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Preface

The 11th International Conference on the Theory and Application of Diagrams
(Diagrams 2020) was originally due to be hosted by the Tallinn University of Tech-
nology in August 2020. However, due to the global COVID-19 pandemic, Diagrams
for the first time ever took place as a virtual conference during August 2020. The goal
of the Diagrams conference series remains to broaden the academic discussion of
diagrams.

Submissions to Diagrams 2020 were solicited in the form of long papers, short
papers, posters, and Abstracts. The Abstracts category was retained from Dia-
grams 2018, where it was introduced to encourage participation from authors working
in fields where conference publications are not as prestigious as journal publications.

The peer-review process involved all papers and abstracts receiving at least three
reviews (at least two for posters) by members of the Program Committee or a nomi-
nated sub-reviewer. After reviews were received, authors had the opportunity to submit
a rebuttal. The reviews and rebuttals led to a lively discussion involving the Program
Committee and the conference chairs to ensure high-quality submissions, covering a
broad range of topics, were accepted to the conference. We would like to thank the
Program Committee members and the reviewers for their considerable contributions.
The robust review process, in which they were so engaged, is a crucial part of deliv-
ering a major conference.

In total, 91 submissions were received. Of these, 20 were accepted as long papers.
A further 16 were accepted as short papers, 8 as Abstracts, and 22 for poster presen-
tation. Diagrams 2020 sought to expand the research community, and used two special
submission tracks on Philosophy and Psychology. These submission tracks had their
own Program Committees and calls for papers, and continue to be a successful addition
to the conference. There were several satellite events initially planned for Dia-
grams 2020, including a graduate symposium, the Set Visualization and Reasoning
Workshop, and five tutorials covering a range of topics on diagrams. However, in order
to allow the organizers to focus on the central scientific program, these satellite events
were canceled with great regret.

There are, of course, many people to whom we are indebted for their considerable
assistance in making Diagrams 2020 a success. We thank Francesco Bellucci for his
role as Workshops and Tutorials Chair; Yacin Hamami for his role as Graduate
Symposium Chair; Richard Burns for his help maintaining and producing the Diagrams
website; Sven Linker for his role as Proceedings Chair; and Marika Proover for her
tireless work as Local Chair. Our institutions, Tallinn University of Technology,
Edinburgh Napier University, the University of Groningen, the University of Lorraine,



and Columbia University, also provided support for our participants, for which we are
grateful. Lastly, we thank the Diagrams Steering Committee for their continual support,
advice, and encouragement.

August 2020 Ahti-Veikko Pietarinen
Peter Chapman

Leonie Bosveld de Smet
Valeria Giardino

James Corter
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On “Overspecification” in Medieval
Mathematical Diagrams

Gregg De Young(B)

The American University in Cairo, Cairo, Egypt
gdeyoung@aucegypt.edu

Abstract. In a recent paper [1], Christián Carman advanced a tentative
explanation for “overspecification” in medieval mathematical diagrams.
Carman argues that the original (“correct”) diagrams were corrupted,
presumably through incompetent copyists, while preparing the initial
copies—often before the tenth consecutive copy. The diagrams then sta-
bilized in an overspecified form and resisted further changes, sometimes
for centuries of copies thereafter. I feel hesitant about this hypothesis
for several reasons: (1) it assumes that the first Greek diagrams were
essentially identical to modern diagrams; (2) pre-modern overspecifica-
tion is ubiquitous and is rarely reversed; (3) the hypothesis ignores dif-
fering traditions of perspective; (4) the informal tests used to support
the hypothesis do not precisely mirror the medieval copyist’s activity.

Keywords: Medieval mathematical diagrams · Diagrams in Early
Greek Mathematics · Overspecification

1 Background

Interest in the diagrams in the classical Greek mathematical treatises [2] received
new impetus when Netz [3] pointed out that the diagrams of the Greek math-
ematical tradition were lettered diagrams and thus differed from diagrams in
several other ancient mathematical traditions. These letter labels allowed dia-
grams to be integrated with the verbal mathematical text in unique ways. He
went so far as to argue that these diagrams functioned as a metonym for the ver-
bal text. (As an example, one might consider the Arabic manuscript Kastamonu,
Yazma Eser Kütüphanesi, 70, which contains only enunciations and diagrams of
the Elements.) Saito and Sidoli [4] suggest that diagrams were intended to be
redrawn during the course of the mathematical demonstration, contributing a
kind of necessity to the verbal argument. Asper [5] further suggested that dia-
grams and proofs enabled professional mathematicians to distinguish themselves
from other intellectuals, such as philosophers and sophists.

Diagrams in medieval copies of ancient mathematical manuscripts derive
from this tradition of mathematical discourse. These medieval diagrams often
seem unfamiliar to modern readers. Saito [6] identified four characteristics that
contribute to this aura of unfamiliarity. The two most frequently encountered are
c© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 3–9, 2020.
https://doi.org/10.1007/978-3-030-54249-8_1
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4 G. De Young

overspecification, the tendency to draw figures with greater regularity than the
mathematical text requires (for example, quadrilaterals appear as squares and
parallelograms as rectangles), and an indifference to metrical accuracy (Fig. 1
and Fig. 2). Historians of mathematics have noted the prevalence of overspeci-
fication in medieval diagrams [7] and have critiqued the tendency of editors of
early Greek mathematics to redraw the medieval diagrams in generalized form,
following more contemporary conventions [8].

Fig. 1. Byzantine diagrams of Elements I, 47. Numerical values show that the right
triangles have sides of 3, 4, 5 units. Left: diagram edited from Wien 1015, folio 21a,
margin. Neither visually nor numerically overspecified, it ignores metrical accuracy
since the squares on the longer side and on the hypotenuse appear equal. Right: diagram
edited from Oxford, Bod. Lib., Dorval 301, folio [31a]. The lower portion is obscured,
but the upper portion shows an overspecified isosceles right triangle, despite the stated
numerical values. Most medieval diagrams of I, 47 are drawn as an isosceles triangle.

The growing appreciation of diagrams among historians has produced criti-
cal study of the diagrams in several recent editions of Greek texts [9,10]. Using
medieval diagrams, Decorps-Foulquier [11] investigated the editorial work of
Eutocius in preparing his Greek edition of the Conics of Apollonius. Sidoli [12]
argued that variant diagrams in On the Sizes and Distances of the Sun and Moon
by Aristarchus show the different ways in which medieval readers understood the
text.

More remains to be done to develop the necessary technical tools to edit and
study diagrams. DRaFT, a free Java-based software developed by Ken Saito
(https://www.greekmath.org/diagrams/diagrams index.html) offers the capa-
bility of collecting and preserving geometrical data from diagrams (including
metrical data) for potential use in the editing process. Raynaud [13] has pio-
neered use of phylogenetics to create stemma based on the diagrams in medieval
manuscripts.

https://www.greekmath.org/diagrams/diagrams_index.html
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2 Was Overspecification Unintentional?

Carman [1] has suggested that overspecification in medieval mathematical dia-
grams was introduced unintentionally early in the copying process. I am uneasy
about this claim. One reason is that it seems to ignore the existence of numerical
values attached to geometrical diagrams in some Byzantine Greek manuscripts
of Euclid’s Elements (Fig. 2). Who added these values? We do not know. But
they are consistent with the visual overspecification, suggesting that these visual
features did not appear by accident in the copying process [14].

Fig. 2. Diagram of Elements I, 47 edited from Firenze, Biblioteca Medicea Laurenziana,
ms. Plut.XXVIII 3, folio [14a]. The right triangle is drawn as equilateral, ignoring
metrical accuracy. The diagram is overspecified since there is no need that the triangle
be isosceles. The Greek alpha-numeric value for the area of the square on each side
is 25, while the square on the hypotenuse is 50 (nu). These values suggest that the
overspecification was intentional. (The letter mu appears to have been displaced from
the point where the perpendicular meets the hypotenuse of the right triangle.)

Moreover, it is difficult to accept that overspecification, as well as indifference
to metrical accuracy, occurred only during the production of the first copies
of Greek mathematical works and were then preserved essentially unchanged
thereafter through centuries of manuscript transmission extending through the
medieval period and up to the introduction of print technology [15].

As a counter example, consider the diagram transmission of a mathematical
treatise that originated in the medieval period—an Arabic edition of Euclidean
geometry, Tah. r̄ır Kitāb Uql̄ıdis, by Nas.̄ır al-Dı̄n al-T. ūs̄ı. The autograph of this
Arabic treatise, completed in 646 AH/AD 1248, is not extant, but the oldest sur-
viving manuscript (British Library, additum 23387) is dated 656 AH/AD 1258,
well within the author’s lifetime. The few years between the original composition
and this oldest copy makes it unlikely that extensive changes would have been
introduced into the diagrams. Six centuries later, al-T. ūs̄ı’s treatise was printed
by lithography (Tehran, 1298 AH/AD 1881), still exhibiting overspecification
in its diagrams. The overspecification of the diagram for I, 47 (present from
the earliest known copy although occasionally abandoned in specific copies), is
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preserved through hundreds of copies over the centuries (Fig. 3), whether repro-
duced as a freehand sketch or using standard drafting tools.

Fig. 3. Diagrams of I, 47 from al-T. ūs̄ı’s Tah. r̄ır Uql̄ıdis. Left: British Library, add.
23387, folio 28a. The earliest known manuscript shows an overspecified isosceles right
triangle since the perpendicular from the right angle bisects the base of the square
on the hypotenuse. (Distortion in the two smaller squares resulted when the copyist
left too little space and the draughtsman attempted to avoid impinging on the text.)
Center: Beyerische Staatsbibliothek, arab 2697 (copied 1142AH/AD 1729), folio 20a,
is an unusual example of a diagram without overspecification. Right: the diagram in
Tehran lithograph (1298 AH/AD 1881), page [27] is overspecified with an isosceles
right triangle.

3 Reservations Concerning Carman’s Testing

Carman has conducted several tests of his hypothesis. In these tests, univer-
sity students were asked to copy mathematical diagrams. The first was given a
“correct” generalized diagram to copy. Each successive student then copied the
copy of the previous student. These tests generally reproduced the appearance
of overspecification after only a few copies of the original diagram. On one level,
this testing process was not dissimilar to what medieval European university
students would have experienced in copying their own textbooks [16].

Carman’s assumption that the original mathematical diagrams must have
appeared more-or-less like the generalized diagrams in modern mathematics
textbooks appears to me a debatable point. It presupposes that there is a single
“correct” convention for constructing diagrams—the typical generalized diagram
we would expect to find in a modern textbook. Diagrams failing to conform to
this convention are judged to be somehow “wrong” or defective.

Moreover, this “experimental” testing does not seem to me to mimic com-
pletely the medieval copyist’s situation. In the test, only one student copied
from the “original,” while the others copied from the copy of another student,
usually without access to any other preceding copy. The historical situation was
probably more complex. We know that some medieval translators and copyists
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tried to obtain several manuscripts in order to achieve the best text. Presumably
they would also compare text diagrams. Thābit ibn Qurra, a mathematician who
revised the Arabic translation of the Elements attributed to Ish. āq ibn H. unayn
reports several differences between the Arabic text and Greek manuscripts avail-
able to him.

Furthermore, a medieval copyist was not asked to copy an isolated diagram.
Rather, he was presented a diagram within the context of a mathematical text
and the two were intimately connected. Carman’s student “copyists,” on the
other hand, were presented with a mathematical diagram—usually a complex
diagram representing a three-dimensional situation—apparently divorced from
textual or mathematical context. Thus arguments based on these experimental
results seem to me not to carry convincing force.

We have few documentary sources describing the actual practice of copy-
ing manuscripts in Hellenistic and Roman periods. We know somewhat more
about the conditions of working in medieval scriptoria associated with monastic
houses, but the large majority of work in these institutions was religious rather
than mathematical. For a general guide to books and their preparation in the
premodern period, see [17,18]. There is a similar dearth of written evidence
concerning copying of mathematical manuscripts in the Islamicate world. We
must reply primarily on the evidence of the manuscripts themselves. Manuals in
Arabic containing instructions for drawing geometric figures, ostensibly directed
toward craftsmen, exist from the medieval period but few have been edited,
translated, or studied in detail [19]. There also survive exemplars of drawing
instruments such as compasses [20] although there has been no detailed study
of their production and use.

4 Can We Ignore Conventions of Perspective?

The mathematical text must be understood in order to know what is important
in the diagram and what is not important, as well as to decide what techniques

Fig. 4. Left: Truncated octohedron from a medieval Arabic extension of the Ele-
ments (edited from Hyderabad, Andhra Pradesh Government Oriental Manuscipts
and Research Library, riyād. ı̄ 496 (dated 1003 AH/AD 1593), p. 446). Right: Trun-
cated octohedron following modern perspective conventions (edited from [22], p. 179).
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will convey the intended meaning accurately. When Chinese copyists attempted
to create figures describing European technical devises, they often produced
inaccurate portrayals because they did not understand the artistic conventions
of the Europeans [21]. Medieval perspective can sometimes be considerably dif-
ferent from modern conventions (Fig. 4). This problem has been discussed in
[22]. Therefore, judgements about “errors” in diagram construction need to be
made contextually and in relation to the textual content.

5 Conclusion

I have outlined several reasons why I found Carman’s tentative hypothesis unsat-
isfying. However overspecification may have arisen, its widespread persistence
through centuries of medieval transmission show that further historical studies of
medieval mathematical diagrams are required. In one of our many conversations
about diagrams, Ken Saito noted that one could perhaps consider the overspecifi-
cation of the isosceles triangle in Elements I, 47 in the tradition of the discussion
of the duplication of the square in the famous passage in Plato’s Meno. And taken
in isolation from other diagrams, this idea has a certain intellectual appeal. But it
clearly would explain only a small minority of the medieval examples of diagram
overspecification. I think that a great deal more historical research needs to be done
beforewe can feel confident thatwe understand the intellectual and cultural factors
that produced overspecification in these diagrams.

I am also concerned that Carman’s hypothesis could be used to justify an
editor’s decision to redraw medieval mathematical diagrams, arguing that over-
specification represents a divergence from the “true” form of the diagram. In
this case, we would find ourselves back in the diagrammatic tradition of Heiberg
or Busard [23], who noted in his editorial remarks for his edition of the so-called
Adelard II version of Euclid, “We have silently corrected wrong letters in the
figures by using the letters in the text” (page 92). My own view is that we should
concur with Jardin and Jardin [24], that editors should retain the medieval dia-
gram forms, and when it is necessary to reconstruct the diagrams to make them
more accessible to modern readers, this should always be clearly stated.
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Abstract. This paper analyzes the problem of producing diagrams of mathe-
matical explanations that are not necessarily conclusive, instead of diagrammatic
proofs. In order to do so, we focus on a case study, namely, the investigation that
Hippocrates of Chios carried out in the fifth century B.C., concerning the square
of the circle by means of lunules. More specifically, we analyze the discussion
regarding two versions that Simplicius presented about the first quadrature, one
developed by Alexander of Aphrodisias and the other by Eudemus of Rhodes. Our
purpose is to address the relevance of the perspicuity of proof in diagrammatic
terms. Classical historiography has regarded the Hippocratic explanation of the
allegedly failed quadrature of the circle as not being axiomatic, or able to produce
a conclusive demonstration of his results -on the grounds of having analyzed only
some cases of lunules and not the totality that allows giving general results-. There-
fore, we propose to analyze his argumentation from an abductive point of view. In
this sense, taking as a starting point Jens Høyrup’s approach of Hippocrates proof
as ‘reasoned procedures’ that are ‘explanations’, we develop this perspective in
terms of transduction, a variant of C.S. Peirce’s concepts of abduction. Transduc-
tion is dominated by a cluster of non-deductive activities and skills such as: iconic
visual inferences, analogies, metaphors, inductive generalizations, among others,
all contributing to the construction of one or more hypotheses that explain the
emergence of some creative insight, in response to a problem that motivates and
drives the creative process.

Keywords: Diagrammatic proof ·Mathematical explanation · Transduction

1 Introduction

A large number of classic historians of ancient mathematics agree on considering Hip-
pocrates of Chios (ca. 470-ca. 410 BC) as one of the great Greek thinkers regarding
the measurement of the circle, proportionality, incommensurability and the relations
between straight and curvilinear figures1. In contrast, his results, which were reported

1 Thus: “the most important figure to consider” [22, p. 40]; “the most important name from the
point of view of [the progress in the elements down to Plato’s time]” [14, p. 182]; “one good
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by pivotal figures in both the history of mathematics and philosophy -such as Eudemus,
Simplicius, Aristotle, and Proclus, among others-, were devastated by his critics. Among
other reasons, the presumed affirmative answer that Hippocrates gave to the problem of
the squaring of the circle made him the center of controversies even at times much later
than his.

This article seeks to describe Hippocrates’s first quadrature diagrammatically, by
means of lunules, from the point of view of abductive arguments, and, in turn, expand-
ing this conception through the notion of transductive inference [2, 3]. Transductive
methodology seeks to elucidate the diagrammatic processes that aims at explaining a
mathematical problem to solve, rather than, to grant absolute certainty converting the
argument into a demonstration in the strict sense of the word. Thus, transductions entail
the purpose of explaining the reasons why the ideas solve a problem, while remaining at
the level of argumentative plausibility, instead of generating an answer to the how and
what of a problem, which would lead to its conclusive justification.

2 Transductive Approach to Mathematical Diagrammatical
Explanations

As to the use of diagram in mathematics, it is important to distinguish between external
visual representations and internal mental imagery in order to determine and individual-
ize the abstract character of mathematical entities. Such entities, unlike diagrams, lack
all kind of materiality. Consequently, diagrammatic icons can give them some tangible
dimension on which to work. They provide a material embodiment for the mathematical
reasoning, a concrete means through which they could achieve an absent “spatial and
temporal cohesion that enables [their] manipulability. (…) Even abstract entities need
to have a natural dimension to give us knowledge” [24, p. 169].

The following questions arises naturally: as diagrams provide entities and mathe-
matical reasoning with operative materiality, what epistemic character can be assigned
to them? Are they mere auxiliary elements that accompany and facilitate the thread of
reasoning? Or, in addition to this clearly recognized role, do they fulfill a different, even
superior function? If so, what would such functions be? How could we characterize
this added and emergent role apart from their merely secondary and tangential use? In
addition, it might be the case that not all situations should be analyzed under the same
magnifying glass but we should rather think of types of diagrams according to different
functions. Now, if diagrams add a material dimension to ideas and mental images, and
contribute by creating simulation scenarios, where does the certainty of such resources
come from? These important questions have to be postpone for another occasion. We
will examine a less ambitious but nonetheless significant question: in addition to the
search for certainty, what other epistemic values are expected as requirements for a
valid mathematical argumentation, whether diagrammatic, linguistic or mixed? For this
purpose, we will focus on the notion of mathematical explanation, by introducing some
aspects of Peirce’s notion of abductive reasoning. Thus, we will analyze the relevance

fifth-century BCE example of a thinker most of whose work related to, or used, one or other
branch of mathematics” [27, pp. 294–295]; “a geometer of great distinction” [28, p. 147]; “the
first of whom we have any record who did [write a book on elements]” [32, p. 54].
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of explanations in mathematics as an alternative to the view that considers certainty as
the predominant epistemic value in mathematical contexts. While deduction is usually
understood as the predominant style in mathematical work, other types of reasoning
also intervene in creative discovery processes. Peirce insisted that the only reasoning
that introduced novelty was abduction [30, §5.172], which was also responsible for both
hypothesis formation and adoption. According to Peirce, deduction is progressive, and
allows to represent predictions from causes to effects; abduction, on the other hand,
is employed to provide an explanation in terms of the cause that produces a certain
effect, and consequently, in a regressive progression or retrojection. In his late writings,
Peirce seemed to attribute the task of hypothesis formation to an “instinct to guess right”
[30, §2.3], which would leave out the inferential nature of this first creative stage he
emphasized in his previous work. We will adopt a conciliatory reading for this exten-
sively discussed discrepancy in Peirce’s writing and distinguish two stages in abductive
reasoning: one, related exclusively to the formation of hypotheses, as merely instinc-
tive, and, a second stage corresponding to the selection and adoption of one of such
hypotheses.

If this two-stage reading is plausible, we may also examine whether the first stage,
that is, the creation of hypotheses, is not inferential, and therefore, deprived of voluntary
and controlled acts of reasoning. The alternative view of the first stage introduces the
notion of “transduction” [2, 3]. More specifically, transduction consists in the generally
non-instinctive formation of hypotheses.Despite of being implicit for themost part, some
inferential elements of an associative type that characterize transduction constitute an
important contribution to the creative process that leads to the formation of innovative
and original hypotheses. However, what would these associative elements that intervene
in the formation of hypotheses be, and in what way would they constitute transductive
inferences? David Hume gives us the key to an answer. Indeed, Hume characterizes
associations as ‘principles’, which also fulfill a central role in representing ‘the cement of
themind’ and ‘all operations of themindmust largely dependon them’ [20, pp. 152–154].
Moreover, he produces a typology of them: “the qualities, from which this associations
arises, and by which the mind is after this manner convey’s from one idea to another, are
three, viz. resemblance, contiguity in time or place, and cause and effect” [21, 1.1.4.1].
However, of these three, similarity stands out:

Of all relations, that of resemblance is in this respect the most efficacious; and that
because it not only causes an association of ideas, but also of dispositions, and
makes us conceive the one idea by an act or operation of the mind, similar to that
by which we conceive the other [21, 1.4.2.32].

Similarity will be one of the most important relationships in terms of its scope in
the unification of ideas: “The first [quality of a philosophical relation] is resemblance:
and this is a relation, without which no philosophical relation can exist” [21, 1.1.5.3].
According to Hume, similarity, when it is accompanied by the other associative prin-
ciples, i.e. through these relationships, elevates the mind from one idea to another, or
before the occurrence of an idea ‘they naturally introduce the other’, thus allowing for
the elaboration of a complexmechanism of associations that, acting together, contributes
to the elaboration of knowledge: “I have often observ’s, that, besides cause and effect,
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the two relations of resemblance and contiguity, are to be consider’s as associating prin-
ciples of thought, and as capable of conveying the imagination from one idea to another”
[21, 1.3.9.2]. This is also linked with the capture of the ‘effects’ that these associations
produce, which, contribute greatly given their generally unconscious and unintended
nature, and reveals a surreptitious way of operating: ‘This evident, that the association
of ideas operates in so silent and imperceptible a manner, that we scarce sensible of
it, and discover it more by its effects than by any immediate feeling of perception”
[21, 2.1.9.4; 6, pp. 94–102]. Finally, it is worth mentioning the relationship that Hume
establishes between abstract ideas and their pictorial representations: “abstract ideas are
therefore in themselves individual; however, they may become general in their repre-
sentation. The image in the mind is only that of a particular object, tho’ the application
of it in our reasoning be the same, as if it were universal” [21, 1.1.7.6]. For Hume our
abstract ideas are not mere copies, and, since every idea is but a weakened impression
and that the impressions are presented to the mind determined according to their degrees
of quantity and quality, ideas must also be determined accordingly. Consequently, “[t]his
determination to show that pictorial properties together with principles of association
are sufficient to allow images to be deployed in reasoning in a way that allows them to
represent a unique general content” [33, p. 129].

These features concerning the notion of association according to Hume, are espe-
cially relevant for the description of transductive inferences. In effect, just as Hume
highlighted the role of similarities in the association of ideas, transduction is a type of
reasoning that begins with a similarity, and, therefore, this constitutes the pillar from
which the entire structure that constitutes the creative process of hypothesis formation
is based. More specifically, given a problem A to solve, in this case a mathematical
one, this generates a cognitive imbalance until a solution that restores order is reached.
It is possible to obtain solutions to a problem that do not require any type of heuris-
tics, ingenium or special operational skills. In such a case, however, we would hardly
frame the resolution process as a creative one. In order to achieve an innovation in its
resolution, it is expected to overcome the difficulties and obstacles of a disruptive res-
olution effort, thus providing an unexpected and surprising insight against any other
traditionally expected result. As mentioned above, Peirce takes this state of surprise as
an indication of a discovery that requires an abductive explanation. How was such a
creative insight produced and what does it contribute? Our transductive interpretation
indicates that the emergence of insight constitutes a process of association of ideas that
manifests itself through a similarity: given problem A, a problem or situation B arises
iconically represented. Being B similar to A in a certain aspect/sM, its explanation helps
to solve A through a result CA, which is analogically inferred from a solution CB of
B, already known and familiar to the problem solving agent. Thus, the first step of the
transductive process is constituted by the apprehension of the similarity that triggered
the creative insight. The second step of transduction is represented by the task of analyt-
ical deepening on the reasons for the similarity between A and B, in order to be able to
extrapolate properties M of B that are also shared by A, and apply them analogously to
A from a known solution CB of B. Therefore, transduction’s second stage is summed up
in the detection and explicitness of the analogical process of transferring characteristics
of CB to the formation of the CA hypothesis, which may eventually lead to a plausible
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solution of A. In this step, associations of contiguity are in place, that is, the second
type mentioned by Hume. Finally, the third transductive step delves into the causes of
the effect of having postulated CA as a plausible solution of A, the third associative
type that Hume provides. It is in this instance that it is explained why hypothesis CA is
adopted, thus constituting what Peirce would call abductive reasoning proper. As made
clear above, there are manymore inferential mechanisms -of associative nature-, beyond
a mere instinctive act of guessing the answer, which Peirce seems to admit. A question
arises: is this proposal of hypothesis CA only a particular solution without general aspi-
rations? Given the associative nature of this process, does it only achieve a conjecture
that does not cover all the cases that exhibit the particular choice of the diagrammatic
icon B? How confident can we be of having obtained certainty and conclusiveness from
a similarity as that between B and A? It is clear that the notion of transduction, based on
a Peircean notion of abduction, introduces an entire discussion that confronts the use of
specific and concrete diagrams with particular reasonings seeking for generality. How-
ever, one may still wonder whether this contrast between the particular and the general
is legitimate. Diagrams, the use of similarities, the construction of analogies, and the
production of abductive explanations, all these constitute the transductive scenario that
combines clearly particular aspects with generality ambitions.

Historically, diagrams have been extensively used in mathematical practice. How-
ever, its epistemic role was amatter of controversy. According to a widely accepted view,
their use was limited to discovery, and consequently, its role in proving was neglected.
Visual representations such as diagrams could only accompany the process of reasoning
proper. This negative attitude toward diagrammatic thinking can be found in the early
modern period. Leibniz’s view in the New Essays illustrates the traditional attitude to
diagrams in several respects [26, pp. 360–361]. Firstly, Leibniz rightly holds that geo-
metrical demonstrations are not about the particular figure. Otherwise, wewould confuse
the iconic representation and the concept of the figure [26, pp. 261–262]; while the force
of the proof is independent of the particular figure, the geometer is using [26, p. 360]. By
examining the particular figure we come to understand the relevant properties involved
in the concept of the figure and focus our attention on them but the proof itself consists
of universal propositions, that is, the definitions, axioms and previously proved theo-
rems [26, pp. 360–361]. Only by the discursive expression of the relevant information,
the epistemological significance of the proof can be displayed. As Leibniz points out,
what is at stake is the certainty of the conclusion of the demonstration, which cannot
depend on particular figures2. The thinking process that leads to the conclusion must
be reliable or truth conductive so that the result is a rationally justified true belief, but
according to Leibniz this cannot be achieved through the diagrams alone. The passage
from one image to another by imaginative associations has to be distinguished from the
conceptual content involved in the relational notion of similarity that only the intellect
can analyze. In other words, diagrams are not reliable. They cannot justify the conclu-
sion3. “Blind” or symbolic representation, on the other hand, can conclude general and

2 According to Leibniz’s theory of cognition, images are confused representations of the geo-
metrical object. However, Leibniz does not reject the role of visualization in reasoning, as it is
attested by his project to develop a General Characteristics. See, for example [26, p. 73].

3 See [26, p. 11]. For ampliative abstraction and analysis in Leibniz, see [13].



Transductive Reconstruction of Hippocrates’ Dynamical Geometrical Diagrams 15

necessary conclusions in a reliable way by making explicit the conceptual connections.
Leibniz both ascribes an auxiliary role to the geometrical diagrams and puts into question
their reliability4. He also mentions the case of some geometers who presented Euclidean
geometry without including any figures but only text [26, p. 361], implying that figures
may be helpful but replaceable. As he points out in his account of Euclidean proof, there
are cases in which the ecthesis and manipulation of the original figure are not necessary
[26, p. 476].

Leibniz’s attitude can be contrasted with Peirce’s view. As it is well known, Peirce
sustained that all necessary reasoning is diagrammatic. Moreover, mathematics is the
science of necessary reasoning [31, pp. 206–207]. Consequently, the American prag-
matist has to provide a way to account for the fact that diagrammatic representations
are particular while representing something general since the conclusions are general.
Diagrams are iconic representations, that is, it is the nature of a Peircean diagram to
represent something general [31, p. 303]5. Proofs are designed in order to increase our
knowledge, by extracting information fromwhatwe already know.As alreadymentioned
above, for Peirce the only ampliative form of reasoning is abduction [31, p. 205]. Abduc-
tive inference introduces novelty and is also a process of reasoning from some particular
observation to adopting a hypothesis [30, §5.189]. Now mathematical reasoning may
be abductive [31, p. 287]6. Moreover, mathematics is the science that deals with hypo-
thetical state of things [30, §4.233]7. The introduction and manipulation of diagrams
in a geometrical proof can be described as abductive reasoning [31, p. 303]. But some
of his remarks concerning abduction such as the element of surprise might suggest that
this inference is not reasoning proper since reasoning proper involves rational control
[31, p. 249] and the process by which the hypothesis is achieved does not seem to be
deliberate reasoning. However, the process of adopting the conjectural explanation is
under rational control. Experimenting on the diagram in a mathematical proof suggests
a conjectural proposition by resemblance [31, pp. 106–107]. The object of the reasoning
is not the diagram itself but the interpreter of the icon sees something general in the
sense that the interpreting sign of the icon involves a new general feature. The icon itself
does not assert any thing [31, p. 307]. It does not display any other information but what
is conveyed in the object it represents. But the process of selecting the relevant feature
by observing the icon consists in discovering a general description that can be applied
to all the relevant cases; given the “complete analogy” between the relations among the
parts of the diagram and those of the object, unnoticed relations in the object can be
discovered by observing the diagram [30, §3.363]8. The icon becomes significant by
being interpreted by a formal hypothesis [30, §2.422fn]. Diagrammatic thinking is not
replaceable since interpreting a diagram involves both observation and generalization9.

4 That is, its ability to “express” the relationships of the object that is being represented.
5 For an analysis of the relevance of iconic understanding for representing structural articulation
and normativity, see [25].

6 For some important implications regarding Peirce’s diagrams as abductive hypotheses, see [19].
7 Note Peirce’s reference to the surprising discovery of new relations involved in the hypothesis:
[30, §5.567].

8 For the relevance of this feature for reasoning, see [5].
9 For an account of Peirce’s view on the epistemic virtues of a mathematician, see [8].
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However, Peirce’s account of the interpreting process depends on accepting his triadic
semiotics. More importantly for our present purposes, Peircean formation of hypotheses
pertains to the realm of discovery in mathematics, while the selection of hypotheses
constitutes an act of a justifying the generalization process symbolically.

In what follows, the case study that we address in Sect. 3 deals with the way in which
Hippocrates of Chios explains a procedure to make the squaring of the circle possible.
We will argue that certainty is not the key epistemic value of the Hippocratic argument,
representing an opposite view to the Leibnitian rationalist emphasis on complete cer-
tainty as a criterion for mathematical results. Therefore, he would presumably adopt an
approach closer to Hume or Peirce in this regard. Thus, the case study will show, how
Hippocrates of Chios proceeded mathematically following a style that also contrasts to
the dialecticians, like Zeno [10, pp. 252–258], Protagoras [10, p. 266], or Democritus
[22, p. 56 n. 49], who criticized the use of techniques that did not guarantee precision
and rigor in mathematics.

Aswewill see below, Knorr holds that Hippocrates resorted tomany results, presum-
ably active at the time, due to the discovery of the incommensurability of magnitudes.
In this respect, Knorr does not accept that the geometric work was in a state of paralysis
because of this discovery, but that “heuristic and informal procedures are the rule, not
the exception” [22, p. 41]. Thus, according to Knorr, Hippocrates, as well as other fifth-
and fourth-century geometers, insisted on the use of not entirely legitimate strategies,
despite the proven reasons against them. These geometers “proceeded with their studies
of similar figures as if they were still unaware of the foundational consequences of the
existence of incommensurable lines” [22, p. 41]. However, it may be worth examining
whether this ‘foundational’ style was not yet in force and widely expanded in his time,
just as it would be in Plato’s time, for example, and that his strategies had room for
other reasons that are not only oriented to the search for mathematical certainty, but
to the processes of understanding the ideas at stake. We will proceed to develop the
aforementioned case study in the following section.

3 Hippocrates’ Lunules as a Plausible Solution to the Quadrature
of the Circle: Mathematical and Diagrammatic Transductive
Interpretations

3.1 Reduction from Quadratures to Triangulizations

In the search for the solution to the quadrature of the circle, Hippocrates of Chios
had presumably analyzed several cases, trying to encompass all possible situations that
included a general solution of the problem. The cases to examine had to do with the
different ways of reducing the problem of squaring a circle, to that of triangulating it by
means of lunules10. This means that, instead of finding a square whose area coincides
with the area of the given circle, the goal is to obtain a right triangle (i.e. with one of its
angles, being a right angle) of an equal area to that of the circle. If we achieve the latter,
then, we would arrive at the completion of the solution through the following reasoning:

10 A lunule is a plane figure contained by a convex and a concave circular arc.
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given a circle A, if the circle is triangulable (by triangle B, i.e. if area(A)= area(B)), and
B is squareable (i.e. there exists a square S such that area(B)= area(S)), then area(A)=
area(S), and circle A would be squared. In diagrammatic terms, reasoning α is formed
by two premises ( ) and a conclusion ( ). It should be
noted that the second premise (all triangle is quadrable) indicates a result that apparently
was easily justified, as it is the case with every rectilinear figure. Precisely the core of
the whole problem of the quadrature of the circle consists in making straight figures
compatible with other curvilinear ones.

As to the notion of ‘reduction’,we know fromEutocius that, in relation to the problem
of duplication of the cube, “Hippocrates of Chios (…) turned one puzzle into another
one, no less of a puzzle” [11, pp. 88–90], replacing the original problem for the one of
finding two mean proportionals in continued proportion. In this respect, Wilbur Richard
Knorr adds: “Hippocrates appears to have adopted a similar strategy in the investigation
of the circle quadrature” [23, pp. 23–24]. On the other hand, Aristotle in Prior Analytics
II.25.69a 30–34 exemplifies the definition of “reduction” (apagogé) by means of the
Hippocratic case in question here:

For example, suppose D means ‘being squared’, E a rectilineal figure, F a circle;
then if between E and F there is only one intermediate term, namely that the circle
together with (certain) lunules is equal to a rectilineal figure, we should be near to
knowing [how to square the circle itself] [16, p. 33].

Once Hippocrates reduced the problem, the first transductive step begins, which
consists in the production of an association by similarity that shows how to reduce a
given circle to a right triangle. This leads to equating lunules with right triangles, as well
as all the alternatives of lunules that were possible to build, rather than in a single case.
In this regard, Simplicius cites, in his Commentary on Aristotle’s Physics, two different
sources allegedly dealing with Hippocrates’ quadratures of lunules: (1) Alexander of
Aphrodisias, offering two different cases in his own Commentary to Aristotle, and (2)
Eudemus of Rhodes, describing in hisHistory of Geometrymore cases (four), apparently
covering the generality of the alternatives in order to explain that all types of lunules
are squaraeble. The only case we will analyze here is the one for which “the exterior arc
of the lune be equal to a semicircle” (in the other two cases it is given that it is greater
or less than it). This is the case, as we will see, where “the lune [is] on the side of [a]
square” [1, p. 69].

The case we will develop is also the first of the two that Alexander examines. Both
Alexander and Eudemus agree on the result but disagree on the procedure that leads to
it. It should be noted that we would use Alexander’s version (Fig. 1(a)) as we consider
it more perspicuous11 than Eudemus’ version, since it would allow us to give a better
transductive diagrammatic description of the problem.

From a historiographic point of view, there are two perspectives in relation to the
description of this problem, although it is common to describe it through the Eude-
mus’ version, which Simplicius himself attributes to Hippocrates, raising doubts about
Alexander’s version, his Aristotle commentator competitor. On the one hand, one of

11 In relation to the notion of perspicuity, see [4].
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Fig. 1. Three different diagrams for Hippocrates’ first quadrature by means of lunules.

these trends is advocated by Simplicius, who chooses to attribute to Eudemus the cor-
rect version that Hippocrates allegedly carried out, considering Alexander’s version as
less sophisticated. As Heath states:

The four [cases which Simplicius] quotes textually from Eudemus, (…) which
therefore may with certainty be taken to be the only cases included in the genuine
work of Hippocrates himself. (…) It would seem that [the cases from Alexander
must] somehow wrongly ascribed to Hippocrates (…) it does give the same result
(…) though the figures used are different12 [16, p. 35].

Conversely, in [14], the same historian offers a different diagram (Fig. 1(c)), which
is shared by Høyrup [18], following Allman [1], based on Bretschneider [7], although
he also claims that his interpretation supports Eudemus’ version. The second trend,
on the other hand, uses Alexander’s version. Authors such as Friberg [12] and Knorr
[23] describe it, but Knorr does not take a stance in favor of either version, and simply
expose both. In comparison to the version of Fig. 1 that we will develop below, the
advantage of the diagram used by Høyrup and Allman (Fig. 1(c)) is that it exhibits what
the final triangle that has the same area with the lunule is. On the other hand, it requires
specifying a midpoint between the ends of the base segment, and designating letters to
make correlative indications between the text (rhetoric) and the graph, which makes it
more cumbersome when giving a diagrammatic demonstration.

Conversely, Alexander’s version avoids the latter and, diagrammatically, his demon-
stration is clearer and more perspicuous, although graphically he does not show the
triangle with an area half of the original, which is the one that finally equals the lunule
in area.

In turn, Høyrup’s interpretation begins with a straight line AB, describes a semicircle
on it, and then lets the sides of a triangle be inscribed in it. Instead, Alexander starts with
the same straight line, constructs a half-square on it, and then a semicircle is applied
to all the three sides of the triangle. This avoids having to demonstrate or use a known
result, which states that the produced angle when inscribing a triangle in it is straight.
This does not happen in Alexander’s version.We develop our version in the next section.

12 See Fig. 1(b).
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3.2 Equality of Areas Between a Lunule and a Right Triangle: Mathematical
Proof and Diagrammatic Explanation

In this section we will show how a specific case of lunule, -the one that is described
about the side of a square inscribed in the given circle-, has an area equal to a triangle.
The demonstration process takes place in ten steps, each of which is accompanied by
a corresponding diagram. The set of the ten diagrams associated with each step of the
demonstrative argument are presented in Fig. 2. Each step indicates which previous
results are assumed to be known beforehand, in the manner of elements required to carry
out the detailed explanation of the equality sought between the lunule and the triangle.

Fig. 2. Diagrammatic proof of Hippocrates’ first quadrature.
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Step 1. We start by giving a half square, which is also an isosceles right triangle.
Step 2. Three semicircles are applied to the respective sides of the triangle.
Step 3. We can notice that the semicircle applied to the diagonal of the triangle (the base)
is a larger one, which also has the triangle inscribed in it.
Step 4. Two lunules are formed. Both have the same area. We will denote with L the area
of each of the two lunules, and with T the area of the given right triangle. This seeks
to demonstrate that 2L = T. It will eventually prove that L = ½T, that is, the area of a
lunule is equal to the area of a right triangle, that which is half part of the original right
triangle13.
Step 5. Let d be the length of the diameter of the central semicircle, of the diagonal of
the square, and also of the hypotenuse of the original right triangle. Let l be the length of
each leg from this right triangle. It is assumed the ‘Pythagorean rule’ to be valid, which
is applied to the original right triangle. It turns out that d2 = l2 + l2 = 2 l2, which
results in the following equation:

d2 = 2 l2 (1)

Equality (1) makes use of the additivity of areas: if equals be added to equals, the wholes
are equal14.
Step 6. LetCd be the area of the semicircle based on the diameter, andCl the correspond-
ing area of the semicircles based on the legs of length l. It is assumed that Hippocrates
knows that circles or semicircles are to one another as the squares on their diameters15:

Cd : Cl :: d2 : l2 (2)

Step 7. Combining (1) and (2), we obtain that Cd : Cl :: 2l2 : l2. This means that the
semicircle based on the diagonal of the square has an area that is twice the area of each
semicircle based on the legs of the triangle:

Cd = 2Cl (3)

Eudemus makes this point in [34, p. 239].
Step 8. The equality of diagrams (a) and (b) in step 8 of Fig. 2 is formed. In terms of
areas, this means that: L + L + Cd = Cl + Cl + T, or equivalently

2L+ Cd = 2Cl + T (4)

13 The second diagram of this step is possible (see Fig. 2), since the diagonal line can be bisected
and a perpendicular can be raised. Høyrup [18, p. 165] points out that Proclus [32, p. 220f]
narrates that Oinopides can construct with ruler and compass a similar perpendicular on a line
from a point outside it.

14 This result will appear in Euclid’s Elements, as a common notion that here is applied to the
diagonal of the square. See [15, p. 155].

15 This result later appeared as Proposition 2 in Book XII of Euclid’s Elements. See [15, p. 371].
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Step 9. Expressions (3) and (4) combined, bring as a consequence that

2L = T (5)

Geometrically, this is because by removing the shared region of both modes (a) and (b)
at the combined diagram in step 9 of Fig. 2 (i.e. the larger semicircle in (a) or the two
smaller semicircles in (b)), we obtain that the isosceles triangle in (b) is equal to the two
lunules in (a).
Step 10. Looking now at the left quadrant of the large semicircle, and inside it, at the
half-triangle of the given original one, due to result (5) above, this in turn results in an
area equal to the corresponding lunule, i.e. L = ½T. Therefore, this shows that the lune
is triangulable. However, since every triangle is squarable, it concludes that the lune too
is squarable.

Figure 2 expresses this proof in an entire diagrammatic transductive style, and it dif-
fers from the static way in which Høyrup, following Allman schematizes such proof.
Althoughhisversion refersdirectly to the textofEudemusprovidedbySimplicius, andnot
toAlexander’s version, he does notmake it compatiblewith the dynamic stylewithwhich
he usually presents the geometric results of the mathematical texts ofMesopotamia [17].

In sum, we have tried to standardize this typical diachronic style of the Old Baby-
lonian texts that Høyrup designs, but which in this case did not apply in his [18] when
describing the Hippocratic procedure. We believe that it makes sense to rebuild Hip-
pocrates’ style transductively, given the insightful version offered by Alexander. More-
over, this could also be done with the Eudemus version, with the exceptions of the case,
as we did say ut supra.

3.3 Transductive Interpretation of the Process

First transductive step: when reducing the problem to the problem ,
this leads to demonstrate that the right triangle B is equivalent to the lunule M in area.
This is the similarity that transduction refers to, being in this case an identity of areas.
This demonstration is key as it demands all the mathematical work needed to solve
the problem and is also part of this step. All that remains are logical arguments and
associative descriptions, which, at this stage, require progressing on the consequences
of resembling a lunule to a triangle.

Second transductive step: from the similarity between the lunule M and the right
triangle B, in this step, the effects of the equality of areas are examined, i.e., what
consequences it brings having shown that B andM are similar in area. The mathematical
demonstration provided in the previous step conceals an analogy, that is, we go beyond
the similarity between B and M, and draw consequences from the comparison. If we
focus on the property of B being squarable, we may wonder if such property of B may
be analogically extrapolated to M. Assuming that this is the case , it is represented by
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reasoning δ, composed by two premises ( ) and the conclusion:
. The analogy shows the quadrability of the lunule from the quadrability of

the triangle. This occurs due to a previously noted similarity between M and B, which
describes the equality of areas.

Third transductive step: at this stage we seek to acquire an understanding of the
resulting consequences, and then proceeding to finally carry out the abductive formation
of the hypothesis, which, as we can see, is not merely instinctive, but implies finding the
causes of the similarity (achieved in the first step) and its analogical effects (second step).
The explanation of reasoning α (see Sect. 3.1), - that is why we go from the problem of
inferring to that of inferring , lies in the choice of the lunules as
a link between and . This explanation is provided by reasoning β, which takes the
lunule as a middle term between and . Thus, the combined β and α reasonings show
that the lunule is also the middle term between and , that is, γ reasoning. It does not
explain how (i.e., how the mathematical proof that is similar to is carried out), but
only explains why.

This is the reason to offer an explanation, which can eventually become a demon-
stration. In this regard, Netz [29, p. 275] insists that the Hippocrates’ text as described
by Eudemus is not concerned with mathematical proofs but only ‘shows’ the results.
Høyrup adds that by “shows” he may very well mean to “explain”, i.e. what we call the
transductive way of obtaining results. When it comes to non-conclusive results, such
as those obtained by Hippocrates -as he does not work exhaustively with all cases of
existing lunules-, we are in the presence of a plausible explanation that does not always
become a justification providing certainty to the entire development carried out. In this
respect, commenting on Høyrup’s perspective on ancient mathematical procedures (as
the ones from Paleobabylon), Karine Chemla notes that these only “intend to guarantee
an understanding of the reasons why the operations should be carried out (…) [and do
not place] the exclusive focus on the function of proof as yielding certainty [that] would
leave out these sources as irrelevant for the history of proof” [9, p. 41]. As discussed
in Sect. 2, if the purpose is the search for complete certainty, as Leibniz demanded for
geometry, then the kind of explanation as the one given in the case study is not complete:
the process of explanation is not necessarily truth-conductive, and therefore, would not
be reliable. On the other hand, from Peirce’s perspective, the physical images employed
in diagrammatic reasoning, for example, when showing that the area of a given circle is
equal to that of a lunule is “not what the reasoning is concerned with” [31, p. 207]. That
is, the reasoning itself is diagrammatic and offers an answer to the problem to be solved.
In summary, the combination of the three types of associations allows us to configure a
transductive diagrammatic argumentation that not only facilitates the understanding of
the result, but also produces a plausible explanation of it. Figure 3 below summarizes
the complete diagrammatic transductive process.
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Fig. 3. The transductive process applied to Hippocrates’ first quadrature.

4 Conclusion

The case study presented above attempts to reflect a paradigmatic situation concerning
diagrammatic inferences: solving a problem -in this case, unsuccessfully attempting to
square the circle- is not just to give a proof of a result that guarantees its certainty in the
way a valid theorem does, since its conclusion is considered a necessary truth, which
supposedly reflects a pure necessity. After we have been led to a conclusion, we also need
to know why that was as if it was. We need to understand the facts we have uncovered.
We can be led to see that a certain solution is correct, but more importantly, once we
see how the proof goes, we can understand why. Finding something problematic in a
specific case study is the first step towards an explanation of the phenomenon implicit
there. This kind of understanding by transductive processes, and even more so, when
they are diagrammatic, is a methodological tool to elicit implicit knowledge.

In order to grasp the argument as a whole, it is not always enough to know that
a result is correct and that its demonstration is rigorous and accurate, being able to
track and survey the steps of its proof: we should see it through all at once. On a
transductive approach, the core phenomena of the proof lies in knowing why it must
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be true, why it is compelling, the feeling of having got it, of being aware of the ideas
behind it. This insightful experience, i.e. the ability to reconstruct in our minds the
argument perspicuously by looking at it diagrammatically is amajor moment in grasping
mathematical results.
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Abstract. The role and use of diagrams in mathematical research has
recently attracted increasing attention within the philosophy of mathe-
matics, leading to a number of in-depth case studies of how diagrams are
used in mathematical practice. Though highly interesting, the study of
diagrams still largely lack quantitative investigations which can provide
vital background information regarding variations e.g. in the frequency
or type of diagrams used in mathematics publication over time.

A first attempt at providing such quantitative background informa-
tion has recently been conducted [9], making it clear that the manual
labour required to identify and code diagrams constitutes a major lim-
iting factor in large-scale investigations of diagram-use in mathematics.

In order to overcome this limiting factor, we have developed a machine
learning tool that is able to identify and count mathematical diagrams
in large corpora of mathematics texts. In this paper we report on our
experiences with this first attempt to bring machine learning tools to
the aid of philosophy of mathematics. We describe how we developed
the tool, the choices we made along the way, and how reliable the tool is
in identifying mathematical diagrams in corpora outside of its training
set. On the basis of these experiences we discuss how machine learning
tools can be used to inform philosophical discussions, and we provide
some ideas to new and valuable research questions that these novel tools
may help answer.

Keywords: Mathematical diagrams · Machine learning · Philosophy
of mathematical practice · Digital humanities · Regional convoluted
neural networks

1 Introduction

Historians and philosophers of mathematics are developing an ever-increasing
interest in the role that diagrams play in mathematical reasoning and research
practice [2–6]. This line of research has been highly successfull in unearthing the
multi-faceted and complex roles which diagrams play in mathematics; and yet
the philosophical study of mathematical diagrams still largely lacks quantitative
data providing vital background information for the qualitative investigation of
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selected cases. Recently, a quantitative approach has led to new insights into
the development in the use of diagrams over the twentieth century [9]. Among
their findings is an apparent ‘valley’ in the use of diagrams, which seems to
coincide with the rise of Bourbaki-style formalistic styles in mathematics during
the mid-20th century [8,9].

Despite their obvious interest to the historian and the philosopher, even
those quantitative studies are based on a sample from only three journals and
only include volumes in five year intervals. Judging from these investigations,
the major limiting factor in large-scale quantitative investigations of diagrams
seems to be the huge amounts of manual labour required to identify and code
diagrams by hand. Thus, to substantiate and expand the quantitative approach,
an automated procedure is required to count (and subsequently classify and
analyse) diagrams in mathematical texts. To this end, recent developments in
machine learning may be able to lend a hand to the historian and the philosopher
of mathematical practice.

In this paper, we report on our construction of a machine learning system for
automated detection of mathematical diagrams. Without providing the system
with any definition of a mathematical diagram, we trained an object detector
by feeding it instances of diagrams from a (relatively) small set of mathematical
papers. Upon iterated training, our detector was able to predict diagrams outside
its training base with a (to us) surprising accuracy and precision.

We open the paper by describing how we trained the system, and we report
basic measurements of its accuracy. In the final section of the paper, we discuss
how an automatic diagram detector may contribute to our philosophical and
historical understanding of mathematics. There, we argue that the existence of
such a system opens a variety of new philosophical research questions concerning
the role and diversity of mathematical diagrams which it has hitherto not been
feasible to pursue.

2 Methods

Any object detector involves a number of crucial choices of which model (and
implementation) to use and how to build a good training set for the task at hand.
We chose to build our diagram detector on one of the well-known existing mod-
els of object detectors based on regional convoluted neural networks, known as
Fast R-CNN [7], implemented under the keras-framework and publicly available
[1]. And we chose to build our training set from diagrams found in the volumes
of the Journal für die reine und angewandte Mathematik, colloquially known as
Crelle’s Journal after its first editor. The volumes of Crelle’s Journal published
from its inception in 1826 until 1998 are available at the SUB Göttinger Digital-
isierungszentrum, providing us with more than 130,000 pages of mathematical
text spanning the twentieth century and more. What we will refer to as the
object detector or the model is thus the implementation of the framework plus a
given very large matrix of weights (approximately 100 MB) which represent the
parameters of the model.
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It is a real feat of the training process that we need not give a single exhaus-
tive definition of a mathematical diagram as such a definition is incredibly diffi-
cult to come up with. The standard definitions include aspects such as 1. being
essentially two-dimensional [10], and possibly, 2. being intended to provide cer-
tain types of cognitive aid in mathematical reasoning [8]. Mathematical practice,
however, does not follow such rules consistently. Matrices are, for instance, gen-
erally not considered to be diagrams although they are two-dimensional, whereas
Dynkin diagrams are considered to be diagrams even in cases where they are one-
dimensional. For pragmatic reasons we combined these criteria in our code-book
and considered (roughly speaking) a diagram to be a two-dimensional represen-
tation generally considered to be a diagram by mathematicians.

As is always the case with supervised training in machine learning, the qual-
ity of the detector is dependent on the quality of the training set. And thus,
the practice-near definition of mathematical diagrams features into our detector
through the code-books which were used in tagging the training set.

During the training, the detector went through a number of iterations, refin-
ing models through exposure to both true positives and false positives (see
Fig. 1). Training by true positives provides the detector with input of (ideally)
varied examples of what counts as a mathematical diagram. This is provided by
human tagging of diagrams in selected parts of the corpus. For the various iter-
ations we picked out subsets of the corpus Xi, picked out all the pages on which
diagrams were found, and identified the rectangles bounding the diagrams Pi. To
balance the identification of diagrams by ruling out false positives (here called
background), we implemented a bootstrapping mechanism sometimes referred
to as negative mining : If we let the model perform predictions on all pages in
Xi for which there is no true positive identified in Pi, we know that any box
identified as a diagram is a false positive. These boxes collected as Ni can then
be fed into the training of the next model as background. Thus, the training of
a model builds upon the weights of the previous model and sets of boxes of true
and false positives.

After we obtained Model 3, results were sufficiently good that we could apply
a different method of training, which is a variant of the process known as active
learning, where predictions made by the model are fed to an oracle (a human)
who will classify them as true or false positives. Running model 3 on the entire
corpus from Crelle’s Journal (all 130,000 pages) provided predictions of 8,700
boxes which were inspected, labeled and corrected where needed by a human
agent. Together with the previously tagged true positives, these provided the
training set for Model 4, which is the present culmination of our training process.

3 Results

The model was implemented under Linux Ubuntu 18.04, building on python and
TensorFlow and run on a computer with an AMD Phenom(tm) II X3 720 CPU
and an NVIDIA GeForce GTX 750 Ti GPU. Run-time was a real bottleneck,
both in training new iterations of the model and in running predictions on large



Counting Mathematical Diagrams with Machine Learning 29

Resnet50

Model 0

Model 1

Model 2

Model 3

Model 4
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Corpus
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P0

P1

465 boxes

P2

851 boxes

P3

1,386 boxes

N1

1,505 boxes

N2

672 boxes

N3

1,292 boxes
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X1 20 volumes

X2 18 volumes

X3 19 volumes

⊆
⊆

⊆
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8,761 boxes

AL
P4

N4
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Fig. 1. Illustration of the process of training and validating the models. Boxes are
corpora, ellipses are models, circles are sets of boxes (either green true positives or red
false positives), diamond is active learning, yellow indicates human interaction, blue
indicates prediction. H is hand-tagged, and the comparison of B and H amounts to
the validation process discussed below. (Color figure online)

corpora of texts. As the system is small and somewhat dated, this could be
mitigated by using more modern and larger hardware.

When we ran predictions by Model 3 on the remaining corpus from Crelle’s
Journal which was not used in training Model 3, we were quite surprised at
the accuracy of true positives and true negatives; in other words, the detector
was surprisingly efficient in predicting diagrams precisely when they were indeed
present (see Fig. 2).

However, we also encountered all the kinds of mistakes that we would expect:
false positives, false negatives, and wrong partitionings. We found various types
of false positives, i.e. predictions which do not correspond to diagrams. These
included identifying library stamps or indented multiline formula but also some
kinds of matrices and continued fractions which could rightly be considered
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Fig. 2. One example of running the detector (model 3) on the entire corpus from
Crelle’s Journal, i.e. those papers not used in training the model. For this particular
page, it correctly identified two true positives.

diagrams on many definitions [10]. We also found various types of false negatives,
in particular some triangular commutative diagrams which were not identified
as diagrams by the detector. Another special kind of false negatives came from
tableaux pages with many diagrams, especially when the bounding rectangles of
different diagrams would overlap; this is thought to be a side-effect of the model
chosen. Furthermore, we found instances, where the detector would identify
sub-rectangles of a diagram as independent diagrams.

After training our models, and to assess their quality, we ran the detector
against a baseline of 677 hand-tagged articles from three journals (Bulletin of
the AMS, Acta Mathematica and Annals of Mathematics) which are outside
the training set and were tagged for another project [9]. These articles spanned
23,500 pages and contained a total of 5,271 diagrams. Different measures exist
for evaluating this type of machine classification, and the best choice of measure
should be based on the concerns of the application. To measure the performance
of our detector on such an asymmetric set (many more negatives than positives,
higher price of false negatives than of false positives), we chose to balance recall
(R) and precision (P ) through the F1-score:

F1 =
2 ×R× P

R + P
, where R =

TP

TP + FN
and P =

TP

TP + FP
. (1)

If no true positives are found in an article, the F1-score is undefined for that
article. As can be seen from the equations, R measures how many positives are
picked up and classified correctly, whereas P measures the degree to which those
diagrams are identified are indeed true diagrams.

The F1-score for Model 4 against the entire baseline corpus was found to be
0.90777, which is significantly improved from 0.7198 for Model 3. This is a very
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On some accounts continued fractions
would be considered diagrams.

On some accounts matrices would be
considered diagrams.

Sometimes it would also mis-classify
horizontal lines as diagrams.

And more frequently, space between
lines were mis-classified as diagrams.

Fig. 3. Examples of false positives and wrong partitionings produced by running the
detector (model 3) on the corpus from Crelle’s Journal against which it was not trained.

Here it picked out only one of the two
commutative diagrams; triangular ones
are less frequent and sometimes missed.

Some specific diagrams would also
sometimes be missed, in particular on
pages with overlapping diagram boxes.

Fig. 4. Examples of false negatives produced by the detector (model 3) on the corpus
from Crelle’s Journal against which it was not trained.

good score for training Model 4 on a relatively small set of tagged images and
testing the model against a corpus from different mathematical and typograph-
ical traditions. It also shows that Model 4 has succeeded in eliminating many of
the false predictions made by Model 3.
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Not capturing the entire diagram; in
particular 1-dimensional ‘appendices’

sometimes allude the detector. Sometimes, it would pick out both the
entire diagram and a part of it.

Fig. 5. Examples of wrong partitioning from running the detector (model 3) on the
corpus of Crelle’s Journal on which it was not trained.

4 Discussion

Our efforts to build a mathematical diagram detector have been successful to
such a degree that we now have a tool that can provide large-scale quantitative
background for historical and philosophical investigations of the use of diagrams
in mathematics. This background is important for several different reasons. With
the detector (and its subsequent improvements) it is possible to build large
corpora of diagrams spanning many journals, periods, and sub-disciplines. This
will allow a more grounded approach to the investigation of the function of
diagrams as large samples that better represent the diversity in the types and
uses of diagrams, can easily be accessed.

Furthermore, mathematicians do not only use diagrams (and other represen-
tations) as a way to convey mathematical content. Diagrams and other represen-
tations also play a major role in the heuristic phases of the mathematical work
practice and during idea and concept development. Consequently, changes in the
frequency and type of the diagrams being published not only reflects aesthetic
and stylistic preferences, but may also indicate underlying changes in cognitive
style and epistemic values among the practitioners. The precise understanding
of the changes in diagram use over time or between different sub-disciplines of
mathematics is thus not only of interest in and by itself, but may also be used
to identify specifically interesting periods or publications for further historical
or philosophical investigation of the role of diagrams.

Finally, the fact that it is at all possible to build and train a model capable of
detecting mathematical diagrams is, in itself, an interesting philosophical result.
As pointed out above, it is quite easy to point to many different examples of
mathematical diagrams, but difficult to give clear definitions of the concept in
terms of necessary and sufficient conditions. Despite this difficulty, the detector
is largely capable of mirroring human judgement concerning weather or not
something is a diagram (and some of the ‘mistakes’ made by earlier iterations of
the detector even reflect the inconsistencies of the concept as when it classified
a continued fraction as a diagram). Although a full explanation of the concept
is beyond us, it simply seems that the prototypes embedded in the examples
which we provided to the detector are strong enough to allow a reasonably clear
concept to form from its actions.
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Abstract. In the ongoing debate over the role of a diagram in the proof
of the Intermediate Value Theorem (IVT), Brown’s [4] takes a clear posi-
tion: a diagram does constitute proof of IVT. Giaquinto’s [5] points out
that a real continuous but nowhere differentiable function lacks a curve,
therefore diagrammatic evidence must be restricted to smooth functions.
By applying newly-shaped concepts such as pencil-continuity and cross-
ing x-axis to rational and real maps, f : Q �→ Q, f : R �→ R, he comes
to the conclusion that the same diagram can represent either a false or
true statement, depending on the interpretation in terms of the domain
of f .

We analyze Brown’s and Giaquinto’s arguments in mathematical,
philosophical and historical contexts. Our basic observation is the equiv-
alence of IVT and the Dedekind Cut Principle. While Brown does not
address the foundational issues at all, Giaquinto seeks to characterize
them by the non-mathematical concept of ‘desideratum’. As for philoso-
phy, contrary to Giaquinto, we show that the diagram itself constitutes
the mathematical context rather than needs an interpretation; yet, con-
trary to Brown, diagram for IVT does not prove anything, since it rep-
resents the axiom (completeness) of real numbers. We adopt a historical
perspective to show that both Brown’s and Giaquito’s arguments involve
concepts that take us back to the pre-Bolzano era of non-analytic proofs
of IVT.

Keywords: Intermediate Value Theorem · Dedekind Cut Principle ·
Continuous function · εδ-continuity · Pencil continuity ·
Completeness · Real numbers · Hypereals · Real closed fields

1 Intermediate Value Theorem

Here is the standard wording of the Intermediate Value Theorem (IVT): If con-
tinuous function f changes its sign in an interval of real numbers [a, b], then
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there exists an argument c in (a, b) such that f(c) = 0. In symbols,

f : [a, b] �→ R, f(a) · f(b) < 0 ⇒ ∃c ∈ (a, b)[f(c) = 0]. (1)

Usually, IVT is included in calculus textbooks, therefore the domain of f is
implicit. We make it explicit: f is a real continuous function.

The classic proof emulates the proof developed by Bolzano in [3]. Assume
that f(a) < 0 < f(b). Put S = {x ∈ [a, b] : f(x) < 0}. The set S is not empty,
since a ∈ S; it is also bounded above by b. Therefore, we can apply the least
upper bound principle (LUB). Let

c = supS. (2)

There are three possibilities: f(c) < 0, f(c) = 0, f(c) > 0. If f(c) < 0,
then due to the assumed continuity of f , the sign of f(c) is preserved on some
neighborhood of c, that is:

(∃δ)(∀x)[x ∈ (c − δ, c + δ) ⇒ f(x) < 0]. (3)

From (3), it follows that there is x such that c < x and f(x) < 0. This
contradicts (2). The case f(c) > 0 is treated similarly. Hence, f(c) = 0.

Therefore, this proof relies on two different concepts of continuity: definition
(2) appeals to the continuity (completeness) of the order of real numbers, formula
(3) follows from the assumed continuity of f . In fact, [3] provides the first ever
definition of the LUB principle and the first ever εδ characterization of the
continuous function. Since that time, IVT is associated with concepts rather
than diagrams. In Sect. 6, we provide textual evidence showing how Bolzano
transformed the diagram for IVT into an analytic framework. Briefly: (1) he
turned the intuitive concept of curve into the intuitive concept of function, (2)
he turned the intuitive concept of continuity into (2a) the definition of continuous
function, and (2b) the continuity of the real number line.

In Sect. 5, we show that IVT is equivalent to the completeness of real num-
bers in the form of the Dedekind cut principle (DC). Viewed from the per-
spective IV T ⇔ DC, the diagram for IVT represents something fundamental,
non-provable, in the sense that we do not prove axioms. With that knowledge,
we proceed to verify the arguments developed in [4] and [5].

2 Brown on Diagram for IVT

2.1 Brown’s ‘Running Line’

Brown begins with the same proof. The rest of his argument is this:1 “Consider
now visual evidence for the theorem. Just look at the picture (Fig. 1). We have a
continuous line running from below to above x-axis. Clearly, it must cross that
axis in doing so. Thus understood, it is indeed a ‘trivial’ and ‘obvious’ truth”
([4], p. 163).
1 Attached is the diagram he refers to. It is marked as Fig. 1 in [4].
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Fig. 1. Brown’s diagram for IVT, [4], p. 163.

Brown assumes the framework of real analysis, therefore the x- and y-axes are
to represent the line of real numbers. Nevertheless, he pays no attention to how
his diagram relates to the assumed continuity of f . Since the f -line “runs from
below to above”, it represents a movement, rather than the graph of f . Implicitly,
an intuitive continuity of movement substitutes the unspecified continuity of the
f -line. Indeed, Brown also considers a two-function version of IVT, i.e.

f, g : [a, b] �→ R, f(a) < g(a), f(b) > g(b) ⇒ ∃c ∈ (a, b)[f(c) = g(c)]. (4)

Then, he alludes to “two hikers, one at the ‘top, the other at the bottom, both
setting out at noon on the same day. Obviously, they eventually meet somewhere
on the path” ([4], p. 164).

This story, Brown claims, both illustrates and proves (4). However, in Fig. 1,
nothing runs from below to above. Or, if we allow running lines, can lines other
than f also run?

The diagram is a synchronic composition of building blocks, however, through
letters a, b, and the convention of reading from left to right, Brown already
implies his diachronic running line interpretation: f runs from the point (a, f(a))
to (b, f(b)). However, the diagram could also be read as follows: ‘Simply look at
the picture (Fig. 1). We have a continuous line running from a to b. Clearly, it
must cross the f -line in doing so’. Here, the “continuous line” stands for the line
of real numbers. It is the line of real numbers which runs, whereas the f -line
stays still. Indeed, viewed form the perspective of the equivalence IV T ⇔ DC,
it is as acceptable an interpretation of Fig. 1 as the one advocated by Brown.

2.2 Logic of Brown’s diagram

Brown’s original diagram depicts point c, where f(c) = 0. Yet, is it straightfor-
ward evidence or a kind of inference? Phrases such as “visual evidence for the
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theorem” and “obvious truth” suggest the first option. Here is the most clear
declaration in support of it: “Using the picture alone, we can be certain of this
result—if we can be certain of anything” ([4], p. 164).

But if there is no inference, no assumptions and no conclusions, IVT should
be paraphrased such as a conjunction rather than the implication, namely:

f : [a, b] �→ R, f(a) · f(b) < 0,∃c ∈ (a, b)[f(c) = 0]. (5)

On the other hand, Brown also suggests that “pictures prove”. The sequence
of letters a, b, and c sets up a kind of logical dependence: they are not alpha-
betically arranged from left to right, which implies that the appearance of a, b
precedes the appearance of c. But, if Fig. 1 stands for a proof, what thesis does
it justify?

Again, the diagram is divided into assumptions and conclusions, although by
an interpretation.

All in all, Brown’s position on the role of a diagram for IVT is ambiguous:
it wavers between evidence and inference, illustration and justification, formula
(1) and (5), finally, between the proof and the thesis to be proved. This is most
likely due to the fact that Fig. 1 is subject to interpretations.

3 Conceptualizing Diagram

Fig. 2. Diagram for IVT

Figure 2 is our diagram for IVT. It consists of three continuous elements, x-axis,
y-axis, f -line, and four points, a, b, f(a), f(b). Dotted lines are not essential, they
merely illustrate the concept of the function: f(a), f(b) are the values of f at the
points a, b respectively. Contrary to Fig. 1, we do not name a supposed intersec-
tion point of x-axis and f -line. In our perspective, it represents a crossing of two
concepts: the continuity of the line segment [a, b], and the continuity of f -line.
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Mathematics provides two conceptual frameworks to analyze Fig. 2: analysis
and topology. Within the first, the f -line is interpreted as a continuous real
function. Hence, the background space is the Cartesian plane R × R. This idea
can be generalized to a Cartesian plane F × F , where F is an ordered field.

Technical concepts enable to characterize both the continuity of f and the
continuity of axes. As for the f -line, it could be εδ- or sequential-continuity; these
concepts make sense in any ordered field. They are equivalent in an Archimedean
field, but may differ in a non-Archimedean field. As for the continuity of real
numbers, there are more than thirty equivalent versions of completeness. Some
of them have adequate graphical representations. In fact, since IVT is equivalent
to the completeness of real numbers, Fig. 1 or 2 may play the role of the graphical
representation of the continuity of the real number line.

The negation of these two kinds of continuity allows to identify a discontinuity
of function, or a gap in a line.

When the background space of the diagram is switched from R to an ordered
field, technical concepts support our intuition.

In Table 1, we tally the analytical and intuitive (graphical) concepts charac-
terizing Fig. 2. The term graphical, as applied in this context, was introduced by
Marcus Giaquinto in a table reproduced below as Table 3. The idea of concepts
characterizing diagrams is also due to Giaquinto.

Table 1. Analytical vs graphical.

Analytical Graphical

Function Curve

(F, <) x-axis, y-axis

F × F Background space

The topological framework enables to view the f -line as a graph of f , that
is the set Gf = {(x, f(x)) ∈ R2 : x ∈ [a, b]}. Then, the continuity of f means
that the set Gf is a topological continuum, that is, a connected and compact
set (see [8], p. 168). Accordingly, gaps in Gf , in R, or in a background space
are interpreted in terms of disconnected space; in fact, topology identifies many
kinds of disconnected sets.

From a topological perspective, all continuous real functions defined on a
line segment are continua. Due to the concept of the derivative, the analytic
perspective introduces the concept of the smoothness of function: it is a prop-
erty measured by the number of continuous derivatives. This idea inspires the
interpretation that an f -line on a diagram represents a function which has a
continuous first derivative f ′.

In Table 2, we tally the topological and graphical concepts characterizing
Fig. 2.

In the debate on the role of diagrams in mathematics, the background space
is supposed to be a sheet of paper, a computer screen or another continuous
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Table 2. Topological vs graphical.

Topological Graphical

Graph of function Curve

(X, τx) topological space x-axis

(Y, τy) topological space y-axis

X × Y with product topology Background space

medium – continuous from a viewer’s perspective. Since we interpret the back-
ground space as F ×F , this perceptual continuity is guaranteed by the fact that
elements of an ordered field F are densely ordered. Nevertheless, in a branch of
mathematics called digital geometry (DG), the computer screen is represented
by the grid N × N , i.e. the Cartesian product of the set of natural numbers.
DG seeks for efficient algorithms to represent common geometrical objects on a
disconnected space (see [7]). It takes into account both the physics of the back-
ground space and a person’s perceptual abilities. Yet, our study, as are [4] and
[5], is purely theoretical.

4 Giaquinto on IVT Diagram

4.1 Interpreting the Diagram

While Brown sticks to the position of diagrammatic evidence, Giaquinto adopts
a perspective of diagrammatic inference. He seeks to show how one may get
from a single graph such as Fig. 2 to IVT.2 Since the theorem involves concepts
defined within the framework of calculus, he introduces their graphical counter-
parts; these newly-shaped concepts are designed to analyze the diagram from
the viewer’s perspective. They are listed in Table 3 (see [5], p. 305).

Table 3. Analytical vs graphical by Giaquinto.

Analytical Graphical

Function Curve

εδ-continuity Pencil-continuity

Has a zero value Crosses x-axis

Differentiable No zig-zags

According to Giaquinto, the alleged diagrammatic argument for IVT consists
of three basic steps (see [5], pp. 297–298):

2 Diagram for IVT as presented in [5], p. 283, is rather an illustration of the so-called
Darboux property. However, we will not be discussing the difference.
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(a) “Any function f εδ continuous on [a, b] with f(a) < 0 < f(b) has a pencil
continuous curve from below the x-axis to above”.

(b) “Any pencil continuous curve from below the x-axis to above [...] crosses the
x-axis”.

(c) “For any function f whose curve crosses the x-axis between the points rep-
resenting a and b, f(c) = 0 for some number c between a and b”.

While steps (a) and (c) link the analytical and graphical concepts, premise
(b) “is taken from the graph” and is not disputed.

An inference starting from a specific f -line which aims at a general conclu-
sion, i.e. concerning a continuous function f , requires a generalization technique.
Giaquinto claims that a generalization from Fig. 2 to IVT is not reliable because
premises (a) and (c) can be challenged. Here are his arguments.

(Ad a) Firstly, the diagram does not represent the general case, since there
are εδ-continuous functions that have no curves. These are continuous, nowhere
differentiable functions, e.g. the Weierstrass monster function; they cannot be
visualized and cannot be represented on a diagram.

Secondly, since Giaquinto defines pencil-continuity by “no perceptible gap in
the curve”, this concept does not coincide with the εδ-continuity. That difference
can be exemplified by a function on rational numbers f : Q �→ Q defined by:

f(x) =
{

1, if x2 < 2 or x < 0,
−1, if x2 > 2 and x > 0.

Figure 3 illustrates it. The function f is εδ-continuous but is not pencil-
continuous.

The gap in the x-axis represented on the Fig. 3 can be characterized by the
sets A = {x ∈ Q : x2 < 2 or x < 0} and B = {x ∈ Q+ : x2 > 2}. The pair
(A,B) is the so-called Dedekind gap in the line (Q,<).

Fig. 3. Function which is εδ-continuous, while not pencil-continuous.
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Giaquinto’s original example is a function defined by

g(x) =
{

x − 2, if x2 < 2 or x < 0,
x − 1, if x2 > 2 and x > 0.

He represents the x-axis by a continuous line, while the gap (A,B) is repre-
sented by the diagonal of a unit square (see [5], p. 299, Fig. 7). Thus, Giaquinto
illustrates a gap in the curve, while characterizes the gap in the x-axis analytically.

(Ad c) Since “the curve crosses if and only if it appears to cross”, there are
εδ-continuous functions that have curves which appear to cross the x-axis, but
there is no c between a and b such that f(c) = 0.3 Giaquinto exemplifies such
case by a parabola f : Q �→ Q defined by f(x) = x2 − 2. Figure 4 illustrates it.

Fig. 4. Diagram representing parabola x2 − 2 with no specified domain.

Examples illustrated by Fig. 3 and 4 are designed to show that the same
diagram is subject to various interpretations. Figure 3 is to represent an intu-
itively discontinuous function which is εδ-continuous. Figure 4 may represent, as
Giaquinto claims, a false or true version of IVT: “As a continuous function on
the rationals and the corresponding function on the reals may have exactly the
same diagram, the IVT cannot be read off the diagram” ([5], p. 301).

However, what makes the diagram for IVT subject to interpretation?
Giaquinto does not pose this question. Our guess is as follows: when the f -line
is viewed as a function, x-axis appears to be its domain. Then the modern

3 Note, while negations of technical concepts are unequivocal, we can not decide what
does it mean that the curve does not cross. Is it it does not appear to cross, or it
appears to not cross?.



42 P. B�laszczyk and M. Fila

understanding of function opens x-axis to various interpretations; there is only
one restriction: a newly established framework enables to reconstruct the concept
of continuous function.

This perspective shows that interpretation of a diagram depends on the his-
torical context, but also on individual resources. Hence, Descartes’ and Bolzano’s
views of f -line could differ (they, in fact, differed); nowadays, a pupil’s, a stu-
dent’s, or a scholar’s view of a f -line can also differ. In Sect. 6, we show that
although Bolzano introduced the concept of function, he did not provide the
definition. Yet, due to this concept, he could differentiate between a general
continuous function and a polynomial. In [3], he sought to prove IVT for real
polynomials, whereas IVT for continuous functions played the role of lemma in
his paper. Within the framework of diagrammatic reasoning, he could not expli-
cate a difference between f -line and polynomial-line. Moreover, the εδ-continuity
he introduced is applied to a function, but not to a curve.

In the next section, we show how a set of concepts at the viewer’s disposal
can determine a modern interpretation of the diagram.

4.2 When Background Space Turns to Be R × R

Giaquinto’s doubts whether one can get from a single diagram to IVT built on
possible interpretations of the x-axis. However, when one assumes, as for instance
Brown does, that f -line represents a real function, the role of Fig. 3 and 4 fades.
It appears that in the context of real functions, there is no difference between
pencil- and εδ-continuity, as well as between f -line “crossing the x-axis” and the
mathematical condition (∃c)[f(c) = 0]. As for the concept of curve, it means
nothing more than the graph of smooth function f .4

Giaquinto suggests there is some empirical content in his graphical concepts,
as he writes: “A curve is pencil-continuous just when there is no perceptible
gap in the curve” ([5], p. 298); “One graphical line crosses another when each
has parts either side of the other and there is a perceptible meeting place” ([5],
p. 298); “the curve crosses if and only if it appears to cross” ([5], p. 300). In
fact, concepts such as “perceptible gap”, “perceptible meeting place”, “appears
to cross” are not founded on any empirical data. The rationale for his graphical
concepts comes from mathematics, since only mathematical examples motivate
every pair of concepts in Table 3.

Why then does Giaquinto introduce graphical concepts which prove to be
useless when applied to real functions? His reply could be this: “the analyti-
cal concepts of the IVT are essentially non-perceptual” ([5], p. 305). However,
even if non-perceptual, technical concepts affect the individual perception of the
diagram.

To elaborate. In regard to the function represented by Fig. 4, Giaquinto
writes: “The curve for x2 − 2 in the rationals is the same as the curve for x2 − 2
in the reals. This is because every real is a limit point of rationals. This

4 Here, we adopt the following definition: a real function f is smooth when it has a
continuous first derivative f ′.
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entails that for every point P with one or both co-ordinates irrational, there
are points arbitrarily close to P with both co-ordinates rational. So no gaps can
appear by removing irrational points from the curve for x2 − 2 in the reals. [...]
The IVT is essentially about the reals; it is not true in the rationals. As
a continuous function on the rationals and the corresponding function on the
reals may have exactly the same diagram, the IVT cannot be read off the
diagram, as this example shows” ([5], p. 301, emphasizes added).

Firstly, in every Archimedean field (F,+, ·, 0, 1, <), every element a ∈ F can
be presented as a limit of rational points.

Secondly, IVT is not essentially about the domain of f ; it also concerns the
kind of f . IVTx2−2 is true not only in the field of reals, but also in the field of
real algebraic numbers (which is bigger than Q and smaller that R), as well as
in the field of hyperreals (which is bigger than R). In fact, IVTpolynomial is true
in the field of real algebraic numbers and in the field of hyperreals. Generally,
IVTpolynomial is true in every real closed field (see [6], ch. 6).5

The third note regards the claim that the diagram does not change when
we switch the background space from R to Q. While it is true in regard to
polynomials, it is not in regard to the so-called transcendental functions, e.g.,
trigonometric functions, ex, log x. It is because these functions take irrational
values for rational arguments (see [9], ch. 2.) In other words, when we change
the range of sin x from real to rational numbers, the diagram of sinx will simply
disappear.

To sum up, on a diagram, we cannot represent the differences between real,
rational, or real algebraic numbers: every ordered field is represented by the
same kind of drawn line. But we also cannot represent the differences between
polynomial- and non-polynomial lines. Therefore, Fig. 4 can represent a true
statement in the context of real functions, but also in the context of polynomials
on a real closed field.

5 IVT Is Completeness of Real Numbers

In this section, we briefly discuss the basics of the theory of ordered fields to
show that IVT is equivalent to the completeness of real numbers.

5.1 Dedekind’s Gaps vs ‘Perceptible Gaps’

Throughout [5], Giaquinto refers to the intuitive meaning of gap. In this section,
we present its mathematical definition, and show how we can interpret it in
regard to diagrams.

Definition 1. A pair of non-empty sets (A,B) is a Dedekind cut of a totally
ordered set (X,<) iff: (1) A ∪ B = X, (2) (∀x ∈ A)(∀y ∈ B)(x < y).

5 In this section, we adopt the following convention: IVTpolynomial means that in the
formula (1) we take f to be a polynomial function from [a, b] to an ordered field F .
Accordingly, IVTx2−2 stands for x2 − 2 : [a, b] �→ F , a2 < 2 < b2, etc.



44 P. B�laszczyk and M. Fila

From the perspective of the proximity region of the sets A and B, there are
four kinds of cuts, as represented on the Fig. 5, where the black dot stands for
the greatest element in A, or the least element in B, and the blank dot stands
for A with no greatest element, or B with no least element. When no cut of
(X,<) is of the (1)-kind, the order < is dense. The (2)-kind cuts are called gaps.
Dedekind discovered that cuts of that kind in the line (Q,<) can be defined
within the arithmetic of rational numbers, i.e., with no reference to irrational
numbers.

Fig. 5. Possible Dedekind cuts in a totally ordered set.

Definition 2. A commutative field (F,+, ·, 0, 1) together with a total order < is
an ordered field when the sums and products are compatible with the order, that
is

x < y ⇒ x + z < y + z, x < y, 0 < z ⇒ xz < yz.

The standard examples of an ordered field are rational numbers (Q,+, ·, 0, 1, <)
and real numbers (R,+, ·, 0, 1, <). Fields which are between these extremities
are called Archimedean fields. Figuratively speaking, the field of fractions is the
smallest ordered field, the field or real numbers is the biggest Archimedean field,
i.e., any ordered field includes the field of fractions, any field extension of real
numbers is a non-Archimedean field.

Here are some equivalent forms of the Archimedean axiom:6

(A1) (∀x ∈ F )(∃n ∈ N)(n > x).
(A2) (∀x, y ∈ F )(∃q ∈ Q)(x < y ⇒ x < q < y).
(A3) For any Dedekind cut (A,B) of (F,<) obtains

(∀n ∈ N)(∃a ∈ A)(∃b ∈ B)(b − a < 1
n ).

The order of any ordered field is dense. It follows from this fact: if x < y,
then x < x+y

2 < y. This fact may justify the claim that drawn lines designed to
represent an ordered field look the same.

Although an Archimedean field may have gaps, that is, (2)-kind Dedekind
cuts, the axiom A3 enables to interpret them as so small that they can not be
spotted. That is why we claim that the difference between real, rational and real
algebraic numbers cannot be represented by drawn lines.
6 Here, and throughout this paper, the symbol N stands for the set of natural numbers.
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It is known that Euclid’s straightedge and compass constructions are possible
on a Cartesian plane F ×F , where F is an ordered field closed under the square
root operation. Fields of that kind can be Archimedean or non-Archimedean.
Supposing F is both Archimedean and closed under the square root operation, a
Euclidean plane can have gaps, meaning the field F has (2)-kind Dedekind cuts.
Yet, we can also characterize this kind of space as disconnected. As a result, a
Euclidean plane can be a proper subset of the real plane R × R. Nevertheless,
when F is both non-Archimedean and closed under the square root operation,
gaps in the plane F ×F are huge (this can be made into a precise characteristic).

5.2 Axioms vs ‘Desiderata’

Giaquinto writes: “I concede that the IVT is not merely a consequence of
Dedekind Completeness. The IVT may also be regarded as a desideratum for an
account of the real numbers” ([5], p. 302).

In this section, we show that IVT is another version of the completeness of
real numbers.

Definition 3. The field of real numbers is an ordered field (F,+, ·, 0, 1, <), in
which every Dedekind cut (L,U) of (F,<) satisfies the condition

(∃x ∈ F )(∀y ∈ L)(∀z ∈ U)(y ≤ x ≤ z). (C1)

Constructions of real numbers, e.g., the one that identifies real numbers with
cuts of the line of rational numbers (Q,<) due to Dedekind, show that there
exists at least one field of real numbers. On the other hand, the categoricity
theorem states that any two ordered fields satisfying axiom (C1) are isomorphic.
In other words, any ordered field satisfying (C1) is isomorphic to the field of real
numbers. Below, we present two other equivalent versions of (C1):

(C2) If A ⊂ F is a nonempty set which is bounded above, then there exists
a ∈ F such that a = supA.

(C3) The field is Archimedean and every Cauchy (fundamental) sequence (an) ⊂
F has a limit in F .

Any equivalent form of C1 usually gets the name of continuity or complete-
ness, and the real number system is called the continuous or complete ordered
field. The version C2 has already been applied in Sect. 1 of this paper – it is the
Least Upper Bound principle. C3 is a combination of the Archimedean axiom
and the so-called Cauchy completeness (CC): whereas the A3 version of the
Archimedean axiom guarantees each Dedekind cut is small, by CC, every such
a gap is filled up with the limit point of a sequence (an).

Since the order of an ordered field (F,+, ·, 0, 1, <) is dense, there are no (1)-
kind cuts in (F,<). Assuming (A,B) is a Dedekind cut, C1 states that there
are no (2)-kind cuts in (F,<): the number z, as it occurs in C1, is the biggest
element in A, or the least element in B. Therefore, Fig. 6 illustrates C1.

Theorem 1. IVT is equivalent to C1.
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Fig. 6. Possible Dedekind cuts in the line of real numbers.

Proof. In Sect. 1, we have already reminded the classic proof that C1 implies
IVT. As for the second part, to reach a contradiction, assume that C1 does not
hold. Hence, there is a (2)-kind cut (A,B) in (F,<). The function f defined by

f(x) =
{

1, if x ∈ A,
−1, if x ∈ B.

is εδ-continuous. Indeed, since there is no biggest element in A, for each x ∈ A
we can find a positive number δ such that the line segment (x − δ, x + δ) is a
subset of A. Then, for every y in (x − δ, x + δ), we have f(y) = 1. Similarly,

(∀x ∈ B)(∃δ > 0)(∀y)[y ∈ (x − δ, x + δ) ⇒ f(y) = −1].

Take a ∈ A, b ∈ B. On the segment [a, b], the function f changes its sign,
however, there is no c, such that f(c) = 0. Figure 3 illustrates that kind of
continuous function.

From the perspective of the equivalence IV T ⇔ C1, Fig. 2 and 6 represent the
same foundational characteristics of real numbers. However, while we understand
the sentence IV T ⇔ C1, can we grasp any relationship between these figures?

Strictly speaking, Fig. 2 and 6 do not prove, as they represent axioms. But
even as axioms, they need an explanation in technical terms. As for Fig. 2, these
are the concepts of real numbers and continuous function. As for Fig. 6, these
are concepts of an ordered field and a Dedekind cut. Yet, we find no room here
for any cognitive arguments.

5.3 Mathematical vs Cognitive Motives

In regard to real numbers Giaquinto writes: “the main motive for extending the
rationals to the reals is to maintain our cognitive predispositions about space, so
that real analysis can incorporate and extend geometry rather than overthrow
it” ([5], p. 303). However, neither Dedekind’s 1872 Stetigkeit und irrationale
Zahlen, nor Cantor’s 1872 Über die Ausdehnung eines Satzes aus der Theorie
der trigonometrischen Reihen include any cognitive motivations. Dedekind only
sought for foundations for the calculus. Cantor sought to explain the concept of
derivative P ′ of a point set P .

6 Bolzano’s 1817 Rein Analytischer Beweis

Figure 7 represents the logical structure of [3]. Bolzano aims to show the Interme-
diate Value Theorem for polynomials, IVTp. On the one hand, the proof applies
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the theorem that polynomial is a continuous function, con of poly, and on the
other hand, the Intermediate Value Theorem for continuous function, IVTf .
Both of these results apply the definition of continuous function, df of cont;
the first directly, the other via the so-called sign preserving property, SPP, as
explained by formula (3) in our paper. The proof of IVTf employs the Least
Upper Bound principle, LUB. Bolzano proves it by Cauchy Completeness, CC.
He also seeks to prove CC. Throughout the paper, he implicitly refers to two
forms of the Archimedean axiom.

(§18) IVTp

(§15) IVTf con of poly (§17)

df of cont (Preface)

SPP

(§12)LUB

(§7) CC

Fig. 7. Plan of Bolzano’s Rein analytischer Beweis.

Hypothetically, it was possible to prove IVTp by applying the concept of
continuous function straight to a polynomial with no reference to the concept of
function.7 Whether applied to a function or a polynomial, the analytic form of
continuity was, at the time, a new idea.

6.1 Function vs Line

Bolzano considers two versions of IVT: for a geometric line and for a function.
The first is stated as such: “every continuous line [kontinuierliche Linie] of sim-
ple curvature of which the ordinates are first positive and then negative (or
conversely), must necessarily intersect the abscissae-line somewhere at a point
lying between those ordinates” ([10], p. 254). The version for the function is as
follows: “If two functions of x, fx and ϕx, vary according to the law of conti-
nuity [nach dem Gesetze der Stetigkeit ] either for all values of x or for all those
7 In fact, that is what Birkhoff and Mac Lane did in their proof of the Fundamental

Theorem of Algebra 150 years after Bolzano; see [1], ch. 4 and [2], p. 19.
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lying between α and β, and furthermore if fα < ϕα and fβ > ϕβ, then there
is always a certain value of x between α and β for which fx = ϕx” ([10], p.
273). Bolzano provides also a version for one function, namely: “between any
two values, which give results of opposite sign, there lies at least one real root”
([10], p. 276).

The paper includes neither a definition of the geometric line, nor a definition
of function. Moreover, it does not explain what the continuity of line means.

Now, Bolzano declares that the truth of geometric version of IVT “lies in
nothing other than that general truth, as a result of which every continuous
function” has the IVT property. This claim, however, assumes that every con-
tinuous line can be represented by some continuous function. In fact, he never
addressed this question. In any case, that is how IVT for a geometric line has
been reduced to IVT for a function.

In modern mathematics, the concept of function prevails, and the geometrical
aspect of IVT is reduced to the graph of function.

6.2 Continuous Function vs Movement

In Preface to Rein analytischer Beweis, Bolzano provides detailed analysis of
previous proofs of IVT developed by Euler, Gauss and others. In fact, these were
proofs of IVTp. Regarding the proof relying on the concept of movement, Bolzano
alludes to one given by Lagrange in his Traité de la résolution des équations
numériques de tous les degrés. Lagrange’s theorem related a polynomial of the
form P − Q. Yet, in the crucial step, it referred to the intuition of a race: when
a quicker runner outruns a slower runner, they must meet at some point. This
is a point x, Lagrande concludes, in which (P − Q)(x) = 0.

For Bolzano, the proof based on the concept of movement “does not prove the
proposition itself, but instead must first be proved by it” ([10], p. 256). In this
context, he provides a definition of continuity (Stetigkeit) of function, namely
“function fx varies according to the law of continuity for all values of x inside
or outside certain limits means only that, if x is any such value the difference
f(x + ω) − fx can be made smaller than any given quantity, provided ω can be
taken as small as we please [...] or f(x + ω) = fx + Ω” ([10], p. 256).

In this way, continuous motion was replaced by continuous function. Due to
this substitution, Bolzano managed to introduce a kind of algebra of movements:
assuming functions f, g represent movements, terms f + g, or f − g have clear
mathematical meaning, even if the concept of function is not defined.

7 Summary

Both Brown and Giaquinto seek to analyze IVT by an intuitive concept of curve.
Brown also refers to the concept of movement, while Giaquinto employs a set
of graphical concepts. Through these concepts, they develop a philosophy of
diagrams which takes us to back to the pre-Bolzano era. Yet, since Bolzano
transformed the diagram for IVT into an analytic framework, there is no way
back to the era of visual and mechanical intuitions.
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Abstract. The standard attitude to Euclid’s diagrams is focused on
assumptions hidden behind intersecting lines. We adopt an alternative
perspective and study the diagrams in terms of a balance between the
visual and theoretical components involved in a proposition. We consider
theoretical components to consist of definitions, Postulates, Common
Notions, and references to previous propositions. The residuum makes
the visual part of the proof. Through analysis of propositions I.6, I.13,
and II.1–4, we show that such residuum actually exists. We argue that
it is related to a primitive lesser-greater relation between figures, or an
undefined relation of the concatenation of figures.

We also identify a tendency in the Elements to eliminate visual aspects
in order to achieve generality founded on theoretical grounds alone. Our
analysis spans between two versions of the Pythagorean theorem, i.e.,
I.47 and VI.31. We study the diagrams in Books I through VI in terms
of how visual elements are being replaced in favor of theoretical compo-
nents. That process is crowned by proposition VI.31. None of its parts
build on the accompanying diagram. Moreover, it concerns objects that
are not represented on the diagram at all. In fact, this pattern applies
to most propositions of Book VI. Therefore, we treat VI.31 as a model
example of Euclidean methodology, not as an exception.

Keywords: Euclid’s diagram · Visual components of proposition ·
Concatenation of figures · Generality · Pythagorean theorem

1 Two Main Topics Concerning Euclid’s Diagram

There are two components of Euclid’s proposition: the text and the lettered
diagram. The Greek text is linearly ordered – sentence follows sentence, from
left to right, and from top to bottom. Diagrams consist of straight lines and
circles. The capital letters on the diagrams are located next to points; they
name the ends of line segments, intersections of lines, or random points.

The fact that crossing lines determine points is sometimes considered to be a
tacit assumption of Euclid’s system; see e.g. [7], pp. 29–31. On the contrary, [10],
or [6], argue that it is information which is drawn from the diagrams. We adopt
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yet another position and take it to be a hallmark of the ancient Greek tradition.
Accordingly, the intersection of lines is represented on a diagram rather than
read off from diagrams.1

The text of the proposition is a schematic composition made up of six
parts: protasis (stating the relations among geometrical objects by means of
abstract and technical terms), ekthesis (identifying objects of protasis with let-
tered objects), diorisomos (reformulating protasis in terms of lettered objects),
kataskeuē (a construction part which introduces auxiliary lines exploited in the
proof that follows), apodeixis (proof, which usually proves the diorisomos’ claim),
sumperasma (reiterating diorisomos). References to axioms, definitions, and pre-
vious propositions are made via the technical terms and phrases in prostasis.

It is usually assumed that Euclid’s propositions state general results, despite
the fact that their apodeixis parts refer to specific diagrams. Reviel Netz puts it in
a more decisive way: “Greek proofs prove general results”, “Greek mathematical
proofs are about specific objects in specific diagrams” ([11], p. 241). General
results based on specific diagrams seem paradoxical and encourage philosophical
speculations, which could be phrased in the form of the following questions: (1)
How is it possible to generalize from a single diagram? (2) Are Euclid’s proofs
about specific diagrams?

(Ad 1) We adopt a perspective to organize Euclid’s propositions into hierar-
chical structures designed to solve specific problems. This allows to realize that
although Euclid seeks to prove general results, he has no appropriate means to
these ends. To elaborate, in [2] we present proposition II.14 of the Elements as
the culmination of Euclid’s theory of equal figures. The proposition aims “To
construct a square equal to a given rectilinear figure”.2 Although the accompa-
nying diagram depicts a quadrilateral, the ekthesis reiterates the general claim:
“Let A be the given rectilinear figure”. Yet, the apodeixis shows how to square a
quadrilateral rather than a “rectilinear figure”. Still, propositions that contribute
to II.14, specifically I.45, provide constructions that could be easily generalized
by the so-called Pascalian induction, that is, a technique introduced in the early
modern era.

There are, of course, propositions that provide general results based on indi-
vidual diagrams alone; I.32 is a model example. That kind of generalization could
be explained by non-degenerative conditions and lemmas, as applied in the area
method. The method provides foundations for automated theorem proving in
synthetic geometry (see [3,4,9]). Viewed from that perspective, Euclid’s propo-
sitions can be presented as a process of introducing and eliminating points alone,

1 It can be shown that this tacit assumption hypothesis rests on a dogma started in
the early modern era which states that lines consist of points.

2 All English translations of the Elements after [5]. Sometimes we slightly modify
Fitzpatrick’s version by skipping interpolations, most importantly, the words related
to addition or sum. Still, these amendments are easy to verify, as this edition is
available on the Internet, and also provides the Greek text of the classic Heiberg
edition.
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with no reference to lines. However, the area method is not widely known, so any
account of Euclid’s diagrams based on this method needs an individual study.

(Ad 2) Since all Euclid’s propositions have an accompanying diagram, in
philosophical interpretations of the Elements there is a trend to assume that
a kind of diagrammatic reasoning is an essential component of Euclidean logic.
On the contrary, we identify a tendency in the Elements to eliminate visual
aspects in order to achieve generality founded on theoretical grounds alone. In
this paper, we study diagrams in the Elements, Books I through VI, in terms
of how visual elements are being replaced in favor of theoretical components.
This process is crowned by proposition VI.31. None of its parts build on the
accompanying diagram. Moreover, it concerns objects that are not represented
on the diagram at all. Yet the result is as general as it can be: the apodeixis
really proves the claim of the prostatis.

2 From Elements I.47 to VI.31

Our analysis spans between two versions of the Pythagorean theorem, namely
I.47 and VI.31; see Fig. 1. The crux of I.47 consists of the two equalities:

sq(BG) = parallelogram BL, sq(HC) = parallelogram CL (1)

where the term sq(BG) stands for Euclid’s phrase “square BG”. Here equalities
are justified by the theory of equal figures, as explained in [2]. They clearly
constitute a theoretical component of the proof. Indeed, the starting point of
this theory is the equality in terms of congruence. Yet, the theory is designed to
justify the equalities of non-congruent figures. In this sense, it counters visual
evidence: we are driven to consider some figures to be equal, although we see
them as unequal (i.e., non-congruent).

