.T (32)

where

T =
⎡
⎣
1 1 1
1 e j120 e j240

1 e j240 e j120

⎤
⎦ (33)

In the Zabc calculated by (32), the mutual impedance between phases, Zab, Zbc,
and Zac are equal. To model non-perfect transposition of the lines phases accord-
ing to [36]:

Zab = Zbc

Zac = 0.6Zab
(34)

The Zabc of lines calculated as above presents asymmetric lines and are used in
the three-phase state estimation. The fault location algorithm need to knowing the
network topology and parameters. About 1 million fault studies on different test
systems (IEEE 9, 14, 39, 57 and 118-bus test networks) have been demonstrated
excellent performance of the proposed method. In this section, some results related
to the modified IEEE 118-bus test system [42, 43] are only presented. The fault
simulation was performed using the PowerFactory environment [41] and the related
data were processed using appropriate softwares. The simulations were performed
on a PC with an Intel Core i7 CPU including 32GB of RAM. Usually, the PMUs are
located to attain observability of network under normal operation. For example, to
realize complete observability conditions, studies of [44] have been led to locate 28
PMUs on buses 3, 8, 11, 12, 17, 21, 25, 28, 34, 35, 40, 45, 49, 53, 56, 62, 72, 75,
77, 80, 85, 86, 90, 94, 102, 105, 110 and 114 of 118-bus system as shown in Fig. 6.
However, these PMUs cannot guarantee the observability during faults, thus, it is
required to complete the initial set with other PMUs for attaining fault observabil-
ity and encountering bad data, inherent error of measurement chains and parameter
errors. These purpose are achieved by adding three PMUs at buses 47, 61 and 63 in
the 118-bus system. However, this choice is not unique and the accurate results in
fault location and detection of some measurement and parameter errors can be alter-
natively obtained by adding three PMUs to buses 51, 64 and 70. It is evident that the
incorrect choices of PMUs cannot guarantee the results for the proposed algorithm.
For example, adding PMUs at buses 57, 74 and 84 in addition to 28 initial PMUs
leads to unacceptable errors in fault location for some cases such as faults occurred
on line 64-65. In addition, the studies have been demonstrated that adding only one
or two PMUs cannot provide full fault observability in presence of measurement
errors. We have specified the required PMUs with heuristic methods; however, the
optimal locations can be specified by the systematic methods such as ones in [45].
Consequently, the optimal number and locations of PMUs are determined based on
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Fig. 6 IEEE 118-bus system

defining an appropriate optimization problem with required rules related to the state
observability and fault observability.

In simulations, measurement chain errors have randomly been generated using
the normal distribution based on the maximum allowable value given in Table4.
The simulated errors very closely reflect real measuring conditions. Numerous fault
events have been simulated on different locations of all network transmission lines of
the test systems. For each fault, 100 cases of added random errors to themeasurement
vector were considered. Then, for each location scenario, the relative error of fault
location algorithm is calculated as the average of 100 simulated cases according to
(35).

FLE(%) = 1

100

100∑
s=1

∣∣∣dest
f,s − dtrue

f

∣∣∣
dLine

× 100% (35)

where FLE is the relative error of the algorithm’s result for each location scenario,
dest
f,s is the estimated location of fault for the s-th case, dtrue

f is the actual location of
the fault, and dLine is the length of the line.

5.1 Faulty Line Discrimination

The performance of the proposed method for discrimination of the faulty line was
investigated by simulation of different fault scenarios on all 177 lines of the IEEE
118-bus system. It is observed that the method correctly performs for all the tested
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Table 5 Results for a fault on line (3-5)

Faulty
line dis-
crimi-
nation

Bad data results for current measurements

Bad data solution r Nmax Corresponding measurement measured in bus

1st 18.742 I3−5 3

2nd 16.449 I5−3 5

Faulty line Line (3-5)

Fault
identifi-
cation

Estimated faulty line quantities (p.u.)

Quantities Voltage magnitude Current magnitude

Phase a b c a b c

Bus

Sending 0.951 0.198 0.981 0.381 9.523 0.275

Hypothetical 0.941 0.000 0.993 – –

Receiving 0.848 0.191 0.971 0.396 6.317 0.302

Fault data True Estimated

d f (p.u.) 0.2 0.20041

Type SLG SLG

Faulty phase b b

FLE (%) 0.041%

scenarios. For example, consider a single-phase-to-ground short-circuit including
phase b occurred on line connected between buses 3 and 5 at 20% distance from
bus 3. At first, the measured phasors related to during fault (before opening of cir-
cuit breakers of two sides of the line) and the basic network configuration in the
three-phase state estimation problem are used to solve the problem. In this case, the
maximum normalized residual is obtained as 18.742 which corresponds to the mea-
sured current I3−5. The secondmaximum normalized residual vector is 16.449which
corresponds to the measured current I5−3. These results indicate that line (3–5) can
be a faulty line candidate. Then, the bad data are eliminated by solving the modified
three-phase estimation problem with the hypothetical bus on line (3–5). The results
of solving the problem for line 5 are shown in Table 5. These results demonstrate
very high accuracy of the fault location and fault type identification.
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5.2 Importance of Matrix R and Measurement Chain Error
Modeling in the Fault Location Algorithm

In Sect. 3, we discussed about the calculation method of the maximum error of
measurement chains using the maximum allowable errors of PMUs and transducer
transformers. The maximum error of measurement chains is used to correctly con-
struct the measurement errors covariance matrix, R, which is required in the state
estimation formulation. In this section, the importance of correct construction of
matrix R and also modeling the measurement chains error is studied. For this pur-
pose, random measurement errors are generated using the measurement chain error
model proposed in Sect. 3. Then matrix R is constructed considering two different
assumptions as follow.

