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Preface

This volume contains the proceedings of the IX Hotine-Marussi Symposium on Mathematical
Geodesy which was held from 18 to 22 June 2018 in Rome, Italy. For a third time in a row,
the Symposium took place at the Faculty of Civil and Industrial Engineering of the Sapienza
University of Rome, Italy. As in 2009 and 2013, the venue of the Symposium was the beautiful
cloister of the Basilica di San Pietro in Vincoli, worldwide known for the statue of Moses by
Michelangelo.

A series of symposia focused on theoretical geodesy began in 1959 when Antonio Marussi
organized the first Symposium on Three Dimensional Geodesy in Venice. The name of the
symposia was changed in 1965 when the third Symposium on Mathematical Geodesy was
held in Torino. The first three symposia were strongly influenced by the prominent British
geodesist Martine Hotine. After his death in 1968, the series was renamed again and the first
Hotine Symposium on Mathematical Geodesy was held in Trieste, 1969. This symposium and
the following four symposia were organized by Antonio Marussi. After his death in 1984, the
series was renamed to the Hotine-Marussi Symposia, the title still used today. The first five
Hotine-Marussi Symposia (1985, 1989, 1994, 1998 and 2003) were organized by Fernando
Sansò, the driving force behind the series of Hotine-Marussi symposia over more than three
decades.

Since 2006, the series of the Hotine-Marussi Symposia has been under the responsibility
of the Inter-Commission Committee on Theory (ICCT) within the International Association of
Geodesy (IAG). The ICCT organized the last four Hotine-Marussi Symposia held in Wuhan
(2006) and Rome (2009, 2013 and 2018). The overall goal of Hotine-Marussi Symposia is
aligned with the main objective of the ICCT to advance geodetic theory in all branches of
geodesy, reflecting developments in geodetic observing systems and interactions of geodesy
with other Earth-related sciences. Thus, Hotine-Marussi Symposia on Mathematical Geodesy
represent a main venue for theoretically oriented geodesists.

The Symposium attracted 119 participants from 30 countries who contributed 120 papers
(83 oral and 37 poster presentations). The scientific program of the symposium was organized
in ten regular sessions which were modelled thematically after ICCT study group topics. The
regular sessions were convened by the chairs of the ICCT study groups who also constituted
the Symposium’s Scientific Committee:

1. Geodetic Methods in Earth System Science
N. Sneeuw

2. Theory of Multi-GNSS Parameter Estimation
A. Khodabandeh, M. Crespi

3. Digital Terrain Modelling
R. Barzaghi

4. Space Weather and Atmospheric Modelling
K. Börger, M. Schmidt

5. Global Gravity Field Modelling and Heights Systems
D. Tsoulis, S. Claessens

v



vi Preface

6. Theory of Modern Geodetic Reference Frames and Earth’s Rotation
Z. Altamimi

7. Deformation and Gravity Field Modelling at Regional Scales
J. Huang, Y. Tanaka

8. Estimation Theory and Inverse Problems in Geodesy
A. Dermanis

9. Advanced Numerical Methods in Geodesy
R. Čunderlík

10. Multi-Sensor and Time Series Data Analysis
W. Kosek, K. Sosnica

Participants of the IX Hotine-Marussi Symposium in the cloister of the Basilica di San Pietro in Vincoli

Additionally, a special session was held at the Accademia Nazionale dei Lincei (the oldest
scientific academy in the world, established in 1603 by Federico Cesi) on 19 June 2018. The
session consisted of six invited talks focused on interactions of geodesy and selected Earth
science components:
1. Interaction Between Geodesy and Oceanography: Results and Open Problem

M. H. Rio
2. Geodesy and Glaciology: Absolute Gravity and Surface Displacements in Greenland

O. Francis, T. van Dam
3. Geodesy and Atmospheric Science: A Collaboration Mutually Beneficial

R. Pacione, J. Douša
4. Geodesy and Mathematics: Acquisitions and Open Problems

W. Freeden, F. Sansò
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5. Solid Earth-System Structure from Satellites
R. Haagmans

6. Geodesy and Seismology: A Key Synergy for the Understanding and Forecasting of
Earthquakes
A. Peresan, M. Crespi, A. Mazzoni, G. Panza
The special session was organized by Fernando Sansò, Emeritus at the Politecnico di

Milano, himself a member of the Accademia. One of the presentations within the special
session is included into these proceedings in the form of a long paper by W. Freeden and
F. Sansò, dealing with the interactions of geodesy and mathematics, while the combination of
these two scientific disciplines forms the essence of the Hotine-Marussi symposia.

The scientific program of the symposium was complemented with a great social program
including a night tour of the Vatican Museum and a social dinner at the restaurant Il Miraggio
at the neighbourhood of Villa Farnesina and Palazzo Corsini, locations of the Accademia dei
Lincei.

We would like to acknowledge all who contributed to the success of the IX Hotine-Marussi
Symposium. The study group chairmen and the entire Scientific Committee (P. Novák, M.
Crespi, N. Sneeuw, F. Sansò, G. Blewitt, R. Pail, M. Hashimoto, M. Santos, R. Gross, D.
Tsoulis, R. Ćunderlík, M. Šprlák, K. Sośnica, J. Huang, R. Tenzer, A. Khodabandeh, S.
Claessens, W. Kosek, K. Börger, Y. Tanaka, A. Dermanis, V. Michel and E. Grafarend) put
much effort in organizing and convening sessions. They also served as the associated editors
in a peer-review process lead by Jeffrey Freymueller and Laura Sánchez, the IAG Symposia
Series editors. Although most of the reviewers remain anonymous for the authors, a complete
list of reviewers is printed in this volume to express our gratitude for their dedication.

The Symposium was financially and promotionally supported by the Faculty of Civil and
Industrial Engineering of the Sapienza University of Rome and by the Italian Space Agency.
The IAG provided travel support to selected young participants of the Symposium.

However, most of our gratitude goes to the Local Organizing Committee of the Symposium.
The team chaired by Mattia Crespi, the vice-president of the ICCT, consisted of members of
the Area of Geodesy and Geomatics at the Faculty of Civil and Industrial Engineering of the
Sapienza University of Rome: A. Mazzoni, F. Fratarcangeli, R. Ravanelli, A. Mascitelli, M.
Ravanelli, M. Di Tullio, V. Belloni, G. Savastano, A. Nascetti, G. Colosimo, E. Benedetti, M.
Branzanti, M. Di Rita, P. Capaldo and F. Pieralice. Through their effort and organization skills,
Mattia Crespi and his team significantly contributed to the success of the Symposium.

Pilsen, Czech Republic Pavel Novák
Rome, Italy Mattia Crespi
Stuttgart, Germany Nico Sneeuw
Milano, Italy Fernando Sansò
May 2020
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Part I

Gravity Field Modelling and Height Systems



Orbit Optimization for Future Satellite Gravity
Field Missions: Influence of the Time Variable
Gravity Field Models in a Genetic Algorithm
Approach

Siavash Iran Pour, Nico Sneeuw, Matthias Weigelt,
and Alireza Amiri-Simkooei

Abstract

Many studies in the past have discussed potential orbit configurations of future satellite
gravity missions. Most of those works have targeted orbit optimization of the satellite mis-
sions of the next generation in the so-called Bender formation. The studies have investigated
the impact of the Keplerian orbital parameters, especially the influence of the repeat orbits
and mission altitude of both satellite pairs and the inclination of the second pair in Bender
formation on the satellite configurations’ gravity field recovery quality performance.

Obviously, the search space for the orbit optimization in the Bender formation is vast
and, therefore, different approaches have been suggested for optimal orbit design. Among
approaches, however, different assumptions about input geophysical models as well as
the error models into the simulation software play a role. Our paper shows how different
assumptions for input models change the orbit optimization results. For this purpose, the
genetic algorithm has been utilized for orbit optimization of the Bender formation where
different input models were considered. Those input models include (1) the updated ESA
geophysical models, and (2) error models for the Ocean Tide (OT error) and Atmosphere-
Ocean (AO error). Here, we focus on the impact of the models on relative difference of the
longitude of ascending nodes between the two pairs in Bender formation. The results of the
paper clearly state that our current and future knowledge about signal and error models can
significantly affect the orbit optimization problem.

Keywords

Genetic algorithm � Gravity field recovery � Orbit optimization � Time-variable gravity field

S. Iran Pour (�)
Department of Geomatics Engineering, Faculty of Civil Engineering
and Transportation, University of Isfahan, Isfahan, Iran

Institute of Geodesy, University of Stuttgart, Stuttgart, Germany

N. Sneeuw
Institute of Geodesy, University of Stuttgart, Stuttgart, Germany

M. Weigelt
Institute of Geodesy, Leibniz University of Hannover, Hannover,
Germany

A. Amiri-Simkooei
Department of Geomatics Engineering, Faculty of Civil Engineering
and Transportation, University of Isfahan, Isfahan, Iran

Department of Control and Operations, Technical University of Delft,
Delft, The Netherlands

1 Introduction

Soon after the launch of the Gravity Recovery and Climate
Experiment (GRACE) mission (Tapley et al. 2004),
several research studies have started to investigate the
performance of next generation satellite gravity missions.
Those researches range from replacing the GRACE by
another inline formation (GRACE Follow-On) or alternative
(advanced) formations to analyzing mission scenarios with
two pairs, see (Sharifi et al. 2007; Bender et al. 2008; Wiese
et al. 2009; Elsaka 2010; Wiese et al. 2012; Ellmer 2011;
Elsaka et al. 2012; Iran Pour et al. 2013; Reubelt et al.
2014; Elsaka et al. 2014; Gruber et al. 2014; Klokočník

© Springer Nature Switzerland AG 2019
P. Novák et al. (eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 151, https://doi.org/10.1007/1345_2019_79
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et al. 2015; Iran Pour et al. 2016; Iran-Pour et al. 2018).
Moreover, ESA studies, among them the ESA projects
“Assessment of a Next Generation Mission for Monitoring
the Variations of Earth’s Gravity” (Anselmi et al. 2011) and
“Assessment of Satellite Constellations for Monitoring the
Variations in Earth’s Gravity Field” (Iran Pour et al. 2015)
investigated the science requirements, performance criteria
and design of future satellite gravity missions. These two
ESA projects have looked into two advanced formations as
well as Bender configurations, where the latter is the most
probable candidate for the next generation of future gravity
missions (according to the ESA proposal calls).

Most of the research works above did the selection of
the individual constellation scenarios by rough assessment
of sampling behavior of the missions, although the studies by
(Wiese et al. 2012; Ellmer 2011; Iran Pour et al. 2013; Iran
Pour et al. 2015) had a deeper look into some performance
criteria for their double-pair mission scenario optimization
search strategies. Furthermore, (Iran Pour et al. 2016) studied
the groundtrack pattern evolution of double pair missions
and discussed the impact of longitude of ascending nodes
between the two satellites pairs (4˝). They recognized three
reasons for the quality variations of the gravity solutions,
namely: (1) the different time evolution of sampling pattern
of each satellite pair in a double pair mission with different
repeat periods, (2) the impact of time-variation of 4˝ on
the pattern change, and (3) the influence of the time-variable
gravity signals on quality variations of the gravity field
recovery.

The current research work tries to look into the influence
of the time-variable gravity signals and error models on the
gravity field recovery quality, where in particular the impact
on the orbit optimization is studied. The focus of this paper
is, however, the impact of the models on optimization of 4˝

which is shown to be a very influential parameter in the orbit
optimization.

2 Methodology

2.1 Geophysical Models and Simulation
Tool

For the simulation environment of this study, we employ the
dominant mass variations of hydrology (H), ice (I) and solid
Earth (S) of the Earth system by use of the updated time-
variable gravity field generated from ESA-project “ESA
Earth System Model for Gravity Mission Simulation Stud-
ies” (Dobslaw et al. 2015).

Time-span of 10-day for gravity field recovery, starting
from January 1st 1996, is applied in the paper (Iran Pour et
al. 2015). The forward and recovery simulations are both up
to spherical harmonics degree Lmax D 90.

The error models of our research work consist of:

• Ocean Tide (OT) error: The difference between the two
OT models EOT08a (Savcenko and Bosch 2008) and
GOT4.7 (Ray 2008).

• Atmosphere-Ocean (AO) error: The AO error product
from IAPG (TU Munich), defined as two atmosphere
models difference (ECMWF–NCEP) plus 10% of the
ocean signal of the model OMCT (Iran Pour et al. 2015).

For the gravity field recovery simulation, a nominal
circular orbit simulation software of so-called Reduced-
Scale Tool, RST is employed. This software assumes
nominal satellite orbits, i.e. the only orbit perturbation is
secular J2 effect by the Earth flattening, hence the semi-
major axis, inclination angle and eccentricity of the satellites
are not time-variable (Iran Pour et al. 2013). However, the
equatorial bulge of the Earth (the Earth flattening effect)
is responsible for variation of the Keplerian elements
! (argument of perigee), � (longitude of the ascending
node) and M (mean anomaly). For circular orbits, argument
of perigee is ill-defined, and therefore the variation of
the other two elements are calculated by the following
rates:

P̋ D 1

na2

@T

@I
; PM D n � 2

na

@T

@a
with n D

r
GM

a3
(1)

where a and I are respectively the semi-major axis and
inclination angle (the eccentricity here sets to zero for the
circular orbits). GM is the gravitational constant times the
Earth’s mass, and the parameter T stands for all the terms of
the potential field beyond the central field term. We should
also mention that the work by (Iran Pour et al. 2013) shows
that other perturbing Earth’s gravity field terms rather than
J2 effect have negligible impact on the gravity field recovery
performance in short time-spans (around one month and
less).

2.2 Genetic Algorithm (GA)

Genetic algorithm (GA) is an evolutionary algorithm
which generates solutions to optimization problems using
techniques inspired by natural evolution such as inheritance,
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mutation, selection, and crossover. The algorithm is an
implemented tool to find satisfactory solutions to non-linear
search or optimization problems.

In a genetic algorithm, a problem is essentially solved
by repeatedly guessing a solution, and then evaluating the
quality of the solution. In this way, the trick is not guessing
randomly, but rather on the basis of previously acquired
knowledge about the solution space, where two main com-
ponents are required: (1) a genome, which is a generalized
representation of the solution space of a specific problem
(the parameters space of the problem), and (2) a fitness
function to evaluate the solution domain which in fact maps
the attributes of a specific realization of the genome to a
fitness value (Schmitt 2001; Ellmer 2011).

In this study, the global (accumulated) geoid height error
RMS is chosen as the fitness function. The search space of
our study for Bender configuration is identified as follows
(Iran Pour et al. 2015):

• all the repeat modes with altitude between 340 and 500 km
• inclination of near-polar pair between 88ı and 92ı (mini-

mizing polar gap) with step of 1ı
• inclination of inclined pair within 65ı–75ı or 105ı–115ı

with step of 1ı
• free angle between orbital plane of the satellite pairs

(0
ı � 4� < 360

ı

with step of 1
ı

)
• free mean anomaly difference between the pairs

(0
ı � 4M < 360

ı

with step of 1
ı

)

The GA software was run in MATLAB where the “Tol-
Fun” (for tolerance) was set to 10�6 with number of gener-
ations “StallGenLimit” over 50, i.e. the algorithm runs until
the cumulative change in the fitness function value over 50
generations is less than 10�6.

3 Results

In our study, the GA simulation tool has been run several
times, every time with different initial conditions (input
models). Since GA behaves in a stochastic way and in
order to reduce the uncertainty of the results, the simula-
tions with the same input models have been run several
times.

The results of GA simulation runs consist of different
input models, namely HIS (updated ESA model), only OT
error model, only AO error model and full model (updated
ESA HIS C OT error C AO error). The results of those
runs are respectively depicted in Fig. 1 where the color bars
show the impact of 4˝ on the orbit optimization in Bender
configuration.

As, it can be seen from the figure, after around 300
simulations (approximately 6 generations), the first main
convergence happens. It is also seen that the optimized
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Fig. 1 Impact of 4� on fitness function of GA simulation runs with
different input models. The colors stand for different 4� values (from
0ı to 359ı)
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Fig. 2 Gravity field recovery
errors of the chosen scenario of
Table 1 by different simulation
input assumptions together with
the HIS input model (10-day
mean of updated ESA HIS
model) for comparison
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Table 1 Selected Bender scenario of this study for detailed investiga-
tion (“/’ is the ration of number of satellite revolutions to the repeat
period in nodal days and ¡ is the inter-satellite distance within each
satellite pair)

Scenario “/’ (rev./day) Inclination (deg.) Altitude (km) ¡ (km)

125/8 89.5ı 360.7 100

503/32 72ı 305 100

4� values (as shown by the color bars) are different for
different input models. This fact implies that our assumptions
about the input models have the potential to affect the orbit
optimization, here by resulting in different 4� values. In
particular, it is interesting to see that the full model error is
largely dominated by OT error model. This fact is clearly
shown by Fig. 2 as well, where it displays the gravity field
recovery errors of the chosen scenario of Table 1 based on
different simulation input assumptions together with the HIS
input model for comparison. As it is seen in that figure, the
full model error is dominated by AO error in the very long
wavelengths (at the beginning of the error curve). At middle
and short wavelengths, however, the OT error is the dominant
error to a large extent.

We have also simulated the recovery error of 10-day
solutions of the Table 1 scenario where the impact of dif-
ferent input models with the variation of the 4� angle
values on the recovery error is in focus (Fig. 3). The results
show different variation behaviors by the impact of different
input models. One should also notice the significance of the
variations’ magnitude (y-axis of the graphs in Fig. 3). It is
also important to mention that the geophysical signals are
not distributed symmetrically on the globe (neither in space
domain, nor in time domain), therefore one should not expect
a perfect symmetry in the graphs. That is, in particular, a
true statement for HIS signals. In addition, the results clearly
illustrate that OT and AO errors are approximately one order
of magnitude larger than HIS error, while the pattern of the
full model error is almost dominated by OT error pattern.

Another interesting result is observed when we compare
the outcome of the updated ESA HIS model by (Dobslaw
et al. 2015) in Fig. 3 with that from the previous ESA
HIS model by (Gruber et al. 2011) in Fig. 4. The compar-
ison clearly shows slightly different variation behaviors by
4� impact on the recovery error where the magnitude of
variations is also different. This fact, again, represents the
influence of input models on orbit optimization.
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Fig. 3 Impact of 4� angle values on gravity field recovery error (in
terms of geoid height RMS) for different input model assumptions

4 Discussion and Conclusion

This research work tried to look into the influence of the
time-variable gravity signals and error models on the gravity
field recovery quality, where the impact on the orbit opti-
mization is studied. The focus of the paper was, however,
the impact of the models on optimization of the orbital
parameter “relative difference of the longitude of ascending
nodes between the two pairs in Bender formation (4˝)”.

In this study, we have run a genetic algorithm simulation
tool with different initial conditions (input models). We
found that different input signal and error models result in
different optimized 4˝ , although the magnitude of impact
and, hence, the importance in optimization is different. The
OT error was found to be the most dominant model in
the orbit optimization, where the magnitude of influence is
approximately an order of magnitude larger than HIS signal.
The AO error was also found influential, however, its effect
is hidden by OT error impact in the full simulation run. The
results of the paper clearly state that our current and future
knowledge about signal and error models can significantly
affect the orbit optimization problem. For example, improv-
ing the error models (i.e. AO and OT error models) has
the potential to result in different values for optimized 4˝ .
That is also the case for HIS model which does not play an
important role in the optimization problem at the time, but
can be influential in the future if our OT and AO error models
are significantly improved.

The focus of this paper was the impact of input models on
parameter 4˝ optimization, which is in fact the most influ-
ential parameter in the general orbit optimization problem.
However, in reality, this parameter is controlled by the orbit
maintenance or even it is allowed to vary freely which might
be of interest in some orbit designs. Therefore, it might be
more interesting to keep the parameter 4˝ fixed and run the
genetic algorithm for the other relative Keplerian parameters
in Bender configuration. Furthermore, it would be of interest
to study the impact of individual ocean tide constituents and
investigate their relative importance in orbit optimization in
more detail.
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Fig. 4 Impact of 4� angle
values on gravity field recovery
error (in terms of geoid height
RMS) for the old ESA HIS input
model by (Gruber et al. 2011)
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Comparison of Criteria for the Identification
of Correlated Orders in GRACE Spherical
Harmonic Coefficients

Dimitrios Piretzidis, Michael G. Sideris, and Dimitrios Tsoulis

Abstract

The study of the Earth’s time-varying gravity field using GRACE data requires the removal
of correlated errors using filtering techniques in the spherical harmonic domain. The
empirical decorrelation filter is an effective method of decorrelating order-wise series of
spherical harmonic coefficients, although its improper implementation can lead to signal
attenuation. To reduce geophysical signal over-filtering, decorrelation should be performed
only for orders that show evidence of high correlation. In this paper we investigate and
compare the behavior of three criteria, i.e., the root mean square ratio, the angle distribution
of phase spectrum and the geometric properties of order-wise coefficient series, that can be
used for the identification of correlated orders in GRACE data. Our analysis indicates that
the root mean square ratio is the most reliable criterion, due to its simple implementation
and for providing averaged time series of equivalent water height with smaller root mean
square error, based on a simulation.

Keywords

Empirical decorrelation � Filtering � GRACE � Spherical harmonic coefficients

1 Introduction

Monthly gravity field solutions in the form of spherical har-
monic coefficients derived from data of the Gravity Recov-
ery and Climate Experiment (GRACE; Tapley et al. 2004)
satellite mission are routinely used for monitoring mass vari-
ations in the Earth system. These solutions contain correlated
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errors, which manifest when month-to-month differences
or monthly differences from a static gravity field solution
are calculated. In the spatial domain, these errors produce
longitudinal artifacts, commonly referred to as “stripes”.
The removal of correlated errors from GRACE coefficient
changes is usually performed using an empirical decorre-
lation filter (EDF), also known as destriping filter. This
type of filter removes the contribution of a smoothing poly-
nomial from the even- and odd-degree coefficient series
of a specific order (Swenson and Wahr 2006). The EDF
is usually implemented from an order mmin, where the
correlated errors approximately start to appear, up to the
maximum order of each monthly set of coefficient changes.
A different and not so commonly used approach is the
selective implementation of the EDF to the coefficient series
that appear to be heavily influenced by correlated errors.
This idea originates from Huang et al. (2012), who used
a selective EDF scheme to study the groundwater stor-
age variability in the Great Lakes and in Alberta, Canada.
More recently, Piretzidis et al. (2018) accessed the capabil-
ities of selective EDF by comparing it with conventional
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decorrelation methods in North America and Greenland.
Although different criteria are used to identify correlated
coefficient series by these two studies, their findings suggest
that the selective EDF ensures the removal of the majority
of correlated errors while reducing the attenuation of useful
geophysical signal. Piretzidis et al. (2018) also highlight
the need to search for reliable criteria that can be used as
proxies for the identification of correlated coefficient series
in GRACE data. The objective of this study is to compare
different criteria and provide insights on their performance.
We examine three criteria, two of them already used in
the studies of Huang et al. (2012) and Piretzidis et al.
(2018), and one new, described in Sect. 3. We test them on
monthly GRACE and Global Land Data Assimilation System
(GLDAS; Rodell et al. 2004) data. We also study their
similarities and differences, and indicate their advantages
and disadvantages. Finally, we assess their performance with
a simulation study.

Although the information about correlated errors is also
contained in the full variance-covariance matrix of monthly
spherical harmonic coefficients, this information is not used
here because (a) it is not always available to the users and
(b) it cannot be directly incorporated in the EDF algorithm.
Alternatively, full variance-covariance matrices can be used
in other decorrelation filters, such as the ones described in
Kusche (2007), Klees et al. (2008), Kusche et al. (2009)
and Horvath et al. (2018), that are not the focus of this
study.

2 Data

All the experiments are conducted using the Center for Space
Research (CSR) RL05 and RL06 of GRACE Level 2 data,
spanning a period from 08/2002 to 08/2016. These data,
also known as GSM products, are monthly sets of spherical
harmonic coefficients Cn;m and Sn;m of degree n and order
m up to maximum degree and order N D 96. The GLDAS
1.0 Noah monthly data are obtained for the same time period.
Months with no available GRACE solutions are also removed
from the GLDAS data. Their format consists of spatial grids
with global land coverage. The terrestrial water storage is
calculated for each month and transformed into spherical har-
monic ‘mass’ coefficients OCn;m and OSn;m. These coefficients
are converted into dimensionless (or ‘gravity’) coefficients
using eq. (12) from Wahr et al. (1998). Monthly coefficient
changes �C n;m and �Sn;m are derived by removing a long-
term mean gravity field from both the GRACE and GLDAS
monthly coefficients. For the GRACE data, the geopotential
model GGM05C (Ries et al. 2016) is used as mean gravity
field, whereas, for the GLDAS data a simple average of all
monthly coefficients is used.

3 Criteria for the Identification
of Correlated Orders

The three criteria selected for the identification of correlated
order-wise coefficient series are: (1) the root mean square
(RMS) ratio before and after decorrelation, (2) the angle
distribution of phase spectrum and (3) the geometric shape
properties. Criteria (1) and (3) are designed by previous stud-
ies explicitly for the identification of correlated coefficient
series. Criterion (2) is only studied with respect to its behav-
ior when different filters are implemented to the GRACE
coefficients and never tested in the context of selective EDF.

3.1 RMS Ratio (RMSR) Before and After
Decorrelation

The RMSR was firstly used as a criterion for the selective
decorrelation of GRACE coefficient changes in Huang et al.
(2012), and more recently in Huang et al. (2016). It is given
by:

R.m/ D

v
u
u
u
u
u
u
t

NP

iDm

.�C i;m/2

NP

iDm

.�C d
i;m/2

; (1)

where �C W;m denotes the original and �C dW;m the decor-
related series of order m. Although Huang et al. (2012)
used this criterion in the even- and odd-degree series sep-
arately, here we use it in the entire order-wise coefficient
series for consistency with the other criteria examined. The
removal of a polynomial contribution from a series sup-
presses constituents that correspond to either geophysical
signal or correlated errors, and results in a decorrelated series
with smaller RMS value. R.m/ is greater than one and its
value increases with the magnitude of correlated errors, i.e.,
highly correlated series return a larger R.m/ value. The
identification of correlated series using the RMSR criterion
is performed by introducing a critical value RC . Coefficient
series with R.m/ � RC are considered correlated and with
R.m/ < RC uncorrelated. The critical RMS value RC

should be selected in order to maximize the removal of
correlated errors while minimizing the loss of geophysical
signal. We follow the study of Huang et al. (2012), where a
value of 2 was selected based on a simulation.

3.2 Angle Distribution of Phase Spectrum
(ADPS)

The phase spectrum �n;m of a function with spherical har-
monic representation f�C n;m; �Sn;mg is given by Devaraju
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and Sneeuw (2017):
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Devaraju and Sneeuw (2017) examined the phase spectrum
of a geopotential model of the Earth’s static gravity field
and showed that the order-wise angle distribution �W;m is
nearly uniform, which is also likely to be the case for
the time-varying gravity field. They also demonstrated that
filtering GRACE coefficients with the EDF produces an
angle distribution that tends towards uniformity. Taking these
properties into account, the ADPS can be a potential criterion
for the identification of correlated coefficient series. In order
to assess how different (in a statistical sense) is the angle
distribution from a uniform one, we follow Devaraju and
Sneeuw (2017) and use Rao’s spacing test, implemented
by the CircStat toolbox (Berens 2009). Rao’s spacing test
calculates the value of the test-statistic U by comparing the
distances between the phase angles to those expected from a
uniform distribution, as follows (Russell and Levitin 1995):

U D 1

2

imaxX

iD1

jTi � �j; (3)

where imax D N � m C 1, � D 360ı=imax and Ti is given by:

Ti D
(

�mCi ;m � �mCi�1;m; i ¤ imax

360ı � �mCimax�1;m C �m;m; i D imax:
(4)

The value U is then compared to a critical value UC at
a given level of significance. If U > UC then the angle
distribution is significantly different from uniform, otherwise
for U � UC the angle distribution is uniform. Due to
the complex computations involving the evaluation of the
probability density function of U , the UC values are taken
directly from published statistical tables.

3.3 Geometric Properties of Coefficient
Series Shape (GPCS)

The shape of a coefficient series was firstly used as a criterion
for the identification of correlated errors by Piretzidis et al.
(2018). Their approach uses the rationale of Swenson and
Wahr (2006), who noticed that correlated errors depend on
the degree parity (i.e., even/odd) of a coefficient. This behav-
ior, in the majority of cases, leads to an order-wise coefficient
series with a distinct ‘zigzagged’ pattern that can be used to

identify presence of correlated errors. For that purpose, the
original coefficient series �C W;m is separated into an even-
order part �C W;me and an odd-order part �C W;mo . Piretzidis
et al. (2018) examined several geometric features, denoted
by f , such as: the sign change, the derivative sign change,
the length, the convex hull area and the interior angles
distribution. They also developed geometric indicators Xf ,
given by:

Xf .m/ D f .�C W;me / C f .�C W;mo/

f .�C W;m/
: (5)

For example, if the geometric property under study is the
length, then f .�C W;me /, f .�C W;mo/ and f .�C W;m/ represent
the total length of �C W;me , �C W;mo and �C W;m, respectively.
Finally, a machine learning algorithm (MLA) was trained
and used for predicting if a coefficient series is correlated,
based on all Xf indicators. In this study, the MLA used is an
artificial neural network (ANN) and the procedure followed
is the same as in Piretzidis et al. (2018).

4 Results

For all the experiments described in Sects. 4.1 and 4.2, the
EDF is implemented using a second-degree polynomial and
a window with an order-dependent length w, given by Duan
et al. (2009):

w.m/ D max
�

30e� m
10 C 1; 5

�

: (6)

For a maximum degree N D 96, the EDF implementation is
restricted up to order 88 due to the small number of even/odd
coefficients for greater orders.

4.1 Identification Results

We use the RMSR, ADPS and GPCS criteria to identify
correlated series in both the GRACE and GLDAS coefficient
changes. As the magnitude of GRACE correlated errors
increases with degree and order, it is expected that the
majority of low-order coefficient series will be identified as
uncorrelated, and the high-order series as correlated. The
CSR RL06 reprocessing strategy uses refined parameteriza-
tion techniques and updated AOD1B, tide and force models,
compared to RL05. These improvements resulted in the
reduction of correlated errors in RL06 (Save et al. 2018).
It is therefore expected that fewer coefficient series will be
identified as correlated in RL06 than in RL05. The GLDAS
coefficients do not contain the same type of correlated
errors as the GRACE coefficients, i.e., errors of increasing
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Fig. 1 R.m/ evaluated for (a) GRACE RL05, (b) GRACE RL06 and (c) GLDAS data

Fig. 2 Correlated orders in (a) GRACE RL05, (b) GRACE RL06 and (c) GLDAS data, identified using the three criteria

magnitude that appear as north-south stripes in the spatial
domain, and should be identified as uncorrelated.

Equation (1) is evaluated for both the GRACE and
GLDAS data (Fig. 1). The RMSR of GRACE �C W;m and
�S W;m coefficient series shows a very similar behavior
(Fig. 1a, b). There is also an increase of the RMSR around all
orders multiples of 15 (i.e., 15, 30, 45, 60 and 75), forming
a band-like pattern. An increase around these orders is also
evident in the averaged order-wise RMS given in Fig. 1 for
the GRACE data. This increase is related to temporal aliasing
errors coming from both tidal and non-tidal geophysical
signals. Murböck et al. (2014) showed that these errors
appear mainly in orders multiples of the resonance orders,
which are close to 15 and 16 for GRACE-like orbits. Seo

et al. (2008) showed that higher correlated errors around the
same orders are also due to the spatial aliasing coming from
non-tidal geophysical model errors. The GRACE RMSR
also rapidly increases around order 15 probably for the same
reasons. An overall comparison between RL05 and RL06
shows that RL06 coefficient series result in a smaller RMSR
due to the reduction of correlated errors. The RMSR of
GLDAS coefficients shows an almost random behavior for
both �C W;m and �S W;m series (Fig. 1c).

After selecting a critical value of RC D 2, the GRACE
and GLDAS identification results are given in the first panel
of Fig. 2a, b, c. Orders having an R.m/ value greater than RC

are marked with black color and are considered correlated.
The identification results using the ADPS criterion and Rao’s
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Table 1 Number of correlated and uncorrelated orders in GRACE and GLDAS data

RMSR ADPS GPCS
GRACE GLDAS GRACE GLDAS GRACE GLDAS

Correlated (10,502) [10,096] 1,756 (7,434) [5,833] 2,095 (9,253) [8,109] 72

Uncorrelated (2,670) [3,096] 11,416 (5,738) [7,339] 11,077 (3,919) [5,063] 13,100

spacing test are given in the second panel of Fig. 2a, b, c.
The angle distributions of order-wise coefficient series that
correspond to black pixels are significantly different from
uniform. All zero-order series are identified as correlated.
This is because all the coefficients in the �S W;0 series are
by definition equal to zero, resulting in a phase angle of
either 0ı or 180ı (depending on the sign of the corresponding
coefficients in the �C W;0 series) and a highly non-uniform
angle distribution. The results from the GPCS criterion are
provided in the third panel of Fig. 2a, b, c. Black pixels
denote orders that are classified as correlated by the trained
ANN. These results correspond to an ensemble solution com-
ing from 500 independent experiments, in order to account
for biases due to the selection of an ANN training dataset.
For each dataset, the number of correlated series per order,
normalized with respect to the total number of monthly
solutions, is provided in the fourth panel of Fig. 2a, b, c
for the three criteria. The results of Figs. 1 and 2 for the
complete GRACE and GLDAS data set are provided in the
supplementary information.

The RMSR criterion shows that the majority of GRACE
correlated series start at order 14 and their number gradually
increases until order 37. Almost all series from order 38 to
75 appear correlated. A small decrease in the number of
correlated series after order 75 is also evident. Differences
in the identification results between RL05 and RL06 appear
mainly from orders 14 to 37 and from 72 to 87. RL06
have less correlated coefficients, as expected. A substantial
number of GLDAS series are also identified as correlated,
the majority of them greater than order 16. According to the
ADPS criterion, the majority of GRACE correlated series
start from order 10 with a maximum value at order 14. The
number of correlated series fluctuates significantly for orders
15 to 30, and decreases for higher orders. A reason for this
relatively constant decrease is probably the limited number
of coefficients in a series, that results in a weak statistical
testing. RL06 appears to have a significantly smaller number
of correlated coefficients than RL05, starting from order 15.
The number of correlated GLDAS series fluctuates at the
same level (�12%) for all orders, with an increase around
orders 45 and 60. The GPCS criterion results show that most
of the GRACE correlated series start at order 14 and their
number increases until order 30. The unrealistic decreases of
correlated series for orders higher than 60 is due to the small
number of coefficients in high-order series that leads to low-
quality geometric features (Piretzidis et al. 2018). A decrease

in the number of correlated series from RL05 to RL06 is
evident for almost all orders. The vast majority of GLDAS
series are identified as uncorrelated with some exceptions for
orders less than 11 and greater than 60. The results of Fig. 2
are also summarized in Table 1 for an overall quantitative
comparison. Values inside round brackets denote RL05 and
inside square brackets RL06.

Overall, the RMSR and GPCS criteria show similar
behavior for GRACE data, especially up to order 60. The
ADPS criterion identifies more series as correlated for orders
up to 14 and less afterwards, compared to the GPCS and
RMSR criteria. Table 1 also corroborates that the RMSR
and GPCS results are closer to each other for GRACE data,
with the former identifying the most number of correlated
series and showing less differences between RL05 and
RL06. On the contrary, the ADPS criterion identifies the
least number of correlated series and results in the highest
differences between RL05 and RL06. The examination of
the GLDAS identification results shows that the GPCS
criterion identifies by far the least number of correlated
series. The RMSR and ADPS results are close, with the
latter to identify slightly more GLDAS series as correlated.
Although the GLDAS coefficients do not contain GRACE-
type correlated errors, they contain errors from the global
spherical harmonic analysis of equiangular data that do not
preserve the orthogonality of Legendre functions towards the
latitude direction (Sneeuw 1994). The reason that the GPCS
criterion does not recognize this type of errors is due to the
use of GRACE samples for the ANN training.

4.2 Simulation Results

We test the three criteria in a simulation environment to
quantitatively assess their performance. The simulation is
designed as follows. First, we use the GLDAS-derived grav-
ity change coefficients, described in Sect. 2, and we assume
it represents the true geophysical signal. We then add corre-
lated errors to the true signal in order to produce a GRACE-
like noisy geophysical signal. The correlated errors are sim-
ulated using the methodology of Vishwakarma et al. (2016),
i.e., by filtering the GRACE coefficient changes with the
EDF and a 400 km Gaussian smoothing filter, and subtracting
the filtered coefficient changes from the original ones. The
three criteria are then used to identify correlated orders in
the noisy coefficient changes (some examples are provided in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 (a) True, (b) filtered true and (c) noisy geophysical signal. (d) Selectively decorrelated and smoothed signal using RMSR, (e) ADPS and
(f) GPCS. (g), (h), (i) Differences between filtered true signal and (d), (e), (f), respectively

the supplementary information), and the EDF is selectively
applied to the orders identified as correlated. An additional
400 km Gaussian filter is also used to remove remaining
errors. The results from the decorrelated coefficients in the
spatial domain, in terms of equivalent water height (EWH),
are provided in Fig. 3 for 1 month, where a 250 km Gaus-
sian filter is applied to emphasize the remaining correlated
errors and the differences amongst the three criteria. The
examination of more monthly EWH changes shows that the
RMSR and GPCS criteria remove most of the stripes and
result in decorrelated spatial fields closer to each other, with
the former one providing the least noisy fields. The ADPS
criterion results in decorrelated fields that are still heavily
influenced by stripes.

The comparison of the selectively decorrelated and
smoothed signal with the true signal is performed in
terms of basin averages of EWH. Fifteen basins are used,
located in different geographic regions and having an area
ranging from 4,672,876 km2 (Amazon basin) to 521,829 km2

(Brahmaputra basin). The decorrelated and smoothed basin
averages are compared with the true basin averages, also
filtered with a 400 km Gaussian filter. The decorrelated and
smoothed basin averages are then corrected for filter-induced
leakage effects using the data-driven method of deviations
(Vishwakarma et al. 2017), and the leakage-repaired basin
averages are compared with the true basin averages. For
both cases, the RMS errors are provided in Table 2. The

underlined values in Table 2 denote the smallest RMS
error for each basin. The detailed time series of absolute
differences between the true and the selectively decorrelated
EWH signal are given in the supplementary information. In
the vast majority of cases where filtered fields are compared,
the RMSR criterion results in time series with smaller RMS
error, with the GPCS criterion having a slightly higher
RMS error and the ADPS criterion having the highest RMS
error. When the leakage-repaired time series are compared,
the RMSR and ADPS criteria again produce the smallest
and highest RMS error, respectively, for the majority of
cases. An increase in the RMS error is also noticed for both
experiments as the basin area decreases.

5 Conclusions

We test three criteria (RMSR, ADPS and GPCS) for the
identification of correlated order-wise coefficient series in
GRACE monthly coefficient changes that can assist the
selective implementation of the EDF. Regarding the compu-
tational complexity, the ADPS is the most efficient criterion
that does not require the prior use of the EDF for its
evaluation. The GPCS is by far the most complex and com-
putationally demanding criterion, as it requires the evaluation
of all geometric properties, the selection of a training dataset,
and the design and training of a MLA. The RMSR criterion
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Table 2 RMS error (in cm) of filtered and leakage-repaired EWH
basin averages

Filtered Leakage-repaired
Basin RMSR ADPS GPCS RMSR ADPS GPCS

Amazon 0.22 0.25 0.23 0.38 0.42 0.38

Congo 0.21 0.32 0.25 0.40 0.49 0.41

Mississippi 0.09 0.24 0.12 0.29 0.36 0.29
Ob 0.12 0.36 0.14 0.27 0.43 0.28

Yangtze 0.22 0.32 0.24 0.44 0.48 0.43

Mackenzie 0.20 0.49 0.23 0.49 0.71 0.56

Nelson 0.19 0.33 0.20 0.57 0.66 0.54

Indus 0.47 0.57 0.49 0.98 0.82 0.90
Zambezi 0.52 0.47 0.48 0.77 0.68 0.73

St. Lawrence 0.36 0.49 0.38 0.97 0.90 0.99

Ganges 0.74 0.93 0.82 1.32 1.64 1.47

Orange 0.53 0.67 0.52 0.90 0.94 0.85

Danube 0.37 0.52 0.36 0.80 1.08 0.87
Columbia 0.50 0.71 0.53 1.05 1.44 1.15

Brahmaputra 0.92 1.10 1.00 1.68 2.03 1.87

The basins are sorted in descending order with respect to their area

is simple and does not have any inherent biases. The only
drawback could potentially be the selection of a wrong value
for RC and the EDF parameters.

The identification of correlated orders in GRACE data
shows that the RMSR and GPCS criteria provide results in
close agreement with each other for orders up to 60, and with
the latter to identify less correlated series for orders greater
than 60. Given that correlated errors in the GRACE coeffi-
cients increase with degree and order, the RMSR criterion
shows the most realistic behavior. The ADPS criterion seems
to overestimate the number of correlated series in low orders
and underestimate the number of correlated series in medium
and high orders. All criteria identify fewer correlated orders
in GRACE RL06, indicating the reduction of correlated
errors and the improvement on the quality of harmonic
coefficients since RL05.

The results of the simulation study show that the RMSR
criterion provides time series of EWH averages with the
smallest RMS error for most of the basins examined. The
GPCS criterion results are again in close agreement with
the RMSR criterion, with a slightly higher RMS error. The
reduced performance of GPCS is probably due to the unsuc-
cessful identification of correlated series for orders greater
than 60. The ADPS criterion results in the highest RMS
error.

We conclude that the ADPS, despite having superior com-
putational advantages, is not a reliable criterion. A stronger
statistical test for uniformity would make the ADPS crite-
rion the most efficient choice. The examination of different
statistical tests for this task is still an open area of research.
For the identification of correlated orders in GRACE data
prior to the EDF implementation, we recommend the RMSR

criterion that strikes a good balance between computational
efficiency and reliability. If complexity is not an issue and the
GRACE analysis is restricted up to degree and order 60, the
GPCS criterion is also recommended.
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Second- and Third-Order Derivatives
of the Somigliana-Pizzetti Reference Gravity
Field

Sten Claessens

Abstract

The computation of second- and third-order derivatives of the Somigliana-Pizzetti reference
gravity field (reference gravity gradients and reference gravity field curvature values) is
investigated. Closed expressions for these second- and third-order derivatives are derived
in spheroidal coordinates. Rigorous equations for the second-order derivatives in a local
north-oriented frame are also given. It is shown that on the surface of the reference ellipsoid,
these lengthy expressions can be reduced to simple elegant formulas, akin to Somigliana’s
formula for the first-order derivative. Numerical results provide insight into the curvature
of the reference plumb lines and spheropotential surfaces. It is shown that spheropotential
surfaces up to 10,000 m in altitude differ from an oblate ellipsoid of revolution by less than
0.04 m. It is also shown that this fact can be utilised to approximate the reference gravity
gradients through simple formulas.

Keywords

Gravity field curvature � Gravity gradients � Reference potential

1 Introduction

Terrestrial, airborne and space-borne observation of grav-
ity gradients has been commonplace for many years (e.g.
Völgyesi 2015, DiFrancesco et al. 2009, Rummel et al.
2011). The direct observation of rate of change of gravity
gradients (gravity field curvature) has become an area of
active research in recent years (e.g. Rosi et al. 2015).

Gravity gradients are the second-order derivatives of the
gravity potential, and the rates of change of gravity gradients
are the third-order derivatives of the gravity potential. Since
in geodesy the gravity potential is customarily separated
into a reference potential and a disturbing potential, the
computation of the second- and third-order derivatives of
the reference potential is of interest. These reference poten-

S. Claessens (�)
The Institute for Geoscience Research, School of Earth and Planetary
Sciences, Curtin University, Perth, Australia
e-mail: s.claessens@curtin.edu.au

tial derivatives can be computed through the spherical har-
monic expansion of the reference potential (e.g. Petrovskaya
and Vershkov 2010, Hamáčková et al. 2016). Manoussakis
(2013) presents an exact method to compute the second-order
derivatives of the reference potential on the surface of the
reference ellipsoid, and approximately in the vicinity of the
reference ellipsoid through a linear approximation.

In this paper, closed expressions for the second- and third-
order derivatives of the Somigliana-Pizzetti reference gravity
field are derived in spheroidal coordinates. Rigorous, closed
expressions for the second-order derivatives in a local north-
oriented reference frame are also provided. It is shown that
on the surface of the reference ellipsoid, the lengthy expres-
sions are reduced to simple elegant formulas. Numerical
results show the approximation error in these formulas when
applied at altitude, and provide insight into the curvature of
the reference plumb lines and spheropotential surfaces.

© Springer Nature Switzerland AG 2019
P. Novák et al. (eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 151, https://doi.org/10.1007/1345_2019_70

19

http://crossmark.crossref.org/dialog/?doi=10.1007/1345_70&domain=pdf
mailto:s.claessens@curtin.edu.au
https://doi.org/10.1007/1345_2019_70


20 S. Claessens

2 Derivatives in Spheroidal Coordinates

The Somigliana-Pizzetti reference potential U at any point
in space can be expressed in spheroidal (Jacobi ellipsoidal)
coordinates (u, ˇ, �) (Heiskanen and Moritz 1967; u is the
semi-minor axis of an oblate spheroid with linear eccentricity
E through the computation point, ˇ is the reduced latitude
with respect to this spheroid, and � is the geocentric longi-
tude)

U .u; ˇ/ D GM

E
atan

E

u
C 1

2
!2a2 q

q0
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(1)

where a and E are the semi-major axis and the linear
eccentricity of the reference ellipsoid, respectively,GM is the
Earth’s geocentric gravitational constant, and ! is its angular
velocity. The parameter q is closely related to the second-
degree Legendre function of the second kind and q0 is the
value of q on the surface of the reference ellipsoid (u D b),
where b is the semi-minor axis of the reference ellipsoid
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First-, second- and third-order derivatives of the reference
potential with respect to the spheroidal coordinates can be
obtained by single, double and triple differentiation of Eq.
(1). The first-order derivatives are:
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�
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The second-order derivatives are:
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And the third-order derivatives are:
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In Eqs. (4)–(12), qu, quu and quuu are the first-, second- and
third-order derivatives of q (Eq. (2))
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Note that the reference potential is rotationally symmetric
around the semi-minor axis, and therefore all derivatives with
respect to longitude � are zero.

3 Reference Gravity Gradient Tensor
in Local Cartesian Coordinates

Gravity gradients are often represented in a local Cartesian
north-oriented reference frame, with the x-axis pointing
north, the y-axis pointing west, and the z-axis pointing up.
We here define the direction of the z-axis more precisely
as perpendicular to the coordinate surface u D constant.
The second-order derivatives in the local reference frame
are most easily obtained from the first- and second-order
derivatives in spheroidal coordinates (Eqs. (4)–(8)) through
relations by Koop (1993, p. 31) (see also Vershkov and
Petrovskaya 2016, Eq. 10)

Uxx D 1
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�
"

Uˇˇ C u
�
u2 C E2

�
u2 C E2 sin2ˇ

Uu � E2 sin ˇ cos ˇ

u2 C E2 sin2ˇ
Uˇ

#

(16)
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These four second-order derivatives are the elements of
the Eötvös/Marussi tensor of the reference gravity field

M D grad.grad U / D
0
@ Uxx 0 Uxz

0 Uyy 0

Uxz 0 Uzz

1
A (20)

For any point on the surface of the reference ellipsoid
(u D b), Eqs. (16)–(19) can be simplified considerably. Note
that Uˇ and Uˇˇ are equal to zero in this case, and the
diagonal elements of the Eötvös/Marussi tensor become
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where M and N are the principal radii of curvature in the
prime meridian and prime vertical direction, respectively,
and �0 is the magnitude of reference gravity at the reference
ellipsoid, which can be found from Somigliana’s formula
(Heiskanen and Moritz 1967, Eqs. 2–78). Equations (21)–
(23) could alternatively have been derived from geometri-
cal considerations, given that the surface of the reference
ellipsoid is a spheropotential surface, i.e. an equipotential
surface of the reference gravity field. They can be found as
a direct result of application of formulas due to Bruns that
relate the second-order derivatives of the gravity potential to
the curvature of the level surface (e.g. Heiskanen and Moritz
1967, Sects. 2–3).

The cross-derivative Uxz (Eq. (19)) can also be simplified
on the surface of the reference ellipsoid
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where �a and �b are the magnitude of reference gravity at
the equator and at the poles, respectively. In the derivation
of Eq. (24), use was made of Clairaut’s theorem (Heiskanen
and Moritz 1967, Eqs. 2–75)
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�
(25)

where e
0

is the second numerical eccentricity of the reference
ellipsoid. Equation (24) can easily be expressed in terms
of the more commonly used geodetic coordinates (geodetic
latitude � and longitude �)
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The well-known Somigliana’s formula for reference grav-
ity gives us the first-order derivative of the reference potential
on the surface of the reference ellipsoid, and Eqs. (21)–(23),
(26) can be considered its counterpart for the second-order
derivatives. Manoussakis (2013) has also derived an expres-
sion for U 0

xz, but through a completely different derivation
based on geometric considerations. In the current notation,
his formula is

U 0
xz D � @�
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ˇ̌0 1
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�

(27)

This equation requires the derivatives of reference gravity
and radius of curvature in the prime vertical with respect to
geodetic latitude and is not as easily applicable as Eq. (26).

4 Geometrical Interpretation

The second-order derivatives of the normal potential are
closely related to the curvature coefficients of the spheropo-
tential surfaces and reference gravity plumb lines (e.g. Torge
2001). This can be expressed by

0
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where kˇ is the curvature of the spheropotential surface in
north-south direction, k� is the curvature of the spheropoten-
tial surface in east-west direction, ku is the curvature of the
reference gravity plumb line, and J is the mean curvature of
the spheropotential surface

J D 1

2

�
1

kˇ

C 1

k�

�
(29)

Therefore, second-order derivatives can reveal curvatures
of the surfaces and plumb lines, and vice versa, known or
approximate values of curvature can be used to compute
second-order derivatives.

Equations (16)–(19) were here used to investigate by how
much the spheropotential surfaces of the GRS80 reference
gravity field (Moritz 2000) differ from ellipsoidal surfaces.
Knowledge of the exact shape of the spheropotential surfaces
is of use in the interpretation of data influenced by the
Somigliana-Pizzetti reference field, and can aid the efficient
computation of gravity gradients (Sect. 5). While computa-
tion of the shape of spheropotential surfaces has long been
possible with existing formulas, the results below and in Fig.
1 provide a succinct and instructive view that to the best of
our knowledge has not been published before.

Spheropotential surfaces are not ellipsoidal due to the
inclusion of the centrifugal potential in the gravity potential.
If the angular velocity of the Earth were zero, the spheropo-
tential surfaces would equal the spheroidal coordinate sur-
faces (u D constant), which are concentric ellipsoids with
equal linear eccentricity. However, the centrifugal potential
due to the Earth’s rotation causes a bulge in the spheropo-
tential surface at the equator of 0.87% of altitude. Fur-
thermore, compared to an ellipsoidal surface fitted through
a spheropotential surface at the poles and equator, there is
an additional bulge at mid-latitudes of 0.0004% of altitude.
Figure 1 shows the example for the spheropotential surface

Fig. 1 The geometry of a spheropotential surface

with an altitude of 10,000 m above the poles. The sizes of
these bulges are approximately (but not exactly) linear with
altitude, at least up to 10,000 m above the reference ellipsoid,
and they have therefore been expressed as percentages.

5 Efficient Computation of Reference
Gravity Gradients at Low Altitude

While Eqs. (16)–(19) can be used to compute the reference
gravity gradients at any point, these gradients can also be
computed in an approximate fashion through the simpler
formulas (Eqs. (21)–(23), (26)). Just like reference gravity
at low altitudes is customarily computed through a Taylor
series expansion in terms of height (e.g. Heiskanen and
Moritz 1967, Eqs. 2–123), the reference gravity gradients at
low altitudes can be computed through a similar approach
(Manoussakis 2013).

However, an alternative approximate method of compu-
tation is investigated here. Since the spheropotential surface
can very closely be approximated by an ellipsoidal surface
(see Fig. 1), it may be sufficiently accurate to use the
geometry (a, E and derived parameters) of the ellipsoid
fitted through the spheropotential surface at the poles and
equator in Eqs. (21)–(23), (26). The main advantage of this
approach is that the reference gravity gradients are computed
using simple formulas in geodetic coordinates, avoiding
the need for transformation to spheroidal coordinates. The
approximation errors resulting from this approach are shown
in Fig. 2 for an altitude of 10,000 m. It can be seen that the
errors are largest in the Uxz-component, while the diagonal
components are accurate to 0.1 mE (10�12s�2). These errors
increase approximately linearly with altitude, and they are
thus one order of magnitude smaller at an altitude of 1000 m.
The approximation errors shown in Fig. 2 are insignificant
compared to the precision of common torsion balance gravity
gradiometer observations, which is typically above 0.1 E
(e.g. Rummel 2002, Hu et al. 2018).

6 Discussion and Conclusions

The second- and third order derivatives of the Somigliana-
Pizzetti reference gravity potential in terms of spheroidal
coordinates have been derived (Eqs. (6)–(12)). For the
second-order derivatives, it is shown how these equations
can be used to compute derivatives with respect to a local
north-oriented reference frame using existing expressions
(Eqs. (16)–(19)). In theory, this can also be done for third-
order derivatives. Toth (2005) has derived the relations
between third-order derivatives in the Cartesian and spherical
coordinate systems, but explicit relations between the
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Fig. 2 Approximation error in
Eqs. (21)–(23), (26) at 10,000 m
altitude when using parameters
for an ellipsoid fitted through the
spheropotential surface at the
poles and equator
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Cartesian and spheroidal coordinate systems remain to be
derived in future research.

Simple explicit relations for the second-order derivatives
of the reference potential on the surface of the reference ellip-
soid have been derived (Eqs. (21)–(23), (26)). As the well-
known Somigliana’s formula provides a simple equation
for the first-order derivative of the reference potential (the
magnitude of reference gravity), the equations derived here
can be considered the equivalent for second-order derivatives
(the magnitudes of the reference gravity gradients).

The derived equations were used to show the geometry
of the spheropotential surfaces. The spheropotential surfaces
up to 10,000 m in altitude differ from an oblate ellipsoid of
revolution by less than 0.04 m. It has also been shown that
this fact can be utilised to conveniently compute the gradients
in an approximate way.
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On the Advantage of Normal Heights

Once More on the Shape of Quasigeoid

Viktor V. Popadyev

In memory of Prof. Lyudmila V. Ogorodova

Abstract

This paper analyzes the arguments in the report “The shape of the quasigeoid” by Robert
Kingdon, Petr Vaníček, Marcelo Santos presented in Rome (IX Hotin-Marussi Symposium
on Theoretical Geodesy, Italy, Rome, June 18–June 22, 2018), which contains the criticisms
of the basic concepts of Molodensky’s theory: normal height and height anomaly of the
point on the earth’s surface, plotted on the reference ellipsoid surface and forming the
surface of a quasigeoid. Also are presented the main advantages of the system of normal
heights. They are closely related to the theory of determination of the external gravitational
field and the Earth’s surface, are presented.

Despite the fact that the main core of Molodensky’s theory is the rigorous determining of
the anomalous potential on the Earth’s surface, the advantage of the normal heights system
can be shown and proved separately. And this can be easily demonstrated by a simple
hypothetical example of the spherical non-rotating Earth where the change of marks along
the floor of a strictly horizontal tunnel in the spherical mountain massif serves as criterion
for the convenience of the system. In this example, the difference in orthometric heights
comes up to 3 cm per 1.5 km. It will require the same corrections to the measured elevations
what with the effect of the orthometric heights system. Also the knowledge of the inner
structure of the rock mass is necessary. In turn, the normal heights are constant along the
tunnel and behave as dynamic ones and there is no need to introduce corrections.

Neither the ellipsoid nor the quasi-geoid is a reference surface for normal heights,
because until now the heights are referenced to the initial tide gauge. The numerical
values of heights are assigned to the physical surface. This is similar to the ideas of
prof. L. V. Ogorodova about the excessive emphasis on the concept of quasigeoid itself.
According to prof. V. V. Brovar the more general term is the “height anomaly” that exists
both for points on the Earth’s surface and at a distance from it and decreases together with
an attenuation of the anomalous field.
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Quasigeoid
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1 Introduction

The main disadvantage of the quasi-geoid boils down to the
well-known fact that near the singular points of the earth’s
surface (conical cusps and faces) the gravitational field also
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has a special feature. Since the normal field is smooth, the
surface of the quasigeoid heights � D W�U

�
also has the

peculiarity. Here we should remember that the solution of
the boundary value problems of the Newton potential in all
cases requires that the earth’s surface should be smoothed
out to the Lyapunov’s conditions. The physical land surface
can be smoothed out over gravimetric points. There are no
features on the sea. The determination of the geoid does not
become easier.

M. S. Molodensky showed that it is impossible to deter-
mine the form of the geoid from measurements taken on the
earth’s surface. Figure 1 shows the anomalous mass in the
form of a sphere of radius R1 D 1 and constant density
ı1 D 1 centered on the geoid. If we replace this sphere by
a concentric one which is equal in mass but having the radius
R2 D 3R1, then from the equation

M1 D 4

3
�R31ı1 D M2 D 4

3
�R32ı2

we determine the new density ı2 D 1
27
ı1. Since the external

field of such concentric spheres, equal in mass, is the same,
the replacement will not be reflected in measurements on the
earth’s surface, but the internal potential of the sphere at the
central point will be different:

V1 D 2�Gı1R
2
1 D 2�G; V2 D 2�Gı2R

2
2 D 2

3
�G;

so that the geoid inside the sphere will change its shape.
Thus, it is impossible to study the surface of the geoid from
the measurements on the Earth’s surface.

The impossibility of determining the geoid and the physi-
cal surface of the Earth was also known to F. Helmert:

. . . die Figur der physischen Erdoberfläche wird also richtig
erhalten; nur die Lage des Geoids ist mehr oder weniger
von einer unvermeidlichen Unsicherheit betroffen (Helmert
1900);

Alle anderen Reductionsweisen haben das Gemeinsame, dass sie
im Allgemeinen eine gewisse mehr oder weniger starke Verän-
derung (Idealisierung) der Massenvertheilung an der Erdober-
fläche voraussetzen und deshalb mehr oder weniger fehlerhaft
sind (Helmert 1902).

Fig. 1 About impossibility to determine the geoid

2 On the Quasigeoid

The report of Robert Kingdon, Petr Vaníček, Marcelo Santos
The shape of the quasigeoid specifies the complexity of the
quasi-geoid corresponding to the points of the earth’s surface
that forms “overhangs”. The quasigeoid height related to the
points on the earth’s surface will also form an overhang.
The correct arrangement of the quasigeoid is shown on
Fig. 2 (see the report). The mean integral value gm can be
measured along the line 1–3 directly or we can use @�g

@H

from the boundary value problem. Then the difference of
the orthometric heights Hg

3 � H
g
1 is just a real length of

segment 1–3. This also is the difference of the geodetic
height (neglecting the deflection of the plumb-line). Along
line 2–4 the value gm can be calculated by measuring the
values of the gravity at the ends of a segment 4–5. So we
obtain again the geometric length of the segment.

Shown at the beginning of the report The shape of the
quasigeoid is the picture from the book of one of the authors
(Vaníček and Krakiwsky 1986), where the quasi-geoid on
land is located under the geoid and has a smaller curvature.
This can be seen from the simple example in Fig. 3 while
in own illustrations R. Kingdon, P. Vaníček and M. Santos
place the surface of the quasi-geoid over the geoid and give
it a greater curvature.

The above can be generalized as a more complex case
showing how to calculate normal heights in tunnels crossing
mountain massifs. Such a discussion was held back in the
1950–1960th when Burša (1959) and Yeremeyev (1965)
discussed the system of normal heights in Czechoslovakia.
A detailed investigation of the theory of orthometric, normal
and dynamic heights is made in the monograph (Yeremeev
and Yurkina 1972).

The advantage of the Molodensky theory is that it is
possible to determine the anomalous potential T and the
height anomaly � D T =� with high accuracy on the earth’s

Fig. 2 Overhang
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Fig. 3 Geoid and quasigeoid

surface (by the measurements taken on it). But the basic
advantage of normal heights can also be proved without a
connection with the solution of the geodetic boundary value
problem.

3 Advantages of the Normal Heights

In the physical sense, the height position of the point is
uniquely characterized by the geopotential number W0 �
W D R

gdh, equal to the difference of the gravity potential
at the beginning of the height calculation W0 and at the
current pointW .

The normal heights were first named by Molodensky as
“auxiliary”. Their introduction under condition1 W .H/ �
W0 D U .H�/ � U0 allowing him to strictly solve the
geodetic boundary value problem which makes it possible
to determine the geodetic heights of the points and the
anomalous potential T on the earth’s surface. Later it was
noted that these auxiliary heights form a very convenient and
harmonious system.

It is an interesting fact that in his draft of the article on the
theory of heights, apparently dating back to 1950, V. F. Yere-
meyev still uses the term “auxiliary” heights, and calls as the
“normal” heights the approximate heights.2 Responding to
this work the head of the department of higher geodesy prof.
V. Danilov recommended in his critical review to replace the
“auxiliary” heights with another more appropriate term (as
the impression is created “that these heights are secondary,
not final”). He also noted:

1The strict condition is in spheroidal coordinate system.
2I.e. the heights determined from relation

R
�dh

�m
, when there is no gravity

map.

The advantages of normal heights are:
1. Normal heights can be precisely calculated, they are also
uniquely related to the dynamic heights.
2. The discrepancies in the leveling polygons are reduced (in the
limit of zero), so the adjustment of level networks in geopotential
values and in normal heights gives identical results.
3. The level surfaces crossing the physical surface of the Earth
are more important in practical terms than the geoid, since
geodetic measurements have to deal with them but not with the
geoid.

At the suggestion of M. S. Molodensky V. F. Eremeev
introduced the term “normal height” (Yeremeev 1951):

In this paper, instead of the term “auxiliary” altitude, the term
“normal height” is adopted as being most appropriate to the
physical meaning explained below.

Practically, it is difficult to obtain orthometric height
from the geopotential number for a number of reasons: to
determine the mean integral value gm along the force line,
it is required to know at least the first derivatives of the
real gravity force (or the mass density distribution) up to the
geoid surface, also unknown. To determine the orthometric
heightHg D 1 km with an accuracy of 1 cm, it is required to
know the average gm with an accuracy of 10 mGal with the
tolerances decreasing as the height grows (Yurkina 1998). In
the meantime in the processing of high-precision leveling in
the system of normal heights, the requirements will be less
harsh to the accuracy of the points coordinates (up to 0.5 km)
and gravimetric information (1 mGal). That will allow us to
determine even if a small-scale topographic map is used, �m

with an accuracy of 50 mGal to obtain a difference of normal
heights with an accuracy of 0.1 mm. This fact permits us
to calculate normal correction, see Eq. (1), even from the
global field model. The normal corrections were calculated
by D. A. Gulyyev and by O. V. Nefedova from EGM2008
for the leveling line 1,165 km long in Turkmenistan and for
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the line of 685 km long in North Caucasus with resulting
absolute errors 0.6 and 1.0 mm respectively.

4 On the Calculation of Heights

In the question of choosing a heights system, the main thing
is not how easy or intuitively clear the geoid or quasi-geoid
is, what matters is the following:

– how the heights under consideration characterize the level
surfaces at the place where the geodetic work is carried
out (for geodesy, it is not those level surfaces passing
inside the Earth that are important, but those that cross
the earth’s surface of a given spot, the local horizons).

– how large are the gravimetric corrections required in
case when the measured elevations are converted into
the height differences in the adopted system (if these
corrections are significant, then they will have to be
introduced into the measured elevations even in case of
rough leveling at short distances which is one of well-
known drawbacks of the dynamic heights system).

Let’s take a simple example.

4.1 General Considerations

Since we do not have accurate data on the actual placement
of the geoid and on the distribution of attracting masses,
let us estimate the convenience of using normal or ortho-
metric heights on a model with previously known elements
of the anomalous field. We represent the Earth model in
the form of a non-rotating homogeneous sphere of radius
R0 D 6;378 km and with Newtonian constant GM0, into
which a homogeneous sphere of smaller dimensions of radius
R1 D 2 km and with Newtonian constant GM1 is half
sunk (Fig. 4). The Newtonian constants are calculated from
the densities ı0 D 5:5 g/cm3, ı1 D 2:3 g/cm3 and the
volumes of spheres. The big sphere creates the potential V0,
the smaller one creates the potential V1. Suppose now that in
the obtained mountain massif it is required to build a strictly
horizontal tunnel (so that the minimum fuel consumption
may be achieved). So also let’s assume that the removal of the
soil does not change the internal field. Since all the elements

Fig. 4 Tunnel



On the Advantage of Normal Heights 29

of the field are easily calculated with great precision, we
can estimate the difficulties that arises when using normal or
orthometric heights, namely the difference in altitude when
entering the tunnel and at other points. It is clear that it
will be more preferable to have a system of heights where
the difference in altitude is less.

At once it is necessary to make a reservation that in case of
strictly horizontal tunnel the choice of dynamic heights will
be the most successful (without any correction). If there is a
slope of the tunnel, the question remains open. This question
can be solved in advance. The normal gravimetric correction
consists of corrections for the nonparallelism of the level
surfaces of the normal and real fields3:

�H� D
X

�h � 1

�m

X
Hm��0 C 1

�m

X
�g�h; (1)

whereHm is mean height,�g is gravity anomaly,�h is ele-
vation, �0 is normal gravity on the reference ellipsoid surface.
Since there is no transition to another level surface and the
normal field is spherical, then the gravimetric correction for
the normal heights will be zero. In this particular case, the
normal heights give a result equivalent to that of dynamic
heights.

4.2 Numerical Experiment

Let us determine the heights of the points of the tunnel.
Orthometric heights Hg can be found from its definition
as the distance between the points on the tunnel floor and the
geoid with the potential W0. The latter is chosen from the
value of the potential U0 on the reference surface:

W0 D U0 D V0.R0/ D GM0

R0
;

where the symbols for the gravity potential W , U are
used traditionally, whereas in this case only the potential of
attraction V makes sense (there is no centrifugal component).

At points of the geoid, we have the condition4

V in
1 .r0/C V ex

0 .R0 CN/ D W0; (2)

here r0 is the distance from the center of the small sphere
to the point on the true geoid, N is the geoid height, the

3The difference of the formula adopted by Yeremeyev from the corre-
sponding formula (4–64) in the book “Physical geodesy” of Hofmann-
Wellenhof B., Moritz H. (Springer, 2006) was noticed in the book
review by M. Pick (Stud. Geophys. Geod., 50, 2006, 161–163).
4Hereafter the potentials V ,U andW with parameters in brackets mean
no multiplication.

potential of the small sphere at the internal point5 at a
distance of r :

V in
1 .r/ D GM1

R1

"
3

2
� 1

2

�
r

R1

�2#

; (3)

and where the potential of a large sphere to an external point
is

V ex
0 .R0 CN/ D GM0

R0 CN
:

The distance r0 depends on  (angle between the symmetry
axis of the model and the radius vector of the current point)
and N :

r20 D R20 C .R0 CN/2 � 2R0.R0 CN/ cos : (4)

Substituting r0 from (4) in (3) for r in (3) and in (2) we’ll
have

GM1

R1

�
3

2
� R20 C .R0 CN/2 � 2R0.R0 CN/ cos 

2R21

�

C

C GM0

R0 CN
D GM0

R0
:

With � D M1=M0 and ˇ D R0 CN we have

�

R1

�
3

2
� 1

2R21
.R20 C ˇ2 � 2R0ˇ cos /

�

C 1

ˇ
D 1

R0
:

The resulting cubic equation

� �

2R31
ˇ3C�R0

R31
cos � ˇ2C

�
3

2

�

R1
��R

2
0

2R31
� 1

R0

�

ˇC1D0

can be solved numerically and we find the geoid height N at
points with step � from 0 to  1 where the tunnel ends:

cos 1 � R20 C .R0 CH1/
2 � R21

2R0.R0 CH1/
:

At the same points, one can calculate the height of the
level surface with the potential W1 at the geodetic height
H1 D 1 km over the center of the small sphere:

W1 D V in
1 .H1/C V ex

0 .R0 CH1/ D

D GM1

R1

"
3

2
� 1

2

�
H1

R1

�2#

C GM0

R0 CH1

:

5The adopted form V in.r/ D 2�Gı.R21 � r2

3
/ can be easily expressed

as next.
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From the condition analogous to (2),

V in
1 .r1/C V ex

0 .R0 CN1/ D W1;

one can obtain a cubic equation with respect to ˇ1 D R0 C
N1 and numerically determineN1, the geodetic height of the
tunnel floor.

The normal heights H�
1 of the floor surface can be

calculated proceeding from Yeremeyev’s formula (Yeremeev
1951):

H
�
1 D W0 �W

�m
D 1

�m

�
GM0

R0
�W1

�

;

where the mean integral value of the normal gravity can be
determined directly:

�m D 1

H
�
1

�DR0CH
�
1Z

�DR0

GM

�2
d� D 1

H
�
1

�

�GM
�

�ˇ
ˇ
ˇ
ˇ

�DR0CH
�
1

�DR0

D

D 1

H
�
1

�
GM

R0
� GM

R0 CH
�
1

�

;

where in the right-hand side we can substitute H�
1 for N1,

the geodetic height of the floor of the tunnel. For greater
accuracy �m andH�

1 can be calculated by successive approx-
imations.

Normal height can be found strictly from its definition
as such a height for which the real and normal geopotential
numbers are equal:

W0 �W1 D U0 � V0.R0 CH
�
1 / (5)

or

GM0

R0 CH
�
1

D W1:

Hence the normal heights of the points of the tunnel floor
must be strictly constant. The quasigeoid height of the tunnel
floor is �f loor D N1 �H� .

The orthometric height, by definition, is the height dif-
ference between the tunnel floor surfaces and the geoid
Hg D N1 � N . The results of calculations of the normal
and orthometric height of the tunnel floor are in Table 1, the
graphs of these values are shown in Fig. 5. The normal height
varies within 9 � 10�6 mm, this change is due to rounding
errors, while the orthometric height varies within 2.65 cm.

Table 1 Normal and orthometric heights of the tunnel floor points

 0 5.600 . . . 44.800 50.400

Hg , m 999,607 999,607 . . . 999,628 999,633

H� , m 999,639 999,639 . . . 999,639 999,639

Fig. 5 Change in normal H�
1 and orthometric Hg heights along the

tunnel floor: N is the true geoid height; �floor is the quasigeoid height
of the tunnel floor; �phys is the quasigeoid height of the external

mountain surface; N1 D Hfloor is the geodetic height of the tunnel floor;
Hphys is the geodetic height of the external mountain surface
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From the condition (5) one can also determine the normal
heightsH�

2 and the quasigeoid heights �phys for points on the
outer surface of the mountain, whose real potential is

W2 D GM0

R0 CH2

C GM1

R1
D GM0

R0 CH
�
2

;

where the geodetic height H2 can be easily found from the
cosine theorem (see Fig. 4)

H2 D R0.cos � 1/C
q
R20 cos2  �R20 CR21:

From the relation �phys D T
�

where T D GM1

R1
, � D

GM0

.R0CH�
2 /
2 given on the outer surface we can control the quasi-

geoid height �phys on the physical surface of the mountain.

5 Conclusions

Normal heights do not have a visual physical meaning, but
they have important practical significance. They are strictly
related to the solution of the Molodensky’s geodetic bound-
ary value problem, from where the anomalous potential is to
be determined.

For points on the outer surface of the mountain and in the
tunnel, the height anomalies will be different which reflects
the decrease of the anomalous field with altitude. Such an
idea of the height anomaly is justified at certain points above
the earth’s surface, for example, in the construction of large
bridges (Pick 1970).

A quasigeoid is not a “vertical reference surface”, what
with the normal heights being counted from the reference
point. After the precise leveling data are processed, to each
point of the earth’s surface, the height mark is assigned. The
normal height is related to the segment from the ellipsoid to
the point with the condition W .H/ � W0 D U .H�/ � U0.
Along this segment the mean value �m is calculated, but
the value of the normal height refers to the point of the
earth’s surface. Similarly the normal-orthometric heightHno

is related to the segment from the Earth’s surface down to
the point, where the conditions W .H/ � W0 D U .H/ �
U .H �Hno/. But the height value still refers to the point on
the earth’s surface. Between all the types of normal height

(normal-orthometric, normal and possible intermediate vari-
ants) only the classical Molodensky’s normal height doesn’t
require any geodetic height to know.
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Green’s FunctionMethod Extended
by Successive Approximations and Applied
to Earth’s Gravity Field Recovery

Petr Holota and Otakar Nesvadba

Abstract

The aim of the paper is to implement the Green’s function method for the solution of
the Linear Gravimetric Boundary Value Problem. The approach is iterative by nature. A
transformation of spatial (ellipsoidal) coordinates is used that offers a possibility for an
alternative between the boundary complexity and the complexity of the coefficients of
Laplace’s partial differential equation governing the solution. The solution domain is carried
onto the exterior of an oblate ellipsoid of revolution. Obviously, the structure of Laplace’s
operator is more complex after the transformation. It was deduced by means of tensor
calculus and in a sense it reflects the geometrical nature of the Earth’s surface. Nevertheless,
the construction of the respective Green’s function is simpler for the solution domain
transformed. It gives Neumann’s function (Green’s function of the second kind) for the
exterior of an oblate ellipsoid of revolution. In combination with successive approximations
it enables to meet also Laplace’s partial differential equation expressed in the system of new
(i.e. transformed) coordinates.

Keywords

Boundary value problems � Integral kernels � Laplace’s operator � Method of successive
approximations � Transformation of spatial coordinates

1 Introduction

Green’s functions are an important tool in solving problems
of mathematical physics. Equally this holds for applications
in gravity field studies. The mathematical apparatus of classi-
cal physical geodesy is a typical example. Green’s function is
an integral kernel, which, convolved with input values, gives
the solution of the particular problem considered. Regarding
its construction, there exist elegant and powerful methods for

P. Holota (�)
Research Institute of Geodesy, Topography and Cartography,
Prague-East, Czech Republic
e-mail: petr.holota@pecny.cz

O. Nesvadba
Land Survey Office, Prague 8, Czech Republic
e-mail: nesvadba@sky.cz

one or two dimensional problems. However, only very few
of these methods carried over to higher dimensions, indeed
the higher the dimension of the Euclidean space the simpler
the boundary of the region of interest had to be, see Roach
(1982). In order to preserve the benefit of the Green’s func-
tion method a suitable approximation procedure is discussed.
The aim of the paper is to implement the procedure with
the particular focus on the solution of the linear gravimetric
boundary value problem. Two approaches immediately sug-
gest themselves; either to approximate the boundary of the
region of interest or approximate the domain functional (par-
tial differential operator). We follow still another alternative
that merges both of these approaches.

In this paper xi, i D 1, 2, 3, mean rectangular Carte-
sian coordinates with the origin at the center of gravity
of the Earth. We identify W and U with the gravity and
a standard (or normal) potential of the Earth, respectively.
Under this notation g D gradW is the gravity vector and its
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length g D j gradW j is the measured gravity. By analogy
we put � D gradU and � D j gradU j for the normal
gravity. Finally, in the general point x D (x1, x2, x3) we
have T(x) D W(x) � U(x) for the disturbing potential and
ıg(x) D g(x) � � (x) for the gravity disturbance.

We will discuss the Linear Gravimetric Boundary Value
Problem (LGBVP). It is an oblique derivative problem. Its
solution domain is the exterior of the Earth. We will denote
it by �. The problem may be formulated as follows

�T D div grad T D 0 in �; (1)

@T

@s
D hs; grad T i D � ıg on @�; (2)

where

s D � 1

�
grad U; (3)

h , i is the inner product, � means Laplace’s operator and @�

represents the boundary of �, see Koch and Pope (1972),
Bjerhammar and Svensson (1983), Grafarend (1989) and
Holota (1997). Let us add in this connection that the vector s
is assumed to be nowhere tangential to @�.

Now we introduce ellipsoidal coordinates u, ˇ, � (ˇ is
the reduced latitude and � is the geocentric longitude in the
usual sense) related to Cartesian coordinates x1, x2, x3 by the
equations

x1 D
p

u2 C E2 cos ˇ cos �; (4)

x2 D
p

u2 C E2 cos ˇ sin �; (5)

x3 D u sin ˇ; (6)

where E D p
a2 � b2 is the linear eccentricity of an ellipsoid

of revolution with semiaxes a and b, a � b, whose center is in
the origin of our Cartesian system and whose axis of rotation
coincides with the x3-axis.

In our considerations we will suppose that h(ˇ, �) is a
function that describes the boundary @� of our solution
domain � with respect to the level ellipsoid u D b, i.e. @� is
represented by

x1 D
q

Œb C h .ˇ; �/�2 C E2 cos ˇ cos �; (7)

x2 D
q

Œb C h .ˇ; �/�2 C E2 cos ˇ sin �; (8)

x3 D Œb C h .ˇ; �/� sin ˇ: (9)

In addition, referring to Heiskanen and Moritz (1967), we
can reproduce that @U/@� D 0 for the normal (Somigliana-
Pizzeti) potential U and that for h D 0 we have @U/@ˇ D 0.
Moreover, for @� close to the level ellipsoid, we can even
adopt that with a high (sufficient) accuracy @U/@ˇ D 0 is
valid for a realistic range of h representing the boundary
@� (surface of the Earth). In consequence the boundary
condition above, Eq. (2), can be interpreted in terms of a
derivative of T with respect to u, i.e.,

@T

@u
D �w .b C h; ˇ/ ıg on @�; (10)

where

w .u; ˇ/ D
s

u2 C E2sin2ˇ

u2 C E2
: (11)

In the following approach to the solution the LGBVP a trans-
formation (small modification) of ellipsoidal coordinates will
be applied together with an attenuation function. This will
open a way for an alternative between the boundary com-
plexity and the complexity of the coefficients of the partial
differential equation governing the solution. The approach
represents a generalization of the concept discussed in Holota
(1985, 1986, 1989, 1992a, b, 2016) and Holota and Nesvadba
(2016).

