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Abstract. The role and use of diagrams in mathematical research has
recently attracted increasing attention within the philosophy of mathe-
matics, leading to a number of in-depth case studies of how diagrams are
used in mathematical practice. Though highly interesting, the study of
diagrams still largely lack quantitative investigations which can provide
vital background information regarding variations e.g. in the frequency
or type of diagrams used in mathematics publication over time.

A first attempt at providing such quantitative background informa-
tion has recently been conducted [9], making it clear that the manual
labour required to identify and code diagrams constitutes a major lim-
iting factor in large-scale investigations of diagram-use in mathematics.

In order to overcome this limiting factor, we have developed a machine
learning tool that is able to identify and count mathematical diagrams
in large corpora of mathematics texts. In this paper we report on our
experiences with this first attempt to bring machine learning tools to
the aid of philosophy of mathematics. We describe how we developed
the tool, the choices we made along the way, and how reliable the tool is
in identifying mathematical diagrams in corpora outside of its training
set. On the basis of these experiences we discuss how machine learning
tools can be used to inform philosophical discussions, and we provide
some ideas to new and valuable research questions that these novel tools
may help answer.
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1 Introduction

Historians and philosophers of mathematics are developing an ever-increasing
interest in the role that diagrams play in mathematical reasoning and research
practice [2–6]. This line of research has been highly successfull in unearthing the
multi-faceted and complex roles which diagrams play in mathematics; and yet
the philosophical study of mathematical diagrams still largely lacks quantitative
data providing vital background information for the qualitative investigation of
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selected cases. Recently, a quantitative approach has led to new insights into
the development in the use of diagrams over the twentieth century [9]. Among
their findings is an apparent ‘valley’ in the use of diagrams, which seems to
coincide with the rise of Bourbaki-style formalistic styles in mathematics during
the mid-20th century [8,9].

Despite their obvious interest to the historian and the philosopher, even
those quantitative studies are based on a sample from only three journals and
only include volumes in five year intervals. Judging from these investigations,
the major limiting factor in large-scale quantitative investigations of diagrams
seems to be the huge amounts of manual labour required to identify and code
diagrams by hand. Thus, to substantiate and expand the quantitative approach,
an automated procedure is required to count (and subsequently classify and
analyse) diagrams in mathematical texts. To this end, recent developments in
machine learning may be able to lend a hand to the historian and the philosopher
of mathematical practice.

In this paper, we report on our construction of a machine learning system for
automated detection of mathematical diagrams. Without providing the system
with any definition of a mathematical diagram, we trained an object detector
by feeding it instances of diagrams from a (relatively) small set of mathematical
papers. Upon iterated training, our detector was able to predict diagrams outside
its training base with a (to us) surprising accuracy and precision.

We open the paper by describing how we trained the system, and we report
basic measurements of its accuracy. In the final section of the paper, we discuss
how an automatic diagram detector may contribute to our philosophical and
historical understanding of mathematics. There, we argue that the existence of
such a system opens a variety of new philosophical research questions concerning
the role and diversity of mathematical diagrams which it has hitherto not been
feasible to pursue.

2 Methods

Any object detector involves a number of crucial choices of which model (and
implementation) to use and how to build a good training set for the task at hand.
We chose to build our diagram detector on one of the well-known existing mod-
els of object detectors based on regional convoluted neural networks, known as
Fast R-CNN [7], implemented under the keras-framework and publicly available
[1]. And we chose to build our training set from diagrams found in the volumes
of the Journal für die reine und angewandte Mathematik, colloquially known as
Crelle’s Journal after its first editor. The volumes of Crelle’s Journal published
from its inception in 1826 until 1998 are available at the SUB Göttinger Digital-
isierungszentrum, providing us with more than 130,000 pages of mathematical
text spanning the twentieth century and more. What we will refer to as the
object detector or the model is thus the implementation of the framework plus a
given very large matrix of weights (approximately 100 MB) which represent the
parameters of the model.
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It is a real feat of the training process that we need not give a single exhaus-
tive definition of a mathematical diagram as such a definition is incredibly diffi-
cult to come up with. The standard definitions include aspects such as 1. being
essentially two-dimensional [10], and possibly, 2. being intended to provide cer-
tain types of cognitive aid in mathematical reasoning [8]. Mathematical practice,
however, does not follow such rules consistently. Matrices are, for instance, gen-
erally not considered to be diagrams although they are two-dimensional, whereas
Dynkin diagrams are considered to be diagrams even in cases where they are one-
dimensional. For pragmatic reasons we combined these criteria in our code-book
and considered (roughly speaking) a diagram to be a two-dimensional represen-
tation generally considered to be a diagram by mathematicians.

