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Abstract Recently, due to the increasing demand with scarcity in installed produc-
tion capacities, power systems are being operated closer to voltage stability limits
resulting in a higher eventuality of voltage collapse. Thus, fast and accurate moni-
toring of voltage stability has become an important factor in the efficient operation
of modern power systems. In this chapter, two approaches based on the combination
of multi-layer perceptron (MLP) neural network and adaptive neuro-fuzzy inference
system (ANFIS) with moth swarm algorithm (MSA) have been proposed to monitor
voltage stability of power systems using phasor measurement units (PMUs) data. In
the proposed hybrid MLP–MSA and ANFIS–MSA models, the MSA algorithm is
adopted to optimize the connection weights and biases of the MLP network and to
determine the tuning parameter in ANFIS model. To evaluate the prediction capa-
bility and efficiency of the proposed models, several statistical indicators such as
root mean square error (RMSE), correlation coefficient (R) and root mean square
percentage error (RMSPE) are used. Numerical studies are carried out on two stan-
dard power systems. The obtained results indicate that the proposed ANFIS–MSA
model has the most reliable and accurate prediction ability and deemed to be the
effective method to estimate the voltage stability margin of the power system based
on measurements from PMU devices.
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1 Introduction

The rapid growth of electricity demand, the environmental restrictions and the dereg-
ulation policies coerce the power systems to operate close to their stability limits. In
such conditions, any contingency such as the loss of a generator or transmission line
in the system may cause voltage collapse. Therefore, it is necessary to continuously
monitor the voltage stability of the power system to avoid the risk of large blackouts.
To monitor the voltage stability of the power system in real-time, the process of
measurements collection and voltage stability margin (VSM) computation must be
accomplished within the required time frame. Traditionally, supervisory control and
data acquisition (SCADA) system have been used to collect measurements regularly
every few minutes [1]. Therefore, real-time voltage stability monitoring is imprac-
tical with using traditional SCADA system. In recent years, the wide-area measure-
ment system (WAMS) is increasingly being deployed in modern power systems
(smart grids). With the prevalence of WAMS based on phasor measurement units
(PMUs), the power system stability issues can be treated more efficiently. PMUs
overcome the disadvantages of SCADA by providing the synchronized measure-
ments of voltage and current phasors and frequency at a very high speed. The
synchrophasor measurements gathered from PMUs can support the tracking of fast
event and provide sufficient information for voltage stability monitoring. Voltage
stability margin (VSM) estimation is one of the commonly used techniques for
real-time voltage stability monitoring based on the provided PMU measurements.
Many studies have been developed based onmachine learning techniques to estimate
the VSM in real-time. In [2], multi-layered perceptron (MLP) network based-back-
propagation algorithm is introduced to estimate the VSM using the energy method.
Joya et al. [3] utilized a sequential learning strategy to design a single MLP network
to estimate the line voltage stability index for different load conditions. Venkatesan
and Jolad [4] proposed the application of an MLP based model for fast voltage
contingency ranking. The load flow equations are adopted, in this work, to deter-
mine the minimum singular values and the findings of the load flow analysis are used
to train theMLP network. Authors in [5] proposed a novelMLP-based algorithm that
involves a reduced number of inputs to estimate the voltage magnitude of weakest
buses in the system. In [6], an effective technique based on Gram–Schmidt orthogo-
nalization is proposed to find the optimal number of MLP inputs required to assure a
good assessment of voltage stability. Adaptively trained MLP network is used in [7]
as a mapping tool to approximate the available loading margin of the system. In this
work, Z-score technique is applied to find and process any bad variable in the training
dataset for theMLP network. Generally, ANN is considered as a powerful method for
performing nonlinear regression. However, ANNs suffer from some drawbacks such
as the amount of training time, the functional relationship which gets changed from
one topology to another and the requirement of the appropriate values of weights
and bias parameters [8, 9].

In the last years, many studies have been reported in the literature, exploiting the
ability of support vector machine (SVM) technique for voltage stability monitoring.
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Reference [10] discuss the evaluation of voltage stability using the regression version
of SVM or the so-called support vector regression (SVR). Suganyadevi and Babulal
[11] proposed the use of v and ε types of SVRmodel with various kernel functions to
estimate theVSM. In [12], least squares SVM (LS–SVM)with a reduced set of inputs
is adopted to estimate the power system load-abilitymargin. Sajan et al. [9] developed
a hybrid model integrating SVR with genetic algorithm (GA) for voltage stability
evaluation. In the same way, we proposed in our previous works [13, 14] two hybrid
models combiningSVRwith ant lion optimization (ALO) and dragonflyoptimization
(DFO) algorithms for voltage stability assessment. In theseworks, theALO andDFO
algorithms are adopted to find the appropriate SVR parameters. It was stated that the
developed GA–SVR, ALO–SVR and DFO–SVR models have better performance
compared to the MLP network. Although that SVM is a powerful and promising
classification and regression tool, it suffers from overrun time and necessitates more
memory for a big training dataset. On the other hand, the efficiency of the SVM
model is highly depending upon the selected internal parameters [15].