Case1 : The error of instrument transformers are not considered in the measure-
ment chains error and matrix R is only constructed based on PMUs errors.

Case2 : Matrix R is accurately constructed based on the measurement chains
errors.

Table 6 gives the average of FLEs obtained from the proposed fault location
algorithm for two cases 1 and 2 applied on numerous different fault scenarios on
the transmission lines of IEEE 118-bus test system. It is observed that the errors of
fault location algorithm are not acceptable in case 1. The large FLEs in this case are
due to the mismatch between the real measurement error and incorrect assumption
in the construction of matrix R. The obtained outcomes confirm significance of
accurate measurement chain modeling in obtaining truthful results which is properly
performed in this chapter.

5.3 Study of Bad Data Detection in the Measurement Vector

One of the important aspects of the proposed method is detecting bad data. A com-
prehensive study of bad data detection has been performed by adding various biased
errors to different PMU measurements. The proposed method correctly identifies
the failed measurements for all cases. Here the results of a few studied cases are
presented. These cases are related to the occurrence of all fault types on line (16-17)
with added biased error to measurement chain of bus 11 as:

Case1 : Adding simultaneous errors to magnitude and phase angle of voltage
phasor of bus 11. The errors of magnitude and phase angle are set as 20% and 10
degrees, respectively.

Case2 :Adding simultaneous errors to either magnitude or phase angle of current
phasors of lines (11-12) at bus 11 and (11–13) at bus 11. The errors of magnitude
and phase angle are considered as 20% and 10 degrees, respectively.

Table 7 summarizes the results of these case studies. For each case, the two left
columns provide the maximum of the normalized residual vector corresponding to
the failed measurements. After removing the failed measurements from the data set
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Table 7 Results of bad data detection in the measurement vector

Fault
Type

Case 1 Case 2

1st
iteration
FLE(%)

Failed
magni-
tude
measure-
ment

Failed
phase
angle
measure-
ment

Last
iteration
FLE(%)

1st
iteration
FLE(%)

Failed
magni-
tude
measure-
ment

Failed
phase
angle
measure-
ment

Last
iteration
FLE(%)

r Nmax r Nmax r Nmax r Nmax

A-G 9.854 18.971 17.93 0.286 12.688 23.272 21.342 0.388

B-G 10.692 21.459 18.173 0.198 11.782 23.585 19.697 0.253

C-G 8.715 19.391 17.242 0.268 12.145 23.848 19.491 0.306

AB 8.392 19.23 16.839 0.267 12.172 21.878 17.223 0.217

AC 9.717 20.023 18.231 0.093 12.468 21.005 18.961 0.174

BC 9.633 19.806 18.108 0.044 13.436 24.092 18.59 0.224

AB-G 9.148 20.212 18.143 0.125 11.195 20.998 18.712 0.382

AC-G 9.355 18.36 17.008 0.165 14.542 24.087 20.387 0.222

BC-G 9.053 19.924 18.894 0.223 12.131 20.182 17.543 0.272

ABC 9.692 20.934 16.139 0.232 14.139 21.855 18.506 0.215

ABC-G 8.857 20.434 18.171 0.13 13.17 20.374 18.889 0.365

and solving the modified state estimation using the sound data, the average FLE of
fault location algorithm is given in the right column for each case.

For example, considering an A-G fault in the first case, when the solving process
is performed, the r Nmax, which corresponds to the magnitude of voltage measurement
of bus 10, is obtained as 24.536, which is significantly higher than the distinctive
threshold (β = 3). Then, after removing this faultymeasurement, the solution process
is repeated. The value of r Nmax in the second repetition is also greater than β = 3 and
equals to 21.044 which corresponds to the phase error of voltage measurement of
bus 10. In the third repetition, the value of r Nmax reaches to less than 3 and FLE
becomes equal to 0.024%. The calculated FLE is much less than 1%, which is
usually considered as an acceptable error for the fault location algorithms.

As shown, in all simulated cases, the failed measurements were detected correctly
and after removing the faultymeasurement from the solvingprocess, the fault location
was estimated with an acceptable accuracy. In all cases, the FLEs are less than
0.37%.