The conclusion of the proof, namely “the whole square BDEC is equal to the
two squares GB, HC”, needs a premise

BL, LC = BCED. (2)

Formula (2) is a model example of what we call visual evidence. While in
(1) the equalities are justified by the theory, in (2), the equality is based on the
diagram alone. In fact, such a premise does not occur in I.47; Euclid simply skips
this step in his proof. Yet, visual evidences of this kind are explicit in the first
propositions of Book II, and will be studied in the next section.

The diorismos of VI.31 states: “Let ABC be a right-angled triangle having
the angle BAC a right-angle. I say that the figure on BC is equal to the similar,
and similarly described, figures on BA and AC”.

To compare I.47 and VI.31, let us assume that the figures on the sides of the
triangle ABC are squares (to this end, we modified the original diagram VI.31).
In I.47, the accompanying diagram represents parts of the square BCED equal
to sq(BG) and sq(HC), respectively, namely rectangles BL and LC. In VI.31, on
the contrary, the squares on AB and BC, sq(AB), sq(AC), are not represented
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Fig. 1. Euclid’s two versions of the Pythagorean theorem: Elements I.47 and VI.31.

by any parts of the square on BC, sq(BC). Nonetheless, we can represent the
relationship between these squares by the formula

sq(AB) + sq(AC) = sq(BC).

The sign + finds no diagrammatic counterpart; in fact, there is no reference
to the addition in the enunciation of proposition VI.31. Yet, it is understandable
on a theoretical level.

Before we dig into the details of VI.31 in Sect. 5, let us analyze purely visual
components of Euclid’s proofs.

3 Modes of Diagrammatic Reasoning

3.1 Visual Evidence vs Intersecting Lines

The standard attitude toward Euclid’s diagrams is focused on a tacit assump-
tion hidden behind intersecting circles, especially on the diagram accompanying
proposition I.1. Yet, in proposition I.2, the intersection of the straight line and
circle is assumed, and in I.10, the intersection of two straight lines is assumed.
From the ancient Greek perspective, these three cases are no different. Never-
theless, modern doubts concerning the tacit assumption view them differently.
It is because Euclid’s diagrams are interpreted on a Cartesian plane, and there
is also a crucial difference between the circle-circle and straight line-straight line
cases (see [7], pp. 144–145).

Moreover, doubts concerning the circle-circle intersection point are motivated
by circles on the Cartesian plane of rational numbers Q × Q: the first with the
center at (0, 0), the second, with the center at (0, 1), both having the radius
1. Their (real) intersection point (12 ,

√
3
2 ) does not exist on the plane Q × Q.

Thus, on the one hand it is implied, that we can see circles that seem to be
intersecting, and on the other hand, due to the analytic argument, we know that
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the coordinates of their intersection point are both not rational. The conclusion
is: diagrams can deceive.

This argument, however, is deceptive. For the sake of completeness, it should
also include a demonstration to the effect that there are as many rational points
on the circles under investigation that one can really see them. In fact, it can
be shown that when these circles are considered on the real plane R × R, then
the sets of their rational points are dense, thus, they are visible. Nevertheless,
that proof is by no means straightforward (see [12]). All in all, while doubts
concerning the tacit assumption are based on analytic arguments, we also need
another analytic argument to be certain that we really see what we seem to see.

Regarding the tacit assumption, Marcus Giaquinto writes: “We should also
concede that the argument of the verbal text fails to show that the existence of
an intersection point follows logically from Euclid’s explicitly stated theoretical
apparatus (his postulates, common notions, and definitions” ([6], p. 284). Then
he argues that the information regarding the intersecting lines is drawn from
the diagram. On the contrary, we take the intersecting lines hypotheses to be
the hallmark of the ancient Greek tradition, on par with the tacit assumption
of modern mathematics stating that in the end, all mathematical objects are
point sets. In any textbook or monograph on real analysis, foundations for the
course consist of axioms for real numbers. However, due to further developments,
suddenly, we realize that curves, surfaces, solids, and other investigated objects
are point sets. Although it could be surprising from the local perspective of a
given book, it is not that strange from the perspective of the global foundations
of modern mathematics. The same, we believe, applies to the ancient assumption
concerning intersecting lines. In fact, Euclid’s tacit assumption is not as tacit,
since every intersection of lines is represented on diagrams by lettered points,
and these letters are then used in the apodeixis section of propositions.

Instead of intersecting lines as the main topic of diagrammatic reasoning,
we adopt an alternative perspective of studying diagrams, in terms of a balance
between the visual and theoretical components involved in a proposition. By
theoretical components we mean definitions, Postulates, Common Notions and
references to previous propositions. The residuum is considered the visual part
of the proof. Yet, since the tacit assumption is beyond the scope of our interest,
the question is whether there is anything left on the visual side of a proof. To this
end let us take a closer look at Euclid’s proposition I.13. It is relevant proposition
since it is applied in I.32 – the seal of Euclid’s system.

3.2 Implicit Visual Evidence

In I.13, the line of arguments is this; see Fig. 2. Since the following equalities of
angles obtain

CBE,EBD = CBA,ABE,EBD, (3)

DBA,CBA = EBD,EBA,ABC, (4)

then, by the transitivity of equality, we have

CBE,EBD = DBA,CBA. (5)
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However, there is no demonstration whatsoever but visual evidence that

CBA, ABE, EBD = EBD, EBA, ABC. (6)

Fig. 2. Elements I.13.

The equalitites (3) to (5) have their textual counterparts. As for the first one,
it is the following phrase: “CBE, EBD is equal to three CBA, ABE, EBD”. The
third one is the phrase: “CBE, EBD is also equal to DBA, ABC”. Contrarily, no
part of I.13 represents the equality (6), therefore, we consider it to be implicit
visual evidence. In propositions II.1–4, similar equalities are explicitly included
in the proofs. Yet, I.13 also includes a conclusion: “since DBA is equal to the
two DBE, EBA” which is based on the diagram alone.

Arguably, Eqs. (3) to (6) represent concatenations rather than sums. We put
concatenation on the visual side of proof, while including addition in the theo-
retical side. A kind of addition occurs in Common Notions 2 (CN2), however,
it justifies equality rather than introduces addition. The axiom reads “And if
equal things are added ( ) to equal things then the wholes are equal”.
In fact, it is applied in I.13, namely: “since DBA is equal to the two DBE, EBA,
let ABC have been added to both. Thus, the DBA, ABC is equal to the three
DBE, EBA, ABC.” We formalize it as follows

DBA = DBE, EBA → DBA, ABC = DBE,EBA,ABC.

Herein, the first occurrence of the equality is justified by visual evidence, the
second – by CN2.

We identify another kind of addition, namely synthesis, as founded on the pro-
portion theory. By analyzing VI.31, we further develop our distinction between
concatenation and addition.
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3.3 Pure Visual Evidence

Here is the text of proposition II.1, starting with the diorismos3:
Diorismos “Let A, BC be the two straight-lines, and let BC, be cut, at

random, at points D,E. I say that the rectangle contained by A, BC is equal to
the rectangles contained by A, BD, by A, DE, and, finally, by A, EC.”

Kataskeuē “[...] let BG be made equal A [...].”

Fig. 3. Elements II.1.

“[1] So BH is equal to BK, DK, EH. [2] And BH is by A, BC. For it is contained
by GB and BC, and BG is equal to A. [3] And BK (is) by A and BD. For it is
contained by GB, BD, and BG is equal to A. [4] And DL is by A and DE. For
DK, that is to say BG, is equal to A. [5] Similarly, EH (is) also by A, EC. [6]
Thus, by A and BC is equal to by A and BD, by A and DE, and, finally, by A
and EC.”

Now, we present this proposition in a more schematic form. In what follows,
symbol A×BC stands for the phrase “the rectangle contained by A, BC”, while
BH π GB × BC stands for the phrase “BH is contained by GB and BC”. We
do not use the term BH = GB × BC on purpose. Since 1975, there has been
an ongoing debate on the meaning of Book II, as summarized in [1]. The term
BH = GB × BC would determine the so-called geometrical algebra interpreta-
tion. However, throughout Book II, the equality between rectangles “contained
by” and the figures represented on the diagrams are subject to some strict rules,
which rather contest that interpretation (Fig. 3).
Diorismos

A × BC = A × BD, A × DE, A × EC

3 Numbering of sentences and names of parts of the proposition added.
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Kataskeuē BG = A
Apodeixis

BH = BK,DK,EH

BH π GB × BC, BG = A −→ BH π A × BC

BK π GB × BD, BG = A −→ BK π A × BD

DK = BG = A −→ DLπ A × DE

−→ EH π A × EC

−→ A × BC = A × BD, A × DE, A × EC.

The formula in red interprets sentence [1]. It is the starting point of the
argument and it represents a pure visual evidence. The rectangles mentioned in
the diorismos are not represented on the diagram. Euclid’s argument is based
on the implicit substitution rule revealed in the (underlined) formulas which
interpret sentences [3]: it turns the visible figure GB × BD into the invisible
A × BD.

Fig. 4. Elements II.13 (left) and II.4 (right).

Below is an analogous scheme for II.3, see Fig. 4; the term BC2 stands for the
phrase “square on BC”. Herein, the term AB × BC represents a non-depicted
figure. Again, the formula in red represents pure visual evidence.
Diorismos

AB × BC = AC × CB, BC2

Apodeixis

AE = AD, CE

AE π AB × BE, BE = BC −→ AE π AB × BC

DC = CB −→ AD π AC × CB

DB = CB2 −→ AB × BC = AC × CB, BC2.

Finally, we present a scheme for II.4, see Fig. 4. In this proposition, the visual
evidence proceeds the final conclusion.
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Diorismos
AB2 = AC2, CB2, 2AC × CB

Apodeixis.

CGKG = CB2

HF = HG2 = AC2 −→ HF, KC = AC2, CB2

GC = CB −→ AG = AC × CB

AG = GE −→ GE = AC × CB

−→ AG,GE = 2AC × CB

HF = AC2, CK = CB2 −→ HF, CK, AG, GE =
= AC2, BC2, 2AC × CB

HF, CK, AG, CE = ADEB = AB2 −→ AB2 = AC2, CB2, 2AC × CB.

4 Combining Visual and Theoretical Components

Throughout the Elements, Euclid compares line segments, triangles, polygons,
and angles in terms of lesser-greater. From a modern perspective, it is a primitive
relation. By textual analysis, we can show that it is characterized by transitivity
and the trichotomy law. In the next section, we expose its role in the theory of
proportion. Here, we reveal how it is entangled in visual evidence.

Proposition I.6 is a model example of reductio ad absurdum proof. Euclid
aims to show that AB = AC, given the angles at B and C are equal; see Fig. 5.
On the one hand, the contradiction consists of a conclusion �DBC = �ACB,
and on the other hand, a visual evidence that �DBC is lesser than �ACB. The
crucial part of the proof reads: “Thus, the base DC is equal to the base AB, and
the triangle DBC will be equal to the triangle ACB, the lesser to the greater”.
Thus, the equality of triangles established on theoretical grounds is confronted
with visual evidence

�DBC = �ACB, �DBC < �ACB. (7)

As a characteristics of lesser-greater relation, one and only one of the follow-
ing conditions holds

�DBC > �ACB, �DBC = �ACB, �DBC < �ACB. (8)

Since there are no rules in the Elements which allow to decide whether one
triangle is greater than another, we claim that �DBC < �ACB is determined
on purely visual grounds. Finally, Euclid’s argument, specifically (7) and (8),
combines visual and theoretical components.

Kenneth Manders presents an analysis of proposition I.6, stating that it is
“read off from the diagram” that �DBC is “a proper part” of the �ACB. Here,
“read off” means a kind of inference. As far as it is to interpret Euclid, it is a
highly speculative argument since there is no inference regarding the inequality
of triangles as well as the very term “part” does not occur in the proposition;
see ([10], p. 110).
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Fig. 5. Elements, I.6.

4.1 Elements, Book V

The theory of proportions, as developed in Book V, is founded on definitions 5
and 7. Proportion is a relation between two pairs of geometric figures (magni-
tudes) of the same kind (triangles being of one kind, line segments of another
kind, etc.). Magnitudes of the same kind form an ordered additive semi-group
M = (M,+, <) characterized by the five axioms given below.

(E1) (∀a, b ∈ M)(∃n ∈ N)(na > b).
(E2) (∀a, b ∈ M)(∃c ∈ M)(a > b ⇒ a = b + c).
(E3) (∀a, b, c ∈ M)(a > b ⇒ a + c > b + c).
(E4) (∀a ∈ M)(∀n ∈ N)(∃b ∈ M)(nb = a).
(E5) (∀a, b, c ∈ M)(∃d ∈ M)(a : b :: c : d), where na = a + a + ... + a

︸ ︷︷ ︸

n−times

.

The term na stands for, in Euclid’s words, multiple of the magnitude repre-
sented by a. We interpret the addition of magnitudes (of the same kind) as a
primitive notion. One can show that it is a commutative and associative opera-
tion. To be clear, the occurrence of the very word add in translations is usually
an interpolation. In the Greek text, the addition of magnitudes A and B is rep-
resented by the term A,B. It is, thus, a concatenation. Therefore, the above
axioms interpret Elements.

Axiom E1 interprets definition 4, the so-called Archimedean axiom. It is
applied in Book V once: in the proof of proposition V.8. E4 is implicitly applied
in proposition V.5. This axiom is not essential, as it can be derived from the four
remaining axioms. E5 represents the so-called fourth proportional. In Book V, it
is applied in proposition V.5. It is also a building block of the exhaustion method,
as developed in Book XII. Axioms E2 and E3 can be identified all throughout
Book V.
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We interpret Euclid’s definition of proportion by the following formula:

a : b :: c : d ⇔df (∀m,n ∈ N)[(na >1 mb ⇒ nc >2 md)
∧(na = mb → nc = md) ∧ (na <1 mb ⇒ nc <2 md)];

the assumption regarding magnitudes a, b, on the one hand, and c, d, on the
other, being of the same kind is formalized by a, b ∈ M1 = (M1,+, <1), and
c, d ∈ M2 = (M2,+, <2). The term a : b :: c : d stands for ‘as a is to b, so is c to
d’.

Definition 7, i.e., a relation greater than between pairs of magnitudes we
interpret as follows:

a : b 
 c : d ⇔df (∃m,n ∈ N)[(na >1 mb) ∧ (nc ≤2 md)].

Here are four propositions of Book V, which we will refer to in what follows.
Although they are stylized on algebra, the only purpose of this modern attire is to
reveal similarities between proportions and the arithmetic of fractions. Equality
as it occurs in V.9, stands for equal figures.

V.9 a : c :: b : c ⇒ a = b.
V.12 a : b :: c : d, a : b :: e : f ⇒ a : b :: (a + c + f) : (b + d + f).
V.16 a : b :: c : d ⇒ a : c :: b : d.
V.24 a : c :: d : f, b : c :: e : f ⇒ (a + b) : c :: (d + e) : f .

When a : b :: c : d is replaced with a
b = c

d , the above propositions will turn into
simple rules of the arithmetic of fractions.

4.2 Starting Point of Book VI

In Book VI, Euclid refers explicitly to definition V.5 once: in the proof of propo-
sition VI.1. Its diagram represents rectangles and triangles; see Fig. 6. In regard
to triangles, it reads: “Let ABC and ACD be triangles, [...] of the same height
AC. I say that as base BC is to base CD, so triangle ABC is to triangle ACD”.

Although definition V.5 requires to compare nBC and mCD for every pair
n,m, Euclid considers a very specific case, namely segments 3BC, 3CD; the
accompanying diagram clearly represents this case. Thus, the proof is by no
means general. Nonetheless, we are to compare, on the one hand, lines 3BC,
3CD, and on the other hand, triangles �AHC, �ACL. By the kataskeuē, HC =
3BC, CL = 3CD, by the theory of equal figures, �AHC = 3�ABC, �ACL =
3�ACD. Now, the crucial part of the proof reads: “And if base HC is equal
to base CL then triangle AHC is also equal to triangle ACL. And if base HC
exceeds base CL then triangle AHC also exceeds triangle ACL. And if less, less.”

The only way to verify the inference highlighted in red is to apply the same
argument as in proposition I.6. Yet, from this moment on, the train of propo-
sitions driving to VI.31 runs smoothly in a way similar to modern theories: by
referencing propositions of Book V and some basic rules of geometry. In the next
section, we present its two fundamental steps.
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Fig. 6. Elements, VI.1.

4.3 Combining Proportions and Geometry

The claim of VI.19 in modern geometry is phrased as follows: Areas of similar
triangles are to each other as the square of the similarity scale. Euclid’s version
is a bit mysterious as it reads: “Similar triangles are to one another in the double
ratio of corresponding sides.” What is the “double ratio”?

Fig. 7. Elements, VI.19.

Let triangles, as presented on Fig. 7, be similar, �ACB ∼ �FDE. In VI.19,
Euclid aims to show that

�ACB : �FDE :: BC : BG. (9)

Point G represented on the diagram is introduced only in the apodeixes; it is
constructed in such a way that the proportion BC : EF ::EF : BG obtains. The
rest of the proof is as follows. Due to some tricks and references to VI.15, Euclid
shows the equality of triangles �FDE = �AGB. Then, by VI.1 he easily states
the proportion (9).
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By similarity of triangles, proportions AB : DE :: BC : EF and BC :
EF ::EF : BG obtains. Supposing that AB : DE = BC : EF = a

b , we get
the following “proportions”:

BC : BG = (BC : EF )(EF : BG) =
a

b

a

b
.

Thus, �ACB : �FDE = a
b
a
b represents the square of the similarity scale.

However, Euclid’s theory does not allow for objects such as (BC : EF )(EF :
BG). Yet, there is more. Even within Euclid’s system, VI.19 could be stated
simply in the form (9). However, the schematic composition of propositions does
not allow for any symbols in the protasis, which is why he had to coin a specific
name, namely “double ratio”.

5 Towards Synthesis

5.1 Ratio of Similar Polygons

In VI.20, Euclid seeks to generalize VI.19 to polygons through the triangulation
technique. The proposition reads: “Similar polygons can be divided into equal
numbers of similar triangles corresponding to the wholes, and one polygon has
to the polygon a duplicate ratio with respect to a corresponding side.”

Like in II.14, the apodeixis treats of pentagons rather than polygons.
Nonetheless, the ekthesis still states “Let ABCDE and FGHKL be similar poly-
gons.” The technique of triangulation suggested by the accompanying diagram
– see Fig. 8 – allows to generalize the pentagon case to any polygon by Pascalian
induction.

Fig. 8. Elements, VI.20.

As for the second part, the similarity scale can be represented by each of the
following fractions AB : GF , or BE : GL, or CE : HL. Simplifying the results
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of proposition VI.19, we represent the square of similarity scale by products
(BE : GL)(BE : GL), or (CE : HL)(CE : HL). As a result, by VI.19, we have,

�AEB : �FLG :: (BE : GL)(BE : GL),
�BEC : �GLH :: (BE : GL)(BE : GL),
�EDC : �LKH :: (CE : HL)(CE : HL).

Since CE : HL = BE : GL, by V.12, it follows that

(�AEB,�BEC,�EDC) : (�FLG,�GLH,�LKH) :: (BE : GL)2.

Finally, since AB : GF = BE : GL, we have

pentagon(AEDCB) : pentagon(FLKHG) = (AB : GF )(AB : GF ).

Here, (AB : GF )(AB : GF ) represents “double ratio” of similarity scale of
the pentagons AEDCB and FLKHG.

5.2 Geometry of Ideas

Here are the decisive parts of proposition VI.31.
Protasis “In right-angled triangles, the figure ( ) on the side subtending

the right-angle is equal to the similar, and similarly described, figures ( )
on the sides surrounding the right-angle.”

Fig. 9. Elements, VI.31.

Diorismos “Let ABC be a right-angled triangle having the angle BAC a
right-angle. I say that the figure on BC is equal to the similar, and similarly
described, figures on BA and AC.”

Kataskeuē “Let the perpendicular AD have been drawn.”
Note, there is no crucial difference between the protasis and diorismos parts:

the latter simply adopts notation, yet still treats figures in general. The kataskeuē
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introduces the letter D, which enables to represent the square of similarity scale
of the discussed figures. Speaking of figures, Euclid applies the word idea ( )
more generally than polygon, albeit due to the propositions he relies on, the
result has to be restrained to polygons alone (Fig. 9).

Let FBC , FAB , FAC stand for figures on BC,AB,AC, respectively. Now, the
proof (slightly modified) runs as follows:

FAB : FBC :: BD : BC

FAC : FBC :: DC : BC −−−→
V.24

(FAB , FAC) : FBC :: (BD,DC) : BC

BC = BD,DC −→ (FAB , FAC) : FBC ::BC : BC

−−−−→
V.16,9

FAB , FAC = FBC .

One may consider the equality BC = BD,DC to be based on visual evidence.
Yet, the crucial result, namely the equality FAB , FAC = FBC is based on purely
theoretical grounds, namely propositions V.9 and V.16. Moreover, the proof of
I.47 is based on a partition of the square BCED into rectangles BLD and
CEL; the equality BCED = BLD,CEL is easily represented on the diagram.
In VI.31, figures FAB , FAC cannot be represented by any parts of the figure
FBC . Nevertheless, we can represent the relationship between these figures by
the formula

FAB + FAC = FBC . (10)

The sign + finds no diagrammatic counterpart; in fact, there is no reference
to addition in the enunciation of proposition VI.31. It is, however, understood
within the proportion theory, specifically through proposition V.24. It reads: “the
first and the fifth, added together ( ), AG, will also have the same ratio
to the second C that the third and the sixth, DH, has to the fourth F.” That is,
in symbols:

AB : C ::DE : F, BG : C :: EH : F → AG : C ::DH : F.

Throughout the whole Book V, magnitudes are represented by line segments.
Then, for example, when point B lies on the segment AG between A and G, it
is visually obvious that AB,BG = AG. Nevertheless, the proof of V.24 aims to
apply to any kind of magnitudes. Indeed, in VI.31 it applies to any kind of figure,
that is, to . Although we cannot place FAB next to FAC , such as segment
AB being placed next to BG, or rectangle BL being placed next to rectangle BL
(see Fig. 1), through purely theoretical cognition we can grasp that the equality
obtains FAB + FAC = FBC .

6 Final Remarks

The so-called tacit assumption of the Euclid system, hidden behind intersecting
lines, is by no means the most fundamental premise of diagrammatic reasoning.
From the ancient Greek perspective, it is not tacit, since every intersection of lines
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is represented on the diagrams by lettered points. From a modern perspective,
it is no longer hidden, as it has explicit mathematical counterparts. In synthetic
geometry, it is the Pasch axiom. In analytic geometry, it is the requirement
that when Euclid’s straightedge and compass constructions are to be done on
a Cartesian plane F × F , F has to be an ordered field closed under the square
root operation (see [8], ch. VII).

The phenomena we identified as visual evidence in Euclid’s proofs find no
obvious counterparts in modern mathematics. First, modern mathematics inter-
prets concatenation as addition. Yet, in Euclid’s system, there is a long way
from concatenation to addition. Second, visual evidence, as related to the lesser-
greater relation, finds no obvious counterpart, since in modern synthetic geome-
try, the relation is defined rather than introduced as a primitive notion, moreover,
it is not applied to figures, but to line segments only. Looking for modern coun-
terparts of Euclid’s visual evidence, we should consider axioms for algebra, for
example a + b = b + a, or the axiom for an ordered field called the compatibility
of order with addition, i.e., if a < b, then a + c < b + c. Whatever they may be,
what they interpret in mathematics could be considered pre-mathematics from
our modern perspective, that is, arguments based on visual evidence.
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1 Introduction

The present paper takes as its starting point the most common metaphors used
in natural language and the thought system behind it to approach the number
sequence in a spatial and temporal context. The latter context being less depen-
dent on completely external causal triggering, its cyclical perspective on number
will be adopted as the cognitively more realistic option and presented in the
well-known format of a Gaussian system of arithmetic commonly called clock
arithmetic. The duodecimality that is typical of analog clocks will be argued to
provide an optimal cognitive base, while a hexadic clock is argued to be the cog-
nitive minimum. On the basis of naturalness considerations formulated in terms
of degrees of symmetry, the geometrical patterns on multiplication clocks turn
out to show relief and different degrees of symmetry and homogeneity depend-
ing on the choice of base. It is the homogeneity restriction, to be worked out
below, which is the novelty on the mathematical side. On the basis of such con-
siderations, base 10, the decimal system, can be shown to be a less symmetrical
arrangement than base 12, notwithstanding its success thanks to the morphology
of the human hands.

2 Clock Arithmetic

In our human conception of number, the spatial and temporal types of experi-
ence underlying conceptualizations seem to be different. In the context of spatial
objects, our sense of number is primarily rectilinear. Very often, the axis is ver-
tical, as in adding up, subtracting, over/under 50 [2,10], and the corresponding
metaphor more is up, less is down [6,8]. In other instances, the axis is viewed as
horizontal, witness the number line [4] or the left-right ordering of the number
sequence on a ruler.

In the less tangible yet arguably more revealing context of the passage of time,
however, number is not conceived of as rectilinear, but as curved, cyclical and
recurrent. Thanks to recursion, the geometry of the infinite number sequence
can be visually represented in the form of a circle. This property is reflected
in notation systems with a fixed base which recycle a finite set of symbols as
numbers go up. Such features are aptly captured in a system of arithmetic for the
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integers first developed by Carl Friedrich Gauss [5] and often referred to as clock
arithmetic. Using its circular design, arithmetical operations such as the times
tables can be represented as insightful and didactically most useful diagrams
on an analog clock. Illustrative examples for the times tables of multiplicands 0
(or 12) up to 7 are provided in Table 1 and Table 2. ≡ is the modulo symbol and
it precedes the clock number which the product maps into. Looking at the times
table for 7, for instance, 2 × 7 = 14. The latter number is not itself on the clock
diagram, but we know it is 2 units beyond 12, hence at point 2 on the clock.
Therefore the corresponding diagram arrow starts at 2 and ends in 2. (Ignore
the use of the blue arrows for the time being, it will become relevant later.) In
the modulo system as developed, all multiplications of higher numbers comply
with the patterns of arrows on the clocks. Other bases than 12 can also be used
and continuously extending the base results in beautiful animations [9].

The mapping of the times tables on the clock is visually insightful and didac-
tically useful. It shows clearly how much surprising symmetry there is in the
number system and how what is true for low numbers is automatically true
for all higher ones. The representations for the times tables of odd numbers on
the 12-clock display not just left-right bilateral symmetry, but also top-bottom
symmetry through the 3–9 axis, a property which neatly sets them off from the
even number tables on the 12-clock, which have no top-bottom symmetry, only
bilateral symmetry. Having top-bottom symmetry on top of left-right bilateral
symmetry implies that if one has the initial quarter of the clock arrows for the
odd numbers and mirrors them down to the right bottom quarter and then mir-
rors the right part to the left, the whole clock is as it should be. One quarter
(0, 1, 2, 3) suffices, the rest is more of the same.

3 Duodecimality

Do the usual duodecimality of an analog clock and the varying reflection symme-
tries generated by times tables on it require an explanation beyond a cultural-
historical one? In particular, is there merit in the hypothesis that it is cognitively
motivated and hence not accidental? An indication that the latter avenue might
be worth exploring is that this cognitive preference for duodecimality is also
found in the structure of the chromatic scale in music. Even though one could
argue that in that realm too, the preference is based on a cultural-historical
choice, there is little doubt that it also rests on perceptual (auditory) cogni-
tive foundations involving consonance and dissonance. We therefore tentatively
suggest the idea of a homology between the most natural intuitive base 12 in
mathematics and the duodecimality of the chromatic scale. This parallel, if real,
would amount to a recycling of part of the perception-based architecture of the
chromatic scale in the conceptual realm of mathematics. Such a relationship
between perceptual structures and conceptual ones is not implausible. Jaspers
(2012) [7] illustrates a comparable relationship between features of colour per-
ception on the one hand and logical concepts and colour terms on the other.
Certain constraints on colour perception reappear in the realm of logical notions
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and colour terms in the form of a bifurcation between ordinary natural language
concepts (such as and, or, and nor in the propositional calculus, red, green, blue
for colour words) and less natural, but scientifically most useful ones (such as
*nand and iff in logic, cyan and magenta among colour terms).

In the realm of numbers, duodecimality represents an optimal cognitive bal-
ance between keeping the number of the base within bounds in order not to
overload declarative memory and extending it enough not to increase recursive
configurationality (number of digits of the number) too fast and explosively.
Yet, similar to what holds for logical concepts, freedom from stimulus control in
the conceptual realm has the consequence that naturalness and optimal cogni-
tive balance can be consciously violated and therefore any other choice of base
(“modulo n”) can be made, even if with a measurable decrease in naturalness in
many cases (formalizable in terms of a reduction of diagrammatic symmetries).
The freedom to explore any base has been the source of many new and interest-
ing questions (“What happens if I choose a prime as modulus?”, etc.) and has
opened new avenues for mathematics far beyond what ordinary concept forma-
tion and the bounds of everyday language could provide, a standard situation
when humans decide to take their everyday intuitive thinking and talking to
careful analytic pieces in order to create novel, consciously constructed concepts
better suited for scientific purposes.

Table 1. Times Table Clocks with multiplier-product arrows (multiplicand in black)
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1
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7
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4
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2

1
0
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8
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7
6

5

4
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1
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8
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7
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2

1
0

11
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8

9

7
6

5

4

0/12 1 2 3

0x 12 = 0 0x 1 = 0 0x 2 = 0 0x 3 = 0

1 x 12 = 12 ≡ 0 1x 1 = 1 1x 2 = 2 1x 3 = 3

2 x 12 = 24 ≡ 0 2x 1 = 2 2x 2 = 4 2x 3 = 6

3 x 12 = 36 ≡0 3x 1 = 3 3x 2 = 6 3x 3 = 9

4 x 12 = 48 ≡ 0 4x 1 = 4 4x 2 = 8 4x 3 = 12 ≡ 0

5 x 12 = 60 ≡ 0 5x 1 = 5 5x 2 = 10 5x 3 = 15 ≡ 3

6 x 12 = 72 ≡ 0 6x 1 = 6 6x 2 = 12 ≡ 0 6x 3 = 18 ≡ 6

7 x 12 = 84 ≡ 0 7x 1 = 7 7x 2 = 14 ≡ 2 7x 3 = 21 ≡ 9

8 x 12 = 96 ≡ 0 8x 1 = 8 8x 2 = 16 ≡ 4 8x 3 = 24 ≡ 0

9 x 12 = 108 ≡ 0 9x 1 = 9 9x 2 = 18 ≡ 6 9x 3 = 27 ≡ 3

10 x 12 = 120 ≡ 0 10x 1 = 10 10x 2 = 20 ≡ 8 10x 3 = 30 ≡ 6

11 x 12 = 132 ≡ 0 11x 1 = 11 11x 2 = 22 ≡ 10 11x 3 = 33 ≡ 9

12 x 12 = 144 ≡ 0 12x 1 = 12 ≡ 0 12x 2 = 24 ≡ 0 12x 3 = 36 ≡ 0
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Table 2. Times Table Clocks with multiplier-product arrows (multiplicand in black)

3

2

1
0

11

10

8

9

7
6

5

4

3

2

1
0

11

10

8

9

7
6

5

4

3

2

1
0

11

10

8

9

7
6

5

4

3

2

1
0

11

10

8

9

7
6

5

4

4 5 6 7

0x 4 = 0 0x 5 = 0 0x 6 = 0 0x 7 = 0

1 x 4 = 4 1x 5 = 5 1x 6 = 6 1x 7 = 7

2 x 4 = 8 2x 5 = 10 2x 6 = 12 ≡ 0 2x 7 = 14 ≡ 2

3 x 4 = 12 ≡0 3x 5 = 15 ≡ 3 3x 6 = 18 ≡ 6 3x 7 = 21 ≡ 9

4 x 4 = 16 ≡ 4 4x 5 = 20 ≡ 8 4x 6 = 24 ≡ 0 4x 7 = 28 ≡ 4

5 x 4 = 20 ≡ 8 5x 5 = 25 ≡ 1 5x 6 = 30 ≡ 6 5x 7 = 35 ≡ 11

6 x 4 = 24 ≡ 0 6x 5 = 30 ≡ 6 6x 6 = 36 ≡ 0 6x 7 = 42 ≡ 6

7 x 4 = 28 ≡ 4 7x 5 = 35 ≡ 11 7x 6 = 42 ≡ 6 7x 7 = 49 ≡ 1

8 x 4 = 32 ≡ 8 8x 5 = 40 ≡ 4 8x 6 = 48 ≡ 0 8x 7 = 56 ≡ 8

9 x 4 = 36 ≡ 0 9x 5 = 45 ≡ 9 9x 6 = 54 ≡ 6 9x 7 = 63 ≡ 3

10 x 4 = 40 ≡ 4 10x 5 = 50 ≡ 2 10x 6 = 60 ≡ 0 10x 7 = 70 ≡ 10

11 x 4 = 44 ≡ 8 11x 5 = 55 ≡ 7 11x 6 = 66 ≡ 6 11x 7 = 77 ≡ 5

12 x 4 = 48 ≡ 0 12x 5 = 60 ≡ 0 12x 6 = 72 ≡ 0 12x 7 = 84 ≡ 0

4 A Hexadic Group

Note that the times tables for clock opposites (1 and 7, 2 and 8, 3 and 9, 4 and
10, 5 and 11) are systematically related in that the multiplier-product arrows
for even multipliers remain the same, whereas the arrows for odd multipliers go
to the opposite position on the clock: compare the reciprocal blue arrows for
odd multipliers on the 7-clock in Table 2 to the reflexive red arrows for the cor-
responding odd multipliers on the 1-clock in Table 1. This relationship suggests
that while base 12 may be optimal, it is not minimal: a further reduction of the
multiplier-product clocks to base 6 is possible, resulting in a unification of the
clocks for 1 and 7, for 2 and 8, and so on (Table 3).

This smaller hexadic base is more economical. It requires only 6 diagrams,
primes are now all 0-adjacent, neatly in the two only co-prime positions relative
to 6, the number of integer values of the foundational cycle. The foundational
numbers are reduced to 1, 2, 3 and (initially implicit) 0, with their additive
inverses −0 (≡0), −1 (≡5), −2 (≡4), −3 (≡3) to complete the arguably innate
pattern. This reduction to 1, 2, 3 (and 0) tallies well with the experimental
results on the nature of the number sense and the claims about the foundational
role of these few low numbers made by Stanislas Dehaene (1997) [3].

The hexadic geometrical representations clearly bring out a property which
12-clock opposites like 1 and 7, or 2 and 8, etc. share. Nevertheless, they do
so at the cost of hiding a difference between them, namely that the paths
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Table 3. Base-6 Times Tables with multiplier-product arrows

0, 6 and 12 1 and 7 2 and 8

1
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2

1

0
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0
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3 and 9 4 and 10 5 and 11

1

0
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4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

traversed to obtain the identical arrows have different lengths. The latter dif-
ference (and many others) stands out in the base-12-tables above, where clock
opposites clearly show the trajectory-difference between them in the form of dif-
ferent arrows for multiplier 1 (and for the other odd multipliers). Larger bases
than 12 keep increasing the number of separated out categories, postponing the
point of cyclic recursion. The resulting patterns thereby become ever more elabo-
rate, including different kinds of epicycloids (cardioids, nephroids, etc.) (see [9]).
But most interestingly, the schematic layout of the base 12 multiplication clocks
remains recognizable in corresponding tables with much higher bases, such as
120 (Bausili 2017) [1], for instance.

5 Why Is a Clock of Six the Cognitive Minimum?

Given that it is known that one is free to choose any base one likes, it seems
logical to object to the claim that a clock of six based on 0, 1, 2 and 3 would be
the cognitive minimum by pointing out that if you just work with base-2, i.e. 0
and 1, that also works fine - it gives you Jouvet & Leibnitz’s binary code - and
it is even more minimal than a clock of six.

The answer to that objection is that everybody agrees that primes are the
atomic building blocks of the multiplicative number system - given that the
identity card of all numbers is their prime factorisation -, so that alongside 0
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and 1 one needs at least, and in the minimal set-up at most, the two foundational
primes 2 and 3 as separate multiplicative atoms of the basic cognitive set-up.
That is why a base lower than the 6-clock is not eligible, because the 6-clock is
the minimal bilaterally symmetrical group set-up that has the two foundational
primes 2 and 3 as homogenous independent atoms, at the same time as the
only primes that are not 6n-adjacent (=adjacent to 0 on the 6-clock), i.e. not
in co-prime position relative to 6. By homogenous I mean not being related to a
number which has different factors in terms of divisibility by 1, 2 and 3. Since 2
has factors 1 and 2 and 3 has factors 1 and 3, a set-up in which they are related
violates homogeneity. In base 5, for instance, the additive inverse relation relates
2 and 3 so that they are not independent. Since they are not homogenous, the
base 5 set-up violates homogeneity. And in base 4, there is an additive inverse
relation between 1 and 3, although they too are no homogenous pair.

The homogeneity requirement entails that odd bases are all out as natural
bases because they invariably unite both odd and even numbers in every single
clock position, so that the number set that any number on the clock represents
is internally non-homogeneous.

In terms of homogeneity, the 12-clock is more optimal than the 6-clock, since
it does not only have homogenous number sets in each clock position and system-
atically homogenous additive inverse relations, but the elements of the number
sets of all clock opponents also have the same factors in terms of divisibility by 1,
2 and 3. In a hexadic set-up, opponent pairs violate this requirement: the clock
opponents 6 and 3, for instance, differ in that 6 is divisible by 1, 2 and 3, while
3 is not divisible by 2, but only by 1 and 3. So while the hexadic set-up does
not violate additive inverse homogeneity, it does violate clock opponent homo-
geneity. Base 12 has all of internal homogeneity, additive inverse homogeneity
and clock opponent homogeneity. Indeed, 1, its clock opponent 7, the numbers
in its additive inverse position −1 (≡11 on the clock) and the numbers in the
additive inverse position of 7 (≡5) are all divisible by 1, but not by 2 or 3; 2,
8, 10 and 4 are all divisible by 1 and 2, not by 3; 3 and 9 are divisible by 1
and 3, not by 2; and 6 and 12, finally, are both divisible by 1, 2 and 3. It is not
hard to explain why the least divisible clock numbers in terms of divisibility by
1, 2 and 3, namely 1, 5, 7 and 11, are adjacent to the most divisible numbers
6 and 12 (≡0). The latter (including the number zero itself) are divisible by all
three of 1, 2 and 3. It follows from this that to reach a number divisible by two
from positions 6 and 0 on the clock, you have to move 2 positions away in either
direction; and to reach a number divisible by three from 6 or 0, you have to
move 3 positions away in either direction. The logical consequence is that the
numbers adjacent to 0 and 6 are only divisible by 1, not by 2 or 3.

It is a well-known fact that a change in the choice of base (say 10, or anything
else different from 6n) yields different co-primes, i.e. elements that do not share
another factor than 1 with the base number, in casu with 10. On a 10-clock, the
co-primes are 1, 9, 3 and 7. It is easy to see that this arrangement violates the
three constraints of internal, additive inverse and clock opponent homogeneity.
Internal homogeneity is violated for instance in that 6 is divisible by 1, 2 and
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3, while another number in the same clock position, 16, is divisible by 1 and
2, not 3 (plenty of other examples can be given). Additive inverse homogeneity
is violated in that, among many other examples, 1 (or 11, 21, ...) is divisible by
1 but not by 2 or 3, while the number 9 located in the additive inverse clock
position of 1, is divisible by both 1 and 3. And clock opponent homogeneity is
violated in that, for instance, 5 is divisible by 1 but not by 2 or 3, while its clock
opponent 10 is divisible by both 1 and 2, and not by 3.

Now, why one would conclude that a base that observes the three homogene-
ity requirements is the most optimal one? Why is it more likely that base 12 is
the one that the other bases are either discovered from (namely the rest of base
6n) or constructed from (namely all other bases) by relaxation of constraints
than the other way around? The answer that suggests itself is that the existence
of a base with a larger set of constraints (and symmetries) is statistically more
unlikely and surprising. The more unlikely it is, the harder we feel it becomes
to explain it away as completely accidental. Its unlikely existence makes us con-
clude: what are the odds that this can occur without a strict causal mechanism?
The latter is at least statable in terms of the three mathematical homogene-
ity constraints (if my description of them is accurate) and it is possibly even
attributable to recycling of a deeper perceptual substrate coming from a realm
where constraints are more rigid and less violable than in the realm of concepts.

Note further that the claim that 10 is a less than optimal choice of base can
also be made plausible from another angle. However successful decimality has
been thanks to our 10 fingers, which serve as our bodily in-built abacus, it is
unlikely that evolution could have foreseen the current secondary function of
our fingers as tallying instruments and fashioned our hands with that distant
perspective in mind. One may speculate that if by evolutionary accident we had
been polydactils with six fingers on each hand (as some people are, of course),
our hands would have been better in sync with our mental number faculty. Yet,
having 10 fingers for tallying can inversely also be viewed as an example of
what the Dutch soccer player Johan Cruyff famously called: “Elk nadeel hep
se voordeel” (“every disadvantage has its advantage”): indeed, finger decimal-
ity may well have been a mathematically beneficial accident, demonstrating by
mind-external means that choice of base is not restricted to the minimal or most
optimal varieties lodged in the mind.

As regards primes, finally, our claim is that actual primes beyond the foun-
dational ones 2 and 3 are really prime because they are all co-primes of 6n.
All that needs to be done to size the set of co-primes of 6n down to that of
the actual primes, is to knock out multiples of co-primes. Such an anchoring
and solid reason for why all primes other than 2 and 3 are adjacent to 6n is
much wanted anyway. In other words, the proposal amounts to postulating that
prime numbers (beyond 2 and 3) are prime because they are all co-primes of
the cognitively minimal base number (6), and hence also of 12 (≡6), the base
number of the most optimally symmetrical and homogenous cognitive group set-
up for number, and of other multiples of 6. All other choices of base are then
to be treated as less natural, constructed conceptual modifications of that basic
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natural set-up via constraint relaxation. Indeed, if number has the structure of a
group, it follows that there has to be a base. And if a base is an inherent element
of the basic cognitive set-up of number, it makes sense to say that one such base
is likely to be the original one (6) and one the most optimal one in terms of
memory considerations, symmetry and homogeneity (12). All base-choices that
can be made, are a function of the basic one that comes with the definition of
what a group is. And they show a relief pattern in terms of homogeneity and
symmetry that throws up base 12 as the most optimal choice.

6 Conclusion

On the whole, the main argument of this squib is that Gauss’s clock arithmetic
was not only revolutionary in unlocking the potential of modular arithmetic
in general. It also forces one to confront the cognitively interesting question
why among the infinitely many modulus-choices in principle accessible to the
human conceptual capacity, there is at least a prototypicality preference for
duodecimality. Is that a purely cultural predilection or is it attributable to deeper
aspects of mathematics and/or the human mind? By comparing decimal and
duodecimal multiplication diagrams in terms of symmetry/opposition and by
comparing clocks for multiplication and the perceptual chromatic scale clock, a
plausible case can be made that the latter view has most to go for it.
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Abstract. Wallis’s attempted proof of Euclid’s Parallel Postulate is
an important but oft neglected event leading to the discovery of non-
Euclidean geometries. Our aim here is to show Wallis’s own reliance
on three non-constructive diagrammatic inferences that are not (fully)
explicit in his own supplement to Euclid’s axioms. Namely, there is i- an
implicit assumption concerning the possibility of motion; ii- an implicit
assumption about the continuous nature of space and time; and iii- an
explicit assumption about the existence of similar triangles which con-
ceals an appeal to a combinatoric principle of reasoning that is tanta-
mount to appealing to the Axiom of Choice.

Keywords: Euclidean geometry · Parallel Postulate · Diagrammatic
proof · Axiom of Choice · Axiomatic systems · John Wallis

1 Introduction

Wallis’s attempted proof of Euclid’s Parallel Postulate is an important but oft
neglected event leading to the discovery of non-Euclidean geometries. Falling
short of an actual proof of the Parallel Postulate, Wallis nevertheless proved
the equivalence of the Parallel Postulate with the existence of similar figures
(Wallis’s Postulate). Wallis’s attempted proof was notably criticized for being
non-constructive, and ‘more metaphysical than mathematical’. Our aim here is
to show Wallis’s own reliance on three non-constructive diagrammatic inferences
that are not (fully) explicit in his own supplement to Euclid’s axioms. Namely,
there is i- an implicit assumption concerning motion in the construction space; ii-
an implicit assumption about the continuous nature of space and time; and iii-
an explicit assumption about the existence of similar triangles which conceals an
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appeal to a combinatorial principle of reasoning strikingly similar to the Axiom of
Choice – both in reasoning and in the contemporary critique they engendered.
Though oft neglected, Wallis’s attempted proof is an important step leading
to the discovery of non-Euclidean geometries, by providing a springboard for
conceiving of the Parallel Postulate not as a statement about a property of
straight lines, but about a property of the space in which they are embedded in.

2 Situating Wallis’s Attempted Proof of the Parallel
Postulate

Before proceeding to the amphitheatre of Wallis’s attempted proof of the Paral-
lel Postulate, it is incumbent upon on us to first set the stage. As such, we will
briefly survey 1- the evolution of Euclidean axiomatics that Wallis’s proof (as well
as the axiom he introduced for this very purpose) inscribes itself within; then 2- the
prevalent use of kinetic reasoning by his contemporaries; as well as 3- the changing
standards of proof in the Early Modern period which influenced his approach; and,
finally, 4- Wallis’s particular approach to proving the Fifth Postulate.

2.1 On the Development of Euclidean Axiomatics

For centuries, Euclid’s Elements was the model of scientific and deductive rea-
soning. Indeed, the influence of the Elements on European thought is second
only to the Bible. Since Antiquity, the Elements have been translated, edited
and commented on hundreds of times. However, Euclid’s system was also chal-
lenged. Missing arguments were uncovered and additional axioms were added
to fill in those gaps. Moreover, as axioms were not then taken to be unprovable
assertions, many mathematicians undertook the task of proving Euclid’s axioms
from more basic statements. As such, some axioms were removed entirely, whilst
others were reworded. In other instances, new axioms were added to extend
geometrical results beyond the ones achieved in Antiquity [2]. From the Middle
Ages (mostly by Arab scholars) to the translatio studiorum, then onwards to the
Early Modern period (particularly by French and Italian scholars), through to
the XIXth c., hundreds of editions provided their own principles upon which to
ground Euclidean geometry. Well over 350 different new axioms were created to
this effect. The XVIIth c. was particularly rich in such developments [2]. John
Wallis’s 1663 attempted proof inscribes itself well within this history.1 His proof
was an attempt to prove the Parallel Postulate from the four preceding axioms

1 John Wallis (1616–1703) was appointed to the Savilian Chair of geometry at the
University of Oxford by Oliver Cromwell in 1649. It was Henry Savile, his prede-
cessor, who had famously remarked that “On the most beautiful body of Geometry
there are two moles, two blemishes, and, so far as I know, no more”, the chief blem-
ish being the Parallel Postulate [3]. The incumbent of this chair was obligated to
give a lecture every year on classical geometry. Wallis is most known for a decades
long feud with Hobbes, as well as for making headlines in 1685 for calculating the
square root of a 53 digit number entirely in his head during a bout of insomnia, and
remembering the 27 digit result entirely from memory the next morning [11].
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in the Elements, and his own novel axiom: Proposition VIII which postulates
the existence of similar figures of arbitrary size [8].

2.2 On Kinetic Reasoning in the Early Modern Period

For XVIIth c. mathematicians and scientists alike, mathematical diagrams were
more than simple heuristic aides to demonstration: not only could information be
conveyed by scientists via a diagram, but brute information could be extracted
directly from the diagram [7]. In diagrammatic reasoning, a kinetic epistemic
action naturally accompanies a visual epistemic action – that is, the information
that we ‘see’ in the diagram is just as much in the physical image as it is in the
physical image as it is moved by our imagination. Not only do we ‘see’ how the
proof unfolds in a given case, but we ‘see’ how the proof holds under permissible
changes (that is, how it holds for all possible constructions). Of course, kinetic
diagrammatic reasoning goes back at least to Euclid, for whom motion had to
be implicitly assumed to account for superposition arguments.

As we will see, it is primarily this type of kinetic reasoning that Wallis’s
diagrammatic proof of the Parallel Postulate rested on. In this respect, Wallis is
in excellent company.2 Indeed, the Early Modern period was rife with diagrams
of moving points and sliding lines. This situation may be partly explained by
two notable features of XVIIth c. mathematics: 1- it continued the tradition of
hierarchizing geometrical knowledge as more certain than arithmetical/algebraic
knowledge; and 2- the majority of mathematical output took place as so-called
‘mixed’ mathematics (that is, the mathematics of optics, of astronomy, etc.).
Thus, not only diagrammatic reasoning but kinetic reasoning especially play a
large inferential role throughout all of XVIIth c. science. This role was not rele-
gated to that of mere visual representation of some piece of knowledge acquired
either a priori or a posteriori. Rather, mathematical diagrams were a source
par excellence of mathematical and scientific knowledge [7].

2.3 On the Changing Standards of Proof in the Early Modern
Period

However, the aforementioned primacy of geometry over arithmetic was slowly
but surely being contested. Indeed, the XVI–XVIIth c. bore witness to a growing
dissatisfaction amongst mathematicians with complex Archimedean proofs, and
to a growing recognition that the methodology leading to proof is not perforce
the actual methods of the mathematician that lead to discovery [8]: “But this,
their Art of Invention, they seem very studiously to have concealed: content-
ing themselves to demonstrate by Apagogical Demonstrations, (or reducing to
2 Indeed, kinetic diagrammatic reasoning via the contiguously developping field of

kinematics was indispensable to the development of the calculus. For our purposes,
Isaac Barrow’s work on the infinitesimal derivation of tangent lines – disseminated
in a series of lectures at Cambridge in the mid-1660s – is particularly relevant due
to the limit ‘characteristic triangle’ similar to the triangle inscribed by the tangent,
the x axis and any line perpendicular to the x axis [4].
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Absurdity, if denied,) without shewing us the method, by which they first found
out those Propositions, which they thus demonstrate by other ways” (Wallis
1685, cited in [8]). This change in the aspirational constraints placed on the
ideal proof provided Wallis with ample motivation to apply a more direct style
of proof to the Savilian ‘blemish’ on Euclidean geometry.

Notably, Wallis was an early adopter of the new analytic method which was
accompanied by a profound change in the concept of number. The growth of
this approach led to a need for reclassification of the branches of mathematics
as well as to define a purported Mathesis universalis that could ground all of
these branches. Since the Ancients, geometry had been foundationally prior to
arithmetic. With Descartes’s analytic approach to geometry, a more precise and
elegant procedure was now available, one that reduced geometrical concepts such
as magnitudes to algebraic equations. Thus, in Wallis’s own conception of such
a Mathesis Universalis, it is algebra (and, ultimately, arithmetic) which are to
be situated as foundationally prior to geometry, for “the objects of arithmetic
are of a higher and more abstract nature than those of geometry” [8].

What then to make of Wallis’s proof of the Parallel Postulate, which relies so
heavily on diagrammatic reasoning and which (superficially) makes little appeal
to the algebraic approach? As we shall see, his proof relies heavily on the endless
possibility of constructing similar triangles – similar triangles which need not be
constructed in a given instance, as such a possibility is guaranteed by both the
nature of the geometric continuum, as well as the infinite nature of the arithmeti-
cal processes which underlie the algebraic approach to geometry. Furthermore,
the source of the growing power of the analytic approach lies precisely in its
ability to rigorously capture information that is gleaned from kinetic reasoning.

2.4 On Wallis’s Approach to Proving the Parallel Postulate

F EB

A C

D

α β

Fig. 1. If α + β = 180◦, then lines AB and CD are
parallel (equivalent to the Parallel Postulate).

Wallis studied seriously the
works of the medieval Arab
scholars, especially Nas̄ır
al-Dı̄n al-Tūs̄ı’s 1298 works
on the Parallel Postulate.3

While he rejected al-Tūs̄ı’s
proof, it was the starting
point of his own attempt
to prove Euclid’s Fifth Pos-
tulate from Euclid’s first
four Postulates. Like al-
Tūs̄ı, Wallis considers the
Parallel Postulate in the
Proclusian sense – that is,
as the converse of I, 17:

3 In fact, Wallis commissioned a translation into Latin and was the first to publish
the work independently of Clavius’s Commentary on Euclid (1574) [2].
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“In any triangle the sum of any two angles is less than two right angles”. Thus,
where the Parallel Postulate is equivalent to its inverse which states that if a
straight line falling on two straight lines makes the interior angles equal to 180◦,
then the latter two straight lines are parallel (see Fig. 1)4, Wallis aims to show
this by proving the converse of I, 17 – that is, by showing that if the angles sum
to less than two right angles, then there exists a corresponding triangle.

In this way, the task of proving the Fifth Postulate is reduced to the task of
proving the possibility of constructing triangles of arbitrary size, out of two given
angles. Wallis intends to show this by proving the possibility of constructing the
desired triangle out of a similar triangle constructed specifically for this purpose.
Crucially, the litmus test of any purported proof of the Parallel Postulate would
have had to been in the way it accounts for the fact that the desired triangle
is potentially infinite in area. Indeed, the chief difficulty and main source of
contention of the Fifth Postulate is precisely the limit case where the sum of the
interior angles produced by laying a straight line along a pair of straight lines
which incline towards each other is equal to 179.99◦. The aim is to prove that
the two lines will eventually meet, rather than converge endlessly and eternally.

3 On the First Part of Wallis’s Proof and Its Implicit
Assumptions

For ease of understanding – as well as to gain a better grasp not only of Wallis’s
method, but also his underlying assumptions – we will proceed by dividing Wal-
lis’s argument into two distinct parts. In the first part, Wallis’s aim is to show
the possibility of constructing a triangle similar to the desired triangle. Then,
in the second part, the goal is to show the possibility of constructing the desired
triangle similar to the previously constructed one. Once the desired triangle is
obtained, the converse of I, 17 has been proven and, thus, the Parallel Postulate
along with it. Here, we will review the first part of his proof and examine its
implicit assumptions about the nature of space, time and motion. These implicit
assumptions were the flash-point for Wallis’s detractors, as his proof doubled
down on the same nagging doubts concerning the same implicit assumptions
about motion, space and time which had also plagued Euclid’s Elements.

3.1 On the Possibility of Constructing a Triangle Similar to the
Desired Triangle

To summarize the first part of the argument: if two straight lines (cut by a
third) incline towards each other, then the line with the smaller angle relative
to the third can be moved in such a way that it crosses the other. The point of

4 See also I, 27 for an equivalent formulation. By contrast, the Fifth Postulate states
that “if a straight line falling on two straight lines makes the interior angles on the
same side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two right angle” [6].
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intersection then describes a triangle whose sides are each a segment of one of
these three lines. In this way, a triangle similar to the desired one is constructed.
This is completed in eight steps (see Fig. 2):
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γ
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π

Fig. 2. Wallis’s Figure 6

1. Assume two lines AB and
CD, cut by a third line EF ,
incline towards each other
at less than two right angles
(180◦), then each of the
exterior angles is greater
than the opposite interior
angle.

2. Either ∠BAC < ∠DCF ,
or ∠DCF < ∠BAC. Oth-
erwise, the lines would be
parallel, which would con-
tradict the assumption.

3. By assumption, let ∠BAC < ∠DCF . The remainder of the argument applies
equally to the alternate case.

4. By Wallis’s Lemma VI, if the line AB moves to the position of C, then it
will lie outside (that is, entirely to the left) of line CD. Let this new line be
denoted αβ.

5. Therefore, at some point in its movement, αβ must have crossed CD at least
one point in time.

6. Two cases:
A) αβ crosses line CD at several points in space (other than C), at sequential

points in time.
B) Line αβ crosses line CD all at once (that is, at one single point in time).

But then ∠βαF = ∠DCF i.e., lines αβ and CD are parallel, which
contradicts our assumption.

By disjunctive syllogism, line αβ cuts CD at least one point in time.
7. Choose just such a point of intersection, and let this point be denoted π.
8. We can now construct �παC.

3.2 On the Implicit Assumptions of Wallis’s Diagrammatic Proof

For heuristic purposes, we pause here Wallis’s proof in order to unpack the
implicit assumptions involved in this proof up until now. This will help us under-
stand the qualms his contemporaries had with both parts of the proof. As well,
once the perennial flaws are out of the way, we will be able to discuss without
distractions the more novel analogy we wish to make with the reasoning at the
heart of the second part of the proof and the one at the heart of the controver-
sial Axiom of Choice. In the first part of the proof we have just seen, Wallis’s
reasoning is based on two implicit assumptions. Roughly, they are both assump-
tions about the temporal space in which the objects are embedded. The first



80 V. L. Therrien

concerns assumptions about the possibility as well as the nature of motion in
the context of a diagrammatic proof. The second concerns assumptions about
the continuity of both the space and the time in which his geometrical objects
are constructed and set into motion. Here, the diagram hoodwinks us into con-
sidering that only a single type of motion, space and time are natural to the
Euclidean space into which it is embedded.

On the Implicit Assumptions About Motion. Clearly, both the crossing
argument and the construction of the triangle using the posited point of inter-
section rely strongly on parallel motion. More specifically, they rely on i- the
very possibility of parallel motion5; and on ii- the preservation of the fundamen-
tal characteristics of the figure that is moved. Crucially, in this case, the angle
of intersection, directionality, length of the line, curvature of the line, are all
assumed to be preserved throughout the duration of the transformation. Fur-
thermore, the possible extensions of the lines towards infinity so vital to the
second part of the argument are also assumed to move along with the lines in
such a way that their fundamental properties are also preserved. Equally impor-
tant is what is excluded: the possibility that motion may be accompanied by a
distortion in any or all of the figures’s fundamental characteristics.

The specific kind of parallel motion assumed by Wallis6 appears completely
natural. We see the line αβ move seamlessly along the shortest path (line AF )
to point C. We do not envisage that the line αβ could grow or shorten, could
get ‘stuck’ in one point due to some internal or external perturbation and begin
to curve as the rest of the line is dragged through the parallel motion, etc. One
might be puzzled at the possibility of motion in the static image – how does the
line move? Surely one can draw lines and add figures to an image, but how does
one ‘drag’ the line using a compass and a ruler? Certainly, one can simply draw
a line parallel to the original one at the desired location where it crosses CD
at point π, but one can never witness the line actually moving seamlessly.7 Yet,
the kinetic reasoning one must supplement to the diagram is limpid. Once given
the diagram and the instructions, our intellect augments the diagram by sliding
the line αβ until it meets CD using the simplest, most simultaneously ideal and
‘natural’ movement available to our intellect.

Still, as natural as the possibility of parallel motion appears, its role in
geometrical proofs has long been questioned. Indeed, Wallis himself criticized

5 For it is not at all given that parallel motion is possible on an idealized plane osten-
sibly frozen in both space and time.

6 And, indeed, by Euclid himself, though he was somewhat more parsimonious in his
deployment of this technique. It is tempting to analyze the few usages of motion in
Euclid’s Elements as an unsavoury fail-safe when no constructive method could be
ascertained to deliver the Proposition in a more agreeable manner.

7 At least, not in the XVIIth century. Nowadays, it is quite easy to compile a kinematic
diagram showing exactly this type of parallel motion on the idealized plane.
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Euclid’s reliance on diagrammatic inferences not explicitly contained in his
axioms or definitions and his proof aimed at redressing such issues. Thus, Wallis
came fully prepared in 1663 to defend specifically his use of parallel motion, as
well as to answer to his detractors, by appealing directly to Euclid’s own meth-
ods.8 For Wallis, this exact kind of motion was already assumed in the Third
Postulate.9 Furthermore, he asserted that this kind of motion is precisely the
same as the one assumed by Euclid in his superposition argument in I, 4.10

On the Implicit Assumptions About the Continuity of Space and
Time. The aforementioned implicit assumption about parallel motion itself
relies on important assumptions concerning the continuity of the space the figure
is embedded in, as well as the continuity of the time in which the appropriate
motion (and constructions) occur. By assumption, this space – along with the
unfurling time-frame – is uniform and continuous in all of its characteristics.
That is, any properties inherent to the nature of this idealized space and time
that might act as constraints (or pressures) on the possible constructions, as well
as the possible transformations which may be operated on the constructed figure,
are applied uniformly and continuously. It is assumed that the line αβ, when in
motion, will not ‘jump’ past line CD without crossing it. What is excluded
here is i- the possibility of discrete motion that could result from a discrete

8 “One should not object here that Euclid himself in his proofs never appears to have
applied the movement of a straight line and never mentioned this in the postulates,
since just as in the explanation of the sphere, he uses the movement of a circle, in
the explanation of a cone, he uses the movement of a triangle, in the explanation of
a cylinder, he uses the movement of a rectangle, he could have used, if necessary, the
movement of a straight line in his proofs. From time to time Archimedes, Apollo-
nius, and other geometers do this. Indeed, Euclid himself uses the movement of two
straight lines where the angle between them does not alter, and indeed very close to
the beginning, in that he proves Proposition 4 [i.e., I, 4] by a covering argument, and
that assumption is necessary to the covering. And in my Lemma, I use the notion
of movement in exactly the same way. In addition, the same is assumed in the third
postulate (namely, to describe a circle with any given centre and radius), since one
assumes (in the drawing of the circle) that the circular surface is described by the
moving around of the radius (while one of its endpoints remains fixed at the centre).
I mention this in order that I do not give the impression of having neglected the
Euclidean rigour in proofs and that I have brought in new postulates (other than
those admitted by Euclid himself)” [12].

9 In Euclid’s Third Postulate, the construction of a circle of any center and radius is
allowed, since any such circle may be drawn by moving the radius around the centre.
The length and curvature of the radius are assumed to not incur any distortions
through this motion. However, Euclid falls slightly short of postulating the actual
existence of infinitely many circles of arbitrary size. The Third Postulate remains
a construction postulate, not an existence postulate. As we shall see, Wallis will also
attempt to justify the explicit assumption at the center of the second part of his
proof through appeal to this Postulate.

10 Pace Wallis, the argument there could be achieved by a different kind of motion:
lifting the figure from the plane and repositioning it, or by folding the plane, etc.
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conception of space (and time)11; as well as ii- the possibility of local perturba-
tions in space (or time) that could lead the line αβ to somehow circumnavigate
the line CD, or cross CD but with distortions of its fundamental properties.

Without this implicit assumption, parallel motion of the kind assumed by
Wallis would simply not be possible. The medium in which diagrams are pre-
sented hoodwinks us into only seeing the possibility of the simplest and most
ideal version of the kind of parallel motion, the kind of space and the kind of
time that we personally experience on a daily basis.12 Disentangling the Paral-
lel Postulate from its implicit assumptions was an important and crucial step
towards the discovery of non-Euclidean geometry. A modern continuity principle
is required even for Euclid’s claim that a point exists at the intersection of two
lines. Yet, in pre-non-Euclidean geometry, the continuity principle that perme-
ates diagrammatic reasoning must remain implicit: where the space of a diagram
appears to be a continuous one, continuity is ‘shown’ through the very possibility
of constructing a continuous line on a continuous piece of paper. It is ‘shown’
through the very conditions of possibility of the diagram. That reality may not
be as it appears is not a direct mathematical question: an explicit assumption
of continuity simply does not make sense for a science of continuous magnitudes
– though it certainly makes tremendous sense for the science of various kinds of
spaces. The clarity, novelty and force of Wallis’s argument was such that these
hidden assumptions could be scrutinized much more closely.

11 For instance, like the depiction of space and time presented in Zeno’s fourth paradox
of motion, the Stadium argument. Our only source for Zeno’s Stadium argument is
due to Aristotle. Due to the difficulty in interpretating this paradox, it is usually
presented alongside two simple diagrams. It is perhaps notable that, while these
diagrams are genuine heuristic aides to understanding the paradox, so difficult is the
task of ‘visualizing’ the diagrams discretely (that is, of ‘visualizing’ these diagrams
outside the assumption that space and time are both continuous) that seldom does
the paradox strike us on our first, second, or even third time encountering it.

12 Consider a Poincaré disk model where line CD cuts straight through the center.
As the line αβ moves closer to the center and approaches some point π where it
might cross CD, one or both of its nodes would appear to get ‘left behind’ due
to the potentially infinite distances they must travel compared to the segment of
the line closest to the center (where the deviation from the Euclidean planar model
is lesser). Such a space is continuous, but it is not uniform: here, the first part of
Wallis’s argument is not just fallacious, it is simply not possible. Yet, even when
looking at a diagram of a non-Euclidean space represented on a Euclidean plane, it
is very difficult for us to see how the hyperbolic parallel motion of line αβ behaves.
In our world, as in our diagrams, objects moving along the shortest path from one
point to another move smoothly, without morphing, disappearing and reappearing,
etc. The intellectual knowledge that our experience of the world may not be as it
appears does little to lift the nearly insurmountable obstacle presented by our senses.
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4 On the Second Part of Wallis’s Proof and Its Explicit
Assumption

As we have seen, Wallis’s proof improved little on the long-standing gaps in
Euclid’s Elements with respect to the implicit assumptions about motion, space
and time. Though he makes explicit and elevates his own reliance on parallel
motion (which remained wholly implicit in Euclid), the sheer possibility as well
as the exclusive nature of this motion remained implicit. Still, by making this
reliance explicit, this assumption was fully brought to light and enabled the
assumptions about the nature of space and time to sour in this light as well.
Furthermore, as we have noted, in the first part of Wallis’s proof, the concept
of geometric construction is somewhat stretched. There, Wallis willed the ‘con-
struction’ of a triangle through the mental operation of ‘moving’ a given line
until it intersects another.13 In the second part of his proof, Wallis stretches
the concept of geometrical construction to its limit by claiming that, since the
Euclidean plane admits of the existence of a dense infinity of similar triangles,
the desired triangle need not be constructed at all, for it already exists.

4.1 On the Possibility of Constructing the Desired Triangle Out of
the Similar Triangle
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Fig. 3. Wallis’s Figure 7, modified to extend line αβ to
αθ

To summarize the sec-
ond part of the argument:
to the triangle previously
described in Sect. 3.1, there
exists a similar triangle of
larger size with base AC
and with sides lying along
the extensions of lines AB
and CD. Therefore, it is
proved that the two lines
converge and meet at the
point prescribed by the
extension of the two origi-
nal lines. Ergo, the Paral-
lel Postulate is also proved.
Thus, Wallis’s argument
requires three additional
steps (see Fig. 3):

13 Curiously, the first part of Wallis’s proof can be entirely dispensed with in favour of
a Euclidean construction. As such, we have not belaboured this point. Nevertheless,
this explicit kinetic reasoning is highly informative as to the implicit kinetic reasoning
we conjecture is at play in the second part of his proof.
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9. By Proposition VIII, to any arbitrarily chosen figure, there exists similar
figures of arbitrary size. Thus, applying Proposition VIII to �παC, then
there must exist a similar triangle with base AC. Let this triangle be denoted
�PAC.

10. Clearly, by our original assumption ∠ACD < ∠BAC. Now, by our assump-
tion of similarity, ∠αCπ = ∠ACD and ∠παC = ∠BAC. So, still by our
assumption of similarity, ∠Cπα = ∠CPA.

11. Since P lies both on the extension of CD and the extension of AB, then if
CD and AB are indefinitely extended, they will meet. ��

4.2 On the Explicit Assumptions of Wallis’s Diagrammatic Proof

In proving the possibility of ‘constructing’ the desired triangle out of the triangle
constructed in the first part of his argument so as to be similar to the desired
one, Wallis laid out a crucial explicit assumption:
Proposition VIII “To any arbitrarily chosen figure, there is always another
similar to it and of arbitrary size” [12].
Wallis’s Proposition VIII boldly states that the existence of arbitrary similar
triangles is independent of their geometrical constructibility. Yet, this is tan-
tamount to saying that the desired triangle does not need to be actually con-
structed: it already exists. All that was needed was to construct in the first
part of his argument a similar triangle to the desired one, and the desired triangle
would follow immediately from Wallis’s novel Proposition VIII.

Wallis argued that his principle is in complete continuity with Euclid’s
method, and is furthermore implicit in the aforementioned Third Postulate.14

In Wallis’s estimation, his new axiom merely extended the reach of Euclid’s

14 See note 9. “Indeed, since magnitudes can always be divided and multiplied without
restriction, this seems to follow from the nature of relationships between magnitudes,
namely that every figure can always be reduced or increased without restriction while
retaining its own form. In fact all geometers have made this assumption (without
expressing it or even remarking on it), among them Euclid. For when he requires
that a circle with given centre and radius can always be described, he assumes that
there is a circle of arbitrary size or with arbitrary radius, and when he assumes that
something is possible, then he requires that one can carry this out. To be sure, it
would be no automatic requirement that, without the necessary knowledge being
set out, one should be able to draw a similar figure to a given one according to a
given measure. But [given this demand] one can just as well assume that this can be
carried out for an arbitrary figure as for a circle” [12].
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ThirdPostulate to encompass all figures.15 Granted then that a triangle of arbi-
trary size similar to the given triangle was by petitio principii constructible, the
equivalent Parallel Postulate could easily be ‘proven’. Nevertheless, pace Wallis’s
claims that his methodology is Euclidean through and through, it is clear that the
argument shifts gears with Proposition VIII. While the desired triangle is here
obtained within the frame of the diagram, the limit case that constitutes the litmus
test of an adequate proof of the converse of I, 17 is merely gestured at:

“In preparing to prove a theorem (this is certainly much less relevant in the
solution of a problem by construction), it might be that one assumes that
things can be carried out and actually are carried out, whose geometrical
constructibility has not yet been shown. (...) And nevertheless the proofs
of the theorems work just as well as if the geometrical construction were
indeed fully known” [12].

So then how did Wallis arrive at certain knowledge of his Proposition VIII
if not through construction? Given the unnecessary reliance on parallel motion
to ‘construct’ a triangle similar to the desired one in the first part of his proof,
we posit that this knowledge was gleaned through kinetic reasoning. With
Fig. 3, we are invited to consider the extension of our previous line CD to line
CP , with P being the arbitrarily distant apex of the desired triangle. We see
how moving anew the unlimited extension of line αβ to αθ back towards line AB
continuously inscribes in its wake an infinitely dense field of triangles similar to
�παC. This movement ostensibly actualizes a saturated infinity of potential

15 Yet Wallis’s explicit assumption entails more than does Euclid’s Third Postulate.
For all circles are by definition similar in the desired respect. The ability to construct
a given circle entails the ability to construct a similar circle of arbitrary size. It follows
from the ability to construct any circle – barring, of course, certain physical constraints
placed on the construction of compasses. On the other hand, triangles vary widely in
the desired respect. The ability to construct a given triangle does not immediately
entail the ability to construct a similar triangle of arbitrary size. Euclid shows how
to construct specific triangles only twice: 1- in I, 1, Euclid shows how to construct
equilateral triangles of arbitrary size by inscribing them within constructed circles;
and 2- in I, XXII, Euclid shows how to construct a triangle out of three given lengths
– yet his method again relies on the ability to construct arbitrary circles, given here
that we are also given the exact length of all three sides. It is then far from clear that
Euclid believed the construction of similar triangles of arbitrary size to be anything
close to a fundamental principle.
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similar triangle, until the line αθ coincides with line AB and then halts, forming
�PAC – this, no matter how indefinitely far point P is from point C.16

Wallis’s alternative postulate for Euclidean geometry was roundly criticized
not only for being blatantly non-constructive, but also for being ‘more meta-
physical than mathematical’.17 This non-constructive existence postulate was
not only far from contemporary beliefs about the nature and ontological sta-
tus of mathematical objects, but far from the usual methods and constraints of
mathematicians that were considered as desirable, certain and rigorous. Indeed,
up until the XIXth century, mathematics was constructive – or, at the very least,
aspired and considered itself to be constructive. It is only in hindsight that ves-
tiges of non-constructive arguments have been traced back as far as Euclid [3,9].
Still, in the XVIIth century, Proposition VIII was controversial. What Wallis
wanted was to choose the desired triangle from the collection of all the similar
triangles to �παC. But what he needed was a Euclidean proof that all of the
postulated similar triangles are constructible using Euclidean methods.

Wallis’s explicit assumption was the fatal flaw of his proof: for the existence
of similar triangles is, as we now know, itself equivalent to the Parallel Postulate.
Indeed, as Saccheri later pointed out, postulating the existence of non-congruent
similar figures is equivalent to unconditionally assuming his “hypothesis of the
right angle”.18 If a given triangle’s angles do not sum up to two right angles,
then the angle-angle-angle congruence will not be preserved when diminishing or
enlarging it – even through parallel motion. In hyperbolic and elliptic geometry,
any two similar triangles are perforce congruent [10]. Thusly, Wallis’s failed dia-
grammatic proof of the Parallel Postulate set geometry into motion away from
a science of continuous magnitudes and towards a science of space.

5 A Diagram of Choice: Wallis’s Diagrammatic Reasoning
and the Axiom of Choice

Nevertheless, even granted the existence of some continuous space saturated
with similar figures and permitted the possibility of parallel motion which pre-
serves the properties of the figure being moved, it is unclear how we always
arrive at the desired triangle with absolute certainty. In terms of motion, if
16 The way that Proposition VIII is set up, Wallis does not need to invoke motion

in the second part of his argument. But consider again Fig. 3. It differs from Wallis’s
own Figure 7 solely by the extension of line αβ to αθ. It is immediately clear that
the only way that �PAC could be constructed in a manner that would still concord
with at least Wallis’s own construal of Euclidean methodology, is through motion.
In doing so, it is also immediately clear how a dense infinity of similar triangles to
�παC appears to be given by the diagram. Nevertheless, Wallis’s argument still
requires him to ‘choose’ the desired triangle from the uncountably infinite collection
of all the similar triangles to �αCπ. Positing that line αθ ‘scans’ the space and halts
when it coincides with line AB does the trick nicely.

17 Wallis’s existence postulate was furthermore deeply rooted in his theory of magni-
tudes and proportions which he derived partly from Aristotle’s Categories.

18 That is, that quadrilaterals with two sides perpendicular to the other two are rect-
angles (c.f., Euclid’s Definition X), itself equivalent to the Parallel Postulate [6].
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�PAC ′′ is larger than �PAC ′ by some infinitesimally small margin, when does
line αθ halt? Furthermore, suppose ∠παC is smaller than a right angle by some
infinitesimally small margin (such that point P lies indefinitely far away), does
the motion definitely halt? That is, does our litmus triangle exist? Have we not
just pushed back the problem of infinity that laid at the heart of the histori-
cal uncertainty surrounding the Parallel Postulate? We now turn our sights to
another controversial axiom – the Axiom of Choice – and the intriguing historical
and methodological parallels to be found therewith.

The Axiom of Choice has been touted as “probably the most interesting
and, in spite of its late appearance, the most discussed axiom of mathematics,
second only to Euclid’s Axiom of Parallels which was introduced more than two
thousand years ago” [5]. According to Moore, vestiges of the Axiom of Choice
can be found already in Euclid’s Elements [9].19 Yet, when made explicit, this
implicit assumption became one of modern mathematics biggest controversies,
and contributed to a cleaving between classical and constructive mathematics.
Just as Wallis devised his Proposition VIII specifically for the purpose of
proving the Parallel Postulate, Zermelo first formulated his ‘postulate of choice’
as a means to secure a proof of Cantor’s Well-Ordering Principle. Furthermore,
just as Proposition VIII turned out to be equivalent to the Parallel Postulate,
so did the Axiom of Choice turn out to be equivalent to the Well-Ordering
Theorem. As Zermelo formulated his set theoretic axiom in 1904, given any
family F of non-empty sets, a single element from each member of F can be
selected via a choice function f on F , and the output collected to form a new
set. Applied to a finite collection, the Axiom of Choice is but a trivial matter of
combinatorics and “seems humdrum, almost self-evident” [1].20 Yet it is the case
of an infinite collection where similar troubles to that of Wallis’s proof appear.21

Consider again the triangle PAC. It seems humdrum, almost self-evident
that one can just finitely extend CD and αβ and simply re-draw αθ to any posi-
tion where it crosses the extension of CD on or above point P . The function f
that ‘halts’ the procedure and picks out the coordinates of any similar triangle
≥ �PAC can simply be defined through these coordinates. Thus, to answer our
first question (‘when exactly does the line αθ halt?’): it doesn’t matter, so long

19 It is even the very basis of the Euclidean method which consists in proving a gen-
eralization by choosing an arbitrary but definite object, and then showing that the
argument holds for that object [9].

20 Indeed, Zermelo himself stated that “[t]his logical principle cannot, to be sure, be
reduced to a still simpler one, but is applied without hesitation everywhere in math-
ematical deduction” [13].

21 If the set S is finite (or consists of a countable infinity of positive integers), the
existence of such a choice function follows through induction from the precepts of
basic logic and of set formation; it is the case of an infinite set S (whether countable
like Z or Q, or uncountable like R) where the rule for f(A) may be un-determinable
– thus rendering the Axiom of Choice necessary [1,9].
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as it halts. Once any sufficiently large similar triangle is picked out, however
arbitrarily, the choice function f can be defined in reference to it, however arbi-
trarily.22 But what happens when the extension could never fit on any diagram?
For instance, suppose base AC is continuously lengthened as line αθ is moved.
Here, an answer to the question ‘does the line αθ always halt?’ is not answer-
able through diagrammatic reasoning without appeal to a potentially arbitrary
choice principle combined with a spatio-temporal continuity principle23

On a much more heightened scale, so it was with Zermelo’s (accepted) proof
of the Well-Ordering Theorem. The choice function f that simultaneously picks
out the elements of R required to establish a well-ordering cannot be defined.
Zermelo’s solution was also an existence postulate: the choice function already
exists, regardless of whether we can construct it. The proof stirred up immense
controversy as it could not in the slightest heuristically facilitate any insight or
understanding as to what a well-ordering of R would resemble. At the heart of the
debate, was the Axiom of Choice. When Zermelo made explicit this step that is
indeed implicit but nevertheless used seemingly everywhere, cognitive difficulties
arose: notably, if S is an infinite set (other than a set of positive integers) how
does the function f pick out the elements in each subset A in the absence of
a concrete rule specifying the mechanism underpinning the ‘choice’? From a
constructive point of view, in the absence of a rule specifying the method of
constructing f(A) (and, thus, its output), how is f(A) (and, thus, the ‘generated’
set) a valid mathematical object [1,9,13]?24.

22 Here, the nature of the geometrical continuum hides the uncountable infinity of
similar triangles that must be scanned before arriving at the end point. This is a
seeming paradox, which traces its roots back to Zeno’s Dichotomy paradox of motion
(or, Achilles and the Tortoise). Thus, this is only a problem if we require that the
line scan all the points contained in the line segment πP ′′ and halt exactly at the
first available moment. But Achilles is not asked to plant flags at all the half-way
points, he is merely asked to cross the finish line. Any similar � ≥ �PAC will do.

23 Finite similar triangles may indefinitely be produced, but none of those are our litmus
case. The litmus case is a similar triangle potentially infinite in area – the biggest
possible one. As such, what we are primarily concerned with is the inability to halt
on the triangle that lies ‘beyond’ all finite iterations of similar triangles and thus
define even an arbitrary choice function f for this litmus case. For instance, suppose
that the universe is continuous, finitely wide, but infinitely tall. Suppose that ∠παC
is arbitrarily close to 180◦, and that base AC is the open interval bounded by the
limits of the width of the universe. Does the line αθ always halt as it approaches the
limit? Here, flags need to be planted, for there is no finish line to cross. After any
flagged similar triangle there is an uncountable infinity of larger similar triangles.
The choice function f for �PAC cannot simply be defined retroactively.

24 A classic illustration of this cognitive problem is Russell’s example of an infinite set
of pairs of shoes and an infinite set of pairs of socks: while constructing a rule behind
a choice function f on the (countably) infinite set of pairs of shoes is unproblematic
(choose the right one), establishing any kind of a possible rule behind the ‘choice’
function f on the (uncountably) infinite set of pairs of socks is completely arbitrary.
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Essentially, a basic version of this cognitive step is presented in Wallis’s
attempted diagrammatic proof of the Parallel Postulate. Consider a diagram
populated by all the possible similar triangles to some given triangle. It would
be entirely blackened. Granted then the existence of any similar triangle of arbi-
trary size, one simply has to ‘choose’ the desired �PAC from this uncountably
infinite collection. Wallis’s Figure 7 (see Fig. 3) is then a diagram of choice. Fur-
thermore, as “there is always another similar to it and of arbitrary size” [12],
one is not limited by the limits of the diagram – the diagram merely helps us to
see the humdrum-ness of the statement in a finite context. But when the desired
triangle happens to be one of infinite area, or when exactly �PAC is demanded,
or when the spatio-temporal constraints are fine-tuned, then the principle simply
does not provide a concrete mechanism to construct it. It may only be meta-
physically ‘chosen’ via a non-constructive existence fiat. Just as diagrammatic
reasoning conceals the assumptions about motion, space and time, so it seems to
‘give’ us the existence of a unique parallel line going through a given point along
with a saturated infinity of similar figures. Diagrammatic reasoning is simply not
the right heuristic tool for fathoming the full implications of geometric infinity.

6 Conclusion

Both Proposition VIII and the Axiom of Choice serve to highlight the important
distinction between existence postulates and construction postulates. As well,
both Wallis and Zermelo assume the possibility of openly adopting postulates
that are implicitly used. Furthermore, both with Zermelo’s Axiom of Choice and
Wallis’s Proposition VIII, the main qualm was a methodological one, concerning
its non-constructive nature and, thus, whether the object picked out could be
further used in proof. However, the debate about the Axiom of Choice consid-
ered whether an object picked out using the axiom could properly be said to
be a mathematical object at all, whereas Wallis’s use of this reasoning escaped
such stronger metaphysical considerations. Wherein the increasing complexifi-
cation of XIXth c. mathematics as well as the foundational crisis ultimately
rendered XXth c. mathematicians amenable to non-constructive methods, Wal-
lis’s contemporaries could not accept his Proposition VIII as a viable axiom of
geometry. Indeed, for an Early Modern mathematician known for his opposition
to the use of reductio ad absurdum in proofs, Wallis’s lapse into the realm of
non-constructive proofs is somewhat jarring. While Wallis may have been vin-
dicated in the end for his reliance on a choice principle to obtain the desired
similar triangle, he was nevertheless not vindicated for his implicit assumptions
about space, time and motion.
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Abstract. A structural theory of visual representations and an accompanying
modelling notation are outlined. The theory identifies three types of fundamental
representational components, specified as cognitive schemas, that span internal
mental and external physical aspects of representations. The structure of diverse
and complex example representations are analyzed. Twenty-three requirements
that a general theory of representations must address are presented. The new
theory satisfies the large majority of them. The theory and notation may provide
a basis for future methods to predict the efficacy of representations.

Keywords: Representations · Structural theory · Compositional analysis ·
Diagrams · Notations · Cognitive explanation

1 Introduction

This sentence that your eyes are running over is a representation. Figures 1, 2 and 3,
which are explained in Sect. 2, are other representations. The set of numbers that index
the section and subsection headings here is yet another. All these examples are different,
but they are but a small sample of the vast diversity of existing visual representations.
What do all representations have in common that makes them representations? How
do they differ as representations irrespective of the domains they encode? Being able
to answer these questions will allow us to study representations more systematically
than is possible currently, and in the future to ask hard questions such as: How can we
choose representations to suit individuals with different levels of domain knowledge and
experience of representations, for specific problems, in particular domains [24]? How
can we systematically invent novel representations [7]?

The nature of representations is an enduring and important subject for study. Classi-
fications and taxonomies of representations have been proposed [10, 11, 18]. Accounts
of representations have been given in terms of formal attributes using formal languages
[1, 13, 20, 23, 27, 28], cognitive properties [4, 8, 14, 17, 19, 23, 30], graphical or per-
ceptual attributes [2, 8, 9, 29], and properties of information [5, 10, 21, 32, 33]. For sake
of illustration each reference has been exclusively cited in just one of the informal cate-
gories above, but many of them span multiple categories. See [3] for a meta-taxonomy
of representation classifications.
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Fig. 1. Simple representations: (a) original smiley; (b) painting sold (c) “look there”; (d) set A;
(e) modern emoticon; (f) litmus paper; (g) fuel gauge, (h) intersection of two sets.

Despite the numerous accounts of representations, none appears sufficient to address
even the first set of challenging questions posed in the first paragraph. None have the
scope to systematically analyze any representation, for any domain, and at any level of
user competence. Thus, the first aim of this paper is to specify a set of characteristics for
a general and operationalizable theory of representations; a set of stringent requirements
that an adequate theory must satisfy (Sect. 3). The second aim of the paper is to outline a
cognitive theory with an accompanying modelling notation for the analysis of notations
and visual representations (Sect. 4). The theory posits three fundamental representational
components from which all representations are built. An demonstration of the utility of
the theory and notation is provided (Sect. 4) by using them to analyze the structure of the
diverse examples of representations to be introduced in the next section. The potential
uses and limitations of the theory and notation are discussed at the end (Sect. 6).

2 Sample Representations

Fig. 2. Solutions to the
quadratic equation.

Here are some representations to serve as ongoing examples
in the following sections.

Simplest Representations. Figure 1 shows some elementary representations. Figure 1a
is a smiley from early in the history of email before the idea of a meta-comment on some
text was extended to a whole range of emoticons (Fig. 1e). Figure 1b is a red dot on
the frame of a painting in an art gallery indicating that it has been sold. Figure 1c was
printed on a flier to capture peoples’ attention. Figure 1d is one set from a Venn diagram.
Figure 1f is a piece of litmus paper whose purple end registers a pH of 9. Figure 1g is a
fuel gauge whose segments show that the tank is 4/10ths full. Figure 1h is an intersection
of a two set Venn diagram.

Equation Representation. Figure 2 is the formula for the roots of the quadratic equa-
tion. It is primarily a sentential representation, a linear concatenation of symbols, that
encodes mathematical meaning through the chosen symbols and syntactic rules. Note
that it has multiple occurrences of some variables and that it encodes two solutions.

Thermodynamics Graph. Figure 3 is a “monster” representation that engineers use to
understand how the Second Law of thermodynamics determines the efficiency of steam
engines [12, 25]. It is a graph with axes for entropy, s, temperature, T, and pressure, P.
Under different conditions water will be liquid, vapour or a mixture of the two. The bell
curve, or saturation dome, marks the transition between these states. Under the saturation
dome, the dryness fraction, x, gives the proportion of vapour to liquid. The operation of
steam engines (running Rankine cycles) are shown by the dashed rectangles. Each side
of the rectangle stands for a thermodynamic process: 1–2 – pressurizing the mixture so
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it all turns to liquid; 2–3 – heating the water until it is all vapour; 3–4 – heat in the vapour
is transformed into mechanical energy by a turbine, which turns the vapour back in to a
mixture; 4–1 – further heat is released in a condenser to turn most of the vapour back in
to liquid, so the cycle can repeat. From the Second Law we can determine the efficiency
of a cycle in two ways. First, the energy put into the water by heating is given by the
area under line 2–3 (down to T = 0 K) and the heat extracted in the condenser is the area
under line 4–1, so the energy produced by the engine is the area of the rectangle, hence
the efficiency is that area divided by the total heat input, the area under line 2–3. The
second way to compute efficiency is to divide T2–T1 by T2, which can be computed by
comparing the length of line 1–2 with the altitude of T2.
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Fig. 3. A monster thermodynamics graph.

3 Criteria for a Theory of Representation Structure

What should a general broad scope theory of representations encompass? Five groups
of requirements that a structural theory should address are considered, ranging from
fundamental properties of representations to pragmatic concerns about their utility. Some
of these are implicit common assumptions or just basic tenets of good science, but where
they are explicitly identified in the literature references are given.
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3.1 Fundamental Requirements

These aspects are essential things that a theorymust encompass, such that in their absence
we would not consider the theory to be an account of representations.

R1. Represented world: a representation encodes knowledge about some domain, a
represented world, including general information about objects, properties, values
and relations [22].

R2. Representing world: a representation has graphical parts, including icons and
words, that do the encoding of the things from the represented world [22].

R3. Compositional structures: represented and representing worlds are typically rich
compositional structures, which are often hierarchical [16].

R4. Semantics: a representation represents, so knowing the encoding relations between
the things in the represented and the representing worlds is critical [26].

R5. Syntax: a representation has rules that govern the valid configurations of graphical
parts that are potentially meaningful [10].

R6. Supplementary structure. A representation may include graphical parts that are not
intended to encode domain information, and not covered by the representation’s
syntax, but are an integral part of the representing world for practical reasons (e.g.,
the typeface of this text and locations of the line returns).

3.2 Interpretation Requirements

This set of requirements concerns the rich ways in which a representation may encode
meaning, and constraints on such encodings, that a theory must recognize.

R7. Parsimony: the theory should propose a small number of types of components
that should be the same across all classes of representations.

R8. Multi-level interpretation: as representations are compositional, theirmeaning can
be interpreted at multiple levels; from domain elements, represented by graphic
elements, through to high level general abstractions, represented by complex
expressions [1, 6].

R9. Alternative interpretations: representations can support interpretations from dif-
ferent perspectives depending on the user’s goals and knowledge [14]: e.g., one
may view a representation as a composition of its components, or one may think
of mutually interacting constraints among components.

R10. Alternative representations: a domain may be encoded in representations with
different structures (e.g., 24 h versus AM/PM time of day formats).

R11. Alternative domains: the same representationmay be used to encode quite distinct
domains (e.g., mathematics is a domain general representation).

R12. Cognitive theory compatibility: for human users of representations, a theory of
representations must be compatible with our knowledge about human cognition
in general, including perception, memory, thinking and learning.

R13. Theories about information and knowledge: a theory of representations should
be compatible with accounts of the nature of particular kinds of information and
knowledge; e.g., Steven’s [31] analysis of quantity scales.
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3.3 Scope of Theory Requirements

These are requirements about the coverage or scope of a theory of representations.

R14. Representation scope: a theory should cover all types of representations, although,
below we focus on static visual notations and diagrams.

R15. Domain scope: a theory should address representations from any domain.
R16. Complexity: a theory should span representations of all degrees of complexity;

e.g., from Figs. 1, 2, 3, and beyond.

3.4 Existing Representational Theory Requirements

This single requirement recognizes that much has been discovered about the nature of
representations, some empirically verified. So, a theory must either make equivalent
predictions about previous findings or be able to interpret such existing accounts.

R17. Embody existing theories. Three illustrative examples: Locational indexing: Dia-
grams are (sometimes) superior to sentential representations, because they use
spatial associations to establish relations among elements [16]. Isomorphism: pre-
fer representations that use just one distinct symbol in a display to stand for one
distinct domain concept (i.e., isomorphic) rather than one-to-many or many-to-
one mappings [1, 13, 21, 32]. Separable dimensions: favour visual properties that
are naturally separable, because they depend upon different perceptual processes
and so demand less conscious effort to distinguish [33].

3.5 Utility Requirements

This final set considers features expected of a valuable and effective theory.

R18. Explanatory: the theory should provide analysis of representations that predict
their likely efficacy and explain why they are so or otherwise.

R19. Design patterns: the theory should identify general patterns of representational
structures that serve similar functional roles, because they encode similar types
of concepts in equivalent ways.

R20. Precise components: the components of the theory should be well-defined and
clearly distinct from each other.

R21. Precise sub-components: similarly, subclasses of components should be well-
defined and clearly distinct from each other.

R22. Analysis rules: clear operational rules to guide the analysis of representations
should be provided.

R23. Functional components: the theory should readily identify those components of
a representation that are core to its function as a representation, in contrast to
superfluous decoration or “chart junk”.

In what follows, numbers in curly brackets, e.g., {R23}, refer to specific
requirements.
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4 Structural Theory of Representations and Modelling Notation

The proposed theory draws its inspiration from molecular theory in chemistry that
explains the diverse properties of countless substances in terms of structures composed
of distinct elements. What are the representational elements – fundamental components
– and how are they combined in representational molecules – representational structures
{R3}? Three types of fundamental components are proposed {R7}.

4.1 Preliminaries

Before introducing the components, this sub-section gives some terminology.
A topic is some part of a larger knowledge domain pertaining to a task on which

a user is working with a representation {R1}. The thermodynamic power cycles of a
particular type of heat engine is the topic of Fig. 3. Not all the concepts of the topic are
necessarily encoded in the representation.

A display is the external part of a representation in some physical medium, such as
print on paper, pixels on a computer screen, or the raised lines on a tactile graphic {R2}.

A concept is an idea, fact, category, property, or value of a property from the topic
{R1}. Ideas include things such as laws, classifications schemes, constraints, prototypical
and extreme cases, which may be complex and hierarchically structured.

A schema is a mental cognitive structure that encodes categorial information as a
collection of slots, variables, that contain fillers, values [26]. The set of slots defines the
category and a specific set of fillers instantiates a particular instance of the category.
Schemas are widely used in cognitive science to explain how the mind systematically
stores and organizes knowledge [26]. Specialized schemas are used for reasoning in
domains that combine both propositional and diagrammatic information [6, 15]. The
present theory generalizes the idea of such schemas to all representations {R12}.

Graphic-objects and properties are visual entities that a viewer of a display takes
as separate things or features of the display. Elementary graphic objects are established
by our perceptual systems (visual or haptic). Parts of graphic objects may themselves
be graphic objects {R7, R8}; e.g., the dryness axis is that part of the P curves that
are under the bell curve in Fig. 3. Graphic objects may be composites; e.g., an axis
comprises a scale, tick marks and labels. Similarly, different features of a graphical
object may represent different concepts {R7, R8}; e.g., the height of a rectangle in Fig. 3
is a temperature difference and its area is an amount of heat. The relative height of the
two rectangles, with conscious effort, may be interpreted as a composite graphic object.

4.2 Representational Components

Tokens, Representation-dimensions (R-dimensions), and Representation-schemes (R-
schemes) are the three proposed types of components {R7}. The fundamental function
of these components is to encode and associate information about the target domain
and about the display. Each is specified as a schema {R9, R12} and are represented,
respectively, in the modelling notation by particular shapes, Figs. 4b, c, & d. The tablet
shape icon stands for a whole representation; Fig. 4a. Again, the main purpose of all
three components is to coordinate {R4} things from the represented world {R1} with
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things in the representing world {R2}. The form of the component icons reflects this
fundamental idea: the top label of each icon names the encoded concept and the bottom
label names the encoding graphic object (or property).

Domain structure
—————

Graphic structure

Property, S
———

Encoding, S

Instance
––––———

Graphic object

Topic
–––——
Display

Property, S
n ———

Graphic object, S

Instance
n ––———

Graphic object

a. b. c. d. e. f.

Fig. 4. Icons for (a) representations, (b) Tokens, (c) R-dimensions, (d) R-schemes, (e) multiple
Tokens, (f) multiple R-dimensions.

Concept: 1 object, instance or value 
Graphic: 1 graphic object 
Function: semantic, auxiliary, arbitrary
Explicit: yes, no
Tokens: 0 or more  
R-dimensions: 0 or more 
R-schemes: 0 or more 

Fig. 5. Token schema. Slot names in bold.
Names of specific fillers in italic.

A Token is a “fixed” component that pairs
(A) one concept and (B) one graphic object.
It’s icon is lozenge shaped, Fig. 4b. Exam-
ples include: (i) Figs. 1a–d and their associ-
ated concepts; (ii) a letter and its domain vari-
able (e.g., T – temperature); (iii) a rectangle
and a cycle in Fig. 3; (iv) thewhole equation in
Fig. 2 and two quadratic equation solutions;
(v) in Fig. 1h, the middle zone of the Venn
diagram and an intersection.

A Token schema has seven slots (Fig. 5). One pair of slots is for the concept and
the graphic object {R4}. Three slots hold Tokens, R-dimensions and R-schemes that are
directly associated, children, of the Token. This captures local connections that on the
large scale define the overall network structure of components {R3} (see below). The
other slots differentiate further features of a token {R21}. The function slot specifies the
role of the token in the representation. A semantic filler means that the Token encodes
a domain concept. A Token whose function is to pragmatically aid the interpretation of
the representation but is not itself semantic has auxiliary as a filler {R6}: e.g., commas
grouping triplets of digits in long numbers; the size and position of circles in a Venn
diagram (whereas an overlap of circles is semantic). An arbitrary filler indicates the
Token is neither semantic nor auxiliary, so merely serves a decorative or aesthetic pur-
pose. In an icon for a concept-less Token, the concept label is replaced by a ‘##’ symbol.
The explicit slot specifies whether a Token’s graphic object is physically present in the
display or is to be imagined by the user; e.g., envisage a new P curve in Fig. 3 between
a pair of printed isobars. In icons for such imagined concepts, a ‘##’ symbol is used in
place of a label to denote the absence of a graphic object.