Adaptive neuro-fuzzy inference system (ANFIS) is another powerful and flexible
method proposed by some researchers for voltage stability monitoring. Modi et al.
[16, 17] proposed the application of the ANFISmodel tomonitor the voltage stability
of power systems incorporating FACTS devices. In [18], a fuzzy inference model is
established and optimized by ANN and GA algorithm to assess the power system
security margins. Authors of [19] adopted the subtractive clustering (SC) technique
and ANFIS model to evaluate the VSM of the power system. Amroune et al. [14]
introduce a method of utilizing ANFIS model-based synchrophasor measurements
for on-line prediction ofVSM. Even thoughwith the good performance of theANFIS
model, its application in voltage stability analysis is still limited. The high compu-
tational costs and the complex set of its parameters are the major drawbacks of this
method [11]. Therefore, the application of efficient methods to adjust ANFIS param-
eters will be of great importance since the unsuitable selection of these parameters
can lead to inaccurate classification/regression.

The main purpose of this chapter is to present two real-time voltage stability
monitoring approaches for secure and reliable power system operation. In the first
approach, an improvedmulti-layer perceptron (MLP) neural network based on PMUs
measurements is proposed to estimate the VSM of the power system in a real-time
manner. In the proposed model, the moth swarm algorithm (MSA) [20] is integrated
with the MLP network to optimize the connection weights and biases of the network
to improve its performance. In the second approach, a novel hybrid model combining
the adaptive neuro-fuzzy inference system (ANFIS) andMSA is proposed tomonitor
the voltage stability of power system. In the proposed hybrid model, the MSA algo-
rithm is adopted to obtain proper parameter settings for the ANFIS-based subtractive
clustering (SC) technique.

The rest of the chapter is organized as follows: Sect. 2 explains the standard
structure of theMLPneural network,ANFIS andMSAalgorithm. Section 3 describes
the proposed hybrid MLP–MSA and ANFIS–MSA models. Section 4 describes the
implementation of the proposed hybrid models for voltage stability monitoring. In
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Sect. 5, the proposed hybrid models are validated and compared in IEEE 30-bus and
IEEE 118-bus standard test systems. Finely a conclusion is drawn in Sect. 6.

2 Methods

This section presents the basic information of artificial neural network (ANN),
adaptive neuro-fuzzy inference system (ANFIS) and moth swarm algorithm (MSA).

2.1 Artificial Neural Network (ANN)

2.1.1 Model of Neuron

Artificial neural network (ANN) is a type of machine learning techniques that simu-
lates the mechanism of information management of the human brain system. A
diagram of a neuron model with a single n-element input vector, which forms the
modern basis for ANNs, is illustrated in Fig. 1. The main elements of the neural
model are listed below:

• An input vector connected to a summation node via connecting links. Each of
these links has an associated weight (wi);

• A summation node in which the weighted input wixi is added to the scalar bias b
to form the network input;

• An activation function (threshold) for limiting the amplitude of the output of the
neuron.

The main objective of an activation function is to confirm that the neuron’s
response is bounded or limited. The activation functions are generally divided into

Fig. 1 Model of neuron
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two main types linear and non-linear activation functions. Nonlinear functions such
as logarithmic sigmoid, hyperbolic tangent sigmoid functions and pure linear func-
tion are the frequently utilized functions. The output (y) of the neuron governed by
the activation function (ϕ) can be expressed as follows:

y = ϕ

(
n∑

i=1

wi xi + b

)
(1)

2.1.2 Multilayer Perceptron (MLP) Neural Network

One of the most used neural networks in engineering applications is the multilayer
perceptron (MLP) neural network [21]. The structure of MLP includes one input
layer, one output layer, and one or more hidden layers. The connections between
the neurons are performed through some pre-specified weights. Figure 2 shows the
typical planning of neurons in an MLP neural network. In this Figure, every node
represents an artificial neuron. The neurons are organized in layers, there are one
input layer, one output layer and multiple hidden layers. The relationship between
the layers can be given by the following equations [22]:

Fig. 2 Multilayer perceptron neural network
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h j = ϕh1

(
I∑

i=1

wi j xi + b1 j

)
, j = 1, . . . K (2)

pm = ϕh2

⎛
⎝ K∑

j=1

wjmh j + b2m

⎞
⎠, m = 1, . . . , M (3)

yn = ϕout

(
M∑

m=1

wmn pm + b3n

)
, n = 1, . . . , N (4)

where wij, wjm and wmn are the associated weights, b1j, b2m and b3n are the biases, ϕ
(x) denotes the activation function.