2 Transformation of Coordinates
and an Attenuation Function

Our starting point will be the mapping given by Eqs. (4)–(6),
but with

u D z C !.z/h .ˇ; �/ ; (12)

where z is a new coordinate and !(z) is a twice continuously
differentiable attenuation function defined for z 2 [b, 1),
such that

!.z/h .ˇ; �/ > � b; (13)

!.b/ D 1;
d!

d z
.b/ D 0 (14)

and

!.z/ D 0 for z 2 Œzext ; 1/ ; where b < zext : (15)

Stress that the assumption concerning the continuity of ! and
its first and the second derivatives implies

lim !.z/ D 0; lim
d!.z/

d z
D 0; lim

d 2!.z/

d z2
D 0 (16)
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for z ! z�
ext , i.e. for z approaching zext from the left. Obvi-

ously, z, ˇ, � form a system of new curvilinear coordinates
and in case that

du

d z
D 1 C d!

d z
h > 0 (17)

the transformation given by Eqs. (4)–(6) with u as in Eq.
(12) represents a one-to-one mapping between the original
solution domain � and the outer space �ell of our oblate
ellipsoid of revolution.

The construction of the attenuation function !(z) in the
interval [b, zext), i.e. for b � z < zext, deserves some attention.
Here we give an example, which is also applied in this work.
We put

!.z/ D exp

"

2 � 2 .�z/2

.�z/2 � .z � b/2

#

; (18)

where � z D zext � b. By direct computation we can verify
that !(b) D 1 and lim

z!z�ext

!.z/ D 0. For the first derivative of

!(z) we obtain

d!.z/

d z
D � 4 .�z/2 .z � b/

h
.�z/2 � .z � b/2

i2
!.z/; (19)

d!.b/

d z
D 0 and lim

z!z�ext

d!.z/

d z
D 0: (20)

Similarly for the second derivative of !(z) we can verify
that

d2!.z/
d z2

D � 4 .�z/2.z�b/

Œ.�z/2�.z�b/2�
2

d!.z/
d z �

�
�

4 .�z/2

Œ.�z/2�.z�b/2�
2 C 16 .�z/2.z�b/2

Œ.�z/2�.z�b/2�
3

�
!.z/

(21)

and

lim
z!z�ext

d 2!.z/

d 2z
D 0: (22)

3 Transformation of the Boundary
Condition

In the coordinates z, ˇ, � the boundary @� is defined by
z D b and its image @�ell coincides with our oblate ellipsoid
of revolution. In addition the transformation changes the
formal representation of the LGBVP. Indeed, the boundary
condition turns into

@T

@z
D �w Œz C !.z/h.ˇ; �/; ˇ� ıg for z D b: (23)

Hence, denoting by @/@n the derivative in the direction
of the unit (outer) normal n of @�ell and recalling @T/@n
D (@T/@z) (dz/dn), where dz/dn D 1/w(z, ˇ), which follows
from differential geometry considerations, we obtain

@T

@n
D � p

1 C " ıg on @�el l ; (24)

where

" D E2
�
2bh C h2

�
cos2ˇ

�
a2sin2ˇ C b2cos2ˇ

� h
.b C h/2 C E2

i (25)

may practically be neglected (in our case). Using the val-
ues of the parameters a and b as, e.g., in the Geodetic
Reference System 1980, see Moritz (1992), together with
hmax D 8848 m, we can deduce that " < 1.9 � 10�5cos2 ˇ.

4 Metric Tensor

Expressing Laplace’s operator of T in terms of the curvi-
linear coordinates z, ˇ, �, which do not form an orthogonal
system, is somewhat more complicated. In the first step we
approach the construction of the metric tensor. Putting

y1 D z; y2 D ˇ; y3 D �; (26)

we easily deduce that the Jacobian (Jacobian determinant)

J D
ˇ
ˇ̌ @xi

@yj

ˇ
ˇ̌ D �

�
1 C d!

d z h
� h

.z C ! h/2 C E2sin2ˇ
i

cos ˇ

(27)

of the transformation in Sect. 2 is negative (apart from its
zero values for ˇ D � �/2 and �/2). Thus, the transformation
is a one-to-one mapping. Now we use the tensor calculus and
by means of some algebra we obtain the components of the
metric tensor

gij .y/ D @xk

@yi

� @xk

@yj

(28)

in the coordinates yi. In the original notation this means that

g11 D
�

1 C d!

d z
h

	2

˛; g12 D
�

1 C d!

d z
h

	
˛!

@h

@̌
; (29)

g13 D
�

1 C d!

d z
h

	
˛!

@h

@�
; (30)

g22 D .z C ! h/2 C E2sin2ˇ C ˛!2

�
@h

@̌

	2

; (31)
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g23 D ˛!2 @h

@̌

@h

@�
; (32)

g33 D
h
.z C ! h/2 C E2

i
cos2ˇ C ˛!2

�
@h

@�

	2

; (33)

where ˛ D w2(z C ! h, ˇ).

5 Associated (Conjugate) Metric Tensor

Of similar importance is the associate (conjugate) metric
tensor. For the determinant g D j gijj we have g D J2.
Denoting the cofactor of gij in the determinant g by Gij

and putting gij D Gij/g for the components of the associated
metric tensor, we get

g11 D 1
˛
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d z h
��2 C
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��2�

�
�
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(34)

g12 D �
�

1 C d!

d z
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	�1
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.z C ! h/2 C E2sin2ˇ
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;

(35)

g13 D �
�

1 C d!

d z
h

	�1
!

h
.z C ! h/2 C E2

i
cos2ˇ

@h

@�
;

(36)

g22 D 1

.z C ! h/2 C E2sin2ˇ
; (37)

g23 D 0 and g33 D 1
h
.z C ! h/2 C E2

i
cos2ˇ

: (38)

6 Laplacian
and Topography-Dependent
Coefficients

Now we are ready to approach Laplace’s operator applied on
T. In terms of the curvilinear coordinates yi (i.e. in z, ˇ, �) it
has the following general form

�T D 1p
g

@
@yi

�p
g gij @T

@yj

�
D gij @2T

@yi @yj
C 1p

g

@
p

g gij

@yi

@T
@yj

;

(39)

see Sokolnikoff (1971). After some algebra and neglecting
the difference

w2 .z C ! h; ˇ/ � w2 .z; ˇ/ � E2

z2



2! h
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�
! h

z

�2
�

cos2ˇ;

(40)

which for hmax D 8848 m and the values of E2 and z D b
taken from the Geodetic Reference System 1980, see Moritz
(1992), can be estimated from above by 1.9 �10�5cos2ˇ, we
can deduce that

�T D z2 C E2sin2ˇ

.z C ! h/2 C E2sin2ˇ
Œ�el l T � ı .T; h/� ; (41)

where
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and Ai are topography dependent coefficients given by
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with

jgradEh j2 D 1

z2CE2sin2ˇ
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and

�Eh D 1
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being the first and the second Beltrami differential operators.

7 Linear GBVP and Neumann’s Function

The disturbing potential T is a harmonic function in the
original solution domain �. In the space of the curvilinear
coordinates z, ˇ, �, therefore, T satisfies Laplace’s equation
� T D 0 for z > b, which in view of Eq. (41) yields

�el lT D ı .T; h/ for z > b; (50)

where ı(T, h) is given by Eq. (43). Hence in combination
with Eq. (24) the linear gravimetric boundary value problem
in terms of the curvilinear coordinates z, ˇ, � attains the form

�el l T D f in �el l ; (51)

@T

@n
D � p

1 C " ıg on @�el l ; (52)

where f D ı(T, h) and " given by Eq. (25) is as small that it
may be omitted.

Neglecting the fact that f D ı(T, h) depends on T, we can
represent the solution of the problem formally by means of
a classical apparatus of mathematical physics. The natural
point of departure is Green’s third identity (Green’s repre-
sentation formula)

TP D 1
4�

�
@�el l

�
T @

@n

�
1
l

� � 1
l

@T
@n


dS

� 1
4�

�
�el l

1
l

�el l T dV
(53)

with l being the distance between the computation and the
variable point of integration and dS and dV denoting the
surface and the volume element, respectively. Similarly, the
quantities with and without the subscript P are referred to
the computation and the variable point of integration. We

will generalize the formula a little. To do that, we take into
consideration a function H harmonic in �ell. Hence �H D 0
in �ell and by Green’s second identity we have

�
@�el l

�
T

@H

@n
� H

@T

@n

	
dS D

�
�el l

H�el lT dV: (54)

Writing now

G D 1

l
� H (55)

and combining Eqs. (53) and (54), we obtain the generalized
Green representation formula

TP D 1
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�
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dS � 1

4�

�
�el l

G�el lT dV:

(56)

In the following we will use the function G constructed under
Neumann’s boundary condition, i.e.

@G

@n
D 0 on @�el l ; (57)

which means that we have to look for a function
H D H(z, ˇ, �) such that

@H

@n
D @

@n

�
1

l

	
for z D b: (58)

In this case G represents Green’s function of the second
kind, usually called Neumann’s function. We will denote the
function G by N and from Eq. (56) we obtain that

TP D 1

4�

�
zDb

N ıg dS � 1

4�

�
b<z<zext

N ı .T; h/ dV; (59)

where in addition we took into consideration Eq. (50) and
the properties of the attenuation function !(z), see Sect. 2.
On the other hand the construction of Neumann’s function
itself for the exterior of an oblate ellipsoid of revolution is
not routine as yet in contrast to problems formulated for a
spherical boundary, as e.g. in Holota (2003). For an oblate
ellipsoid of revolution the construction is discussed in Holota
(2004, 2011), Holota and Nesvadba (2014, 2018b) and in
particular in Holota and Nesvadba (2018a), equally as its
relation to Green’s function of the first kind and to the so-
called reproducing kernel.
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8 Iteration Process

The integral formula (59) represents an integro-differential
equation for T. For clarity we put

FP D 1

4�

�
zDb

N ıg dS; (60)

.KT /P D � 1

4�

�
b<z<zext

N ı .T; h/ dV; (61)

where F is a harmonic function and KT is an integro-
differential operator applied on T, such that

�el l K T D ı .T; h/ in �el l (62)

and

@KT

@n
D 0 on @�el l ; (63)

which follows from general principles applied in construct-
ing Neumann’s function. Under this notation the problem is
to find T from

T D F C K T: (64)

Our aim is to apply the method of successive approximations,
i.e.

T D lim
n

Tn; Tn D F C K Tn�1; (65)

where n D 1, 2, : : : 1 and T0 is the starting approximation,
e.g. T0 D F.

9 Operator with Reduced Degree
of Derivatives

For practical use it is convenient to modify the operator K in
order to reduce the degree of derivatives involved in ı(T, h)
and to display the mutual interplay of individual terms in
ı(T, h) more explicitly. Integrating by parts and neglecting
terms multiplied by E2/z3, we get

.KT /P D � 1
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where

A5 D A1 � @A2
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z2CE2sin2ˇ
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(67)

Note. It may be interesting that for !(z) D 1, i.e. zext D 1,
we get A5 D � �Eh directly from Eq. (49).

10 Conclusions

Loosely speaking, the operator K “consumes” derivatives.
The question is how the operator transforms the differentia-
bility of the function T or what is the range of the operator
for an initially chosen function space, i.e. an initially chosen
domain of the operator? This feature is of considerable
importance. Its impact will take effect immediately in case
that we try to proof the convergence of the iteration proce-
dure as in Eq. (65) by means of tools of functional analysis.
The key step is to show that K is a contraction mapping
which (if proved) guarantees the convergence of the iteration
procedure on the basis of Banach’s fixed point theorem,
see e.g. Lyusternik and Sobolev (1965). This approach was
already discussed in Holota (1985, 1986, 1989, 1992a, b) for
E D 0 and functions from Sobolev’s space W

.2/
2 produced

(roughly speaking) by functions which together with their
(generalized) derivatives of the 1st and the 2nd order are
square integrable on a spherical layer. In this case it was
shown that K is as mapping from W

.2/
2 onto W

.2/
2 and its

contractivity depends on essential supreme values of the
topography dependent coefficients Ai, i D 1, 2, 3, 4. The most
intricate step to estimate the second order derivatives of KT
has been done by means of the Calderon-Zygmund inequality
(which belongs to Lp estimates for Poisson’s equation), see
Gilbarg and Trudinger (1983). As a result the convergence
of the iteration procedure was proved for a realistic range
of heights and relatively gentle slopes and curvatures of the
topography, see Holota (1992b).

Nevertheless, by nature these are a priori estimates and
the results concerning the solvability of the LGBVP may
differ a bit. Indeed, studies on the existence, uniqueness and
stability of the LGBVP, as e.g. in Holota (1997) and by Sansò
in Sansò and Sideris (2013), show that the requirements on
the topography may be considerably milder. In particular, in
his proof Sansò shows that the inclination should be smaller
than about 89ı. In addition also the use of the ellipsoidal
apparatus for the construction of the iteration procedure has
its impact on the behavior and the speed of the convergence
of the successive approximations.



Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery 39

For all these reasons it may be very instructive to use a
numerical approach. The idea is given attention in the ongo-
ing research. First step in this direction was the application
of the integration by parts in Sect. 9 that decreases the order
of derivatives in the operator K and keeps Lebesgue integra-
bility at the same time. Considerable attention is also given
to the investigation on how the successive approximations of
the solution behave close to the boundary and how they attain
the boundary values. Preference is given to the classical
(pointwise) definition of these properties. These goals are
challenging, but we believe they will enrich the solution of
the problem.
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On Combining the Directional Solutions
of the Gravitational Curvature Boundary-Value
Problem

Martin Pitoňák, Pavel Novák, Michal Šprlák, and Robert Tenzer

Abstract

In global studies, the Earth’s gravitational field is conveniently described in terms of
spherical harmonics. Four integral-based solutions to a gravitational curvature boundary-
value problem can formally be formulated for the vertical-vertical-vertical, vertical-vertical-
horizontal, vertical-horizontal-horizontal and horizontal-horizontal-horizontal components
of the third-order gravitational tensor. Each integral equation provides an independent set
of spherical harmonic coefficients because each component of the third-order gravitational
tensor is sensitive to gravitational changes in the different directions. In this contribution,
estimations of spherical harmonic coefficients of the gravitational potential are carried out
by combining four solutions of the gravitational curvature boundary-value problem using
three methods, namely an arithmetic mean, a weighted mean and a conditional adjustment
model. Since the third-order gradients of the gravitational potential are not yet observed
by satellite sensors, we synthesise them at the satellite altitude of 250 km from a global
gravitational model up to the degree 360 while adding a Gaussian noise with the standard
deviation of 6.3 � 10�19 m�1 s�2. Results of the numerical analysis reveal that the arithmetic
mean model provides the best solution in terms of the RMS fit between predicted and
reference values. We explain this result by the facts that the conditions only create additional
stochastic bindings between estimated parameters and that more complex numerical
schemes for the error propagation are unnecessary in the presence of only a random noise.
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Republic
e-mail: pitonakm@ntis.zcu.cz

M. Šprlák
School of Engineering and Built Environment, University
of Newcastle, Callaghan, NSW, Australia

R. Tenzer
Department of Land Surveying and Geo-informatics, The Hong Kong
Polytechnic University, Kowloon, Hong Kong

1 Introduction

Solutions to a spherical boundary-value problem lead to
spherical harmonic series or surface integrals with Green’s
kernel functions (e.g., Jekeli 2009). When solving this
problem for higher-order gradients of the gravitational
potential as boundary conditions, more than one solution is
obtained. The solutions to the gravimetric, gradiometric and
gravitational curvature boundary-value problems (Martinec
2003; Šprlák and Novák 2016) lead to two, three and four
formulas, respectively. From a theoretical point of view, all
formulas should provide the same solution, but practically,
when discrete noisy observations are exploited, they do not.
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Fig. 1 Differences between vertical-vertical-vertical (VVV), vertical-
vertical-horizontal (VVH), vertical-horizontal-horizontal (VHH) and
horizontal-horizontal-horizontal (HHH) solutions and EGM2008 up to
the degree 360

This is illustrated by Fig. 1, where differences between
the vertical-vertical-vertical (VVV), vertical-vertical-
horizontal (VVH), vertical-horizontal-horizontal (VHH)
and horizontal-horizontal-horizontal (HHH) solutions to the
gravitational curvature boundary-value problem are plotted
and compared with the EGM2008 gravitational spectrum
(Pavlis et al. 2012, 2013) complete up to the degree 360.

Since the four solutions of the gravitational curvature
boundary-value problem are not equal, their combination is
required. In this study, we investigate three different methods
for combining the VVV, VVH, VHH and HHH solutions
by applying an arithmetic mean, a weighted mean and a
conditional adjustment model (CAM) in order to obtain
the unique solution. To do so, we modify the CAM to

fit the combination of the four solutions and then derive
corresponding expressions for estimating the adjusted errors.
A similar study was conducted for the spherical gradiometric
boundary-value problem by Eshagh (2010), who applied the
variance component estimation technique to the CAM in
order to obtain an improved combined solution.

Currently, sensors for measuring components of the grav-
itational curvature tensor at the Earth’s surface or at the
satellite altitude are not yet available. However, the VVV
component was already observed in laboratory conditions,
see, e.g., (Balakin et al. 1997; Rosi et al. 2015). Hence, we
use synthetic data that are compiled from an existing global
gravitational model.

The paper is organized into five sections, beginning with
a brief overview of the spherical gravitational curvature
boundary-value problem in Sect. 2, which is followed by the
description of the combination strategies in Sect. 3 and the
numerical experiment in Sect. 4. The study is concluded in
Sect. 5.

2 Gravitational Curvature
Boundary-Value Problem

The solutions to the gravitational curvature boundary-value
problem in the spectral form were presented by Šprlák et al.
(2016):
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where GM denotes the geocentric gravitational constant,
t n D (R/r)n C 4 is the degree-dependent attenuation factor,
R is the Earth’s mean radius and Y n;m .�/ is the (fully-
normalized) spherical harmonic function of degree n and
order m. The 3-D position in Eqs. (1a)–(1d) and thereafter
is defined by the spherical coordinates (r, �); where r is the
geocentric radius, and � D ('; �) is the geocentric direction
with the spherical latitude ' and longitude �. The parameter
Bi

n in Eqs. (1a)–(1d) is

Bi
n D .�1/

.iC1/ R4 .n � i/Š

.n C 3/Š
; i D 0; 1; 2; 3; (2)

where the index i D 0, 1, 2, 3 specifies respectively the
VVV, VVH, VHH and HHH solutions (cf. Šprlák et al. 2016;
Šprlák and Novák 2016). Symbols T��� , �, �, � 2 fx, y, zg in
Eqs. (1a)–(1d) stand for ten components of the gravitational
curvature tensor. We note that only the VVV solution can
be used for the recovery of the full Earth’s gravitational
spectrum (up to a certain degree) because the VVH solu-
tion is restricted to non-zero degree spherical harmonics.
Similarly, the solutions to the VHH and HHH components
comprise the spherical harmonics above the degree one and
two, respectively. Our combined solution is thus carried out

for higher than second-degree spherical harmonics (i.e., for
n > 2).

After vectorization of Eqs. (1a)–(1d), we arrive at

C
.0/
n;m D bzzzn;mtzzz;

C
.1/
n;m D bxzz

n;mtxzz C byzz
n;mtyzz;

C
.2/
n;m D bxxz

n;mtxxz C byyz
n;mtyyz C bxyz

n;mtxyz;

C
.3/
n;m D bxxx

n;m txxx C bxyy
n;m txyy C byyy

n;m tyyy C bxxy
n;m txxy;

(3)

where bxxx
n;m , bxxy

n;m , bxxz
n;m, bxyy

n;m , bxyz
n;m, bxzz

n;m, byyy
n;m , byyz

n;m, byzz
n;m and

bzzzn;m are the row vectors obtained from discretization of Eqs.
(1a)–(1d); and txxx, txxy, txxz, txyy, txyz, txzz, tyyy, tyyz, tyzz and
tzzz are the column vectors of Txxx, Txxy, Txxz, Txyy, Txyz, Txzz,
Tyyy, Tyyz, Tyzz and Tzzz observations.

3 Combination Strategies

We apply three different strategies to combine the solutions
based on Eqs. (1a)–(1d), namely the arithmetic and weighted
means as well as the CAM. Details are given in the following
subsections.

3.1 Arithmetic Mean

The simplest strategy to combine the VVV, VVH, VHH and
HHH solutions is based on applying a simple arithmetic
mean. Each of the four solutions of the gravitational
curvature boundary-value problem contributes to the
combination with the equal weight. We then write for the
arithmetic mean solution

C SM
n;m D C

.0/
n;m C C

.1/
n;m C C

.2/
n;m C C

.3/
n;m

4
: (4)

3.2 WeightedMean

Alternatively, we can apply a weighted mean, so that the
solution reads

C WM
n;m D C

.0/
n;mp

.0/
n;m C C

.1/
n;mp

.1/
n;m C C

.2/
n;mp

.2/
n;m C C

.3/
n;mp

.3/
n;m

p
.0/
n;m C p

.1/
n;m C p

.2/
n;m C p

.3/
n;m

;

(5)

where the individual weights are defined by

p
.0/
n;mD

�
1="

.0/
n;m

	2

; p
.1/
n;m D

�
1="

.1/
n;m

	2

; p
.2/
n;m D

�
1="

.2/
n;m

	2

; p
.3/
n;m D

�
1="

.3/
n;m

	2

: (6)

Mean errors "
.i/
n;m; i D 0; 1; 2; 3, respectively, correspond

to the VVV, VVH, VHH and HHH solutions.

3.3 Conditional Adjustment

Before describing the CAM, we set six conditions of the form

C
.0/
n;m � C

.1/
n;m D 0; C

.0/
n;m � C

.2/
n;m D 0; C

.0/
n;m � C

.3/
n;m D 0;

C
.1/
n;m � C

.2/
n;m D 0; C

.1/
n;m � C

.3/
n;m D 0; C

.2/
n;m � C

.3/
n;m D 0:

(7)

These conditions postulate that the differences between
the four solutions (in terms of spherical harmonics) equal
zero. We then define the CAM as follows (Koch 1999)

B .L � ©/ D w with E
˚
©©T


 D �2
0Q; (8)

where B is the coefficient matrix of observations, L is the
observation vector, © stands for the vector of the observation
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noise, w is the misclosure vector, Ef�g denotes the expecta-
tion operator, �2

0 is an a priori variance factor, and Q is the
co-factor matrix. The solution to the system of conditional
equations in Eq. (8) in terms of the estimated residuals reads

O©n;m D Q.Bn;m/T
h
Bn;mQ.Bn;m/T

i�1

wn;m D Q.Bn;m/T ŒCn;m	�1wn;m: (9)

From Eqs. (1a)–(1d), we write six conditions but only
arbitrary five of them are independent and the matrix Cn, m

is regular, i.e., an inversion of Cn, m exists. We chose the
first five conditions defined in Eq. (7) in our numerical
experiment. The conditional equations have the following
vector-matrix form

Bn;m .L � ©/ D 0; (10a)

where

L D �
tzzz txzz tyzz txxz tyyz txyz txxx txyy tyyy txxy

�T
;

(10b)

and

Bn;m D

2
66664

bzzzn;m �bxzz
n;m �byzz

n;m 0 0 0 0 0 0 0

bzzzn;m 0 0 �bxxz
n;m �byyz

n;m �bxyz
n;m 0 0 0 0

bzzzn;m 0 0 0 0 0 �bxxx
n;m �bxyy

n;m �byyy
n;m �bxyy

n;m

0 bxzz
n;m byzz

n;m �bxxz
n;m �byyz

n;m �bxyz
n;m 0 0 0 0

0 bxzz
n;m byzz

n;m 0 0 0 �bxxx
n;m �bxyy

n;m �byyy
n;m �bxyy

n;m

3
77775

: (10c)

The misclosure vector comprises five elements, particu-
larly

wn;m D

2
66664

.w1/n;m

.w2/n;m

.w3/n;m

.w4/n;m

.w5/n;m

3
77775

D

2
6666664

�bzzzn;mt
T
zzzCbxzz

n;mt
T
xzzCbyzz

n;mtTyzz
� bzzzn;mt

T
zzzCbxxz

n;mt
T
xxzCbyyz

n;mtTyyzCbxyz
n;mtTxyz

� bzzzn;mt
T
zzzCbxxx

n;m tTxxxCbxyy
n;m tTxyyCbyyy

n;m tTyyyCbxxy
n;m tTxxy

� bxzz
n;mt

T
xzz � byzz

n;mtTyzzCbxxz
n;mt

T
xxzCbyyz

n;mtTyyzCbxyz
n;mtTxyz

� bxzz
n;mt

T
xzz � byzz

n;mtTyzzCbxxx
n;m tTxxxCbxyy

n;m tTxyy C byyy
n;m tTyyyCbxxy

n;m tTxxy

3
7777775

: (11)

If we disregard correlations between components of the
third-order disturbing gravitational tensor, the co-factor
matrix simplifies to the following diagonal form

Q D diag
�
Qzzz Qxzz Qyzz Qxxz Qyyz Qxyz Qxxx Qxyy Qyyy Qxxy

�
; (12)

where Qijk, i, j, k D x, y, z denote the individual co-factor
matrices for tijk, i, j, k D x, y, z.
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The elements of the matrix Cn, m in Eq. (9) read

.c1;1/n;m D bxzz
n;mQxzz

�
bxzz

n;m

�T C byzz
n;mQyzz

�
byzz

n;m

�T C bzzzn;mQzzz
�
bzzzn;m

�T
;

.c2;1/n;m D bzzzn;mQzzz
�
bzzzn;m

�T
; .c1;3/n;m D .c3;1/n;m D .c2;3/n;m D .c3;2/n;m D .c1;2/n;m D .c2;1/n;m;

.c4;1/n;m D �bxzz
n;mQxzz

�
bxzz

n;m

�T �byzz
n;mQyzz

�
byzz

n;m

�T
;

.c1;4/n;mD � .c4;5/n;mD � .c5;4/n;mD.c1;5/n;mD.c5;1/n;m D .c4;1/n;m;

.c2;2/n;m D bxxz
n;mQxxz

�
bxxz

n;m

�T C bxyz
n;mQxyz

�
bxyz

n;m

�T C byyz
n;mQyyz

�
byyz

n;m

�T C bzzzn;mQzzz
�
bzzzn;m

�T
;

.c4;2/n;m D .c2;4/n;m D bxxz
n;mQxxz

�
bxxz

n;m

�T C bxyz
n;mQxyz

�
bxyz

n;m

�T C byyz
n;mQyyz

�
byyz

n;m

�T
;

.c2;5/n;m D .c5;2/n;m D .c4;3/n;m D .c3;4/n;m D 0;

.c3;3/n;m D bxxx
n;mQxxx

�
bxxx

n;m

�T Cbxxy
n;mQxyy

�
bxxy

n;m

�T Cbxyy
n;mQxxy

�
bxyy

n;m

�T C byyy
n;mQyyy

�
byyy

n;m

�T
C bzzzn;mQzzz

�
bzzzn;m

�T
;

.c3;5/n;m D .c5;3/n;m D bxxx
n;mQxxx

�
bxxx

n;m

�T C bxxy
n;mQxyy

�
bxxy

n;m

�T C bxyy
n;mQxxy

�
bxyy

n;m

�T
C byyy

n;mQyyy

�
byyy

n;m

�T
;

.c4;4/n;m D bxxz
n;mQxxz

�
bxxz

n;m

�T C bxyz
n;mQxyz

�
bxyz

n;m

�T C bxzz
n;mQxzz

�
bxzz

n;m

�T C byyz
n;mQyyz

�
byyz

n;m

�T
C byzz

n;mQyzz
�
byzz

n;m

�T
;

.c5;5/n;m D bxxx
n;mQxxx

�
bxxx

n;m

�T Cbxxy
n;mQxyy

�
bxxy

n;m

�T Cbxyy
n;mQxxy

�
bxyy

n;m

�T C byyy
n;mQyyy

�
byyy

n;m

�T
C bxzz

n;mQxzz
�
bxzz

n;m

�T C byzz
n;mQyzz

�
byzz

n;m

�T
:

(13)

Finally, after correcting observed values (i.e., compo-
nents of the third-order gravitational tensor) by applying the
adjusted errors,

OL D L � O©; (14)

all four solutions must provide the same spherical harmonic
coefficients. The resulting spherical harmonic coefficients
can then conveniently be computed from the simplest solu-
tion according to Eq. (1a).

4 Numerical Experiment

The three methods of combining the solutions to the spher-
ical gravitational curvature boundary-value problem pre-
sented in Sect. 3 are compared here.

4.1 Data Preparation

We synthetize ten components of the third-order gravita-
tional tensor by expressions derived by Hamáčková et al.
(2016) at a satellite altitude of 250 km (above the mean
sphere of the radius R D 6378136.3 m). We use EGM2008
coefficients up to the spherical harmonic degree 360. The
gravitational curvatures are generated in a global equiangular
grid with the sampling interval of 0.25 arc-deg to avoid
aliasing (Rexer 2017). We then generate the Gaussian noise

with the standard deviation of 6.3 � 10�19 m�1 s�2. This
theoretical value characterizes an analytical error of the
differential accelerometry (Šprlák et al. 2016) by assuming
the following parameters (of a hypothetical gravity-dedicated
satellite mission): the mutual separation of two adjacent
accelerometers 
x D x3 � x2 D x2 � x1, x D fx, y, zg is
0.5 m, the mission duration is 1,270 days, the satellite altitude
is 250 km, the maximum spherical harmonic degree is 360
and the data-sampling interval is 1 s.

4.2 Design of the Numerical Experiment

We perform the spherical harmonic analysis according to
the expressions in Eqs. (1a)–(1d) to calculate the spherical
harmonic coefficients (up to the harmonic degree 360) indi-
vidually for the VVV, VVH, VHH and HHH solutions. As
inputs, we used ten defining components of the gravitational
curvature tensor polluted by the Gaussian noise. Note that
the noise of the spherical harmonics obtained from the VVV,
VVH, VHH and HHH solutions respects the ratio "

.0/
n;m W

"
.1/
n;m W "

.2/
n;m W "

.3/
n;m � 1 W 1 W 3 W 10 as derived in

Šprlák et al. (2016). In other words, the VVV and VVH
solutions contain the least noise, while the HHH solution
is the most polluted. We removed from spherical harmonic
coefficients the discretization error, before we calculated
combined solutions. The discretization error was estimated
as the difference between spherical harmonic coefficients
from EGM2008 up to the degree 360 and spherical har-
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monic coefficients calculated from Eqs. (1a)–(1d). Note that
we used gravitational curvatures synthetized directly from
EGM2008 up to the degree 360, i.e., input values contained
no noise. We then compute the combined solutions C SM

n;m by
applying the arithmetic mean (Eq. 4), the weighted mean (Eq.
5) and the CAM (Sect. 3.3).

4.3 Results

To compare the three solutions, we present results in two
different ways. First, we plot the number of common digits in
the combined solutions obtained from the simple mean, the
weighted mean and the CAM, see Fig. 2. As it can be seen, all
three solutions have a relatively good fit with the EGM2008
reference values at low degrees roughly up to the degree
100. By increasing the spherical harmonics, the number of
common digits decreases.

In addition, we plot the degree variances of all three
solutions, see Fig. 3. As seen, all combined solutions fit the
EGM2008 gravitational spectrum up to the degree 240. We
obtained the largest differences with respect to EGM2008
for the CAM solution. The differences are about five orders
of magnitude larger than those attributed to the arithmetic-
and weighted-mean solutions. Moreover, the arithmetic mean
solution has the best fit with the EGM2008 spectrum.

The results can be explained in a very simple way. As
we discuss in Sect. 4.1, each of the ten components of the
gravitational curvature tensor was polluted by the Gaussian
noise with the standard deviation of 6.3 � 10�19 m�1 s�2.
Thus, the random errors in the four solutions of the gravi-
tational curvature boundary-value problem are uncorrelated
and reach the ratio "

.0/
n;m W "

.1/
n;m W "

.2/
n;m W "

.3/
n;m � 1 W 1 W 3 W 10,

see Šprlák et al. (2016) for more information. In the solution
based on the arithmetic mean each input had the same weight
while in the other two solutions weights of inputs were
based on the ratio defined above. Different weights applied
to the four solutions of the gravitational curvature boundary-
value problem have been reflected in the estimated values
of spherical harmonics. Five conditions in the CAM only
form additional stochastic bindings between the unknown
spherical harmonics and the model is solvable also without
conditions. As we could see the conditional equations make
the solution even worse and do not improve the fit achieved
by the weighted mean.

Fig. 2 Number of common digits of combined solution based on the
simple mean (SM), a), the weighted mean (WM), b) and the condition
adjustment model (CAM), c)
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Fig. 3 Differences of degree variances between combinations obtained
by the simple mean (SM), weighted mean (WM) and the condition
adjustment model (CAM) with respect to EGM2008 up to the degree
360 (a) and the detail for the bandwidth 240–360 (b)

5 Conclusions

We test three different methods for combining the four
solutions to the spherical gravitational curvature boundary-
value problem, i.e., the simple and weighted means, and the
conditional least-squares adjustment.

Despite the highest complexity of the conditional least-
squares adjustment, this method does not provide the best
result. On the contrary, the simple mean provides the best
solution in terms of the fit of the predicted values to the
EGM2008 reference model. Our results also confirm find-
ings of Eshagh (2010), who conducted a similar study for
combining the three solutions of the spherical gradiometric

boundary-value problem and concluded that the simple mean
method provides superior results.

The results also reveal that in the presence of an uncor-
related random noise equal for all ten components of the
gravitational curvature tensor, the arithmetic mean provides
the best solution and the more complex estimation models
as the weighted mean or the conditional adjustment are
unnecessary.
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Review of Reference Frame Representations
for a Deformable Earth

Zuheir Altamimi, Paul Rebischung, Xavier Collilieux, Laurent Métivier,
and Kristel Chanard

Abstract

Our planet Earth is constantly deforming under the effects of geophysical processes that
cause linear and nonlinear displacements of the geodetic stations upon which the Interna-
tional Terrestrial Reference Frame (ITRF) is established. The ITRF has traditionally been
defined as a secular (linear) frame in which station coordinates are described by piecewise
linear functions of time. Nowadays, some particularly demanding applications however
require more elaborate reference frame representations that can accommodate non-linear
displacements of the reference stations. Two such types of reference frame representations
are reviewed: the usual linear frame enhanced with additional parametric functions such
as seasonal sine waves, and non-parametric time series of quasi-instantaneous reference
frames. After introducing those two reference frame representations, we briefly review the
systematic errors present in geodetic station position time series. We finally discuss the
practical issues raised by the existence of these systematic errors for the implementation of
both types of non-linear reference frames.

Keywords

ITRF � Nonlinear motions � Reference frames � Reference systems

1 Introduction

Where am I and how to accurately navigate between places
on Earth, oceans and in space? How to plan for territory
and land management (construction, mining, civil engineer-
ing, national boundaries delimitation)? How to ensure that
geospatial data are inter-operable within a country, a region
and globally? How to locate areas and people at risk (natu-
ral disasters: earthquakes, tsunamis and flooding)? How to
accurately determine orbits of artificial satellites? How to

Z. Altamimi (�) · P. Rebischung · L. Métivier · K. Chanard
Institut National de l’Information Géographique et Forestière (IGN),
Université Paris Diderot, Paris, France
e-mail: zuheir.altamimi@ign.fr; paul.rebischung@ign.fr; laurent.
metivier@ign.fr; kristel.chanard@ign.fr

X. Collilieux
Ecole Nationale des Sciences Géographiques, Champs sur Marne,
France
e-mail: xavier.collilieux@ensg.eu

measure self-consistent sea level rise over several decades,
through the usage of satellite altimetry data and tide gauges?
How to accurately determine point positions on the Earth
surface that is constantly deforming? In order to answer
these crucial questions and to enable operational geodesy
and Earth science applications, a unified terrestrial reference
system and its materialization by an accurate terrestrial
reference frame are needed. This is the purpose of the Inter-
national Terrestrial Reference System (ITRS; see Chapter 4
in Petit and Luzum 2010) and of its materialization by the
International Terrestrial Reference Frame (ITRF).

The successive releases of the ITRF are provided in the
form of reference regularized coordinates X.t/ for a set of
geodetic stations, described by mathematical functions of
time and obtained from the adjustment of data from the four
contributing space geodetic techniques (VLBI, SLR, GNSS,
DORIS). From ITRF91 (Altamimi et al. 1993; Boucher
et al. 1992) to ITRF2008 (Altamimi et al. 2011), reference
station coordinates have been described by piecewise linear
functions of time, able to capture linear station motions
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(e.g., tectonic motions, post-glacial rebound) and abrupt
position changes (e.g., co-seismic displacements, equipment
changes). The latest ITRF2014 solution (Altamimi et al.
2016) additionally includes logarithmic and exponential
functions that describe the post-seismic displacements of
stations affected by large earthquakes.

Other non-linear crustal motions, such as non-tidal load-
ing deformation, are however not accounted for by the
ITRF station coordinates. This implies that the ITRF sta-
tion coordinates do not represent the instantaneous shape
of the Earth, but only a linearly varying approximation.
This also has for consequence that the ITRF origin can
indeed not coincide with the instantaneous Earth’s cen-
ter of mass (CM), but can only follow CM linearly with
time.

The needs of most Earth science and operational geodesy
applications can be met with a linear frame such as the
ITRF. Some demanding applications such as satellite precise
orbit determination (POD) however require precise instanta-
neous station coordinates (i.e., including non-linear station
motions) expressed with respect to the instantaneous CM.
This paper therefore discusses possible alternative refer-
ence frame representations able to capture non-linear station
motions, and issues related to their practical implementa-
tion.

2 Non-linear Reference Frame
Representations

Two main types of reference frame representations can be
considered in order to capture non-linear station motions.
The first possibility is to enhance the piecewise linear model
of ITRF station coordinates with additional parametric func-
tions. The second possibility is to represent a reference frame
as a (non-parametric) time series of quasi-instantaneous
frames. These two possible representations are briefly intro-
duced in the next subsections.

2.1 Augmented Parametric Reference
Frame

The classical piecewise linear model of ITRF station coordi-
nates can in principle be augmented with additional paramet-
ric functions of time in order to describe non-linear station
motions. This is already partly the case with the ITRF2014
solution, which includes logarithmic and exponential func-
tions that describe the post-seismic displacements of stations
affected by large earthquakes. In such an augmented para-
metric representation, the reference coordinates X.t/ of a

station would be given by:

X.t/ D X.t0/ C .t � t0/ � PX C
X

ıX.t/PSD C
X

ıX.t/S

(1)

where X.t0/ C .t � t0/ � PX is the classical linear model of
the station coordinates,

P
ıX.t/PSD is a sum of parametric

functions of time describing post-seismic displacements of
the station (if any), and

P
ıX.t/S is a sum of additional

parametric functions of time describing the other non-linear
displacements of the station with respect to CM.

Various choices could in principle be made for these
additional parametric functions, such as polynomials, Fourier
series or splines (Dermanis 2008). However, a large fraction
of the non-linear variability in observed geodetic station
position time series arises from seasonal variations, and the
still unmodeled geophysical phenomena that induce non-
linear deformation of the Earth’s crust (e.g., non-tidal load-
ing, thermal expansion) are also dominated by seasonal vari-
ations (Collilieux et al. 2007; Altamimi and Collilieux 2010).
We therefore argue that sine waves at the annual frequency
(and its few first harmonics) are likely the most benefi-
cial choice of additional parametric functions

P
ıX.t/S .

We will hence limit our discussion about augmented para-
metric reference frames to the augmentation of the ITRF
piecewise linear model with annual, semi-annual, etc. sine
waves.

2.2 Non-parametric Reference Frame

A quasi-instantaneous reference frame consists of refer-
ence coordinates of a network of stations valid at a given
epoch only. A time series of such quasi-instantaneous CM-
centered reference frames can in principle embed the non-
linear motions of the stations with respect to CM, and
defines what we refer to as a “non-parametric reference
frame”. Compared to a linear reference frame augmented
with seasonal sine waves, such a non-parametric reference
frame has the theoretical advantage that it can capture non-
linear station motions at all frequencies, and not only at
the annual harmonic. An example of such a non-parametric
reference frame is the JTRF2014 (Abbondanza et al. 2017): a
time series of weekly reference frames determined using the
ITRF2014 input data of the four techniques and a Kalman
filter and smoother approach.Another example of such frame
is an SLR time series of station coordinates that naturally
follow the instantaneous CM (as sensed by SLR) and the
SLR intrinsic scale, but aligned in orientation to an external
frame such as the ITRF.
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3 Technique Systematic Errors

Whether obtained from the adjustment of parametric
functions or from the sequential adjustment of quasi-
instantaneous coordinates, non-linear reference frames
would in any case be based on station position time series
provided by the four contributing space geodetic techniques.
The non-linear variations in those time series are however
known to comprise various systematic errors, which, as we
shall see in Sect. 4, raise serious practical issues for the
implementation of non-linear reference frames.

Non-linear variations in GNSS station position time series
are for instance known to reflect:

– Real geophysical crustal motions.Modeled loading defor-
mation explains in particular about half of the observed
vertical annual variations; but only 15–20% in horizontal
(Ray et al. 2011; Xu et al. 2017), as well as a mod-
est part of the observed aperiodic variations in vertical
(Rebischung et al. 2018). Thermoelastic surface deforma-
tion has been shown to explain an additional 7–9% of the
observed annual variations, both in horizontal and vertical
(Yan et al. 2009; Xu et al. 2017).

– Artificial variations, such as the spurious periodic signals
at harmonics of the GPS draconitic year evidenced by Ray
et al. (2008), due to errors in GNSS observations or in
their modelling.

– Unexplained variations: a significant fraction of the
observed seasonal variations, as well as most of the
observed aperiodic variations, remain to be precisely
understood, but likely result from the superposition of
multiple sources such as local (non-loading) ground
deformation, thermal deformation of the monuments,
GNSS systematic errors

Non-linear variations in SLR, VLBI and DORIS station
position time series are generally noisier than in GNSS
station position time series, hence not as well characterized,
but must similarly result from the superposition of real
ground deformation, monument deformation and technique
systematic errors. Systematic errors are not only present in
individual station position time series, but also in the tech-
nique determinations of the location of CM (i.e., geocenter
motion) and of the terrestrial scale:

– Although they have benefited from various modelling
improvements, recent DORIS determinations of geocen-
ter motion and of the terrestrial scale still exhibit spurious
non-linear variations (Moreaux et al. 2016; Altamimi
et al. 2016).

– Geocenter motion time series derived from the GNSS
contribution to ITRF2014 similarly show unreliable non-
linear variations (Rebischung et al. 2016).

– SLR determinations of non-linear geocenter motion are
considered as the most reliable, but are likely not free

of systematic errors. Besides, SLR determinations of the
terrestrial scale are known to be significantly affected by
station range biases (Appleby et al. 2016).

– Finally, VLBI is insensitive to the location of CM, and
VLBI determinations of the terrestrial scale are prone to
errors due to thermal and gravitational deformation of the
antennas (Sarti et al. 2009, 2011; Gipson 2018).

4 Consequences
for the Implementation
of Non-linear Reference Frames

This last section discusses several practical issues raised by
the existence of the technique systematic errors summarized
in Sect. 3 for the implementation of non-linear reference
frames.

4.1 Augmented Parametric Reference
Frame

The purpose of implementing non-linear reference frames is
to provide demanding users with instantaneous reference sta-
tion coordinates, which describe the instantaneous shape of
the Earth, and are expressed with respect to the instantaneous
CM. In the simplest possible case of a linear reference frame
augmented with annual sine waves only, the objective is thus
to determine reference annual motion of geodetic sites with
respect to CM.

As mentioned in the previous section, DORIS and GNSS
determinations of non-linear geocenter motion are currently
still unreliable, so there is no other practical choice but to
refer those reference annual site motions to the origin of
SLR-derived annual displacements, even if it is not perfectly
CM. The situation is similar as for the linear ITRF coordi-
nates, which are referred, by default, to the linear CM as
sensed by SLR.

The question then arises how to transfer the origin of SLR-
derived annual displacements to the annual displacements
of the other techniques. This could be done reliably if
technique-specific annual displacements could be assumed
to be similar (in the sense of a geometrical similarity trans-
formation) over a set of co-located stations. The annual
displacements from the different techniques could then be
combined into unique reference annual site motions, just like
station velocities from the different techniques are combined
into unique site velocities in the ITRF computation.

Given the existence of the various systematic errors that
affect technique-specific annual displacements (Sect. 3), the
assumption of their similarity can however be questioned.
What can indeed be the meaning of a combination of annual
displacements from the different techniques when significant
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Fig. 1 Differences between vertical annual displacements at SLR
stations derived, on one hand, from SLR solutions only, and on the
other, from a combination of solutions from the four techniques. The

amplitudes and phases of the differences are represented by the lengths
and orientations of the arrows, respectively. Blue (resp. red) arrows
indicate differences with amplitudes smaller (resp. larger) than 1mm

fractions of the observed displacements do not reflect real
ground motion, but technique systematic errors? In order
to illustrate this issue, Fig. 1 shows the differences between
vertical annual displacements at SLR stations derived, on one
hand, from SLR solutions only, and on the other, from a
combination of solutions from the four techniques. The data
used are in both cases the technique inputs to ITRF2014,
and the annual displacements are in both cases referred to
the origin of SLR-derived annual displacements. The large
differences visible in this figure for the majority of sites are
the consequence of combining discrepant SLR- and GNSS-
derived annual signals at co-location sites. Only 4 co-location
sites, out of 18, show an agreement between SLR and GNSS
annual signals better than 1mm in amplitude.

A detailed study about the feasibility of combining annual
displacements from the four techniques was carried out
by Collilieux et al. (2018). They highlighted a number of
co-location sites where the annual displacements from the
different techniques are in clear disagreement. Apart from
these “outliers”, they found an overall level of agreement
between annual displacements from GNSS, SLR and VLBI
of the order of 1mm in horizontal and 2mm in vertical,
DORIS-derived annual signals being clearly less consistent

with the other techniques. These numbers are an indication of
the best level of consistency (precision) that can be reached
with current geodetic solutions. While they might appear
satisfactory, the question nevertheless remains of how accu-
rately the obtained combined annual displacements describe
real crustal motion with respect to CM. This question can
only be answered when:

– systematic errors in the annual signals from the different
techniques are better understood,

– the accuracy of the annual geocenter motion sensed by
SLR is externally assessed.

4.2 Non-parametric Reference Frame

Regarding the implementation of a non-parametric reference
frame (i.e., a time series of quasi-instantaneous reference
frames), the same issues as raised in the previous section
for a linear reference frame augmented with annual varia-
tions basically hold, but over all frequencies instead of at
the annual frequency only. The additional questions to be
considered are thus:
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– How accurate is the non-linear, non-annual geocenter
motion sensed by SLR?

– How similar (i.e., combinable) are the non-linear, non-
annual displacements from the different techniques at co-
location sites?

– How representative of real ground motion are those non-
linear, non-annual displacements?

These are to our knowledge open research questions
which require dedicated investigations. A partial answer to
the last question can however already be given: part of
the observed non-linear, non-annual displacements, such as
draconitic signals in GNSS station position time series, do
indeed definitely not represent real ground motion. Such
known systematic errors would consequently need to be
taken into account when implementing of a non-parametric
reference frame which aims at describing the actual shape
of the Earth, rather than a mix of technique errors. More
generally, the implementation of a non-parametric reference
frame would require the technique systematic and random
errors to be well characterized over all frequencies, so that
they could be either filtered out, or accounted for statistically,
when combining the non-linear displacements from the dif-
ferent techniques.

5 Conclusion

Two types of non-linear terrestrial reference frame represen-
tations have been considered in this paper: the usual linear
frame enhanced with additional parametric functions such
as seasonal sine waves, and non-parametric time series of
quasi-instantaneous reference frames. The difficulties raised
by the existence of technique systematic errors for the imple-
mentation of both types of non-linear reference frames have
been discussed. The key issue lies in the fact that current
knowledge does not allow to separate technique system-
atic errors from real non-linear ground motion/geocenter
motion. In view of establishing reliable and accurate non-
linear terrestrial reference frames, a better understanding
and characterization of the technique systematic errors is
therefore essential.
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Impacts of the LARES and LARES-2 Satellite
Missions on the SLR Terrestrial Reference Frame

Rolf König, Susanne Glaser, Ignazio Ciufolini, and Antonio Paolozzi

Abstract

LARES, an Italian satellite launched in 2012, and its successor LARES-2 approved by
the Italian Space Agency, aim at the precise measurement of frame dragging predicted by
General Relativity and other tests of fundamental physics. Both satellites are equipped with
Laser retro-reflectors for Satellite Laser Ranging (SLR). Both satellites are also the most
dense particles ever placed in an orbit around the Earth thus being nearly undisturbed by
nuisance forces as atmospheric drag or solar radiation pressure. They are, therefore, ideally
suited to contribute to the terrestrial reference frame (TRF). At GFZ we have implemented
a tool to realistically simulate observations of all four space-geodetic techniques and to
generate a TRF from that. Here we augment the LAGEOS based SLR simulation by LARES
and LARES-2 simulations. It turns out that LARES and LARES-2, alone or in combination,
can not deliver TRFs that meet the quality of the LAGEOS based TRF. However, once the
LARES are combined with the LAGEOS satellites the formal errors of the estimated ground
station coordinates and velocities and the co-estimated Earth Rotation Parameters are
considerably reduced. The improvement is beyond what is expected from error propagation
due to the increased number of observations. Also importantly, the improvement concerns
in particular origin and scale of the TRF of about 25% w.r.t. the LAGEOS-combined TRF.
Furthermore, we find that co-estimation of weekly average range biases for all stations does
not change the resulting TRFs in this simulation scenario free of systematic errors.
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1 Introduction

The project GGOS-SIM (Schuh et al. 2015) resulted in
a powerful tool that enables the simulation of the space-
geodetic techniques Very Long Baseline Interferometry
(VLBI), Satellite Laser Ranging (SLR), Global Navigation
Satellite Systems (GNSS), and Doppler Orbitography and
Radiopositioning Integrated by Satellite (DORIS) in order to
test various effects on the Terrestrial Reference Frame (TRF).
The requirements set by the Global Geodetic Observing
System (GGOS) on accuracy and stability of the TRF
are 1mm and 0.1mm/year (Gross et al. 2009). In a first
attempt, the observations of the 2008 to 2014 (inclusive)
ground networks of all the space-geodetic techniques have

© Springer Nature Switzerland AG 2019
P. Novák et al. (eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 151, https://doi.org/10.1007/1345_2019_84

57

http://crossmark.crossref.org/dialog/?doi=10.1007/1345_84&domain=pdf
mailto:koenigr@gfz-potsdam.de
https://doi.org/10.1007/1345_2019_84


58 R. König et al.

been simulated close to reality. Eventually the individual
techniques are evaluated for the derivation of technique-
specific and combined TRFs. The simulation of VLBI
observations and VLBI-only TRFs is described in Glaser et
al. (2016). The combination of the VLBI and SLR techniques
based on so-called global and local ties and the extension of
the global VLBI network by new stations is discussed in
Glaser et al. (2017). The extension by new stations in case of
SLR is discussed in Otsubo et al. (2016), Kehm et al. (2018)
and Glaser et al. (2019b). The impact of different local tie
scenarios on the combined GPS, SLR, and VLBI TRF was
investigated in Glaser et al. (2019a). Simulations of LARES
and LARES-2 regarding their main purpose to test General
Relativity were performed by e.g., Ciufolini et al. (2013,
2017b)

For recent global TRFs, f.i. the ITRF2014 (Altamimi et al.
2016), SLR provides the fundamental datum parameters ori-
gin and, together with VLBI, the scale. The input from SLR
to the ITRF2014 is provided by the analysis and combination
centers of the International Laser Ranging Service (ILRS,
Pearlman et al. 2002) where the solution is mainly based
on LAGEOS and LAGEOS-2 observations. Also involved
are observations to the ETALON and ETALON-2 satellites,
however their amount is so small that they hardly play any
role. Therefore, the GGOS-SIM SLR base is composed of
LAGEOS mission data only. Currently, the Analysis Stand-
ing Committee (ASC) of the ILRS has pilot projects on the
way to also include LARES observations for the contribution
to the next generation ITRF.

In the following, the GGOS-SIM base of LAGEOS and
LAGEOS-2 SLR simulated observations is augmented
by simulated observations to the satellites LARES and
LARES-2. With the augmented data base we evaluate their
impact on the resulting TRF with a particular view on origin
and scale.

2 The Satellite Missions and Data Used

The characteristics of the satellite missions involved here are
listed in Table 1. Where the LAGEOS satellites have been
designed for geophysical applications, the LARES satellites
serve the measurement of frame-dragging, a phenomenon
predicted by General Relativity (GR) (Ciufolini et al. 2017a).

However, both objectives can be assigned to each mission
due to the cannon ball shape of the satellites and their favor-
able area-to-mass ratio minimizing nuisance forces, e.g.,
solar radiation pressure. Indeed LARES obeys the lowest
value of area-to-mass ratio, making it the densest object ever
sent into orbit and therefore makes it together with the large
eccentricity of the orbit a nearly ideal particle for testing
effects of GR (Paolozzi et al. 2015).

For GGOS-SIM the LAGEOS and LAGEOS-2 SLR
observations are simulated close to reality in terms of time of
operation of a station, and in terms of number and accuracy.
For this the real SLR observations of 51 ground stations
were analyzed first. The simulations followed then assuming
no systematic errors, just white noise, with no leaps in
the coordinate time series. Figure 1 shows the number of
observations for each station for each arc over the analysis
period for the real and the simulated data at the example of
LAGEOS-2. Slight differences can be found where stations
observing in reality with different eccentricities (and there-
fore with different occupation numbers) are simulated as one
site only. Also one station with very few passes was left out.

LARES has been tracked by SLR since its launch in 2012,
therefore the simulations are as in case of the LAGEOS satel-
lites simulated close to reality in terms of time of operations,
and number and accuracy of the observations. Figure 2 shows
the orbital fits for each station for each arc at the example
of LARES and LARES-2 in the simulation. It has to be
noted that the observation period of LARES starts due to
its launch in 2012 only which yields an overlap with the
LAGEOS analysis period of three years only. In order to get
a longer analysis period to properly solve for the velocities
of new stations in the evolving network, the analysis for
LARES is prolonged to 2017 (inclusive). LARES-2 is not
yet in orbit, however already approved as mission by the
Italian Space Agency (Agenzia Spaziale Italiana – ASI) and
scheduled for a launch around 2019 to 2020. The simulation
of the LARES-2 observations follows the real world scenario
of LARES in the years 2012 to 2017 in terms of time of
operations, and number and accuracy of observed ranges.
Potentially the number of LARES-2 observations could be
higher than that of LARES due to its higher orbital altitude.
In fact, in spite of the expected much lower intensity of laser
returns from LARES-2 with respect to LARES, the coverage
for a higher altitude satellite is more favourable (see Fig. 3).

Table 1 Characteristics of the SLR missions

Launch Altitude Inclination Area-to-mass
Satellite (year) (km) Eccentricity (deg) ratio (m2/kg)

LAGEOS 1976 5,900 0.004 109.8 0.000695

LAGEOS-2 1992 5,800 0.014 52.6 0.000697
LARES 2012 1,440 0.001 69.5 0.000269

LARES-2 2019–2020 5,900 0.001 70.2 0.000269
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Fig. 1 Timely distribution and number of observations for LAGEOS-2, (top) for the real data, (bottom) for the simulated data
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Fig. 2 Timely distribution and accuracy of the simulated observations for LARES and LARES-2
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Fig. 3 Location and number of
the simulated observations
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For the simulations however the geometry will not suffer as
the observations are distributed over the respective arcs.

The geometrical distribution of the observations can be
seen in Fig. 3 where the footprints of all observations in
the analysis periods are sampled for number of occurrence
in 1 � 1 degree bins over the Earth’s surface. It becomes
clear that large parts of the orbit of LARES are not covered
with observations. But LARES-2 covers about the same
geographical area as LAGEOS due to its identical orbital
altitude and its inclination supplementary to that of LAGEOS
delimiting the geographical distribution towards Northern
and Southern latitudes the same way.

3 Precise Orbit Determination

Before starting the simulations, Precise Orbit Determination
(POD) of real LAGEOS, LAGEOS-2, and LARES obser-
vations was performed. For this we rely on our orbit and
Earth system parameter estimation software EPOS-OC (Zhu
et al. 2004). EPOS-OC uses the dynamic approach, based on
modelling the forces acting on the satellite. The highly non-
linear problem is solved by differential parameter improve-
ment minimizing the residuals of the observations in the least
squares sense. Most of the adopted dynamic and geometric
models, and the measurement systematic corrections follow
the IERS conventions 2010 (Petit and Luzum 2010), some
particular choices are given in Table 2.

Processing is conducted in seven day arcs. Modelling
and parametrization for the LAGEOS satellites is chosen
according to GFZ’s SLR contribution to the generation of the
ITRF2008. The modelling for LARES is identical, however
slight differences in parametrization are applied to account
for its different response to errors of the gravity field model.
The parametrizations are summarized in Table 3.

The results of POD of all satellites based on real and sim-
ulated data are compared in Table 4. The numbers confirm
the similarity of the simulations with reality.

Table 2 Models for POD

Type Model

Gravity model EIGEN-6C

ERPs IERS C04 08
Bizouard and Gambis (2011)

Ephemerides JPL421

Solar radiation Cannon ball

Albedo Heurtel
Ocean tides Not modelled

Ocean pole tides Desai (2002)

Coordinates SLRF2008

Ocean loading Chalmers feat. FES2004

Atmospheric loading Not applied
Troposphere Mendes and Pavlis (2004)

Table 3 Parametrization

Type LAGEOS LARES

Initial states 6/arc 6/arc
Albedo global scaling
factor

1/arc 1/arc

Atmosph. drag global
scaling factor

– 1/arc

Empirical accelerations 1 const. acc./4d in T 1 const. acc./4d in T
1cpr/4d in T 1cpr/4d in T

ERPs xp, yp, LOD /d xp, yp, LOD /d

Coordinates X, Y, Z /station/arc X, Y, Z /station/arc

Velocities Ẋ Ẏ, Ż /station/arc Ẋ Ẏ, Ż /station/arc

Table 4 Orbital fits

Real data Simulated data
RMS RMS

Satellite (cm) No. (cm) No.

LAGEOS 0.88 528,742 0.86 529,600

LAGEOS-2 0.91 468,869 0.89 469,994
LARES 1.23 476,270 1.20 477,505

LARES-2 – – 1.20 474,453

4 Terrestrial Reference Frame

After verifying the simulated observations in POD, the simu-
lated observations are further processed to yield weekly nor-
mal equations containing position and velocity parameters of
the ground network and ERPs. The weekly normal equations
are then accumulated to yield one normal equation for
LARES and one for LARES-2. From these normal equations,
TRFs are generated for LARES and LARES-2 separately
and for the combination of both. Eventually the LARES
and LARES-2 normal equations are added to the LAGEOS-
combined solution either one by one or in combination.
Table 5 compiles the mean percentages of improvement
of the formal errors for positions and velocities of the
stations, and of the ERPs, i.e. the two polar motions and
the Length-of-Day (LOD) parameter, w.r.t. the LAGEOS-
combined solution. The improvement expected from error
propagation due to the increased number of observations are
also given in the last column denoted by “Exp.”.

The LARES-only and the LARES-2-only TRFs do not
meet the expected precision of the station position and ERP
parameters, so does not the LARES-combined TRF featuring
a number of observations comparable to that of the LAGEOS
combination due to a less favourable geometry. On the
other hand the station velocities from the LARES solutions
exhibit the expected precision meaning that geometry does
not play that role here. At a profit the improvement of the
LAGEOS-combined TRF by adding LARES and LARES-2
can be seen in pronounced smaller formal errors of the
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Table 5 Improvement of formal errors w.r.t. LAGEOS-combined (LC)

Pos. Vel. ERPs Exp.
Satellite (%) (%) (%) (%)

LARES �95 �38 �143 �45

LARES-2 �103 �43 �149 �46

LARES+LARES-2 �37 3 �64 �2

LC+LARES 38 53 10 18

LC+LARES-2 36 51 9 18

LC+LARES+LARES-2 43 57 16 28

Table 6 Improvement in origin and scale w.r.t. LAGEOS-combined
(LC)

Tx Ty Tz Scale
Satellite (%) (%) (%) (%)

LARES �79 �73 �46 �157

LARES-2 �79 �71 �72 �140

LARES+LARES-2 �19 �15 �5 �68

LC+LARES 12 13 21 4

LC+LARES-2 12 14 14 5

LC+LARES+LARES-2 23 24 29 10

estimated positions and velocities of the ground stations.
This improvement goes beyond the expectation due to the
increased number of observations and can be attributed to
a better observation geometry in case of the positions, the
station velocities benefit from the longer analysis period. The
increase in precision of the estimated ERPs however stays
behind expectation and is owned to the small overlap of three
years only between the analysis periods of the LAGEOS and
LARES satellites.

The improvement of the TRF in its defining parameters
origin and scale is computed according to the approach by
Sillard and Boucher (2001) where the variance-covariance
matrix of the solution is divided into a datum dependent
part and an independent one. The dependent part shows the
reference system effect in the standard deviations of the
Helmert parameters. As SLR provides origin and scale in
international TRF solutions where the space-geodetic tech-
niques are combined, we compile in Table 6 the improvement
of origin and scale w.r.t. the LAGEOS-combined solution
of the LARES-only, the LARES-2-only, and of the LARES-
combined TRF and the impact of the addition of LARES or
LARES-2 or of both to the LAGEOS-combined solution.

The LARES-only and the LARES-2-only TRFs can not
compete with the LAGEOS-combinedTRF in terms of origin
and scale definition. The LARES-combined TRF shows just
a slight degradation in origin but a large deficiency in scale.
The latter one might come from the relatively low altitude
of LARES coming along with smaller ranges between the
ground stations and the satellite and therefore resulting in
less favorable ratios between the observed ranges and their

errors. However once the LARES and LARES-2 observa-
tions are combined with the LAGEOS-combined solution,
indeed considerable improvements of up to 29% can be
expected for the core contribution of SLR to the TRF, i.e.
origin and scale.

Apart from the improvements in the stochastic character-
istics of the estimated station positions and velocities, the
question arises whether adding of LARES and LARES-2 to
the TRF solution leads to any systematic changes of the TRF.
Therefore 14-parameter Helmert transformations are carried
out where the LAGEOS+LARES, LAGEOS+LARES-2, and
LAGEOS+LARES+LARES-2 TRFs are transformed w.r.t.
the LAGEOS-combined TRF. All Helmert parameters are in
the sub-millimeter range and are statistically not significant.
This means that the addition of the new missions to the
LAGEOS-combined TRF does not lead to a systematic
change in the definition of the TRF.

5 On the Estimation of Range Biases

Appleby et al. (2016) advertised to estimate weekly average
range biases for all SLR stations in the network in order to
reduce the scale difference between SLR and very long base-
line interferometry (VLBI) in the recent ITRFs. In prepa-
ration of the next generation ITRF the ILRS is running a
pilot project where the estimation of range biases is analyzed.
Here we follow these recommendations and estimate range
biases besides station positions and velocities and ERPs for
all solution types. The range biases are set up per station per
satellite per arc (week) and endowed with an a priori sigma
of 1 m. From all solutions with range biases being estimated
adjacent TRFs are generated that can be compared to their
counterparts with no range biases estimated. The comparison
is done via 14-parameterHelmert transformations, the results
are compiled in Table 7.

In all cases, i.e. LAGEOS-combined, LARES-only,
LARES-2-only, and LAGEOS-combined plus LARES plus
LARES-2, all Helmert parameters turn out with values for
translations, rotations and scale and their derivatives below
statistical significance. This means that estimation of range
biases from simulated observations (with known a priori
values) as described does not lead to a significant change
of the TRF-defining parameters. In particular one should
take note that the scale is not destroyed by estimating range
biases in this simulation scenario where no systematic errors
have been introduced a priori. In the real world, where
systematic errors can not be ruled out, the conclusion might
be different. To find out if systematic errors would change
the above findings, extensive analyzes will be needed that
are beyond the scope of this paper and are left therefore for
future studies.
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Table 7 14-Parameter Helmert transformations between solutions
with range biases being estimated yes and no

Value St.Dev. Deriv. St.Dev.
Parameter (mm) (mm) (mm/a) (mm/a)

LAGEOS-comb

Tx �0:09 0:48 �0:30 0.30

Ty �0:12 0:49 0:08 0.30
Tz �0:29 0:47 �0:10 0.29

Rx �0:09 0:59 �0:09 0.36

Ry �0:16 0:58 �0:19 0.36

Rz 0:05 0:56 �0:02 0.35

Sc �0:35 0:46 �0:21 0.29
LARES

Tx �0:46 0:80 0:03 0.17

Ty 1:11 0:81 �0:25 0.17

Tz �0:58 0:77 0:04 0.17

Rx �0:20 0:97 0:02 0.21
Ry 0:00 0:95 0:02 0.20

Rz 0:59 0:93 �0:10 0.20

Sc �0:58 0:77 0:19 0.17

LARES-2

Tx �0:99 1:77 0:20 0.30
Ty 0:37 1:79 �0:20 0.30

Tz 0:11 1:71 �0:14 0.29

Rx 0:38 2:16 0:00 0.36

Ry �1:04 2:10 0:15 0.35

Rz 0:15 2:05 �0:06 0.35
Sc �1:78 1:70 0:29 0.29

LAGEOS-comb+LARES+LARES-2

Tx 0:12 0:19 �0:02 0.04

Ty �0:08 0:19 0:04 0.04

Tz �0:01 0:18 �0:01 0.04
Rx 0:26 0:23 �0:02 0.05

Ry 0:04 0:22 0:00 0.05

Rz 0:09 0:21 �0:03 0.05

Sc �0:17 0:18 0:07 0.04

6 Summary and Conclusions

The project GGOS-SIM has provided a tool to simulate the
space-geodetic techniques for the generation of global TRFs.
Available are realistic, representative solutions for the years
2008 to 2014 where the SLR solutions are based on the
LAGEOS and LAGEOS-2 missions. Here we simulated SLR
observations to the LARES satellite over the years 2012 to
2017 following closely the analysis of the real world data.
In addition we simulated SLR observations to the planned
LARES-2 satellite relying on the LARES scenario in terms
of accuracy and number of observations. It turns out that
both LARES missions, either alone or in combination, can
hardly compete with the LAGEOS combined TRF. However
in combinationwith the LAGEOS they considerably improve
the resulting coordinates and velocities of the SLR stations

in terms of lower formal errors. The improvement is beyond
what is expected from error propagation by the increased
number of observations. The ERPs are also improved in
the formal errors however at a lesser amount as in case
of the coordinates because of the shorter overlap in the
parameter space. Also origin and scale of the resulting
TRFs are improved by about 25% when the LAGEOS and
LARES missions are combined. Systematic changes of the
TRF defining parameters identified by 14-parameter Helmert
transformations were not found when adding the LARES
missions. An attempt was made to assess the effect of
estimating weekly average range biases for all stations for all
satellites besides station positions and velocities and EOPs.
The resulting TRFs are statistically not different from their
counterparts where the said range biases are not estimated.
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Permanent GNSS Network Optimization
Considering Tectonic Motions

Lisa Pertusini, Giulio Tagliaferro, Rosa Pacione, and Giuseppe Bianco

Abstract

The contribution discusses the optimal design of a Global Navigation Satellite System
(GNSS) network compromising between the estimation of the tectonic motion with other
geodetic criteria. It considers the case of a pre-existing network to be densified by the
addition of new stations. An optimization principle that minimizes the error of the estimated
background motion and maximizes the spatial uniformity of the stations is formulated.
A means to solve approximately the proposed target function is presented. The proposed
procedure is preliminary tested for the case of the densification of the Agenzia Spaziale
Italiana (ASI) GNSS network in Italy.
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1 Introduction

The densification of a GNSS permanent network is a com-
mon problem for both national and international permanent
networks. The paper considers the problem of the design
of a permanent Global Navigation Satellite System (GNSS)
network that best allows to estimate the velocities of its
stations. The optimization principle will account for the
presence of already installed N0 stations, and will seek an
optimum for the position for the remaining N � N0 stations.
This has been designed to solve a practical problem for
the Italian context. Two different criteria are going to be
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considered for the creation of a target function. The first
one aims to best estimate the tectonic background motion,
the second one is the spatial uniformity of the stations. As
we will see in order to define the best placement of the
new stations we need a prior knowledge of what we will
call the background (or smooth) motion/pattern. Since this
can be generally achieved by monitoring a dense network
of already existing GNSS stations, it might seem that the
purpose of the paper is in contradictionwith the existing prior
information. However this is not the case, because we are
talking of two different types of networks; one is a reference
network that must satisfy all the criteria of uniform high-
level accuracy, continuity, archiving and availability of the
data, robustness of the station monumentation, etc., as stated
by International agreements on standards (Bruyninx 2013);
among other things this reference network is generally ana-
lyzed in a consistent and continuous way by some authority
that can also guarantee the correctness of the results. This is
the net for which the problem of an optimal increase from
N0 to N stations is studied. The second type of network
is not in reality a unique net, but rather a congeries of
GNSS networks implemented by different public or private
entities for completely different purposes, sometimes giving
data over different periods of time and certainly with a non
uniform accuracy. This is at least the situation in Italy and
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it is thanks to the work of INGV researchers (Devoti et al.
2014) that a large amount of such in-homogeneous data has
been analyzed and reduced to a unique picture, as we will
better describe in Sect. 3. The resulting velocity field has
been further analyzed and split into regions of homogeneous
backgroundmotion (Biagi and Pertusini 2018). So in the end
we have the following frame for the problemwe want to treat:
we have an area where points are moving along a certain
velocity field, of which we have prior knowledge as for its
functional (or correlation) characteristics. In this area there
is an already existing net of N0 stations and we would like to
increase it to N stations, trying to compromise between two
targets: one is to make the new net as uniform as possible
because we want to use it as reference network for position-
ing and the other is that the new network could be used at best
to improve (andmonitor) our knowledge of the velocity field,
for the sake of geophysical studies. Both purposes leads to
its own optimal criterion. The two criteria are discussed and
derived in Sects. 2.1 and 2.2 and then combined as customary
in multitarget problems. Due to the high non-linearity of the
resulting compound principle, practical means to compute an
approximate solution are discussed in Sect. 2.3. Finally, the
case study of the Agenzia Spaziale Italiana (ASI) permanent
GNSS network is presented in Sect. 3.

2 Optimal Placement of the Stations

In this section a target function implementing the optimiza-
tion principle for the placement of N � N0 stations is
formulated. The analytical formulation of the two criteria
mentioned in the introduction is presented. Then an approxi-
mate way to find the minimum is discussed.

2.1 Optimal Estimation of Background
Motion

Let’s assume that the velocity field is generally smooth apart
from outliers and localized geophysical phenomena (e.g.
volcanic activity) that would prevent the background motion
from being described using a smooth function. The problem
to identify such outlier points has been addressed and studied
in depth for the Italian case in Biagi and Pertusini (2018). The
backgroundmotion (u0 East and v0 North components) has to
be optimally estimated by interpolation using the empirical
velocity field that can be estimated from the finally placed N

permanent stations. The need of predicting the background
motion at points other than the reference stations is urged
when monitoring the position of a new point: one would
like to distinguish its variations when due to either tectonic
motion or local phenomena. Notice that here interpolation
does not mean “exact” interpolation, but rather it refers to
the fact that we are estimating the velocity field only inside

the area where we have observations too. Someone would
just call it approximation. A first choice has to be made with
respect to the representation of the background field. We
assume that (u0; v0) can be represented separately by a spline
model, namely:

u0.P / D
nX

kD1

�k.P /pk (1)

v0.P / D
nX

kD1

�k.P /qk (2)

where n < N and � is the spline base function and P is a
generic point in the area. In principle the number of splines
could be different between the two components. However,
since this does not affect the approachwe are going to present
we will assume them to be equal. This is the case because
we are estimating the two velocity component separately.
The suitability of this choice will be discussed later in the
present section. We start by writing the velocities at the N

station points using the spline model described in (1) and (2)
and assuming a white noise error, i.e. a diagonal covariance
proportional to identity:

u0.r i / D
nX

kD1

�k.r i /pk C �i (3)

v0.r i / D
nX

kD1

�k.r i /qk C �i (4)

where r i ; i D 1; � � � ; N .
Let us notice that in general � and � might also be

correlated one another. Yet such a correlation can be often
decreased, if not cancelled, by suitably choosing two axes
rotated with respect to the North, East directions (Biagi and
Pertusini 2018). Indeed a more general stochastic model
should be used without too many changes of the approach.

For the component u0, (3) can be written in vector form:

u0 D ˆp C � (5)

and we assume that
C� D �2

� I I
yet the formulation can be easily adapted to the case that �

has a known covariance matrix.
We go to the least squares estimates of p denoted as Op:

Op D W �1ˆ>u0 W D ˆ>ˆ: (6)

This implies that at any point P the interpolated Ou0.P / is
given by:

Ou.P / D �>.P / Op D
nX

kD1

�k.P / Opk (7)



Permanent GNSS Network Optimization Considering Tectonic Motions 69

and its propagated error ı Ou is:

ı Ou D �>.P / . Op � p/ (8)

with variance:

�2.ı Ou.P // D �2
� �>.P /W �1�.P /: (9)

To avoid confusion it might be worth to mention thatˆ refers
the base functions evaluated at the station points while �

refers to the base functions evaluated at a generic point P .
So a first term we want to include into our target function
is the mean quadratic residual of the error over the area of
interest (A), namely

„2
u D

Z

A

�2.ı Ou/dSP D �2
�

Z

A

�>.P /W �1�.P /dSP

D �2
� T rfW �1Kg (10)

where:

Khk D
Z

A

�k.P /�h.P /dSP (11)

being h; k the indexes of our base functions. Similarly we
can construct a similar target function for the v component:

„2
v D �2

� T rfW �1Kg: (12)

The total quadratic interpolation error will then be:

„2
tot D .�2

� C �2
� /T rfW �1Kg: (13)

One might object that the chosen model is too simple, to
the extent that no attempt of including a model error in (1)
and (2) has been done. This is because the optimization in
the end has to be done with respect to positions r i and
the dependency of the total error „2

tot on such variables is
generally quite complicated as one can already see from (13),
where by the way the points r i enter only in W �1. Nev-
ertheless we can shortly outline how our target function
modifies when for instance we assume that each component
u; v of the velocity vector can be split into a signal, with
known covariance structure and a noise. Referring to u for
instance, and assuming that C .P ; Q/ is its covariance, the
interpolator (7) would become in this case (Moritz 1980):

Ou.P / D
X

i ;k

C .P ; Pi /fC .Pi ; Pk/C�2ıi;kg.�1/u0.Pk/ (14)

and the corresponding prediction error would be

Efe2.P /g D C .P ; P / �
X

i ;k

C .P ; Pi /fC .Pi ; Pk/

C�2ıi;kg.�1/C .Pk; P /: (15)

Therefore the total error in this case has the form

„2
tot D

Z

A

C .P ; P /dSP � T rf.C C �2
� I /�1Kg (16)

where Ci ;k D C .Pi ; Pk/ and Ki;k D R
A

C .P ; Pi /C .Pk; P /

dSP .
We can notice that in (16) the first term to the right is

constant, while the second depends on the position fPi g
through both .C C �2

� I /�1 and K . So the dependence of this
function on the configuration of the network is indeed more
complicated than that of (13), where positions enter only in
W .

It is maybe worth mentioning that a similar analytical
problem is met if instead of considering the background
motion as a stochastic signal in general, we would rather
require that the unknown parameters would agree with the
prior values that one could derive from the prior knowledge
of the velocity field. In any event we shall restrict our
attention to the total error function (13).

Remark 1 There are two objections of general character that
a careful reader might raise; they are both somehow related
to the choice of the reference system. The first point is
that it is known that velocities are generally not estimable
unless we fix the reference system e.g. by a suitable minimal
constraint (Dermanis 2019). This however is a problem that
has been solved by the authors of Devoti et al. (2014) for
the estimation of the prior velocity field. A second point
is that indeed in this case the covariance matrix of u0, v0

will depend on such a choice. So in our simplified solution
we have avoided the problem by assigning to � and � a
white noise covariance. As we have already claimed it would
not be difficult though to include a given covariance † or
its pseudoinverse †C for u0 or v0 into the target function,
where the W D ˆT ˆ matrix should be substituted rather by
W D ˆT †Cˆ.

2.2 Uniformity of the Network

As previously mentioned, the idea of minimizing „2
tot could

be balanced by the concept that we should not move the
position of the station too much from the one that we would
derive from a simple geodetic setting. This criterion is to
have network stations as uniformly distributed as possible
in space. This is important for instance in case the network
has to be used for a geodetic service for positioning. Since
we have already N0 stations in the area we would like to
place the remaining N � N0 stations in a way that the
overall distribution of N station be as uniform as possible.
This could be done simply identifying N � N0 optimal
positions e.g. by visual inspection; Nr0i i D N0 C 1; � � � ; N
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selected optimal positions. Therefore to balance „2
tot we

would add a term into the optimization criterion, assuming
that also

NX

iDN0C1

jr i � Nr0i j2 D G2.r/ (17)

should be small. It is important to underline that the
difference r i � Nr0i should be taken using the closest Nr0i

to r i . The selected criterion is not an uniformity criterion
itself but rather a proximity to the uniform solution. Indeed
more rigorous criteria could be applied for the two choice
of Nr0i in (17); for instance it would be possible to choose
the point than minimize the variance of areas of the Voronoi
polygons (Okabe et al. 2009) constructed using the location
of the stations. This is the choice made for the case study
described in Sect. 3.

2.3 The Target Function
and ItsMinimization

In order to combine the two criteria we can simply take
a weighted sum (lambda being the weight) of the target
functions, so arriving at the principle

fr i i D N0 C 1; � � � ; N g D argM in F .r/;

F .r/ D „2
tot C �G2.r/ D �2

0 T rfW �1Kg C �

NX

iDN0C1

j�i j2

(18)

where:

�i D r i � Nr0i (19)

�2
0 D �2

� C �2
� (20)

The minimization problem (18) can be discussed from
different points of view. Here we write standard minimum
conditions. As we can observe by inspecting (18) where
the unknowns r i enter in both terms and in particular in a
complicated way into the matrix W (see (6)), the present
optimization problem differs significantly from traditional
network optimization problems studied long ago in geodetic
literature (Grafarend and Sansò 1985). Formally the min-
imizing principle has the normal equation described from
differencing F with respect to ı�:

ıF D 2�ı�>
i � i � �2

0 T rfW �1ıW W �1Kg (21)

where, taking into account that ır i D ı�i , we have:

ıWh;k D ı�>
i r�h.r i /�k.r i / C �h.r i /ı�>

i r�k.r i /: (22)

Coming back to (21), we can put:

H D W �1KW �1; (23)

to find:

T rfW �1ıW W �1Kg D 2
X

k;h;i

ı�>
i r�h.r i /Hk;h�k.r i /:

(24)

Therefore the equation for the minimum is:

�i D �2
0

�

X

k;h;i

r�h.r i /Hk;h�k.r i /: (25)

As we see in (25) the minimum principle is translated into
a highly non linear normal equation that we might solve only
iteratively.