Concept: domain property 
Concept-scale: nominal (N), ordinal (O), interval (I), ratio (R) 
Concept-attributes: e.g., max, min, magnitude range, % 
Graphic: graphic property, axis, sub-notation (see text)  
Graphic-scale: nominal (N), ordinal (O), interval (I), ratio (R)
Graphic-attributes: e.g., graphic range, type (linear, logarith-

mic) 
Scope: global, local
Function: semantic, auxiliary, arbitrary
Explicit: yes, no
R-dimension: 0 or more R-dimensions as sub-dimensions 
Tokens: 1 or more 

Fig. 6. R-dimension schema. Specific fillers values in italic.

A Representation-dimens
ion (R-dimension) is a
component that deals with
“variation” in a class of
Tokens. It pairs (A) a concept
that can take alternative val-
ues of one domain property
with (B) some means of
encoding alternative values
{R4}. The R-dimension icon



100 P. C.-H. Cheng

is a trapezium, Fig. 4c. R-dimension examples include: (i) pH values as colours; (ii)
metered quantities as numbers of bars on a scale, Fig. 1g; (iii) alternative emotions
depicted by different emoticons; (iv) the basic relations between sets encoded by spatial
configurations of circles (separate, overlapping (Fig. 1h), embedded); (v) values of
some property as a x-coordinate (horizontal) position in a graph; (vi) quantities of
energy as areas of rectangles in Fig. 3; (vii) a list of some facts.

The R-dimension schema has eleven slots (Fig. 6). The first three concept slots name
the concept, specify its type of quantity scale, and give selected attributes of the quantity
{R1}. Three matching graphic slots do the same for the means of encoding {R2}. For a
concept-scale or graphic-scale slot, the fillers are one of Steven’s [31] types of quantities:
in the icon the letters following the concept and the graphical object names give the scale
type (i.e., replace S in Fig. 4c, with N, O, I, or R). The scale types of the concept and
graphical object may differ. Forms of encoding may be graphic properties and also more
complex graphic structures, such as an axis of a Cartesian graph or a sub-notation (e.g.,
a numeration system or an indexing scheme) {R5}.

Three further slots are used to define types of R-dimensions {R21}. The function slot
is the same as the function slot in the Token schema; for example, position in a simple
unordered list is an auxiliaryR-dimension, because positionsmerely differentiate Tokens
but do not encode a domain concept. The function slot is important because it has a key
role in distinguishing sentential from diagrammatic representations (see below). The
explicit slot specifies whether the R-dimension is physically represented in the display
or must be imagined; e.g., no fills the slot for the R-dimension standing for areas beneath
curves in Fig. 3, because the origin of the T axis is below the s axis scale. The scope slot
specifies whether the R-dimension covers the whole display or is more localized (e.g., in
Fig. 3, T, s, and P are global, whereas x is local). The Token slot holds at least one token
whose value is encompassed by the R-dimension. The R-dimensions slot identifies any
subparts of an R-dimension that happen to be specifically meaningful (e.g., the excess
revs red zone of a tachometer).

Domain-structure: relations among domain concepts 
Graphic-structure: graphical structure 
Function: semantic, auxiliary, arbitrary
Scope: global, local
Explicit: yes, no
Tokens: 0 or more
R-dimensions: 2 or more, 1 if also ≥1 Tokens 
R-schemes: 0 or more 
Organization: specifies relations among components 

Fig. 7. R-scheme schema.

A Representation-scheme (R-
scheme) is a “structural” component
that pairs (A) a conceptual structure
of the domain with (B) a graphi-
cal structure that is more complex
than an R-dimension. Examples of
R-schemes include: (i) a graph co-
ordinate system (e.g., in Fig. 3 T-s
is Cartesian); (ii) a table’s grid of
rows and columns; (iii) Hindu-Arabic

numbers that exploit digit position as power and digit shape as numerosity [33]; (iv) the
coordination of labels and zones in a Venn diagram (e.g., Figure 1h); (v) the combination
of location and shapes of icons in a map; (vi) multi-dimensional index systems (e.g.,
Library of Congress book classification scheme).
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Income profile
–––——
Bar chart

Age-income
—————

Coordinate system

Age-bands, O
———

X-axis, O
Income, R

———
Y-axis, R

Elderly-£8k
–––––—
Right bar

Adult-£20k
–––––—

Middle bar
Teen-£1k
–––––—
Left bar

Data points, N
———
Bars, N

Age-income-data
—————
Bar chart

a

b

c1

c2
d1 d2

e1 e2 e3

Fig. 8. A sample representation
structure.

The R-scheme icon is rectangular, Fig. 4d, and
its schema has nine slots (Fig. 7). The con-
cept-structure and graphic-structure slots name
their respective target structures {R4}. Again,
the schema has function, scope and explicit slots
that are equivalent to those slots in R-dimensions
{R21}. The Tokens, R-dimensions, and R-schemes
slots hold the constituents of the R-scheme. The
relations among an R-scheme’s components may
be complex, so the names in the concept-structure
and graphic-structure slots are pointers to descrip-
tions of them (e.g., in the modelling notation or
text). TheOrganization slot contains a description of how concept structures and graphic
structures are related {R4}. A R-scheme cannot contain a single R-dimension alone; it
would be anR-dimension. An ordered list is anR-scheme, because it combines a categor-
ical R-dimension to identify different items with an ordinal R-dimension for the priority
of the items. The reading directions of text, such as top-to-bottom then right-to-left in
traditional Chinese, is an auxiliary function R-scheme.

4.3 Modelling Notation

The modelling notation supports the explication of the relations between Token, R-
dimensions and R-schemes through the construction of network diagrams to show their
organization {R3}. A tablet icon for the representation tops what is generally a tree-like
structure. Below each icon for a schema, further schema icons are drawn for the contents
of its Token, R-dimension and R-scheme slots. Imagine a simple a bar chart for income
in three age bands: Fig. 8 shows one possible interpretation of its structure. Below the
representation icon, Fig. 8 (a), it possesses an R-scheme (b) that is a bar chart assembly
for data. The graph has a coordinate system R-scheme (c1) in which data values, drawn
from a nominal scale R-dimension (c2), are plotted. The coordinate systemhas an ordinal
scale R-dimension for age-bands (d1) and a ratio scale R-dimension for income (d2).
The bars for three cases are the Tokens (e1–e3). Figure 8 may be viewed as a design
pattern for this class of representations {R19}.

For compactness in the diagrams, multiple instances of Tokens or R-dimensions
of the same kind may be represented with a dashed perimeter, Figs. 4e and 4f, and
an expression (replacing n) indicates the number of instances. For complex domains,
additional information, not defined in the schemas themselves, can be encoded using
supplementary notational elements between icons as required (see below).

4.4 Analysis Guidelines

From the experience of analyzing more than a dozen disparate representations, here are
ten representation analysis guidelines: a step towards {R22}. (1) Consider a target user
with a particular level of knowledge of the domain and a certain degree of experience
of the class of representation in question. (2) From the perspective of the target user,
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catalogue domain concepts noting the levels of abstraction and granularity at which
they occur, in particular what concepts are fixed and variable things, and what concepts
are relations. (3) Select typical examples of displays appropriate to the competence of
the target user. (4) Catalogue all the graphical parts of the display that have semantic
and auxiliary functions, plus any other parts that may be arbitrary but important; for
instance, because they are likely to be misconceived by target users. (5) Using the two
catalogues, define schemas for Tokens, including those at higher levels of abstraction or
granularity. (6) From the list of Tokens and the catalogues, specify R-dimensions for sets
of similar tokens, paying special attention to concept-scale and graphical-scale slots of
the schemas. Unless a token is solitary and stands for an unvarying concept, it will be
an instance of some R-dimension. (7) Identify the R-schemes using two approaches. (a)
Propose configurations of R-dimensions, perhaps with anchor Tokens, for the primary
conceptual relations of the topic, such as its sets of underpinning laws. (b) Sets of
R-dimensions, and Tokens, with strong conventional associations may constitute R-
schemes. (8) Alternate between bottom-up composition from Tokens and top-down
decomposition from R-schemes {R8}. (9) In a drawing package, construct a model with
icons for each schema, whilst iteratively working through steps (1) to (8). (10) Revisit
steps (1) and (3) in order to explore alternative interpretations of the representation.
Consider the overall coherence and parsimony of the structures in order to judge the
plausibility of particular interpretations {R9}.

The next section analyses the representations presented in Sect. 2.

5 Examples Analyzed

The structures of the examples aremodelled in fine detail to demonstrate the rigour of the
theory and utility of the notation. However, the reader need not track all the technicalities
of the analyses in order to follow the discussion of the implications below.

5.1 Icons and Indicator Scales

The representations in Fig. 1 are simple. In the historical context of its first use as a
meta-comment on some text, the smiley was just a Token without a R-dimension as
no other types of this Token existed. The later coining of related emoticons created
an R-dimension. In their typical use, “sold” dots (Fig. 1b) are also Tokens, because
alternative colours are not used for “unsold” or “under offer”. Figures 1c, d, f, & g have
R-dimensions that, respectively, vary across (c) gaze direction and pupil position, (d)
sets & labeled circles, (f) pH and colour, and (g) fuel level and number of bars. Figure 1h
is a Token with an R-dimension for set relations encoded by degrees of overlapping
circles, and in turn is a part of a larger R-scheme for sets and Venn diagrams.

5.2 Equations

Figure 9 is a representation structure model for Fig. 2, assuming a user who is competent
in mathematics. The representation icon is located at C1 in the figure’s coordinate sys-
tem. Overall, the model encodes the idea that the equation is a sentential representation
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based on a linear concatenation of symbols. Nested R-schemes encode successive lay-
ers of expressions that includes R-dimensions and Tokens for mathematical operators,
variables, numbers and signs. The overall equation consists of a left hand side (LHS)
formula, the equals sign, and a right hand side (RHS) formula, which are encoded by a
R-scheme (B3), a Token (C3) and another a R-scheme (F3), respectively. The arrow (D3)
indicates the nodes below are ordered. The LHS formula is an elementary expression
(Elem exp) (B3) consisting of a R-dimension for a sign (A4–5) and a R-dimension for
a variable or number (Var/num) (B4–5), in this case x. An additional R-scheme for two
subscripts that identify alternative solutions is anchored to the x Token (B6–C8). The
comma between the numbers is an auxiliary Token (B7).

Fig. 9. Representation structure diagram for the equation in Fig. 2 (repeated top right).

The equation’s RHS is a formula R-scheme (F3), whose LHS is another elementary
expression R-scheme (D4–E6). Unusually, the operator of the RHS formula’s is not a
Token but a R-dimensions (F4) because it provides options of plus orminus Tokens (F5,
G5). The RHS of the formula is a R-scheme (I4) and notably includes a Token for the
square-root that anchors another formula R-scheme (H6). The rest of the decomposition
follows in a similar fashion.

Some noteworthy features of the model include: (i) the large number of R-schemes;
(ii) ##s note the absence of graphic objects for the multiplication (×) Tokens (e.g., K6);
(iii) several concepts are represented multiple times as denoted by the dotted lines.

A key feature of the theory and notation is its ability to support alternative interpreta-
tions of a representation {R9}. To illustrate this, Fig. 10 gives a representation structure
diagram for algebraic equations that abstracts away from all the detail in Fig. 9. The
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overall structure is a tree whose leaves are Tokens for variables, numbers, signs (+/−),
or operators. Nodes are R-schemes for expressions or R-dimensions for those Tokens.
The top level R-scheme (F2) encodes the relation between two formulas encoded as R-
schemes (D3, G3). Various graphical devices are used to concisely encode expressions
and recursive structure. A pair of *s on a left branch (E3) and on a corresponding right
branch (G3) of a node indicates that the structure on the left is repeated on the right
(similarly, C4–F5). The loops from the bottom of a R-scheme to its top (C3–4, E3–4)
signify the potential for building expressions recursively. The possible relations between
the equation’s formulas are held in a nominal R-dimension (F3) and one is the chosen
Token (F4). The description of the rest of the model is similar to the lower parts of Fig. 9.
Overall, the model captures the idea that equations may be described by a generative set
of syntactic rules {R5}.

Equation
––––

String

Signs, N
—–

+ / –, N

Sign
–––

Symbol

Relations, N
—–

= / < / > / ≤ / ≥, N

Relation
–––

Symbol

Operators, N
—–

+ / – / * / /, N

Elem exp
–––

Symbol & char.

Operator
–––

Symbol

Formula
––––

String

*
* . . . . 

. . . . 

Variables, N
—––—

Letters, N

Variable
–––

Letter

Element, N
—––—

Alphanumeric, N

Numbers, N
—––—

Digit strings, N

Number
–––

Digits

*

Algebra
–––——

Expressions 

A B C D E F G

1

2

3

4

5

6

7

8

*

Fig. 10. Representational structure of equations.

5.3 Thermodynamics Graph

Figure 11 is the model for Fig. 3. It assumes a user whose is familiar with both thermo-
dynamics and power cycle property graphs. The primary R-scheme (C2) is a x-y-z graph
coordinate system, consisting of ratio scale R-dimensions for variables T, s and P (B3,
D3, E3), in to which data point Tokens are plotted from a nominal scale R-dimension
(A3). The P z-axis is encoded by the isobar curves. Vast numbers of Tokens for data
points are depicted in Fig. 3 (A4) but just two are specifically noted (C4, D4). The satu-
ration curve, bell dome, is a Token (G4) composed of many data points. The thick arrow
to that Token specifies that it, and subsequent components, inherit all the structure of
the T-s-P R-scheme. The dome (G4) and critical point (D4) are anchor Tokens for two
local nominal R-dimensions (C6, J4). The first of these R-dimensions (C6) encodes state
transitions and has two Tokens for the liquid (B7) and the vapour boundaries (D7). In
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turn, these Tokens serve as anchors for a nominal scale R-scheme (C8), which has four
tokens for the states themselves (A9–E9). One of those Tokens, the mixture Token (C9)
is an anchor for the local ratio scale dryness fraction R-dimension (C10) and its many
possible values (BC11).

T-s-P space
–––––––––—
x-y-z graph

T, R
–––—

y-axis, R

Liquid boundary
––––————–—

Left-side bell

s, R
–––—

x-axis, R

P, R
––——

z-axis, R

States O
––––––

Region O

Vapour boundary
–––————–—
Right-side bell

Triple point
—–————

“A”

Saturation dome
––––––––––––

Bell-shape curve

Super heat
—————

Region above

Liquid
––———

Region left

Mixture
–—————

Region middle

Vapour
–—————
Region right

Dryness fraction, R
–——–––––—

Dryness-axis, R

Dryness %
>1 —————

Line

Transitions, O
––——

Corners, O

Process, O
———

Sides, O

Compress
——–—
Line 12

Condense
——–—
Line 41

Boil
——–—
Line 23

Power
——–—
Line 34

Energy, R
2 ——

Areas R

Efficiency (T), R
—–––——

Ratio (T3-T4)/T3, R

W
——–—

1234

Q
——–—

23–x-axis

Efficiency (W-Q), R
––––––—

1234/Below-23, R

Transition
4 –––––
Corner

Critical point
––—————

“C”

Efficiency-power
—–––——

Number

Efficiency-temp
—–––——

Number

Cycles, N
––––––

Rectangles N

Cycle
2 ––—

Rectangle

A B C D E F G H I J K L M

1

2

3

4

5

6

7

8

9

10

11

Power cycles
–––——

Fig. 3

State-transitions, N
––––––

Position, N

Cycle-components
–––––––––—

Rectangle properties

Data, N
––––

Points, N

Data point
many–––——

Dot

Fig. 11. Representational structure of the thermodynamics graph in Fig. 3.

The second R-scheme (J4), anchored by the saturation dome, encodes the two power
cycle Tokens (J5). Two cycles are presented so that efficiencies can be compared. An
R-scheme (J6) is attached to both cycles, which has three R-dimensions for quantities of
energy (G7), process stages (J7) and transitions between those stages (M7). The process
stage R-scheme provides four Tokens (H8–L8). The ordinal scale transitions R-scheme
has four Tokens (I8). Areas defined by the energy ratio scale R-dimension (G7) and
certain process Tokens definer quantities of power, W (F9), and heat, Q (H9). From
these an efficiency ratio scale R-dimension (G10) is defined and Tokens for efficiency
are given (G11). Further, from just two of the process Tokens (J8, L8) another efficiency
R-dimension (K9) is defined on the basis of temperature differences. The two efficiency
values (G11, K10) are equal, shown by the grey dotted line.

Figure 9 is complex because Fig. 3 is complex, but the model reveals interesting
things about that complexity. First, Fig. 3 is actually relatively simple as it has only two
R-schemes compared to the quadratic solution’s nine (Fig. 9). Second, it is a relatively
coherent representation: the global coordinate system permeates nearly all aspects of the
representation, with all graphical objects interpretable in terms of T, s and P. Further,
the second, local, R-scheme is fully embedded within that main coordinate system.
The diagram has multiple R-dimensions for specific aspects of the topic but mappings
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between the concepts and graphic elements is isomorphic. A seeming exception is the
efficiency of the cycles, the dotted line between two Tokens (G11–K10). However, they
and their R-dimensions refer to two quite different ways to compute thermodynamic
efficiency from the Second Law.

6 Discussion

A theory of representational structure has been proposed with an accompanying mod-
elling notation. The theory is novel in various respects. First, it proposes that all repre-
sentations are built from just three core components. The fundamental function of these
components is representational: they serve to integrate domain concepts with graphical
structures. Second, the theory focuses onmodelling themulti-level structure of represen-
tations as relations among Tokens, R-dimensions and R-schemes, rather than positing
properties of whole representations as has been common in the literature [e.g., 18, 27].
The guidelines in Sect. 4.4 suggest the possibility of developing systematic approaches
to the analysis of representations supported by software tools. Third, in contrast to other
approaches that focus on the formal or computational analysis of representations in
terms of the composition of basic graphic elements [e.g., 20, 28], the components pro-
posed by the present theory are cognitive schemas posited as psychological entities,
whose existence and impact might be empirically tested [e.g., 15, 19, 23]. Further, the
present theory occupies the middle ground between descriptive classifications and for-
mal accounts, whilst being usable without extensive formal training. Fourth, the scope
of the theory is intended to cover all representations of any complexity {R16}, from
any knowledge domain {R15}, and in any type of format or display {R14}. Fifth, the
theory can be used to model alternative interpretations of representations for users with
differing levels of domain knowledge and familiarity in specific graphical formats, rather
than providing a single canonical characterization {R9}.

The theory and notation appear to satisfymost of the 23 requirements given in Sect. 3,
so it might be superior to previous accounts. A definite assessment demands a systematic
review of the previous theories in terms of the requirements. The satisfaction of the
requirements by the theory may partially be attributed to the compositional structural
approach using just three core cognitive components that are fundamentally defined as
things that represent.

The examples above suggest that the theory and notation may provide a means to
systematically contrast disparate representations across classes of format. For instance,
the above examples allowed us to compare the relative complexity of a diagram and
sentential representation that are not informationally equivalent (cf., [16]). Although
the formula is simpler graphically than the thermodynamics graph, the latter is simpler
and more coherent in various ways. (1) It employs just two R-schemes rather than the
equation’s nine. (2) All of its concepts are explicitly represented, whereas some of the
equation’s graphic objects are absent from its Tokens. (3) The equation has multiple
Tokens for some concepts, whereas the graph is desirably isomorphic {R17}.

The author has applied the theory and notation to over a dozen other representations,
with interesting results. For example, revisiting Larkin and Simon’s [16] seminal work
by modelling their alternative representations for the pulley system problem, reveals
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that although the depth of the sentential representation’s structure is similar to that of
the diagram, it is branchier and composed of more R-schemes. This observation might
yield a complementary explanation to the benefit of diagrammatic representations: they
demand fewer R-schemes than sentential representations. This mirrors the observed
contrast between the quadratic solution equation and the thermodynamics graph.

The representation structure diagram reveals the hidden complexity of Fig. 2, of
which someone proficient in algebra may no longer be consciously aware. Figure 9
could serve as a guide to an instructor of all the features of the equation that must be
explained to learners. Similarly, Fig. 11 might be used to guide instruction on Fig. 3.

Analysis of further representations by others is required to fully evaluate the utility
of the theory and notation. In particular, are the three proposed components sufficient
and are their slots necessary and sufficient? The “sketch” in the title acknowledges that
the theory has only been outlined here: some aspects of the theory and notation need
further development. The compatibility of the theory with existing theories about the
efficacy of representations must be established {R17}. For example, considerations of
isomorphism [13, 21] can be examined through occurrence of repeated Tokens and by
the presence of components with concepts but no graphic objects, and vice versa.

Finally, it is noted that the theory and notation may be able to address theoretical
implications about the cognitive cost in representation choice {23}, or might be used to
investigate how alternative representations might impact learning. The relative number
of R-dimensions and R-schemes, whether models are simple hierarchies rather than
more complex networks, and the extent use of auxiliary R-schemes and R-dimensions
are potential avenues for exploration {R6}.
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Abstract. In data visualizations, connecting lines may have various semiotic
functions, including the semiotic potential of indicating modality and uncertainty.
The goal of this article is to find out how this semiotic potential is realized in cur-
rent best practices of data visualizations and what conventions exist for the visual
manifestations of these functions. This issue is addressed by using a corpus-based
approach and a two-level analysis method within a social semiotic framework.
First, the article offers a theoretical discussion on how the concepts of modality
and uncertainty interrelate. Second, a method for investigating how these concepts
are visualized at different levels is presented.Third, a corpus analysis including163
award-winning data visualizations is presented. The results indicate the existence
of certain conventions for visual modality markers, and thus offer new insights
relevant for both design theory and practice.

Keywords: Uncertainty · Modality · Social semiotics · Visual variables · Line ·
Connection · Reliability · Probability

1 Introduction

Data visualization (further abbreviated as DV ) is a rapidly developing visual means of
communication, strongly influenced by the advent of new digital technologies [1]. The
amount of accessible data is greater than ever [2] and the forms of representation are
constantly being developed further [3]. Consequently, the desire to express a variety
of meanings through DV is increasing, and so are the graphical opportunities to do it.
Such ‘new modes of production bring with them new affordances’ [4], which means
that the conventions that connect visual expressions to culturally shared meanings are
constantly under development. A specific graphical element, namely the line that is used
to connect two entities (further referred to as connecting line), appears in many different

1 The Peutinger Map, known as the first route map (366-225 BC) [3] and a multiple time-series
graph showing planetary movements over time (10th century) [5] are historic visualizations that
use connecting lines as their central graphical element.
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visualization types (such as line charts, network diagrams, route maps etc.) and not just
since the digital age.1 However, the possibilities to signify specific meanings with such
connecting lines have increased, because the application of transparency, interaction
effects, animations etc., has become much easier in the digital era.

In the practice field of DV, uncertainty is a much-disputed topic2. One reason for that
is that many big and complex datasets available today include elements of uncertainty
related to confidence, variability, trends etc. [2]. The consequence for DV designers
(here used as a collective term for all persons included in the DV production process)
is that they have to find ways to visualize this uncertainty. Especially when designing
visualizations for lay audiences, depicting uncertainty still remains a challenge, so big
that it sometimes is not visualized at all [10].

Modality, as investigated by linguists and semioticians in verbal and visual text, is a
concept that to some extent overlaps with uncertainty, as it is discussed in the practice
field of DV. However, modality has not been brought into that field so far.

In the following, I will present the different perspectives on modality, both from a
functional grammar point of view [following 11] and from amultimodality point of view
[following 4 and 12] and relate the concept of modality to the concept of uncertainty.
This is done because the linguistic concept of modality is very elaborated, and it is a
hypothesis underlying this study, that it is relevant and useful also in the investigation of
DVs. Following this theoretical trajectory, a two-level analysis method of modality and
uncertainty in DVs will be presented.

This method is applied in the second, analytical part of the article. A corpus analysis
of 163 award-winning DVs that include connecting lines, is presented. The focus of
analysis is whether and how modality and uncertainty are expressed through connecting
lines. Summing up, this article aims for three goals: (1) to clarify the relation between
the concepts of modality and uncertainty in the field of DV, (2) to present a two-level
method of analysis of modality and uncertainty in this text type, (3) to reveal graphi-
cal variations and conventions concerning the expression of modality and uncertainty
through connecting lines within a corpus of award-winning DVs.

Corpus-based studies on current digital DVs in general and particularly those
focusing on single graphical elements are still rare. Possible reasons for that may be
the low availability of ready-to-use corpora and that the methods for accurately and
time-effectively analyse such material are still at beginning stages [13–15].

2 Theoretical Perspectives on Modality and Uncertainty

2.1 Modality in Verbal Language

As a discussion capturing the breadth of works around the concept of modality is well
outside the scope of this article I shall here only briefly introduce the work of the linguist
MichaelHalliday,who extended the systemofmodalitywith several aspects [16] relevant
in this context.

2 This can be stated because uncertainty was subject to many presentations at the IEEE Vis
conference 2018 and 2019 [6, 7] as well as by the large number of publications published lately
[additionally to the ones already cited in this article [e.g.: 8, 9].
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Halliday sees modality as ‘the speaker’s judgement, or request of the judgement of
the listener, on the status of what is being said’ [11]. Modality ‘construe[s] the region
of uncertainty that lies between “yes” and “no”’ [11] and is therefore an ‘expression of
indeterminacy’ [11]. His system of modality – as applied on the clause level – includes
four variables: the ‘modality type’, ‘value’, ‘polarity’ and ‘orientation’ [11]. I will further
go deeper into the first two of these variables. The modality type ‘modalization’ [11] is
most relevant in the context of DVs because it counts clauses that indicate some degree
of a proposition’s probability or usuality. Indications of probability, verbally expressed,
for example, with adverbs (modal disjuncts) like certainly, probably or possibly, play an
important role in some DVs, where an element of uncertainty is aimed to be commu-
nicated. They express a high, median and low modality value, respectively, which are
the three modal judgement options suggested by Halliday [11]. Demonstrated with an
example of Halliday [11]: It certainly is expresses a higher probability of this proposition
than It possibly is, but both lie in between It is and It isn’t.

2.2 Modality in Visual Material

As seen above, Halliday looked at the ways in which single words or word groups can
express different degrees of probability. When it comes to modality in visual material,
Gunther Kress and Theo van Leeuwen have borrowed the basic concepts fromHalliday’s
functional grammar [12, 16]. Thedifferent levels ofmodality (modality value) are defined
on scales ofmodalitymarkers, such as colour saturation [12].What constitutes amodality
marker andwhere exactly on the scale the highest or lowestmodality value is determined,
is dependent on the ‘coding orientation’ [12]. Coding orientation, as Kress and Van
Leeuwen further explain, refers to what counts as real in different social practices.
Four types are named: the ‘technological’, ‘sensory’, ‘abstract’ and ‘naturalistic coding
orientation’ [12].

In contexts where the semiotic content is a ‘general pattern’ or a ‘deeper “essence” of
what it depicts’ [16] (as it often is in DVs), an abstract coding orientation will be applied.
In such cases, semiotic reduction is crucial. This means a DV is valued as realistic if
the most ‘reduced articulation’ [16] possible is used. A photo, on the other hand, is,
according to Van Leeuwen [16], judged realistic if the colours, the articulation of depth,
light and shadow, detail and background etc. are natural. Thus, a naturalistic coding
orientation is applied.

By introducing the concept of coding orientation to different types of visual material,
the issue of the ‘construal and evaluation of the reliability of messages’ [4] is focused.
This constitutes a different aspect of a statement than probability. Thus, expressions of
probability (it will probably rain tomorrow) and reliability (you can believe me when
I say that it will rain tomorrow) have to be considered separately. However, especially
in the context of statements realized by DVs, expressions of probability and reliability
may be combined (you can believe me when I say that it will probably rain tomorrow).
Moreover, it should be noted that the exemplary visual analyses carried out by Kress
and Van Leeuwen regard the visual representation mainly as a whole [17] and therefore
evaluate whether it, in its entirety, represents the ‘given “proposition” (…) as true or not’
[12]. In contrast to that, Halliday [11] looks at modality expressions on the clause level
which means that the modality value of single sentences within a verbal text can vary.
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2.3 Relating Modality Theory to the Analysis of Data Visualizations

As Halliday’s statement that modality ‘construe[s] the region of uncertainty that lies
between“yes”and“no”’ [11] implies,modalityanduncertaintyare intertwined.However,
uncertainty is not only a research object for linguists and semioticians, but also widely
disputed within the practice field of DV. Uncertainty is in that context related to differ-
ent stages of the DV communication process. As a basis for the production of a DV, the
designer has collected data about an aspect of the world that is either certain or uncertain.
If the data is uncertain, this is what Dasgupta et al. [18] call data uncertainty. Data uncer-
taintymaybecausedbyseveral reasons, likemeasurement imprecision, incompletenessof
data (includingmissing values, sampling, aggregation), inference (including predictions,
modeling and describing past events), disagreement and data incredibility [19].

During the design phase, the designer must decide what level of certainty that is most
expedient to signal. The designer can decide to signal a high or low level of probability
and reliability – or not to signal modality at all. After that decision, visual techniques for
intendedly signalling a certain level of probability and reliability are chosen and applied
by the designer. The results can be seen as visual expressions of modality. In most cases,
what Dasgupta et al. [18] call visual uncertainty correlates with an intention to express a
lowered level of probability (based on data uncertainty) or reliability. But it can also be
a result of an unintended or unconscious application of visual forms that by convention
or by earlier experience are associated with uncertainty by readers.

Summing up, uncertainty is a wider concept than modality, because it includes all
factors causing uncertainty on the side of the reader, whether or not intended by the
producer. In the present study, I am only interested in the visual expressions of modality
that relate to lowered probability or reliability.

This comparative discussion of uncertainty (as discussed in the practice field of
DV) and modality (as discussed by linguists and semioticians) allows for applying a
more nuanced vocabulary when talking about uncertainty in DVs. It also allows for
developing a detailed analysis method of modality in DVs, as presented below. The
method is designed to answer the following research questions:

• How is lowered probability and reliability expressed by connecting lines in a corpus
of award-winning, digital DVs?

• Does the corpus indicate any clear conventions concerning this issue?

3 A Two-Level Analysis Approach to Modality in Data
Visualizations

3.1 Visual Segmentation

I will in the following propose a two-level approach to the investigation of modality
in DVs. The two levels, further called detail and global level, refer to what parts of
the DV that are in focus. How this visual segmentation is done, is inspired by Morten
Boeriis’ [17] dynamic functional rank scale. In Tekstzoom [17] he claims that a visual
text can have several modality profiles on different text levels, and differentiates between
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four different text levels. For analysing modality in DVs, I propose that distinguishing
between two zoom levels is sufficient.

At the detail level, only single graphical elements, like single lines or points, and the
associated words, are considered (see right part of Fig. 1). This unit is comparable to a
verbal sentence, as a part of a whole text. Here, we are interested in how these graphical
elements – together with associated words – signal a certain level of probability and
reliability, related to the detail statement they represent.

At the global level, the whole visualization (which may be integrated into a larger
multimodal text including more verbal text or other visualizations) is focused (see left,
the black part of Fig. 1). The pertinent question on this level is whether and how the
choice of visual style signals that the visualization is a true reflection of an aspect of
the world or not. The issue of coding orientation is here central, considering e.g. the
effect that a hand drawing might have, compared to a digitally produced DV, regarding
reliability. However, it may also be possible to find verbal hints of data uncertainty
(expressing lowered probability) that concern not only the detail statement, but also the
global statement of the whole DV. These verbal hints may be found within the global
level, or in the surrounding co-text, as it might exist e.g. in a news article (see the grey
area in Fig. 1).

Such a separation into two text levels allows for the investigation of whether and
how single graphical elements, as well as the visual style of the whole visualization,
signal modality.

Although this study focuses on the detail level, due to the connecting line constituting
the study object, it is important to understand this model as a holistic concept. Boeriis
claims that the overall modality of a text is a product of all modality profiles on all levels
[17]. In other words, modality expressions on different text levels influence each other.
However, how exactly this influence takes place and what effect it has on the overall
modality profile is not a focused issue in this study.

Fig. 1. Left: abstract representation of a line graph (black part = global level) and the co-text
(grey) within a website; Right: only the detail level.
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3.2 Operationalizing the Theory

Based on the two proposed levels for the DV analysis, Table 1 introduces concrete
questions for an analysis of modality in DVs as well as the answer options. It should be
understood as an extensible method offer, that may be adjusted to fit also analyses of
other semiotic material or other research foci.

Table 1. Questions and answer options for an analysis of modality in DVs.

Nr. Question Answer options

Questions on the detail level:

1 Only focus on the graphical elements that
convey the main statement of the DV. If
there are more of the same kind, decide for
one exemplary unit, comparable to a clause.
How could this clause be formulated?

Verbal statement

2 What kind of graphical element(s)
represent(s) this statement?

Description of the visual element(s)

3 Which coding orientation needs to be
applied when viewing this/these visual
element(s)?

Abstract-, naturalistic-, technological-,
sensory coding orientation [16] or none of
these

4 What do(es) the graphical element(s) look
like?

Description of the visual appearance of the
visual element(s) in focus, see Table 2

5 Does the visual appearance of the graphical
element(s) indicate any form of modality in
terms of lowered probability or lowered
reliability?

Yes or no

6 If yes, how is this lowered probability
and/or lowered reliability signalled
visually?

Description of the visual variables used

7 Is it explicitly verbally stated on detail or on
global level of the DV, or in the co-text, that
data uncertainty is represented within this
detail statement of the DV?

Yes or no

8 If it is explicitly verbally stated that data
uncertainty is represented, how?

Concrete formulation

9 Based on the former questions, do(es) the
graphical element(s), signal modality in
terms of lowered reliability?

Yes or no

(continued)
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Table 1. (continued)

Nr. Question Answer options

10 Does the verbal sentence from question 1
need a reformulation, considering modality
in terms of lowered probability and
reliability, if any of them are expressed? If
yes, which?

Verbal statement

Questions on the global level:

11 What is the overall statement of this DV? Verbal statement

12 Which coding orientation needs to be
applied to the visual expression of the
overall statement?

Abstract-, naturalistic-, technological-,
sensory coding orientation [16] or none of
these

13 Does the choice of visual style signal any
sense of modality in terms of lowered
reliability?

Yes or no

14 If yes, which modality value is signalled? High, medium or low modality value

15 If yes, how does it signal a high, medium or
low modality value?

Description of the visual clues that underly
this decision [based on the descriptions of
the coding orientations of 16]

16 Is it explicitly verbally stated on the detail
or global level of the DV, or in the co-text,
that data uncertainty is represented in the
overall statement of the DV?

Yes or no

17 If it is explicitly verbally stated that data
uncertainty is represented, how?

Verbal statement

Note. The verbal statements that are the answers to questions 1, 10, and 11 are only meant to serve
as proposals. Visual language cannot be directly translated to verbal language or the other way
around [12, 20]. However, the formulation of these sentences is considered helpful for investigating
the semiotic potentials.

3.3 Description of the Visual Appearance of Connecting Lines

In Table 2, I suggest a set of visual variables and manifestation categories that can be
used when focusing on connecting lines on a detail level. They are based on the system
of ‘visual variables’ suggested by Jacques Bertin [21], as well as other scholars [22–27],
who developed Bertin‘s visual variables further or contributed to a nuanced description
of the visual appearance of lines. Figure 2 shows some visual examples to each visual
variable of Table 2.
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Table 2. The visual variables a line can have, and a suggestion of manifestation categories.

Nr. Variable Manifestation categories
1 Position Left out because dependent on DV specifications like scales, dimension 

of the DV, screen and window2 Orientation
3 Size
4 Colour No variation (single -

coloured)
Abrupt variation Smooth transition

5 Clarity: 
crispness

High Lowered

6 Clarity: 
transparen-
cy

None Low, medium or high

7 Clarity: 
resolution

High Lowered

8 Pattern Continu-
ous line

Dashed
/dotted 
line

Irregu-
larly 
dashed/
dotted 
line

Change 
between 
continuous 
line and 
dashe /  
dotted line

Change 
between 
continuous 
line and 
large 
interrup-
tions(s)

Change be-
tween contin-
uous line, 
dashed/dotted 
line and large 
interruption(s)

9 Shape: 
forces

One force 
(straight)

Two 
forces, 
curved

Two forces, bent Three or more 
forces, 
curved

Three or more 
forces, bent

10 Shape: line 
pressure

Consistent Inconsistent

11 Shape: 
form of 
extremities

(like e.g., an arrowhead)

12 Interaction Not possible Possible
13 Dynamics Not available Available, in one or more other 

visual variables (1-12)

No and direction-signifying 
extremity

Direction-signifying extremity

3.4 How to Identify Visual Indications of Lowered Probability and Reliability

Based on existing literature, we can assume there are three ways to identify visual
indications of lowered probability and reliability in DVs. First, some visualization types
are specifically developed to represent data uncertainty. Second, usersmay judge a visual
element as an indication of uncertainty based on an analogy to the ‘experiential world’
[12]. Third, the user judgement may be based on criteria for what is real in the coding
orientation applied.

Within the field of statistics, error bars and several newer visualization types, like
gradient plots, violin plots or fan plots, are designed for indicating data uncertainty [28].
Also other visualization types can express data uncertainty, as is the case e.g. in various
kinds of weather forecasts (see Hullman et al. [29] for other examples). However, in
this study, focusing on the semiotic functions of connecting lines, it is most relevant
to consider ways to identify signals of lowered probability and reliability on the detail
level.
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Fig. 2. Some examples to each of the visual variables from Table 2.

A first hint of potentially signalled lowered probability or reliability (referring to
question 5 of Table 1) can be foundwhen the line in focus resembles directly ormetaphor-
ically what the uncertainty indicates [30]. Analogies to our ‘experiential world’ [12] can
be the reason why certain characteristics intuitively are interpreted as signs of uncer-
tainty. The sketchiness of hand-drawn lines may metaphorically signal uncertainty [30],
as well as the visual degradation of the line (through blur), since ‘the harder it is to see
…, the more uncertain it appears’ [31]. Thus, blurry, sketchy, animated lines or lines
with a pattern that leads to interruption (e.g., dashed lines) and lines with certain colour
characteristics (e.g., low saturation) can indicate uncertainty [30, 31]. Also, if the visual
appearance of the line changes along the length, this may be a hint of an indication of
uncertainty. To an analyst, these aspects have to be considered, together with the coding
orientation in use.

Given that one needs to apply an abstract coding orientationwhen analysing a line in a
DV, the question to ask is: Is this the most ‘reduced articulation’ to represent the ‘general
pattern’ or ‘the deeper “essence” of what it depicts’ [16] or not? Depending on the DV
type and context, a line with the characteristics of the 3rd column of Table 2 (a straight,
single-coloured, continuous, non-transparent etc. line) is counted as using the most
reduced articulation. Whenever a more elaborated visual appearance is used, and other
reasons behind this specific visual appearance can be ruled out, the line visually signals
lowered probability or reliability. Such reasons can be: a) the intention to differentiate
between different categories by different kinds of lines (as seen in Fig. 7); b) the intention
to create a certain aesthetic effect, or c) the technical production tools favouring that kind
of visual appearance.

In order to differentiate between signalled lowered probability and lowered reliabil-
ity, it is often helpful to observe clues in the verbal text. If the visually depicted modality
represents data uncertainty (and therefore lowered probability), the visual signal will
normally be accompanied by explicit verbal clues (e.g., forecast, scenario, 95% confi-
dence). If that is not the case, and yet, the line visually signals some kind of modality,
the analyst can conclude that the line signals lowered reliability. This conclusion can be
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based on the existence of ‘intermodal tension’ [32], i.e. that the verbal and the visual
modes offer different, incompatible information. Engebretsen also states, that the con-
ventions within ‘genres focusing on informativity and fact-oriented learning … points
[sic] toward a rhetoric of clarity and unambiguousness’ [32]. Thus, unclarity and poly-
semywithin visualizations have a negative impact on the reliability. In practical analysis,
it can be difficult to judge whether incidents of such tension represent an intended use
of modality or an unintended visual uncertainty expression.

4 Corpus Analysis

4.1 Data Selection and Database Setup

The method suggested in the previous section was applied to a corpus of 163 DVs. Due
to the focus on the connecting line in this study, only the detail level was included in the
analysis. TheDVswere collected from thewinner lists of the 2015, 2016 and 2017Kantar
Information is Beautiful Awards3 [33] and the Malofiej Awards number 24, 25 and 264

[34]. All DVs but one were targeted to the general public and were published in online
news media or other channels of public information. All winners with publicly available
digital DVs (at the date of data collection) that contained one or more central DVs with
one or more connecting line(s) in the leading role of communicating the DV’s meaning
were selected. The result of this filtering process was 163 single DVs stemming from
105 award-winning websites5. To establish a stable data basis for the analysis, over 400
screenshots, PDF documents and screencasts were created and organized in a relational
database.

Due to the nature of theWorldWideWeb, it is impossible to claim that this corpus is a
representative sample of the whole population of DVswith the characteristics mentioned
above. Thus, the results of this analysis can by no means be used to generate valid
statements about the whole population. However, this corpus contains a broad variety
of DVs produced during the named timeframe in the western world, and the results of
the research based on this material can be seen as a good approximation of how DVs in
these countries have been developed in this specific time frame. Moreover, such awards
raise publicity, and these DVs are judged by experts as ‘best practices’ and viewed by a
broad audience, including practicioners. Therefore, they are expected to serve as models
and to have strong convention forming abilities.

4.2 Method

Each DV was coded according to the method proposed in Section A two-level analysis
approach to modality in data visualizations, using a detailed coding scheme. The detailed
coding scheme contained the same questions and answer options as those in Table 1, with
a description of criteria for choosing each option. Before that, an inter-rater reliability

3 This includes projects created between May 2014 and September 2017.
4 These projects were published between 2015 and 2017.
5 A full list of all included DVs, the coding instructions and results of the inter-rater reliability
study and the final coding scheme can be requested from the author.
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study of a random sample of 25 DVs (approx. 15% of the corpus) was performed for
the questions that contain judgement variables. This was necessary in order to ‘estimate
how reliable the categorisation (coding) is’ [35], and therefore make sure that the stated
questions and offered answer categories are precise and adequate. Two coders (a second
coder and me) used the same coding instructions and worked independently. With the
answers of both coders, Gwet’s AC1 and Gwet’s AC2 coefficient [36] were calculated.
Results showed that for all questions, the coders had either substantial agreement or
higher when analysed according to Gwet’s benchmarking method [36]6. This amount
of agreement was deemed sufficient and the coding method was generally approved.

However, follow-up discussions between the two raters after the pre-test and also
during the start of the single-coded analysis revealed that a few small adjustments of the
coding scheme would still improve the rating process. Following an iterative method,
these changes were made, resulting in the final coding scheme, that was then applied
to the whole corpus. In instances of doubt, the second rater of the inter-rater reliability
test was contacted to discuss the final codings. The (single-coded) analysis of the whole
corpus then made it possible to generate frequency counts of whether and how modality
is signalled in this corpus with connecting lines.

4.3 Analysis Findings

This section presents the results of the analysis on the detail level, using question 1 to
10 in Table 1. Due to the selection criteria for this corpus, the main statement in each
DV is represented through graphical lines. For each DV, only one line is focused in the
analysis. For all except two of the 163 lines in focus, an abstract coding orientation needs
to be applied. For the final two, a naturalistic coding orientation is the most suitable.

As shown in Fig. 3, the connecting line in the focus of 26 (18 + 8) DVs out of 163
are found to indicate modality (lowered probability or lowered reliability). Within 33
(15+ 18) DVs, it is explicitly stated verbally that data uncertainty is represented within
the detail statement represented through the focused connecting line. However, in only
18 DVs modality is signalled both visually through the connecting line in focus and
through a corresponding verbal clue for data uncertainty. These 18 lines are therefore
considered to signal lowered probability, while the reliability is not reduced. Under
the earlier presented assumption that intermodal tension causes lowered reliability, this
means that, on the detail level, the focused lines of 23 DVs (8 + 15) are found to be
included in an instance of lowered reliability.

68% of the 41 DVs that verbally and/or visually signal modality on the detail level,
are either route maps (41%) or line graphs (27%). The high occurrence of these two DV
types also reflects the fact that these two types are the most common ones in this corpus
(36% route maps, 23% line graphs).

I will now look at what visual variables of the connecting lines signal what kind
of modality. When the lines in focus signal lowered probability (based on data uncer-
tainty), different manifestation categories of the visual variable pattern were the most
commonly used – especially those with pattern changes (see column three Table 3).

6 The benchmarking method proposed in Gwet (2014: 173–181) was complemented by informa-
tion given by Gwet in personal mail correspondence on 9–17 July 2019.
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Fig. 3. Distribution of visually and/or verbally signalled modality.

Changes between a continuous line and large interruption(s) and between a continuous
line and a dashed/dotted line are used 6 and 5 times respectively. Figure 4 presents an
example of the latter. However, also other visual characteristics, namely transparency,
lowered crispness, colour variations, inconsistent line pressure, three or more forces
(curved) or dynamics in the size are used for that purpose.

Table 3. Distribution of visual characteristics of connecting lines used to signalmodality (lowered
probability and reliability) and the distribution of the same characteristics being used for other
purposes. Note that in some DVs, several visual characteristics are used simultaneously to signal
modality. N for each line in this table is 163 connecting lines from 163 DVs.

Visual variable
used for signalling
either lowered
probability (data
uncertainty) or
reliability (answer
to question 6 of
Table 1)

Manifestation
category used
(answer to
question 4 of
Table 1)

Instances of
visual
characteristics
signalling
lowered
probability
(based on data
uncertainty)

Instances of
visual
characteristics
signalling
lowered
reliability

Instances of
visual
characteristics
used for other
purposes than
signalling
lowered
probability or
reliability

Pattern Change between
continuous line
and dashed/dotted
line

5 2 4

Pattern Change between
continuous line
and large
interruptions(s)

6 – 4

(continued)
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Table 3. (continued)

Visual variable
used for signalling
either lowered
probability (data
uncertainty) or
reliability (answer
to question 6 of
Table 1)

Manifestation
category used
(answer to
question 4 of
Table 1)

Instances of
visual
characteristics
signalling
lowered
probability
(based on data
uncertainty)

Instances of
visual
characteristics
signalling
lowered
reliability

Instances of
visual
characteristics
used for other
purposes than
signalling
lowered
probability or
reliability

Pattern Change between
continuous line,
dashed/dotted line
and large
interruption(s)

2 – –

Pattern Dashed/dotted line 2 – 9

Pattern Irregularly
dashed/dotted line

– 1 4

Clarity:
transparency

Low, medium or
high

3 1 35

Clarity: crispness Lowered 1 – –

Colour Abrupt variation 2 – 8

Colour Smooth transition 1 – 15

Shape: forces Two forces,
curved

– 2 18

Shape: forces Three or more
forces, curved

1 1 47

Shape: line
pressure

Inconsistent 3 – 13

Dynamics in size Yes 1 1 50

Dynamics in
orientation

Yes – 1 16

Dynamics in
position

Yes – 1 15

When we look at how lowered reliability is signalled by the focused connecting lines
(see column four Table 3), the results reveal that the visual variable pattern does not have
such a prominent role. The pattern and the curviness of the lines signal lowered reliability
three times. However, dynamics (in size, orientation and position) and transparency are
also found once each.

An example of a visualization where curvature signals lowered reliability can be
found in An interactive visualization of every line in Hamilton [38, see Fig. 5]. Here, the
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Fig. 4. Screenshot from A timeline of earth’s average temperature, indicating data uncertainty by
pattern change to a dashed line. © Randall Munroe [37]. Distributed under CC BY-NC 2.5.

semioticmotivation behind someconnecting lines being curved,while others are straight,
is not clear. Because the DV does not use the most reduced articulation possible (while
applying an abstract coding orientation), it is rated as expressing lowered reliability.

As shown in Table 3, most of the visual characteristics of lines used to express
modality, are not used exclusively for that purpose. Column five shows how many times
the visual characteristics highlighted in column three and four are used for other purposes.
For instance, in the visualization The Stories Behind a Line [39], different categories of
transportmeans are visualized through different dashed/dotted lines (see Fig. 7). Another
example of dashed lines not signalling modality is found in Syrian war explained in 5
min [40: 5:00, see Fig. 6]. Here, the animated dashes iconically represent moving bombs.

Fig. 5. Screenshot from An interactive
visualization of every line in Hamilton, where
curvature indicates lowered reliability. © Shirley
Wu [38]. Reproduced with permission. Photos are
blurred for copyright reasons.

Fig. 6. Abstract representation of a film
frame of Syrian war explained in 5
min [40: 5:00]. The dashes move towards
the square field named ‘rebels’,
iconically representing moving bombs.
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Fig. 7. Screenshot of the legend of The Stories Behind a Line, using interrupted lines for dif-
ferent categories of transport means. © Federica Fragapane, designed in collaboration with Alex
Piacentini [39]. Reproduced with permission.

4.4 Limitations of the Results

Because most of the DVs were only single-coded and some questions contain judgement
variables, it has to be kept in mind that my cultural background and previous knowledge
might have influenced the interpretation. To counter this, the coding instructions were
developed as detailed as possible, strictly followed and the inter-rater reliability study
was performed.

Moreover, since only one connecting line was focused on the detail level of each
DV, even if sometimes one DV contained more connecting lines, it is possible that the
results could have changed if I had chosen to focus on other lines. Therefore, I have been
careful when reporting these numbers, to refer only to the connecting lines ‘in focus’,
not to all connecting lines in the material.

4.5 Implications and Conclusion

Within this corpus of 163 DVs, out of the 41 visualizations indicating some kind of
modality on the detail level, 23 exhibit cases of intermodal tension. This number indicates
that intermodal tension, meaning that the verbal and the visual resources offer conflicting
signals, is fairly common in this field of DV-based communication. One implication of
this finding is that the potential for DV designers to avoid unintended ambiguity by
giving more attention to multimodal coherence is high.

The results further indicate a convention saying that pattern change is well suited
for visually signalling data uncertainty, corresponding to the modality category lowered
probability. Why pattern change – in the shaping of connecting lines in DVs – is emerg-
ing as a conventionalized signal of modality, may have several reasons. First, it must
be assumed that pattern change potentially signals modality based on an analogy to the
‘experiential world’ [12]. Furthermore, the use of patterns, or larger interruptions, is not
expected as a typical line form in any DV type (unlike e.g. curvature, which is com-
mon in spline graphs for instance), thus such characteristics are free to use as modality
markers. Moreover, it is technically easy with most design tools to apply different pat-
terns to a graphical line (unlike e.g. dynamics). Last, patterns are possible to use also in
two-coloured DVs, and they are printable and drawable analogously, which points to a
long application history. For signalling lowered reliability, however, no such convention
was traced, as the results show a more varied and unsystematic use of characteristics
indicating this kind of modality.

Summing up, the study reveals that various visual characteristics of connecting lines
are used to signal modality in this corpus of award-winning DVs. However, pattern
change is used more often than any of the other variables found in the corpus. Due
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to the relatively low number of observations in this corpus, it is impossible to provide
practitioners with a simple recipe for what visual clues are most effectively applied
to signal modality in DVs. Nonetheless, the results provide an overview of the current
practices in using lines for indicatingmodality, which is helpful for practitioners to make
informed design decisions.

5 Further Research

In this article, a method for analysing modality in DVs is presented, based on a body of
pre-existing theory and terminology aroundmodality and uncertainty. A newly collected
corpus of digitalDVs is analysedwith the suggestedmethod, offering detailed knowledge
about how certain visual characteristics of the graphical line are used for signalling
modality. The findings indicate certain conventions regarding the semiotic potential of
the graphical line in relation to modality. Such insights are valuable both for designers
and scholars in relevant fields, as they contribute to the colouring of some of the white
spots on the map over a graphical language still in its making. However, more empirical
research is needed in order to draw a more detailed and reliable map over the field of
multimodal modality. The findings, as well as the methodology presented in this study,
will hopefully be a contribution to this future work.
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Abstract. People make mistakes. Whether because lines are misdrawn,
data are mistabulated, or because coffee is spilled on documents, dia-
grammatic representations may not be entirely correct. Yet experience
tells that such diagrams are not entirely useless.

In this paper, we describe a semantic theory of representation, which
naturally explains the utility of erroneous diagrams. In particular, the
theory captures the possibility of obtaining true pieces of information
from erroneous representations in a reliable manner.

We identify two dimensions along which there are choices in how to
read a representation. In one dimension, we may read only part of the
representation, avoiding the erroneous information. We call this partial
reading. In the other, we focus on abstract properties of the representa-
tion, ignoring errors in the precision of the information represented. We
call this abstract reading. Along either or both dimensions, true informa-
tion can be obtained from erroneous diagrams.

The theory is based on Barwise and Seligman’s channel theory, and
captures these different modes of readings in terms of multiple represen-
tation systems in which a diagram carries information about its target.
On this theory, one and the same diagram can be accurate in one system
and inaccurate in others, and the reader switches systems when they
read the diagram in different modes.

1 Introduction

Consider bar charts (Fig. 1b–d), which all represent the sales of a particular book
in a certain quarter period. For simplicity, let us assume that books are sold by
this publisher in lots of 100, with 1000 being the maximum number sold in any
month. We will further assume that each 100 books sold is represented by 1 cm of
length of the bar. Note that the lengths of bars in Fig. 1b–d are slightly different
chart by chart, expressing different sets of data about the sales of the book in
this quarter.
c© Springer Nature Switzerland AG 2020
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Month Book sales
Jan 200
Feb 400
Mar 600

(a) Raw Data Jan Feb Mar
0

200

400

600

(b) All bars correct

Jan Feb Mar
0

200

400

600

(c) Second bar incorrect

Jan Feb Mar
0

200

400

600

(d) All bars incorrect

Fig. 1. Correct and incorrect bar charts

Now suppose the actual sales in this period are as shown in Table (Fig. 1a).
Then, bar chart Fig. 1b is “true”, in the sense that the lengths of all bars are
correctly constructed to convey the actual sales amounts in Table (Fig. 1a). Thus,
one can obtain a true set of information by interpreting the lengths of these bars
according to the pre-defined semantic rules. Reading a true diagram correctly,
just like reading a true sentence correctly, one reaches a truth. Call this the
“literal way” of reading a diagram.

Interestingly, one can reach a truth by reading a false diagram. Consider bar
chart (Fig. 1c). Here, the bar for February is too short, so it is not true in the
same sense as Fig. 1c is true, and a literal reading of the chart results in false
information. Nevertheless, the lengths of the other two bars are correct, so we
could read them to obtain true information about the sales amounts of January
and March. With some independent evidence that this chart is reliable about
January and March, the failure of the chart with respect to February does not
stop us from interpreting the bars for January and March.

There is another way in which one can read off a truth from a false diagram.
Consider bar chart (Fig. 1d). This chart has all the bars of incorrect length, they
are uniformly too short, and in this respect, every concrete piece of data in the
chart is false. Yet, if we are concerned only with sales trends, then we may well
read the right-ascending pattern of the bars in this chart to obtain the true
information that sales are increasing. The fact that the chart is wrong in the
lengths of individual bars does not prevent us from reading off this general trend
from chart (Fig. 1d).

Note that this is not a case of the partial reading practice illustrated above.
In partial reading, true components of a diagram (e.g., the bars for January and
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March) are separable from false components (e.g., the bar for February) and the
reader interprets the former to the exclusion of the latter. In contrast, all the bars
are interpreted in the present case, in spite of the fact that they are all of incorrect
length. Yet the abstract information (e.g., the increasing trend) obtained from
this false diagram can be true. We call this reading practice “abstract reading”.

In this paper, we describe a semantic theory of diagrams that naturally
explains these reading practices. As suggested above, there are two major dimen-
sions along which they are classified. There is a partiality dimension: when con-
sidering the diagram in its entirety, we are performing a global reading, while
when considering only part of the diagram it is a local reading. There are many
different partial readings determined by the particular parts of the complete
diagram that are under consideration. In the abstractness dimension, when we
consider the absolute lengths of the bars, we are performing a concrete reading,
and when only the relative lengths of the bars is at issue, we are performing an
abstract reading. Thus, what we alluded to above as the “literal reading” of a
barchart is categorized in this space as a global, concrete reading. Our example
of a single bar being incorrect illustrates a local, concrete reading, while the
example in which all bars of incorrect length but trend data is correct would be
a global, abstract reading. Were we to encounter a bar chart on which a coffee
stain obscured the top of the middle bar, we might still be able to conclude that
sales in February were at least 300 books. This would be an example of a local,
abstract reading.

Accounting for these possibilities within a semantic theory is important for at
least two reasons. First, they are prevalent. People are engaged in these practices
not only with bar charts, but with a wide varieties of diagrams. Even when some
dots are placed in wrong positions in a scatter plot, it does not necessarily prevent
us from extracting data from other dots (partial reading) nor from reading off
the general trend indicated by the overall pattern of the entire dots (abstract
reading). Even when a map is not exact with respect to the border between a
particular pair of counties, it does not necessarily prevent us from reading off
the borders of other pairs of counties (partial reading) nor from reading off the
overall spatial arrangement of counties in the region (abstract reading). Even if
a subway route map incorrectly connects a particular pair of station symbols, it
does not necessarily prevent us from interpreting the connections of other pairs
of station symbols (partial reading) nor from estimating the overall connectivity
of the subway system (abstract reading). Seemingly non-standard practices of
reading off true information from false diagrams are, from this standpoint, quite
normal for diagram users.

The second reason why these practices are important is related to this last
point. People are repeatedly engaged in these practices. They are not just ad
hoc tricks that people happen to do and obtain good results by accident. They
are measures by which people obtain good results non-accidentally. Otherwise,
people would not repeat the processes and they would not have stood out as
notable practices. Thus, the information read from false diagrams in these pro-
cesses are not only possibly true, but must be regularly true. This suggests that
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the notion of truth, as once and finally applied to a diagram, may be useless for
the present purpose. There may be multiple ways in which a diagram can carry
information about its target, so that a diagram that is totally inaccurate in one
way may serve as a perfectly accurate representation of its target in another
channel. As we will see later, no existing semantic theories of diagrams, such
as [2,8,11], have addressed the general issue of fruitfulness of false diagrams, let
alone taking up the above suggestion of multiple channels for a diagram to be
evaluated for accuracy.

The semantic theory presented in this paper can incorporate this suggestion
quite naturally. It has a notion of representation systems that enable different
readings of the same diagram. Thus, it accounts for the utility of false diagrams
in terms of multiple representation systems in which a diagram may carry infor-
mation about its target. So, one and the same diagram can be accurate in one
system and inaccurate in others, and the reader switches systems when they
read the diagram in the literal mode, a partial mode, and an abstract mode.

The notion of representation system in our theory is adopted from Barwise
and Seligman’s mathematical theory of information channels [1]. Our exposition
in this paper is informal and focuses on how that notion is naturally applied in
a semantic theory of diagrams (Sect. 2) and how it is productively applied to
the understanding of our subject (Sect. 3). We will then specify the merit of our
theory in comparison to the related semantic theories of diagrams (Sect. 4). It
will turn out that the full explanation of the utility of false diagrams requires a
semantic theory, such as ours, founded on the notion of reliability rather than
that of truth.

2 General View of Representations

In this section, we present our general view of how a system of representations
emerges and how information comes to be carried by a representation in the
system. We owe this view largely to Barwise and Seligman’s theory of represen-
tations [1], coupled with Millikan’s theory of reproduction [5]. Some materials
in this section originated in a previous paper of ours [9], where we described
Barwise and Seligman’s theory in more detail.

2.1 Issues

In our view, the use of a diagram involves a set of target issues either explicitly
or implicitly. This set reflects how we want to conceive of the given situation;
it determines which portion of the reality we take as our target. In the case of
the system of bar charts, there are 3 target issues, corresponding to January,
February, and March in a given quarter period, which may be written as:

How many copies of the book are sold in January?
How many copies of the book are sold in February?
How many copies of the book are sold in March?
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When the target object or situation is conceived with the help of a set of
issues, we have the opportunity to design a representation that answers these
issues by carrying relevant information. A bar-chart answers them with the
lengths of bars. An alpha-numeric table, such as Fig. 1a, answers them with
numerals placed in appropriate cells. Thus, different diagrams can be designed
for the same set of target issues. We will later see that the converse is also true:
different sets of target issues can be answered by a single diagram.

2.2 Representational Acts

Central to our account is the notion of representational act. We borrow ter-
minology from Barwise and Seligman [1] and define a representational act as
“the particular spatial-temporal process whereby the representation comes to
represent what it does” (p. 236). In our running example, a representational act
is an act, possibly conducted by the publisher, that consists of collecting rele-
vant information about the book sales in a particular quarter period, editing the
information in the form expressible in a chart, and finally physically printing it
on a particular sheet of paper.

We can think of the individual tasks of collecting, editing and printing repre-
sentations as sub-acts of a larger representational act. The assembly and editing
of information may be quite onerous (consider for example, physically surveying
a location in order to produce a topographical map). Once the information has
been marshaled though, many bar chart tokens can be produced from the same
information, perhaps by printing on a laser printer.

To see this situation more clearly, let e1 and e2 be the sub-acts of information
collection and information editing, respectively, and p1 and p2 be two sub-acts
producing distinct representational tokens. Then, the representational act c1 is
the sequence e1 ◦ e2 ◦ p1 of sub-acts, while the representational act c2 is the
sequence e1 ◦ e2 ◦ p2. Generally, every act pi of producing a new chart token
based on the information collected and edited in e1 and e2 gives rise to a new
representational act ci = e1 ◦ e2 ◦ pi.

Conceived in this way, every individual chart-making act c has a unique chart
as its product, and a unique quarter period as the object about which information
is assembled and edited. We call the former the representing object and the latter
the target of the act c. We often write “s-c-t” to indicate a representational act
c having representing object s and target t. Note that even though each act has
a unique target, the same target may be the subject of many chart-making acts.

2.3 Reproduction of Representational Acts

Representational acts, like other acts, are often reproduced. Imagine that the
first bar chart produced by representational act c1 has some desirable proper-
ties such as being clear, informative, or easy to produce. These characteristics
may prompt the publisher to print several copies of the same bar-chart, say for
wider circulation. Act c2 may be one of these reproductions. The publisher may
produce similar bar charts again and again to represent the sales of the book in
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subsequent quarter periods. Or somebody else, say another publisher in the com-
pany, may imitate this publisher’s practice and start producing similar charts to
represent the sales of a different book.

These acts, say c1, . . . , c7, make up a characteristic class of objects, which
Millikan calls a reproductively established family, [5]. This family is defined by
the fact that, except for the original act c1, every member is a reproduction of
some other members of the family, where the reproduction process is a more or
less conscious effort to produce another act with a particular desirable property.

Remember that each representational act c comes with a unique representing
object and a unique target and hence is written as “s-c-t”. So, the family consist-
ing of c1, . . . , c7 can be depicted as in Fig. 2, where solid arrows show the direct
reproduction relation. Different acts can have the same target, as illustrated by
c1, . . . , c4 all having t1 to their right. Still, these acts have different representing
objects s1, . . . , s4 to their left, meaning that different chart tokens are produced
by them to represent the same target t1, perhaps through successive printing.

Fig. 2. A family of representational acts that produce bar charts

2.4 Semantic Constraints

As we have indicated, the reproduction of representational acts may be driven
by various desirable properties of them. In many cases, however, the most fun-
damental desirable property is that the representation produced by the act gives
accurate answers to the set of target issues that people are concerned with.

In order to have this virtue, an act must be conducted under a certain set of
constraints. In the case of bar charts, for example, the actor must be precise in
all of the information-collection phase, the information-editing phase, and the
final production phase, so that the chart that results contains bars of certain
lengths only when the quarter it is concerned with have certain sales amounts
for its months. To be specific, it must be conducted so as to satisfy the set of
constraints of the following form:

(1) Its representing object has lengths m1, m2, and m3 cm for the first, second,
and third bars only if its target has sales amounts 100 × m1, 100 × m2, and
100 × m3 for the first, second, and third months.
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For brevity, we write this form of constraints in the following way:

(2) 〈m1,m2,m3〉 � 〈100 × m1, 100 × m2, 100 × m3〉
Since m1, m2, and m3 range over integers 0 through 10, this stands for a

total of 113 constraints.
These constraints are something that every actor in this family of represen-

tational acts should try to conform to, since they guarantee that the resulting
charts will carry genuine information about the present target issues. Surely,
the contents of these constraints are arbitrary in their origin—the correspon-
dence of bar lengths and sales amounts did not have to be the multiple of 100
at all. Yet, once people start conforming to these constraints and believe that
everybody conforms to them, it provides significant mutual benefit for them
to keep conforming to them. They thus become “self-perpetuating” constraints
over the representational acts of a group of people. Lewis [4] has developed a
general theory of how such a constraint becomes a stabilized character of human
conduct.

We call the activities of a group of people producing representations by means
of a reproductively established family of acts, a representational practice, and we
call the set of constraints thus established among a family of representational acts
the semantic constraints of that practice. The satisfaction of semantic constraints
is often one of the most fundamental properties that representational acts in the
family should crave to inherit from their predecessors.

2.5 Normality of Representational Acts

It should be clear from the above explanation that semantic constraints on repre-
sentational acts are more like traffic laws than physical laws. Unlike the absolute
limit on faster-than-light travel, it is possible to travel faster than the speed
limit. Similarly, actors may fail to respect semantic constraints if the process by
which they reproduce representational acts is defective in some way or another.
For example, the publisher who successfully produced the accurate bar chart for
a certain quarter period may try to repeat the same general process to produce
a bar chart for the next quarter, but she may fail to take the necessary care
in either the information collection sub-act, the information editing sub-act, or
the physical production sub-act. When this happens, the semantic constraints
do not necessarily hold of this newly reproduced act. Perhaps, for example, the
incorrectness of the bar chart in Fig. 1c is due to incorrect reporting of sales
figures by a book store, or that of the chart in Fig. 1d results from the publisher
misreading the scale of the chart.

We call a reproductive act normal with respect to a set of semantic con-
straints if its reproductive process constitutes a sufficient cause for it to satisfy
them. A reproductive act is called abnormal with respect to that set of seman-
tic constraints otherwise. It follows that every normal act satisfies the set of
semantic constraints. If the reproduction process of a representational act goes
well and sufficient care is taken for all sub-acts, then there is a reason that the
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reproduced act satisfies those constraints—it satisfies them out of necessity, not
just by accident.

It however does not follow that no abnormal act satisfies these constraints.
Some abnormal acts may satisfy them by accident. Perhaps the publisher takes
insufficient care, is not paying attention to the constraints that they should be
trying to maintain, but nonetheless draws a chart with bar lengths 〈2, 5, 8〉 for
a target quarter period that has sales of 〈200, 500, 800〉. The act satisfies the
constraints by accident, not out of necessity. Such an act would be considered
abnormal in our theory.

2.6 Representation Systems

Given three things: a reproductively established family A of representational
acts, a set � of semantic constraints on it, and a set N of normal acts relative
to this set of semantic constraints, we can determine the information flow from
representations and targets.

Take our running example of bar charts. Let c be a member of the reproduc-
tive family of those bar charts. The set of semantic constraints on this family is
given in (2), and suppose c is normal with respect to this set. Suppose further that
the lengths of bars in c’s representing object are 〈2, 4, 6〉, as in the bar chart in
Fig. 1b. Since c is normal with respect to (2), constraint 〈2, 4, 6〉 � 〈200, 400, 600〉
holds of c. As a consequence, c’s target has property 〈200, 400, 600〉, that is, the
represented quarter has these book sales for its individual months.

Thus, this triple of a reproductively established family A of representational
acts, a set � of semantic constraints on it, and a set N of normal acts relative
to this set of semantic constraints can be considered a system that supports
information flows from representations and targets. We call such a triple a rep-
resentation system.

Given a representation system R, we denote R’s family of representational
acts with AR, R’s semantic constraints with �R, and R’s normal set of repre-
sentational acts with NR. We write σ �R τ to indicate the holding of a semantic
constraint from property σ of representational objects to property τ of targets.

Generally, for every member c of AR, if c is a member of NR, σ �R τ is
a constraint in �R, and c’s representing object has property σ, then it follows
that c’s target has property τ . When this happens, we say that c’s representing
object carries information τ about c’s target in representation system R.

The specification NR of normal representational acts in a representation sys-
tem R lets us define accuracy of representation in a rather strict manner. Fol-
lowing Barwise and Seligman [1], we call a representation accurate in R if and
only if it is produced by a normal representational act in R, that is, by a mem-
ber of NR. This definition is strict in that it excludes representations produced
by abnormal representational acts even if they happen to satisfy the semantic
constraints �R.
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3 A Multitude of Representation Systems

This paper set out by asking the following questions. How can people read off
true pieces of information from a false diagram? What is the logical ground
on which such reading practices yield truths on a regular basis? The view of
representation described in the last section provides natural answers to these
questions.

3.1 Derivative Semantic Constraints

Figure 3a shows system R1 of bar charts that we have been using as our running
example. The long closed curve demarcates c1, . . . , c5 as normal representational
acts in this system. The semantic constraints for R1 are listed in the upper right
area.

(a) (b) (c)

Fig. 3. Three representation systems, R1–R3, based on the same family of representa-
tional acts

It is well known that diagrams can carry meanings beyond those directly
warranted by their basic semantic conventions. For example, a bar chart can
mean that the book sales are increasing, decreasing, or neither by having the
heads of its bars in an ascending, descending, or neither pattern. These meanings
are clearly different from more basic meanings of the bar chart that specify the
sales amounts of individual months. A two-dimensional scatter plot can exhibit
the degree of correlation of two quantitative variables, which are different from
more basic meanings it carries about the values of individual data points on the
relevant variables. Extraction of these extra meanings from diagrams have been
variously conceived by researchers as “global reading” [7], “macro reading” [13],
and “direct translation” [6].

Shimojima [8] investigated this phenomenon in detail, and showed that it
extends to a wide variety of diagrams, including line graphs, iconic tables, and
connection maps. He also demonstrated that the extra meanings that a diagram
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carries are due to a meaning relation that holds as a logical consequence of basic
semantic conventions. We formalized Shimojima’s analysis in [10].

In our present terminology, Shimojima’s analysis means that a new set of
semantic constraints can hold as a logical consequence of basic semantic con-
straints. And indeed this is so. The fact that actors strive to maintain a collec-
tion of semantic constraints in their representational acts leads, in fact, to them
maintaining many additional constraints too.

Consider for example the set of constraints 3, that asserts that the length of
the first and third bars in one of our bar charts are in appropriate proportion to
the number of sales in the first and third months of the quarter.

(3) The representing object has length m1, m3 cm for the first and third bars
only if its target has sales amounts 100×m1 for the first month and 100×m3

for the third month.
(4) 〈m1, ∗,m3〉 � 〈100 × m1, ∗, 100 × m3〉.

It is an immediate consequence of the attempt to maintain the basic con-
straints 1, that these constraints will also be maintained. That is, if a represen-
tational act conforms to the set of basic constraints 1, then this act necessarily
conforms to the to the set of constraints 3. Consequently, derivative meanings for
the representations produced in this practice will necessarily arise. Specifically,
this derivative meaning yields the ability to perform a partial reading of the bar
chart involving only the first and last bar of that chart, and to thereby extract
true information from Fig. 1c.

Abstract readings arise in the same way, because of the maintenance of other
constraints that follow from the basic constraints that actors in the representa-
tional practice strive to maintain. Consider, for example, the set of constraints 5.

(5) The bars increase/decrease in length from left to right in the representing
object only if sales are increasing/decreasing in the target.

(6) ascending � increasing, descending � decreasing, neither � neither.

This set of constraints is maintained as a consequence of maintaining the
basic semantic constraints, and result in the ability to read trend data from a
bar chart.

3.2 Switching Between Representation Systems

Because of the extensive presence of derivative sets of semantic constraints, we
can make use of a different set of semantic constraints, either basic or derivative,
depending on what target issues we are interested in. For example, if our target
issue is how many more books are sold in January than in March, we can make
use of set (4) of semantic constraints to read off relevant information from the
given bar chart; if our target issue is trend data for the book sales in a quarter,
we can make use of set (6).

Remember that we have defined a representation system as the triple of
a reproductively established family of representational acts, a set of semantic
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constraints on it, and a set of normal representational acts relative to this set of
semantic constraints. So, the co-existence of multiple sets of semantic constraints
on a family of representational acts implies that multiple representation systems
are established by that family. Figure 3 compares the original representation
system R1 with the representation systems featuring derivative sets (3) and (6)
of semantic constraints. We call these systems R2 and R3, respectively.

Figure 3 makes it clear that the switch of the sets of semantic constraints
discussed above amounts to a switch of representation systems. While working
with the same bar chart, say with s3 produced by act c3, we can switch rep-
resentation systems, from R1 to R2 and to R3 and so on, depending on what
target issues we are concerned with. The co-existence of multiple representation
systems makes a single diagram a flexible tool to explore different sets of issues.

However, it is one thing that multiple representation systems are made avail-
able as derivatives of a basic representation system, and it is another that we can
actually utilize those systems. Here, we wish to only point out the former. The
latter heavily depends on the user’s perceptual and conceptual abilities, and as
such, it is the subject of careful empirical investigation in cognitive psychology.
The use of system R3, for example, requires an ability to perceive an increasing
or decreasing shape among bars, and an ability to recognize the logical relation
between these shapes and sales trends.

3.3 Relativity of Normality

Let us now turn to the sets of normal representational acts in R1–R3. For the
purpose of answering the main questions in this paper, the crucial fact is that
what counts as a normal act is relative to the set of semantic constraints it
is assessed against. Compare the sets of semantic constraints for R1 and R2. In
order for the constraints for R1 to hold, a representational act must be conducted
with a rather high level of care for precision, in the information collection phase
for the sales amounts of individual months, in editing the collected data, and in
drawing a chart with all bars in exact lengths. Thus, an act performed without
sufficient care for these matters would not support the semantic constraints for
R1, for there is a real possibility that it would violate one of the constraints,
say by producing a chart with bar lengths 〈2, 5, 8〉 while its target quarter has
sales amounts 〈200, 400, 800〉. The representational act is a reproduction of some
previous act in family AR1 , yet the reproduction process is not good enough to
support the constraints �R1 and is therefore deemed abnormal in system R1.

Now the same act, performed in exactly the same way, may be good enough
when assessed against a different set of semantic constraints. Consider �R2 for
example. Even though the level of care for precision taken in this act is not
sufficient to prevent the errors in the lengths of all individual bars, sufficient
care may be taken for the lengths of the first bar and the third bar. And if
a representational act is performed with the latter level of care but not with
the former, it is qualified as normal in representation system R2 but is not so
qualified in system R1. Figures 3a and b illustrate this kind of situation. One
and the same act, c6, is demarcated as normal in Fig. 3b but not in Fig. 3a.
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A similar situation holds between systems R1 and R3, but for a different kind
of reason. Figures 3a and c show act c7 is normal in system R3 but not in system
R1. A representative reason for this to occur is that an act, say c7, is performed
with insufficient care with respect to all of the months in the target quarter and
all of the bars in the chart, but not with respect to the relative lengths of the
bars. Act c7 thus supports set �R3 of constraints and is qualified as normal in
system R3. Yet, since c7 uses insufficient care in handling the absolute lengths
of the bars it may well produce a chart with bar lengths 〈2, 5, 8〉 while its target
quarter has sales amounts 〈100, 400, 700〉. This possibility disqualifies c7 for a
normal act in system R1. Note that the same possibility also disqualifies c7 for
a normal act in system R2, for it would mean that the act may produce the first
and second bars with incorrect absolute lengths. Figure 3b therefore excludes c7
from the normality curve.

We saw in Sect. 3.2 that multiple representations systems with different sets
of semantic constraints can co-exist on the same family of representational acts.
What we have just seen is that those multiple systems can have different sets of
normal representational acts, too.

An immediate consequence of this observation is that one and the same dia-
gram can be a perfectly accurate representation of its target in one representation
system, while it is an inaccurate representation of the same target in another. If
the representational act that produces it is like c6, the diagram is an inaccurate
representation of its target in representation system R1, since c6 is abnormal in
R1. But this only means that c6 is not good enough to support the particular
set of semantic constraints in R1 and that the diagram accordingly carries no
information in this particular representation system. In place of these, the act
does support the semantic constraints in R3 and the diagram can carry genuine
piece of information in this representation system.

The situations we discussed in the introduction to this paper can be analyzed
as the occurrence of such a system switch in diagram reading. Even when a
bar chart is inaccurate in the sales amounts of individual months, it does not
have to (or even should not) stop us reading off other pieces of information
from the chart. There are other representation systems defined on the family of
representational acts that produces the chart, and the chart can be a perfectly
accurate representation of the target in some of them. Depending on the target
issues we are interested in, we can make use of such a system to read of genuine
piece of information. Reading off a general trend of sales is one example. Reading
off only the sales in January and March is another. We can thus read off truths
from a false diagram. And we can do so reliably, since whatever representation
systems we take, it guarantees valid information flows of its own kind.

Given physical quantities such as lengths of bars and areas of pies are on
continuous scales, it is next to impossible to adjust them exactly to indicate the
particular values that the target objects have. Thus, a majority of statistical
charts used in everyday life are doomed to be inexact in their bars’ lengths,
pies’ areas, and other important quantities. In this regard, most geographical
maps and drawings of physical objects are also inexact. The theory presented
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in this paper may be applied to explain why we nevertheless can keep using
them. In many cases, our target issues are elsewhere than what those quantities
may indicate, and dedicated representation systems are established under which
those diagrams can usefully our target issues. However, a full account of the
phenomenon would require significantly more elaboration.1

4 Discussion

We have shown that the view of representation described in Sect. 2 could be
used to account for the common practice of extracting true information from
false diagrams. In this section, we stop to consider exactly what aspects of this
view let us account for the usefulness of false diagrams. We will show that this
derives from the move of the semantic theory to incorporate production processes
of representations in its scope.

As far as we know, every systematic semantic theory of diagram has some
notion of truth for diagrams, either explicitly or implicitly. Model-theoretic
semantics, applied to diagrams in such work as [2,3], is a quintessential exam-
ple. It offers a formal definition of what makes a diagram true in a model or
structure.

These semantics formally define the “truth-conditions” of a diagram by spec-
ifying the range of set-theoretic structures (models) that satisfy it. Although the
truth of a diagram is thus relativized to particular structures it is evaluated in,
once the structure is fixed, either it is completely true or completely false in it.
We call such theories “holistic”, since they consider diagrams as a whole.

With this rather straightforward notion of truth, holistic theories do not make
any room for extracting information from a false diagram, even though it is one
of our common reading practices. And that is to be expected, as this semantic
theory is designed to capture something else (typically, the consequence relation
among diagrams), not our common reading practices.

Other semantic theories discuss individual properties of diagrams, not just
whole diagrams, and thus imply more fine-grained notion of truth. In her analy-
sis of Venn diagrams for example, Shin [11] distinguishes multiple “representing
facts” that hold in a Venn diagram. For example, the following are two repre-
senting facts that can simultaneously hold in a Venn diagram:

(7) the intersecting region of the circles labeled “A” and “B” is shaded.
(8) the complement region of the circle labeled “A” relative to the circle labeled

“B” has a symbol “x”.

In Shin’s system, shaded regions represent emptiness, while the presence of
an “x” in a region indicates non-emptiness. If both A ∩ B and A − B are in
fact empty, then we can say that the Venn diagram is true with respect to
representing fact (7), while it is false with respect to representing fact (8). Thus,

1 We thank an anonymous reviewer for drawing attention to the issue of apparent
ubiquity of inexact diagrams.
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the truth of a diagram can be relativized to individual representing facts that
hold in the diagram.

The semantic framework used in Shimojima [8] also posits meaning-carrying
properties of diagrams (called “source types”) as distinguished from diagram
tokens, and the notion of “meaning-carrying relationship” used by Stapleton and
her colleagues also captures the same idea, [12]. Thus, these theories also support
a notion of truth attributed separately to individual properties of diagrams. Let
us call these semantic theories that distinguish meaning-carrying properties of
diagrams from diagram tokens “granular theories” for ease of reference. Granular
theories of truth allow for a holistic semantics, since a diagram can be considered
holistically true if it is true with respect to all of the representing facts in the
diagram, but they go beyond it.

With this more fine grained notion of truth, granular theories allow us to
extract information from diagrams on an issue-by-issue basis, and therefore
enable the extraction of true information from diagrams that would be consid-
ered false by a holistic theory. Granular theories allow us to pick a true property
of the given diagram (e.g., representing fact (7) above) and interpret it to obtain
true information (A ∩ B = ∅) even though the diagram is partially false because
of the presence of a false property (representing fact (8) above).

Although a granular theory of diagrams allows us to read true information
from a holistically false diagram, it is silent about why a single representation can
have both properties that represent true information and those that do not. Yet,
we often distinguish some of the former from the latter more or less accurately,
and use them to extract true information. This is an indication that some key
ingredients are still missing from the existing granular theories for them to do
full justice to our reading practice.

For this we turn to another aspect of our theory. The concept of represen-
tational act allows us to model the process by which a diagram is produced—
including the process of information collection and editing, as well as the physical
production of the diagram token. Individual sets of semantic constraints provide
individual standards against which the process is assessed for normality, and
this serves as the index of accuracy of the diagram for a particular set of target
issues. Our concept of accuracy, inherited from [1], refers to the character of a
diagram determined in this way, with reference to its production process.

From the point of view of a reader seeking to learn true information about
some issue from a diagram, we must examine the process by which the diagram
was created. We can then evaluate whether that process is reliable with respect to
our issue, and then extract information from the relevant parts of the diagram. A
diagram that is useful to us is one that has been produced by a reliable process
(one which involves normal representational acts), with respect to our target
issue.

It is a strength of our theory that it models the process by which repre-
sentations are produced, by making representational acts first-class objects in
the theory. In our theory, diagrams are not simply pre-existing artifacts to be
used, but are the product of human processes which can themselves be subject
to analysis.
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Of course, in practice the consumers of representations typically do not have
access to the process by which a representation is produced. If we had full knowl-
edge of the complete process then we would likely have direct information about
the facts concerning the target issue itself. In real life, other factors stand as
proxies for knowledge of the process of production. Does the producer of this
representation have access to the target data that it is representing? Does this
producer have a track-record of producing accurate representations? Is the pro-
ducer willing to discuss the methods by which they produced the representation?
Among a host of many similar questions. These are questions which generally
fall under the category of media-literacy, and are fundamental to our selection
of information to be used.

5 Conclusion

In this paper we have presented a semantic theory of diagrammatic representa-
tion that has novel desirable features. Our theory begins with a conception of
representation systems as emerging from representational practices. These prac-
tices are carried out by people, and as such are susceptible to error. The theory
therefore must take seriously the possibility of representations which are inac-
curate. But, we observe, diagrammatic representations can be inaccurate with
respect to some readings, but not with respect to others. That is, it is possible
to avoid, or abstract away, inaccurate aspects of the representation and extract
true information from such a representation.

The explanation for this ability emerges naturally from the theory. The crit-
ical component of the theory is that actors within the representational prac-
tice strive to maintain certain constraints that relate the represented object to
its representation. Primary among these constraints are those which allow true
information to be obtained from representations when read according to estab-
lished conventions. But the maintenance of a collection of basic constraints can
necessarily involve the maintenance of other derivative constraints. Our theory
therefore naturally models the common feature of diagrammatic representations
known as derivative meaning.

As derivative meanings arise naturally from the theory, so too do the opportu-
nities for partial and abstract readings of the representations. Each set of derived
constraints allow us to read the representations in a new way. One and the same
representation can be read using different information channels, and these chan-
nels allow the extraction of different information from that representation. In
particular, some information channels can allow us to read just a part of the
diagram, to obtain information about part of the target. Similarly information
be obtained at different levels of abstraction.

Consequently, the theory models the possibility of obtaining true information
from inaccurate diagrams by recognizing the possibility of information channels
that do not consider the parts of the representation that is erroneous (partial
reading), or channels which extract abstract information so as to render errors of
precision irrelevant (abstract reading). The existence of these channels account
for the ability to extract true information from false diagrams.
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Finally then, our theory is distinguished from other semantic theories of dia-
grams by its focus on the reliability of a representation relative to a particular
set of target issues rather than in absolute terms. Our theory models the possi-
bility that a diagram may be used to reliably obtain information about one set
of issues, but not about another within the same domain.
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Abstract. Choosing effective representations for a problem and for the
person solving it has benefits, including the ability or inability to solve
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us insight into how and why we can select representations which are
appropriate for both the task and the user.
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1 Introduction

A given problem can be represented in a variety of ways, and the choice of
representation determines whether it can be solved at all, as well as influences the
performance of problem solvers—either helping or hindering them. It is up to the
problem solver to represent the problem appropriately before solving it. Likewise,
in a tutoring setting, it is up to the tutor to select an effective representation for
a given audience. But what is an effective representation, and how can we tell it
apart from a bad representation?

The quality of a representation is a confluence of many factors [2,4], including
whether it expresses the necessary information, makes this accessible, enables
useful inferences, and reduces the search space for the problem solver. Many of
these factors are user-dependent; some representations may be ideal for expert
users, but not for novices, and vice-versa. The ultimate goal of our research is to
understand what makes an effective representation, computationally model this
analysis, and thus enable the automation of representation selection.
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In previous work we introduced a language [9] for encoding the properties
of representational systems, in addition to correspondences between them [11].
The purpose was to calculate an informational measure, which, given a problem,
estimates the likelihood that the important information for this problem can be
expressed in any given representational system. In subsequent work we imple-
mented algorithms for computing cognitive measures of representations. Calcu-
lating these measures requires a richer and more structured language, which we
incorporated in our framework. Specifically, we introduced attributes which allow
us to encode structural information and more detailed descriptions of the rep-
resentation’s components. In this paper we illustrate through examples how to
use our language (including its new additions) to describe representations in the
framework. Moreover, we demonstrate how the framework can be used for rep-
resentation selection based on informational and cognitive measures. Our work
provides novel and general computational methods for assessing and compar-
ing sentential and diagrammatic representations that are formal and informal,
general and specialised; and could thus be used for making AI systems more
human-like and adaptable to the user. An Appendix for this paper can be found
at https://sites.google.com/site/myrep2rep/publications/dissecting.

2 How to Describe Representations?

The fundamental objects that our framework aims to describe are representa-
tional systems (RSs). For example, Arithmetic Algebra forms an RS in which
expressions are constructed using tokens (e.g., x, 0,+,=,≤) with some gram-
matical constraints (e.g., = needs to be filled with expressions of the same
type), and its expressions can be manipulated according to some rules (e.g.,
x + 0 ≤ y can be rewritten as x ≤ y). Moreover, our framework also describes
concrete instances of representations, such as problem formulations. For instance,
the problem in Arithmetic Algebra: assuming 0 < x and x · y = 0, prove y = 0.

2.1 Representational Systems and Problems

We characterise a representational system (RS) by its formal components: its
tokens, expressions (which we capture by patterns), types, tactics, and laws. A
component can have attributes, specified as a record of features associated with it.
We introduced these concepts (excluding attributes) elsewhere [9], so here we only
provide a brief explanation: tokens are atomic symbols from which expressions are
built. Patterns are abstractions of expressions; and their attributes encode struc-
tural information (e.g., how expressions can be nested in one another). Types are
a grammatically meaningful classification of expressions (e.g., the type of π + 4 is
real), tactics are the possible manipulations and inferences within the system (e.g.,
applying the modus ponens rule), and laws are the rules or units of knowledge that
enable some manipulations and inferences to be made.

A representational system is a general tool for representing many things, but
we are particularly interested in its use for representing problems. In this paper
we demonstrate how (four) different representations of the same problem can

https://sites.google.com/site/myrep2rep/publications/dissecting
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be dissected and evaluated by the tools that our framework provides. We chose
to focus our analysis primarily on two RSs. The first (Bayesian) is a standard
formal notation for conditional probability, and the second (PS diagrams) is a
novel diagrammatic notation for probability, which has been shown to improve
students’ problem solving and learning [3].

Problem (Lightbulbs). There are two lightbulb manufacturers in town. One
of them is known to produce defective lightbulbs 30% of the time, whereas for
the other one the percentage is 80%. You do not know which one is which. You
pick one to buy a lightbulb from, and it turns out to be defective. The same
manufacturer gives you a replacement. What is the probability that this one is
also defective?

The problem is presented in English (NL: Natural Language), which we do not
analyse here, but results for its informational and cognitive measures are shown
in Sect. 3. An analysis of the NL formulation can be found in Appendix.

Representation 1 (Bayesian). Denote the manufacturers as a and b. Let d1
and d2 be the events of the first and second lightbulbs being defective, respectively.
Clearly, d2 is conditionally independent of d1 given the choice of manufacturer.

Assume: b = ā (1)
Pr(a) = Pr(b) (2)
Pr(d2 | x ∩ d1) = Pr(d2 | x) for x ∈ {a, b} (3)
Pr(d1 | a) = Pr(d2 | a) = 0.3 (4)
Pr(d1 | b) = Pr(d2 | b) = 0.8 (5)

Calculate: Pr(d2 | d1).

Some notable tokens here are Pr, |, ∩, a, b, d1, d2. Some features of these tokens
can be encoded by attributes. For instance, we write

token a :{type := event, occurrences := 5}
to indicate that a is a token with type event, and that it occurs 5 times in
this specific representation. Moreover, we can assign more complex types, such
as event × event → real to Pr. In our framework this implies that there is a
pattern, associated with the token Pr, encoded as follows:

pattern patt(Pr) :{type := real, holes := [event2], tokens := [Pr, |, (, ) ]}
Intuitively, patt(Pr) represents the expressions of the shape Pr( | ). The decla-
ration above means: first, that these expressions have type real; second, that they
are formed by plugging in two expressions of type event into the holes; and third,
that they necessarily use each of the tokens Pr, |, (, and ). In our implementation,1

every pattern associated with a token (of nontrivial type) is generated automati-
cally, such as for ∩, =, and ∈.
1 https://github.com/rep2rep/robin.

https://github.com/rep2rep/robin
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Our framework can also encode inferential aspects (use of tactics and laws),
which we illustrate by analysing the solution below.

Solution (Bayesian). Amongst other things, use the law of total probability
(LTP), de Finetti’s axiom of conditional probability (dF), Bayes’ theorem (BT),
arithmetic calculation (calc). For conciseness we show only a part of the solution:

Pr(d2 | d1) = Pr(d2 ∩ a | d1) + Pr(d2 ∩ b | d1) (by LTP, asm 1)

= Pr(d2 | a ∩ d1) Pr(a | d1) + Pr(d2 | b ∩ d1) Pr(b | d1) (by dF)
...

=
0.3 · 0.3 + 0.8 · 0.8

0.3 + 0.8
≈ 0.663 (by calc)

Every step in this solution can be characterised as an application of the tactic
rewrite, or an arithmetic calculation. This, and more information (e.g., how many
times each tactic is applied) can be encoded by attributes, as follows:

tactic rewrite :{occurrences := 18, inference type := substitution,

law params := 1, pattern params := 1}
tactic calculate :{occurrences := 1, inference type := calculation,

law params := 0, pattern params := 1}
Foreshadowing what this means in terms of the cognitive cost of using this rep-
resentation, calculation is in principle a more complex operation, but rewriting
has a larger contribution to the breadth of the search space because it can be
applied in many ways depending on the laws at hand.

Representation 2 (PS diagrams). Below, labelled segments represent events
and their lengths represent their probability. The ratio that needs to be calculated
is that of the thicker line relative to the space between the thick delimiters.

first
trial

second
trial

target
result

a b
d d

a b
d d

For first trial a = b.

For both trials:
d/a = 0.3
d/b = 0.8

This representation has some important characteristics (segments, delimiters,
proportions, etc.) that need to be captured in our description. Amongst others,
some tokens are the horizontal segments (thin and thick), the vertical marks
(thin and thick) and the vertical lines. Emergent components, such as a seg-
ment formed by two colinear segments, relations between components, or values
thereof (e.g., length), can be expressed as patterns:

pattern joint segments : {type := segment, holes := [segment2], . . .}
pattern aligned segments : {type := relationship, holes := [segment2], . . .}
pattern relative length : {type := real, holes := [segment2], . . .}



148 D. Raggi et al.

Patterns also allow us to represent emergent gestalt items. For instance, the
‘segment’ in between the 2 target delimiters can be encoded by:

pattern segment from delimiters :{type := segment,

holes := [delimiter2], . . .}

We proceed to analyse the inferential aspects of this representation by looking
at a solution.

Solution (PS diagrams). The length of the segments labelled d in the second
trial must be 0.3·0.3·x and 0.8·0.8·x where x is the length of a (and b) in the first
trial. Moreover, the length between the target delimiters must be 0.3 · x + 0.8 · x.
Thus, the desired ratio is 0.3·0.3·x+0.8·0.8·x

0.3·x+0.8·x . This yields ≈0.663.
This solution is quite condensed because each inference relies on mere obser-

vations which are possible as an immediate consequence of having represented
the assumptions [10]. Here we assume observations apply to patterns; e.g.,
observing the relative length is obtaining the real number that represents such
relation. We can capture the notion of observation as a tactic:

tactic observe :{occurrences := 10, inference type := observation,

pattern params := 1, law params := 1, . . .}

Finally, the sequence of observations leads to a ratio that the user still needs to
calculate, so we need a calculation tactic similar to the Bayesian RS.

So far we analysed one sentential and one diagrammatic representation. We
hope this demonstrates that our language is simple yet expressive. Below, we
give alternative representations under consideration, but without analysis.

Representation 3 (Areas). In the figure, regions represent events, and their
relative areas represent the corresponding probabilities. Solution in Appendix.

a b

1

0.3

0.
3

0.8

0
.8

Calculate the ratio of
against .

Representation 4 (Probability trees). In the rooted tree below, the values
of edges represent conditional probabilities and the values of the nodes represent
the joint probability of the nodes in the path. Solution in Appendix.
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a b

d ¬d

d ¬d d ¬d

d ¬d

d ¬d d ¬d

0.5 0.5

0.3 0.8

0.3 0.8

Calculate the ratio
of the values of the
nodes enclosed in
against the values of
the nodes enclosed
in .

2.2 Writing RS and Q Descriptions

The example RSs above demonstrate the expressiveness and intuitions behind
the components of our framework. But, what should the end result of analysing
representations look like?

An RS description is a collection of meaningful components of an RS: it
must include tokens that typically appear in the instances of such an RS, and
patterns, laws and tactics that are relevant for using such an RS. Similarly, a
Q description (Q for question) is a collection of meaningful components of a
problem representation in some specific RS that the question is posed in. Each
component in a Q description must have an importance [9] value associated with
it, encoding how informative this component is for finding a solution (defined in
the interval between 0 for noise and 1 for maximal relevance; we use colours for
discretised values). A longer discussion of importance can be found in Appendix.

See Fig. 1 for two RS descriptions, and Fig. 2 for a Q description (organised
in a hierarchy of 4 importance values, where purple is the most important).

Bayesian
types event, real, formula, proof

tokens = : {type := α × α formula},

Pr : {type := event × event real,
tokens := [ | .(.) ]},

∩ : {type := event × event event},

Ω : {type := event}, . . .

patterns equality chain : {type := proof,

holes := [ α
O(log n)

],

tokens := [=]}, . . .

tactics rewrite : {inference type := subst, . . .},

calculate : {inference type := calc, . . .},

lemma : {inference type := match, . . .}
laws LTP, dF, BT, . . .

PS diagrams
types segment, vertical guide, delimiter, real

tokens $outcome segment : {type := segment},
$target delimiter : {type := delimiter},
$target segment : {type := segment}, . . .

patterns joint segments : {type := segment,

holes := [ segment2 ]},

relative length : {type := real,

holes := [ segment2 ]},
. . .

tactics observe : {inference type := obs, . . .},

calculate : {inference type := calc, . . .}
laws MNR, EAS, LADJ, . . .

Fig. 1. Snippets of Bayesian and PS diagrams RS descriptions. Note the prefix $ to
specify that this is a label for a non-unicode token.
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Lightbulbs in NL

answer type ratio
types number,event
tokens probability : {type := N, occurrences := 1},

% : {type := number ratio, occurrences := 2}
patterns sequential events : {type := relationship, holes := [event2], . . .},

conditionally independent events : {type := relationship, holes := [event2], . . .}
tokens 30 : {type := number, occurrences := 1},

80 : {type := number, occurrences := 1},
percentage : {type := N, occurrences := 1}

tokens lightbulb : {type := N, occurrences := 2},
defective : {type := N, occurrences := 3},. . .

patterns SfromNPandVP : {type := S, holes := [NP, VP],. . . }. . .

Fig. 2. A section of the Q description of the Lightbulbs problem in NL.

3 Evaluating Representations

We can use RS and Q descriptions to compute important measures: informa-
tional suitability (presented in [9]), and cognitive cost.