2.1.3 Training of MLP

Artificial neural networks are trained based on the relevant data by learning algo-
rithms. During the training process, the weight and bias parameters are optimized.
Then, these parameters are employed to process test dataset to obtain the final output.
The MLP network learning can be divided into two main groups: supervised and
unsupervised learning.

• Supervised learning—In this group, the system is presented with a set of inputs
and the correct outputs, an external trainer controls the learning to learn a general
rule that maps inputs to outputs. The weights are adjusted to minimize the error
between the network outputs and the desired outputs;

• Unsupervised learning—In this group, there is no trainer involved and no labelled
responses are given to the learning algorithm. Here the network is just exposed to
a set of inputs and algorithms are left to their own to draw inferences.

In the supervised learning method and the one we use in this chapter, the weights
and bias are adjusted to minimize the error between the actual and the predicted
values in the next iteration. This process is repeated several times until the minimum
error is achieved. Finally, the obtained weights and bias are utilized to carry out any
tasks of the ANN i.e. classification or regression. There are several techniques to
find the optimal values of the weights and bias by supervised learning. One of the
vastly applied learning algorithms to train theMLP networks is the back-propagation
(BP) algorithm. This method is based on the minimization of the error between the
predicted and actual outputs by adjusting the weights. Notwithstanding its wide
utilization, BP algorithm has some drawbacks such as the slow error convergence
rate and the local minimum trap [23]. Therefore, there is a need for more robust and
efficient optimization algorithms for MLP network training.
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2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

2.2.1 Overview of ANFIS

ANFIS was introduced by Jang in 1993 [24]. It is a machine learning technique
incorporates the advantages of ANNs and fuzzy system. The fuzzy part generates
a relationship between inputs and outputs, and the parameters associated with the
membership part are specified by the neural network. Thence, the main features of
both fuzzy and ANN methods are combined in this system.

The sample design of the ANFIS model with two inputs and two rules is shown
in Fig. 3. It consists of five main layers; each layer contains several nodes designated
by the node function. The functionality of these five layers is given as follows [24]:

Layer 1 (Fuzzification): In this layer, the inputs x and y are subjected to a member-
ship function (e.g., triangle, trapezoidal, Gaussian). The generated outputO1,i, using
generalized Gaussian membership function, can be expressed as follows:

O1,i = μAi (x), i = 1, 2, O1,i = μBi−2(y), i = 3, 4 (5)

where μAi and μBi are Gaussian membership function given by:

μ(x; c, σ ) = e− 1
2 (

x−c
σ ) (6)

where Ai and Bi are the membership values of theμ; c and σ are the centre and width,
respectively.

Layer 2 (Product): The output of each node in this layer is the product of all the
received signals that are coming to this layer. This product can be computed using
the following equation:

Fig. 3 The structure of ANFIS model for two inputs and two rules
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O2,i = μAi (x) × μBi−2(y), i = 1, 2 (7)

Layer 3 (Normalization): In this layer, the output of the layer 2 is normalized using
the following equation:

O3,i = ω̄i = ωi

2∑
i=1

ωi

, i = 1, 2 (8)

Layer 4 (Defuzzification): The output of layer 3 is passed through the adaptive nodes
of layer 4 as follows:

O4,i = ω̄i fi = ω̄i (pi x + qi y + ri ), i = 1, 2 (9)

where p, q and r are the consequent parameters of the ith node. These parameters
are determined throughout the training phase.

Layer 5 (Overall output): Consists of a single node, which produce the overall
output of the model.

O5 =
2∑

i=1

ω̄i fi =
∑2

i=1 ω̄i fi
ω1 + ω2

(10)

2.2.2 Subtractive Clustering (SC)

Themost crucial step in the developing of theANFISmodel is the generation of fuzzy
inference system (FIS)with an optimumnumber and formof fuzzy rules to reduce the
computational complexities. Thus, several methods such as grid partitioning, fuzzy
c-means and subtractive clustering have been proposed to automate this process.
Compared to the other algorithms, subtractive clustering (SC) [25] gives a better
distribution of cluster centres and reduces the amount of data associated with the
given problem. In this method, each data point is taken as a cluster centre candidate,
afterwards, it computes the potential Pi of each data point xi by determining the
density of neighbouring points data using the following Equation.