Remark 2 Apart from convergence considerations, the solu-
tion (25) depends heavily on the choice of the weight �.
In fact, we can see from (18) that if � ! 0 the solution
r i will tend to minimize „2

tot only, while if we let � !
1 the solution will tend to minimize G2.r i / only, namely
�i D 0. This last consideration is well known in Tikhonov
regularization theory (Tikhonov and Arsenin 1977). Since
the criterion for the choice of � is in this case quite vague,
we could conceive instead of finding one specific solution
(one for every �) to give the two positions Nr0i and r 0

i that
minimize respectively G2 and „2

tot , and then look for a
feasible implementation of the station at a point along the
straight line connecting the two points. This is certainly
not rigorous, however it is sufficient for a practical solution
where many other factors have to be taken into account, for
instance the availability at the stations of electricity or of an
internet connection etc.

3 Case Study

The Italian Space Agency (ASI) intends to densify the
current Italian GNSS reference frame network. At present
it consists of 15 permanent stations throughout the country,
3 of them being co-located at the Space Geodesy Center
in Matera (Fig. 1). Thirty-one new permanent stations have
to be installed, that will contribute to the EPN – EUREF
European GNSS permanent station network densification
over the Italian area (Fig. 1).

As previously discussed, the new GNSS network has to
be as homogeneously distributed as possible (static crite-
rion) and best identify the background motion (kinematic
criterion) insisting over the Italian peninsula. In fact it is
well known that Italy is continuously and strongly moving
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Fig. 1 GNSS Reference frame
network currently powered by
ASI (in red) and Italian EPN –
EUREF network (in black)

Fig. 2 Velocity vectors of the
GNSS permanent stations
estimated by the INGV. Plot
based on velocity estimated from
Devoti et al. (2014) and taken
from Biagi and Pertusini (2018).
Blue and green clusters. In red:
outliers

within the European Plate (Devoti et al. 2011). Actually, Italy
seems clearly divided into different sub-regions that move
in different mean directions but have quite smooth internal

behaviors, except for a few discussed outliers (plotted in red)
(Fig. 2). For several years, the Istituto Nazionale di Geofisica
e Vulcanologia (INGV) has been continuously monitoring a
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Fig. 3 Five areas with
homogeneous background
motion derived in Italy: blue
cluster, light blue cluster, green
cluster, Sicily, Sardinia (image
taken from Biagi and Pertusini
(2018))

network of permanent GNSS stations. Based on a specific
solution that was estimated in 2013 (Devoti et al. 2014) a
method to predict at any point the “background motion”
was developed. The Italian territory has been divided into
five sub-regions with an internal homogeneous velocity field
(Fig. 3) (Biagi and Pertusini 2018).

Remark 3 Let us observe that in reality according to some
geological analysis (Serpelloni et al. 2016; Livani et al.
2018), the behavior of the Italian region is more complicated
than the one here described. Nevertheless the practical solu-
tion of using smaller patches described below alleviates this
inconvenient.

Beyond the representation given by (1) and (2), the back-
ground motion could be described for instance by the sum of
a deterministic part and a stochastic part; the latter has been
found to be much smaller than the first one, with a correlation
length of the signal shorter than 20 km (Biagi and Pertusini
2018). This is in fact the critical datum we wanted to get

from this stochastic analysis. Even more, since we wanted
to have control on the behaviour of „2

tot , which is difficult
if we want to move together the positions of 31 stations,
we decided to implement the optimization by dividing the
whole area analyzed into smaller patches where only one
new station was to be placed and the background motion
could be represented just by a linear function. Indeedwe have
also tried higher order interpolationswhich gave insignificant
changes in the solution, so we preferred to stay with the linear
interpolation, more stable in terms of the spline parameters.
Considering the vector of known horizontal velocities at
points ri in the small area of interest, an a priori model can
be set up, which describes a regular motion, see (7), that in
East direction reads

u0.r/ D
X

pk�k.r/ D ˆ>.r/ Op: (26)

With �k.r/ spanning the space of first degree polyno-
mials, and where Opk have been least squares estimated.
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Using (10) and (11) we can write, identifying r with the
corresponding point P :
Z

A

�2Œe0E.P /�dS D �2
0 ET rf.ˆ>ˆ/�1Kg D �2

0 E„2.r i /

(27)

where K D R
A

�.P /�.P />d2S .
The integral formula for K (11) has been computed

numerically discretizing the area using a regular grid. Fol-
lowing the simplified procedure previously presented, the
target function becomes:

H.ri / D �
X

jr i � Nr0i j2 C �2
0 F .ri /: (28)

As previously observed changing �, the optimized solu-
tion Or i runs between the point following the uniformity
criterion and the point which minimizesF .ri /. Since finding
the final place of the stations is also a practical problem

where considerations of access to electricity, internet and
of security also enter, we decided to adopt the already
discussed approach, consisting in providing the two positions
and searching for a station that could be operationally mon-
umented along the line connecting them, with a tolerance
buffer of 20 km, suggested by the above discussed covariance
analysis. In Fig. 4 an example of this solution for the Italian
North-West area is shown. The point that minimizes the
variance on the areas of the Voronoi polygons over the area
of interest was chosen as point that maximizes the uniformity
of the network (see Fig. 5).

Remark 4 One remark on Fig. 4 is in order at this point. The
fact that the minimization of „2 falls at the boundary of the
area is by no means accidental: in fact this depends from
the choice of a linear local interpolator. Nevertheless this
means also that, considering Fig. 4, the direction between the
point of maximal uniformity Nr0 and the “pink star” r 0 point
is that of maximum inclination for „2 so placing a station

Fig. 4 Proposed new station
position in the Italian NorthWest
region. Red dot represents the
already existing ASI station in
Genoa, black dots are the already
existing EPN – EUREF network
stations, blue dots are the already
fixed new stations by convenience
criteria of co-location with other
instruments networks, such as
tide gauges or automated weather
stations. In pink star with black
borderline the maximal
uniformity position and in white
star with pink borderline the
optimal trend estimation solution.
Contour lines represent
function (27) normalized by the
area, unit in m4=1e18
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Fig. 5 Contour lines
representing the variance of the
areas of the Voronoi polygon over
the area of interest, unit in
m4=1e18

along the segment between the two is really in some sense
minimizing the total signal estimation error. The mentioned
discretization computation of the „2 function has as matter
of fact allowed us to evaluate its shape that resulted in a
convex cup in all cases, confirming the above interpretation
of its minimum point.

4 Conclusion

An optimization criterion for the design of an improved
permanent network, augmenting an already existing network,
has been derived balancing the geodetic criterion of uniform
density of the overall network with a kinematic criterion of a
design that allows an optimally estimation of the background
motion. The minimization principle has been expressed in
terms of a normal equation highly non linear. A simplified
procedure to perform the minimization has been presented.
The procedure is then tested preliminarily for the case of the

densification of the ASI permanent GNSS station. Additional
work is needed to refine the proposed procedure and to
evaluate the impact of the arbitrary choices still present by
the procedure. In particular the sensitivity of the solution to
the partitioning of the network is of main concern.
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Adjustment of Gauss-Helmert Models
with Autoregressive and Student Errors

Boris Kargoll, Mohammad Omidalizarandi, and Hamza Alkhatib

Abstract

In this contribution, we extend the Gauss-Helmert model (GHM) with t-distributed errors
(previously established by K.R. Koch) by including autoregressive (AR) random deviations.
This model allows us to take into account unknown forms of colored noise as well as heavy-
tailed white noise components within observed time series. We show that this GHM can
be adjusted in principle through constrained maximum likelihood (ML) estimation, and
also conveniently via an expectation maximization (EM) algorithm. The resulting estimator
is self-tuning in the sense that the tuning constant, which occurs here as the degree of
freedom of the underlying scaled t-distribution and which controls the thickness of the tails
of that distribution’s probability distribution function, is adapted optimally to the actual
data characteristics. We use this model and algorithm to adjust 2D measurements of a
circle within a closed-loop Monte Carlo simulation and subsequently within an application
involving GNSS measurements.

Keywords

Autoregressive process � Circle fitting � Constrained maximum likelihood estimation �
Expectation maximization algorithm � Gauss-Helmert model � Scaled t-distribution � Self-
tuning robust estimator

1 Introduction

When a deterministic model used to approximate obser-
vations are characterized by condition equations in which
multiple observations and unknown parameters are linked
with each other, an adjustment by means of the Gauss-
Helmert model (GHM) is often the procedure of choice.
The classical formulation of that method, being based on the
method of least squares, does not require the specification of
a probability density function (pdf) for the random deviations
or the observables. When the observables are outlier-afflicted
or heavy-tailed, this least-squares approach can be expected
to break down. However, it can be turned into an outlier-
resistant (‘robust’) procedure by including a re-weighting

B. Kargoll (�) · M. Omidalizarandi · H. Alkhatib
Geodetic Institute, Leibniz University Hannover, Hannover, Germany
e-mail: kargoll@gih.uni-hannover.de

or variance-inflation scheme based on a heavy-tailed error
law such as Student’s t-distribution (Koch 2014a,b). This
procedure is implemented as an expectation maximization
(EM) algorithm, which allows for the estimation not only
of the parameters within the condition equations, but also of
the scale factor and degree of freedom of the underlying t-
distribution. The latter feature turns the method into a self-
tuning robust estimator in the sense of Parzen (1979).

An additional common characteristic of observables that
complicates their adjustment is given by autocorrelations
or colored noise, which phenomena frequently occur with
electronic instruments measuring at a high sampling rate
(cf. Kuhlmann 2003). When the data covariance matrix is
unknown or too large, autoregressive (AR) or AR moving
average (ARMA) processes enable a parsimonious modeling
of correlations in situations when the measurements can be
treated as a time series (e.g., Schuh 2003). Such processes
are also attractive as they may be easily transformed into the
easy-to-interpret autocovariance or spectral density function

P. Novák et al. (eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 151, https://doi.org/10.1007/1345_2019_82
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(cf. Krasbutter et al. 2015; Loth et al. 2019). The adjustment
of multiple (possibly nonlinear) regression time series with
AR and Student errors within the framework of the Gauss-
Markov model was investigated by Alkhatib et al. (2018).
A similar approach is undertaken in the current contribution
now in the framework of the Gauss-Helmert model, thereby
extending K.R. Koch’s aforementioned model by the inclu-
sion of estimable AR processes.

In Sect. 2, we specify the observation model, the correla-
tion model, and the stochastic model, which jointly define
the GHM with AR and t-distributed errors. In this model
we allow for different groups of observations characterized
by individual correlation and stochastic models. In doing so,
time series that stem from different sensors or that form a
multivariate measurement process, such as measured three-
dimensional coordinate time series, can be modeled flexibly
to take the heterogeneous data characteristics usually present
in such time series into account. In Sect. 3, we formulate
the optimization principle employed to adjust this model,
and we derive for the purpose of convenient computation an
EM algorithm, deriving in detail the normal equations to be
solved. The Monte Carlo simulation results in Sect. 4 demon-
strate the biases to be expected in the practical situation of
data approximation by a circle. Section 5 contains results
stemming from the adjustment of a real data set.

2 A Gauss-HelmertModel with
Autoregressive and t-Distributed
Errors

We intend to adjust N groups of observables Lk D ŒLk;1,
: : :, Lk;nk �T for k D 1; : : : ; N , with the kth group consisting
of nk observables. Each random variable Lk;t is modeled by
an individual location parameter�k;t and an additive random
deviation Ek;t , that is,

Lk;t D �k;t C Ek;t .t D 1; : : : ; nk/: (1)

In this and the following equations the unknown parameters
are generally denoted by Greek letters, random variables
by calligraphic letters, and real-valued constants by Roman
letters. Thus, a random variable (e.g., Ek;t ) and its real-
ization .ek;t / can be distinguished. Moreover, matrices and
vectors are symbolized by bold letters. The index values of
t represent equidistant time instances, so that the sequence
Lk and correspondingly Ek constitute time series. Defining
the vector �k D Œ�k;1; : : : ; �k;nk �

T for k D 1; : : : ; N ,
we mean by Ik;t the t th row of the .nk � nk/-identity
matrix. Consequently, the observation model (1) can also be
written as

Lk;t D Ik;t�k C Ek;t : (2)

Whereas each location parameter �k;t is treated as an
unknown fixed parameter (to be estimated), each random
deviation Ek;t is a random variable that follows a group-
specific AR(pk) process

Ek;t D ˛k;1Ek;t�1 C � � � C ˛k;pkEk;t�pk C Uk;t : (3)

To fix the initial values of this recursive model for all of
the time instances t � 1, : : :, t � pk with values less than
1, the associated random variables are assumed to take the
constant value 0. The AR coefficients ˛ D Œ˛T1 ; : : : ;˛

T
N �
T

with ˛k D Œ˛k;1; : : : ; ˛k;pk �
T for k D 1; : : : ; N are taken to

be unknown parameters (also to be estimated). Depending on
their values, the time series E1, : : :, EN exhibit group-specific
auto-correlation patterns or colored noise characteristics.
Using the notation LjZk;t WD Zk;t�j with ˛k.L/ WD 1 �
˛k;1L� : : :�˛k;pkLp and Zk;t D ˛k;t .L/Zk;t for an arbitrary
family of matrices .Zk;t j t 2 f1; : : : ; nkg/, we also have

uk;t D ek;t D ˛k.L/ek;t D ˛k.L/.`k;t � Ik;t�k/

D ˛k.L/`k;t � ˛k.L/Ik;t�k D `k;t � Ik;t�k: (4)

This enables an interpretation of the quantities ek;t , `k;t
and Ik;t as the outputs of the digital filter ˛k.L/, applied
respectively to the kthe group of random deviations ek as
well as observations `k , and to the identity matrix Ik . Thus,
˛k.L/ may be viewed as turning the colored noise sequence
ek into white noise uk , in the sense of a decorrelation filter.

In each time series Uk D ŒUk;1; : : : ;Uk;nk �T , we assume
the individual components Uk;1; : : : ;Uk;nk to independently
follow a scaled t-distribution (cf. Lange et al. 1989) with
expectation 0 and group-specific degree of freedom �k as
well as scale factor �k , that is,

Uk;t ind:� t�k .0; �
2
k /: (5)

Due to the previous independence assumption the joint pdf
of each white noise series Uk can be factorized into

f .uk/ D
nkY

tD1

�
�
�kC1
2

�
q
�k��

2
k �

�
�k
2

�

"
1C

�
uk;t
�k

�2
=�k

#� �kC1

2

;

(6)

where � is the gamma function and uk D Œuk;1; : : : ; uk;nk �
the vector of possible realizations of Uk . Assuming more-
over that there are no cross-correlations between the white
noise series, the joint pdf of U D ŒUT

1 ; : : : ;UT
N �
T with

possible realizations u D ŒuT1 ; : : : ;u
T
N �
T can be factorized
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into f .u/ D f .u1/ � � �f .uN /. Taking the natural logarithm
yields

logf .u/ D
NX

kD1

0
B@n log

2
64

�
�
�kC1
2

�
q
�k��

2
k�

�
�k
2

�

3
75

��k C 1

2

nkX

tD1
log

"
1C

�
uk;t
�k

�2
=�k

#!
; (7)

similar to the stochastic model considered in Alkhatib et
al. (2018). As this function includes also the observations,
the location parameters and the AR coefficients through (4),
it could be used to define a log-likelihood function for
the purpose of maximum likelihood (ML) estimation of all
model parameters. However, being based on the intricate
t-distribution model, this function cannot be maximized
conveniently, which problem is solved as follows. As shown
for instance in Koch and Kargoll (2013), the t-distribution
model (5) is equivalent to the conditional Gaussian variance-
inflation model

Uk;t jpk;t ind:� N.0; �2k=pk;t / (8)

involving independently, rescaled chi-square-distributed
latent variables

Pk;t ind:� �2�k
�k
: (9)

In practice, the values pk;t (which will later take the role
of weights within an iteratively reweighted least squares
algorithm) of the random variables Pk;t are unobservable,
so that the latter are considered as latent variables. The
distributions of the random variables (8)–(9) are defined by
the corresponding pdfs

f .uk;t jpk;t / D 1
q
2��2k=pk;t

exp

(
� u2k;t
2�2k=pk;t

)
:

and

f .pk;t / D
8
<

:
.
�k
2 /

�k
2

�.
�k
2 /

� .pk;t /
�k
2 �1 � e� �k

2 �pk;t if pk;t > 0;

0 if pk;t � 0

:

The previous independence assumptions allow then for the
formation of the joint, factorized pdf

f .u;p/ D
nkY

tD1
f .u1;t ; p1;t / � � �

nkY

tD1
f .uN;t ; pN ;t /

D
nkY

tD1
f .p1;t / f .u1;t jp1;t ; / � � �

nkY

tD1
f .pN;t / f .uN;t jpN;t /;

where the vector p D ŒpT1 ; : : : ;p
T
N �
T contains all of the

unknown “weights” as realizations of P D ŒPT
1 ; : : : ;PT

N �
T

with Pk D ŒPk;1, : : :, Pk;nk �T .
Viewing the observation equations (2) as a linear regres-

sion where the design matrix is given by an identity matrix,
we thus have that the entire model constitutes a special case
of the regression model adjusted in Alkhatib et al. (2018),
which is a multivariate extension of the model considered
in Kargoll et al. (2018). Now, in the general situation of a
Gauss-Helmert model (described in detail in Koch 2014a),
the location parameters � D Œ�T

1 ; : : : ;�
T
N �
T alongside

additional parameters � D Œ	1; : : : ; 	u�
T have to satisfy r

(possibly nonlinear) condition equations h.�;�/ D 0Œr�1�.

3 The Adjustment Procedure

Let us define � D Œ�1; : : : ; �N �
T as well as � D

Œ�1; : : : ; �N �
T . To estimate the unknown model parameters

� D Œ�T , �T , ˛T , � T , �T �T , we apply the method of
constrained ML estimation. In analogy to the model in
Alkhatib et al. (2018), the model of Sect. 2 gives rise to the
logarithmized pdf

log f .u;p/ D const: �
NX

kD1

nk

2
log.�2k /C

NX

kD1

nk

2
�k log

��k
2

�

�
NX

kD1

nkX

tD1

1

2

"
�k C

�
˛k.L/.`k;t � Ik;t�k/

�k

�2#
pk;t

�
NX

kD1

nk log�
��k
2

�
C

NX

kD1

nkX

tD1

1

2
.�k � 1/ logpk;t : (10)

Note that (10) does not depend on all of the parameters in �,
but only on the parameters � D Œ�T ;˛T ; � T ; �T �T . Next, we
define that logarithmic pdf to be the log-likelihood function
logL.� I `;p/, to be maximized under the constraints. Here,
` D Œ`T1 ; : : : ; `

T
N �
T is the vector of given numerical observa-

tions for the observables L D ŒLT
1 ; : : : ;LT

N �
T . To deal with

the missing data p, we establish an (iterative) EM algorithm
in which the E-step determines the conditional expectation

Q.�j� .s// D EP j`I� .s/ flogL.�I `;P/g

of the log-likelihood function with respect to the given
stochastic model for the latent variables P , using the given
observations ` alongside initial parameter values � .s/ known
from the preceding iteration step s. As the likelihood func-
tion, being defined by (10), is actually a function of u rather
than `, we condition directly on u besides � .s/, which values
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fix the dependent observations ` through the Eqs. (2) and (3).
Thus, the Q-function takes the form

Q.�j�.s// D const: �
NX

kD1

nk

2
log.�2k /C
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2
�k log
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��k
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2
.�k � 1/EP juI� .s/flogPk;t g;

where

EP juI� .s/fPk;t g D EPk;t juk;t I�.s/fPk;tg;
EP juI� .s/flogPk;t g D EPk;t juk;t I�.s/flogPk;t g:

The Q-function can then be shown to be
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where  is the digamma function and where each imputed
weight p.s/k;t , as the conditional expectation of the latent
variable Pk;t , is determined by

p
.s/

k;t D EPk;t juk;t I� .s/fPk;t g D �
.s/

k C 1

�
.s/

k C
�

˛
.s/
k .L/.`k;t�Ik;t�

.s/
k /

�
.s/
k

�2 :

(12)

The proof is the same as for the Q-function in Alkhatib
et al. (2018) if one replaces the parameters � there by �

and if one considers the specific linear functional model
hk;t .�/ D Ik;t�k . For shorter expressions, we define the
diagonal matrices

diag.W.s/

k / D
h
p
.s/

k;1=�
2
k ; : : : ; p

.s/

k;nk
=�2k

i
: (13)

The subsequent M-step maximizes this Q-function under
the constraints, which step we solve by maximizing the
Lagrangian

F .�;�j� .s// D Q.�j� .s//� �T h.�;�/; (14)

where � is the .r � 1/-vector of unknown Lagrange multi-
pliers. If the function h is nonlinear, we linearize it as shown
generally in Koch (2014a, Sect. 2); as we adjust N groups
of observations, we may introduce summations over these
groups and write

h.�;�/ � A	� C
NX

kD1
Bk.�k � `k/C mp (15)

with 	� D � � �.s/ and pseudo-misclosures

mp D m C
NX

kD1
Bk.`k � �

.s/

k /; (16)

where we define m D h.�.s/;�.s// to be the vector of
misclosures at the most recent estimates �.s/ and �.s/. Here,
A D @h.�.s/;�.s//=@� is the .r � u/-matrix of partial
derivatives of h.�;�/ with respect to � evaluated at �.s/

and �.s/, and Bk D @h.�.s/;�.s//=@�k is the .r � nk/-
matrix of partial derivatives of h.�;�/ with respect to �k

(also evaluated at �.s/ and �.s/). The first-order conditions for
the maximization of the Lagrangian (including linearization)
read

0Œu�1� D @F .�;�/

@	�
D �AT�; (17)
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with ek D `k � Ik�k and

Ek D

2

64
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:::

:::
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75 : (23)

Combining (18) with (22) yields
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Note that the decorrelation filter ˛k.L/ transforms the diago-
nal matrix Ik into the matrix Ik having an additional diagonal
for each AR coefficient. Now, (18) gives us

�k D
�
I
T

kW
.s/

k Ik
��1 �

BTk � C I
T

kW
.s/

k `k

�
; (25)

(19) can be written as the equation system

˛k D
�
ETkW

.s/

k Ek
��1

ETkW
.s/

k ek; (26)

and (20) yields with (4)

�2k D 1

nk
�
nkX

tD1
p
.s/

k;tu
2
k;t : (27)

The solution of (21) is obtained by means of a zero search
algorithm, using for instance MATLAB’s fzero.m routine.
Since each of the five parameter groups (a) .�;	�/, (b) �,
(c) ˛, (d) � 2 and (e) � can evidently be solved for from (a)
to (e) after determining values for the preceding group, we
may employ conditional maximization within the M-step;
together with the E-step, we thus have a so-called expectation
conditional maximization (ECM) algorithm (cf. McLachlan
and Krishnan 2008). To make sure that the parameters �

and � satisfy the (linearized) constraints (15), we adapt the
constrained EM algorithm proposed by Takai (2012) and iter-
ate the solution of (24)–(25) within the current M-iteration

step s C 1 until the misclosures m become sufficiently
small. After achieving this, that M-step is completed by
computing the solutions (26) using �

.sC1/
k to determine e.sC1/

and E.sC1/, then the solutions (27) using ˛
.sC1/
k to determine

u.sC1/, and finally the solutions (21). Having thus obtained
the solution �.sC1/, the next E-iteration step is executed by
computing new weights p.sC1/k;t . As indicated in McLachlan
and Krishnan (2008), it is more efficient to solve for �k by
maximizing the log-likelihood function (7) with respect to
�k, leading to the first-order condition

0 D log �.sC1/k C 1 �  
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with
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k;t D �

.sC1/
k C 1
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k C

�
u.sC1/k;t =�

.sC1/
k

�2 : (29)

With this modification, the previous ECM algorithm turns
into an expectation conditional maximization either (ECME)
algorithm, which is constrained in our case. The E- and
M-steps are iterated until a preset maximum number of
iterations is reached or the maximum difference between
subsequent solutions is sufficiently small, say "� D 10�4
concerning �1; : : : ; �N and " D 10�8 for the other param-
eters. In the sequel, the estimates of the final EM step are
denoted by O�, O�k , Ǫ k , O�2k and O�k . Note that O�k may be viewed
as the adjusted observations Ò

k .

4 Monte Carlo Results

The purpose of the following Monte Carlo simulation is to
evaluate the estimation bias within a closed-loop simulation
based on a true model with fixed, known parameter values.

4.1 Simulation Setup

To generate n observations, we first determined n=2 true
observation points with coordinates x D Œx1; : : : ; xn=2�

T and
y D Œy1; : : : ; yn=2�

T on a 2D circle with center .xc; yc/ D
.1; 1/ and radius r D 2 by means of the equations

xt D xc C r cos.
t /; (30)

yt D yc C r sin.
t /; (31)
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with equidistant radians values

– 
t D 0:2; : : : ; 10 with step size 0:2 for n=2 D 50,
– 
t D 0:02; : : : ; 10 with step size 0:02 for n=2 D 500,
– 
t D 0:002; : : : ; 10with step size 0:002 for n=2 D 5;000.

Regarding the noise, we generated 5n random numbers
(using MATLAB’s trnd.m routine) from the t-distribution
with scale factor �21 D 0:0012 and degree of freedom �1 D
2:5 for the x-coordinates, as well as from the t-distribution
with scale factor �22 D 0:0012 and degree of freedom �2 D 3

for the y-coordinates. The resulting white noise series u1 and
u2 were then correlated by means of an AR(1) process with
coefficient ˛1 D �0:6 and an AR(1) process with coefficient
˛2 D 0:5, respectively, using (3). We extracted the last
n=2 values from each of the resulting colored noise series,
discarding the beginnings in order to minimize the warm-up
effect caused by the initial process values e1;0 D e2;0 D 0.
The resulting vectors e1 and e2 were then added to x and
y, giving the observation vectors `1 and `2. This generation
procedure was repeated for 1; 000 times, as part of a Monte
Carlo closed-loop simulation.

4.2 Estimation Results

Combining (30) and (31) results in the well-known circle
equation

.xt � xc/
2 C .yt � yc/

2 D r2; (32)

which, however, is generally not satisfied by the generated
or measured coordinates xt and yt due to the noise that
they contain. Therefore, these coordinates are modeled as
realizations of random variables

Xt D L1;t D �1;t C E1;t ; (33)

Yt D L2;t D �2;t C E2;t ; (34)

according to (1), and the values xt and yt in (32) are
replaced by the unknown location parameters �1;t and �2;t ,
respectively. These substitutions give us the constraints
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2

64
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:::
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3

75
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64
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3
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2

64
0
:::

0

3
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(35)

with � D Œxc; yc; r�
T . The model parameters �, �, ˛1, ˛2,

�21 , �22 , �1 and �2 can be estimated by means of the algorithm

described in Sect. 3, using the initial values x.0/c D y
.0/
c D

0:7, r.0/ D 1:7, �.0/1;t D xt , and �.0/2;t D yt (t D 1; : : : ; n=2).
Consequently, the linearization at the corresponding initial
Taylor point is based on the Jacobi matrices
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The results of these adjustments, alongside the number of
EM iteration steps and the mean of the root mean square error

RMSE D
s�� O�1

O�2

	
�
�
x
y

	�T �� O�1

O�2

	
�
�
x
y

	�
(39)

are summarized in Table 1. The parameter values of the three
estimated circle parameters are correct up to three digits
already for 100 observations, and their biases are very small
for 1,000 or more observations. Figure 1 shows that the

Table 1 Results of the 1;000 adjustments of a 2D circle with center
xc D 1, yc D 1 and radius r D 2 with AR(1) errors in both dimensions
(˛1 D �0:6, ˛2 D 0:5) as well as Student errors in both dimensions
(�1 D 2:5, �2 D 3, �21 D �22 D 0:0012/ for n D 100=1;000=10;000

observations

n 100 1,000 10,000

Mean(EM steps) 82 76 68

Mean( Oxc) 1.00000061 0.99999987 1.00000064

Mean( Oyc ) 1.00001679 1.00000949 0.99999974
Mean(Or ) 1.99928616 2.00000233 1.99999850

Mean( Ǫ1) �0.5102 �0.5761 �0.5848

Mean( Ǫ2) 0.2196 0.3867 0.4175

Mean(O�1) 0.00066 0.00068 0.00069
Mean(O�2) 0.00052 0.00053 0.00053

Median(O�1) 2.9804 2.0504 2.0309

Median(O�2) 2.3854 1.7531 1.7384

Mean(RMSE) 0.00114 0.00169 0.00173

The shown quantities are: (1) The number of EM steps carried out,
(2) Mean( Oxc ), (3) Mean( Oyc ) and (4) Mean(Or ) are, respectively, the
(arithmetic) means of the estimated coordinates of the circle center
and of the radius, (5) Mean( Ǫ1) and (6) Mean( Ǫ2) are the means of
the estimated AR coefficients, (7) Mean(O�1) and (8) Mean(O�2) are the
means of the square roots of estimated scale factors, (9) Median(O�1) and
(10) Median(O�2) are the medians of the estimated degrees of freedom,
and (11) Mean(RMSE) is the mean of the root mean square error defined
by (39)
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Fig. 1 Comparison of the estimated AR parameters ˛1 and ˛2 for
different sample sizes: 100 (black), 1,000 (magenta) and 10,000 (blue)

variability of the two estimated AR parameters decreases
strongly with increasing sample size n, whereas their biases
decrease rather slowly and are still quite large for 10; 000
observations (see Table 1). However, the two qualitatively
and quantitatively very different AR(1) processes are sep-
arated well by the algorithm. The biases of the estimated
scale factors and of the estimated degrees of freedom could
not be decreased by increasing the number of observations.
For about 5% of the Monte Carlo samples the estimated
degrees of freedom turned out to be rather large. As such
large values would greatly distort the mean value, the median
of the estimates throughout all Monte Carlo runs was taken
as a measure of location. Figure 2 shows for the Monte Carlo
simulation based on 10,000 observations that the medians of
the two estimated degrees of freedom indeed closely match
the peaks of the histogram plots, justifying this choice of
measure. The mean RMSE values indicate that an overall
good approximation of the data by the adjusted circle is
achieved already for n D 100 observations.

4.3 Outlier Identification

The weights imputed within the adjustment by the EM
algorithm can be used to identify outliers. In the following we
demonstrate a graphical procedure for a part of a simulated
time series. Figure 3 (top) shows the 500 x-coordinates gen-
erated within a single Monte Carlo run based precisely on the
parameter values of the previous simulation setup, with the
exception that the larger scale factors �21 D �22 D 0:12 were
used in order to visually bring out the outliers more clearly.

Fig. 2 Histogram plots of the estimated degrees of freedom for the
Monte Carlo simulation based on 10,000 observations. The vertical
lines indicate the location of the medians (see also Table 1), which are
near the peaks of the histograms

Fig. 3 Display of the generated x-coordinates within a single Monte
Carlo run and the corresponding weights after the adjustment; the red
crosses in the upper subplot indicate the observations associated with
the 20 least weights (red crosses in the lower subplot)

After adjusting the entire data set of x- and y-coordinates the
weights p1;t corresponding to this first group of observations
were also plotted (see Fig. 3, bottom). All weights less than
0.1 were marked by red crosses, and the observations with
the same indexes t were then also marked by red crosses. It
is seen that all of these small weights correspond to visibly
outlying x-coordinates. Since the transition from small to
large weights is rather smooth, the separation of inliers from
outliers could be achieved via the definition of a threshold,
(in analogy to the “3� rule”, cf. Lehmann 2013) or by means
of an additional classification procedure (such as the method
suggested by Koch 2012). As the algorithm works reasonably
well in a controlled numerical experiment, we apply it in the
following to a more challenging real data set.

5 A Numerical Example Based on Real
Data

We adjust GNSS observations of the circularly and con-
stantly rotating multi-sensor system (MSS) described in Paf-
fenholz (2012), given in an North-East-Up (NEU) coordinate



86 B. Kargoll et al.

Fig. 4 Excess of the estimated periodograms of the decorrelated resid-
uals for the North (red) and the East (blue) component based on the
AR(12) model over the theoretical white noise periodogram (constant
zero); approximate 99% significance bounds are displayed as the two
heavy black lines

system. We previously approximated this dataset by a 3D
circle model parameterized in such a way that the obser-
vation equations are conform with a Gauss-Markov model
(Alkhatib et al. 2018). We now use the circle model (32)
instead and employ the Gauss-Helmert model (33)–(35) as
described in Sects. 2–4, after projecting the 3D points into
the North-East-plane. The total number of observations is
given by n D 15;792. As AR models of orders 15 were
previously found to be adequate to capture the colored
measurement noise in the North and East component, we
tried out orders between 10–20 and selected the smallest
order (p D 12) for which Bartlett’s periodogram-based
white noise test (described in Kargoll et al. 2018) is accepted
for both components upon convergence of the EM algorithm
of Sect. 3 (see Fig. 4). For this AR model order, the algorithm
converged after 60 EM steps. The estimated AR coefficients
are shown in Table 2; the rather small values indicate that the
processes are stable and do not cause numerical problems
during the filtering steps. Concerning the 3D circle model
fitted in Alkhatib et al. (2018), the optimal AR model orders
for the comparable North and East components were p D 15

each, but the periodogram excesses of the corresponding esti-
mated AR models exceeded the 99 % significance bounds,
so that these models were not fully satisfactory. Thus, the
estimated AR models with respect to the current 2D model
are both adequate in view of the accepted white noise tests
and more parsimonious due to the smaller model orders. The
estimated degrees of freedom O�1 D 3 and O�2 D 3 indicate
substantial heavy-tailedness of the white noise components.
Table 3 shows that the estimated radius Or and circle center
coordinates in the North-East (x–y) plane differ only slightly
(�0:3mm) between the 3D and 2D circle model. In contrast,
the estimated scale factors and degrees of freedom with
respect to these two coordinate components differ greatly
between the two circle models. As the fitted AR models and
thus the colored noise characteristics have been found to be

Table 2 Estimated coefficients of the AR(12) models fitted to the
North ( Ǫ1;j ) and East ( Ǫ2;j ) component

j Ǫ1;j Ǫ2;j j Ǫ1;j Ǫ2;j
1 0:2522 0:0284 7 0:0272 0:0844

2 0:0991 0:1327 8 0:0235 0:0368

3 0:0544 0:0677 9 0:0739 0:0488

4 0:0751 0:0326 10 0:0380 0:0358

5 0:0209 0:0952 11 0:0478 0:0802

6 0:0670 �0:0013 12 0:0965 0:0565

Table 3 Estimated parameters of the 3D circle model and t-
distributions fitted in Alkhatib et al. (2018) that can be directly com-
pared with the estimates of the current 2D model and t-distributions
(the estimated rotation angles and the center coordinate, scale factor as
well as degree of freedom with respect to the Up/z-component of the
3D circle model do not occur in the 2D circle model and are therefore
omitted)

Parameter 3D circle model 2D circle model

Or 0.2971 m 0.2973 m

Oxc 12.2340 m 12.2337 m

Oyc �16.6317 m �16.6319 m

O�21 7:3 � 10�7 m2 1:6 � 10�7 m2

O�22 1:4 � 10�6 m2 3:3 � 10�7 m2

O�1 120 3

O�2 88 3

quite different for the two adjustment models, differences of
the white noise models in terms of scale factors and degrees
of freedom appear to be a reasonable consequence. As the
results of the previous Monte Carlo simulation showed a
quite large variability of the estimates for these parameters,
it is currently unclear how significant the observed numerical
differences actually are.

6 Summary, Conclusions, and Outlook

We extended the Gauss-Helmert model with Student errors
to situations, where the random deviations of different obser-
vation groups follow independent AR processes, where the
white noise components of each process are modeled by a
Student distribution with individual scale factor and degree
of freedom. We formulated the optimization problem within
the framework of constrained ML estimation, leading to a
computationally convenient EM algorithm. The linearization
of the condition equations was shown to be simply nested
within the conditional maximization step with respect to
the affected parameters. The conditional maximization steps
with respect to the AR coefficients, the scale factors and the
degrees of freedoms are similar to those of a comparable
EM algorithm for the previously established multivariate
regression time series models with AR and Student errors.
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We showed that the proposed algorithm produces reason-
able estimates in a numerical simulation. The biases of the
three estimated circle parameters are very small already for
a a number of observations as small as 1,000. The finding
that the biases of the estimated AR coefficients decrease
rather slowly, being still quite large for 10,000 observations,
suggests that the number of observations should be much
larger than that (say, n > 1;000;000) in practice. The
modeling of AR processes with higher orders should then
also be based on larger numbers of observations, as observed
in Kargoll et al. (2018). As to the reason for the persistent
bias it could be investigated in the future whether the warm-
up effect due to the simple choice of zeros for the initial
values of the AR processes plays an important role. The focus
of the presented closed-loop simulation was to evaluate the
bias of the estimator but not the robustness of the estimator
against AR model misspecification. As the AR model order
is usually unknown in practical situations it seems to be a
worthwhile task, as part of future work, to study the effect of
a misspecified AR model order on the estimation of the other
model parameters. Such research related to the problem of
model selection could include the application of information
criteria (besides the white noise tests), which were also
beyond the scope of the current contribution. The biases of
the estimated scale factors and of the estimated degrees of
freedom could not be decreased by increasing the number of
observations, which problem should also be investigated in
the future. Despite these shortcomings it could be demon-
strated by a numerical example that small weights imputed
by the EM algorithm correspond to visible outliers in the
given time series. The application of the proposed adjustment
procedure to the fitting of a circle to a data set consisting
of real GNSS observations led to more adequate and more
parsimonious AR models than the previous approximation of
that data by means of a fundamentally different adjustment
procedure.

The investigated Gauss-Helmert model with AR and Stu-
dent errors appears to be a useful framework in the context
of multivariate time series analysis of sensor data affected
by auto-correlations and outliers. In case such phenomena
do not play a significant role, the Student distribution tends
towards a Gaussian distribution (since the estimated degree
of freedom takes a large value), and the estimated AR models
are eliminated through the aforementioned model selection
procedure. Thus, the classical Gauss-Helmert model may be
viewed as a special case of the presented model when the
observations can be grouped in a certain way.
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HowAbnormal Are the PDFs of the DIA Method:
A Quality Description in the Context of GNSS

Safoora Zaminpardaz and Peter J. G. Teunissen

Abstract

The DIA-method, for the detection, identification and adaptation of modeling errors, has
been widely used in a broad range of applications including the quality control of geodetic
networks and the integritymonitoring of GNSSmodels. The DIA-method combines two key
statistical inference tools, estimation and testing. Through the former, one seeks estimates
of the parameters of interest, whereas through the latter, one validates these estimates and
corrects them for biases that may be present. As a result of this intimate link between
estimation and testing, the quality of the DIA outcome Nx must also be driven by the prob-
abilistic characteristics of both estimation and testing. In practice however, the evaluation
of the quality of Nx is never carried out as such. Instead, use is made of the probability
density function (PDF) of the estimator under the identified hypothesis, say Oxi , thereby thus
neglecting the conditioning process that led to the decision to accept the i th hypothesis.
In this contribution, we conduct a comparative study of the probabilistic properties of Nx and
Oxi . Our analysis will be carried out in the framework of GNSS-based positioning. We will
also elaborate on the circumstances under which the distribution of the estimator Oxi provides
either poor or reasonable approximations to that of the DIA-estimator Nx.

Keywords

Detection, identification and adaptation (DIA) � DIA-estimator � Global Navigation Satel-
lite System (GNSS) � Probability density function (PDF) � Statistical testing

1 Introduction

In the DIA-method for the detection, identification and
adaptation of mismodelling errors, next to estimation of
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parameters of interest, a statistical testing is also exercised
to check the validation of underlying model. The actual
DIA outcome is then the one which rigorously captures this
combination of estimation and testing, and was introduced
as the DIA estimator in Teunissen (2017b). The DIA-method
has been widely used in a variety of applications, including
the quality control of geodetic networks and the integrity
monitoring of GNSS models, see e.g. DGCC (1982),
Teunissen (1990), Salzmann (1995), Tiberius (1998), Perfetti
(2006), Khodabandeh and Teunissen (2016), Zaminpardaz
et al. (2015). As a result of the combined estimation-testing
scheme of the DIA-method, the DIA outcome Nx must also be
evaluated on the basis of characteristics of both estimation
and testing. In practice however, the evaluation of the quality
of Nx is carried out based upon the probability density function
(PDF) of the estimator under the identified hypothesis, say
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Oxi , without regard to the conditioning process that led to the
decision of accepting the hypothesisHi . In this contribution,
a comparative study of the probabilistic properties of Nx
and Oxi is conducted to highlight the impact of neglecting
the estimation-testing link on follow-on quality evaluations
and to elaborate on the circumstances under which such
negligence may still be considered acceptable.

This contribution is organized as follows. We first give a
brief overview of the Detection, Identification, and Adapta-
tion procedure in Sect. 2. Using a partitioning of the misclo-
sure space, the DIA-estimator and its statistical distribution
are then presented in Sect. 3. The difference between the PDF
of the DIA-estimator and that of Oxi is discussed and shown
to be driven by the DIA-method decision probabilities which
can be categorized as probability of correct acceptance (CA),
of false alarm (FA), of correct/missed detection (CD/MD)
and of correct/wrong identification (CI/WI). In Sect. 4, we
outline the estimation and testing strategies that we use for
our analyses. Section 5 contains our numerical evaluations
of the distribution of the DIA-estimator Nx and its normally-
distributed individual components Oxi (i D 0; 1; : : : ; k). We
graphically demonstrate, for binary hypothesis testing, i.e.
H0 andH1, applied to a single-unknown, single-redundancy
observational model, the PDF of Nx, Ox0 and Ox1 under both
H0 and H1. The distributional comparison is then continued
for a Global Navigation Satellite System (GNSS) single
point positioning (SPP) model where multiple-hypothesis
testing is involved. Finally a summary with conclusions are
presented in Sect. 6.

2 DIA Overview

As our point of departure, we first formulate our statistical
hypotheses. The hypothesis believed to be true under nom-
inal working conditions is referred to as the null hypothe-
sis. Denoted by H0, the null hypothesis is assumed to be
given as

H0 W E.y/ D A x ; D.y/ D Qyy (1)

with E.�/ and D.�/ denoting the expectation and dispersion
operators, respectively. According to (1), under H0, the
expectation of the normally-distributed random vector of
observables y 2 R

m is characterized through the unknown
parameter vector x 2 R

n and the full-rank design matrix
A 2 R

m�n (rank.A/ D n), while the dispersion of the
observables y is described by the positive-definite variance-
covariance matrix Qyy 2 R

m�m. The redundancy of H0 is
r D m � rank.A/ D m � n. The corresponding estimator of
x on the basis of (1) is denoted by Ox0.

The observational model in (1) could be misspecified in
several ways like, for example, E.y/ ¤ A x and/or D.y/ ¤

Qyy . Here we assume that a misspecification is restricted
to an underparametrization of the mean of y, which is the
most common error that occurs when formulating the model
(Teunissen 2017a). Thus, the alternative hypothesis Hi is
formulated as

Hi W E.y/ D A x C Ci bi ; D.y/ D Qyy (2)

where bi 2 R
q is the unknown bias vector while Ci 2 R

m�q

is known which together with the design matrix A form a
full-rank matrix, i.e. rank.ŒA; Ci �/ D n C q with q � m �
n. The corresponding estimator of x on the basis of (2) is
denoted by Oxi .

In practical applications, we usually have to consider
several alternative hypotheses about the physical reality at
hand. For example when modeling GNSS observations, we
may need to take into account hypotheses describing code
outliers, phase cycle slips, ionospheric gradients, etc. The
statistical validity ofH0 and the multiple, say k, alternatives
Hi .i D 1; : : : ; k/ is usually checked through the following
three steps of detection, identification and adaptation (DIA)
(Baarda 1968; Teunissen 1990).

1. Detection The null hypothesis undergoes a validity check
using an overall model test, without considering a par-
ticular set of alternatives. If H0 is accepted, then Ox0 is
provided as the estimate of x.

2. Identification In case H0 is rejected, a search is carried
out among the specified alternative hypotheses Hi .i D
1; : : : ; k/ with the purpose of pinpointing the potential
source of model error. In doing so, one of the alternative
hypotheses, say Hi , is identified as the suspected model
error.

3. Adaptation The identified hypothesis Hi becomes the
new null hypothesis. The H0-based inferences are then
accordingly corrected and Oxi is provided as the estimate
of x.

The required information to realize the above steps of the
DIA-method is contained in the misclosure vector t 2 R

r

given as

t D BT yI Qtt D BT QyyB (3)

where B 2 R
m�r is a full-rank matrix, with rank.B/ D r ,

such that ŒA; B� 2 R
m�m is invertible and AT B D 0. With

y
Hi� N .Ax C Cibi ; Qyy/ for i D 0; 1; : : : ; k and C0b0 D 0,

the misclosure vector is then distributed as

t
Hi� N .�ti D BT Cibi ; Qtt /; for i D 0; 1; : : : ; k

(4)

An unambiguous testing procedure can be established
through unambiguously assigning the outcomes of t to the



How Abnormal Are the PDFs of the DIA Method: A Quality Description in the Context of GNSS 91

statistical hypotheses Hi for i D 0; 1; : : : ; k, which can
be realized through a partitioning of the misclosure space
(Teunissen 2017b). As such, let Pi 2 R

r .i D 0; 1; : : : ; k/ be
a partitioning of the misclosure space Rr , i.e. [k

iD0Pi D R
r

and Pi \ Pj D ; for i ¤ j , then the unambiguous testing
procedure is defined as follows (Teunissen 2017b)

Select Hi ” t 2 Pi ; for i D 0; 1; : : : ; k (5)

3 On the Outcome of the DIAMethod

Looking at the three steps of the DIA-method presented in
Sect. 2, it can be realized that estimation and testing are
combined in the DIA procedure. To gain a better appreciation
of this combination, the DIA procedure is schematically
visualized in Fig. 1. One can then find out that this is indeed
the testing decision which determines how to estimate the
unknown parameter vector x. Therefore, the actual DIA
outcome, denoted by Nx, will inherit the characteristics of not
only the estimation scheme but also the testing scheme as
well.

3.1 DIA Estimator

The combined estimation-testing scheme of the DIA-method
can be captured in one single DIA estimator which was
introduced in Teunissen (2017b) and is formulated as

Nx D
kX

iD0

Oxi pi .t/ (6)

in which the contribution to Nx from the estimation scheme
is captured by the individual estimators Oxi (i D 0; 1; : : : ; k),
and from the testing scheme by the indicator functions pi .t/

(i D 0; 1; : : : ; k) defined as pi .t/ D 1 if t 2 Pi and
pi .t/ D 0 elsewhere. The DIA outcome Nx is therefore a
binary weighted average of all the solutions corresponding
with the hypotheses at hand.We note that although Nx is linear
in the estimators Oxi (i D 0; 1; : : : ; k), it is nonlinear in t as
the indicator functions pi .t/ (i D 0; 1; : : : ; k) are nonlinear
functions of t . As a consequence, even if all the individual
estimators Oxi (i D 0; 1; : : : ; k) are normally distributed, Nx
does not have a normal distribution.

3.2 Abnormality of the PDF of Nx

A general probabilistic evaluation of the DIA-estimator is
presented in Teunissen (2017b), see also Teunissen et al.
(2017). With (6), the probability density function (PDF) of
Nx, under an arbitrary hypothesis like Hj , can be expressed
in terms of the probabilistic properties of the estimators Oxi

(i D 0; 1; : : : ; k) and t as

f Nx.� jHj / D
kX

iD0

Z

Pi

f Oxi ;t .�; � jHj / d� (7)

where f Oxi ;t .�; � jHj / is the joint PDF of Oxi and t under
Hj . The abnormality of the DIA-estimator PDF can clearly
be seen in the above equation. It is important to note,
upon application of the DIA-method, that all the follow-
on evaluations and inferences must be derived from the
probabilistic properties of Nx which are captured by its PDF
in (7). In practice however, if a certain hypothesis, say Hi ,
is selected through the testing procedure, use is made of
the PDF of the estimator under the selected hypothesis,
i.e. Oxi , neglecting the conditioning process that led to the
decision to accept this hypothesis, see e.g. Salzmann (1995),
Klein et al. (2018).

To get a better insight into what such negligence could
incur, we highlight the difference between the PDF of the
DIA-estimator Nx and that of the estimator Oxi , which, under
Hj , can be expressed in

f Nx.� jHj / � f Oxi
.� jHj / D˚

f Nxjt…Pi
.� jt … Pi ; Hj / � f Oxi jt…Pi

.� jt … Pi ;Hj /
� �˚

1 � P.t 2 Pi jHj /
� (8)

in which P.�/ denotes the probability of occurrence of the
event within parentheses. The above expression results from
an application of the conditional probability rule and the fact
that the event . Nxjt 2 Pi / is equivalent to . Oxi jt 2 Pi /. As (8)
shows, the difference between f Nx.� jHj / and f Oxi

.� jHj / is
governed by the difference between the conditional PDFs
f Nxjt…Pi

.� jt … Pi ; Hj / and f Oxi jt…Pi
.� jt … Pi ;Hj / as

well as the probability P.t 2 Pi jHj /. If, for instance, the
probability P.t 2 Pi jHj / gets close to one, the non-normal
PDF f Nx.� jHj / gets closer to the normal PDF f Oxi

.� jHj /.
Depending on the values of i and j , probabilities P.t 2

Fig. 1 Schematic illustration of
the DIA-method
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Pi jHj / (i ; j D 0; 1; : : : ; k) can be categorized as

PCA D P.t 2 P0jH0/ Pro. correct acceptance
PFA D 1 � PCA Pro. false alarm
PMDj D P.t 2 P0jHj ¤0/ Pro. missed detection
PCDj D 1 � PMDj Pro. correct detection
PCIj D P.t 2 Pj ¤0jHj ¤0/ Pro. correct identification
PWIj D PCDj � PCIj Pro. wrong identification

(9)

where ‘Pro.’ stands for ‘Probability of’. Distinguished by
index j , the last four probabilities are different from alter-
native to alternative. Also note that the last two probabili-
ties become of importance when more than one alternative
hypothesis need to be considered. For the single alternative
case, sayH1, we have PCI1 D PCD1 and PWI1 D 0.

4 Estimation and Testing Strategy

Here, we outline the estimation and testing method as
employed in our numerical analysis of the following section.
We also remark that our evaluations will be carried out for
scalar biases, i.e. bi 2 R, revealing that Ci will take the form
of a vector ci 2 R

m.

Estimation To estimate the unknown parameters, use is
made of the Best Linear Unbiased Estimation (BLUE)
method. As such, Ox0 corresponding with (1) and Oxi

corresponding with (2) are given by

Ox0 D ACy D .AT Q�1
yy A/�1AT Q�1

yy y

Oxi D NAC
i y D . NAT

i Q�1
yy

NAi /
�1 NAT

i Q�1
yy y

(10)

where the superscript ‘C’ denotes the BLUE-inverse,
NAi D P ?

ci
A and P ?

ci
D Im � ci .c

T
i Q�1

yy ci /
�1cT

i Q�1
yy .

Assuming that the observation vector y is normally
distributed, Ox0 and Oxi in (10), as linear functions of y,
have also normal distributions. It can be shown, through the
Tienstra transformation (Tienstra 1956; Teunissen 2017b),
that all the information in the observation vector y is
contained in the two independent vectors Ox0 and t (cf. 3).
The estimator Oxi , as a linear function of y, can then be
expressed as a linear function of Ox0 and t as

Oxi D Ox0 � Li t (11)

in which Li D ACci .c
T
ti

Q�1
t t cti /

�1cT
ti

Q�1
t t with cti D BT ci .

Testing Our testing procedure is specified through defining
the regions P0 and Pi¤0 (cf. 5) as follows

P0 D
n
t 2 R

r
ˇ̌
ˇ ktk2

Qtt
� k˛;r

o

Pi¤0 D
�

t 2 R
r=P0

ˇ̌
ˇ̌ jwi j D max

j 2f1;:::;kg
jwj j

�
; i D 1; : : : ; k

(12)

in which k:k2
Qtt

D .:/T Q�1
t t .:/, ˛ is the user-defined false

alarm probability PFA, k˛;r is the ˛-percentage of the central
Chi-square distribution with r degrees of freedom, and wi is
Baarda’s test statistic computed as (Baarda 1967; Teunissen
2000)

wi D cT
ti

Q�1
t t t

q
cT

ti Q�1
t t cti

I i D 1; : : : ; k (13)

5 Numerical Evaluations

In this section, we emphasize the discrepancies between the
non-normal PDF of Nx and the normal PDFs of its individual
components, i.e. Oxi (i D 0; 1; : : : ; k). In addition, we
investigate situations in which the abnormality of the PDF
of Nx gets mitigated. In doing so, we first consider a simple
observationalmodel with only a single alternative hypothesis
H1, and then continue with a multiple-hypothesis example in
the context of GNSS single point positioning.

5.1 Single-Alternative Case

Suppose that under H0, the observational model in (1)
contains only one unknown parameter (n D 1) with one
redundancy (r D 1), i.e. x 2 R and t 2 R. We furthermore
assume that there is only one single alternative hypothesis,
sayH1, against which the null hypothesisH0 is to be tested.
For this binary example, the partitioning of the misclosure
space is formed by two regions, P0 and its complement Pc

0 .
The DIA-estimator is then constructed by the two estimators
Ox0 and Ox1 and the misclosure t as

Nx D Ox0 p0.t/ C Ox1.1 � p0.t// (14)

To compute the PDF of Nx, we assume that t , Ox0 and Ox1 are
distributed as

t
H0� N .0; �2

t / ; t
H1� N .�t1 ; �2

t /

Ox0
H0� N .0; �2

Ox0
/ ; Ox0

H1� N .L1�t1 ; �2
Ox0

/

Ox1
H0� N .0; �2

Ox0
C L2

1�2
t / ; Ox1

H1� N .0; �2
Ox0

C L2
1�2

t /

(15)

for some non-zero scalar �t1 . Note that Ox1 is unbiased
both under H0 and H1. Under H0, there is no bias to be
considered, and under H1, Ox1 is obtained based on a model
in which the bias b1 has already been taken into account.
With (8), (14) and (15), the difference between the PDF
of the DIA-estimator Nx and the normal PDFs of Ox0 and Ox1

is driven by �t , � Ox0
, L1, P0 and the value of �t1 which

comes into play under the alternative hypothesis H1. In the
following, we show how the PDF differences in (8) behave
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Fig. 2 PDF of the DIA-estimator Nx versus those of Ox0 and Ox1 under
H0 in (14), given �t D p

2m, �
Ox0

D p
0:2m and L1 D 1. blue:

f
Ox0

.� jH0/; black: f
Ox1

.� jH0/; red dashed-dotted: f
Nx.� jH0/ for PFA D

0:2; red solid: f
Nx.� jH0/ for PFA D 0:05

as function of some of these parameters under both H0 and
H1. Note that instead of P0, we equivalently work with the
probability of false alarm PFA D P.t 2 Pc

0 jH0/, which is
usually a priori set by the user.

Evaluation Under H0 Given �t D p
2m, � Ox0

D p
0:2m

and L1 D 1, Fig. 2 shows the normal PDFs of Ox0 (blue) and
Ox1 (black) as well as the PDF of Nx (red) underH0. The DIA-
estimator PDF is illustrated for two different values of PFA
distinguished by their line style; dashed-dotted: PFA D 0:2,
solid: PFA D 0:05. As it can be seen, the PDF of the DIA-
estimator does not resemble a normal distribution, but in
fact a multi-modal distribution. Like the shown two normal
PDFs, the red graphs are symmetric w.r.t. the center, which
means that the DIA-estimator is unbiased under the null
hypothesis, i.e. E. NxjH0/ D 0. It is observed that the PDF of
the DIA-estimator gets close to the normal PDF of Ox0 as the
false alarm probability decreases. It indeed makes sense as
decreasing the false alarm probability means that it is getting
more likely that the testing procedure leads to the decision to
correctly accept the null hypothesis. This in turn will result
in the contribution of Ox0 to the construction of Nx getting
larger. In the extreme case of PFA D 0 (no testing), the DIA-
estimator PDF becomes identical to the normal PDF of Ox0.

If the data precision Qyy gets scaled by a factor of � 2
R

C, then the precision of Ox0, Ox1 and t will also change by
exactly the same factor � (cf. 3, 10). Shown in Fig. 3 are
the PDFs of Ox0, Ox1 and Nx under H0 given �t D � � p

2m,
� Ox0

D � � p
0:2m, L1 D 1 and PFA D 0:1. The left panel

corresponds with � D 1 while the right panel shows the
results of � D 1:5. In agreement with the normal PDFs of
Ox0 and Ox1, the PDF of Nx gets less peaked around the true
value when the data in use gets less precise (� increases).

EvaluationUnderH1 For our analysis underH1, we need to
consider some value for �t1 as well. With P0 in (12) and the
definition of correct detection probability in (9), the larger
the value of b1 (bias under H1) and thus �t1 , the higher
is the probability of correct detection. Figure 4 shows, for
�t D p

2m, � Ox0
D p

0:2m, L1 D 1 and PFA D 0:1, the
graphs of f Ox0

.� jH1/, f Ox1
.� jH1/ and f Nx.� jH1/. The panels,

from left to right, correspond with �t1 D 3m, �t1 D 4m and
�t1 D 7m. Given on top of each panel is the corresponding
probability of correct detection. We note that the PDF of the
DIA-estimator under H1 is no longer symmetric around the
center, revealing that the DIA-estimator under H1 is biased,
i.e. E. NxjH1/ ¤ 0. The larger the probability of correct
detection gets, the closer the PDF of the DIA-estimator
gets towards the normal PDF of Ox1. And ultimately with
a correct detection probability larger than 0.99, the PDF
f Nx.� jH1/ almost coincides with the PDF f Ox1

.� jH1/ which
indeed makes sense as more than 99% of the time, the
testing procedure leads to H1 being selected. We remark
that the probability mass of f Nx.� jH1/ becomes more centred
around the correct value, or equivalently the DIA-estimator
becomes less biased under H1, for higher correct detection
probabilities which can be achieved as a result of larger
biases (as shown in Fig. 4), larger false alarm probabilities
and/or more precise data.

5.2 Multiple-Alternative Case

In Sect. 5.1, we discussed the properties of the DIA-estimator
through some simple examples of binary hypothesis testing
applied to a single-unknown, single-redundancymodel. With
the insight gained from these examples, we now consider the
DIA-estimator in the context of a more practical application,
i.e. the well-known GNSS single-point positioning (SPP).
Assuming that a single GNSS receiver is tracking the pseu-
dorange observations of m satellites on a single frequency,
the SPP model under the null hypothesis reads

H0 W E.y/ D Œ�G em�

�
x

dt

�
; D.y/ D �2

y Im

(16)

with G 2 R
m�3 containing the receiver-satellite unit direc-

tion vectors as its rows, em 2 R
m containing ones and Im 2

R
m�m being the identity matrix. There are four unknown

parameters to be estimated (n D 4); x 2 R
3 the receiver
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Fig. 3 PDF of the DIA-estimator
Nx versus those of Ox0 and Ox1 under
H0 in (14), given
�t D � � p

2m,
�
Ox0

D � � p
0:2m, L1 D 1 and

PFA D 0:1 for [left] � D 1 and
[right] � D 1:5. blue: f

Ox0
.� jH0/;

black: f
Ox1

.� jH0/; red: f
Nx.� jH0/

0

0.2

0.4

0.6

0.8

1

P
D
F

0

0.2

0.4

0.6

0.8

1

P
D
F

50-5 50-5

-5 0 5
0

0.2

0.4

0.6

0.8

1

P
D
F

-5 0 5
0

0.2

0.4

0.6

0.8

1

P
D
F

-5 0 5
0

0.2

0.4

0.6

0.8

1

P
D
F

PCD = 0. P86 CD = 0. P88 CD > 0.99

Fig. 4 PDF of the DIA-estimator Nx versus those of Ox0 and Ox1 underH1

in (14), given �t D p
2m, �

Ox0
D p

0:2m, L1 D 1 and PFA D 0:1

for, [left] �t1 D 3m, [middle] �t1 D 4m and [right] �t1 D 7m.

blue: f
Ox0

.� jH1/; black: f
Ox1

.� jH1/; red: f
Nx.� jH1/. The corresponding

correct detection probabilities are given on top of each panel

coordinate components increments and dt 2 R the receiver
clock error increment. The redundancy of H0 is then r D
m � 4. The dispersion of the observables is characterized
through the standard deviation �y . At this stage, for the
sake of simplicity, we do not consider a satellite elevation-
dependent variance matrix.

It is assumed that the alternative hypotheses capture the
outliers in individual observations. Thus, with m satellites
being available, there are m alternatives Hi (i D 1; : : : ; m)
of the following form

Hi W E.y/ D Œ�G em�

�
x

dt

�
C ci bi ; D.y/ D �2

y Im

(17)

where ci 2 R
m is a canonical unit vector having one as its

i th entry and zero elsewhere, and bi 2 R is the scalar outlier.
Note that the alternative hypotheses in (17) are identifiable
provided that cti ¬ ctj for any i ¤ j (Zaminpardaz
2018). For our analysis, we consider the satellite geometry
illustrated in Fig. 5, comprising six satellites (m D 6).
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Fig. 5 Skyplot view of satellites. The six blue circles denote the
skyplot position of the satellites

Therefore, six alternative hypotheses (k D m D 6) of the
form of (17) are considered in the DIA procedure, and the
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Fig. 6 PDF of the DIA-estimator
Nu versus that of Ou0 under H0. The
illustrations are given for the
receiver coordinate up
component in SPP model in (16)
corresponding with the satellite
geometry in Fig. 5 for [left]
�y D 0:7m and [right]
�y D 1m. blue: f

Ou0
.� jH0/; red

dashed-dotted: f
Nu.� jH0/ for

PFA D 0:3; red solid: f
Nu.� jH0/

for PFA D 0:1
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redundancy under the null hypothesis is r D 2 (t 2 R
2).

We also remark that for this satellite geometry, all the six
alternatives are identifiable. Our illustrations will be shown
for receiver coordinate up component, denoted by u, under
H0, H1 (outlier in G1 observation) and H4 (outlier in G4
observation). However, we note that our conclusions will
be valid for any unknown parameter in (16). Without loss
of generality, we also assume that the true value of the up
component is zero.

Evaluation Under H0 In Fig. 6, the PDFs of Ou0 and Nu are
depicted in, respectively, blue and red color. The left panel
shows the results corresponding with �y D 0:7m while the
right one shows the results corresponding with �y D 1m.
In each panel two red graphs are illustrated; dashed-dotted:
PFA D 0:3, solid: PFA D 0:1. Again the symmetry of
the DIA-estimator PDF around the true value indicates the
unbiasedness of the DIA-estimator under the null hypothesis.
In addition, the peakedness of the DIA-estimator PDF, like
the PDF of Ou0, around the true value decreases when the
data precision gets poorer (�y increases). Similar to the
single-alternative example, we expect that the difference
between the red and blue graphs will diminish if the false
alarm probability decreases. This is indeed corroborated by
comparing the red dashed-dotted graphs with the red solid
ones in Fig. 6.

Evaluation Under H1 and H4 For our analysis under alter-
native hypotheses, we, as example, take the two alternatives
H1 andH4. Assuming �y D 1m and PFA D 0:1, Fig. 7 shows
the PDFs of Ou0, Oui and Nu underHi . The top panels are given
for i D 1 while the bottom panels are obtained for i D 4.
The values for bi under the mentioned two alternatives are,
from left to right, set to bi D 3; 7 and 15m. Here, because of
having more than one single alternative, in addition to the
correct detection probability, we also compute the correct
identification probability, both of which are shown on top of
each panel.

The significant departure between the red graph and the
other two normal curves in each panel is an indicator of
how misleading the post-DIA quality assessments would
be if one neglects the conditioning on testing outcome.
For example, let us assume that, for the case of lower-
right panel, H4 is selected through the DIA procedure. As
shown in Fig. 7, the PDF of Ou4 has larger probability mass
around the true value than that of Nu. Therefore, assessments
on the basis of fOu4

.� jH4/, rather than fNu.� jH4/, would
lead to optimistic/misleading quality descriptions (precision,
accuracy, integrity, etc.). As the bias value bi increases, both
the correct detection and identification probabilities increase
as well, resulting in less discrepancies between fOui

.� jHi /

and fNu.� jHi /. Note, however, that the difference between
the red graphs and the corresponding black ones becomes
small only for large correct identification probabilities, and
not necessarily for large correct detection probabilities. For
example, for the case where bias under H1 is b1 D 7m
(upper-middle panel), despite having a large correct detec-
tion probability of PCD1

D 0:94, there is a big difference
between the red and black curve as the correct identification
probability is only PCI1 D 0:60.

6 Summary and Concluding Remarks

There is a close link between estimation and testing in any
quality control procedure. By highlighting this link and its
consequences, we revealed its impact on the quality evalua-
tions usually performed and elaborated on the circumstances
under which negligence of this link may still be considered
acceptable. In doing so, we provided a comparative study
of the probabilistic properties of the actual DIA outcome
Nx derived from the characteristics of both estimation and
testing, and the individual estimators Oxi corresponding with
the hypotheses at hand Hi (i D 0; 1; : : : ; k) neglecting the
uncertainty of the testing decision process. Our analyses
were conducted assuming that the observations are normally
distributed and that the underlying models are linear.
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PCD1 = 0.37, PCI1 = 0.14 PCD1 = 0.94, PCI1 = 0.60 PCD1 > 0.99, PCI1 = 0.91

PCD4 = 0.14, PCI4 = 0.03 PCD4 = 0.34, PCI4 = 0.11 PCD4 = 0.87, PCI4 = 0.44

Fig. 7 PDF of the DIA-estimator Nu versus those of Ou0 and Oui under
Hi in (17) for [top] i D 1 and [bottom] i D 4. The illustrations are
given for �y D 1m and for [left] bi D 3m, [middle] bi D 7m and

[right] bi D 15m. blue: f
Ou0

.� jHi /; black: f
Oui

.� jHi /; red: f
Nu.� jHi /.

The corresponding correct detection and identification probabilities are
given on top of each panel

We started with simple examples of single alternative
hypothesis where a single-unknown, single-redundancy
model was considered. The DIA-estimator was then
constructed by Ox0, Ox1 and t . It was demonstrated that the
distribution of the DIA-estimator, unlike its individual
constructing components, is not normal, but multi modal.
However, the non-normal PDF of NxjH0 ( NxjH1) will
approach the normal distribution of Ox0jH0 ( Ox1jH1) if PFA
(PMD D 1�PCD) decreases. The impact of the data precision
on the DIA-estimator PDF was also illustrated. For example,
under H0, the more precise the observations are, the more
peacked the DIA-estimator PDF gets around the true value. It
was also shown that while Nx is unbiased underH0, it is biased
underH1. The bias of NxjH1 gets, however, smaller when the
correct detection probability gets larger as more probability
mass of f Nx.� jH1/ becomes centred around the true value.

Having investigated the single-alternative case, we then
applied the DIA-method to the satellite-based single point
positioning model where multiple alternative hypotheses,
describing outliers in individual observations, were consid-

ered. For our illustrations, we showed the results corre-
sponding with the receiver coordinate up component u. We
however remark that the following conclusions are valid for
any other unknown parameter and linear model. Similar to
the single-alternative example, it was shown that the PDF
of the DIA-estimator Nu cannot be characterized by a normal
distribution. Depending on the underlying settings, there
could be significant departures between the PDF of the DIA-
estimator and that of the estimator associated with the iden-
tified hypothesis. It was highlighted that if the uncertainty
of the statistical testing is not taken into account, then one
may end up with a too optimistic quality description of the
final estimator. Nevertheless, depending on the requirements
of the application at hand, the DIA-estimator PDF may be
well approximated by Ou0jH0 under H0 and by Oui jHi under
Hi for, respectively, small PFA and large PCIi . It is therefore
important that one always properly evaluates identification
probabilities, as a large probability of correct detection not
necessarily implies a large correct identification probability
(Teunissen 2017b).
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Controlling the Bias Within Free Geodetic
Networks

Burkhard Schaffrin and Kyle Snow

Abstract

It is well known that the MInimumNOrm LEast-Squares Solution (MINOLESS) minimizes
the bias uniformly since it coincides with the BLUMBE (Best Linear Uniformly Minimum
Biased Estimate) in a rank-deficient Gauss-Markov Model as typically employed for free
geodetic network analyses. Nonetheless, more often than not, the partial-MINOLESS is
preferred where a selection matrix Sk WD Diag.1; : : :; 1; 0; : : :; 0/ is used to only minimize
the first k components of the solution vector, thus resulting in larger biases than frequently
desired. As an alternative, the Best LInear Minimum Partially Biased Estimate (BLIMPBE)
may be considered, which coincides with the partial-MINOLESS as long as the rank
condition rk.SkN / D rk.N / D rk.A/ DW q holds true, where N and A are the
normal equation and observation equation matrices, respectively. Here, we are interested
in studying the bias divergence when this rank condition is violated, due to q > k � m � q,
with m as the number of all parameters. To the best of our knowledge, this case has not been
studied before.

Keywords

Bias control � Datum deficiency � Free geodetic networks

1 Introduction

It has long been recognized that the adjustment of free
geodetic networks will lead to biased point coordinate esti-
mates when using a rank-deficient Gauss-Markov Model
(GMM). Only quantities that can be expressed as functions
of the observables may result in unbiased estimates after a
(weighted) least-squares adjustment. For more details, we
refer to Grafarend and Schaffrin (1974).

A far wider scope is reflected in the Springer book
Optimization and Design of Geodetic Networks, edited by
Grafarend and Sansó (1985), which represents the status of
research at the time. For the discussion in the following

B. Schaffrin
Geodetic Science Program, School of Earth Sciences, The Ohio State
University, Columbus, OH, USA
e-mail: aschaffrin@earthlink.net

K. Snow (�)
Topcon Positioning Systems, Inc., Columbus, OH, USA

contribution, most relevant should be the paper “Network
Design” by Schaffrin (1985) that can be found in that
volume. In particular, estimates of type MINOLESS (MIn-
imum NOrm LEeast-Squares Solution), BLESS (Best Least-
Squares Solution), and BLUMBE (Best Linear Uniformly
Minimum Biased Estimate) are derived therein and given
various representations, including proofs that show their
identity under certain conditions.

On the other hand, for many practical applications (e.g.,
Caspary 2000), the general MINOLESS is being replaced
by partial MINOLESS for which only the Sk-weighted
norm of the estimated parameter vector is minimized, where
Sk :D Diag.1; : : : ; 1; 0; : : : ; 0/ is called a “selection matrix.”
Unfortunately, Snow and Schaffrin (2007) would then show
that the (full) MINOLESS is the only Least-Squares Solution
that minimizes the bias uniformly so that the bias of the
partial MINOLESS must be monitored separately. Moreover,
when Schaffrin and Iz (2002) began studying estimators
that minimize the bias at least partially, it turned out that
the best among them (BLIMPBE: Best LInear Minimum
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Partially Biased Estimate) will not belong to the LEast-
Squares Solutions (LESS) unless a certain rank criterion is
fulfilled that involves the particular choice of the selection
matrix.

This phenomenon ultimately led to the study in the fol-
lowing where it is tried to describe the growth of bias in
dependence of the selection matrix, in particular when the
number k of selected parameters approaches the minimum
m � q. After a review of the rank-deficient Gauss-Markov
Model in Sect. 2, the various relevant estimators will be
presented and characterized by their essential properties.
Then, in Sect. 3, the rank of a certain matrix product is shown
to be a very good indicator of the expected bias growth for
k ! m � q. Finally, in Sect. 4, a simple 1-D network
from leveling data will be analyzed, and the results will be
summarized in a brief section on conclusions.

2 A Review of the Rank-Deficient
Gauss-MarkovModel and Some of Its
Most Relevant Parameter Estimates

Let the Gauss-Markov Model (GMM) in linearized form be
defined by

y D A
n�m

� C e; e � .0; �2
0 P �1/; (1)

where

y denotes the n � 1 vector of observational increments,
A denotes the n � m coefficient matrix with q :D rkA <

m � n,
� denotes the (unknown) m � 1 vector of parameter incre-

ments,
e denotes the (unknown) n � 1 random error vector.

Also, Efeg D 0, where E denotes the expectation operator,
and ˙ D EfeeT g D �2

0 P �1 with

�2
0 as (unknown) variance component. Here,

P �1 represents the symmetric positive-definite n � n

cofactor matrix, resp.
P the corresponding n � n weight matrix.

Note that the dispersion matrix ˙ is assumed to be nonsin-
gular; for the more general case of a singular matrix ˙ , see
Schaffrin (2013/2014), for instance.

2.1 General Representation of the
Weighted LESS

A weighted LEast-Squares Solution (LESS) would come
from the variational principle

eT P e D min
e;�

subject to y � A� � e D 0: (2)

The corresponding Lagrange target function reads

˚.e; �; �/ :D eT P e C 2�T .y � A� � e/; (3)

and, after making it stationary, leads to the Euler-Lagrange
necessary conditions, which finally provide the “orthogonal-
ity condition”

AT P Qe D 0 (4a)

for the residual vector Qe :D y � A O�, and then the “normal
equations”

N
m�m

O� D c; (4b)

rkN D rkA D q < m; for
�
N c

�
:D AT P

�
A y

�
:

Equation (4) allows for a multitude of LESS’s that can be
characterized in various ways, for instance by

O�LESS 2 fN �c j NN �N D N g D (5)

D fN �
rs c j NN �

rs N D N ; N �
rs D N �

rs NN �
rs D .N �

rs /T g

using generalized inverses or – more efficiently – reflex-
ive symmetric g-inverses; alternatively, any LESS can be
described in the form

O�LESS 2 f.N C KT K/�1c j K an .m � q/ � m matrix,

KET nonsingularg; (6a)

where E is any .m � q/ � m matrix with

rkE D m � q and AET D 0: (6b)

Obviously, this particular LESS would fulfill the so-called
minimum constraints

K O�LESS D 0; (6c)

due to the identity

A.N C KT K/�1KT D A � ET .KET /�1 D 0: (7)

2.2 Conventional Choices of Particular
LESS’s

Let the MINOLESS be defined by

O�T O� D min
O�

subject to c � N O� D 0I (8a)



Controlling the Bias Within Free Geodetic Networks 101

then, it can be characterized by

N� D N .NN /�c for any g-inverse .NN /�. (8b)

Alternatively, the BLESS may be defined through

trDf N�g D minftrDf O�LESSg D �2
0 � trN �

rs N .N �
rs /T g; (9a)

leading to the representation

N� D N Cc with N C as “pseudo-inverse” of N . (9b)

As a third alternative, the BLUMBE may be considered
by establishing its three properties

(i) “linear” N� D Ly for some m � n matrix L,
(ii) “uniformly minimum biased”

Ef N�g � � D L � Efyg � � D �.Im � LA/�

DW B
m�m

� �
(10a)

with B as “bias matrix.” Then:

tr.BBT / D min
LT

, AAT LT D A; (10b)

(iii) “best”

trDf N�g D min
LT

f�2
0 � trLP �1LT j AAT LT D Ag:

(10c)

These three properties of BLUMBE lead to the repre-
sentation

N� D .N C ET E/�1c (10d)

for any matrix E satisfying (6b).

Theorem 1 (cf. Schaffrin 2013/2014)

N�MINOLESS D N�BLESS D N�BLUMBE

In addition, the partial MINOLESS is frequently intro-
duced by using the “selection matrix” Sk :D Diag.1;

: : : ; 1; 0; : : : ; 0/ with m � k � m � q for

tr O�T
Sk

O� D min
O�

subject to c � N O� D 0; (11a)

yielding the “extended normal equations”

�
Sk Im

N 0

� " NN�
N NN�

#

D
�
0

c

�
; resp. (11b)

�
Sk C N Im

N 0

� " NN�
N

NN�

#

D
�
c

c

�
; (11c)

and, hence, the representations

NN� D .N C SkET ESk/�1c D (12a)

D .Sk C N /�1N ŒN .Sk C N /�1N ��c; (12b)

provided that ESkET is nonsingular, resp. rk.Sk CN / D m.
In this case, the partial BLESS turns out to coincide with
the partial MINOLESS, whereas the BLUMBE will be the
partial BLUMBE already for all choices of Sk . In particular,
it can be shown (Snow and Schaffrin 2007) that the (full)
MINOLESS is the only LESS that does minimize the bias uni-
formly by fulfilling (10b). So, by using the partial MINOLESS
instead, more bias than necessary is introduced. This led to
the interesting question whether the bias can be kept under
control, at least partially, while minimizing the trace of the
dispersion matrix. This approach led to the BLIMPBE.

2.3 The Best Estimate Under Partial Bias
Control

Let the BLIMPBE (Best LInear Minimum Partially Biased
Estimate) be defined by its three properties

(i) “linear” M� D Ly for some m � n matrix L,
(ii) “minimum partial bias”

B :D �.Im � LA/ as “bias matrix;” then:

tr.BSkBT / D min
LT

, ASkAT LT D ASk; (13a)

(iii) “best”

trDf M�g D min
LT

f�2
0 � trLP �1LT j ASkAT LT D ASkg:

(13b)
It may then be represented by

M� D SkN .NSkNSkN /�NSk � c … fO�LESSg; (13c)

in general.