As is always the case with supervised training in machine learning, the qual-
ity of the detector is dependent on the quality of the training set. And thus,
the practice-near definition of mathematical diagrams features into our detector
through the code-books which were used in tagging the training set.

During the training, the detector went through a number of iterations, refin-
ing models through exposure to both true positives and false positives (see
Fig. 1). Training by true positives provides the detector with input of (ideally)
varied examples of what counts as a mathematical diagram. This is provided by
human tagging of diagrams in selected parts of the corpus. For the various iter-
ations we picked out subsets of the corpus Xi, picked out all the pages on which
diagrams were found, and identified the rectangles bounding the diagrams Pi. To
balance the identification of diagrams by ruling out false positives (here called
background), we implemented a bootstrapping mechanism sometimes referred
to as negative mining : If we let the model perform predictions on all pages in
Xi for which there is no true positive identified in Pi, we know that any box
identified as a diagram is a false positive. These boxes collected as Ni can then
be fed into the training of the next model as background. Thus, the training of
a model builds upon the weights of the previous model and sets of boxes of true
and false positives.

After we obtained Model 3, results were sufficiently good that we could apply
a different method of training, which is a variant of the process known as active
learning, where predictions made by the model are fed to an oracle (a human)
who will classify them as true or false positives. Running model 3 on the entire
corpus from Crelle’s Journal (all 130,000 pages) provided predictions of 8,700
boxes which were inspected, labeled and corrected where needed by a human
agent. Together with the previously tagged true positives, these provided the
training set for Model 4, which is the present culmination of our training process.

3 Results

The model was implemented under Linux Ubuntu 18.04, building on python and
TensorFlow and run on a computer with an AMD Phenom(tm) II X3 720 CPU
and an NVIDIA GeForce GTX 750 Ti GPU. Run-time was a real bottleneck,
both in training new iterations of the model and in running predictions on large
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Fig. 1. Illustration of the process of training and validating the models. Boxes are
corpora, ellipses are models, circles are sets of boxes (either green true positives or red
false positives), diamond is active learning, yellow indicates human interaction, blue
indicates prediction. H is hand-tagged, and the comparison of B and H amounts to
the validation process discussed below. (Color figure online)

corpora of texts. As the system is small and somewhat dated, this could be
mitigated by using more modern and larger hardware.

When we ran predictions by Model 3 on the remaining corpus from Crelle’s
Journal which was not used in training Model 3, we were quite surprised at
the accuracy of true positives and true negatives; in other words, the detector
was surprisingly efficient in predicting diagrams precisely when they were indeed
present (see Fig. 2).

However, we also encountered all the kinds of mistakes that we would expect:
false positives, false negatives, and wrong partitionings. We found various types
of false positives, i.e. predictions which do not correspond to diagrams. These
included identifying library stamps or indented multiline formula but also some
kinds of matrices and continued fractions which could rightly be considered
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Fig. 2. One example of running the detector (model 3) on the entire corpus from
Crelle’s Journal, i.e. those papers not used in training the model. For this particular
page, it correctly identified two true positives.

diagrams on many definitions [10]. We also found various types of false negatives,
in particular some triangular commutative diagrams which were not identified
as diagrams by the detector. Another special kind of false negatives came from
tableaux pages with many diagrams, especially when the bounding rectangles of
different diagrams would overlap; this is thought to be a side-effect of the model
chosen. Furthermore, we found instances, where the detector would identify
sub-rectangles of a diagram as independent diagrams.