Pi =
m∑
j=1

exp

(
−
∥∥xi − x j

∥∥2(
ra
/
2
)2
)

(11)

where m is the total number of data points in the N-Dimensional space. xi and xj are
the data points, ra is a positive constant defining a neighbourhood radius, and || ||
represents the Euclidean distance. The data point with the highest potential value is
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chosen as the first cluster centre xc1 and its density is Pc1. For the next cluster centre,
the influence of the first cluster centre is subtracted to define the novel density values,
as given by the Eq. 12:

Pi = Pi − Pc1 exp

(
−‖xi − xc1‖2(

rb
/
2
)2
)

(12)

rb = η × ra (13)

where η is a positive number greater than 1.
According to Eq. 12 all the points close to themeasured cluster centre xc1 will have

low potential values and therefore they will not be taken as the next cluster centres.
The next cluster centre xc2 is chosen after the recalculation of the potential of each
data point. This process is repeated until sufficient cluster centres are produced.

2.3 Moth Swarm Algorithm (MSA)

Moth swarm algorithm (MSA) is a novel meta-heuristic optimization method
proposed in 2017 by Ali Mohamed et al., [26] as a developed version of moth flame
optimizer [20]. This algorithm is inspired by the navigational behaviour of moths in
nature. The position of the light is expressed as the optimal solution, and the bril-
liance of this light is considered as the objective function. MSA algorithm comprises
three collections of moths, which are defined as follows:

Pathfinders: A small group of moths that has the aptitude to find out the new
areas over the optimization space and to discover the best position as the light source
and to lead other individuals in the population to this position.

Prospectors: This second group is taking charge ofwandering into arbitrary spiral
paths set by the first group.

Onlookers: This group of the moths drift directly toward the best global solution
which has been determined by prospectors.

Through the iterations, each moth is integrated into the optimization problem to
search for the luminescence intensity of its corresponding light source. Pathfinders’
positions are taken as the best fitness values, while the second and third best fitness
take the names of prospectors and onlookers, respectively. The MSA is represented
in four main phases [20]:
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2.3.1 Initialization

The initial position of moths is selected randomly as:

Xi j = rand[1, 0] ×
(
Xmax
j − Xmin

j

)
+ Xmin

j ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}
(14)

where n is the number of populations and d is the dimension of the problem.
After initialization, the type of moth in the swarm is chosen based on the calcula-

tion of objective function. The best value of the objective function is selected to be
pathfinders, and others are selected to be prospectors and onlookers.

2.3.2 Reconnaissance

In this phase, the pathfinders are updating their positions through the following five
steps. In the first step, a proposed diversity index is employed to select the crossover
points. The normalized dispersal degree at t iteration can be expressed as follows:

σ t
j =

√√√√√ 1
Np

∑Np

i=1

(
Xt
i j −

___

Xt
j

)2
___

Xt
j

(15)

The variation coefficient can be computed as follows:

___

Xt
j = 1

Np

Np∑
i=1

Xt2
i j (16)

where Np is the number of pathfinders:

μt = 1

d

d∑
j=1

σ t
j (17)

where μt is the variation degree of the relative dispersion.
In the second step, the random processes based on α-stable distribution are

explained as Lévy flights [27].
The third step is called difference vectors Lévy mutation in which the sub-trial

vectors are generated based on host vectors and donor vectors.

vtpj =
{

vtpj if j ∈ cp

xtpj if j /∈ cp
(18)
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In the fourth step, the position of each pathfinder is updated based on an adaptive
crossover.

In the final step, a selection strategy is applied to define the best solutions to
survive the next generation as follows:

−−→
xt+1
p =

⎧⎪⎨
⎪⎩

−→
xtp if f

(−→
vtp
)

≥ f
(−→
xtp
)

−→
vtp if f

(−→
vtp
)

< f
(−→
xtp
) (19)

The probability value Pp is estimated as follows:

Pp = f i tp∑np
p=1 f i tp

(20)

The luminescence intensity is computed from the fitness function of the problem
f p as follows:

f i tp =
⎧⎨
⎩

1

1 + f p
for f p ≥ 0

1 + ∣∣ f p∣∣ for f p < 0
(21)

2.3.3 Transverse Orientation

In this phase, themoths with theminimal luminosity of light are taken as prospectors,
and their numbers nf reduced throughout iterations as follows:

n f = round

((
n − np

)×
(
1 − t

T

))
(22)

where np is the number of pathfinders, t is the current iteration, T is the number of
iterations.

The position of each prospector is updated according to the spiral flight path as
follows:

xt+1
i = ∣∣xti − xtp

∣∣ · eθ · cos 2πθ + xtp (23)

where θ ε [r, 1] is a random number to define the spiral shape and r = –1– t/T.
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2.3.4 Celestial Navigation

In this phase, the number of prospectors is decreased and the number of onlookers
is increased. Moth with low fitness value is considered the onlooker and it can be
computed using Eq. (24).