Theorem 2 (cf. Schaffrin and Iz 2002) The BLIMPBE will
be a LESS if, and only if,

rk.SkN / D rkN D q: (14a)

In this case,

M� D MN� :D SkN .NSkN /� � c 2 fO�LESSg; (14b)

the latter being introduced as “twin to BLIMPBE,” which
looks like an Sk-weighted form of MINOLESS (8b), but does



102 B. Schaffrin and K. Snow

not necessarily coincide with the partial MINOLESS either
as long as

ESk � MN� ¤ 0 D ESk � NN�: (15)

3 The Various Choices of the Selection
Matrix

In view of the rank condition (14a), it is important to
distinguish a number of cases within the interval for k 2 Œm�
q; m�, plus a few sub-cases; note the following implications:

rk.Sk C N / D m D rk
� �

N Sk

� �
Im

Im

� � ) rk
�
N Sk

� D m;

rk
�
N Sk

�
< m ) rk.Sk C N / < m:

Case 1: m � q D k such that rk.Sk C N / D m D
rk

�
N j Sk

�
,

Case 10: m � q D k such that rk
�
N j Sk

�
< m,

Case 100: m�q D k such that rk.Sk CN / < rk
�
N j Sk

� D
m;

Case 2: m � q < k < q such that rk.Sk C N / D m D
rk

�
N j Sk

�
,

Case 20: m � q < k < q such that rk
�
N j Sk

�
< m,

Case 200: m � q < k < q such that rk.Sk C N / <

rk
�
N j Sk

� D m;
Case 3: q � k < m such that rk.SkN / D rkN D q,
Case 30: q � k < m such that rk.SkN / < rkN D q;

Case 4: k D m ) Sk D Im; N� D NN� D M� D MN�.
Some of these cases may turn out empty, which is obvious

for the Cases 2, 20, and 200 when 2q � m. Also, so far Cases
100 and 200 were never encountered in any practical example,
in spite of the fact that rk.Sk C N / and rkŒN j Sk� may be
different:

rk.S1 C N / D 1 < 2 D rkŒN j S1� for N :D
�
0 1

1 1

�
:

Apparently, N is not positive-semidefinite here, and this may
be decisive for this counter-example (as we could not find
one for a positive-semidefinite N ).

4 Numerical Experiments: A Leveling
Network

Here, a simple 2-loop leveling network is considered as in
Fig. 1, where heights of four stations (P1, P2, P3, P4) must
be estimated from observed height differences, giving rise to
a datum deficiency of one.

P1

P3

P4

P2

y1

y2

y3

y4

y5

Fig. 1 A 2-loop leveling network with equal path lengths between
points. Arrows point in the direction of the level runs

Table 1 Station heights in meters: true, biased, additive bias

Station True � t Biased � 0 Bias ˇt

P1 281:130 281:090 �0:040

P2 269:131 269:109 �0:022

P3 290:128 290:133 0:005

P4 258:209 258:255 0:046

Then, the GMM reads

y
5�1

D A
5�4

�
4�1

C e
5�1

; e � .0; ˙ D �2
0 I5/;

with A :D

2

6
6
6
6
4

�1 C1 0 0

�1 0 C1 0

0 �1 C1 0

0 �1 0 C1

0 0 �1 C1

3

7
7
7
7
5

; P D I5;

n D 5 > m D 4 > q D 3 > m � q D 1;

nullspace: N .A/ D f� � ˛ j ˛ 2 Rg D R.�/ for

�
4�1

:D �
1; 1; 1; 1

�T
as “summation vector.”

Simulation of Observations and Parameter (Height) Biases
The observations were simulated by adding random noise
in the interval Œ�0:02; C0:02�m to differences of “true”
heights. Such a level of simulated observational noise might
be representative of leveling work across lines of length
10 km, for example. A vector of true heights � t was given,
and random noise on the interval of Œ�0:05; C0:05�m was
sampled to determine a “known bias vector” ˇt , which was
added to the true heights to obtain biased heights � 0, i.e.,
� 0 D � t C ˇt . Thus, the simulated bias level added to
the true heights is about two and a half times larger than the
simulated measurement noise. The biased heights � 0 were
used as initial approximations in the formulas for the four
estimators. Their numerical values, along with those of the
simulated observations, are shown exactly in Tables 1 and 2,
respectively. It is noted that the norm of the simulated height
bias is kˇt k D 0:0650m.
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Table 2 Observations in meters: true, simulated, additive noise

Obs. From ! to True Simulated Noise

y1 P1 ! P2 �11:999 �11:9864 0:0126

y2 P1 ! P3 8:998 9:0142 0:0162

y3 P2 ! P3 20:997 20:9821 �0:0149

y4 P2 ! P4 �10:922 �10:9055 0:0165

y5 P4 ! P3 �31:919 �31:9243 �0:0053

Table 3 Number of selection matrices Sk for each paring of case
number and number of selected parameters k

Case/k 1 2 3 4 Totals

1 4 0 0 0 4

2 0 6 0 0 6

3 0 0 4 0 4

4 0 0 0 1 1

Totals 4 6 4 1 15

Comments on Numerical Computations The case numbers
are listed in Table 3. Key to our work is the computation
of norms of various bias quantities. We define computed
bias as ˇ :D � � � � t , where � � stands for the esti-

mated parameters provided by either partial MINOLESS (NN�),
BLIMPBE ( M�), BLIMPBE’s twin (MN�), or MINOLESS ( N�),
and � t stands for the true parameters as noted above. Note
that uppercase � is used to denote full parameter quantities,
while lowercase � denotes incremental quantities in the case
of linearization.

It is important to recall that the biased heights � 0 were
used as initial approximations in the various formulas for
the four estimators. This is relevant because (partial) MINO-
LESS minimizes the norm of the vector of differences
between the initial, approximate and the final, estimated
parameters, according to (8a) and (11a), whereas BLIMPBE
will reproduce the parameters (i.e., the initial approxima-
tions) that are not selected by matrix Sk .

The following list of norms were computed and tabulated
below:

1. ˝ :D QeT P Qe being the (P -weighted) sum of squared
residuals, minimized for the LESS by (2);

2. kˇk D
q

ˇT ˇ being the norm of the computed bias
vector;

3. kSkˇk D
q

ˇT SkSkˇ D
q

ˇT Skˇ being the Sk-
weighted norm of the computed bias vector;

4. kBk D p
tr.BT B/ D p

tr.BBT / being the norm of
the bias matrix B :D �.Im � LA/, minimized for
MINOLESS D BLUMBE by (10b);

5. kSkBk D p
tr.BT SkB/ being a type of Sk-weighted

norm of the bias matrix B :D �.Im � LA/;
6. kBSkk D p

tr.BSkBT / being another type of Sk-
weighted norm of the bias matrix B :D �.Im � LA/,
minimized for BLIMBPE by (13).

Table 4 Cases 1–4 for partial MINOLESS

k/† 103Ω trQ¯̄ξ ‖β‖ ‖Skβ‖ ‖B‖ ‖SkB‖ ‖BSk‖ [Sk(i, i)]

1/1 0.464 2.250 0.058 0.040 2.000 1 2.000 [1, 0, 0, 0]
1/1 0.464 1.750 0.052 0.022 2.000 1 2.000 [0, 1, 0, 0]
1/1 0.464 1.750 0.016 0.005 2.000 1 2.000 [0, 0, 1, 0]
1/1 0.464 2.250 0.078 0.046 2.000 1 2.000 [0, 0, 0, 1]

2/2 0.464 1.375 0.055 0.045 1.414 1 1.414 [1, 1, 0, 0]
2/2 0.464 1.375 0.029 0.027 1.414 1 1.414 [1, 0, 1, 0]
2/2 0.464 1.250 0.018 0.015 1.414 1 1.414 [1, 0, 0, 1]
2/2 0.464 1.250 0.026 0.012 1.414 1 1.414 [0, 1, 1, 0]
2/2 0.464 1.375 0.020 0.017 1.414 1 1.414 [0, 1, 0, 1]
2/2 0.464 1.375 0.044 0.036 1.414 1 1.414 [0, 0, 1, 1]

3/3 0.464 1.139 0.036 0.035 1.155 1 1.155 [1, 1, 1, 0]
3/3 0.464 1.083 0.018 0.017 1.155 1 1.155 [1, 1, 0, 1]
3/3 0.464 1.083 0.017 0.016 1.155 1 1.155 [1, 0, 1, 1]
3/3 0.464 1.139 0.019 0.017 1.155 1 1.155 [0, 1, 1, 1]

4/3 0.464 1.000 0.016 0.016 1.000 1 1.000 [1, 1, 1, 1]

In column 1, � denotes rk.SkN /. Note that kBk D kBSkk D p
m=k

for this estimator. The MINOLESS appears for k D 4, � D 3

Table 5 Cases 1–4 for BLIMPBE

k/† 103·Ω trQξ̆ ‖β‖ ‖Skβ‖ ‖B‖ ‖SkB‖ ‖BSk‖ [Sk(i, i)]

1/1 6.825 0.500 0.056 0.023 1.871 0.707 0 [1, 0, 0, 0]
1/1 4.829 0.333 0.062 0.007 1.826 0.577 0 [0, 1, 0, 0]
1/1 7.212 0.333 0.065 0.003 1.826 0.577 0 [0, 0, 1, 0]
1/1 2.628 0.500 0.046 0.003 1.871 0.707 0 [0, 0, 0, 1]
2/2 2.407 1.000 0.051 0.020 1.789 1.095 0 [1, 1, 0, 0]
2/2 6.804 1.000 0.057 0.024 1.789 1.095 0 [1, 0, 1, 0]
2/2 2.043 1.000 0.032 0.023 1.732 1.000 0 [1, 0, 0, 1]
2/2 4.820 0.750 0.062 0.011 1.732 1.000 0 [0, 1, 1, 0]
2/2 2.016 1.000 0.041 0.008 1.789 1.095 0 [0, 1, 0, 1]
2/2 0.479 1.000 0.055 0.030 1.789 1.095 0 [0, 0, 1, 1]
3/3 0.464 2.250 0.078 0.063 2.000 1.732 0 [1, 1, 1, 0]
3/3 0.464 1.750 0.016 0.016 2.000 1.732 0 [1, 1, 0, 1]
3/3 0.464 1.750 0.052 0.047 2.000 1.732 0 [1, 0, 1, 1]
3/3 0.464 2.250 0.058 0.041 2.000 1.732 0 [0, 1, 1, 1]
4/3 0.464 1.000 0.016 0.016 1.000 1.000 1 [1, 1, 1, 1]

In column 1, � denotes rk.SkN /. Note that ˝ reveals that BLIMPBE is
a LESS when k � 3 D q, and hence identical to its twin

While we list numerical values of all of these norms for all
the computed estimates and for all cases of selection matrices
Sk below, we note again that only the norms listed in items
1, 4, and 6 were actually minimized for particular estimators.

Comments on Numerical Results Tables 4, 5, and 6 list rele-
vant quantities computed using the four estimators of interest
for each case listed in Table 3, where these abbreviations
are used in the column labels: Q�� :D ��2

0 � Df��g for the
trace of the cofactor matrix of the estimated parameters, and
� stands in for rk.SkN /.

There are a number of noteworthy observations to be
made from Tables 4, 5, and 6. A few are enumerated here,
with some associated entries highlighted in the tables.

1. It was confirmed that the matrix norm kBSkk Dp
tr.BSkBT /, with bias matrix B , turned out to be

smaller for BLIMPBE and its twin than for partial
MINOLESS for all cases and instances of Sk, k < m;
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Table 6 Cases 1–4 for BLIMPBE’s twin

k/† 103·Ω trQ˘̄ξ
‖β‖ ‖Skβ‖ ‖B‖ ‖SkB‖ ‖BSk‖ [Sk(i, i)]

1/1 7.357 0.556 0.065 0.039 2.000 1.000 0 [1, 0, 0, 0]
1/1 4.829 0.333 0.062 0.007 1.826 0.577 0 [0, 1, 0, 0]
1/1 7.212 0.333 0.065 0.003 1.826 0.577 0 [0, 0, 1, 0]
1/1 2.693 0.556 0.046 0.003 2.000 1.000 0 [0, 0, 0, 1]
2/2 2.645 1.082 0.051 0.021 1.980 1.385 0 [1, 1, 0, 0]
2/2 7.580 1.082 0.069 0.046 1.980 1.385 0 [1, 0, 1, 0]
2/2 2.043 1.000 0.032 0.023 1.732 1.000 0 [1, 0, 0, 1]
2/2 4.820 0.750 0.062 0.011 1.732 1.000 0 [0, 1, 1, 0]
2/2 2.206 1.082 0.043 0.016 1.980 1.385 0 [0, 1, 0, 1]
2/2 0.480 1.082 0.054 0.029 1.980 1.385 0 [0, 0, 1, 1]
3/3 0.464 2.250 0.078 0.063 2.000 1.732 0 [1, 1, 1, 0]
3/3 0.464 1.750 0.016 0.016 2.000 1.732 0 [1, 1, 0, 1]
3/3 0.464 1.750 0.052 0.047 2.000 1.732 0 [1, 0, 1, 1]
3/3 0.464 2.250 0.058 0.041 2.000 1.732 0 [0, 1, 1, 1]
4/3 0.464 1.000 0.016 0.016 1.000 1.000 1 [1, 1, 1, 1]

In column 1, � denotes rk.SkN /. Note that ˝ reveals that BLIMPBE’s
twin is a LESS when k � 3 D q, and hence identical to BLIMPBE
itself

however, the same cannot be said about the corresponding
bias vectors ˇ D B�.

2. Interestingly, the square of the norm, kBSkk2, turns out
to be an integer that depends on the number of selected
parameters k and, in the case of BLIMPBE and its
twin, the rank of matrix SkN , but in the case of partial
MINOLESS, the dimension of N . The following relations
hold:
(a) For BLIMPBE (and its twin):

kBSkk2 D
(

k� rk.SkN / for k� rk.SkN /

0 otherwise

This property is even more apparent in investigations
by the authors involving a 2D-network, where cases
10, 20, and 30 were not empty sets and where a larger
datum deficiency allowed for a greater range of k

beyond rk.SkN /.
(b) For partial MINOLESS: k � kBSkk2 D m, with

dim.N / D m. However, we did not find this to be the
case in the 2D-network mentioned in the preceding
item. Note also that kBk D kBSkk, but this may
be an artifact of our example problem, rather than a
general rule. Also note that kSkBk D 1 everywhere,
independent of the number of selected parameters k.

3. The values for the SSR, ˝ , appearing in the last five
rows of all three tables reveal that both BLIMPBE and
BLIMPBE’s twin yield least-squares solutions when the
rank condition (14a) is satisfied, which is certainly as
expected. Moreover, the tables reveal that partial MINO-
LESS has the smallest trace of cofactor matrix, resp.
dispersion matrix for �� (partial BLESS) and the smallest
norm of bias matrix kBk in these cases, showing that

both BLUMBE criteria (10b) and (10c) were fulfilled
whenever rk.SkN / D q D 3.

4. The following relationships can be seen from careful
inspection of the tables:
(a) trQBLIMPBE � trQtwin � trQpart:MINOLESS if k < q D

3.
(b) O�BLIMPBE D O� twin, ˇBLIMPBE D ˇtwin, etc. if k � q D

3.
(c) kˇBLIMPBEk < kˇtwink, kBBLIMPBEk < kBtwink, etc. if

k < q D 3.
(d) kSkBkBLIMPBE smaller whenever k gets smaller (k �

q D 3).

5 Conclusions and Outlook

We have summarized the properties of some commonly
used estimators for estimating parameters in a rank-deficient
Gauss-Markov Model, with particular focus on their use-
fulness in the presence of bias induced by treatment of the
rank (datum) deficiency via a selection matrix Sk . Some
known properties of both partial MINOLESS and BLIMPBE
were confirmed numerically, and a host of perhaps not so
well known characteristics where enumerated above. Further
studies should reveal, which, if any, of these characteristics
can be expected for network adjustments in general.

It was also made obvious through the numerical example,
that the minimization of the bias matrix B :D �.Im � LA/

does not imply that the corresponding bias vector ˇ D B�

will be a minimum, an important truth to keep in mind
when considering which estimator to use for a particular
problem.

There are still open questions, as our study does not yet
allow us to make definitive statements regarding preference
of estimator for any particular cases. We do believe the
subject warrants further research, and hope that similar
studies involving classical 2D- and 3D-networks might shed
more light on the matter. In fact, they are already under-
way.
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Regularized Solutions of the Two Layers Inverse
Gravimetric Problem in the Space of Bounded
Variation Functions

Martina Capponi, Daniele Sampietro, and Fernando Sansò

Abstract

The two layers inverse gravimetric problem is to determine the shape of the two layers in a
bodyB , generating a given gravitational potential in the exterior ofB . If the constant density
of the two layers is given, the problem is reduced to the determination of the geometry of
the interface between the two. The problem is known to be ill posed and therefore it needs
a regularization, that for instance could have the form of the optimization of a Tikhonov
functional. In this paper it is discussed why neither L2 nor H1;2 are acceptable choices,
the former giving too rough solutions, the latter too smooth. The intermediate Banach
space of functions of Bounded Variation is proposed as a good solution space to allow
for discontinuities, but not too wild oscillations of the interface. The problem is analyzed
by standard variational techniques and existence of the optimal solution is proved.

Keywords

Bounded variation functions � Inverse gravimetric problem � Regularization methods

1 Introduction to the Problem

The inverse gravimetric problem is to determine the mass
distribution in a body B from the known gravity potential

in the complementary region ˝ D B
C

. As it is well
known the problem is undetermined (Sansò 2014; Ballani
and Stromeyer 1982) and it is generally solved by restrict-
ing the space where a solution can be sought. One typi-
cal model that, under suitable hypotheses on the regular-
ity of the surfaces involved (Barzaghi and Sansò 1986;
Isakov 1990), implies the uniqueness of the solution, is
that of a body B consisting by two layers, each of known
constant density. This can be considered as a perturba-
tion of a larger known gravity field that acts as refer-
ence and imposes the main direction of the vector g. Here

M. Capponi · F. Sansò
Politecnico di Milano, DICA, Milano, Italy
e-mail: martina.capponi@polimi.it; fernando.sanso@polimi.it

D. Sampietro (�)
Geomatics Research & Development srl, Lomazzo, Italy
e-mail: daniele.sampietro@g-red.eu

we will work on the problem when the reference field is
considered as parallel and opposed to the verse of the z
axis of the Cartesian system in which we frame the prob-
lem.

The two layers (see Fig. 1) are the upper layer,
�.H C ıH/ � Z � �HC and the lower layer �H� �
Z � �.H C ıH/ with densities respectively �C and ��; we
will call ı� D �C � �� the density contrast and � D Gı�,
withG the universal gravitational constant. Always referring
to Fig. 1, we will assume that the interface S between the
two layers, fz D �.H C ıH.x//g, is agreeing with the plane
fz D �H g outside the support C , that is a bounded set on
the horizontal plane. Moreover, we will set the hypothesis
that S has to be constrained, to stay in depth within
the layer �H� � z � �HC, for geophysical/geological
reasons. We will simplify this constraint by assuming
that

jıH.�/j � L ; � 2 C ; L D max.�HCCH;�HCH�/

without any loss of generality. Finally we assume that
the modulus of gravity go.x/, is observed on the z D 0

plane. Such a hypothesis is just comfortable for the
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Fig. 1 The two layers problem
in a Cartesian reference; �C is
the density of the upper layer, ��

that of the lower layer; the
surface S , that can have sharp
discontinuities, in the plane
z D �H but for the set C on
which z D �.H C ıH/; S is
constrained to stay in the layer
f�H� < z < �HCg

analysis though not essential. Note that, above �HC and
below �H�, we suppose no masses at all, meaning that
their gravitational effect has already be removed from
go.x/.

Just to make an example where such hypothesis are
meaningful, one can consider z D 0 as the surface of (or
a piece of) the sea, the plane fz D �HCg as the sea floor,
the upper layer as constituted by sediments while the lower
layer by the bedrock. Of course we could complicate this
model by assuming that fz D �HCg and fz D �H�g
are surfaces with a different (known) shape, but since this
would not alter the mathematical properties of the problem
we analyse, we prefer to stay with the present simple hypoth-
esis.

Starting from go, by subtracting to it a reference value
gref (i.e. the normal gravity field evaluated in the same
observation point) and the two Bouguer plates gBoug (with
densities �C between �HC and �H and �� between
�H and �H�), we are left with the following linearized
observation equation

ıg D go � gref � gBoug � �ıg � ez: (1)

We call ıg the reduced gravity disturbance generated by
the body enclosed between S and z D �H , with density
ı� where ıH < 0 and �ı� where ıH > 0. Let us
notice that the choice of the functional ıg as observable is
by no means obliged: we could choose in fact any other
functional of the anomalous field that uniquely determines
itself in the harmonicity domain R3C D z � 0 (Sansò et al.
2018).

One advantage of the above model is that the forward
operator computing ıg from ıH , namely

ıg D F .ıH/; (2)

can be explicitly written in its exact non linear form, as

ıg.x/ D ��
Z
C

d2�

Z �.HCıH/

�H

�

Œjx � �j2 C �2�3=2
d� � F .ıH/ (3)

F .ıH/ � �

Z
d2�

�
1

Œjx � �j2 C .H C ıH/2�1=2
� 1

Œjx��j2 CH2�1=2

�
:

Summarizing we have a first provisory formulation of the
problem: to find ıH satisfying the constraints

ıH.�/ D 0 � 2 Cc
;

jıH.�/j � L �2C (4)

and the observation equation

ıg D F .ıH/: (5)

An important remark should be added about the domain
C: as a matter of fact no real gravity map can suggest, or
even more prove, that a certain gravity datum is generated
be an isolated anomaly in the layers interface. Nevertheless,
it is costumacy in applied geophysics to look for bounded
anomalies, supposing that data outside the examined region
do depends from other causes. So the extent of the region
C is somehow dictated by the targets and experience of the
analyst.

It is perfectly known that the problem formulated as
written above is improperly posed according to Tikhonov
(Sansò et al. 2018). This means that for any reasonable
space X on which ıH can vary and Y , to which we
expect ıg to belong, the operator F .ıH/ has not a contin-
uous inverse because, to invert it, we need first to down-
ward continue ıg to S or to fz D �H g and this is
a (linear) strongly discontinuous operation (Sansò et al.
2018).
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Rather than solving the inverse of Eq. (5), the problem is
reformulated in order to find its approximate (regularized)
solution by minimizing a Tikhonov functional (Tikhonov
et al. 2013; Tikhonov and Arsenin 1977)

T .ıH/ D kıg � F .ıH/kY C �J .ıH/I (6)

the choice of the space Y and of the stabilizing functional
J .ıH/ (actually of the space X to which ıH has to belong)
is the object of next section.

2 Choice of the Tikhonov Functional

We start the discussion by the choice of the regularizing
functional J .ıH/. Often, though not always, J .ıH/ is
chosen as the norm of the space X of the unknown function
ıH . In our case, we could figure to set the space X equal to
Lp orH1;p . However in our opinionX D H1;p , for whatever
p � 1, is not satisfactory because X D H1;1, which is
the largest of these spaces, can not accommodate sharply
discontinuous functions and produces too smooth surfaces
(see Fig. 2 case c). The reason why we would like to admit
surfaces S that have jumps is because this is in general a
salient characteristic of true geological mass distributions.
On the other hand, the hypothesis X D Lp is instead too
week to get a proper regularization of the problem (see
Fig. 2 case a). As a matter of fact, in literature even stronger
regularizations are used, for instance X D H2;2 (see Richter
2016); however in our opinion this implies a quite unnatural
smoothing of S . So, we are looking for a space, possibly a
Banach space, to apply standard variational techniques, that
is intermediate between H1;1.R2/ and L1.R2/ (see Fig. 2
case b).

A space of this kind can be the space of the so called
Bounded Variation (BV) functions, as proposed by Ennio De
Giorgi (see Giusti and Williams 1984), and already used in
geophysical literature (see Acar and Vogel 1994).

Let us here recall the definition of BV and its relevant
properties, useful for this work.

Definition 1 We say that f .x/ 2 BV .R2/, if

f 2 L1.R2/ ; kf kL1 D
Z
R2

jf .x/jd2x < C1 ; (7)

and, after defining a set T of test functions as

T D f'.x/ 2 C1.R2/ ; ' D 0 in C
c
; j'j � 1gI (8)

we have

J0.f / D sup
'2T

Z
r � 'f .x/ d2x < 1: (9)

We denote as Df the Radon measure such that

Z
r � 'f d2x D

Z
' �Df d2x �< Df ;' > (10)

and we shall further put

J0.f / D
Z
R2

jDf j d2x: (11)

Let us observe that since ' is identically zero in the open
set C

c
the relation in (11) could be written also in this other

form

J0.f / �
Z
CC

jDf j d2x (12)

where CC is any open bounded set containing C ; in fact C
is the support of the vector measureDf and so also of jDf j.

Finally we define the normed space BV as

f 2 BV ” kf kBV D kf kL1 C J0.f /: (13)

The following propositions are essential in the present work
and we report them here without any proof, that the interested
reader can find in the book (Giusti and Williams 1984).

Proposition 1 BV is a Banach space, i.e. Cauchy
sequences ffng 2 BV have always a limit f 2 BV (see
Giusti and Williams 1984, 1.12).

Fig. 2 Qualitative example in planar approximation of solution surfaces obtained from the choice of different J .ıH/: (a) case of X D Lp , (b)
case of X D BV , (c) case of X D H1;1
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Proposition 2 The norm kf kBV is a lower semi-continuous
functional for sequences ffng bounded in BV and con-
verging to f in L1. Since kf kL1 is obviously continuous
with respect to such a sequence, this means that given
ffn I kf kBV � c I kfn � f kL1 �! 0g one has

lim J0.fn/ � J0.f / ; (14)

or f 2 BV too and

lim kfnkBV � kf kBV : (15)

(see Giusti and Williams 1984, 1.9).

Proposition 3 The embedding of BV in L1 is (sequentially)
compact, namely given any bounded ffng 2 BV , there is
a sub-sequence ffnkg which is Cauchy in L1 and therefore
there is an f 2 L1 such that fnk �! f ; according to
Proposition 2 then, f 2 BV too and

kf kBV � lim kfnkkBV : (16)

(Giusti and Williams 1984, 1.19).

Proposition 4 Let us consider an f 2 BV such that
f .x/ D jf .x/j � 0, f .x/ D 0 in C

c
, and define the

Epigraph of f as usual as

Epi.f / � f.x ; z/ I z � f .x/g \ R3 I

let us further define

(
S � @Epi.f / \ fz > 0g D @Epi.f / \ R3C
B D Epi.f / \ R3C

then, denoting by V .B/ the Lebesgue volume of B , byH.S/
the Hausdorff measure of S normalized to coincide with the
Lebesgue measure when f is smooth (see Falconer 1986,
theorem 1.12), jC j the measure of the base set C and by

J .f / D kf kL1 C J0.f / D kf kBV ;

one has

1p
2
.J .f /C jC j/ � V .B/CH.S/ � J .f /C jC j : (17)

Proof It is enough to observe that

kf kL1 D V .B/

so that Eq. (17) is the same as

1p
2
.J0.f /C jC j/ � H.S/ � J0.f /C jC j: (18)

On the other hand, when f is sufficiently smooth (implying
that f D 0 on @C )

1p
2
.1C jrf j/ �

p
.1C jrf j2/ � 1C jrf j : (19)

Since jrf j D tan.I /, with I the inclination of the area
element of S on the plane .x; y/, one has, in this case,

H.S/ D
Z
C

p
1C jrf j2d2x:

Then, an integration of Eq. (19) over C proves Eq. (18) when
f is smooth. Finally an approximation of f by a sequence
ffng 2 D and the use of the density of D in BV (cfr.
Giusti and Williams 1984, Theorem 1.17) completes the
proof. �

The above proposition, provides a geometrical interpre-
tation of our variational principle in that, since jC j is a
constant, when we try to keep small J .f / we equivalently
impose to V .B/ and H.S/ to be small. In other words we
control the extent and the smoothness of the body B . The
next Example 1, though elementary, is designed to show how
the definition of jDf j and of J0.f / are capable of accounting
for the lateral surface of S , that is generated when f .x/ is
discontinuous through @C .

Example 1 Let us take

f .x/ D h �c.x/ D
(
h x 2 C
0 x 2 Cc

then S is in this case as in Fig. 3. It is clear that jDf j � 0 in
C open i.e. the support of the measure jDf j is on the contour
line L . We can write for any ' 2 T ,

Z
R2
f r � ' d2x � h

Z
C

r � ' d2x � h

Z
L

' � n dl ;

where n is the normal in R2 to the line L . Then, call �1.L /

the length of the contour of C and choose

'.x/ � n .x/
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Fig. 3 The surface S for f as in Example 1; L is the trace of the contour line of C ; the two bells represent a function  .x/which is 0 �  .x/ � 1

and goes up to 1 on L

Fig. 4 Three interfaces: (a) in L1, (b) in BV , (c) in H1;1 that generate a similar gravity signal on z D 0

with  as in Fig. 3. Assuming that L is regular so that n is
continuous, the above choice is such that ' 2 T . We find

J0.f / D sup
'2T

Z
r � ' f d2x D h�1.L /;

which is in fact the measure of the lateral surface of S , we
see that in this case

h�1.L /C �2.C / D kf kBV

is proved.

As help to the intuition of the discussion of the regularity
of S , we provide in Fig. 4 three qualitative examples of
surfaces, one in L1, one in BV and one inH1;1 that generate
quite similar gravity signals on the plane z D 0. As a first
conclusion of this discussion we fix the choice

J .ıH/ D kıHkBV (20)

with the understanding that ıH 2 BV implies that the
interface S between the two layers can be discontinuous,
however its area is bounded and, thanks to the Tikhonov
principle, it should not be too large.

We come now to the choice of Y . Let us observe that a
classical choice for Tikhonov theory would be Y D L2.R2/.
However we have to consider that we will look for the

minimum of T .ıH/, not on the whole Y but just in a subset
K (see (4))

K � fıH measurable I jıH j � L�C .x/g I (21)

now it is clear that the same K is a subset of all Lp , p � 1.
Therefore the choice of p in this case is arbitrary. However
in order to be more homogeneous with the regularizing
functional, we make the choice p D 1, namely we put

T .ıH/ D kıg � F .ıH/kL1 C �kıHkBV : (22)

A last remark is that (22) gives a quite classical form of the
Tikhonov functional, which however does not cover the case
of continuous Wiener noise. This in fact is well known to
have no measurable realizations.

3 Existence of the Minimum

We want to propose the following theorem, which is a
classical result in regularization theory (see for example
Freeden and Nashed 2018).

Theorem 1 Let us put

M D inf
ıH2BV\K T .ıH/ (23)
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with T .ıH/ as in (22), then there is a ıH 2 BV such that

M D T .ıH/ (24)

namelyM is the minimum of T in BV \K .

Proof The proof comes in four steps:
(i) let us call BR the sphere of radius R in BV , i.e.

BR � fıH 2 BV I kıHkBV � R gI (25)

of course BR \ K is a closed, bounded and convex set
in BV . For any minimizing sequence ıHn 2 K ,

M D lim T .ıHn/ ; (26)

we can find an R large enough so that ıH 2 BR \ K .
In fact

M � T .0/ D kıgkL1 : (27)

Would M be equal to T .0/ the theorem is proved, so
we can assume that M < T .0/. Therefore, for n larger
than a suitable N ,

T .ıHn/ D kıg � F .ıHn/kL1 C �kıHnkBV � kıgkL1

and so,

n > N ; kıHnk � kıgkL1
�

(28)

and we can choose R D kıgkL1
�

;
(ii) according to Proposition 3, BR \ K is L1 compact, so

if ıHn is a minimizing sequence there is a sub-sequence
that we call again ıHn such that

ıHn �!
L1

ıH 2 BV : (29)

Then, according to (16),

kıHkBV � lim kıHnkBV � R (30)

i.e. ıH 2 BR. Furthermore, from (29), knowing that
a sub-sequence of ıHn converges almost everywhere
to ıH , we see that ıH 2 K (i.e. jıH j � L�c.x//.
Therefore one has ıH 2 BR \K;

(iii) let us notice that F .ıH/ is continuous L1 �! L1. In
fact, by using Taylor’s theorem, (3) can be written

F .ıH/ D �

Z
C

d2�
ıH.�/

Œjx � �j2 C .H C 	ıH/2�3=2
I

(31)

where 	 is function of � and x, such that 0 � 	 � 1, so
that .H C 	ıH/2 � H2C. Then,

kF .ıH/kL1 � �
R
C

d2� jıH.�/j R
R2

d2x 1

Œjx��j2CH2
C
�3=2

D � 2

HC

kıHkL1 (32)

namely F is bounded L1 �! L1. In a similar way one
proves that

kF .ıH1/�F .ıH2/kL1 � �
2


HC
kıH1�ıH2kL1; (33)

i.e. F is continuousL1 �! L1;
(iv) since ıHn is minimizing one has, from (iii) and (30),

M D lim T .ıHn/ D kıg � F .ıH/kL1 C lim J .ıHn/

(34)

kıg � F .ıH/kL1 C lim J .ıHn/

� kıg � F .ıH/kL1 C �J .ıH/ D T .ıH/ I

on the other hand, since ıH 2 BR \K , one has too

T .ıH/ � M I (35)

with (34) and (35) proving (24).
�

Remark 1 Let us notice that for every � we have a regular-
ized solution ıH�; of course this says not so much about the
right choice of �. Yet in this respect it is classical a theorem
in Tikhonov theory claiming that if �n are decreasing errors
in the “observation” equation ıgo;n D ıg C �n D F .ıH/C
�n,

ın D k�nkL1 �! 0; (36)

there is a strategy of �n D �.ın/, namely

�n > c ın ; .c D constant/;

such that the corresponding solutions ıH�n admit a sub-
sequence L1 converging to the correct solution ıH (Bertero
1982; Freeden and Nashed 2018).

4 A Numerical Example

This example has been developed to show how the theory
presented above can lead to a practical solution where data
are, by necessity, discrete and finite in number and the
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solution too has to be restricted to a finite dimensional sub-
space of BV .

It is our purpose: (1) to show how to discretize the
Tikhonov principle with the use of prisms; (2) to see how
the regularized solution depends on the observational noise,
�2 ; (3) to compare the solution foreseen in the paper with
the one obtained with another Tikhonov functional, e.g. by
using

J2.ıH/ D kıHk2
H1;2

T2.ıH/ D kıg � F .ıH/k2
L2

C �J2.ıH/; (37)

and with the one resulting from a simple least squares
solution (which is the discretized version of (37)). In order
to keep the example as simple as possible, we decided
to reduce it to a so called 21

2
dimensional case, where

the “true” body is constituted by three prisms (see Fig. 5)
of length 1 km in x, each of them, width 5 km in the
y-direction and depth respectively of 1:0 km, 1:4 km and
0:6 km.

Therefore if we take measurements only along the central
line in the x-direction and on the same time we impose to our
model that the width in y is constant and equal to the correct
value, we have all the information we need, almost as if the
whole picture would be exactly bidimensional. To generate
the exact values of ıg we have chosen ı� D 500 kg/m3

which is quite a value considering that ı� has the meaning
of a density contrast.

According to the above picture, we will model our
unknown interface S by 12 prisms (see Fig. 5), with bases of
length 0:25 km in x, width 5 km in y as we said and unknown
depth z D �Hk (k D 1; 2 : : : 12). The 36 observations
simulated in this example, are evenly distributed on a grid
on the x-axis with an inter-distance of 0:1 km, so as to
have three more observation points at each side of the body,
along x.

If we call, Bk , k D 1; 2 : : : 12, the bases of the model
prisms we can write

ıg.x/ D
12X
kD1

Fk.ıHk I x/

where

Fk.x/ D �

Z
Bk

d2�

�
1

Œjx � �j2 CH2
k �
1=2

� 1

jx � �j
�
: (38)

Please note that in this context instead of using ıHk D
Hk � H as unknown, we are using the whole Hk . For this
reason, when coming to discretization of

R jıH j d2�, to be
close to the theory developed, we discretize the regularizing
functionals by the formulas

12X
kD1

jHk �mH j or
12X
kD1

jHk �mH j2

where

mH D 1

2

12X
kD1

Hk:

So we start now by first generating 36 exact values ıg.xi /,
i D 1; 2 : : : 36, and then we add to them Gaussian inde-
pendent noises i once drown from N.0I 1 mGal2/ and in
a second case from N.0I 4 mGal2/.

The optimization is then done with the discretized
Tikhonov functional

T1.Hk/ �
36X
iD1

jıgo.xi /�
12X
kD1

Fk.Hk I xi /jC�J1.Hk/: (39)

Here a comment is required: as we can see, the discretization
of the BV norm is done with the L1 term already discretized

Fig. 5 The three prisms section constituting the “true” body of the numerical example and the simulated observation points on a regular grid set
at z D 0 (red crosses)
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and with the incremental term

11X
kD1

jHkC1 �Hkj:

According to our Example 1, this term, proportional to the
lateral surfaces of the whole set of prisms, is also propor-
tional to the measure of the lateral surfaces of S , which
is (so to say) the discretized version of

R jDH j d2�. Now
we might observe that (39) could also be considered as a
discretization of a Tikhonov principle regularized by the
functional kıHkH1;1 . This is in fact the case and it means
that when we come to a discretized numerical computation,
the two cases ıH 2 BV and ıH 2 H1;1 cannot be
distinguished. This indeed does not cancel the theoretical
characteristics of the two, discussed in the paper. As for the
value of � to be used in (39) we have chosen, in analogy
with the L2 theory, and its stochastic interpretation (Sansò
1986),

�1 D �1

J1.ıH theo/
: (40)

The results are displayed in terms of observations ıgo.xi /
and interpolated function ı Og.x/ as well as theoretical H.x/
and estimated OH.x/, once with a noise of � D 1mGal,
in Fig. 6a, and then with a noise of � D 2mGal, in
Fig. 6b. As it can be observed, the proposed regularization

is stable, having a similar behavior with the two noise
realizations.

A second numerical check, was aimed to the comparison
of OH1.x/, derived by minimizingT1.Hk/, with OH2.x/ derived
by minimizing

T2.Hk/ D
36X
iD1

jıgo.xi /�
12X
kD1

Fk.Hk I xi /j2 C �J2.Hk/;

(41)

J2.Hk/ D
12X
kD1
.Hk �mH/

2 C
11X
kD1

.HkC1 �Hk/
2: (42)

In this case � has been chosen to be

�2 D �2
J2.Htrue/

Furthermore a second comparison is done with OH0.x/
derived by a simple least squares criterion, namely by
minimizing T2.Hk/ after we have put � D 0. The results
are displayed in Fig. 7. The conclusions that can be drawn
from this small numerical experiment are:

1. the proposed method seems to give in all cases reasonable
results, fitting quite well the real shape of the interface
(standard deviations of the differences between real and

Fig. 6 Observed values and interpolating function ı Og.x/ and below the true interface ıH.x/ and estimated ı OH.x/: (a) case with � D 1mGal;
(b) case with � D 2mGal
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Fig. 7 Comparison between different regularizations: OH0 the l.s. solution (no regularization), OH1, theBV (orH1;1) solution, OH2 theH1;2 solution

estimated depths are 125m and 158m respectively for
Fig. 6a, b);

2. the comparison with the least squares solution OHo shows
that this last one is typically less stable than OH1 (standard
deviations for least squares solutions are 419m and 454m
respectively for Fig. 7a, b);

3. the comparison between OH1 and OH2 shows that, at least
for the presented simple experiment, the first one per-
forms better than the second both in terms of gravity
signal fitting and depths estimation (standard deviations
for OH2 solutions are 519m and 481m respectively for
Fig. 7a, b).

To measure quantitatively the quality of our results, the
differences between the three solutions ( OH0, OH1, OH2) with
respect to the true surface have been analyzed. In details
the previous experiment has been repeated ten times with
different noise realizations (with � D 1mGal). Results are
reported in Fig. 8 where it can be seen that the behaviour
(and the consequent conclusions drawn for the single real-
ization presented in Figs. 6 and 7) are systematic. In par-
ticular, it can be noticed that the rmse of the differences
of depths estimates by means of BV regularization results
to be always the smallest one as well as the std. The same

consideration can be done also looking at the minimum and
maximum values, which means that the solution obtained
by using BV regularization is the closest to the reality. All
these statistics, confirm the goodness of the method and
the effective improvement with respect to the two other
solutions.

5 Conclusions

The inverse gravimetric problem, in a certain frame with a
two layers configuration has been discussed. In particular, the
meaning of a Tikhonov regularization has been analyzed in
terms of prior requirements on the regularity of the interface
S . A reasonable choice has been to put the condition that
ıH 2 BV , namely that S has a finite and possibly small
area. A theorem of existence of the solution of the corre-
sponding variational principle has been proved. A numerical
example, though very simple, seem to indicate that the fore-
sought properties of the BV solution are in fact found and
they seem to give better results than a no-regularization
solution, or a stronger regularization solution, at least in an
averaged sense.
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Fig. 8 Statistical analysis of the
differences of the three solutions
with respect to the true surface:
.Hk � OH0;k/ the l.s. solution in
black, .Hk � OH1;k/ the BV (or
H1;1) solution in green,
.Hk � OH2;k/ the H1;2 solution in
red
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Converted Total Least Squares Method
and Gauss-Helmert Model with Applications
to Coordinate Transformations

Jianqing Cai, Dalu Dong, Nico Sneeuw, and Yibin Yao

Abstract

In this paper, the three kind of solutions of TLS problem, the common solution by
singular value decomposition (SVD), the iteration solution and Partial-EIVmodel are firstly
reviewed with respect to their advantages and disadvantages. Then a newly developed
Converted Total Least Squares (CTLS) dealing with the errors-in-variables (EIV) model
is introduced. The basic idea of CTLS has been proposed by the authors in 2010, which is
to take the stochastic design matrix elements as virtual observations, and to transform the
TLS problem into a traditional Least Squares problem. This new method has the advantages
that it cannot only easily consider the weight of observations and the weight of stochastic
design matrix, but also deal with TLS problem without complicated iteration processing, if
the suitable approximates of parameters are available, which enriches the TLS algorithm
and solves the bottleneck restricting the application of TLS solutions. CTLS method,
together with all the three TLS models reviewed here has been successfully integrated
in our coordinate transformation programs and verified with the real case study of 6-
parameters Affine coordinate transformation. Furthermore, the comparison and connection
of this notable CLTS method and estimation of Gauss-Helmert model are also discussed in
detail with applications of coordinate transformations.

Keywords

Converted TLS � Errors-In-Variables (EIV) � Gauss-Helmert model � Total Least Squares
(TLS) � Virtual observation

1 Introduction

Total Least Squares (TLS) is a method of fitting that is
appropriate when there are errors in both the observation
vector and in the design matrix in computational mathe-
matics and engineering, which is also referred as Errors-
In-Variables (EIV) modelling or orthogonal regression in
the statistical community. The TLS/EIV principle studied
by Adcock (1878) and Pearson (1901) already more than
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e-mail: cai@gis.uni-stuttgart.de

Y. Yao
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one century ago. Kendall and Stuart (1969) described this
problem as structural relationship model models. In geodetic
application this method was discussed by Koch (2002) and
studied recently by Schaffrin (2005). How to obtain the best
parameter estimation values and give the statistical informa-
tion of parameters in the EIV model is not ‘perfectly’ solved.
Nevertheless, the EIV model is still becoming increasingly
widespread in remote sensing (Felus and Schaffrin 2005)
and geodetic datum transformation (Schaffrin and Felus
2005, 2008; Schaffrin and Wieser 2008; Akyilmaz 2007; Cai
and Grafarend 2009; Shen et al. 2011;Amiri-Simkooeil and
Jazaeri 2012).

In 1980, the mathematical structure of TLS was
completed by Golub and Van Loan (1980), who gave the
first numerically stable algorithm based on matrix singular
value decomposition. With the rapid development of the
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numerical method over the last decade, various approach for
TLS emerged. These include singular value decomposition
(SVD), the completely orthogonal approach, the Cholesky
decomposition approach, the iterative approach, and so on
(Van Huffel and Zha 1993; Van Huffel and Vandewalle 1991;
Van Huffel and Lemmerling 2002; Schaffrin 2003),the most
representative of which are the SVD and iterative solutions.
However, there are some problems in the both methods. In
the SVD method, some elements of design matrix may be
non-stochastic, or some elements containing errors could
appear more than once. To perform the minimum norm
constraint without this consideration is inappropriate and
may result in large deviations. By the Iteration method, since
the iteration is the gradual approximation of the true value of
parameter, iteration solutions can be a problem if there is a
high degree of nonlinearity. In addition, this method has also
the problem by the repetition of parameters in design matrix.

Recent years, a further method reformed from EIV model
called Partial-EIV has a relative good solution to this kind
of problems (Xu et al. 2012; Wang et al. 2016). However,
almost all the Partial-EIV models focus on the calculation
with iterations, which makes the mathematical algorithm
very complicate. According to the research results by Yao
et al. (2010), one method called Converted Total Least
Squares (CTLS) was developed since 2010. This method
can perform the processes with just one step iteration (i.e.,
proper approximates estimated by LS) and at the same time
solve the problem by the repetition of elements and the non-
stochastic elements containing errors in design matrix. In
the bachelor thesis by Dong (2017), the CTLS method was
also systematically introduced and applied to the coordinate
transformation in Baden-Württemberg together with other
three estimators.

In this paper, based on a short review of TLS and EIV
model, CTLS method will be described in detail in Sect. 2. In
the following Sect. 3, CTLS, together with all the three TLS
models reviewed here has been successfully integrated in
6-parameters Affine coordinate transformation and verified
with the real case study of 131 BWREF points in Baden-
Württemberg, Germany. As a comparison in Sect. 4, the
transformation parameters estimated by LS, TLS (SVD),
Partial-EIV model and CTLS will be represented and dis-
cussed. Furthermore, in Sect. 5 the comparison and connec-
tion of this notable CLTS method and estimation of Gauss-
Helmert model are also discussed in detail with applications
of coordinate transformations. The conclusions and further
studies are presented in the last section.

2 Converted Total Least Squares

2.1 The Derivation of Converted Total Least
Squares

The Total Least Squares Estimator (TLS) or Errors-In-
Variables (EIV) modelling

.y � e/ D .A � EA/ Ÿ

EfŒ.vecEA/; e�g D 0; C fvecEA; eg D 0;

Dfeg D †0 ˝ Qy; DfvecEAg D †0 ˝ Qa

(1)

The Total Least Squares Euler-Lagrange Approach for
Qy D Qa D I2n is according to the criteria

eT e C .vecEA/T .vecEA/ D min .e;EA; Ÿ/ : (2)

The Converted Total Least Squares (CTLS) is proposed
to deal with the errors-in-variables (EIV) model. Firstly,
we take classic Gauss-Markov model as basis observation
equation.

y D AŸ C ey: (3)

Taking into account the design matrix’s stochastic errors
in model (1) will lead to difficulties for the parameter
estimation and accuracy assessment. Particularly, one cannot
apply the traditional error propagation law directly, since the
law is established based on linear relations. The basic idea
of CTLS is to take the stochastic design matrix elements
as virtual observations. Based on the original observation
Eq. (1), the number of observation equation is augmented
by taking the design matrix elements as new observation
vector, and some of the design matrix elements are estimated
as parameters in the new approach. The advantage of such
strategy is the ability to estimate these required parame-
ters, where the design matrix is constructed by the initial
value of design matrix parameters, which has no longer
random properties. The estimated parameters are the linear
functions of the observation vector. After this treatment,
Eq. (3) can be solved with the classical LS adjustment
theory.

Augmenting the observation equations that take function-
ally independent random elements of design matrix elements
as virtual observation based on the original error equation.

ya D Ÿa C ea; (4)



Converted Total Least Squares Method and Gauss-Helmert Model with Applications to Coordinate Transformations 119

where ya is comprised of the design matrix elements that
contain errors, and Ÿa is comprised of the new parameters.

With the combination of observation Eqs. (1) and (2), a
new mathematical observation model can be obtained:

�
y D AŸ C ey
ya D Ÿa C ea

: (5)

Note that ya contains only the observations of design
matrix. To distinguish the design matrix in the original model
the symbol AŸ is used to denote the design matrix in (1),
which consists of the initial value of parameters Ÿa and other
elements of design matrix without errors.

Based on the above model and according to our previous
research results (Yao et al. 2010) we can get the following
derivations:

�ey D
�
A0

Ÿ C EA

� �
Ÿ0 C �Ÿ

� � y

D A0
Ÿ�Ÿ C EAŸ

0 C A0
ŸŸ

0 � y C EA�Ÿ ! EA�Ÿ � 0

D A0
Ÿ�Ÿ C B�a C A0

ŸŸ
0 � y

� ea D Ÿa � ya
D �

a0 C �a
� � ya

D �a C �
a0 � ya

�
(6)

Where EA is composed of �a, the corrections to the new
parameters, and B�a is the rewritten form of EAŸ

0. The
conversion of EAŸ

0 to B�a is the key step for this approach,
where the vectorization of matrix product equation

B
n�t xt �1 D �

xT ˝ I
�

n˝np

vec .B/
np�1

is applied. is composed of non-stochastic elements in the
design matrix and the initial value a0. In addition, the first
equation of (6) ignores second-order item EA�Ÿ under the
condition that the approximate values A0

Ÿ and Ÿ0 are suffi-
ciently close to AŸ and Ÿ, respectively. This leads to avoid
the further iteration. Actually this condition can be satisfied
in the case of estimation of the similar or affine coordinate
transformation parameters, where the suitable approximates
are provider by normal LS, more detail refer to Sect. 3.

Define

z D
�
y � A0

ŸŸ
0

ya � a

�
;A˜ D

�
A0

Ÿ B
0 I

�
;

�˜ D
�

�Ÿ

�a

�
; ez D

�
ey
ea

� (7)

The new observations (6) can be represented as

z D A˜�˜ C ez (8)

with the newweight matrix or the variance-covariancematrix

Pz D
�
Py 0
0 Pa

�
; or†z D �2

z0

�
P�1
y 0
0 P�1

a

�
(9)

where ezis the residual vector of all observations, A˜is
the new design matrix, formed by the initial values of the
parameters, and �˜ is comprised of the corrections to all
parameters.

The estimation criterion is still to get the minimum of the
residual sums of the squares:

eT
z Pzez D eT

y Pyey C eT
a Paea ! min (10)

With these derivations and condition, the TLS problem
is successfully converted into the classical LS problem. The
estimation can be completed by following the classical LS
principle (10) and with considering the weights or variance-
covariances of observations and virtual observations by:

� Õ D
�
AT

˜PzA˜

��1

AT
˜Pzz (11)

subject to the related dispersion matrix

D f� Õ g WD †� Õ D �2
z0

�
AT

˜PzA˜

��1

: (12)

2.2 Estimation Formula of UnitWeight
Variance

Normally, the estimation formula of unit weight variance of
the TLS is difficult to determine. In considering the design
matrix errors, the question of whether or not the degree of
freedom for adjustment model changes arises. As we have
described in Sect. 2.1, the TLS problem is converted into a
classical LS problem. With the estimator (11) the correction
of observations and virtual observations can be also derived:

Oez D A˜� Õ � z: (13)

And the statistics for accuracy assessment, such as unit
weight variance for CTLS can be straightforward estimated:

O�2
z0

D OeT
z Pz Oez

.n C u/ � .m C u/
D OeT

z PzOez
n � m

: (14)

where n is the number of original observations that the
observation vector y contains, u is the number of functionally
independent random elements in the design matrix A. m is
the number of unknown parameters, here only the number
of original parameters in model (3). The estimation of the
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variance-covariance matrix can further achieved by

O†� Õ D O�2
z0

�
AT

˜PzA˜

��1

: (15)

This approach of CTLS provides not only one practical
solution of TLS problems, but also the estimation of unit
weight and variance-covariancematrix of original and virtual
observation, which achieves one successful integration of the
TLS theory with the classical LS approach.

3 Implementation of CTLSMethod
to 2-D 6-Parameter Affine
Transformation

In the most applications of the plane transformation the
6-parameter affine models is applied and are also recom-
mended by the Surveying Authorities of the States of the
Federal Republic of Germany (AdV). Here the new CTLS
method will be implemented to the 6-parameter affine trans-
formation model in order to estimate the parameters of the
plane transformation parameters based on one real case study
with 131 collocated points in Baden-Württemberg.

With the planar affine transformation, where six param-
eters are to be determined, both coordinate directions are
rotated with respect to two different angles ’ and “, so that
not only the distances and the angles are distorted, but usually
also the original orthogonality of the axes of coordinates
is lost. An affine transformation preserves collinearity and
ratios of distances. While an affine transformation preserves
proportions on lines, it does not necessarily preserve angles
or lengths.

The 6-parameter affine transformation model between
any two plane coordinates systems, e.g. from Gauß-Krueger
coordinate (H, R) in DHDN (G) directly to the UTM-
Coordinate (N, E) in ETRS89 (Cai and Grafarend 2009) can
be written as

�
N

E

�
D

�
mH cos’ �mR sin “

mH sin’ mR cos “

� �
H

R

�
C

�
tN
tE

�
(16)

where tN and tE are translation parameters; ’ and “ are
rotation parameters; mH and mH are scale corrections.

We apply here TLS solutions to the centralized 6-
parameter affine transformation model where the translation
parameters are vanished. Let rewrite the 6-parameter affine

transformation in 6 parameters as

�
N

E

�
D

�
mH cos˛ �mR sinˇ

mH sin ˛ mR cosˇ

� �
H

R

�
C

�
tN
tE

�

DW
�

�11 �21

�12 �22

� �
H

R

�
C

�
�31

�32

� (17)

Then the observations and old coordinates are centered
around their average values in the form:

�
N

E

�
DW

�
�11 �21

�12 �22

� �
H

R

�
; (18)

with

N D N � mean.N /; E D E � mean.E/

H D H � mean.H/; R D R � mean.R/

For the n couple of coordinates we have an empirically
suited representation of affine transformation model con-
structed in the form of observation model (3)

E

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

2
6666664

N 1

: : :

N n

E1

: : :

En

3
7777775

9>>>>>>=
>>>>>>;

D E

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

2
6666664

H 1 R1 0 0

: : : : : : : : : : : :

H n Rn 0 0

0 0 H 1 R1

: : : : : : : : : : : :

0 0 H n Rn

3
7777775

9>>>>>>=
>>>>>>;

2
664

�11

�21

�12

�22

3
775 : (19)

According to the CTLS model (6) we have the correspond
matrixes for 6-parameter affine transformation model

EA
.2n�2n/

D

2
666666664

�H1 �R1 0 0
:::

:::
:::

:::

�H n �Rn 0 0

0 0 �H 1 �R1
:::

:::
:::

:::

0 0 �H n �Rn

3
777777775

;

Ÿ0

.4�1/

D

2
664

�0
11

�0
21

�0
12

�0
22

3
775 ; �a

.2n�1/
D

2
666666664

�H 1

:::

�H n

�R1
:::

�Rn

3
777777775

(20)
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The key step here is to convert EAŸ
0 to B�a

EAŸ
0 D B�a D

	�
�0

11 �0
21

�0
12 �0

22

�
˝ In



�a (21)

where

B
2n�2n

D
�

�0
11 �0

21

�0
12 �0

22

�
˝ In D

D

2
666666664

�0
11 0 0 �0

21 0 0

0
: : : 0 0

: : : 0

0 0 �0
11 0 0 �0

21

�0
12 0 0 �0

22 0 0

0
: : : 0 0

: : : 0

0 0 �0
12 0 0 �0

22

3
777777775

(22)

The estimate of CTLS is (11)

� Õ D
�
AT

˜PzA˜

��1

AT
˜Pzz: (23)

The solution � Õ is a (2n C 4) � 1 vector. The first four
elements of � Õ are the corrections of Ÿ and the following 2n
elements are the corrections of a, which are the independent
corrections for the initial design matrix A. The final estimate
of transformation parameters are OŸ D Ÿ0 C�OŸ and OŸa D Oa D
a0C�Oa, where Ÿ0 are calculated from the classic LS solution
of (3).

4 Comparison and Analysis
of the Results with CTLS and Other
TLSMethods

Through the TLS solution where the errors in the design
matrix A are considered the remaining transformation coor-
dinate residuals of collocated DHDN points in B-W are
reduced from 12 cm to 4 cm (Fig. 1), which are illustrated
in Fig. 2 in comparison with Fig. 1 in detail. The statistics
of these residual in comparison with LS methods are listed
in Table 1. The following statistical terms shows us the
difference between the quadratics sums of the residuals
OeT
LS OeLS related LS and OeT

TLS OeTLS related TLS, together with

Fig. 1 Horizontal residuals after
6-Parameter Affine
transformation in
Baden-Württemberg Network
with LS method
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Fig. 2 Horizontal residuals after
6-Parameter Affine
transformation in
Baden-Württemberg Network
with CTLS method

Table 1 Transformation parameters with different estimation methods

6-parameter affine transformation GK (DHDN) – UTM (ETRS89)
131 BWREF points tN (m) tE (m) ’ (00) “ (00) dm1 (�10�4) dm2 (�10�4)
LS 437.194567 119.756709 0.165368 �0.196455 �3.996797 �3.988430
TLS 437.194554 119.756712 0.165368 �0.196455 �3.996797 �3.988430
Partial-EIV 437.194556 199.756709 0.165375 �0.196445 �3.996797 �3.988430
CTLS 437.194567 119.756709 0.165375 �0.196445 �3.996797 �3.988430
Gauss-Helmert 437.194567 119.756709 0.165289 �0.196397 �3.996797 �3.988430

the quadratics sums of the errors of virtual observations of
functionally independent random elements of design matrix:

LS W OeT
LS OeLS D 3:678308

�
m2

�
TLS .SVD/ W OeT

TLS OeTLS D 0:409136
�
m2

�
OET

TLS
OETLS D 0:817619

�
m2

�
OeT

TLS OeTLS C OET
TLS

OETLS D 1:226756
�
m2

�

Partial-EIV W OeT
TLSP OeTLSP D 0:920311

�
m2

�
OeT
aTLSP

OeaTLSP D 0:919577
�
m2

�
OeT

TLSP OeTLSP C OeT
aTLSP

OeaTLSP D 1:839889
�
m2

�
CTLS W OeT

C TLS OeC TLS D 0:920311
�
m2

�
OeT
aC TLS

OeaC TLS D 0:919577
�
m2

�
OeT
C TLS OeC TLS C OeT

aC TLS
OeaC TLS D 1:839889

�
m2

�

5 Connection of CTLS Estimator
and the Estimator of Gauss-Helmert
Model

In one independent study about the parameter estimation
of coordinate transformations, where the coordinates of the
starting system and the coordinates of the final system are
considered as random variables with identical covariance
matrices, Koch (2002) has proven that the estimated param-
eters are identical, if the Gauss-Helmert model (G-H-M),
after introducing additional unknown parameters with the
Gauss-Markov model (G-M-M). Since the approach with
introducing additional unknown parameters is just the same
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Table 2 Statistical comparison the results of the coordinate transformation with different estimation methods

Absolute mean residuals Max. of absolute residuals
Transformation models Collocated sites jVNj (m) jVEj (m) jVNj (m) jVEj (m) RMS (m) Standard deviation of unit weight (m)
LS B-W 131 0.1048 0.0804 0.3288 0.3226 0.1187 0.119868
TLS B-W 131 0.0350 0.0268 0.1097 0.1076 0.0396 0.0400
Partial-EIV B-W 131 0.0525 0.0402 0.1645 0.1614 0.0594 0.0848
CTLS B-W 131 0.0525 0.0402 0.1645 0.1614 0.0594 0.0848
Gauss-Helmert B-W 131 0.0525 0.0402 0.1644 0.1613 0.0594 0.0848

as the ideas of CTLS, which brings the connection of G-H-M
with TLS model.

Koch (2002) established Taylor linearized Gauss-Helmert
Model (Wolf 1978) with respect to the transformation param-
eters and coordinates for the case of coordinate transforma-
tion (17) directly

xzi C ezi D t C RM .xsi C esi / ; for i 2 f1; : : : ; pg ;

(24)

With new observation vector�yzi D t0 C R0M0xsi � xzi,
new notations of “ D [�t,�˛,�m]0 and the related deriva-
tive term A of Taylor linearization (Pope 1972) we have the
Gauss-Helmert model

yzi D A“ C R0M0esi � ezi D A“ C Ze
with E feg D 0 and D feg D �2†ee

(25)

He converted Gauss-Helmert model into Gauss-Markov
model for the same case of transformation with additional
new parameters/observations, in which the error vector coor-
dinates of starting system esi is substituted by vector �xsi

yzi C ezi D A“ C R0M0�xsi

ysi C esi D I�xsi
(26)

With new notation of B D R0M0 and ” D �xsi we can
reform (26) as

�
y D A“ C B” C ey
y” D ” C e”

(27)

He has also proved that both the G-H-M (25) and con-
verted G-M-M (27) produce identical estimated parameters.

Note that this new converted G-M-M (27) has the same
structure with (6) or (8). After the convert of the random
elements in design matrix into new random parameters
together with the argumentation of virtual observations to
Gauss-Markov model we arrives the same models:

�
y � A0

ŸŸ
0 D A0

Ÿ�Ÿ C B�a C ey
ya � a0 D C�a C ea

(28)

The numerical transformation results with converted G-
M-M are listed in last line of Tables 1 and 2, and also shown
in Fig. 3.

In addition, the following statistical terms shows that
there are no difference between the quadratics sums of the
residuals OeT

C TLS OeC TLS related CTLS and OeT
GHM OeGHM related

G-H-M, together with the quadratics sums of the errors
of virtual observations of functionally independent random
elements of design matrix:

CTLS W OeT
C TLS OeC TLS D 0:920311

�
m2

�
OeT
aC TLS

OeaC TLS D 0:919577
�
m2

�
OeT

C TLS OeC TLS C OeT
aC TLS

OeaC TLS D 1:839889
�
m2

�
G-H-M OeT

z Oez D 0:920311
�
m2

�
OeT

s Oes D 0:919577
�
m2

�
OeT
z Oez C OeT

s Oes D 1:839888
�
m2

�

It can be concluded that this notable development of the
CLTS has also revealed that the connection/relationship or
identity of estimator of the CTLS and the converted G-M-
M estimator of Gauss-Helmert model in dealing with EIV
models, especially in the case of similar or affine coordinate
transformations.
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Fig. 3 Horizontal residuals after
6-Parameter Affine
transformation in
Baden-Württemberg Network
with Gauss-Helmert Model

6 Conclusions and Further Studies

The traditional techniques used for solving the linear estima-
tion problems are based on classical LS. However, only the
errors of observation vector are considered, and the design
matrix is assumed to be accurate without any errors. This
makes LS not valid for most cases. Further study based
on Errors-in-Variables (EIV), Total Least Squares method
considers the errors in design matrix as well. The problem of
which is, the repetition of parameters in design matrix has a
deviation influence on theminimumnorm constraint. Reform
from EIV-model to Partial-EIV model and the Converted
Total Least Squares could solve the Problem. Compared
with Partial-EIV model, the solution of Converted Total
Least Squares does not need the iteration. Based on these
analyses and comparisons with different estimation methods
the following points can be concluded:

• The traditional SVD method of TLS has a theoretical
weakness in that it cannot be applied directly when only
part of the design matrix contains errors.

• The Converted Total Least Squares (CTLS) can be used to
deal with stochastic design matrix in TLS problem, where

the TLS problem has been successfully converted into a
LS problem.

• CTLS can be easily applied with considering the weight
of observations and the weight of stochastic elements of
design matrix. (Completely!)

• Although the estimated transformation parameters of
Partial-EIV model and CTLS are almost identical, our
CTLS has its advantage without complicated iteration
processing. (Efficiently!)

• This study develops one converted approach for TLS
problem, which provides statistical information of param-
eters and stochastic design matrix, enriches the TLS algo-
rithm, and solves the bottleneck restricting the application
of TLS.

• This notable development of the CLTS reveals that CTLS
estimator is identical to Gauss-Helmert model estimator
in dealing with EIV models, especially in the case of
coordinate transformation.

Further studies should focus on the study of a general
connection and even identical estimates of CTLS and Gauss-
Helmert model. Further applications can be performed to
7- or 14-parameters similarity coordinate transformations
among IERS ITRF realizations.
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A Bayesian Nonlinear RegressionModel Based
on t-Distributed Errors

Alexander Dorndorf, Boris Kargoll, Jens-André Paffenholz,
and Hamza Alkhatib

Abstract

In this contribution, a robust Bayesian approach to adjusting a nonlinear regression model
with t-distributed errors is presented. In this approach the calculation of the posterior
model parameters is feasible without linearisation of the functional model. Furthermore,
the integration of prior model parameters in the form of any family of prior distributions
is demonstrated. Since the posterior density is then generally non-conjugated, Monte
Carlo methods are used to solve for the posterior numerically. The desired parameters
are approximated by means of Markov chain Monte Carlo using Gibbs samplers and
Metropolis-Hastings algorithms. The result of the presented approach is analysed by means
of a closed-loop simulation and a real world application involving GNSS observations with
synthetic outliers.

Keywords

Bayesian nonlinear regression model � Gibbs sampler � Markov Chain Monte Carlo �
Metropolis-Hastings algorithm � Scaled t-distribution

1 Introduction

The estimation of model parameters is a fundamental task
in geodetic applications. One possibility for accomplishing
this task is provided by Bayesian inference, which is based
on Bayes’ theorem and utilizes probability density func-
tions of observations and parameters. Bayesian inference
also enables hypothesis testing and the determination of
confidence regions. In comparison to classical non-Bayesian
statistics, Bayesian inference is more intuitive and “methods
become apparent which in traditional statistics give the
impression of arbitrary computational rules” (according to
Koch 2007, p. 1). The fields of application of Bayesian statis-
tics are diverse and include disciplines such as biological,
social and economic sciences (see Gelman et al. 2014, for the
fundamental basics of Bayesian inference and some appli-

A. Dorndorf (�) · B. Kargoll · J.-A. Paffenholz · H. Alkhatib
Geodetic Institute, Leibniz University Hannover, Hannover, Germany
e-mail: dorndorf@gih.uni-hannover.de; kargoll@gih.uni-hannover.de;
paffenholz@gih.uni-hannover.de; alkhatib@gih.uni-hannover.de

cation examples from these disciplines). Bayesian statistics
has also been used for different geodetic applications for
decades (Bossler 1972; Koch 1988, 2007, 2018; Riesmeier
1984; Schaffrin 1987; Yang 1991; Zhu et al. 2005). However,
in all of these studies simple linear functions are used,
simple conjugate prior density functions are assumed or
outlier-affected observations are not considered. A particular
problem that arises with nonlinear models or non-conjugate
priors in connection with popular classes of algorithms, such
as Markov chain Monte Carlo (MCMC) methods (cf. Gamer-
man and Lopes 2006; Gelman et al. 2014), one generally
cannot sample directly from the posterior density function.
The class of MCMC methods includes the well known
Metropolis-Hastings algorithm and Gibbs sampler. The latter
has been originally developed for the Bayesian restoration
of digital images and later used for a variety of problems of
Bayesian inference. Such problems include nonlinear inverse
problems (see, for instance, Haario et al. 2006; Johnathan et
al. 2014). In a geodetic context Gibbs sampler methods have
been used for the purpose of error propagation and inversion
of large matrices (cf. Koch 2017; Alkhatib and Schuh 2006;
Gundlich et al. 2003).
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The likelihood function and prior distribution are gener-
ally assumed to be Gaussian in this context, so that these
approaches are not robust against outliers. To obtain a robust
approach, the family of normal distributions is replaced by
a family of heavy-tailed distributions. Koch and Kargoll
(2013) introduced the scaled t-distribution as a heavy-tailed
error law in a geodetic application involving a linear model.
An extension of this approach to nonlinear models was
developed in Alkhatib et al. (2017). In both works, the
solution was obtained by means of an expectation maxi-
mization algorithm, which is only based on the likelihood
function and thereby does not allow for the integration of
prior knowledge about the parameters. In a Bayesian context
involving linear models with t-distributed errors, a variety of
solution approaches utilizing MCMC methods, in particular
a Gibbs sampler, exist (e.g., Geweke 1993; Gelman et al.
2014). In our current contribution, we extend the previous
approaches to a Bayesian approach to solving a nonlinear
model based on the t-distribution error law. The suggested
approach allows for the integration of prior model parameters
by assuming any family of prior distributions.

2 Bayesian Inference

2.1 Fundamentals of Bayesian Inference

In many geodetic applications one typically works with
models which depend upon parameters to be estimated.
We limit ourselves in this paper to the linear or nonlinear
regression models. Let l be a vector of data and ‚ be a
vector which contains the parameters for a model which
seeks to explain l . The relationship between observations and
unknown parameters is described by means of a functional
model f .‚/:

l C � D f .‚/: (1)

The residuals (“errors”) � arise in an overdetermined system
and describe the precision of the observations. The usual
assumption is that the residuals are normally distributed with
zero mean and variance-covariance matrix †. The vector-
valued function f .‚/ can be linear (e.g., distance estimation
from repeated measurements) or nonlinear (e.g., estimation
of geometric shape parameters from 2D or 3D points), but
the focus is on the nonlinear case in this paper. The previous
model defines a Gauss-Markov model (GMM), which is
usually adjusted by means of the method of least squares (cf.
Koch 1999).

As an extension of that approach, Bayesian inference uses
probability distributions to determine the unknown parame-
ters of a model and is based on Bayes’ theorem:

p.‚jl/ / p.‚/ � p.l j‚/: (2)

Here, p.‚jl/ is the so-called posterior density, from which
the unknown model parameters can be derived for given
observations l . The prior density p.‚/ expresses all addi-
tional information about the unknown parameters and may
be obtained from, e.g., results of a previous adjustment or a
manufacturer’s data sheet. p.l j‚/ is the likelihood function,
which represents the information of the observations condi-
tional on the unknown parameters. In case of Bayesian infer-
ence the solution approach is based on marginal and condi-
tional densities, where one distinguishes between conjugated
and non-conjugated prior distributions. To evaluate the mean
of the posterior density as a point estimate, one can solve
the integral E.‚jl/ D R

‚p.‚jl/d‚. However, except
for special cases involving linear functional models and
normally distributed residuals, it is impossible to evaluate
this integral analytically. To overcome this limitation, Monte
Carlo (MC) techniques can be employed to approximate
desired statistical measures such as expectations, variances,
covariances, skewness, and kurtosis (cf. Koch 2017; Gelman
et al. 2014).

2.2 A Robust Bayesian Model

The general assumption of normally distributed residuals in
Eq. (1) does not account for outliers, which may therefore
deteriorate the inference about the model parameters. To deal
with outliers, hypothesis tests for outlier detection or a robust
adjustment should be carried out. The focus of this contribu-
tion is on the latter. For this purpose, the normal distribution
may be replaced by a longer-tailed family of distributions
(cf. Gelman et al. 2014), for instance, by the family of scaled
(Student’s) t-distributions, frequently used in Bayesian and
likelihood inference. Accordingly, the stochastic model for
each residual is assumed to be

�i � t�.0; s2
t /: (3)

The degree of freedom � controls the thickness of the tails.
Outliers, being located in the tails, are more abundant for
small �, whereas the t-distribution approaches a normal
distribution with increasing �. Inference about � is possible,
so that estimators based on the t-distribution model have been
called adaptive or self-tuning robust estimators (cf. Koch and
Kargoll 2013; Parzen 1979). The residuals are assumed to
have expectation 0, and the scale factor st is related to their
variances through

�2
� D �

� � 2
s2

t ; (4)

defined for � > 2. The t-distribution model Eq. (3) can be
re-formulated conveniently and equivalently as the rescaled
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normal distribution (cf. Gelman et al. 2014)

�i �N.0; ˛2Wi /;

Wi �Inv-�2.�; �2/;

with s2
t D ˛2�2:

(5)

This equivalence is enabled by the introduction of additional,
scaled inverse-chi-square distributed weights Wi . Whereas �

itself is also a degree of freedom of that Inv-�2-distribution,
the scale factor st is factorized into the scale factor ˛ with
respect to the normal distribution and the parameter � of the
Inv-�2-distribution.

As this t-distribution results in a non-conjugated prior and
as the functional model is nonlinear, MCMC methods are
required to calculate the posterior density. The fundamentals
and further discussion of the solution of non-conjugated prior
densities by means of MCMC can be found, e.g., in Kroese et
al. (2011) and Gelman et al. (2014). In this contribution, the
Gibbs sampler is used for the generation of Markov chains,
by sequentially drawing the unknown posterior parameters
from their conditional densities. The purpose of the next
section is to provide the required fundamentals of MCMC
as well as a calculation procedure based on the Gibbs
sampler.

3 A Bayesian Approach to Parameter
Estimation

3.1 Specification of the Bayesian Model

Without loss of generality, the calculation procedure is devel-
oped for the typical task of adjusting n 3D points. More
specifically, each observation

l i D Œxi ; yi ; zi � .i D 1; : : : ; n/; (6)

is defined by an x-, a y- and a z-coordinate. To demonstrate
the flexibility of the Bayesian model, outliers are assumed to
occur only in the z-coordinate, so that a t-distribution is asso-
ciated with the corresponding residuals, whereas the resid-
uals of the other two coordinate components are assumed
to be normally distributed at the outset. The residuals for
all three coordinate components may have different levels
of variance, and stochastic dependencies between them are
currently neglected. Thus, the stochastic model reads

�xi � N.0; �2
x/;

�yi � N.0; �2
y/; (7)

�zi � t�.0; s2
z /:

The functional model f generally involves a parameter
vector ‚ D Œ�1; �2; : : : ; �u�

T consisting of u unknowns. As
part of a Bayesian model, prior distributions are assumed for
all unknown parameters, including the three scale factors and
the degree of freedom � of the t-distribution. An informative
prior is assigned to the functional model parameters ‚

and non-informative priors to all other parameters. As non-
informative priors may be defined by constant probability,
only the prior of ‚ remains to be specified, which choice
depends on the inferential procedure about the parameters ‚.
If the redundancy of the prior adjustment problem is large,
it is frequently adequate to assume a multivariate normal
distribution

p.‚/ D 1
p

.2	/u det †‚

exp

 

� .‚�‚/T
†�1

‚ .‚�‚/

2

!

:

(8)

The prior knowledge of the model parameters ‚ is the
expected value of the multivariate normal distribution, and
†‚ controls the spread of the distribution. ‚ is an arbitrary
realization of the vector of functional model parameters. If
the redundancy of the prior adjustment is small, a multivari-
ate t-distribution would be an adequate choice for the prior.
The likelihood function is determined by the observation
equations l i C �i D f i .‚/ and the stochastic model (7) for
the residuals. Expressing the t-distribution for the residuals
of the z-component as the rescaled normal distribution (5),
the likelihood function is defined by the (factorized) multi-
variate normal distribution

p
�
l j‚; �x; �y ; ˛; W ; �; �

� D
nY

iD1

1
p

.2	/k det †lli

� exp

 

� .l i � f i .‚//T
†�1

l li
.l i � f i .‚//

2

!

;

with †lli D
2

4
�2

x 0 0

0 �2
y 0

0 0 ˛2Wi

3

5 and k D 3;

(9)

where the variance-covariance matrix †lli of one observed
point fulfills the assumption of uncorrelated coordinate com-
ponents. The following section demonstrates the calculation
of the posterior density.

3.2 Calculation of Posterior Parameters

The posterior density p
�
‚; �x; �y; ˛; W ; �; � jl� summa-

rizes the information of the prior (8) and the likelihood
function (9) via Bayes’s theorem (2). As indicated in Sect. 2,
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Fig. 1 Computational steps of the Gibbs sampler for adjusting 3D
points based on the Bayesian model described in Sect. 3.1 with fixed
degree of freedom �

the prior is non-conjugated for the current model, so that
the posterior is solved for numerically. The calculation of
the degree of freedom is an intricate step, for which various
approaches have been proposed in the case of a linear
regression model (see Geweke 1993; Gelman et al. 2014).
Due to limited space, the current model is simplified by
assuming that the degree of freedom is known with � D 4,
which value has been recommended for the purpose of a
robust estimation (cf. Gelman et al. 2014). For the calculation
of the posterior unknowns a Markov chain is generated by
means of a Gibbs sampler (see Fig. 1). The convergence of
Gibbs sampler depends strongly on the choice of the initial
parameter values ‚.0/. Less critically, initial values for the
parameters � and ˛ must also be specified, e.g., setting
�2.0/ D 1 and ˛2.0/ equal to the variance of the z-coordinate
(thus assuming that the z-coordinate is initially normally
distributed).

For the generation of Markov chains using the Gibbs
sampler, the conditional distributions of the unknowns are
required, which are generally well known from Bayesian
literature in the context of linear models (e.g. Gelman et al.
2014). These are now adapted to the present nonlinear model.
The Gibbs sampler starts with step 1. in any iteration step j ,
where the weights for the z-coordinate are drawn depending
on � , ˛, ‚ from the preceding iteration j � 1. According to

Wi j�2; ˛2; ‚; lzi

� Inv-�2

�

� C 1;
��2 C .lzi � fzi .‚//2=˛2

� C 1

�

;
(10)

the weights are Inv-�2-distributed, where the parameter ˛

scales the residual square of a measured zi ; � and � con-
trol the robustness. In step 2. of the Gibbs sampler, the

distribution of � is updated depending on the new weights W

as well as parameter values ‚ and ˛ of the iteration before:

�2jW ; ˛2; ‚; l z � Gamma

 
n�

2
;

�

2

nX

iD1

1

Wi

!

: (11)

For the generation of the gamma-distributed random variable
� , the parameter ˛ and the observations l z are not used
directly. These values are included indirectly in the weights
W and the number of observations n. In step 3., the scale
factor ˛ is generated from a Inv-�2-distribution as follows:

˛2jW ; �2; ‚; l z � Inv-�2

 

n;
1

n

nX

iD1

.lzi � fzi .‚//2

Wi

!

:

(12)

Now, the generation of the variance �2
x within step 4. differs

from (12) only by the replacement of the zi by the xi -
components while omitting the weight Wi , that is,

�2
x j‚; lx � Inv-�2

 

n;
1

n

nX

iD1

.lxi � fxi .‚//2

!

: (13)

The generation of the variance �2
y in step 5. is then carried out

in the same way as �2
x , using yi - instead of xi -components.

In the remaining step 6., the generation of ‚.j / is not
possible by means of a conditional distribution as the latter
is unknown. This, however, is not a problem as random
numbers can be directly generated from the combination of
the prior density and the likelihood function by means of
a Metropolis-Hastings (MH) algorithm (Hastings 1970), as
shown in Table 1. Firstly, a random number �new

i is generated

using the values �
.j �1/
i from preceding iteration step and

using a scale factor 
�i . The selection of the distribution
family for this random number generation influences the effi-
ciency of the MH algorithm. In view of the application given

Table 1 Generation of posterior ‚.j / by means of the MH algorithm

1. Generate �new
i � N

�
�

.j�1/
i ; 
�i

�

2. Set ‚new D
h
�

.j /
1 ; �

.j /
2 ; � � � ; �new

i ; � � � ; �
.j�1/
u

iT

‚old D
h
�

.j /
1 ; �

.j /
2 ; � � � ; �

.j�1/
i ; � � � ; �

.j�1/
u

iT

3. Calculate ‰ D min

�

1;
p.‚new/�p.‚new

jl ;�x ;�y ;˛;W ;�;�/
p.‚old/�p.‚old

jl ;�x ;�y ;˛;W ;�;�/

	

4. Accept or reject

Generate: � � U.0; 1/

If � � ‰: �
.j /
i D �new

i

If � > ‰: �
.j /
i D �

.j�1/
i
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in Sect. 4, a normal distribution is employed for this purpose
since the posterior of ‚ will approximately be gaussian. The
efficiency of the MH algorithm also depends on the scale
factor 
�i . An approach to choosing adequate value for 
�i in
application is presented in Sect. 4.3. In step 2. the parameter
vectors ‚ are set up with �new

i and �
.j �1/
i . The parameters

�
.j /
1 ; � � � ; �

.j /
i�1 are from the current iteration j , which means

that these values have been updated before �i by the MH
algorithm. The model parameter values �

.j �1/
iC1 ; � � � ; �

.j �1/
u

stem from the iteration before. These values are gradually
regenerated randomly by means of the MH algorithm after
updating �i . In step 3. the probability ratio of ‚new and ‚old

is calculated according to Eqs. (8) and (9). The value ‰ is
used for the decision in step 4., whether �new

i or �
.j �1/
i is the

new generated �
.j /
i . A convenient feature of this procedure is

the direct usage of the functional model f .‚/, without the
need for derivatives.