After training our models, and to assess their quality, we ran the detector
against a baseline of 677 hand-tagged articles from three journals (Bulletin of
the AMS, Acta Mathematica and Annals of Mathematics) which are outside
the training set and were tagged for another project [9]. These articles spanned
23,500 pages and contained a total of 5,271 diagrams. Different measures exist
for evaluating this type of machine classification, and the best choice of measure
should be based on the concerns of the application. To measure the performance
of our detector on such an asymmetric set (many more negatives than positives,
higher price of false negatives than of false positives), we chose to balance recall
(R) and precision (P ) through the F1-score:

F1 =
2 ×R× P

R + P
, where R =

TP

TP + FN
and P =

TP

TP + FP
. (1)

If no true positives are found in an article, the F1-score is undefined for that
article. As can be seen from the equations, R measures how many positives are
picked up and classified correctly, whereas P measures the degree to which those
diagrams are identified are indeed true diagrams.

The F1-score for Model 4 against the entire baseline corpus was found to be
0.90777, which is significantly improved from 0.7198 for Model 3. This is a very
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On some accounts continued fractions
would be considered diagrams.

On some accounts matrices would be
considered diagrams.

Sometimes it would also mis-classify
horizontal lines as diagrams.

And more frequently, space between
lines were mis-classified as diagrams.

Fig. 3. Examples of false positives and wrong partitionings produced by running the
detector (model 3) on the corpus from Crelle’s Journal against which it was not trained.

Here it picked out only one of the two
commutative diagrams; triangular ones
are less frequent and sometimes missed.

Some specific diagrams would also
sometimes be missed, in particular on
pages with overlapping diagram boxes.

Fig. 4. Examples of false negatives produced by the detector (model 3) on the corpus
from Crelle’s Journal against which it was not trained.

good score for training Model 4 on a relatively small set of tagged images and
testing the model against a corpus from different mathematical and typograph-
ical traditions. It also shows that Model 4 has succeeded in eliminating many of
the false predictions made by Model 3.
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Not capturing the entire diagram; in
particular 1-dimensional ‘appendices’

sometimes allude the detector. Sometimes, it would pick out both the
entire diagram and a part of it.

Fig. 5. Examples of wrong partitioning from running the detector (model 3) on the
corpus of Crelle’s Journal on which it was not trained.

4 Discussion

Our efforts to build a mathematical diagram detector have been successful to
such a degree that we now have a tool that can provide large-scale quantitative
background for historical and philosophical investigations of the use of diagrams
in mathematics. This background is important for several different reasons. With
the detector (and its subsequent improvements) it is possible to build large
corpora of diagrams spanning many journals, periods, and sub-disciplines. This
will allow a more grounded approach to the investigation of the function of
diagrams as large samples that better represent the diversity in the types and
uses of diagrams, can easily be accessed.

Furthermore, mathematicians do not only use diagrams (and other represen-
tations) as a way to convey mathematical content. Diagrams and other represen-
tations also play a major role in the heuristic phases of the mathematical work
practice and during idea and concept development. Consequently, changes in the
frequency and type of the diagrams being published not only reflects aesthetic
and stylistic preferences, but may also indicate underlying changes in cognitive
style and epistemic values among the practitioners. The precise understanding
of the changes in diagram use over time or between different sub-disciplines of
mathematics is thus not only of interest in and by itself, but may also be used
to identify specifically interesting periods or publications for further historical
or philosophical investigation of the role of diagrams.

Finally, the fact that it is at all possible to build and train a model capable of
detecting mathematical diagrams is, in itself, an interesting philosophical result.
As pointed out above, it is quite easy to point to many different examples of
mathematical diagrams, but difficult to give clear definitions of the concept in
terms of necessary and sufficient conditions. Despite this difficulty, the detector
is largely capable of mirroring human judgement concerning weather or not
something is a diagram (and some of the ‘mistakes’ made by earlier iterations of
the detector even reflect the inconsistencies of the concept as when it classified
a continued fraction as a diagram). Although a full explanation of the concept
is beyond us, it simply seems that the prototypes embedded in the examples
which we provided to the detector are strong enough to allow a reasonably clear
concept to form from its actions.
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