No = n − Ns − Np (24)

The onlooker contains the two following groups:
(1) The first group fly according to Gaussian distribution with NG = No/2

f (q) = 1√
2πuG

exp

(
(qu)

2

2σ 2
G

)
− ∞ < q < ∞
(
q ∼ N

(
μ, σ 2

G

))
(25)

xt+1
i = xti + ε1 + [ε2 × best − ε3 × xti

]
∀i ∈ {1, 2, . . . , NG} (26)

ε1 ∼ random(si ze(d)) ⊕
(
best tg,

log t

t
× (xti − best tg

))
(27)

where ε1 is the random sample from Gaussian distribution, best is the global best
solution (moonlight) which is obtained by transverse orientation and ε2 and ε3 are
random numbers that range from [0, 1].

(2) The second group with size NA = No – NG

The updating equation for this group can be given as:

xt+1
i = xti + 0.001 · G

[
xti − xmin

i , xmax
i − xti

]
+ (1 − g/

G
) · r1

·(best tp − xti
)+ 2g/

G.r2 · (best tg − xti
)

(28)

where i ε {1, 2, …, NA}.
2 g/G is the social factor, 1–g/G is the cognitive factor, r1 and r2 are randomly

chosen numbers in the space [0, 1], bestp is the arbitrarily chosen light source from the
novel pathfinders group based on the probability value of its corresponding solution.
At the end of every iteration, the type of each moth is redefined for the upcoming
iteration.
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3 Proposed Hybrid Models

3.1 MSA for Training MLP Network

As theMLP training is one of themain challenges in the use of thismethod, the appro-
priate values ofweights and bias parametersmust be defined to improve the efficiency
of the MLP network [28]. One of the widely applied learning algorithms to find the
optimum values of the weights and bias parameters is the back-propagation (BP)
algorithm. However, the BP algorithm has some drawbacks such as the slow error
convergence rate and the localminimum trap [28]. Several optimizationmethods have
been proposed in the literature to enhance the performance of the neural networks,
such as simulated annealing (SA), tabu search (TS), genetic algorithm (GA) and
others. Therefore, the improvement of the performance of the MLP network can be
achieved by replacing the conventional algorithms used in the training of MLP by
more efficient optimization algorithms. In this section, a detailed description of the
training process of the MLP network using MSA algorithm is presented. Two main
phases are considered when the MSA algorithm is adopted to train MLP network,
the first one is the representation of the search agents in the MSA and the last one
is the choice of the fitness function. In MSA algorithm each search agent (moth)
is encoded to represent the MLP candidate (weights and bias). Therefore, control
vectors include a set of weights and a set of biases. The length of each vector is
equal to the total number of weights and biases which depends on the number of
input variables and the number of hidden layer neurons. The root mean square error
(RMSE) is used as a fitness function. This assessment metric computes the difference
between actual and predicted values by MLP–MSA model. RMSE is given by the
following equation:

RMSE =
√√√√1

n

n∑
i=1

(ai − pi )
2 (29)

where n designates the total number of data, a and p represent the actual and the
predicted outputs, respectively.

The flowchart of the proposed MLP–MSA prediction model is shown in Fig. 4.

3.2 Hybrid ANFIS–MSA Model

Although ANFIS is a powerful mathematical tool for data regression and function
estimation. Compared to other algorithms such as k-means clustering and fuzzy c-
means, ANFIS-based SC gives a better distribution of the cluster centre and reduces
the amount of data associated with the given problem. However, there is no standard
rule to select its parameters, which is considered as the main blowbacks of this
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Fig. 4 Flowchart of the proposed hybrid models

method. Cluster radius parameter is one of these parameters that highly influenced
on the complexity and generalization abilities of the ANFIS model. A small cluster
radius results in small clusters in the data and, hence, many fuzzy rules. Large cluster
radius yields few large clusters in the data which means fewer fuzzy rules [29].
Therefore, the application of an efficient method to adjust cluster radii will be of
great importance. In this study, the MSA algorithm will be used to tune the cluster
radii parameter of theANFISmodel. The proposed hybridANFIS–MSAmodel starts
by generating the initial position of moths, includes the initial values of cluster radii,
usingEq. (14). Thenext step involves the trainingof theANFISmodel, the calculation
of the swarm fitness and the identification of the type of each moth. Before these
steps, the data is divided into two sets of training and testing. The RMSE, expressed
by Eq. (29), is used as a fitness function. The detailed flow diagram of the proposed
model is given in Fig. 4.
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3.3 Accuracy Assessment Criteria

To assess the accuracy of the proposed models, four performance criteria are used.
These performance criteria are summarized as follows:

3.3.1 Root Mean Square Error (RMSE)

RMSE is the most commonly utilized measure of the differences between the values
predicted by a model and the actual values. The model with the small value of RMSE
is considered the best. The RMSE index is given by the Eq. (29).