With the conclusion of the MH algorithm, the Gibbs
sampler complete one iteration. This procedure is carried
out in total m times and thereby yields the Markov chain
results for the unknown posterior parameters. By means
of resulting Markov chains, the posterior results for the
key parameters (functional model parameters, variances �2

x

and �2
y , the unknown weights and scale parameters of t-

distribution) can be approximated. The first half of the drawn
chains are considered as burn-in replications and discarded.
The remaining samples may serve for the estimation of the
parameters from ‚.o;:::;m/, as their mean value (see Fig. 1).
By choosing m sufficiently large, the approximation error
implicit in the estimate can be reduced (see, e.g, Kroese et
al. 2011; Gelman et al. 2014).

4 Application and Results

4.1 Application

In our real-world application we use a multi-sensor-system
(MSS) composed by a laser scanner and two firmly attached
GNSS equipment proposed by Paffenholz (2012). The aim
of the MSS is to efficiently geo-reference 3D point clouds
by means of 3D coordinates in a superior coordinate frame.
For ease of understanding, we consider only the obtained 3D
coordinates by one GNSS equipment according Eq. (6) for n

observed 3D points. These points describe a circle in 3D due
to the rotation of the laser scanner around its vertical z-axis.
For the geo-referencing of the laser scanner the unknown
circle parameters must be estimated. The parameterisation of
a circle in 3D is given by: ‚ D 


cx; cy; cz; r; !; '
�T

.
The parameter c is the centre point of the circle for the x-,

y- and z-coordinate and r is the radius. The angles ! and '
describe the orientation of the circle in 3D by means of the
rotations around the x- and y-axis. By the parameter ‚ the

functional model can be set up for the different coordinate
components as follows:

fxi .‚/ D r cos .ti / cos .'/ C cx; (14)

fyi .‚/ D r cos .ti / sin .'/ sin .!/ C r sin .ti / cos .!/ C cy;

fzi .‚/ D �r cos .ti / sin .'/ cos .!/ C r sin .ti / sin .!/ C cz;

with f i .‚/ D 

fxi .‚/ ; fyi .‚/ ; fzi .‚/

�
:

The splitting of the functional model in the three coordinate
components corresponds to a nonlinear regression model,
which allows for the estimation of the unknown parameters
by means of a GMM. The equations arise from the combi-
nation of the polar coordinate equation of the circle and a
3D rotation matrix. The variable t is the rotation angle of
the laser scanner around its z-axis. To simplify the model
we assume that t is known and error free. This assumption
is possible, because the horizontal angle measurement of
the laser scanner is significantly preciser than the 3D points
obtained by the GNSS equipment. In addition to the GNSS
observations, prior knowledge is available from calibration
measurements by means of a laser tracker. Therefore, the
value r and the corresponding variance �2

r are known. We
assume a non-informative prior for the other model parame-
ters c, ! and '. Hence, we use a normal distribution as prior
instead of the general presented multiple prior distribution in
Eq. (8). For the stochastic model the assumption of Eq. (7)
is used. For further information about the MSS such as
the specific sensors, the calibration and the geo-referencing
approach employed, see Paffenholz (2012).

4.2 Closed Loop Simulation

The investigation of the presented Bayesian estimation
approach in Sect. 3 is based on a closed loop (CL) simulation
and on a real data example. In this section we describe the
generation of the CL simulation and the results. Firstly,
we define the true parameter values ‚true D [1716.00 cm,
3012.00 cm, 1054.00 cm, 30.00 cm, 0.40ı, 0.08ı] for the
3D circle. With the functional model in Eq. (14) and ‚true

we calculated 50 uniformly distributed observations on the
3D circle. After that, random normal distributed values are
generated and added to these observations. For the noise
generation we use the following parameters derived from the
real data: �x D 0:2 cm, �y D 0:1 cm and �z D 0:4 cm.
In addition to the normally distributed errors, we create
15% of the z-observations as outliers by means of the
uniform distribution U .0:93; 1:71/ with minimum value 0.93
and maximum value 1.71. The outliers are ill-conditioned
distributed and are spread out over the true circle. In each
iteration jCL of the CL simulation the noise and outliers
are generated randomly. The simulation is repeated 10,000
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times, where three different approaches are used for the

estimation of O‚.jCL/
. jCL denotes the counter of the CL

simulations. The approaches are based on:

(1) a linearised non-robust GMM (cf. Koch 1999),
(2) the presented robust Bayesian approach with non-in-

formative prior, and
(3) the presented robust Bayesian approach with prior infor-

mation. The prior knowledge about the radius is defined
here to be the true value r D rtrue D 30 cm as well as
the standard deviation �r D 0:05 cm. Basics and further
information about CL simulation are presented, e.g., in
Saltelli et al. (2008).

In each iteration of the CL simulation initial values for
the unknown parameters ‚ are required. For c.0/ we use the
mean of the observations l . r.0/ is derived by means of the
euclidean distance between c.0/ and an arbitrarily observed
point. The initial angles !.0/ and '.0/ can be set to zero
since the MMS is levelled. These initial values are used
for all three estimation approaches. Furthermore the Gibbs
sampler requires starting values for ˛2, �2 (cf. Sect. 3.2), �‚

and m. The last two parameter values are essential for the
convergence of the Gibbs sampler, and they depend on the
quality of the initial values of the unknown parameters. For
example, if the initial values ‚.0/ deviate significantly from
the true parameter values ‚true then the number of generated
samples in each Gibbs sampler chain m should be increased.
In each iteration of the CL simulation a Markov chain with
m D 7;000 and a warm-up period of o D 3;500 is generated.
The convergence of the Gibbs sampler and the definition of
�‚ are discussed in Sect. 4.3.

The results of the CL simulation are the estimates O‚
for the three approaches. The means of the 10,000 vectors
 Ocx; Ocy; Or; O!; O'� differ from ‚true by less than 10�4 [cm] resp.
[deg]. Only the mean of Ocz deviates significantly from cztrue

(see Table 2) due to the generated outliers in the z-coordinate.

Table 2 Estimated results of the CL simulation

GMM
Bayes
non-informative Bayes informative

Mean (RMSE) [cm] 0:25 0:19 0:19

�RMSE [cm] 0:05 0:06 0:06

Mean (Ocz) �cztrue [cm] 0:21 0:14 0:14

O�cz [cm] 0:053 0:063 0:063

Mean (Or) [cm] 30:00 30:00 30:00

O�r [cm] 0:020 0:020 0:018

The outliers have a smaller influence on the estimate Ocz
by the robust Bayesian approach than on this estimate by
the non robust GMM. For a comparison between the three
approaches in terms of all estimates O‚ simultaneously, the
root mean square error (RMSE) is calculated. The RMSE
represents the average euclidean distance between predicted
and true 3D points.

RMSE.jCL/ D
vu
u
t1

n

nX

iD1

�
d 2

xi C d 2
yi C d 2

zi

�
;

with d 2
xi D

h
fxi .‚true/ � fxi

� O‚.jCL/
�i2

;

d 2
yi D

h
fyi .‚true/ � fyi

� O‚.jCL/
�i2

;

d 2
zi D

h
fzi .‚true/ � fzi

� O‚.jCL/
�i2

:

(15)

The corresponding distributions of the 10,000 RMSE results
are shown in Fig. 2. The average RMSE for the GMM (blue)
is larger than the values for the Bayesian non-informative
(green) and informative (red) approaches, which are identical
(see Table 2). The only difference between the Bayesian
results can be observed for the estimated radius (see Table 2):
In the informative case, the prior knowledge about the radius

Fig. 2 Distribution of the 10,000 RMSE results for the three approaches: GMM (blue), Bayesian non-informative (green), and Bayesian
informative (red)



A Bayesian Nonlinear Regression Model Based on t-Distributed Errors 133

reduces the standard deviation of the estimated radius but the
difference is very small.

4.3 Convergence Analysis of theMarkov
Chains

Any posterior simulation approach such as the Gibbs sampler
presented in Sect. 3.2 provides us with an O‚ which is an
estimate of E.f .‚/jl/. By choosing m sufficiently large
and the starting values for the parameters close enough to
the true values, the convergence of the Markov chain is
very probable. To analyse the convergence behaviour of the
Gibbs sampler, the CL simulation is repeated. Contrary to
the calculated values for ‚.0/ in Sect. 4.2 we generate these
values randomly. The random generated values are now not
close to the values ‚true as the calculated initial values given
in Sect. 4.2. We will demonstrated here that the Markov chain
for the random values ‚.0/ will independently converge to
the true values ‚true. The random initial values for ‚.0/

are generated by means of uniform distributions with the
intervals:

c.0/ 2 Œctrue � 50; ctrue C 50� Œcm�;

r.0/ 2 Œrtrue � 10; rtrue C 10� Œcm�;

!.0/ 2 Œ!true � 10; !true C 10� Œdeg�;

'.0/ 2 Œ'true � 10; 'true C 10� Œdeg�:

In case of random initial values ‚.0/ the choice of an
adequate value for 
�i is a challenging task. The use of a
fixed 
�i has the following difficult problem. If the value is
too large, then only a few new random numbers for �i will
be accepted in the MH algorithm. Conversely, a very small

�i results in a high acceptance rate for �i . In both cases
a convergence of the Gibbs sampler cannot be guaranteed.

Alternatively, an iterative adaptation can be used to deter-
mine 
�i . The used approach is based on the assumption that
an adequate 
�i is chosen if the acceptance rate is about 50%
(cf. Gelman et al. 2014). After every 250 iterations of the
Gibbs sampler the acceptance rate of the currently created
chain �i is calculated. If the acceptance ratio is less than
40%, 


.j /

�i
will be reduced by the factor � . In contrast, an

acceptance ratio greater than 60% will be increased the value



.j /

�i
by the factor � . For the presented application the values

� D 2 and � D 5 have proven to be suitable. Both values
are used in alternating order (cf. Fig. 3). In a future work we
will investigate the dependency of the value of the alternating
factor � on the number of iterations m.

In the CL simulation the initial values �
.0/
‚ D Œ5; 5; 5; 1;

1; 1� are used. The results of the adaptively estimated �‚

for one CL simulation are shown in Fig. 3. It can be seen
that these estimates become constant around the warm up
period. Figure 4 shows the results of the Markov chain for
‚ for the same simulation. The chains spread constantly
around their mean values close to ‚true. These results are
similar to the results of the other 9,999 iterations of the CL
simulation. Consequently, it can be assumed that the Markov
chain for ‚ converges for the used start values m, o, ‚.0/

and �
.0/

‚ . For a final statement of convergence a hypotheses
test would be required. Due to the limited space in this
contribution a general examination of the determination of

�i and convergence analysis is not feasible and will be
discussed in future studies.

4.4 Real Data Example

For the real data example we use a data set with 1,580
GNSS observations. The noise of the x- and y-coordinates
are approximately equal to the variances in the CL sim-
ulation. Contrary to the simulated data, the residuals of
the measured z-coordinates have additional error effects,

Fig. 3 Results of �‚ for one CL
simulation: iterative adaptation of

�i (blue), and limit of warm-up
period (red)
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Fig. 4 Results of estimating
parameters ‚ for one CL
simulation: Markov chains of the
Gibbs sampler after warm-up
period (blue), mean values of
these chains (red), and ‚true

(green)

Fig. 5 Residuals of z-coordinate. Œzi � Mean .z/� of the real data
(blue), and noise generated from the normal distribution N .0; 0:4 [cm] /

as in the CL simulation (red)

which are not represented by a normal distributed noise
(see Fig. 5). However, these are no significant outliers but
probably time-dependent effects which are not considered
further in this paper. Hence, we generate randomly outliers
for 15% of the z-coordinate by means of the uniform distri-
bution U .0:5; 1:0/. The informative Bayesian approach uses
the same prior values for the radius as in the CL simulation
(r D 30 cm, �r D 0:05 cm), which were estimated from
a calibration measurement by means of a laser tracker. The
initial values for ‚ are calculated as described in Sect. 4.2,
and the initial values for ˛2, �2, �‚ , o and m are the same
as in the CL simulation. As the true circle parameters are
unknown, the RMSE cannot be calculated. Therefore, we
estimate the circle parameters without any outliers in the
data set by means of a GMM. These parameters are used to
evaluate the results of the contaminated date set. In Table 3
the estimated results of Ocz and Or are presented. We compare
only these two parameters, because the outliers influence
primarily the estimated circle center point of the z-coordinate
and the radius should be influenced by the prior knowledge.

Table 3 Estimation results for the real data example

Estimation approach Ocz [cm] O�cz [cm] Or [cm] O�r [cm]

GMM without outliers 1:70 0:008 29:75 0:004

GMM 1:81 0:009 29:75 0:004

Bayes non-informative 1:73 0:010 29:73 0:004

Bayes informative 1:73 0:010 29:73 0:004

The centre points of the x- and y-coordinate and the angles
do not differ significantly between the different estimations.
The results of Ocz show that the robust Bayesian results are
closer to the result of the GMM without outliers as the result
of the GMM. In case of Or the results of all estimations are
close together without significant differences.

5 Conclusions and Outlook

In this contribution, a robust Bayesian approach to adjust-
ing a nonlinear functional model based on normally or t-
distributed residuals was presented. In this approach one
observation was introduced as a 3D point, to demonstrate that
different observation groups may have different stochastic
models. The selection of a prior distribution and a likelihood
function was described with regard to geodetic applica-
tions. t-distributions, having longer tails than normal distri-
butions, were used within the likelihood function for individ-
ual components to account for expected outliers. A numerical
approach to calculating the unknown posterior parameters
based on a Gibbs sampler was suggested. As the non-
linearity of the functional model excludes the usage of a
conditional distribution for the functional model parameters,
a Metropolis-Hastings algorithm was outlined.

Finally, a geodetic application was presented where the
parameters of a 3D circle have been of interest. The results
of this application show that the introduced t-distribution
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in the Bayesian model reduces the influence of outliers on
the estimated parameters. The introduced prior information
for the radius affects only the precision O�r in the range of
0.02 mm in the closed loop simulation. This is to be expected
since rtrue and r are identical. In case of the real world
data no significant differences between non-informative and
informative Bayesian approach is detectable for Or and O�r .
The reason for this is the larger number of observations in
the real world data. The likelihood function thus dominates
the posterior density, which can be interpreted as a down
weighting of the prior density in the estimation.

In future studies the robust Bayesian approach should be
improved to deal with fully correlated observations. Further-
more, the approach should be extended by the estimation of
the degree of freedom of the t-distribution.
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The GNSS for Meteorology (G4M) Procedure
and Its Application to Four SignificantWeather
Events

Lorenzo Benvenuto , Ilaria Ferrando , Bianca Federici ,
and Domenico Sguerso

Abstract

The authors conceived the GNSS for Meteorology (G4M) procedure to remote-sense the
Precipitable Water Vapor (PWV) content in atmosphere with the aim to detect severe mete-
orological phenomena. It can be applied over an orographically complex area, exploiting
existing networks of Global Navigation Satellite System (GNSS) Permanent Stations (PSs)
and spread meteorological sensors, not necessarily co-located. The results of a posteriori
analysis of four significant meteorological events are here presented, also in comparison
with rain gauge data, to show the effectiveness of the method. The potentiality of G4M to
detect and locate in space and time intense rainfall events is highlighted. The upcoming
application of G4M in near-real time could provide a valuable support to existing Decision
Support System for meteorological alerts.

Keywords

GNSS for Meteorology (G4M) procedure � Precipitable Water Vapor (PWV) � Severe
meteorological events monitoring

1 Introduction

The use of Global Navigation Satellite System (GNSS)
allows the monitoring of meteorological phenomena, includ-
ing severe ones, at detailed temporal and spatial scales. It
is independent from the other observation techniques (e.g.
rain gauges, meteorological radars, satellite images), thus it
can represent an innovative source of data, which could help
in improving the existing observational systems (Barindelli
et al. 2018; Inoue and Inoue 2007; Oigawa et al. 2015).
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GNSS-derived products, Zenith Total Delay (ZTD) and Pre-
cipitable Water Vapor (PWV) in particular, are already rou-
tinely assimilated into some forecasting Numerical Weather
Prediction (NWP) models (Guerova et al. 2016; Oigawa
et al. 2018) and estimated within now-casting NWP models
(Douša and Vaclavovic 2014).

In this context, the authors have conceived an automatic
procedure, termed GNSS for Meteorology (G4M) (Ferrando
et al. 2018). G4M is intended to produce 2D PWV maps
and describe its spatial and temporal evolution by means of
�PWV maps obtained by time differentiation with respect
to a reference epoch. The input data are ZTD estimates from
GNSS observations, Pressure (P) and Temperature (T) mea-
surements, both derived from existing sensors spread over the
considered domain and not necessarily co-located. Starting
from Bevis’ formulation (Bevis et al. 1992), that describes
how to obtain 1D PWV values from co-located ZTD, P and
T data, the G4M procedure adds a simplified mathematical
model to describe P and T fields, besides data interpolation
and map algebra (performed in a GIS environment), to create
PWV maps (Ferrando et al. 2018). Despite the low density
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and the different spatial configurations of the GNSS PSs and
meteorological sensors, the procedure seems to be able to
detect meteorological events with reliable results, also thanks
to an index (termed Heterogeneity Index, HI), conceived by
the authors, based on �PWV spatial variability.

In the present work, the G4M workflow is briefly intro-
duced (Sect. 2), and the procedure is applied to four signifi-
cant meteorological case studies whose results are compared
with rain gauge data (Sect. 3). Final considerations conclude
the paper.

2 The G4MWorkflow

The G4M workflow starts from ZTD, P and T data deriving
from variously distributed sensors over the analyzed domain,
uploaded on a PostgreSQL+PostGIS geoDataBase (Ben-
venuto et al. 2018). Hence, it employs a procedure which is
implemented in a GRASS GIS environment.1 This consists
in 2D data interpolation and a simplified mathematical model
of the atmospheric behaviour (conceived by the authors and
under evaluation for a patent; Ferrando et al. 2016, 2017). It
allows to produce PWV, �PWV and HI 2D maps, as depicted
in Fig. 1.

So far, G4M has been applied to the orographically
complex territory on the French-Italian border region. A hint
on input and output data is here reported.

2.1 Input Data

The GNSS data of 181 Permanent Stations (PSs), from
global, trans-national, national and regional networks on
the French-Italian border region, were processed with the
GAMIT/GLOBK software2 in network mode, to estimate
a set of homogeneous tropospheric parameters. The mean
spacing of PSs is about 40 km. ZTDs are estimated for each
station, simultaneously with a daily positioning solution. The
details on processing settings for ZTD estimation can be
found in Sguerso et al. (2013, 2016). The ZTD estimates,
from January 1998 to December 2015 with a temporal step of
2 h, have been included in the RENAG DataBase.3 To derive
PWV from ZTD through Bevis’ relations, several P and T
stations, with a mean spacing of 150 km and a temporal step
of 1 h or higher, have been selected. P and T data are available

1Geographic Resources Analysis Support System (GRASS GIS) Soft-
ware, Version 7.4, GRASS Development Team, Open Source Geospa-
tial Foundation, 2018, http://grass.osgeo.org.
2http://geoweb.mit.edu/gg/.
3ftp://renag.unice.fr/products/GPS_climatology_Sguerso_Labbouz_
Walpersdorf.

Fig. 1 G4M workflow

in NCEI4 (National Centers for Environmental Information)
archive of global historical weather and climate data.

The GNSS PSs and P/T networks are depicted in Fig. 2
with black and red dots, respectively.

2.2 Output Maps

�PWV and HI maps are the outputs of the G4M procedure.
�PWV consists in a differentiation in time with respect

to a reference epoch. This operation removes the orographic
effect which affects PWV maps (Ferrando et al. 2018) and
results in the observation of PWV variations with respect to
the reference epoch. Figure 3 depicts the evolution of �PWV
over GENO (Italy) for 9th and 10th October 2014. The blue,
red, yellow and green dots represent PWV values of 9th
and 10th October 2014 differenced with respect to 00:00
UTC of 6th (PWV D 26 mm), 7th (PWV D 26 mm), 8th
(PWV D 35 mm) and 9th (PWV D 31 mm) October 2014,
respectively. The substantial independence from the refer-
ence epoch is evident, due to the nearly identical behaviour
of the plots, which seem to only contain a bias shift. Such
reference epochs are quite close the severe rain event (94, 70,
46 and 22 h before, respectively), but their PWV “absolute”
values are different. In particular, 6th and 7th October, 00:00
UTC have a lower PWV value, corresponding to “calm”
moment with limited PWV content. Note that differentiating
with respect to a “calm” epoch helps in the interpretation
of the meteorological phenomenon, because positive �PWV
values correspond to an increase in PWV with respect to the
reference epoch.

The color scale for �PWV maps has been chosen by com-
puting the maximum and the minimum values (respectively

4https://www.ncei.noaa.gov/.

http://grass.osgeo.org
http://geoweb.mit.edu/gg/
ftp://renag.unice.fr/products/GPS_climatology_Sguerso_Labbouz_Walpersdorf
ftp://renag.unice.fr/products/GPS_climatology_Sguerso_Labbouz_Walpersdorf
https://www.ncei.noaa.gov/
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Fig. 2 GNSS PSs and P/T networks

Fig. 3 �PWV values over GENO for 9th–10th October 2014 differenced with respect to 00:00 UTC of 6th (blue), 7th (red), 8th (yellow) and 9th
(green) October
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intense red and intense blue) in the area of interest, as shown
in Sect. 3.

HI has been conceived to relate �PWV with the occur-
rence of rainfall. Several studies point out that local fluctua-
tions of PWV, which are associated with water vapor increase
or decrease, are responsible of convection, that can result
in heavy rainfalls (Seko et al. 2004; Shoji 2013; Oigawa
et al. 2015). Those researches revealed a correspondence
between PWV spatial inhomogeneity and severe rain events,
and observed that the inhomogeneity increases before the
rain occurrence, thus it can be used as a predictive parameter.
In light of this, HI is computed performing a “block standard
deviation” by re-sampling the �PWV maps to a four times
coarser grid (in both directions) and computing the value
of the standard deviation. Thus, each pixel of the HI map
represents the empirical standard deviation of the 16 �PWV
map pixels inside it (Ferrando et al. 2018).

The color scale for 2D HI maps has been chosen on
the basis of the statistical parameters computed in the area
of interest. In particular, six steps have been selected and
defined as follows: 0 (cyan), �+2� (green), �+3� (yellow),
�+4� (orange), �+5� (brown), > �+5� (red), where � and
� are HI mean value and standard deviation, respectively.
This color scale is considered suitable for the identification
of HI values corresponding to the occurrence of severe
meteorological events. In particular, a severe meteorological
event is likely to happen where HI shows values higher than
�+4� .

3 Case Studies: Results and Discussion

The G4M procedure has been applied to four test cases which
occurred in the city of Genoa during 2011 and 2014. Among
the case studies there are two severe meteorological events
(case studies 1 and 2), a case when a high PWV value was
detected and little rainfall occurred (case study 3), and a case
in which a meteorological alert was released by the Regional
Environmental Agency but no severe meteorological event
happened (case study 4). Although the focus is on Genoa, the
study area is a wide region surrounding the French-Italian
border, between 2ıE and 15ıE in longitude, and between
41ıN and 47ıN in latitude. The analysis resolution has
been set to 3200 in both north-south and east-west directions,
which corresponds to a regular grid of about (1 � 1) km.
Two days have been considered for each case study. The
chosen temporal step is 2 h. The starting time of the analyses,
i.e. the reference epoch, is 00:00 UTC of a day before
the investigated event. The most critical time for each case
study was identified by observing the rainfall data registered
in Genoa by University of Genoa DICCA’s (Department
of Civil, Chemical and Environmental Engineering) rain

Table 1 Differences between G4M and 1D Bevis’ �PWV values over
GENO PS for the four case studies

� � Maximum
CS (mm) (mm) (mm)
1 0.2 0.4 0.7
2 1.2 0.3 1.7
3 0.1 0.3 0.8
4 0.1 0.5 �0.8

gauge.5 The same rainfall data were also used in combination
with �PWV and HI maps to interpret the meteorological
events.

The following dedicated sections report the �PWV and
the HI maps for the individuated most significant epoch for
each case study, together with a plot of the �PWV, HI and
observed rainfall obtained querying the G4M-derived maps
over the DICCA meteorological station for the considered
time span of two days. In the 2D maps, the GNSS PSs
are depicted with black dots, except for GENO (reported
as a white dot) which was excluded from the interpolation
process of the G4M procedure. Thus, a validation has been
performed on GENO comparing the �PWV values extracted
from the G4M 2D maps and the ones computed applying
Bevis’ equations (Table 1). For the Bevis-derived �PWV
values, the ZTD estimates were combined with P and T
data observed at one University of Genoa’s meteorological
station located less than 1 km away from GENO. Due to the
spatial proximity of GNSS and meteorological sensors, they
were considered co-located. Instead, the ipsometric equation
was employed to take into account the difference in height
between the two stations (about 40 m).

All the case studies show similar standard deviations,
except for case study 2 where average and maximum values
are significantly different due to a bias. However, a difference
of �PWV in the order of 1 mm is negligible with respect to
several millimeters, obtained by both G4M model and 1D
Bevis formula.

3.1 Case Study 1: 3rd–4th November 2011

The results of G4M procedure applied to 3rd and 4th Novem-
ber 2011 showed an increase of PWV in the entire con-
sidered 2D domain for the analyzed 48 h with respect to
3rd November, 00:00 UTC. Focusing on Genoa (Fig. 4),
a gradual increase of �PWV is highlighted from 8:00 to
10:00 UTC of 4th November, where a local maximum occurs
(�PWV D 12 mm). At 12:00 UTC, a decrease of �PWV
is evident, which may be associated to the occurrence of

5http://www.dicca.unige.it/meteo.

http://www.dicca.unige.it/meteo
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Fig. 4 Case study 1: �PWV and HI 2D maps for the most critical moment; �PWV, HI and observed rainfall for 48 h over DICCA meteorological
station

a severe meteorological event, causing the reduction of the
water vapor content in atmosphere (Sapucci et al. 2016).

Focusing on HI map, a strong concentration of high HI
values over the city of Genoa is highlighted from 6:00 to
10:00 UTC, meaning the possibility of an intense meteoro-
logical event. Observing the temporal evolution of �PWV
and HI over the DICCA meteorological station (Fig. 4), the
most critical moment seems at 10:00 UTC, when a peak
of both �PWV and HI is present. Looking at the hourly
rainfall data of the 4th November 2011, represented in
Fig. 4, it is clear that the most intense precipitation occurred
between 9:00 and 13:00 UTC, with a maximum peak of
93.8 mm/h between 10:00 and 11:00 UTC, coherently with
the previously highlighted results.

3.2 Case Study 2: 9th–10th October 2014

The second case study concerns the intense meteorological
event that took place over Genoa in the night between 9th
and 10th October 2014. The 2D �PWV maps did not show
significant variations of PWV with respect to the reference
epoch (6th October, 00:00 UTC); on the contrary, HI maps
showed high values concentrated only in the area between
Genoa and Chiavari (CHIV), a nearby city along the East
coast, while HI values were low elsewhere (Fig. 5).

Observing the temporal evolution of HI, it is possible
to deduce that the critical moment for this case study was
between 20:00 UTC of 9th and 02:00 UTC of 10th October,
when HI has a sharp increase. Looking at the rainfall data of
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Fig. 5 Case study 2: �PWV and HI 2D maps for the most critical moment; �PWV, HI and observed rainfall for 48 h over DICCA meteorological
station

9th October 2014 (Fig. 5), the highest rainfall peak occurred
between 20:00 and 21:00 UTC, having a value of 67.0 mm/h.
Since the temporal resolution of the G4M maps is 2 h, only
the congruence between rainfall and high values of HI can be
appreciated. Note that the highest peak of HI, between 02:00
and 04:00 UTC of 10th October, is associated to a decrease of
�PWV due to the rainfall. In fact, high values of HI highlight
both positive and negative variations of �PWV.

3.3 Case Study 3: 3rd–4th September 2011

The present case study was considered interesting because it
represents one of the highest peaks of the 2011 PWV time
series with respect to the PWV climatological average, i.e.
the average of corresponding 2-hourly estimates of each year

over all available years (1998–2015). The PWV climatologi-
cal average has been computed exploiting the RENAG DB’s
ZTD estimates long time series (Sguerso et al. 2013), and P
and T observations from University of Genoa’s meteorolog-
ical station. As a first rough approximation, the overcoming
of a threshold defined by the PWV climatological average
confidence interval could mean a possible critical situation.
In several episodes of 2011 PWV overcomes this value:
among them, the Genoa storm analysed in case study 1 (see
Sect. 3.1) and the present case study. In both these cases,
PWV values were significantly high; despite this, the total
rainfall amounts were substantially different: very intense in
the first case and almost absent in the present case. Thus, this
unexpected behaviour has been taken into consideration.

PWV is quite evenly distributed with rather high values
with respect to 00:00 UTC of 3rd September 2011, especially
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Fig. 6 Case study 3: �PWV and HI 2D maps for the chosen moment; �PWV; HI and observed rainfall for 48 h over DICCA meteorological
station

between 08:00 and 10:00 UTC of 4th September (�PWV D
13:3 mm) in Genoa (Fig. 6). HI maps do not show any peak
over the city of Genoa for the entire analyzed period. This
could indicate that �PWV, although it has quite high values,
is evenly distributed in space, hence an intense meteoro-
logical event is not likely to happen. This is confirmed
by the analysis of the rainfall data observed at DICCA
meteorological station, which has an hourly maximum of
2.8 mm/h. On the contrary, a peak is visible in HI maps for
Pavia (PAVI) and Alessandria (ALSN) in Fig. 6. For both it
corresponds to low values of �PWV, which are typically not
related to severe meteorological events.

3.4 Case Study 4: 30th November–1st
December 2014

On 1st December 2014, a meteorological alert was released
over the whole Ligurian region by the Regional Environ-
mental Agency, but the rainfall event was not severe at
all. For all the analyzed period, the �PWV maps highlight
very low and negative values, which means a decrease of
PWV with respect to the starting time of the analysis (00:00
UTC of 30th November 2014). The analysis started from
a not-rainy moment (30th November 2014, 00:00 UTC)
quite close to the examined event, even if the PWV value
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Fig. 7 Case study 4: �PWV and HI 2D maps for the chosen moment; �PWV, HI and observed rainfall for 48 h over DICCA meteorological
station

(PWV D 25 mm) was rather high over Genoa. The HI maps
do not show particularly high values over the city of Genoa,
indicating that an intense meteorological event is not likely
to happen. In fact, rainfall had a modest intensity (Fig. 7),
with a maximum peak of 10.8 mm/h. The interpretation of
HI maps and the analysis of its evolution leads to exclude
that a severe meteorological event could occur, despite the
observation of negative values of �PWV and its decreasing
trend indicates a reduction of the water vapor content in the
atmosphere, which can be due to rainfall.

4 Conclusions and Future Perspectives

The present work focuses on the possibility to remote-sense
the water vapor content in atmosphere starting from GNSS
observations, over an orographically complex area, using

existing infrastructures, with a procedure called G4M. The
application of G4M to four case studies focused on the city
of Genoa in the years 2011 and 2014 showed its potential
in analyzing different meteorological conditions. Among the
case studies there are two severe meteorological events, a
case characterized by a high value of PWV and little rainfall
occurred, and a case in which a meteorological alert was
released by the Regional Environmental Agency, but no
severe meteorological event happened. The G4M outputs
were compared with the rainfall data from the DICCA rain
gauge, confirming that the G4M procedure is suitable for
detecting and localizing intense meteorological events in
space and time. In fact, a correlation was noticed between
high values of �PWV associated with its high variability,
represented by the Heterogeneity Index (HI), and intense
rainfall. Note that the 1D analysis of HI for a specific site
is not sufficient to localize a severe meteorological event in
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time. 2D HI and �PWV maps analysis is needed to detect
severe meteorological events in time and space.

A future perspective regards the realization of a web
application for the G4M procedure to make its application
and results accessible to potential users. The original idea is
to implement the procedure so that a potential user can obtain
�PWV and HI maps as output of an a posteriori study of the
desired event. Moreover, other tests on different case studies
and different study areas will be undertaken to statistically
evaluate the G4M performances. The applicability of G4M in
near-real time will be studied in depth too, mainly concerning
computational effort, needed data and criteria to raise a
meteorological alert, as a contribute to Decision Support
Systems.
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Modeling the Gravitational Field
by Using CFD Techniques

Zhi Yin and Nico Sneeuw

Abstract

The Laplace equation represents harmonic (i.e., both source-free and curl-free) fields.
Despite the good performance of spherical harmonic series on modeling the gravitational
field generated by spheroidal bodies (e.g., the Earth), the series may diverge inside the
Brillouin sphere enclosing all field-generating mass. Divergence may realistically occur
when determining the gravitational fields of asteroids or comets that have complex shapes,
known as the Complex-boundary Value Problem (CBVP). To overcome this weakness, we
propose a new spatial-domain numerical method based on the equivalence transformation
which is well known in the fluid dynamics community: a potential-flow velocity field and
a gravitational force vector field are equivalent in a mathematical sense, both referring
to a harmonic vector field. The new method abandons the perturbation theory based
on the Laplace equation, and, instead, derives the governing equation and the boundary
condition of the potential flow from the conservation laws of mass, momentum and energy.
Correspondingly, computational fluid dynamics (CFD) techniques are introduced as a
numerical solving scheme. We apply this novel approach to the gravitational field of comet
67P/Churyumov-Gerasimenko with a complex shape. The method is validated in a closed-
loop simulation by comparing the result with a direct integration of Newton’s formula.
It shows a good consistency between them, with a relative magnitude discrepancy at
percentage level and with a maximum directional difference of 5ı. Moreover, the numerical
scheme adopted in our method is able to overcome the divergence problem and hence has a
good potential for solving the CBVPs.

Keywords

CFD techniques � Comet 67P/Churyumov-Gerasimenko � Finite Volume Method � Gravi-
tational field modeling � Potential flow

1 Introduction

A gravitational field is the influence that a mass body extends
into the space around itself, producing a force on another
mass body. The gravitational field outside the masses has
two important properties: source free and curl free (i.e.,

Z. Yin (�) � N. Sneeuw
Institute of Geodesy, University of Stuttgart, Stuttgart, Germany
e-mail: zhi.yin@gis.uni-stuttgart.de; yinzhi1221@sina.com

harmonicity). The main problem of physical geodesy is to
establish a gravitational model, on the Earth’s surface and in
the outer space, to the extent made possible by existing data,
mathematical analytical tools and numerical computational
tools (Sansò et al. 2012). The analytical solution of the
Laplace equation (e.g., spherical harmonics) plays an impor-
tant role in building advanced geopotential models. The
convergence of spherical harmonics is guaranteed outside
a mass-enclosing reference sphere, also referred to as the
Brillouin sphere (Hobson 2012). However, when it comes to
the gravitational field modeling of complex shaped asteroids
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or comets, the series at points near the surface of the body
might diverge due to the large discrepancy between the
Brillouin sphere and the actual shape of the body, indicating
that spherical harmonics are adequate for representing the
gravitational field of sphere-like bodies rather than those of
complex shaped bodies. In this study, the gravitational field
determination problem for complex shaped bodies is referred
to as complex-boundary value problem (CBVP), which is
still not well solved so far compared to other boundary value
problems, e.g., those solvable by Newton’s formula, Stokes’s
integral and Molodensky’s series.

In the field of computational physics, benefiting from
increasing computer power, Computational Fluid Dynamics
(CFD) techniques developed rapidly in the past decades.
CFD is the analysis of systems involving fluid flow, heat
transfer and associated phenomena by means of computer-
based simulation (Versteeg and Malalasekera 1995). The
fundamental basis of almost all CFD problems are the
Navier-Stokes equations defining single-phase (gas or liq-
uid, but not both) fluid flows. By removing terms or by
setting specific parameters, the equations for the general flow
can be simplified to formulate various fluid flows, among
which the potential flow is an idealized one that occurs in
the case of incompressible, inviscid and irrotational fluid
particles. In particular, the velocity field of potential flow is
harmonic. It is known that the gravitational vector field and
the potential flow velocity field are equivalent in the sense
that both are harmonic fields. For this reason, we propose to
utilize the governing equations of potential flow as well as
CFD techniques to model gravitational fields, especially the
CBVPs. The governing equation of potential flow is adopted
as an alternative to the Laplace equation when modeling the
gravitational field.

This paper mainly has two objectives: (1) to illustrate
the principle and workflow of the new gravitational field
modeling method; (2) to apply the new method to Comet
67P/Churyumov-Gerasimenko (hereafter referred to as
Comet 67P). The two parts are arranged in Sects. 2 and 3,

respectively. In Sect. 2, first, the principle of the equivalence
transformation is outlined (Sect. 2.1), involving the issues of
the three dimensional potential flow, the CFD techniques and
the pipe transformation; then, the three issues are addressed
in the Sects. 2.2–2.4, respectively. In Sect. 3, a computational
workflow is devised to model the gravitational field of Comet
67P and the result is validated in a closed-loop simulation.

2 Methodology

2.1 Equivalence Transformation

The main idea of our method is based on the equivalence
transformation between the gravitational vector field and
the potential flow velocity field. Table 1 compares the two
physical problems regarding their common and different
points. Although belonging to different research fields, both
vector fields are harmonic, thereby mutually equivalent. The
gravitational vector g and the potential flow velocity vector
v are interchangeable when formulating either vector field.
In the following sections, Sects. 2.2–2.4, we first derive the
mathematical expressions (i.e., the governing equation and
boundary condition) of the potential flow, then introduce the
principle of the CFD techniques exemplified with a pipe
flow, and after that transform the pipe to make it suitable
for the gravitational field modeling. Finally, after substituting
all the velocity terms v with the gravitational terms g in
the derived equations, the framework of our new method is
established.

2.2 Three Dimensional Potential Flow

In this section, we first give the mathematical description
of a general three dimensional fluid flow, and then impose
on them specific constraints (listed in Table 2) to make the
fundamental equations meet the potential flow’s properties.

Table 1 Equivalence and difference between the gravitational field and the potential flow velocity field

Gravitational field Potential flow velocity field

Equivalence Property Source-free and curl-free Source-free and curl-free

Conceptual mapping Gravitational potential Velocity potential

Gravitational force g Velocity v

Plumb line Stream line

Difference Fundamental theory Perturbation theory Potential flow theory

Governing equation Laplace’s equation • Continuity equation (mass conservation)
• Momentum equation (momentum conservation)

Boundary condition • Fundamental equation of physical geodesy
• Regularity condition at infinity

Bernoulli equation (energy conservation)

Solving method Spherical harmonics inversion (analytical method) CFD techniques (numerical method)

Processing domain Spectral domain Spatial domain
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Table 2 Constraints imposed on a general fluid flow and the corre-
sponding functions

Constraint Function

� D 1 kg/m3 Incompressible (constant density)
@
@t
.�/ D 0 Steady state

�D 0 Frictionless

Bi D 0 (i D 1, 2, 3) Body-force free (� D const.)

2.2.1 Governing Equation
The governing equations of a general fluid flow can be found
in the textbook written by Versteeg and Malalasekera (1995),
including:

• Continuity equation:

@�

@t
C r � .�v/ D 0 (1)

• Momentum equations (Navier-Stokes equations):

@ .�v/
@t

C r � .�v ˝ v/ D r � .�rv/C B � rp (2)

The above two equations are under Eulerian description
and the variables are functions of space and time: v denotes
the velocity vector comprising the three components v1, v2
and v3; � is density; p is pressure; � is dynamic viscosity
that controls the fluid flow behavior due to friction; B
represents body force (e.g., gravitation, coriolis force or
electromagnetic force). Among these variables, the three
velocity components v1, v2 and v3 and the pressure p are
unknowns to solve for (see the SIMPLE algorithm in Sect.
2.3.2). In Eq. (2), the operator ˝ denotes outer product,
and the outer product of two vectors u and v is a matrix
w given by wij D uiuj. With this definition, the second
term on the left hand side of Eq. (2) could be expanded as
follows:

r � .�v ˝ v/ D � .r � v/ v C �v � rv (3)

Applying the constraints listed in Table 2 to Eqs. (1)–
(3), one can obtain the governing equations of the three
dimensional potential flow as follows:

� r � v D 0

v � rv D �rp (4)

2.2.2 Boundary Condition
The Bernoulli equation is a statement of conservation of
energy for an inviscid flow, which implies an increase in the
speed of a fluid simultaneously with a decrease in pressure.

The Bernoulli equation for unsteady inviscid flows has the
following form

�@�
@t

C v2

2
C p

�
C  D C (5)

where � is the velocity potential, � is the conservative body
force potential defined as r� D B, and C is a constant
number. Applied with the constraints of Table 2, Eq. (5)
transforms into the following formula:

p D �1
2
v2 (6)

which holds throughout the flow and is particularly used for
calculating the boundary condition in our method. Note that
the constants involved in the equation reduction process have
been set to zero, and such treatment has no influence on the
final solution.

2.3 CFD Techniques

CFD techniques mainly include four modules: problem iden-
tification, preprocessing, solving and post processing. In
CFD the Finite Volume Method (FVM) is a method for
representing and evaluating partial differential equations in
the form of algebraic equations. Following the textbook
written by Versteeg and Malalasekera (1995), this section
mainly focuses on the basic FVM steps and illustrate with
a three dimensional pipe flow (see Fig. 1a). For clarity, the
illustration uses structured control volumes (CVs) character-
ized by hexahedrons.

2.3.1 Step 1: Grid Generation
The first step in the FVM is to divide the computation domain
into discrete CVs (aka cells, elements) where the variable
of interest (i.e., velocities and pressure) is located at the
nodal point (i.e., the centroid of the CV). Assume there are a
number of nodal points located inside the domain, the faces
of CVs are positioned mid-way between adjacent nodes, and
each node is surrounded by a CV, as demonstrated in Fig. 1.

A system of notation is established as follows. Figure 1b
shows a general nodal point identified by P with six neigh-
boring nodes in a three-dimensional geometry identified as
west, east, south, north, bottom and top nodes (W, E, S,
N, B, T). The lowercase notation, w, e, s, n, b and t are
used to refer to cell faces in the corresponding directions.
The x1-, x2- and x3-components of the coordinate system are
aligned with the directions of WE, SN and BT, respectively.
The distances between two geometrical elements are denoted
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Fig. 1 (a) Discretization of a pipe flow domain. (b) Notations of a finite control volume

as •x::1 , •x
::
2 and •x::3 , with the superscripts occupied by the

node or face notations. For example, the distances between
the nodes P and T, between the node P and the face t and
between the faces b and t, are identified by •xPT3 , •xP t3 and
•xbt3 , respectively. By contrast, the area A of one face t could
be denoted as At.

2.3.2 Step 2: Discretization
A critical operation of the FVM is the integration of the
governing equation (Eq. 4) over a CV to yield a discretized
equation at its nodal point P. For the CV defined in Fig. 1b,
this gives

8̂
<
:̂

�
�V

r � vdV D 0

�
�V

r � .vvi / dV D �
�V

�
� @p

@xi

�
dV; .i D 1; 2; 3/

(7)

where 4V is the integral volume of each cell. The above
equation set represents the flux balance of the mass and the
momentum of the potential flow in a CV. Applying the Gauss
theorem to the left hand side terms of equation set (Eq. 7),

one can obtain
8̂
<
:̂

�
A

n � vdA D 0

�
A

n � .vvi / dA D �
�V

�
� @p

@xi

�
dx1dx2dx3 ; .i D 1; 2; 3/

(8)

where n is the unit normal vector of the CV face element dA.
Expanding equation set (Eq. 8) yields

�
Aeve1 �Awvw1

� C �
Anvn2 � Asvs2

� C �
Atvt3 �Abvb3

� D 0

(9)

and

�
Aeve1v

e
i �Awvw1 v

w
i

� C �
Anvn2v

n
i �Asvs2vsi

�
C �

Atvt3v
t
i � Abvb3v

b
i

� D �APi �pPi ; .i D 1; 2; 3/
(10)

Note that in Eq. (10) the unknowns of velocity
components with lowercase superscripts are defined at
the CV faces, rather than at the nodal points where the
final solution should be defined. Therefore, the velocity
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components at the CV faces must be expressed by those
at the nodal points with a specific interpolation scheme, to
transform Eq. (10) into a linear form solvable by matrix
inversion

aP vPi D aW vWi C aEvEi C aSvSi C aN vNi
C aBvBi C aT vTi � APi �p

P
i ; .i D 1; 2; 3/

(11)

where the coefficients of the unknowns still contain unknown
variables (i.e., the velocities at faces). For this reason, an
iterative algorithm is needed to solve this equation system,
which is the main topic of Sect. 2.3.3.

2.3.3 Step 3: Solution of Equations
The discretized momentum equations (Eq. 11) must be set up
at each nodal point in the flow domain; for the nodal points
adjacent to the domain boundaries, boundary conditions can
be incorporated. After constituting the discretized momen-
tum equations for all the CVs, one can solve for the overall
velocities vPi .i D 1; 2; 3/ and pressure p. At the same time,
the continuity equation (Eq. 9) needs to be satisfied as well.

In CFD, the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) algorithm developed by Patankar and
Spalding (1972) is a widely used numerical procedure to
solve the Navier-Stokes equations. It is essentially based
on a guess-and-correct procedure. For the details of this
algorithm, please refer to the textbook written by Versteeg
and Malalasekera (1995). The SIMPLE algorithm is an
iterative algorithm and does not stop until the balances of
mass and the momentums of the three velocity components
are satisfied.

2.4 Pipe Transformation

Up to this point, the harmonic velocity field of a three dimen-
sional pipe flow can be solved with the CFD techniques. To
model the gravitational field of onemass body, the pipe needs
to be transformed following the procedure shown in Fig. 2,
changing into a special pipe that only contains one inlet and
one outlet (Fig. 2g). The inlet is a sphere with its center
located at the center of mass, and the outlet is the surface
of mass. Due to the interchangeability of the gravitational
vector g and the potential flow velocity v, the fundamental
equations of the gravitational field determination problem are
given from Eqs. (4) and (6) as follows.

• Governing equations:

� r � g D 0

g � rg D �rp (12)

• Boundary condition:

p D �1
2
g2 (13)

Note that only the scalar gravitation is needed to calculate
the boundary value, p. For the inlet (i.e., the outer sphere)
with a radius large enough (denoted as r, usually ten times the
average size of object), the scalar gravitation thereon could
be calculated with the Newton’s formula of gravitation, GM

r2
,

by approximating the body as a mass point with the total
mass amount of M. For the outlet (i.e., the mass surface),

Fig. 2 Geometrical transformation of a pipe. (a) A normal pipe with an inlet, an outlet and four walls. (g) A pipe only with an inlet and an outlet.
Panels (b–f) demonstrate the intermediate transformation process



154 Z. Yin and N. Sneeuw

the scalar gravitation could be obtained either by direct
measurement or by integration from an assumed density
distribution.

3 Example: Comet 67P

To validate the new method, we model the gravitational
field of Comet 67P, the target of ESA’s comet-chasing
Rosetta mission. The shape model is developed by ESA’s
Rosetta archive team, consisting of 104,207 faces, matching
NVC image data gathered up to October 2016. The basic
information of the two-lobe comet is given in Table 3 and the
shape model can be downloaded from https://imagearchives.
esac.esa.int/index.php?/page/navcam_3d_models. We con-
duct the case study in a closed-loop simulation. Figure 3
shows the workflow.A CFD solution is derived following our
new method, and, taken as a benchmark, the direct Newton

integration sums up gravitational components generated by
point masses (condensed by CV masses onto their centroids),
forming a rigorously harmonic gravitational field. After
about 600 iterations the SIMPLE algorithm converges,
and we obtain the gravitational vector field of Comet 67P
(Fig. 4).

Table 3 Basic information of Comet 67P/Churyumov-Gerasimenko
(ESA 2016)

Size of nucleus:

Overall dimensions 4.34 km � 2.60 km � 2.12 km
Small lobe 2.50 km � 2.14 km � 1.64 km
Large lobe 4.10 km � 3.52 km � 1.63 km

Mass 1.0 � 1013 kg

Volume 18.0 km3

Density 533.0 kg/m3

Fig. 3 Workflow of the comparison between the CFD solution and
the Newton integration. Both branches are simulated from two input
data: the shape and the density models. The interior and the exterior

meshes are generated separately. The mass of each interior tetrahedron
is assumed to be condensed as a point mass at the centroid for the
subsequent Newton integration

https://imagearchives.esac.esa.int/index.php?/page/navcam_3d_models
https://imagearchives.esac.esa.int/index.php?/page/navcam_3d_models
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Fig. 4 The gravitational vector field of Comet 67P viewed from (a) the top, (b) and (c) the side and (d) the oblique perspective

In order to compare the CFD solution (velocity vectors
denoted as v) and the direct Newton integration (gravitational
vectors denoted as g), we adopt the following two indica-
tors:

• Relative error

�e D
ˇ̌
ˇ̌ jvj � jgj

jgj
ˇ̌
ˇ̌ (14)

• Angular difference

�� D arccos
v � g

jvj jgj (15)

The above two indicators evaluate the magnitude and
the directional differences, respectively, with smaller values
indicating a better consistence of the two solutions. Figure
5 shows the histograms for a total of 457,793 validation
points. The overall magnitude order of the relative errors is
smaller than 10% and the angular difference is within 5ı.

Their mean values are 2% and 1.21ı, respectively, marked
with red lines in Fig. 5. The comparisons indicate a good
consistence between the CFD solution and the benchmark
solution, thereby proving the good performance of the new
method on solving the CBVPs. However, the numerical error
performance of the new method needs to be investigated as a
further study in the future.

4 Conclusion

A new gravitational field modeling method is proposed in
this research, elaborated from both the theoretical and the
application aspects:

• A new equation set, including the governing equation
(Eq. 12) and the boundary condition (Eq. 13), is derived
from the potential flow theory and is equivalent to the
Laplace equation when expressing the gravitational
field.
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Fig. 5 Histograms of (a) the relative error and (b) the directional difference between the CFD solution and the integrated solution. Red lines mark
the average values of the two indicators

• The CFD techniques are introduced as numerical tools to
solve the new fundamental equation, and a gravitational
field modelingworkflow is devised. The gravitational field
generated by Comet 67P is exemplified to validate our
method.

The method is dedicated to solving gravitational fields
numerically, with the advantage of circumventing the per-
turbation theory, the basis of the methods using the Laplace
equation. From both theoretical and practical point of view,
this new method has a good performance on solving Com-
plex Boundary Value Problems, overcoming the divergence
problem of conventional approaches.
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Surface Loading of a Self-Gravitating, Laterally
Heterogeneous Elastic Sphere: Preliminary
Result for the 2D Case

Yoshiyuki Tanaka, Volker Klemann, and Zdeněk Martinec

Abstract

Advancements in the Global Geodetic Observing System (GGOS) have enabled us to
investigate the effects of lateral heterogeneities in the internal Earth structure on long-term
surface deformations caused by the Glacial Isostatic Adjustment (GIA). Many theories
have been developed so far to consider such effects based on analytical and numerical
approaches, and 3D viscosity distributions have been inferred. On the other hand, fewer
studies have been conducted to assess the effects of lateral heterogeneities on short-term,
elastic deformations excited by surface fluids, with 1D laterally homogeneous theories
being frequently used. In this paper, we show that a spectral finite-element method is
applicable to calculate the elastic deformation of an axisymmetric spherical Earth. We
demonstrate the effects of laterally heterogeneous moduli with horizontal scales of several
hundred kilometers in the upper mantle on the vertical response to a relatively large-
scale surface load. We found that errors due to adopting a 1D Green’s function based
on a local structure could amount to 2–3% when estimating the displacement outside
the heterogeneity. Moreover, we confirmed that the mode coupling between higher-degree
spherical harmonics needs to be considered for simulating smaller-scale heterogeneities,
which agreed with results of previous studies.

Keywords

Finite element method � GGOS � Lateral heterogeneity � Mass redistribution � Surface
loading
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1 Introduction

A surface-loading response is a geophysical process that
describes deformation of the solid Earth due to variations in
surface fluids including the atmosphere, ocean, continental
water and ice sheets. Short-term responses to these loads are
usually modeled by elastic deformation. Farrell (1972)’s the-
oretical framework based on Green’s function (GF) method
is well known. Mathematically, it enables us to estimate
local as well as global scale elastic deformations of a self-
gravitating, layered sphere to a load applied at the surface of
the Earth.

On the other hand, long-term responses of the Earth
caused by the GIA have been modeled by viscoelastic
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relaxation. A number of authors have developed theoretical
models for laterally homogeneous (e.g., Peltier 1974) and
heterogeneous (e.g., D’Agostino et al. 1997; Kaufmann and
Wolf 1999; Wu 2002) cases (see the review by Whitehouse
(2018) for more details). The authors of this paper also
developed a computational method in which 3D viscosity
distributions and variations in the gravitational field are
naturally treated on a global scale (Martinec 2000; Klemann
et al. 2008; Tanaka et al. 2011). In particular, accompanied
with the advancement in numerical computational ability,
increasingly more models that consider a 3D heterogeneous
internal structure of the Earth have been presented to
interpret the deformations and gravity changes detected
by GGOS. For example, Milne et al. (2018) estimated the
effects of a horizontally varying thickness of the lithosphere
(and thus large lateral viscosity contrasts) on the GIA in
Greenland with a finite volume formulation.

Compared with the case of viscoelastic relaxation, rela-
tively few studies have assessed the effects of 3D hetero-
geneous structures on elastic responses to a load, probably
due to the fact that lateral heterogeneities in elastic constants
and the density are much smaller than those in viscosity
and harder to detect by observations. Ito and Simons (2011)
employed GF for the 1D structure to constrain local density
and elastic structure, analyzing ocean loading observed by
the global navigation satellite systems. Dill et al. (2015)
approximately estimated the effects of lateral heterogeneities
on elastic responses to atmospheric and hydrological loads,
using local GF for the 1D structure of the respective crustal
structure below the load. More details about theoretical mod-
els of elastic surface loading and sensitivity studies regarding
Earth structure parameters in past studies are summarized in
Martens et al. (2016).

In the present paper, we report that the abovementioned
method developed for considering 3D viscosity distribution
(Tanaka et al. 2011) can be modified to take into account
lateral heterogeneities in elastic constants. Preliminary com-
putation results are presented that demonstrate the effects of a
large-scale (400–1,600 km) heterogeneity on surface vertical
displacement. Furthermore, we investigate the effects of
mode coupling on the elastic response as Wu (2002) did for
the viscoelastic response.

2 Method

2.1 A Theory of Elastic Response in the 1D
Earth Structure

The governing equations for an initially hydrostatic, self-
gravitating, layered sphere consist of a quasi-static equilib-
rium of stress, Poisson’s equation and a strain-stress relation

for the isotropic elastic material (Farrell 1972; Tanaka et al.
2011):

r � £ � �0r�1 C r � .�0u/ r�0 � r .�0u � r�0/ D 0 (1)

r2�1 C 4�Gr � .�0u/ D 0 (2)

£ D œ .r � u/ I C 2�" (3)

" D 1

2

�ru C rT u
�

(4)

where the subscripts 0 and 1 denote the reference state
and the perturbation, respectively, and G, I and " are the
gravitational constant, the second-order identity tensor and
strain tensor, respectively. The boundary condition comprises
increments of normal stress and gravity potential due to a
surface load. The density �0 and elasticity constants � and
� depend only on radial distance r. By applying a spherical
harmonic expansion of stress £, displacement u and the
gravity potential �, angular dependencies are completely
separated by the orthogonality of spherical harmonics, and
a differential equation with respect to r is obtained. This
equation is numerically solved, and GF for a point-mass load
dependent on r and � (angular distance from the load) is
obtained by summing spherical harmonics. A Heaviside-type
source time function is often used. Since the inertial term
is neglected in the governing equation, GF instantaneously
jumps at t D 0 and becomes constant at t > 0:

Œu; v�rDa D a

M

X

j

�
hj ; lj

�
rDa

Pj .cos �/ (5)

where u and v are vertical and horizontal displacements,
respectively; j, a, M and Pj(cos�) represent spherical har-
monic degree, Earth’s radius and mass, and Legendre func-
tion, respectively; hj and lj denote the load Love numbers.

2.2 Modification for the 3D Elastic Case

Tanaka et al. (2011) solve a viscoelastic problem when the
above strain-stress relation is replaced by Maxwell rheology:

d

dt
£ D d

dt
£E � �

	

�
£ � 1

3
tr £I

�
(6)

£E � œ .r � u/ I C 2�" (7)

where 	 is 3D viscosity dependent on (r, � ,®) and the
superscriptEmeans an elastic part. The density and elasticity
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constants are still radially symmetric. In contrast to the elas-
tic case, a transient deformation occurs for t > 0. Discretizing
the above equation with respect to the time derivative, we
have

£iC1 D £E;iC1 C £V;i (8)

and

r � £E;iC1 � �0r�1
iC1 C r � �

�0uiC1
� r�0 � r �

�0uiC1 � r�0

�

D �r � £V;i C fiC1

(9)

where i is the index representing time step, and f denotes
a force representing the surface boundary condition. The
variational equality, which is constructed to apply a finite-
element method, can be written as

•EiC1 D •F i
diss C •F iC1

surf (10)

(eq. (11) of Tanaka et al. 2011). The left-hand side includes
the energy functionals associated with elastic deformation,
self-gravitation and uniqueness of the solution, and the right-
hand side corresponds to the viscous dissipation and the
surface boundary condition. To be more specific, the energy
functionals related to bulk and shear deformations and the
dissipation are written as

•EiC1
bulk D

�
V

�.r � uiC1/.r � ıu/dV; (11)

•EiC1
shear D 2

�
V

�
�
"iC1 � ı"

�
dV; (12)

•F i
diss D �

�
V

�
£V;i � ı"

�
dV; (13)

where V denotes the volume of a sphere. At the first time step
(i D 0), •F i

diss is set to zero, and the instantaneous elastic
response is obtained from Eq. (10), which agrees with Far-
rell’s result. At i D 1, the dissipation term is computed with
help of the solution at i D 0. In the following time steps, the
dissipation term is evaluated with the solution at the previous
time step, and the contribution of the boundary condition at
the present time step drives the elastic deformation at the
present time step i C 1.

As in the elastic case, a spherical harmonic expansion
of •Ei C 1 and •F iC1

surf gives a differential equation regarding
r. This equation is numerically solved by applying a 1D
finite-element representation. However, the dissipation term
includes 3D viscosity, and the orthogonality of spherical
harmonics do not simplify this term as for a 1D case.
Therefore, the integrationwith respect to � and ® is evaluated

numerically using the Gauss-Legendre quadrature and fast
Fourier transform. This approach, which combines the 1D
finite elements and tensor spherical harmonics, allows us to
model viscoelastic deformations of the whole sphere with
a natural treatment of self-gravitation. No constraints to
suppress artificial translations are necessary.

We now consider a 3D heterogeneity in the rigidity. To
explain the essence of the method, we write only the term
associated with the shear deformation on the left-hand side
of Eq. (10):

•EiC1
shear D �

�
V

�
£V;i � ı"

�
dV C •F iC1

surf : (14)

In the elastic case, the viscous dissipation does not occur.
Therefore, the elastic response is obtained by solving

•EiC1
shear D •F iC1

surf : (15)

We decompose the rigidity on the left-hand side into the
spherically symmetric part and residual. Then, we have

•EiC1
shear D �

V
2�0.r/

�
"iC1 � ı"

�
dV

C�
V

2
� .r; �; '/
�
"iC1 � ı"

�
dV:

(16)

Transferring the residual part into the right-hand side of
Eq. (16) yields

�
V

2�0.r/
�
"iC1 � ı"

�
dV

D ��
V

2
� .r; �; '/
�
"iC1 � ı"

�
dV C •F iC1

surf :
(17)

We note that Eq. (17) coincides with Eq. (14) for the
viscoelastic case of 4� D 0 if we replace £V, i in Eq.
(14) by 24�"i C 1. Now, we replace the time index i C 1
in 24�"i C 1 to i. However, the elastic response must be
constant in time so that the solution should not depend on
i. Here, we change the meaning of i from a time step to a
number of iterations. It follows that, for i D 0, the elastic
deformation caused by the spherically symmetric part is
obtained. For i D 1, the elastic solution is corrected for
the contribution from the residual part, which is estimated
using the solution for i D 0. Because 4� is assumed to be
significantly smaller than �0, the correction term decreases
with iterations. We confirmed that the computational results
presented in the later section converge within 0.1% after
4–5 iterations. Heterogeneities in the bulk modulus can be
considered in a similar manner:

�
V

�0

�r � uiC1
�

.r � ıu/ dV

D ��
V


�.r � ui /.r � ıu/dV C •F iC1
surf :

(18)
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Table 1 Earth structure models used for the comparisons

Model Remark 
œ or 
� r (km) ™ (degree)

A 1D (PREM) ˙0% 0–6,371 0–180

B 1D C10% 5,701–6,371 0–180

C1 2D C10% 5,701–6,371 0–4

C2 2D C10% 5,701–6,371 4–8

C3 2D C10% 5,701–6,371 12–20

D 2D C10% 5,701–6,371 0–16

The numbers represent the relative differences in the elastic constants
with respect to the PREM

2.3 The Load and EarthModels

We employed a disk load with relatively large-scale mass
redistributions detectable with satellite gravity missions such
as GRACE and GRACE-FO (https://gracefo.jpl.nasa.gov/).
Cut-off degree of the spherical harmonics was set to 300. To
investigate the behavior of GFs obtained for different Earth
models, a unit mass (1 kg) was applied at 0

ı � � � 8
ı

/16
ı

.
Table 1 shows the Earth structure for models A, B, C1-

C3 and D. In model A, the density and elastic constants
of PREM (Dziewonski and Anderson 1981) is employed
with those of the ocean being replaced by that of the crust.
We consider 2D heterogeneities as a first step, where the
model parameters for C1–C3 and D are axisymmetric, i.e.,
dependent on r and � . It follows that computed GF is also
independent of the azimuth. The scales of the heterogeneities
were set to 4 – 16

ı

in the horizontal direction and 670 km
in the depth. A 10% increase in the elastic constants corre-
sponds to a �5% decrease in seismic wave velocities, which
is possible in a plate subduction zone. Because the primary
purpose of this paper is to report that our previous method is
applicable to a laterally heterogeneous elastic deformation,
we show results for only these limited Earth models.

2.4 Validation

The computational scheme for the laterally homogeneous
part was already validated using independent methods
(Spada et al. 2011; Tanaka et al. 2011). To confirm the above
presented method, we computed the displacements for model
B in two different ways. Model B is radially symmetric, so
we can compute the elastic response using the method of
Tanaka et al. (2011) directly (i.e., we solve the viscoelastic
equation for i D 0 (Eq. 10)). We compared this result with
that obtained by the proposed iteration method. The number
of the 1D finite elements in the vertical direction is 516. The
differences in the load Love numbers become smaller than
0.1% after 4–5 iterations, and this outcome is practically
sufficient.

3 Results and Discussions

3.1 Effects Due to the Distribution
of Lateral Heterogeneity

Figure 1 displays the vertical responses to the disk load of
radius 8

ı

for models A, B and C1. We see that the subsidence
for model B is smaller than that for A, reflecting that the
bulk/shear modulus of the upper mantle for model B is 10%
larger than that for A. The difference in the displacements
are a few percent where the load is distributed (� < 8

ı

). In
model C1, the upper mantle is harder by the same amount but
for � < 4

ı

only. The displacement for model C1 agrees with
that for model B nearer the center of the load. Outside the
region, where the local heterogeneity is considered, the result
for C1 coincides with that for model A. For 3

ı

< � < 5
ı

, the
response for C1 is located between the other two curves. This
transitional behavior due to the local heterogeneity agrees
with our intuition. This result also means that, when we
employ a 1D GF that assumes a local structure below the
center of the load to estimate the vertical displacement, a
relative error up to 3% can occur in the area of 4

ı

< � < 8
ı

.
The next example shows the cases where the hetero-

geneities are given outside the disk load. The left and right in
Fig. 2 show the cases where a local heterogeneity is given as
a ring structure at 8

ı

< � < 12
ı

(C2) and 12
ı

< � < 20
ı

(C3),
respectively. In contrast to the cases in Fig. 1, the results
for C2 and C3 are almost identical to the result for model
A, indicating that the effects of the farther heterogeneities
are much smaller than those in the cases of Fig. 1, where
the heterogeneities are considered below the load. To see the
effects in more detail, the differences between the results for
C2/C3 and A are magnified (solid black curves). Comparing
the displacements in the left and right figures, we note that
the relative difference from model A decreases when the
location of the local heterogeneity is farther from the load.
This result indicates that lateral heterogeneities nearer the
load affect the surface vertical deformation more strongly.
This is understood from the fact that the integrand of the first
term on the right-hand side of Eqs. (17) and (18) becomes
largest when the location of the heterogeneity agrees with
the area where the strain change is larger (i.e., near the
load). Moreover, if we employ a 1D GF that assumes a local
structure in a far field to estimate the vertical displacement
near the load, an error of 3% can occur at maximum (dashed
curves).

3.2 Some Remarks onMode Coupling

In the presence of lateral heterogeneities, coupling between
spheroidal and toroidal modes generally occurs. However,

https://gracefo.jpl.nasa.gov/
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Fig. 1 Normalized vertical
displacements for models A
(red), B (green) and C1 (blue)
when the bulk and shear moduli
are considered laterally
heterogeneous, respectively.
Subsidence is positive and
normalization is to central
displacement of model A. The
horizontal axis denotes the
angular distance measured from
disk center. The near-load region
is magnified on the right, where
the dashed lines denote the
difference of C1 from B relative
to the maximum displacement of
B (the right vertical axis). The
black and white thick bars denote
the angular extension of the load
and the elastic heterogeneity,
respectively
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the toroidal mode is not excited for a case where both
the load and the heterogeneity are axisymmetric (Martinec
and Wolf 1999; Wu 2002). The fact that the toroidal mode
becomes zero can be confirmed also in our formulation. The
contribution of mode coupling is evaluated by the integral
of the first term on the RHS of Eqs. (17) and (18). As
a result of the first iteration, only the spheroidal mode is
excited by the load, which enters into the strain tensor in
the integrand on the RHS. Then, the coefficients of strain-
tensor variations in the weak formulation for the toroidal

mode vanish. (Wjm D Fjm D Hjm D 0 in eqs. (88-92) and
(A,B,C)r® D (B,C)�® D 0 in (103) of Martinec (2000) and
the coefficients of •"3 and •"4 become zero. See also the
description below eq. (110) of the same paper.) Accordingly,
only the coupling between spheroidal modes has to be
discussed.

In Figs. 1 and 2, all the modes up to the cut-off degree
of 300 were considered. By reducing the maximum degree
in the abovementioned integral for evaluating the mode cou-
pling, we investigated how the solution changed. Figure 3a, b
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Fig. 3 The vertical
displacements for various cut-off
degrees in the mode coupling
(numbers above the plots).
Relative differences to the
reference model A are shown
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shows results for a disk load of radius 8
ı

with two different-
scale heterogeneities in the shear modulus. We see from
Fig. 3a that summing the modes up to degree 40 gives a
good approximation of the case where the coupling is fully
considered. The spherical degree 40 corresponds to a half-
wavelength of 500 km, which is comparable to the spatial
size of the heterogeneity. When the size of the heterogeneity
is larger, the result for degree 20 almost coincides with
those for higher degrees (Fig. 3b). This tendency agrees with
the finding of Wu (2002) that mode coupling for higher
spherical degrees is necessary to consider to reflect a smaller-
scale heterogeneity. Figure 3c, d shows the results for a
disk load of radius 16

ı

. Comparing Fig. 3c with a, where
the size of heterogeneity is relatively small compared with
the disk radius, the convergence of the solution due to the
change in the maximum degree does not strongly depend
on the size of the load. On the contrary, when the size of
heterogeneity is relatively large, we can see a significant
difference in a required number of modes to achieve a good
approximation (Fig. 3b, d). This result indicates that the role
of the mode coupling depends both on the sizes of loads and
heterogeneities, which is also consistent with Wu (2002).

4 Conclusions

We have shown that the spectral finite-element approach is
applicable to quantify the effects of laterally heterogeneous
elastic constants to surface loading. Preliminary results indi-
cate that the behavior of the elastic vertical response obtained
for different structures is in agreement with our intuition,

implying that the lateral heterogeneities are considered cor-
rectly by the proposed method. We found that the relative
importance of the laterally heterogeneous structure varies
according to a distribution of the local heterogeneity with
respect to the load location. In particular, the heterogeneities
below the load affect the surface deformation more strongly
than those below the regions away from the load, which
supports the assumption made in the local GF approach (Dill
et al. 2015). The errors caused by using a 1D GF based
on a local structure can amount to 3% when estimating
the vertical displacement outside the heterogeneity for the
assumed change of elasticity by 10%. Also, we confirmed
that the behaviors of mode coupling are consistent with those
found by previous studies.

Anomalies in seismic wave velocity are related to changes
in structure and thermodynamic state (e.g., Karato 2008),
and consequently correspond also to heterogeneity in density
(e.g., Ding and Chao 2018). Since lateral heterogeneities
in density are not considered in the presented method, we
will extend it to more general 3D cases including lateral
heterogeneities in the density so that we can investigate
the effects of laterally heterogeneous structures on surface
loading, using GGOS data and realistic loads in a future
study.
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Using Structural Risk Minimization to
Determine the Optimal Complexity of B-Spline
Surfaces for Modelling Correlated Point Cloud
Data

Corinna Harmening and Hans Neuner

Abstract

The increased use of areal measurement techniques in engineering geodesy requires the
development of adequate areal analysis strategies. Usually, such analysis strategies include
a modelling of the data in order to reduce the amount of data while preserving as much
information as possible. Free form surfaces like B-splines have been proven to be an
appropriate tool to model point clouds. The complexity of those surfaces is among other
model parameters determined by the number of control points. The selection of the
appropriate number of control points constitutes a model selection task, which is typically
solved under consideration of parsimony by trial-and-error procedures. In Harmening and
Neuner (J Appl Geod 10(3):139–157, 2016; 11(1):43–52, 2017) a model selection approach
based on structural risk minimization was developed for this specific problem. However,
neither this strategy, nor standard model selection methods take correlations into account.
For this reason, the performance of the developed model selection approach on correlated
data sets is investigated and the respective results are compared to those provided by a
standard model selection method, the Bayesian Information Criterion.

Keywords

B-spline surfaces � Correlated point clouds � Model selection � Point cloud modelling �
Structural risk minimization � VC-dimension

1 Introduction

With the development of the terrestrial laser scanner (TLS)
a measuring instrument which allows a fast, efficient and
contactless data acquisition moved into focus of engineering
geodesy (Heunecke et al. 2013). The acquired data is of
high spatial and temporal resolution and, therefore, forms
an excellent basis to solve engineering geodetic tasks like
geometric state descriptions or spatio-temporal deformation
analyses. However, despite of its many advantages, the use
of laser scanners also holds new challenges (see for example
Mukupa et al. 2016 or Holst and Kuhlmann 2016).

C. Harmening (�) · H. Neuner
Department of Geodesy and Geoinformation, TU Wien, Vienna,
Austria
e-mail: corinna.harmening@tuwien.ac.at

One of the major challenges is the development of appro-
priate deformation analysis strategies which are able to deal
with the huge amount of data. When developing areal anal-
ysis strategies, the choice is between five possible ways to
handle point clouds with respect to a subsequent deformation
analysis (Ohlmann-Lauber and Schäfer 2011).

Among them, a frequently used strategy is geometry-
based. It includes a geometric modelling of the point clouds
in order to reduce the amount of data while preserving as
much information as possible. Applications of the geometry-
based approach using geometric primitives like planes or
cylinders can be found in Erdélyi et al. (2017), Lindenbergh
and Pfeifer (2005) or Vezočnik et al. (2009). However,
when applying this approach to complex structures like
domes, arch bridges or even natural objects, flexible math-
ematical functions are required. Free form surfaces like B-
splines have been proven to be particularly suitable to model
laser scanner point clouds (see for example Harmening and
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Neuner 2015, Ioannidis and Valani 2006 or Paffenholz et al.
2017).

B-spline surfaces gain their flexibility due to a vari-
ety of parameter types which have to be determined in
an appropriate way. The focus of this contribution lies
on the determination of the optimal number of control
points which influence the B-spline’s complexity to a large
extent. Usually, this parameter type is chosen quite arbitrar-
ily by intuitive trial-and-error-procedures, finding a balance
between the surface’s parsimony and its approximation qual-
ity.

In this contribution the performance of structural risk
minimization with regard to the choice of the optimal number
of B-spline control points is compared to that one of the
Bayesian Information Criterion. Both approaches assume
identically and independently distributed (iid) data. As this
requirement is not met in reality, the influence of correlations
in the data sets on the respective results is furthermore
investigated.

The article is structured as follows: Sect. 2 gives a short
overview of the estimation of B-spline surfaces. In Sect. 3
the task of model selection is introduced using the exam-
ple of B-spline curves with different numbers of control
points. The general principles of model selection and two
possibilities to implement them (the Bayesian Information
Criterion and Structural Risk Minimization) are described.
Both approaches are applied to the estimation of B-spline
surfaces in order to determine the optimal number of control
points in Sect. 4. The results are analysed, evaluated and
compared. Finally, a conclusion is drawn and an outlook is
given in Sect. 5.

2 Estimation of B-Spline Surfaces

A B-spline surface of degrees p and q is defined by Piegl and
Tiller (1997):

OS.u; v/ D
nPX

iD0

mPX

j D0

Ni;p.u/Nj ;q.v/Pij : (1)

According to Eq. (1), a surface point OS.u; v/ is located on the
surface by the surface parameters u and v and is computed
as the weighted average of the .nP C 1/ x .mP C 1/

control points Pij . The corresponding weights are defined by
the functional values of the B-spline basis functions Ni;p.u/

and Nj ;q.v/ which can be recursively computed by means
of the Cox-de-Boor-algorithm (see Cox 1972; Boor 1972).
Two knot vectors U D Œu0; : : : ; ur � and V D Œv0; : : : ; vs�

in direction of the surface parameter u and v respectively
split the B-spline’s domain into knot spans. This subdivision
of the B-spline’s domain leads to the property of locality,

meaning that the shifting of one control point changes the
surface only locally.

The tensor product representation of a B-spline surface
given by Eq. (1) illustrates the relationship between B-spline
surfaces and B-spline curves: Due to the product of two one-
dimensional basis functions depending on different param-
eters u and v respectively, the surface consists of an infinite
number of B-spline curves running in two different directions
(given by u and v).

When determining an optimal B-spline surface, usually,
only the location of the control points is estimated in a linear
Gauß-Markov model. In order to obtain a linear relationship
between the l observations l D Sk.u; v/ with .k D 1; : : : l/

and the unknown control points Pij , the B-spline’s knots as
well as its degrees are specified a priori. In this study, the use
of cubic B-splines with p D 3 and q D 3 is applied as this is
a generally accepted choice due to their C 2-continuity (Piegl
and Tiller 1997). Methods for determining appropriate knot
vectors can be found in Piegl and Tiller (1997), Schmitt and
Neuner (2015) or Bureick et al. (2016).

Another prerequisite for the estimation of the control
points’ location is the allocation of convenient surface
parameters u and v to the observations (cf. Harmening and
Neuner 2015).

3 Model Selection

3.1 Problem Definition

The remaining parameter type to be specified prior to the
estimation of the control points’ location is the number of
control points .nP C 1/ x .mP C 1/. The importance of an
appropriate choice is demonstrated in Fig. 1 for the case of
B-spline curves. Due to the B-spline surface’s composition
of B-spline curves this motivation can be straightforwardly
extended to surfaces.

Figure 1 shows a simulated noisy point cloud (blue points)
which forms the basis for the estimation of three B-spline
curves with different numbers of control points. The more
control points are estimated, the more complex the curve
becomes and the better it approximates the data in terms of a
smaller sum of squared residuals.

However, although the black curve with 30 control points
leads to the smallest sum of squared residuals, it is much too
complex and, therefore, not able to separate the noise from
the actual phenomenon; this model has a large variance as it
overfits the data by encoding noise in the estimated control
points (Cherkassky and Mulier 2007).

In contrast, the green curve with only four control points
is too inflexible to model the complete phenomenon. Such
models have a large bias, they underfit the data (Burnham
and Anderson 2002).
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Fig. 1 B-spline curves with
different numbers of control
points nP C 1

The choice of the optimal number of control points thus
corresponds to the finding of a balance between simplicity
(small variance, large bias) and complexity (small bias and
large variance), which is known as the bias-variance trade-
off (Cherkassky and Mulier 2007). Information criteria and
structural risk minimization are tools which find an optimal
model by implementing this trade-off. Both follow the prin-
ciple of parsimony, which states that a good model should
approximate the phenomenon as well as possible while it is
as simple as possible (Burnham and Anderson 2002).

3.2 Model Selection byMeans of the
Bayesian Information Criterion

The common tools to find a trade-off between a model’s
approximation quality and its simplicity are information
criteria. Based on a set of candidate models these information
criteria evaluate each model according to an optimality
criterion and choose that model to be optimal which achieves
the best score (Burnham and Anderson 2002).

The Bayesian Information Criterion (BIC), which was
introduced by Schwarz (1978), is one of the most popular
information criteria and is defined to be

BIC D �2 log.L. O�jdata// C log.l/K: (2)

The first part of the criterion, the log-likelihood of the
estimated model parameters O� given the data set of size l ,
evaluates the approximation quality of the respective model.
As the approximation quality increases with a growing num-
ber of model parameters, the second term penalizes an
increase of the model’s complexity in terms of the number
of estimated model parameters K .