The Informational Suitability (IS) of an RS, r, given a problem q is the sum of
the strengths of analogical correspondences [11] between components that match
the source q and the target r, modulated by the importance of said components:

IS(q, r) =
∑

〈a,b,s〉∈C

s · importanceq(a). (6)

It computes the extent to which an RS can express all the relevant parts of the
problem at hand. For the Lightbulb problem with 5 candidate RSs the results
are shown below:

RS Bayes PS diag. Areas Pr-trees NL

Score 7.9 7.5 7.2 6.6 6.3

The Cognitive Cost encodes the RS’s processing cost to the user, and is
calculated by computing a set of properties of the representation, all of which
can be estimated by values computed from Q descriptions (out of the scope of this
paper). These properties are based on established cognitive science concepts [1,6–
8,12,13], presented schematically in Fig. 3.

Each of the properties is associated with a cognitive process, and thus a
cognitive cost. Moreover, the user is modelled by their expertise [5], which is
accounted for in two ways: by flattening importance (to model that a novel
user cannot distinguish between important and unimportant properties), and by
inflating the cost of higher-level cognitive processes. Given a Q description for
a problem q, the costs for each cognitive property p and user u are calculated,
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token expression whole
registration

semantic
encoding

inference

solution

registration

number of types
concept mapping

subRS variety

quantity
scale

expression complexity
inference type branching factor

solution depth

Fig. 3. Cognitive properties organised according to granularity (columns) and cognitive
process level (rows).

normalised, and weighted by an expertise factor cp(u). The values for all p are
summed to obtain a total cost.2

Cost(q, u) =
∑

p

cp(u) · normp(costp(q, u)). (7)

See the rankings of RSs according to their estimated cognitive cost for the Light-
bulb problem, for three different users:3

Bayesian PS diag Areas Pr trees NL

Expert Avg. Novice 1 2 4 4 1 1 2 3 2 5 4 3 3 5 5

The main contributing factor to the differences in rankings between novices
and experts comes from the cognitive costs associated with high granular-
ity properties, for example: branching factor and solution depth. Because the
weights associated with these costs scale with expertise, a representation like
the Bayesian representation is penalised more heavily here for novices than for
experts (dropping from first to fourth). Conversely, we see the Areas and PS
diagrams representations have relatively low values in these cognitive costs, and
as such are less penalised for novice users.

4 Conclusion and Future Work

We demonstrated our computational framework for analysing representations
by explicitly constructing RS and Q descriptions for a particular problem and
a number of candidate alternative representations. These descriptions serve as
input to compute informational and cognitive measures of the suitability and the
cost of using a representation by a particular user. Q and RS descriptions need
to be built by an expert analyst; this includes decomposing into components,
2 These calculations rely on parameters whose values we gave provisionally based on

the literature, but which need to be tuned based on empirical data.
3 The costs, broken down per cognitive property, can be found in appendix.
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assigning importance and attributes to components, setting up correspondences
with their strengths, and tuning the parameters of cognitive properties based on
empirical data. Current and future work involve operationalising the process of
obtaining descriptions and carrying out user studies for parameter tuning.

The generality of our approach makes our framework potentially useful for
a variety of endeavours: from multi-representational tutoring systems, to user-
sensitive interactive theorem provers. The ability to consider the user allows the
framework to be deployed across many domains varying in their level of spe-
cialisation. The framework’s descriptions are computation-friendly, creating an
opportunity for diverse, diagrammatic representations to be evaluated and sub-
sequently implemented in domains where sentential representations dominate.
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Abstract. Traditionally, most schematic metro maps as well as metro
map layout algorithms adhere to an octolinear layout style with all paths
composed of horizontal, vertical, and 45◦-diagonal edges. Despite growing
interest in more general multilinear metro maps, generic algorithms to
draw metro maps based on a system of k ≥ 2 not necessarily equidistant
slopes have not been investigated thoroughly. We present and imple-
ment an adaptation of the octolinear mixed-integer linear programming
approach of Nöllenburg and Wolff (2011) that can draw metro maps
schematized to any set C of arbitrary orientations. We further present a
data-driven approach to determine a suitable set C by either detecting
the best rotation of an equidistant orientation system or by clustering
the input edge orientations using a k-means algorithm. We demonstrate
the new possibilities of our method in a real-world case study.

1 Introduction

Metro maps are ubiquitous schematic network diagrams that aid public transit
passengers in orientation and route planning in almost all types of urban public
transit systems worldwide. Since Henry Beck’s classic schematic London Tube
Map of 1933, metro maps have developed a common visual language and adopted
similar design principles. Designing professional metro maps is still mostly a
manual task today, even if cartographers and graphic designers are supported
by digital drawing tools. Algorithms for automated layout of metro maps have
received substantial interest in the graph drawing and network visualization
communities as well as in cartography and geovisualization over the last 20
years [9,14]. The vast majority of metro map layout algorithms focus on so-
called octolinear (sometimes also called octilinear) metro maps, which are limited
to Henry Beck’s classical and since then widely adopted 45◦-angular grid of
line orientations [4]. However, not all metro maps found in practice are strictly
octolinear. There is empirical evidence from usability studies that the best set
of line orientations for drawing a metro map depends on different aspects of the
respective transit network, and it may not always be an octolinear or even an
equiangular one [12,13].

In this paper we present an algorithmic approach using global optimization
for computing (unlabeled) metro maps in the more flexible k-linearity setting,
c© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 153–161, 2020.
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where each edge in the drawing must be parallel to one of k ≥ 2 equidistant
orientations whose pairwise angles are multiples of 360◦/2k. In this sense, a
k-linear map for k = 4 corresponds to the traditional octolinear setting. In
fact, most octolinear maps use a horizontally aligned orientation system. It is
possible though, for some transit networks and city geometries, that a rotation
of the orientation system by an angular offset yields a more topographically
accurate metro map layout. Hence we also consider such rotated k-linear maps. In
addition to equiangular k-linear orientation systems, we further study irregular
multilinear (or C-oriented) maps [12], in which the edges are parallel to any
given, not necessarily equiangular set C of orientations. There exist a number
of metro map layout algorithms (see [9,14,15] for comprehensive surveys) that
would technically permit an adaptation to a different underlying angular grid, yet
most previous papers optimize layouts in the well-known octolinear setting only
and do not discuss extensions to different linearities explicitly. A few algorithms
for generic multilinear or k-linear layouts exist [1,2,5,6], but they are aimed at
paths or polygons rather than entire metro maps. In the field of graph drawing
many algorithms for planar orthogonal network layouts with k = 2 as well as for
polyline drawings with completely unrestricted slopes are known [3], but they
do not generalize to k-linearity and multilinearity.

Contributions. We present two approaches for deriving suitable, data-dependent
linearity systems (Sect. 3). Then we adapt the octolinear mixed-integer linear
programming (MIP) model of Nöllenburg and Wolff [10] by generalizing their
mathematical layout constraints to k-linearity and multilinearity (Sect. 4). The
main benefit of this model in comparison to other approaches is that it defines
sets of hard and soft constraints and guarantees that the computed layout sat-
isfies all the hard constraints and (globally) optimizes the soft constraints. The
trade-off for providing such strong quality guarantees is that computation time
is typically higher compared to other methods [15]. By modeling fundamental
metro map properties such as strict adherence to the given linearity system and
topological correctness as hard constraints, we obtain layouts that satisfy these
layout requirements strictly. The soft constraints optimize for line straightness,
compactness, and topographicity [11], i.e., low topographical distortion. Our
modifications yield a flexible MIP model, whose complexity measured by the
number of variables and constraints grows linearly with the number of orienta-
tions k. We demonstrate the effect of horizontally aligned and rotated k-linear
and multilinear orientation systems in a case study with the metro map of Vienna
and evaluate the resulting number of bends and angular distortions for typical
small values of k = 3, 4, 5 (Sect. 5).

Due to space constraints, some details are omitted; these can be found in [7].

2 Preliminaries

We reuse the notation of Nöllenburg and Wolff [10]. The input is represented as
an embedded planar metro graph G = (V,E) with n vertices and m edges. Each
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(a) k = 2, irregular (b) k = 3, aligned (c) k = 4, regular (d) k = 5, regular

Fig. 1. Coordinate axes for different orientation systems. (c) includes a point with the
redundant coordinates p = (0, 1,

√
2, 1).

vertex v ∈ V represents a metro station with x- and y-coordinates and each edge
e = (u, v) ∈ E is a segment linking vertices u and v that represents a physical rail
connection between them. Finally, k ≥ 2 is an input parameter that defines the
number of available edge orientations in the orientation system C. The set C and
the parameter k can be part of the input or they can be derived automatically
from the input geometry, see Sect. 3. Figure 1 shows three examples of orientation
systems. Since every orientation can be used in two directions this yields 2k
available drawing directions. Let K be this set of 2k directions. We note that
every edge is assigned exclusively to an outgoing direction of its incident vertices,
which implies that the maximum degree Δ of G can be at most 2k. In turn, Δ
gives a lower bound on the required number of orientations.

The general algorithmic metro map layout problem studied in this paper is
to find a C-oriented schematic layout of G, i.e., a graph layout that preserves
the input topology, uses only edge directions parallel to an orientation from C,
and optimizes a weighted layout quality function (here composed of line straight-
ness, topographicity, and compactness). If C corresponds to a k-linear orientation
system, we also call the layout k-linear instead of C-oriented; otherwise it can
alternatively be called multilinear.

3 Orientation Systems

A set of edge orientations (or an orientation system) C = {c1, . . . , ck} is a set of k
angles (expressed in radian), where 0 ≤ c1 < · · · < ck < π. We distinguish three
different kinds of possible edge orientation sets. An edge orientation set C is called
regular (or equiangular) if the angles {c1, . . . ck} divide the range [c1, c1+π) into
k parts of equal size π/k, i.e., ci−ci−1 = π/k for all i ∈ {2, . . . , k}. Otherwise we
call C irregular. A regular orientation system C, in which c1 = 0 is called aligned.
A classical octolinear layout has the orientation system Co = {0, π/4, π/2, 3π/4}.

Regular (non-aligned) and irregular systems allow us to derive a suitable
system C from the geometric properties of the input data, with the goal to
minimize the topographic distortion of the layout compared to the input.



156 S. Nickel and M. Nöllenburg

We measure the distortion of C with respect to a metro graph G by summing
up the difference in slope between each edge e ∈ E (with slope γe (mod π)) and
the angle c ∈ C which is closest to γe as distG(C) =

∑
e∈E (minc∈C |c − γe|) .

3.1 Regular Orientation Systems

Fixing a single angle in a regular orientation system C fixes all other orientations.
It is therefore sufficient to specify the first orientation c1 ∈ C. We denote by Copt

a regular orientation system with minimal distortion, i.e., distG(Copt) ≤ distG(C)
for any k-regular orientation system C. We can show [7] that one can find such
an optimal system Copt, in which at least one c ∈ Copt is parallel to an input
edge. Thus we can restrict our search to orientation systems in C(E) = {C | ∃e ∈
E : γe ∈ C}, i.e., to orientation systems, where at least one orientation coincides
with the slope of an edge in E. The set C(E) contains O(|E|) elements and we
select Copt as the one yielding the minimum distG(C) for all C ∈ C(E).

3.2 Irregular Orientation Systems

In an irregular orientation system C with k orientations, each orientation can be
selected independently. We interpret the orientation system as a clustering of the
set Γ = {γe | e ∈ E} of all input edge slopes, where each cluster is formed around
the closest orientation in C. Our goal is to find a set C of k orientations (clusters)
that minimizes distG(C). To this end we apply the exact 1-dimensional k-means
clustering algorithm of Nielsen and Nock [8] to the set Γ . This algorithm has
running time O(n2k) using a precomputed auxiliary matrix as a look up table.

4 MIP Model

Next we sketch how the MIP model of Nöllenburg and Wolff [10] must be modi-
fied in order to compute more general C-oriented metro maps for an arbitrary set
C of k orientations. Hard constraints encode properties of a layout which can not
be violated. Soft constraints model the aesthetic quality criteria to be optimized
in the layout. The hard constraints of the MIP comprise four aspects: C-oriented
coordinate system, assignment of edge directions, combinatorial embedding, and
planarity. The soft constraints comprise line straightness, topographicity, and
compactness. Each requires a set of linear constraints and a corresponding lin-
ear term in the objective function. While almost all constraints require smaller
modifications, we focus here only on the coordinate system as the most central
change from the octolinear MIP model [10]. For our full MIP model see [7].

Coordinate System. Every vertex u of G has two Cartesian coordinates in the
plane R

2, specified as x(u) and y(u). In order to address vertex coordinates in an
octolinear system, Nöllenburg and Wolff [10] defined a redundant system of four
coordinates. To adapt this system for any number k of orientations, we define a
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system of k coordinates z0, . . . , zk−1, which are all real-valued variables in the
MIP model and can all be obtained by rotating the x-axis counterclockwise by
one of the angles in the orientation system C = {θ0, . . . , θk−1} ⊂ [0, π). We define
the coordinate zi(u) using x(u) and y(u) as zi(u) = cos (θi) ·x(u)+sin (θi) ·y(u).

In order to express that two vertices u, v are collinear on a line with a slope
in C, we need the orthogonal orientation zoi for each coordinate zi. Note that
while zoi can coincide with other coordinates, this is guaranteed only in a regular
orientation system with an even number of orientations. In general, this is not the
case and hence we define a second set of redundant coordinates, see Figs. 1a, 1b
and 1d. Using a rotation by π/2 we obtain zoi (u) = − sin (θi)·x(u)+cos (θi)·y(u).

All other constraints of [10] need to be adapted to comply with the newly
created coordinate system. For a full description of the modifications see [7].

5 Experiments

We performed experiments on real-world data to compare the computational
performance and visual quality of metro maps with different linearity systems.
Due to space constraints, we only present the results for the metro network of
Vienna. The full experimental evaluation can be found in [7].

5.1 Setup

We generated schematic layouts of the metro network of Vienna (n = 90,
m = 96), using aligned, regular and irregular orientation systems with k ∈
{3, 4, 5} orientations. All layouts were created with two different weight vectors
(f1, f2, f3) = (3, 2, 1) and (10, 5, 1) for the objective function1. For all layouts we
added planarity constraints on demand and concentrated on the overall layout
geometry and interchanges without showing the individual stops along the lines.

To judge the quality and performance of a layout, we use several measure-
ments. Firstly, the total number of bends in a layout as a measure of line straight-
ness. Secondly, the MIP allows an edge to be drawn in the direction closest to its
input direction (preferred) or one direction offset to the left or right (penalized in
the objective function). The sector deviation is a coarse measure of topographic-
ity, counting how many edges are not drawn in their preferred direction. Sector
deviation is measured in total and on average per edge. Another measure of topo-
graphicity is the angular distortion, i.e., the actual angular difference between
input edges and schematized output edges, which is measured on average per
edge. Finally, we measure the runtime in seconds.

The experiments were run as single threads on an Intel Xeon E5-2640 v4,
2.40 GHz, with 64 GB of available memory space, using IBM ILOG CPLEX 12.8.

1 f1 emphasizes line straightness, f2 the topographicity and f3 compactness of an
optimal layout.
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5.2 Results

The performance and quality measurements for the 18 different instances are
given in Table 1. Due to space constraints, we show only one representative set
of nine layouts for Vienna in Fig. 2 and omit the other nine layouts.

Table 1. Results for the Vienna network. The model parameters are the number of
available directions (k) and the orientation system (ori. sys.). The measures are the
number of bends, sector deviation total (sec. dev.) and per edge (p.e.), distortion per
edge (dist. p.e.) and the runtime in seconds.

k = 3 4 5

W
e
ig
h
ts

Ori. sys. Aligned Regular Irregul. Aligned Regular Irregul. Aligned Regular Irregul.

#bends 16 16 17 22 24 21 25 25 29

sec. dev. 27 27 13 21 18 17 24 24 21

�

p.e. 0.28 0.28 0.14 0.22 0.19 0.18 0.25 0.25 0.22

dist. p.e. 31.47 36.07 15.96 23.18 22.96 16.07 19.45 26.68 14.46(3
,
2
,
1
)

time [s] 308 349 8 108 116 299 69 217 113

#bends 16 16 15 19 19 19 25 25 29

sec. dev. 25 25 19 27 27 19 24 24 23

�

p.e. 0.26 0.26 0.2 0.28 0.28 0.2 0.25 0.25 0.24

dist. p.e. 31.18 33.5 17.76 25.19 23.53 16.35 19.45 26.68 15.01(1
0
,
5
,
1
)

time [s] 53 39 8 140 115 41 44 27 51

We refer to specific sets of instances by their number of orientations k or their
weights (f1, f2, f3). Our first observation from generalizing the octolinear MIP
model [10] is that the model size, i.e., the numbers of constraints and variables,
scales linearly with k. So as long as k is a (small) constant, the asymptotics with
respect to the graph size remain the same. Yet, in practice, doubling the size of
the model may yield a significant slow-down in the solution time.

Next we look at the visual effects of increasing k. The increase in bends
can be explained in part by an increase in unavoidable bends. The probability
that two consecutive edges in a metro line cannot be drawn in the same direction
decreases with increasing k; it could be counteracted by allowing more than three
sectors for each edge. Sector deviation increases (under an irregular orientation
system), but for aligned and regular systems, no trend emerges. Distortion seems
to decrease overall, since the maximally possible angle distortion for each edge
decreases. We would expect a greater runtime for an increasing k, however we
did not observe this for Vienna.

Next we compare the two different weight vectors. Unsurprisingly, we have
a similar or smaller amount of bends, when emphasizing bend minimization by
changing f1 = 3 to f1 = 10. This also (slightly) increases the angle distortion.
Sector deviation is on average slightly smaller for (3, 2, 1), where choosing the
preferred sector is more emphasized relative to the line straightness. The more
emphasized setting (10, 5, 1) leads overall to lower runtimes.
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Finally we compare the effect of different orientation systems. While the
number of bends is comparable for aligned and regular systems, for the irregular
system they increase for k = 5, which might be specific to Vienna [7]. Sector
deviation is again comparable for aligned and regular system but improves in the
irregular setting. The same is true and even more pronounced for the distortion.

Input (a) 3-A (b) 3-R (c) 3-I (d) 4-A

(e) 4-R (f) 4-I (g) 5-A (h) 5-R (i) 5-I

Fig. 2. Layouts of Vienna generated with objective function weights (f1, f2, f3) =
(3, 2, 1). For each k ∈ {3, 4, 5} layouts are labeled as created with aligned (k-A), regular
(k-R) and irregular (k-I) orientation system.

5.3 Discussion

Our approach of increasing topographicity in metro maps through data-driven
selection of orientation systems seems to be promising based on our initial exper-
iments. Choosing an irregular orientation system is a valid option to increase
topographicity, even if the irregular set of slopes is unfamiliar.

Looking at the actual metro maps produced by our system, we can see one
major caveat of our approach to minimize distortion by deciding the directions
based on the input. While for most edges we have a very suitable representative
direction in the orientation system, the constraints of the MIP might still force an
edge to be drawn in a different sector, thus working against the topographicity.
On a positive note, we can see that irregular orientation systems can create
metro maps that resemble the input more closely than typical aligned systems.

We can also see that most of the layouts, which are not using an aligned
orientation system do not include the horizontal direction. This might be helpful
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in labeling these metro maps, since it is difficult to place the visually preferred
horizontal labels along a horizontal line with clear association to a station.

We conclude by reinforcing that our system should not be understood as
a stand-alone method to metro map generation, but rather as an automated
tool to help a designer explore the layout space more thoroughly and find a
suitable orientation system for a network at low time cost. One approach to
choose a suitable linearity k for a given input might be to use the smallest k
which generates visually appealing layouts.

Acknowledgments. We thank Maxwell J. Roberts for discussions about non-
standard linearity models.

References

1. Buchin, K., Meulemans, W., van Renssen, A., Speckmann, B.: Area-preserving
simplification and schematization of polygonal subdivisions. ACM Trans. Spatial
Algorithms Syst. 2(1), 2:1–2:36 (2016)
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Abstract. A salient feature of Iannis Xenakis’ compositional practices
was the use of several concepts and techniques borrowed from archi-
tectural design and from scientific fields. He sometimes drew complete
graphic scores preluding the transcription of his fair copy of conven-
tional musical notation. I discuss the diagrammatical features of Xenakis’
graphic score for Syrmos: although disparate representations depend on
shared image schemata and cross-modal correspondences, their respec-
tive compositional logics are dissimilar.

Keywords: Science-based composition · Sketch studies · Cross-modal
correspondences · Material anchors · Iannis Xenakis

1 Introduction

In Syrmos, a piece for string orchestra for eighteen players, Iannis Xenakis
achieved a synthesis between compositional perspectives he developed during the
1950s. He implemented extra-musical ideas in compositional processes mainly
borrowed from architectural design, mathematics, and physics. When playing
Syrmos, the musicians and the conductor are supposed to read a score with stan-
dard notation on their respective music stands. A first and diagrammatic version
of Syrmos is kept in the composer’s archives. It was written on graph paper in
order to transcribe the data it contains as accurately as possible. Among its
numerous pages, one of them displays a kind of hyperbolic envelope surrounded
by a seemingly unpatterned cluster made of little crosses (see Fig. 1).

Henceforth, I will only focus on this page, as a paradigmatic case in which
both graphical elements, line segments and dots, are confronted. I will prove
that, although both elements are immersed in the same diagrammatical space
and share therefore common features, their underlying compositional logics are
quite different. For that purpose, I will summon arguments from the fields of

This work has been funded by the research program “Atracción de Talento Investi-
gador” 2019-T2/HUM-14477, financed by the Comunidad de Madrid. I thank Mâkhi
Xenakis for allowing me to reproduce some of his father’s compositional sketches.
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Fig. 1. Graphic score for Syrmos, bars 255–259 c©Iannis Xenakis Family.

experimental psychology—mainly based on studies of cross-modality [3,8]—and
cognitive linguistics—particularly those coming from image schemata of the con-
ceptual metaphor theory [7] and from the conceptual blending theory [4].

2 Music, Notation, and Cross-modality

We can imagine any Western musician quickly grasping the kind of information
that Xenakis was providing on the graph paper. After all, the implicit axes of his
diagrammatic notation are consistent with those of the standard musical nota-
tion. Both the symbolic and the graphic systems of representation share image
schemata: pitch relationships are relationships in vertical space and
time flows from left to right. This strong relationship is not however an
equivalence: pitches across the staves are not uniformly distributed; also, the
rhythmic notation is sequential but rarely spatially proportional.

The aforementioned image schemata are not universal. For instance, research
on time conceptualizations has shown a lack of universalism of the left-to-
right image schema [5]. Concerning pitches, a large variety of conceptualizations
spreads across different cultures. In spite of this diversity, empiric research points
to some cross-modal correspondence: individuals subjected to verbal expressions
or visual representations of pitches tend to provide responses which are consis-
tent with the Western image schema from other cultural frames [1,2].

Xenakis was not the first composer putting forward a proportional represen-
tation of pitches and durations. His choice is aligned with notational needs based
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on technological developments, from the piano rolls of the late 19th century to
current MIDI protocols [9]. Nevertheless, Xenakis’ approach in Syrmos was not
devised as a graphical system for interpreting his music. Quite the contrary, he
explored and exploited a visual space in order to facilitate several compositional
choices that were further rewritten with a conventional notation.

3 Linear vs. Dotted Representations

One year before the composition of Syrmos, Xenakis published a short arti-
cle summarizing the main extra-musical influences that had proven to have an
impact on his creative mind. He described three main categories, namely the
“numbers parable”, the “space parable”, and the “gas parable”1.

In the paragraph devoted to the space parable [10, p. 17], Xenakis highlighted
that, “[i]n music, the most sensitive straight line is the constant and continuous
variation of pitch”—i.e. the glissando2—as an elemental constituent for “building
sonorous surfaces (or volumes)”. This link between geometry and sound reveals
a blended conception of music that enabled Xenakis to somehow ductilize the
image schemata for managing time and pitches. He exploited massive glissandi
for the first time in his orchestral piece Metastaseis; the sketch for one of its
passages is equivalent to some architectural drafts he designed when working
with Le Corbusier [11, pp. 3, 6–7]. The choice of the hyperbolic envelope for
Syrmos in Fig. 1 follows the same logic. In doing so, the cross-hatching pattern
became a material anchor for conceptual blends [6], because Xenakis projected
the two-dimensional image schema onto a preexistent visual form.

In the paragraphs devoted to the gas parable [10, p. 18–19], Xenakis made the
“punctual sounds” match with gas molecules. Instead of focusing on the “indi-
vidual movement of sounds”, he was interested in unfolding “mass effects” via
the laws of gas kinetics. This time, the recurrent expression “sound clouds” in
Xenakis’ writings is the key to grasp his blended conception, as an attempt
to aurally interpret the scatterplots—nuages de points in French—in statis-
tics. Xenakis had already written three instrumental pieces guided by statistical
laws—Pithoprakta, Achorripsis, and Analogique A—before Syrmos. A compari-
son between somme charts in his essay on Analogique A [11, p. 101] and a sketch

Fig. 2. Detail of a sketch for distributing “punctual sounds” in Syrmos c©Iannis
Xenakis Family.

1 All translations are mine.
2 String players obtain glissandi by sliding a finger of the left hand along the pressed

string while the right hand normally bows.
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for Syrmos (see Fig. 2) proves the recycling of previous ideas for managing the
musical “density”—i.e. the number of events per unit of time. It seems that
Xenakis freely distributed his crosses—standing for pizzicati and col legno3—on
the graph paper: consequently, they should not be regarded as material anchors.

4 Overview

Through the case study I have provided, three important features of the com-
positional practices related to diagrammatic extramusical sources have been
detected. First, cross-domain correspondences and the habit of Western musical
notation tend to root the adoption of privileged image schemata for managing
pitch and time. These schemata may facilitate new conceptual mappings with
other fields during composition. Secondly, these schemata can host both pre-
scriptive patterned figures—acting as material anchors—and stimulate prospec-
tive ideations, via dissimilar cognitive strategies. Third, composers sometimes
develop auxiliary technology in order to mitigate some cognitive effort related
to their tasks. It is the case for instance of a pitch ruler made by Xenakis (see
Fig. 3) for the transcription from his graphic score to the conventional one.

Fig. 3. Pitch ruler made by Xenakis for Syrmos c©Iannis Xenakis Family.
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Abstract. Assembly planning is a difficult problem for companies. Many
disciplines such as design, planning, scheduling, and manufacturing execu-
tion need to be carefully engineered and coordinated to create successful
product assembly plans. Recent research in the field of design for assem-
bly has proposed new methodologies to design product structures in such
a way that their assembly is easier. However, present assembly planning
approaches lack the engineering tool support to capture all the constraints
associated to assembly planning in a unified manner. This paper proposes
CompositionalPlanning, a string diagram based framework for assem-
bly planning. In the proposed framework, string diagrams and their com-
positional properties serve as the foundation for an engineering tool where
CAD designs interact with planning and scheduling algorithms to auto-
matically create high-quality assembly plans. These assembly plans are
then executed in simulation to measure their performance and to visual-
ize their key build characteristics. We demonstrate the versatility of this
approach in the LEGO assembly domain. We developed two reference
LEGO CAD models that are processed by CompositionalPlanning’s
algorithmic pipeline. We compare sequential and parallel assembly plans
in a Minecraft simulation and show that the time-to-build performance can
be optimized by our algorithms.

Keywords: String diagrams · Assembly planning · Category theory

1 Introduction

Today, mass customization of products such as automobiles and consumer elec-
tronics is forcing companies to provide a very large product variety to address
the diverse customer requirements. Digital manufacturing technologies make it
possible to accommodate mass customization during product design and man-
ufacturing. For example, parametric designs in computer aided design (CAD)
software allow for the specification of configurable products, and computer aided
manufacturing (CAM) algorithms allow for the fabrication of products on differ-
ent machines. Unfortunately, there is very limited engineering tool support for
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product assembly planning. Although some companies use design for assembly
(DfA) [19] and design for manufacturing and assembly (DfMA) [13] methodolo-
gies that attempt to develop product structures that facilitate their assembly,
their implementation is ad-hoc. Therefore, assembly planning is a task that is
loosely coupled to the rest of the digital manufacturing pipeline. The objective
of this paper is to open new avenues for interoperable assembly planning that is
tightly coupled to the upstream design activities, and the downstream assembly
tasks.

String diagrams are a powerful graphical calculus for reasoning in category
theory [27]. String diagrams have also proven useful in many other domains.
They have been shown to provide a mathematically sound graphical language in
domains including linguistics [9], systems engineering [6], and computer science
[20]. Generally, string diagrams represent processes which require and produce
resources. Assembly planning is the discipline of understanding how to opti-
mally chain assembly processes together to craft a whole product from separate
parts [15]. Thus, string diagrams are a natural tool for formulating assembly
planning problems and constructing their solutions.

To demonstrate this thesis we show that string diagrams can be used to build
construction schedules for various LEGO models. From each LEGO 3D CAD file
we generate a connectivity graph where the nodes represent LEGO pieces and the
edges indicate that they are connected in the final model. Given a hierarchical
clustering of this connectivity graph, we generate a construction plan represented
by string diagrams which is hierarchical, compositional, and interpretable. Using
the formalism of string diagrams, complex sub-assemblies can be black boxed into
larger string diagrams. Having this hierarchical structure allows us to manipulate
or adapt our plan at a desired level of abstraction. Furthermore, there is a
categorical formalism that enables schedules to be generated from these string
diagrams. We use topological sorting, Girvan-Newman, and Leiden algorithms
to generate assembly plans and schedules with different properties. Finally, we
use Minecraft [3] as a simulator to validate the resulting schedules and measure
their time-to-build performance.

In this paper, we demonstrate the versatility of this approach with a frame-
work, CompositionalPlanning, that provides a new way of talking about
assembly planning. Our category theoretic interpretation provides a flexible
mathematical foundation that allows for an end-to-end demonstration from CAD
design to assembly simulation. The contributions of this paper are the following:

– we show how string diagrams are an intuitive yet mathematically sound lan-
guage to represent an assembly planning domain.

– as large string diagrams can be tedious and cumbersome for humans to work
with, our framework automates the creation of large string diagrams and thus
eliminates the overhead traditionally associated with them.

– a novel algorithm that converts string diagrams to expressions that result in
highly parallel assembly plans.

– a Minecraft based simulation environment modification or “mod” to execute
LEGO assembly plans.



String Diagrams for Assembly Planning 169

– we publish the CompositonalPlanning framework as a Julia [4] package
for others to reproduce and build upon our work1.

2 Related Work

Assembly planning problems and approaches have been widely investigated. A
comprehensive survey of them can be found in [15]. In [30], a survey of assembly
design and planning systems is presented. In particular, the Assembly Sequence
Planning (ASP) problem that we target in this paper is an NP-hard problem.
ASP’s goal is to find a collision-free sequence of assembly operations that put
together individual parts given the geometry of the final product and the rela-
tive positions of parts in the final product. ASP is considered a combinatorial
problem and therefore representations of the space of possible sequences has
been an active area of research [17]. While various representations ranging from
AND-OR graphs [11] to Petri nets [24] have been proposed, we are the first
to study ASP under a category theoretic framework. In this paper, we show
that category theory provides both an explicit and an implicit representation on
assembly sequences. On the one hand, string diagrams provide an explicit ASP
representation of partial and full assemblies. On the other hand, expressions pro-
vide us mathematical soundness and rigor as they implicitly encode precedence
assembly relationships.

Although this paper focuses on LEGO and Minecraft models, the Compo-
sitionalPlanning framework can be easily adapted to other domains. In 3D
CAD modeling, for example, parts are composed into assemblies in a similar
way to how LEGO pieces compose into LEGO models. The specification of the
parts themselves and their composition of assemblies is defined in a CAD file
that is analogous to a LEGO 3D CAD file. Therefore, the first step would be to
create a custom parser for a specific CAD file format to extract a connectivity
graph from the information about parts and their composition. Given that there
are many CAD file formats in the market today [8], the scalability of Com-
positionalPlanning in the CAD domain is dependent on the availability of
custom parsers.

Related work in automated assembly planning illustrates how this field is
highly fragmented. Most researchers develop custom assembly planning solu-
tions that work for specific products and processes. In [21], the authors present
a system to address the assembly planning of multi-variant products in modu-
lar production systems. The product requirements and their feasible assembly
orders are modeled in a directed graph referred to as the Augmented Assembly
Priority Plan (AAPP). The AAPP encodes how two initial subassemblies are
joined together to form a new subassembly through a value adding task such
as “assembly” or “screwing”. From the authors’ description, the AAPP can be
mapped as a string diagram to leverage the planning capabilities of our Compo-
sitionalPlanning framework. Similarly, the authors in [23] present a system
to generate assembly precedence graphs from CAD files. Similar to our results,
1 CompositionalPlanning - https://github.com/CompositionalPlanning/.

https://github.com/CompositionalPlanning/
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they show that an assembly precedence graph contains all the valid sequences
of an assembly. Their assembly precedence graphs correspond to our connectiv-
ity graph, and their assembly sequences correspond to our plans and schedules.
There are two important differences compared to our work: (a) their means of
user-interaction and visualization are spreadsheets instead of graphs, and (b)
their implementation is based on a proprietary CAD software.

3 Categorical Assembly Planning Framework

Our CompositionalPlanning framework, shown in Fig. 1, consists of five
reusable software components. The first step is to infer a connectivity graph
from the CAD model that describes how the different parts come together in
terms of their geometry (e.g., orientation) and assembly operations (e.g., snap,
glue, weld, insert). This step is necessary because most CAD models list quanti-
ties of all parts and detailed structural functions in relation to a finished product,
and this information does not directly map to their assembly.

LEGO CAD Model

Connectivity 
Graph 

Generation
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4

5

1

2
3

7
Plan 

Generation
Schedule 

Generation

Minecraft Simulation

Assembly
Simulation
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7 k

9
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4

5
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2
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7 k

Sequential plan Parallel plan

ExecutionAssembly PlanningDesign

Fig. 1. CompositionalPlanning framework pipeline.

The second step consists of plan generation [14] – described by different
string diagrams – that have different properties of order and parallelism. These
plans, although expressed by different expressions of string diagrams, generate
the same LEGO model as they: (i) bring an initial world to a goal world using
a set of assembly operators, and (ii) minimally impose ordering constraints.

The third step generates a schedule using a plan and a detailed knowledge
of the execution environment (e.g., number of workers, machines). The job of
the schedule generation [14] is to impose further ordering constraints on the
assembly operator application to achieve a robust (e.g., against failures) and
time-efficient execution of the assembly task (e.g., time-to-assembly).

The fourth and final step consists of executing the schedule in a simulator to
visualize the assembly task, and to generate performance metrics. Although this
paper focuses on LEGO CAD models as an input, and Minecraft simulations as
an output, our components are domain agnostic, and they can be easily adapted
for use in other domains.
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3.1 Connectivity Diagram Generation from CAD

CompositionalPlanning parses the text-based LDraw files [2] and automat-
ically builds the connectivity diagram. Every LEGO model has a unique con-
nectivity diagram that describes how the pieces are connected to each other.
LDraw files [2] describe all the bricks in the model by type (e.g., 2× 2, 2 × 4),
color, center coordinates (x, y, z), and a 3× 3 rotation matrix. This LDraw file
represents the bill of materials (BOM) of the LEGO model and does not contain
any information about the connectivity of the bricks. Therefore, the first step is
to parse this information from the LDraw file f and generate a list of LegoOb-
jects. The second step is to create a directed graph and add a node for every
object in the LegoObjects list. Note that these nodes are not yet connected by
edges.

Vertical stacking is the most common operation with LEGO bricks as shown
in the example in Fig. 1. Therefore, the third step in our framework is to infer the
vertical connectivity in the LEGO CAD model. In LDraw’s coordinate system
−y is “up”. Therefore, two bricks are connected if: (a) the top face of one brick
has the same y coordinate as the other brick’s down face (a.top ycoord() ==
b.bottom ycoord()); (b) and their boxes (defined by (x, z) center coordinates
and the brick’s width and length) intersect ((abs(a.x − b.x) ∗ 2 < (a.length +
b.length)) and (abs(a.z−b.z)∗2 < (a.width+b.width))). For every connected pair
of objects we create an edge from a to b in the connectivity diagram. Other less
common operations such as horizontal stacking, and operations involving other
LEGO pieces such as pegs are left for future work. However, the connectivity
inference would follow a similar principle as the one described above.

The fourth step consists of grounding all nodes in the connectivity diagram
that do not have any predecessors. Having explicit ground nodes helps the pro-
cessing of the connectivity diagram by the following algorithms. As an illustrative
example consider the LEGO model and its connectivity diagram shown in Fig. 1.
It consists of seven bricks sequentially numbered from 1 , ..., 7 . In addition,
our algorithm also includes the “ground” nodes to facilitate the model construc-
tion using the base build plate. In this example, the ground nodes 9 and 8
connected to 6 and 1 , respectively.

Extending our framework beyond LEGO would require new parsers to read
CAD file formats, and new inference algorithms to derive the connectivity
between parts.

3.2 String Diagrams

String diagrams are diagrams where resources are represented by strings (wires)
and processes are represented by boxes. For example a process which snaps a
peg into a hole is represented by

snap

L1

L2
base
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String diagrams can be composed in sequence

snap

L1

L2

L3

snap

base
C

indicating that the processes must be performed in sequence. String diagrams
can also be composed in parallel

buildcolumn

buildroof

A1

A2

B1

B2

indicating that the order in which the tasks are performed does not matter.
String diagrams also have algebraic expressions called morphisms. For example,
the first example has a corresponding algebraic expression given by

snap: L1 ⊗ L2 → base

Note that this expression is both functional and typed. This makes Composi-
tionalPlanning an efficient and type-safe framework. In a similar way, the
expressions which string diagrams represent can be composed in sequence and
parallel using the two operations

(f : x → y, g : y → z) �→ f · g : x → z (1)

(f : x → y, f ′ : x′ → y′) �→ f ⊗ f ′ : x ⊗ x′ → y ⊗ y′ (2)

Rather complicated expressions can be built using these operations, e.g., see the
string diagrams in Fig. 4. A natural question to ask is when two expressions
correspond to the same string diagram. The answer to this question is essen-
tial to understanding how planning domain dependencies represented in string
diagrams can be algebraically manipulated. It turns out that if the algebraic
expressions satisfy the right set of axioms, then the way that a string diagram
is drawn is independent of the expression it generates. A structure of algebraic
expressions satisfying these axioms is a well-known structure in category theory
called a symmetric monoidal category. In [18] it is shown that string diagrams
unambiguously represent morphisms in a given symmetric monoidal category.
The following theorem ensures the soundness of string diagrams in the LEGO
assembly domain.

Theorem 1. Let G = (E, V ) be a simple graph whose nodes V represent pieces
of a LEGO model and whose edges E indicate a connection in the completed
structure. Then, there is a symmetric monoidal category where:

– an object is finite tensor product X1⊗X2 . . . Xn of subsets of V i.e. all possible
tensors of subassemblies.

– A morphism f : X1⊗X2 . . .⊗Xn → Y1⊗Y2 . . . Yn is a construction plan which
turns the subassemblies X1⊗X2 . . .⊗Xn into the subassemblies Y1⊗Y2 . . .⊗Yn

using only the joins allowed by the edges of G.
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– The composite g · f represents the construction plan where f and g are per-
formed in sequence.

– The tensor product g ⊗ f represents the construction plan where f and g are
performed in parallel.

Proof. Symmetric monoidal categories can be freely generated from the data of
a Petri net. In “On the Category of Petri Net Computations”, Sassone showed
that for a Petri net P , there is a strict symmetric monoidal category Q[P ] whose
objects are finite strings of places in your Petri net and whose morphisms cor-
respond to strongly concatenable processes [26]. These are sequences of events
which can occur using the transitions of your Petri net in sequence and in par-
allel.

Recall that a Petri net is a tuple (T, P, s, t) where

– T is a finite set of events which can occur,
– P is a finite set of available resources,
– s : T → P⊕ is a function from events to multisets of resources indicating

which resources are required for each event and,
– t : T → P⊕ is a function from events to multisets of resources indicating

which resources are produced by each event.

To construct the desired symmetric monoidal category, we set T equal to P(E),
the set of subets of edges in G and set P equal to P(V ) the set of subsets of
nodes in G i.e. all possible sub-assemblies of the LEGO model. Define s : P(E) →
P(V )⊕ by the rule

{(x1, y1), (x2, y2), . . . (xn, yn)} �→ {x1, x2, . . . , xn} + {y1, y2, . . . , yn}.
where + indicates the occurrence of both subsets in the multiset P(V )⊕. Define
t : P(E) → P(V )⊕ by the rule

{(x1, y1), (x2, y2), . . . (xn, yn)} �→ {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn}.
The symmetric monoidal category in the theorem statement is obtained by tak-
ing the category of strongly concatenable processes on this Petri net.

The next section describes how the string diagrams of these symmetric
monoidal categories can be leveraged to produce construction plans.

3.3 Planning

A LEGO CAD model and its connectivity graph describe an object in its final,
assembled state, but not how to assemble it. A plan consists of step-by-step
instructions on how to assemble the atomic parts (LEGO bricks) into the desired
object. In general, there are many possible plans for assembling the same object,
corresponding to different ways of forming intermediate sub-assemblies.

For us, plans are string diagrams. In such a diagram, the strings repre-
sent sub-assemblies and the boxes represent operations of joining together sub-
assemblies to make a larger sub-assembly. Formally, a sub-assembly is a subset
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of the atomic parts, interpreted as being assembled. Each join operation takes
two disjoint sub-assemblies A and B as inputs and produces a single output,
the union A ∪ B. A plan is a string diagram that takes all the singleton sets
(sub-assemblies consisting of a single part) as inputs and produces as output
the set of all parts (full assembly). Although every plan is valid at this level of
description, not every plan will be physically feasible.

As proof of concept, we implemented two simple algorithms for assembly
planning. In the sequential algorithm, we topologically order the edges of the
connectivity graph. That is, we first topologically order the nodes, where a topo-
logical ordering is any total ordering consistent with the directed edges. Then
we lexicographically order the edges, viewed as ordered pairs of nodes. For each
edge, taken in this order, we join the two sub-assemblies containing the source
and target, if they are distinct; otherwise, we do nothing. We continue in this
way until all the edges have been exhausted, at which point the object is fully
assembled. When the connectivity graph is a path graph, the sequential plan is
the obvious plan that joins the parts together one-at-a-time.

In the parallel algorithm, we create more opportunities for parallelism by par-
titioning the connectivity graph into components, making plans on each compo-
nent, and then treating these plans as black boxes in a higher-level plan. This
meta-algorithm has several knobs to tune, and it can be applied recursively. To
partition the graph, we can apply any community detection algorithm that finds
non-overlapping communities. In our experiments, we use the Girvan-Newman
algorithm [16] and a variant of the Louvain method [7], the Leiden algorithm [28].
We perform only one level of partitioning and we do sequential planning within
each partition and also to assemble the resulting sub-plans. The use of commu-
nity detection to find opportunities for parallelism is a heuristic, but works well
in our experiments.

3.4 Scheduling

A plan, in the form of a string diagram, says what steps to perform and how
the steps depend on each other. A schedule extends the information in a plan by
assigning the steps a definite order; formally, a schedule is any linear extension
of the topological ordering of the operations (boxes) in the plan. For simplicity,
we take a resource-agnostic view of scheduling, in which the number of workers
is unknown at the time of planning and scheduling. The aim in scheduling is
therefore to maximize the opportunities for parallelism, given the constraints
imposed by the plan [25].

Our scheduling algorithms have two major phases. First, we create a syntactic
expression representing the plan. In general, a single string diagram can be
represented by many different expressions; we construct one of them. We then
linearize the expression, using a simple recursive algorithm, to obtain a schedule.

A small example will illustrate the relationship between string diagrams and
syntactic expressions. Consider the string diagram shown in Fig. 2, the composite
of f and g in parallel with composite of h and k. We can represent this diagram
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by either of the expressions (f · g) ⊗ (h · k) (read “f then g, and h then k”) and
(f ⊗ h) · (g ⊗ k) (read “f and h, then g and k”).

f g

h k

f g

h k

b) Expression 1 c) Expression 2

f g

h k

a) String diagram

Fig. 2. Relationship between string diagrams and syntactic expressions

We have developed an algorithm to find an expression for any string diagram
representing a morphism in a symmetric monoidal category. As the algorithm is
fairly elaborate, we will not digress to present it carefully, except to say that it
is inspired by existing algorithms that recognize in a DAG, or reduce a DAG to,
a series-parallel digraph [22,29].

The second phase of scheduling is more straightforward. Having formed an
expression for the plan, we schedule the plan by recursively linearizing the expres-
sion tree. Given a composition f · g , we simply concatenate the schedules for f
and g. Given a product f ⊗ g, we interleave the schedules for f and g, mean-
ing that we take the first element of the f -schedule, then the first element of
the g-schedule, then the second element of the f -schedule, and so on, until the
both schedules have been exhausted. For example, both of the above expressions
(f · g)⊗ (h ·k) and (f ⊗h) · (g⊗k) yield the same schedule (f, h, g, k). Note that
the ordering of the monoidal products affects the schedule, so that f ⊗ g yields
a different schedule than g ⊗ f . This procedure can be seen as a special case of
an existing algorithm for optimally scheduling series-parallel digraphs [10].

3.5 Simulation

Minecraft is an immensely popular 3D open-world video game where players can
build their own structures [12]. The game world and most of its elements are
made of different kinds of blocks. These blocks can be used to create structures
of any complexity. This versatility makes Minecraft a good fit to represent the
CAD model and to simulate their assembly process. It has already proven to be a
well-suited simulation tool in other robotics domains [5]. To execute the schedule
generated by our framework we extended Minecraft by a new mod. With this
“mod” we can simulate the whole assembly process of the CAD model described
by the schedule. The simulation not only provides us with a comprehensible
visual representation of the process, but also allows us to quantify execution
time and worker occupancy of different schedules.

Our open source Minecraft “mod” executes the assembly operations in the
correct order as dictated by the generated schedule. The geometric CAD infor-
mation is encoded in the connectivity diagram and it is parsed by our mod. Each
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LEGO brick is represented by a single or multiple Minecraft blocks. The sched-
ule and the operations specified in it determine which and how many bricks can
be connected to each other per step. In addition to the precedence constraints
encoded in the schedule, we can define a number of workers. Each worker is
allowed to perform a single operation per step. Operations are dispatched to
workers in the order they appear in the schedule. Only operations for which a
worker is available can be executed. Hence, the level of parallelism of the schedule
and the number of workers determine the time it takes to complete the assem-
bly. Disjoint sub-assemblies are assembled in their own area respectively until
they are connected to each other forming a new (sub-)assembly. The assembly
process is finished when all of the schedule’s operations have been completed by
the available workers.

4 Results

To validate the CompositionalPlanning’s pipeline we designed the two
LEGO CAD models shown in Fig. 3(a–b). The design objective was to have two
LEGO models of around 100 bricks each with a rich set of features and a few
human-intuitive sub-assemblies to validate our approach. The Columns model
(Fig. 3(a)) is inspired by roman temples and consists of 77 bricks. This model
consists of four column sub-assemblies, each composed of 12 vertically stacked
2 × 2 bricks each. The roof sub-assembly consists of two pairs of support beams,
each arranged in a stair configuration supporting a flat roof. The House model
(Fig. 3(b)) consists of 86 bricks. The house foundation sub-assembly consists of
eight 4 × 10 green bricks and supports the house sub-assembly and an electric
pole. The house sub-assembly consists of four non-identical walls. We designed
each wall using different compositions of bricks (i.e., 1× 1, 1 × 8, 1 × 10, 1 × 2 × 2,
etc.) that result in different connectivity features as highlighted by the different
shades of brown. The front wall has a square window and a door. The two side
walls have two windows each while the back wall is solid. The four walls support
a two layer roof. The pole sub-assembly consists of eleven 1 × 1 bricks, and one
1 × 6 brick on top.

4.1 Connectivity Diagrams

The generated connectivity diagrams for the two CAD models are shown in
Fig. 3(c–d). The Columns model was designed with regularity and symmetry in
mind. These features are explicit in its connectivity diagram in Fig. 3(c) with the
four long strands representing the columns, and the dense layer on top represent-
ing the roof. On the other hand, the House model was designed with asymmetry
and irregularity in mind. These features are clearly visible in its connectivity
diagram in Fig. 3(d). In the House connectivity diagram, the walls are irregular
and asymmetric with gaps representing the windows and the door. The pole is
represented by the long strand.

Typically, LEGO models come with assembly instructions, or build instruc-
tions [1]. These instructions are, most likely, made for human enjoyment and
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a) Columns - 77 bricks b) House - 86 bricks

Columns

Roof

Pole

Roof

Foundation

Walls

c) Columns - connectivity diagram d) House - connectivity diagram

Fig. 3. LEGO CAD models and their inferred connectivity diagrams. (Color figure
online)

therefore must be intuitive. One natural way to organize these instructions is by
sub-assemblies such that humans can relate to the structure they are construct-
ing (e.g., a house). In some cases, these sub-assemblies are obvious. For exam-
ple, the column and roof sub-assemblies in the Columns connectivity diagram
(Fig. 3(c)) are easily distinguishable and therefore can be decomposed into a
reasonable build plan. However, there are other cases when these sub-assemblies
are not obvious. For example, decomposing the interlinked wall sub-assembly in
the House model (Fig. 3(d)) into a reasonable plan is not trivial. For both exam-
ples, our plan generation pipeline on string diagrams can be used to generate
sequential and highly parallel assembly plans.

4.2 Plan Generation

In this paper, the quality of an assembly plan is determined in terms of how many
operations can be executed in parallel, rather than on maximizing human enjoy-
ment. For each LEGO CAD model, we generate two schedules. A sequential sched-
ule is generated by topologically sorting the connectivity diagram, and a parallel
schedule is generated with the algorithms introduced in Sect. 3.3. Figure 4 shows
the sequential schedules generated for the Columns and the House models.
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The column symmetry in the Columns model allows the sequential schedule
to expose some parallelism as shown in Fig. 4(a). If several workers are avail-
able, this natural parallelism can be exploited to reduce the time-to-build. The
sequential schedule for the House model, as shown in Fig. 4(b), exposes very lit-
tle parallelism due to the asymmetry and irregularity in the model. These two
examples help us illustrate the inherent limitations of sequential schedules.

b) House model sequential plan

a) Columns model sequential plan

Fig. 4. Sequential plans generated for the two LEGO CAD models.

Using the parallel plan generation algorithms described in Sect. 3.3, our
framework exposes higher levels of parallelism as shown in Fig. 5. Here, the black
boxes corresponding to a partitioning of the connectivity diagram are shown by
the labeled black boxes. The number in each black box represents the number of
bricks within the black box sub-plan. The execution schedules are derived from
these parallel plans. Even in the case of a purely sequential plan of the black
boxes (represented by the width of the black boxes), it can be observed that the
amount of parallelism is higher compared to the sequential schedules in Fig. 4.
In particular, the House model’s parallel plan in Fig. 5(b) exposes much higher
parallelism when compared to the its sequential plan in Fig. 4(b) consisting of a
stairs configuration with minimum parallelism.

4.3 Simulated Schedule Execution

The schedule and the number of workers determines how many operations can
be executed in parallel. This parallelism can be visualized in the simulation
when multiple sub-assemblies are constructed at the same time. Figure 6 shows
a time-lapse of the parallel assembly process for the Columns and House models
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a) Columns model parallel plan b) House model parallel plan

Fig. 5. Parallel plans generated for the two LEGO CAD models. The width of the
black boxes represent a sub-plan (i.e., a stairs configuration).

with an unlimited number of workers. The top row shows the assembly process
at an early stage after a few blocks were already added. Note the parallel con-
struction areas of the assemblies highlighted by the red squares. Furthermore,
the main construction area where pieces and sub-assemblies will eventually be
connected to each other can be recognized. Sub-assemblies that are connected
to the ground are not constructed in separate construction areas but at their
final position in the main construction area. This prevents excessive shifting
of assemblies. While all the sub-assemblies are easily distinguishable for the
Columns model, the House’s main construction area already consists of three
sub-assemblies which can be recognized by the three separate walls on top of
the House’s base. These construction areas are based on the black boxes of the
plans and their representation in the corresponding schedule. The (sub-)schedule
for a black box may contain some level of parallelism like the Columns model.
Besides the parallel assembly of the columns the derived schedule allows for a
parallel assembly of the roof in three separate construction areas. The middle
row shows the half completed assemblies. The structures are more advanced,
and some sub-assemblies have already been connected to other assemblies. The
bottom row shows the fully assembled Columns and House LEGO models.

To assess the quality of the generated plans we simulate the assembly process
for the sequential and the parallel schedules for both models. The simulation is
run with a varying number of workers – 1, 2, 4, 8 and 16. For each configuration
we measured the total number of steps it takes to build the assembly and the
average occupancy ratio of the workers. Table 1 summarizes the results. Our
baselines are simulations run with a single worker. While pieces can be snapped
to the ground or to an already existing assembly, two single pieces can also
be combined to a new sub-assembly. In the latter case we must first connect a
LEGO brick to the ground and this occupies a worker for a time step. For this
reason, the time-to-built for the parallel schedule with a single worker is higher
than the one for the sequential schedule. Unsurprisingly, the parallel schedule
with more than one worker always requires fewer steps to complete the assembly
while maintaining a higher occupancy rate than its sequential counterpart. The
performance difference between the sequential and parallel schedules for the
Columns model is rather small because of its architecture. Its sequential plan
(Fig. 4(a)) already exposes some parallelism. However, our parallel schedule is
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Columns model House model

Fig. 6. Time-lapse of the execution of parallel plans. Black box sub-assemblies are built
simultaneously on different construction areas highlighted by the red squares. (Color
figure online)

Table 1. Execution time and worker occupancy for different schedules with varying
number of workers.

Schedule Workers Columns model House model

Steps Occupancy Steps Occupancy

Sequential 1 92 1.00 93 1.00

2 50 0.92 75 0.62

4 33 0.70 69 0.34

8 25 0.46 65 0.18

16 23 0.25 65 0.09

Parallel 1 95 1.00 98 1.00

2 50 0.95 55 0.89

4 30 0.79 36 0.68

8 19 0.63 26 0.47

16 17 0.35 21 0.29

able to exploit additional opportunities and provides slightly better performance
over the sequential schedule.
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For the House model on the other hand, the parallel schedule yields signif-
icantly faster assembly times with an increasing number of workers; up to 3
times with 16 workers. Additionally, the workers are used to a higher capacity
and the occupancy ratio deteriorates at a slower rate as the number of workers
increases. This model shows that our algorithms are able to identify and exploit
non-obvious parallelism in less regular and symmetric models.

5 Conclusion and Future Work

In this paper, we studied the use of string diagrams for assembly planning and
developed a framework to demonstrate this approach in the LEGO domain.
This new perspective gives us multiple advantages. First, it provides us with a
powerful graphical calculus for reasoning about the assembly planning domain
in category theory. Second, this formalism allows string diagrams to be easily
manipulated within a programming framework to generate plans and schedules.
This allows us to seamlessly interconnect the different disciplines involved in
assembly planning. Third, with a novel hierarchical planning approach using
black boxes, we demonstrated that the resulting plans expose high-degrees of
parallelism that result in efficient assembly. Our CompositionalPlanning
framework has several limitations that prescribe future research. (i) As a proof
of concept, we focused on the most popular LEGO assembly operations. Since
our framework is domain agnostic, extending to other domains is an important
direction for future work. (ii) We implemented three planning and one scheduling
algorithm. Implementing other algorithms will help us validate the full potential
of string diagrams for assembly planning. (iii) The planning algorithms yield
different string diagrams. Developing new algorithms to morph a string diagram
to another with different properties (e.g., more parallelism) is a challenging but
very interesting research direction.
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Abstract. The aim of this paper is to reformulate the transformation
rules presented by Peirce in the Beta part of Existential Graphs, in a
different way from the rules systemized by Roberts and Shin. Existential
Graphs provides an iconic system of logic. In other words, it visualizes
logical reasonings by using diagrammatic representations. Specifically, a
graph represents a situation occurring in a certain universe of discourse.
In addition, Peirce introduced a line of identity and a cut. The former
is a thick line that affirms the identity of two particulars signified by its
two ends. The latter is a closed curve that is drawn with a thin line.
By enclosing a graph entirely by a cut, the content represented by the
graph is denied. Peirce forbid a line of identity from crossing a cut, yet
both Roberts and Shin presumed that a line of identity can cross a cut.
Hence, this paper eliminates that presumption completely and shows an
alternative reformulation of the transformation rules in the Beta part of
Existential Graphs.

Keywords: Existential Graphs · Graph · Line of identity · Cut ·
Transformation rule

1 Introduction

Existential Graphs, developed by Charles Sanders Peirce, provides a diagram-
matic system of logic. Peirce used the term graphs to refer to diagrammatic
representations of states of affairs in a discourse of universe [2, 4.421]. Existen-
tial Graphs expresses deductive reasonings diagrammatically by transforming
given graphs into other graphs in accordance with certain rules.

Unfortunately, Peirce’s original descriptions of the transformation rules are
complicated. In The Existential Graphs of Charles S. Peirce, Roberts made them
much more understandable [3, 56–60]. Later, in The Iconic Logic of Peirce’s
Graphs, Shin acknowledged that Roberts’ reconstruction of the transformation
rules eliminated some confusion from Peirce’s explanations of them [4, 135–139].
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Shin also pointed out, however, that Roberts’ reformulation for them involved
new difficulties [4, 135–139]. Hence, Shin attempted to overcome those difficulties
and provide a new, more effective and systematic reformulation of the transfor-
mation rules. Shin’s reformulation was successful [4, 139–150], yet it did not
completely conform to Peirce’s original ideas of Existential Graphs. Therefore,
in this paper, I propose another symmetrical arrangement of the transformation
rules as an alternative reformulation along the lines of Peirce’s conceptions of
Existential Graphs.

2 No Crossing of Cuts

For the Beta part of Existential Graphs, Peirce introduced three kinds of dia-
grammatic devices: spots, lines of identity, and cuts. A spot corresponds to a
predicate in a classical first-order predicate language [2, 4.438]. A line of iden-
tity is a thick line segment and “a graph asserting the numerical identity of the
individuals denoted by its two extremities” [2, 4.444]. Each end of a line of iden-
tity designates a different indefinite individual, and the line of identity affirms
that the two individuals are identical with each other. Finally, a cut is a closed
curve drawn with a thin line, which has “the effect of denying the entire graph
in its area” [2, 4.402]. Peirce also called the area enclosed by a cut its close [2,
4.437]. Thus, enclosing a graph entirely by a cut denies the content of the state
of affairs signified by the graph.

Peirce declared that “[t]wo cuts cannot intersect one another” [2, 4.399]; and
that no graph crosses a cut [2, 4.414]. Hence, we can attach no interpretation
to a graph that crosses a cut. Shin also excluded a cut “crossing a predicate
symbol” [4, 41]. In other words, we cannot place a spot in such a manner that a
cut crosses it. From this standpoint, it is natural that no line of identity should
cross a cut. In fact, Peirce clearly wrote that “a line of identity is a partial graph;
and as a graph it cannot cross a sep” [2, 4.499]. Note that Peirce used the term
sep instead of cut elsewhere [2, 4.437]. Thus, as long as a line of identity is a
graph, it never crosses a sep or a cut either into its close or out of its close.

Nevertheless, Roberts and Shin both presumed that a line of identity can
cross a cut. For example, concerning the graph in Fig. 1, Roberts would insist
that “we have a line of identity crossing a cut” [3, 50]. This graph means that
something exists that is not ugly. Concerning the structure of the graph, Roberts
wrote that “there are, in a sense, two lines of identity: one outside the cut, and
one inside the cut” [3, 50]. This way of understanding would fit Peirce’s notion
of a line of identity, but Roberts did not adopt it. Instead, according to Roberts,
“it is quite natural and inconsequential to speak of a line of identity as crossing
a cut, as Peirce did himself” [3, 50n].

In contrast, Peirce argued that “it will be well to avoid the idea of a graph’s
being cut through by a sep, and confine ourselves to the effect of joining dots on
the sep to dots outside and inside of it” [2, 4.449]. This remark indicates what
follows; in Fig. 1, the line of identity outside the cut couples a point outside with
the intersectional point on the cut, and the line of identity inside the cut couples
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is ugly

Fig. 1. No crossing of cuts.

a point inside with the same intersectional point. At first sight, it might seem
that Peirce did “not bother to explain” that “the part of a line of identity that
crosses is not a graph” in 4.458 and 4.459 [3, 50n]. As cited above, however, in
4.499, Peirce emphasized that a line of identity does not cross a cut; and, in
4.501, Peirce still wrote in such words as “[t]he connexion or disconnexion of a
line of identity outside a sep with a marked or an unmarked point on the sep”
and “the junction or disjunction of a line of identity inside the sep with a point
upon the sep” [2, 4.501]. Thus, it is evident that Peirce held fast to the notion
that no line of identity crosses a cut.

3 Use of Dots

From the viewpoint that no line of identity crosses a cut, Peirce formulated the
rules for transforming graphs in the Beta part of Existential Graphs. Roberts
read Peirce’s statements about the transformation rules in a manner contrary
to Peirce’s indication, so it follows that Roberts failed to fully grasp Peirce’s
original aims. For instance, Peirce permitted lengthening a line of identity from
the outside of a cut to a point on it under certain conditions [2, 4.505]. We
may thus change the first graph in Fig. 2 into the second one. Though Roberts
himself also introduced a rule for such a transformation, he thought that Peirce
lost sight of a necessary requirement for the transformation: “no crossing of cuts
results from this addition” [3, 57]. Nevertheless, Peirce admitted this only as
the lengthening of a line of identity to “a vacant point” on a cut, and he never
overlooked the constraint on it [2, 4.505], as I will discuss in Sect. 4.

is ugly is ugly is ugly is ugly is ugly

Fig. 2. Usage of dots.

In addition, Roberts classified the rule for this transformation into the rule of
iteration [3, 57], while Peirce did not [2, 4.505]. Shin wrote the following about
Peirce’s rule of iteration: “[t]he main idea of the iteration rule is that when
certain conditions are satisfied, we are allowed to copy (i.e., reiterate) a certain
part of a graph” [4, 136]. In short, the rule of iteration enables us to make replicas
of a graph if certain prerequisites are met. Then, what kind of graph is iterated
in the above transformation? Is it a portion of a line of identity? It is unclear
why the transformation is a consequence of the rule of iteration.
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Shin examined the difficulties of Roberts’ system in details and presented a
new reformulation of the transformation rules. Shin’s system is more comprehen-
sive than that of Roberts and explicitly deals with some graph transformations
that Roberts did not explicate. For example, ∃xFx∨∃xGx and ∃x(Fx∨Gx) are
equivalent in any logical system of classical first-order predicate language, and
Shin distinctly demonstrated that two graphs corresponding to those proposi-
tions are mutually transformable. Shin’s attempt was a successful elaboration
of Roberts’ system on the foundation of the notion that lines of identity cross
cuts. Therefore, we must be able to define the transformation rules for lines of
identity via an alternative reformulation in conformity with the principle that
no line of identity crosses a cut.

As seen above, Peirce used dots to prevent lines of identity from crossing
cuts. For example, in Fig. 1, the thick line is not a single line of identity but
a series of two lines of identity, one lying outside the cut, and the other lying
inside. These lines of identity abut each other at a point on the cut. We can
place a dot at the intersection to make the meeting more explicit, as seen for the
third graph in Fig. 2. Peirce stated that “[p]oints on a sep shall be considered to
lie outside the close of the sep” [2, 4.450]. Thus, in the third graph, the dot on
the cut is actually outside it.

Peirce used the term hook for the blank of a spot [2, 4.441]. For instance, in
the first graph in Fig. 2, is ugly is a predicate with one argument in a classical
first-order predicate language, and it is a spot with one hook in terms of the
Beta part of Existential Graphs. Peirce offered a usage of dots to fill the hooks
of a spot [2, 4.441]. Thus, we can fill the hook of is ugly with a dot instead of
a line of identity with a loose end, giving the fourth graph in Fig. 2. According
to Peirce, a dot is “a separate sign of an indesignate individual existing in the
universe and belonging to some determinate category, usually that of “things””
[2, 4.441]. Hence, the fourth graph denies that there is something that is ugly. A
line of identity plays a role of linking one dot to another dot. In the third graph
in Fig. 2, the line of identity outside the cut links the point of its loose end to
the dot on the cut, and we can place a dot at the loose end. Thus, the proposed
system substitutes the last (rightmost) graph in Fig. 2 for the graph in Fig. 1.
This paper refers to a dot at a loose end, a dot on a cut, and a dot at a hook as
a loose-end dot, a cut dot, and a hook dot, respectively.

4 Alternative Reformulation of Transformation Rules

The function of a line of identity as a graph is to link two dots and assert
the numerical identity of two individuals denoted by them. Erasure of a line of
identity means removing such a line linking two dots, while insertion of a line
of identity means linking two dots by it. If a diagrammatic representation is
evenly enclosed, then it is enclosed by any finite even number of cuts, including
zero; if oddly enclosed, then it is enclosed by any finite odd number of cuts [2,
4.505]. Thus, erasure or insertion is performed in a close that is evenly or oddly
enclosed. Here, I consider how many cases exist when erasing or inserting a line
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of identity in one and the same close. A line of identity is related to two dots,
of which there are three kinds, giving six combinations of dots: (1) loose-end
dot—loose-end dot; (2) loose-end dot—cut dot; (3) loose-end dot—hook dot; (4)
cut dot—cut dot; (5) cut dot—hook dot; (6) hook dot—hook dot. In addition,
there are two kinds of closes: (A) evenly enclosed close; (B) oddly enclosed close.
Hence, we have 6× 2 cases for both erasure and insertion of a line of identity, as
enumerated in Table 1.

How many cases exist when erasing a line of identity linking two dots in
different closes or inserting such a line of identity? In the proposed system, no
line of identity crosses a cut, and a dot outside a cut thus cannot be immediately
linked to a dot inside the cut by a single line of identity. Here, we only have to
consider a line of identity within a cut by which a dot on the cut is linked to a
dot within the cut, because a dot on a cut lies outside the close of the cut and
in a different close from any dot inside the cut. This gives three combinations
of dots: (i) cut dot—loose-end dot; (ii) cut dot—cut dot; (iii) cut dot—hook
dot. So, there are 3 × 2 combinations for both erasure and insertion of a line of
identity, as listed in Table 2.

Table 1. In same close.

1 Erasure

(A) Evenly enclosed close (1)(2)(3)(4)(5)(6)

(B) Oddly enclosed close (1)(2)(3)(4)(5)(6)

2 Insertion

(A) Evenly enclosed close (1)(2)(3)(4)(5)(6)

(B) Oddly enclosed close (1)(2)(3)(4)(5)(6)

Table 2. In different closes.

3 Erasure

(A) Evenly enclosed close (i)(ii)(iii)

(B) Oddly enclosed close (i)(ii)(iii)

4 Insertion

(A) Evenly enclosed close (i)(ii)(iii)

(B) Oddly enclosed close (i)(ii)(iii)

Regarding which of these combinations to select, Peirce stipulated the fol-
lowing rule for erasing or inserting a line of identity:

(a)This rule pemits any ligature, where evenly enclosed, to be severed, and
(b)any two ligatures, oddly enclosed in the same seps, to be joined. (c)It
permits a branch with a loose end to be added to or (d)retracted from any
line of identity.
(e)It permits any ligature, where evenly enclosed, to be severed from the
inside of the sep immediately enclosing that evenly enclosed portion of it,
and (f)to be extended to a vacant point of any sep in the same enclosure.
(g)It permits any ligature to be joined to the inside of the sep immediately
enclosing that oddly enclosed portion of it, and (h)to be retracted from
the outside of any sep in the same enclosure on which the ligature has an
extremity. ((a), (b), ..., added.) [2, 4.505]

This quotation consists of eight sentences. Because a ligature in the proposed
system is composed of lines of identity abutting one another at a dot on a cut,
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sentence (a) indicates that every evenly enclosed line of identity may be removed.
It might seem to cover both 1(A)(1)–(6) in Table 1 and 3(A)(i)–(iii) in Table 2.
For example, in the first graph in Fig. 3, the line of identity in the close of the
inner cut is enclosed by two cuts and immediately by the inner cut. According
to sentence (e), the line of identity can be removed to give the second graph.
This illustrates that sentence (e) permits erasing lines of identity in 3(A)(i)–
(iii) rather than in 1(A)(1)–(6). This paper calls the transformation rule for the
former a disjoin and the latter a disconnection.

Similar consideration applies to sentences (b) and (g). In the third graph
in Fig. 3, the dot on the second cut from the outside is enclosed by only the
outermost cut. If that dot is linked to the dot on the outermost cut by a line of
identity, then the line of identity is enclosed by one cut and immediately by the
outermost cut, as the last graph in Fig. 3 shows. Likewise, in the fourth graph in
Fig. 3, the hook dot of G is enclosed by three cuts. If that dot is linked to the dot
on the third cut from the outside by a line of identity, then the line of identity
is enclosed by three cuts and immediately by the third cut, as the last graph in
Fig. 3 shows. Therefore, sentence (g) allows inserting lines of identity designated
by 4(B)(i)–(iii) in Table 2. This paper calls the corresponding transformation
rule a join. Furthermore, insertion of lines of identity in 2(B)(1)–(6) in Table
1 is permitted by sentence (b), for which the transformation rule is called a
connection.

G GG G G

Fig. 3. Disjoin and join.

Sentences (c) and (d) refer to a branch, which is a graph “signifying the
identity of the three individuals” [2, 4.446]. In a branch, a line of identity goes
separately from the middle of another line of identity. The proposed system
places a dot not only at each of the three extremities of a branch but also at its
fork, as the first graph in Fig. 4 shows. On the basis of sentence (c), in an evenly
or oddly enclosed close, a line of identity can be lengthened with a loose-end dot
from a cut dot, a hook dot, or another loose-end dot. Hence, in Fig. 4, the second
graph is transformable into the third one, and the last graph is transformable
into the fourth one. Because the lengthening of the lines of identity in the latter
case uses a connection and a join, we need only consider the former case, which
corresponds to 2(A)(1)–(3) in Table 1 and 4(A)(i) in Table 2. This paper calls
the rule for that case a joint. In Fig. 4, sentence (d) allows changing the third
graph into the second one, or the fourth graph into the last one, where the former
transformation uses a disconnection and a disjoin. Then I introduce a disjoint as
a new rule for the latter transformation, which covers 1(B)(1)–(3) and 3(B)(i).

In sentence (f), a “vacant” dot on a cut is one from which no line of identity
is lengthened towards the outside or inside of the cut. Sentence (f) enables
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G F G F G FG F

Fig. 4. Joint and disjoint.

linking a dot to a vacant dot on a cut by a line of identity in the same evenly
enclosed close in which the cut lies. This, however, involves linking a loose-end
dot to a vacant dot, which is accomplished by a joint. Hence, in the proposed
system, sentence (f) is considered to focus particularly upon 2(A)(4)–(5). The
rule for these cases is called an extension, and it allows transforming the first
graph in Fig. 5 into the second one, or the third one into the last one. Sentence
(h) mentions the content that is contrary to that of sentence (f). The rule for
the transformation indicated by sentence (h) is called a retraction. In Fig. 5, this
is exemplified by deleting the outermost cut from each of the four graphs and
passing from the right-hand graph to the left-hand one in each of the two pairs,
thus illustrating 1(B)(4)–(5).

G F G F G F G F

Fig. 5. Extension and retraction.

This research has revealed that Peirce’s original statements about the erasure
and insertion of a line of identity symmetrically covered all the necessary rules.
The scrutiny proves that Peirce’s formulation of the transformation rules for
lines of identity was based upon the principle that no line of identity crosses a
cut. Hence, I can reformulate the rules in the following way:

(1) Disconnection
If the close of a cut is evenly enclosed and two dots in the close proper to
the cut are linked by a line of identity in the same close, then the line of
identity can be removed.

(2) Connection
If the close of a cut is oddly enclosed, then two dots in the close proper to
the cut can be linked by a line of identity in the same close.

(3) Disjoin
If the close of a cut is evenly enclosed and a dot on the cut is linked to a dot
in the close proper to the cut by a line of identity in the same close, then
the line of identity can be removed.

(4) Join
If the close of a cut is oddly enclosed, then a dot on the cut can be linked to
a dot in the close proper to the cut by a line of identity in the same close.
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(5) Disjoint
If the close of a cut is oddly enclosed and a line of identity with a loose-end
dot is lengthened inward from a dot in the close proper to the cut, including
a dot on that cut, then the line of identity can be removed.

(6) Joint
If the close of a cut is evenly enclosed, then a line of identity with a loose-
end dot can be lengthened inward from a dot in the close proper to the cut,
including a dot on that cut.

(7) Retraction
If the close of a cut is oddly enclosed and a line of identity is lengthened
from a hook dot or a cut dot in the close proper to the cut, including a dot
on that cut, to a vacant dot on a cut in the same close, then the line of
identity can be removed.

(8) Extension
If the close of a cut is evenly enclosed, then a line of identity can be length-
ened from a hook dot or a cut dot in the close proper to the cut, including
dot on that cut, to a vacant dot on a cut in the same close.

Finally, without adding or deleting a line of identity, any graph can be scribed
in an oddly enclosed close or removed in an evenly enclosed close. I call the
rule for the former and latter transformations simply insertion and erasure,
respectively.

5 Rule of Iteration and Deiteration

The rule of iteration or deiteration permits inserting a replica of a given graph or
erasing an iterated graph in a designated close under certain conditions. Peirce
provided the rule in the following way: “[a]nywhere within all the seps that
enclose a replica of a graph, that graph may be iterated with identical ligations,
or being iterated, may be deiterated” [2, 4.505]. For example, in the first graph
in Fig. 6, G lies in the annulus between the middle and the innermost cuts. By
iteration, G can be repeated anywhere within the two cuts. For instance, as the
second graph in Fig. 6 shows, a replica of G with its hook dot can be placed next
to G. On the other hand, such an iteration cannot be performed in the annulus
between the outermost and the middle cuts, as the graph iterated in such a way
is not within the middle cut.

Peirce referred to “identical ligations” in the statement cited above. He noted
that “[t]he operation of iteration consists in the insertion of a new replica of a
graph which there is already a replica, the new replica having each hook ligated to
every hook of a graph-replica to which the corresponding hook of the old replica
is ligated” [2, 4.506]. Peirce used the term replica or graph-replica to refer to a
diagrammatic expression scribed as a token of a graph. What is already scribed
as a replica of G in the first graph in Fig. 6 is an old one, and what is added in
the second graph is a new one. In the first graph in Fig. 6, the hook dot of the
old replica of G is linked to the dot on the middle cut by the line of identity



A Reformulation of the Transformation Rules in Existential Graphs 195

inside, and that cut dot is linked to the hook dot of the replica of F by the line
of identity outside. To complete the iteration in the second graph, it is necessary
that the hook dot of the new replica of G contacts that of the replica of F
through a series of lines of identity. Hence, the hook dot of the new replica of G
is linked to the dot on the middle cut by a line of identity, thereby obtaining the
linkage between the hook dot of the new replica of G and that of the replica of
F in the last graph in Fig. 6.

H G F H GG F H GG F

Fig. 6. Iteration.

Indeed, an iteration enables proceeding from the first graph in Fig. 7 through
the second one to the third. Such a transformation is feasible, however, without
appealing to iteration: an insertion permits transforming the first graph into the
second one; from there, the third graph can be modified by an extension and a
join.

Deiteration is the converse of iteration. Peirce explained it in the following
way: “[t]he operation of deiteration consists in erasing a replica which might have
illatively resulted from an operation of iteration, and of retracting outwards the
ligatures left loose by such erasure until they are within the same seps as the
corresponding ligature of the replica of which the erased replica might have been
the iteration” [2, 4.506]. In applying deiteration to the third graph in Fig. 7, first
of all, we erase the iterated replica of G in the close of the innermost cut in that
graph, thus changing it into the last graph. In that graph, deiteration means the
outward retraction of the line of identity with a loose-end dot in the close of the
innermost cut. Because the hook dot of the original replica of G is linked to the
dot on the middle cut by the line of identity in the annulus between the middle
and the innermost cuts, that retraction must be performed to that cut dot at
two steps; at the first step, the line of identity linking the hook dot of the erased
replica of G to the dot on the innermost cut is removed; at the second step, the
line of identity linking the dot on the innermost cut to the dot on the middle
cut is removed. Thus, we obtain the first graph in Fig. 7. Though a deiteration
allows turning the last graph in Fig. 6 into the first one, the transformation can
also use a disjoin and an erasure, without using a deitertation.

H G F H GG F H G FH GG F

Fig. 7. Deiteration.
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6 Applications of Transformation Rules

The proposed system provides an alternative reformulation of the transformation
rules in the Beta part of Peirce’s Existential Graphs. How can this system handle
the graph transformations demonstrated in Shin’s book? According to Shin,
“[w]e may extend a loose end of an LI inwards through cut(s)” [4, 140], where
“LI” denotes a line of identity. In the first graph in Fig. 8, for example, the line
of identity has a loose end in the annulus between the outer and the inner cuts.
This may be lengthened into the close of the inner cut, as the second graph
shows. In that graph, two loose ends in the inner close cannot be linked by a line
of identity, for “[w]e may join two loose ends of identity lines (a) in an O-area”
[4, 140]. Here, an “O-area” is an oddly enclosed close, but those two loose ends
are enclosed by two cuts, prohibiting them from being linked by a line of identity.

G G G G

Fig. 8. Shin’s transformations.

On the other hand, for the third graph in Fig. 8, Shin’s system allows length-
ening the loose end of the line of identity from G outward to the outside of
the outer cut [4, 140]. As a result, we obtain the last graph. Shin added three
conditions to this transformation. Such a lengthening is possible “unless there
is another LI (A) which is attached to the same predicates, (B) whose scope
is bigger than the LI we are interested in extending, and (C) whose outermost
part is in an O-area” [4, 140]. If, for instance, in the third graph in Fig. 8, G
has another line of identity with a loose end that is lengthened outward to the
annulus between the outer and the inner cuts, then we cannot lengthen the loose
end of the shorter line of identity. We are thus banned from transforming the
first graph in Fig. 9 into the second one. Let G denote the predicate Loves(x, y).
Then, the former graph affirms ∀y∃xLoves(x, y), and the latter graph corre-
sponds to ∃x∀yLoves(x, y). As Shin pointed out, ∃x∀yLoves(x, y) can never be
derived from ∀y∃xLoves(x, y) in any logical system of classical first-order predi-
cate language [4, 144]. Rather, the latter follows from the former, and the second
graph in Fig. 9 is transformable into the first one. Shin gave such a transforma-
tion by the following rule: it permits us to “retract a loose end of an LI inwards
(ii) from an E-area to an E-area” [4, 140]. In the second graph, the loose end of
the left-hand line of identity of G lies outside the outer cut, which is enclosed
by no cut: it is in an evenly enclosed close. Therefore, the line of identity can be
retracted inward to the evenly enclosed close of the inner cut, thus giving the
first graph.
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G G

Fig. 9. ∀y∃xLoves(x, y) & ∃x∀yLoves(x, y).

The proposed system can deal with these transformations in a more consistent
manner with no additional restrictions. It turns the first graph in Fig. 8 into the
first one in Fig. 10 while obeying the principle that no line of identity crosses a cut
and using loose-end dots, cut dots, and hook dots. The first graph in Fig. 10 means
∀x∃y(x = y) → ∃zGz, as Burch presents the interpretation that a line of identity
linking two dots asserts ∃x∃y(x = y) in the paper entitled “The fine structure of
Peircean ligatures and lines of identity” [1, 40–63]. In that graph the inner loose-
end dot of the line of identity in the annulus between the outer and the inner cuts
may be linked to a dot on the inner cut by a line of identity via a connection. This
gives the second graph in Fig. 10, which means ∀x∃y(x = y) → ∃zGz. A joint
permits lengthening a new line of identity with a loose-end dot inward from the
dot on the inner cut, as the third graph shows, which means ∃x∃y(x = y) ∧ ∃zGz.
On the other hand, in that graph, no rule allows linking the loose-end dot in the
close of the inner cut to the hook dot of G.

G G G

Fig. 10. Extension and joint.

Similarly, the third and the last graphs in Fig. 8 are changed into the first
and the second graphs in Fig. 11, respectively. For the first graph in Fig. 11,
however, the proposed system does not have any rule for linking a dot on the
inner cut to the hook dot of G in its close by a line of identity. How, then, do
we transform that graph into the second graph in Fig. 11 in this system? Peirce
introduced the rule of biclosure [2, 4.508], which allows enclosing any graph by
a double cut and withdrawing it from about any graph enclosed by it [2, 4.508].
Here, a double cut is a pair of two cuts such that one is within the other and the
annulus between them does not contain any graph [2, 4.508]. In the first graph
in Fig. 11, the two cuts enclosing G constitute a double cut. By a biclosure, we
may withdraw it, thus giving the third graph. Then, a joint enables lengthening
a line of identity with a loose-end dot from the hook dot of G in that graph,
which leads to the last graph. And, a biclosure transforms the last graph into
the second one. Note again that a double cut has no graph in its annulus. For a
biclosure, therefore, we must scribe a double cut in such a manner that neither
a loose-end dot nor a hook dot of an already scribed line of identity occurs in its
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annulus, nor does the line of identity stop at a dot on the inner cut of it. The
proposed system thus places dots at the intersections of a line of identity and
the two cuts of a double cut, as the second graph in Fig. 11 shows.

G G G G

Fig. 11. Biclosure.

Shin’s system can change the third graph in Fig. 8 into the last one. No
system, however, permits transforming the first graph in Fig. 9 into the last one.
Therefore, Shin imposed three constraints on lengthening a line of identity with
a loose-end dot outward from an evenly enclosed close to an evenly enclosed
close. In contrast, the system proposed here expresses the two graphs in Fig. 9
as shown in Fig. 12; and, in the first graph in Fig. 12, which means ∀y∃xGxy, this
system never allows lengthening a line of identity with a loose-end dot outward
from the hook dot of G to the close outside the outer cut. Nevertheless, the
second graph, which means ∃x∀yGxy, is transformable into the first one. Then,
how does this system convert the former graph into the latter?

G G

Fig. 12. ∀y∃xLoves(x, y) & ∃x∀yLoves(x, y).

In the second graph in Fig. 12, a disjoin permits removing the line of identity
linking the dot on the inner cut to the hook dot of G. This manipulation produces
the first graph in Fig. 13, which means ∀z∃w(z = w) → ∀y∃xGxy. In that graph,
a retraction can remove the line of identity linking the dot on the inner cut to
the dot on the outer cut, thus giving the last graph in Fig. 13, which means
∃z∃w(z = w) ∧ ∀y∃xGxy. Finally, a disconnection allows removing the line of
identity linking the loose-end dot outside the outer cut to the dot on that cut,
thus giving the first graph in Fig. 12.

G G

Fig. 13. Transformation of ∃x∀yLoves(x, y) into ∀y∃xLoves(x, y).
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7 Transformations of Graphs

In any logical system of classical first-order predicate language, we may derive
∃xFx∨∃xGx from ∃x(Fx∨Gx). Shin’s system represents the former by the last
graph in Fig. 14 and the latter by the first one. According to Shin, “[w]e may
disjoin an identity line in an E-area” [4, 140]. We thus remove a portion of the
line of identity outside the outer cut in the first graph, giving the second graph.
As we have seen, in that graph, we retract each of the two lines of identity having
their loose ends in the outermost close enclosed by no cut to the innermost close
enclosed by two cuts. As a result, we obtain the last graph.

GF GF GF

Fig. 14. Shin’s transformations.

Those operations depend on the presumption that lines of identity can cross
cuts. In contrast, the proposed system takes a different route from the first
graph in Fig. 14 to the last one. Specially, it uses dots to express the former
graph as the first one in Fig. 15. Applying a disjoin to that graph twice, we
get the second graph, which means ∀z∃w(z = w) → (∃xFx ∨ ∃xGx). Two
applications of a retraction turn it into the third graph, which means ∃z∃w(z =
w) ∧ (∃xFx∨ ∃xGx). Finally, by a disconnection, we remove the line of identity
outside the outermost cut in that graph, thus giving the last graph in Fig. 15,
which corresponds to the last one in Fig. 14.

GF GFGF GF

Fig. 15. Transformation of ∃x(Fx ∨ Gx) into ∃xFx ∨ ∃xGx.

In the last graph in Fig. 15, we lengthen a line of identity with a loose-end
dot from each of the hook dots of F and G by a joint, thus giving the first
graph in Fig. 16, which means ∃xFx ∨ ∃xGx. In that graph, by a biclosure, a
double cut is scribed in the close of the left-hand inner cut in such a manner
that the loose-end dot of the line of identity from F lies on the outer cut of
the double cut. The similar transformation can be performed in the close of
the right-hand inner cut in that graph, thus giving the second graph in Fig. 16,
means ¬¬∃xFx ∨ ¬¬∃xGx. There, an insertion permits scribing in the proper
close to the left-hand third cut from the outside the graph where G is enclosed
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by a cut and its hook dot is linked to a dot on the cut by a line of identity.
Similarly, an insertion permits scribing in the proper close to the right-hand
third cut from the outside the graph where F is enclosed by a cut and its hook
dot is linked to a dot on the cut by a line of identity. Thus, we arrive at the last
graph in Fig. 16, which means (∃xFx ∨ ∀xGx) ∨ (∀xFx ∨ ∃xGx).

GFGFGFGF

Fig. 16. Transformation of ∃xFx ∨ ∃xGx into ∃x(Fx ∨ Gx).

In each of the left- and the right-hand sides of the last graph in Fig. 16, by
an extension, we may lengthen a line of identity from the dot on the third cut
from the outside to a vacant dot on the same third cut. This gives the first graph
in Fig. 17, which means (∃xFx ∨ ∀xGx) ∨ (∀xFx ∨ ∃xGx). Then, in each of the
left- and right-hand sides of that graph, a join can be used. This introduces a
line of identity to link the dot on the third cut from which no line of identity is
lengthened inward to the dot on the fourth cut from which the line of identity is
lengthened inward to the hook dot of G or F. As a result, one and the same graph
occurs twice repeatedly in the same close of the outermost cut, as the second
graph in Fig. 17 shows, which means ∃x(Fx ∨ Gx) ∨ ∃x(Fx ∨ Gx). Therefore,
we may remove one of them by a deiteration. In the last graph in Fig. 17, which
means ¬¬∃x(Fx ∨ Gx), because there is no graph in the annulus between the
first and the second cuts from the outside, the pair of them forms a double cut,
and a biclosure allows removing it. Consequently, we obtain the first graph in
Fig. 15.

GFGF GFGFGF

Fig. 17. Transformation of ∃xFx ∨ ∃xGx into ∃x(Fx ∨ Gx).

8 Conclusion

This investigation has revealed that one of the fundamental conceptions in
Peirce’s Existential Graphs, that no line of identity can cross a cut, more effec-
tively confers a symmetrical configuration of the transformation rules in the
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Table 3. Transformation rules.

Erasure Insertion

Simple erasure Simple insertion

Disconnection Connection

Disjoin Join

Disjoint Joint

Retraction Extention

Deiteration Iteration

Biclosure Biclosure

Beta part of Existential Graphs. This involves two kinds of operations, namely,
erasure and insertion. Table 3 briefly summarizes these operations.

In Table 3, simple erasure and simple insertion mean deleting and adding
a graph, respectively, without deforming any line of identity. Basically, we are
prohibited from inserting a graph in an evenly enclosed close or erasing a graph
in an oddly enclosed close. The subsequent rules—disconnection and connection,
disjoin and join, disjoint and joint, retraction and extension—enumerate all the
necessary transformation rules for erasing or inserting lines of identity. They
completely excludes the rules for (a) erasing a line of identity linking two hook
dots in one and the same oddly enclosed close (1(B)(6) in Table 1); (b) inserting
a line of identity linking two hook dots in one and the same evenly enclosed close
(2(A)(6) in Table 1), (c) erasing a line of identity linking a dot on a cut whose
close is oddly enclosed to a hook dot or a cut dot in the close proper to the cut
(3(B)(ii)–(iii) in Table 2) (d) inserting a line of identity linking a dot on a cut
whose close is evenly enclosed to a hook dot or a cut dot in the close proper
to the cut (4(B)(ii)–(iii) in Table 2). Finally, the rules for biclosure are of two
kinds: one for erasing a double cut, and the other for inserting it.

This proposal suggests that the proposed system of the Beta part of Exis-
tential Graphs is equivalent to a classical first-order predicate logic with no free
variable. The equivalence remains to be proved formally.
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Abstract. Logical diagrams are known to have certain advantages over sentential
notations for particular reasoning tasks: using a diagram may make logical con-
sequences directly evident, when these consequences are “hidden” in an equiva-
lently expressive sentential language. This phenomenon is known as a “free ride”
or “observational advantage”. Where does this advantage come from, and why?
We answer this question by distinguishing two general kinds of logical languages:
occurrence-referential languages, in which sameness of reference (for sentential
and predicate variables) is determined by the sameness of variable occurrence,
and type-referential languages, in which sameness of variable type determines
sameness of reference. We explain that it is the occurrence-referential nature of
some languages that explains for their observational advantage over equivalently
expressive type-referential languages.

Keywords: Euler diagrams · Observational advantages · Type · Token ·
Occurrence

1 Introduction

That certain notations have the capacity to yield more information than is necessary
for their construction is a well-known phenomenon. It was called a “free ride” by
Shimojima (1996a, 1996b), who pointed to many examples including those found in
maps, tabular data, and logical languages. In particular, the occurrence of free rides in
logical languages has provided one motivation for the use and promotion of heteroge-
neous (mixed sentential and diagrammatic) and purely diagrammatic logics. The notion
of free ride has recently been generalized to that of observational advantage (Staple-
ton et al. 2017, 2018), and it has been argued that logical diagrams have observational
advantages over sentential logics, giving them the potential to be a more accessible and
reliable vehicle for expressing and drawing inferences from precise information, at least
for certain tasks. Aspects of this broad hypothesis have been empirically confirmed (see,
for instance, Alharbi et al. 2017).

Our aim in this paper is to set out an explanation of why certain logical notations are
observationally advantageous over others. What is the salient and common property of
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those notations that have observational advantages? It would be tempting to answer this
question by saying that diagrams are observational advantageous over non-diagrammatic
languages, and that it is precisely the property of “being a diagram” that explains the
presence of observational advantages. Unfortunately, this strategy is unviable, in the first
place, because we do not have a satisfactory definition of “diagram” that would capture
all and only those notations that we would intuitively consider diagrammatic. In the
second place, the strategy is unviable because, as it will be shown below, notations exist
which we would intuitively consider diagrammatic that do not display observational
advantages.

This paper is about observational advantages in standard Euler diagrams, a notation
intuitively characterized as diagrammatic which is known to be observationally advan-
tageous over equally expressive languages. By examining research that addresses the
mechanics of observational advantages in Euler diagrams, we consider the best cur-
rent explanation of how they arise. We answer the question of why Euler diagrams are
observationally advantageous over others by forging a distinction of our own between
two distinct ways in which a logical language may refer: we distinguish between “type-
referential” notations, in which sameness of reference depends on sameness of symbol
type, and “occurrence-referential” notations, in which sameness of reference depends on
sameness of symbol occurrence. It will be our argument that observational advantages
in Euler diagrams depend on occurrence-referentiality.1

The paper is divided as follows: in Sect. 2 we look at recent work on the mechanics
of observational advantages, including the concept of “meaning-carrying relationships”.
In Sect. 3 we discuss the notions of type, token, and occurrence, and in Sect. 4 we
use this discussion to introduce our main distinction, that between type-referential and
occurrence-referential notations. In Sect. 5 we show that Euler diagrams are observation-
ally advantageous over first order logic because they display multiple meaning-carrying
relationships, andwe argue that this is so, in turn, because they are occurrence-referential.
In Sect. 6 we turn to observational disadvantages. Here we show that Euler diagrams
are observationally disadvantageous (“overspecific”) over first order logic because they
display multiple meaning-carrying relationships, and we argue that this is so, again,
because they are occurrence-referential. In Sect. 7 we suggest that a parallel distinc-
tion between type- and occurrence-referential languages exists with respect to identity,
whose systematic investigation lies outside the scope of the present work.

2 Observational Advantages and Meaning-Carrying Relationships

That Euler diagrams have the capacity to yield more information than is necessary for
their construction is a well-known phenomenon with its own history (Bellucci et al.
2014; Moktefi 2015). This phenomenon, originally labelled “free ride” by Shimojima,
has recently been generalized to that of “observational advantage” (Stapleton et al.
2017, 2018). Roughly, the contrast upon which the theory of observational advantages
is based is between inferring a statement from a given representation of information
and observing that statement without inferring it. It is said that a given representation

1 Howse et al. (2002) applied the type/token distinction to logical diagrams but in that work the
distinction is between drawn diagrams (tokens) and abstract syntax (types).
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of information is observationally advantageous over another if the former allows us to
observe something that must be inferred from the latter. For example, take the premises
of a syllogism in Barbara, as expressed in the standard language of first order logic:

1) ∀x (Ax ⊃ Bx)
2) ∀x (Bx ⊃ Cx)

These premises can be “copulated” by means of the conjunction operator so as to
produce a single statement forming a composite premise:

3) ∀x (Ax ⊃ Bx)& ∀x (Bx ⊃ Cx)

Having written down the premises, either singularly or in conjunction, we still need
to apply some general rule of inference in order to obtain the conclusion:

4) ∀x (Ax ⊃ Cx)

(4) is inferable from (1) and (2) taken together, i.e. from (3), but is not observable in
either (1) and (2) singularly or in (3).

Now consider the same syllogism as represented in Euler diagrams. The premises
are represented in Fig. 1, where the fact that a circle is wholly enclosed in another circle
means that a class is wholly contained in another class. Thus, in order to represent that
“All A are B” we draw the circle A inside the circle B, and in order to represent that
“All B are C” we draw the circle B inside the circle C. However, as soon as we have
drawn the diagram of the premises, the diagram of the conclusion is drawn as well: the
circle A is in fact inside the circle C, and this means that “All A are C”. The conclusion
of the syllogism is not inferred from the premises by means of inference rules; rather, it
is observed in the diagram of the premises. The diagram of the premises is at the same
time the diagram of the conclusion.

Fig. 1. Euler diagram

Despite this state of affairs being frequently commented upon, few authors have
attempted to explain why this might be so. Stapleton et al. (2017) attempt to do so by
making appeal to the notion of meaning-carrying relationship (MCR). An MCR is a
relation on the syntax of an expression that carries semantic content, i.e. one which can
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be evaluated to either “true” or “false”. For example, in (1) the fact that “Ax” is at the
immediate left of “⊃” and that “Bx” is at its immediate right is an MCR, because it
carries semantic content: it means that the open formula at the immediate left of “⊃”
is the antecedent and the open formula at its immediate right is the consequent of a
conditional sentence whose truth-conditions are given by the usual truth-table for the
material conditional. By contrast, the fact that in (3) “Ax” is at the left (but not at the
immediate left) of the second occurrence of “⊃” is not an MCR: this fact is, indeed, a
fact about the symbols contained in the formula, but it does not have semantic content,
i.e. it cannot be evaluated to true or false.2

Circle A in Fig. 1 has multiple MCRs. It is included in circle B, and this has a
semantic content (“All A are B”). It is also included in circle C, which also has semantic
content (“All A are C”). Given the conventions of Euler diagrams, circle A would have
MCRs with any other circle that could be drawn according to the conventions of the
system. Thus, in the Euler diagram in Fig. 2, circle A is not only included in circles B
and C, but also disjoint from circles D, E and F.

Fig. 2. Euler diagram

Euler diagrams are observationally advantageous over first order logic because each
circle in an Euler diagram has multiple MCRs, i.e. has anMCRwith any other circle that
is part of the same (unitary) diagram, while each predicate variable in a first order logic
formula does not have MCRs with any other predicate variable that is part of the same

2 Another way of saying this is as follows. Whether a statement is simple (atomic) or compos-
ite (molecular), the relation of the syntax that carries semantic content, i.e. the MCR, always
concerns the components of the statement which are in the scope of the main operator, i.e. the
operator that has the widest binding. So “Ax” has no meaning-carrying relationship with the
second occurrence of “⊃” because they are not the components of the statement which are
operands of “&”. These are “∀x (Ax ⊃ Bx)” and “∀x (Bx ⊃ Cx)”. As we suggest below, this
scope limitation for the occurrence of an MCR does not hold for Euler diagrams, because in this
system the scope of any information expressed is always the entire unitary diagram.
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formula. Having established the notion ofMCRStapleton et al. (2017) go on to formalise
observational advantages and disadvantages as relations between sets of expressions in
different logical notations. Our question, on the other hand, is why do circles in Euler
diagrams have multiple MCRs when this is not the case for predicate variable in first
order logic?