3.3.2 Correlation Coefficient (R)

The correlation coefficient (R), with a value in the range [0, 1], delivers good infor-
mation about the accuracy of the machine learning models. A value closer to 1
designates a good accuracy of the model. The R index is expressed as follows:

R =
∑n

i=1 (ai − ā)(pi − p̄)√∑n
i=1 (ai − ā)2

∑n
i=1 (pi − p̄)2

(31)

where ā and p̄ are the rate of the actual and the estimated values, respectively.

3.3.3 Percent Root Mean Square Error (PRMSE)

PRMSE measures the accuracy of a machine learning method as a percentage, and it
can be given by:

PRMSE = RMSE√
1
n

∑n
i=1 p

2
i

× 100 (32)

The model accuracy is excellent for PRMSE < 10%, good for 10% < PRMSE <
20%, reasonable for 20% < PRMSE < 30% and low for PRMSE > 30%.
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4 Models Implementation for Voltage Stability Monitoring

4.1 Voltage Stability Indicator

In recent years, several indices have been developed to evaluate voltage stability
status, to predict voltage stability margin and to identify the weak buses/area in the
system. According to [30], the on-line voltage stability index (VSI) proposed by
Yanfeng et al. [31], can be considered as one of the best line voltage stability indices.
This index indicates the variation of voltage stability margin in the power system
for real, reactive and apparent powers transmitted in the line. VSI is expressed as
follows [31]:

V SI = min

(
Pmax − Pr

Pmax
,
Qmax − Qr

Qmax
,
Smax − Sr

Smax

)
(33)

where

Pmax =
√

V 4
s

4X
− Qr

V 2
s

X
(34)

Qmax = V 2
s

4X
− P2

r X

V 2
s

(35)

Smax = (1 − sin(θ))V 2
s

2 cos(θ)2X
(36)

where Pmax, Qmax, and Smax are, respectively, the maximum transferred real, reactive
and apparent powers, Vs and Vr are, respectively, the sending and the receiving end
voltages, X is the line reactance, θ is the line impedance angle. The value of VSI
index must be greater than 0 for stable systems and the branch with the lower value
is considered to be weak compared to the branch with a higher value.

4.2 Generation of Training and Testing Data

As PMUs have been widely implemented in many power systems, application of
wide-area PMU measurements in real-time voltage stability monitoring has been
of great interests. Many studies confirmed that PMU data are good indicators for
voltage stability monitoring and they can be taken as inputs to the prediction models
[1, 13, 14]. Since PMU devices can provide synchronized measurements, which
include the magnitude and phase angle of voltages, both of them are chosen as inputs
of the developed MLP–MSA and ANFIS–MSA models i.e., inputs = {(|Vi |, δi), i ε

PMU buses}. On the other hand, the minimumVSI values, computed using load flow
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Fig. 5 Flowchart of the generation of training and testing data

equations, at each operating point are used as the output variables. The generation
of training data is carried out through off-line simulation processes by varying both
the active and reactive power simultaneously on each load bus in the system. The
load is increased with a constant load factor from the base case until the system
reaches the voltage stability limit. The voltage magnitudes and angles of PMU buses
are obtained by solving conventional load flow at each load generating sample. The
flowchart of the generation of training and testing data is depicted in Fig. 5. The
collected dataset will be then applied to train and to evaluate the proposed prediction
models. Once the training process is accomplished and the stopping condition is
reached, model testing is required to verify the performance of the models over the
actual and predicted data.

4.3 Real-Time Prediction of VSI

The last phase deals with the implementation of the developed MLP–MSA and
ANFIS–MSA models to predict VSI in a real-time manner. In this phase, VSI is
predicted using real-time measurements provided by PMUs. These provided data
may support the tracking of dynamic phenomena and provide the necessary informa-
tion for power system voltage stabilitymonitoring. The time-synchronized data taken
from throughout the distributed PMUunits will be sent to the control system inwhich
the well trained MLP and ANFIS models are employed to predict voltage stability
margin for each operating point. The precise and synchronized real-time measure-
ments obtained by PMUs with the fast evaluation of voltage stability offered by the
proposed models can help system operators to take the required control action, such
as load shedding or emergency demand response [32], to prevent voltage collapse.
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Fig. 6 Single line diagram of the IEEE 30-bus test system

5 Case Study and Simulation Results

5.1 Test Systems

5.1.1 IEEE 30-Bus Test System

The first test system used to validate the performance of the proposed models is the
standard IEEE 30-bus test system [33]. This system is shown in Fig. 6, and it consists
of 30 buses, 6 thermal units, 41 branches and 21 loads.