The BIC chooses that model to be optimal which is
a posteriori the most likely (Cavanaugh and Neath 1999)
and is based on the assumption that the true dependency is
contained in the set of candidate models. Thus, it belongs to

the class of asymptotic consistent criteria which identify the
correct model with probability of 1 in the asymptotic case.

Although information criteria are a standard tool in model
selection, they have some disadvantages: They are only
applicable to linear models, their known properties are valid
only for the asymptotic case and the specification of a func-
tion’s complexity in terms of the number of free parameters is
not adequate for every function type (Cherkassky and Mulier
2007).

3.3 Model Selection byMeans of Structural
Risk Minimization

These drawbacks demand for an alternative which can be
found in statistical learning theory (SLT). SLT provides a
theoretical framework for the estimation of functional depen-
dencies from a given set of data (Vapnik 1999). In contrast to
model selection, SLT describes function estimation in finite
samples and takes explicitly the sample size into account.
Furthermore, SLT can also be applied to nonlinear models
(Cherkassky and Mulier 2007).

The general learning problem of SLT aims to select that
function Qg.x; �0/ from a set of functions g.x; �/, which
approximates the dependency between input vector x and
output vector y in an optimal manner (Cherkassky and Mulier
2007). This task includes the choice of the optimal function
type Qg as well as the choice of the optimal parameters �0. The
quality of this approximation is measured by a loss function
L.y; g.x; �// whose expectation w.r.t. the data

R.�/ D
Z

L.y; g.x; �// dP .x; y/: (3)

is minimized by the optimal function Qg.x; �0/. Due to the
unknown joint probability density of the data dP .x; y/, the
risk functional (3) cannot be computed and the minimization
of the true risk is usually replaced by the minimization of the
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empirical risk

Remp.�/ D 1

l

X

i

L.yi ; g.xi ; �//: (4)

The computation of the empirical risk is based on the iid
training data .x; y/ as a finite realization from dP .x; y/ and,
thus, is an approximation of the true risk in Eq. (3).

Structural risk minimization (SRM) gives an answer to the
question how well the empirical risk approaches the true risk
in case of finite sample sizes: According to Vapnik (1998)
the true risk is bounded by the empirical risk with probability
1 � � as follows:

R.�/ � Remp.�/

.1 � p
e/C

D Rstr (5)

with

e D h
�
ln l

h
C 1

� � ln.�=4/

l
: (6)

and

� D min

�
4p
l
; 1

�
: (7)

The bound defined by Eq. (5) is a function of the sample size
l and the VC-dimension h which is an essential tool in SLT
as it describes the complexity of a set of functions without
explicitly taking the number of free parameters into account
(Vapnik 1998). It is defined to be the maximum number
of samples which can be separated in all possible ways by
the set of functions (cf. Fig. 2). The VC-dimension cannot
analytically be determined in case of the majority of function
classes, but there exists a general procedure for estimating
the VC-dimension (Vapnik et al. 1994).

Given a set of candidate models and being able to esti-
mate the respective VC-dimensions, SRM uses the bound
in Eq. (5) to choose that model to be optimal which has
minimal structural risk Rstr . As this implies a minimization
of the empirical risk and a simultaneous controlling of the
function classes’ complexity, SRM implements the principle
of parsimony (Vapnik 1999).

3.4 Choosing the Optimal Number
of B-Spline Surface Control Points
bymeans of SRM

Although the general SRM procedure to choose an optimal
model is straightforward, the application to the determina-
tion of the optimal number of control points implies one
difficulty: In order to estimate the VC-dimension of B-spline
surfaces, they have to be used as classifiers, or, in other
words, they have to be used as discrete approximators instead
of continuous ones as in their original definition (cf. Vapnik
et al. 1994).

A detailed derivation of the B-spline classifier used in the
following can be found in Harmening and Neuner (2016,
2017). It is strongly oriented on the Support Vector Machines
(SVM, Vapnik 1998) and is based on the following main
ideas:

– The B-spline classifier is based on linear decision bound-
aries. Thus, the classification problem benefits from all
advantages of linear optimization.

– However, as the functional relationship of B-splines con-
tains non-linearities due to the necessity to estimate sur-
face parameters, knot locations and control points, the
classifier has to be able to deal with them. By implement-
ing a mapping of the input space into a high dimensional
feature space, linear decision boundaries in this feature
space result in non-linear decision boundaries in the input
space.

– The problem of increased dimensionality due to the fea-
ture space transformation is solved by making use of the
kernel trick. This trick allows to indirectly compute the
inner product of two feature space vectors xFS by using a
Kernel function K and the original and low-dimensional
input vectors x:

K.x; xT / D .xFS ; xT
FS /: (8)

The respective B-spline kernel is given by

K.us; vs ; ut ; vt / D
nX

iD0

mX

j D0

Ni;p.us/ Nj ;q .vs/ � Ni;p.ut /Nj ;q.vt /: (9)

Fig. 2 A 2D-line can separate a set of three points in all possible ways, whereas there exists a formation of four points which cannot be achieved
by a separating 2D-line. Thus, the VC-dimension of a 2D-line equals h D 3
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– The application of the kernel trick requires an optimiza-
tion problem in which the input vector appears solely in
form of the inner product (see Eq. (8)). The loss function
of the ridge regression

L D
lX

iD1

�2
i C � jj�FS jj2

is an extension of the sum of squared residuals by a regu-
larization term, which restricts the length of the estimated
parameter vector �FS .

The dual solution of this optimization problem

˛ D Œ.XFSXT
FS / C �I��1y

meets the requirement demanded above.

Based on these developments the optimal number of control
points can be determined as sketched in Fig. 3:

– Approximation of the point cloud by means of B-spline
surfaces with varying number of control points, yielding
the empirical risk Remp of each B-spline surface (Eq. (4)).

 h

Fig. 3 Structural risk minimization to determine the optimal number
of B-spline control points

– Estimating the VC-dimension of each of the used B-spline
surfaces according to Vapnik et al. (1994) and using the
B-spline classifier developed in Harmening and Neuner
(2016).

– Computing the structural risk Rstr of each B-spline sur-
face according to Eq. (5).

– Choosing the B-spline surface with the minimal structural
risk to be the optimal one.

4 Choosing the Optimal Number
of B-Spline Control Points

Aim of this section is to study the performance of the
developed SRM approach compared to that of BIC in case
of point cloud data. Special focus is set on the performance
in case of correlated data.

4.1 Data Sets and General Procedure

The following investigations are based on simulated data sets
as they allow a comparison with nominal values as well as a
controlled establishment of correlating noise.

The basis of the data simulation is formed by a B-spline
surface with nP C 1 D 9 and mP C 1 D 7 control points.
The scanning process of the surface is realized by a sampling
and a subsequent superimposition of the sampled point cloud
with noise (cf. Fig. 4). Four different types of data sets are

Fig. 4 Simulated B-spline surface with nP C 1 D 9 and mP C 1 D 7

control points
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obtained by varying the type of noise and the used correlation
function respectively:

– For the first type of data set white noise with a standard
deviation of � D 2 mm is used. This type of data set
meets the model selection approaches’ requirements of
being iid.

– The other three types of data sets are generated by super-
imposing the sampled surfaces with correlated noise. The
respective correlation function is of type e�˛� which is an
appropriate choice for representing laser scanning data of
this specific test specimen (Kauker and Schwieger 2017).
The correlation length is varied over the three types of
data sets according to Fig. 5. These different exponents
lead to correlation lengths ranging from 5 cm in case of
the blue curve over 7.5 cm in case of the red curve to
10 cm in case of the yellow curve.

For each type of data 500 realization sets are generated. Each
of the realizations forms the basis for the estimation of B-
spline surfaces with varying number of control points and the
subsequent evaluation of the estimated surfaces by means of

Fig. 5 Correlation functions of the simulated data sets

BIC as well as by means of the SRM-approach introduced
above.

As there is a strong connection between the number
of control points, the degree and the number of knots, a
completely isolated considerations of the number of control
points is not possible. In order to reduce the effect of the
remaining parameter groups, only the location of the control
points is estimated, whereas the surface parameters and
degree of the B-spline basis functions are set to the nominal
values, which are known from the simulation process. In
order to receive a knot vector which is as close as possible
to the nominal one, the nominal knot positions are either
complemented by further knots provided by the strategy of
Piegl and Tiller (1997) or those nominal knots which are
furthest from those provided by Piegl and Tiller (1997) are
discarded. The variance-covariance matrix of the observa-
tions in the stochastic model of the adjustment is chosen to
be the identity matrix.

4.2 Results

The results of the model selection are presented in form of
histograms specifying the number of control points which is
chosen to be optimal according to BIC and SRM as well as
the respective frequency among the 500 data sets.

In case of the uncorrelated data sets both, SRM and
BIC, choose the correct number of control points in all
500 simulations as can be seen in Fig. 6. This result could
be expected as this setting is optimal with regard to the
model selection problem: The data is iid and, furthermore,
there do not exist any uncertainty factors due to a previous
determination of the remaining B-spline parameter groups.

In case of correlated data sets the resulting histograms are
by far more inhomogeneous. In Fig. 7 the histogram of the
model selection results of the correlated data sets with the
smallest correlation length (5 cm) can be seen. A variety of

Fig. 6 Model selection results in
case of uncorrelated data sets
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Fig. 7 Model selection results in
case of correlated data sets
(� D e�100�)

Fig. 8 Model selection results in
case of correlated data sets
(� D e�75�)

combinations of (nPC1; mPC1) is chosen to be optimal over
the 500 realizations, with SRM providing a broader range
of results than BIC. However, both approaches identify the
correct number of control points in the majority of data sets,
with BIC choosing the nominal number of control points
in more cases (�435) than SRM (�355). The remaining
combinations of chosen control points show one (in case
of BIC) or two (in case of SRM) smaller accumulations at
the solutions (8; 9) and (10; 9) respectively. In these cases at
least the correct number of control points in the v-direction
is identified.

When using a correlation length of 7.5 cm during the
simulation process, only BIC chooses the correct number of
control points in the majority of the data sets, whereas SRM
most frequently chooses the combination of .11; 12/ control
points to be optimal (cf. Fig. 8). When comparing the results
with the previous ones, it can be seen that the range of results
becomes broader for both approaches and that the maxima
are considerably less pronounced.

The inclusion of the results caused by the data sets with
a correlation length of 10 cm reveals that the increase of the

correlation length shifts the most frequent solution from the
correct number of control points towards the highest number
of control points which was included into the computations
(cf. Fig. 9). This behaviour is more pronounced for SRM than
for BIC: In case of a correlation length of 10 cm the results of
BIC still cover a very broad spectrum (similar to the results of
SRM in case of a correlation length of 7.5 cm), whereas the
results of SRM already accumulate at the highest possible
number of control points.

The general behaviour of both strategies to choose more
complex models in case of correlated data sets can be
explained as follows: Due to the correlations, additional
systematics are inserted into the data sets. An appropriate
modelling of these systematics is only possible when using
more complex functions. In reality only correlated data are
available. An adequate handling of these correlations, which
avoids an overfitting of the data, is thus necessary.

However, the apparently weaker performance of SRM
compared to BIC could not be expected.

For these two reasons further investigations are made in
the following.
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Fig. 9 Model selection results in
case of correlated data sets
(� D e�50�)

4.3 Further Investigations

In a first step a closer look is taken at the values provided
by Eq. (5) which form the basis for the SRM-based decision
regarding the optimal number of control points. In Fig. 10
these values are exemplarily presented for one of the realiza-
tions of the correlated data sets (� D e�100�).

As can be seen, the resulting curve falls steeply from
Rstr .6; 6/ � 4:9 � 10�5 to the first local minimum at
Rstr .7; 9/ � 8:5 � 10�6. When increasing the number of esti-
mated control points, the resulting values fluctuate between
four levels resulting in a multitude of local minima with
almost identical values for the structural risk. The curve’s
periodic pattern is caused by the order of the combinations

Fig. 10 Structural risk Rstr for one realization of the correlated data
set with � D e�100�

of control points on the abscissa: During the process of
estimating B-spline surfaces with different numbers of con-
trol points, the number of control points in direction of the
surface parameter v is fixed while increasing the number of
control points in direction of the surface parameter u. When
having achieved the maximum number of control points
in u-direction, the number of control points in v-direction
is increased by one and the procedure is repeated. The
resulting local maxima represent the combinations .8; 6/,
.9; 6/, . . . , .12; 6/ (green circles in Fig. 10). Obviously, the
use of only six control points in u-direction leads to a
surface which is much too simple to approximate the point
cloud.

In addition to the periodic pattern, it is conspicuous that
the overall minimum (Rstr .12; 12/ � 8:2 � 10�6) is only
slightly smaller than the structural risk provided by the
correct number of control points. Thus, the course of the
curve indicates that a simple numerical comparison of the
computed values of the structural risk is not sufficient in
this application. Rather, further investigations regarding the
separability of models have to be included, allowing for a
decision if two local minima differ significantly or if the
principle of parsimony is even better obeyed when the most
simple model leading to a local minima is chosen to be
the optimal one. These further investigations will clearly
improve the performance of SRM compared to that one of
BIC.

In a second step the known correlation structure of the
data is used to decorrelate the data. The effect of the decor-
relation on the values of the structural risk can be seen in
Fig. 11. The decorrelation causes a kind of distortion of the
curve in Fig. 10, leading to a distinct overall minimum of the
structural risk for the correct number of control points. Thus,
in case the correlation structure of the data is known or can be
sufficiently well estimated, a decorrelation of the data is an
appropriate way to deal with stochastic relationships within
the acquired data sets.
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Fig. 11 Structural risk Rstr after decorrelation of the data

5 Conclusion and Outlook

Due to the development of the terrestrial laser scanner, the
extension of point-based analysis approaches to areal ones
is a current research topic in engineering geodesy. One
possibility to deal with the large amount of laser scanning
data is the point clouds’ approximation by means of con-
tinuous mathematical functions, which form the basis for
further analysis steps. B-spline surfaces have been proven
to be a powerful, but sophisticated tool for point cloud
modelling. When estimating a best fitting B-spline surface,
a variety of parameter groups has to be appropriately deter-
mined.

The focus of this contribution is on the determination of
the optimal number of B-spline control points and, therefore,
on the choice of the optimal complexity of a B-spline surface
in case of correlated data. In this contribution structural risk
minimization was used to solve this model selection problem
as it overcomes some of the disadvantages of information cri-
teria, which are only applicable to linear models and whose
well known properties are only valid for the asymptotic case.
The associated estimation of the VC-dimension requires the
development of a B-spline classifier whose basic ideas were
introduced.

In order to evaluate the approach’s performance, it was
applied to a variety of simulated data sets. The results were
compared to the nominal values for the number of control
points as well as to the results provided by BIC.

In case the data sets are iid, both, BIC and SRM chose the
correct number of control points to be optimal. However, as
white noise does not occur in reality, both approaches were
also applied to correlated data sets. At first glance, BIC seems
to outperform SRM as the latter has a stronger tendency
to overfit correlated data. However, further investigations
regarding the separability of models and their values for
the structural risk might clearly improve the performance of
SRM.

Until then and in case the data’s correlation structure is
known or can be reliably estimated, decorrelation of the data
is an appropriate way to deal with correlations in the data.

In future, the approach’s applicability to measured data
sets will be investigated. Due to missing or incomplete
stochastic models of terrestrial laser scanner measurements,
the unknown correlations in measured data sets may cause
further challenges. Therefore, the first step will be the scan-
ning of a test specimen with known B-spline form, which
also was the basis for the simulation process. An inclusion
of currently developed stochastic models for laser scanning
data (see for example Kauker and Schwieger 2017, Wujanz
et al. 2018 or Jurek et al. 2017) is imaginable.

Additionally, the approach will be applied to non-linear
models by using it for determining the optimal number of
B-spline control points in a joint estimation of the control
points’ locations and the surface parameters.
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On the Numerical Implementation
of a Perturbation Method for Satellite
Gravity Mapping

Christopher Jekeli and Nlingi Habana

Abstract

In 2008 P. Xu (Celest Mech Dyn Astron, 100:231–249) proposed a strictly kinematic
perturbation method for determining the Earth’s gravitational field from continuous satellite
tracking. The main idea is to process orbital arcs of arbitrary length, thus minimizing
superfluous parameter estimation associated with stitching together short-arc solutions, and
at the same time formulating the problem in terms of standard linear parameter estimation.
While the original formulation appears mathematically robust, its nested quadruple along-
track integrations are computationally challenging. We reduce the formulation to double
integrals and show that the method is numerically not feasible as originally envisaged.
On the other hand, by abandoning the rigorous Gauss-Markov formalism, we show the
numerical feasibility of processing multiple-day orbital arcs. The methodology lends itself
to high-low and low-low satellite-to-satellite tracking, or combinations thereof, as for
GRACE-like systems.

Keywords

GNSS satellite tracking � Gravitational field estimation � Numerical orbit integration �
Satellite perturbation theory

1 Introduction

With the modern ability to track low-Earth-orbiting satellites
continually and uniformly with Global Navigation Satellite
Systems (GNSS), such as the Global Positioning System
(GPS), the standard methods to extract estimates of the
Earth’s gravitational field from satellite tracking data may
be re-visited. Prior to GNSS tracking, ground-based track-
ing created a patch-work of data as a satellite rose and
set at any particular tracking station; and, accordingly, a
good a priori or reference orbit was essential in stitching
the observed arcs together. A perturbation theory based on
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Keplerian elements, for example, served to separate secular
and long-period orbital variations from the more short-term
resonances, which facilitated this estimation process. These
techniques are still practiced today in various forms; a good
review is given in the volume by Naeimi and Flury (2017).
Xu (2008) proposed a radical change from this methodology
specifically in view of the proven accurate tracking capa-
bilities with GNSS. Continual and uniform high-accuracy
tracking, arguably obviates piecing together short arcs and
simplifies the overall problem setup as all formulations may
be made with the straightforward use of Cartesian coor-
dinates. The idea certainly has tremendous theoretical and
practical appeal and in this paper we aim to elucidate this in
the simplest terms, but the numerical implementation, never
attempted by the originator, puts at least some limitations on
the length of the orbital arc that constitutes a segment of the
overall estimation process. It is this aspect of the proposed
methodology that we wish to highlight and further develop
in this short note.
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As assumed by Xu (2008) we consider only the grav-
itational perturbations on a satellite due to a temporally
fixed field, leaving the non-gravitational actions (drag, solar
radiation pressure, etc.) and temporally varying effects (tidal
potentials, terrestrial mass redistributions, etc.) as secondary
to the main problem and outside the present scope. We may
thus formulate the problem simply using Newton’s equation
of motion of a particle in a gravitational field,

Rx.t/ D g .x.t/; p/ ; x .t0/ D x0; Px .t0/ D Px0 (1)

where t is time, x is the position vector, g is the gravitational
field, p is a vector of unknown parameters of the field,
and x0, Px0 are initial conditions (observed). This equation
holds in inertial space and one should include an explicit
temporal dependence of g on the right side due to Earth’s
rotation. This is easy to do and it is assumed in our analyses.
The differential equation (1) may be integrated to obtain a
relationship between the observable position of the satellite
and the parameters of the field,

x.t/ D x0 C Px0 � .t � t0/ C
t�
t0

t 0�
t0

g
�
x
�
t 00� ; p

�
dt 00dt 0: (2)

That this is the solution to (1) is easily checked by
back-substitution. It is the form given by Xu (2008, eq. 8).
Immediately we see that its practical implementation eventu-
ally requires the numerical integration of nested integrals –
not a desirable prospect. Fortunately there is an alternative,
completely equivalent solution, given by

x.t/ D x0 C Px0 � .t � t0/ C
t�
t0

�
t � t 0�g

�
x
�
t 0� ; p

�
dt 0;

(3)

which is also easily verified by back-substitution. The fol-
lowing development and numerical tests are thus based on
(3) rather than (2) and all conclusions derived therefrom hold
equally for the development contained in (Xu 2008).

2 The Perturbation Theory

Equation (3) is a complicated, non-linear relationship
between the observable positions, x, and the unknown
parameters, p, since the field values, g, depend explicitly also
on x. The standard way forward is to linearize the solution,
which is done here independently with respect to the orbit
and the field (Xu considers primarily the linearization of the
orbit, but the latter is standard and straightforward practice
since higher-degree reference fields are now accurately

known). Firstly, with respect to the orbit, we have

�x.t/ C xref.t/ D x0 C Px0 � .t � t0/

C
t�
t0

�
t � t 0�

 

g
�
xref

�
t 0� ; p

�C @g .x.t/; p/

@x

ˇ
ˇ̌
ˇ
xDxref.t 0/

��x
�
t 0�
!

dt 0

(4)

where �x(t) D x(t) � xref(t); and, secondly, with respect to
the field,

�x.t/ D x0 C Px0 � .t � t0/ � xref.t/

C
t�
t0

�
t � t 0�

 

gref

�
xref

�
t 0��

C @

@x
.gref .x.t///

ˇ̌
ˇ
ˇ
xDxref.t 0/

�x
�
t 0�
!

dt 0

C
t�
t0

�
t � t 0�

�
�g

�
xref

�
t 0� ; p

�

C @

@x
.�g .x.t/; p//jxDxref.t 0/

�x
�
t 0�
�

dt 0

(5)

The last term may be neglected, being of second order, thus
yielding the model, analogous to Xu’s eq. 10,

�x.t/ D ıx0.t/ C
t�
t0

�
t � t 0��g

�
xref

�
t 0� ; p

�
dt 0

C
t�
t0

�
t � t 0�� ref

�
xref

�
t 0���x

�
t 0�dt 0;

(6)

where �g(x(t),p) D g(x(t),p) � gref(x(t)), � D @g=@x, and

ıx0.t/ D x0 C Px0 � .t � t0/

C
t�
t0

�
t � t 0�gref

�
xref

�
t 0��dt 0 � xref.t/:

(7)

It is emphasized that the reference orbit is completely
arbitrary and could be generated from the observed orbit by a
suitable smoothing. Thus, the reference orbit is always close
to the true orbit (and the linearization is legitimate for all t),
but in no way must it be consistent with the reference field,
i.e., Rxref.t/ ¤ gref .xref.t//. This is the simple beauty of Xu’s
proposal and is enabled by the continual tracking of satellites
using GNSS. Setting the reference orbit to the observed
orbit, as done, e.g., by Mayer-Gürr (2006), leads directly



On the Numerical Implementation of a Perturbation Method for Satellite Gravity Mapping 177

back to the solution (3), thus eliminating the linearization
error, but also not advancing the separation of observations
and parameters. We continue here with an analysis of Xu’s
model.

If one assumes that the field depends linearly on the
parameters, as it does in a spherical harmonic series rep-
resentation, then except for the last term in (6), there is a
linear relationship between observables and parameters. Xu
(2008) then makes the reasonable proposal to remedy that
shortfall by substituting an approximation for the observable
(analogous to his Eq. (11)),

�x.0/.t/ D ıx0.t/ C
t�
t0

�
t � t 0��g

�
xref

�
t 0� ; p

�
dt 0; (8)

on the right side, yielding now a fully linear and separated
relationship,

�x.t/ D ıx0 .t/ C
t�
t0

�
t � t 0��g

�
xref

�
t 0� ; p

�
dt 0

C
t�
t0

�
t � t 0�� ref

�
xref

�
t 0���x.0/

�
t 0�dt 0;

(9)

where all quantities on the right side, except the parameters,
are known exactly (it is assumed for the sake of a simplified
analysis that also the initial conditions, x0, Px0, are known
without error). That is, one can now write the model as

l D Gp; (10)

where the vector of reduced observables at times, tj, is

l T D
0

@� � � �xT
�
tj
� � ıxT

0

�
tj
�

�
tj�
t0

�
tj � t 0� �� ref

�
xref

�
t 0�� ıx0.t/

�T
dt 0 � � �

1

A ;

(11)

and G is a matrix of elements that are integrals of exactly
known functions. The theoretical reasonableness of this pro-
posal is based on the theory of solutions to Volterra integrals,
which guarantees convergence to the true solution with such
iterated substitutions (Kondo 1991, p. 327). On the other
hand, it is not clear that convergence could be achieved if
the reference orbit is left unchanged. Moreover, it is shown
below in Fig. 3 that this theory fails to account for numerical
integration error and the model thus formulated becomes
unstable in short order.

3 Numerical Analysis

Before investigating the numerical feasibility of the model
(10), it is important to determine the accuracy of the lin-
earization, itself, that is, the numerical consistency of (6)
under different levels of orbital perturbation. Toward that
end one needs a true orbit in a given gravitational field.
This is one of those rare cases where a simulation of the
observable is perfect only for a trivial case – the Keplerian
orbit. That is, for a non-trivial gravitational field, such as
a spherical harmonic series truncated to degree, nmax > 2,
the “true” orbit is, in fact, subject to unavoidable error in
the numerical integration of (1). The model error due to
linearization can only be assessed to the extent that it is
greater than the numerical integration errors in the model and
in the reduced observable (11). Of course, with real data, no
such integration error impacts the observable, �x(t), only the
computation of integrals such as in (11) or in the elements of
the matrix, G.

We use a predictor-corrector integrator of the Adams
type that was developed in the 1960s at the Jet Propulsion
Laboratory (Krogh 1970). Testing this on a Keplerian orbit,
which is known to arbitrary accuracy, we find that this
integrator is accurate to better than 1 mm for a 1-day orbital
arc of a low-Earth-orbiting satellite. This is also confirmed by
comparison to an independent numerical integrator applied
to a high-degree gravitational field (M. Naeimi, 2016, per-
sonal communication).

Upon thus generating the “true” orbit of a polar-orbiting
satellite in a given gravitational field (EGM2008 up to a spec-
ified nmax) and at an approximate altitude of 450 km, a small
perturbation is introduced by adding a zero-mean normally
distributed random variable with standard deviation, � , to
each coordinate at 1-s intervals. These perturbed positions
are then smoothed by fitting a 7th-order B-spline over 100 s
in each coordinate. The resulting reference orbit, xref (t) then
yields observables, �x(t), as shown, for example, in Fig. 1
for the case, nmax D 36 and � D 0.1 m.

Assuming a reference gravitational field up to degree,
nref D 12, the right side of (6) is computed using the
numerical integrator, where because it is a variable step-size
integrator, the second integrand, (t � t0)� ref(xref(t0))�x(t0), is
adequately evaluated with linear interpolation on �x(t0). The
absolute differences of the right and left sides of Eq. (6) are
shown in Fig. 2, which also shows these differences if the
second integral with the gradient term is omitted on the right
side.

Figure 2 shows that the linearization error inherent in the
model (6) is not larger than the numerical integration error
in the observable, i.e., less than 1 mm (and perhaps much
less). It also shows that the second integral on the right
side of (6) cannot be neglected for millimeter-level accuracy
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Fig. 1 Cartesian components of
the simulated observables, �x(t),
for the case, nmax D 36 and
� D 0.1 m. The displayed first
hour is representative of the
entire 1-day orbital arc

Fig. 2 Absolute differences of
right and left sides of Eq. (6) with
and without the gradient integral
term on the right side. The
components of the vector
equation are color coded as
indicated

Table 1 Absolute differences of right and left sides of Eq. (6) at t D 86, 400 s

perturb. σ
maxn refn absolute error in x, y, z at t = 86400 s

0.1 m 24 4 0.020, 0.145, 0.125 mm
0.1 m 36 12 0.035, 0.008, 0.013 mm
0.1 m 60 30 0.010, 0.012, 0.012 mm
0.1 m 120 30 0.020, 0.015, 0.018 mm

1 m 36 12 0.27, 1.52, 3.12 cm
1 m 60 30 2.39, 0.85, 0.46 cm
1 m 120 30 0.05, 0.002, 0.44 cm

10 m 36 12 0.35, 0.16, 0.23 m
10 m 60 30 0.29, 0.03, 0.002 m
10 m 120 30 0.09, 0.35, 0.09 m

(after a 1-day orbit) in the model. Table 1 lists linearization
errors in the model at the end of a 1-day orbit for greater
departures between reference and true orbits and different
values of nmax and nref. Generally, one may conclude that the
linearization is adequate if that departure is of the order of
decimeter.

If one substitutes (8) as an approximation for �x(t0) on
the right side, then the model error becomes intolerable after

less than 1 h, as shown in Fig. 3, yielding errors ultimately
much worse than simply neglecting the gradient integral. It
is highly doubtful that iterated substitutions would yield a
convergent solution, as implied by the theory of the iter-
ated solution to Volterra’s integral equation. The numerical
integration errors that grow in the evaluation of the second
integral on the right side of (6) simply invalidate the required
premises of that theory.
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Fig. 3 Absolute differences of
right and left sides of Eq. (9) with
and without the gradient integral
term on the right side. The
components of the vector
equation are color coded as
indicated

Since the results presented in Fig. 2 and Table 1 for the
� D 0.1 m perturbation demonstrate millimeter accuracy,
or better, in the model (10) for day-long orbital arcs, it
is of interest to determine the feasibility of recovering the
gravitational spectrum from such arcs. A single 24-h arc
of a polar orbiting satellite (altitude D 450 km) yields
approximately 16 ground tracks on the globe with roughly
one repeat track each. The corresponding spatial resolution
on the equator is about 22.5

ı

, which translates to maximum
harmonic degree, nmax D 8. With nref D 4, the parameters to

be solved are the coefficients, p D � � � � Cn;m � � � �T
, in the

series,

�g.t/ D
nmaxX

nDnrefC1

nX

mD�n

Cn;mS n;m.t/; (12)

where, with mean Earth radius, R, and Newtonian gravita-
tional constant times Earth’s mass, GM,

S n;m.t/ D GM

R
rx

 �
R

rref.t/

�nC1

Y n;m .�ref.t/; ˛ref.t//

!

;

(13)

where rref, � ref, ˛ref are spherical polar coordinates in inertial
space and the Y n;m are fully normalized spherical harmonic
functions. Assuming no observational error (only model
error in (10)), Fig. 4 shows the absolute relative errors in
the coefficients estimated from reduced observations, l, of
a satellite tracked in a nmax D 8 gravitational field (from
EGM2008) according to

Op D �
GTG

��1
GTl : (14)

The absolute relative accuracy and corresponding root-
mean-square by degree are defined by

"n;m D
ˇ
ˇ
ˇ̌
ˇ

OCn;m � Cn;m

Cn;m

ˇ
ˇ
ˇ̌
ˇ
; �n D

vu
u
t 1

2n C 1

nX

mD�n

"2
n;m:

(15)

Figure 4 includes also the case of estimating higher
harmonics than might be warranted by the limited spatial res-
olution of a one-day ground track if the satellite is orbiting in
a nmax D 24 gravitational field. The results of the estimation
show that 5-digit or better accuracy is obtained in the former
case, while the latter case generally yields poorer relative
accuracy at degrees n > 8 (consistent with the lack of high
global resolution from a single 1-day orbital arc). Increasing
the spatial resolution with a 3-day orbital arc reduces the
errors in estimating the nmax D 24 field by 1.5 orders of
magnitude, where integration error is the likely cause for the
remaining error.

4 Conclusion

A review of a new perturbation theory for estimating Earth’s
gravitational field from satellite tracking by GNSS shows
that while the theory is elegantly simple, it falls short of
its original goal to enable the analysis of arbitrarily long
arcs because of unavoidable numerical integration error. One
remedy is to dispense with the problematic iterative solution
to the Volterra integral equation and treat the gradient term of
the linearization as part of the “reduced” observable (bring
the gradient integral to the left side of the equation), thus
yielding a “pseudo” Gauss-Markov model for the estimation
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Fig. 4 On the left: absolute relative accuracy of estimated spherical
harmonic coefficients obtained by tracking a satellite along a one-day
orbital arc in a nmax D 8 gravitational field (Cn, m, m � 0; similar
relative accuracy is obtained for m < 0). On the right: the corresponding

root-mean-square absolute relative error per degree for all coefficients
(5 � n � 24) in a nmax D 24 gravitational field. In both cases the
estimation is performed using the model (10) and the least-squares
solution (14)

of parameters. In addition to some other simplifications of the
original proposed theory, we also introduce a reference field
that presumably requires no further estimation; although,
that estimation is also an option by treating corresponding
parameters as stochastic. A numerical analysis shows that
the linearization of the model, itself, is adequate for these
purposes if the reference orbit deviates from the true orbit by
less than 1 m, which is always possible since the reference
orbit may be completely arbitrary and can be defined on the
basis of the observed orbit. A demonstration of accurate esti-
mation of harmonic coefficients (assuming no observation
errors) also validates the accuracy of the model.
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Non-Recursive Representation of an
Autoregressive Process Within theMagic
Square

Ina Loth, Boris Kargoll, and Wolf-Dieter Schuh

Abstract

A stochastic process can be represented and analysed by four different quantities in the
time and frequency domain: (1) the process itself, (2) its autocovariance function, (3) the
spectral representation of the stochastic process and (4) its spectral distribution or the
spectral density function, if it exits. These quantities and their relationships can be clearly
represented by the “Magic Square”, where the quantities build the corners of this square
and the connecting lines indicate the transformations into each other.

The real-valued, time-discrete, one-dimensional and covariance-stationary autoregres-
sive process of order p (AR(p) process) is a frequently used stochastic process for instance
to model highly correlated measurement series with constant sampling rate given by satellite
missions. In this contribution, a reformulation of an AR(p) to a moving average process with
infinite order is presented. The Magic Square of this reformulated process can be seen as
an alternative representation of the four quantities in time and frequency, which are usually
given in the literature. The results will be evaluated by discussing an AR(1) process as
example.

Keywords

Autoregressive process � Moving average process � Spectral analysis � Stochastic process �
Time series analysis

1 Introduction

In practice many phenomena with random characteristics
exist, which cannot be represented by deterministic func-
tions. In these cases, stochastic processes often allow for
a sufficient description (see e.g. Koch and Schmidt 1994;
Moritz 1980; Welsch et al. 2000). Applications of stochastic
processes in geodesy tend to focus on analyses within the
time domain at the level of the measurements themselves. In

I. Loth (�) � W.-D. Schuh
Institute of Geodesy and Geoinformation, University of Bonn, Bonn,
Germany
e-mail: ina.loth@geod.uni-bonn.de

B. Kargoll
Geodetic Institute, Leibniz University Hannover, Hannover, Germany

contrast, the usage of the relationships of a process with its
spectral representation, autocovariance function and spectral
distribution (or density) function is less popular, or even
done incorrectly. One reason for this is that the mathematics
and thus the computational aspects of these relationships
and representations are rather intricate and oftentimes not
readily available for a specific type of process to be used
in a practical situation. To remedy this problem, Krasbut-
ter et al. (2015) discussed a kind of Magic Square with
respect to a general real-valued, one-dimensional, discrete-
time, covariance-stationary stochastic process. The Magic
Square has the advantage that it is a well-arranged represen-
tation of the described four quantities of a process in the time
and frequency domain and their relationships. Furthermore,
Krasbutter et al. (2015) expanded the Magic Square to
stochastic processes, which are obtained by non-recursive
filtering of an input process and evaluation of the results by
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application to a q-th order moving average (MA(q)) process
(see the following Sect. 2 for an overview).

In this contribution the Magic Square will be formulated
for another well-known process: a discrete-time p-th order
autoregressive (AR(p)) process. The use of such a process
as a description of the random error term in linear obser-
vation equations seems to have been proposed first by the
econometricians D. Cochrane and G. H. Orcutt (Cochrane
and Orcutt 1949). In geodesy, this kind of model is becoming
increasingly popular; see Koch and Schmidt (1994) and
Schuh (2003) for general descriptions and Schubert et al.
(2019) for a current application to the highly correlated
measurement errors of the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite mission. The
AR(p) process may be viewed as being obtained by recursive
filtering. The Magic Square of such a process is explained in
Schuh et al. (2014) and further discussed in Schuh (2016).

In contrast, we study in the current contribution the Magic
Square for AR(p) processes obtained through non-recursive
filtering. For this purpose, we elaborate a certain reformula-
tion of that process. In Sect. 3 the transformation is presented
with a MA process of infinite order (MA(1)) as a result.
The Magic Square of this transformed stochastic process is
an alternative representation of the four quantities of an AR
process given in Schuh et al. (2014). The transformation can
be seen as a link to the Magic Square describe in Krasbutter
et al. (2015) To demonstrate the evaluation of these results,
the transformation is applied to an AR(1) process and the
corresponding Magic Square is compared with representa-
tions given in the literature (cf. Sect. 3). In Sect. 4 this paper
is concluded with a summary and an outlook.

2 TheMagic Square of a Non-Recursive
Filtered Stochastic Process

A general stochastic process XT is defined by a family of
random variables on a probability space, symbolically

XT D .˝;A; P ; fXt ; t 2 T g/; (1)

where˝ denotes the sample space, A a �-Algebra of events,
P the probability measure and Xt is a random variable.

Additionally we restrict our representation to stochastic
processes with the following properties:

– One-dimensional and real-valued:

.˝;A/ ! .R;B/;

where B is the Borel �-Algebra, which is generated by all
real-valued, one-dimensional, left open and right closed
intervals.

– Discrete in time with constant and general sampling rate
�t :

t D n ��t; n 2 Z; �t 2 R:

On account of this, a random variable depends only on n
and it will by symbolised by Xn in the following.

– Covariance-stationary with zero mean, variance �2 and
autocovariance function �Xk , where k is called lag (cf.
Brockwell and Davis 1991, pp. 11–12).

Additionally, it is assumed, that the process XT is
obtained by filtering another one-dimensional, discrete-time,
covariance-stationary stochastic process UT by

Xn D
qX

jD0
 jUn�j D �.L/Un; (2)

where �.L/ D  0 C  1L C : : : C  qL
q with lag operator

notation LjUn D Un�j is a non-recursive, causal, absolutely
summable and invertible filter. The order q of the filter can
be infinite (‘q D 1’) or finite (q 2 N).

The Magic Square of this real-valued, one-dimensional,
discrete-time, covariance-stationary, non-recursive filtered
stochastic process is presented in Fig. 1. In the upper left
corner the stochastic process itself is given and can be seen
as a collection of random and equidistant variables.

The spectral representation of the described stochastic
process (upper right corner) is denoted by dbZX

s .�/. In
the following the hat will symbolize a quantity in the
frequency domain and the superscripted factor s the fact
that the corresponding representation in the time domain is
discrete-valued.

However dbZX
s .�/ is a stochastic orthogonal increment

process with the following properties:

– One-dimensional and complex-valued,

˝ ! C;

– Frequency-continuous with � defined within the interval
Œ��N ; �N �, where �N D 1

2�t
is known as the Nyquist

frequency.
– Orthogonal increments (cf. Brockwell and Davis 1991,

pp. 138–140):

E
n
dbZX

s .�1/.d
bZX
s .�2//

�o D 0; for �1 ¤ �2;

where � denotes the conjugate complex.

While the proposed process can be described as a filtering
of an input process Un in the time domain (see (2)), the
description for the frequency domain is:

dbZX
s .�/ D b�s.�/dbZU

s .�/; (3)

where dbZU
s .�/ is the corresponding spectral rep-

resentation of the input stochastic process Un and
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Xn = Ψ(L)Un

F (s) { }�
F−1

(s) { }
dẐX

s (ν) = Ψ̂s(ν)dẐU
s (ν)

νN

−νN

↽ E {Xn � Xn} E
{

d ̂
̂ ̂

Zs(ν)dẐ∗
s (ν)

}
∣∣∣

↽

γX
k =

∞∑
m=0

∞∑
s=0

m sγ
U
|k|−m+s

F { }�
F−1 { }

dΓ̂X
s (ν) = |Ψs(ν)|2dΓ U

s (ν)
νN

−νN

time domain frequency domain

Fig. 1 Magic Square for covariance-stationary, discrete-time, non-
recursive filtered stochastic process with upper left: stochastic process,
lower left: autocovariance function, upper right: spectral representation
of the stochastic process and lower right: spectral representation of the

autocovariance function. The interrelations are symbolised by arrows
with the corresponding mathematical operations, where Ff�g/F�1f�g
symbolise the Fourier transform/integral, F.s/f�g/F�1

.s/ f�g the stochastic
Fourier transform/integral, E f�g the expectation and ‘?’ a correlation

b�s.�/ D Pq
jD0  j e�i2��j�t is the Fourier transform of

the filter �.L/ called the transfer function (cf. Priestley
2004, pp. 263–270).

The interrelation between the stochastic process and its
spectral representation, which is indicated by the harpoons,
can be described by the “stochastic Fourier transform”
F.s/f�g and the converse relationship by the “stochastic
Fourier integral” F�1

.s/ f�g. The mathematical formulas and
a detailed explanation of these relations is not the focus
of this paper and are omitted. But the interested reader is
referred to Krasbutter et al. (2015) and Lindquist and Picci
(2015, Chapter 3).

The two quantities in the lower row of the square are
the autocorrelation function �Xk (left side) and its spectral

representation db	 X
s .�/ (right side). This spectral represen-

tation is an increment process of the spectral distribution
function b	 X

s .�/. If the derivative db	 X
s .�/=d� exits, it is

called spectral density functionb�Xs .�/.
Both quantities in the lower row of the square are deter-

ministic functions, where the autocorrelation function is dis-
crete and its spectral representation is frequency-continuous
with � defined in the interval ��N to �N and is continued
periodically outside of this range. As described in Priest-
ley (2004, p. 214) �Xk and b�Xs .�/ are even, if the related
stochastic process is real-valued, which we have fixed by the
above described characteristics of the process. Furthermore,
the autocovariance can be formulated by the filter �.L/ and
the autocovariance of the input process �Uk , while its spectral
representation is given by the transfer function of the filter
b�s.�/ and the increment of the spectral distribution function
of the input process db	 U

s .�/. Thus, the autocorrelation of
�Xk is given by

�Xk D
1X

mD0

1X

sD0
 m s�

U
jkj�mCs (4)

and the corresponding spectral representation by

db	 X
s .�/ D jb�s.�/j2db	 U

s .�/: (5)

The interrelation of these two equations can be described by
the “deterministic Fourier transform” Ff�g and the converse
relationship by the “deterministic Fourier integral” F�1f�g.
A detailed explanation of these two equations and its interre-
lation is given by Priestley (2004, Sect. 4.12), Brockwell and
Davis (1991, Proposition 3.1.2) and Krasbutter et al. (2015).

As explained above, the upper corners are stochastic
functions and in contrast to them the lower corners are
deterministic functions so that the transformation from top
to bottom can be interpreted as a reduction from stochastic
to deterministic. This reduction is achieved by using the
expectation (symbolised with E f�g in Fig. 1), which has the
drawback of information loss, thus the way vice versa (from
bottom to top) is not possible without additional information
(indicated by the missing arrow from the lower to the upper
corners). The operations from top to bottom can be seen on
the left side as a stochastic correlation. The correlation is
symbolised by ‘?’ in Fig. 1. The corresponding operation in
the frequency is a stochastic multiplication.

3 TheMagic Square of an p-th Order
Autoregressive Process

The time-discrete, autocovariance-stationary, invertible
AR(p) process with p 2 N is defined by

Xn W D 
1Xn�1 C : : :C 
pXn�p C En; .n 2 Z/

” �.L/Xn D En; (6)
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Xn =
p∑

j=1

θjXn−j+En,

↽
Pre-processing

Xn =
∞∑

j=0

θjEn−j , with θ0 = 1

F (s) { }
�

F−1
(s) { }

dẐX
s (ν) = dẐE

s (ν)
∞∑

j=0

θje−i2πνjΔt
∣∣∣νN

−νN

↽

E {Xn � Xn} E
{

dẐX
s (ν)dẐX

s

∗
(ν)

}

↽

γX
k = σ2

E

∞∑
s=0

θs+|k|θs

F { }
�

F−1 { }

dΓ̂ X
s (ν) = σ2

Edν
(
1 + 2

∞∑
j=1

θj cos (2πνjΔt)

+
∞∑

j=1

θ
2
j + 2

∞∑
j=1

∞∑
s=j+1

θjθs cos (2πν(s − j)Δt)
)∣∣∣νN

−νN

time domain frequency domain

Fig. 2 Magic Square for covariance-stationary, discrete-time autore-
gressive process of order p (AR(p)) with general sampling rate �t .
This AR(p) process is reformulated in a pre-processing step to a moving
average process of infinitive order. The Magic Square is then derived
out of this reformulated process with upper left: reformulated stochastic
process itself, lower left: autocovariance function, upper right: spectral

representation of the reformulated stochastic process and lower right:
spectral density function. The interrelations are symbolised by arrows
with the corresponding mathematical operations, where Ff�g/F�1f�g
symbolises the Fourier transform/integral, F.s/f�g/F�1

.s/ f�g the stochastic
Fourier transform/integral, E f�g the expectation and ‘?’ a correlation

where �.L/ D 1 � 
1L � : : : � 
pL
p is a recursive,

causal filter and En denotes white noise with En � N.0; �2E/
(Brockwell and Davis 1991, Definition 3.1.1). The AR pro-
cess is covariance-stationary if and only if the roots of the
polynomial

1 � 
1z � 
2z2 : : : � 
pz
p D 0; z 2 C

lie outside of the unit circle. Furthermore, AR processes with
finite order are invertible (cf. Box and Jenkins 1976, Sect.
3.2.1).

In Schuh et al. (2014) the Magic Square of an AR(p)
process is presented. In contrast, the idea of this contribution
is to transform the AR(p) process given by (6) in the form
of (2). The advantage of a non-recursive representation is
that it is easier to evaluate concerning warm up, behaviour
of the covariance and the stationarity of the process. In so
doing the explained Magic Square in Sect. 2 can be applied
to the reformulated process. The result is an alternative but
equivalent representation of the AR(p) process within the
Magic Square; the transformation can be seen as a link
between these two representations of an AR(p) process
within the Magic Square.

In a first step the reformulation of the AR(p) process to
(2) is described and afterwards the alternative representation
of the Magic Square is given. All outcomes of each step
are applied to an AR(1) process and compared to the results
given in the literature, where no reformulation is applied.

3.1 Reformulation of the AR(p) Process

The reformulation can be seen as a pre-processing step and
is symbolised in Fig. 2, where the Magic Square of the
AR(p) process is presented. This additional step starts by the
multiplication of (6) with �.L/�1 on both sides:

Xt D �.L/�1En:

(cf. Gilgen 2006, p. 251).
To familiarize ourselves with the filter �.L/�1, whose

order for instance we do not know yet, a reformulation is
done. Thus, the inverse filter of �.L/ can be formulated by

�.L/�1 D 1

1 � 
1L� : : : � 
pLp (7)

(see Hamilton 1994, Chapter 2.4). This inverse representa-
tion can be rewritten by using the infinite geometric series

1

1 � x
D 1C x C x2 C x3 C : : : (8)

with jxj < 1 (cf. Andrews 1998, Eq. (3.3)) and results in

�.L/�1 D 1C .
1LC : : :C 
pL
p/

C.
1LC : : :C 
pL
p/2 C : : : : (9)
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The next step is to expand and resort (9) to

�.L/�1 D 1C 
1LC 
2L
2 C : : :

D �.L/; (10)

where �.L/ is the reformulated representation of �.L/.
The determination of 
i for i 2 N can be achieved by the
following algorithm:

Step 1: Find all s combinations of the sorted product



l1;j
1 �
l2;j2 � : : : �
lp;jp , where

pP
mD1

m � lm;j D i with lm;j 2 N

holds. The index j D 1; : : : ; s specifies the combination
number.

Step 2: Determination of

dj D

�
pP

mD1
lm;j

�
Š

l1;j Š � l2;j Š � : : : � lp;j Š :

where Š denotes the factorial function. This factor indi-
cates the number of possibilities for combining the filter
coefficients 
1; 
2; : : : 
p of combination j .

Step 3: The last step is to determine the filter coefficient

i by


i D
sX

jD1

�
dj � 
l1;j1 � 
l2;j2 � : : : � 
lp;jp

�
:

Hence, the alternative representation of (6) is given by

Xn D �.L/En D
1X

jD0

jEn�j ;with 
0 D 1: (11)

This process is known as moving average process of infinite
order (MA(1) process), which is a special form of the
filtered stochastic process described in Sect. 2.

Example of the Transformation
The transformation is applied exemplary to an AR(1) pro-
cess, which is defined by

�.L/Xn WD En; (12)

with �.L/ D 1 � 
1L and j
1j < 1 (cf. Hamilton
1994, p. 53). This process has only 
1 as filter coefficient
and therefore the described algorithm to determine 
i is
simplified, because l1;� D i . Hence, the reformulated AR(1)
process is given by

Xn D
1X

jD0


j
1 En�j :

The results for transformed AR processes with higher orders
are much more complicated. For instance, the reformulated
AR(2) process is given by

�.L/ D 1„ƒ‚…

0

C 
1„ƒ‚…

1

LC .
21 C 
2/„ ƒ‚ …

2

L2 C .
21 C 2
1
2/„ ƒ‚ …

3

L3

C .
41 C 3
21 
2 C 
22 /„ ƒ‚ …

4

L4 C .
51 C 4
31 
2 C 3
1

2
2 /„ ƒ‚ …


5

L5

C .
61 C 5
41 
2 C 6
21 

2
2 C 
32 /„ ƒ‚ …


6

L6 C : : : :

In this contribution, due to the complexity of AR processes
with higher orders, the results are applied only to AR(1)
processes.

3.2 Magic Square of the Reformulated
AR(p) Process

The Magic Square of the reformulated AR(p) process is
described and the results are presented in Fig. 2. The deriva-
tion starts with the quantities in the time domain (corners on
the left-hand side of the square), followed by the results in
the frequency domain (corners on the right-hand side of the
square).

3.2.1 Time Domain (Left-Hand Side)
The upper left corner of the square is given by (11), being
the reformulated AR process itself. This process has an
autocovariance function (lower left corner), which can be
derived by using (4) and the property

�Ek D
�
�2E for k D 0

0 else

of white noise, resulting in

�Xk D �2E

1X

sD0

sCjkj
s: (13)

Example: AR(1) Process
As described in the last section the reformulation of the
AR(1) to an MA(1) process is given by 
i D 
i1 . This
result is substituted into (13), leading to

�Xk D �2E

1X

sD0


sCjkj
1 
s1 D �2E

1X

sD0


2sCjkj
1 : (14)

It can be shown, that (14) is an alternative representation of
the autocovariance

�Xk D �2E

jkj
1 � 1

1 � 
21
; (15)
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which is often mentioned in the literature (cf. Priestley
2004, Eq. (3.5.16)). To show the equivalence between these
two representations of the autocovariance function, (14) is
reorganised to

�Xk D �2E

jkj
1

1X

sD0

2s1

D �2E

jkj
1 .1C 
21 C 
41 C : : :/:

In the next step the pre-processing step is undone by using
the definition (8) of the infinite geometric series. The result
is (15).

3.2.2 Frequency Domain (Right-Hand Side)
The spectral representation of an AR(p) process by using (3)
is defined by

dbZX
s .�/ D dbZE

s .�/
b�s.�/

D dbZE
s .�/

1X

jD0

j e

�i2��j�t ; (16)

where b�s.�/ D
1P
jD0


j e
�i2��j�t is the transfer function

of the filter �.L/ and dbZE
s .�/ the spectral representation

of discrete-time white noise, also known as increment pro-
cess of a Wiener process (see Lindquist and Picci 2015,
Sect. 3.3.3). The spectral representation is defined for � given
in the interval Œ��N ; �N � and is periodic outside of this range.

The spectral representation of the autocovariance is
defined by using (5) and the property of white noise
db	 E

s .�/ D �2Ed�:

db	 X
s .�/ D �2Ed�

0

@
1X

jD0

1X

sD0

j 
se

�i2��j�tei2��s�t
1

A : (17)

This sum can be reorganised to

db	 X
s .�/ D �2Ed�

0

@
0
0 C
1X

jD1

j 
0e

�i2��j�t

C
1X

sD1

s
0e

i2��s�t C
1X

jD1


2

j

C
1X

jD1

1X

sD1;s¤j

j 
 se

�i2��j�tei2��s�t
1

A :

Now, Euler’s formula and the relation 
0 D 1 is applied and
results in

db	 X
s .�/ D �2Ed�

0

@1C 2

1X

jD1

j cos .2��j�t/C

1X

jD1


2

j

C 2

1X

jD1

1X

sDjC1

j 
 s cos .2��.s � j /�t/

1

A ; (18)

where the frequency � takes values within the interval
Œ��N ; �N �. Obviously, the derivative of (18) exits, so the
spectral density function of the AR(p) process is given by

b�Xs .�/ D �2E

0

@1C 2

1X

jD1

j cos .2��j�t/C

1X

jD1


2

j

C 2

1X

jD1

1X

sDjC1

j 
s cos .2��.s � j /�t/

1

A : (19)

Example: AR(1) Process
The spectral representation and the spectral density function
of the reformulated AR(1) process are obtained by substitut-
ing 
j D 


j
1 into (16) and (19). The spectral representation

is then defined by

dbZX
s .�/ D dbZE

s .�/

1X

jD0


j
1 e

�i2��j�t (20)

and the spectral density function by

b�Xs .�/ D �2E

0

@1C 2

1X

jD1


j
1 cos .2��j�t/C

1X

jD1


2j
1

C 2

1X

jD1

1X

sDjC1


jCs
1 cos .2��.s � j /�t/

1

A : (21)

In (Priestley 2004, p. 238) the spectral density function of an
AR(1) process is given by

b�Xs .�/ D �2E
.1 � 2
1 cos .2���t/C 
21 /

: (22)

It can be shown that this result is equivalent to (21) by
substituting Euler’s formula:

b�Xs .�/ D �2E
.1 � 
1ei2���t � 
1e�i2���t C 
21 /

D �2E

��
1

1 � 
1e�i2���t

��
1

1 � 
1ei2���t

��
:
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The infinite geometric series is applied and results in

b�Xs .�/ D �2E

0

@
1X

jD0


j
1 e

�i2��j�t
1

A
 1X

sD0

s1e

i2��s�t

!

D �2E

0

@
1X

jD0

1X

sD0


j
1 


s
1e

�i2��j�tei2��s�t
1

A :

As described above a rearrangement of the sums results
in (21).

4 Conclusion and Outlook

Within this paper the transformation of an AR(p) into a
MA(1) process, which is in practical use easier to inter-
pretate concerning warm-up, covariance and stationarity, is
demonstrated. In so doing the graphical representation of
a stochastic process in time and frequency domain given
by Krasbutter et al. (2015) can be applied to determine
the explicit mathematical expressions of each corner in the
Magic Square for an AR(p) process. The practical applica-
tion for instance to AR processes estimated by means of the
data given by satellite mission GOCE and the convergence
behaviour of the transformed AR(p) process is still to be
examined. Due to lack of space in this contribution this
investigation is omitted.

The application of the transformation to widely used
stochastic processes, for instance the autoregressive moving
average process (ARMA process), would be an extension of
this scenario and will be considered in the future.
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A Bootstrap Approach to Testing for
Time-Variability of AR Process Coefficients
in Regression Time Series with t-Distributed
White Noise Components

Hamza Alkhatib, Mohammad Omidalizarandi, and Boris Kargoll

Abstract

In this paper, we intend to test whether the random deviations of an observed regression time
series with unknown regression coefficients can be described by a covariance-stationary
autoregressive (AR) process, or whether an AR process with time-variable (say, linearly
changing) coefficients should be set up. To account for possibly present multiple outliers,
the white noise components of the AR process are assumed to follow a scaled (Student)
t-distribution with unknown scale factor and degree of freedom. As a consequence of this
distributional assumption and the nonlinearity of the estimator, the distribution of the test
statistic is analytically intractable. To solve this challenging testing problem, we propose
a Monte Carlo (MC) bootstrap approach, in which all unknown model parameters and
their joint covariance matrix are estimated by an expectation maximization algorithm. We
determine and analyze the power function of this bootstrap test via a closed-loop MC
simulation. We also demonstrate the application of this test to a real accelerometer dataset
within a vibration experiment, where the initial measurement phase is characterized by
transient oscillations and modeled by a time-variable AR process.

Keywords

Bootstrap test � EM algorithm � Monte Carlo simulation � Regression time series � Scaled
t-distribution � Time-variable autoregressive process

1 Introduction

Reliable and precise estimation of geodetic time series mod-
els remains a challenging task as they frequently involve
huge numbers of auto-correlated and outlier-afflicted mea-
surements. On the one hand, a parsimonious model that
allows both for the description and the estimation of auto-
correlations is given by autoregressive (AR) processes (cf.
Schuh 2003). On the other hand, a flexible approach to mod-
eling multiple outliers (or more generally a heavy-tailed error

H. Alkhatib (�) · M. Omidalizarandi
Geodetic Institute, Leibniz University Hannover, Hannover, Germany
e-mail: alkhatib@gih.uni-hannover.de

B. Kargoll
Institut für Geoinformation und Vermessung Dessau, Anhalt
University of Applied Sciences, Dessau-Roßlau, Germany

law) is enabled by the assumption that the random deviations
follow a scaled t-distribution (cf. Koch and Kargoll 2013).

Since adjustment techniques based on least squares are
sensitive to misspecifications of the functional and stochastic
observation model (cf. Kutterer 1999), as well as sensitive
to outliers (cf. Baarda 1968), frequently encountered data
features such as functional non-linearity, colored measure-
ment noise and heavy-tailed error distribution should be
adequately taken into account. Modern geodetic sensors
often involve a data sampling at a high rate, thus producing
significantly auto-correlated noise (cf. Kuhlmann 2001), in
potentially huge numbers of observations. In such cases, the
use of a covariance matrix easily exceeds the memory of the
computer. Instead, an AR process can often be used for mod-
eling (auto-)correlations more parsimoniously (cf. Schuh
2003). Moreover, the error law of geodetic measurements
has frequently been found to be heavy-tailed, in which cases
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robust M-estimation can be applied to the aforementioned
models (cf. Wiśniewski 2014).

Kargoll et al. (2018a) recently dealt with the case where
both the coefficients of the AR model of the random devia-
tions in a linear functional model and the shape parameters
of the heavy-tailed error law are unknown. As suggested by
Koch and Kargoll (2013) in a geodetic context, the family of
scaled t-distributions was used to model the error law. Here,
the degree of freedom is a shape parameter, which controls
the thickness of the tails, and which can be estimated from
the given measurements jointly with the other (functional
and stochastic) model parameters, in the sense of a self-
tuning robust estimator (cf. Parzen 1979). With this kind
of estimator, the unknown parameters of the functional and
the AR model can conveniently be computed via iteratively
reweighted least squares (IRLS).

This is not only possible when the AR process is co-
variance-stationary, but also when the AR coefficients are
modeled as time-variable quantities through a linear regres-
sion (Kargoll et al. 2018b). Such models have been found
useful in describing non-stationary effects in time series
measurements that cannot be properly described as part
of the deterministic model at the level of the observation
equations, e.g., local distortions in Gravity Field and Steady-
State Ocean Circulation Explorer (GOCE) satellite gravity
gradient data (Schuh and Brockmann 2016) or transient
oscillations in terrestrial accelerometer measurements (Kar-
goll et al. 2018b). An important issue that has not been
addressed in these expositions is how such an AR error
model with t-distributed white noise components can be
tested for time-variability (this testing problem is defined
in Sect. 2). Whereas a corresponding suitable test statistic is
easily identified from standard testing theory, the associated
probability distribution is not readily available due to the
complexity of the model.

With difficult-too-handle problems, Monte Carlo (MC)
simulation may give an adequate solution (see, e.g., Koch
2018a,b). In particular, MC bootstrap approaches (in the
sense of Efron 1979) can often be applied in situations where
an approximate probability distribution of a test statistic
cannot be derived analytically. Besides a few geodetic fields
of application (e.g., Teunissen 1998; Neuner et al. 2014;
Angrisano et al. 2018; Lösler et al. 2018), bootstrap methods
have been devised for rather general time series models (cf.
Li and Maddala 1996; Politis 2003) and in the context of
ExpectationMaximization (EM) algorithms for missing-data
models (cf. McLachlan and Krishnan 2008). As our self-
tuning robust estimator is based on both of these, we can
develop a bootstrap approach to solving the aforementioned
problem of testing for time-variability of AR coefficients.
In Sect. 3 we outline this procedure in the general case of
testing against a linearly modeled time-variability of the
coefficients of an AR(p) process, employed to model the

random deviations of a possibly nonlinear regression time
series. In Sect. 4, we simulate and investigate the size and
power function of the test.

2 General Testing Problem

We assume that observations ` D Œ`1; : : : ; `n�T can be
described by a nonlinear, vector-valued (‘deterministic
model’) functionf and random deviations e D Œe1; : : : ; en�T

through the so-called observation equations ` D f .� / C e,
where x D Œx1; : : : ; xq�T constitute unknown parameters.
We assume the random deviations to follow an AR(p)
process

et D
pX

j D1

˛t;j et�j C ut .t D 1; : : : ; n/ (1)

with the time-dependent coefficients ˛t;j D B t yj being
described by linear combinations involving fixed vectors
Bt and unknown parameters yj D Œyj ;1; : : : ; yj ;m�T . We
assume the random variables u D Œu1; : : : ; un�T in (1) to
be independently and identically t�.0; �2/-distributed with
center 0, unknown scale parameter �2 and unknown degree
of freedom �. It is well known that this stochastic model
is equivalent to the model ut jwt � N .0; �2=wt / involv-
ing gamma-distributed latent variables wt � G.�=2/ (cf.
Koch and Kargoll 2013). Common designs of the time-
variability models include polynomials defined by B t D
Œ1 �1

t � � � �m�1
t �. Clearly, time-dependency is eliminated

either for m D 1 (in which case we may write ˛t;j D yj ;1 DW
˛j ), or for yj ;2 D : : : D yj ;m D 0 (j D 1; : : : ; p). If
it is not known whether an AR model is time-variable or
not, it makes more sense to keep these parameters Y D
Œy1;2; : : : ; y1;m; : : : ; yp;2; : : : ; yp;m�T in the model and to test
their joint significance. For this purpose, we define the null
and the alternative hypothesis by

H0 W Y D 0 vs: H1 W Y ¤ 0: (2)

A natural choice for a test statistic that measures deviations
fromH0 (i.e., the degree of Y being nonzero) in a cumulative

manner is given by the weighted sum T D OY T Ȯ �1

OY OY OY of
squares of the estimates of Y , involving the corresponding
joint (a posteriori ) covariance matrix. In simple cases, it
might be sufficient to test against a linear drift of an AR(1)
process, i.e., to expand the time-variable AR(p) process up to
p D 1 and m D 2, and to test H0 W y2 D 0 versus H1 W y2 ¤
0, writing more simply ˛t D y1 C �t � y2 instead of ˛t;1 D
y1;1 C�t �y1;2. Then, the previous test statistic would simplify
to T D Oy2

2= O�2
Oy2
. However, even in this simple setting, it

is not known how well the probability distribution of this
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statistic can be approximated by a standard distribution (say,
a t-distribution), due to the intricacy of the entire observation
model. Therefore, we pursue the solution of this testing
problem not via the derivation of an approximate distribution
(which might even be intractable), but via the following
bootstrap approach.

3 Bootstrap Approach to Solving
the Testing Problem

Since the distribution of the test statistic about the time-
variability parameters is unknown, we resort to simulation-
based bootstrap testing. The general idea is to generate a
large number of sampled values for the test statistic under the
assumption that H0 is true, and to define the critical value for
the (one-sided) test as that value which is exceeded by only
˛ % of the sampled values. This allows us then to assess
whether the value of the test statistic computed from the
given measurements is too large as to support H0, which is
the case when that value exceeds the previously simulated
critical value. The individual steps of this approach are
outlined in the following for the general problem of testing
against a time-variability model with specified polynomial
order m and AR model order p with given measurement
results `, deterministic model f .x/, time-variability design
matrix B and significance level ˛.

Estimation Step The modified EM algorithm described in
Kargoll et al. (2018b, Section 3) was extended by the lin-
earization procedure explained in Alkhatib et al. (2018,
Section 3). This algorithm outputs the estimates Ox of the
functional parameters, the estimates Oy of the parameters of
the time-variable AR process alongside their joint covariance
matrix Ȯ Oy Oy , the estimate O�2 of the scale factor as well as
the estimate O� of the degree of freedom of the underlying
t-distribution, and estimates Ou of the white noise residuals.

Testing Step The value T D OY T Ȯ �1

OY OY OY of the test statistic
is computed.

Generation Step The generation scheme begins with the
sampling of the white noise components u.k/

t for the time
instances t D 1; : : : ; n and the MC iterations k D 1; : : : ; B

(where B is the total number of bootstrap samples). For this
purpose, we consider the following two alternatives.

(1) Parametric bootstrapping: random numbers with respect
to the Student tO�.0; O�2/-distribution are independently
generated for the white noise component u.k/

t .
(2) Nonparametric bootstrapping: random numbers �

.k/
t

with respect to the discrete uniform distribution U.1; n/

are drawn with replacement to define u.k/
t D Ou

�
.k/
t

(thereby re-using the residuals Ou from the Estimation
Step).

To ensure that the B measurement series are generated under
H0, that is, under the assumption of a time-constant AR pro-
cess, we take the time-wise means N̨j D 1

n

Pn
tD1 Ǫ t ;j (j D

1; : : : ; p) of the estimated AR coefficients Ǫ t ;j D B t Oyj . For
when H0 is true, then all of the AR coefficients are constant
throughout time, and the estimated means can be expected
to approximate the true constant coefficient values. Now,
the previously generated white noise components are corre-
lated recursively through evaluation of the time-constant AR
model equation e

.k/
t D Pp

j D1 N̨j e
.k/
t�j C u.k/

t , using the initial

values e
.k/
0 D : : : D e

.k/
t�p D 0. Adding to these colored

noise components the estimated deterministic model yields
the sampled measurements `

.k/
t D ft . Ox/Ce

.k/
t . The resulting

measurement series `.k/ is adjusted in exactly the same way
as the actual measurement series ` within the previous Esti-
mation Step, which gives the sampled estimates Ox.k/, Oy.k/,
Ȯ .k/

Oy Oy , . O�2/.k/ and O�.k/. The sampled test statistic is obtained

by T .k/ D . OY .k/
/T . Ȯ .k/

OY OY /�1 OY .k/
, as in the Testing Step.

Evaluation Step To determine how extreme the test value T

is in comparison to the values T .1/, : : :, T .B/ generated under
H0, we estimate the p-value by

cpv D 1

B

BX

kD1

I .T .k/ > T /; (3)

according to McKinnon (2007, Section 2). Here, I is the
indicator function, which takes the value 1 in case the
argument is true, and the value 0 if the argument is false.

Decision Step A large p-value indicates a rather large sup-
port of H0 by the data. Thus, we reject H0 if the estimated
p-value is less than the predefined significance level ˛.

Note that when the random deviations of the measure-
ments can safely be assumed to be normally distributed, then
the bootstrap tests can be carried out in a similar way as
described. The main differences are that

1. the degree of freedom of the t-distribution is not estimated
but fixed a priori within the Estimation Steps by setting
it to a large value, e.g. to 120, for which value the t-
distribution closely approximates a normal distribution.

2. random numbers with respect to the normal distribution
N .0; O�2/ are independently generated for the white noise
components within the parametric bootstrapping of the
Generation Step.

The form of the test statistic T D OY T Ȯ �1

OY OY OY , however,
remains unchanged.
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4 Monte Carlo Simulation

We consider the linear regression time series model

`t D a0

2
C

MX

j D1

aj cos .2�fj �t / C bj sin .2�fj �t / C et (4)

(t D 1; : : : ; n), consisting of sine and cosine basis functions
with unknown (“Fourier”) coefficients a0, a1, : : :, aM and b1,
: : :, bM (collected in the parameter vector x), and of random
deviations. The Fourier frequencies

fj D 8 � j ŒHz� .j D 1; : : : ; M / (5)

are treated as error-free quantities. We set the number of
frequencies in this simulation to M D 12 as a typical number
encountered in vibration analysis experiments involving real
accelerometer measurements (see Sect. 5 and Kargoll et al.
2018a). Furthermore, �1; : : : ; �n are given time instances
sampled with constant sampling rate �� D 0:00512 s, begin-
ning at time �1 D 67:68128 s. The number of observations
is n D 10;000. This functional model is linear, so that the
design matrices AŒn�25� is immediately obtained (without
linearization). Concerning the colored noise et , we specified
a time-variable AR(1)-process using the global polynomial
˛t D y1Cy2 ��t of degree 1. For y2 D 0, the AR(1)-process is
time-constant. The simulation of the p-values (cpv.i/) and the
power function consists for every repetition i 2 f1; : : : ; 100g
of the following steps:

– Generate the white noise u.i/
t from the true t-distribution

t3.0; 10�6/ for t D 1; : : : ; 10; 000.
– Correlate the white noise by means of the AR(1) process

e
.i/
t D ˛t;1e

.i/
t�1 C u.i/

t with ˛t;1 D y1 C y2 � �t . We fix here
the true offset parameter y1 D �0:5, and we vary the true
slope parameters y2 in steps Œ0 W 0:0001 W 0:003�.

– Add generated colored noise to a specified oscillation
model (4) to determine observations `.i/.

– Do the Estimation Step to obtain Ox.i/, Oy.i/, Ȯ .i/

Oy Oy , O�.i/, O�.i/

using exactly the same functional and time-variable AR
model as described before.

– Carry out the Testing Step to compute T .i/ D . Oy.i/
2 = O�.i/

Oy2
/2.

– Carry out the Generation Step (parametric/nonparametric)
to compute T .i;k/ for k D 1; : : : ; B . In order to demon-
strate the performance of the bootstrap test, we use exactly
the same functional and time-variable AR model as in the
previous Estimation Step. In particular, the model orders
p and m with respect to the, respectively, AR and time-
variability model are maintained.

– Carry out the Evaluation Step to compute cpv.i/.

This simulation was carried out for the bootstrap sample
sizes B D 19, B D 99 and B D 999. According to Davidson
and MacKinnon (2000), B should be chosen such that ˛ �
.B C1/ is an integer. In this paper we fixed ˛ D 0:05, so that
B D 19 is the least possible value. Since the loss of power of
a bootstrap test is proportional to 1=B according to Davidson
and MacKinnon (2000), we investigated the largest number
B D 999 possible with the computer hardware available in
our experiment. With this number, we can already be quite
sure that the resulting p-values are not overly dependent
on the particular sequence of random numbers. The results
of the estimated cpv.i/-values for the case y2 D 0 (i.e., a
time-constant AR(1) process) are shown in Fig. 1. Somewhat
surprisingly, varying B does not change the p-value very
much within a MC run. Most importantly, the size ˛ D 0:05

is reproduced well on the average since the H0-rejection rate
for all 100 replications, defined by

1

100

100X

iD1

I.cpv.i/ < 0:05/

turned out to be 0:04 for parametric and 0:05 for non-
parametric bootstrapping. Figure 2 shows the empirical
power function (sensitivity of the hypothesis tests) evaluated
at y2 D Œ0 W 0:0001 W 0:003�. We see that a linear

Fig. 1 Comparison of estimated
bpv.i/-value (rejecting the null
hypothesis whenever
bpv.i/ < 0:05) under the
time-constant AR(1) model
(y2 D 0) for different bootstrap
sample sizes
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Fig. 2 Comparison of estimated
bpv.i/-value (rejecting the null
hypothesis whenever
bpv.i/ < 0:05) under the AR(1)
model with time variability
parameter values
y2 D Œ0 W 0:0001 W 0:003� for
parametric and nonparametric
bootstrapping

time-variability with a slope of 0:0015 is detected with
a relative frequency of about 0:80. This slope value may
be viewed as an empirical analogue to the size of an
outlier detectable with a specified probability of 0:80 within
Baarda’s reliability theory.

5 An Application to Vibration Analysis

We applied the bootstrap approach to testing for time-varia-
bility of an AR process to a vibration dataset measured
by means of a highly accurate single-axis PicoCoulomB
(PCB) Piezotronics accelerometer. As part of a vibration
experiment, carried out at the Institute of Concrete Con-
struction at the Leibniz Universität Hannover, that sensor
was mounted on a shaker table, which was set to an oscil-
lation frequency of 16Hz. This frequency is well below
Nyquist frequency of half the sampling frequency of the
accelerometer (195=2Hz) and thus detectable. The dataset,
which spans about 45min of measurements, is characterized
by initial transient oscillations with irregular amplitudes but
stable frequency (approximately throughout the first 1,500
data values), followed by a stationary oscillation with stable
amplitudes. The dataset excluding the initial phase was
previously modeled in Kargoll et al. (2018a) by the truncated
Fourier series (4) with M D 12, with AR random deviations
et , and with t-distributed white noise components ut . The
frequencies were treated as the fixed quantities fj D j � 8

Hz (j D 1; : : : ; M ). Besides the main frequency f2 D 16

Hz, 11 other frequencies at multiples of 8 Hz with asso-
ciated small amplitudes were identified within the discrete
Fourier transform. These were suspected to arise from the
physical properties of the shaker table and thus modeled
deterministically. The Fourier coefficients a0, a1, : : :, a12

and b1, : : :, b12 were treated as unknowns and collected
within the parameter vector x. In Kargoll et al. (2018a),
the initial phase was modeled by employing the observation
model (4) in connection with a time-variable AR(6) model
involving cubic polynomials defined by B t D Œ1 �1

t �2
t �3

t �.

This model was found by trying out different AR as well
as different polynomial model orders until the periodogram
excess of the estimated white noise residuals appeared to
be small in comparison to theoretical white noise. The
reasonable choicesm 2 f2; 3; 4; 5g correspond to polynomial
models defined by

– B t D Œ1 �1
t � for m D 2 (linear drift),

– B t D Œ1 �1
t �2

t � for m D 3 (quadratic polynomial),
– B t D Œ1 �1

t �2
t �3

t � for m D 4 (cubic polynomial),
– B t D Œ1 �1

t �2
t �3

t �4
t � for m D 5.

Figure 3 shows for the fixed AR model order p D 6 that the
time-variability model with m D 4 results in the acceptance
of the white noise test since its cumulated periodogram
excess over theoretical white noise lies completely within
the approximate 99% significance bounds. In contrast, the
white noise hypothesis is rejected for the choices m D 2,
m D 3 and m D 5. However, as the white noise compo-
nents contain outliers when the degree of freedom of the
underlying t-distribution is relatively small, the periodogram
estimate might be affected and contaminated by outliers.
We therefore seek to improve the model selection step with
respect to the polynomial order of the time-variability model
by carrying out the bootstrap test given in Sect. 3. For this
purpose, we retained within the current study the AR model
order of p D 6 and considered the testing problem (2)
for m 2 f2; 3; 4; 5g, Assembling the complete B-matrix
from one of these choices at a time, the corresponding p-
value estimate was computed (as explained in Sect. 3) both
under parametric and nonparametric bootstrapping, as well
as for both B D 99 and B D 999 bootstrap samples (see
Table 1). Since the averaging (3) yields increasingly precise
p-value estimate with increasing number B of bootstrap
sample, and since some of the estimated p-values change
considerable when taking B D 999 instead of B D 99

bootstrap samples, we conclude that B should be at least
B D 999. This confirms the finding of McKinnon (2007)
that “it might be dangerous to use a value of B less than
999”. For that number of bootstrap samples, we see that the
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Fig. 3 Excess of the estimated
periodograms of the decorrelated
residuals for m D 2 (dotted red
line), m D 3 (dotted blue line),
m D 4 (solid blue line) and
m D 5 (solid red line) with
respect to the AR(6) model over
the theoretical white noise
periodogram (equal to 0);
approximate 99% significance
bounds are displayed as the two
heavy black lines

Table 1 Estimated p-values for the parametric and the non-parametric
version of the bootstrap test for time-variability of an AR(6) process,
modeling random deviations of the observation model (4) for the initial
segment of the analyzed accelerometer dataset

m 2 3 4 5

Parametric (B D 99) 0 0 0.03 0.17

(B D 999) 0 0 0.02 0.20

Non-parametric (B D 99) 0 0 0.07 0.10

(B D 999) 0 0 0.03 0.19

p-values obtained by non-parametric bootstrapping are very
close to the values obtained parametrically by generating
random numbers from the fitted t-distribution. We therefore
conclude that this choice can safely be made by the user
according to computational convenience. Most importantly,
the p-values (for B D 999) are well below the standard
significance level ˛ D 0:05 for the cubic polynomial model
(m D 4), which previouslywas found to be the only adequate
one. As the p-values with respect to the linear drift model
.m D 2/ and for the quadratic polynomial model (m D 3)
are zero, the null hypothesis of ‘no time-variability of the AR
model’ is not supported by the data, as for the test against the
adequate cubic polynomial model. In a practical situation it
might be desirable to formulate the more general alternative
hypothesis ‘The AR model is time variable.’ The previous
results show that any of the aforementioned specific alterna-
tive models (linear drift, quadratic, cubic polynomials) could
be used within the Estimation Step and the Generation Step
because each of these models implies the correct rejection
of the null hypothesis. Increasing the optimal polynomial
order of m D 4 to m D 5 apparently desensitizes the test
since the p-values now exceed any reasonable choice for
the significance level, resulting in the inadequate acceptance
of H0. In a previous study, we found that assuming an AR
model order too small or too large often results in inferior
model estimates, which behavior was documented by an
unstable acceptance rate of a white noise test (see Kargoll
et al. 2018a, Figure 9). Thus, estimated AR models have a

tendency to be acceptable only within certain ranges of order.
We suspect that a similar phenomenon might occur for the
order of the time-variability model, but we cannot prove this
finding, yet.

6 Summary, Conclusions, and Outlook

We presented a statistical procedure based on MC bootstrap-
ping to test the null hypothesis that the random deviations of
a regression time series follow a time-constant, fixed-order
AR process. The alternative hypothesis may be specified by
an arbitrary linear model that forces each AR coefficient
to lie exactly on a time-dependent deterministic function.
To take a potentially large number of outliers of unknown
frequency and magnitudes into account, the input white noise
to that AR process was modeled by means of a t-distribution
with estimable scale factor and degree of freedom. Since the
exact and even approximate test distribution are unknown,
the MC bootstrapping yields an estimate of the p-value,
which may be compared to a specified significance level
to arrive at the test decision. A closed-loop simulation
showed that the specified significance level of the bootstrap
test is reproduced closely. Moreover, the application of
the bootstrap test to an initial segment of an accelerome-
ter measurement series, which was previously modeled by
means of cubic polynomials with respect to a time-variable
AR(6) process, showed that the null hypothesis of no time-
variability should indeed by rejected in favor of linear,
quadratic or cubic polynomials. We may therefore conclude
that the model of linearly drifting AR coefficients may be
used in a test against the general alternative that the ‘AR
model is time-variable’. This conjecture, however, should be
further investigated in the future. The real-data study also
demonstrated that at least 999 bootstrap samples should be
generated to obtain adequate p-values. Both the closed-loop
simulation and the real-data analysis showed that parametric
bootstrapping (using the t-distribution estimated from the
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given dataset) and non-parametric bootstrapping (drawing at
random with replacement from the estimated white noise of
the real-data adjustment) in order to generate the white noise
samples result in very similar p-value estimates. It appears
that the presented bootstrap approach may be adapted to
similar testing problems in the context of time series analysis
involving intricate parametric models.
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Identification of Suspicious Data for Robust
Estimation of Stochastic Processes

Till Schubert, Jan Martin Brockmann, and Wolf-Dieter Schuh

Abstract

Many geodetic measurements which are automatically gathered by sensors can be inter-
preted as a time series. For instance, measurements collected by a satellite platform along
the satellite’s track can be seen as a time series along the orbit. Special treatment is
required if the time series is contaminated by outliers or non-stationarities, summarized
as ‘suspicious data’, stemming from sensor noise variations or changes in environment.
Furthermore, the collected measurements are often – for instance due to the sensor design
– correlated along the track.