3 Types, Tokens, and Occurrences

The distinction between “type” and “token” expressions is a well-known distinction in
philosophy and linguistic theory. Consider the following sentence:

(5) war is war

(5) may be said to contain either two or three words according to two different senses of
theword “word”. In one sense, (5) contains threeword tokens (“war”, “is”, and “war”). In
another sense, it contains two word types (“war” and “is”). A type is a general, abstract,
and unique kind of entity; a token a concrete and individual one. When an editor asks an
author to write a paper of 10.000 words, what she means is 10.000 word tokens. When
a corpus linguist says that Dante’s Divina Commedia contains 12.831 words, what she
means is 12.831 word types. The distinction derives from Peirce, who was the first to
draw it and to provide the terminology which is still current today (Peirce 1932–1958,
2.243–246, 4.537).

However useful the type/token distinction may have proven to be, it is insufficient
for the purposes of even some simple linguistic analyses. Here is an example of its
insufficiency, adapted fromWetzel (1993). Let us assume that the type/token distinction
is exhaustive, i.e. that a simple or composite expression is either an expression type or an
expression token. Let us further assume that (5) is a sentence type. The sentence consists
of three words. Are these three word types or three word tokens? The sentence cannot
consist of three word tokens, because we have assumed it to be a sentence type and thus
an abstract entity, while tokens are concrete entities: an abstract entity cannot in itself
be regarded as being made of concrete entities. Nor can (5) consist of three word types,
because there are only two word types of which it might consist.

The problem is solved by recognizing a third level of linguistic analysis, which is the
occurrence of an expression in some linguistic context. Assuming (5) to be a sentence
type, we may say that the word type “war” occurs twice in (5), and is instantiated or
betokened twice in every token of that sentence. The two occurrences of the word type
“war” in (5) are differentiated by saying that one of them is “the first occurrence of ‘war’
in (5)”, the other “the second occurrence of ‘war’ in (5)”. A parallel differentiation can
be made for the two occurrences of the word token “war” in every token of (5). The
notion of occurrence solves the problem exemplified in the preceding paragraph: as a
sentence type, (5) contains one type of the word “war” (and not two of them), and two
occurrences of it (and not two tokens of it).
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4 Type and Occurrence Referentiality

Extending a suggestion by John Etchemendy to Keith Stenning,3 in this section we
use the notions of “type” and “occurrence of a type” in order to distinguish between
two main families of logical languages. Etchemendy and Stenning were discussing the
phenomenon in general. In this work we focus on the referentiality of notation for
sentences, predicates and classes. The relevance of this qualification will be addressed
in Sect. 7.

We call a language in which the sameness of sentences and predicates (including
classes) is represented by the sameness of the variable type “type-referential”: in a type-
referential notation, eachoccurrence of a variable type refers to one and the same sentence
or predicate (including classes). We call a language in which the sameness of sentences
and predicates (including classes) is represented by the sameness of the variable occur-
rences “occurrence-referential”: in an occurrence-referential notation, each occurrence
of a variable type refers to a distinct sentence or predicate (including classes).

Let us make some examples. In sentence (6) there are three sentential variable types,
“P”, “Q” and “R”. Since in the first conjunct of (6) “Q” figures as the consequent
of a conditional whose antecedent is “P” while in the second conjunct it figures as
the antecedent of another, distinct conditional whose consequent is “R”, and since the
conditional operator is a binary operator, in order for “Q” to be in two distinct relations,
one to the sentential variable “P” and another to the sentential variable “R”, it has to
occur twice. In each of its two occurrences in (6), “Q” remains the same variable type.
In our terminology, the sentential language in which (6) is written is type-referential.
Similarly with the predicate logic sentence (7), where the occurrences of the predicate
variables “P”, “Q” and “R” each instantiate their respective types. Both the language of
(6) and that of (7) are type-referential in that in these languages each occurrence of a
variable type is interpreted as referring to the same sentence (as in (6)) or predicate (as
in (7)) as any other occurrence of the same variable type.

(6) (P ⊃ Q)& (Q ⊃ R)
(7) ∀x (Px ⊃ Qx)& ∀x (Qx ⊃ Rx)

Type-referentiality is not a feature of linear languages only. Figure 3 is a Beta graph
equivalent in information to (7). In the usual transliteration it says “it is not the case
that something is P and not Q and it is not the case that something is Q and not R”.
Just as with (7), there are here three predicate variable types. Multiple occurrences of

3 “Etchemendy (personal communication) uses this framework to derive a common distinguishing
characteristic he calls type vs. token referentiality. In type referential systems (a paradigm case
would be formal languages), repetition of a symbol of the same type (say of the term x or the
name “John”) determines sameness of reference by each occurrence of the symbol. Obviously
there are complexities such as anaphora and ambiguity overlaid on natural languages, but their
design is fundamentally type referential. Diagrams, in contrast are token referential. Sameness
of reference is determined by identity of symbol token. If two tokens of the same type of symbol
occur in a single diagram, they refer to distinct entities of the same type (e.g. two different towns
on a map)” (Stenning 2000: 134). With the distinction between token and occurrence in hand
we re-frame the Etchemendy/Stenning distinction in terms of occurrence-referentiality.



208 F. Bellucci and J. Burton

a given variable type may appear, and must, if we are to say several things about the
predicate in question; so, in Fig. 3 the predicate variable type “Q” occurs twice, once in
the partial graph at the left and once in the partial graph at the right. Like the foregoing
linear examples, Beta graphs are type-referential.

Fig. 3. Beta graphs

The notion of type-referentiality would seem somewhat trivial if all languages were
of this sort. But this is not so. Consider the Euler diagram in Fig. 4, which provides
equivalent information to the first order logic sentence (7) and the Beta graph in Fig. 3.
The type of symbol used in this language for the representation of a class is the closed
curve, or circle. Now, each occurrence of this type in a formula refers to a distinct class:
in Fig. 4 there are three occurrences of the circle type, and each refers to a distinct class.
Labels are used to facilitate differentiation, but are not an integral part of the language:
we could refer to each occurrence of the circle by means of topological descriptions.
The important thing about the Eulerian language is that each occurrence of the circle
type is the representation of a class which is distinct or distinguishable from any other
class represented by other occurrences of the same type. Indeed, it would violate the
rules of the notation to label two occurrences of the circle in the same way, because
the convention about distinctness of referentiality would be in contradiction with the
sameness of the labels. Thanks to this feature of the syntax, unlike in the languages we
have considered above, in Euler diagrams we are able to assert two things about the class
Q whilst only mentioning it once.

Fig. 4. Euler diagram.

Our discussion has focused so far on the relations, which are MCRs, between rep-
resented classes, their disjointness, proper subsumption, and so on. We can be more
general: the MCRs in question are between those parts of a class that are represented;
in diagrammatic terms, the zones of the diagram. If the information used to construct
Fig. 5 were equivalent to the set theoretic expressions “A ⊆ B” and “B ∩ C = ∅”,
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then the observational advantage is not only that “A ∩ C = ∅”, but also includes
“(B−A) ∩ C = ∅”. In other words, each zone displays an MCR with any other zone.
This, as we shall see, is due to the occurrence-referential nature of the system.

Fig. 5. Euler diagram.

5 Occurrence Referentiality and Observational Advantages

We are now in the position to explain why we think that it is the occurrence-referential
nature of Euler diagrams that allows multiple MCRs, which in turn, as shown by
Stapleton et al. (2017), is what explains Euler diagrams’ observational advantages. Con-
sider again the Euler diagram in Fig. 4 and the first order logic sentence equivalent to it,
(7). Figure 4 and (7) express the same information. According to the conventions of Euler
diagrams, the topological relation of inclusion between two labeled circles expresses that
any element of the class represented by the enclosed circle is an element of the class
represented by the enclosing one. Since in Fig. 4 the circle P is included in the circle
Q, we can say that this relation of inclusion corresponds to the sub-formula “∀x (Px ⊃
Qx)” of (7); likewise, since the circle Q is included in the circle R, we can say that this
relation of inclusion corresponds to the sub-formula “∀x (Qx ⊃ Rx)” of (7). Each of the
two conjuncts of (7) displays an MCR that has a corresponding MCR in Fig. 4. Now,
Fig. 4 displays a further MCR not displayed by (7): in Fig. 4 the circle P is included in
the circle R, which would correspond to the first order logic formula “∀x (Px ⊃ Rx)”.
But this latter formula is not observable in, only inferable from, (7); therefore, Fig. 4 is
observationally advantageous with respect to (7).

Such an observational advantage depends on the language of Fig. 4’s being
occurrence-referential. To see this let us imagine a non-unitary version of Euler dia-
grams, in which the two conjuncts of (7) are represented by distinct unitary diagrams
which are joined by a conjunction operator (see Fig. 6).

The language is precisely that of standard unitary Euler diagrams, with in addition
the possibility of joining unitary Euler diagrams into “conjunctive” or “disjunctive” non-
unitary Euler diagrams. To do so, a special convention for conjunction or disjunction is
introduced (the symbol between boundary rectangles). Now, as soon as the possibility of
constructing “conjunctive” and “disjunctive” non-unitary Euler diagrams is opened, the
language ceases to be occurrence-referential and becomes type-referential: for example,
in Fig. 6 circle Q occurs twice, once in the left hand side unitary diagram and once in the
right hand side unitary diagram, without however ceasing to refer to one and the same
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Fig. 6. Non-unitary Euler diagram.

class. Precisely because of this, the system does not display the kind of observational
advantages that unitary Euler diagrams do; we are not able to observe in Fig. 6 that “∀x
(Px ⊃ Rx)” as we do in Fig. 4.

The presence in Fig. 4 of an MCR that is not displayed by (7), namely that the circle
P is included in the circle R, which would correspond to information conveyed by the
first order logic formula “∀x (Px ⊃ Rx)”, is due to the fact that in Fig. 4 one single
occurrence of circle Q is at once in a certain relation to circle P and in a certain relation
to circle R. If the occurrence of circle Q is “split” over two separate unitary diagrams,
the relation between circle Q and circle P and that between circle Q and circle R are also
“split” over two separate unitary diagrams, with the result that the relation between class
P and class R is not observable anymore. The possibility of imagining non-unitary Euler
diagrams, which are type-referential and which are not as observationally advantageous
as unitary ones, shows that it is the occurrence-referential nature of the system that is
responsible for its observational advantages over first order logic.

To see this more clearly, let us ask in what manner the conjunction symbol “&” is
rendered in Euler diagrams. To do this, it is instructive to consider a comparison made
in Stapleton et al. (2017) between expressions of five different languages each of which
represents the same information (Fig. 7).

Fig. 7. Language comparison from Stapleton et al. (2017)
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The Euler diagram in Fig. 7.4, contains the same information as the two sentences
in Fig. 7.1 combined. Set theory does not contain an operator for conjunction. Suppose
we add a copulative operator, “&”, to the language of set theory. We can then restate the
information contained in Fig. 7.1 in a form more comparable to Fig. 7.4:

(8) P ∩ Q = ∅ & R ⊆ P

The two separate set theoretic sentences in Fig. 7.1 display a single MCR each,
where the sentence in (8) displays three MCRs. These can be so described: (a) the fact
that “P ∩ Q = ∅” occurs at the left of “&” and that “R ⊆ P” occurs at its right is an
MCR: it means that both expressions are conjunctively asserted; (b) the fact that “P∩Q”
occurs at the left of “=” and that “∅” occurs at its right is an MCR: it means that the set
expressed by the left hand side is empty; (c) the fact that “R” occurs at the left of “⊆” and
that “P” occurs at its right is anMCR: it means that R is a subset of P. Despite containing
multiple MCRs, the expression in (8) contains far fewer MCRs than the corresponding
Euler diagram in Fig. 7.4, which makes this latter observationally advantageous over
the former. What we want to call attention to, however, is a special fact about one of
the MRCs that both Fig. 7.4 and (8) do display. In Fig. 7.4, MCR (b) is represented
by the disjointness of the circles P and Q; MCR (c) is represented by the inclusion of
circle R in circle P. We have thus been able to identify two of the relations between the
labeled circles displayed in Fig. 7.4 with two of the MCRs displayed in (8). But what
about MCR (a)? There is no specific relation holding between the circles in Fig. 7.4 that
represents what “&” represents in (8), i.e. there is no specific relation between the circles
in Fig. 7.4 that corresponds to MCR (a) in (8). It is the occurrence-referential nature of
Euler diagrams that as it were embodies the conjunction operator.

The same is true of Fig. 4 and (7). Since we assume Fig. 4 and (7) to be equivalent
in the information expressed, one might reasonably ask what is it that plays the role of
the “&” of (7) in Fig. 4. The conjunction is part of the information expressed by (7),
and thus, given equivalence in expressed information, also of the information expressed
by Fig. 4. The question then becomes, is there any single element or piece of syntax in
the language of Fig. 4 that “stands for” the conjunction symbol of (7)? The notion of
occurrence referentiality answers this question. In Fig. 4 no specific element plays the
role that “&” plays in (7).What fulfills the function of combining the sub-formulas that in
(7) appear as conjuncts is the very fact that the notation is occurrence-referential. In (7)
the symbol type “Q” occurs twice, but each occurrence refers to the same predicate. By
contrast, in Fig. 4 the circle type that is labeled “Q” occurs only once and it is precisely
this single occurrence of the type that is able to represent that it is the same class Q
which has a certain relation to the class represented by circle P and a certain relation to
the class represented by the circle R. As soon as a unitary Euler diagram is turned into a
conjunction of unitary Euler diagrams, i.e. into a conjunctive non-unitary Euler diagram,
the conjunction operator that was implicit in the unitary diagram becomes explicit, but
the occurrence-referential nature of the language is lost.

The occurrence-referential nature of Euler diagrams embodies the conjunction oper-
ator. The fact described in Stapleton et al. (2017) that the elements of a single Euler dia-
gram displaymultipleMCRs is due to the fact that this notation is occurrence-referential;
since the symbol of a particular class, the circle, can only occur once in a unitary Euler
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diagram, it has at once MCRs to any other circle occurring in it. In a type-referential
language a conjunction operator is always needed, while in an occurrence-referential
language the conjunction operator is embodied in the syntax of the system.

6 Occurrence Referentiality and Observational Disadvantages

Euler diagrams are not only observationally advantageous over equally expressive lan-
guages. They are also observationally disadvantageous, in the sense that sometimes the
information that is observable in an Euler diagram is not inferable from the informa-
tion that was necessary to construct it. This phenomenon is known as “over-specificity”
(Shimojima 1996a, 1996b). Consider the following first order logic sentences:

9) ∀x (Ax ⊃ Bx)
10) ∼ ∃x (Ax&Cx)
11) ∀x (Ax ⊃ Bx)& ∼ ∃x (Ax&Cx)

The information which each of (9) and (10) conveys can be separately expressed
by two distinct unitary Euler diagrams. The conjunction of (9) and (10), namely (11),
can be expressed in a non-unitary, conjunctive Euler diagram, such as the one in Fig. 8.
But while unitary Euler diagrams can separately represent (9) and (10), no unitary Euler
diagram can represent (11) without also representing pieces of information that is not
contained in (11). Suppose we express (9) by the unitary Euler diagram in the left-hand
side of Fig. 8. Then, in order to represent the remaining part of the information contained
in (11), i.e. (10), in the same unitary diagram, we should place circle C outside circle A.
Now there are three possibilities here: C may be disjoint from B, it may partly overlap
with B, or it may be contained in B. The information conveyed by (10) implies none of
them. But while in first order logic it is possible to write down the information that A
and C are disjoint without implying anything as to the relations between C and B, this is
not possible in unitary Euler diagrams. The information corresponding to (11) can only
be represented by a non-unitary, disjunctive Euler diagram (Fig. 9).

Fig. 8. Non-unitary Euler diagram.
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Fig. 9. Non-unitary Euler diagram.

The source of this phenomenon is the fact that, unlike what happens in some other
equally expressive languages like first order logic, each circle in a unitary Euler diagram
has at once MCRs to any other circle that occurs in the same unitary diagram. As soon
as circle C is added to the Euler diagram expressing (9), it must be so drawn as to be in
someMCR to circle B, even though the corresponding sentence (10) did not convey that
information. Since the multiplicity of MCRs is due to the occurrence-referential nature
of the system – non-unitary Euler diagrams only differ from unitary ones by being type-
referential rather than occurrence-referential – it is the occurrence-referential nature of
the system that provides the most basic explanation of both observational advantages
and disadvantages.

Unitary Euler diagrams are over-specific: there is no way in this system to represent
certain information without making some other, consequential or unconsequential infor-
mation observable in it. When the information observed is consequential, we have an
observational advantage; when it is inconsequential, we have an observational disadvan-
tage. Both are caused by the simultaneous presence of multipleMCRs in a single unitary
diagram, which in turn is due to the occurrence-referential nature of this language.

7 Occurrence Referentiality and Identity

In what precedes we have focused on the distinction between type-referential and
occurrence-referential languages with respect to the representation of sentences, predi-
cates, and classes. Languages can however differ as to whether they are type-referential
or occurrence-referentialwith respect to the representation of individuals. Consider again
the Beta graph in Fig. 3 above. We saw that with respect to the predicate variables this
language is type-referential: in Fig. 3 the predicate variable type “Q” occurs twice, once
in the partial graph at the left and once in the partial graph at the right, and both occur-
rences refer to the same predicate. Under this respect, Beta graphs do not differ from first
order logic. However, Beta graphs differ markedly from first order logic with respect
to the representation of individuals. In Fig. 3 there are two “lines of identity”, i.e. thick
lines connecting the predicate variables. Each of these counts as a distinct occurrence of
the “line of identity” type: in Beta graphs, there is only one line type, each occurrence
of which denotes a possibly (although not necessarily) distinct individual. In first order
logic, by contrast, there is an infinite supply of distinct variable types (x, y, z, …), and
every occurrence of the same type (in the scope of the same quantifier) denotes the same
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individual. This circumstance gives us a reason to draw a further distinction:we call those
languages inwhich individual identity is represented by the sameness of the variable type
“type referential at the identity level” (or type-referential-I): in a type-referential-I lan-
guage, each occurrence of a variable type (within the scope of its quantifier) refers to one
and the same individual. We call a language in which individual identity is represented
by the sameness of the variable occurrences “occurrence referential at the identity level”
(occurrence-referential-I): in an occurrence-referential-I language, each occurrence of
a variable type refers to a possibly (although not necessarily) distinct individual. In this
sense, Beta graphs are type-referential but occurrence-referential-I.

This gives us the opportunity to mention another distinction which should not be
conflated with the type-/occurrence-referential-I distinction. A notation for identity and
quantification is susceptible of an inclusive or exclusive interpretation. Under the inclu-
sive interpretation, difference of variables type or occurrence does not assure differ-
ence of individuals denoted. This is the case of standard first order logic, which is
type-referential-I (difference of variable type does not assure difference of individuals
denoted), and of Beta graphs, which is occurrence-referential-I (difference of variable
occurrence does not assure difference of individuals denoted). Under the exclusive inter-
pretation, difference of variables type or occurrence assures difference of individuals
denoted. This is the case of Spider diagrams (Howse et al. 2005), which is occurrence-
referential-I (difference of variable occurrence assures difference of individuals denoted)
and of Wittgenstein’s notation for quantification and identity (Rogers and Wehmeier
2012), which is type-referential-I (difference of variable types assures difference of
individuals denoted). The systematic investigation of this second sort of referentiality
(at the identity level) remains outside the scope of the present work.

8 Conclusion

Unitary Euler diagrams are occurrence-referential in the sense specified. We saw above
that languages exist, like Peirce’s Existential Graphs or the non-unitary version of Euler
diagrams, which we would intuitively regard as diagrammatic and which however fail to
be occurrence-referential. On the other hand, we believe we have shown that occurrence
referentiality accounts for observational properties which are usually found in diagrams,
and which are certainly found in Euler diagrams. This should suggest that while occur-
rence referentiality should by no means be identified with “iconicity” (or “diagram-
maticity”), yet there certainly is a close connection between occurrence-referentiality
and iconicity. The depth and breadth of this connection will be the subject or our future
research.4
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Abstract. The goal of the paper is to argue against the claim that thoughts can
be modelled as having a diagram-like structure. The argument has a form of the
so-called Diagram Puzzle, according to which the same features make diagrams
cognitively reliable (and desirable) and unreliable (and non-desirable). I argue that
to solve the Puzzle we have to accept the instrumental interpretation of diagrams,
according to which diagrams are instruments of reasoning comparable to calcula-
tors. Instrumental view on the nature of diagrams leads to the problem of content
determination: the claim that instruments can determine thoughts’ content, entails
that, for example, a calculation carried out with fingers has a different content
that the same calculation carried out with abacus. If instruments do not determine
content, they can be seen as instruments that reveal the content of thoughts, but
they do not change the thoughts content. I argue that diagrams are epiphenome-
nal which means that they cannot influence the thought’s content. Therefore, we
can think with the help of diagrams, but it does not follow that thoughts have a
diagram-like nature.

1 Diagrams in Mind

One of the causes of the increase of the interest in diagrams is the fact that the latter
seem to be one of the most promising models of interpretation of what is thinking and
what are thought processes. Let us call it a diagrammatic approach to thinking. The
approach, represented most notably by Peirce, is based on two assumptions. Firstly, it
seems reasonable to assume that some forms of higher order thought processes can be
modelled in terms of operations conducted with diagrammatic representations, such as
flowcharts or graphs. It means that diagrams can be used as tools for conducting some
reasoning processes [21].

Secondly, it is believed [4, 7, 25] that understanding the nature of diagrammatic rep-
resentations may be decisive to understand the nature of how (mental) representations
work. The general idea is that the way humans encode information is based on a struc-
tural resemblance between the mental representation and the represented object, which
both describes the nature of humans mental representations, as well as diagrammatic
representations.

The diagrammatic approach to the nature of thinking can be defined as a conjunction
of two claims. Firstly, thoughts possess a structure that is diagrammatic or diagrammatic-
like, which means that transitions between thoughts are similar to transitions between
diagrams. Thus the logic of thinking t is similar to the logic of diagrams. Secondly,
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that certain features of vehicle of representation are responsible for the cognitive value
of diagrammatic thinking. For example, thanks to its particular and accessible form,
diagrams are cognitively more useful than other forms of representation, and are a
source of a genuine, diagrammatic knowledge.

In the paper I argue that the promises are not supported by the way we think about
the features of diagrams and diagrams’ functions. I present the so-called Diagram Puzzle
and I argue that if we want to save the idea of cognitive usefulness of diagrams, then we
have to accept the claim that they can play only on auxiliary role. That, however, leads
to the claim that diagrams are epiphenomenal in the processes of thinking.

2 Cognitive Merits of Diagrams

Although there is no general consensus on how to form a precise definition of a diagram
[20, 23, 27], diagrammatic representations may be interpreted, generally, as spatial rep-
resentations of abstract pieces of information that enable us to infer the features of the
things represented by inspection of the spatial features of a representation. Diagrams
consist in providing one-to-one mapping of information that is stored in spatial form at
the particular locus of a relevant diagram, including information about relations with the
adjacent loci [16]. Accordingly, diagrammatic reasoning may be described in terms of
a reasoning process based on manipulation and inspection of diagrams.

The cognitive value of diagrams has been explicated in two entangled ways: by
a reference to the diagrams’ cognitive accessibility, among others to the informative
richness of diagrams, and by a reference to the particularity of diagrams which is a
property that limits possible interpretations of a relevant concept and helps to discover
new interpretations of the concept. Both ways seem to point out features that make
diagrams, a genuine form of representation: diagrams are more informative and more
specific than non-diagrammatic, especially symbolic, representations.

2.1 Diagrams’ Cognitive Accessibility

In the number of studies, including classical examples of the ‘tic-tac-toe problem’
Zhang’s [29] or the ‘pulley problem’ Larkin and Simons’ [16], it has been demon-
strated how effective, in comparison to the sentential representations, diagrammatic
representations support solving different cognitive tasks.

It is commonly held that the ease of obtaining information from the diagram follows,
on the one hand, from the informative structure of the diagram, on the other, from
psychological capacities of the subject. The structural interpretation could be put in terms
of ‘informative richness’, respectively, ‘perceptual enhancement’ of diagrams. It means
that we can locate a specific information on a diagram easily, for every diagrammatic
representation is a spatially indexed set of predicates describing the features of an object
and the relations between those features. The spatial organisation of indices reflects the
logical relations between the elements of the set. The ability to represent, next to logical
properties, spatial – topological and geometrical – features simultaneously on one and
the same vehicle makes diagrams informatively rich. As a consequence, diagrams allow
us to grasp more pieces of information at once than a relevant symbolic representation
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– the pieces of information we do not have to be aware of before the act of a diagram
construction [13, 14]. An alternative way to express the informative richness is based
on the observation that representing logical relations in virtue of spatial organisation
of indices enables us to perceive certain relations directly. It means that the process of
acquiring information is perceptually enhanced by the way the information is organised.
As Larkin and Simon [16] put it: “the great utility of the diagram arises from perceptual
enhancement, the fact that it makes explicit the relative positions of the equilibrium
points, so that the conclusions can be read off with the help of simple, direct perceptual
operations”.

The psychological interpretation of the diagrams’ cognitive accessibility is based
on a claim that diagrammatic reasoning helps to use our cognitive capacities of coding
information more effectively. It could be argued, either that since diagrams are not
mediated in symbolic representations, they allow us to make inferences directly with
the help of perceptual system [3, 28]; or that understanding diagrams seems to be a
capacity that connects and coordinates various cognitive systems in order to enhance
our inferential powers. Using diagrams involves the conceptual system, the visuo-spatial
system, and the motor system [5, 6, 11].

2.2 Particularity of Diagrams

The particular nature of diagrams is the most vivid in the case of the use of diagrams
in mathematics. Although in the philosophy of mathematics the most important point
of concern is the issue of so called diagrammatic proofs, for the purposes of this text,
particularly interesting is a cognitive role of diagrams in knowledge acquisition. It is
claimed, on the one hand, that we can gain knowledge in virtue of inspection of diagram’s
features representing features of mathematical objects and theorems. On the other, that
we can gain knowledge in virtue of transformation of a visual form of a mathematical
object. The inference by transformation is based on a manipulation of the topological
and geometrical properties of a diagram in order to achieve a desired conclusion.

It is argued that the usefulness of diagrams in mathematics follows from the fact
that a particular and perceptual form of a diagram directs the mind towards the correct
solution of genitive tasks. A particular form of a diagram means that, for example, a
diagram of a triangle is always a diagram of a particular triangle – a right triangle, an
equilateral triangle, etc. First, diagrams limit the number of possible interpretations of
a concept and possible transformation of the geometrical object, leading to the correct
interpretation of the latter, helping to discover a proof strategy. Second, the inspection
and transformation of diagrams’ features has a non-linear character. It means that they
are not determined in advance, for example, in virtue of the symbolic content of a relevant
concept. Third, a particular form of diagrams allows ‘aspect shifting’, that is, it enables
us to see elements of the diagrams in different ways, for example, it enables us to see a
“single expression as an instance of two distinct forms” [8].

It may is claimed [2, 24, 26] that particular and perceptual nature of diagrams is
the source of an ‘diagrammatic’ form of inference which, on the one hand, indicates
the difference between diagrammatic and symbolic representation systems, and on the
other, explains why we can automatically read off a conclusion from a representation of
premises. While the symbolic reasoning is based on manipulation and interpretation of
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abstract symbols, the diagrammatic formof inference is based on the fact, thatwe directly
and non-deductively see the conclusion. For the conclusion is already there, in a specific
form of premises. What would be an active inference from premises to conclusion in a
symbolic representations system, comes along as a ‘free ride’ in particular diagrammatic
systems [16, 22].

3 The Diagram Puzzle

The examples mentioned above seem to clearly illustrate the claim that diagrams, thanks
to their inherit merits, are indispensable in some acts of reasoning and problem solving.
Granted, there is little doubt that diagrams facilitate efficient reasoning. Yet, after a closer
look, one might still doubt whether it suffices to justify the claim that they can serve as
models of thoughts.

Notice that here I do not contest the claim that diagrams are essential in many
cognitive processes. Certainly I do not claim that diagrams are superfluous for the process
of thinking, that is, that they are mere illustrations of the thoughts. The point is that
diagrams can serve as tools for thinking, and be frequently used for many cognitive
purposes, no one argues against that. The point of controversy is an issue whether or not
diagrams play only an auxiliary role, being a sort of an aid for the thought process, where
the nature of the latter is completely different than the nature of the instrument that was
used to think with. If the answer to this question were positive, then diagrams would be
replaceable in the process of thinking. In other words, even if we agree that diagrams
are tools for reasoning, we do not have to commit ourselves to the view that diagrams
are basic units in our cognition. For diagrams can merely accompany the process of
thinking, while not being bearers of thoughts.

This controversy is well illustrated by the example of diagrammatic reasoning in
mathematics. Let us go back to the features listed above, that were to be responsible for
the cognitive usefulness of diagrams. Firstly, it has been claimed that every diagram is
a particular object, for example, a diagram of a triangle is a diagram of an equilateral
triangle or an obtuse angled triangle, etc. It means that a diagrammatic representation of
a mathematical object represents the mathematical concepts as having properties that,
though are not ruled out by the content of the concept, are not demanded by it, as well. In
comparison, verbal description of the concept’s content is discrete, that is, they contain
no more information than it is needed. Diagrams, on the other hand, are indiscrete
by nature, representing a concept in a particular way. For example, any diagram of a
triangle represents the triangle as being isosceles or equilateral, even if neither property is
required by the concept �ABC. However, the consequence of particularity of diagrams
is that they cannot be representative for a wider class of objects and cannot be used to
express some predicate over a universally quantified variable, and thus cannot justify
general propositions. Putting it more precisely, using a diagram to infer about a wider
class of objects we risk an unwarranted generalisation [9, 15].

Secondly, a consequence of informative richness of diagrams is that every diagram
conveys more information than it is needed to represent certain concept, a certain propo-
sition, or what is needed for a proof. For example, every diagram conveys an information
on the thickness of lines representing a certain line segment, a colour of the diagram, or
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brings to light imperfections regarding the shape of a line or a curve. The danger here
is a possibility to draw conclusions from accidental features, strictly speaking, the lack
of possibility to distinguish essential from nonessential features we can or cannot draw
conclusions from [1].

Thirdly, it may be generally stated that thanks to their perceptual form, diagrams are
deceptive. First of all, a drawingmay be simply inaccurate or imprecise. Thewell-known
‘infinite chocolate bar trick’ is an example of how the lack of precision of representation
may deceive us.

And here goes the Diagram Puzzle. On the one hand, it might be said that if diagrams
were deprived of their features, such as particularity and cognitive accessibility, there
would be no many important scientific discoveries, particularly, most probably there
would be no Euclidian geometry at all [17, 18]. On the other, in virtue of the possessing
the very same features of diagramswhichwere to be responsible for their cognitive value,
it is contested that they play any important cognitive role at all, except serving merely
heuristic and pedagogical tools. Speaking precisely, it is claimed, both, that diagrams,
because of their particular and perceptual nature, are cognitively indispensable, and at
the same time that they cannot be a source of justified beliefs and provide justifications.

However, in show the apparent nature of the Puzzle, it is important to understand
the reason one doubts in the cognitive role of diagrams. A traditional way is to argue
that because of the features of diagrams, such as their particular, over-informative, and
imprecise nature, diagrams seem to be unreliable, and therefore they can play only
an instrumental and inferior role. Particularly, diagrams possess certain features that
make it impossible for them to be a basis of a mathematical practice, especially it is
impossible for diagrams to serve as a proof for mathematical theorems. Yet, firstly, it
does not explain why at the same time we claim that the very same features of diagrams
are responsible for cognitive effectiveness of the latter. Secondly, if one claims that
diagrams are unreliable, and therefore they can play only an instrumental role, then, in
principle, it would be possible that if we perfected the diagrammatic logic, for example
by means of formalising diagrams, the latter could be a full-fledged form of a proof in
mathematics. And still, despite of a rapid development in formalisation of diagrams, we
are relatively far from achieving that last goal.

Another way to think about the cognitive role of diagrams is to argue that diagrams
are in the first place tools for reasoning [10, 12, 19], and that is the reason why they
may be unreliable. In other words, diagrams can be viewed as scientific instruments
like scales and microscopes. Notice that if it is the case that diagrams play an auxiliary
role of a tool in reasoning, then their effectiveness depends on their goal, that is, it
depends on what one wants to prove. In contrast, if it were the case that thinking consists
in manipulating diagrams, then the diagrams should serve different goals in a similar
fashion, regardless the subject one is thinking about. For example, we measure the mass
with the help of the scales, but it depends on the object of measurement what kind of
the ‘scales’ one has to use. If one wants to measure the mass of potatoes, one has to use
a different measurement device than in the case of measuring the mass of the Sun, since
the subject of the measurement influences the matter of efficiency of the measurement
tool. However, thinking about the mass of potatoes and thinking about the mass of the
Sun is conducted in the same medium of thought and expresses the same operation of
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measurement mapping the mass of the object onto a relevant scale. For we think not
with the help of thoughts, but in thoughts, and therefore it does not matter, what we are
thinking about.

And obviously, using diagrams is like measuring the mass of potatoes with the help
of the scales. It means that the usefulness of diagrams depends on what we are trying
to prove. As a consequence, they serve well for some purposes, while for others they
do not. That is the basis of the well-known claim that although diagrams can play a
facilitating and instrumental role in mathematics, they cannot serve as a proof, cannot
determine steps in a deductive reasoning, or take a propositional form. In other words,
it is not the case that diagrams are imperfect and fallible, and that is the cause of theirs
auxiliary role. It is rather the case that diagrams can play only an auxiliary role, and
therefore they may seem as if they were either effective or fallible.

The second approach to diagrams explains well, why we interpret the very same
features of diagrams, simultaneously, as the causes and the barriers of their cognitive
effectiveness, depending on the purpose of the tool’s use. In the same way the mass
of a hammer may be an advantage, if one wants to nail a picture to the wall, and a
disadvantage, if one wants to use a hammer to knock an egg.

4 Instrumentality and Epiphenomenality

However, if we agree that diagrams can play only an instrumental role in thinking, then
it follows that, although they may have a significant psychological role in making some
reasoning more comprehensible, they are epiphenomenal. It means that images may
accompany thought acts but cannot affect the content of thoughts. Diagrams can prompt
some thoughts but do not influence the thoughts logical mechanism. Diagrammatic
reasoning is only a matter of using a different notation of thoughts’ content and not a
matter of a different content of thoughts. As an illustration, the equation 22×23 = x can
be solved with the Japanese multiplication method or with a grid multiplication method,
affecting the effectiveness of problem solving, but the content of the equation remains
the same.

Therefore, although we do perform certain cognitive tasks in virtue of manipulation
of diagrams, the objection may be that the former cannot be performed without referring
to other, more basic, assumingly verbal or propositional in nature, mechanisms and
representations. According to the objection, the true nature of thinking is based on a
manipulation of non-diagrammatic representations. Diagrams, like a steam whistle in a
locomotive, accompany the acts of thoughts, but they are only epiphenomena of the latter,
that is, they contribute nothing to the logical mechanisms of thought. In short, one may
claim that diagrams are parasitic upon other forms of representations. In other words,
diagrams may be tools for thoughts, that is, we can think with the help of diagrams,
but it does not follow that we think in or with diagrams. For the nature of thinking is
conceptually and metaphysically different from the nature of the tool we use to express
our thoughts.

The argument for the epiphenomenality of diagrams may take a form of an argument
of content determination. Notice that if manipulation of diagrams were to be able to
be an instantiation of some diagrammatic way of thinking, then diagrams has able to
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determine the content of thoughts. For example, if one argues that one thinks in some
kind of a language-like system, then one claims that the semantic and syntactic features
of the system determine the content of one’s thoughts. However, accepting both, the
view that diagrams determine thoughts content and that diagrams have an instrumental
nature, leads to nonsensical conclusions. If we agree that diagrams play an instrumental
role in the thought acts, then it means that they are a means to an end. If the latter claim
is true, then diagrams are replaceable by any other functionally equivalent tool in the
same way as we can sometimes replace a hammer and nails with a glue or an adhesive
tape. If, however, we would like to argue that the tool we use to think with determines
the content of thought, then we have to agree that different tools determine the thoughts
content in different ways. It means that relatively to the tool we use, we can have a
different thought content. This claim does not seem to be counterintuitive in an obvious
way. For example, if my thought1 that 2+ 2= 4 was caused by the fact that the numerals
were randomly generated, and my thought2 that 2 + 2 = 4 was caused by the fact that
I have mastered the skill to count, then the content of thought1 and thought2 would be
different. The content of the thought1 could be, for example, that if one presses a button
on a stochastic device, then it says that 2+ 2= 4. The content of the thought2 could be,
for example, that if one adds two objects together, then one gets four objects, whatever
these objects are.

The claim that the kind of a tool determines the content of thoughts leads, however,
to a nonsensical consequence. It would follow, for example, that adding with the help
of fingers 2 + 2 = 4, and adding in the mind 2 + 2 = 4 lead to two different thoughts,
which is an absurd. In the case of thought1 and thought2, what matters is not the tool we
have used, but a different logical function – either a stochastic one, or a sum function.
Thus, diagrams cannot determine the content of thoughts.

Let me clarify this point. What the argument shows is that diagrammatic represen-
tations may be an effective tool to make the content explicit. They can draw attention
to properties of an object which has not been noticed. Diagrams may influence a viewer
by prompting a different way of seeing an object. Though, they do not determine the
thoughts content. They can make some thoughts more clear and can point out some
features of the thought content that we were not previously aware of, but they cannot
change the thoughts content. In the same way, a calculator is a perfect tool to make
explicit what is a result of complicated calculations but it does not determine the result.
It can make evident results of some complicated calculations, but it cannot change the
result of the calculation. If it did so, it would be a broken calculator. Diagrams are like
calculators – they can make some pieces of content more visible, but do not affect the
content. Even if diagrams provide heuristic tools and discovery strategies for certain
thoughts, it does not mean that they determine content of thoughts.
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Abstract. The blot is a sign in Peirce’s diagrammatic syntax of existential graphs
that has hitherto been neglected in the literature on logical graphs. It is needed
in order to trigger the cut-as-negation to come out from the scroll, namely from
the implicational sign of a positive implicational (paradisiacal) logic. Since the
cut-as-negation presupposes the blot and the scroll, what does the blot represent?
On the one hand, it stands for constant absurdity, but on the other hand, Peirce
takes it to be an affirmative sign. This paper explores the blot and its logical
and conceptual properties from the multiple perspectives of notation, rules of
transformation, icons, and scriptibility of graphs. It explains the apparent conflict
in the blot’s meaning in its capacity of giving rise to the pseudo-graph that exploits
positive character of absurdity. In effect, the blot is the mirror image of the sheet
of assertion, not its complementation. On the sheet, it acts as a non-juxtaposable
singularity.

Keywords: Blot · Pseudo-graph · Scroll · Existential graphs · Absurdity ·
Scriptibility

1 Introduction

The blot is a constant logical sign (the pseudograph) in Peirce’s diagrammatic syntax of
existential graphs. Studies of its nature and even the very existence have hitherto been
neglected in the literature on logical graphs (with the sole exception of Roberts 1973,
p. 36). The blot is needed in order to trigger the cut-as-negation to come out from the
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scroll, namely from the implicational sign of a positive implicational (what Peirce calls
paradisiacal) logic. Since the cut-as-negation presupposes the blot and the scroll, what
does the blot represent? On the one hand, it stands for constant absurdity, but on the
other hand, Peirce takes it to be an affirmative sign. Either way, it is a pseudo-graph
because it ought to be an “expression to which the interpreter shall be free to give any
propositional meaning he pleases” (R 492, 1903). A pseudo-graph represents no possible
or conceivable state of the universe.

This paper explores the blot and its logical and conceptual properties from the multi-
ple perspectives of diagrammatic notation, rules of transformation, icons, and scriptibil-
ity of graphs. It explains the apparent conflict in the blot’s meaning by its capacity of
giving rise to the pseudo-graph that exploits the positive character of absurdity. In effect,
the blot is the mirror image of the sheet of assertion, not its complementation. On the
sheet, it acts as a non-juxtaposable singularity.

2 Peirce on the Blot

The blot was a new addition to Peirce’s theory of existential graphs introduced during
his preparation of the 1903 Lowell Lectures. In the unpublished “Logical Tracts. No. 1”
(R 491) he described it (without yet naming it as the blot) as a pseudograph which “is a
construction out of elements like those of graphs, but which, owing to the way in which
these are put together, has no meaning as a diagram of the system to which it belongs”.
The need for it arises from the need of depicting absurdity in graphs in some suitably
quasi-diagrammatic fashion. Substitute a pseudo-graph “What is false is true” in place of
c in Fig. 4, and it may be read, “If b is true the false is true”. This, Peirce states, “reduces
b to absurdity, and is equivalent to a denial of b”. He proposes to simplify the scribing
of these graphs by making the inner enclosure “indefinitely small, or be suppressed; so
that Fig. 2 denies b; and generally, a single enclosure has the effect of denying the whole
graph which it contains”. Hence, Peirce tells, “Fig. 3 asserts that b is true and c false;
while Fig. 4 denies this, that is, asserts that either b is false or c is true, or, in other words,
that if b is true, so is c” (ibid).1

In a long follow-up treatise also produced during 1903, entitled “Logical Tracts.
No. 2” (R 492), Peirce explains the procedure by introducing “alogoid” conditional
propositions, namely those that express “If anything, then everything”:

Whichever method of expressing conditionals be used, it will sometimes be desirable to
place in one of the compartments a proposition either absurd or well-understood between
the graphist and his interpreter to be false, which may be called an alogoid proposition (I
prefer this form, because alogous might be wanted to mean logically absurd). If we say
that two propositions which will always be true or false together are equivalent, then any
alogoid proposition is equivalent to “If anything, then everything”. For logic has no purpose

1 The caption numberings in quotations preserve those in Peirce’s original writings.
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unless some consequence is false; and therefore this must be well-understood between the
graphist and his interpreter.

Alogoid propositions are expressed by blackening the respective compartmentwithin
which the alogoid proposition is located:

In order to express an alogoid proposition, therefore, we need only an expression to which
the interpreter shall be free to give anypropositionalmeaninghepleases. Such an expression,
introduced into our system of graphs, will not be a graph because it does not represent any
possible state of the universe. I shall call it the pseudograph; for, however it be written, it
remains the same in its equivalence. Since it is the assertion of all propositions, nothing can
be added to it; and therefore it may be represented by blackening the whole compartment
within which it is placed. Let this convention be adopted. The compartment so blackened
may then be made very small or thin. Thus … Fig. 8 and Fig. 9 will express “If a is true,
everything is true”; that is, “a is not true”.

In practice, Fig. 10 would naturally be drawn in place of either Fig. 8 or Fig. 9. Following
this practice, Fig. 11 will in either system be another way of writing the pseudograph. (ibid.)

Peirce soon formulates this idea as a specific convention of existential graphs:

ConventionNo. 10.The pseudograph, or expression in this system of a proposition implying
that every proposition is true, may be drawn as a black spot entirely filling the close in which
it is. Since the size of signs has no significance, the blackened close may be drawn invisibly
small. Thus Fig. 33 as in Fig. 34, or even as in Fig. 35, Fig. 36, or lastly as in Fig. 37.

Interpretational Corollary 1. A scroll with its contents having the pseudograph in the
inner close is equivalent to the precise denial of the contents of the outer close. (ibid.)

In the lecture notes related to this convention, Peirce had characterised the writing of
the pseudograph on the sheet of assertion as “equivalent to burning up the sheet, since
the sheet only exists, as such, in the minds of the graphist and the interpreter, and that by
virtue of the agreement which the writing of the pseudograph destroys”. He notes that it
is nevertheless “useful to write the pseudograph in the inner close of a graph” (R 450).
For example, the graph
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says “If Washington was a commonplace man, then every assertion is false”,2 which
is the same as to say that “Washington was not a commonplace man”. Convention 10
tells that filling up a close leaves no room in it, which means that the pseudograph is
inserted in the close. To deny that Washington was a commonplace man, Peirce scribes
the corresponding graph as follows:

Since the size of a sep (the inner loop) is not a significant feature, Peirce scribes this
equivalently as

“Making the loop infinitesimal”, Peirce continues, “we shall understand a sep as
denying what is written in its close” (R 450). In the related 1903 text “Syllabus of
Logic” (R 478) Peirce described the “filling up of any entire area with whatever writing
material (ink, chalk, etc.)” to amount to “obliterating that area”. Notice that it is the area
that is obliterated, not the loop itself. It follows from the obliteration as a corollary that,
“[s]ince an obliterated area may be made indefinitely small, a single cut will have the
effect of denying the entire graph in its area. For to say that if a given proposition is true,
everything is true, is equivalent to denying that proposition” (R 478).

The pseudograph is the sign of nothing.Yet is asserts that “everything is true” (R455).
Peirce explains: “Were every graph asserted to be true, there would be nothing that could
be added to that assertion”, and that accordingly, “our expression for it may very appro-
priately consist in completely filling up the area onwhich it is asserted” (ibid.). Here (and
this happens during his second Lowell Lecture), Peirce introduces the term “blot” for the
first time: “Such filling up of an area may be termed a blot”. We can learn from his notes
that there are thus “two peculiar graphs”: the blank place “which asserts only what is
already well understood between us to be true, and the blot which asserts something well
understood to be false” (ibid.). In addition, in the Alpha graphs one then only needs “two
signswhich are not graphs.” First, “the putting of two graph-replicas upon the same area,”
where (recall that a blank is a graph), includes “the scribing of a single graph as a special
case”. Peirce rightly takes the idea that “scribing a graph is a transformation of a graph
already accepted” to be a “very useful one” (ibid.). Second, the other sign is the scroll.

There are only a few further occasions in which Peirce revisits the blot and provides
some further analyses and explanations of it. The idea of the blot surfaces in R 693
(1904) and in the related glossary of graphs in terms of oppleted graphs: “An area is said
to be oppleted, or opplete, when it is virtually quite filled up, all graphs having replicas
upon it. This is represented by completely blackening it. An enclosure whose area is

2 The consequent should be “…then every assertion is true”. The meaning of the “red blot” as
“…then every assertion is false” comes from an earlier lecture draft (R 450), which Peirce soon
in his next draft (R 455) corrects to the original meaning of the blot as in Convention 10.
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opplete is equivalent to a blank”. The last couple of definitions (33–40) in the glossary
of 40 technical terms relate to this filling up of areas:

An area so affected is said to be opplete (33) or to be oppleted (34) (from opplëere, to stuff
up). Or we may prefer to say that it is the annulus (35), or annular space, comprising all
that area except that occupied by the replica that effects the oppletion (36) that is oppleted
(37). Or again, we may say that the enclosure in the area of which the opplent (38) replica
occurs is opplete (39). Connected with this conception is that of a vacant enclosure (40),
which is an enclosure whose area is entirely blank. (R S-26)

Another occasion is found among the many copy-texts and segments prepared for
his 1906 “Prolegomena” paper but not included in the published version (R S-30,
“Copy T”):

[T]he Scroll affords me no other means of denying any Graph, say A, than by scribing
that if A be true, everything is true. Now since it is impossible by any addition to increase
Everything, this I can suitably express by completely filling with a blot the Inner Close of a
Scroll that carries only A (and the Blank) in its Outer Close, so that there shall be no more
room in that Inner Close for anything else.

I can then make this blackened Inner Close as small as I please, at least, so long as I can
still see it there, whether with my outer eye or in my mind’s eye (Horatio). Can I not make
it quite invisibly small, even to my mind’s eye? “No”, you will say, “for then it would not
be scribed at all”. You are right. Yet since confession will be good for my soul, and since
it will be well for you to learn how like walking on smooth ice this business of reasoning
about logic is,—so much so that I have often remarked that nobody commits what is called
a “logical fallacy”, or hardly ever does so, except logicians; and they are slumping into
such stuff continually,—it is my duty to say that this error of assuming that, because the
blackened Inner Close can bemade indefinitely small, therefore it can be struck out entirely,
like an infinitesimal. That led me to say that a Cut around a graph-instance has the effect
of denying it. I retract: it only does so if the Cut encloses also a blot, however small, to
represent iconically the blackened Inner Close. I was partly misled by the fact that in the
Conditional de inesse the Cut may be considered as denying the contents of its Area. That
is true, so long as the entire Scroll is on the Place. But that does not prove that a single Cut,
without an Inner Close, has this effect. On the contrary, a single Cut, enclosing only A and
a blank, merely says: “If A”, or “If A, then” and there stops. If what? You ask. It does not
say. “Then something follows”, perhaps; but there is no assertion at all. This can be proved,
too. For if we scribe on the Phemic Sheet the Graph expressing “If A is true, Something is
true”, we shall have a Scroll with A alone in the Outer Close, and with nothing but a Blank
in the Inner Close. Now this Blank is an Iterate of the Blank-instance that is always present
on the Phemic Sheet; and this may, according to the rule, be deiterated by removing the
Blank in the inner close. This will do, what the blot would not; namely, it will cause the
collapse of the Inner Close, and thus leaves A in a single cut. We thus see that a Graph, A,
enclosed in a single Cut that contains nothing else but a Blank has no signification that is
not implied in the proposition, “If A is true, Something is true”.

This long passage from “Copy T” deserves a comment, in part because its reading of
the single cut differs from the standard presentation (i.e. as simple negation) in existential
graphs. The conditional is used in denying a graph, A, by scribing that “If A be true,
everything is true”. The consequent cannot be represented in Alpha graphs, because in
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Alpha graphs there is no way to assert “everything”. In Beta (first-order) graphs, on the
other hand, there is no way of quantifying over assertions. Peirce’s solution is to have
the whole area of the inner close of the scroll saturated by the blot, which conveys the
idea that nothing else can be added to that area (Fig. 1). The “blotted area” signifies that
what is placed in it “is true”, but since nothing else can be added to the blotted area,
nothing else in it is true, namely everything in it is true. Now “everything in it” amounts
to “everything”, since no further specification needs to be given. The filling of the area
of the inner close of the scroll is therefore an icon of the assertion “everything is true”.

A

Fig. 1.

A

Fig. 2.

Peirce then explains that the “blotted inner close” of a scroll can be made infinitesi-
mally small (Fig. 2) though it never completely disappears (it leaves two opposite turning
points on the boundary, and so is not the “unknotted knot” in the sense of knot theory).
The reason, he explains, is that a single cut (here taken in the sense of a simple closed
boundary curve with no intersection points, that is, as the “trivial knot”) does not signify
negation; negation can only be signified by a “blotted cut” (a scroll with a blotted inner
close, however small). To show the difference between the single cut and the blotted cut
he imagines a scroll like in Fig. 3:

A

Fig. 3.

A

Fig. 4.

The inner close of the scroll in Fig. 3 contains a blank, which may be considered as
the result of an iteration of the blank that lies outside of the scroll, which here as always
may be the blank of the sheet. This is the new thought that Peirce develops in “Copy T”:
The sheet means “Something is true,” and so does any portion of it that is the result of an
application of the rule of iteration. The graph in Fig. 3 therefore means “If A, something
is true.” But since it is iterated, the blank in the inner close of that scroll can also be
de-iterated. What would be the result of such de-iteration? Peirce says that this will do
something that the blot does not do: “it will cause the collapse of the Inner Close, and
thus leaves A in a single cut” (R S-30). The de-iteration of the blank from the inner close
of the scroll does not turn the graph in Fig. 3 into that of Fig. 1. It causes the collapse of
the inner close, turning Fig. 3 into Fig. 4, that is, into the single cut. But then the single
cut does not signify negation. It only signifies what the graph in Fig. 3 signifies before the
de-iteration, namely “If A, then something is true.” This, Peirce suggests, amounts to the
truncated statements “If A…” or “If A, then…” These are not complete assertions but
non-well-formed, deformed parts that violate the grammar of the diagrammatic syntax.
They do not mean the same as the negation of A, which is properly represented by the
graphs as depicted in Figs. 1 and 2.
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We may then restate the argument above in “Copy T” as follows. The primary
notational function of the oval is to group propositions together. That is, it is a collectional
sign like parentheses are in a non-diagrammatic syntax (R 430, 1902; R 670, 1911;
Bellucci and Pietarinen 2016a, 2016b). In a system whose primitive operations are those
of conjunction and conditional, collectional signs are only needed to distinguish the
antecedents of the conditionals from their consequents (for conjunction is associative).
The collectional oval is only needed in Alpha graphs in this role. In a scroll, the outer
loop marks the area of the antecedent and the inner cut marks the area of the consequent.
Thus the meaning of the graph in Fig. 4 is simply “If A, then…”, because since there is
no inner cut there is no consequent.

The meaning of the single cut is purely collectional. In a complete scroll, with the
blot (the pseudograph or absurdum) appearing in the inner close, themeaning of negation
is added to the collectional meaning of the cut, and this results in a sign of negation (the
blotted cut). In other words, Peirce realised around 1906 that negation is represented
in existential graphs by the blotted cut, and that the single cut simply functions as a
collectional sign devoid of truth-functional meaning.

3 Positive and Negative Absurdity

We are not done yet. If there is a difference between a single cut and a blotted cut,
however small or invisible this blot may be, what justifies using them interchangeably
in the diagrammatic system, one of whose aims is to make the differences observable?
Further analysis is needed in order to clarify the meaning of absurdity and accordingly
the iconic generation of the cut.

First of all, the notion of absurdity is supposed to be a basis for that of negation;
thus it itself has to be formed in a positive manner. When the system has only positive
forms, that is, contains no notion of falsity, and no sign for negation, either, how can
one express that a proposition, A, is false? Peirce’s answer was to go on to assert, “If
A is true, then everything is true”. Such conditionals have no negation as a constituent.
But notice that to say that “A is true only if everything is true” is also a rather strong
refutation of the possibility of A being the case. Thus, to form negative propositions
is to assign a sign for the proposition “Everything is true”. This is what the blot does.
Does it need to fill up the entire area then? As any instance of a graph in an area means
its presence everywhere on that area (graphs can be scribed at any position in an area,
i.e. all those positions are isotopy-equivalent), both the graphs in Figs. 5 and 6 equally
express that absurdity implies P.

P

Fig. 5.

P

Fig. 6.

The blot as shown in Fig. 6 is the preferred notation, however, for one should dis-
tinguish between the blot and the scroll with both areas filled with black. Also, the blot
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should not be confused with a cut filled with black stuff. The blot with radiating, blurred
boundaries is, we propose, to be preferred as the notation for it. This is consistent with
Peirce’s Convention 10, since we fill the inner close with a blot. A blot is in the inner
close, it is not the filled inner close itself. The loop around the blot is not part of the
blot. Roberts (1973, p. 36) describes the pseudo-graph to be “a cut entirely filled in, or
blackened”, but this is not the best possible choice of words.

The sign for negation, namely the scroll with a blot in its inner close, may be con-
sidered as a simple oval, the cut, since “the blackened close may be drawn invisibly
small”. The justification of this is not to be derived from the behavior of the permissive,
deductive rules of transformation, since there is no cut in such language as yet. The
blackened inner close remains on the boundary. However, if the aim of this language is
to sustain diagrammatic syntax and the virtues of the iconization of reasoning (Bellucci
and Pietarinen 2017), we should be wary of apropos conventions and remain mindful
of the genealogy of the cut. What is it that justifies the equation between the cut and
the scroll with a blot in its inner close? A further look at the notion of absurdity may be
helpful here.

The definition of “negation of P” as “P implies absurdity” was known to Peirce since
his 1885 “Algebra of Logic” paper. In the context of the further development of algebra
into graphs, we find reasons for defining negation as a shorthand for P → ⊥ becoming
increasingly clear precisely when Peirce is moving on to an interpretation of absurdity
as “Everything is true.” This “positive” characterization of absurdity is one of Peirce’s
profound insights into negation. If the negation of P is to be understood as P implying
any absurdity, this “negative” sense of absurdity, namely absurdity understood as any
false (or necessarily false) proposition, introduces no real insight into the embryonic
development of the idea of negation. In some sense, it presupposes negation, while at
the same time being that from which negation is developed.

However, in order to explore all possible iconic possibilities we have to consider
other conceptions of absurdity. An alternative to absurdity (taken as a proposition) is the
statement “There is no truth” or “Nothing is true”. How can we state “Nothing is true”
in existential graphs? We have the sheet of assertion, which represents the truth. When
nothing is scribed on any position on the sheet, the blank asserts “Something is true”.
As the sheet is the place for truths, perhaps we can show that there is no place for truth
by “closing off” the sheet of assertion or some parts of it. There are two problems: how
can one denote the collapse of the sheet of assertion? As soon as that is somehow done,
one would be asserting that “Nothing is true”. But we also need that as a proposition to
be used in other graphs. Therefore, we need to separate the scopes and then collapse one
of them. According to the rule of the scroll, the scroll with blank outer and inner closes
can be scribed and erased around any graph. Thus any part of the sheet of assertion
enclosed within such a scroll would mean the same as it did before. The graph says
“If something is true then something is true”.

Now since the inner close is the place of truth, if we were to completely obliterate it,
it would diagrammatise the state in which there is no place for truth. This would result
in the proposition, “If something is true then nothing is true”. The following sequence
is intended to show how a proposition “If P then something is true” morphs into the
proposition “If P then nothing is true” by obliterating the inner close (Fig. 7):
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P P P P
Fig. 7.

As far as the inner close exists and thus possesses a blank area, however small,
the graph still means “If P then something is true”. But when the inner close is com-
pletely dissolved, the meaning changes to “If P then nothing is true”. Hence there is an
equivocation in the above sequence; it does not display a meaning-preserving process
of transformations.

Now we have a graph for “If P then nothing is true” but not a graph for “Nothing is
true”. But “Nothing is true” is equivalent to “If something is true, then nothing is true”.
Therefore the cut with a blank area is read “Nothing is true”. Provided that “If P, then
nothing is true” is synonymous with the negation of P, then a cut with P in its scope
means not-P, as does the scroll with P in the outer close and the blot in the inner close,
which states “If P, then everything is true”.

To show something of the nature of absurdity by closing off some scopes is a real-
ization of what Peirce had termed “unscriptibility” of some graphs in another slightly
earlier and unpublished work of his (R 501, 1901; Ma and Pietarinen 2019). We pro-
pose to endow absurdity with this meaning. Both the blot and the collapsed inner close
partake of the character of unscriptibility. Nothing is scriptible in a collapsed close: no
space exists in a collapsed close at all. Nothing is scriptible in a close with the blot,
either, since everything is already scribed in that blackened area. Miniaturising the inner
close would not affect the character of unscriptiblity, since even if it were to dissolve
into the boundary, the character of unscriptibility will be preserved. Therefore, although
the sequence of graphs in Fig. 7 is not a meaning-preserving transformation, the one in
Fig. 8 is:3

P P PP

Fig. 8.

There are now two ways to introduce the cut. In the first, absurdity is “Everything
is true”, in the other it is “Nothing is true”. Peirce’s preference lies with the former,

3 In Peirce’s hand, a similar sequence looked like this (R 455(s)):

Peirce intended this to show that “the impossibility [that existswithin the inloop] destroys the
cut and all it contains” (ibid.). By this, Peirce is preparing ground for his decidability operations
for the Alpha system (Roberts 1997).
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since it analyses falsity and negation without assuming it. The proposition “Everything
is true” will do that work well. Absurdity should be of the nature of affirmation, not
denial. “Everything is true” is absurdity as an affirmative, “There is no truth” as a denial.
Indeed “affirmation is psychically the simpler”, confirms Peirce, and “I therefore make
the blot an affirmation”. That is, he makes the absurdity an affirmation and then equates
it with the blot, namely “Everything is true”.

Taking absurdity as “Everything is true” has some other conceptual and formal
advantages that we briefly list. (1) It explains ex falso: If everything is true then P
also is true. There is no need for an axiom or a rule and no need to appeal to proofs by
disjunctive syllogisms, which are known to be circular. (2) The Law of ExcludedMiddle
(LEM) and the elimination of double cut are laws not inherent in the nature of negation,
which is a desirable feature intuitionistically (Peirce came close to intuitionistic logic
in many related senses).4 (3) The double cut rule is to be derived, if justified, from
more primitive, observational considerations. If the cut were defined as reversing its
area, then the double cut rule would be immediate by symmetry. But symmetry, though
advantageous in calculus, is an unfavorable guidelinewhen the purpose is logical analysis
(CP 4.375).

On the other hand, although the absurdities “Everything is true” and “There is no
truth” are semantically equivalent, the latter is gotten from the former: rules like the
elimination of double cut are not eligible at this level of analysis. From “Everything
is true” it follows that “It is true that there is no truth”. But from “There is no truth”
it follows, for example, that “It is wrong that something is wrong”, which means that
everything is true. However, we need an extra move here. Thus from negative absurdity
we cannot directly derive the positive absurdity (its justification would need another rule
or an axiom, such as LEM). But from positive absurdity other facets of absurdity follow.

Another candidate for the meaning of absurdity is unassertibility: It is irrational to
assert absurdity. Or, one may say that absurdity is whatever is rationally unassertible.
How can we scribe such absurdity in graphs? How can we assert the unassertible?
A meaningless sign or nothing would not do because they express nothing; we want to
express absurditywhen its assertion is rationally forbidden. It is notmeaningless activity:
it just has a meaning that is to be avoided at all costs. One has a right to be irrational, but
penalties will be visited upon one who chooses to be so. Asserting the unassertible is
possible but risky. In existential graphs, three candidates could be thought of: (1) to close
off a loop by collapsing an area so that no space remains for any assertion, (2) to fill the
area so that no assertion can fit there, (3) to police an area by flagging it, such as a cross
mark ×, that forbids any assertion in that area. The last option is not that promising as
one has to use an ad hoc mark for unassertibility, yielding little iconic harvest. The first
two resort to diagrammatic unscriptibility to effect unassertibility. Peirce’s option was
the second. Maybe something can be reaped from (1), too, as it preserves diagrammatic
results and features no further conventions.

4 See Oostra (2010) on Alpha System with the scroll that agrees with propositional intuitionistic
logic. In this case, new graph for disjunction needs to be introduced as in intuitionistic logic,
logical connectives are not interdefinable. How such modifications demonstrate the potential
insights of Peirce’s EGs has been discussed in Shafiei (2019). Moreover, Ma and Pietarinen
(2018) have offered an EGs version for intuitionistic logic analyzing the nature of deep inference.
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Considering the pragmatistic office of existential graphs, yet another conception
for the absurdity may be proposed. In comparison to the pragmatistic motto “do not
block the way of enquiry”, we might say in existential graphs, and in logic as such, we
have the principle: “do not block the way of inference”. The way of inference would
be blocked when we have a graph from which no consequences follow or a graph that
cannot be antecedently motivated, i.e. that cannot be taken to be the consequence of
an inference. This situation is exactly that of absurdity. Therefore, in order to show
absurdity we show a case when inference is blocked. The smallest part of inference, an
illation, is diagrammatized by the scroll. To obliterate the inner close would prevent the
consequence being asserted. Therefore, if we put P in the outer close and close off the
inner close it means “From P nothing follows” (not even itself), and this amounts to
taking P as an expression of absurdity. The case has been discussed above. On the other
hand, placing P in the inner close and closing off the outer oval, which results in a cut
enclosing P, means that P follows from nothing, or that P is true under no assumptions.
This equally amounts to taking P as absurd. Notice that here we are not saying “P is true
under any assumption” which would be to consider P as a logical truth; rather we say “P
is true under no assumption”. In order to iconize the former one should leave the outer
close, i.e. the place of assumption, blank and receptive for any graph; for the latter case
one should totally close down the place of assumption, which is to dissolve the outer
close in the boundaries of the inner close. Such new analysis now leads to a different
type of a generation of the cut, but results in the same meaning as the previous ones
did. In this new respect, the cut is the inner close of the scroll in whose boundaries the
outer oval has been dissolved. (Peirce had a similar argument in another “Copy Text”
of R S-30 not quoted in the previous section.) Notice that this case states that “Under
no assumption P is true”, which is different from “Under the assumption of nothing, P
is true”, for it is the place of assumptions that is obliterated instead of being filled with
nothingness or absurdity.

4 The Blot and the Sheet of Assertion

This returns us back to some basic questions about notation. Why can a blank scroll be
made to appear and disappear on the sheet? The sheet is a tautology and the blank scroll
does not make any transformations of it. The sheet embraces all tautologies and true
propositions that may ever be scribed on it.

There is one more element in the genealogy of negation to be pointed out. As briefly
mentioned, Peirce proposes the original element of reasoning to be paradisiacal (R 493,
c.1899; R 669, 1911): only the scroll is presented on the sheet. This positive, proto-
reasoning operates without the presence of falsity or negation. Anything implies any-
thing. Take one-valued logic (Hamblin 1967) or positive implicational logic as similarly
paradisiacal proposals. There is not even any juxtaposition and hence no conjunction
in positive implicational logic. In existential graphs, proto-reasoning has a paradisiacal
scroll, in which the inner scroll may be blackened to contain all possible assertions, so
that nothing could be added to it. Paradisiacal reasoning is in a highly unstable state,
however, since “it will soon be recognized that not every assertion is true; and that once
recognized, as soon as one notices that if a certain thing were true, every assertion would
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be true, one at once rejects the antecedent that lead to that absurd consequence” (R 669;
Pietarinen 2015, p. 920). Any small perturbation and the blackened area atrophies to the
first, primordial cut; a serpent appears in the paradise of pure reason.

Since the blot has the power of tipping the sheet off the equilibrium, the result is a
scroll that promulgates cuts endowed with the meaning of negation. The blot is strictly
speaking then not part of the logical vocabulary of the theory at all. It operates prior to
the formation of logical systems (such as classical or some non-standard Alpha, Beta,
etc.). The blot generates falsity and loses its signification and power (which are now
hidden) in the process. Contrast this with the sheet of assertion. The blot has an opposite
behavior to that of the sheet: white–black, blank–filled, scriptible–non-scriptible (seeMa
and Pietarinen 2019). This area signifies the space of all possible consequences, which
means that “non-scriptibility” is not identical to falsity or negation, and scriptibility is not
identical to that of truth. These are Peirce’s proposed generalisations of values (R 501).
Likewise, the blot is not a logical complementation of the sheet. Both areas are positive.
One more confirmation of this affirmative nature of the blot is found in a fragment of
Peirce’s late letter to J. Kehler 1911:

The simplest part of speech which this syntax contemplates, which, as scribed, I
shall term a blot is itself an assertion. Ought it to be an affirmation or a denial? A denial
is logically the simpler, because it implies merely that the utterer recognizes, however
vaguely, some discrepancy between the fact and the speech, while an affirmation implies
that he has examined all the implications of the latter and finds no discrepancy with the
fact. This is a circumstance to be borne in mind; but since the denial implies recognition
of the affirmation, while the affirmation is so far from implying recognition of the denial,
that one might imagine a paradisaic state of innocence in which men never had the idea
of falsity, and yet might reason, wemust admit that affirmation is psychically the simpler.
Now I think that upon this point wemust prefer psychical to logical simplicity. I therefore
make the blot an affirmation. (RL 376, 1911)

Strictly the blot is not placed on the sheet at all and thus is not to be asserted. Rather
it is a mirror image of the sheet of assertion: assertible/non-assertible. The blot may
appear to the field of vision from within the sheet, but it does so only when confined to
the areas of the scroll. The sheet alone has no blots in it. What is more, any juxtaposition
of a graph with the blot would result in an annihilation of that graph, including any blank
graph such as the sheet. On the dark side of the sheet, there are no juxtapositions.5

Zaitsev andGrigoriev (2011) have proposed a generalisation of logical values beyond
a Cartesian divide of them as either epistemological or ontological. Something of this
sort is happening at Peirce’s paradisiacal level of existential graphs. Zaitsev and Shramko
(2013) call the truth-values from the ontological perspective “referential”, and the truth-
values treated as characteristic of statements involved in reasoning “inferential”, which
“means that a sentence is taken as (i.e., considered) true (and thus accepted) or false
(and thus rejected)” (Zaitsev and Shramko 2013, p. 1302). A combination of two sets
of truth-values has one of them interpreted referentially by 2T = {T, F} and the other
inferentially by 21 = {1, 0}. In Peirce’s case, this project should be read as a way (may

5 When things are unscriptible, it is even not clear whether deduction works as the right mode of
reasoning in that dark realm (Peirce once talked about the mode of reasoning of “correction”,
which is not “deduction” when all propositions are unscriptible (Ma and Pietarinen 2019).
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not be the only one) to clarify how the initial paradisiacal logic, which is implicational
without juxtaposition, operates. These values are initially limited to two singletons {T}
and {1}, since the paradisiacal state of mind is not acquainted with falsity. Now the
value {1} may be assigned to the sheet while the value {T} may be assigned to the
blot. These values are not juxtaposable, although the areas to which they are assigned
are not unrelated: Something that is considered as true {1} is objectively true {T}. The
consequence reminds one of stereotypical thinking in which agents’ objective truth is
aligned with anything they are about to observe. Paradisiacal scroll relates these two
values, stating that anything that is scribed and considered true implies anything that
has to be objectively true. The scroll is the connection between the white and the black
sheet. The border of the scroll is the place where two types of truth meet, and can be
treated as the limit case of {T, 1}.

5 Conclusion

This paper surveyed Peirce’s notion of “blot” and explained some of its main characteris-
tics: logical notation, twokinds of absurdities, paradisiacal logic of the scroll, obliterating
loops, and the relation of the blot to the rules of transformations. A few ways forward
along the last point may be added. As it stands, negation in existential graphs is often
treated as an ordinary graph-instance where the other inference/transformation rules still
apply (such as iteration and de-iteration, or modus ponens and modus tollens). This is
fine if negation is meant as a type of complement or inversion of truth-values, but in the
case of absurdity a pragmatic elucidation would have to go further, because absurdity
suggests that the rules themselves, including both the permissive transformations and
the conventions, begin to break down. This is where the notion of absurdity begins to
have a deeper meaning, and it is here that the blot gives us a valuable way forward. One
interesting feature of the blot is that because of its nature of being non-vacant, com-
pletely occupied area, adding a scroll (or scribing a scroll on top of the blot as it were)
does nothing to the graph. What this means is that the ordinary dualities and symmetries
start to degrade. Maybe the idea of deduction has to go over the board, too. What would
be interesting is to trace this effect to the origins of the inference rules to see at which
stage, when retrogressing towards our proto-logical paradise, the rules themselves start
to degrade.
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Abstract. Dual-process theories of reasoning assume a fundamental
difference between two cognitive systems: fast and intuitive System 1,
and slow and rational System 2, grounded on rules of logical inference.
Peirce’s diagrammatic logic challenges the dichotomy. Both systems are
based on similar inferential connections, but the former draws its conclu-
sions as modelled in positive implicational fragment of the latter. This
logical connection between two systems explains empirical results from
Wason’s card selection task without appeal to confirmation bias.
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1 Introduction

Ability to reason is one of the great questions in the evolution of the genus homo.
Contemporary studies in the cognitive science have mostly attempted to explain
the emergence of this ability within psychology, generally categorized under two
headings: dual-process theories [2,5] and single-system conceptions [3,6,15]. For-
mal logic was taken to have at best a supportive function. Yet normativity of
logic suggests that psychological theories of reasoning supervene on logical ones.

Under the dual approach, logic and psychology are closely related. We argue
that both systems of reasoning (System 1 and System 2) are based on simi-
lar inferential connections, but drawing conclusions in the former (S1) needs to
be modelled in a positive implicational fragment of the latter (S2). Two kinds
of implications are involved in a logical modelling of the two processes: primi-
tive (the scroll) and ordinary (material). The absence of negation in the former
explains why inferences can be fast and why they seem intuitive. The distinction
draws from Peirce’s theory of diagrammatic reasoning, especially his Existential
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Graphs (EG) and the “paradisiacal” conception of the evolution of logical nota-
tions. From this vantage point, empirical results from Wason’s card selection
task can be explained without appealing to confirmation bias.

2 Two Systems of Reasoning and Existential Graphs

Dual-process theories date back to James [4], rising to prominence much later
[2,14]. Broadened to decision theory by e.g. [5], they contrast spontaneous with
deliberate reasoning. It is common to see S1 responsible for fast, associative and
effortless reasoning, in contradistinction to S2 that produces rule-based, rational
and criticized consequences of thoughts, with increased cognitive effort expended
on tracing those consequences. It is also commonly maintained that in ordinary
circumstances, S1 has an appeal as an easier one leading to effective solutions
and short-cuts characteristic of human reasoning. It is only when S1 fails us that
S2 may interject to correct subject’s inferential performances.

Evidence for the presence of two systems of cognition draws from numerous
experimental results, most famously the Wason card selection task [16]:

– A subject sees four cards. Two cards have their letter sides up; the other two
the have their number faces up. It is common knowledge that each card has a
letter on the one side and a number on the other. Participants are then asked
to answer the question: Which cards they should turn over to prove the rule
“If on one side of the card there is an E, then on the other side there is a 2”.

This experiment assumes the schemata of Modus Ponens and Modus Tollens. “If
an E, then a 2” means not that only an E is paired with this number. The results
have been taken to show that a vast majority of subjects ignore the ‘not only’
condition (the correct answer is E and 7). A negative version of the selection
task has then been taken to reinforce this standard lesson: when the rule “If on
one side of the card there is an E, then on the other side there is a 2” is modified
to “If on one side of the card there is an E, then on the other side there is not
a 2”, and rest of the conditions are left unaltered, participants who are asked to
prove the latter do significantly better.

We propose an analysis of this situation by the diagrammatic logic of EG. In
it, we see that (1) both systems rely on general logical schemata of reasoning, and
(2) certain differences exist in how the consequences are drawn, which suffices
to logically explain the differences in subjects’ responses in the two versions
(positive and negative) of the task.

EG is a graphical method of logic that covers a range of logics from proposi-
tional, first-order, modal and other non-classical ones [7,9,13]. Graphs are propo-
sitional expressions “of any possible state of the universe” (CP 4.395) presented
or scribed on the sheet of assertion (as e.g. the two graphs of Fig. 1). Diagram-
matic transformations show how one graph, as a “moving-picture of thought”,
is turned into another along the logical consequence relation. Such ‘moving pic-
tures’ govern reasoning by what Peirce calls guiding principle of reasoning; it
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“determines us, from given premisses, to draw one inference rather than another”
(CP 5.367).

Figure 1:

As an interpretation of implication, guiding principle may be modelled either
as two nested ovals (Fig. 1, left) or as “the scroll” composed of one continuous line
or two closed lines one inside the other (Fig. 1, right). Antecedent is in the outer
compartment, consequent in the inner. Implication is the basic logical sign and
introduces negation by generating the oval. The oval is the result of the evolution
of logic from the fundamental notation of the scroll: “a certain development of
reasoning was possible before . . . the concept of falsity had ever been framed”
(R 669, 1910; [11, p. 920]). Such a state of affairs is termed paradisiacal (R 669).
In it, assertions take the form “If X be true, then every assertion is true.” Once
the idea of incompatibility is introduced and it is clear that X might be not true,
a simple oval (negation) appears (see [12]).

The process of evolution of a fundamental logical conception of negation
enables us to distinguish two kinds of implications, viz. paradisiacal (the scroll)
and de inesse (two ovals one within the other). Both have the same structure
as regards the guiding principle. But presuppositions of the two implications
differ. Material implication evolves from the paradisiacal one. The presence of
the latter ascertains that reasoning can proceed even in negation-free and falsity-
free situations.

3 Wason’s Card Selection Task and Two Implications

Indeed human reasoning is prone to default on negation-free situations. It is the
scroll that provides general premise-conclusion schemata. We propose this to
explain both the theoretical connection and the difference between S1 and S2.

The results of the selection task are thus to be interpreted as follows: when
participants choose their cards, they tend to admit reasoning grounded on what
they observe, and for such reasons refrain in such default state from proceeding
to look for alternative solutions. Humans are prone to invoke paradisiacal, proto-
implication, divested of falsity and negation. Peirce’s assertion that “affirmation
is psychically the simpler” (R L 386) is consistent with empirical data that sug-
gests infants below c.14 months of age are unable to conceptualise negation,
contradiction, or even that of absence. Difficulties include grammar acquisition
and production and comprehension of illocutionary forces [1]. Yet logical rea-
soning is present, carried out with positive instances only. A derivative nature
of hypotheticals indicate that the presence of falsity is easily suppressed from
one’s awareness.

Processes of refutation are less naturally exhibited in human reason than
those of confirmation. Negation is a polar phenomenon, and for negation to
make itself manifest, certain further, boundary conceptions are needed, and to
maintain them in one’s mental images of diagrammatic thought is non-trivial
and costly. Geometrically, at least two areas must be simultaneously present,
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something that exists and something that exhibits a mere possibility. For such
reasons, S1 tends to take precedence in reasoning. But if the rule “If on the
one side of the card there is an E, then on the other side there is not a 2”
readily conveys a negative concept “not a 2”, the setting markedly differs in
meaning from the positive token of the standard version of the test, and correct
conclusions more expediently drawn. In both cases, subjects imagine the sign
of implication, but in the latter task the higher success rates are triggered by
subjects’ recognition that “not every assertion is true”.

This hypothesis can be experimentally tested and it applies to single-process
theories of reasoning as well. A popular explanation of the selection task serves
as an illustration: “Affirmative rule makes no prediction on the letter to be found
on the hidden side of the 2 card, but the negative version of the rule does: an E
on the hidden side of the 2 card would falsify the negated rule” [15, p.43]. Why
does only the negative version trigger the prediction? This further question has
remained unanswered. Our hypothesis offers an explanation: the affirmative rule
does not make it evident that “not every assertion is true”. But the negative
rule does just that.

4 Conclusion

Selection tasks are not textbook cases of confirmation bias. Subject’s ignorance
of a relevant piece of information is not a bias but crucial part of logical reasoning
at the level of the paradisiacal implication, and predicted by Peirce’s theory of
EG. As the language of the positive implicational fragment has a particularly
clear diagrammatic structure, it could moreover be one of the future candidates
for models of general and common-sense reasoning.
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Abstract. A key feature of diagrams is well-matchedness, referred to as
iconicity in philosophy. A well-matched diagram has a structural resem-
blance to its semantics and is believed to be an effective representation.
In this paper, we view well-matchedness as a feature of diagrams’ mean-
ing carriers – syntactic relationships that convey meaning. Each meaning
carrier may or may not structurally resemble, i.e. be well-matched to, its
semantics. This paper provides the first empirical study that evaluates
the impact of well-matched meaning carriers on effectiveness in Euler dia-
grams and linear diagrams. There are two key take-away messages: using
only well-matched meaning carriers led to the best task performance and
using both well-matched and non-well-matched meaning carriers in a sin-
gle diagram should be approached with caution.

Keywords: Well-matched · Iconicity · Diagrams · Visualization · Sets

1 Introduction

The notion of well-matchedness encapsulates the property of a diagram’s syntac-
tic relations corresponding, structurally, to its semantics [4,10]. A highly related
notion is the concept of iconicity: Peirce took iconicity to embody the struc-
tural resemblance of a syntactic entity (a sign) to its semantics (object) [13].
In this paper, we demonstrate that well-matchedness is a property of mean-
ing carriers [15]. This paper presents empirical studies that evaluate the impact
of well-matched meaning carriers on effectiveness in Euler diagrams and lin-
ear diagrams, with the study designs embodying this fine-grained view of well-
matchedness. The studies use stimuli that vary the use of meaning carriers to
convey information within diagrams to test the impact of well-matchedness on
task performance.

Section 2 illustrates the key ideas of meaning carriers and well-matchedness
and makes the first contribution of this paper: identifying well-matchedness as a
c© Springer Nature Switzerland AG 2020
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property of meaning carriers, not global properties of diagrams. Section 3 evalu-
ates well-matchedness in Euler diagrams, presenting the hypotheses to be tested,
the design of the empirical study, the methods used to analyse the collected data
and the results. Section 4 covers linear diagrams, proceeding in the same manner
as Sect. 3. We conclude in Sect. 5. Supporting material can be found at www.
eulerdiagrams.com/wellmatched.

2 Well-Matchedness and Meaning Carriers

A fundamental aspect of any notation, diagrammatic or otherwise, is how it
combines basic syntactic elements to form meaningful expressions. A meaning
carrier is a relationship between syntactic elements that conveys either true or
false information [15]. A key goal is to provide general theories about the rela-
tive cognitive effectiveness of competing diagram choices through understanding
meaning carriers and their role in cognition. Meaning carriers allow us to identify
information that is explicitly conveyed by a representation of information: this
explicit information is defined to be observable from the representation [15]. It
is also vital to understand meaning carriers when exploring well-matchedness: if
a meaning carrier resembles the semantics it conveys then it is considered to be
well-matched. Well-matchedness is a property of some meaning carriers but not
others, distinguishing it from the notion of observability, and is hypothesised to
help explain the relative cognitive benefits of competing diagram choices.

2.1 Meaning Carriers

Euler and linear diagrams both exploit spatial relationships between curves and,
respectively, lines to convey information about sets. Each of these notations can
be augmented with shading [6,7] to convey information in a syntactically dif-
ferent way. We are only focusing on subset or disjointness relationships between
pairs of sets and, therefore, are only concerned with the meaning carriers iden-
tified below. In general, other meaning carriers arise.

Meaning Carriers in Euler Diagrams. Figure 1 contains four diagrams that
show information about the countries visited by people. We focus on part of
the information conveyed: everyone who visited Ukraine also visited Romania.
This is subset information: the set of people who visited Ukraine is a subset of
those who visited Romania. In the leftmost diagram, only spatial relationships
between circles convey information: the inclusion of one circle inside another is a
meaning carrier, since it conveys information about the relationship between the
corresponding sets. The first and second diagram in Fig. 1 both place Ukraine
inside Romania, expressing the subset-style statement spatially using circles.

The third and fourth diagrams do not exploit an equivalent spatial rela-
tionship: Ukraine is not inside Romania. To convey the subset information, the
region inside the former but outside the latter is shaded (shading identifies set
emptiness). Shading can be viewed as an annotation that the corresponding set
is empty: it is fundamentally different to spatial relations between circles when

www.eulerdiagrams.com/wellmatched
www.eulerdiagrams.com/wellmatched
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Fig. 1. Euler diagrams with varying meaning carriers: subset information.
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Fig. 2. Euler diagrams with varying meaning carriers: disjointness information.
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Fig. 3. Linear diagrams with varying meaning carriers: subset information.
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Fig. 4. Linear diagrams with varying meaning carriers: disjointness information.

used to convey information. In the third diagram, therefore, the placement of
shading inside parts of the Ukraine circle ensures that the diagram expresses
that everyone who visited Ukraine also visited Romania. Similar reasoning can
be applied to the fourth diagram.

Regarding disjointness relations, using Fig. 2 we focus on the statement no
one visited both India and Zambia. In the first and second diagram, the non-
overlapping nature of the India and Zambia circles is a meaning carrier expressing
this information. By contrast, the third and fourth Euler diagram express the
disjointness information by shading the region inside both India and Zambia.

Meaning Carriers in Linear Diagrams. In Fig. 3, the linear diagrams convey
the same information as the Euler diagrams in Fig. 1. In the first linear diagram,
only spatial relations between lines convey information: if the x-coordinates of
one line are entirely subsumed by those of another line then the set represented
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by the former is a subset of the latter. So, one line being completely overlapped
by another is a meaning carrier. Hence, since (the line for) Ukraine is completely
overlapped by Romania, the leftmost linear diagram expresses that everyone who
visited Ukraine also visited Romania. The second diagram in Fig. 3 also ensures
that the line for Ukraine is completely overlapped by the Romania line.

In the third and fourth diagrams, Ukraine is not completely overlapped by
Romania. Here, meaning is conveyed using shading: in a shaded overlap1, the
represented set is empty. Thus, to express one set is a subset of another, we can
shade the overlaps that include a line for the former but not the latter. In the
third diagram, the overlap that includes the Ukraine line but not the Romania
line is shaded. In the fourth linear diagram, the two overlaps that include Ukraine
but not Romania are shaded. So both these diagrams express that everyone who
visited Ukraine also visited Romania. As with the Euler diagram case, to extract
the information that everyone who visited Ukraine also visited Romania relies
on the presence of shading, not simply the spatial relationships between lines.

Regarding the expression of disjointness relations between sets, linear dia-
grams exploit either spatial relations between lines or shading. Using Fig. 4, we
again consider the statement nobody visited both India and Zambia. In the first
two diagrams of Fig. 4, the non-overlapping nature of the India and Zambia
lines is a meaning carrier expressing this information. By contrast, the third
and fourth linear diagram express the disjointness information by shading the
overlaps that contain lines for both India and Zambia.

2.2 Well-Matchedness of Meaning Carriers

Recall that a meaning carrier is well-matched to its semantics if there is a struc-
tural resemblance between the way in which the meaning carrier expresses infor-
mation and the information being expressed. Well-matchedness is a property of
meaning carriers, not a global property of diagrams. To study well-matcheness in
general, not just for Euler and linear diagrams, we need to identify the meaning
carriers that are present in diagrams and whether they are well-matched. This
fine-grained view of well-matchedness is potentially important for our continued
study of the efficacy of diagrams.

Well-Matchedness in Euler Diagrams. Spatial meaning carriers arising from
circles are well-matched. In the subset case, the inclusion of circle A inside B
matches the meaning that all of set A is included in set B. Likewise, the dis-
joint interiors of two non-overlapping circles, C and D, matches the meaning
that the two represented sets are disjoint. That is, in Euler diagrams, meaning
carriers arising from circles are well-matched to their semantics. By contrast,
there is no structural resemblance of shading to its meaning: the presence of a
syntactic device – shading – is being used to express the absence of elements.
Thus, meaning carriers arising from the use of shading are not well-matched.
1 Overlapping lines represent set intersections with distinct overlaps are separated by

vertical grid lines. The first diagram in Fig. 3 has three overlaps, with the first one
representing the intersection of the three sets since all three lines appear.
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Returning to Figs. 1 and 2, we can see that in both cases the leftmost diagrams
only exploit well-matched meaning carriers, the middle two diagrams blend well-
matched and non-well-matched meaning carriers and the rightmost diagram only
uses non-well-matched meaning carriers.

Well-Matchedness in Linear Diagrams. Spatial meaning carriers arising
from lines are also well-matched. In the subset case, line A being completely
overlapped by line B matches the meaning that all of set A is included in set B.
This is because the semantics are derived from the x-coordinates occupied by the
line A forming a subset of those for the line B. So, the subset of x-coordinates at
the syntactic level matches the subset of elements at the semantic level. Likewise,
the non-overlapping nature of two lines, C and D, matches the meaning that the
two represented sets are disjoint. That is, in linear diagrams, spatial meaning
carriers arising from lines are well-matched to their semantics, just as for Euler
diagrams. Again, there is no structural resemblance of shading to its meaning:
shading is not well-matched. Returning to Figs. 3 and 4, we can see that in
both cases the leftmost diagrams only exploit well-matched meaning carriers, the
middle two diagrams blend well-matched and non-well-matched meaning carriers
and the rightmost diagram only uses non-well-matched meaning carriers.

2.3 Research Questions

The specific research questions addressed for these two notations are:

(RQ1) Do diagrams with only well-matched meaning carriers significantly
improve performance over diagrams with some non-well-matched mean-
ing carriers?

(RQ2) Do diagrams whose meaning carriers are well-matched to the information
to be extracted in a given task significantly improve performance over
diagrams that are not well-matched to the information to be extracted?

Answers will shed new light on the role of the well-matchedness of meaning car-
riers in Euler and linear diagrams and will inform the design of visual modes
of communication: if well-matched meaning carriers yield demonstrable perfor-
mance benefits then we should favour visualization methods that exhibit them.
Moreover, if non-well-matched meaning carriers negatively impact performance
then they should be avoided.

3 Evaluating Well-Matchedness in Euler Diagrams

To begin our study of well-matchedness, we will derive hypotheses concerning
its role in Euler diagrams and its potential impact on cognition, measured via
task performance. For our purposes, a representation is judged to support more
effective information extraction than another if there is a significant accuracy or
speed benefit. The evaluation of Euler diagrams was run in alongside the study
on linear diagrams, presented in Sect. 4: data were collected concurrently.
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3.1 Hypotheses

The above discourse on the role of meaning carriers in conveying information
and their potential to be well-matched leads to our first hypothesis:

[H1] to identify a piece of information from a diagram that is conveyed
using a well-matched meaning carrier is significantly easier than identify-
ing it using a non-well-matched meaning carrier.

This suggests that, in each of Figs. 1 and 2, the two diagrams on the left will
support significantly more accurate or, else, significantly faster time performance
than the two diagrams on the right. What other differences between the diagrams
in these figures might we expect to establish, empirically, if the well-matchedness
of meaning carriers is a fundamental property that impacts task performance?
To get a more precise handle on this we appeal to the theory of boundary segre-
gation [5], which states that colour hue is favoured over shape when segregating
boundaries, and the Gestalt Principles of Perceptual Organisation, in particular
the principle of good continuation [17].

Suppose we wish to extract the information that everyone who visited Ukraine
also visited Romania and that no one visited both India and Zambia from the
diagrams in Figs. 1 and 2 respectively. In each of the diagrams, their circles can
be visually segregated from each other, primarily because of their distinguishing
hues as colour2 is more salient than form [5]. In addition, in each of the leftmost
diagrams, the visual salience of the circles is further promoted: since no pair
of circles have intersections between their boundaries, each circle exhibits the
principle of good continuation. In the remaining diagrams, visual segregation is
impaired because at least one pair of circles exhibit changes in good continuation
at the points where circles intersect. Indeed, these changes in good continuation
arise precisely because a non-well-matched meaning carrier is used and they
promote the visual saliency of the intersection. These insights support [H1] and
suggest that the leftmost diagram is more effective than the second diagram in
each figure, leading to another hypothesis:

[H2] to identify a piece of information from a diagram that only has well-
matched meaning carriers is significantly easier than identifying it from a
diagram that blends well-matched and non-well-matched meaning carriers,
and expresses the desired information in a well-matched way.

We suggest as the number of changes in good continuation increases (due
to the use of non-well-matched meaning carriers), the less salient the circles
become and the more difficult the task may get. However, we must also consider
the crucial role of shading. That is, to understand the role of meaning carriers in
information extraction, we need to understand the relative salience of circles and
shaded regions. Since the same colour hue is used throughout for the shading,
we posit that no one shaded region is more prominent than another, but the
2 The discussion in this section is assuming the viewer of the representations is not

impeded by colourblindness.
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circles are more readily distinguishable due to their varying hues. Hence, the
most salient information in an Euler diagram may arise from its well-matched
meaning carriers. This further supports [H1] since it distinguishes the second and
third diagrams in each of our figures: the second diagram uses a well-matched
meaning carrier to convey the required information whereas the third diagram
does not. Moreover, the third diagram uses a well-matched meaning carrier to
express different information, which we speculate will act as a distraction from
the task of identifying that everyone who visited Ukraine also visited Romania in
Fig. 1 and that no one visited both India and Zambia in Fig. 2. It is known that, in
general, syntax which causes a distraction from the target syntax required for the
task can lead to reduced performance [9]. Applying this to Euler diagrams, the
saliency of the well-matched meaning carrier in the third diagram of each figure
inhibits the identification of the target, non-well-matched, syntax that must be
interpreted to extract the aforementioned statements. By contrast, in the fourth
diagram, there are no (salient) well-matched meaning carriers to distract form
the task of identifying the required information. We obtain a third hypothesis:

[H3] to identify a piece of information from a diagram that uses only non-
well-matched meaning carriers is significantly easier than identifying it
from a diagram that uses both well-matched and non-well-matched meaning
carriers and expresses the desired information using a non-well-matched
meaning carrier.

To summarise, combining [H1], [H2], and [H3], we expect the diagrams to be
ranked, in terms of their ability to support the extraction of the stated informa-
tion, as: the leftmost diagram is most effective ([H1] and [H2]), followed by the
second diagram ([H2]), then the fourth ([H1] and [H3]) and, finally, the third
diagram ([H1] and [H3]).

3.2 Methods

We recruited participants using the Prolific Academic crowdsourcing platform.
Participants were asked to perform 8 tasks, presented in the performance phase
of the study which was preceded by a training phase. Each task was a multiple
choice question with five options, exactly one of which was the correct answer.
There were two preference phase questions, one for subset-style statements and
one for disjointness-style statements. The performance phase and preference phase
each included additional questions to establish whether participants were paying
attention. This is standard technique when crowdsourcing [8]. Data from inatten-
tive participants – i.e. those who fail to answer at least one attention checking ques-
tion correctly – are not included in any statistical analysis.

The study adopted a within group design. The participants would be asked, in
the performance phase, a multiple choice question and were required to identify
which of five options was correct. Two options were subset-style statements, two
were disjointness-style statements and the fifth option was ‘none of the above’.
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Fig. 5. The first four training Euler diagrams.

There were four tasks for subset-style statements and four for disjointness-style
statements. All diagrams included in the paper to illustrate the study design are
scaled for space reasons (typically to 30%). For the study materials, see www.
eulerdiagrams.com/wellmatched.

Training Phase. Participants were shown diagrams similar to, but distinct
from, those used in the other two phases. The first four training diagrams each
displayed two sets. Of these, the first two conveyed subset information and the
second two conveyed disjointness information. The fourth and fifth diagrams
each used three sets, the first focusing on subset training and the second on
disjointness. Figure 5 shows the first four training diagrams, covering the use
of spatial relations between circles and shaded regions as meaning carriers for
subset and disjointness information. The training diagrams were presented in a
fixed order.

Performance Phase. This phase included four subset-style tasks and four
disjointness-style tasks alongside one question to check for attentiveness. Figure 6
shows a subset task where the answer is well-matched (correct answer: option 4)
alongside the performance-phase attention checker. The options for the atten-
tion checker indicated which option to pick and, for the remaining options, used
country names that did not appear in the diagram. The four tasks associated
with each task type covered the following treatments:

– Well-Matched (WM): the diagram only exploits well-matched meaning carri-
ers (spatial relationships between circles).

– Well-Matched to the Answer (WMA): the diagram exploits a well-matched
meaning carrier to convey the correct answer, but also uses a non-well-
matched meaning carrier (shading) to convey other information.

– Not Well-Matched to the Answer (NWMA): the diagram exploits a non-
well-matched meaning carrier to convey the correct answer, but also uses a
well-matched meaning carrier to convey other information.

– Not Well-Matched (NWM): the diagram only exploits non-well-matched
meaning carriers.

Based on our hypotheses, we would expect our treatments to be ranked as
WM > WMA > NWM > NWMA, where > means more accurate or faster.

The four Euler diagrams for the subset-style task conveyed the same informa-
tion, up to label swapping, and varied only by their use of spatial relationships
between circles and shading. Similarly, this was the only variation in the dia-
grams used for the disjointness tasks. Figures 7 and 8 show all of the diagrams

www.eulerdiagrams.com/wellmatched
www.eulerdiagrams.com/wellmatched
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Fig. 6. Task presentation (left) and an attention checker (right).
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Fig. 7. The four Euler diagrams used for subset tasks.

used in the study. In each case, the diagrams are ordered (from left to right):
WM, WMA, NWMA, NWM. No pair of diagrams shared a country name and,
within each diagram, each country name started with a different first letter to
reduce the potential for misreading. The colours assigned to the circles were
derived from ColorBrewer to ensure they were perceptually distinct and suitable
for categorised data [11].

Regarding the five options, the first four included two subset-style statements
and two disjointness-style statements. The three incorrect options, excluding
‘none of the above’, had the sets involved randomly selected whilst ensuring that
the options were not true. Regarding the correct answer, it would not be sensible
to always place it in the same position (eliminating answer position as a variance
across treatments): it would be easy to spot that the correct answer was always
in, say, position 2. Table 1 indicates the positions of the correct answers for
each statement style and treatment. In addition, we indicate the sets involved in
the correct answer, abbreviating their names to first letters only and expressing
the statement in mathematical notation (note the answers were always written
as ‘Everyone ...’ and ‘No one ...’ statements). For each participant, the order
of the tasks was randomly generated, except that the attention checker always
appeared after the fourth performance-phase task.
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Uganda

Libya

Germany Niger

Hungary

Dominica Argentina

Finland

Yemen

Taiwan

Mexico Panama

Fig. 8. The four Euler diagrams used for disjointness tasks.

Table 1. Answer positions for each question.

Subset Disjoint

Treatment WM WMA NWMA NWM WM WMA NWMA NWM

Answer position 1 4 2 3 4 1 3 2

Answer Z ⊆ E Z ⊆ O V ⊆ P T ⊆ C L ∩ U = ∅ H ∩ N = ∅ F ∩ Y = ∅ M ∩ T = ∅

Preference Phase. Participants were presented with two preference questions,
asking them to rank four diagrams according to which most effectively conveyed
a specified subset and, respectively, a disjointness statement. For the subset-style
statement, the diagrams in Fig. 1 were used and the statement was Everyone who
visited Ukraine also visited Romania. For the disjointness-style statements, the
diagrams in Fig. 2 were used and the statement was No one visited both India and
Zambia. The diagrams used in the preference phase were identical to the eight
diagrams in the main study, except that the labelling differed. The diagrams
were presented in a random order, generated for each participant, to reduce any
potential ordering effect. Equal rankings were permitted and participants were
asked to explain their ranking. The subset question included an attention check,
with participants being asked to choose a specified option from a dropdown list.