5.1.2 IEEE 118-Bus Test System

The performance of the proposed models for voltage stability monitoring has been
validated also on the IEEE 118-bus test system shown in Fig. 7 [33]. This system
contains 118 buses, 51 thermal units, 196 branches and 91 loads.
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Fig. 7 Single line diagram of the IEEE 118-bus test system

5.2 Data Preparation

One of the crucial factors for successful implementation of any machine learning
technique is the generation of proper training data. To generate the training data for
the proposed models, all loads of both test systems are uniformly increased, with
constant load power factors, from their base case loadings to the voltage collapse.
As aforementioned, the gathered voltage magnitudes and angles by the distributed
PMUs (voltageswhere PMUs are installed)will be used as the inputs for the proposed
models, while themin values ofVSI as the outputs. The optimal number and locations
of PMUs for both test systems are obtained using simulated annealing (SA) method
in PSAT (Power System Analysis Toolbox) software [34]. The optimal number and
placement of PMUs are represented in Table 1. Afterwards, the collected data is
divided into 80% for training and 20% for testing the models. The first portion is

Table 1 Number and locations of PMUs

Test system Number of PMUs Location of PMUs

IEEE 30-bus system 7 3, 5, 10, 12, 19, 23, 27

IEEE 118-bus system 28 2, 8, 11, 12, 17, 21, 25, 28, 33, 34, 40, 45, 49, 52, 56,
62, 72, 75, 77, 80, 85, 86, 90, 94, 101, 105, 110, 114
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employed for initial training and models parameter optimization, and the second
portion to further adjust and evolve the predictors to simulate real conditions.

5.3 Performance Comparison

The performance of MLP–MSA and ANFIS–MSA is outlined in this section. The
developed programs are written using MATLAB software and the simulations are
carried out on a computer with Intel Core i5 CPU @2.7 GHz, 4 GB RAM and
Windows7 as the operating system. The load flow is obtained using MATPOWER
[33]. In all simulations, the MSA parameters are tuned as follows: the number of
search agents (candidate solutions) is fixed to 30 and the number of pathfinders to
18. For the MLP network, the number of hidden neurons is set to 20 (determined
by a trial-and-error process). The MSA is used to optimize the weights connecting
the input layer with the hidden layer, the weights connecting the hidden layer with
the output layer and the biases. For the ANFIS model development, the SC (genfis2)
technique based on the Gaussian type of membership function is used to generate
fuzzy rules. According to [35] Gaussian membership function can be considered as
the best fit to use with ANFISmodel. The squash factor, the accept ratio and the reject
ratio were set, by default in MATLAB toolbox, to 1.25, 0.5 and 0.15, respectively.
The MSA algorithm is adopted to find the best value of cluster radii in the range of
[0.2 0.5] [36].

5.3.1 Application to the IEEE 30-Bus Test System

This section demonstrates the effectiveness of the proposed methods on the IEEE
30-bus system. The results of the proposed methods have been compared with those
found in the literature using the same data as in [14]. Figure 8a shows the convergence
curve of MSA algorithm seeking for the optimal values for MLP’s weights and
biases. It can be seen that the MSA has a slow convergence rate due to the problem

Fig. 8 Convergence curves of MSA for a MLP training, b ANFIS training
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Fig. 9 Predicted values by the MLP–MSA versus actual values a Training phase b Testing phase

complexity. Figure 9a, b show the plots of the actual and predicted values of VSI via
MLP–MSA method in the training and testing phases. It is seen that the MLP–MSA
predictions are in agreement with the actual values. The prediction accuracy of the
models was measured using RMSE, PRMSE and R indices. In the training phase,
the computed values of RMSE, PRMSE and R were 0.0372, 6.1137 and 0.98198,
respectively. In the testing phase, these indices are found to be 0.0380, 7.1458 and
0.98014 respectively. It is seen that the MLP–MSA model can estimate VSI with
a good accuracy which means that the MSA algorithm has performed efficiently in
tuning the MLP’s weights and biases.

MSA algorithm is used also to find the optimal cluster radius of ANFIS-based SC
technique, then, the performance of the trained ANFIS model was evaluated in VSI
prediction. The convergence curve of the MSA algorithm is illustrated in Fig. 8b and
the smallest errorwas obtainedwith the cluster radius of 0.2518. Figure 10a, b depicts
the scatter plot of the predicted VSI values using ANFIS–MSA against actual ones
in the training and testing phases. For the training step, the correlation coefficient (R)
was found to be 0.99685. In the testing phase, the predictions result in a correlation
coefficient of 0.99378. The correlation between the actual VSI values and ANFIS–
MSA predictions is much better than MLP–MSA predictions. The comparison of
different statistical indices for the proposed models and other models in the literature
is shown in Table 2. As shown in this table, ANFIS–MSA outperforms all other
prediction models. For this model, the values of RMSE and PRMSE, in the training
phase, are calculated to be 0.0160 and 2.7873, respectively. In the testing phase,
these values are found to be 0.0206 and 3.9442, respectively. It is seen that all used
criteria confirmed that the proposed MLP–MSA and ANFIS–MSA methods give a
good prediction accuracy compared to ANFIS and DFO–SVR [14]. On the other
hand, the ANFIS–MSA performance culminates in giving the best prediction results
than the MLP–MSA model.
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Fig. 10 Predicted values by the ANFIS–MSA versus actual values a Training phase b Testing
phase