5.4 Impact of Different Data Redundancy Methods
on the Proposed Algorithm

As a necessary condition, there should be always redundancy in the measurements
vector to obtain the best estimation for the fault location in the presence of measure-
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Table 8 Comparison of FLE(%) for different methods of providing data redundancy

Fault
type

A-G B-G C-G AB AC BC AB-G AC-G BC-G ABC ABC-
G

Methods

Method A 0.011 0.017 0.084 0.086 0.097 0.084 0.081 0.042 0.017 0.087 0.041

Method B 0.025 0.264 0.099 0.289 0.308 0.136 0.127 0.308 0.297 0.143 0.197

ment chain inherent errors and bad data. One of the ways to create data redundancy
is access to more voltage and current phasors. An alternative way is using multiple
samples of measured quantities during the fault interval with the same number of
measurements.

In the first method (method A), we assume that the measurements of voltage
phasors and current phasors in the network of IEEE 118-bus test system are available
according to the aforementioned 31 PMUs as shown in Fig. 6, while in the second
method (method B), there are only 28 PMUs located at buses 3, 8, 11, 12, 17, 21,
25, 28, 34, 35, 40, 45, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110
and 114 according to [44]. In both methods, the number of measurements is more
than the minimum requirement for full observability of the system. In method A, one
phasor sample of each measurement is used but in the second method, two phasors
related to the time interval before circuit breaker opening are used as inputs to the
algorithm.

According to Table 8, the obtained results for various types of faults in the 118-
bus system show that in both methods, data redundancy has enabled the algorithm to
detect fault location with a high degree of accuracy. Furthermore, it can be realized
that in the proposed algorithm, only the existence of measurement data redundancy
is sufficient for detecting and eliminating faulty measurements, but how to generate
data redundancy has no major effect on the algorithm process and the accuracy of
the fault location algorithm.

5.5 A Discussion on the Speed of the Proposed Algorithm

The fault location algorithms are developed to accurate estimation of the fault point
on transmission lines to identify the weak network points in the case of the temporary
faults or reduce the repair time in the case of the permanent faults. Thus, in contrast to
protective algorithms, the speed of the fault location algorithm and related algorithms
such as the algorithm of identifying the faulted line is not a main and important
aspect. In fact, these algorithms are offline ones and executed after the protection
systemoperation. However, Table 9 compares the speed and accuracy of the proposed
algorithm with a number of the existing PMU-based fault location algorithms. The
average execution time of the proposed algorithm and six existing PMU-based fault
location algorithms for different fault scenarios on IEEE 118-bus system [33, 46–
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Table 9 Average execution time of proposed algorithm in comparisonwith six existing PMU-based
fault location algorithms for different fault scenarios on IEEE 118-bus system

Methods Proposed
method

[52] [46] [47] [48] [49] [50]

Execution
time

0.088 ∗ 0.49 0.079 7.7 0.61 1.09 0.328

Average
FLE (%)

0.23 0.47 0.65 0.61 0.31 0.51 0.84

∗ The execution time is calculated for average execution time of scenarios with three bad measure-
ments detection and fault location calculation

Table 10 Minimum, maximum and average execution time of proposed algorithm on different test
networks

Test network Proposed method

Min. execution time∗ Max. execution time∗∗ Average execution
time

IEEE 14 bus 0.028 s 0.056 s 0.044 s

IEEE 39 bus 0.051 s 0.081 s 0.073 s

IEEE 57 bus 0.061 s 0.088 s 0.079 s

IEEE 118 bus 0.078 s 0.97 s 0.089 s
∗ The execution time is calculated for average execution time of scenarios with two bad measure-
ments detection and fault location calculation
∗∗ The execution time is calculated for average execution time of scenarios with five bad measure-
ments detection and fault location calculation

50] gives in Table 9 demonstrate the execution time of the most methods such as the
proposed method is fraction of 1 Sec. The minimum, average and maximum times
of the proposed algorithm execution for four test systems with different sizes are
given in Table 10, also demonstrates the execution time increases with the system
size although the times are still small.

Table 10 demonstrates the execution time increases with the system size although
the times are still small. The presented methods in this chapter can be modified for
different applications in power systems operation, control, protection and security
[33, 51, 53–56].

6 Conclusions

In this chapter, a fault location algorithm for transmission lines based on the three-
phase state estimation formulation is proposed. The proposed modified formulation
integrates all tasks including fault occurrence recognition, faulty line discrimination,
fault location estimation and fault type and faulty phase(s) identification. It exploits
the excellent capacities of three-phase state estimation for analyzing all symmet-
rical and asymmetrical faults on transposed and untransposed lines, reducing the
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effect of inherent errors of measurements chain on the fault location accuracy and
detecting and eliminating the bad data in the measurement vector. The algorithm’s
performance has been investigated by simulating numerous fault cases on different
locations of the transmission lines of the modified 39-bus test system with an asym-
metric network. For each of the fault cases, the inherent errors of the measurements
chain are considered in the measurement vector based on the proposed error model
of the measurements chain. It was demonstrated that for all cases, the error of fault
location algorithm is much less than 0.5%. In addition, the importance of correct
construction of measurement error covariance matrix as one of the effective param-
eters on the state estimation calculation has been investigated. The proposed error
model of the measurement chain uses the maximum allowable errors of PMUs and
transducer transformers to calculate the maximum errors of the measurement chains
utilized to correctly construct matrix R.
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