Statistical Methods. We collected accuracy and time data as indicators of per-
formance, with accuracy viewed as more important than time: one treatment is
judged to be more effective than another if users can perform tasks significantly
more accurately with it or, if no significant accuracy difference exists, perfor-
mance is significantly quicker when correct answers are provided. We employed
a generalized estimating equations model [12] to analyse the accuracy and time
data. For the preference analysis, we analysed data that related to the most pre-
ferred treatment. A local odds ratios GEE model [16] estimated the probability
of each treatment being most preferred. The treatments were then compared
pairwise, using the ratio of their associated probabilities. For the accuracy, time
and preference data, it was not appropriate to apply commonly used paramet-
ric or non-parametric statistical method (e.g. ANOVA and Kruskal–Walis tests)
because the data violated the normality assumption and the responses for each
individual are expected to be correlated, and so not independent. The models
and statistical output can be found at www.eulerdiagrams.com/wellmatched.

www.eulerdiagrams.com/wellmatched
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3.3 Euler Diagram Results

We report on the results of our evaluation of well-matchedness in Euler dia-
grams; the two studies (the other on linear diagrams) were run in parallel, with
Prolific Academic participants being randomly exposed to either Euler or linear
diagrams. We set pre-screening criteria: the first language had to be English,
they had to have an approval rating of at least 98%, and have completed at least
five studies on the Prolific platform. In addition, we only permitted the study
to be taken on a desktop device, excluding the use of mobiles and tablets. Each
participant was paid £2.06 and told that we expected the study to take 15 min,
with a maximum time allowed of 56 min (set by Prolific).

The pilot revealed that some questions had unexpectedly low accuracy rates.
This led us to improve the training material at the beginning of the study, with
additional explanation on the meaning of shading and new pages explaining the
task answers. We also assigned a letter to each diagram in the preference phase
and asked participants to use these letters when making comments, so that we
could more accurately match their remarks to the diagrams. Lastly, we rectified
an incorrect positioning of the correct answer to question 8. When gathering
data for a second pilot, there was a technical issue, resulting in partial data
being collected. Therefore, we ran a third pilot which still revealed low accuracy
rates for some questions. Having already added material to the training given, it
was felt that these low accuracy rates could be a feature of the treatments being
evaluated, so we proceeded with the main data collection. The pre-screening cri-
teria were carried forward with the additional criterion that no pilot participant
could take part. As is standard, no participant could take part more than once.

We recruited 126 participants with the following distribution: 101 successfully
completed, 0 were inattentive, and 25 failed to complete the study. Of the 101
participants who completed, 70 identified as female and 31 as male. Ages ranged
from 18 to 69, with a mean of 34. Results are declared significant if p ≤ 0.05.
Note that we do not apply Bonferroni corrections. Some researchers routinely do
so but corrections should only be applied when certain conditions are met [3]3.

Accuracy Analysis. The mean accuracy rate overall was 61.39% with the
treatment rates being: 86.63% for WM, 60.89% for WMA, 45.54% for NWMA,
and 52.48% for NWM. These rates are indicative of performance differences but
we must be mindful that the statistical methods employed do not compare them.
When conducting our analysis, we found that there was no significant interaction
between the treatment and the task type (p = 0.174), so we report on an analysis
excluding the associated interaction term from the model. From this we derived

3 The goal of [3] is to provide advice, to researchers whose studies involve multiple
testing, on when to use corrections: “[Bonferroni corrections] should not be used
routinely and should be considered if: (1) a single test of the ‘universal null hypoth-
esis’ (Ho) that all tests are not significant is required, (2) it is imperative to avoid
a type I error, and (3) a large number of tests are carried out without preplanned
hypotheses”. None of these considerations apply in our case.
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the following ranking of treatments:

accuracy ranking: WM > WMA > NWM > NWMA.

This matches our hypothesised ranking. For space reasons, we omit the p-values,
which ranged from 0.0499 to <0.0001.

Time Analysis. The mean time taken overall was 30.34 s with the treatment
means being: 21.79 s for WM, 30.03 s for WMA, 34.28 s for NWMA, and 35.24 s
for NWM. For correct answers only, the overall mean was 26.16 s, with the treat-
ment means being: 20.29 s for WM, 26.42 s for WMA, 30.94 s for NWMA, and
31.39 s for NWM. Again, these rates are indicative of performance differences
but the statistical methods employed do not compare them. When conducting
our analysis, there was a significant interaction between the treatment and the
task type (p = 0.0108), so we report on an analysis broken down task type:

time ranking for subset: WM > WMA = NWMA = NWM.
time ranking for disjoint: WM = WMA > NWMA = NWM.

This ranking is the partially consistent with our hypothesised ranking. In the
significant cases, the subset p-values ranged from 0.0001 to <0.0001 and for the
disjoint analysis all were less than 0.0001.

Preference Analysis. From the data provided by participants, we found an
overwhelming preference for well-matched Euler diagrams, which were top-
ranked 190 times. The other treatments were ranked top as follows: 17 times
for WMA, 3 times for NWMA, and 11 times for NWM; recall joint rankings
were permitted. When fitting our statistical model, we found that preference
did not depend on task type (p = 0.4715) and, so, our results are based on a
simplified model from which we obtained the following ranking:

preference ranking: WM > WMA = NWMA = NWM.

For space reasons, we omit the associated p-values, with those below the 5%
threshold ranging from 0.0215 to <0.0001. Comments made by participants often
indicated that shading was confusing and highlighted their perceived simplic-
ity of the diagrams that used only spatial relations between circles. Generally,
the participants’ comments supported the exploitation of spatial relationships
between circles over shading.

Discussion. For Euler diagrams, we can answer RQ1 and RQ2 affirmatively.
Given that we view accuracy as the most important indicator of relative perfor-
mance, our data also support [H1] to [H3]. In summary, the well-matchedness of
meaning carriers does significantly impact task performance. It is particularly
interesting that, when tasks required information to be obtained from non-well-
matched meaning carriers, the presence of well-matched meaning carriers led to
significantly worse accuracy performance than when there were no well-matched
meaning carriers at all.
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4 Evaluating Well-Matchedness in Linear Diagrams

The design of the linear diagrams study matched that of the Euler diagram
study. The only difference was due to the notation. The linear diagrams used
in the performance phase are equivalent to those in Figs. 3 and 4, relabelled
similarly to the Euler diagram study (see Figs. 1 and 7 as well as Figs. 2 and 8).
The diagrams in Figs. 3 and 4 were used in the preference phase.

4.1 Hypotheses

We immediately carry forward [H1] to the linear diagram case, since it is regarded
that well-matched meaning carriers are more effective. We must further explore
linear diagrams when considering [H2] and [H3] since lines do not intersect as
circles do, a core feature of our earlier deliberations. We again focus on the extrac-
tion of the information that everyone who visited Ukraine also visited Romania
and that no one visited both India and Zambia, this time from Figs. 3 and 4.
The observation that colour hue is favoured over shape (in this case, lines) holds
for linear diagrams. However, whilst the lines never intersect each other they
sometimes have line breaks, where more than one line segment represents a
set. The Gestalt principle of similarity tells us that people will group together
visual objects that share characteristics seeing them as ‘belonging together’. This
suggests that using varying colours for the lines could outweigh potential perfor-
mance degradation arising from line breaks. Current empirical research into the
impact of the number of line segments in task performance is, however, incon-
sistent [1,14] and requires further investigation. Thus, there is no clear evidence
that a hypothesised ranking of diagrams should be based on the presence of line
breaks, which is a feature not directly related to well-matchedness.

Therefore, we focus our attention on the use of shading. As with Euler dia-
grams, the use of one colour for shading compared to varying hues for the
lines renders the well-matched meaning carriers more salient than the non-well-
matched meaning carriers. Further, the same reasoning as in the Euler diagrams’
case can be applied to the use of non-well-matched meaning carriers to convey
the required information in a diagram that also uses well-matched meaning car-
riers. Hence, we also carry forward [H2] and [H3] to the linear diagram case.

4.2 Linear Diagram Results

Regarding the pilots for the linear diagram study, they ran concurrently with
the Euler diagram study. The adaptations and errors identified were reported
in Sect. 3. For the main study on linear diagrams, we recruited a total of 146
participants with the following distribution: 104 successfully completed, 3 were
classified as inattentive, and 39 failed to complete. Of the 104 participants, 69
identified as female and 35 as male. Ages ranged from 18 to 67 (mean: 33).

Accuracy Analysis. The accuracy rate overall was 63.22% with treatment
rates: 84.13% for WM, 64.42% for WMA, 50.48% for NWMA, and 53.85% for
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NWM. When conducting our analysis, we found that there was no significant
interaction between the treatment and the task type (p = 0.5921), so we report
on an analysis excluding the interaction term from the model. We derived the
following:

accuracy ranking : WM > WMA > NWMA = NWM.

This ranking is the same as our hypothesised ranking, except that NWMA and
NWM are not distinguished. The p-values below the 5% threshold ranged from
0.0180 to <0.0001.

Time Analysis. The mean time taken overall was 27.79 s with the treatment
means being: 21.30 s for WM, 27.47 s for WMA, 32.52 s for NWMA, and 29.87 s
for NWM. For correct answers only, the overall mean was 25.64 s, with the treat-
ments means being: 19.72 s for WM, 27.00 s for WMA, 32.00 s for NWMA, and
27.31 s for NWM. When conducting our analysis, there was a significant inter-
action between the treatment and the task type (p < 0.0001), so we report on
an analysis broken down task type:

time ranking for subset: WM > WMA = NWMA = NWM.
time ranking for disjoint: WM > WMA = NWMA = NWM.

This ranking is the partially consistent with our hypothesised ranking. In the sig-
nificant subset cases, the below-threshold p-values ranged from 0.0002 to <0.0001
and for the disjoint cases they were between 0.0315 and 0.0002.

Preference Analysis. From the data provided by participants, we found an
overwhelming preference for well-matched linear diagrams, which were top-
ranked 187 times. The other treatments were ranked top as follows: 11 times
for WMA, 7 times for NWMA, and 7 times for NWM. As with Euler diagrams,
we found that preference did not depend on task type (p = 0.0631), so our results
are based on a simplified model from which we obtained the following ranking:

preference ranking: WM > WMA = NWMA = NWM.

For space reasons, we omit the associated p-values, with those below the 5%
threshold all <0.0001.

Participants’ comments again indicated that shading was confusing. In addi-
tion, comments alluded to the clarity of diagrams when spatial relationships
between lines were used. A minor theme through the comments centred on line
breaks, with some participants feeling that broken lines were problematic (when
multiple line segments are used to represent a set). These comments are consis-
tent with prior work, which suggests people perceive linear diagrams with more
line segments as being more cluttered [2].

Discussion. For linear diagrams, we also answer RQ1 and RQ2 affirmatively.
However, our data supported [H1] and [H2] but not [H3]. We speculate about why
this is different to the Euler diagram case. In linear diagrams, when extracting
information about a number of sets, it is always possible to ignore the lines
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that represent any other sets. This is because the lines are laid out in parallel,
with their relative x-coordinates conveying semantics, and they never intersect
each other. In our study, only two lines and any present shading needed to be
considered to correctly perform the task. In both the NWMA and NWM cases,
the two lines involved in the task are in a non-well-matched relationship. This
leads us to speculate that an irrelevant third set is not a distraction in linear
diagrams. Hence, there is no distinguishing feature – from the perspective of
well-matchedness – between the NWMA and NWM cases, providing a plausible
reason as to why [H3] is not supported. Furthermore, this reasoning does not
contradict [H1] or [H2]. In the case of [H1], we are comparing WM and WMA
with NWMA and NWM: in the former two cases, the two lines are both well-
matched and in the latter two they are both non-well-matched. For [H2], in each
diagram the two relevant lines are well-matched, but in the WM case there is
no distracting shading unlike the WMA case (e.g., in Fig. 4, part of the Zambia
line occupies a shaded overlap in the WMA case but not in the WM case).

We contrast the discussion above with the Euler diagram case. In most Euler
diagrams the circles intersect, which causes points of discontinuation, to form
regions. To compare two sets in Euler diagrams remains straightforward if the
two corresponding circles are in a (salient) well-matched relationship. However,
the presence of the third (well-matched) circle in the NWMA case renders the
task more difficult: the third circle is not easily ignored, unlike linear diagrams,
due to the intersecting nature of the circles. Intersecting circles form an atomic
component (single unit) unlike the separate lines in a linear diagram. Thus, we
posit that the intersecting nature of the circles in Euler diagrams makes ignoring
a third, irrelevant, circle, non-trivial. Hence, the discussions here may suggest
reasons why [H3] was supported for Euler diagrams but not for linear diagrams.

5 Conclusion

A major goal of the Diagrams community is to better understand features of
diagrams that make them effective. Through our examination of meaning car-
riers, we have exposed their potential importance in this context. By viewing
meaning carriers as being well-matched, or otherwise, we have begun to explore
the role of well-matchedness in Euler and linear diagrams. Our results suggest
that extracting information from well-matched meaning carriers is significantly
easier (as measured by accuracy) than in non-well-matched cases. A particu-
larly striking result arose with Euler diagrams: when tasks required information
to be obtained from non-well-matched meaning carriers, the presence of well-
matched meaning carriers led to significantly worse accuracy performance than
when there were no well-matched meaning carriers at all. By contrast, blending
well-matched and non-well-matched meaning carriers in linear diagrams did not
expose the same behaviour. This difference between notations is embodied in
[H3] being supported for Euler diagrams but not for linear diagrams.

There are two key take-away messages: using only well-matched meaning
carriers led to the best performance and using both well-matched and non-well-
matched meaning carriers in a single diagram is sometimes problematic. In the
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latter case, it is necessary to consider how the syntax of the diagrams gives rise
to meaning carriers and their role in information representation and potential
ability to distract from the task at hand.

There is ample scope for further work. Specifically for Euler and linear dia-
grams, there is the potential for eye-tracking studies to either support or refute
our speculation concerning why we had different results for [H3]. Evaluations are
needed for a richer variety of meaning carriers and tasks and also to explore how
participant familiarity with the notations impacts the results. Meaning carriers
and well-matchedness should be further explored in other diagrammatic nota-
tions. One such example arises from the semantics assigned to Euler and lin-
ear diagrams. Extending their semantics so that regions have existential import
means that regions represent non-empty sets. Under these semantics, new mean-
ing carriers arise, such as the intersection between two circles representing a
non-empty set. Understanding whether our results generalise are important for
our continued exploration of the benefits of diagrammatic communication.

Acknowledgement. Gem Stapleton is partially supported by EPSRC grant
EP/T019603/1.
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Abstract. We present an intuitionistic interpretation of Euler-Venn dia-
grams with respect to Heyting algebras. In contrast to classical Euler-
Venn diagrams, we treat shaded and missing zones differently, to have
diagrammatic representations of conjunction, disjunction and intuition-
istic implication. Furthermore, we need to add new syntactic elements
to express these concepts. We present a cut-free sequent calculus for this
language, and prove it to be sound and complete. Furthermore, we show
that the rules of cut, weakening and contraction are admissible.

Keywords: Intuitionistic logic · Euler-Venn diagrams · Proof theory

1 Introduction

Most visualisations for logical systems, like Peirce’s Existential Graphs [6] and
the Venn systems of Shin [16], are dedicated to some form of classical reasoning.
However, for example, within Computer Science, constructive reasoning in the
form of intuitionistic logic is very important as well, due to the Curry-Howard
correspondence of constructive proofs and programs, or, similarly, of formulas
and types. That is, each formula corresponds to a unique type, and a proof of the
formula corresponds to the execution of a function of this type. Hence, a visu-
alisation of intutionistic logic would be beneficial not only from the perspective
of formal logic, but also for visualising program types and their relations.

Typical semantics of intuitionistic logic are given in the form of Heyting alge-
bras, a slight generalisation of Boolean algebras, and an important subclass of
Heyting algebras is induced by topologies: the set of open sets of a topology
forms a Heyting algebra. In particular, it is well known that intuitionistic for-
mulas are valid, if and only if, they are valid on this subclass of Heyting algebras
[15]. Hence, for a visualisation, a formalism that uses topological relations to
reflect logical properties seems to be a natural choice. Due to these reasons, we
will study how such a formal system of diagrams, Euler-Venn diagrams, can be
used to visualise constructive reasoning based on intuitionistic logic.

Euler-Venn circles are known to be a well-suited visualisation of classical
propositional logic. In previous work [9], we have presented a proof system in
the style of sequent calculus [5] to reason with Euler-Venn diagrams. There, we
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speculated that, similar to sentential languages, restricting the rules and sequents
in the system would allow for intuitionistic reasoning with Euler-Venn diagrams.
However, further investigation showed that such a simple change is not sufficient,
due to the typical use of the syntax elements of Euler-Venn diagrams.

Consider for example the diagrams in Fig. 1. In the classical interpretation,
these diagrams are equivalent: the shaded zone in Fig. 1a denotes that the situa-
tion that a is true and b is false is prohibited, which is exactly what the omission
of the zone included in the contour a, but not in b in Fig. 1b signifies as well.

a b

(a)

b a

(b)

Fig. 1. Euler-Venn diagrams

That is, shading a zone and omitting it is equiv-
alent in classical Euler-Venn diagrams. Addition-
ally, we can interpret these two diagrams in two
ways: Fig. 1a may intuitively be read as ¬(a∧¬b):
we do not allow for the valuations satisfying a, but
not b. Figure 1b, however, is more naturally read
as a → b: whenever a valuation satisfies a, it also
satisfies b. While classically, these two statements

are indeed equivalent, they are generally not equivalent in an intuitionistic inter-
pretation (see the examples in Sect. 2). Hence, we want to treat missing zones and
shaded zones differently. Since typically, proof systems for Euler diagrams allow
to transform missing zones into shaded zones [7,9,17], this implies a stronger
deviation from our sequent calculus rules than anticipated.

We want to emphasise a constructive approach to reasoning. In particular,
instead of emphasising a negative property by prohibiting interpretations of the
diagrams, we will treat shading as a positive denotation. While this would not
make a difference in a classical system, negation in intuitionistic systems is much
weaker, and hence not suited as a basic element for the semantics of a language.

In this paper, we present an intuitionistic interpretation of Euler-Venn dia-
grams that takes the preceeding considerations into account. To that end, we
will distinguish between pure Venn, pure Euler and Euler-Venn diagrams, and
present semantics of these diagrams based on Heyting algebras. Pure Venn dia-
grams are diagrams similar to Fig. 1a, containing all possible zones of a set of
contours, and shadings of some of the zones. Pure Euler diagrams only repre-
sent topological relations, for example, whether a contour is inside of another. In
particular, they do not allow for any shading of zones. Hence, Fig. 1b could be
seen as a pure Euler diagram. However, we will need to distinguish pure Euler
diagrams from diagrams using both topological relations and (possibly) shaded
zones, called general Euler-Venn diagrams. To achieve such a distinction, we
draw contours with dotted lines in pure Euler diagrams, With this convention,
Fig. 1b is a general Euler-Venn diagram, and not a pure Euler diagram.

Subsequently, we present a proof system in the style of sequent calculus, which
we prove to be sound and complete. Furthermore, we show that the structural rules
of weakening, contraction and cut are admissible. Due to space limitations, we refer
for most of the proofs to the extended version of this paper [10].

Related Work. For existential graphs, there exist several visual reasoning systems
for non-classical variants. For example, Bellucci et al. defined assertive graphs [1],
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including a system based on rules for iteration and deletion of graphs, among
others. This logical language reflects intuitionistic logic, but the rules manipu-
late only single graphs, while sequent calculus systems manipulate sequents of
diagrams. Ma and Pietarinen presented a graphical system for intuitionistic logic
[12] and proved its equivalence with Gentzen’s single succedent sequent calculus
for intuitionistic logic. To that end, they translate the graphs into sentential
formulas. They also extended their approach to existential graphs with quasi-
Boolean algebras as their semantics [11]. Legris pointed out that structural rules
of sequent calculi can be seen as special instances of rules in the proof systems
for existential graphs, to analyse substructural logics [8]. de Freitas and Viana
presented a calculus to reason about intuitionistic equations [4]. However, we are
not aware of any intuitionistic reasoning system using Euler-Venn diagrams. Fol-
lowing this introduction, we briefly recall the foundations of intuitionistic logic
and its semantics in terms of Heyting algebras in Sect. 2. In Sect. 3, we define
the system of Euler-Venn diagrams, followed by the graphical sequent calculus
system, as well as soundness and completeness proofs, in Sect. 4. Finally, we
discuss our system and conclude the paper in Sect. 5.

2 Intuitionistic Logic

In this section, we give a very brief overview of the aspects of intuitionistic logic
we will use. We present the underlying semantical model: Heyting algebras.

Definition 1 (Heyting Algebra). A Heyting algebra H = (H,�,�, �→, 0, 1)
is a bounded, distributive lattice, where � is the join, � the meet, 0 the bottom and
1 the top element of the lattice. Observe that such a bounded lattice possesses a
natural partial order ≤ on its elements. The binary operation �→, the implication,
is defined by u � s ≤ t if, and only if, u ≤ s �→ t. That is, s �→ t is the join of
all elements u such that u � s ≤ t. We will use the abbreviation −s for s �→ 0.
Furthermore, we set

�
i∈∅ si = 1 and

⊔
i∈∅ si = 0 for any si.

We collect a few basic properties of Heyting algebras that we need in the
following. Proofs can be found, e.g., in the work of Rasiowa and Sikorski [15].

Lemma 1 (Properties of Heyting Algebras). Let H be a Heyting algebra.
Then for all elements s, t and u, we have

s � (s �→ t) ≤ t (1) (s �→ t) � t = t (2) s �→ (t �→ u) = (s � t) �→ u (3)

As an example, consider the set H = {0, a, b, 1}, totally ordered by 0 < b <
a < 1, and where s � t = min{s, t} and s � t = max{s, t} for s, t ∈ H. Then, we
have a �→ b = b, since b is the maximal element x such that x � a ≤ b. However,
we also have −b = b �→ 0 = 0, and hence −(a � −b) = −(a � 0) = −0 = 1. So in
this Heyting algebra a �→ b is not the same as −(a � −b).

As a different, more topological example, consider the Heyting algebra whose
elements are the open subsets of the reals, as defined by the standard topology,
and where the meet and join are given by the set-theoretic union and intersection
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operators. The bottom element is the empty set 0 = ∅, the top element is 1 =
R, and the implication operation is defined as a �→ b = Int(ā ∪ b), where ā
denotes the complement of a and Int the interior operator. This implies that the
negation operation corresponds to −a = Int(ā). Now consider a = (−1, 1), the
open interval between −1 and 1. Then a � −a = (−1, 1) ∪ Int(ā) = (−1, 1) ∪
Int((−∞,−1]∪ [1,∞)) = (−1, 1)∪ (−∞,−1)∪ (1,∞) = R\{−1, 1} �= R. So, this
is an example where a � −a �= 1.

The syntax of propositional intuitionistic logic is similar to classical Boolean
logic, with the difference that the operators are not interdefinable. Hence, the
signs for conjunction, disjunction, and implication are all necessary as distinct
symbols, and cannot be treated as abbreviations. We will assume a fixed, count-
able set of propositional variables Vars.

Definition 2 (Syntax). Intuitionistic formulas are given by the following
EBNF

ϕ : = ⊥ | a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ ,where a ∈ Vars .

We let � ≡ ⊥ → ⊥. The semantics of a formula is based on valuations,
associating each variable with an element of a given Heyting algebra.

Definition 3 (Semantics). Let H be a Heyting algebra and ν : Vars → H a
valuation, mapping variables to elements of H. We lift valuations to formulas.

ν(⊥) = 0 ν(ϕ ∧ ψ) = ν(ϕ) � ν(ψ)
ν(ϕ ∨ ψ) = ν(ϕ) � ν(ψ) ν(ϕ → ψ) = ν(ϕ) �→ ν(ψ)

A formula ϕ holds in H, if ν(ϕ) = 1. If ϕ holds for every valuation of H, we
write H |= ϕ. If H |= ϕ for every Heyting algebra H, we say that ϕ is valid.

3 Euler-Venn Diagrams

In this section, we present the syntax and semantics of Euler-Venn diagrams
with an intuitionistic interpretation. Generally, a diagram can be unitary or
compound. A unitary diagram consists of a set of contours dividing the space
enclosed by a bounding rectangle into different zones. Zones may also be shaded.
Depending on how the contours may be arranged, and whether zones may be
shaded, we distinguish between Venn diagrams, Euler diagrams, and Euler-Venn
diagrams. Compound diagrams are constructed recursively. Since the structure
of compound diagrams is the same, regardless of the type of unitary diagrams,
we present their syntax first.

Definition 4 (Compound Diagrams). A compound diagram is created
according to the following syntax, D:: = d | D ∧ D | D ∨ D | D → D, where d is
a unitary diagram.
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a b

b c

a

(a) Venn diagrams

b
a a b

(b) Pure Euler diagrams

a
b

c ab c

(c) Euler-Venn diagrams

Fig. 2. Examples of Euler-Venn diagrams

Definition 5 (Compound Diagram Semantics). The semantics of com-
pound diagrams for a Heyting algebra H and a valuation ν is given as follows.

ν(D1 ∧ D2) = ν(D1) � ν(D2)
ν(D1 → D2) = ν(D1) �→ ν(D2)
ν(D1 ∨ D2) = ν(D1) � ν(D2)

where D1, D2 are compound diagrams. If ν(D) = 1, for all intuitionistic models
H and valuations ν then we call D valid.

Observe that we did not give the semantics for unitary diagrams in the previous
definition. First we present notations that are used for all types of diagrams
alike. Formally, a zone for a finite set of contours L ⊂ Vars is a tuple (in, out),
where in and out are disjoint subsets of L such that in ∪ out = L. We will also
write in(z) and out(z) to refer to the corresponding sets of contours in z. The
set of all possible zones for a given set of contours is denoted by Venn(L).

Venn Diagrams. A Venn diagram is a diagram where all possible zones for a set
of contours are visible. For example, Fig. 2a shows two unitary Venn diagrams,
one with the contours a and b, and the other with contours a, b, and c. Formally,
a Venn diagram is of the shape d = (L,Venn(L), Z∗), where Z∗ is the set of
shaded zones and Z∗ ⊆ Venn(L). Hence the only diagrammatic elements that
may carry meaning are the presence of contours, and whether a zone is shaded.
For a given diagram d, we denote the set of shaded zones also by Z∗(d). We allow
for the diagrams ⊥ = (∅, {(∅, ∅)}, ∅) and � = (∅, {(∅, ∅)}, {(∅, ∅)}). A literal is
a Venn diagram for a single contour, with exactly one shaded zone. If the zone
(∅, {c}) is shaded in a literal, then we call it the negative literal for c, otherwise it
is the positive literal for c (see Fig. 3). Furthermore, if d is the positive literal for
c, then we call the negative literal for c the dual of d (and vice versa). Observe
that our notion of literals deviates from the original definition of Stapleton and
Masthoff [17] and from our previous work [9]. The main difference between our
presentation and classical Venn diagrams is the interpretation of shaded zones.

c c

Fig. 3. Literals

While in the traditional approach, shading denotes the
emptiness of sets, we use shading as a marker of elements. That
is, the semantics of a diagram consists of the join of the elements
denoted by the shaded zones. This is more in line with a con-

structivist approach: instead of relying on a negative aspect (emptiness), we
construct the semantics out of their building blocks (the shaded zones).
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Definition 6 (Zone Semantics). Let H be a Heyting algebra, ν a
valuation, and z a zone. The semantics of z is given by ν(z) =�

c∈in(z) ν(c) � �
c∈out(z) −ν(c).

We can now define the semantics of a Venn diagram in general.

Definition 7 (Venn Diagram Semantics). For a Venn diagram d, a Heyt-
ing algebra H and a valuation ν, the semantics of d are given by ν(d) =⊔

z∈Z∗(d) ν(z).

Note that we have ν(�) = 1 and ν(⊥) = 0, for any valuation ν. Furthermore,
for a unitary diagram without shaded zones, i.e. d = (L,Venn(L), ∅), we have
ν(d) = 0. However, the semantics already diverge from the classical case for
a fully shaded diagram with one contour: if d = ({a},Venn({a}),Venn({a})),
then ν(d) = ν(a) � −ν(a), which in general is not equal to 1. This semantics
has one consequence in particular: a zone can be decomposed into an equivalent
compound diagram, and any Venn diagram into a disjunctive normal form.

Lemma 2. Let z be a zone for the contours L. Then the semantics of the com-
pound diagram dz =

∧
c∈in(z)

c ∧∧
c∈out(z)

c equals the semantics of z, i.e.
ν(dz) = ν(z). For a Venn diagram d, we have ν(d) = ν(

∨
z∈Z∗(d) dz).

In particular, this implies that we cannot draw a unitary Venn diagram that
expresses intuitionistic implication.

Lemma 3. Let a and b be propositional variables. Then there is no unitary Venn
diagram d such that ν(d) = ν(a → b) for all models and valuations.

Observe however that we can trivially define a compound diagram a → b .

Pure Euler Diagrams. We need additional syntax if we want to express intuition-
istic implication diagrammatically. This new syntax needs to be directed (since
a → b is different to b → a). Observe that our notion of zones already contains
an asymmetry that we can understand as a direction: we distinguish between
contours the zone is inside of, and contours it is outside of. So, we may treat
a zone as directed from the “in”-contours to the “out”-contours. Furthermore, a
missing zone expresses topological information. Following these considerations,
we allow for missing zones in the diagrams. Consequently, we will now discuss
pure Euler diagrams. In contrast to Venn diagrams, the semantics of a pure
Euler diagram is the meet of the semantics of its missing zones.

Definition 8 (Pure Euler Diagrams). A pure Euler diagram is a struc-
ture d = (L,Z), where L is the set of contours and Z ⊆ Venn(L) the set
of visible zones of d. Furthermore, the set MZ(d) = Venn(L) \ Z is the set
of missing zones of d. The missing zone semantics of a zone z is given by
νm(z) =

(�
c∈in(z) ν(c)

)
�→

(⊔
c∈out(z) ν(c)

)
. Then, for a pure Euler diagram d,

we have ν(d) =
�

z∈MZ(d) νm(z).

In contrast to Venn diagrams, pure Euler diagrams do not allow for any
shading. To distinguish pure Euler diagrams from Venn diagrams (and Euler-
Venn diagrams, see below), we draw them with dotted contours. Even with
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this additional syntax, we are not able to express every implication. A simple
example would be a → a, since we cannot have a zone ({a}, {a}). However, for
this particular example, we do not lose expressivity, since a → a ≡ � for all
a. But we have a diagram equivalent to a → b, as shown in the left diagram
of Fig. 2b. The right diagram in Fig. 2b denotes (a � b) �→ 0, which is −(a � b).
Observe that in contrast to Venn diagrams without shaded zones, a pure Euler
diagram without missing zones denotes 1, i.e., for d = (L,Venn(L)), we have
ν(d) = ν(�) = 1. Furthermore, the diagram without any contours and zones
denotes 0, since ν((∅, ∅)) = νm((∅, ∅)) =

�
c∈∅ ν(c) �→ ⊔

c∈∅ ν(c) = 1 �→ 0 = 0.
In the following, we will need to identify zones that are divided by a contour c
abstractly.

Definition 9 (Adjacent Zone). Let z = (in, out) be a zone for the contours in
L and c ∈ L. The zone adjacent to z at c, denoted by zc is (in ∪ {c}, out \ {c}),
if c ∈ out and (in \ {c}, out ∪ {c}) if c ∈ in.

Now we can define a way to remove contours from a pure Euler diagram d.
This contrasts to our previous work, where we allowed that the diagram to be
reduced contains shading [9].

Definition 10 (Reduction). Let d = (L,Z) be a pure Euler diagram and
c ∈ L. The reduction of a zone z = (in, out) is z \ c = (in \ {c}, out \ {c}). The
reduction of d by c is defined as d\c = (L\{c}, Z\c), where Z\c = {z\c | z ∈ Z}.
Lemma 4 (Properties of Reduction). We have z \ c = zc \ c. Furthermore,
for each z′ ∈ MZ(d \ c) and z with z \ c = z′, we have z ∈ MZ(d). In particular,
both z ∈ MZ(d) and zc ∈ MZ(d).

If each missing zone in a pure Euler diagram d has a missing adjacent zone,
then the reduction of d by any contour is contained in the semantics of d. In
particular, the meet of all reductions equals the semantics of d. This will allow
us to show soundness of some rules of the sequent calculus in Sect. 4.

Lemma 5. Let d = (L,Z) be a pure Euler diagram, where for each z ∈ MZ(d),
there is a contour � ∈ L such that z� ∈ MZ(d). Furthermore, let L′ = {c |
MZ(d \ c) �= ∅}. Then �

c∈L′ ν(d \ c) = ν(d).

As an example, consider diagram d∗
C of Fig. 4. Intuitively, this diagram

a
b

c
b

a a c b c

d∗
C dc db da

Fig. 4. Example of a reduction.

contains the information that contour c is
disjoint from both a and b, and that a is
contained in b. Now, if the diagram satis-
fies the precondition of the previous lemma,
then we can reduce d∗

C to diagrams reflecting
exactly these properties. The set of missing

zones of d∗
C is MZ(d∗

C) = {({a}, {b, c}), ({a, c}, {b}), ({b, c}, {a}), ({a, b, c}, ∅)},
and indeed, each of these missing zones has at least one adjacent missing
zone. For example, if z = ({a}, {b, c}), then zc = ({a, c}, {b}). So, d∗

C can
be reduced according to the lemma. The set of visible zones is Z(d∗

C) =
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{(∅, {a, b, c}), ({c}, {a, b}), ({b}, {a, c}), ({a, b}, {c})}. Reducing this diagram by
the contour c yields the set Z(dc) = {(∅, {a, b}), ({b}, {a}), ({a, b}, ∅)}, which is
visualised in Fig. 4 as the pure Euler diagram dc. Similarly, it can be checked
that reducing d∗

C by b indeed yields db, and respectively for da. By Lemma 5,
the conjunction of these three diagrams is equivalent to the original diagram d∗

C .

Euler-Venn Diagrams. In this section, we combine pure Euler diagrams with
shading. Our main idea is as follows: we treat the information given by a pure
Euler diagram as a condition for the construction of the combinations of atomic
propositions denoted by the shading. That is, whenever we have constructions
as indicated by the spatial relations of contours in a diagram d, we also have a
construction of the elements denoted by the shaded zones of the diagram. Since
we use the syntactic elements of pure Euler diagrams and Venn diagrams, we
will subsequently call such diagrams Euler-Venn diagrams. Figure 2c shows two
Euler-Venn diagrams that omit some of the possible zones and contain shading.

The abstract syntax of Euler-Venn diagrams is similar to Venn diagrams. A
diagram is a tuple d = (L,Z,Z∗) consisting of a set of contours L, a set of visible
zones Z over L, and a set of shaded zones Z∗ ⊆ Z. We will often need to refer to
the pure Euler or Venn aspects of an Euler-Venn diagram separately. Hence, we
introduce some additional notation. For an Euler-Venn diagram d = (L,Z,Z∗)
we will write Venn(d) = (L,Venn(L), Z∗) for the Venn diagram with the same
set of shaded zones as d, and Euler(d) = (L,Z) for the pure Euler diagram with
the same set of visible zones as d. Similarly to pure Venn and Euler diagrams, we
will refer to the missing zones of d by MZ(d) and to its shaded zones by Z∗(d).

Definition 11 (Euler-Venn Diagram Semantics). The semantics of a uni-
tary Euler-Venn diagram for a valuation ν is ν(d) = ν(Euler(d)) �→ ν(Venn(d)).

Observe that with this definition, the semantics for the case MZ(d) = ∅ and
Z∗(d) �= ∅ yields ν(d) = 1 �→ ⊔

z∈Z∗(d) ν(z) =
⊔

z∈Z∗(d) ν(z). Furthermore, we
get ν(⊥) = 1 �→ 0 = 0 and ν(�) = 1 �→ 1 = 1. The language of compound Euler-
Venn diagrams can be seen as a subset of intuitionistic logic. In particular, we
can translate every diagram into a formula, which we call its canonical formula.
This translation is very similar to the translation of spider diagrams into monadic
first-order logic with equality [18].

Definition 12 (Canonical Formula). The canonical formula of any diagram
is given by the following recursive definition. We start with the definition of the
canonical formula of shaded and missing zones.

χz(z) =
∧

c∈in(z)

c ∧
∧

c∈out(z)

−c χm(z) =
∧

c∈in(z)

c →
∨

c∈out(z)

c

For a pure Euler diagram de, a Venn diagram dv, an Euler-Venn diagram d and
compound diagrams D and E, the canonical formula is given as

χ(de) =
∧

z∈MZ(de)

χm(z) χ(dv) =
∨

z∈Z∗(dv)

χz(z)

χ(d) = χ(Euler(d)) → χ(Venn(d)) χ(D ⊗ E) = χ(D) ⊗ χ(E) ,⊗ ∈ {∧,∨,→}
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Remark 1. Observe that according to Definition 12, we get χ( c ) = c∧� and
χ( c ) = � ∧ −c. However, for simplicity, we will assume that the canonical
formula construction omits superfluous occurences of � and ⊥. Hence, χ( c ) =
c and χ( c ) = −c. Similarly, e.g., χm((∅, L)) =

∨
c∈L c.

4 Sequent Calculus

Sequent calculus, as defined by Gentzen [5] is based on sequents, which are
composed by rule applications. In the following, we will define a multi-succedent
version of sequent calculus for Euler-Venn diagrams called EDim, inspired by the
work of Dragalin [3], but following the modern presentation of Negri and von
Plato [13].

Definition 13 (Sequent). A sequent Γ ⇒ Δ consists of multisets Γ and Δ of
Euler-Venn diagrams, where Γ (Δ) is the antecedent ( succedent, respectively).

If Γ (Δ) is the empty multiset, we write ⇒ Δ (Γ ⇒, respectively). Axioms
are sequents of the form p, Γ ⇒ Δ, p where p is a positive literal. A sequent
D1, . . . , Dk ⇒ E1, . . . , El is valid, if, and only if, ν(D1) � . . . � ν(Dk) ≤ ν(E1) �
. . . � ν(El) for all valuations ν in all Heyting algebras. We will often abbreviate
ν(D1) � . . . � ν(Dk) by ν(Γ ) and ν(E1) � . . . � ν(El) by ν(Δ).

A deduction for a sequent Γ ⇒ Δ is a tree, where the root is labelled by
Γ ⇒ Δ, and the children of each node are labelled according to the rules defined
below. If the validity of the premisses of a rule imply the validity of its conclusion,
we call the rule sound. A deduction where the leaves are labelled with axioms,
or instances of L⊥ and R�, is called a proof for Γ ⇒ Δ. We will write � Γ ⇒ Δ
to denote the existence of a proof for Γ ⇒ Δ. In all rules, we call the diagram
in the conclusion that is being composed the principal diagram. For example, in
L∧, the principal diagram is D∧E, and in the rule Ls it is d. For a given proof of
Γ ⇒ Δ, its height is the highest number of successive proof rule applications [13].
We will write �n Γ ⇒ Δ if Γ ⇒ Δ is provable with a proof of height at most n.

We now turn to define and explain the rules of EDim. The rules to treat
compound diagrams, shown in Fig. 5, are directly taken from sequent calculus for
intuitionistic logic and can be proven sound by adapting the proofs by Ono [14].

Lemma 6 (Soundness). The rules for sentential operators are sound.

Remark 2. If we take the placeholders D, E and F as formulas according to
Definition 2 and both Γ and Δ as multisets of such formulas, then the rules
of Fig. 5 together with axioms p, Γ ⇒ Δ, p form the sentential sequent calculus
G3im [13]. Provability in G3im is equivalent to provability in Gentzen’s system LJ.
The system LJ is sound and complete [14]. Hence, G3im is sound and complete
as well. Furthermore, the structural rules of weakening, contraction and cut are
admissible [13]. Observe that we treat L⊥ as a rule, and not as an axiom.
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D, E, Γ ⇒ Δ
L∧

D ∧ E, Γ ⇒ Δ

D, Γ ⇒ Δ E, Γ ⇒ Δ
L∨

D ∨ E, Γ ⇒ Δ

Γ, D → E ⇒ D E, Γ ⇒ Δ
L→

D → E, Γ ⇒ Δ

Γ ⇒ Δ, D Γ ⇒ Δ, E
R∧

Γ ⇒ Δ, D ∧ E

Γ ⇒ Δ, D, E
R∨

Γ ⇒ Δ, D ∨ E

D, Γ ⇒ E
R→

Γ ⇒ Δ, D → E

L⊥
Γ, ⊥ ⇒ Δ

Fig. 5. Proof rules for sentential operators

Rules for Venn Diagrams. The rules in Fig. 6a let us reduce negative to pos-
itive literals. Observe that we may introduce arbitrary sets of formulas into
the succedent. Rule R� lets us finish a proof similarly to L⊥. Let d, d1 and
d2 be Venn diagrams with the same contours such that |Z∗(d)| > 1, and
Z∗(d) = Z∗(d1) ∪ Z∗(d2). Then the rules Ls and Rs in Fig. 6b separate d
into d1 and d2. These rules are closely related to the Combine equivalence
rule for Spider diagrams [7]. For a Venn diagram d with Z∗(d) = {z}, where
z = ({n1, . . . , nk}, {o1, . . . , ol}), the rules Ldec and Rdec of Fig. 6b decompose
the single zone z.

c , Γ ⇒ c
Lneg

c , Γ ⇒ Δ

c , Γ ⇒
Rneg

Γ ⇒ Δ, c
R�

Γ ⇒ Δ,

(a)

d1, Γ ⇒ Δ d2, Γ ⇒ Δ
Ls

d, Γ ⇒ Δ

Γ ⇒ Δ, d1, d2
Rs

Γ ⇒ Δ, d

(b)

n1 , . . . , nk , o1 , . . . , ol , Γ ⇒ Δ
Ldec

d, Γ ⇒ Δ

Γ ⇒ Δ, n1 . . . Γ ⇒ Δ, nk Γ ⇒ Δ, o1 . . . Γ ⇒ Δ, ol
Rdec

Γ ⇒ Δ, d

(c)

Fig. 6. Rules for Unitary Venn diagrams

Lemma 7. The rules shown in Fig. 6 are sound.

Rules for Pure Euler Diagrams. Now let d = (L,Z) be a pure Euler diagram,
where for each z ∈ MZ(d) there is a contour � ∈ L, such that z� ∈ MZ(d).
Furthermore, let {c1, . . . , ck} ⊆ L be the maximal set of contours such that
MZ(d \ ci) �= ∅ for every i ≤ k. Then we can reduce d according to the rules Lr
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and Rr shown in Fig. 7a. Let d = (L,Z) be a pure Euler diagram with more than
one missing zone, i.e., |MZ(d)| > 1, and let d1 = (L,Z1) and d2 = (L,Z2) be two
pure Euler diagrams such that Z1 ∩ Z2 = Z. Then the rules LMZ and RMZ of
Fig. 7b separate the diagram z at its missing zones. If d is a pure Euler diagram
with a single missing zone, i.e. MZ(d) = {z} and z = ({n1, . . . , nk}, {o1, . . . , o�}),
then the rules of Fig. 7c decompose z into literals.

d \ c1, . . . , d \ ck, Γ ⇒ Δ
Lr

d, Γ ⇒ Δ

Γ ⇒ Δ, d \ c1 . . . Γ ⇒ Δ, d \ ck
Rr

Γ ⇒ Δ, d

(a)

d1, d2, Γ ⇒ Δ
LMZ

d, Γ ⇒ Δ

Γ ⇒ Δ, d1 Γ ⇒ Δ, d2
RMZ

Γ ⇒ Δ, d

(b)

d, Γ ⇒ n1 . . . d, Γ ⇒ nk o1 , Γ ⇒ Δ . . . ol , Γ ⇒ Δ
LIdec

d, Γ ⇒ Δ

Γ, n1 , . . . , nk ⇒ o1 , . . . , ol
RIdec

Γ ⇒ Δ, d

(c)

Fig. 7. Proof rules for pure Euler diagrams

Lemma 8. The rules shown in Fig. 7 are sound.

Rules for Euler-Venn Diagrams. Let d be an Euler-Venn diagram. Then the
rules Ldet and Rdet of Fig. 8 detach the spatial relations from the shading.

d, Γ ⇒ Euler(d) Venn(d), Γ ⇒ Δ
Ldet

d, Γ ⇒ Δ

Euler(d), Γ ⇒ Venn(d)
Rdet

Γ ⇒ Δ, d

Fig. 8. Proof rules for Euler-Venn diagrams

Lemma 9. The rules shown in Fig. 8 are sound.

By an induction on the height of proofs, we get the soundness theorem for
EDim, using Lemma 6, 7, 8, and 9.

Theorem 1 (Soundness). If Γ ⇒ Δ is provable in EDim, then Γ ⇒ Δ is
valid.

A rule is height-preserving invertible, if whenever we have a proof of height
n for its conclusion, its premisses are provable with a proof of at most height n.
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Lemma 10 (Inversions)

1. All of the rules L∧, R∧, L∨, R∨ Ldec, Rdec, Ls, Rs, Lr, Rr, LMZ, and RMZ
are height-preserving invertible.

2. If �n d, Γ ⇒ Δ for an Euler-Venn diagram d, then also �n Venn(d), Γ ⇒ Δ.
3. If �n d, Γ ⇒ Δ for a pure Euler diagram with one missing zone z =

({n1, . . . , nk}, {o1, . . . , ol}), then also �n oi , Γ ⇒ Δ for all 1 ≤ i ≤ l.

Invertibility is used in the following lemma, where we connect provability of a
sequent Γ ⇒ Δ within EDim with the provability of the sequent χ(Γ ) ⇒ χ(Δ)
consisting of the canonical formulas of the antecedent and the succedent.

Lemma 11. Let Γ ⇒ Δ be a sequent of compound diagrams. Then Γ ⇒ Δ is
provable in EDim if, and only if, χ(Γ ) ⇒ χ(Δ) is provable in G3im.

Proof. Let Γ ⇒ Δ be provable in EDim. By Theorem 1, the sequent is valid,
and hence the sequent χ(Γ ) ⇒ χ(Δ) is valid as well. Since G3im is complete (cf.
Remark 2), the sequent is provable in G3im.

For the other direction, we proceed by induction on the height n of the proof
of χ(Γ ) ⇒ χ(Δ). If n = 0, then χ(Γ ) ⇒ χ(Δ) is an axiom p, Γ ′ ⇒ Δ′, p or an
instance of L⊥. In the first case, since the only diagram D with χ(D) = p is a
positive literal, Γ ⇒ Δ is an axiom as well. The second case is trivial.

The induction step is mostly straightforward. We partially present one of
the cases, and refer to the extended version for the full proof [10]. If the last
rule is R → then the sequent is of the form χ(Γ ) ⇒ χ(Δ′), χ(D), where D
is either a compound diagram D = E → F , a pure Euler diagram D = de

with a single missing zone, an Euler-Venn diagram with missing zones and
shaded zones D = d, a single negative literal for a contour c, or D = �. The
first case is straightforward. For the case where d is an Euler-Venn diagram,
we have χ(d) = Euler(d) → Venn(d). and hence the premiss of the last step
is χ(Euler(d)), χ(Γ ) ⇒ χ(Venn(d)). By the induction hypothesis, we get that
Euler(d), Γ ⇒ Venn(d) is provable, and by applying Rdet, Γ ⇒ Δ, d as well.
Now assume that the principal diagram is a pure Euler diagram de with a sin-
gle missing zone z = ({n1, . . . , nk}, {o1, . . . , ol}). Hence, the premiss of the last
step in G3im is

∧
1≤i≤k ni, χ(Γ ) ⇒ ∨

1≤i≤l oi. Since both L∧ and R∨ are height-
preserving invertible, the sequent n1, . . . , nk, χ(Γ ) ⇒ o1, . . . , ol is provable with
height less than n. Since the canonical formula is only atomic for diagram lit-
erals, we have that n1 , . . . , nk , Γ ⇒ o1 , . . . , ol is provable by the
induction hypothesis, and hence by applying RIdec also Γ ⇒ Δ, de. The other
cases are proven using suited applications of Rneg and R�. ��

Since every valid sequent is derivable in G3im, we get the completeness result
for EDim directly from Lemma 11.

Theorem 2 (Completeness). If Γ ⇒ Δ is valid, then Γ ⇒ Δ is provable.

We show that some rules are admissible. To that end, we define the weight
of diagrams, to order them by the number of their syntactic elements.
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Definition 14. The weight ω(d) of a diagram is defined inductively. The base
cases are given by ω(⊥) = 0, ω( c ) = 0, and ω( c ) = 1. Otherwise we set

ω(d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Z∗(d)| + 1 , if d is a Venn diagram
|MZ(d)| + 1 , if d is a pure Euler diagram
ω(Euler(d)) + ω(Venn(d)) + 1 , if d is an Euler-Venn diagram
ω(d1) + ω(d2) + 1 , if d = d1 ⊗ d2 for ⊗ ∈ {∧,∨,→}

Lemma 12 (Structural Rules)

(1) For any diagram D, the sequent D,Γ ⇒ Δ,D is provable in EDim.
(2) Weakening:

i) If �n Γ ⇒ Δ, then also �n D,Γ ⇒ Δ.
ii) If �n Γ ⇒ Δ, then also �n Γ ⇒ Δ,D.

(3) Contraction:
i) If �n D,D, Γ ⇒ Δ, then also �n D,Γ ⇒ Δ.
ii) If �n Γ ⇒ Δ,D,D, then also �n Γ ⇒ Δ,D.

(4) Cut: If � Γ ⇒ D,Δ and � D,Γ ′ ⇒ Δ′, then � Γ, Γ ′ ⇒ Δ,Δ′.

Proof. (1) can be proven by a straightforward induction on the weight of D.
Items (2), and (3) can be proven by induction on the height of the proofs using
Lemma 10 and arguments similar to Negri and von Plato [13]. For (4), we use
soundness and completeness of EDim. If both sequents are provable, they are also
valid, by soundness. So choose an arbitrary valuation ν. Then ν(Γ ) ≤ ν(D) �
ν(Δ) and ν(D) � ν(Γ ′) ≤ ν(Δ′). Now we have ν(Γ ) � ν(Γ ′) ≤ (ν(D) � ν(Δ)) �
ν(Γ ′) = (ν(D)�ν(Γ ′))�(ν(Δ)�ν(Γ ′)) ≤ ν(Δ′)�(ν(Δ)�ν(Γ ′)) ≤ ν(Δ′)�ν(Δ).
This is due to the first premiss, distributivity, the second premiss and the fact
a�b ≤ a. Since ν was arbitrary, Γ, Γ ′ ⇒ Δ,Δ′ is valid, and due to completeness,
Γ, Γ ′ ⇒ Δ,Δ′ is provable. ��
Remark 3. It is also possible to prove cut admissibility with a purely syntactic
argument by adapting the inductive proof for the system G3im [13].

Π1

a
b

c
, dA ⇒ c

Π2

a
b

c
, dA, b ⇒

Rneg

a
b

c
, dA ⇒ b

Π3

a
b

c
, dA, a ⇒

Rneg

a
b

c
, dA ⇒ a

Rdec

a
b

c
,

a c ⇒ b c
a

Rdet

a c ⇒ a
b

c

Fig. 9. Proof using Euler-Venn diagrams
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A derivation that uses all three types of diagrams can be found in Fig. 9. We
explain parts of the proof from bottom to top. The last applied rule detaches the
pure Euler part from the Venn part of the succedent, so that we can then decom-
pose the single shaded zone into literals. This splits the proof into three branches,
which we treat in the sub-derivations Π1, Π2 and Π3, respectively (see Fig. 11).
For reasons of brevity, we use the abbrevations for diagrams as shown in Fig. 10.

a
b

c a
b

c a c

dC d∗
C dA

Fig. 10. Diagram abbreviations

Now, the two right proof branches contain
a negative literal in the succedent, which we
move to the antecedent with an application of
Rneg. Then, all three proof branches proceed
similarly: we reduce the pure Euler diagram d∗

C

into smaller diagrams, as explained in Sect. 3.
Π1 proceeds by detaching the Euler and Venn aspects of the diagram dA, which
immediately closes the left branch, due to Lemma 12 (1). The right branch
ends in an axiom after decomposing the single shaded zone in the antecedent.
Within Π2 there is a similar structure, denoted by the derivation Π ′

1, where
the antecedent contains slightly different diagrams, but the application of rules
is similar. The other branches proceed similarly. This example shows how the
reduction rules lead to smaller diagrams, and how the rules of Lemma 12 may
reduce the size of the proofs, here in the form of the generalised axioms.

Π1

b
a

,
a c

,
b c

, dA ⇒ a c

Lr

d∗
C , dA ⇒ a c

d∗
C , c , a ⇒ c

Ldec

d∗
C ,

ca
⇒ c

Ldet

d∗
C , dA ⇒ c

Π2

b
a

,
a c

, dA, b ⇒ b

Π ′
1

b
a

,
a c

, dA, b ⇒ c

LIdec

b
a

,
a c

,
b c

, dA, b ⇒
Lr

d∗
C , dA, b ⇒

Π3
b

a
,

a c
,

b c
, . . . ⇒ a c

Lr

d∗
C , dA, a ⇒ a c

d∗
C , b

a
, c , a , a ⇒ a

Lneg

d∗
C , b

a
, c , a , a ⇒

Ldec

d∗
C , b

a
,

ca
, a ⇒

Ldet

d∗
C , dA, a ⇒

Fig. 11. Auxiliary derivations for Fig. 9
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5 Conclusion

In this paper, we presented an intuitionistic interpretation of Euler-Venn dia-
grams, based on a semantics of Heyting algebras. We then defined a cut-free
sequent calculus EDim, which we have proven to be sound and complete with
respect to this semantics. Furthermore, we have shown that the structural rules
of contraction, weakening and cut are admissible. We deviated from classical
Euler-Venn diagrams in two ways: we did not treat missing zones and shaded
zones as equivalent, and we introduced the new syntactic element of dotted con-
tours.

The first deviation is due to the basic restrictions of intuitionistic reasoning.
More specifically, intuitionistic implication cannot be treated as an abbreviation
of the other operators. To have a syntax explicitly for implications, we need
to increase the number of distinct syntactic elements of Euler-Venn diagrams.
Hence, distinguishing these two elements is a natural choice. Of course, it can be
argued that shading should be used to reflect implications. However, we think
that since the representation of missing zones (or rather their absence) introduces
a direction into the diagram, in the form of inclusions, this choice is justified.

The introduction of dotted diagrams is more debatable. Arguably, the need
for distinguishing pure Euler diagrams arises, since we interpret the missing zones
of Euler-Venn diagrams as a precondition for the construction of the elements
denoted by the shaded zones. That is, in the constructive interpretation of intu-
itionistic reasoning, an Euler-Venn diagram means that, given a construction as
indicated by the missing zones, we have another construction for the assertions
given by the shaded zones. Hence, there is an additional implication within the
semantics of Euler-Venn diagrams, as can also be seen in the rules of EDim to
detach the pure Euler from the Venn aspects of a diagram. These rules behave
similarly to the rules for implication in sentential intuitionistic sequent calculus.

However, the introduction of new syntactic elements is necessary, due to the
independence of the operators. Compare for example the intuitionistic systems
based on Existential Graphs (EGs). While the operations in classical EGs are
denoted by juxtaposition and cuts, reflecting conjunction and negation, respec-
tively, the assertive graphs [1] explicitly introduce notation for disjunction, and
also treat the “scroll” as a distinct element. Similarly, the intuitionistic EGs
[12] include the notion of n-scrolls for each n > 0. We think that our system
stretches the idea of Euler-Venn diagrams quite far. In particular, logics that
need even more independent operators, for example substructural logics, may
not be well-matched for such a diagrammatic system. While it may be possible
to define such an interpretation, the necessary syntax is far from obvious, if we
want to keep the diagrammatic structure of Euler-Venn diagrams. Of course, it
is always possible to add new operators to the compound part of the system,
but we think that such an addition misses the point of a diagrammatic reasoning
system.

Still, there are future directions this work can be taken into. For example, our
sequent calculus resembles sentential sequent calculus, while typical Euler-Venn
reasoning systems work by adding syntax to single diagrams, and then removing
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unnecessary parts [2]. It is interesting to see, if we can define such a system for
intuitionistic Euler-Venn diagrams. We assume that for the rules to introduce
and remove contours, or to copy contours, the reduction of a pure Euler diagram
(cf. Definition 10 and Lemma 5) will play a significant role.
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Abstract. In his Berlin Lectures of the 1820s, the German philosopher Arthur
Schopenhauer (1788–1860) used spatial logic diagrams for philosophy of lan-
guage. These logic diagrams were applied to many areas of semantics and prag-
matics, such as theories of concept formation, concept development, translation
theory, clarification of conceptual disputes, etc. In this paper we first introduce the
basic principles of Schopenhauer’s philosophy of language and his diagrammatic
method. Since Schopenhauer often gives little information about how the indi-
vidual diagrams are to be understood, we then make the attempt to reconstruct,
specify and further develop one diagram type for the field of conceptual analysis.

Keywords: Spatial logic diagrams · Linguistic abstraction · Bundle theory

1 Introduction

It is only in recent years that it has become known that in his so-called Berlin Lectures
of the 1820s [1] the German philosopher Arthur Schopenhauer made intensive use of
logic diagrams in an original and novel way. One of Schopenhauer’s original ideas was
to use diagrams not only for logic and eristics, but also for semantics and conceptual
analysis.

We would like to present and elaborate on this idea in the present paper. For this
purpose,wewill first introduce the basic principles of Schopenhauer’s theory of language
in Sect. 2, illustrating them with some of his logic diagrams for conceptual analysis.
Since Schopenhauer himself gives only a few sentences about the use of these diagrams,
we will reconstruct and develop one type of diagram in Sect. 3 and explain the basic
principles presented in Sect. 2 with the help of this reconstruction.

To avoid misunderstandings, it should be noted that we do not claim that Schopen-
hauer diagrams are better than other visual systems, such as conceptual graphs [2],
concept diagrams [3] etc., which are currently used in semantics. Although the Berlin
Lectures’ diagrams show similarities with Euler, Kant, Venn and Peirce diagrams, we
will avoid comparisons with other diagram systems as far as possible and therefore use
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the neutral term “Schopenhauer diagrams” here. In addition, we will leave out many top-
ics, theses and problems of Schopenhauer’s theory of language1, but—if possible—we
will refer to existing literature in several places.

2 Schopenhauer’s Theory of Language

In this section, we give an overview of Schopenhauer’s theory of language taken from
the Lectures on the Entire Philosophy, Chapter 3, which is entitled Of the Abstract
Representation, or Thinking: which Chapter contains Logic. In §§1–6 we will focus on
Schopenhauer’s theory of representation and concepts, in §§7–10 on his logic and in
§§11–14 on some visualizations of concepts.

§1. Definition of Concepts. Schopenhauer distinguishes two classes of objects that can
be perceived by the subject, which he calls representations: (1) intuitive representations
that are recognized by the external senses and (2) abstract representations recognized by
reason alone ([1], 118) that are free of temporal-spatial determinations. For Schopen-
hauer, the representations of class (2) are concepts. As products of reason, they have a
close connection with language, which is described as one of the “main expressions of
reason” in man ([1], 240f.). Concepts are the actual material of human thinking, or, in
other words, thinking and reasoning is described only as the “realization of concepts”
(Vergegenwärtigung der Begriffe; [1], 243).

§2. Concreta and Abstracta. Schopenhauer divides concepts into concreta and
abstracta. Concreta are “abstracted directly from intuitive representations”. In con-
trast, abstracta are formed by omitting some properties of other concepts. Examples of
concreta are concepts such as blue, dog, house, whereas abstracta is used for con-
cepts such as quality, artwork, friendship ([1]; 252). Despite this distinction,
Schopenhauer points out that, strictly speaking, all concepts are abstract and the distinc-
tion between abstracta and concreta is only useful to clarify the relation of concepts to
each other, but not the relation of concepts to intuition.

§3. Generality of Concepts. Similar to Euler ([7], L. CI), Schopenhauer also denies the
possibility of singular propositions (propositio singularis). He claims that “a concept is
always general, even if there is only one thing that is thought by it; and only a singular
intuition that gives it content (Gehalt), is a proof of it”, since “the concept is always an
abstractum, a thought, but never a single individual thing”. This is true even for proper
names such as “Socrates”, since it is also possible to denote more than one object with
it ([1], 276f.).

§4. Origin of Concepts. According to Schopenhauer, reason produces concepts by
abstracting from the many properties of objects that are given in intuitive represen-
tation. Thus, a concept “does not contain everything” that is given or contained in its
intuitive basis. On the other hand, “innumerable intuitive objects” can be thought of with
the help of a concept ([1], 249). However, Schopenhauer emphasizes the dependence of
concepts on intuition: “the whole world of reflection […] rests on the intuitive one as its
basis of cognition” ([1], 252).

1 For these topics, see [4–6].
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§5. Empirical Criterion of Meaning. He also claims that each concept can be
described as distinct and meaningful if and only if, in the course of concept analy-
sis, its properties can ultimately be substantiated with clear intuition ([1], 254f.). Thus,
abstracta must be broken down to concreta, and concreta must refer to given objects in
intuitive representations. This goes along with his rejection of a priori concepts and his
criticism of innatism ([1], 235). This empirical criterion of meaning thereby also forms
the basis for his criticism of scholasticism ([1], 255), rationalism ([1], 254) and idealism
([1], 236f., 495).

§6. Incommensurability of Language and Thought. Furthermore, he seems to claim
the separation of conceptual thought processes from language, despite the close con-
nection of concepts to words. Words are described as merely sensory “sign[s] of con-
cept[s]” ([1], 243). They are, however, necessary in order to remember conceptswillingly
(willkürlich) and to be able to perform intersubjectively perceptible thought operations
with them. Thus it is not possible to communicate a concept for which there is no word
([1], 244). At the same time there is no isomorphism between language and thinking.
Schopenhauer makes it clear in numerous written passages that one should not equate
language analysiswith concept analysis: Itwould bewrong “if the argument that signs are
necessary for concepts was used to justify the assumption that we would actually operate
with the signs alone when thinking and talking, and that they completely represent the
concepts” ([1], 247). This is still based on Schopenhauer’s strict separation of two types
of representation—the intuitive (temporal-spatial) and the abstract. Words belong to the
first, since they are just sensory perceptible signs of abstract thoughts. Schopenhauer, by
the way, sees his “sharp separation of concepts from intuitive representation, i.e. things”
as an important contribution to the history of logic ([1], 357).

§7. Definition of Logic. According to Schopenhauer, logic is “the general knowledge
of the peculiar way of proceeding of reason, gained through the self-observation of
reason and abstraction of all content, expressed in the form of rules” ([1], 362). It is
further described as the discipline that deals with the analysis (of the operations) of
concepts, i.e. thinking and reasoning, or “the pure science of reason”, which mainly
teaches how one may “operate” with concepts ([1], 368). Logic need not necessarily
have anything to do with language; however, both language and logic have in common
that they must use signs to represent thoughts. Since language and logic have different
rules and since language is only understood as a system of sensory perceivable signs
for the evocation of concepts, it is possible that other signs could also be used for both
purposes, for example: diagrams.

§8. Extension and Intension. Schopenhauer introduces his circle diagrams by claim-
ing that concepts have a “sphere” (Sphäre) or a “circumference” (Umfang). Because of
the sphere and the circumference, concepts are limited and bounded. Thus, expressions
such as “boundary”, “circumference” and “sphere” refer to a limited set of objects (intu-
itive or abstract) that are thought of in a concept ([1], 257)—nowadays we would usually
call this the extension of a concept. Furthermore, Schopenhauer also speaks about the
content (Inhalt) of concepts in order to denote the given properties (Merkmale) of a
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represented object—this could be understood as the intension of a concept. In Schopen-
hauer’s words: The circumference is equal to what can be thought “through” a concept,
and the content with what can be thought “in” a concept ([1], 258).

§9. Law of Reciprocity. The relationship between extension and intension is stated in
the law of reciprocity. According to Schopenhauer, the circumference of the sphere of a
concept is in an “inverse relationship” to its content ([1], 258). In other words: The more
extension a concept has, the less intension it has and vice versa. This law, which was
made popular by Kantian logic, and especially the problems with the notion of intension,
are discussed in great detail by Hauswald [8].

§10. Bundle-Theory. What Schopenhauer seems to mean by content (intension) is a
bundle of concrete properties associated with a concept. One can deduce this from
the law of reciprocity: the wider the sphere of a concept is or the more universally a
concept is applicable to different objects, the smaller the bundle of concrete properties
that describe the various objects. This is supported by the statement that the concept that
has the biggest content is the one in which we think the “most properties” ([1], 271).
Content, as a bundle of properties, is thus one of the features that can be illustrated by
specific types of diagrams.

§11. Conceptual Spheres. For Schopenhauer, conceptual spheres are the actual sub-
stance of logic—a discipline of reason that deals with the correct “cognition of the
relationships of conceptual spheres to one another” ([1], 364). With that Schopenhauer
anticipates what many current authors also explain: that these relations, and indeed all
possible ones, can be represented by diagrams in the form of circles and that there is a
kind of isomorphic relation between circle diagrams and conceptual spheres (i.e. human
thoughts!). Where this isomorphism comes from cannot be explained by Schopenhauer;
however, he acknowledges that this is “an extremely fortunate occurrence” and states
that it was made popular by Gottfried Ploucquet (in square form), Johann Heinrich
Lambert (in line form) and Leonhard Euler (in circle form) ([1], 269). Circles symbolize
conceptual spheres and not words, since Schopenhauer always consistently speaks of
“conceptual spheres” (see [1], 269 ff.). It should be noted that words must nevertheless
be used in the diagrams to designate the concepts that are actually to be examined with
them. It seems, then, that Schopenhauer’s diagrams should primarily be understood as the
study of human thought that takes place in concepts and is a process largely independent
of language. However, language is needed to demonstrate it.

§12. Circle-Inclusion. But how should the diagrams be read? Schopenhauer is curt. On
one hand he explicitly states that the “relative size of the spheres”, i.e. the size of one
sphere in relation to another, refers “not to the size of the content of the concept, but
to the size of the circumference” ([1], 271). On the other hand, a number of diagrams
can be found in the Lectures where the size of the circle seems to be irrelevant. Even
though this needs further analysis, it can at least be assumed that it is necessary that two
circles have different sizes if one conceptual sphere is completely contained in another.
For example: The concept triangle (Dreieck) has more concrete properties than the
concept figure (Figur) but a figure comprises more objects than just triangles, thus the
narrower conceptual sphere of triangle is completely included in the wider sphere
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of figure. The same applies to the concept bird (Vogel) in the concept animal
(Thier), as Fig. 1 illustrates.

Fig. 1. ([1], 258) Fig. 2. ([1], 257)

§13. Circle-Exclusion. However, in other situations Schopenhauer seems to treat the
above stated rule more loosely, depending on what he intends to demonstrate with the
diagram. For example: the size of two circles does not play a role if two concepts have
nothing in common and are mutually exclusive. The spheres of concepts such as stone
and animal have no common extension. This means, that there is no object in intuitive
representation which can be both, a stone and an animal. Therefore, two circles with
arbitrary sizes have to be drawn in the diagram, and both show neither an intersection
nor an inclusion ([1], 274). The same applies e.g. to triangle and bird in Fig. 1.

§14. Circle-Intersection. Schopenhauer also depicts concepts that “mutually contain
each other”. In this case, the content (not the circumference) of one results directly
from the content of the other (see [1], 273). In summary, it can be assumed that in the
diagrams the relationship of the conceptual contents (intension) is represented by the
spatial relationship of the circles to eachother,while the size of the circles only sometimes
might represent the conceptual circumference (extension). In Fig. 2, for example, we
see three concepts denoted by the words green (grün), tree (Baum) and flower-
bearing (blüthetragend), whose mutual containment is represented only by the spatial
relations of the circles.

3 Schopenhauer Diagrams

Figure 2 is a good example of how Schopenhauer finds new applications for logic dia-
grams in the Berlin Lectures. In this case, the circle diagram is applied to conceptual
analysis but only explained with a few sentences in the text. However, we are not con-
cerned here with interpretation of these few sentences, but with the reconstruction,
specification and development of Schopenhauer’s diagrammatic ideas in semantics. As
a case study, we take Fig. 2 as a paradigm and reconstruct in §§15–18 a diagram with
two concepts from the intuitive representation. In §§19–25, we end with a reconstruction
of diagrams with three and more concepts.

§15. First Two Definite Concepts. Let us imagine that in our intuitive representation
we find a certain object that we occupy with the concept tree. Since it has been
abstracted directly from the intuitive representation (§2), the concept is a concretum
which has a definite sphere (§§8, 11) and is illustrated by a circle. Furthermore, we
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have found criteria through our intuitive representation that allow us to say what belongs
to the tree and what does not. Thus, we can also refer to the indefinite concept non-
tree which is located outside the circle of tree but inside a square frame F. Both
diagrammatic objects, the circle and the frame together form diagram D1. But let us
now assume that we find in the intuitive representation another object called table
that intuitively has similarities to and differences from the first object mentioned. For
table and non-table we can therefore draw a similar diagram D1*. Let us further
assume that both objects of intuitive representation have a common property which we
call green. In this case, we can now make an addition for D1 and D1* and draw a
further conceptual sphere which is marked with the word green.

§16. Diagrammatic Representation. But where exactly is the conceptual sphere of
green in D1 or D1*? Since both objects intuitively have at least one thing in common—
green—but also have differences, green cannot be congruent with tree in D1 or
with table in D1*. Circle-Inclusion (§12) is therefore not possible. However, since
green is assigned to both concepts, otherwise the similarity of the property would
not be intuitively given, green must have an intersection with tree or table. Thus,
Circle-Exclusion (§13) is also excluded. This means that a part of green is contained in
the region of tree and a part of green in the region of non-tree, and this region of
non-treewill also containtable somewhere. So the relationship ofgreen totree
and table is that they mutually contain each other. The result of this consideration is
that green divides the sphere given in D1 and D1* respectively, i.e. D2 and D2*. We
see in D2 and D2* that the indefinite concept is located outside both circles and thus
negates the two definite concepts. However, the intuitive representation given in D1 and
D1* now appears to be separated: the circle, which in D1 and D1* denoted one object
with many properties, has now been divided into two regions. This raises the question
of which region of a diagram such as D2 or D2* is closest to intuitive representation.

§17. Syntax of D3. In diagram D3, we separate the syntax of the diagrams from the
semantics and therefore assign the concepts in D2 and D2* the variables A and B.
Within the diagrammatic frame (F), D3 shows two circles (A, B), which together form
four areas that can be called regions (R1, R2, R3, R4). Connections of regions can
form diagrammatic objects, such as {R1, R2} = A or {R2, R3} = B. Similar to [9],
the distinction between diagrammatic objects and regions results in several options for
describing D3 such as:{R1} depicts the abstraction of B from A, A\B. {R2} depicts the
intersection of A and B: A ∩ B. {R3} depicts the abstraction of A from B: B\A. {R1,
R2, R3} depicts the union of A and B: A ∪ B.
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§18. Semantics of D1 or D2. D2 and D2* display two circles, four regions and a dia-
grammatic frame in the same setting as D3. Thus, we can substitute tree, green
or table with A or B. For example, we take D2: {R1} depicts the abstraction of
green from tree: tree\green. {R2} depicts the intersection of tree and green:
tree ∩ green. {R3} depicts the abstraction of tree from green: green\tree. {R1,
R2, R3} depicts the union oftree andgreen: tree∪green.{R4} depicts the negation
of tree and green: F\(tree ∪ green).

§19. n-term Diagrams. Schopenhauer himself has also designed diagrams for n-terms,
which produce large conceptual clusters by circle intersection and exclusion. As an
example, one could take the concepts tree and table, which according to §15 are
different objects (tree � table), but both can have the property green. A unification of
D2 and D2* would then be D4.

§20. Regions of D5. But if there is no exclusion for three concepts, we arrive at D5:
{R1}: A\(B ∪ C); {R2}: (A ∩ B ∩ C); {R3}:B\(A ∪ C); {R4}: C\(A ∪ B); {R5}:
(A ∩ C)\B; {R6}: (A ∩ B)\C; {R7}: (B ∩ C)\A; {R8}: F\(A ∪ B ∪ C).

§21. Semantics for D5. We now adopt the semantics of D2, so that A denotes the con-
cept tree and B the concept green. Let us now assume that the object of intuitive
representationof §15 also has the property ofbearing a flower.Wenowuse the con-
cept flower-bearing for C and thus arrive at a semantics for the respective regions
in which, for example, {R5} denotes an object to which the concepts green, flower-
bearing apply, {R6} on the other hand, designates objects with the properties tree
and green. Thus, D5 gives the syntax for Fig. 2.

§22. Bundle of Intersections. According to the arguments of §§2–4, concreta are con-
cepts that have no or as few conceptual abstractions as possible. In the case of D5,
one can see from the eight regions shown above that {R2} is the concreta and can
only represent an objectual abstraction: the concept is a pure bundle (§10) of intersec-
tions (A ∩ B ∩ C), which does not have any conceptual abstraction. All other regions,
however, show abstractions of at least one diagrammatic object.

§23. Convex and Concave Concepts. The degree of abstraction of a concept can be
measured by howmany convex and concave boundaries it has. If D5 is broken down into
individual regions, a total of four levels can be seen: (1) {R2} is a concretum since it has
only concave boundaries; (2) {R5}, {R6} and {R7} have two concave and one convex
boundary and are therefore 1st level-abstracta; i.e. they are a conceptual abstraction of
{R2}, but more concrete than regions of higher levels; (3) {R1}, {R3} and {R4}
have one concave and two convex boundaries and are thus 2nd level-abstracta; i.e. they
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are conceptual abstraction of a concept of a lower level. (4) {R8} has only convex
boundaries and is therefore the highest level-abstractum.

§24. Conceptual Clusters. Through the exact interpretation of D4 and D5 we are now
able to create and read more complex diagrams with Intersections and Exclusions. As
an example, we take D4 (D2 + D2*) and add two more concepts: first, flower-
bearing (similar to Fig. 2) and, second, a new one such as scratched. One possible
diagram with 5 conceptual spheres and 14 regions may be D6 including 2 concreta
(1.flower-bearing ∩ green ∩ tree; 2. green ∩ table ∩ scratched), 6 1st level-abstracta
(1.flower-bearing ∩ green; 2. flower-bearing ∩ tree; 3. tree ∩ green; 4. green ∩
scratched; 5. green ∩ table; 6. scratched ∩ table), and 5 2nd level-abstracta and 1 highest
level abstracta. Due to the lack of space, we have only given the positive relations
(intersections) in this description of the regions. Furthermore, we stop at this point with
the prospect of what more complex Schopenhauer diagrams look like.

4 Summary and Outlook

In Sect. 2 we have presented Schopenhauer’s main principles of his theory of language.
In Sect. 3 a reconstruction, specification and further development esp. of Fig. 2 (D5) was
carried out. In this context, wewere able to explainmany of the principles listed in Sect. 2
againwith the help of Schopenhauer diagrams.However, this does notmean that research
on Schopenhauer diagrams for conceptual analysis is by any means complete. Many of
Schopenhauer’s principles, topics and theses have not been addressed or sufficiently
explained here, e.g. the principle of Circle-Inclusion from §12, Schopenhauer’s theory
of language development, the theory of translation, and many more.
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Abstract. We investigate Euler diagrammatic systems for defeasible
reasoning by extending the usual systems for Euler and Venn diagrams
corresponding to standard classical logic. To achieve this, we use the gen-
eralized quantifier “most” to formalize defeasible reasoning, as proposed
by Schlechta (1995), where defeasible knowledge is represented as “Most
A are B” and axioms for “most” are defined. We introduce an Euler
diagrammatic system for defeasible reasoning by introducing circle mA
that represents “most A” for each circle A. We show that our Euler
diagrammatic system is a diagrammatic representation of the symbolic
system of the generalized quantifier “most”. Furthermore, we investigate
skeptical and credulous strategies in defeasible reasoning with our Euler
diagrams.

1 Introduction

Among various diagrams applied in logical reasoning, Euler and Venn diagrams
are the most traditional and basic, and various logical systems based on them
have been developed so far. These diagrammatic systems are characterized, using
symbolic logic via correspondences and translations between diagrammatic sys-
tems and well-established symbolic logical systems. For example, Shin’s Venn-II
[14] of a Venn diagrammatic system was shown to be equivalent to monadic first-
order classical logic; Spider diagrams were shown to be equivalent to monadic
first-order classical logic with equality in [15,16]; Second-order spider diagrams
were shown to be as expressive as monadic second-order classical logic in [1];
an Euler diagrammatic system of [9,20] was shown to correspond, at the proof
level, to the syllogistic fragment of minimal logic without disjunction.

Standard logic such as classical, intuitionistic, and minimal logic has been
formalized to model reasoning with ideal truth or knowledge in mathematics and
they universally hold true without exception. Thus, once we obtain a conclusion
or knowledge with standard logical reasoning, it remains true and can never be
defeated even if we obtain additional knowledge later. Thus, reasoning based on
standard logic is considered monotonic.

In contrast, ordinary reasoning is used for uncertain knowledge with insuffi-
cient information, which allows for exceptions. Thus, conclusions or knowledge
obtained from our ordinary reasoning can be defeated by additional knowledge,
thereby making such reasoning nonmonotonic. Thus, if standard classical logic
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is used to formalize defeasible or nonmonotonic reasoning, it may produce con-
tradiction (cf. the following Example 1). Hence, various logical systems such as
Reiter’s default logic [10], defeasible inheritance network [5], and circumscription
that differ from standard monotonic logic have been closely examined. See, for
example [2,3], for defeasible or nonmonotonic reasoning.

In this article, we investigate an Euler diagrammatic system to provide a
model for defeasible reasoning by extending the usual systems of Euler and Venn
diagrams corresponding to standard classical logical systems. To achieve this, we
use the generalized quantifier “most”, as proposed in [12]. In contrast to the uni-
versal knowledge such as “All A are B” that is used in standard logic, uncertain
and defeasible knowledge is expressed as “Most A are B” with the generalized
quantifier “most”, and a logical system for defeasible reasoning has been intro-
duced in [12]. Additionally, natural set-theoretical semantics extended from the
usual semantics of standard logic has been introduced, and the completeness the-
orem has been established in [12]. We apply the generalized quantifier “most” to
Euler diagrams, and we introduce circle mA representing “most A” inside every
circle A. In this manner, we extend the typical Euler and Venn diagrammatic
systems, so that they can be applied as models of defeasible reasoning.

In the following part of the paper, we first review defeasible reasoning based
on the defeasible inheritance network of [5], and investigate the corresponding
Euler diagrammatic representation in Sect. 2. Then, we define an Euler diagram-
matic system for defeasible reasoning in Sect. 3. In Sect. 4, we review the symbolic
system of the generalized quantifier of [12], and investigate a translation from
the system of the generalized quantifier into our Euler diagrammatic system.
In Sect. 5, we further investigate skeptical and credulous strategies in defeasible
reasoning using our Euler diagrams.

2 Defeasible Reasoning

We begin by examining the so-called Tweety example using a graphical repre-
sentation.

Example 1 (Tweety). Assume first that we know “Tweety (denoted by t) is a
bird (B)” and “Birds fly (F )”. This knowledge can be graphically represented
as follows.

B �t � F

By the transitivity of →-edge, we can infer t → F , i.e., “Tweety flies”.
Then, assume that we further obtain the following knowledge. “Tweety is

a penguin (P )”, “Penguins are birds”, and “Penguins do not fly”. The above
graph is augmented with this new knowledge in the following manner, where the
negative statement “Penguins do not fly” is represented as P �→ F .

B �t � F

P
�

�
�
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Then, from edges t → P and P �→ F , we can infer t �→ F , i.e., “Tweety does
not fly”. However, in the usual classical logic framework, the previously obtained
knowledge, i.e., “Tweety flies” remains true even after new knowledge has been
introduced; therefore, we obtain both “Tweety flies” and “Tweety does not fly”
resulting in a contradiction.

Defeasible inheritance network [5,6], DI-net for short, is a formalization of
the above informal graphical representation: a DI-net is a labeled finite directed
acyclic graph having the following four types of edges:

– A ⇒ B, called a strict edge, means “all A are B”, i.e., ∀x(A(x) ⇒ B(x));
– A �⇒ B, called strict negative edge, means “all A are not B” or “no A are

B”, i.e., ∀x(A(x) ⇒ ¬B(x));
– A → B, called defeasible edge, means “most A are B”, “typical A are B” or,

“it is most natural to suppose that A are B”.
– A �→ B, called defeasible negative edge, means “most A are not B”, “typical

A are not B” or, “it is most natural to suppose that A are not B”.

The Tweety example can be represented by a DI-net as follows.

B �t =====⇒ F

P

===
===

=⇒ =⇒ =======⇒

In the framework of DI-net, to avoid the previous contradiction in the Tweety
example, various criteria such as specificity have been discussed. Specific to the
Tweety example, the knowledge t → F (obtained from t ⇒ B → F ) is defeasible;
however, the knowledge t �⇒ F (obtained from t ⇒ P �⇒ F ) obtained after the
introduction of new knowledge is strict (definite). Therefore, maintaining the new
knowledge t �⇒ F and rejecting t → F is natural. More generally, to determine
the edge of A �→ B and A → B that should be retained, a more subtle and
complicated discussion is needed.

In the graphical representation of DI-net, identifying the part of the given
graph that represents contradiction or conflict is not intuitive but rather con-
ventional. This is because, in general, the expressive power of graphical repre-
sentation is rather high, and we can easily express information on contradiction
and indeterminacy without special devices by using graphical representation. In
contrast to the graphical representation of DI-net, basic Euler diagrams that
only comprise circles and points can neither express information on contradic-
tion (cf. [4,13] for example) nor indeterminacy. Hence, their expressive power
is limited, but they contain cognitive clarity. On top of such basic Euler dia-
grams, information on indeterminacy can be expressed by introducing linking
(i.e., disjunction) between points and between diagrams (cf. [14]). In this arti-
cle, we consider basic Euler diagrams comprising circles and points, as well as
linking between points. Then, for our basic Euler diagrams, we introduce, for
each circle A, a circle named mA representing “most A”. Using Euler diagrams
in this manner, we can express the above Tweety example as shown in Fig. 1.
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Fig. 1. Euler diagrams with “most”

In Fig. 1, each circle labeled X represents a set of entities that satisfy property
X, and the point labeled t represents the entity Tweety. At the first step to unify
two diagrams representing “Tweety is a bird” and “Most birds fly”, (1) we first
place circle mB meaning “most birds” inside circle B after the unification, since
most birds are of course birds; (2) then, we place circle F in such a manner
that it overlaps with B without any implication of a specific relationship (inside
or outside) between F and B following the Venn diagrammatic convention; (3)
subsequently, we place point t at the all possible regions inside B and link all
of them. The linking represents the disjunctive information on t. In the above
proof, the order in which the premises are unified is indifferent, and we obtain
the same conclusion in any order.

As discussed in Example 1, using standard classical logic, we obtain a contra-
diction. By contrast, it is obvious at a glance with Euler diagrams that we cannot
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conclude “Tweety flies”, and there is no contradiction. Furthermore, compared
with a graphical DI-net, because of geometrical constraint of circles in Euler
diagrams, the information t → F disappears, and we can easily read off “Tweety
does not fly”. Let us compare DI-net and our Euler diagrams in more detail.
On the one hand, with DI-net, a conflict exists between two paths: t ⇒ P �⇒ F
and t ⇒ B → F . On the other hand, with Euler diagrams, “Tweety does not
fly” (t �⇒ F ) definitely holds true. However, regarding t ⇒ B → F , Tweety
may or may not be a typical bird even though “Tweety is a bird”, and hence,
Tweety may or may not fly even though “Most birds fly”. Thus, these two paths
in DI-net are not in conflict from the viewpoint of Euler diagrams.

In this article, we investigate the Euler diagrammatic representation of defea-
sible reasoning by introducing a representation of the generalized quantifier
“most”. Sato and Mineshima [11] presented an empirical study of the gener-
alized quantifier “most” using Euler diagrams. In their system, areas of regions
play an essential role, and “Most A are B” is represented by drawing the major-
ity of circle A inside circle B as in the following diagram D1. Thus, the following
D2 does not represent “Most A are B”.

A
B

D1

A
B

D2

By contrast, in our proposed approach, we do not pay attention to the area of
regions; however, we introduce circle mA to directly represent “most A” and
hence, our framework is essentially topological.

Remark 1. In fact, the interpretation of a defeasible edge A → B is different
in DI-net and our Euler diagrams. In DI-net, A → B can be read as “It is
most natural to suppose that A are B”, where the scope of the generalized
quantifier “most” is “A are B” as a whole. The transitivity of → holds with this
interpretation. However, in our Euler diagrams, as well as in the system of the
generalized quantifier “most” [12], A → B is read as “Most A are B”, where the
scope of “most” is A. Therefore, in this interpretation, the transitivity does not
hold: “Most A are B” and “Most B are C” does not generally imply “Most A
are C”. However, this difference does not matter for the above Tweety example,
where the transitivity of → does not play an essential role.

3 Euler Diagrams with “most”

In this section, we define an Euler diagrammatic system by introducing circle mA
representing “most A”. Various Euler diagrammatic systems based on different
concepts exist, for example [4,7,8,17]; however any of these systems are appli-
cable for our discussion provided the inference rule of unification of diagrams is
defined.



294 R. Takemura

Definition 1 (Euler diagrams with “most”). An Euler diagram is a plane
with a finite number of simple closed curves (simply called circles) labeled as
A,B,C, . . . , as well as mA,mB,mC, . . . , constant points labeled as a, b, c, . . . ,
and existential points labeled as x, y, z, . . . .

Constant points and existential points in different regions that have the same
name are linked by a line.

No two circles share a name.
When both the circles A and mA appear in a single diagram, mA should

appear inside circle A.
A rectangle is used to represent the plane in a diagram, and Euler diagrams

are denoted by D, E ,D1,D2, . . . .

Each circle represents a set of entities, each constant point represents an
entity, and each existential point represents the existence of some entity (cf.
[19]). Linking between points represents disjunctive information (cf. [14]). To
maintain the simplicity and the cognitive clarity of basic Euler diagrams, we
assume the contradiction is not expressible in a single diagram. Thus, to avoid
expressing the contradiction “Most A are not A” with A being nonempty, we
impose the condition that circle mA should appear inside circle A when both
mA and A appear in a single diagram. Cf. the semantics of “most” in Sect. 4.

Based on the above definition of Euler diagrams, inference rules of Euler dia-
grammatic systems such as [4,7,8,17] are extended by introducing the following
axiom.

Definition 2 (Axiom for “most”). The following form of diagram is an axiom
for every A:

mA

A

•x

The axiom represents the true sentence “Most A are A”. Furthermore, follow-
ing [12], we assume that some entity exists when we consider “most A” (in other
words, we do not consider “most A” when the set A is empty) and hence, we place
existential point x in the above axiom. Note that our axiom implies the so-called
existential import, i.e., an entity always exists that satisfies A for any A.

4 Generalized Quantifier “most”

In this section, we review the semantics of the generalized quantifier “most” given
in [12], which also provides the semantics of our Euler diagrammatic system.
Then, we investigate the translation from the system of the generalized quantifier
“most”, which is also called GQ-system, into our Euler diagrammatic system.

A formula of GQ-system has the following forms:

A(t1, . . . , tn) ϕ ∧ ψ ϕ ∨ ψ ϕ ⇒ ψ ¬ϕ ∀xϕ(x) ∃xϕ(x) ∇xϕ(x) : ψ(x)
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Here, we denote predicate symbols by A,B,C, . . . ; first-order constants by
a, b, c, . . . ; variables by x, y, z, . . . ; first-order terms by t1, . . . , tn; formulas by
ϕ,ψ, σ, . . . .

∇ is the generalized quantifier “most”, and ∇xϕ(x) : ψ(x) means “Most ϕ are
ψ.” In [12], for a technical reason, the dual quantifier ♦ of ∇ is also introduced as
♦xϕ(x) : ψ(x) ≡ ¬∇xϕ(x) : ¬ψ(x), which does not play a role in the discussion
that follows.

In usual set-theoretical semantics, the denotation of a formula ϕ is the set
of entities for which ϕ holds. Then, the denotation of ∇xϕ(x) i.e., “most ϕ” is
given in terms of a weaker notion of the algebraic filter.

Definition 3 (N -system). Let X be a set. N (X) ⊆ P(X), where P(X) is
the powerset of X, is called an N -system over X if it satisfies the following
conditions:

1. X ∈ N (X)
2. If α ∈ N (X) and α ⊆ β, then β ∈ N (X).
3. If α, β ∈ N (X), then α ∩ β �= ∅ if X �= ∅.

Condition (3) is weaker than that defining the usual notion of filter, where
α ∩ β ∈ N (X) is imposed.

Definition 4 (Model). A model is M =< N (α), α ⊆ M >, where M is the
domain of the model, and N (α) is an N -system over α for every α ⊆ M with
α �= ∅.

Intuitively, ∇xϕ(x) is true in a model M if and only if there exists α ∈ N (M)
such that ϕ(m) is true for all m ∈ α.

Definition 5 (Satisfiability). The satisfiability of the usual first-order formu-
las is defined as usual. Then that of the ∇xϕ(x) : ψ(x) is defined as follows:

M |= ∇xϕ(x) : ψ(x) if and only if there exists α ∈ N ({m | M |= ϕ(m)})
such that for all m ∈ α, M |= ψ(m).

GQ-system is the usual system of the first-order logic augmented with the
following axioms for “most”.

Definition 6 (GQ-system). The inference rules of GQ-system comprise the
usual rules for the first-order logic with the following axioms.

A1. ∃xϕ(x)
A2. ∀x(ϕ(x) ⇔ σ(x)) and ∇xϕ(x) : ψ(x) imply ∇xσ(x) : ψ(x)
A3. ∇xϕ(x) : ψ(x) and ∀x(ϕ(x) ∧ ψ(x) ⇒ σ(x)) imply ∇xϕ(x) : σ(x)
A4. ∇xϕ(x) : ψ(x) implies ¬∇xϕ(x) : ¬ψ(x)
A5-1. ∀x(ϕ(x) ⇒ ψ(x)) implies ∇xϕ(x) : ψ(x)
A5-2. ∇xϕ(x) : ψ(x) implies ∃x(ϕ(x) ∧ ψ(x))
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A1 is the existential import, which is not imposed in [12]. Although A5-
2 originally takes the following form in [12]: ∇xϕ(x) : ψ(x) ⇒ (∃xϕ(x) ⇒
∃x(ϕ(x)∧ψ(x))), we do not need the condition ∃xϕ(x) because of the existential
import A1. (Similarly for A4.)

A3 can be divided into the following two axioms, which are more appropriate
for our discussion below.

Lemma 1. A3 is equivalent to the following pair of A3-1 and A3-2.

A3-1. ∇xϕ(x) : ψ(x) and ∀x(ψ(x) ⇒ σ(x)) imply ∇xϕ(x) : σ(x)
A3-2. ∇xϕ(x) : ψ(x) implies ∇xϕ(x) : (ϕ(x) ∧ ψ(x))

Proof. We first show that A3-1 and A3-2 are derived by using A3. To show A3-1
is derived, assume ∇xϕ(x) : ψ(x) and ∀x(ψ(x) ⇒ σ(x)). From ∀x(ψ(x) ⇒ σ(x)),
we obtain ∀x(ϕ(x)∧ψ(x) ⇒ σ(x)), which implies ∇xϕ(x) : σ(x) by A3 together
with the assumption ∇xϕ(x) : ψ(x). To show A3-2 is derived, assume ∇xϕ(x) :
ψ(x). Then, together with a tautology ∀x(ϕ(x)∧ψ(x) ⇒ ϕ(x)∧ψ(x)), we obtain
∇xϕ(x) : (ϕ(x) ∧ ψ(x)) by A3.

We next show that A3 is derived by using A3-1 and A3-2. Assume ∇xϕ(x) :
ψ(x) and ∀x(ϕ(x) ∧ ψ(x) ⇒ σ(x)). From ∇xϕ(x) : ψ(x), we obtain ∇xϕ(x) :
(ϕ(x) ∧ ψ(x)) by A3-2, which implies ∇xϕ(x) : σ(x) by A3-1 together with the
other assumption ∀x(ϕ(x) ∧ ψ(x) ⇒ σ(x)).

We show that our Euler diagrammatic system is a diagrammatic representa-
tion of a subsystem of GQ-system by restricting the language of GQ-system. To
show this, a concrete system of Euler diagrams must be set, and hence, we inves-
tigate a translation from a fragment of GQ-system into our Euler diagrammatic
system based on [9,20], whose inference rules comprises only of the unification
rule for two diagrams and the deletion rule for diagrammatic objects.

We restrict the formulas of GQ-system to the following syllogistic forms.

Definition 7 (Syllogistic GQ-formulas). Syllogistic GQ-formulas are GQ-
formulas of the following forms, where A,B,Ai are unary predicate symbols.

B(a); ¬B(a); ∀x(A(x) ⇒ B(x)); ∀x(A(x) ⇒ ¬B(x)) ;
∃x(A1(x) ∧ · · · ∧ An(x)); ∇xA(x) : B(x); ∇xA(x) : ¬B(x).

We concentrate on the syllogistic fragment of GQ-system, that is, we consider
the logical consequence between syllogistic GQ-formulas. Then, the syllogistic
fragment of GQ-system is represented by our Euler diagrammatic system. Next,
we discuss the translation from the syllogistic fragment of GQ-system into our
Euler diagrammatic system. Because the correspondence of the part with first-
order logic and our Euler diagrammatic system was established in [9,20], we
concentrate on the part of the generalized quantifier “most”.

We first define the translation from the syllogistic GQ-formulas into our Euler
diagrams. In [9,20], each Euler diagram is specified in terms of its inclusion and
exclusion relations holding between points and circles, and each Euler diagram
is regarded symbolically as the set of inclusion and exclusion relations that hold
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in the diagram. Thus, we describe the translation from the GQ-formulas into the
inclusion and exclusion relations between a point and a circle, as well as between
two circles.

Definition 8. The translation from the syllogistic GQ-formulas into the inclu-
sion and exclusion relations that hold for Euler diagrams is defined as follows.

– B(t), where t is a constant or a variable, is translated into:

B

•t

– ¬B(t) is translated into:

B

•t

– ∀x(A(x) ⇒ B(x)) is translated into:

A

B

– ∀x(A(x) ⇒ ¬B(x)) is translated into:

A B

– ∇xA(x) : B(x) is translated into:

mA

B

– ∇xA(x) : ¬B(x) is translated into:

mA B

– ∃x(A1(x) ∧ · · · ∧ An(x)) is translated into the part of a diagram, where point
x is located at the intersection region of circles A1, . . . , An.

Based on the translation from the syllogistic GQ-formulas into our Euler
diagrams, as defined above, we show that the translation of the GQ-axioms are
provable in our Euler diagrammatic system.
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Proposition 1 (Translation of GQ-axioms). Translations of GQ-axioms in
the syllogistic fragment are provable with Euler diagrams.

Proof.

A1. ∃xA(x) is obtained from the axiom for “most” of our Euler diagrammatic
system by deleting the circle mA.

A2. ∀x(A(x) ⇔ C(x)) and ∇xA(x) : B(x) implies ∇xC(x) : B(x)
This axiom is trivial because ∀x(A(x) ⇔ C(x)) means that circles A and C,
as well as mA and mC, are the same.

A3-1. ∇xA(x) : B(x) and ∀x(B(x) ⇒ C(x)) imply ∇xA(x) : C(x)

mA

B

�

B

C

�

mA

B

C

�

mA

C

A3-2. ∇xA(x) : B(x) implies ∇xA(x) : (A(x) ∧ B(x))

mA

B

�

mA

A

�

A
mA

B

Here, the top-right diagram is obtained from the axiom for “most” by delet-
ing point x. Although the formula ∇xA(x) : (A(x)∧B(x)) is not syllogistic,
we regard it as the pair of formulas ∇xA(x) : B(x) and ∇xA(x) : C(x) that
are not semantically equivalent, but this does not matter for our syntactic
translation.