Table 2 Statistical performance of MLP–MSA and ANFIS–MSA

Method Training Testing

RMSE PRESE R RMSE PRMSE R

MLP–MSA 0.0372 6.1137 0.98198 0.0380 7.1458 0.98014

ANFIS–MSA 0.0160 2.7873 0.99685 0.0206 3.9442 0.99378

ANFIS [14] 0.0228 – 0.99325 0.0385 – 0.97492

DFO–SVR [14] 0.0166 – 0.99641 0.0273 – 0.98776

5.3.2 Application to the IEEE 118-Bus Test System

The proposed new models are evaluated in this section on the IEEE 118-bus power
system to compare their efficiency. Figure 11a illustrates the convergence curve of
MSA algorithm searching for the optimal values for MLP’s weights and biases.
Correlations between actual and predicted values of VSI for training and testing
phases are shown in Fig. 12a, b. As seen from this Figure, the MLP–MSA model
gives a correlation coefficient of 0.99814 for the training datawhile this coefficient for
the testing data is equal to 0.94607. The proposed hybrid model managed to produce
an RMSE and PRMSE of 0.0087411 and 1.5056, respectively, in the training phase.
In the testing phase, this model yield to the values of RMSE and PRMSE of 0.1381
and 9.6441, respectively.

The effectiveness of the proposed ANFIS–MSA model in the prediction of VSI
was also checked in the case of the IEEE 118-bus system. Figure 11b displays the
optimization process of the RMSE versus iterations number for MSA to find the
optimum value of ANFIS cluster radius and to predict VSI. The optimal found value
of cluster radius is 0.4599. The scatter plots for thismodel are illustrated in Fig. 13a, b.
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Fig. 11 Convergence curves of MSA for a MLP training, b ANFIS training

Fig. 12 Predicted values by the MLP–MSA versus actual values a Training phase b Testing phase

From this Figure, it is apparent that the ANFIS–MSAmodel gave the most scattered
estimates. The results of different statistical indices for both proposed prediction
models are listed in Table 3. It is shown that the RMSE and PRMSE of the ANFIS–
MSA prediction method are computed to be 3.6708e−4 and 0.0632, in the training
phase and 0.0042 and 2.8645 in the testing phase. By using ANFIS–MSA method,
we observed that the RMSE in the testing phase was reduced by 0.1339. As for the R,
it increased by 0.05392. From these results, we can note clearly that the prediction
of VSI using ANFIS–MSA model gives better results compared to the MLP–MSA
model. It is seen from the comparison of the statistical indicators values, in both case
studies of IEEE 30-bus and IEEE 118-bus test systems, that the proposed models
give a good prediction accuracy of VSI. However, ANFIS–MSA model acquired
relatively lower values of RMSE and PRMSE, and higher values of R. Accordingly,
it can drown the conclusion that the proposed MLP–MSA and ANFIS–MSAmodels
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Fig. 13 Predicted values by the ANFIS–MSA versus actual values a Training phase a Testing
phase

Table 3 Statistical results of the developed models

Method Training Testing

RMSE PRMSE R RMSE PRMSE R

MLP–MSA 0.0087411 1.5056 0.99814 0.1381 9.6441 0.94607

ANFIS–MSA 3.6708e−4 0.0632 1 0.0042 2.8645 0.99999

would be an appealing option for voltage stability monitoring since the obtained
results are superior to those from the other models for the considered case studies.

6 Conclusions

This chapter proposes novel measurement-based methods for the real-time moni-
toring of voltage stability using PMU data. The proposed methods are based on the
training of multi-layer perceptron (MLP) neural networks and adaptive neuro-fuzzy
inference systems (ANFIS) deploying amoth swarm algorithm (MSA). The problem
of training theMLP and ANFIS was first formulated as a minimization problem. The
objective was to minimize the root mean square error (RMSE), and the parameters
were linking weights and biases for the MLP network and the cluster radius for
ANFIS-based subtractive clustering. The proposed MLP–MSA and ANFIS–MSA
methods require only the voltage phasors’ data provided by the PMU units, to predict
the voltage stability of the power system. The applicability and the performance of
the proposed hybrid models have been investigated using standard IEEE 30-bus and
IEEE 118-bus test systems and compared with existing methods in the literature.
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The results obtained from the two test systems clearly showed the efficiency and
accuracy of the proposed MLP–MSA and ANFIS–MSA methods as compared to
other existing methods. On the other hand, the simulation results reveal that the
ANFIS–MSA performance culminates in the best prediction results compared to the
MLP–MSA model.
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