We propose a general estimation procedure accounting for both, correlations and the
presence of suspicious data. In the estimation scheme, we adjust an autoregressive (AR)
process of a given order p to model the correlations in a residual time series, which can
then be used as a very flexible and general stochastic model. The AR-process estimation
is iteratively refined by screening techniques based on statistical hypothesis tests and thus
robustified. We incorporate different indicators to detect suspicious data or changes in the
underlying process characteristics, i.e. changes in the mean value, variance and signs of the
residuals.

Here, we apply the procedure to gravity gradient observations as collected by the Gravity
Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission in the low
orbit measurement campaign. The estimated autoregressive process is used as a stochastic
model of the gravity gradients in a gradiometer-only gravity field determination following
the time-wise approach. The resulting estimates are compared to the counterparts of the
official EGM_TIM_RL05 processing. Additionally, with newly processed level 1B GOCE
gravity gradients at hand we pursue comparison of the robust and conventional approaches
for original and reprocessed data.
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1 Introduction and RelatedWork

Modern sensors deliver a big treasure of measurements
to determine process parameters of the Earth system. A
prerequisite for a consistent model, which does not only
describe the signal information but also its uncertainties
in agreement with the data characteristics, is a clean and
accurate modeling. Data adaptive strategies are necessary to
adopt peculiarities of the measurement series.

Robust estimation techniques, introduced in 1760 by
R. Boŝković, and data snooping (Baarda 1968) have a long
tradition in geodesy. Already in 1905, F.R. Helmert discusses
the regularity of sign chances in time series (Helmert 1905).
Whereas time series at that time had a manageable number
of observations present-day sensors provide a huge number
of measurements. In addition, these measurements are often
highly correlated and therefore the identification of erro-
neous data is not straightforward. Various studies cover the
topic of parameterization of correlations in the time domain
as well as in the spectral domain (see e.g. Kay and Marple
1981) also with special attention to time series contaminated
by outliers (Fox 1972; Kleiner et al. 1979; Chang et al.
1988). Decorrelation procedures by digital filters derived
from the parameterization of stochastic processes are also
widely used in geodetic applications (cf. e.g. Schuh 1996,
2003; Klees et al. 2003; Siemes 2008; Krasbutter et al. 2014;
Farahani et al. 2017; Schuh and Brockmann 2018). Also
robust strategies with an assumed t-distribution for the errors
and the data are studied (Kargoll et al. 2018a,b).

The studies carried out for this paper are part of the
processing campaign of the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite mission. The
latest gravity field recovery with the time-wise approach
has been carried out by Brockmann et al. (2014) using
preprocessed level 1B GOCE gravity gradients prepared
by the GOCE HPF-team. Recently, this level 1B product
has been reprocessed (Siemes 2018) applying an improved
calibration using quadratic factors and a new overall repro-
cessing campaign is established.

In this contribution, a two step approach is proposed to
analyze the data and to identify suspicious data. Suspicious
data refers to all data points whose characteristics do not
agree with the majority. These characteristics can be small
or large deviations of single or mean values, changes of the
measurement noise or non-stationarity of the correlations.
The analysis is performed on the residuals with respect to
a prior model, e.g. an interim model or a precursor model,
which is computed with a much larger amount of data and
therefore has a much higher precision compared to the single
measurements or a single track, which has to be analyzed. In
a first step, the correlated dataset is decorrelated by a digital
filter (e.g. AR-filter). The decorrelated residuals are analyzed
with respect to suspicious data, which are then identified and

tagged. In a second step, the stochastic characteristics of the
measurement series are modeled by a robust estimation of an
autoregressive process excluding the suspicious data.

The focus of this paper is on the screening methods and the
processing of the new gradient data. In this study, we apply
the data screening methods to estimate the AR-processes as
a stochastic model for the GOCE gravity gradients. They
are applied on the one hand to the ‘old’ L1B data, which
is affected by an imperfect calibration (cf. Siemes 2018).
The assumption of stationarity is strongly violated. On the
other hand, it is applied to reprocessed L1B gravity gradients
derived with an improved calibration (Siemes 2018).

The time-wise approach is based on a GOCE-only solu-
tion using an advanced stochastic modeling (e.g. Pail et al.
2011; Brockmann et al. 2014). Precisely, the autoregressive
stochastic processes are used for decorrelation in the gravity
field estimation. We intend to contribute the advance of the
solutions both to the improved level 1B data and to the
improved decorrelation, resulting from the improved data
screening methods.

Section 2 introduces the data model and the robust esti-
mation of the stochastic model and the identification of sus-
picious data. In Sect. 3, results for the stochastic model are
provided and the results for the old and the new data are
compared. Section 4 uses gradiometer-only gravity field solu-
tions to validate the stochastic models and to highlight the
improvements. This is followed by concluding remarks in
Sect. 5.

2 Estimation of Stochastic Processes

2.1 Residual Time Series

Suppose residuals are computed with respect to some refer-
ence parameters Ox, which are either parameters from an exist-
ing reference model or results of an adjustment procedure of
a previous iteration. The stochastic residuals V which should
be analyzed in the following are

V D AD Ox � L: (1)

L are the original observations which include the deter-
ministic part modeled by AD Ox and AD, the deterministic
design matrix. The residuals V are used as purely stochastic
‘observations’ in the following to adjust the parameters of a
stochastic process within a least squares estimation.

In the upcoming sections, it is assumed that the time series

V D

2
6664

V1

V2

:::

VS

3
7775 D

2
6664

AD;1 Ox � L1

AD;2 Ox � L2

:::

AD;S Ox � LS

3
7775 (2)
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can be partitioned into S sets, such that the subsets Vs are
equispaced (i.e. constant �ts) and continuous (i.e. gap-less)
sets V s of different lengths Ns.

2.2 Data Model

As the model is the same for any V s , for better readability,

V WD Vs ; for any s 2 f1; : : : ; Sg (3)

is defined for the description of the model, being one of the
continuous and gap-less sets with length N WD Ns .

The data model regards each observation Vi for i 2
f1; : : : ; N g as a composition of the stochastic signal Si and
noise Ni

Vi D Si C Ni : (4)

It is supposed that the stochastic part can be described
with a stochastic process which takes the form of an AR(p)
representation

Vi D
pX
jD1

˛jVi�j C Ei (5)

of a fixed order p � N .

2.3 Robust Estimation of AR(p)-Processes

Special attention has to be given to the issues of outliers
in autoregressive models. The definition of innovation out-
liers (cf. Fox 1972) is representative for the masking of
contaminated noise into signal components (Eq. (5)). As
a consequence, the estimation of the signal process with
stationarity assumption can be significantly affected. This
also raises the question whether the additive outlier can be
recovered in the decorrelated residual time series.

Concepts of robust statistics include patchy outlier distri-
butions which enables outliers to appear in patches (Kleiner
et al. 1979). Furthermore, robustness is generally achieved
via a bounded influence function, among which the k�-
rejection-estimator allows for a direct relation to testing for
single outliers and outlier patches.

Estimating the p autoregressive parameters ˛j from the
data V , least squares observation equations for the autore-
gressive functional model of order p read

Vi C Ri D
pX
jD1

˛jVi�j D aTi ˛ (6)

with ai being the rows of the design matrix A. Note, that in
contrast to a typical Gauss-Markov model the design matrix
consists of observations as coefficients. The AR-process
coefficients follow from the least squares estimate using a
specific realization v by

ę D �
ATW A

��1
ATW v (7)

assuming initially a diagonal identity matrix as weight
matrix, W D 1. Therefore, the normal equations are closely
related to the Yule-Walker equations (Schuh and Brockmann
2018). The filtered, i.e. decorrelated, realizations of the
residuals

r D Aę � v (8)

are used in the screening and the hypothesis tests.
Robustness implies the use of a bounded influence func-

tion, among which we choose the k�-rejection-estimator
(Kleiner et al. 1979) for single outliers and outlier patches,

 R .ri / D
(
ri jri j � k�

0 jri j > k� :
(9)

In this form one can assess a quantile k as the multiplier to
the variance � .

2.4 Residual Screening

As a first test we eliminate large single outliers. The null
hypothesis H0 W E fRi g D 0 and alternative hypothesis
HA W E fRi g ¤ 0 lead to the definition of the test statistic
and distribution Toutlier D Ri � N.0; �2/. From this
and the realization toutlier; i D jri j, the decision is derived
from evaluating toutlier; i � k

N.0;1/

1�˛=2 � which, if true, results
in the acceptance or, if false, leads to rejection of the null
hypothesis. The quantile value kN.0;1/1�˛=2 is computed from
the standard normal distribution with respect to a very low
level of significance ˛. The variance �2 is estimated based
on the median absolute deviations (MAD) scale estimator
Qs 2MAD D 1:4785 MAD.r/ (see e.g. Huber 1981, Sect. 5.1).
For this test and all further tests we assume that Qs 2MAD has
no uncertainty. This assumption is justified by the fact that
Qs 2MAD is estimated from the whole data sequence with a
significantly larger number of data points. Of course, all
tests statistics follow their distributions only approximately,
although we denote them as applying exactly. This hypoth-
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esis test and all further tests are summarized in a uniform
compact representation by

H0 W E fRi g D 0 vs. HA W E fRi g ¤ 0

Toutlier D Ri � N.0; Qs 2MAD/ (10)

toutlier; i D jri j � k
N.0;1/

1�˛=2 QsMAD: (11)

All further tests for suspicious data are applied to areas,
e.g. by testing over a certain period of time Tl , which is
in our case a fraction of orbit period. For the application
at hand, and exemplarily for the mean test described next,
we use the 1=30, 1=40 and 1=50 part of the orbit period
of approximately 1:5 h, i.e. nT1 D 179 values for T1 D
1=30 orbit. These values change depending on the test and
were all empirically determined by visual inspection to give
feasible results.

The first test statistic for testing the deviation from zero
mean and corresponding quantile are

H0 W E
(
1

nTl

nTlX
iD1

Ri

)
D 0 vs. HA W E

(
1

nTl

nTlX
iD1

Ri

)
¤ 0

Tmean D 1

nTl

nTlX
jD1

Rj � N.0; Qs 2MAD=nTl / (12)

tmean; i D 1

nTl

ˇ̌
ˇ̌
iCnTl�1X
jDi

rj

ˇ̌
ˇ̌ � 1p

nTl
k
N.0;1/

1�˛=2 QsMAD: (13)

We test for changes in the variance by taking the ratio of
the sum of squared residuals RTR in the test window (1=50,
1=60 and 1=70 part of the orbit period) and the global robust
variance estimator Qs 2MAD. The quantile value is taken from the
�2 distribution with the number of data points in the test area
as degrees of freedom, i.e.

H0 W E
8<
:
1

nTl

nTlX
jD1

R2
i

9=
; D Qs 2MAD vs.

HA W E
8<
:
1

nTl

nTlX
jD1

R2
i

9=
; > Qs 2MAD

Tvar D
PnTl

jD1R2
i

Qs 2MAD

� �2nTl
(14)

tvar; i D
PiCnTl�1

jDi r2j

Qs 2MAD

� k
�2nTl
1�˛ : (15)

The sign test was pioneered by Helmert (1905). Fol-
lowing his work, the difference in the amount of the signsˇ̌
#Xpos � #Xneg

ˇ̌
of a random variable X needs to be shifted

by population size nTl and divided by 2 to follow a symmetric

binomial distribution. Thus, we can test the sign imbalance
occurring within the length of the test window nTl (1=10,
1=20 and 1=30 part of the orbit period) using the realization
tsign; i . Formally the test then reads

H0 W E
( nTlX
iD1

sign.Ri /

)
D 0 vs.

HA W E
( nTlX
iD1

sign.Ri /

)
¤ 0

Tsign D 1

2

0
@nTl C

nTlX
jD1

sign.Rj /

1
A � B.nTl ; 0:5/: (16)

tsign; i D
ˇ̌
ˇ
iCnTl�1X
jDi

sign.rj /
ˇ̌
ˇ � 2k

B.nTl ; 0:5/
1�˛=2 � nTl : (17)

Furthermore, we account for a natural occurrence of sign
changes. In the sense of Helmert (1905), the cases of no sign
changes (C C C C C and � � � � �) and continuously
alternating sign (C � C � C and � C � C �) are equally
improbable. This relation is achieved by the sum over the
product of consecutive signs. Again, a shift and scale by 2
lead to a binomially distributed test statistic from which the
test criterion (applied to 1=20, 1=30, 1=40 part of the orbit)
is formulated as

H0 W E
8<
:
nTl�1X
iD1

sign.Ri / sign.RiC1/

9=
; D 0 vs.

HA W E
8<
:
nTl�1X
iD1

sign.Ri / sign.RiC1/

9=
; ¤ 0

TsiCh D 1

2

0
@nTl � 1C

nTl �1X
jD1

sign.Rj / sign.RjC1/

1
A

� B.nTl � 1; 0:5/
(18)

tsiCh; i D
ˇ̌
ˇ
iCnTl�2X
jDi

sign.rj / sign.rjC1/
ˇ̌
ˇ

� 2k
B.nTl �1; 0:5/
1�˛=2 � .nTl � 1/:

(19)

2.5 Further Considerations

Gaps between outliers that are shorter than the filter length
are additionally flagged as identified suspicious data to avoid
numerical problems. For the same reason, areas with many
suspicious data identified are specially handled. Thus, if
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60% of the filter length are outliers the area is flagged
completely. For the estimation and later when using the filter
for decorrelation, special attention has to be paid to data
points at the begin of the time series, as they are affected
by the filter warmup. Either the observation equations for the
filter coefficients can not be constructed as the observations
from the past are missing, or – due to the same reason – they
cannot be fully decorrelated. Consequently, the first p D 800

data points (after a gap) have to be treated as if they were
flagged as suspicious. Within this study, no effort was spend
on minimizing the effect, as due to the high amount of data,
compared to the filter length of p D 800, the additional data
loss can be neglected. But, from a theoretical point of view,
methods exist to minimize the data loss (e.g. Siemes 2008,
Chap. 4), which are applicable in this context as well.

All tests summarized above are applied in moving win-
dows and for different area lengths which were empirically
determined specific to the tests. The priority of the test
criteria is applied in the above order with a decreasing area
length. Consequently, 13 tests are performed to each data
point. Following this, outlier flags will appear on multiple
tests but they are attributed to the first positive test in the
order of testing.

2.6 The Data-Fitting Approach

The algorithm scheme at hand is an iterated weighted least
squares (IWLS) in the sense of Kleiner et al. (1979). After
estimation of the autoregressive parameters using a least
squares adjustment, cf. Eq. (7), we apply the screening
methods to the residuals r. With the acquired outlier flags
from hypothesis testing, the least squares adjustment is
recomputed without the identified data by eliminating the
rows in the design matrix. This corresponds to applying the
weighting function

wi D  R.ri /

ri
D

(
1 accepted

0 flagged as suspicious
(20)

of the robust estimator, cf. Eq. (9), to w. The procedure is
iterated until convergence.

3 Numerical Example: Application to
GOCE Gravity Gradients

3.1 GOCEData Used

We have gravity gradient observations collected by the
GOCE satellite mission (Floberghagen et al. 2011; Rummel
et al. 2011). Figure 1 shows a short part of the time series
comparing the old (imperfect calibration) and the new
data (updated calibration from Siemes 2018). Visually, the
reduction of the systematic disturbances from the old data to
the new data is obvious. In the following, different solutions
are generated. To discriminate them the colors as indicated
by Table 1 are used.

Two segments of the GOCE time series are used for the
analysis of this paper as a proof of concept, cf. Table 2. They
are part of the extended mission phase, the data are captured
at a lower orbit with �8 and �30 km orbit reduction.

GOCE data contains some inhomogeneities and non-
stationarities in the shape of extremely large disturbances,
systematic oscillations or data gaps. As these were more

Table 1 Data description: both the non-robust solution from
EGM_TIM_RL05 setup (RL05) as well as the robust filter solutions
denoted as old use the old data

ID Description

RL05 Solution from EGM_TIM_RL05 setup

Old Official data, robust filters

New New reprocessed data, robust filters

The new robust filters (new) utilize the reprocessed data

Table 2 Data segments used for the numerical tests

ID Start End Orbit info

1 09/Nov/2012 04/Feb/2013 �8 km

2 30/May/2013 31/Jul/2013 �30 km

Fig. 1 Comparison of the
official data (blue) and the newly
processed data (yellow)
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prominent in the old, i.e. original data, segments from which
decorrelation filters were estimated had to be kept relatively
short. With the newly processed level 1B GOCE gravity
gradients and the robustified method we can manage to
estimate stable decorrelation filters from longer segments.
Consequently, the computational effort is reduced.

3.2 Analysis of Suspicious Data

Figure 2 shows possible scenarios of detected and identified
suspicious data in the GOCE time series. Within the shown
zoom, the systematic disturbances identified by the testing
procedures (cf. Sect. 2.4) are obvious. The color code rep-
resents the hypothesis test which identified the suspicious
data points. However, some effects are not necessarily visible
and cannot be visually identified as suspicious due to the
high amount of data points. Note, that the data detected by
the mean test is typically also identified by the sign test (cf.
Fig. 2, bottom). We furthermore see that the remaining time
series has mostly the characteristic of white noise.

Comparable to the shown example, the procedure of
Sect. 2 produces a log-file, providing the testing results for
each individual data point and for each individual test.
Within this analysis, an observation is not used for process
estimation as well as for gravity field estimation as soon as a
single test indicates a suspicious observation.

The numbers of identified outliers are presented in
Tables 3 and 4. Using the same data, but improved screening
methods, the number of outliers could be significantly
decreased (‘RL05’ vs. ‘old’) for all components except VY Y .
For VY Y , most affected by the imperfect calibration, more
suspicious data were identified. The improved screening
detects more contaminated data points and selects only the
highest quality data. Using the improved screening, for the
old and the new data (‘old’ vs. ‘new’), a significant decrease
of detected suspicious data is observed. This reduction is
attributed to the improved quality of the new reprocessed
data set. The most significant decrease appears in the
Y Y -component, which was affected most. Note, that the
generally lower noise level of the reprocessed data can also
lead to the detection of smaller systematic effects, such that
outlier percentages increase.

Table 3 Percentage of outliers for segment 1 (09/Nov/2012–
30/May/2013, number of data: 7:5 million)

VXX VY Y VZZ VXZ Total

RL05 10.0% 9.3% 9.5% 10.3% 9.8%
Old 3.3% 15.5% 2.5% 2.5% 6.0%

New 3.8% 3.4% 3.8% 4.1% 3.8%

Bold values indicate notable decreases of outlier percentages

Fig. 2 Example of screening
results with time series R
(above) and identified flags
(below) for all tests
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Table 4 Percentage of outliers for segment 2 (30/May/2013–
31/Jul/2013, number of data: 5:5 million)

VXX VY Y VZZ VXZ Total

RL05 3.1% 6.2% 1.2% 3.2% 3.4%

Old 1.6% 6.2% 1.4% 1.5% 2.7%
New 0.9% 0.4% 0.7% 0.5% 0.6%

Bold values indicate notable decreases of outlier percentages

3.3 Analysis of the Estimated Processes

With the estimated AR-processes at hand we evaluate the
characteristics of the noise model in the spectral domain.
Figure 3 presents the power spectral density (PSD) represen-
tation of the AR-filter for the VYY gravity gradient. From the
design of the gradiometer, we expect white noise, i.e. a flat
spectrum in the measurement band (vertical dashed lines in
Fig. 3).

The black lines indicate the used filters in the RL05
processing (no robust estimation applied). Due to the non-
stationarity of the data, four different filters were required to
model the data characteristics. In contrast to that, the blue
line shows the robust estimate from the same input data. As
the suspicious data are identified, a single filter is used to
model the data characteristics. The resulting spectrum is flat-
ter. Using the new data and the robust method improves the
filter solutions on a much larger scale (yellow line in Fig. 3).
Due to the better calibration, the data quality improves
and stationarity becomes a more realistic assumption. This
can be shown by the evaluation of subsegments resulting
in very similar filter estimates, which is not the case for
the old data. Consequently, for the same reasons as stated
in Sect. 3.1 the number of segments can be substantially

reduced. The noise level decreases for the entire spectrum,
even below the measurement band. With the new data, even
during the extended mission, the data have characteristics
close to white noise in the measurement band. Note, that
all other components as well have enhanced data quality and
filters whilst the shown VY Y component has the overall best
improvement.

4 Consequences for Gravity Field
Recovery

Output from the analysis of Sect. 3 are robustly estimated
AR-processes, which can be used as decorrelation filters
within the estimation of a gradiometer only gravity field
in a spherical harmonic analysis (Brockmann et al. 2014;
Brockmann 2014, Sect. 6.3.3). In addition to the filters
per gradient component c and segment s, the suspicious
data as identified by the robust estimator is used as outlier
flag information in the estimation of the spherical harmonic
parameters. The observation equations are set up for that
data to keep the segments gap-less and equidistant. After
the decorrelation of the observation equations, the identified
observations are removed from the decorrelated observation
equations. Individual normal equations

Ns;cxs;c D ns;c (21)

for the each segment s and component c are set up and,
if positive definite, i.e. enough observations remained, (21)
is solved without regularization for each c and s. Results
are unconstrained spherical harmonic coefficients xs;c and its
covariance matrix˙xs;cxs;c D N�1

s;c .

Fig. 3 AR-filter PSD for VY Y
gravity gradient for the second
segment cf. Table 2
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Fig. 4 Degree (error) variances
of the gravity field solution using
VXX , VYY , VZZ and VXZ data of
the first segment. In solid:
empirical from difference to
EGM_TIM_RL05. In dashed:
formal from covariance matrix. In
black: Signal (solid) and error
(dashed) degree variances of the
whole mission dataset which is
used as reference
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Figure 4 shows the degree (error) variances of the spher-
ical harmonics gravity field solution for the first segment
from Table 2, already combining the VXX , VXZ , VYY and
VZZ gravity gradients. As no regularization is applied, the
near-zonal coefficients are excluded, to suppress the polar
gap. All three setups (cf. Table 1) are compared using the
formal errors (dashed lines) and empirical errors with respect
to EGM_TIM_RL05 (solid lines).

The improvement resulting from the robustified AR-
process estimation is shown from the improvement from the
gray curves to the blue ones. Mainly, the formal errors as
well as empirical errors reduce for all degrees, indicating
that the robust approach has a positive effect for the gravity
field determination, although less data were used in the
estimation. Especially the stochastic model improves, which
results in a more realistic covariance matrix. As its inverse is
the weight matrix in the combination of the gravity gradient
components, their individual strengths are better exploited
in the relative combination. The yellow curves show the
improvements resulting from the improved input data in
combination with the robust method. Empirical as well as
formal errors decrease even more. Furthermore, both show
a nice agreement, indicating that the stochastic model is
realistic and a good estimate. To quantify the improvements,
cumulative degree error variances can be used. At degree
200, a reduction of 10% compared to the ‘RL05’ setup can
be seen for the ‘old’ setup. For the ‘new’ setup, the reduction
is about 18% for geoid height errors.

5 Summary and Conclusions

We implement a robust procedure to automatically detect
suspicious data in time series. Special focus is on the robust

estimation of AR-processes from residual time series. The
resulting process can be used as a stochastic model, modeling
the error characteristics of the time series. A sequence of
statistical hypothesis tests is established, which are used to
classify the data into good data points and suspicious data.
They are applied in moving windows to the data, such that
very long time series can be handled by the hypothesis tests.
A wide range of tests is already used, testing for instance the
significance of the mean value or for changes in variance or
occurrence of signs. Implemented as an iterative procedure,
the test decisions are used in a rejection estimator to robustly
refine the estimate for the underlying AR-process.

Within this contribution, the procedure was applied to
highly correlated GOCE gravity gradient residuals to esti-
mate an AR-processes as a decorrelation filter. This decorre-
lation filter is used as stochastic model for the gravity gradi-
ents within gravity field recovery. Within the numerical tests
for selected periods of GOCE observations, it was shown that
improvements with respect to the RL05 solution are possible.
Furthermore, we applied the method to reprocessed L1B
gravity gradients of improved quality. It was shown that the
data improves and with the robust method, very stable filter
estimates are possible which we attribute to an improved
stationarity. The advanced robustified decorrelation filters
have lead to an enhanced identification of suspicious data and
a more realistic and complete error description. Following
this, it can be assumed that the presented tests cover the
majority of systematic errors of GOCE data. The screening
methods presented here work automatically without further
need for manual snooping of outliers and detect systematic
effects that may be visible in the time series only at a small
time scale.

Since the reprocessing has significantly improved the
gravity gradient data the prospect towards the processing of
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the entire mission dataset for the sixth release is promising.
The robust approach will be applied in the processing and
used to determine the decorrelation filters for a time-wise
RL06 global gravity field model.

Although applied to GOCE here, the proposed method
and procedure is generally suitable and applicable for long
time series and can be applied to different datasets. Fur-
thermore, the set of hypothesis tests can be continuously
extended, thus, it is a flexible and general procedure.
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Quality and Distribution of Terrestrial Gravity
Data for Precise Regional GeoidModeling:
A Generalized Setup
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Abstract

Based on the success of the satellite mission GOCE in providing information on the global
gravity field with high quality and spectral resolution, the realization of the 1 cm-geoid is at
reach, leading to an increased interest in regional geoid modeling. It is therefore necessary to
review theoretical and numerical aspects of regional geoid modeling, including availability
of adequate data. In this study, we deal with the latter aspect, specifically the representation
error implied by the available gravity data.

We use least-squares collocation to derive formal errors of block mean gravity anomalies
and geoid heights for given distributions of scattered gravity stations. By comparison with
independent error measures, we validate a generalized procedure in which we do not base
the solution on an empirical covariance function of a specific test area, but rather use band-
pass filtered global functions. This implies that the procedure is applicable beyond our
specific test-bed and can be used to give general error measures, e.g., for network design in
poorly surveyed regions.

The computations are carried out in a medium size test area along the Norwegian coast,
where the national gravity basis network had been densified in recent years. This allows to
show the gain in geoid accuracy that can be expected from adding the new gravity data.
We show that the signal variance of the regional gravity field corresponds well with the
one derived from the global covariance function, thus validating our generalized procedure.
In previous studies, the accuracy of gravity anomalies and geoid heights in Norway were
estimated to be (on average) around 2 mGal and 3 cm, respectively. We find good agreement
of the formal gravity anomaly error with the empirical measure. By adding the new data,
the gravity anomaly error can be reduced to almost 1 mGal. The formal geoid error can
be reduced from around 1.7 to 1.3 cm (on average). The discrepancy between the formal
error and the empirical measure of 3 cm is probably due to contributions from GNSS and
leveling errors, which are not considered in our formal estimate. The results presented here
show larger errors over ocean areas, because the computations are restricted to land data.
Available airborne and marine gravity will be considered in the future.
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Faculty of Science and Technology (RealTek), Norwegian University
of Life Sciences (NMBU), Ås, Norway
e-mail: vegard.ophaug@nmbu.no; maid@nmbu.no

O. C. D. Omang
Geodetic Institute, Norwegian Mapping Authority, Hønefoss, Norway
e-mail: ove.omang@kartverket.no

© Springer Nature Switzerland AG 2019
P. Novák et al. (eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 151, https://doi.org/10.1007/1345_2019_71

209

http://crossmark.crossref.org/dialog/?doi=10.1007/1345_71&domain=pdf
mailto:gerlach@badw.de
mailto:vegard.ophaug@nmbu.no
mailto:maid@nmbu.no
mailto:ove.omang@kartverket.no
https://doi.org/10.1007/1345_2019_71


210 C. Gerlach et al.

1 Introduction

The satellite gravity mission GOCE (ESA 1999) has con-
siderably increased our knowledge about the global static
gravity field. One of the main geodetic applications of the
GOCE mission is the realization of a global vertical datum.
GOCE-based global potential models (GPM) allow modeling
the geoid with centimeter accuracy for spatial resolutions of
around 100 km (Gerlach and Ophaug 2017). Because short-
scale signal contributions, on global average, reach values of
around 30–40 cm RMS, the GPMs must be combined with
terrestrial data in the region of interest (Rummel 2012; Gatti
et al. 2013).

In regional geoid modeling, several different data sources
are combined. Satellite data provides information on the
long-to-medium wavelengths features of the gravity field,
while terrestrial data (land, marine, airborne) contribute to
the medium-to-short wavelengths. Short-to-ultra-short con-
tributions can be reconstructed from digital terrain mod-
els (DTM) (Sansò and Sideris 2013). The classical com-
bination schema makes use of the remove-restore concept
(Denker 2013). Thereby, terrestrial data is band-pass filtered
by removing signal contributions provided by a satellite-
based GPM and a DTM. The remaining residual signal is
used for field transformation from gravity to geoid. There-
after, the GPM- and DTM-contributions to the geoid are
restored. Field transformation may be performed by Stokes
integration, least-squares collocation (LSC) or employing
alternative representation methods like spherical radial base
functions (Sansò and Sideris 2013; Ophaug and Gerlach
2017).

The accuracy of a regional geoid depends, among other
error sources, on the density and distribution of available
gravity data. The ability of gravity values to represent the
gravity field in between them is called the representation
error, in other words: how well can the continuous gravity
field be represented by a finite number of scattered points?
The representation error decreases with increasing point den-
sity. It is usually larger than the contribution of observational
noise of the gravity data and it is of particular interest
for gravity network design given some final requirements
for the geoid accuracy. Comparison of the representation
error with empirical errors also allows to set bounds on the
magnitude of other error sources, e.g., from observational
noise of input and validation data or from errors in data
reductions.

In this study, we derive formal estimates of the represen-
tation error in a test area along the Norwegian coast and
compare them to empirical errors derived in Ågren et al.
(2016) and Gerlach and Ophaug (2017). Test area and point
distribution are presented in Sect. 2.

The error estimates are derived by LSC. A realistic
description of the signal characteristics is essential for the
interpretation of the results. In standard applications, this is
achieved by deriving an empirical covariance function from
local/regional data. Here, we aim at a generalized procedure,
which is not limited to our specific test area. Therefore,
our covariance function is derived from band-pass filtered
global degree variance models. Band-pass filtering the signal
covariance function is applied to reflect the standard remove-
restore method. The computational steps are described in
Sect. 3.1, the definition of the signal covariance function in
Sect. 3.2.

The error estimates for block mean values of (band-pass
filtered) residual gravity anomalies as well as for residual
geoid heights are validated against empirical error measures
in Sect. 4. Section 5 summarizes the main findings and gives
an outlook on further research.

2 Test Area and Data Sets

The Norwegian gravity basis network (comprising about 280
stations) as well as its regional densifications (almost 10,000
points) originate from the 1970ies. The number of stations
implies an average point distance of about 6 km throughout
the country. The data is the basis of all currently available
regional geoid models. Country-wide comparison of these
regional geoid models with GNSS-leveling data in Norway
shows a misfit of geometric and gravimetric geoid heights of
about 3 cm RMS and implies an accuracy of about 2 mGal
(1 mGal D 1 � 10�5 ms�2) for 1 km � 1 km block mean
gravity anomalies, see Ågren et al. (2016) or Gerlach and
Ophaug (2017).

In order to investigate the realization of the 1-cm geoid
covering land and ocean areas, the Norwegian Mapping
Authority (NMA) has set up the Sunnmøre test field. It is
about 250 km � 250 km in extension, covering roughly the
county of Møre og Romsdal in western Norway between
Sognefjord to the south and the city of Kristiansund in the
north. The distribution of gravity stations from the 1970ies
in this area is shown in the left panel of Fig. 1. Between 2012
and 2017 NMA acquired about 3,800 additional gravity
stations (of which around 2,000 fall into our computation
area), leading to an average point distance of only about 2–
3 km. The distribution of the new data is shown on the right
panel of Fig. 1. Note, that we have limited the computations
to the inner part of the area in which most of the new
data are located. Therefore, Fig. 1 does not show all of the
collected data.

In this study, we derive error estimates from either the old
data set, or from the combination of old and new data. We
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Fig. 1 Distribution of land gravity data available in the Sunnmøre test field before 2012 (left) and of data newly acquired between 2012 and 2017
(right). The red boxes show the computation area of this study

will refer to the old dataset as g1 and to the combination of
old and new data as g2.

3 Methodology

Our aim is to derive formal error estimates for the accuracy
of geoid heights as derived from datasets g1 and g2. This
will give an indication of the gain in geoid accuracy one can
expect from incorporation of the new data. The result will
depend on the increased density of terrestrial gravity data
(representation error) and also on our assumptions on signal
characteristics. Validation of these assumptions is performed
by comparison with empirical error measures in Sect. 4.

3.1 Error Propagation by Least-Squares
Collocation

We apply LSC to derive formal error estimates for geoid
heights and block mean values of terrestrial gravity anoma-
lies. In both cases, gravity anomalies at scattered observation
points Q serve as input data, while the computation points
P are given on a regular geographic grid with a spacing
of 1:20 � 2:40 (around 2 km � 2 km). The corresponding
equations read

˙
Ng Ng
PP D C

Ng Ng
PP � C

Ngg
PQ

�
C
gg
QQ C D

gg
QQ

��1
C

Ngg
QP ; (1)

˙NN
PP D CNN

PP � C
Ng
PQ

�
C
gg
QQ C D

gg
QQ

��1
C
Ng
QP : (2)

Matrices ˙ and C represent variance-covariance matrices
of estimation error and gravity field signal, respectively.
Matrix Dgg

QQ contains the error of the input data. Since we
are interested in the representation error, we might neglect
the D-matrix. However, we had to add observational white
noise in the order of some tens of mGal to overcome
numerical problems in the inversion of the CQQ-matrix.
Matrix CQP is the transpose of matrix CPQ. Overbar in the
superindex indicates block averaging, i.e., C Ng Ng represents
auto-covariances of block mean values of gravity and C Ngg
are cross-covariances between block mean and point values.

3.2 Definition of the Signal Covariance
Function

The aim is to derive an estimate for the contribution of ter-
restrial gravity anomalies to the geoid in the general remove-
restore frame. This implies that the signal covariance func-
tion only represents the residual medium-wavelength signal,
after reduction of (1) long-wavelength global information
(low-pass filtering) as well as (2) short-scale topographic
effects (high-pass filtering).

Our residual (band-pass filtered) signal covariance func-
tion is based on the combination of two degree variance
models:

(1) the model by Tscherning and Rapp (1974) is used to
represent the large to medium scale features of the
gravity field (global contribution); low-pass filtering is
applied to this model explicitly
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(2) the model by Flury (2006), is used to represent medium
to small-scale features; the model describes RTM-
reduced gravity anomalies, i.e., high-pass filtering is
already applied implicitly and no further filtering is
required.

Degree variances cl of Flury’s model are given by

cl .�gRTM / D 6:8 � 10�7 mGal2

.l C 0:5/3:09
; (3)

where l is the spherical harmonic degree and �gRTM are
terrestrial gravity anomalies reduced for the contribution
of short-scale topography (residual terrain model, RTM).
The model was derived from several regional datasets and
therefore is not valid for the global features of the gravity
field, specifically not for spherical harmonic degrees below
l � 400. Therefore, degree variances for the lower degrees
are taken from the model of Tscherning and Rapp. The
same combination of degree-variance models is applied and
described in Gerlach and Pettersen (2010).

Finally, the combined degree-variance model needs to be
high-pass filtered, reflecting the reduction of global informa-
tion provided by a satellite-only GPM. The filter coefficients
(spectral weights) were derived in Gerlach and Ophaug
(2017) from an optimal combination of GOCE and terres-
trial information in Norway using the spectral combination
approach of Wenzel (1982). Thereby, error degree variances
�2l;GPM

of the GPM are combined with error degree variances
�2l;terr.

of the terrestrial data, yielding

wl;terr. D �2l;GPM

�2l;GPM
C �2l;terr.

; (4)

the spectral weights for the terrestrial data. The complemen-
tary weights for the GPM are given by

wl;GPM D 1 � wl;terr.: (5)

The �2l;GPM
are based on the error covariance matrix of

GOCO05s (Mayer-Gürr et al. 2015). The �2l;terr.
are based on

the error covariance function provided by Denker (2013).
This function describes the average error behaviour in
Europe. In Gerlach and Ophaug (2017) this function was
rescaled such, that the combined geoid model minimized
the fit to GNSS-levelling data in Norway. This way, the
error variance of terrestrial gravity data in Norway was
found to be around .2 mGal/2. The present study is
meant to validate whether this error measure reflects the
representation error of terrestrial gravity data in our study
area, see Eq. (1).

The signal covariance functions required for the compu-
tational steps in Eqs. (1) and (2) are based on the combined

(Tscherning/Rapp and Flury) signal degree variances cl;TR/F

weighted by w2l;terr.
. In addition, we consider that reducing the

GPM-contribution in the remove-step introduces the errors
�l;GPM of the GPM (weighted by wl;GPM) in the low degrees.
Therefore, the final (dimensionless) degree variances are
given by

cl D w2l;terr. cl;TR/F C w2l;GPM �
2
l;GPM (6)

and the signal covariance functions by

CNN . / D R2
LX
lD2

cl Pl.cos / (7)

CNg. / D R�

LX
lD2

.l � 1/ cl Pl .cos / (8)

Cgg. / D �2
LX
lD2

.l � 1/2 cl Pl.cos /: (9)

If block averaging is applied, Pellinen’s smoothing coeffi-
cients ˇl (see Sjöberg (1980) and references therein) are
implemented on the right-hand side of Eq. (9) in either
linear or quadratic form, yielding C Ngg or C Ng Ng, respec-
tively. The other quantities in Eqs. (7)–(9) are earth radius
R .6;378;137 km), normal gravity � .GM=R2/, spherical
distance and maximum spherical harmonic degreeL (here
chosen to be 5,000).

Figure 2 shows the residual signal covariance functions
of geoid heights and gravity anomalies. The expected
variability of the signals accounts for around 40 cm and
18 mGal, respectively. The correlation length of residual
geoid heights and gravity is 0.31ı (around 35 km) and 0.23ı
(around 25 km), respectively. We note that the standard
deviation of the residual (after removing the contribution
from GOCO05s) geoid model NMA2014 in our study
area is 40.6 cm. This fits very well to the formal signal
standard deviation of 39.5 cm and validates our generalized
procedure. The slightly lower formal value might reflect the
fact that it represents the band-pass filtered signal, while the
larger empirical value represents the low-pass filtered signal.
The discrepancy between both signals is the contribution of
the short-scale topography, which, according to Hirt et al.
(2010), accounts for 1–2 cm RMS.

4 Results and Discussion

The error estimates for block mean values of gravity and
geoid heights are shown in Fig. 3. The top row contains error
estimates for gravity in units of mGal, while the bottom row
shows geoid error estimates in units of meter. Error estimates
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Fig. 2 Residual signal covariance functions for geoid heights (black, left axis) and gravity anomalies (gray, right axis)

Fig. 3 Formal error estimate for block mean gravity anomalies (top
row, units are [mGal]) and geoid heights (bottom row, units are [m])
derived from datasets g1 (left column) and g2 (right column). In case of

geoid heights, the color bar is restricted to 18 cm in order to make the
error amplitudes on land visible
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Fig. 4 Formal geoid error
covariances along NW-SE
profiles with origin at an
off-shore station (black line, left
scale) and a station at the coast
(thick gray line, right scale).
Vertical lines indicate correlation
length. Units are in [cm2]
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in the left column are based on dataset g1, those in the right
column on dataset g2. The following conclusions can be
drawn from the figures:

– In all cases, restriction of the input data to land gravity
leads to large errors over ocean areas. There the error
reaches up to about 18 mGal in case of gravity anomalies
(top row) and about 37 cm in case of geoid heights
(bottom row).1 This maximum error amplitude over ocean
areas corresponds to the standard deviation of the residual
signal (see Fig. 2), reflecting the fact, that residual gravity
on land hardly affects gravity field estimation over the
ocean.

– In general, the geoid signal is dominated by longer, the
gravity signal by shorter wavelengths. This is reflected
in the correlation lengths of CNN (� D 0:31ı) and Cgg

(� D 0:23ı), shown in Fig. 2. In consequence, the lack of
information over the ocean does hardly affect block mean
values of gravity on land, even along the coast. This is
different for geoid heights, where boundary effects have
a larger impact on land: in our example they significantly
affect areas to about 50 km inland.

– The errors of block mean gravity anomalies derived from
dataset g1 (upper left panel in Fig. 3) are below 4 mGal,
on average 1.7 mGal (on land). This is close to the empir-
ical error estimate for terrestrial data of 2 mGal as derived
in Gerlach and Ophaug (2017). Thereby, the formal error
estimate of 1.7 mGal reflects the representation error,
i.e., the error arising from the fact that a single point
observation is not necessarily a good representative for its
neighborhood. The representation error depends on the
correlation length of the signal covariance function. The

1Note that the colorbar in the bottom row of Fig. 3 (geoid heights) is
restricted to a maximum of 18 cm to increase visibility of the error
distribution on land. In consequence, the maximum errors of 37 cm are
not represented in the figure.

longer the correlation length, i.e., the smoother the signal,
the smaller is the representation error. The fact that the
formal error is smaller than the empirical estimate may
reflect that the signal covariance function is too smooth,
or that other error sources contribute significantly to the
empirical error. Such error sources could be errors in
GNSS or leveling networks, or errors in the computation
of gravity anomalies, like errors in topographic reductions
or propagation of errors in the coordinates of the gravity
stations (mainly the height component).

– On average, densification of the gravity network reduces
the formal error of block mean gravity values from 1.7 to
1.1 mGal.

– On average, the error of geoid heights derived from
datasets g1 and g2 is around 2.9 and 2.6 cm, respectively.
This fits well to the empirical error of 2.94 cm derived in
Gerlach and Ophaug (2017). If we restrict the evaluation
to the area not significantly affected by coastal boundary
effects, we find from dataset g1 (lower left panel in
Fig. 3) values between 1.1 and 2.9 cm, on average 1.7 cm;
employing dataset g2 (lower right panel) reduces the
errors to 0.5–2.1 cm, on average 1.3 cm. In all cases,
the formal error estimates are below the empirical one,
indicating that the signal covariance functions are too
smooth, or that additional error sources are significant.

– The geoid errors are neither homogeneous nor isotropic,
showing varying amplitudes and correlation lengths
across the test area, in particular when comparing points
over ocean, at the coast, and inland. Figure 4 shows
error covariance functions for two selected examples with
origin (1) in the NW-corner of the computation grid (black
line, left axis) and (2) at the coast (gray, right axis). In both
cases, covariances are provided from the origin towards
SE. Following the interpretation of stepwise collocation
(Moritz 1980), both functions correspond to the original
signal covariance function CNN , see Fig. 2, reduced for
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the contribution of the input data. The off-shore station is
hardly affected by data on land, while signal amplitude
and correlation length are significantly reduced for the
coastal station.

5 Summary and Outlook

We have derived formal error estimates for residual block
mean gravity anomalies and geoid heights from two sets
of input data in a test area along the Norwegian coast. The
formal error estimates prove that the newly acquired data is
capable of reducing the geoid error from around 2 to 1 cm,
in some parts even to 0.5 cm. Error estimates for block-mean
gravity anomalies validate the value of around 2 mGal which
was empirically found in Gerlach and Ophaug (2017).

The formal errors are slightly smaller than the empirical
ones found by comparison with GNSS-leveling in Gerlach
and Ophaug (2017) or Ågren et al. (2016). The level of agree-
ment between formal and empirical errors verifies the basic
assumptions on the spectral signal characteristics and shows,
that the largest error contribution is the representation error.
Remaining discrepancies indicate that there are also other
relevant error sources (e.g., computational errors in gravity
reduction, or data errors in GNSS or levelling networks)
or that the basic signal covariance function may be slightly
too smooth. The residual signal covariance function will be
compared to empirical covariance functions of the residual
gravity field in future investigations.

Data gaps over the oceans reduce geoid quality off-shore
and as far as about 50 km inland. Therefore, further studies
will concentrate on the integration of available shipborne and
airborne data, thus reducing the error variance over ocean
areas and along the coast.
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Geodesy andMathematics: Interactions,
Acquisitions, and Open Problems
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Abstract

The paper highlights arguments that, coming fromMathematics, have fostered the advance-
ment of Geodesy, as well as those that, generated by geodetic problems, have contributed
to the enhancement of different branches in Mathematics. Furthermore, not only examples
of success are examined, but also open questions that can constitute stimulating challenges
for geodesists and mathematicians.
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There is no branch of Mathematics, however abstract, which may
not some day be applied to phenomena of the real world.

Nikolai Ivanovich Lobachevsky

1 Introduction

The paper highlights arguments that, coming from Mathe-
matics, have fostered the advancement of Geodesy, as well as
those that, generated by geodetic problems, have contributed
to the enhancement of different branches in Mathematics.
Furthermore, not only examples of success are examined, but
also open questions that can constitute stimulating challenges
for geodesists and mathematicians.

We perform a general overview, without any pretence of
completeness, of areas like geometry of the gravity field
(GF), boundary value problems (BVP) for the Laplace oper-
ator, Runge approximation (RA), probability theory (in par-
ticular, Generalized Random Fields), and statistics (in partic-

W. Freeden
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e-mail: freeden@rhrk.uni-kl.de

F. Sansò (�)
Politecnico di Milano, DICA, Milan, Italy
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ular integer parameters estimation and rank deficient prob-
lems). In Sects. 6–8 we turn the attention to novel applica-
tions to Geodesy in the context of multiscale approxima-
tion (MA). In fact, multiscale reconstruction and decorrela-
tion methods are a research field originated in geophysics
for, e.g., earthquake modeling some decades ago, in which
today’s Geodesy and Mathematics show mutual influences,
especially on the subject of spectral and space data sam-
pling.

Then we focus the attention on the inverse problems of
Geodesy and their regularization strategies. Two examples
are studied in more detail: Downward continuation of gravi-
tational information to the Earth’s surface via satellite gravi-
tational gradiometry (SGG) is seen to be adequately realized
in the tensorial frequency framework of non-bandlimited
Tykhonov and bandlimited truncated singular value regu-
larization. The inverse gravimetry (IG) problem is shown
to be appropriately regularized by use of space multiscale
mollifiers, to detect fine particulars of geological relevance.

Finally, the authors want to stress again that the choice
of arguments by no means can cover the whole area; it
rather reflects the background of the authors and has to
be taken as illustrative of a general process of interac-
tion between sciences. In addition, neither extreme depth
to explain all facets of the geodetic observational situa-
tion nor penetrative handling of mathematical obligations
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and technicalities can be expected. The paper is just an
“appetizer” served to enjoy the tasty meal “Mathematical
Geodesy Today” to be shared by geodesists and mathemati-
cians.

This notwithstanding, the reader should be warned that a
complete understanding of all sections of the paper requires
a considerable mathematical background, beyond a general
knowledge of many branches of Geodesy.

2 Interactions of Mathematics
and Geodesy

Seen from the historic point of view, one of the most
important contributions to Mathematics is geometry (from
the Ancient Greek �"!�"�%K�˛ geo- “Earth”, -metron
“measurement”). The earliest recorded beginnings of
geometry can be traced to ancient Mesopotamia and Egypt
in the second millennium BC. Early geometry was a
collection of empirically discovered principles concerning
lengths, angles, areas, and volumes, which were developed
to meet some practical need in surveying and various
crafts.

By the third century BC, geometry was put into an
axiomatic form by Euclid, whose treatment, Euclid’s
Elements, set a standard for many centuries to follow. It
brought the heritage of Mathematics from the antiquity
to our time. Some centuries later, the Greeks themselves
replaced the term “Geometry”, which had meanwhile lost
the original meaning of “Earth’s measuring” by “Geodesy”
as a new meaning of an abstract theory of the “Earth’s
shape”, while geometry now reflected the mathematical
rigor through its axiomatic method. In fact, it is the earliest
example of the format still used in Mathematics today,
that of definition, axiom, theorem, and proof. Although
most of the contents of the “Elements” were already
known, Euclid arranged them into a single, coherent logical
framework.

By the early seventeenth century, geometry had been put
on a solid analytic footing by mathematicians such as R.
Descartes (1596–1650) and P. de Fermat (1607–1665). Since
then, and into modern times, geometry has expanded into
non-Euclidean geometry and manifolds, describing spaces
that lie beyond the normal range of human experience.
Hence, while geometry has evolved significantly throughout
the years, there are some general concepts that are more
or less fundamental. These include the concepts of points,
lines, planes, surfaces, angles, and curves, as well as the
more advanced notions of manifolds and topology or met-
ric.

Historians very often use the term “modern” for the period
starting with the Italian Renaissance. (Geo)scientists prob-
ably call I. Newton (1643–1727) the first modern scientist.

The emphasis on a systematic study of the laws such as the
Newtonian approach in “Philosophiae Naturalis Principia
Mathematica” may be regarded as the most obvious char-
acteristic of modern times. It also initiated a new branch of
Mathematics, called analysis, which from its very beginning
is so closely related to Physics and Physical Geodesy, for
example in the field of differential equations, that some
people finds it difficult to say, where Mathematics starts and
Physics ends (see Freeden and Schreiner 2018 for a more
detailed study). So, it may be concluded that one great con-
tribution of Mathematics to modern (geo)scientific progress
is the setting of the pattern for the theories describing the
laws of the real world (“reality”).

Apart from the mathematical aspect of the value of a
theory, there is a practical side to which it is even more
important. Once the theory is recognized to be in accordance
with an experience, it renders the experiment unnecessary.
This, of course, is very important where experiments are not
possible. The best example of a field in which one could
not carry out experiments is possibly Astronomy. So it was
not surprising that a new approach to the features of the
“real world” had its striking success when it was possible to
deduce Kepler’s empirical law on the movements of planets
from Newton’s general law of mechanics. The same concep-
tual development also applies to today’s space research, and
nowadays satellite technology is a field in which experiments
are usual practice. One of the best examples to show the
difference in the emphasis between Physics, Mathematics,
and Geoengineering is gravitational theory which played a
major part in the history of sciences from every angle. In fact,
it is well-suited for investigating different trends in thinking
as represented in various fields of geoscience.

Geodetically reflected potential determination was in a
fortunate position, as the Newtonian theory of gravitation
had already developed a mathematical status, which could
be naturally extended so as to give a complete description
of the laws of this field. As a consequence, potential theory
as the scientific collection of ideas, concepts, and structures
involving Laplace’s equation gained new aspects, and it
was challenged with new problems, of which the boundary
value problems probably are the best known. Potential theory
actually guarantees that if certain values of a potential under
specific consideration are given on the boundary of a closed
body, the potential is determined via the boundary value
problem in the interior or in the exterior (when an additional
regularity condition at infinity is supposed to hold true). This
assertion, of course, has been checked in many experiments
also under geodetic auspices, but naturally it cannot be
verified experimentally in the generality in which it can be
stated mathematically. More concretely, at a stage, where
the theory is regarded as satisfactory from the geophysical
point of view, it is a system of fundamental laws, definitions
and problems, of which some, under certain conditions,
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have been solved mathematically. The problems in their full
generality, however, are given toMathematics as conjectures,
in a sense, to be proved. They become the object of a study
of the well-posedness, i.e., existence, uniqueness, stability
proofs, which therefore aim at establishing the consistency of
the general physical theory. Altogether, the aspects of poten-
tial theory have changed considerably when constituents
could be described by means of Laplace’s equation, just
as scientific tasks arose from the theory of stationary flow,
that indeed uses the same differential equation. It could thus
be observed how new physical applications developed new
aspects of potential theory and the theory of partial differen-
tial equations, primarily originated on geodetic gravitational
developments.

3 Geometry of the Gravity Field

If we think that the beginning of modern geometry could
be identified with the researches of C.F. Gauss (1777–1855)
on curvature of surfaces (Disquisitiones generales circa
superficies curvas) and subsequently with the development
of tensor calculus and related differential forms, there is little
doubt that this history is intermingled with the development
of the concept shape of the Earth (and its cartographic rep-
resentation) which is central in Physical Geodesy and, as we
know, fundamentally related to the form of the equipotential
surfaces of the gravity field.

If Gauss was thinking of Geodesy and mapping as promi-
nent examples of this geometric theories, Geodesy in turn
has been developing its own geometric tools to describe the
gravity field and its observable quantities. Besides matters
concerning the ellipsoidal geometry and related gravity mod-
els (Grossman 1974; Pizzetti 1910; Somigliana 1929), we
could mention the work by Stokes (1867), Bruns (1878),
Helmert (1884), leading to the fundamental definition of
anomalieswith respect to the normal gravity field and several
equations, which populate the first chapters of textbooks on
Geodesy (e.g. Heiskanen andMoritz 1967; Sansò and Sideris
2013; Vaniček and Krakiwsky 1986), like the behaviour of
the gravity vector along a plumbline

rg.P / D .�2gJ C 4�G� � 2!2/n C gkn1 (1)

(g modulus of gravity at P , J mean curvature of the
equipotential surface, � mass density, ! the Earth angular
velocity, k first curvature of the plumbline, n tangent to the
plumbline, n1 principal normal of the plumbline) and the
linearized equation, also known as fundamental equation of
Physical Geodesy

�g D �@T
@h

C 1

�

@�

@h
T (2)

(�g free-air gravity anomaly,h ellipsoidal height, � modulus
of normal gravity, T anomalous gravity potential).

The work has got a mature formulation in books like
“Mathematical Geodesy” by Hotine (1985), and “Intrinsic
Geodesy” by Marussi (1985).

To quote T. Krarup (see Krarup 2006b, p. 53) “The notion
itself of Mathematical Geodesy goes back to Martin Hotine,
who launched it as the title of a formidable book [Hotine
1985] But the concept was born in 1951 with Marussi’s
beautiful paper Fondamenti di Geodesia Intrinseca”. These
authors clearly highlighted that the main role of Geometric
Geodesy was to find suitable coordinates to represent physi-
cal entities related to the gravity field, possibly observable,
and ultimately to formulate the physical laws that can in
principle uniquely determine the unknown potential W on
the Earth’s surface and in the outer space. Certainly belongs
to this area the work done by T. Krarup (see Krarup 1969)
and his definition of isozenithals to arrive at a rigorous
definition of the so-called Vector Molodensky Problem (see
Sansò and Sideris 2013) in a linearized form.

A similar concept applies too, to the work by F. Sansò on
the gravity space approach to Molodensky’s problem (Sansò
1977).

More modern geometric tools have then been introduced
into Geodesy by authors like Grossman (1974), Zund (2012),
and Grafarend (1986, 1975). Maybe it is worth mention-
ing here the discussion, raised by E.W. Grafarend, on the
holonomity of certain coordinates, specially height coor-
dinates, so important in applied surveying. One possible
solution has been found in a rigorous application of the
definition of coordinates, contrary to the interpretation of the
observation equation of levelling in terms of a differential
form, Sansò and Vaniček (2006).

Summarizing, we believe that the main role of geometric
methods in Geodesy is in trying to find suitable coordinates
to express observation equations as well as physical laws, in
particular supporting the analysis of geodetic boundary value
problems.

In such a process one important feature is the capability of
approximating the exact equations with a linearized version.
This always leaves open the question of the degree of
approximation so obtained and of the limits of validity of the
solutions developed when a priori bounds on the errors are
imposed. Just as examples take two classical questions:

– how large can be a leveling network if we treat leveling
increments as orthometric height differentials

ın Š dH ; (3)

before the systematic effects implicit in such an equation
exceed the measurement noise propagated into a compen-
sation practice?
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– how accurate is the fundamental equation of Physical
Geodesy (2) if we use it to estimate local geoid undula-
tions?

Questions like these are often met in geodetic literature
(Seitz and Heck 1993; Sansò and Sideris 2013; Vaniček
and Krakiwsky 1986), but they are often treated by a rough
(sometimes very rough) estimate of the errors, rather than
with a systematic use of simulations and numerical analysis.

So we can formulate the first open question:

OQ1) The aspect of, so to say, numerical geometry is still an
area requiring further investigation by geodesists. In particular, it
would be nice to know, in different geological settings, how large
can be the deflection of the vertical, the curvature of plumblines
and equipotential surfaces on the Earth surface and inside the
topographic masses, by a systematic simulation work.

4 Geodetic Boundary Value Problems
(GBVP)

The history of GBVP’s starts in the middle of nineteenth
century with the miracle of the formulation first and the
solution then of a problem relating gravity anomalies to the
anomalous potential as proposed by Stokes (1867).

The miracle is that, notwithstanding the many approx-
imations implied by moving the gravity values observed
on the Earth surface down to the geoid, approximating the
geoid with a sphere and the direction of the vertical with
the radial direction, one can arrive at something physically
meaningful, i.e., to estimate the geoid undulation with an
error of the order of 1–10m, over 100m of the original
signal.

After one century of chewing forth and back correc-
tions due to topographic masses, more or less complicated
reductions, with the notable contribution by Helmert (1884),
we arrive at the middle of the twentieth century with the
cornerstone work by Molodensky et al. (1960), where the
gravimetric GBVP was recognized as a free-boundary BVP
and an approach to its linearization was attempted.

The exact linearization, in the modern meaning of the
Fréchet differential of a non-linear problem, has arrived with
T. Krarup in his famous letters on Molodensky’s problem
(Krarup 2006a).

The first analysis of the fully non-linear Molodensky
problem has been performed by the great mathematician
(Hörmander 1976). Other more advanced results can be
found in the review paper (Sansò 2018). What is important
here is to underline that meanwhile it was understood that
with an excess of carelessness two different problems were
treated in geodetic literature as if they were the same, namely
the vector and the scalar Molodensky problem (Sansò 2018).
In the former the data are the potentialW jS , and the gravity
vector gjS , given on the unknown surface of the Earth

and the unknowns are S itself (i.e., the three Cartesian
coordinates of its points) as well as the potential W in the
outer space. In the latter data are W jS and gjS , with g the
modulus of the vector g and unknowns are again W , but S
is modelled only as height h above points on the ellipsoid, of
known (horizontal) coordinates.

Nowadays it is the scalar Molodensky problem that is
recognized as “the” GBVP and its linearized form as the
linearized Molodensky problem.

The conceptual role of these (and other) BVP’s in
Geodesy, is in that we need a clear theoretical frame, defining
a limit to which we want that our approximate estimates of
the gravity field would ultimately tend.

The non-linear and the linear problems need to be ana-
lyzed with different tools, so the regularity results obtained
are different. Basically we obtain existence uniqueness and
stability of the non-linear problem for data belonging to
Hölder–Banach spaces, W 2 H1;	; g 2 H1;	; (see F. Sansò
in Sansò and Rummel 1997 and Sansò 2018), and in this case
the unknown boundary S belongs to H1;	; too.

It is maybe worth mentioning already here that results
about the linearized Molodensky problem hold under much
less restrictive conditions. Yet the theorem of existence,
uniqueness and stability of the solution of the non-linear
problem guarantees that under the above conditions of
Hölder regularity a converging iterative solution of the
non-linear problem could be constructed by a sequence
of solutions of the linearized problem.

As for the linear Molodensky problem, we need to be
more specific. For our purposes the following formulation
is convenient. Assume a suitable approximate surface QS to
the Earth’s surface S is given, e.g. the Marussi telluroid (cf.
Sansò and Sideris 2013); S and QS uniquely separate the
Euclidean space R

3 into the inner space B and QB and the
outer space R3n.B [ S/; and R

3n. QB [ QS/; respectively. As
usual, we let B D B [ S; S D @B: Moreover, we assume
that QS D @ QB is a star-shaped surface with equation

x D R QS .
/
„ƒ‚…

Djxj

; 
 2 S

2; S
2 unit sphere in R

3: (4)

Now we are looking for the anomalous potential T in the
outer space R3n. QB [ QS/ of QS satisfying the following BVP

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

�T D 0 in R3n. QB [ QS/;
B.T / D � @T

@h
C 1

�

@�

@h
T D �gC

C
L
P

jD0

2jC1
P

kD1
ajk jk D b on QS

T .x/ D O
�

1

jxjLC2

�

; jxj ! 1:

(5)

The third equation in (5) says that we assume to know
within the asymptotic development of T in terms of spherical
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harmonics, all the harmonic coefficients up to degree L; the
second equation in (5) introduces suitable functions  jk ,
exactly to subtract to the free-air anomaly data, �gjS , the
components of the harmonics up to degree L.

The problem (5) is then transformed into a perturbative
form noticing that the boundary condition can be written as

rT 0 C 2T C .r" � rT � �T / D �R QS �g C
L
X

jD0

2jC1
X

kD1
ajk jk;

(6)

where R QS is the function defined in Eq. (4) and we have
denoted with T 0 the radial derivative @T

@r
: Furthermore,

" D ��� � er .��� ellipsoidal normal,
er radial unit vector)

� D r 1
�

@�

@h
C 2;

 jk D �r jk; r D jxj:

Equation (6) is in a perturbative form because, calling
"C D max j"j � e2.Š 6:7 � 10�3/; �C D max j�j � 2e2,
one has

jDT j D jr" � rT � �T j � r"CjrT j C �CjT j ; (7)

which is a “small” operator when T is assumed (as we do)
to be at least in the Sobolev space H1.S2/ on the boundary,
namely, using an unconventional norm definition,

k T k2
H1.S2/

D
Z

S2

.jrT j2S /.
/ dS.
/ < 1 : (8)

where dS is the surface element. We would like to find a
solution T 2 H1.S2/ under the assumption that the data f D
R QS �g belong to L2.S2/ D H0.S2/, i.e.,

k f k2
H0D

Z

S2

jf .
/j2 dS.
/ < 1 : (9)

To specify completely the problem we need to say
what are the functions f jkg: They are defined as
follows: let u be any harmonic function in R

3n. QB [ QS/;
u 2 H0; moreover, let R be such that the sphere of radius R,
i.e., S2

R
, is totally contained in R

3n. QB [ QS/

S
2

R
� R

3n. QB [ QS/ ; (10)

then we can define the harmonic coefficients

ujk D 1

4�

Z

S2

u.R; 
/ Yjk.
/ dS.
/ ; (11)

where fYjkg constitutes an L2-orthonormal system of spher-
ical harmonics with respect to S

2: It is obvious that ujk
define linear functionals of u 2 H0 and it is not difficult
to prove that they are bounded linear functionals (Sansò
2018).

So, by the Riesz theorem, there must be f jkg such that

h jk; uiH0 D ujk: (12)

One can easily prove that f jkg are linearly independent
and, in fact, they form a bi-orthogonal system with the solid
(outer) spherical harmonics

8

<

:

1

4�

 

R

r

!jC1
Yjk

9

=

;

; (13)

namely

1

4�

*

 jk;

 

R

R QS

!`C1
Y`m

+

H0

D ıj ` ıkm; (14)

as one can see by combining (11) and (12).
At this point one can proceed with the analysis by a

perturbative approach, namely first neglecting the term DT

in (6), what leaves us with the so-called simple Molodensky
problem, and then showing that, if the perturbation is small
enough, then also the original problem has one and only
one solution in H1.S2/. So we are left with the following
Proposition, the proof of which can be found in Sansò (2018).

Proposition 1 Let QS be star-shaped with R QS be a Lipschitz
function given by (4), and f D R QS�g 2 H0.S2/, then there
is one and only one solution of (5) if the maximum inclination
of QS with respect to er ; IC.cos I D er � n, with n normal to
QS), satisfies the inequality

IC� arccos

0

B

@

3:0662.0:0044C 4
2LC5

/

�0:0068C
q

0:00682 C 3:0662.0:0044C 4
2LC5

/

1

C

A :

(15)

In (15) we have used the estimates

"C � 0:0067; �C D 0:0136;

and

maxR

minR
� 1:0043 :

The result seems to be acceptable, if we consider that
already fixing L D 24, (15) says that the maximum incli-
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nation IC should not be larger than �60ı. As a matter of
fact, we know quite well the harmonic coefficients of T up to
degree 24 and so the answer given by the above proposition
is at least realistic. Yet it is not satisfactory on a theoretical
ground. In fact, it is the L2-theory developed that forces us to
put the constraint (15) on the maximum inclination IC. On
the other hand it would be much nicer if we could develop an
Lp-theory in such a way that a constraint of the form

1

4�

Z

S2

1

.cos I .
//˛
dS.
/ D O.1/ (16)

could represent for some ˛ > 1 a sufficient condition for
existence and uniqueness of the solution. In fact, we know
that cos I can become small in rugged parts of QS , which
however cover a small area of the globe.

So the following open question becomes natural:

OQ2) Is it possible to develop an Lp quantitative theory of the
linearized Molodensky problem in such a way that existence
and uniqueness of the solution would depend on a sufficient
condition of the form (16), for some exponent ˛ > 1?

Another interesting remark is as follows. In the very
successful estimation of global gravity models, in the form
of a truncated series of spherical harmonics, (see Pavlis
2103), complete up to a high degree (at present 2159, but
probably up to a higher degree in next future), an original
method has been devised which has been called the change
of boundary method and formalized in Sansò and Sideris
(2013).

In short, the method consists in pullbacking the data from
the present boundary to an internal surface, e.g. a (Runge)
Bjerhammar sphere or the Earth’s ellipsoid; solving the BVP
for such a surface and computing the residuals (errors) at the
level of the current surface; pullbacking the residual to the
internal surface and so forth, iteratively.

The method is not standard in Mathematics and so it
requires some analysis as for the question of its convergence.
A perturbative argument has been recently presented in
Sansò and Sideris (2017), yet the question in its general form
is still open:

OQ3) Is the change of boundary method convergent, at least for
models of finite maximum degree?

In the geodetic approach to boundary value problems,
as in other scientific fields, the purely mathematical aspect
is met by the geodesist’s need for sufficiently handling a
great number of applications, which are generally more
complicated than the typical cases in which the physicists
verified this theory. It is, for instance, certainly not enough
for geodetic boundary value problems to be able to calcu-
late the “geopotential” for spheres and ellipsoids, but more
complicated bodies (e.g., the geoid, telluroid, and/or the real
Earth provided by GNSS-technology) must be taken into

account. The boundary value problem, which provides a
mathematical apparatus of these questions, therefore, is not
only a purely mathematical subtlety, but also a problem of
great practical importance.

As an example, in the theory of harmonic functions
related to “potato-like” surfaces (such as S or QS ), a result
first motivated by Runge (1885) in complex analysis and
later generalized, e.g., by Walsh (1929), Vekua (1953), and
Hörmander (1976) to potential theory in three-dimensional
Euclidean space R3 is of basic interest for geodetically rele-
vant questions see, e.g., Bjerhammar (1962), Krarup (1969),
Moritz (1977, 1989, 2015), Sansò (1982), Grafarend (2015),
and the references therein. In fact, the “Runge approach”
as proposed in Freeden (1980), Freeden and Mayer (2006)
may be used to solve the linear Molodensky problem in the
following way:

Let fHng be a system of harmonic functions in the outer
space of S2R with L2-completeness property of fHnjS2Rg on a

Bjerhammar (Runge) sphere S2R (i.e., the outer space of S2R
totally contains R

3n. QB[ QS/ and dist.S2R; QS/ > 0). As exam-
ples, conventional solid (outer) spherical harmonics, outer
ellipsoidal harmonics, certain buried mass point systems,
harmonic spline and spline-wavelet systems may be chosen
(for more details see, e.g., Freeden and Gerhards 2013). By
orthonormalizing fBHng on the boundary surface QS D @ QB
we obtain a new system fH�

n g of harmonic functions in the
outer space of S2

R
with fBH�

n g complete and orthonormal on

the boundary surface QS D @ QB: As a consequence, we get

lim
N!1 k

N
X

nD0
hBH�

n ; biL2. QS/BH
�
n � bkL2. QS/ D 0 (17)

and

lim
N!1 k

N
X

nD0
hBH�

n ; biL2. QS/H
�
n � T kC.0/. / D 0 (18)

for every  � R
3n. QB[ QS/with positive distance of @ from

QS: In other words, L2-convergence to the boundary values
on the boundary values on the boundary QS implies uniform
convergence to the solution, in particular on compact subdo-
mains of the outer space R3n. QB [ QS/:

It is remarkable that the Runge approach allows the
calculation of gravitational quantities such as the disturb-
ing potential T with respect to arbitrary telluroids, just by
suitably operating with spherically based equipment such
as multipoles (i.e., solid (outer) spherical harmonics). We
are able to avoid, e.g., ellipsoidal outer harmonics, which
are much more difficult to handle numerically. The price
to be paid are multivariate definite integration procedures
over surfaces QS (cf. Freeden and Gutting 2017) and an
orthonormalization process, for which, however, powerful
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rules are available today (see, e.g., Freeden and Gutting 2017
and the references therein). Nonetheless, the following open
questions arise naturally:

OQ4) Is it possible to get a better numerical efficiency by
combining appropriate trial systems, for example, to use outer
spherical harmonics for a trend solution and to continue with
mass points, harmonic splines, harmonic spline-wavelets for the
modeling of more detailed signatures? What is the right upper
limit N to stop the whole solution process?

Many other items in the geodetic BVP theory would merit
attention, yet it is time to pass to another argument.

5 Probability Theory and Statistics

This is a very large branch of Mathematics, with an origin
again historically related to Geodesy. May it be sufficient to
mention the Gaussian distribution and its relation to the error
theory and the subsequent development of the least squares
method. Nor, we could refrain, in this context to mention the
name of Markov regarding the problem of optimal estimation
and all the large geodetic literature that has followed its trail,
from the germinal paper by H. Moritz on “least squares”
(Moritz 1972), to the comprehensive book of Grafarend and
Awange (2012) on linear and non-linear models.

Given the widespread of this matter, we will concentrate
on three arguments only, leading to interesting open ques-
tions. The three items are:

(a) generalized random fields and BVP’s,
(b) collocation theory and non-isotropic random fields,
(c) integer estimation theory.

(a) Generalized Random Fields and BVP’s We have
uniquely identified the gravity field, exterior to the Earth’s
surface S , by means of observations performed on it, e.g.
gravity and potential observations. This has led us to the
formulation of BVP’s, where boundary data are derived
from measurements and therefore they must be considered
as samples from a random field (RF). When the errors are
small, we can work in the regime of the linearized theory
and in general we have to solve a problem of the form

Bu D v on QS (19)

for instance with v 2 L2.S/ and u 2 H1.S/ (u harmonic in
the outer space of S ) as for the linear Molodensky problem
treated in Sect. 4. Notice that we skip the part of boundary
equation depending on the unknown constants faikg because
they are finite in number and clearly inessential to the present
reasoning.

Now the point is that if instead of v we have an “observed”
RF

v0 D v C � (20)

with � a field of random disturbances, the problem (19) has
to be substituted by

Bbu D v0 D v C � (21)

and its solution, whatever it is, will be a random estimator of
u.

When � is a sufficiently smooth RF, so that its samples
belong to H0 almost surely, then we know what it means
to solve (21). In fact, if we call M the Molodensky solver,
namely

M D B�1 I H0.S/ ! H1.S/ (22)

we can simply put

bu D Mv0 D Mv CM� D u C " (23)

and all that has a clear meaning.
In particular, we can sample ! from an abstract probabil-

ity space .˝;A; P / and build the chain

! ! �.!/ ! bu D u CM�.!/

sample sample noise sample solution

and from the statement �.!/ 2 H0.S/ with probability 1,
we deduce thatbu 2 H1.S/ with probability 1, namely it is a
sample from a RF with realization inH1.S/.

All that is elementary, yet the reasoning is not able to
cover maybe the most important case of noise, namely the
Wiener white noise (WWN). In other words, how can we
define a solution of (8) when � is a WWN, which is well-
known to have sample fields that do not belong to H0.S/?

A natural idea, when we have to deal with an equation
with a very irregular known term, is to put it in a weak form,
so that the irregularity can be let off in the coupling with a
smooth test function.

These are basically the ideas that led to the definition
in particular of the Wiener integral (Lamperti 1977), and
more generally to the concept of generalized random field;
on this argument our reference is the work of Rozanov
(1998), a great mathematician of Kolmogorov’s school that
has contributed to geodetic literature, too (based on these
concepts, the field of stochastic differential equations has
also seen tremendous progress in Mathematics during the
last years, see, e.g., Grothaus and Raskop 2018 as a point
of entry).

Definition 1 Let X be Hilbert space with elements fxg and
norm k x kX ; let P D .˝;A; P / be a probability space
and L2.˝/ the Hilbert space of random variables ff .!/g,
defined on P with norm

k f k2L2.˝/D Eff .!/2g I (24)
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a generalized random field F on X is a bounded linear
operator from X into L2.˝/

F .!I x/ D f .!/ (25)

k F .!I x/ kL2.˝/Dk f .!/ kL2.˝/� c k x kX I (26)

to sightly simplify matters, we will assume that each of the
random variables fF .!I x/g has zero mean.

From Definition 1 the following proposition can be easily
derived.

Proposition 2 There is a bounded, positive, selfadjoint
operator C W X ! X , such that

k F .!I x/ k2L.˝/D EfF .!I x/2g D hx; CxiX I (27)

We shall always assume that C is strictly positive so that the
statement that F is into L2.˝/ in the above Definition is
justified; in fact, in this case from F .!; x/ D 0, we deduce
that x D 0.

Remark 1 The GRF, F , in general cannot be onto L2.˝/;
rather we can have that the set

L2X D fF .!I x/; x 2 Xg (28)

is a closed subspace of L2.˝/ if C � c0I > 0, if suitable
conditions are satisfied.

Example 1 A WWN on S is a GRF, N.x/, on L2.S/ with
covariance operator

C D 
2I I (29)

namely N.x/ is a WWN if

EfN.x/2g D 
2 k x k2
L2.S/

D 
2
Z

t2S
x2.t/ dS.t/ ; (30)

with t some coordinate system on S for the purpose of
integration.

Notation 1 Although in general there is no element F .!/ 2
X , that can represent (25) as a scalar product with x, yet by
analogy with integral kernels, we write

F .!I x/ D hF .!/; xiX I (31)

we stress that (31) is just a symbol and does not mean that
F .!/ 2 X .

For instance, in case of a WWN on S , we write

N.!I x/ D hN.!/; xiL2.S/ D
Z

t2S
N .!I t/ x.t/dS.t/:

(32)

The first integral in (32) is precisely a Wiener integral, what
does not imply that N.!I �/ 2 L2.S/.
Remark 2 Let us notice that, as proved by the example of
WWN, the GRF, F .!I x/, in general has not realizations in
X , in which case (31) could be written in the ordinary sense,
sample by sample. Nevertheless, such a circumstance is not
impossible. One can prove for instance that, if

T r C < 1 (33)

then the realizations of F .!; t/ are in X with P D 1, so that
(31) becomes almost surely a veritable scalar product, and
we can write

F .!I x/ D hF .!; t/; x.t/iX : (34)

In other words, (31) is a real generalization to GRF’s of (34),
which holds for ordinary RF’s with realizations in X .

We follow the same scheme of the above remark, to
generalize the notion of the application of an operator A W
X ! Y to a GRF on X .

So let A be a given continuous linear operator, X ! Y ,
which is into and onto, so that there is a continuous linear
operator A�1 W Y ! X (see Yosida 1980). This implies that
the equation

y D Ax ; y 2 Y (35)

has one and only one solution x 2 X ,

x D A�1y ; x 2 X : (36)

Now assume that a GRF, U , is given on X , which is
also an ordinary RF with realizations in X ; this means that
k u.!/ k2X is bounded a.s., and we further assume that its
average is bounded too, which is equivalent to assume that,
for U , (33) holds. Then we can define ! by !

V .!/ D AU.!/ ; V 2 Y a.s. (37)

Notice that we can subsequently write for all y 2 Y

hV .!/; yiY D hAU.!/; yiY D hU .!/;AT yiX I (38)

since AT is a bounded operator Y ! X , we see that in fact
(37) generates a GRF, V , on Y because

EfhV .!/; yi2Y g D EfhU .!/;AT yi2X g � (39)

� Efk U .!/ k2X g k AT y k2X� c k y k2Y :
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Therefore, with such smoother RF’s, we can rewrite (37) in
the form

V .!Iy/ D hV .!/; yiY D hU .!/;AT yiX D U .!IAT y/ :
(40)

We use (40) to define the application of the operator A to
a GRF, V .

Definition 2 We say that, given U , a GRF on X , the GRF
on Y , AU is defined by

V D AU , V .!Iy/ D U .!IAT y/ (41)

for all y 2 Y .

This allows to prove a Lemma of general equivalence
between deterministic linear equations and corresponding
stochastic linear equations, in the framework of GRF’s the-
ory.

Lemma 1 (The General Equivalence Lemma) Let a lin-
ear deterministic equation be established in the form (35)
with the operator A sending X into and onto Y ; then, given
any GRF, V on Y , we can find one and only one GRF, U on
X , such that

V D AU I (42)

in fact, U .!I x/ is given explicitly by

U .!I x/ D V .!I .AT /�1x/ : (43)

Proof The proof is elementary and amounts to verifying that
(43) is equivalent to (41). ut

At this point we have available a general rule that gives a
meaning for instance to the solution of stochastic BVP’s even
when boundary data contain a WWN. This approach, thanks
to its generality supersedes previous ad hoc analyses like in
Rozanov and Sansò (1997), and Sansò and Rozanov (2003).

So, we could say that in this branch Geodesy and Mathe-
matics have been working hand in hand, with good results.
But this is just the beginning of the story, because our
problems are mostly non-linear and, even more, our GBVP
is a free BVP. Therefore, a hard difficult theoretical open
question is now in front of us.

OQ5) Is it possible to define a stochastic BVP with random
boundary? How can we find solutions?

Just to show that such a question is difficult, but not
impossible, we build a very elementary example.