A4. ∇xA(x) : B(x) implies ¬∇xA(x) : ¬B(x)
This axiom is equivalent to: ∇xA(x) : B(x) and ∇xA(x) : ¬B(x) implies
the contradiction, which holds in our Euler diagrammatic system:

mA

B

and

mA B

are the contradiction, that is, they cannot
be expressed in a single diagram, by Definition 1.
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A5-1. ∀x(A(x) ⇒ B(x)) implies ∇xA(x) : B(x)

A

B

�

mA

A

�

mA

A

B

�

mA

B

Here, the top-right diagram is obtained from the axiom for “most” by delet-
ing point x.

A5-2. ∇xA(x) : B(x) implies ∃x(A(x) ∧ B(x))

mA

B

�

mA

A

•x

�

A
mA
•x

B

�

A

•x
B

Conversely, by defining a translation of Euler diagrams into GQ-formulas,
the translation of the axiom for “most” of Euler diagrammatic system is also
provable in GQ-system. Let us examine the following axiom for “most”.

mA

A

•x

This diagram is specified by the following three relations: x is inside A, mA is
inside A, and x is inside mA. The first two of them correspond to the following
formulas: ∃xA(x), which is the axiom A1 of GQ-system, and ∇xA(x) : A(x),
which is obtained from the tautology ∀x(A(x) ⇒ A(x)) by A5-1. Although there
is no formula expressing x is inside mA in GQ-system, the above translation
is sufficient because we restrict our language to the syllogistic fragment, where
sentences of the form x is inside mA neither appear in the premises nor the
conclusion in question.
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However, the linking, i.e., disjunction in Euler diagrams destroys the simple
correspondence between our Euler diagrams and GQ-formulas. Hence, we leave
an investigation on the full correspondence for future work.

5 Defeasible Reasoning with Euler Diagrams

In this section, we further examine another well-known example called the
Nixon diamond and investigate skeptical and credulous strategies in defeasible
reasoning.

Example 2 (Nixon diamond). Assume that “Nixon (n) is both Republican (R)
and Quaker (Q)”, “Most Republicans are not Pacifists (P )”, and “Most Quakers
are Pacifists”. This knowledge is represented by DI-net as follows.

n
==

==
=⇒

==
==

=⇒
R Q

� 	
P

In our Euler diagrams, by unifying the given knowledge, we obtain the fol-
lowing diagram D in Fig. 2, which corresponds to the above DI-net. As seen in
diagram D, the position of n is not uniquely determined, and hence, Nixon may
or may not be a Pacifist.

Thus far, our framework essentially represents standard logic with the gen-
eralized quantifier “most”, and we derive the most general diagram, where all
possibilities with respect to the position of a point are retained with linking
thereof. In the literature of defeasible reasoning studies, this reasoning strat-
egy is called the skeptical strategy. Another strategy may also be investigated
in which a point is regarded as typical and one of the positions thereof is fixed
among the appropriate regions of “most” if no exceptional information appears.
This strategy is called the credulous strategy. To implement the credulous strat-
egy in our Euler diagrammatic framework, we have two options:

1. Link-elimination rule: From a given diagram, we can choose a point labeled by
t located in a region of “most” mA, and delete all other points labeled by t
as well as links associated with those points.

2. Point fixing unification rule: When there are several possibilities for the location
of the point t in an application of the unification rule for two diagrams, we
choose one of the possible locations that is in a region of “most” mA, and we
place t in that chosen location.

By appropriately applying (1) Link-elimination rule after each application of the
usual unification rule, option (2) Point fixing unification rule can be simulated.
Hence, we investigate (1).

At the proof construction level, the following options are available.
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R Q

•n
mR P

R

P

Q

mR

•n•n
•n

mQ

P

R

P

Q

mR

mQ

•n•n
•n •n

D

Fig. 2. Nixon example

1-1. We apply Link-elimination rule only at the end of a proof.
1-2. We apply Link-elimination rule anywhere in a proof.

If we allow the application of Link-elimination rule anywhere (1-2), we may
be led into a contradiction even if the given knowledge is consistent. For exam-
ple, assume that we have the additional knowledge “Most Republicans are not
Quakers” in Example 2. Then, in the immediately preceding diagram of D in
Fig. 2, if we fix point n to that located in mR (cf. the following diagram D2),
we may be led to the contradiction to unify “Most R are not Q,” although the
given knowledge is consistent as a whole. Thus it seems appropriate to restrict
applications of Link-elimination rule to the final step of a proof (1-1).

By applying Link-elimination rule to diagram D in Fig. 2, we obtain one of the
following two diagrams D1 and D2, where we can conclude “Nixon is a Pacifist”
from D1, and “Nixon is not a Pacifist” from D2.
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R

P

Q

mR

mQ
•n

D1

R

P

Q

mR

mQ

•n

D2

In view of DI-net, this illustrates the problem of how we read DI-net, which
is formally defined through the notion of the extension of a path in a DI-net, cf.
[5,6].

Our strategy of applying Link-elimination rule only at the final step of a proof
accords with the notion of normal proof, as defined in [18], where a normal proof
is described as consisting of the construction of a maximal diagram with unifying
given premises, and following extraction of a conclusion from the unified diagram.
As discussed in [18], from a cognitive standpoint, a maximal diagram may not
be comprehensible or manageable due to its complexity. This also applies to
our strategy, where the linking of points usually makes a diagram complex.
Thus, from a cognitive viewpoint, (2) Point fixing unification rule may be more
appropriate and effective wherein we fix the position of a point arbitrarily at
every step of unifying diagrams without retaining all possibilities.

6 Conclusion

By using the generalized quantifier “most” in [12], we introduced an Euler dia-
grammatic system for defeasible reasoning. Our system was obtained by intro-
ducing the circle mA representing “most A” inside the circle A for every A and
hence, applied uniformly to any well-established Euler and Venn diagrammatic
systems. We showed that our Euler diagrammatic system is a diagrammatic rep-
resentation of the syllogistic fragment of the system of the generalized quantifier
“most” by defining a translation based on [9,20]. We further investigated skep-
tical and credulous strategies, which have been discussed in the literature on
defeasible reasoning studies, in our Euler diagrammatic system. The credulous
strategy can be implemented using Link-elimination rule in our Euler diagram-
matic system.

The trade-off between the expressive power and the cognitive clarity of dia-
grams is often noted. In general, to increase their expressive power by introducing
various conventional devices, the cognitive clarity of the diagrams decrease. The
expressive power of a graphical representation such as DI-net is generally high,
and information on contradiction and indeterminacy can be expressed in a sin-
gle graph. Thus, to read a given graph, it is required that the paths that are in
conflict and the nodes that are reachable must be formally defined by using, for
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example, the notion of the extension of a path in [5,6]. By contrast, although the
expressive power of our basic Euler diagrams is limited, they have cognitive clar-
ity. In our basic Euler diagrams, the conflict in DI-net can be classified into two
groups. One relates to the usual contradiction in the sense of the standard logic,
and it cannot be expressible using our Euler diagrams because of the geometrical
constraints regarding circles. The other conflict stems from indeterminacy, that
is, there exists two possibilities to be or not to be, and it is not a contradiction
and can be expressed by linking between points in our Euler diagrams.

References

1. Chapman, P., Stapleton, G., Delaney, A.: On the expressiveness of second-order
spider diagrams. J. Vis. Lang. Comput. 24(5), 327–349 (2013)

2. Gabbay, D.M., Hogger, C.J., Robinson, J.A., Nute, D. (eds.): Handbook of Logic in
Artificial Intelligence and Logic Programming Volume 3: Nonmonotonic Reasoning
and Uncertain Reasoning. Oxford University Press, Oxford (1994)

3. Gabbay, D.M., Woods, J. (eds.): Handbook of the History of Logic Volume 8: The
Many Valued and Nonmonotonic Turn in Logic. Elsevier, Amsterdam (2007)

4. Hammer, E., Shin, S.: Euler’s visual logic. Hist. Philos. Log. 19, 1–29 (1998)
5. Horty, J.F.: Some direct theories of nonmonotonic inheritance. In: Gabbay, D.,

Hogger, C., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 3, pp. 111–187. Oxford University Press, Oxford (1994)

6. Horty, J.F., Thomason, R.H., Touretzky, D.S.: A skeptical theory of inheritance in
nonmonotonic semantic networks. Artif. Intell. 42(2–3), 311–348 (1990)

7. Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS J. Comput. Math. 8,
145–194 (2005)

8. Mineshima, K., Okada, M., Takemura, R.: A diagrammatic inference system with
Euler circles. J. Logic Lang. Inform. 21(3), 365–391 (2012)

9. Mineshima, K., Okada, M., Takemura, R.: Two types of diagrammatic inference
systems: natural deduction style and resolution style. In: Goel, A.K., Jamnik,
M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 99–114.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14600-8 12

10. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
11. Sato, Y., Mineshima, K.: Human reasoning with proportional quantifiers and its

support by diagrams. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Dia-
grams 2016. LNCS (LNAI), vol. 9781, pp. 123–138. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42333-3 10

12. Schlechta, K.: Defaults as generalized quantifiers. J. Log. Comput. 5(4), 473–494
(1995)

13. Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials.
CSLI Publications, Stanford (2015)

14. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press, Cam-
bridge (1994)

15. Stapleton, G., Howse, J., Taylor, J., Thompson, S.: The expressiveness of spider
diagrams. J. Log. Comput. 14(6), 857–880 (2004)

16. Stapleton, G., Taylor, J., Thompson, S., Howse, J.: The expressiveness of spider
diagrams augmented with constants. J. Vis. Lang. Comput. 20(1), 30–49 (2009)

https://doi.org/10.1007/978-3-642-14600-8_12
https://doi.org/10.1007/978-3-319-42333-3_10
https://doi.org/10.1007/978-3-319-42333-3_10


304 R. Takemura

17. Swoboda, N., Allwein, G.: Heterogeneous reasoning with Euler/Venn diagrams
containing named constants and FOL. Electron. Notes Theor. Comput. Sci. 134,
153–187 (2005)

18. Takemura, R.: Towards a proof theory for heterogeneous logic combining sentences
and diagrams. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci,
F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 607–623. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91376-6 55

19. Takemura, R.: Completeness of an Euler diagrammatic system with constant and
existential points. J. Hum. Sci. Nihon Univ. 19(1–2), 23–40 (2013)

20. Takemura, R.: Proof theory for reasoning with Euler diagrams: a logic translation
and normalization. Stud. Log. 101(1), 157–191 (2013)

https://doi.org/10.1007/978-3-319-91376-6_55


Empirical Studies and Cognition



Event Unit Analysis: A Methodology
for Anticipating Processing Demands

of Complex Animated Diagrams

Richard Lowe1,2(B) and Jean-Michel Boucheix1

1 Université Bourgogne Franche-Comté (LEAD-CNRS), Dijon, France
r.k.lowe@curtin.edu.ac

2 Curtin University, Perth, Australia

Abstract. The addition of explicit, faithfully represented dynamics to diagrams
that depict complex behaviours may negatively affect viewers’ information pro-
cessing and prejudice their comprehension of the referent subject matter. This
presentation introduces a methodological tool for identifying and characterizing
likely sources of the negative consequences that can arise from an animated dia-
gram’s dynamics. Event Unit Analysis offers a systematic way to document these
sources so that they can be minimized by implementing changes in how anima-
tions are designed. This analytical methodology underlies the development of a
novel animation design approach that significantly improves viewer comprehen-
sion over that obtained using conventionally designed animations. The origins
of event unit analysis in the theoretical framework of the Animation Process-
ing Model and its development as a tool for analyzing increasingly sophisticated
dynamics are described. Its potential breadth of its application and opportunities
for further elaboration are illustrated through two contrasting types of content.

Keywords: Animated diagrams · Dynamics · Analysis · Comprehension ·
Design

1 Introduction

Before the advent of digital technology, animated diagrams were a relative rarity. This
was not only because the production of such animations was a slow, labour intensive,
highly specialized and costly endeavor but also because of the various barriers that existed
to their dissemination. However, the situation is now very different due to the ready
availability of sophisticated graphics processing technologies and the ubiquity of inter-
net access. It is therefore not surprising that traditional static diagrams are increasingly
accompanied by their supposedly superior animated counterparts. This trend reflects a
widespread conviction that diagrams will be more effective if they are animated rather
than static, especially if they are to represent dynamic subject matter (but see [1]). Ani-
mated diagrams allow the subject matter’s dynamics to be represented directly (not just
indirectly, as is the only option with static diagrams [2]). In contrast to what is required
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for static depictions, viewers of an animation are not obliged to infer the referent sub-
ject matter’s dynamics. Because an animated diagram provides an explicit (rather than
implicit) portrayal of dynamics, it relieves viewers fromhaving to perform the potentially
error-prone ‘mental animation’ processes that are required to interpret a corresponding
static depiction [3]. However, research has shown that despite this potential advantage
over static diagrams, animations actually pose their own distinctive information process-
ing challenges for viewers [4]. Ironically, these challenges can arise from the very same
dynamics that are supposed to make animations intrinsically superior to static diagrams.

The dynamics-related processing problems viewers can encounter tend to be partic-
ularly severe for conventionally-designed animations that faithfully depict the dynamics
of complex subject matter (in contrast to the animations targeted in [1]). If dynamics
can seriously compromise viewer processing, it is important that animated diagrams are
designed to minimize their potentially negative consequences. An essential first step in
devising such designs is to identify and characterize likely sources of such problems.
However, this is not a trivial task because these sources can be subtle and elusive. This
paper presents a methodological tool that provides a systematic approach for analyzing
complex dynamic subject matter in order to expose possible dynamics-related process-
ing challenges. Event Unit Analysis is a methodology that can be used to help devise
novel animation design approaches that support more effective viewer processing. In the
next section, we consider the nature of animated diagrams (in particular, those depicting
complex subject matter) and discuss how their dynamics may impede proper processing
of the presented information.

2 Animation Dynamics and Processing

A common feature of conventionally-designed animated diagrams that portray complex
systems is the presence of substantial simultaneous activity. Typically, the animated dis-
play simultaneously depicts a varied assortment of system components, with each of
these components being engaged in its own individual set of behaviours. Because they
are diagrammatic portrayals, these components are represented by abstract graphic enti-
ties rather than by veridical depictions. In contrast, the dynamics associated with these
components are almost always represented with a high degree of realism that faithfully
reflects the behaviours present in the referent content. We use the term ‘Comprehensive’
to characterize such conventional animation designs. The behaviours that are presented
in animations can be broadly classified into three main types [4]: transitions (change
in the presence of an entity, i.e., appearance or disappearance), motions (change in the
position of an entity, i.e., rotations between positions or translations between locations),
and transformations (change in the form of an entity, i.e., shape, size, colour, etc.). In
some animations, just one of these behaviour types may be exhibited whereas in others,
different types may occur within a given animation (sometimes even with respect to a
single graphic entity).

Much of our previous research has investigated how viewers process a
conventionally-designed animated diagram portraying the inner workings of a tradi-
tional upright piano (e.g., [5, 6]). Figure 1a shows a frame taken from that research
material, with the mechanism’s components identified in Fig. 1b. This comprehensive
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piano animation illustrates how several varied instances of a specific type of behaviour
(motions) can occur simultaneously across multiple components of a system. When the
piano key is depressed, a set of events is initiated that ultimately causes the corresponding
hammer to strike a string and thereby produce a musical note.

Fig. 1. (a) Frame from conventionally-designed (‘Comprehensive’) version of piano animation.
(b) Identification of piano mechanism components.

Despite its sophisticated functionality, the piano mechanism consists essentially of
a range of simple levers that transmit action throughout the system by rotating about
their respective pivots. In common with most mechanical devices, the only type of
dynamics involved in this entire system is motion; there are no transitions (entities
are not added or removed) or transformations (entities do not undergo any intrinsic
change). The behaviours exhibited during the piano mechanism’s operation take place in
a coordinated way across the system. These dynamic changes occur simultaneously or in
a rapid cascade and involvemultiple components. Thismeans that on any occasion during
the animation’s time course, the viewer is faced with a varied array of graphic entities
performing different actions in locations that are spread throughout the display area.
For example, when the key is depressed, the key-head moves clockwise, the whippen
anticlockwise (while carrying the jack upwards with it), the damper clockwise, and the
hammer anticlockwise. In addition, each of these movements occurs to a different extent
– the hammer’s movement is greatest, that of the jack is least, and the other entities move
to intermediate extents between these extremes.

2.1 Processing Challenges

For viewers to have any chance of comprehending how the piano mechanism functions
as a whole, at the very least they would need to keep track of all these varied and
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widely dispersed behaviours. However, that is only part of the story. They would also
have to follow the flow of causality throughout the system and determine the dynamic
interrelationships between themechanism’s different subsystems that allow it to function
as required.An example of such interrelationships can be foundwith the reciprocal action
of the damper relative to the hammer that (i) un-damps the string so it is free to vibrate just
before the hammer strikes it and (ii) damps out the string’s vibration when the note is to
finish sounding. Similar contingent relationships occur for other components of the piano
system and these alter during the time course of the mechanism’s operational cycle. All
in all, this animation confronts viewers with a rich set of multifarious behaviours, each of
which makes an indispensable contribution to the referent system’s overall functionality.

As theorized in the Animation Processing Model [7] a crucially important initial
task for a viewer attempting to comprehend the referent subject matter is to extract
all of the functionally relevant information offered by the animation. The APM posits
that comprehension of the subject matter depicted in a comprehensive animation (e.g.,
understanding howapianomechanismworks) involves the viewer’s internal construction
of a high quality mental model from the externally presented display. If extraction of
functionally relevant information from this display is deficient, mental model quality
(and thus comprehension) will be compromised. A perception-oriented characterization
ofwhat is involved in this task suggests that is likely to be very challenging, especially for
domain noviceswho lack backgroundknowledge about howpianoswork. The challenges
arise from the mismatch between (i) how a conventionally-designed comprehensive
version of the piano animation presents its information and (ii) the capacities of the
human information processing system (particularly with respect to how it deals with
dynamic visual stimuli).

Human visual perception of detailed information is handled by foveal vision while
more general aspects, such as the broader visual context, are allocated to peripheral vision
[8]. Foveal processing plays a crucial role in a viewer’s extraction of functionally relevant
information froman animation. It relies on a series of short, highly localized eyefixations,
each of which take a finites amount of processing time and encompasses a very limited
area only. Characterization of a multi-entity visual display results from the cumulative
effect of these successive individual fixations.Because the scopeof eachof thesefixations
is small relative to the total visual field, this processing needs to be highly selective. In
the transient context of complex dynamic displays with substantial simultaneity (such
as the comprehensive piano animation), this constraint can be problematic. The trouble
is that while the viewer is fixating on one specific small region of the total display in
order to collect information about (say) a particular entity and its behaviour, important
things are also happening in other regions of the display that are not being fixated.
An unfortunate consequence of foveal vision therefore is that simultaneously occurring
events occurring outside of the current fixation area largely escape the viewer’s notice
and so are not internalized for further processing. The net effect is that viewers can miss
out onmuch of the information necessary for building a high quality mental model of the
referent subject matter. Our empirical investigations of learning from the comprehensive
piano animation confirm that the quality of mental models developed is indeed severely
compromised (e.g., [9]).
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2.2 Event Unit Analysis

In recent years, researchers in the fields of educational psychology andmultimedia learn-
ing have been particularly active in seeking ways to improve the instructional effective-
ness of animations. They have investigated various types of interventions intended to
support better learner processing of conventionally-designed comprehensive animations
[10]. These approaches included the provision of user-control over an animation’s pre-
sentation regime with respect to playing speed, direction, continuity, etc., segmentation
of the animation’s time course into smaller temporal chunks separated by pauses, visual
cueing of important information using techniques such as colour coding and highlight-
ing, and the addition of ancillary learning activities to be undertaken by learners as they
studied the animated presentation. In an effort to improve comprehension of the piano
mechanism, we applied a range of these approaches to the comprehensive animated ver-
sion of this subject matter. However, in common with the findings of other researchers
who tried such interventions across many different types of content, there was little or no
improvement in performance scores. In the case of the piano animation, we interpreted
these less-than-impressive results as indicating that our participants had been unable to
build high quality mental models of the mechanism’s functionality.

In an effort to characterize possible reasons for the lack of success of these interven-
tions, we considered how it might be possible to expose the processing challenges that
were not being effectively ameliorated. We hypothesized that the simultaneous spatially
distributed presentation of multiple entities exhibiting a variety of behaviours could be
a major contributor to these challenges. It seemed that in order to better understand
the processing implications of this situation, it needed to be systematically documented
and unpacked. To tackle this issue, we invoked a fundamental aspect of the Animation
Processing Model – the concept of an event unit. An event unit is a notional composite
consisting of an entity and its associated behaviour. A distinctive feature of the APM
approach to characterizing an animation is that it does not treat an entity in isolation
from its dynamics. Application of findings from research on visual perception (e.g.,
[11]) to animation processing suggests that dynamics exert a powerful influence on how
viewers process an animation’s constituent entities. Rather than being an independent
attribute with respect to processing, an entity’s dynamics (i.e., its spatiotemporal char-
acteristics) seem to be intimately bound up with its other properties (i.e., its visuospatial
characteristics). For example, in the piano animation, we attribute viewers’ tendency to
notice the hammer but neglect the jack not only to their differences in appearance (size,
distinctiveness of shape, etc.), but also to differences in the extent of their respective
movements.

Event unit analysis provides a systematic method for setting out the situation with
dynamic subject matter that exhibits a substantial degree of simultaneity. It should be
noted that this technique targets the dynamic subject matter itself , not a particular repre-
sentation of that content. Figure 2 illustrates how we initially applied this diagrammatic
approach to our comprehensive piano mechanism animation. Each entity row of the dia-
gram represents a particular series of event units that contribute to the overall operation
of the mechanism (with segments denoting individual event units for the entity con-
cerned). For example, the damper entity first swings away from the string, then pauses
(a null event unit since dynamics are absent), and finally swings back to the string. The
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Fig. 2. Event unit analysis for piano mechanism operation (initial version). The time course of
the mechanism’s operation can be divided into three successive stages – (1) Strike, (2) Rebound,
and (3) Reset.

horizontal time axis specifies the duration of each of these event units within an oper-
ational cycle. Because this analysis assumes depiction via a comprehensive animation,
the relative durations of the event units faithfully reflect that of the referent mechanism
itself. For example, the duration of the hammer’s rebound is much briefer than the time
it takes to reach the string after a key press.

A most revealing aspect of this analysis is the way it sets out how different event
units coincide in time (i.e., the degree of simultaneity that a viewer must cope with). An
APM-based interpretation of such analysis suggests that higher levels of simultaneity in
a display would tend to impair viewer extraction of functionally relevant information.
This is because of the increased competition for the viewer’s visual attention associated
with the co-presence of multiple event units.

Circumstances during the time course of a comprehensive animation where substan-
tial competition for attention is likely to exist can be identified by examining the event
unit analysis shown in Fig. 2. For example, simultaneity is greater at the beginning of the
mechanism’s operation (Stage 1, ‘Strike’) than midway through (Stage 2, ‘Rebound’).
This indicated by the degree of coincidence amongst event units (if we exclude null event
units from consideration). Our research results indicate that viewers are most successful
in extracting information about the initial hammer event unit but far less successful in
characterizing some others (especially the jack). This finding is consistent with the ham-
mer winning the competition for attention by a large margin when it and the jack move
simultaneously. However, to fully appreciate what is at work here, we need to consider
not only the event unit analysis diagram, but also the visuospatial and spatiotemporal
characteristics of the individual event units it documents. In particular, the combined
effect of the hammer’s large size, distinctive shape and extensive movement make it far
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more perceptually salient than its accompanying components so it out-competes them
for the viewer’s limited visual attention. With the jack, the situation is reversed. The fact
that it is a tiny, visually unremarkable entity that moves only slightly helps to explain
why viewers tend to extract very little information about this component.

Some care is required in interpreting the likely implications of this event unit analysis.
If we ignore the null event units (i.e., those for which nothing happens), the simultaneity
decreases somewhat after the initial operational phase, from five coincident event units
down to just three. So, any competition for attention that occurs is between fewer event
units. Despite what might be expected, viewers actually do worse in characterizing this
second Rebound stage of the mechanism’s operation. Most of our viewers completely
missed what was happening then. Part of the explanation may be that this intermediate
stage is very brief indeed compared with the initial and final stages. Consequently, there
is simply insufficient time available to process the presented information adequately.
Further, the relatively small movement of the rebounding hammer and the inconspicu-
ousness of the jack suggest that a perceptual salience effect may increase the likelihood
of these aspects being overlooked.

2.3 Design Response to an Event Unit Analysis

The event unit analysis discussed above is no more than an initial attempt to provide
a systematic way of identifying and characterizing what processing challenges viewers
may face with a comprehensive animation containing substantial simultaneity. Despite
its limitations (which we discuss in more detail later), this tool helped us to ask some
fundamental questions about conventionally designed animated diagrams. One of these
concerned an unchallenged design assumption about how these animations should rep-
resent their subject matter. We noted earlier that, as is the case for static diagrams, it
is standard practice for animated diagrams to use highly abstracted depictions (simple
lines, geometric shapes, etc.) to represent the referent entities. In effect, this abstraction
is equivalent to performing major manipulations on the visuospatial properties of the
original referent and so constitutes a massive departure from reality. However, there is
no corresponding level of manipulation applied to the spatiotemporal properties. Rather,
the dynamics of entities depicted in such animated diagrams tend to closely mirror those
of the original referents. In other words, there is a high degree of behavioural realism
(c.f. [12]).

This inconsistency in the level of manipulation of visuospatial and spatiotemporal
properties deserves close consideration. Extensive visuospatial manipulation is such an
entrenched part of diagrammatic practice that its utility is rarely questioned. It has long
been accepted as an effective way ofmaking the subject matter more tractable to viewers.
A notable example is the use of simple symbols and regularized layouts in electronic
circuit diagrams. The question then arises as to why when dynamics are introduced into
a diagram, it is not equally acceptable to implement a similar level of spatiotemporal
manipulation. One probable reason is that this would negate the presumed advantage of
animated over static diagrams, that is, the capacity to represent a referent’s behaviours
directly, explicitly, and accurately. Nevertheless, one is entitled to wonder why viewers
who are so adept in dealing with extensive visuospatial manipulation would be unable
to handle even a modest level of spatiotemporal manipulation.
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We have seen that an animation’s dynamics can be a two-edged sword, especially
when a substantial degree of simultaneity is involved. Is it possible that some reduction
in this simultaneity could benefit viewers by reducing wasteful competition for visual
attention, thus allowing deeper, better processing of more of the information that needs
to be internalized? Using the event unit analysis shown in Fig. 2 as our starting point,
we devised a highly unconventional approach to animation design that was intended
to test this possibility. A primary aim of the design was to reduce the level of simul-
taneity identified by the event unit analysis and so decrease competition for attention.
Termed a ‘Composition Approach’, this design regime abandoned the slavish adher-
ence to behavioural realism that characterizes conventional comprehensive animations.
Instead of faithfully mirroring the referent’s true dynamics by presenting multiple event
units simultaneously, a staged approach was used. Our goal was to better align the
animation’s external presentation of information with the viewer’s internal processing
activities that are posited by the APM. The rationale for the graduated staging of infor-
mation exposure was that some temporal spacing-out of event unit presentation should
decrease competition for attention and thus reduce the likelihood that the viewer would
miss crucial information. This approach was implemented through a design in which
functionally interacting event units were progressively exposed in a pairwise fashion.
This presentation regime followed a sequence that was carefully constructed to be con-
sistent with the progress of causal chains throughout the mechanism. In one sense, this
manipulation involved a quite drastic departure from the referent’s actual dynamics and
thus had the potential to severely disrupt comprehension. However, the sequencing was
carefully designed to facilitate the progressive, cumulative, hierarchical internal com-
position processes hypothesized by the APM to be necessary for building high quality
mental models. Subsequent empirical testing of the composition approach against the
conventionally designed piano animation confirmed that it indeed resulted in somewhat
improved mental models [13]. This result suggested that this initial version of event unit
analysis did provide some useful insights about how to design more effective animated
diagrams.

3 Elaborating and Refining Event Unit Analysis

Despite the statistically significant improvements in mental model quality obtained by
using a composition approach to animation design, the overall scores for this indicator
of comprehension were nevertheless comparatively modest (around 50%). Clearly there
were still considerable deficiencies in viewer understanding of the depicted subject mat-
ter, despite the animation’s increased net effectiveness. Participant responses indicated
that several specific aspects of piano mechanism’s operation remained poorly under-
stood. Unfortunately, these aspects were also ones of crucial importance to a piano’s
functionality. The jack is a particularly illuminating case in point. It plays a vital but
subtle role in ensuring that the hammer is able to repeat its striking action reliably, at
the required speed, and in a musically-appropriate way.

In an effort to identify reasons why comprehension of aspects such as the jack’s
behaviours showed little improvement from a comprehensive to a compositional design,
further consideration was given to the event unit analysis. A number of observations
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were made. First, the jack is the only lever in the system that does not have a stationary
pivot point. Instead, its pivot is attached to the whippen so that the jack rides with the
whippen producing a composite motion that is intrinsically more complex than that of
its neighbours. Second, the functionality of the jack varies across the time course of the
piano’s operation. To begin with, it produces a short, sharp impact that kicks the butt of
the hammer so that the hammer’s head is projected forcefully toward the string. Next,
when the hammer first rebounds slightly from the string so its balance is caught by the
backcheck, the jack’s job is very different. In this case, its tip slides a little way along the
curved surface of the hammer butt and fulfills an escapement function. Finally, when the
mechanism resets, the jack’s tip completes the journey back to its starting position by
travelling along the rest of the hammer butt. By returning to this initial configuration, the
jack is again readied to perform its role in the strike stage of the mechanism’s operation.
Comparedwith the behaviour of themechanism’s other components, the jack’s dynamics
are relatively complex and varied. In addition, it is the least perceptually salient of all
the mechanism’s components. These factors likely contributed to the persistently poor
results for the jack (despite the use of a compositional animation design).

Revisiting our original event unit analysis (Fig. 2), we concluded that too little
consideration had been given to the distinctive nature of the jack’s visuospatial and
spatiotemporal attributes. This can be appreciated by comparing the jack with another
more typical component, such as the damper. As already indicated, the jack would have
a considerably lower perceptual salience than the damper due to its size, shape and
behaviour. This makes it less likely to receive viewer attention. However, even if the
jack was to receive similar attention to the damper, its dynamics pose an additional
processing challenge. The action of the damper during the (final) reset stage of opera-
tion is just the reverse of its action in the (initial) strike stage. These two actions could
therefore be parsimoniously represented in the viewer’s knowledge structure by a single
event unit that runs forward for the strike stage and backwards during reset. However,
the jack event units cannot be condensed in this manner and so must each be analyzed
and internally represented on an individual basis. This suggest that the perceptual and
cognitive processing required for the jack is likely more involved than for other compo-
nents. Considered together with its low perceptual salience, it is perhaps unsurprising
that viewers’ processing of the jack event units remained inadequate.

We are currently investigating an expanded, finer-grained approach to event unit
analysis that is designed to capture these process-related aspects more effectively. Our
goal is to develop a principled and systematic basis for further refining the composition
approach to animation design so that it takes more account of variations in the level of
processing challenge posed by different types of event units. This more refined approach
is exemplified by a re-consideration of the way the jack’s dynamics were treated in the
original event unit analysis. Rather than using just the single jack entity as the basis for
analysis as was done originally, in the revised analysis it is characterized in terms of
three separate event units. The rationale for this adjustment is that although there is only
one entity involved, that single entity performs three distinct behaviours, each of which
imposes its own processing demands.

We consider that suchmodification makes the revised event unit analysis more sensi-
tive to the range of processing challenges that may be faced by viewers. Better detection
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of such potential challenges can allow additional improvements in animation design
to be made that further support effective viewer processing. For example, adjustments
to the degree of spatiotemporal manipulation applied could be made to ameliorate the
excessive processing demands that would otherwise be imposed by certain event units. In
the case of the jack, one response could be to depart from the uniformly applied pairwise
presentation used in the original compositional design. In that approach, two different
entities (with their dynamics) were presented at a time, regardless of the characteristics
of the entities involved. A modified compositional design based on our revised approach
to event unit analysis is being tested to determine its effectiveness relative to the original
composition approach in terms of mental model quality.

In the next section, we discuss the need for further refinement of event unit analysis
so it is better suited to the typical characteristics of biological subject matter (which are
very different from those of the pianomechanism example) [14]. The biological example
we consider is a pentapedal type of kangaroo locomotion commonly called ‘punting’
[15]. This unhurried gait is quite distinct from the kangaroo’s much more energetic
hopping motion and is typically used when the animal is grazing. Although there are
some similarities to the piano example (e.g., they both involve cyclical dynamics), there
are also several important differences that should be addressed.

3.1 Event Unit Analysis for a Biological System

In common with most biological systems, the dynamic changes exhibited during kanga-
roo punting involve not only motions but also extensive co-occurring transformations.
Combinations of these twodifferent types of dynamics are not typically found inmechan-
ical systems such as the piano. From a perceptual perspective, the situation facing the
viewer of a piano animation contains considerably less indeterminacy and variability
than is present in a kangaroo punting animation. To appreciate the implications of that
difference, consider someone who is unfamiliar with this type of kangaroo movement
and has no expertise in the science of animal locomotion. Suppose such a person is
set the task of developing a broad understanding of kangaroo punting solely by study-
ing a conventionally-designed (behaviorally realistic) animation of this activity. This
animation has no accompanying explanatory text or narration so its visual portrayal is
the viewer’s sole source of task-relevant information. The expected outcome is that the
viewer will able to specify the key set of coordinated events involved in progressing
the kangaroo during punting. In particular, this will entail knowing that the tail and
fore-limbs form a tripod for supporting the body while the hind limbs are lifted off the
ground and swung through to a new forward position. It is relatively straightforward
for viewers to understand punting at this very general level, provided they have first
internalized all the relevant information. However, actually obtaining this information
from a conventionally-designed animation is far from straightforward for the type of
viewer we are considering.

Without specialist background knowledge to provide top-down guidance for infor-
mation extraction, such a viewer is largely dependent on bottom-up, perceptually-based
processing of the display (c.f. [16]. Bottom-up extraction of the necessary information
is demanding because of the challenges that the animation’s veridical dynamics pose
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to visual perception. As with the conventionally-designed piano animation, these chal-
lenges are partly due to multiple behaviours that both take place simultaneously and
are spread across the animation’s display area. For example, the crucial relational infor-
mation that needs to be extracted in order to determine the support function of the tail
plus fore-limbs is widely separated in the display and so cannot be captured within the
limited scope of a single foveal fixation. As already noted, this can severely prejudice
proper information extraction because the information presented in behaviourally realis-
tic animations is necessarily transitory. While foveal attention is being directed to events
occurring in one of the two regions concerned (e.g., with respect to the fore-limbs), the
finite time required to process information in that area precludes foveal processing of
what is happening simultaneously in the second distant area (e.g., with respect to the
tail).

Because it depicts a biological rather than mechanical system, a conventional ani-
mation of kangaroo punting introduces further aspects over and above this simultaneity-
related issue that likely make it even more perceptually demanding than the piano ani-
mation. One of these is the absence of clear visual boundaries to mark where one entity
ends and another begins. Because the internal structure of a kangaroo is not shown in
the animation, viewers must infer where such inter-entity boundaries should be located.
The resulting indeterminacy as to what constitutes an entity makes proper characteriza-
tion of event units (as an entity plus its dynamics) more uncertain. This is potentially
problematic in terms of the Animation Processing Model which posits event units as
the fundamental raw material that viewers use for internal knowledge construction. A
second additional issue likely to interfere with effective processing of such an anima-
tion is the co-presence of motion and transformation dynamics. Entities depicted in the
corresponding piano animation are rigid and so exhibit only motion behaviour – their
shapes remain unchanged as they perform various movements across space. This is not
the case with the kangaroo animation because at the same time as its entities change their
locations, their overall shapes are also changing (Fig. 3). In the next section, the likely
perceptual impact of these differences will be considered along with its implications for
mental model building.

Fig. 3. Initial state and early stage of kangaroo punting cycle. Note that the front legs both swing
forward as a whole (motion) and change their shape (transformation). [17] gives a detailed account
of how event unit analysis is implemented for this example.
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3.2 Decomposition, Motion and Transformation

One of the original motivations for devising event unit analysis was to provide a basis
for decomposing the array of simultaneous dynamic information presented in conven-
tionally designed animations. Our research had indicated that a serious impediment to
viewer processing was their inability to break down such animations appropriately in
order to properly characterize functionally important event units. Considering the results
of event unit analysis in light of the APM suggested that it may be too much to expect
viewers to carry out such decomposition unaided. The compositional design that was
developed as a consequence largely removed the need for viewers to perform this prob-
lematic decomposition activity. In effect, the pairwise sequence of event units used in
our compositional animation offered viewers an accurately ‘pre-decomposed’ form of
information presentation. This meant that their finite processing resources could then
be mostly devoted to composition of event units into the superordinate order knowl-
edge structures necessary for building high quality mental models. However, as already
noted, this indiscriminate application of pairwise event unit scheduling proved not to be
effective in all cases. It had little impact where entities such as the jack were concerned
because of the more challenging processing involved. A somewhat analogous situation
exists with kangaroo punting, but in this case one that is rather more extreme.

We have already noted that whereas the piano mechanism involves only motion
dynamics, with kangaroo punting both motion and transformation occur simultane-
ously, essentially across all aspects of locomotion. Recent fundamental research [17]
has revealed that viewers presented with animations displaying simultaneous motion
and transformation tend to extract information about only one or other of these types
of dynamics. That is, they satisfactorily process either the paths taken by entities or
changes in the form of those entities but not both. Applying this finding to the case of
viewers watching a conventional animation of kangaroo punting, it seems reasonable
to expect that something similar may occur. This would be extremely problematic for
processing, particularly when information needs to be extracted about the dynamics of
entities that are widely separated in the display but closely related in a functional sense
(as with the joint tripod support role of the fore-limbs and the tail in punting). The prob-
lem of viewers probably missing information about the non-fixated aspect of the tripod
arrangement is further exacerbated by the fact that a proper appreciation of how this
configuration is generated requires the viewer to extract information not only about the
changes made in the positions of the fore-limbs and the tail, but also about the shape
changes they undergo in order for this to take place. In a comprehensive animation of
kangaroo punting, the two related sets of changes involved in this fore-limbs/tail example
are of course embedded in a broader dynamic context. These other concurrent motions
and transformations in the rest of the animal’s body provide additional competition for
the viewer’s attention that likely further compromise effective information extraction
(and hence mental model construction).

3.3 Extending and Implementing Event Unit Analysis

The kangaroo example is currently being used to further develop event unit analysis so it
can help reveal the additional processing challenges posedwhen animations contain both
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motions and transformations. To this end, the analysis approach has been expanded so
that it now assigns two rows to each entity – one for motion and one for transformation.
As already noted, for a conventional animation of subject matter in which these two
types of behaviour co-occur, viewer attention (and hence information extraction) would
likely tend to favour one of them to the exclusion of the other. Assigning an extra
‘transformation’ row to each entity makes such potential problems readily apparent.
However, some practical issues need to be addressed in order to implement this extended
form of analysis effectively. The ultimate utility of event unit analysis as a tool for
probing potential problems thatmay occurwith animations of complex biological subject
matter depends on how well it is able to characterize that content. An important part of
this characterization is the determination of appropriate boundaries between different
individual entities and events (i.e., where one entity or event ends and another begins).

Boundary determination is an on-going background activity that we all perform rou-
tinely during our everyday dealings with the world around us. The capacity to perform
this visuospatial and spatiotemporal partitioning of our environment has been attributed
to our recognition of discontinuities that signal the presence of inter-entity or inter-event
boundaries [18]. More specifically, a boundary between two neighboring event units
occurs where it is no longer possible for the viewer to predict (from the pre-existing trend
exhibited by the first event unit) what will happen next. This form of boundary demarca-
tion is equally applicable for motions, transformations, and transitions. Recognition of
event boundaries is assumed to be based on one’s extensive accumulated experience with
our everyday surroundings – what it looks like and how it behaves. The effectiveness
of event unit analysis also relies on proper determination of the boundaries that exist
between entities and between events. However, in the types of cases we have consid-
ered here, the determining of appropriate boundaries cannot rest merely on the type of
generally applicable knowledge that we invoke during our daily lives. Rather, specialist
knowledge of the subject matter is required that allows boundaries to be recognized on
the basis of discontinuities that are of functional relevance to the domain concerned.
Consequently, non-experts cannot be expected to divide specialist dynamic content cor-
rectly into event units. For example, proper segmentation of the kangaroo’s continuous
body into separate entities with respect to the roles they play in punting relies on hav-
ing a sophisticated understanding of both its underlying anatomy (skeleton, muscles,
etc.) and the biomechanics of its locomotion. A similar level of advanced knowledge is
needed to determine the boundaries that allow the kangaroo’s complete punting cycle to
be broken down into the individual events that contribute to this form of locomotion (and
to distinguish motion contributions from transformation ones). The expanded version of
event unit analysis as applied to biological systems includes explicit specification of the
subject matter’s component entities based on expert knowledge of functionally relevant
boundaries.

Traditionally, much of the ultimate responsibility for the way animated diagrams
end up presenting their subject matter has rested with the depiction’s designer (typically
a professional animator). Of course, that designer would first have been supplied with
reference material (often including static diagrams and perhaps a video) provided by
the person commissioning the animation. Almost without exception, when such design-
ers are left to their own devices, they follow the conventional path of generating a
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behaviourally realistic animation of the content. When a subject matter expert checks
the result, the dominant concern is with the overall accuracy of the depiction – especially,
how faithfully it portrays the content’s dynamics. Once any shortcomings in the draft
animations have been corrected, thematerial is given approval for release. Unfortunately,
as explained above, animations depicting complex subject matter that are designed using
this conventional approach are likely to be relatively ineffective for viewers who are not
experts in the depicted domain.

Compared with this conventional approach to design, developing animations on the
basis of an event unit analysis demands much greater involvement on the part of the
subject matter expert and far more collaboration with the designer. This is particularly
the case for the type of biological content discussed here. Most designers are simply
not equipped with the knowledge required to identify and characterize the entities and
events that will be the basis for the analysis. Instead, this aspect of the work needs to
be directed by someone who knows the content inside out so that boundaries can be
determined on the basis of the specific functionality involved, rather than according
to intuition and everyday background knowledge. An event unit analysis provides a
mechanism for framing a productive and ongoing dialogue between designer and subject
matter expert. It offers a shared basis for discussions about effective ways of presenting
complex dynamic subject matter more effectively. A designer can contribute expertise
in techniques of visualization to such discussions that complement the content expert’s
contributions regarding the subject matter itself.

A further application of event unit analysis is its use by researchers to stimulate
new approaches to animation design that are potentially more effective than conven-
tional designs [19]. This is the focus of an important thread in our own research which
investigates possibilities for improving the match between how animations present their
information and the distinctive characteristics of human information processing. This
research aims to minimize the kind of non-productive application of viewers’ processing
resources that typically occurs with conventionally designed animations and re-direct
those capacities to activities of central importance to buildinghighqualitymentalmodels.
To this end, a recently completed experiment studied a composite approach combining
aspects of conventional and compositional animation designs in order to provide greater
support for crucial mental model building processes.

4 Conclusion

The prevailing conventional approach to designing animated diagrams results in the
privileging of behavioural realism over viewer information processing considerations.
Because insufficient attention is given to analysis of the subject matter, particularly
with respect to its dynamics, the posited advantages of these comprehensive animations
too often remain unfulfilled. Event unit analysis offers those who develop animations
of complex subject matter a novel and potentially powerful methodological tool for
improving their designs. It provides a systematic way of identifying and characterizing
aspects of a system that would likely pose processing problems for viewers if the subject
matterwas to be presented in a dynamically veridicalmanner. The insights available from
an appropriate event unit analysis allow possible negative consequences that can arise
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from behaviorally realistic animations to be avoided by incorporating spatiotemporal
modifications as a legitimate part of animation design. Departures from conventional
presentation regimes, such as those implemented in a compositional design, can improve
thematch between how animations present their information and the capacities of human
informationprocessing.Although event unit analysis tends to bemore straightforward for
mechanical systems such as the piano, care is needed to ensure that the level of analysis
applied is appropriately fine-grained for the individual entities being considered. It seems
that biological systems such as the kangaroo are inherently more complex because of
the co-presence of motion and transformation dynamics. Event unit analysis offers a
structured way to promote closer collaboration between designers and subject matter
experts that has potential to substantially improve the effectiveness of animateddiagrams.
In addition, it provides a tool for researchers who wish to explore new approaches to
animation design that could result in viewers developing higher quality mental models
of the depicted content. If taken up by these different communities, it also offers the
possibility of helping to bridge the gaps that currently exist between those who conduct
research on animations and the design practitioners who are responsible for producing
them [20].

Acknowledgment. The authors sincerely thank David Edmonds, Veterinarian, for his expert
advice regarding the biomechanics of kangaroo locomotion.

References

1. Bernay, S., Bétrancourt, M.: Does animation enhance learning? A meta-analysis. Comput.
Educ. 101, 150–167 (2016)

2. Cutting, J.E.: Representing motion in a static image: constraints and parallels in art, science,
and popular culture. Perception 31, 1165–1193 (2002)

3. Hegarty, M., Sims, V.K.: Individual differences in mental animation during mechanical
reasoning. Mem. Cogn. 22, 411–430 (1994)

4. Lowe, R.K.: Animation and learning: Selective processing of information in dynamic
graphics. Learn. Instr. 13, 157–176 (2003)

5. Lowe, R.K., Boucheix, J.-M.: Cueing complex animations: does direction of attention foster
learning processes? Learn. Instr. 5, 650–663 (2011)

6. Boucheix, J.-M., Lowe, R.K., Putri, D.K., Groff, J.: Cueing animations: dynamic signalling
aids information extraction and comprehension. Learn. Instr. 25, 71–84 (2013)

7. Lowe, R., Boucheix, J.-M.: Learning from animated diagrams: how are mental models built?
In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 266–
281. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87730-1_25

8. Rosenholtz, R.: Capacity limits and how the visual system copeswith them. Electron. Imaging
(Proc. Hum. Vis. Elect. Imaging) 16, 8–23 (2017)

9. Boucheix, J.-M., Lowe, R.K.: An eye tracking comparison of external pointing cues and
internal continuous cues in learning fromcomplex animation. Learn. Instr. 20, 123–135 (2010)

10. de Koning, B.B., Jarodzka, H.: Attention guidance strategies for supporting learning from
dynamic visualizations. In: Lowe, R., Ploetzner, R. (eds.) Learning from Dynamic Visu-
alization, pp. 255–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56204-
9_11

https://doi.org/10.1007/978-3-540-87730-1_25
https://doi.org/10.1007/978-3-319-56204-9_11


322 R. Lowe and J.-M. Boucheix

11. Wolfe, J.M., Horowitz, T.S.: Five factors that guide attention in visual search. Nat. Hum.
Behav. 1, 1–8 (2017)

12. Narayanan, N.H., Hegarty, M.: Multimedia design for communication of dynamic informa-
tion. Int. J. Hum Comput Stud. 57, 279–315 (2002)

13. Lowe, R.K., Boucheix, J.-M.: Principled animation design improves comprehension of
complex dynamics. Learn. Instr. 45, 72–84 (2016)

14. Lowe, R., Boucheix, J.-M.: Dynamic diagrams: a composition alternative. In: Cox, P.,
Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 233–240.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31223-6_24

15. O’Connor, S.M., Dawson, T.J., Kram, R., Donelan, J.M.: The kangaroo’s tail propels and
powers pentapedal locomotion. Biol. Let. 10, 20140381 (2014)

16. Kriz, S., Hegarty, M.: Top-down and bottom-up influences on learning from animations. Int.
J. Hum.-Comput. Stud. 65, 911–930 (2007)

17. Boucheix, J-M., Porte, L., Lowe, R.K.: Investigating fundamental features of complexity in
animation processing. Paper to be Presented at EARLI SIG 2 Meeting, Prague, August 2020

18. Zacks, J.M., Speer, N.K., Swallow, K.M., Braver, T.S., Reynolds, J.R.: Event perception: a
mind/brain perspective. Psychol. Bull. 133, 273–293 (2007)

19. Scheiter, K.: Design of effective dynamic visualizations: a struggle between the beauty and
the beast? commentary on parts I and II. In: Lowe, R., Ploetzner, R. (eds.) Learning from
Dynamic Visualization, pp. 233–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56204-9_10

20. McGill, G.G.: Designing instructional science visualizations in the trenches: where research
meets production reality. In: Lowe, R., Ploetzner, R. (eds.) Learning from Dynamic
Visualization, pp. 119–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-562
04-9_6

https://doi.org/10.1007/978-3-642-31223-6_24
https://doi.org/10.1007/978-3-319-56204-9_10
https://doi.org/10.1007/978-3-319-56204-9_6


Evaluating Visualizations of Sets
and Networks that Use Euler

Diagrams and Graphs

Almas Baimagambetov1(B) , Gem Stapleton2,3 , Andrew Blake1 ,
and John Howse1

1 Centre for Secure, Intelligent and Usable Systems, University of Brighton,
Brighton, UK

{a.baimagambetov,a.l.blake,john.howse}@brighton.ac.uk
2 University of Cambridge, Cambridge, UK

ges55@cam.ac.uk
3 University of Kent, Canterbury, UK

g.stapleton@kent.ac.uk

Abstract. This paper presents an empirical evaluation of state-of-the-
art visualization techniques that combine Euler diagrams and graphs
to visualize sets and networks. Focusing on SetNet, Bubble Sets and
WebCola – techniques for which there is freely available software – our
evaluation reveals that they can inaccurately and ineffectively visualize
the data. Inaccuracies include placing vertices in incorrect zones, thus
incorrectly conveying the sets in which the represented data items lie.
Ineffective properties, which are known to hinder cognition, include draw-
ing Euler diagrams with extra zones or graphs with large numbers of edge
crossings. The results demonstrate the need for improved techniques that
are more accurate and more effective for end users.

Keywords: Euler diagrams · Graphs · Sets · Networks · Visualization

1 Introduction

A major goal of set and network data visualization is to draw diagrams that
are both accurate and effective for users [1]. This is significant because there
is a substantial amount of set and network data available, arising in various
application areas [1,18,20], including bioinformatics, social networks, cartogra-
phy and software architecture. This paper focuses on the common approach of
using Euler diagrams and graphs in combination [1]. Euler diagrams represent
sets and the graphs represent data items and relationships between them. We
evaluate state-of-the-art techniques to reveal that they can produce layouts with
both inaccurate and ineffective properties, hindering comprehension. No prior
evaluation has compared set and network techniques by exposing the ways in
which they possess inaccurate or ineffective properties. A take-away message
from our research is that improved techniques are necessary for the effective
visualization of sets and networks.
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Section 2 summarises layout properties of Euler diagrams and graphs known
to impact cognition, as well as existing techniques for drawing Euler diagrams
and graphs in combination. A comparative evaluation of state-of-the-art tech-
niques is given in Sect. 3. We conclude and discuss future work in Sect. 4.

Fig. 1. SetNet. Fig. 2. WebCola.

2 Background

There are various layout properties of Euler diagrams and graphs that can lead
to poor comprehension. Automated visualization techniques should aim to avoid
such properties whilst ensuring an accurate visualization of the underlying data.

Euler Diagram Properties. Prior research has led to the identification of
properties of Euler diagrams that impact their effectiveness [3], with an impor-
tant category being five well-formedness properties [15]:

– Unique labels: no two curves have the same label; curve labels that occur more
than once are called non-unique labels. See Fig. 1, drawn using SetNet [16],
where two curves labelled A represent the same set A.

– Connected zones: all of the zones in the diagram are connected components
of the plane; a zone which is not connected is called disconnected.

– Non-concurrent curves: no parts of the curves run along the same path. In
Fig. 2, drawn using WebCola [7], curves A and B share a concurrent segment.

– Only two-points: whenever a point is passed through by curves, it is passed
through at most twice; points that fail this condition are called triple points.

– Simple curves: no curve self-intersects. Self-intersecting curves are non-simple.

Euler diagrams that break a well-formedness property hinder user comprehen-
sion [15] and possess one of the ineffective properties: non-unique labels, dis-
connected zones, concurrent curves, triple points, or non-simple curves. Other
ineffective properties include extra zones and non-circular curves. Diagrams with
extra zones are not well-matched to their semantics [9]. Circles were found to be
a more effective curve shape than ellipses, squares or rectangles [3].

Diagrams are inaccurate when they omit zones that represent non-empty
sets. Clearly, a diagram with omitted zones does not accurately reflect the data.
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Fig. 3. Extra edge-
curve crossings.

Fig. 4. No extra
crossings.

Fig. 5. No extra
crossings.

Fig. 6. A mis-
placed vertex.

In summary, automated Euler diagram layout techniques should avoid the inef-
fective properties of non-unique labels, disconnected zones, concurrent curves,
triple points, non-simple curves, extra zones and non-circular curves, as well as
the inaccurate property of omitted zones.

Graph Properties. Breaking the following properties reduces effectiveness [6]:

– No edge crossings: there are no points where two edges cross.
– No edge bends: edges are drawn as straight lines.
– No edge-vertex intersections: no edge passes through a non-incident vertex.
– No vertex-vertex intersections: there are no overlapping vertices.

That is, automated graph layout techniques should avoid the ineffective proper-
ties of edge crossings and edge bends and the inaccurate properties of edge-vertex
intersections (where non-incidence is required) and vertex-vertex intersections
(which could appear as a single vertex).

Further Properties. Combining Euler diagrams with graphs gives rise to fur-
ther properties of interest:

– No extra edge-curve crossings: no graph edge passes through more curve seg-
ments than necessary.

– Vertices in the correct zone: no graph vertex lies on a curve or outside of the
zone to which it belongs (Fig. 6).

Graph edges connect vertices placed in Euler diagram zones. When vertices
are in different zones, edges that connect them necessarily pass through some
Euler diagram curves. Extra crossings between graph edges and the underlying
diagram can lead to visual clutter, impairing readability [5]. In Fig. 3, the edges
unnecessarily pass through the curve S; Figs. 4 and 5 redraw the diagram without
the extra crossings. In addition, when vertices are located in the same zone,
the Gestalt principle of common region [11] indicates that we perceive them as
being grouped together, which should assist with a correct interpretation of the
diagram. Extrapolating from this insight, the more curves passed through by an
edge connecting two vertices may lead to a perception of them having less in
common. In particular, the sets in which the data items, represented by the two
vertices, both lie could be deemed fewer in number.
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Properties and Layout Quality. Summarising the above, visualization tech-
niques should attempt to avoid properties that hinder cognition. Failure to avoid
ineffective properties will give rise to diagrams that are ineffective. In addition,
techniques should not produce diagrams that inaccurately represent the data
from which they are derived. Such diagrams will lead to incorrect deductions
being made about the underlying data.

Existing Techniques. A range of techniques draw combined Euler diagrams
and graphs, including SetNet [16], WebCola [7], Bubble Sets [4], EulerView [19],
Vizster [10] and KelpFusion [13]. A comprehensive overview of these and other
techniques is available in [1]. Our evaluation, in Sect. 3, focuses on SetNet, Web-
Cola and Bubble Sets; justification for selecting these techniques is also provided
in Sect. 3.

Fig. 7. Bubble sets.

SetNet [16] often produces diagrams with the ineffective property of non-
unique labels, as in Fig. 1. WebCola [7] lays out the graph using a force-directed
approach and then fits rectangles around the vertices. The rectangles attempt
to have the smallest width and height needed to enclose their set members.
This leads to diagrams with curve concurrency, as in Fig. 2 between A and B.
Bubble Sets [4] routes curves around an already drawn graph. The graph is drawn
first, independently of the curves, so Bubble Sets typically avoids ineffective
graph properties. However, Fig. 7 allows us to observe that the graph layout
can lead to convoluted curves. When routing the curves, Bubble Sets attempts
to exclude non-set members within the curves, however this is not guaranteed.
Hence, some visualizations are inaccurate. It is not possible for any technique
to always accurately visualize the data and avoid all undesirable properties [8].
Our evaluation sets out to reveal the extent to which SetNet, Bubble Sets and
WebCola produce diagrams with ineffective or inaccurate properties.

3 Evaluation: Inaccurate and Ineffective Properties

We selected techniques for our evaluation such that (a) they drew combined
Euler diagrams and graphs, (b) the software was freely available, and (c) they
could theoretically visualize any finite collection of sets and associated network,
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even though the implementation may fail. Bubble Sets [4], SetNet [16] and Web-
Cola [7] were the techniques that met these criteria. All the diagrams used in
our study are available at https://github.com/AlmasB/D2020 and are marked
to show where property violations occurred. The software implementations use
different rendering details, such as vertex sizes, and different heuristics when
producing algorithms from underlying theory. Note that such implementation
decisions may impact the results presented in this paper. For example, changing
the graph algorithm used for Bubble Sets, or the vertex sizes in WebCola, will
likely affect the occurrences of inaccurate and ineffective properties.

3.1 Data for Visualization

In order to evaluate the techniques, we needed data for visualization. We used
SNAP Twitter ego-networks [12] where data sets had up to 68413 vertices,
1685163 edges and 99 sets, which is too complex for the practical evaluation
of visualization tools. The size of the data sets needed to be controlled and, as
such, we appealed to existing evaluations to inform us of appropriate numbers
of sets, vertices and edges. Consistent with previous studies [14,15], we used a
maximum of 8 sets. We selected the minimum number of sets to be two since,
unlike in set-only data, a variety of combined Euler diagrams and graphs can
be produced with two sets. Studies involving graphs typically had around 10 to
100 vertices and 40 to 170 edges [13,14,16,17]. We selected data sets with 2, 4,
6, or 8 sets, 10 to 100 vertices, and 40 to 170 edges, to give controlled variety.

We then identified SNAP data with required numbers of sets and reduced the
number of vertices and edges within them, to manage the network complexity.
Firstly, we removed vertices with degree 0 as they do not materially affect any of
the properties being evaluated. Secondly, we removed any multiple edges since,
when drawn, the associated edges would just be on top of each other, and we
also removed loops. Thirdly, we randomly removed vertices using an iterative
approach, whilst ensuring that if this created any degree 0 vertices, they would
be removed also until the number of vertices was in the given bounds. This
process left us with a set of reduced SNAP data sets, from which we randomly
selected a sample for our evaluation.

We explain how we selected reduced-complexity data sets for the 2-set case;
the other cases are similar. We computed the median numbers of zones, vertices
and edges. These medians were used to sub-divide the 2-set data sets into eight
groups: a low (i.e. below the median) number of zones, vertices and edges; those
with a low number of zones and vertices, but a high number of edges; those with
a low number of zones and edges, but a high number of vertices; and so forth.
From each of these eight sub-divisions, we randomly selected one data set for
visualization, giving eight 2-set data sets. As we are visualizing 2-, 4-, 6-, and
8-set data sets, this gave us 32 data sets. In one case, SetNet could not draw
the selected data set. This data set had 8 sets, a high number of zones, a low
number of vertices and a high number of edges. No other SNAP data set could
be reduced to match the given combination of the number of sets, zones, vertices
and edges. The evaluation we present is based on the remaining 31 data sets.

https://github.com/AlmasB/D2020
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3.2 Statistical Analysis Results

For each technique and for each data set, we counted the number of times each
undesirable property occurred in the produced visualization. Our goal is to rank
the techniques, for each undesirable property, to give an indication of relative
effectiveness. For each technique, each undesirable property either (a) cannot
be present, since the theoretical underpinnings of the technique ensured that it
would not be, or (b) can be present. In category (a), the technique is necessarily
superior, for that property, than any technique in category (b). For those in
category (b), statistical analysis was performed on the counts in order to derive
further ranking information. Given that the counts are not normally distributed
and that the same data sets were used across four techniques, a non-parametric
Friedman test was applied to rank at least three techniques and a Wilcoxon
test was applied to rank exactly two techniques. If significant differences were
revealed in the former case, a Nemenyi post-hoc analysis was used to derive a
ranking. Throughout, results are taken to be significant at the 5% level. For
all counts from which the statistical analysis results were obtained, see https://
github.com/AlmasB/D2020. The techniques are abbreviated as follows: SetNet
(SN), Bubble Sets (BS), and WebCola (WC).

Table 1. Means for inaccurate
properties.

Property SetNet Bubble Sets WebCola

Omitted

zones

0 0 0.8

Edge-vertex

intersections

76.2 6.9 213.0

Vertex-vertex

intersections

2.2 0 2.5

Vertices in

incorrect zone

0.9 0.5 2.6

Table 2. Means for ineffective properties.

Property SetNet Bubble Sets WebCola

Non-unique labels 0.5 0 0

Disconnected zones 0 8.5 0.2

Concurrent curves 0 1.0 2.1

Triple points 0 0.7 0.5

Non-simple curves 0 0 0

Non-circular curves 0 4.9 4.9

Extra zones 0.1 1.9 0.5

Edge crossings 1236.8 588.4 1153.6

Extra edge-curve crossings 34.8 224.6 143.0

Evaluation of Inaccurate Properties. Table 1 summarises the mean counts
of the inaccurate properties; the means for category (a) techniques are in bold
and are necessarily 0. Table 3 shows which techniques participated in a statisti-
cal test, the p-value associated with the test and the derived post-hoc ranking;
A < B means A had significantly fewer inaccuracies, and therefore A is more
accurate than B. Bubble Sets is consistently ranked as most, or jointly most,
accurate. WebCola was ranked as least accurate or jointly least accurate, per-
forming particularly badly for edge-vertex intersections with the mean of 213.0.

Evaluation of Ineffective Properties. Table 2 summarises the mean counts
for the ineffective properties and Table 4 shows the technique rankings; the tech-
niques employed straight line edges, so there were never edge bends. The results

https://github.com/AlmasB/D2020
https://github.com/AlmasB/D2020
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Table 3. The p-values and technique rankings for inaccurate properties.

Property Statistical test p-value Ranking

Omitted zones – N/A BS = SN < WC

Edge-vert. inter. SN, BS, WC <0.001 BS < SN < WC

Vert.-vert. inter. SN, BS, WC 0.040 BS = SN = WC

Vert. incorrect zone SN, BS, WC 0.035 BS < WC, BS = SN, SN = WC

Table 4. The p-values and technique rankings for ineffective properties.

Property Statistical test p-value Ranking

Non-unique labels – N/A BS = WC < SN

Disconnected zones BS, WC 0.001 SN < WC < BS

Concurrent curves BS, WC 0.001 SN < BS < WC

Triple points BS, WC 0.255 SN < BS = WC

Non-simple curves – N/A SN = BS = WC

Non-circular curves – N/A SN < BS = WC

Extra zones SN, BS, WC 0.003 SN < BS, SN = WC, BS = WC

No edge crossings SN, BS, WC <0.001 BS < SN = WC

No extra edge-curve crossings SN, BS, WC <0.001 SN < BS = WC

here reveal there is no clear cut ‘least ineffective’ technique, as measured by these
property counts. However, WebCola still fairs particularly poorly, being ranked
worst or joint worst for seven out of the nine properties. SetNet is ranking best
or joint best for seven out of the nine properties. Lastly, Bubble Sets is ranked
best or joint best three times and worst or joint worst on five occasions. A further
point of note is that non-unique labels and disconnected zones are particularly
undesirable ineffective properties [15] and should be avoided where possible, even
if that means other properties are exhibited. Bubble Sets was ranked (joint) best
for non-unique labels but the worst for disconnected zones. By contrast, SetNet
was ranked worst for non-unique labels and best for disconnected zones.

4 Conclusion and Future Work

A major problem when producing visualizations of data is finding an accurate
and effective layout. A lot of attempts have been made to draw combined Euler
diagrams and graphs but the state-of-the-art has not typically attempted to
avoid properties that are empirically justified to be ineffective. Moreover, exist-
ing techniques can also produce inaccurate visualizations, thus not giving a true
representation of data. There are three key take-away messages from our evalu-
ation. Firstly, WebCola performed particularly badly: it is, compared to SetNet
and Bubble Sets, particularly inaccurate and ineffective. Focusing on accuracy,
Bubble Sets and SetNet were on par, except for edge-vertex intersections where
Bubble Sets was superior. Regarding ineffective properties, SetNet is mostly
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superior to Bubble Sets. Our suggestion, based on these results, is that Bubble
Sets should be the technique of choice whenever visualization accuracy is more
important than effectiveness.

An important factor to consider is that the evaluated properties act as a proxy
to diagram effectiveness. We should be mindful that avoiding inaccurate and
ineffective properties does not necessarily ensure effectiveness. Our evaluation
has focused on countable properties, yet there exist other properties, which relate
to aesthetics, that can also impact effectiveness [2]. As it currently stands, the
aesthetics of diagrams are not readily measurable and, so, were not part of our
evaluation. In the future, empirical studies involving human participants are
needed.
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Abstract. Causal diagrams provide a graphical formalism indicating
how statistical models can be used to study causal processes. Despite the
extensive research on the efficacy of aesthetic graphic layouts, the causal
inference domain has not benefited from the results of this research.
In this paper, we investigate the performance of graph visualisations
for supporting users’ understanding of causal graphs. Two studies were
conducted to compare graph visualisations for understanding causation
and identifying confounding variables in a causal graph. The first study
results suggest that while adjacency matrix layouts are better for under-
standing direct causation, node-link diagrams are better for understand-
ing mediated causation along causal paths. The second study revealed
that node-link layouts, and in particular layouts created by a radial algo-
rithm, are more effective for identifying confounder and collider variables.

Keywords: Causal inference · Causal graph · Graph layout

1 Introduction

Causal inference, used in areas as diverse as employment discrimination and
biochemical reactions, is the study of whether a putative cause is responsible
for an effect [7,10]. A causal system can be expressed as a set of graphical
objects: nodes, representing variables, with possible causal relationships from
one to another represented by directed edges [24].

Causal diagrams provide specific graphical structures that facilitate the iden-
tification of specific causal model properties (see Fig. 1). In a causal graph, vari-
ables are represented with nodes, and statistical dependance, (i.e. causal rela-
tionships) between two variables with edges. A causal path is defined by an
exposure, an outcome, and the set of all nodes and directed edges that connect
the exposure to the outcome. Figure 2 shows different causal paths from the
exposure node A to the outcome node D. If a node on a causal path is caused by
two other nodes on that same path, it is known within the social science com-
munity as a collider; the effect of this is that the statistical dependence between
c© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 332–347, 2020.
https://doi.org/10.1007/978-3-030-54249-8_26
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Exposure to fast food 
advertising in sports

Participation 
in sports

Kids asking for 
fast food

Fund raising with junk food/
 fast food sponsorships

Influence of  
advertising

Fast food
consumption

Parents purchasing
fast food

Marketing of  processed 
foods to kids

Advertising/Sponsorship of
fast and processed food

Culture of  food 
as a reward

Adults buying 
junk / processed foods

Fig. 1. A causal path from the community based systems diagram of obesity causes
created by health and well being experts [1]. In the causal path between the nodes
Participation in sports and Adults buying junk/processed foods, Kids asking for food is
a collider and Fund raising with junk food/fast food sponsorships is a confounder.

the two other nodes may be weakened. If a node on a causal path influences
multiple other nodes on the same path, it creates a confounding bias: thus “back
door paths”, with such nodes are called confounders. These graphical structures
give information on the influence of an external intervention on an outcome: in
the first case, influencing A will lead to a corresponding change in D, whereas in
the latter two cases, changing A may not cause a change in D. Identifying such
graphical structures on small graphs is straightforward, however causal models
and their graphical representation can be sophisticated and challenging to work
with [13]. Figure 1 shows an example of both a confounder and a collider.

Despite the prior extensive research on the relative usefulness of different
graph layouts for a variety of tasks, the causal inference domain has not benefited
from graph layout research. This avenue of research has the potential to have a
significant impact on the way in which causal graphs are used in applied research
and decision-making, for example in the formulation of health policy.

In this paper, we investigate how different graph visualisations can support
causal reasoning. To the best of our knowledge, no other research has investigated
this. In the first study, we investigate which layouts are most appropriate for

A B C D

A C D

A B

C

D

B

Fig. 2. Causal paths between A and D. Top: directed causal path. Center: causal
backdoor path, B is a confounder on the path. Bottom: causal blocked path, C is a
collider on the path.
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studying causal paths and understanding causal relationships. The results show
that adjacency matrix layouts yielded better performance for reasoning on direct
causation and node-link layouts for reasoning on mediated causation. The second
study investigated which node-link layout methods facilitate the identification
of particular causal visual structures in graphs. Participants performed the best
with radial layouts.

2 Related Work

This research aims to improve the visual approaches used in applied causal
inference domains. It builds upon previous research in statistical causal inference
using graphs and on research on visualising relationships in data.

2.1 Visualising Causal Inference

Causal graphs are networks that represent causation or the influence between
properties of a domain. For example, the obesity system map represents influ-
ences such as education, stress or purchasing power over obesity [1,13]. Causation
can be modelled quantitatively (the relationships between the entities are for-
malised in terms of conditional probability distributions derived from empirical
data) or qualitatively (based on personal or expert opinion) [18].

Causal graphs formalize one’s understanding of causal influences [24]. In
population health, they have supported researchers to understand the associ-
ations between social policy, family characteristics, genetics, and foetal alcohol
spectrum disorder [23]. While numerical statistical models can support causal
inference, graphical approaches to causal problems have had a profound influ-
ence on the ways in which statistical models have been (and should correctly
be) constructed [30], as well as providing a more engaging method of presenting
evidence and eliciting opinions around causal questions with non-statistical audi-
ences. Sophisticated interactive visualization applications exist to support causal
inference using quantitative causal models represented as graphs [7,27,30,32],
e.g. Tetrad [27], Dagitty [30], Visual Causal Analyst (VCA) [32].

2.2 Representing a Graph

The pioneering research in the graphical representation of causes was Wright’s
method in the field of animal genetics [34], formalising the influence of plau-
sible causes on variables in a system combining mathematical and graphical
modelling. The graphical model provides a causal overview as a directed acyclic
graph where nodes represent causal variables and directed edges the causal rela-
tionships between variables. While later research contributed towards better and
mathematically proven and graphical methodologies to measure causality [24],
no empirical study has been conducted to evaluate the understandability of such
graphical representations.



Visual Causality 335

In contrast, the layout of directed graphs has been studied extensively in the
graph drawing and information visualization research community [2,14,20], and
several studies have found that the way in which a graph is laid out plays an
important role in revealing the underlying meaning and structure of graphs [2].
For example, Purchase et al.’s study on the influence of aesthetic graphic layout
criteria such as edge bending, edge crossings, or edge angle between nodes on
graph readability, showed that edge crossings affect the graph reading most [25].
Another study looking at eye movements when reading graphs revealed that
edge length may also affect performance [2].

The semantic domain of graphs should also be considered when designing
or selecting layout [22,25]. For instance, McGrath et al. found that participants
perceived differently the ‘prominence’ and the ‘bridging’ properties of a social
network depending on the position of the nodes in undirected graphs [22], con-
cluding that, given a specific domain, the best representation may depend on
the type and the valence of the information one wants to convey. Causal dia-
grams are semantically rich as they can communicate probabilistic independence
or show confounding biases, and no research to date has investigated the best
graph layout to support the understanding of causal diagrams.

As an alternative directed graph representation, adjacency matrices show
relationships between nodes in a binary matrix, with target and source nodes of
each edge indicated in the matrix cells (Fig. 3).

Interaction with adjacency matrices has been found to be worse than with
node-link diagrams [11,12]. Ghoniem et al. showed that participants performed
better in several topographic graph reading tasks using matrices [12]. The task
of finding paths between two nodes was better using node-link diagrams, though
this performance decreased as the size of the graphs increased. Keller et al.
generalised Ghoniem et al’s finding [19], suggesting that the suitability of the
representation may depend on the task performed and its semantic nature [19].

Information visualisation systems can combine adjacency matrix with node-
link layouts; for example, MatrixExplorer offers a way to switch from matrix to
node-link to take advantage of both representations [15]. Both representations
can be used to depict different types of relationships. NodeTrix visualises social
networks and performs very specific tasks relating to social sciences: the matrix
layout represents intra-community relationships while node-links layout is used
to depict inter-community relationships [16].

2.3 Comparing Layouts for Causal Inference

The most efficient layouts for causal inference may depend upon nature of the
causal reasoning tasks. Since node-link diagrams are the most common graphical
representation for causal inference, layouts implementing the best for graph read-
ing, such as minimisation of edges crossing or orthogonality [25], could improve
causal reasoning task performance. Adjacency matrices have been shown to out-
perform node-link diagrams for many abstract related tasks but such studies
have not been conducted on a semantically-rich directed graphs like those used
in causal reasoning [12]. We report on two studies which aim to compare graph
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Fig. 3. Types of layout in the study. The top line shows some layouts used to investigate
causation intelligibility. From left to right, the graph layouts are: parallel-series (PL),
spring (SL), hierarchical (HL) and matrix out-degrees descending order (MODL). The
bottom line shows some layouts to investigate the identification of causal structures.
From left to right, the graph layouts are: spring (SL), hierachical (HL) and radial (RL).
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layouts for causal inference. The first study investigates the best visualisation
method for understanding causal paths in causal graphs; the second study com-
pares the use of different graph layouts in identifying causal structures.

3 Investigating Causation Intelligibility

We investigated task performance when participants explore a causal graph when
answering questions about its causal path relationships, looking at three common
tasks related to causal inference: understanding direct causation, understanding
mediated causation (i.e. indirect causation), and identifying causal structures.

Several node-link layouts have been proposed in the graph drawing commu-
nity: we selected those we believed would improve participants’ performance [8]
(Fig. 3). The hierarchical layout emphasises structures in graphs by following reg-
ular patterns that can be easily followed by users’ eyes [29]: including drawing
direct connected nodes close to each other, limiting the number of edge crossings,
and an orthogonal layout. ReactionFlow, a tool to support causal inference in
biology, inspired the choice of the parallel-series directed graphs layout, popular
for visualising flows in data [7]. This layout combines several graphs by merging
the common roots into a single root when possible with all the paths parallel to
each other, minimising edge crossings and bending, and following an orthogonal
form shown to be effective for understanding abstract graphs [2,4,25]. In spring
layouts, physical repulsive forces result in nodes with weak ties being pulled away
from the others. Since as confounders and colliders on the graph are attached
to a causal path by at least two edges going to the same direction (Fig. 1), this
type of layout might create highly visible clusters around such highly connected
nodes.

Several reordering techniques for highlighting data of interest through visual
patterns in adjacency matrices have been proposed [3,21]. Alphabetic layouts
have been found to outperform node-link layouts for tasks related to reading
undirected graphs larger than 20 nodes [12], and can improve graph reading
performance especially for users without prior knowledge of a domain [19].
Two other matrix layouts were added: out-degrees and in-degrees descending
arrangement, with the expectation that they could help identify colliders and
confounders. The out-degrees (resp. in-degrees) descending arrangement sorts
the number of the edges going out from (resp. going towards) each vertex in a
descending order.

4 Investigating the Effect of Causal Layouts

We designed 3 datasets each from one of these themes: drinking issues, examina-
tions, and health related gym behaviour; for each, we created graphs of different
sizes: 10, 20 and 30 nodes. Each graph contains several causal paths, where a
causal path is a path through the graph from an exposure node (e.g. teenage
drinking), through mediated nodes (e.g. alcohol dependency, depression, liver
failure) to an outcome node (e.g. death from alcoholism). All causal paths in
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the graphs included 8 nodes and 7 edges. We had 6 presentation conditions,
3 node-link drawings (spring, hierarchical, parallel) and 3 matrix presentations
(alphabetic, in-degree, out-degree).

Two types of question were used: direct causation on a path (e.g. “What
factor is causing factor X?”), and mediated causation along longer paths (“Is
this causal path correct?”). It has been shown that following mediated paths in
applied causal contexts is not trivial [5]. One question of each type was associated
to each possible graph (3 sizes × 6 presentations) that being 36 unique tasks.

We anticipated that node-link layouts would result in better performance
for understanding causation (H1) since matrix layouts do not perform well for
following paths in abstract undirected graphs of over 30 nodes [12]. In particular,
hierarchical layout would be the best layout (H2) as it has been proven to be
successful for abstract graphs [25].

4.1 Experimental Design

The yEd Graph Editor was used to create the graphs and the layouts with respect
to the three chosen node-link layout algorithms [35]: hierarchical, parallel-series,
and spring (yEd’s organic force-directed layout). The adjacency matrices were
arranged with alphabetic, in-degrees and out-degrees descending orders (Fig. 3).

4.2 Procedure

The experiment was conducted using a custom-built experimental software on
a laptop computer, in the presence of the experimenter. The training materials
(written documentation and video) presented to participants had been piloted
with several people in advance to ensure that they adequately explained the task
and did not include obvious biases. These materials used a graph of only five
nodes and four edges to explain the concept of causality between variables and
how it is depicted in both node-link and graphical form. They were then invited
to ask for any clarification.

For each trial, the stimulus consisted in displaying a layout among the 18
available and one of the two associated questions, together with multiple choice
options for answering the question. For each question, 4 potential answers were
suggested to the participants. Participants were told that the correct answer
could always be found in the graph and that they should not need to resort to
guessing. The plausible answers were presented through a radio-button list to
guarantee a unique answer from the participants. The trial was over when the
participant selected an answer by clicking on a radio button.

The experiment started with 6 training questions, which were discarded from
the dataset, to help them familiarise themselves with the system and the task,
and to mitigate any learning effect. The experimental phase comprised 36 trials
with stimuli ordered by a partial Latin square design to avoid any presenta-
tion order effect. Since we wanted to emulate a reader’s process of attempting
to understand a causal graph as a whole, participants had to visually scan the
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drawing to identify the nodes of interest before responding. At the end partici-
pants were given a questionnaire to assess subjective preferences. Each evaluation
session lasted for about 60 min.

The independent variables were layout type, graph size and question type.
The dependent variables were response time and answer accuracy. The response
time was measured between the stimulus appearance and the validation of an
answer, including the duration of the cognitive process of understanding the
causal question and the localisation of the nodes of interest. Thirty volunteers
took part in the study. Participants were between 20 and 29 years old (Mdn =
22.57, SD = 2.14) and 6 were male. They were all undergraduate students with
no prior experience working with graphs.

4.3 Results

We collected 1080 trials (30 × 36), with success rate of 98.80%. We removed the
data from 12 outlying trials, when the distance of the sample from the mean
response time was three times greater than a standard deviation (i.e. greater
than 86 s). To accommodate any non-parametric nature of data distribution, an
aligned rank transform (ART) was performed before further analysis [17,33].

Table 1. Median response time in seconds by graph layout and size for direct and
mediated causal inference. S denotes small graphs, M medium graphs and L large
graphs. HL is hierarchical, SL is spring and PL is parallel layout. MAL is matrix
alphabetic, MIDL is matrix in-degree and MODL matrix out-degree ordering layout.

Size Direct causation Mediated causation

HL SL PL MAL MIDL MODL HL SL PL MAL MIDL MODL

S Median 8.81 11.36 13.19 10.57 9.97 8.42 26.17 16.54 20.35 13.64 21.96 26.22

IQR 4.75 3.20 4.95 5.20 4.88 4.01 7.83 6.99 8.6 11.56 14.95 13.33

M Median 13.54 12.85 12.07 12.46 13.88 11.06 12.49 37.19 22.72 19.01 33.93 23.92

IQR 8.53 5.72 6.54 10.11 5.18 4.60 6.21 12.93 11.42 10.15 24.65 17.91

L Median 15.45 16.94 26.32 14.06 13.59 13.30 25.83 45.89 27.79 44.46 42.13 44.83

IQR 12.39 8.13 8.73 6.7 4.59 7.23 16.84 26.70 37.37 16.46 18.10 15.13

The two questions asked (direct causation between two nodes, medicated
causation along a path) are sufficiently different for separate analyses to be
appropriate.

Direct Causation. The median response time was the fastest for MODL for small,
medium and large graphs. The slowest response times were found for PL with
small and large, and for MIDL for medium graphs (Table 1 and Fig. 4).

A two-way ANOVA on the aligned rank transformed data revealed a sig-
nificant main effect with layout (F5,492 = 20.21, p < .0001) and size (F2,492 =
105.44, p < .0001) factors, and an interaction effect for layout × size (F10,492 =
9.91, p < .0001). A Post hoc Tukey’s HSD test found all the layouts significantly
faster than PL (all t(491) > 5.91, p < .0001), and MODL significantly faster
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than SL (t(491) = 3.30, p < .001) and MAL (t(491) = 3.05, p < .05). Exploring
small graphs was significantly faster than medium (t(493) = 5.48, p < .001) and
large (t(493) = 14.39, p < .001) graphs; Exploring medium faster than large
graphs (t(493) = 8.92, p < .001). Post hoc pairwise comparisons with Holm-
Bonferroni correction revealed that all the interactions of all the layouts with
PL were significant for small and large (all χ2 > 33.58, p < .0001), and for
medium and large graphs (all χ2 > 26.06, p < .0001).

Mediated Causation. The fastest response time was found for MAL with small
graphs, for HL with medium and large graphs. It was the slowest for MODL
with small graphs and for SL with medium and large graphs. The results are
shown in Table 1 and in Fig. 5.

An ANOVA on the align rank transformed data showed a significant main
effect for layout (F5,482 = 19.07, p < .0001) and size (F2,482 = 82.13, p < .0001)
and a significant effect for interaction of both (F10,482 = 12.64, p < .0001).
A Tukey’s Post hoc pairwise comparison found MAL significantly faster than
HL, MIDL, SL and MODL (all t(482) > 3.37, p < .05). HL was significantly
faster than MIDL, SL, and MODL (all t(482) > 7.02, p < .0001) and PL faster
than MIDL, SL and MODL (all t(511) > 4.54, p < .001). Exploring small
graphs was significantly faster than medium (t(482) = 4.69, p < .0001) and
large (t(482) = 12.68, p < .0001) graphs, and exploring medium faster than large
(t(481) = 8.08, p < .0001). Post hoc pairwise comparison of factor interactions
using Holm-Bonferroni correction showed significant differences between medium
and large graphs for MAL with MIDL, SL and PL (all χ2 > 12.80, p < .01). It
was also the case for MODL with MIDL, SL and PL (all χ2 > 12.86, p < .01).
The differences between small and large graphs were significant for HL with
MAL, MIDL, MODL and SL (all χ2 > 12.22, p < .05), for MAL with PL
(χ218.81, p < .001), and for SL with MIDL and PL (both χ2 > 9.70, p < .05).
There were significant differences between medium and large graphs for SL with
HL, MAL, MODL and PL (all χ2 > 16.54, p < .005), for HL and MAL, MIDL
and PL (all χ2 > 18.59, p < .005), and for MODL with MIDL (χ211.53, p < .05).
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Participants completed a questionnaire investigating the relative easiness of
working with node-link or matrix layouts on a scale from 0 to 5. A Mann-
Whitney test indicated that the median score for node-link layout (Mdn = 3,
IQR = 2) was significantly greater than the score for matrix layout (Mdn = 2,
IQR = 1.75, U = 234.5, p < 0.001). 80% of the participants preferred to work
with node-link diagrams over matrices.

4.4 Discussion

H1 was not supported: node-link diagrams were not the fastest. PL and SL exhib-
ited the worst performance for understanding direct and mediated causation in
large graphs. H2 was partially supported as HL gave the best performance for
understanding mediated causation but only with medium and large graphs.

The results indicated an interesting trend when comparing layout perfor-
mance with regard to graph sizes. Some layouts that were slower for small graphs
were faster with medium or large graphs. MIDL became significantly faster than
some node-link layouts with small and large graphs for understanding direct
causation. However, the participants did not notice this performance boost with
matrix layouts; subjective ratings show preference for node-link layouts.

Performance also differed for direct and mediated causal reasoning. MODL
showed the best performance for direct causal reasoning whatever the graph size,
outperforming all node-link layouts. Finding a direct cause was easier on matrix
layouts than on node-link layouts, contradicting H2. While labels are scattered
around the plane in node-link layouts, they are arranged following a single hori-
zontal (columns) or vertical (rows) line in matrix layouts. Furthermore, the fast
access to highly connected nodes supported participants in highlighting causal
relationships, and arranging the row and the column headers with alphabetic
order helps users to locate the target nodes and its causal predecessor or succes-
sor even faster. For small and large graphs, the parallel-series layout displayed
the worst performance, showing that even if paths are explicitly drawn, not all
the node-link layouts are appropriate for causal inference. This is an important
finding as this layout is currently used in existing causal inference software [7].

For mediated causation reasoning, as graph sizes increased, the overall per-
formance got worse, but the worsening in performance for each layout differed.
HL was the fastest for medium and for large graphs, making it a good option for
reasoning about mediated causation and partially validating H2. While it seems
the alphabetic matrix layout was the most efficient for small graphs, node-link
based layouts were faster for medium and large graphs. Because matrix layouts
require users to perform saccades from row to column headers to follow paths,
analysing long paths were more challenging. This was accentuated by the fact
that, depending on the arrangement of the rows and the columns, two consec-
utive nodes’ labels are unlikely to be located next to each other in the matrix
headers. These results are in line with the findings for syntactic graphs [12,28]
and connectivity models [19].

The results suggest MIDL may be promising for causal reasoning in even
larger graphs than in this study; further research is needed to confirm this.
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5 Identifying Causal Structures

The first study focused on understanding which layout best supports following
directed causal paths. However, the presence of colliders or confounders can
affect causal interpretation, conflicting with intuition. Highlighting these causal
processes effectively is crucial for evidence-informed decision making.

5.1 Experimental Design

Two sets of questions were designed: investigating the direct identification of con-
founders and colliders relative to a path, and identifying these causal structures
by exploring the entire graph.

After being presented with a highlighted pair of one node and one path in a
graph, direct identification question asked whether the node was a collider or a
confounder with respect to the path, or neither. For the exploratory identification
question, a path of a graph was highlighted and participants were asked to
enumerate all the colliders and confounders related to the path.

The hierarchical (HL) and spring (SL) layouts from the previous study were
retained, but the parallel-series layout (PL) was discarded because of its weak
performance in the first study. A radial tree layout (RL, also created by yEd,
as noted in Sect. 4.1) was added to the conditions as this layout is widely used
to depict relationships among diverse entities [9]. An adjacency matrix layout
was also included, with rows and columns ordered by the type of the nodes:
the nodes at the start of the causal paths were used as first indices, while the
nodes at the end of the causal paths were used as the last indices. This was so as
to gather meaningful causal information in the centre of the layout as much as
possible. Only two graph sizes were used (medium: 20 nodes, large: 40 nodes).
Small graphs were discarded as we thought the task would be too easy given the
results of the first study. For each domain (drinking issues, exams, and health
related gym behaviour), 6 new graphs were generated. Each causal path in the
graphs included 8 nodes and 7 edges.

5.2 Procedure

Participants were introduced to causal relationships and their representation
with node-link and matrix layouts. Then, the experimenter explained to the
participants the collider and confounder concepts and what these structures
look like on node-link and matrix diagrams: a collider on a causal path is a node
resulting of a common effect of two other nodes on this same path; a confounder
on a causal path is a node that influences multiple other variables on this same
path (Fig. 1). Before starting, the participants could practice with two node-link
and two matrix layout examples to ensure they had correctly understood the
concepts and the instructions.

For each trial, the stimulus consisted in displaying a random question and
the associated layout. For a direct identification task, participants had to select
whether the node was a “collider”, “confounder”, or “none”. For an exploration
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Table 2. Mean success rate in % and median reaction time in seconds for direct
identification of graphical causal structures.

Success rate Reaction time

HL SL RL ML HL SL RL ML

M Mean 92.13 92.22 87.64 65.17 Median 19.52 21.76 21.78 31.76

SD 0.27 0.28 0.33 0.48 IQR 12.10 18.63 16.44 17.02

L Mean 85.39 93.33 93.26 81.93 Median 21.34 17.50 20.79 33.00

SD 0.35 0.25 0.25 0.39 IQR 16.95 0.25 18.71 18.72

task, they had to select the only four collider or confounder nodes with respect
to the highlighted path among a list of 10 candidates. A partial Latin square
was used to avoid any ordering effect. Each evaluation session lasted for about
60 min. The apparatus from the previous study was used.

The independent variables of this study were layout type, graph size and
question type. The dependent variables were the response time, which was mea-
sured between the stimulus appearance and the validation of an answer, and the
answer accuracy. A total of 540 answers were collected. Thirty volunteers took
part to the study. Participants were between 20 and 27 years old (M = 22.57,
SD = 2.14). All of them were students and 14 were female, and undergraduate
students with no prior knowledge of graphs.

5.3 Results

The data were split according to the type of question (direct identification or
exploration).

Direct identification of causal structures. We discarded 12 samples from our data
for the direct identification task and 24 samples for the graph exploration task
because their distance to the mean response time was greater than three times
the standard deviation (i.e. greater than 224 s).

The success rate varied between 65.17% (ML) and 92.22% (SL) for medium
sized graphs and between 81.93% (ML) and 93.33% (SL) for large sized graphs
(Table 2). A repeated-measures ANOVA on the regression model found a signif-
icant difference for layouts (F3,703 = 31.43, p < .001). Post hoc Tukey’s pairwise
comparisons showed that ML was significantly worse than all the other layouts
(all p < .001). Median response times for the direct identification task shown in
ranged from 19.52 s (HL) to 31.76 s (ML) for medium graphs and from 21.34 s
(HL) to 33.00 s (ML) for large graphs (Table 2). A two-way ANOVA on the ART
data revealed a significant effect of the layout (F3,203 = 31.75, p < 0.001). Post
hoc Tukey’s pairwise comparisons found ML significantly slower than all the
other layouts (p < 0.001).

Exploratory Identification of Causal Structures. We discarded all the matrix data,
since participants’ performance in this condition was extremely poor, and no
meaningful comparisons could be made. The success rate for finding colliders
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was 87.78% for medium graphs and 87.64% for large graphs, and 90% for con-
founders in medium graphs and 86.04% in large graphs (Table 3). A repeated
measures ANOVA on the regression model showed significant effect of the lay-
out (F2,527=6.06, p < 0.05) for finding colliders. Post hoc Tukey HSD pairwise
comparisons found SL significantly better than HL (p < .05). A significant effect
of the size (F1,529 = 8.07, p < .01) and the layout (F = 18.95, p < .001) was
found for finding confounders. Post hoc Tukey HSD pairwise comparisons found
SL and RL significantly better than HL (both p < .01) and medium signifi-
cantly better than large graphs (p < .01). The median response time for finding
all the colliders and the confounders was 63.40 s (IQR = 47.28) for SL, 72.94 s
(IQR = 39.08) for HL, and 82.35 s (IQR = 44.04) for RL in medium graphs.
It reached 70.19 s (IQR = 32.40) for RL, 84.40 s (IQR = 50.71) for HL and
83.11 s (IQR = 42.60) for SL in large graphs. A two-way ANOVA on the ART
data revealed a significant effect of size (F1,145 = 13.62, p < .001) and of the
interaction between both factors (F2,145 = 13.92, p < .0001). Post hoc Tukey’s
pairwise comparisons found exploring medium graphs significantly faster than
large graphs (p < 0.001). Post hoc pairwise comparison using Holm-Bonferroni
correction based on the interaction revealed that while RL was slower than HL
(χ2 = 12.30, p < .001) and SL (χ2 = 26.71, p < .0001) for medium graphs, it
became faster than both for large graphs.

5.4 Discussion

The results for the matrix layout were so poor in supporting participants’ identi-
fication of collider or confounder structures in graphs that we omitted them from
the data analysis for both questions. This is interesting in itself, because not only
were MIDL and MODL found to be promising for reasoning causal graphs in
our first study, but also previous research has advocated for the usage of matrix
layouts for reading nodes’ connectivity in graphs of 20 nodes and more [12]. One
possible reason may be our participants’ unfamiliarity with the matrix represen-
tation, or the fact that there is no obvious visual pattern that clearly highlights
the existence of confounders or colliders in matrices.

When exploring the graph to find confounders and colliders, HL exhibited
the worst performance, despite being one of the most praised layouts for its
aesthetic characteristics [6]. While SL and RL manifested similar accuracy for
finding causal structures in graphs, RL performed better as the number of nodes

Table 3. Mean success rate in % for exploratory identification of causal structures in
graphs. SD values are indicated in parentheses.

Node type HL medium SL medium RL medium HL large SL large RL large

Colliders 81.11 87.78 82.02 74.71 87.21 87.64

(0.39) (0.33) (0.39) (0.44) (0.33) (0.33)

Confounders 81.11 90.00 87.64 60.92 86.04 83.14

(0.39) (0.30) (0.33) (0.49) (0.35) (0.38)
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increased, becoming faster than both SL and HL with large graphs. This is a
compelling finding as previous research on syntactic graphs has advised the use
of RL over orthogonal layouts. This suggests that RL could better support users
with identifying confounding and colliding processes.

6 General Discussion and Future Work

While HL was the most efficient for understanding causal paths, matrix layouts
were promising. In this context, MAL can improve the understanding of causa-
tion, and in particular, localisation on the nodes of interest. Note that MIDL
performance also increased with graph size. MIDL and MODL give fast access
to highly connected nodes—the nodes likely to be of interest in the causal infer-
ence process. However, these matrix layouts did not support the identification
of causal structures which are likely to be highly connected. This may have
been caused by the lack of expertise of our participants in causal inference and
information visualisation. Further research is needed to understand better the
potential of such layouts with directed graphs for causal inference in applied
settings and especially with expert users.

None of the matrix layouts presented here were suitable for identifying causal
structures. However, since row and column permutations affect readability, more
research is needed to identify further permutations that might highlight causal
relationships and similarities [11].

For node-link diagrams, we find that the RL node-link layout was the most
efficient layout for identifying causal structures, but following causal graphs and
identifying relevant structures to identify colliders and confounders would require
different layouts. Another research direction might be to investigate how hybrid
methods or animation could support users for juxtaposing or switching from one
layout to another [14,31].

Finally, we only looked at a limited set of causal structures, and limited
path lengths; we thus have no way of knowing how layout features will operate
under more complex and diverse circumstances that are likely to arise in applied
settings. This limitation makes further research based on increasingly complex
causal structures all the more important.

7 Conclusion

This is the first empirical study of how visual aesthetics can influence how non-
expert viewers interpret causal graphs. Our findings suggest that existing prin-
ciples for general graph readability are insufficient to depict causal graphs effec-
tively. First, causal graphs have structures with a specific interpretation that do
not appear in graphs used in other domains. Second, the domain problem is a
compound sequence of basic visual analytic tasks (e.g. search the plane, identify
connections, infer direction of connections). It appears that different layouts are
faster for each basic task, and that there are unexpected relationships between
the compound tasks and features of the layout.



346 D.-B. Vo et al.

Our findings suggest that matrix layouts are the best layouts to investigate
direct causal relationships, with matrix-out-degree the fastest, while node-link
diagrams with hierarchical layout is the most promising for mediated causation.
For identifying causal structures, radial was the most promising layout, with
its performance increasing with the size of graphs. This suggests that causal
inference could benefit from visualisation tools that provide multiple coordinated
views [26], thus supporting users in a range of different tasks for understanding
causation. Further investigation that considers cognitive and visual processes
would help in explaining the results of our experiment, and better understanding
of the principles of visual causal inference will assist in developing readable and
informative causal graphs.

Note. Ethical clearance was given by the Ethics Committee of the College of
Science and Engineering at the University of Glasgow (ref: 300150001). Study
materials are available at http://www.dcs.gla.uk/∼hcp/Diagrams2020.
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Abstract. The perception of differences between graphs represented as
node-link diagrams is an important issue in many disciplines. This paper
presents results from a study with 40 participants. The goal of the study
was to test whether shape, density, and edge crossings of the graph influ-
ence the perception of differences between graphs and the order in which
they are perceived. The participants worked under time constraints. Our
results indicate that an increase in density lowers the recognition of dif-
ferences while a newly introduced edge crossing helps to spot a change.
Shape did not have a significant influence on the perception of differences.

Keywords: Graph comparison · Graph differences · Perception

1 Introduction

Analysts are frequently exposed to the task of visually comparing two similar
graphs [1]. In many cases, the differences can be explicitly encoded in the graph
structure, e.g., through color-coding of nodes and edges [7]. This, however, is not
always possible as visual variables such as color may already be used for encoding
other information. In such cases, the observer needs to compare the structure of
the graphs visually. Thus, better understanding which factors facilitate or impede
the recognition of differences in node-link diagrams can be of great value, e.g.,
to help create specifically optimized layouts for comparison purposes.

In our previous work [19] we studied which factors influence the perception
of changes in directed acyclic graphs (DAGs) and which strategies people adapt
to compare them by relying on screen capturing and qualitative content analysis
of thinking aloud protocols. As the study was exploratory and relied on people’s
explanations, no time limit was imposed for comparison. However, time may
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impact which changes are recognized, which factors contribute to recognition,
and how people approach the comparison. Research in cognitive psychology indi-
cates that time constraints result in a more shallow processing of information,
more important features are predominantly perceived, and that the accuracy of
judgements decreases [17]. Time constraints also impose a higher workload on
study participants (e.g., [4,9]). Time constraints also play an important role in
many practical contexts. However, to the best of our knowledge, time constraints
have not been investigated systematically in usability research.