Example 2 We assume that the family of possible bound-
aries is just that of spheres S2R, with R a random variable,
distributed on the positive axis. Furthermore, we consider a
family of purely radial potentials, namely

u D M

r

withM again a positive RV, independent of R. The “geode-
tic” BVP in this case would be: GivenW D M

R
and g D M

R2

(obviously two RV’s), to find R and the potential u agreeing
with W on S2R. In such an elementary context the solution is
just algebraic, namely

R D W

g
;

M D W 2

g
;

u D W 2

g

1

r
:

Notice that, due to the overwhelming simplicity of the
example, one characteristic of the solution is lost. Namely,
the third of the above relations should be more correctly
written in a conditional form, as

ujr�R D W 2

g

1

r
I

in fact the u so found has to be harmonic only outside the
random S

2
R. In this particular case r 7! 1

r
is in any way

harmonic down to the origin and so the above statement
has little relevance, nevertheless in a realistic case where the
surface S is not a sphere, and u cannot be continued to the
origin, the RF u should be harmonic conditional on S . In
other words, in general there is not a unique linear space to
which u has to belong.

(b) Collocation Theory and Non-isotropic RF’s Colloca-
tion theory is certainly a notable contribution of Geodesy
to mathematical approximation theory, in the framework of
harmonic fields. This theory has been developed from the
Sixties of the last century, stretching from two different
approaches: one stochastic, byMoritz (1989), the other deter-
ministic, by Krarup (1969). In some way the two approaches
reflect respectively the approach of Kolmogorov (stochastic)
and that of N. Wiener (deterministic) to the problem of
filtering and prediction of stochastic processes, with the due
differences because in collocation theory we treat fields and
not functions of time, and in addition our fields have to
possess the harmonic property in the set wheremeasurements
can be performed and predictions are required.
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This is the reason why in Geodesy we often speak of the
Wiener–Kolmogorov theory. The two approaches have been
proved to be equivalent on a rigorous mathematical ground
(see Sansò 1986). The basic hypothesis is that the anomalous
potential T is a GRF on a Hilbert space,H.O/, of functions
harmonic in the outer domain O ; T is assumed to have zero
mean, EfT g D 0. This means that, for all h 2 H , which
we can view as a linear functional on H itself by the Riesz
representation formula

L.k/ D hh; kiH ; (44)

we can as well define a RV 2 L2.˝/ by (recall the discussion
on notation and Eq. (31))

L.T / D hT ; hiH D T .h/ 2 L2.˝/ ; (45)

and a covariance operator C such that

EfL.T /2g D EfT .h/2g D< h;Ch >H : (46)

The problem we have to solve is then as follows: Given
a certain number of input data with (linear) observation
equations

V D L.T / D T .h/ D hT ;hiH ; (47)

.L D fLi g; h D fhi g; i D 1; : : : ; N ;

observation functionals)

we want to predict another functional

U D L0.T / D T .h0/ D hT ; h0iH : (48)

The RV are all in L2.˝/ and their covariance–
crosscovariance structure is given by

CUU D hh0; Ch0iH (49)

CUV D hh0; ChT iH ; CV V D hh; ChT iH :

The optimal linear predictor of U given V is just the
L2.˝/ orthogonal projection of U onto the linear space
spanned by the vector V , i.e. f�T V I � 2 RN g. This is well-
known from the theory of ordinary linear regression and it is
given by

bU D CUV C
�1
V V V (50)

with a prediction error E2

E2 D CUU � CUV C
�1
V V CV U : (51)

Now assume that H.O/ has a reproducing kernel K ,
namely that for all h 2 H.O/

h.t/ D hK.t; �/; hiH I (52)

this certainly happens with Hilbert spaces of harmonic func-
tions for all t 2 O . Yet, if the traces on S of functions in
H.O/ are regular enough, (52) has to hold for all t 2 S .
Let us recall that by definition a reproducing kernelK.t; �/ 2
H.O/; for all t 2 O , and it is bounded, namely

jK.t; t 0/j2 D jhK.t; �/;K.t 0; �/iH j2 �k K.t; �/ k2H � k K.t 0; �/ k2H
D K.t; t/ K.t 0; t 0/ � a2 : (53)

In this case T .!Ih/ has pointwise “values”, namely

T .!IK.t; �// D T .!I t/ 2 L2.˝/ (54)

because

k T .!IK.t; �// k2L2D hK.t; �/ ; CK.t; �/iH2.O/ (55)

� c hK.t; �/ ; K.t; �/i D c K.t; t/ I

given (54) any sample from T .!I t/ is almost surely finite,
and so we could say that T is an ordinary RF. When this
happens, we can compute a very important function which is
called the covariance function of the RF, T ; namely

C.t; t 0/ D EfT .!I t/T .!I t 0/g (56)

D EfT .!IK.t; �//T .!IK.t 0; �/g
D hK.t; �/; CK.t 0; �/iH :

It is clear that C.t; t 0/ uniquely identifies the operator C .
In particular, with the help of the covariance function we
can conveniently rewrite (50), adopting Krarup’s notation;
namely for any two functionals Li ; Lk we write

.Li /t f.Lk/t 0C.t; t 0/g D EfT .hi /T .hk/g (57)

D EfLi.T /Lk.T /g D C.Li ; Lk/ :

Then we have

bUD1L0.T /D
N
X

i ;kD1
C .L0; Li /fC.LiLk/g.�1/Lk.T / I (58)

similarly we can rewrite (51) as

E2 D C.L0; L0/ �
N
X

i ;kD1
C .L0;Li /fC.Li ;Lk/g.�1/C .Lk;L0/
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The above formulas are suitably modified when we have
observational models containing a measurement noise (see
Sansò and Sideris 2013), which is analogous to smoothing
methods in spline theory (see. e.g., Freeden 1981).

Up to here the linear prediction problem seems to be
solved by a computational algorithm; yet a crucial point
is that we assumed to know C , namely the covariance
function C.t; t 0/. We know that C.t; t 0/ has to satisfy certain
properties: namely it has to be continuous, symmetric and
positive definite, i.e. all matrices of the kind fC.Li ; Lk/g
have to be positive definite for all choices of (admissible)
functionals fLi ; i D 1 : : : N g and for all N .

Furthermore, as one can see from the definition (56),
C.t; t 0/ has to be harmonic in t ; t 0 2 ˝ . But the specific
shape of C depends on T , of which we have at most one
realization, in fact even less, only a certain finite number of
observations. We are here in front of the same dilemma that
in signal analysis for stochastic processes has been solved by
the so-called hypothesis of stationarity of the signal. This is
basically the assumption that the signal is self-similar under
the group of translations of the time axis. The analogous
assumption used in Geodesy is that T has to be self-similar
under the group of rotations; namely the stochastic parameter
! in this case is just constituted by proper rotations ofR3 and
the probability model is a uniform distribution on the rotation
group (see Moritz 1989 and Sansò 1986).

This forces the harmonicity domain to be the exterior of
a sphere, because the domain has to be invariant too under
rotations. Furthermore, it is not difficult to see that C.t; t 0/
has to assume a peculiar form, namely

C.t; t 0/ D C. t;t 0 ; rt ; rt 0/ (59)

where rt ; rt 0 are the distances of t ; t 0 from the origin and  t;t 0
is the spherical angle between the directions of t ; t 0. All such
hypotheses can be summarized by saying that we assume T
to be an isotropic RF.

When we have enough data reduced to the same sphere,
we have practical formulas to estimate discrete values of
what is called the empirical covariance function, which is
then interpolated by a suitable model taken from a family
of positive definite functions (Tscherning and Rapp 1974;
Tscherning 2013).

The fit of this interpolation is usually not very tight,
nevertheless we have a theorem showing that there is a
low sensitivity of the collocation solution (58) to estimation
errors in the covariance, so the method works and has a
wide range of applications, for instance in estimating geoid
undulations from gravity anomalies (see Tscherning 2013).
Nevertheless, the actual anomalous gravity field of the Earth
is not isotropic. There are areas like the Himalaya, the Andes,
the Alps or oceanic subduction zones that have a heavy gravi-
tational signature, drastically different from surroundings, so
that the idea of a statistical similarity moving them randomly

on the sphere does not carry at all. Therefore the above theory
is usually applied only on reduced parts of the sphere and by
first applying a number of reductions to the data, for instance
subtracting the influence of topographic masses (see Sansò
and Sideris 2013).

Nevertheless, take the case of two neighbouring areas
of size 10ı � 10ı, such that for each of them a reasonable
isotropic covariance function can be estimated, so that the
above collocation formulas give good results, but the two
covariances are different from one another. At this point, the
prediction of the field along the border will display an ugly
signature.

Even more, if we have many areas close one to the
other, for which individual covariances are worked out, the
prediction of the field will have a very patchy pattern which
is clearly an artifact of the algorithm rather than a physical
property.

So the question arises as to whether it is possible to
create a unique covariance model, keeping the fundamental
positive definiteness property, that however is changing form
area to area. In particular, the amplitude and the width
(correlation length) of the covariance function are slowly but
continuously changing, and the problem arises on how to
perform the interpolation for such models.

Some work has been done for general RF in R
1 and R

2

(see Migliaccio et al. 1998; Darbeheshti and Featherstone
2009), but disregarding completely the harmonicity property.

This is an interesting open question, concerning non-
isotropic harmonic RF’s.

OQ6) Is it possible to find a non-isotropic covariance model with
slowly varying amplitude and correlation length, still keeping the
harmonicity of the covariance? Is it possible that maybe the case
of multiresolution functions (spherical wavelets, as presented in
Freeden et al. 2018a) could solve this problem?

(c) Least Squares with Integer Parameters Statistics is
a scientific area where Mathematics and Geodesy have got
a parallel and entangled development, with Geodesy from
times to times surpassing Mathematics. Indeed this is not
surprising, given that Geodesy is a science so heavily based
on measurements.

This statement certainly applies to least squares theory,
in particular regarding the rank deficiency problem, with the
implied concept of generalized inverse of matrices, proposed
by Bjerhammar (1973) (on the basis of the work by Moore
1935 and Penrose 1955), leading to an impressive mathemat-
ical monograph by Nashed (1976). Something similar could
be maintained for the introduction of statistical inference in
Geodesy, by the work of Baarda (1967).

Similarly one has to mention the research on rank defi-
cient estimation problemswhich has formally engaged statis-
ticians (Rao 1965), but is central to Geodesy where we want
to estimate point coordinates and on the same time define
a reference system (Grafarend and Awange 2012; Dermanis
and Sansò 2018).
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One particular field that Geodesy shares with e.m. signals
transmission theory is the problem of estimating integer
parameters that has become very important after the advent
of GNSS tools for point positioning. In reality the problem
was present much before in Geodesy in the application of
e.m. equipments to measure 3D distances. Although that
problem was solved by a satisfactory approach to the treat-
ment of phase observations, yet the underlying idea has
been inherited in the era of GNSS for the combination of
code and phase observations, in a way that has generated a
certain confusion that only in recent years is getting a clear
theoretical setting.

We start with an example that can be used to show what is
the effect of “fixing” an integer parameter on an estimation
problem; the example can then be adapted to two different
cases: that we are measuring a distance by a distance meter
working with two wavelengths, or that we are measuring a
pseudorange by a GNSS receiver, with one code and one
phase observation.

Example 3 The mathematical model we have in mind is
done of two observation equations

�

Y1 D x C"1;
Y2 D x �N� C"2 (60)

by hypothesis we assume " D Œ"1"2�
T to be a Gaussian

random variate, the error part, with zero mean and covariance

C" D
ˇ

ˇ

ˇ

ˇ


21 0

0 
22

ˇ

ˇ

ˇ

ˇ
: (61)

The model (60) seems to be linear in the couple .x;N /
and in fact it is, if you assume .x;N / 2 R

2; nevertheless,
if you restrict the domain of parameters to R � Z (Z the set
of integers) the problem of estimating .x;N / is not anymore
linear and it requires some stricter analysis. In fact, if one
thinks of using a Maximum Likelihood (ML) criterion, due
to the hypothesis of normality of ", the problem is translated
into a least squares form, namely

(

.bx; bN/ D argminQ.x;N I Y1; Y2/;
Q.x;N I Y1; Y2/ D .Y1�x/2


21
C .Y2�xCN�/2


22
:

(62)

If you consider for one moment the same problem as (62)
on R2, you know that the solution is given by

�

xfl D Y1;

Nfl D 1
�
.Y1 � Y2/ (63)

the so-called floating solution.

The covariance of this solution is given by

Cfl D
ˇ

ˇ

ˇ

ˇ

ˇ


21

21
�


21
�

1
�2
.
21 C 
22 /

ˇ

ˇ

ˇ

ˇ

ˇ

: (64)

If we put

� D xfl � x;
� D Nfl �N

and substitute in (62), we find after some boring but elemen-
tary algebra, that (62) can be rewritten as

Q.x;N I Y1; Y2/ D Q.xfl; Nfl I Y1; Y2/CQ.�; � I Y1; Y2/
(65)

with

Q.�; � I Y1; Y2/ D Œ� ��C�1
fl

�

�

�

�

: (66)

In our example

Q.xfl; Nfl I Y1; Y2/ D 0

because .xfl; Nfl) satisfy exactly (60), which is not the gen-
eral case when we start from an overdetermined problem.
Moreover, (65) is verified by no means by chance, but it is
just a consequence of a well-known theorem of orthogonal
decomposition of the residuals in least squares theory (Koch
1988). So our problem now becomes to find

min
�2R ;�2NflCZ

Q.�; � I Y1; Y2/ : (67)

This can be achieved in two steps: First we find the value �� ,
which solves the minimum problem

min
�2RQ.�; � I Y1; Y2/ ;

then we substitute �� in Q and we look for the minimum of
this new function of �. It results

Q.��; � I Y1; Y2/ D �2


21 C 
23
�2 D .Nfl �N/2


2Nfl

: (68)

Now it is clear that the ML estimator, i.e. the minimizer
of Q, is just the integer closest to Nfl, we could call it the
round-off of Nfl, namely

NML D Nr D ŒNfl� : (69)
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Nr- N

N fl- N

2

1

1.5 –1 0.5 0.5 1 1.5 2 2.5

–1

Fig. 1 The plot of the function Nr.Nf ` � N/; note that Nr.Nfl/ D
Nr.Nfl �N/CN

To understand the result it is important to notice that Nfl

is a real Gaussian variate with mean N and variance 
2Nfl
,

i.e. Nfl D N C 
flZ with Z a standard normal; hence Nr is
a discrete variable, the distribution of which can be easily
derived considering that Nr.Nfl/ is the staircase function
represented in Fig. 1

In fact, if N � 0:5 < Nfl < N C 0:5 we have Nr D N ,
if N C 0:5 < Nfl < N C 1:5 we have Nr D N C 1, and so
forth.

Accordingly, we have

P fNr D N g D P

�

jZj < 0:5


fl

�

D P0 ;

P fNr D N ˙ 1g D P

�

0:5


fl
< Z <

1:5


fl

�

D P1 :

As we see, the distribution of Nr is symmetric aroundN ,
i.e. N is its mean and the variance will be written as


2Nr D 2

C1
X

kD1
k2Pk D 2.1 � P1 C 4 � P2 C : : :/ (70)

To conclude the example it is necessary to compute the
estimator xML as well; this is more easily done by going
back to (60), estimatebx.N / for every N and then substitute
N with Nr . The result is

xML D 
22 Y1 C 
21 .Y2 CNr�/


21 C 
22
; (71)

namely the weighted average of Y1 and Y2 C Nr�. It is
easy to see that EfxMLg D x so that xML is an unbiased
estimator of x; however, to compute the variance of xML is a
more difficult exercise due to the non-linearity of the function
Nr.Nfl/ D Nr.Y1; Y2/, specially whenP0 is close to 1 but not
so close as to decide that one can put P1 D P2 D : : : D 0,
i.e. ultimately 
Nr D 0 (see (70)).

If we take this last choice we have the so-called “fixed”
solution Nfix, where N now becomes just a constant so that


.Y2 CNfix�/ D 
.Y2/ D 
2 : (72)

Before we apply the above reasoning to different
numerical and physical situations we notice that, when

2 	 
1, as we shall assume, (71) simplifies to

xML � Y2 CNr� : (73)

Now we apply what we have learnt to two different
contexts: distance meters, GNSS positioning.

Distance Meters Assume that by combining different wave-
lengths we can produce a first wave with wavelength longer
than 1 km and a second one with wavelength � D 10m.
Then, if we know a priori that x < 1 km, the first equation
of (60) can represent (with a very simplified model) the
observation of the distance with


1 D 10 cm ;

while the second of (60) can represent the observation of the
distance, with a hypothesized standard deviation


2 D 1 mm :

In this case (64) tells that


2.Nfl/ D 1

�2
.
21 C 
22 / Š 
21

�2
D 10�4 ;

i.e., 
.Nfl/ D 10�2 and

P0 D fjZj < 0:5


.Nfl/
g D P fjZj < 50g :

By exploiting the approximation

P.Z > L/ < e� L2

2 P .Z > 0/ D 1

2
e�L2

2 (74)

one immediately sees that

2.P1 C P2 C : : :/ < e�1250 � 10�542 ;

namely such a small number that justifies the assumption

P0 Š 1 ; 
.Nfix�/ Š 0 :

The statement holds too with a more precise justification
from (70). In this case the use of Nr D Nfix and the
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conclusion


.xML/ Š 
.Y2 CNfix�/ D 1 mm

is quite reasonable.
However, if one repeats the same reasoning with the same


1 and 
2 as above, but � D 1 m, one finds 
Nfl D 10�1 and

P fjZj > 0:5

Nfl
g D P fZ > 5g < e�12:5 Š 4 � 10�6 :

With the help of (70) and P1 � 4 � 10�6 one finds


.Nfl�/ � 2 mm

so that the simple relation 
.xML/ � 
2 cannot carry any
more.

GNSS Positioning Again with a lot of simplification, one can
take the first of (60) as a code observation, with for instance


1 D 15 cm ;

and the second as a phase observation, with


2 D 1 mm I

moreover, for an L1 career,� Š 20 cm. In this case


.Nfl/ D 
1

�
Š 0:75

and one can more precisely compute

P0 D 0:4972 ;

P1 D 0:2286 ;

P2 D 0:0200 ;

P3 D 0:0013 I

the remaining probabilities can be safely put to zero. In this
case one reckons


.Nr�/ � 18 cm

showing that the term Nr� is giving by far the largest
contribution to 
.xML/.

Even if we assume to have a very precise code, like the
nowadays available L2C code, with an sqm of say 
1 �
33mm, by repeating the above computation one gets


.Nr�/ � 93 mm ;

showing that one cannot take Nr as constant and ignore the
term Nr� in the variance propagation.

The lesson we learn from this extremely simplistic exam-
ple, is that specially in GNSS positioning, the assumption
that the estimated integer N can be considered as constant
is very dangerous and misleading, as for the accuracy of the
estimate xML. Ultimately this is the effect of the choice of
using a test (yes or no) to fix N ; this leads, depending on the
significance parameter ˛, to a correct conclusionmany times,
as for the estimate of the coordinates, but to a large error in
them in a few cases.

The analysis of a more realistic, yet simplified, model for
GNSS positioning can be written in the form of observation
equations as

Y D Ax C BN C " ; (75)

with x 2 R
n a vector of coordinates and other parameters

and N 2 Z
N a vector of integers. This case runs exactly

along the same lines as in the example. We first compute a
floating solution .xfl ; N fl/ byminimizing the quadratic form

Q.x;N I Y / D .Y �Ax � BN /T ˙�1
" .Y �Ax � BN /

(76)

considering N just a continuous vector in R
N . Then the

floating estimates .xfl;N fl/ will have a covariance matrix,
Cfl, given by

Cfl D
�

ATWA ATWB

BTWA BTWB

��1
;W D ˙�1

" : (77)

By using the formula for the partitioned inverse of a
matrix, we know then that

CNfl D ŒBTWB � BTWA.ATWA/�1ATWB��1 D  �1

or

C�1
Nfl

D BTWB � BTWA.ATWA/�1ATWB D  ;

(78)

which is a known, easily computable matrix.
If we return now to the minimum problem

min
x2Rn
N 2ZN

Q.x;N I Y / (79)

we see that first of all we can use the decomposition

8

<

:

Q.x;N I Y / D Q.xfl; NflI Y /CQ.xfl � x;N fl �N/;

Q.xfl � x;N fl �N/ D Œ.xfl � x/T .N fl � N /T �C�1
fl

�

xfl � x

N fl � N

�

(80)
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Fig. 2 A plot of the search space
for N in 2D; + N fl point, � � �
points falling in the ellipsoid (see
(87)), grid points falling in the
rectangular envelope of the
ellipsoid, a sphere with the same
volume of the ellipsoid and its
reduced search space

reducing the minimization of (78) to that of Q. Then by
minimizing Q with respect to x, given N , we find the
“conditional” solution

xN D xfl C .ATWA/�1ATWB.Nfl �N/ : (81)

With the use of (81) and some algebra, we achieve the further
decomposition

Q.xfl � x;N fl � N / D .xN � x/T .ATWA/.xN � x/C
C.nfl � N /T  .nfl � N /

D .xN � x/T .ATWA/.xN � x/CQ.N / :

(82)

But then the minimum ofQ on x 2 R
n and N 2 Z

N can
be obtained in two separate steps; first we find

NML D arg min
N 2ZN

.N fl � N /T  .N fl � N / ; (83)

then we can simply put

xML D xNML ; (84)

because this annihilates the first term in the right hand side
of (82).

So essentially we are left with the problem of finding in
the lattice ZN the point NML nearest to the point N fl in the
metric induced by (83).

Let us imagine for a moment that we are so lucky that the
matrix  results to be diagonal. In this case the quadratic
form in (83) is decomposed as

.N fl � N /T  .N fl � N / D
N
X

iD1
�i .Nfli �Ni/

2 (85)

and the minimum is immediately found by rounding, namely
(recalling (69))

NMLi D ŒNfli � : (86)

This however is not what is found in practice, specially
when we process GNSS data for a short time. Typically, what
happens is that the ellipsoid

.N fl � N /T  .N fl � N / � c ; (87)

with c chosen by using a �2 distribution, in a way that it
bears a probability close to 1, has in fact quite an elongated
form. An example is displayed in Fig. 2 when N has only
two components

If we just consider this example we immediately perceive
that the points at which the form (83) needs to be computed
are only 7, while if we search on the whole rectangle we have
to compute (83) 48 times.

It is clear that, when the dimension of the vector N

increases, the number of computations bursts exponentially.
For instance, if one has to probe a cube of side 5 in 12 dimen-
sions one has to make more than 244 � 106 computations; not
a very practical solution.

This problem has found a large number of tricks and
recipes to get a quick solution, however a rational settlement
of the argument has come with the so-called �-method (see
Teunissen 2017).

Here we apologize for using the symbol Z for different
objects, however, we prefer to keep the original notation of
the author (Teunissen 2017).

The idea of the method works on the basis of the following
proposition.
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Proposition 3 Consider the set of matrices Z 2 R
N ˝ R

N ,
with integer entries and unimodular, namely

Z 2 IU D fZIZ 2 Z ; jZj D ˙1g ; (88)

where jZj denotes the determinant of Z. Then IU is invari-
ant under inversion, namely

Z 2 IU , Z�1 2 IU : (89)

Proof If Z 2 IU , thinking of the inverse Z�1 as computed
by Kramer’s rule, it is obvious that the entries .Z�1/ik are
integers; also on account of the relation

jZjjZ�1j D jI j D 1 ; (90)

we see that jZj D ˙1 ) jZ�1j D ˙1, with the same order.
The inverse relation is trivial because .Z�1/�1 D Z.

We note that, by using (90), it is elementary to show that
(87) is equivalent to the other condition

Z ; Z�1 2 IU ; i.e. Z ; Z�1 2 IU ) jZj D jZ�1j D ˙1

ut
Given that, we return to the integer estimation problem of

finding the minimum of

N 2 Z
N ; Q .N / D .N fl � N /T  .N fl � N / ; (91)

with  D C�1
fl , given by (78). Now let us transform by

means of a Z 2 IU the unknowns, according to

M D Z�1N ; M fl D Z�1N fl : (92)

Accordingly, (91) is transformed into the search of the
minimum of

M 2 Z
N ; Q .M / D .Mfl � M /T  .Mfl � M / ; (93)

with

 D ZT  Z : (94)

We note that, since

j j D jZT jj jjZj D j j ; (95)

the volume of the ellipsoid Q .N / � c is the same as

that of the ellipsoid Q .M / � c; so the point now is
whether we can take advantage of the Z transform so
that the new ellipsoid becomes as close as possible to

one referred to its axis. Under this circumstance in fact a
search space constituted by a parallelepiped parallel to the
axis in the M space, has much smaller volume and the

corresponding numerical burden of computing Q .M /,
in this smaller search space, is strongly reduced (see
Fig. 2).

Ideally, we would like to use (94) to make  diagonal, but
this is not possible in general due to the discrete character of
the entries of Z. We note that diagonalizing  is equivalent

to diagonalizing CMfl D 
�1

and this last target has a
clearer statistical meaning, when we say that we want to
decorrelate the components of Mfl. To achieve this result
we first notice that, given any covariance matrix C , the
corresponding correlation matrix R is obtained by

R D D.C/�1=2CD.C /�1=2 ; (96)

where D.C/ is a diagonal matrix with the same diagonal as
C . Then our purpose is to make the matrix R as close as
possible to the identity; since

jRj � 1; jRj D 1 , R D I ; (97)

decorrelation can be translated into trying to maximalize the
jRj, i.e.

jRj D jC j
jD.C/j D jC j

QN
iD1 Cii

: (98)

In our case C D CMfl and we know from (95) that

jCMfl j D j �1j D j �1j D jCNfl j ;

so that (98) writes

jRMfl j D jCN fl j
QN
iD1 CMfli i

I (99)

therefore

max jRMflj , min
N
Y

iD1
CMfli i : (100)

Since it is clear that the product of two Z transforms is
again a Z transform, the algorithm used for decorrelation
works on a couple of variables at time and then takes
the product of the so found Z transforms. So, following
Teunissen (2017), we concentrate on the algorithm for a
two-dimensional case. Also in this reduced example we act
iteratively, namely we fix one of two components, sayM1 D
N1, and we try to minimize the variance of M2. Once this
is achieved, we fix the second component and we try to
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minimize the variance of the first with a new Z transform,
and so forth. At the end we multiply all the Z transforms
above defined. Then, starting from

Cfl D
ˇ

ˇ

ˇ

ˇ

C1 C12
C21 C2

ˇ

ˇ

ˇ

ˇ
; .C12 D C21/ ; (101)

and applying a Z transform of the form

Z D
ˇ

ˇ

ˇ

ˇ

1 0

˛ 1

ˇ

ˇ

ˇ

ˇ
;

where ˛ for the moment is left just real, we see that Mfl D
ZN fl will have variances


2Mfl1
D 
2Nfl1

D C1 ; 

2
Mfl2

D C1˛
2 C 2C12˛ C C2 : (102)

So the real ˛ minimizing 
2Mfl2
is given by

˛ D �C12
C1

I (103)

indeed this value is in general real and not an integer.

However, we can round it to the nearest integer �
h

C12
C1

i

.

Since from (102) 
2Mfl
can be written as


2Mfl2
D C2 � C1

"
�

C12

C1

	2

�
�

˛ C C12

C1

	2
#

; (104)

we see that indeed ˛ given by (103) can only decrease 
2Mfl2
,

but for the trivial case that ˛ D 0, in which instance 
2Mfl2
D

C2 D 
2Nfl2
.

So we have found an integer ˛ D �
h

C12
C2

i

that decreases


2Mfl2
and then we can proceed as described above.

Once the numerical problem of finding NML has been
solved, we still have to try to give a reasonable method to
compute the covariance of xML. This however implies that
we are able to compute the covariance of NML, which indeed
is not an easy task. However, as our elementary example
has revealed, in general assuming that NML is a fixed
vector, with zero covariance, easily leads to an unrealistic
conclusion. In this case in fact we have an N fix solution and
the corresponding xfix solution has obviously the covariance
.ATWA/�1; this often is simply too small to be true.

Now that we have visited so to say the ground zero of
the integer estimation problem, at least focussing the main
drawbacks of too simplistic solutions, we have to account
for an important mathematical construction in estimation
theory which is essentially due to P. Teunissen and his school
(Teunissen 2001, 2003, 2007).

The analysis starts with a more precise definition of class
of integer estimator bN I (see Teunissen 2001), of which

the Least Squares Estimator, discussed above, is just one
member. To be precise, bN I is defined first by a partition of
RN into regions SN .N 2 ZN / that are obtained by shifting
the neighbor of the origin S0, namely

SN D S0 C N (105)

in such a way that the two conditions

� S

SN
D RN

int .SN / \ int .SN / D ; ; N ¤ N 0 (106)

are satisfied. Since the origin 0 has to belong to S0, we have
as well N 2 SN . The set SN is called the pull-in region and
it defines the integer estimator bN I by the rule

bN fl 2 SN ) bN I D N : (107)

This can be cast into an analytic form by the use of
characteristic functions

�N .bN fl/ D
�

1 bN fl 2 SN

0 otherwise ;
(108)

namely

bN I D
X

N2ZN

N�N .bN fl/ : (109)

Clearly the choice of any S0 satisfying (108) determines
the specific integer estimator under consideration.

For instance, the simple round off estimator bNR has pull-
in regions determined by

S0 D f��� 2 RN ; j�i j � 1

2
i D 1 : : : N g : (110)

A little more elaborated, but more effective, specially if
preceded by a step of a quasi-decorrelation, is the so-
called bootstrap integer estimator, bNB . This is defined
according to the concept of sequential conditional
Least Squares Adjustment, going through the following
steps.

We start with N1 and fix it as in the round off method,

bN1B D ŒbN1fl� ;

then the rest of the vector bN fl (i.e. bN 2fl; bN3fl : : : bNNfl)
is corrected by the effect of N1B , now fixed, due to the
correlation of these components with bN1fl � bN1B . We
obtain .bN2j1fl; bN3j1fl : : :) and we proceed by rounding bN2j1fl,
getting

bN2B D ŒbN2j1fl� :
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At this point we subtract from .bN3fl : : : bNNfl/ the influ-
ence of .bN1B; bN2B/ due to correlation and we can now fix
bN and so forth, since all components are fixed. Then one can
prove that, performing the Cholesky decomposition

CN fl D LDLT ;

with L a lower triangular matrix with all units on the main
diagonal, the pull-in region for the bootstrap estimator is
given by

S0B D f��� 2 RN I jeTi L�1�j � 1

2
; i D 1; 2 : : : N g

(111)

.eTi D .0; 0 : : : 1 : : : 0/; i in the i -th entry/ :

Finally, the integer Least Squares estimator bN IL has a pull-in
region that is described by the formula

SOL D f��� 2 RN I jcT C�1
N fl
���j � 1

2
cT C�1

Nflc ; 8c 2 ZN g : (112)

The importance of this systematic approach to integer
estimation is in that we can in principle describe the (dis-
crete) probability distribution of bN I as function of bN fl. In
fact, if Pfl.N / is the probability density of bN fl, often taken
as Gaussian bN fl � N .N ; CNfl/, we have

P.bN fl 2 SN / D
Z

SN

Pfl.���/d� D
Z

S0

Pfl.N C ���/d� (113)

This distribution can be explicitly computed for the boot-
strap estimator (see Teunissen 2001); otherwise upper and
lower bounds for (113) can be given for the other cases.
Indeed other numerical methods, for instance a Monte-Carlo
method, could be applied too.

In any event, knowledge of the distribution of bN I allows
one to define an important index of quality for a specific
integer estimator, namely the success rate, i.e. the probability
that bN I D N when N is the true value of the variable N in
the model (75), namely

P.bN I D N / D P.bN fl 2 SN / D P.bN fl � N 2 S0/ D

D
Z

S0

Pfl.N C ���/d� : (114)

In addition all that permits to study the sensitivity of the
estimator bN I to the presence of biases, accounted by the
model (75). This is discussed in Teunissen (2001), but on
the same time it opens the problem that an integer estimator
bN I has always as output a vector of integer variates by its
very definition. This however is not always the best solution,
exactly because the presence of some biases can shift the bN fl

“far” from a knot of ZN , sometimes even with a peaked
distribution. To explain, take the case that N 2 R1 (one
ambiguity only) and bN fl D 0:4 while 
.bN fl/ D 0:01; if we
are forced to chose an integer, we will certainly take NI D
0, yet any test with a reasonable value of the significance
parameter ˛ will tell us that the hypothesis that N D 0 has
to be rejected.

This has suggested to define a new class of estimators
(see Teunissen 2004), called by the author “integer aperture”
estimators, bN IA. The basic idea is to define a pull-in region
˝0 � S0 and then propagate it to the full design of fSN g by
setting

˝N D N C˝0 � SN : (115)

Then the following rule is established

bN IA D
(

N if bN fl 2 ˝N

bN f l if bN fl 2 RNnSN ˝N :
(116)

In other words, bN IA is discrete when bN fl falls in the
region ˝ D S

N ˝N , and continuous when bN fl falls in the
complementary region,˝c .

With the help of the characteristic function �˝N
.���/ we

have then the IA estimator defined as

bN IA D N fl C
X

N2ZN

.N � bN fl/�˝N
.bN fl/ : (117)

In Teunissen (2004) it is shown that some rules commonly
used to fix ambiguities, like for example the ratio test
criterion, give rise to estimators falling in the IA class.
Connatural to IA estimators is the definition of three
probabilities

PS D P.bN IA D N jN D N / D P.bN fl 2 ˝N /

PF D P.bN IA D N jN ¤ N / D P.bN fl 2 ˝n˝N /

PU D P.bN IA D bN fl/ D P.bN fl 2 ˝c/

called success, failure and undecided rates.
If one attaches to the three events S; F ;U some penalty

figures, one is then conducted to findminimal penalty estima-
tors. The solution of this problem can be found in Teunissen
(2004).

Finally, an even larger class of estimators has been defined
in Teunissen (2003), namely the Integer Equivariant (IE)
estimators, defined as follows.

Let # be any linear function of parameters in (81), namely

# D CT
N N C CT

x x I (118)
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then an estimator

b# D g#.Y / (119)

belongs to IE if it satisfies the relations

g#.Y C Bz/ D g#.Y /C CT
N z 8z 2 ZN (120)

g#.Y C A���/ D g#.Y /C CT
x ��� ; 8��� 2 RN : (121)

It has to be noted that the class of linear unbiased estima-
tors, LU, is included in IE. In fact, if

b#LU D gT
#Y D gT

#BN C gT
#Ax C gT

#��� ; (122)

for some g# 2 Rm, andb#LU has to be unbiased, one has to
have

Efb#LUg D gT# BN CgT# Ax �CT
N N C CT

x x 8N 2ZN ; 8x 2 Rn:

Therefore it is enough to choose g# such that

�

BTg# D CN

AT g# D Cx
(123)

to see that (122) is an IE estimator too.
One can prove that LU � IA strictly.

Since

�

BT

AT

�

is a matrix with less rows than columns,

roughly there are many solutions of (123) and therefore the
idea of finding an “optimal” IE estimator is appropriate.

The problem of finding the g# estimator with minimum
mean square error is analyzed and solved in Teunissen
(2003).

Such best solution can be summarized by the formulas

b#BjE D CT
N
bNBjE C CT

x bxBjE ; (124)

NBjE D
X

N2ZN

N
Pfl.N fl � N /

P

z2ZN Pfl.N fl � z/
; (125)

xBjE D xfl � C
bxflbN fl

C�1
bN fl
.N fl � NBjE/ : (126)

An interesting feature of this solution is that it comes
to one and the same form as the mean of the a posteriori
distribution of estimators of N and x, based on a Bayesian
approach (Betti et al. 1993). So in this case too a Bayesian
approach, with a suitable prior distribution, and a frequentist
approach give similar results.

It has to be noted that, while the class of Integer estimators
has been considered in mathematical statistics, the other
two broader classes constitute an original contribution from
Geodesy.

Finally, it is worth at least mentioning that not only
the estimation of integer/continuous unknowns has been

studied, but also the problem of prediction of mixed inte-
ger/continuous random variables has been analyzed in Teu-
nissen (2007), arriving at closely related results.

Moreover, the analysis of a problem “dual” to the integer
estimation described in this section, namely the so-called
search of the closest point in a lattice, has been developed
in the 1980s (see Pohst 1981; Kannan 1983) suggested by
informatic problems in coding and cryptography.

Once more Mathematics and Geodesy have attacked sim-
ilar problems, until recently they started to interact (see
Jazaeri et al. 2014). Yet it seems not by chance that Geodesy
has approached the integer estimation problem from a typical
statistical point of view, as a particular aspect of the general
least squares theory.

6 Inverse Problems and Regularization

Next we are interested in another important area of Mathe-
matical Geodesy, namely the theory of inverse problems. A
geodetically reflected survey about inverse problems is given,
e.g., in Freeden and Nashed (2018b). In the approach pre-
sented here we also follow this contribution, however, only
considering such parts, that are necessary prerequisites for
a novel regularization strategy, i.e., multiscale regularization
in Hilbert spaces. The preparatory material taken almost lit-
erally from Freeden and Nashed (2018b) is used to study two
essential problems of Geodesy, namely satellite gravitational
gradiometry (SGG) and inverse gravimetry (IG).

We start our preparatory consideration by assuming that
X and Y are two Hilbert spaces with inner products h�; �iX
and h�; �iY , respectively. Let

A W X �! Y (127)

be a linear bounded operator. For a given element y 2 Y we
are looking for a solution of

Ax D y: (128)

In accordance to the classification due to Hadamard (see
Hadamard 1902), we call such a problem (128) well-posed,
if the following properties are valid:

– For all data, a solution exists (existence).
– For all data, the solution is unique (uniqueness).
– The solution depends continuously on the data (stability).
In the language of functional analysis, these requirements
can be translated (see, e.g., Freeden and Nashed 2018b) into
the properties:

– A is surjective, i.e., the range R.A/ is equal to Y .
– A is injective, i.e., the null-space N .A/ only consists of

f0g.
– A�1 is continuous (hence, bounded).
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By convention, if one of the three conditions is not fulfilled,
the problem (128) is called ill-posed (for more details the
reader is referred to, e.g., Freeden and Nashed 2018b).

Let us point out the consequences of the violations of the
above requirements for the well-posedness of (128). The lack
of injectivity of A is perhaps the easiest problem. The space
X can be replaced by the orthogonal complement N .A/?,
and the restriction of the operator A to N .A/? leads to an
injective problem.

In geoscientific practice, one is very often confrontedwith
the problem that R.A/ 6D Y , since the right side is given by
measurements and is, therefore, disturbed by errors. In this
case, instead of y 2 R.A/; we have to consider a perturbed
right side y" (see, e.g., Nashed 1987a,b). We suppose that

ky � y"kY < ": (129)

The aim now is to find a solution x" of the equation

Ax" D y": (130)

Since y" might not be in R.A/, the solution of this equation
might not exist, and we have to generalize what is meant
by a solution (cf. Nashed 1976). x" is called least-squares
solution of (130), if

kAx" � y"kY D inffkAz � y"kY W z 2 Xg: (131)

The solution of (131) might not be unique, and therefore
one looks for the solution of (131) with minimal norm. x"

is called best approximate solution of Ax" D y", if x" is a
least-squares solution and the condition

kx"kX D inffkzkX W z is a least-squares solution of Az D y"g
(132)

holds true. The notion of a best-approximate solution is
closely related to the Moore-Penrose (generalized) inverse
of A (for more details on the theory and applications of gen-
eralized inverse operators, see, e.g., Nashed 1987a). We let

MA W N .A/? �! R.A/ (133)

by

MA D AjN .A/? (134)

and define the Moore-Penrose (generalized) inverse A� to be
the unique linear extension of QA�1 to

D.A�/ D R.A/C R.A/?; (135)

where

N .A�/ D R.A/?: (136)

A standard result (see, e.g., Nashed 1976, 1987a) is
provided by the following statement:

If y 2 D.A�/, then Ax D y has a unique best-
approximate solution which is given by

x� D A�y: (137)

The set of all least-squares solutions is x� C N .A/.
A serious problem for ill-posed problems occurs when

A�1 or A� are not continuous. This means that small errors
in the data or even small numerical noise can cause large
errors in the solution. In fact, in most cases the application
of an unbounded A�1 or A� does not make any sense in
computations. The usual strategy to overcome this difficulty
is to substitute the unbounded inverse operator

A�1 W R.A/ �! X (138)

by a suitable bounded approximation

R W Y �! X: (139)

The operatorR is not chosen to be fixed, but dependent on a
regularization parameter ˛. According to the usual approach
in inverse theory we are led to introduce the following
setting.

Definition 3 A regularization strategy is a family of linear
bounded operators

R˛ W Y �! X; ˛ > 0; (140)

so that

lim
˛!0

R˛Ax D x for all x 2 X , (141)

i.e., the operatorsR˛A converge pointwise to the identity.

From the theory of inverse problems (see, e.g., Engl et al.
1996) it is also clear that if A W X ! Y is compact and
Y has an infinite dimension (as it is the case of all satellite
applications we have in mind), then the operatorsR˛ are not
uniformly bounded, i.e., there exists a sequence f˛j g with
limj!1 ˛j D 0 such that

kR˛j kL.Y ;X/ ! 1; j ! 1. (142)

Here we have used the standard convention of the operator
norm

kLkL.Y ;X/ D inf
kykY 6D0

kLykX
kykY : (143)
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Note that the convergence of R˛Ax in Definition 3 is
based on y D Ax, i.e., on unperturbed data. In practice,
the right side is affected by errors and no convergence
is achieved. Instead, one is (or has to be) satisfied with
an approximate solution based on a certain choice of the
regularization parameter.

Let us discuss the error of the solution: We let y 2 R.A/
be the (unknown) exact right-hand side and y" 2 Y be the
measured data with

ky � y"kY < ": (144)

For a fixed ˛ > 0, we let

x˛;" D R˛y
"; (145)

and look at x˛;" as an approximation of the solution x of
Ax D y. Then the error can be split in standard way (see,
e.g., Engl et al. 1996) as follows:

kx˛;" � xkX D kR˛y" � xkX (146)

� kR˛y" � R˛ykX C kR˛y � xkX

� kR˛kL.Y ;X/ ky" � ykY C kR˛y � xkX ;

such that

kx˛;" � xkX � kR˛kL.Y ;X/"C kR˛Ax � xkX : (147)

We see that the error between the exact and the approx-
imate solution consists of two parts: The first term is the
product of the bound for the error in the data and the norm
of the regularization operatorR˛ . This term will usually tend
to infinity for ˛ ! 0 if the inverse A�1 is unbounded (for
example, if A is compact). The second term denotes the
approximation error k.R˛ � A�1/ykX for the exact right-
hand side y D Ax. This error tends to zero as ˛ ! 0 by
the definition of a regularization strategy. Thus, both parts of
the error show a diametrically reflected behavior. A typical
picture of the errors in dependence on the regularization
parameter ˛ is sketched in Fig. 3. Thus, a strategy is needed
to choose ˛ dependent an " in order to keep the error as small
as possible, i.e., we would like to minimize

"kR˛kL.Y ;X/ C kR˛Ax � xkX : (148)

In principle, we distinguish two classes of parameter
choice rules: If ˛ D ˛."/ does not depend on ", we call
˛ D ˛."/ an a-priori parameter choice rule. Otherwise ˛

α

Er
ro

r

total error

‖RαAx − x‖X

ε‖Rα‖L(Y,X)

Fig. 3 Typical behavior of the total error in a regularization process

depends also on y" and we call ˛ D ˛."; y"/ an a-posteriori
parameter choice rule. It is conventional to say a parameter
choice rule is convergent, if for " ! 0 the rule is such that

lim
"!0

supfkR˛.";y"/y" � A�ykX W y" 2 Y ; ky" � ykY � "g D 0

(149)

and

lim
"!0

supf˛."; y"/ W y" 2 Y ; ky � y"kY � "g D 0: (150)

All in all, the rationale in most methods for resolution
(approximate solvability) of ill-posed inverse problems is
to construct a “solution” that is acceptable physically as a
meaningful approximation and is sufficiently stable from the
computational standpoint, hence, an emphasis is put on the
distinction between “solution” and “resolution”. The main
dilemma of modeling of ill-posed problems (IPP) is that the
closer the mathematical model describes the IPP, the worse
is the “condition number” of the associated computational
problem (i.e., the more sensitive to errors). For ill-posed
problems, the difficulty is to bring additional information
about the desired solution, compromises, or new outlooks
as aids to the resolution of IPP. It is conventional to use
the phrase “regularization of an ill-posed problem” to refer
to various approaches to circumvent the lack of continuous
dependence (as well as to bring about existence and unique-
ness if necessary). As already pointed out, this entails an
analysis of an IPP via an analysis of associated well-posed
problems, i.e., a system (usually a sequence or a family) of
well-posed “regularizations”, yielding meaningful answers
to the IPP.

The strategy of resolution and reconstruction of ill-posed
problems involves one or more of the following intuitive
ideas (cf. Nashed 1987a,b; Freeden and Nashed 2018b):

– change the notion of what is meant by a solution (e.g.,
"-approximate solution: kA Qx � yk � ", where " > 0 is
prescribed; quasi-solution: kA Qx � yk � kAx � yk for all
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x 2 M, a prescribed subset of the domain of A; least-
squares solution of minimal norm, etc),

– modify the operator equation or the problem itself,
– change the spaces and/or topologies,
– specify the type of involved noise (“strong” or “weak”

noise as discussed, e.g., in Eggermont et al. 2015).

From the standpoint of mathematical and numerical anal-
ysis one can roughly group “regularization methods” into six
categories:

1. Regularization methods in function spaces is one cat-
egory. This includes Tikhonov-type regularization, the
method of quasi-reversibility, the use for certain func-
tion spaces such as scale spaces in multi-resolutions,
the method of generalized inverses (pseudoinverses) in
reproducing kernel Hilbert spaces, and multiscale wavelet
regularization.

2. Resolution of ill-posed problems by “control of dimen-
sionality” is another category. This includes projection
methods, moment-discretization schemes. The success
of these methods hinges on the possibility of obtaining
approximate solution while keeping the dimensionality
of the finite dimensional problem within the “range of
numerical stability”. It also hinges on deriving error
estimates for the approximate solutions that is crucial to
the control of the dimensionality.

3. A third category is iterative methods which can be applied
either to the problem in function spaces or to a discrete
version of it. The crucial ingredient in iterative methods
is to stop the iteration before instability creeps into the
process. Thus iterative methods have to be modified or
accelerated so as to provide a desirable accuracy by the
time a stopping rule is applied.

4. A fourth category is filter methods. Filter methods refer to
procedures where, for example, values producing highly
oscillatory solutions are eliminated. Various “low pass”
filters can, of course, be used. They are also crucial for
determination of a stopping rule. Mollifiers are known
in filtering as smooth functions with special properties
to create sequences of smooth functions approximating a
non-smooth function or a singular function.

5. The original idea of a mollifier method (see, e.g., Freeden
and Nashed 2018b and the references therein) is interested
in the solution of an operator equation, but we realize
that the problem is “too ill-posed” for being able to
determine the (pseudo)inverse accurately. Mollifiers are
known as smooth functions with special properties to
create sequences of smooth functions approximating a
non-smooth function. Thus, we compromise by changing
the problem into a more well-posed one, namely that of
trying to determine a mollified version of the solution.
The heuristic motivation is that the trouble usually comes
from high frequency components of the data and of the
solution, which are damped out by mollification.

6. The root of the Backus-Gilbert method (BG-method)
was geophysical (cf. Backus and Gilbert 1967, 1968,
1970). The characterization involved in the model is
known as moment problem in the mathematical literature.
The BG-method can be thought of as resulting from
discretizing an integral equation of the first kind. Where
other regularization methods, such as the frequently used
Tikhonov regularization method (see, e.g., Freeden and
Nashed 2018b and the references therein), seek to impose
smoothness constraints on the solution, the BG-method
instead realizes stability constraints. As a consequence,
the solution is varying as little as possible if the input
data were resampled multiple times. The common fea-
ture between mollification and the BG-method is that an
approximate inverse is determined independently from
the right hand side of the equation.

OQ7) The philosophy of resolution leads to the use of alge-
braic methods versus function space methods, statistical ver-
sus deterministic approaches, strong versus weak noise, etc.
A regularization-approximation scheme refers to a variety of
methods such as Tikhonov’s regularization, projection methods,
multiscale methods, iterative approximation, etc., that can be
applied to ill-posed problems. These schemes turn into algo-
rithms once a resolution strategy can be effectively implemented.
Unfortunately, this requires a determination of a suitable value
of a certain parameter associated with the scheme (e.g., regu-
larization parameter, mesh size, dimension of subspace in the
projection scheme, specification of the level of a scale space,
classification of noise, etc.). This is not a trivial problem since it
involves a trade-off between accuracy and numerical stability, a
situation that does not usually arise in well-posed problems. Are
there more appropriate concepts of regularization stopping rules
in future?

In Geodesy we are confronted with two essential types of
problems, for which the following examples in the structural
manifestations of Fredholm integral equations of the first
kind may serve as prototypes for a large class of ill-posed
inverse problems in Mathematics:

– satellite gravitational gradiometry (SGG) problem, i.e.,
“downward continuation” of gravitational satellite data to
the Earth’s surface to obtain gravitational information:
A prototype is the SGG problem of determining the
(anomalous) potential T on the Earth’s surface S from
values of the Hesse tensor T.x/ D .r ˝ r/T .x/ on the
satellite orbit. A viable way to model SGG may be based
on the Runge assumption that there exists a potential QT
outside a Bjerhammar (Runge) sphere S

2
ˇ in "-accuracy

(" > 0; arbitrarily small) with the potential T outside
and on the Earth’s surface S: This leads to the integral
equation of type

T.x/ Š A. QT /.x/ D
Z

S
2
ˇ

.rx ˝ rx/
1

4�ˇ

x2 � ˇ2

jx � yj3
„ ƒ‚ …

DP .x;y/

QT .y/ dS.y/;

QT j
S
2
ˇ

2 L2.S2ˇ/; (151)
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for points x on the satellite orbit, where T.x/
D .r ˝ r/T .x/ are the tensorial satellite input data,
P is the Poisson kernel, and the scalar function QT jS
obtained by “upward continuation” from QT

S
2
ˇ
represents

the required SGG-solution, and A is the operator of the
Abel-Poisson-type integral (151). So, the inverse problem
consists of finding QT j

S
2
ˇ
from the Hesse tensor .r ˝ r/ QT

on the satellite orbit. In the jargon of Mathematics (see,
e.g., Engl et al. 1996), this is an exponentially ill-posed
problem which inextricably needs regularization because
of the unboundedness of the existing inverse A�1 (note
that A given by (151) is a compact operator).

In principle, all aforementioned regularization techniques of
Mathematics are applicable to SGG. However, because of
the nature of ill-posedness, there are good reasons to restrict
our discussion to multiscale regularization methods devel-
oped during the last decades based on an IPP-modification
(Freeden and Schneider 1998) of the wavelet philosophy (as
known from Chui 1992, Daubechies 1992 in classical one-
dimensional theory and Freeden and Windheuser (1997) in
the spherical case).

– inverse gravimetry (IG) problem, i.e., “downward com-
putation” of gravitational terrestrial and/or external data
to the Earth’s interior to obtain density information: A
prototype is the IG problem based on Newton’s integral
equation

V .x/ D
Z

B

G.x � y/ F .y/ dy D A.F /.x/ (152)

where B represents the Earth’s body (or a part of it), V
is the potential generated by the mass density anomaly
F distributed on B , G is the fundamental solution of the
Laplace equation, i.e., the Newton kernel

G.x � y/ D 1

4�

1

jx � y j ; x ¤ y; (153)

and the operatorA here stands for the Newton integral (152).
Contrary to the case of L2.@B/ (see, e.g., Freeden 1980

for more details), the class L2.B/ of square-integrable func-
tions is not obtainable only by the L2-completion of a
countable harmonic function system such as solid (outer)
spherical harmonics, outer ellipsoidal harmonics, certain
mass point systems, harmonic spline and spline-wavelet
systems. In addition, we have to take into account a so-
called “anharmonic function system” (see, e.g., Weck 1972,
Ballani and Stromeyer 1982) forming the “ghosts” of IG.
This observation explains the ill-posedness of the inverse
gravimetry problem. In fact, in accordance with the famous
Hadamard classification (cf. Hadamard 1902), the IG prob-
lem with F 2 L2.B/ violates all criteria, viz. uniqueness,
existence, and stability.

According to Freeden and Nashed (2018a) IG is “too
inverse” to apply a conventional regularization technique,
instead they propose multiscale mollifier methods for its reg-
ularization. Moreover, Freeden and Nashed (2018a) studies
the case (important at least in exploration), where V .x/
is also known for some internal points x 2 B: In fact,
Blick et al. (2018) validate for representative data sets that
additional internal data points can be used to stabilize the
numerical solution process of IG.

7 The SGG Problem and Its
Frequency-Multiscale Analysis

Tensor spherical harmonics of type (1,1) allow to express the
Hesse tensor applied to solid (outer) harmonics in the form
(see Freeden and Schreiner 2009 for more details on tensorial
harmonics)

r ˝ r H
ˇ

�n�1;k D
q

Q�.1;1/n h.1;1/Iˇ�n�1;k;

where we have used the abbreviation

Q�.1;1/n D .nC 2/.nC 2/.2n� 3/.2n� 1/:

Consequently, we find the tensor-isotropic SGG-pseudodiffe-
rential equation

A. QT / D
1
X

nD2

2nC1
X

kD1

QT^
L2.S2

ˇ
/
.n; k/

q

Q�.1;1/n h.1;1/Iˇ�n�1;m D .r ˝ r/ QT

(154)

with

QT ^
L2.S2

ˇ
/
.n; k/ D h QT ;Hˇ

�n�1;kiL2.S2ˇ/

and

A.H
ˇ
�p�1;q / D A^.p/ h.1;1/Iˇ�p�1;q

D
q

Q�.1;1/p h.1;1/Iˇ�p�1;q D r ˝ r H
ˇ
�p�1;q

(155)

as spectral (frequency) representation to be used for the
inversion of the SGG-integral equation (151). Equivalently,

A. QT /.x/ D
Z

L2.S2ˇ/

K.x;y/ QT .y/ dS.y/

D .r ˝ r/ QT .x/ Š T.x/; (156)
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where the tensorial kernel K.�; �/ is given by

K.x;y/ D
1
X

nD2

2nC1
X

kD1

q

Q�.1;1/n h.1;1/Iˇ�n�1;m.x/ H
ˇ

�n�1;k.y/:

(157)

By the completeness of the system fHˇ

�n�1;kg this enables us
to conclude in the framework of L2.S2ˇ/ of square-integrable
tensor fields on S2ˇ that

h.r ˝ r/ QT ;h.1;1/IS�p�1;qiL2.S2ˇ/

D
Z

L2.S2ˇ/

.r ˝ r/ QT .y/ � h.1;1/Iˇ�p�1;q .y/ dS.y/ (158)

D QT ^
L2.S2

ˇ
/
.p; q/

q

Q�.1;1/n :

As an immediate result, we obtain the following expansion
for the potential QT
QT .x/ D A�1..r ˝ r/ QT /.x/ (159)

D
1
X

nD2

2nC1
X

kD1

h.r ˝ r/ QT ; h.1;1/Iˇ�n�1;kiL2.S2ˇ /
. Q�.1;1/n /�1=2H

ˇ

�n�1;k.x/

for all points x of the outer space of S2ˇ . Equivalently, if
all input (satellite) tensor data points .x; .r ˝ r/T .x//
satisfy the canonical assumption jxj > � 
 ˇ; i.e., S2� is
a “Bjerhammar (Runge) sphere” for the satellite orbit, then

QT .x/ D A�1..r ˝ r/ QT /.x/ (160)

D
1
X

nD2

2nC1
X

kD1
h.r ˝ r/ QT ;h.1;1/I��n�1;kiL2.S2� /

�. Q�.1;1/n /�1=2
�

�

ˇ

	nC2
H
ˇ

�n�1;k.x/:

This formula expresses the (approximation of the) anoma-
lous potential QT in terms of the tensor T Š .r ˝r/ QT related
to S

2
� .
A is a linear bounded injective compact operator so that

the SGG-problem is ill-posed because of the unboundedness
of A�1.

As described earlier in Definition 3, a regularization
strategy for the SGG-problem is a family of linear bounded
pseudodifferential operators Rj ; so that limj!1RjA. QT / D
QT in the outer space of S2ˇ , i.e., the operators RjA converge
in pointwise sense to the identity operator.

In what follows, we are only interested in two multiscale
regularization strategies, particularly relevant in geodetic
SGG-application (for a more general and deeper explanation
see Freeden and Nutz (2011), Freeden et al. (2018a); the
publication (Freeden et al. 2018b) is based on Freeden and

Nutz (2011), Freeden et al. (2018a) and on this work, it
provides more general material in frequency as well as space
domain):

Tikhonov Regularization Strategy It uses the (non-
bandlimited) isotropic Tikhonov-kernels (scaling functions)
˚j ; j D 0; 1; : : : ; given by

˚j .x;y/ D
1
X

nD2

2nC1
X

kD1
.˚j /

^.n/Hˇ

�n�1;k.x/H
ˇ

�n�1;k.y/

(161)

with

.˚j /
^.n/ D .A^.n//2

.A^.n//2 C �2j
; n D 2; 3; : : : ; j D 0; 1; : : : ;

(162)

where f�j g, j D 0; 1; : : : ; is a sequence of real num-
bers satisfying limj!1�j D 0: Then the operators Rj
D ˚j � A�1 constitute a multiscale regularization strategy:

Tj .x/ (163)

D RjA. QT /.x/

D
1
X

nD2

2nC1
X

kD1
.˚j /

^.n/h.r ˝ r/ QT ;h.1;1/Iˇ�n�1;kiL2.S2ˇ/

�. Q�.1;1/n /�1=2Hˇ

�n�1;k.x/

D
1
X

nD2

2nC1
X

kD1
.˚j /

^.n/h.r ˝ r/ QT ;h.1;1/I��n�1;kiL2.S2� /

�. Q�.1;1/n /�1=2
�

�

ˇ

	nC2
H
ˇ

�n�1;k.x/:

Truncated Singular Value Regularization Strategy It starts
from a one-dimensional function '0 W Œ0;1/ ! R with the
following properties:

1. '0.0/ D 1,
2. '0 is monotonically decreasing,
3. '0 is continuous at 0.
4. '0 W Œ0;1/ ! R has a local support, i.e., supp '0 �
Œ0; 1�:

5. The generators  0; Q 0 W Œ0;1/ ! R of the mother
wavelet and the dual mother wavelet, respectively, also
possess a local support, i.e.,

supp  0 � Œ0; 1�; (164)

supp Q 0 � Œ0; 1�: (165)
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Accordingly, we are led to the isotropic scaling functions
˚j ; j D 0; 1; : : : ; given by

˚j .x;y/ D
1
X

nD2

2nC1
X

kD1
'0.2

�j n/ Hˇ

�n�1;k.x/H
ˇ

�n�1;k.y/;

(166)

where

0 � .˚j /
^.n/ D '0.2

�j n/ � 1; n D 0; 1; : : :

(167)

and

lim
j!1.˚j /

^.n/ D lim
j!1'0.2

�j n/ D 1; n D 0; 1; : : : :

(168)

In accordance with our construction, the compact support
of '0 implies that only finitely many .˚j /^.n/ are different
from 0. Obviously, it follows that

supp 'j � Œ0; 2j �;

supp  j � Œ0; 2j �;

supp Q j � Œ0; 2j �:

So, the bandlimited kernels ˚j ; j D 0; 1; : : : ; defined via a
generator '0 satisfying the properties (i)–(iv) as stated above
define operators

Rj D ˚j � A�1; (169)

which constitute a regularization strategy in the following
sense:

1. Rj is bounded,
2. the limit relation

lim
j!1RjA. QT / D QT (170)

holds true in the outer space of S2ˇ .

For more non-bandlimited as well as bandlimited regular-
ization strategies and multiscale realizations in form of tree
algorithms the reader is referred to Freeden et al. (2018a).

OQ9) As in collocational and spline theory (see, e.g., Sansò
1980, Sansò et al. 1968, Tscherning 1977), the choice of the ker-
nel, i.e. regularization scaling function, is an important problem
in SGG. Mathematically, all regularization strategies are equiv-
alent, however, what is the right computational compromise

between mathematical rigor and geodetic relevance in respect
to geometry of orbit, data width, and accuracy?

The recently published approach (Freeden et al. 2018b)
also contains a novel space-based multiscale regularization
of SGG.

8 The IG Problem and Its
Space-Multiscale Analysis

Let us begin with some preparatory remarks:

1. Sometimes instead of Newton’s integral equation (152)
we consider a different integral relation between V and F
by applying a linear(ized) operatorL to it, transformingV
into some other field, e.g., a gravity anomaly field, namely

LV .x/ D
Z

B

fLxG.x � y/gF .y/dy : (171)

For simplicity, however, we will work with (152) and the
IG problem, which is just to derive F from V (instead of
deriving F from certain linear functionals LV .x/ of V ).

2. We formally know that (cf. Miranda 1970; Sansò and
Sideris 2013)

��xG.x � y/ D ı.x � y/; (172)

where the Dirac distribution ı is so to say the “density”,
in the sense of measure/distribution theory, of a point
mass at y . The formal inversion of (152) is therefore well
known and consists in applying �� to both members
of this equation in B . However, we must recall that the
study of the integral operator A and its inverse depends
significantly on the spaces, where we choose that domain
and image of the operatorA are embedded. Note that here
the operator is the same as that defined in (152).

3. In classical potential theory (see, e.g., Miranda 1970),
if the domain of A is constituted by Hölder continuous
functions F on B; then the Poisson equation

�V .x/ D �˛.x/F .x/; x 2 R
3; (173)

yields an inverse equation to (152), where ˛.x/ is the
solid angle, divided by 4� , under which one “sees” the
surface S from x; so that ˛ D 1 in B and ˛ D 0 in
R
3nB . On the boundary S D @B; the value of ˛ depends

on the smoothness of S . For a continuously differentiable
surface S we have ˛ D 1

2
: A rigorous mathematical proof

of (173) is given in Freeden and Gerhards (2013), which
also serves as a preparation for the multiscale mollifier
method.



244 W. Freeden and F. Sansò

In what follows, we only provide a sketch of the inversion
process, if we take as the domain of A the space L2.B/. In
this case, the image

Y D A.L2.B// ; (174)

is a closed subspace of H2;2

loc.R
3/, where “loc” has to be

added since potentials in Y may go to zero at infinity as of the
order O


jxj�1�, which does not imply square-integrability.
Moreover, the solid angle ˛ on S is not of importance, in
fact, F in the integral equation (152) may be understood as
a function in L2.R3/ with F j

R3nB D 0;B D B [ @B; so
that it has no specific values on a set of zero 3D-measure like
S . A potential theoretic description of Y can be provided by
saying that V 2 Y means that

a) V 2 H2;2.B/

b) V 2H2;2

loc.R
3nB/;�VD0 in R3nB;

jV .x/j ! 0 for jxj ! 1 ;

c) the traces of V and @V
@n

on SD@B from inside and outside,
coincide, i.e.,

VC D V�;
@V

@nC
D @V

@n�
: (175)

(note that another characterization of Y will be given later
on).

The reason why we call

F D ��V ; V 2 Y D A.L2.B// (176)

a “formal inverse” of (152) is that, since V is given as a
datum, it might be polluted by errors and therefore suitable
regularization/approximation procedures have to be applied
before (173) can become effective. This is the viewpoint
of a general review paper (Freeden and Nashed 2018b) on
regularization methods, that we will follow in the sequel,
with the specific target of showing briefly how multiscale
methods can enter into this process.

Remark 3 In reality, the most relevant problem from the
geophysical point of view is when V is known only in
B D B [ @B; and therefore also on S due to the trace
property c) above. In this case, however, we cannot expect
uniqueness of the solution of (152) because, according to
(176), the Laplacian applied to any harmonic function that
continues V in B respecting the conditions (175) generates
the same outer potential.

Letting formally QVB be a member of class H2;2.B/

satisfying

QVB jS D .V j.R3nB//jS ;
@ QVB
@n

jS D @.V j.R3nB//
@n

jS (177)

we are able to show that the class of all solutions of IG
consists of functions QF of the form

QF D ��V D ��
�

V j.R3nB/ C QVB
�

; (178)

where the condition (175), in fact, guarantees that V D
V j.R3nB/ C QVB is still a member ofH2;2

loc.R
3/.

Indeed, the family f QVBg, which is clearly closed in
H2;2.B/, can be completely described by the equation

QVB D QV0 C '; ' 2 H2;2
0 .B/ ; i:e:; 'jS D @'

@n

ˇ

ˇ

ˇ

ˇ

S

D 0;

(179)

where QV0 is any function ofH2;2.B/ satisfying the boundary
condition (175). The problem how to find such QV0 is well-
known from the literature (see, e.g. Miranda 1970; McLean
2000).

So, continuing ' with 0 outside B , we have found the
class of all solutions of (152), namely

QF D ��
�

V j.R3nB/ C QV0
�

��' ; ' 2 H2;2
0 .B/ ; (180)

and in particular we can say that the kernel of A, which is a
closed subspace of L2.B/ is given by the null-space

N .A/ D ��
�

H
2;2
0 .B/

�

: (181)

The elements ofN .A/ are called anharmonic functions (see,
e.g., Ballani and Stromeyer 1982). If we further observe that
the orthogonal complement in L2.B/ ofN .A/ is just

HL2.B/ D ff 2 L2.B/ W �f D 0 in Bg ; (182)

and we restrict (180) to B , where QF is supported, we arrive
at a further fact specifying that the general solution of (152)
can be written as

QF D f ��' ; f 2 HL2.B/ ; ' 2 H2;2
0 .B/ (183)

with f the orthogonal projection of �� QV0 ontoHL2.B/.
Incidentally, the harmonic f can as well be characterized

as the minimum L2.B/-norm solution of (152), because
(183) is nothing but the decomposition of QF along two com-
plementary orthogonal subspaces. Up to here what we can
call the classical analysis of the inverse gravimetric problem
in geophysical sense, as described by several authors, among
which Freeden and Nashed (2018a), Ballani and Stromeyer
(1982), and others. Such a theory can be significantly gen-
eralized to different couples of spaces as shown in Sansò
(2014).
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Remark 4 As promised, we are able to provide an alternative
characterization of Y D A.L2.B//. We first introduce on
Y the topology which is the image of the L2.B/-topology
through A, namely

V D A.F / ) k V k2YDk F k2
L2.B/

: (184)

This makes Y a Hilbert space with the scalar product

V D A.F / ; V 0 D A.F 0/ ) hV ; V 0iY D hF ; F 0iL2.B/ :
(185)

We notice explicitly that, since we can view Y as a closed
subspace of H2;2

loc.R
3/, we know that the new topology of Y

introduced by (184) should be equivalent to that of H2;2

loc; in
particular, if Vn ! V in Y , this would imply as well that
Fn D ��Vn tends to F D ��V in L2-sense, i.e.,

k �Vn ��V kL2.B/! 0 : (186)

Now we first maintain that the evaluation functional is
bounded in Y as a consequence of the fact thatB is bounded.
In fact, callingD the diameter of B we have by the Cauchy–
Schwartz inequality (cf. Freeden and Nashed 2018a)

jV .x/j2 �
Z

B

jG.x � y/j2dy
Z

B

jF .y/j2dy (187)

and

Z

B

jG.x � y/j2 dy D
�

1

4�

	2 Z

B

1

jx � yj2 dy � D

4�
:

(188)

for all points x 2 R
3.

Therefore, Y must have a reproducing kernel K , accord-
ing to the Aronszajn-Bergman theorem (see, e.g., Yosida
1980), which completely characterizes it. It follows that

K.x;y/ D
Z

B

G.x � z/G.z � y/ dy : (189)

In fact, since G.� � y/ for every fixed y belongs to L2.B/,
we see thatK.�;y/ 2 Y . Moreover, we can write (189) in the
form

K.� � y/ D A.G.� � y//; (190)

so that we can easily conclude from (185) that

hK.x; �/; V iY D hG.x � �/; F iL2.B/ D V .x/ (191)

holds true for all V 2 Y ; V D A.F /; F 2 L2; so that all
properties of a reproducing Hilbert space framework for Y
are satisfied.

Armed with this tool we can think of a first regulariza-
tion of (173), namely the projection of (173) on a finite-
dimensional subspace by interpolating V with a finite num-
ber of splines. The use of the reprokernelK as a constituting
function for splines then becomes expedient from the follow-
ing procedure (we restrict ourselves to an intuitive descrip-
tion of the geometric situation, a more detailed consideration
can be found in Freeden and Michel 2004):

Let L� D fxi ; i D 1 : : : N�g be a “regular network” of
points in B [ S , with mesh side of length �. By halving � k
times and putting �k D �=2k we can construct finer and finer
nets, so that

1
[

kD0
L�k D

1
[

kD0
fxi ; i D 1 : : : N�k g

becomes a subset of B , being dense in it. Then we put

YNk D spanfK.xi ; �/ W xi 2 L�k g: (192)

We notice that any V orthogonal (in Y ) to YNk satisfies

hK.xi ; �/; V iY D V .xi / D 0 i D 1; : : : Nk : (193)

Therefore it is clear that the linear space of “splines”, i.e., the
set of linear combinations of K.xi ; �/ ; i D 1; 2 : : :

spanfK.xi ; �/; i D 1; 2 : : :g D
1
[

kD0
YNk

is dense in Y and any V orthogonal to it has to be zero. In
fact, if V satisfies (193) on a set of point dense in B , since
V is continuous it has to be identically zero in B , and the
same will then be true for its Laplacian. As a consequence,
�V D 0 in the whole R3, implying that (remember that V
has to be regular at infinity) V is identically zero.

Calling PNk the orthogonal projection in Y on YNk we are
able to conclude that

VNk D PNkV ! V in Y ; (194)
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implies

�VNk D FNk !
L2.B/

�V D F : (195)

The orthogonal projector PNk can be represented as usual,
leading to the spline function VNk of the form

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

VNk D
NkP

iD1
	iK.xi ; �/

	i D
NkP

iDj
fK.xi ;xj /g�1V .xj / ;

(196)

where fK.xi ;xj /g�1 represent the .i ; j / entry of the matrix
inverse to fK.xi ;xj /g. Since Y is a Hilbert space, (196)
provides even the minimum norm solution under the inter-
polatory conditions

VNk .xi / D V .xi /;xi 2 L�k ; (197)

among all spline functions, i.e., all members of YNk D
spanfK.xi ; �/ W xi 2 L�k g:

Furthermore, by explicitating (196) and interchanging
integral and sum we immediately see that

VNk D
Z

B

Nk
X

iD1
	iG.xi � z/G.z � �/ d z ; (198)

showing that the correspondingFNk is given by

FNk .z/ D
Nk
X

iD1
	iG.xi � z/ : (199)

In other words, the approximate density distributions FNk are
just potentials ofNk point masses placed at the nodes of L�k .

The orthogonal projection is always a stable operation.
However, the algebraic computation of the coefficients 	i
becomes more and more ill-conditioned when k ! 1.
This is a well-known problem in regularization theory, and
its handling leads to the so-called Morozov criterion to fix
an optimal Nk . In order to go deeper into such questions
of inverse theory one can read, for instance, Freeden and
Nashed (2018b).

Remark 5 Let us observe that V would be known only on
S , so that a point network replacing L� should be cho-
sen on S itself, because only there we can satisfy (197).
Subsequently, the approximate density F�, (199), becomes
a function harmonic in B . One can readily prove that, for
�k ! 0, F �k tends to the harmonic solution of the inverse
problem, already mentioned in Remark 4.

In any way we know that the mentioned instability comes
from the increasing “correlation” between the “constituting
trial kernel functions” K.xi ; �/. In more detail, if one com-
putes the cosine of the angle between two of them, as a
correlation coefficient �corr,

�corr D hK.xi ; �/; K.xi ; �/iY
k K.xi ; �/ kY k K.xj ; �/ kY D K.xi ;xj /

p

K.xi ;xi /K.xj ;xj /
:

(200)

One can see that �corr ! 1 when xi ;xj become closer
and closer. To implement bases that reduce, or even anni-
hilate, such correlation is exactly the idea underlying the
construction of a wavelet scheme.

In fact, the critical point in the aforementioned spline
approach is the solution of the linear system

VNk .xj / D
Nk
X

iD1
	i K.xi ;xj /; j D 1; : : : ; Nk: (201)

Each coefficientK.xi ;xj /must be determined by numerical
integration and the coefficient matrix fK.xi ;xj /g is
full-sized. These numerical calamities led Freeden and
Nashed (2018a) either to decorrelate the kernel K by
Gaussian bell functions or to replace K by mollifier spline-
wavelets. The forthcoming study can be regarded as basic
background material for mollifier spline-wavelets, however,
only for the special case of spacelimited Haar mollifiers
(for more general mollifiers see Freeden and Nashed
2018a).

In fact, a simple mollifier, useful in our context, is the
moving average or Haar mollifier defined by

M�.f / D 1

kB�k
Z

B�

H�.x � y/f .y/dy (202)

whereH is the spherically symmetric Heaviside function

H�.x � y/ D
�

1; jx � yj < �;
0; jx � yj � �:

(203)

and kB�k D 4
3
��3. In the nomenclature of convolutions,

(202) can be written in the form

M�.f / D 1

kB�kH� � f ; (204)

where � denotes the convolution product.
In addition, Newton’s equation allows a representation as

convolution, namely

V D G � F : (205)



Geodesy and Mathematics: Interactions, Acquisitions, and Open Problems 247

Thus we obtain

V � D M�.V /D 1

kB�kH� � VD 1

kB�kH� �G � F (206)

D G � 1

kB�kH� � F D G � F�:

After denoting

G� D 1

kB�kH� �G (207)

we are able to rewrite (206) in the form

V � D G� � F D G � F � : (208)

From the second identity in (208) we derive

��V � D F � (209)

and since F � !
L2.B/

F when � ! 0, thanks to a well-known

theorem by Lebesgue, we have

��V � D F� !
L2.B/

��V D F : (210)

It is easy to find the explicit form of G� if one considers that
(207) can be expressed in the form

G� D G �H�; H� D 1

kB�kH� ; (211)

showing that G� is nothing but the potential of a uniform
distribution with mass density equal to 1

B�
. SoG� can be read

out of literature (e.g. Sansò and Sideris 2013) and is given by

G�.r/ D 1

kB�k

(

1
2
.�2 � 1

3
r2/; r < �;

1
3

�3

r
; r > �:

(212)

Obviously, G� satisfies the transmission conditions (175) at
r D �.

Often in numerics, a disadvantage of the Haar based
mollifier approach is the discontinuity of the Haar kernel.
Alternative continuous mollifier kernels are available from
the theory of singular integrals (for more details see Freeden
and Nashed 2018a).

Following here the Haar concept as in Freeden and Ger-
hards (2013) and its extensions in Freeden and Nashed
(2018a), the functions (208) can be regarded as scaling
functions in a multiscale context. Moreover, we can go over

from scale continuous scaling functions fV �g; fF �g to scale
discrete scaling functions fV �k g; fF �k g:

By discretization, with suitable cubature weights wi and
nodes xi in a �k-point system L�k




�k D �

2k

�

we then obtain

F �k Š F k D
Nk
X

iD1
wi F .xi /H

�k .� � xi / (213)

D
Nk
X

iD1
�iH

�k .� � xi /; �i D wiF .xi /;

so that

V k D G � F k

D
Nk
X

iD1
	iG

�k .� � xi / : (214)

Finally, evaluating (214) at the �k-network nodes one obtains
a linear system in the unknowns 	i

V k.xj / D
Nk
X

iD1
	iG

�k .xj � xi / : (215)

In other words, the solution of the system (215) enables us to
evaluate the values f	ig; hence, the functional values F .xi /
are available, since the cubature weights are assumed to be
known. As a consequence, we are able to reconstruct from
(213) the approximate mass density F k .

It is important here to underline that the coefficients f	ig
in (215) and (213) do depend on k, too. They change when
we change the approximation scale �k .

The convergence of V k to V and of F k to F for k !
1 is guaranteed by the reasoning already developed above.
However, we are not in a very different position from that
where we were with (196) and (199), because again the scale
function G�k presents a degree of smoothness, and then of
correlation.

Freeden and Nashed (2018a) introduced potential
wavelets .W V /k and density wavelets, .WF /k , according to

.W V /k D V kC1 � V k; (216)

.WF /k D F kC1 � F k : (217)

So, sparse techniques from numerics become applicable,
since the wavelets have local supports, which become
smaller with increasing scale.
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It is readily seen then that (215) and (213), respectively,
lead to the following linear systems

.W V /k.xj / D
Nk
X

iD1
	i�

k
V .xj � xi / (218)

and

.WF /k.xj / D
Nk
X

iD1
	i�

k
H .xj � xi / ; (219)

where

�k
V .xj � xi / D G�kC1 .xj � xi /�G�k .xj � xi / (220)

and

�k
H .xj � x/ D H�kC1 .xj � xi /�H�k .xj � xi / :

(221)

The problem now is to calculate from (218) the coeffi-
cients 	i (as already observed they depend on k; too) of the
development of V in terms of�k

V .xj �xi / and then use them
to reconstruct the mass density expressions .WP /k.xj / by
(219) in terms of �k

H .xj � xi /.
It is readily seen that the reconstruction formula

F D F 0 C
1
X

kD1
.WF /k (222)

holds true.
The key point in the present step is that �k

V .xj � xi /,
although not strictly orthogonal, are in fact much less “cor-
related” than G�k .xi � xi / and so the development (218),
which is originated in wavelet theory, can be easily per-
formed at least up to some approximation degree kmax. The
exact value of the maximum approximation degree is again
a matter of regularization theory and respond to criteria
like that of the Morozov principle or some other truncation
criterion as in Freeden and Maier (2002).

A numerical investigation of the above method applied to
a structural model proposed by the Rice University, Houston
Texas (2002), the so-called Marmousi model, can be found
in Blick et al. (2018).

Nevertheless one point is non-standard and worth of
further investigations, both in theoretical and numerical way:

OQ8) When we restrict the IG problem to the geophysically
relevant case, namely that V or some linear functional such as
the gravity anomaly �g are given on S , what is a good criterion
to stop the maximum approximation index kmax and therefore the
resolution at which we can perform a reconstruction of F ?

9 Summary and Outlook

It is clear that a subject like the relation between Geodesy
and Mathematics cannot have a “conclusion” (hopefully!).
As mentioned in the Introduction, we have not tried to be
complete, but only to bring the attention to some relevant
interactions, examples, and open questions (sometimes in a
more formal and accessible language avoiding larger mathe-
matical technicalities).

In Sects. 2–3 we have examined two subjects where the
relation has a historical character. In Sects. 4–8we have come
to more recent framework and resulting arguments.

In all of the items presented the purpose was to show the
fruitful interaction between the two disciplines along the way
of a general enhancement of scientific knowledge. May this
last for long!

Acknowledgements The authors would like to thank the reviewers for
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