Hence we decided to find out whether time constraints also play a role for
detecting differences in DAGs. In this paper, building upon our previous results,
we thus present a follow-up study focusing on the influence of time on the per-
ception of differences. Our results show that changes to the outer shape (i.e
silhouette) of the graph, lower local density, and the introduction of edge cross-
ings help to facilitate the recognition of differences also under time constraints.

2 Related Work

In cognitive psychology, the investigation of similarity perception has been an
important topic. The development of categories is based on similarity perception
because similar objects are placed into the same category [8]. There are different
mathematical models (e.g., multidimensional or featural models) to describe
similarity perception. Most models rely on the comparison of distinct features of
objects, but it has been noted that similarity is a more complex phenomenon [15].

There is some research in information visualization addressing comparing
processes in visualization in general. Gleicher [6] describes common challenges
in comparison processes. He assumes that the main challenges are size and com-
plexity of the visualizations being compared. He states that there are different
strategies to tackle comparison processes: scan sequentially, select subsets, and
summarize. Possible design solutions to support comparison processes include
adding statistical/analytical measures or appropriate interaction possibilities.

Investigations concerning the perception of visual features of node-link dia-
grams mainly concentrate on single graphs and do not address the comparison
of such representations. Li et al. [10] investigated which nodes are more salient,
focusing on features such as node degree and attributes of the surroundings of a
node. Marriott et al. [12] studied the influence of different layout features, includ-
ing symmetry and collinearity, on the memorability of graphs. Soni et al. [16]
studied whether properties like graph density influence the perception of graphs.
These studies do not address graph comparison as such, but are still relevant for
consideration in the design of graphs that should facilitate comparison processes.

Processes concerning the comparison of node-link diagrams have been investi-
gated much less than the perception of single node-link diagrams. Some research
addressed the perception of dynamic graphs. Making sense of dynamic graphs
is partly based on comparing a number of time-slices of a node-link diagram.
Archambault et al. [2] studied whether difference maps could assist users in such
processes. They found out that, overall, difference maps did not help, but were
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useful to assess the changes in the number of edges. Bridgeman and Tamassia [5]
investigated the perception of differences and similarities of graphs. Their results
show that similarity perception relies more on the borders or the shape of the
graphs, while detection of differences rather focuses on the interior of graphs. In
cognitive psychology it is discussed whether object perception is more holistic or
analytic. There is some indication that this depends on whether the features of
an object depend very much on the context in which they are shown [13]. There
are still many open issues in this context.

Ballweg et al. [3] investigated which factors influence similarity perception
of small directed acyclic graphs (DAGs). von Landesberger et al. [18] described
methodological challenges to be addressed when conducting studies on graph
comparison and reported preliminary results on factors influencing the percep-
tion of similarity of very small star-shaped node-link diagrams. Wallner et al. [19]
studied which factors influence the perception of changes in DAGs. Especially
shape of the graph, density of links and nodes, and edge crossings were found
to influence the perception of differences. The study presented here is based on
this work. To the best of our knowledge, the issue of time constraints has not
been investigated extensively in Human-Computer Interaction or cognitive psy-
chology, which both concentrate on measuring reaction time but not the effect
of time constraints on the achievement of participants.

3 Study Design

In previous research, Wallner et al. [19] found that the shape of graphs, their
density, and edge crossings influenced the ease with which users were able to
identify differences between graphs. This research was conducted without time
constraints. For reasons detailed in Sect. 1 we thus decided to conduct similar
research under time constraints. We formulated the following research questions:

R1: Do the variables shape, edge crossings, and local density influence the
recognition of differences under time constraints?

R2: Do the variables shape, edge crossings, and local density affect the sequence
of perceived differences? When several differences between two graphs exist,
are shape changes, for example, detected earlier than other changes?

For comparability with previous studies, we used the same dataset as Wallner
et al. [19]. This dataset consists of in total 16 graph pairs. These were originally
created by deriving four alterations by adding up to four edges and nodes (incl.
an extra edge) to four different base graphs that themselves differed in size
(between about 40–100 nodes) and structure. In the study the original (base)
graph was displayed below the altered version. Figure 1 gives some examples
with differences marked in red for representation purposes.1

1 For a complete overview of all graph pairs please refer to: https://figshare.com/s/
27396e7451506f3e827d.

https://figshare.com/s/27396e7451506f3e827d
https://figshare.com/s/27396e7451506f3e827d
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B1, |N | = 37, |E| = 42 B3, |N | = 97, |E| = 102

B2, |N | = 52, |E| = 57 B4, |N | = 100, |E| = 117

Fig. 1. The four base graphs B1 – B4 (blue) with the changes of one alternative graph
highlighted in red (for representation purposes only). In the study alternative and base
graph were displayed below each other. (Color figure online)

Procedure: For data collection we administered an online survey using LimeSur-
vey [11] to students at the TU Wien by advertising it in lectures. Informed
consent was obtained on the first page of the survey. This was followed by basic
demographic questions inquiring about the age, gender, and familiarity with
graph visualization. The latter was recorded on a 5-point scale anchored by 1 =
very familiar and 5 = very unfamiliar. The main part of the survey consisted of
showing the 16 graph pairs in, following Wallner et al. [19], semi-random order.
In other words, we counterbalanced the order of graphs while also making sure
that graphs with similar changes are not displayed consecutively. For each graph
pair, participants had to mark the differences in the upper graph by dragging
markers to the respective locations. Once a marker was placed it could not be
moved anymore. To allow subjects to familiarize themselves with this interaction
we included an example before showing the actual graphs. As we were interested
in how salient certain changes are, we imposed a time limit of one minute for
each graph pair. Once the participant indicated to have finished marking all
differences or the time limit was over, the participants were asked to indicate
on 5-point scales how certain they were (1 = very certain, 5 = very uncertain)
to have found all differences and how difficult it was (1 = very easy, 5 = very
difficult) to find them. Afterward, the survey continued with the next graph pair.

Participants: In total, we received 40 complete responses from 29 males and 11
females. Participants were on average 25 years of age (min = 19, max = 50). Five
participants indicated to be very familiar with graph visualization. The majority
(24) rated their familiarity with a 2 or 3, and seven with a 4. Only five stated to be
very unfamiliar. On average participants needed 21 min to complete the survey.
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4 Analysis and Results

As the survey only stored the coordinates of the markers, these were exported
and mapped to the positions on the graph images on a per-user basis. Through
manual inspection of the resulting images these were then compared to the
encoded differences. We opted to perform this matching of markers to graph
differences manually as sometimes the participants did not exactly place the
markers on, for instance, a newly added node. Markers not matching a differ-
ence were ignored for the analysis. One graph pair was omitted due the tracked
coordinates being erroneous. That is, the following results are based on a total of
11 pairs. If people marked both, the added node and corresponding edge, it was
counted only once. We then compiled if and how often a difference was spotted
as well as the sequence in which they were marked. Each difference was catego-
rized based on three ‘local’ factors which were revealed to have an influence on
the perception of differences (cf. [19]): 1) shape (yes/no), that is, if the newly
added node or edge changes the outer hull, i.e. silhouette of the graph. If no,
the change was further categorized based on 2) density and 3) edge crossing.
Density encoded how dense the graph is in the area of change. It was classified
qualitatively into low, medium, and high. Medium had approximately twice as
much space surrounding the change and high roughly twice as much as medium.
Edge crossing (yes/no) encoded if the change introduced a new edge crossing.
Responses to the Likert-like scales were treated as ordinal for the analysis.

Averaged certainty and difficult ratings for the four base graphs show a
decrease in certainty (c) and an increase in perceived difficulty (d) with increas-
ing graph complexity with B1 (c = 1.44 ± 0.68, d = 1.64 ± 0.76), B2 (c =
1.81 ± 0.87, d = 2.16 ± 0.93), B3 (c = 2.11 ± 0.89, d = 2.38 ± 0.84), and
B4 (c = 2.59 ± 1.04, d = 2.99 ± 0.92). Spearman correlations based on the
certainty and difficulty ratings of the individual pairs showed significant cor-
relations between certainty and difficulty (rs = .717, p < .001) and between
the percentage of found differences2 and difficulty (rs = −.230, p < .001) and
certainty (rs = −.313, p < .001).

A chi-square test to examine if changing the shape influenced the perception
of a difference was not significant (χ2(1) = 2.48, p = .115). To assess if density
and newly introduced edge crossings influenced the perception of differences we
used generalized estimating equations (GEE) with a binary logistic regression
model. The encoded differences were treated as a within-subject variable. GEE
model estimates are summarized in Table 1(a). No statistically significant inter-
action effect between density and edge crossing could be observed. The results
indicate that an increase in density lowers the recognition of a difference signif-
icantly, while a newly introduced edge crossing helps to spot a change.

2 Since different graph pairs had a different number of changes we expressed the num-
ber of detected differences in terms of percentages instead of raw counts.
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Table 1. Results of generalized estimating equations models predicting the effect of
edge crossing and density on (a) if a differences is recognized or not and the order in
which they are found for graphs with (b) two, (c) three, and (d) four changes (OR =
odds ratio, calculated as eB , B = coefficient, CI = confidence interval).

Predictor

edge crossing
no
yes

density
low
medium
high

B OR 95% CI p

— reference —
1.438 4.212 [1.807, 2.820] .001

— reference —
-0.697 0.498 [-1.172, -0.222] .004
-2.079 0.125 [-2.583, -1.576] < .001

(a) recognition

B OR 95% CI p

— reference —
1.421 [0.540, 2.302] .0024.141

0.473

— reference —
-0.412 0.662 [-0.628, -0.196] < .001
-1.430 0.239 [-2.237, -0.624] .001

(b) order, two changes

Predictor

edge crossing
no
yes

density
low
medium
high

B OR 95% CI p

— reference —
-0.749 [-1.203, -0.294] .001

— reference —
0.186 1.204 [-0.157, 0.529] .288
1.138 3.120 [0.618, 1.658] < .001

(c) order, three changes

B OR 95% CI p

— reference —
-1.810 0.164 [-2.264, -1.356] < .001

— reference —
1.853 6.380 [1.371, 2.336] < .001
3.708 40.77 [2.445, 4.972] < .001

(d) order, four changes

Since places within sequences of different length are not directly comparable,
sequences in which differences were found were analyzed separately for graph
pairs encoding two (6 pairs), three (5), and four differences (4). Influence of
shape was again assessed using chi-square tests showing a significant influence of
shape changes on how early a difference was marked for graphs with two (χ2(1) =
15.41, p < .001) and four (χ2(3) = 12.86, p = .005) changes but not for graphs
with three changes (χ2(2) = 0.535, p = .765). Influence of density and edge
crossings were assessed using GEE as above but with ordinal logistic regression
models. GEE model estimates for graphs with two, three, and four changes are
shown in Table 1(b-d). Interestingly, results for the three and four changes graphs
are antipodal to those of graphs with two changes. In case of the former two,
increased density is a factor that contributed to changes being recognized later
while for graphs with only two changes, increased density surprisingly helped to
spot differences early. The same applies to changes introducing edge crossings,
in case of three and four changes these helped to recognize a difference before
others, while for graphs with two changes it was the other way round.
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5 Discussion

In summary, if graphs were perceived as more difficult, participants were less
certain to have found all differences. If participants found more differences than
they considered the task less difficult. Finding more changes also made partici-
pants feel more confident that they really spotted all differences.

If a change affected the shape, i.e. the hull of the graph, then it helped to
spot the change before other changes in the majority of cases. However, it also
showed not to be a decisive factor if a change is recognized or not. Density and
introducing edge crossings, on the other hand, showed to be important if a change
is recognized at all when the outer shape is not affected. Our results thus confirm
the findings of our qualitative work [19] that introducing an edge crossing helps
to locate a difference. While edge crossings have been considered detrimental for
graph comprehension (e.g., [14]) it appears that for certain applications such as
difference perception purposefully introducing a crossing can also be beneficial.
Similarly, higher density areas made it more difficult to actually find a difference
and also how early it was recognized, whereas placing changes in low density
areas helped to spot them. However, our results also showed the inverse effect in
case of graphs with only two changes. This may warrant further investigations
but we suspect this to be a result of some of the changes in high density areas
also being located near the boundary of the graph and were thus easier to spot.

When interpreting the results of this study it should thus be kept in mind that
controlling for all kinds of confounding factors while still maintaining a certain
systematic variation across the encoded differences is challenging to achieve in
such a complex setting. Results may also change if the time limit is further
reduced and/or the graph size increases.

In general, however, our results indicate that the influence of these factors
also hold up when comparisons need to be made under time constraints. However,
the importance of the outer shape – while still important – appears not to be as
pronounced compared to our results without enforced time limit. There is some
indication that time constraints generate a less holistic approach of participants,
but there are still many open issues to be investigated in future research. Use
of eye-tracking technology may shine further light on these issues. Lastly, we
should highlight that we relied on a convenience sample and graphs of a certain
size and complexity. As such results may not apply equally to other graphs. In
future work, we will make use of these findings to inform the development of an
algorithm that adjusts the layout specifically for comparison purposes.

6 Conclusions

In the study reported here, we tested how time limits affect the importance
of several graph-related properties for the perception of differences in directed
acyclic graphs. With respect to RQ1 – the influence of shape, edge crossings, and
local density – our results indicate that edge crossings and density significantly
impacted the recognition of differences, while the outer shape of the graph did
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not. In response to RQ2, all three factors, in general, did affect the order in which
differences were perceived but the direction (beneficial or detrimental) of their
influence was not entirely consistent across graph pairs with different amount of
changes. Further work is required to gain more holistic insights on this matter.
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Abstract. In this paper we investigate the effectiveness and efficiency of two two-
dimensional static visual representations of spatio-temporal data, amap-based and
a Gantt-based diagram, in their support of various information retrieval tasks. The
map-based diagram is characterized by a natural spatial arrangement of locations
on a schematic map. The Gantt-based one represents time naturally as a linearly
ordered set of time intervals from left to right. A within-subject empirical exper-
iment has been conducted, in which participants were asked to verify queries
about persons, locations, and time intervals. The formulation of the queries was
based on (i) Bertin’s three reading levels, (ii) certain cognitive operations, and (iii)
different syntactic orders of expressions denoting persons, locations and times.
Response correctness and response time were recorded. With respect to response
accuracy, both diagrams support viewers well in nearly all information retrieval
tasks. Regarding efficiency, the map-based diagram elicited significantly faster
response times than the Gantt-based one, except for queries with time in focus.
The results suggest that map-based diagrams require less search and reasoning
effort of viewers to retrieve the information asked for in the task types used in this
study.

Keywords: Information visualization · Spatio-temporal data ·Map · Gantt
chart · Data exploration tasks · Reading levels · Cognitive operations

1 Introduction

This paper is about visual representations of spatio-temporal data based on two popular
static two-dimensional diagrams, the geographic map and the Gantt chart. It is also
about data exploration tasks to be performed with the aid of these two diagram types.
Both diagram types are adapted to make them suited to the representation of the three
components involved in spatio-temporal data, which are objects, locations and times.
The paper has two aims. The first is to investigate to what extent the adaptations of the
map and the Gantt chart facilitate the performance of certain information retrieval tasks.
The second aim is to explore in what way task type and complexity of the information
depicted affect task performance.
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Spatio-temporal data are data that relate to both space and time. Andrienko et al.
classify these data according to the kind of changes occurring over time [1]. In this study,
the spatio-temporal data are based on appearances of individuals, also called agents, at a
certain location in a certain time interval. The pattern of appearance and disappearance
of agents at certain locations may be thought of as a continuous path through space-time.
The changing states can be fully known, only partially known, or unknown.

Spatio-temporal data are best represented in a way that conforms to human concep-
tualizations of the world in space and time [7]. For the representation of space, static
maps are a popular and intuitive way to show all kinds of geographical information.
Map representations use horizontal and vertical axes to encode the canonical world
directions of north-south and east-west [8]. Mapping time to space is less obvious. Time
is an abstract notion. Its dynamic character suggests a representation by time, rather
than space. Dynamic and interactive visual representations of spatio-temporal data can
add a dimension to the interpretation of geographic data. Dynamic maps allow to view
temporal characteristics of change in ‘world time’ or ‘display time’ [3]. Nevertheless,
we often use space to reason about time [5]. Timelines are powerful and well-understood
metaphors for visualizing time. For most European people, time is naturally represented
as a timeline from left to right, or from top to bottom, indicating progression of time
[9]. Such a timeline is a linearly ordered set of time points or time intervals within a
certain timespan. Calendars, diaries, appointment books and the like make use of this
conceptualization of time.

The two diagrams used in this study are adaptations of two popular diagrams most
people are familiar with, namely the geographic map and the Gantt chart. Originally
neither of these diagram types are designed for the representation of spatio-temporal data.
For this study, they are adapted in order to represent all three interrelated components
involved in spatio-temporal data, following Kriglstein et al. [6]. Figures 1 and 2 illustrate
how we have adapted the map and the Gantt chart. In the map adaptation, locations are
visualized as circles corresponding to their geographic location. The Gantt adaptation
uses the original time representation of the Gantt, as a timeline of time intervals on
the x-axis at the top, from left to right, as time proceeds. In the map, time intervals
are indicated by numeric annotations next to circle portions. Moreover, residence time
corresponds to sizes of circle portions that are calculated relatively to the other agents’
residence times at that location. In theGantt adaptation, locations are placed on the y-axis
as textual row labels, from top to bottom, in alphabetical order. Shape and color coding
are used for the representation of agents. A legend associates colors to agents’ names.
The map adaptation represents agents as circle portions in different colors, the Gantt
adaptation consists in replacing the bars that originally illustrate projects, by agents’
appearances, in different colors. Note that in both adaptations, only one component gets
an intuitive representation, which is location in the map and time in the Gantt, while the
other components’ representations are less intuitive.

For this study, we decided to differentiate agents’ paths through time and space
according to complexity. We consider a path and its representation as simple in case
it implies at most two location changes of an agent. For complex paths the number of
an agent’s moves varies from two to six. Note that the complexity of a path affects its
representation.
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Fig. 1. Map (left) and Gantt (right) depicting the same complex scenario

Fig. 2. Parts of Map (left) and Gantt (right) depicting simple scenarios

For the measurement of users’ performance with the map-based and the Gantt-based
adaptations, we have used a variety of visual data exploration tasks. There are numerous
typologies of data exploration tasks [1].One such typology is suggested byquestion types
and reading levels, proposed by Bertin for arbitrary data [2]. There are as many question
types as there are components in the data. For each question type, Bertin introduces
three reading levels: elementary, intermediate, and overall. The level of reading indicates
whether a question refers to a single component (elementary), to a group of components
(intermediate), or to the whole phenomenon characterized by all components together
(overall). Peuquet confines Bertin’s notions of question type and reading levels to spatio-
temporal data [7]. The notion of reading levels can be independently applied to the spatial
and to the temporal dimensions of spatio-temporal data. Combinations are possible.
Bertin’s scheme is not fully satisfying for spatio-temporal data. While it makes explicit
that exploration tasks involve identification of (sets of) single elements, it leaves implicit
whether other cognitive operations are involved. Within the same question type and
reading level, the exploration task may indeed require the analyst to compare or relate
two or more (sets of) elements. The identification-comparison dimension should be
added to the typology of data exploration tasks [1]. Comparison should be interpreted
here in Blok’s broad sense of determining relationships [3]. The concrete linguistic
specification of data exploration tasks adds another differentiating aspect. Kessell and
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Tversky, in their study of matrix-based visualizations of spatio-temporal data, chose to
operationalize question types as query statements with different foci on location, time,
or person [4]. Queries are categorized according to the element(s) in focus and sentence
order. For the purpose of our research, we used a typology of data exploration tasks
merging Bertin’s reading levels for arbitrary data, Peuquet’s specialization of these for
spatio-temporal data, Andrienko et al.’s extension of identification with comparison, and
Kessell and Tversky’s approach to formulate data exploration tasks as query statements
with referential expressions of different components as topic. In principle, multiple
exploration task types in relation to spatio-temporal data are possible. We selected a
restricted set from these, which are categorized and illustrated in Table 1.

Table 1. Query types used in the experiment and examples of query statements of each query
type, translated from Dutch.

Reading level and cogni-
tive operation(s)

1st position 
(component in 
focus)

2nd position 3rd position 

Elementary;  
Identification

1 agent name
1 time interval (1 
hour)

1 location name

e.g.: Julia is from 11 to 12 at the Pathé

Intermediate; 
Identification

1 time interval (1 
hour)

>1 agent name 1 location name

e.g.: From 13 to 14 Arie and Stefan are on the Martinitoren

Intermediate; Identifica-
tion, Comparison and 
Counting 

1 time interval (1 
hour)

cardinality of 
group of agents 

1 location name

e.g.: From 15 to 16 there are exactly three persons at the
Vismarkt

Overall; Identification and 
Comparison

1 agent name whole timeline >1 location name

e.g.: Bert visits today the HEMA and the railway station

Overall; Identification,
Comparison, and Counting

1 location name whole timeline
cardinality of 
group of agents

e.g.: The A-Kerk is visited today by exactly five persons

In order to get more insight into the information read-off afforded by adaptations of
the map and the Gantt chart, and its possible relation with query type and complexity,
we have formulated the following three interrelated research questions:
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RQ1: To what extent do two specific adaptations of the map and the Gantt chart
facilitate naive users in the performance of spatio-temporal data exploration tasks?

RQ2: Does task type, characterized on the basis of (i) reading level, (ii) cognitive
operations involved, and (iii) task wording, affect task performance?

RQ3: Does information complexity, based on number of moves of agents through
space and time, affect task performance?

2 Method

To answer the research questions, we conducted an empirical experiment with a within-
subject design1. Forty individualswith different age, gender, and educational background
were recruited to take part in the experiment. The sample consisted of 18 male and 22
female participants, with a wide age range from 16 to 78. All participants were native
speakers of Dutch, with normal reading proficiency. None of the participants was color
blind. All participants were familiar with maps and tabular representations of timelines.
Most were more or less familiar with the city center used in the scenarios represented
by the diagrams.

All participants were subjected to 32 different queries in total, corresponding to
the five different types of data exploration tasks as given in Table 1. Sixteen queries
(4 categorized as elementary, 4 as intermediate, and 8 as overall) had to be answered with
the map, 8 with the simple version, and 8 with the complex one. The same distribution of
queries was used for the Gantt. The visualization types and the queries were presented
to the participants in random sequence. Answer accuracy and answer completion time
were recorded. Half of the queries are true, the other half false.

The map-based and the Gantt-based visualizations each represent different scenarios
of people residing at different locations during certain time intervals. The locations are
chosen in the center of the city of Groningen, in the north of the Netherlands. The spatio-
temporal data consist of 12 different agents, 12 one-hour time intervals, ranging from 9
A.M. to 9 P.M. and 12 well distinguishable locations (church, shop, cinema, etc.) in the
city of Groningen. The movement of agents differs from no movement to a maximum
of six location changes. These data are visualized in the map and the Gantt format as
shown in Fig. 1 for a complex scenario.

A digital survey was created in Qualtrics. The total survey consisted of (i) an intro-
ductory page, explaining shortly the experiment, (ii) the actual survey with the 32 query
statements and accompanying visual representations, and (iii) post-task questions, con-
sisting of demographic questions and questions about preference, and insightfulness and
aesthetics of the diagram types used in the study.

Each participant took individually part in the experiment in a quiet environment, and
used a mouse, keyboard, and display with a minimum resolution of 1600× 900 px. The
researcher was present in the room, with view on the display and the participant, and
took notes, if there was a reason to do so.

1 The materials will be available for the interested readers. Contact the authors for more
information.



362 L. Bosveld-de Smet and D. Houben

3 Results

There was one outlier. The results discussed below are based on 39 × 32 result data
points for accuracy and for completion time, each. No effect of age, gender, educational
background and preference was found. For the inferential statistics, we have used paired-
samples t-tests. An overview of all response accuracy and response time results is shown
in Table 2.

Table 2. Mean response accuracy (left) and mean response time (right) results per task type,
diagram type, and diagram complexity degree.

Results in Bold, and p-values in Bold with asterisk indicate significant Map-Gantt differences. 

Response accuracy measures
(Mean accuracy in percentages)

Completion time measures
(Mean completion time in seconds)

Data 
Exploration 
task

Simple 
versions 

Complex 
versions 

Simple 
versions 

Complex 
versions 

% p % p Mean p Mean p

Elem. ident. 
Map

Gantt
92.3 
91.1

0.744 93.6 
91.1

0.534 34
43

<0.001* 41
53

<0.001* 

Interm. ident.
Map

Gantt
87.2 
89.7

0.711 89.7 
87.2

0.711 27
29

0.294 29
27

0.494 

Interm. count.
Map

Gantt 
92.3 
94.9 

0.570 94.9 
64.1 

0.002* 20
20

0.901 28
28

0.918 

Overall comp.
Map

Gantt
98.7 
98.7 

0.999 98.7 
97.4 

0.570 36
42

0.005* 38
47

<0.001* 

Overall count.
Map

Gantt
98.7 
93.6

0.103 98.7 
98.7

0.999 23
30

0.002* 21
40

0.002* 

Both map-based and Gantt-based representations of spatio-temporal data are nearly
equally effective. Regarding overall response accuracy, there is no significant difference
between themap and theGantt (t(38)=−1.859, p=0.0707 (two-tail)).Neither task type,
nor complexity seems to affect accuracy performance. The only significant difference
in accuracy performance we have detected is one between the complex map and the
complex Gantt, for the intermediate search level task involving identification of a single
time interval and a single location, and counting of number of agents visiting that location
at that time.This task turnedout to bemore difficult to performwith the aid of the complex
Gantt (only 24 of the 39 queries, 64.1%, were answered correctly) than for the complex
map (37 correct answers out of 39, 94.9%). At α-level 0.05, this difference is significant
(t(38) = −3.376, p = 0.002 (two-tail)), in favor of the map.
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The efficiency results clearly show that the map-based representations are more
facilitative than the Gantt-based ones. On average the participants took six minutes to
verify the 16 queries with the Gantt, and took five minutes with the map to verify 16
similar queries. Overall, the participants performed the tasks significantly faster with the
map than with the Gantt (t(38) = 7.223, p = <0.001 (two-tail)). The completion times
per task type given in Table 2 shows much more diversity than the response accuracy
results. Significant differences have been found for taskswith a component in focus other
than time. The participants performed the elementary identification tasks significantly
faster with both the simple and complex versions of the map (simple: t(38)= 4.566, p=
<0.001 (two-tail); complex: t(38) = 4.580, p = <0.001 (two-tail)). Similar results are
observed for the overall search tasks, with either agent or location in focus, and involving
only comparison, or comparison and counting. Both simple and complex versions of the
Gantt turned out to be significantly less supportive than their map variants (overall comp.
simple: t(38) = 2.958, p = 0.005 (two-tail); overall comp. complex: t(38) = 4.793, p
= <0.001 (two-tail); overall count. simple: t(38) = 3.361, p = 0.002 (two-tail); overall
count. complex: t(38) = 3.286, p = 0.002 (two-tail)). We observe that complexity of
scenario depicted tends to increase response times. Yet, this increase is not significant.

4 Discussion

Both map-based and Gantt-based adaptations allow naive users to answer the query
statements quite accurately, without there being a significant difference between the
two diagram types. There is only one exception. The participants made significantly
more errors with the Gantt-based representation depicting complex information in their
performance of intermediate reading level tasks, involving identification, comparison,
and counting, with focus on time in wording. We suspect that this result is due to the
visual delimitation of location. In the map, the locations are clearly delimited by their
circular shape. The Gantt cells don’t have clear contour lines for location. During the
experiment some participants used their finger on the screen to make sure whether a
bar was part of the row corresponding to some location. The map-based adaptation is,
however, significantly more facilitative with respect to efficiency, especially in tasks
which do not have time in focus (RQ1).

Task type has barely influence on effectiveness, but it does affect efficiency. Focus on
time in task wording seems to lead to relatively faster response times in the Gantt-based
diagram, but does not seem to be harmful for the map-based one, although time does
not get an intuitive representation here. Task wording has an effect, but this effect seems
to be rather moderate, as it did not help participants to be more accurate in the complex
case (RQ2).

The results do not suggest any clear effects of complexity of information depicted in
the diagrams, neither on effectivity, nor on efficiency of task performance. Only in one
specific case participants performed significantly worse, but in this case the participants
were relatively faster, due to thewording of the task. So here again, the effect ismoderate.
A visually clearer design of location rows in the Gantt might eliminate this significant
difference (RQ3).

In conclusion, in their specific forms chosen for this study, maps fit cognitively bet-
ter to spatio-temporal exploration tasks than Gantt charts do, at least with respect to



364 L. Bosveld-de Smet and D. Houben

efficient scanning. There is a limited effect of task type, and a very modest effect of
complexity of information represented on task performance. Understanding of and rea-
soning with diagrams involve an interaction between a variety of factors: (i) a diagram’s
inherent structural properties, (ii) specific design options chosen, (iii) match between
task requirements and ease of information retrieval afforded by the diagram, and (iv)
individual user’s characteristics such as age, prior knowledge, cognitive style, and pref-
erence. Inherent structural properties of the two diagram types in combination with the
design options used may be responsible for the better performance of the map. Also,
more familiarity with a map than with a Gantt chart, and prior knowledge of the city
center depicted may have worked in favor of the map. Based on the results of this study,
involving only a restricted set of task types, we are not able to separate the wheat from
the chaff. The results of the current study do not provide compelling evidence about
which factor has been most influential. Further research has to be performed.
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Abstract. Information tables are often used for decision making. This study con-
siders multi-attribute table designs from a diagrammatic perspective. We used
two experiments to show how the decision-making strategies and performance
are changed based on table design changes, using the eye-tracking method. We
employed a multi-attribute catalog table with alternatives presented along the hor-
izontal axis and attributes along the vertical axis in Experiment 1 and the opposite
layout in Experiment 2. In each experiment, we used four different types of rep-
resentations of the attribute values, and these values were restricted to two levels
for comparison with previous works. The four types used were: (i) numerical
representations, (ii) textual representations, (iii) black-and-white representations
with black representing better values, and (iv) black-and-while representations
with white representing better values. Our results suggest, among others, that (1)
placing the alternatives along the vertical axis makes the table easier to decide in
comparison to the opposite layout, and that (2) the two-stage decision strategy is
taken with numerical representations and textual representations, while a single
stage strategy is taken with the black-and-white representations. We also showed
how the graphic black-and-white representations made decision-making easier,
and how the order changes of alternatives and of attributes of a table influenced
decision makers’ decision.

Keywords: Multi-attribute table design · Decision making · Eye-tracking

1 Introduction

It has previously been reported that the presentation of information in graphical-
diagrammatical form often facilitates users’ information processing, compared with
presentations in textual form. This is also the case in the context of decision making.
For example, Savage [1] showed that changing the Allais Paradox task presentation to
a “table” presentation instead of the original textual presentation increased the num-
ber of subjects making rational decisions in the sense of expected utility theory [2–4].
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Existing studies introduced bar charts as graphical representations for multi-attribute
decision making (decisions among alternatives with multiple attributes) [5, 6]. Their
studies showed some advantages to presenting alternatives in the form of bar charts;
however, the disadvantage of the bar-chart presentation method is that it requires mul-
tiple charts corresponding to the number of attributes, meaning that many pages of bar
charts are needed for one multi-attribute decision-making process.

A table is a typical among graphical presentation showing multiple alternatives of
many attributes in one view. As noted by Savage [1] in the Allais Paradox task—a
typical example of decisionmaking under uncertainty—a table representation is effective
in decision making. It can be said that a table’s multi-attribute presentation of many
alternatives makes it easier to make a decision. A typical example of a multi-attribute
table is a consumer product catalog, which is commonly used in both traditional print and
e-commerce. These tables are typically a matrix in which multiple product alternatives
are presented on one axis andmultiple product attributes to be compared on the other axis.
In many decision-making situations—such as choosing services, policies, and election
candidates—amulti-attribute table presentation is often considered to have the advantage
of making it easier to decide.

Tables are the most basic of graphic displays; however, incorporating additional
graphic presentation techniques into this format is also expected to be effective. There
is a large body of research on decision making based on multi-attribute tables. For
example, Payne et al. and Takemura conducted a study on decision-making strategies by
presenting a multi-attribute table [7–10]. One utility based decision-making strategy is
the additive strategy, which involves examining every attribute value for each alternative
and calculating the utility for each alternative. However, as the additive strategy requires
high cognitive load in a multi-attribute task, decision makers often adopt a two-stage
decision-making strategy. In the first stage, they compare the most important attribute
value for each alternative to narrow down the range of alternatives. In the second stage,
utilities of the remaining alternatives are calculated and compared to make a decision.
Previous studies have proposed that in the simulation method and the information-
monitoring method, the two-stage strategy is effective in actual decision making [7–10].

In a typical setting of multi-attribute table decision-making research, the product
names of the alternatives are arranged on the horizontal axis at the top of the table and
the attributes are arranged on the vertical axis. Considering additive strategy, the table
should be viewed vertically; however, when employing the two-stage strategy to reduce
the cognitive load, the alternatives are narrowed down by viewing horizontally in the
first stage with a vertical shift to calculate utility in the second stage.

Russo and Rosen [11] introduced the eye-tracking method, which investigates multi-
attribute decision-making strategies by considering eye-movement. In this paper, we
employ the eye-tracking method and report new findings on the effect of the graphi-
cal representation of multi-attribute tables. Our experimental settings were based on a
product catalogue multi-attribute table with five alternatives and five attributes of digital
cameras. The attribute level is simplified to two levels.

In our study, the following graphical presentation effects were examined: displays
with two levels of numerical values and displays with two levels of binary color coding
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(black-and-white). The experiments investigated the effect on the decision-making pro-
cess of reversing the horizontal and vertical axes. These experimental settings have not
been used in previous multi-attribute decision-making research, and our study is the first
to do so. A cognitive experiment comparing two levels of values in a black-and-white
display and in a textual displaywas conducted by Shimojima andKatagiri [12], where the
two levels were binary (i.e., true and false) and the tasks were limited to cognitive tasks.
Morii et al. [13] introduced graphical representation in multi-attribute decision-making
research by showing attribute values in black-and-white squares only, based on the work
of Shimojima and Katagiri [12]. In [13] their black-and-white attribute tables, the val-
ues of attributes were also limited to two (with a certain threshold for each attribute)
and each cell of the table was colored either black or white on a white background.
They compared two methods of systematic color assignment: “quantitatively-coherent”
and “qualitatively-coherent”. These methods refer to the ways in which the black-and-
white distinction represented the quantitative amount distinction and the ways in which
it represented the quality distinction, respectively. Their main findings were that the
qualitatively-coherent tables (in which, for example, the better attribute “price” value
was colored as black even if the price value itself was smaller, for the black-is-better
coherent tables) made decision-making easier than quantitatively-coherent tables (in
which the better attribute “price” was colored as white as the price was lower) and that
participants used the two-stage strategy. In the experiments of this paper, we employed
the qualitatively-coherent tables, which were known easier for decision making by this
formerwork.Wealso included tableswith numerical values, as those are themost usual as
themerchandise product catalogs, and tables with textual values, tomake the setting sim-
ilar to the setting of [12], where tables with textual single-letter symbols were considered
for cognitive tasks, while we used numeral and textual values in a more natural setting
for decision making tasks. Furthermore, a recent study [14], analyzed the comparison
between vertical and horizontal display of products from the perspective of marketing
research using an eye-tracking method [14]. The results showed that horizontal display
enhanced variety seeking. Horizontal (vs. vertical) displays are easier to process due
to a match between the human binocular vision field. However, their study focused on
product displays without relating to attribute displays. Our study examines the effect of
reversing the horizontal and vertical axes from the perspective of multi-attribute decision
making with tables, not just product display level. We posed the following hypotheses:

Hypothesis (1) Tables using the vertical axis for the alternatives (Fig. 1-2 type)
make participants’ decision-making easier than tables using the axes the other way
around (Fig. 1-1 type) even if the information content is exactly the same (e.g., Fig. 1-1
and Fig. 1-2), presuming that the easier horizontal eye-movement helps the standard
additive utility search along each alternative.

Hypothesis (2) Tables using the black-and-white graphic representations (e.g.,
Fig. 1-3 and Fig. 1-4) make decision-making easier in comparison to tables using the
numerical representations (e.g., Figure 1-1 and Fig. 1-2) and to tables using the textual
representations (see Method Sect. 2.2). This is partly because we use black for repre-
senting the better in Fig. 1-3 values out of the two values coherently, which makes the
utility-based normative decision easy; this is suggested partly from our former work
[13], and partly from former work on purely cognitive tasks [12].
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Hypothesis (3) The typical two-stage decision-making strategy of Payne [7–9] is
taken with numerical and textual tables when the alternatives are placed along the hor-
izontal axis (e.g., Fig. 1-1). A single-stage strategy is taken with these representation
types of tables when the alternatives are placed along the vertical axis (e.g., Fig. 1-2)
due to ease implied with our Hypothesis (1). A single-stage strategy is taken with the
black-and-white graphic (Fig. 1-3, Fig. 1-4), whichever roles the two axes take, which
is consistent with Hypothesis (2).

Hypothesis (4) Since by changing the order (permutation) of alternatives and
attributes, the tables with the same information content look different (e.g., between
Fig. 1-3 and Fig. 1-4); thus, decision making is influenced by changing the order (for
example, in Fig. 1-3, one could easily see the superiority of D over E, B, and A because
of the staircase-like pattern, which is not the case in Fig. 1-4, although the information
content of the two is the same). We also expect certain differences on influence from the
order changes among types of tables (numerical, textual, and black-and-white tables).

 1-1 Numerical Table                                   1-2 Numerical Table 
(attribute x alternative)                                 (alternative x attribute) 

  1-3 Black-and-White Table                            1-4 Black-and-White Table 
(attribute x alternative)                                      (attribute x alternative) 

Fig. 1. Images of multi-attribute tables for digital cameras used in our experiments.
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Our main findings were as follows:

1. We found that there was an effect of switching the roles of the axes, which supported
Hypothesis (1); our experiments showed that placing the product-alternatives along
the vertical axismadedecisions easier thandid placing themalong thehorizontal axis.

2. Our multi-attribute decision-making tasks using color (black-and-white) tables sug-
gested that the response latency, eye-movements, and cognitive load were lower than
those of numerical and textual tables. This supported Hypothesis (2).

3. Our eye-movement data analysis showed that fixation shifts with the numerical and
textual value tables, when the alternatives were placed along the horizontal axis,
suggested that participants took the two-stage strategy, which supported Hypothe-
sis (3). We also found that, even though placing the alternatives along the vertical
axis made the decision easier (as stated in 1 above), the participants’ fixation shifts
were still consistent with the two-stage strategy, which contradicted Hypothesis (3).
With the black-and-white graphic tables, the eye-movement data suggested that the
participants took a single-stage strategy, which supported Hypothesis (3).

4. We found that the influence of permutations of alternatives/attributes of the tables on
decisionmakingdependedon types of representations (i.e., numerical representation,
textual representation, and black-and-white representation).

These results provide a basis for considering a multi-attribute table design not only
formerchandise catalogs but also for awide range of decision tables of services, adminis-
tration, policy choice, and election candidates, as well as various situations in education,
and so on. This is discussed in the last section of this paper.

The rest of this paper presents the methods, results, and discussion.

2 Method

2.1 Participants

Forty-eight Asian students (16 males, 19–26 years old) with normal or corrected-to-
normal vision were assigned to two experiments. All participants provided written
informed consent in accordance with the protocol approved by the ethics committee
of Keio University. Participants were individually tested and were remunerated with
JPY 1,100 (approximately USD 10) for their participation.

2.2 Apparatus and Stimuli

The eye-tracking system EyeLink 1000 (SR Research Ltd., Ontario, Canada) was used
to record participants’ eye-movements. The stimuli were presented at the center of a
23-in. display (Mitsubishi Electric Corp., RDT234WX, Tokyo, Japan). The display was
viewed from a distance of 75 cm and the head was stabilized. The display resolution was
1,920× 1,080 pixels and the visual angles were 37.5° horizontally and 21.6° vertically.
A fixation was defined as velocity, acceleration, and duration of eye-movements with
respective thresholds of 30 °/s, 8000 °/s2, and 100 ms.

In the experiments, a multi-attribute table of digital cameras was presented at the
center of the display and the information search processwas recorded by the eye-tracking
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system up to selecting an alternative by pressing a key. The multi-attribute table used
in Experiment 1 consisted of five alternatives and five attributes, with the alternatives
arranged horizontally and the attributes arranged vertically. Figure 2 shows the samples
of the four types of multi-attribute tables.

Type 1: attribute value was expressed by a numerical value
Type 2: attribute value was expressed by a value “equal to or greater than” the reference
value or “less than” the reference value with these textual words
Type 3: a better-quality attribute value was indicated by a black square, and a worse
white
Type 4: a better-quality attribute value was indicated by a white square, and a worse
black.

Note that exactly the same information contents could be expressed among the three
Types, 2, 3 and 4, and their numerical instances could be expressed by Type 1 (as shown
below).

2-1 Type 1 (Numerical) 2-2 Type 2 (Textual) 

2-3 Type 3 (Black-better) 2-4 Type 4 (White-better)

Fig. 2. Sample of multi-attribute tables used in Experiment 1. Our multi-attribute tables were
described in Japanese. Actually, ‘more than’ and ‘less than’ in each cell of Type 2 were expressed
‘以上’, ‘未満’ in Japanese two characters, respectively (e.g., 16MP以上, 16MP未満). The exact
meaning of ‘以上’ is ‘more than or equal to’. This is the case for the attribute expressions of Type
3 and Type 4.
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Type 1 (Numerical)                                  Type 3 (Black-better) 

Fig. 3. Sample of multi-attribute tables in Experiment 2.

4-1 Staircase 4-2 Derivative (4-1)   4-3 Small block     4-4 Derivative (4-3) 
Dominance tables    Non-dominance tables  

Fig. 4. Sample tables in the dominance and the non-dominance tables in the case of Type 3. To
illustrate the permutation of alternatives and attributes, the names of alternatives shown in the
alphabet were indicated so that 4-2 corresponded to 4-1 and 4-4 corresponded to 4-3. In the actual
experiment, the alternatives were always named A, B, C, D, and E from the left.

In Experiment 2, the arrangement of the vertical axis and the horizontal axis was
switched (i.e. 5 alternatives × 5 attributes). Figure 3 shows the samples of Type 1 and
Type3 in Experiment 2 that correspond to Type 1 and Type 3 in Fig. 2.

Both in Experiment 1 and Experiment 2 for each Type (Type 1 to Type 4), we used
two classes of tables, the “dominance tables” class and the “non-dominance tables” class.
A “dominance table” consisted of one alternative having only one better attribute, two
alternatives having two better attributes, one alternative having three better attributes,
and one alternative having four better attributes which was dominant over three other
alternatives except one alternative which had two better attributes (e.g., Fig. 4-1 and
Fig. 4-2 in the case of Type 3). We called this a “dominance table” in this paper as it
had one alternative which was dominant over almost all other alternatives except one
(e.g., alternative E over B, C, D, except A in Fig. 4-1 and in Fig. 4-2 in the case of
Type 3). A “non-dominance table” consisted of five alternatives that having no superi-
ority/dominance relationship to each other, with three alternatives having three better
attributes and two alternatives having two better attributes (e.g., Fig. 4-3, Fig. 4-4 in
the case of Type 3). A table of this class was called a “non-dominance table” because
of the non-dominance relationship among all five alternatives. Our stimuli-generation
procedures were as follows: we took a dominance table with a “staircase” pattern of
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1-2-3-4 betters (e.g., Fig. 4-1 in the case of Type 3) as a basic dominance table and a
non-dominance table with a “small block” of 2-3-2 betters (e.g., Fig. 4-3 in the case of
type 3) as a basic non-dominance table. Other stimuli tables of the dominance tables class
(of the non-dominance tables class resp.) were then generated from the basic dominance
tables (from the basic non-dominance tables, resp.) by permutations (i.e., changing the
listing orders) of the alternatives and of the attributes. A generation from Fig. 4-1 to
Fig. 4-2 (from Fig. 4-3 to 4-4, resp.) of Type 3 illustrates an example of the results of
generation procedures of the dominance tables (of the non-dominance tables, resp.) The
procedures were the same for Type 1, Type 2, and Type 4.

Use of the dominance tables (the non-dominance tables) was called the dominance
condition (the non-dominance condition) in the following chapters.

2.3 Procedure

After general information was provided and the experimental procedure described, par-
ticipants sat on a chair in front of a computer screen, and the calibration procedure was
completed before starting the experiment. Every participant was exposed to four blocks
of 32 trials; four types of multi-attribute tables were used in each block. The first three
blocks were Type 2 (Textual), Type 3 (Black-better), and Type 4 (White-better) and the
three trial sequences were counter balanced. The last block was Type 1 (Numerical).
The order of the trials in each block was also randomized for each participant.

At the beginning of each block, an example of the stimulus table was shown, and
the experimenter provided verbal instructions. As an example, the instruction for Type
3 was as follows: “For each attribute, black cells mean TRUE and white cells mean
FALSE for the attribute labels.” The test block was started if there were no questions
from participants.

In the test trial, after a fixation cross was presented for one second, five alternatives
were presented in a multi-attribute table. Participants were asked to choose the most
desirable alternative by pressing the corresponding key, without any time pressure. If
the participant made their choice by pressing the key, the next trial began with no inter-
trial interval. Participants’ eye-movements were recorded during the experiment. In the
eye-movement data analysis, we divided each trial into the first half and the second half
at the median of each trial (from the stimulus onset to the key pressing). We analyzed
how the decision-making processes were different between in the first and second halves.

3 Results

3.1 Response Latency

Figure 5 shows that Experiment 1 (attributes × alternatives) had a shorter response
latency than Experiment 2 (alternatives × attributes). An analysis of variance (matrix
arrangement × representation pattern (Type 1 to 4) × table class (dominance condition
and non-dominance condition)) showed that the main effect of the matrix arrangement
was significant (F [1, 46] = 4.639 < .05). This result was consistent with Hypothesis
(1). The main effect of the presentation patterns was significant (F [3, 138]= 16.925<
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.001). As a result of the subtest, the response latencies in Type 3 (Black-better) and Type
4 (White-better) were shorter than those of Type 1 (Numerical) and Type 2 (Textual).
This result was consistent with Hypothesis (2). Furthermore, the main effect of the table
class (F [1, 46] = 55.356 < . 001) was significant. There was a significant interaction
between the representation pattern and the table class (F [3, 138] = 14.469 < .001). In
the dominance condition, the response latencies under Type 3 (Black-better) and Type
4 (White-better) were shorter than those in Type 1 (Numeric) and Type 2 (Textual).
In the non-dominance condition, the response latencies for Type 1 (Numeric), Type 3
(Black-better), and Type 4 (White-better) were shorter than those in Type 2 (Textual).
These results partially supported Hypothesis (2).

Fig. 5. The mean response latency for each type with error bars denoting standard errors of the
mean.

3.2 Number of Consistent Choices

In this experiment, 32 multi-attribute tables were presented for each table type. For
the breakdown of the 32 multi-attribute tables, four basic tables were arranged for the
dominance-tables and the non-dominance-tables, and four multi-attribute tables with
the same meaning (information content) but with different arrangements were created
by changing the positions of the alternatives and attributes from each basic table. This
enabled us to calculate whether all of the four choices matched for each basic table.
The number of same choices among the four differently arranged tables with the same
meaning/information content was called the number of consistent choices. This number
was used as an indicator of utility-based choice, as the higher number indicated partici-
pants’ better performance according to their own utility, independently of the apparent
differences of looking among the same content tables. Figure 6 shows the number of
consistent choices for each experiment.

The analysis of variance showed that the main effect of the table class was signifi-
cant (F [1, 46] = 90.330 < .0001). The number of consistent choices in the dominance
condition was higher than that in the non-dominance condition. There was also a sig-
nificant interaction between the matrix arrangement and the table class (F [3, 138] =
5.615 < .001). The result of the subtest showed that in the dominance condition, the
number of consistent choices for Type 3 (Black-better) and for Type 4 (White-better)
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was higher than that for Type 1 (Numeric). In the non-dominance condition, there was
no difference by representation pattern. This result was consistent with Hypothesis (2)
under the dominance condition. Furthermore, the effect of the table class for each type
was examined, and the number of consistent choices was higher in the dominance con-
dition than in the non-dominance condition for Type 2(textual), 3 (Black-better) and
4 (White-better), however no significant difference was found for type 1 (numerical).
We examined the difference between the number of consistent choices among the stair-
case tables (the basic tables) and that among the derivative tables without staircase-like
pattern in the dominance condition. We did not find any difference between the two.
We predicted that the staircase-like looking tables supported participants utility-based
decision making easier as stated in Hypothesis (4), but our results could be seen that
all graphic dominance tables supported utility-based decision without being influenced
from order change manipulations, in comparison to the numerical tables. The influence
from changing the order of alternatives and attributes to decisions was the same higher
level for the both two classes in Type 1. On the other hand, in Type 2, 3, and 4 the
influence from changing the order to decisions in the dominance condition was less than
(higher number) that in the non-dominance condition. These clarified what we expected
in Hypothesis (4) to some extent.

Fig. 6. The number of consistent choices for each experiment.

3.3 Fixation Shift Patterns

We omitted the eye-movement data of seven participants whose fixations were not mea-
sured (four in Experiment 1 and three in Experiment 2) and calculated the number of
fixation shifts per condition for each participant. The area of interest was set to corre-
spond to each cell of the multi-attribute table. A vertical shift was defined as a fixation
shift within the same row, and a horizontal shift was defined as a fixation shift within
the same column. Examples of a horizontal shift and a vertical shift are shown in Fig. 7.
The average number of fixation shifts per experiment is shown on Fig. 8.

The result of the analysis of variance showed that the main effect of matrix arrange-
ment was significant and that Experiment 2 (alternative× attribute) had fewer shifts than
Experiment 1 (attribute × alternative; F [1, 39] = 4.592 < . 05). This result supported
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Hypothesis (1). The main effect of the representation pattern was significant (F [3, 117]
= 36.511 < .001). As a result of the subtest, the number of fixation shifts in Type 3
(Black-better) and Type 4 (White-better) were fewer than those of Type 1 (Numerical)
and Type 2 (Textual). This result supported Hypothesis (2). The main effect of shifts
patterns was also significant (F [3, 117] = 20.556 < .001). Vertical shifts were fewer
than horizontal shifts. Furthermore, the interaction of three factors (matrix arrangement
× representation pattern × fixation shift pattern) were also significant (F [3, 117] =
2.709 < .05).

Fig. 7. Sample of a horizontal fixation shift and a vertical fixation shift.

Fig. 8. The number of fixation shifts for each experiments.

To compare the shift pattern differences more accurately, we calculated the transition
score based on Payne’s study [7]. This score is defined as follows:

Transition Score = Sver − Shori
Sver + Shori

Sver is defined as fixation shifts within the same column, whereas Shori is defined
as fixation shifts within the same row. This score ranges from −1.0 to +1.0, with a
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higher value indicating more vertical fixation shifts while a lower value indicates more
horizontal fixation shifts.

The average number of transition scores per experiment is shown on Fig. 9. The
analysis of variance showed that themain effect of thematrix arrangementwas significant
(F [1, 39] = 8.572 < . 01). Participants’ fixations shifted horizontally more frequently
in Experiment 2 (alternative × attribute) than in Experiment 1 (attribute × alternative).
There was also a significant interaction of three factors (F [3, 117] = 11.924 < .001).
The subtests showed the fixation shift patterns in Type 1 and Type 2 were changed
between those in the first half and those in the second half. These results suggested
that participants adopted a two-stage strategy in Type 1 and Type 2. The results of
Experiment 1 supported Hypothesis (3) for Type 1 and Type 2, while the result of
Experiment 2 showed the opposite of Hypothesis (3); namely, although the changing
the roles of the axis (from the horizontal listing of the alternatives to the vertical) made
the decision-making easier (which supported Hypothesis (1)), our result suggested still
two-stage strategy was taken in Types 1 and 2, which we had not predicted.

Our results of Experiment 1 and Experiment 2 supported Hypothesis (3) for the Type
3 and type 4, whichever axis was used for the alternative listing.

Fig. 9. Transition score for each block type.

4 Discussion

The purpose of our study was to investigate some table designing effects on individuals’
decision-making processes. Our results show as follows.

1. Effect of changing the roles of the vertical and horizontal axes.

One of the major findings of this paper is the effect of switching the roles of the
vertical and horizontal axes ofmulti-attribute tables for decisionmaking, byExperiments
1 and 2 (see Fig. 2 and 3). Our results concerning response latencies in 3.1 (see Fig. 5) and
fixation shift patterns of participants (see Fig. 8) in 3.3 revealed that, in all Types 1, 2, 3,
and 4, the tables with vertical alternatives (Fig. 3) had a shorter response latency, a lower
number of fixation shifts, and increased horizontal fixation shifts than a tablewith vertical
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attributes (Fig. 2). These results support Hypothesis (1). This might suggest that the table
design of Fig. 3 facilitates decisionmakers’ decisions. This was an unexpected finding in
the multi-attribute decision-making studies from the 1970s, as no researchers in the field
have been aware of this basic issue of the table design. In fact, using the most advanced
theoretical studies with computer simulation, no theoretical difference has been assumed
between the style designs from Fig. 2 and those of Fig. 3. The advantage of Fig. 3 makes
sense, as our eye-movements are based on horizontal directions, and it facilitates ideal
decision making based on the utility of each alternative. This finding is, in our opinion,
important in the sense that it is not only concerned with commercial product catalogs
but also political election candidate tables, travel scheduling choice tables, public policy
tables, and others. In fact, although many former studies on multi-attribute decision
making have used the Fig. 2 style, most e-commerce tables with scrolling functions use
the Fig. 3 style because of the display constraints of electronic devices without knowing
the basic psychological research such as this. Our results give some justification for the
current prevalent style of the choice of axes in e-commerce.

2. Two-stage strategy for (Type 1, 2) and one-stage strategy for (Type 3, 4).

In particular, with the numerical tables (Type 1) in Experiment 1 and 2, we observed
that the fixation shift patterns (Fig. 9) changed from the first half of the trial to the
second half. Our result supports Hypothesis (3). This indicates a two-stage decision-
making strategy,whichmeans that the alternativeswere narrowed downby an in-attribute
search, regardless of the alternatives of the vertical axis and the horizontal axis.

We observed that even when the roles of the axes were switched (so that the alter-
natives were arranged along the vertical axis and the attributes were arranged along the
horizontal axis), although the switching facilitated participants’ decision makings as we
pointed out in 1 above, the participants still followed the two-stage strategy (Fig. 9),
which contradicts our Hypothesis (3); we had predicted that easier decision making
(with the easier additive utility search suggested by Hypothesis (1)) would simplify the
strategy. Although the two-stage strategy had often been noted in prior research by the-
oretical simulation results and traditional information board methods, our work relating
the two-stage strategy is, as far as we know, one of only a few studies in the natural
setting of decision makers’ decision environment using the eye-tracking method.

We also examined the effect of color (black and white) representations of attribute
values.Our results concerning a response latency (Fig. 5) and the number of shifts (Fig. 7)
revealed that the black-and-white tables (Type 3 and 4) had a shorter response latency
and a lower number of fixation shifts than the numerical tables (Type 1) and the textual
tables (Type 2). These results support Hypotheses (2). One important finding of this
study is that eye-movement patterns—which are consistent with the two-stage strategy
found when numerical values (and textual values) are used for attribute values—are not
found in black-and-white graphic displays of attribute values (Fig. 8 and 9). This result
supports Hypothesis (3), indicating that decisions are made using a single-stage strategy
in the condition of a graphic representation.Moreover, similar to the results of a previous
cognitive experiment [12], reduction of cognitive load by black-and-white display was
also observed in the context of ourmulti-attribute decision-making tasks. (Ease of utility-
based decision making was suggested for the dominance table class of graphic tables,
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while this was not the case for the non-dominance tables, as we reported in 3.2). In
[13], we used only color graphic tables in which both qualitatively-coherent color tables
(i.e., smaller value, say, of price is black for the black-better table) and quantitatively-
coherent color tables (i.e., small value of price is white, because of smallness, for the
black-bigger table), and we found participants’ tendency of two-stage strategy with the
stimuli of both tables. On the other hand, in the experiments of this paper, we used
the qualitatively-coherent color tables, and we found a single strategy, which suggests
differentways of designing among the sameblack-and-white framework change decision
makers’ strategy.

3. Colored attribute value tables partially help utility-based decision independently of
order manipulations of alternatives/attributes.

We used two classes of tables; the dominance tables class and the non-dominance
tables class; a dominance table having certain strong dominance relations, in the sense
of utility, among some alternatives, and a non-dominance table having no dominance
relation at all among the alternatives. We examined influence of order changing of
alternatives and of attributes for the same table contents to participant’s decision. Our
results, using the number of consistent choices in 3.2, showed that participants’ deci-
sions using graphic black-and-white tables were less influenced by changing the alter-
natives/attributes enumeration orders of the same table contents in comparison to that
of using the numerical, for the case of dominance tables. On the other hand, no dif-
ference was found for the non-dominance tables. This suggested a positive answer to
Hypothesis (4) partly. Among the different appearances of black and white shapes of
the same content tables, we found no difference on the number of consistent choices,
which contradicted Hypothesis (4) partly. This suggests that the graphic black-and-white
tables make the utility relations in a table clearer to help decision maker’s decision inde-
pendently of possible order manipulation of the alternatives/attributes. We believe that
further research in this direction would provide useful information as to how to design
tables to assist decisionmaker’s decision with less possible biases of listing order manip-
ulation of alternatives/attributes.We plan to use the partial utility measure of participants
for further research.

In fact, our results on the non-dominance tables (tables in which all five alternatives
are competing each other without any partial dominance relation) suggest that decision
makers’ decisions could be easily manipulated by the layout designs of a multi-attribute
table. For example, table designers or companies could put specific alternative on the top
or in the center in order to manipulate or interfere with decision makers’ decision. How
to provide table designs that are fair for decision makers’ rational decisions or their own
utility-based decision is, in our opinion, an important research subject for the diagram
study research community.
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We would like to add one last remark regarding our main findings. As we stated
above, the effect of changing the roles of the axes (see 1 above) was a characteristic
finding from the five decades of research on multi-attribute decision making since the
1970s. One interpretation of this result may suggest that table designers should design
tables in the Fig. 3 style (as the current e-commerce tables typically do). We emphasize
this application of our main result in 1 above. However, taking into account our results
in 2 above with regard to the two-stage strategy, we could consider the possibility of
the opposite interpretation for fair table designs for decision makers. The results in 2
above tells us that when we use numerical (or textual) tables, even if switching the roles
of the axes, decision makers still seem to take a two-stage strategy rather than a single
(only utility-based) strategy. If so, decision makers’ first stage of narrowing down the
five alternatives to a few alternatives is an important process. Additionally, the decision
maker should take time for this first stage, and use of axes in the Fig. 3 style might
decrease this important process, costing too much. From this interpretation, the two-
stage strategy associated with the Fig. 2 style use of axes might have its significance.
Hence, there are two possible opposite interpretations of our finding 1 above.

10-1 Commonly used table 10-2 Highlight table 

Fig. 10. Sample of attribute tables in our future work.

Based on the results of this paper, in the future, we hope to run the following two
natural extensions of the current study, which are both combinations between Type 1
and Type 3. (1) We could study the most commonly used catalog designs to confirm the
various graphic effects that we obtained in this paper. A typical type of catalog is the
type of Fig. 10-1 where the numerical attributes (Type 1 in this paper) and the graphic
yes-no values (Type 3 or 4 in this paper) for function values are combined. One could
add horizontal belts to support horizontal eye-movements. Hence, this sort of commonly
used table design is a combined design we studied in this paper. It is plausible that we
could explain why the commonly used table designs are useful and justifiable from basic
psychological research from a diagrammatic viewpoint. (2) Another way to combine our
basic types to make a practically useful table would be to have a “highlight table,” where
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certain important attribute values are “fairly” highlighted, combining Type 1 (numerical
values) with the colored backgrounds of some important values such as in Fig. 10-2.
This is a combination of Type 1 and Type 3 and could be used to design tables with high
quality features, leading to fair and easy decisions. The graphic effects of Type 3 are
expected to support typical value-based tables.
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Abstract. This paper uses multigraphs to study the interaction
between opposition, implication and duality relations in classical and
degenerate logical squares. We show, first of all, that opposition and
implication are highly symmetrical in their interaction with each other.
Secondly, opposition and implication also display a higher-order symme-
try, in the sense that they fulfill highly similar roles in their respective
interactions with duality. Thirdly, we show that all these symmetries
hold for classical squares as well as for degenerate squares.

Keywords: Square of opposition · Logical square · Duality ·
Opposition · Implication · Multigraph · Logical geometry

1 Introduction

Logical geometry studies Aristotelian diagrams, such as the square of opposi-
tion and its various extensions and generalizations. These diagrams represent a
number of formulas from some logical system, and the various relations holding
between them. In this context, diagrammatic reasoning consists in a form of
‘diagram chasing’ [1]; for example, in a well-known reasoning task, one is pre-
sented with a square of opposition and the truth value of one of its formulas,
and is then asked to determine the truth values of the three other formulas in
the square, by making use of the Aristotelian relations that are present in the
square [9,13].

A well-known phenomenon for this type of diagrams is that multiple (types
of) relations may simultaneously obtain among the formulas of a given diagram.
For example, consider the well-known modal square shown in Fig. 1(a) [10]. As
far as the Aristotelian relations are concerned, the formulas �p and �¬p in this
diagram are each other’s contraries: they cannot be true together, but they can
be false together. However, as far as the duality relations are concerned, these
same two formulas are each other’s internal negation: they result from applying
c© Springer Nature Switzerland AG 2020
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the modal �-operator to resp. p and its negation ¬p. The formulas in the square
in Fig. 1(a) thus simultaneously stand in Aristotelian and duality relations. By
contrast, the formulas in the classical square in Fig. 1(b) [2] stand in Aristotelian
relations to each other, but not in any duality relations.

Fig. 1. (a–b) Two classical squares from resp. [10] and [2]; (c–d) two degenerate squares
from resp. [4] and [11].

The two diagrams in Fig. 1(a–b) are examples of classical squares. It is well-
known in logical geometry that next to the classical squares, there is exactly one
other type of logical square, viz. the degenerate squares [4]. Degenerate squares
often occur as subdiagrams inside a larger diagram, e.g. a Buridan octagon [11].
Apart from the contradictory relations on their diagonals, degenerate squares
do not exhibit any Aristotelian relations. With regard to duality, there is again
some variation. On the one hand, the degenerate square in Fig. 1(c) does not
exhibit any duality relations, apart from the external negations on its diagonals.
By contrast, the degenerate square in Fig. 1(d) does exhibit the full range of
duality relations; for example, ♦(p ∧ q) and ♦(¬p ∧ ¬q) are each other’s internal
negation, because these two formulas result from applying the binary operator
♦( · ∧ · ) to resp. p, q and their negations ¬p, ¬q.1

Coherent sets of logical relations are sometimes called geometries [15]. For
example, the Aristotelian relations of contradiction, contrariety, subcontrariety
and subalternation constitute the Aristotelian geometry (AG). Similarly, one can
also define the duality geometry (DG), the opposition geometry (OG) and the
implication geometry (IG); precise definitions will be offered later in the paper.

The interaction between these different geometries turns out to be quite
subtle, which is illustrated by the fact that a single diagram (e.g. Fig. 1(a)) can
simultaneously represent multiple geometries. Consequently, these geometries
and their interactions have been studied extensively in recent years [3,5–7,14–
16]. In particular, in [8] we proposed multigraphs as a new tool to investigate
the interaction between AG and DG in several logical squares and octagons.

1 Note that ♦( · ∧ · ) can be seen as the composition of the modal ♦-operator and
the Boolean ∧-operator, and thus also gives rise to more complex types of duality
behavior [3,6–8]. However, in this paper we will simply view ♦( · ∧ · ) as a single
operator, which exhibits the simplest type of duality behavior (cf. DG in Sect. 2).
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The overarching goal of the present paper is to show that multigraphs are
by no means limited to AG and DG, but can also be used to fruitfully study
the interactions between other geometries. In particular, we will investigate the
interactions (i) between OG and IG, (ii) between OG and DG, and (iii) between
IG and DG, in classical and degenerate squares.2 We will even construct multi-
graphs that exhibit the interactions between these three geometries (OG, IG and
DG) all at once. These investigations yield three main results. First of all, OG
and IG are highly symmetrical in their interaction with each other. Secondly,
OG and IG also display a higher-order symmetry, in the sense that these two
geometries fulfill highly similar roles in their respective interactions with DG.
Thirdly, all these symmetries hold for classical as well as degenerate squares.

The paper is organized as follows. Section 2 surveys the required theoretical
background. Section 3 uses multigraphs to study the interaction between OG, IG
and DG in classical squares, and Sect. 4 does the same for degenerate squares.
Section 5 wraps things up, and mentions some questions for further research.

2 Theoretical Background

We start by introducing the various logical geometries that will be studied in this
paper. Logical relations can be characterized with various degrees of abstractness
and generality [5,7]. For our current purposes, it will suffice to stick to the
traditional, informal definitions. Two statements ϕ and ψ are said to be

contradictory (CD) iff ϕ and ψ cannot be true together and
ϕ and ψ cannot be false together,

contrary (C) iff ϕ and ψ cannot be true together and
ϕ and ψ can be false together,

subcontrary (SC) iff ϕ and ψ can be true together and
ϕ and ψ cannot be false together,

non-contradictory (NCD) iff ϕ and ψ can be true together and
ϕ and ψ can be false together,

in bi-implication (BI) iff ϕ entails ψ and ψ entails ϕ,
in left-implication (LI) iff ϕ entails ψ and ψ doesn’t entail ϕ,
in right-implication (RI) iff ϕ doesn’t entail ψ and ψ entails ϕ,
in non-implication (NI) iff ϕ doesn’t entail ψ and ψ doesn’t entail ϕ.

The first four of these relations constitute the opposition geometry, i.e. OG :=
{CD,C,SC,NCD}. The next set of four relations is the implication geometry,
i.e. IG := {BI,LI,RI,NI}. Both of these geometries can naturally be ordered
in terms of their information levels [15]: NCD and NI are the least informative
relations of OG and IG, respectively, CD and BI are their most informative
relations, and C, SC, LI and RI occupy intermediate positions. Finally, we
define the Aristotelian geometry AG := {CD,C,SC,LI} ⊆ OG ∪ IG, and note
that it is ‘hybrid’ between OG and IG in an information-optimizing fashion [15].

2 We thus use one type of diagrams (multigraphs) to study another (logical squares)!
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We now turn to the duality relations. Suppose that ϕ and ψ are the results
of applying n-ary operators Oϕ and Oψ to n propositions α1, . . . , αn, i.e. ϕ ≡
Oϕ(α1, . . . , αn) and ψ ≡ Oψ(α1, . . . , αn). We say that ϕ and ψ are each other’s

external negation (eneg) iff Oϕ(α1, . . . , αn) ≡ ¬Oψ( α1, . . . , αn),
internal negation (ineg) iff Oϕ(α1, . . . , αn) ≡ Oψ(¬α1, . . . ,¬αn),
dual (dual) iff Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn),
identical (id) iff Oϕ(α1, . . . , αn) ≡ Oψ( α1, . . . , αn).

These relations constitute the duality geometry, i.e. DG := {id,eneg, ineg,
dual}, which has also been studied extensively in recent years [3,6,14,16].

In order to study the interaction between AG and DG, we previously intro-
duced the notion of an AG/DG-multigraph [8]. This notion can easily be gener-
alized as follows. Let D be a diagram that simultaneously represents geometries
G,G′ ∈ {AG,OG, IG,DG}. The G/G′-multigraph for D is defined to be a multi-
graph [12] with the elements of G∪G′ as its vertices, and precisely as many edges
between vertices R ∈ G and R′ ∈ G′ as there are pairs of formulas in D that
simultaneously stand in the relations R and R′. Informally, the G/G′-multigraph
for D represents how often each combination of a G- and a G′-relation occurs in
D, and can thus help to shed light on the interaction between G and G′.

Since multigraphs are crucially concerned with numbers of (combinations of)
logical relations in a given diagram, it is important to be explicit about how these
relations will be counted. For example, a logical square has 4 formulas, and is
therefore usually said to have

(
4
2

)
= 4×(4−1)

2 = 6 relations (in visual terms: the
4 sides of the square and its 2 diagonals). In this calculation, the division by
2 captures the idea that the order of the formulas does not matter. However,
looking at the definition of IG, it should be clear that order matters after all:
LI(ϕ,ψ) iff RI(ψ,ϕ). Furthermore, the subtraction of 1 captures the idea that we
are excluding identical pairs (ϕ,ϕ). However, looking at the definitions of OG,
IG and DG, it should be clear that such pairs should be kept on board after all:
NCD(ϕ,ϕ), BI(ϕ,ϕ) and id(ϕ,ϕ). Consequently, in the remainder of this paper,
we will count the number of relations in a logical square as 4 × 4 = 16.

Fig. 2. (a) Opposition, (b) implication and (c) duality relations in the classical square
shown in Fig. 1(a).
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3 Classical Logical Squares

The classical modal square for {�p,�¬p,♦p,♦¬p}, which was already shown in
Fig. 1(a), simultaneously exhibits OG, IG and DG. Consider, for example, the
formulas �p and �¬p: we simultaneously have C(�p,�¬p), NI(�p,�¬p) and
ineg(�p,�¬p). All OG-, IG- and DG-relations among �p, �¬p, ♦p and ♦¬p
are shown in Fig. 2(a), (b) and (c), respectively.

Counting the various combinations of opposition and implication relations in
this square, we obtain the OG/IG-multigraph shown in Fig. 3(a). For example,
this multigraph indicates that there are 4 CD/NI -combinations, viz. (�p,♦¬p),
(♦¬p,�p), (♦p,�¬p) and (�¬p,♦p). Note that this multigraph exhibits per-
fect vertical symmetry, which means that OG and IG play very similar roles
within the modal square. This vertical symmetry can be characterized in purely
informational terms: the least informative relation from one geometry co-occurs
precisely with the three informative relations from the other geometry. More
concretely, NCD ∈ OG co-occurs with BI,LI,RI ∈ IG, and vice versa, NI ∈ IG
co-occurs with CD,C,SC ∈ OG. This symmetry between OG and IG is explained
in more detail in Theorems 2, 5 and 6 of [15].

Fig. 3. (a) OG/IG-, (b) OG/DG- and (c) IG/DG-multigraphs for the classical square
shown in Fig. 1(a). Thin and thick edges represent combinations of relations that co-
occur resp. 2 and 4 times.

We now turn to the interaction between OG and DG in the modal square,
which is summarized by the OG/DG-multigraph shown in Fig. 3(b). For example,
this multigraph indicates that there are 2 C/ineg-combinations, viz. (�p,�¬p)
and (�¬p,�p). While there is a clear correspondence between CD and eneg, we
see that ineg co-occurs with C as well as SC, and NCD co-occurs with dual as
well as id. This shows that the interaction between OG and DG is more subtle
than is sometimes thought, especially by authors who come close to outright
identifying opposition and duality relations [17].

In a similar fashion, we can also construct the IG/DG-multigraph, which
is shown in Fig. 3(c). For example, this multigraph indicates that there are 2
LI /dual-combinations, viz. (�p,♦p) and (�¬p,♦¬p). While there is a clear
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correspondence between BI and id, we see that dual co-occurs with LI as well
as RI, and NI co-occurs with eneg as well as ineg. Most importantly, note that
the IG/DG-multigraph in Fig. 3(c) is isomorphic to the OG/DG-multigraph in
Fig. 3(b), through the isomorphism f : OG ∪ DG → IG ∪ DG:

R ∈ OG ∪ DG CD C SC NCD eneg ineg dual id
f(R) ∈ IG ∪ DG BI LI RI NI id dual eneg ineg

This isomorphism is logically meaningful, in that it corresponds to negating
a relation’s second argument: for all R ∈ OG ∪ DG it holds that R(ϕ,ψ) iff
f(R)(ϕ,¬ψ); cf. Lemma 3 of [15]. For example, we have CD(ϕ,ψ) iff BI(ϕ,¬ψ),
and also eneg(ϕ,ψ) iff id(ϕ,¬ψ). Now consider the 4 CD/eneg-combinations
from the OG/DG-multigraph in Fig. 3(b), viz., (�p,♦¬p), (♦¬p,�p), (♦p,�¬p)
and (�¬p,♦p). Systematically negating the second argument yields (�p,¬♦¬p),
(♦¬p,¬�p), (♦p,¬�¬p) and (�¬p,¬♦p), which are precisely the 4 BI /id-
combinations from the IG/DG-multigraph in Fig. 3(c).

We thus find that OG and IG are not only symmetrical in their interac-
tion with each other (cf. Fig. 3(a)), but also in their respective interactions
with DG (cf. the isomorphism between Figs. 3(b) and (c)). To summarize these
findings, we combine the three separate multigraphs from Fig. 3 into one large
OG/IG/DG-multigraph, which is shown in Fig. 4(a). This multigraph clearly
reveals the highly symmetrical nature of the mutual interactions between OG,
IG and DG in the classical logical square in Fig. 1(a). The underlying reasons
and implications of this symmetry will need to be investigated in far more detail.

Fig. 4. OG/IG/DG-multigraphs for (a) the classical square shown in Fig. 1(a) and (b)
the degenerate square shown in Fig. 1(d). Thin, thick and very thick edges represent
combinations of relations that co-occur resp. 2, 4 and 8 times.

We now briefly consider the modal square for {p,¬p,♦p,�¬p}, which was
shown in Fig. 1(b). This alternative square simultaneously exhibits OG and IG,
but not DG. For example, we simultaneously have NCD(p,♦p) and LI(p,♦p), but
p and ♦p do not stand in any duality relation. The OG/IG-multigraph for this
alternative square is isomorphic to the one in Fig. 3(a), since both are OG/IG-
multigraphs for classical squares. Finally, since this alternative square does not
exhibit any duality relations except for eneg on its diagonals, it does not make
much sense to construct OG/DG- or IG/DG-multigraphs for it.
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4 Degenerate Logical Squares

We now turn to the degenerate logical squares, starting with the one shown
in Fig. 1(c). This degenerate square simultaneously exhibits OG and IG, but
not DG. Consider, for example, the formulas p and q: we simultaneously have
NCD(p, q) and NI(p, q), but these two formulas do not stand in any duality
relation. All OG- and IG-relations in this square are shown in Fig. 5(a) and
(b), respectively, while its OG/IG-multigraph in shown in Fig. 5(c). Note that
this multigraph again exhibits perfect vertical symmetry. In particular, the least
informative relations of OG and IG (viz. NCD and NI ) co-occur with each other,
which explains the absence of any Aristotelian relations on the four sides of the
degenerate square (cf. Theorems 7 and 8 of [15]).

Fig. 5. (a) Opposition relations and (b) implication relations in the degenerate square
shown in Fig. 1(c); (c) OG/IG-multigraph for this degenerate square. Thick and very
thick edges represent combinations of relations that co-occur resp. 4 and 8 times.

Since the degenerate square in Fig. 1(c) does not exhibit any duality relations
except for eneg on its diagonals, it does not make much sense to construct
OG/DG- or IG/DG-multigraphs for it. By contrast, the degenerate square in
Fig. 1(d) not only exhibits opposition and implication, but also duality relations,
as shown in Fig. 6. Consequently, we can now construct not only an OG/IG-, but
also OG/DG- and IG/DG-multigraphs. In particular, the OG/IG-multigraph is
isomorphic to the one shown in Fig. 5(c), since both are OG/IG-multigraphs for
degenerate logical squares. Furthermore, the OG/DG- and IG/DG-multigraphs
again turn out to be isomorphic to each other. For reasons of space, however,
we only show the ‘combined’ OG/IG/DG-multigraph; cf. Fig. 4(b). Once again,
this multigraph clearly reveals the highly symmetrical nature of the mutual
interactions between OG, IG and DG in the degenerate square in Fig. 1(d).
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Fig. 6. (a) Opposition, (b) implication and (c) duality relations in the degenerate
square shown in Fig. 1(d).

5 Conclusion

In this paper we have used multigraphs to investigate the interactions between
OG, IG and DG in classical as well as degenerate logical squares. First of all,
we have shown that OG and IG are highly symmetrical in their interaction
with each other—cf. Fig. 3(a). Furthermore, OG and IG also display a higher-
order symmetry, in the sense that these two geometries fulfill highly similar
roles in their respective interactions with DG—cf. the isomorphic multigraphs
in Figs. 3(b–c). Finally, these symmetries not only hold for classical squares, but
also for degenerate squares—compare Figs. 3(a) and 4(a) with resp. Figs. 5(c)
and 4(b). These results clearly illustrate the potential fruitfulness of multigraphs
for studying the interactions between various logical geometries.

In future work, we will extend this research line along three complementary
dimensions. First of all, we will explore alternative multigraph visualizations,
which optimize different diagrammatic criteria (e.g. central symmetry, fewer edge
crossings, etc.). Secondly, we will study interactions involving the Aristotelian
geometry (AG), in particular the interactions AG/OG and AG/IG. Thirdly, we
will also look at diagrams larger than squares, e.g. logical hexagons and octagons.
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Abstract. This paper presents two versions of opposition relations for
prophetical statements, the first one is an application of “Ockham’s the-
sis” in Classical propositional Logic. The second one is a reinterpretation
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1 Introduction

The aim of this paper is to compare two ways of representing oppositions of
prophetic statements. We will begin presenting what we have called “Ockham’s
thesis”. According to Ockham1, prophecies about future contingents are con-
ditional expressions. From a logical point of viwe that means that a prophetic
sentence such as “before the cock crow twice, thou shalt deny me thrice”2, is
a conditional (say “(A ⊃ B)”). The novelty of Ockham’s interpretation lies in
assuming that expressions like this contain an implicit antecedent (say “A”) that
in making it manifest, and in connection with the consequent shows the meaning
of the prophecy. Ockham’s discussion in his treatise is devoted to the problem of
future contingents, but assumes theory of oppositions and some intuitions about
conditionals. Due to this fact we propose two alternatives for representing the
opposition of prophecies. On the one hand, it is explored opposition of prophe-
cies in Classical propositional Logic (CL), where several interesting consequences
and some intuitive ideas about conditionals are considered.
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the project: The logic of prophetical conditionals: Prophetical languaje, divine commu-
nication, and human freedom 61559-3, supported by John Templeton Foundation. We
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2 (Mark, 14:72).
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Consequently, a problem is outlined concerning what we have called auto-
conditional prophecy. This problem throws us to the study of the oppositions in
the logic MRSP 3, in which we propose a solution to the mentioned problem.
From this analysis two consequences are presented in detail: a) the inversion of
oppositions in MRSP , and b) a generalized definition of oppositions, which can
be applied to multiple-valued paracomplete logics.

The plan of the paper is as follows. In section two we outline Ockham’s
analysis of prophetical discourse. Section three is devoted to analyze Ockham’s
thesis in CL with some results and an outline of the problem of autoconditional
prophecies. Section four present a solution to the problem and a reinterpretation
of the opposition relations in MRSP .

2 A Brief Presentation of Ockham’s Thesis

Ockham holds that “all prophecies regarding any future contingents [are]
conditionals”[14, p. 44]; we have called this idea “Ockham’s thesis”. This philoso-
pher proposed the thesis to eliminate the tension between logical omniscience
and free will, this tension is eliminated maintaining that prophecies are means
by which God communicates future knowledge, and this information when being
in conditional form does not conflict with human freedom.

According to Ockham’s thesis, the expression “before the cock crow twice,
thou shalt deny me thrice” is a conditional whose antecedent is implicit, either
in the scriptures or in the formulation itself. It is the task of the exegete to find
this information to give coherence to the prophecy within the communicative
system between God and the human being4.

Despite being an original proposal, it has not been explored logically at
present, although there are works that try to question it. In this regard, A.
Edidin’s work is the most notable [5]. In summary, he maintains that Ockham’s
example is designed to work like this, and that in other examples it is not possi-
ble to make the antecedent explicit, and therefore, a) the conditional is trivial,
or b) the antecedent is very strong and therefore it is not possible to unfold it,
or finally, c) that the conditional is false [5, p. 184]5.

In our view, Edidin’s argument fails because he does not realize that the
scriptures themselves offer evidence to extract the antecedent for more complex
prophecies that are not so easily explainable in terms of conditionals6.

What interests us is Ockham’s formulation of the problem, since it estab-
lishes a direct connection with opposition theory. The problem is to question
whether what is revealed by the prophets is necessary or contingent [14, p. 44].
If necessary, since what is revealed is about the future, the opposite will not be
true and the prophecy is true from now on.

3 See [6], [7].
4 For a more detailed analysis you can consult [9].
5 For more details see [9].
6 This theme is left for a future paper dedicated exclusively to analyzing Edidin’s

argument and Ockham’s thesis.
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The problem arises when faced with the idea that revealed truths force facts
to happen in such a way, and since they are revealed truths they are necessary.
Ockham will argue a few lines below that these truths are not necessary but
contingent, and also, conditional.

This allows him to continue affirming that the prophet state a contin-
gent proposition, because what he says is true under a certain condition, that
expressed by the antecedent, which is sometimes explicit and sometimes not [14,
p. 44]. The fact that they are contingent makes interesting the question about
how they oppose7, we present in our next section our analysis of the oppositions
of prophecies in terms of conditional opposition.

3 Classical Opposition of Prophecies

3.1 Classical Logic and MRSP

By means of L we will identify the propositional language that we will use,
formed as usual from a non-empty collection of variables V ar = {A,B,C, ...}
and a collection of logical connectives C = {⊃,¬}. For Classical propositional
Logic (CL) the semantics is composed of models of the form M = 〈L, V,D+, v〉,
with V = {⊥,�}, D+ = {�}, and v : V ar −→ V . The definitions of logical
consequence and logical truth are the definitions are those that are already known
in a standard way. Let M be a collection of models, we say that a formula ϕ is a
logical truth (and we will write � ϕ) if v(ϕ) ∈ D+, ∀v ∈ M. Given a collection
Σ of formulas, we say that a formula ϕ is a logical consequence of Σ, and we
write Σ � ϕ, if v(β) ∈ D+ (∀β ∈ Σ), then v(ϕ) ∈ D+, ∀v ∈ M. On the other
hand, the logic MRSP differs from CL because its collection of truth values is
V = {⊥, ∗,�}, while the collection of designated values is D+ = {�}, ordered
as: ⊥ < ∗ < �. Truth tables for conditional and negation are given in Table 1.

Table 1. MRSP tables for conditional and negation

¬ A ⊃ � ∗ ⊥
⊥ � � � ∗ ⊥
� ∗ ∗ ∗ ∗ ∗
� ⊥ ⊥ ∗ ∗ ∗

3.2 Prophecies in CL

To begin with the analysis consider the opposition diagram in Fig. 1. The for-
mulas in this diagram can be divided into two groups: negative and positive.
The diagram consider standard opposition relation definitions8.
7 Because if they were necessary, they would simply be contradictory.
8 Our multiple-valued version of opposition relations are the following.
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Fig. 1. Classical Cctagon of Prophecies

Now, consider our example “If you are pressured by people, before the
cock crow twice, thou shalt deny me thrice” as a natural language correlate of
“(A ⊃ B)”. In Fig. 1 are displayed the possible opposition relations between the
formulas9. The main candidate to be an opposite of “(A ⊃ B)” is “¬(A ⊃ B)”
because external negation forms a contradictory formula.

According to truth tables for conditional we have that there are three more
alternatives to be opposite of “(A ⊃ B)”, which are composed of combinations of
internal negations that affect “A”, “B”, or both. Therefore, the three opposites
and “(A ⊃ B)” are subcontraries each other, that means they can be true
simultaneously, but not simultaneously false. The cases in which they maintain
different value are the least interesting since they only present opposite truth
conditions.

Definition 1. MV-Contradiction: Given two formulas ϕ,ψ ∈ L, we say
that ϕ and ψ are contradictory, whenever ∀v ∈ M, v(ϕ) ∈ D+ if and only if
v(ψ) /∈ D+.

Definition 2. MV-Contrariety: Given two formulas ϕ,ψ ∈ L, we say that ϕ
and ψ are contraries, whenever ∀v ∈ M, if v(ϕ) ∈ D+ then v(ψ) /∈ D+, and if
v(ϕ) /∈ D+ then v(ψ) could be in D+ and could be in D−.

Definition 3. MV-Subcontrariety: Given two formulas ϕ,ψ ∈ L, we say that
ϕ and ψ are subcontraries, whenever ∀v ∈ M, if v(ϕ) /∈ D+ then v(ψ) ∈ D+,
and if v(ϕ) ∈ D+ then v(ψ) could be in D+ and could be in D−.

Definition 4. MV-Subalternation: Given two formulas ϕ,ψ ∈ L, we say that
ψ is subaltern of ϕ, whenever ∀v ∈ M, if v(ϕ) ∈ D+ then v(ψ) ∈ D+, and if
v(ψ) ∈ D+ then v(ϕ) could be in D+ and could be in D−.
9 This diagram is one of the opposition diagrams known in the specialized literature

as the octagon of opposition. See for example [12], [4], and [1], for a general revision
of the most popular opposition diagrams known in the literature; and for a detailed
analysis of implication and opposition relations see [4] and [8]. Red color represents
contradiction, blue contrariety, green subcontrariety and black subalternation. For
oppositions in the context of non-classical logics see [11] and [15].
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These oppositions depend largely on the definitions of conditional and nega-
tion, in this respect we will consider an interesting case. What would happen if
the antecedent of the prophecy of our example is the same as the consequent
one? A prophecy becomes a necessary expression10 and some other negations
become contingent, as shown in Fig. 2.

Fig. 2. Classical octagon of autoconditional prophecies

Despite forming these interesting oppositions, is it coherent to accept these
type of autoconditional prophecy as genuine formulation? In this regard, we
consider another logic where formulas such as the previous one are logical con-
tingencies, preserving the contingent nature of the prophecies11.

4 Connexive Opposition of Prophecies

As we saw in the previous section, if we accept that the prophecies can be formed
with the “(A ⊃ A)” formula the prophecies become logical truths. We turn the
discussion to the logic “MRSP ”, in this logic other interesting formulas are
also validated, two of them are in the octagon presented above, we refer to the
Aristotle’s thesis in its two versions: ¬(A ⊃ ¬A) and ¬(¬A ⊃ A)12.
10 And therefore, the problems reported by Ockham arise, if we consider prophecies as

necessary sentences.
11 Another question arises. In which sense prophecies of the form “A ⊃ A” are genuine

prophecies? One may consider that the characteristic of a prophecy is to produce
new information given some different data, in this sense, there is no justification to
consider these form of conditional as a real logical correlate of prophecies. Another
options is to consider autoconditional prophecies as extreme cases of prophecies.
These questions remain open in this work and are left for future research. I appreciate
the fruitful discussion with Manuel Correia at this respect.

12 This logic is part of the family of logics known as connexive logics, logics that are
neither subsystems nor extensions of CL and that are characterized by validating
principles that, like those mentioned, are not classical theorems. For more details
see [2], [3], [7], [10], [13] and [17].
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In CL both are logical contingencies, while in this logic they are tautologies.
This is mainly because in CL, v(A) = v(¬(A ⊃ ¬A)) = v(¬A ⊃ A) and v(¬A) =
v(¬(¬A ⊃ A)) = v(A ⊃ ¬A). In Table 2 it can be seen that these equalities are
not satisfied, and therefore the octagon undergoes modifications and results in
the diagram of Fig. 3.

Table 2. MRSP tables for octagon of prophecies

A ⊃ B ¬(A ⊃ B) ¬(A ⊃ ¬B) (A ⊃ ¬B) ¬(¬A ⊃ B) (¬A ⊃ B) (¬A ⊃ ¬B) ¬(¬A ⊃ ¬B)

� ⊥ � ⊥ � ∗ ∗ �
∗ � ⊥ � � ∗ ∗ �
⊥ � ⊥ � � ∗ ∗ �
∗ � � ∗ ⊥ � ⊥ �
∗ � � ∗ � ∗ � ⊥
∗ � � ∗ � ⊥ � ⊥
∗ � � ∗ ⊥ � ⊥ �
∗ � � ∗ � ∗ � ⊥
∗ � � ∗ � ⊥ � ⊥

The octagon of Fig. 3 satisfies the following properties. First, if we divide
the formulas into �-predominant (particular) and ⊥-predominant (universal)
following C. Williamson (see [16, p. 499] and [8, p. 256]), we may propose a
generalization dividing the formulas in D+-predominant and D−-predominant.
In that sense we will have multiple-valued universal and particular formulas,
which form a square of contraries and subcontraries, respectively.

The interesting thing about this is that just the contrary formulas of CL are
the subcontrary of MRSP , and vice versa. For the same reason, subalterns are
reversed and the only ones that remain the same are contradictory. This is due
to two reasons: a) because the universal formulas of CL are the particular ones
of MRSP and viceversa; b) because of the negation of MRSP does reverse the
value ∗ towards the value �13.

Finally, taking up the problem of autoconditional prophecies, the octagon
formed in Fig. 4 satisfies more oppositional operations than that of Fig. 3, there
is only an equivalence relation between the two versions of Aristotle’s thesis, and
the relations of contrariety and subcontrariety are distributed proportionally.
All these relations are satisfied due to the generalized version of the oppositions
we gave in this section, and interestingly, these definitions are not sensitive to
systems in question, that is, they are fulfilled in both regardless of whether they
maintain different characteristics and produce different octagons.

13 To analyze this feature is interesting but it comes out of our goals.
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Fig. 3. Octagon of prophecies in MRSP

Fig. 4. MRSP octagon of autoconditional prophecies

5 Conclusions

We have presented a brief synthesis of what we call Ockham’s thesis. From this
thesis we outline two ways of opposition of prophetic expressions, one based on
CL and the other on MRSP . As a main result, an octagon of oppositions can
be constructed in CL. We have considered the option that the prophecies can
be represented by formulas such as “A ⊃ A”, and this led us to the construction
of a second octagon. Consequently, these two octagons have been replicated in
MRSP , where another two octagons have been presented (Fig. 4). Finally, a
generalized definition of opposition relations was presented to unify these two
alternatives of representation.
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Abstract. Peirce’s β variant of Existential Graphs (EGs) is a diagram-
matic formalism, equivalent in expressive power to classical first-order
logic. We show that the syntax of EGs can be presented as the arrows of
a free symmetric monoidal category. The advantages of this approach are
(i) that the associated string diagrams share the visual features of EGs
while (ii) enabling a rigorous distinction between “free” and “bound”
variables. Indeed, this diagrammatic language leads to a compositional
relationship of the syntax with the semantics of logic: we obtain models
as structure-preserving monoidal functors to the category of relations.

In addition to a diagrammatic syntax for formulas, Peirce developed
a sound and complete system of diagrammatic reasoning that arose out
of his study of the algebra of relations. Translated to string diagrams
we show the implied algebraic structure of EGs sans negation is that
of cartesian bicategories of relations: for example, lines of identity obey
the laws of special Frobenius algebras. We also show how the algebra of
negation can be presented, thus capturing Peirce’s full calculus.

1 Introduction

Peirce’s Existential Graphs (EGs) arose out of his continued study and develop-
ment of the algebra of relations. As a diagrammatic calculus, EGs use lines to
represent identity, conjunction and existence and nested circles (Peirce’s notion
of the “cut”1) to capture negation. These graphical elements are drawn on the
sheet of assertion: the blank page upon which a graph is scribed. Our focus is
on the algebra of the β variant of EGs, which we treat as string diagrams. The
resulting language, which we call Dβ, shares the same visual features of EGs.

We argue that Peirce’s β is closely related to the algebraic structure of carte-
sian bicategories of relations [7]. Indeed, lines of identity, as string diagrams,
obey the laws of special Frobenius algebras, while derivations in the negation-free
fragment are the 2-cells of free cartesian bicategories. We identify the additional
rules needed to handle negation, which are adapted from Peirce’s calculus of

1 In this paper, we use “cut” in the Peircean sense to mean negation, not the standard
notion of cut from proof theory.
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diagrammatic reasoning. Throughout, we argue that Peirce’s seminal studies led
him to intuitions that suggest that he—at least implicitly—identified the very
same algebraic structures.

While Dβ is visually similar—we joke that a diagram in Dβ looks like an EG if
you squint—it is important to highlight some differences. Making the Frobenius
structure explicit in Dβ imposes more rigour on lines of identity. Relations in
Dβ have left and right wires corresponding to arity/co-arities of the relations.
This may actually help the presentation of graphs in EGs as Peirce sometimes
imposes an order on relations that is not directly read off the ligatures. An
explicit Frobenius structure gives the flexibility of rearranging wires as needed,
so expressivity is not lost, but also allows us to have a definite ordering, which
is useful in many examples. This amendment, maintaining the visual features
while being more definite/exact, may very well be a welcome addition.

Perhaps more significantly, in order to achieve compositionality, the string
diagrammatic account forces us to keep track of bound and free variables in a
more precise way than in Peirce’s original EGs. Indeed the existential in the
name of EGs means that scribing a graph on the sheet of assertion is to assert
the existence (i.e. the quantification) of the respective predicate/variable. EGs
have, as Zeman has put it, “implicit quantification” [19]. Treatment of free and
bound variables in modified versions of EG (see [4,10]) equip EGs with additional
structure. The string diagrammatic language Dβ makes this treatment quite
natural—the result is less cumbersome than the technology of variable manage-
ment (e.g. α-conversion, capture-avoiding substitution) often waved through at
the start of many traditional courses on predicate logic.

Brady and Trimble have previously developed a string diagrammatic account
of EGs [2,3], relying as we do on monoidal categories and in particular, the poset-
enriched monoidal category of relations as a semantic universe for logic. However,
their string diagrams are geometric/topological entities. Instead, we emphasize
their syntactic nature, which allows, e.g. to define the notion of model as simple
inductive procedure, not unlike Tarski’s compositional semantics for predicate
logic. Moreover, we work in the framework of (poset enriched) props [11], which
emphasizes the algebraic structure borne by the underlying monoidal category.

In the discussion below we assume some familiarity with the reading and
transformation (i.e. inference) rules of EGs. For a lengthier introduction to
Peirce’s EGs, and one that includes a description of Peirce’s transformation
rules, see [17]. Further accounts can be found in [4,9,18], and the introduction
in [15]. For an introduction to Peirce’s compositional/valental account of rela-
tions, see [17, p. 113–118]. A contemporary presentation can be found in [5].

Structure of the Paper. In Sect. 2 we introduce Dβ and show how to translate it
to and from traditional syntax. In Sect. 3 we introduce the structure of cartesian
bicategories, which informs the notion of model of the logic, introduced in Sect. 4.
We identify iteration laws of this structure with the cut in Sect. 5 and conclude
with a worked example of diagrammatic reasoning in Sect. 6.
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2 String Diagrams as Syntax

We start with Peirce’s valental theory of relations, inspired by the theory of
valence in chemistry, where elements have open bonds that act as attachment
points from which more complex compounds and molecules can be built. Rela-
tions are thus seen as having analogous open bonds that can be filled and com-
bined with other relations to form more complex relations.

Consider the ‘loves’ relation, which in usual FOL syntax is written loves(x, y).
The relation remains indefinite insofar as the objects/subjects of the relation
are unspecified, i.e. the variables x and y remain free. Peirce adds “blanks” or
“hooks” as graphical placeholders to represent the unspecified objects/subjects,
which when filled, “complete the relation”. In our example ‘loves’ is a dyadic
relation, and we represent hooks as “dangling” wires, arriving at loves . Filling
in the hooks/connecting the wires in the diagrammatic notation is an analogous
operation to passing from free to bound variables in the usual FOL syntax.

Specific relations are combined by joining free hooks together with what
Peirce calls a line of identity. A line of identity asserts the identity of each
object/subject at its endpoints. We represent lines of identity with the generators
{ , , , } of a monoid-comonoid pair. Consider the diagrams below.

is a pear

is ripe

is a pear

is ripe

is a pear

is ripe

is a pear

is ripe

Reading from left to right, the first diagram is the conjunction of the is a pear and
is ripe relations where the hooks are unfilled/wires are dangling. In usual FOL
syntax, is a pear(x)∧ is ripe(y). In the second diagram the hooks are filled/wires
are capped off with a unit generator. In usual FOL syntax, ∃x. is a pear(x) ∧
∃y. is ripe(y). In the third, using the comultiplication generator the two wires
have been equated but there is a dangling wire to the left; is a pear(x)∧is ripe(x).
In the final diagram the wire has been capped off: ∃x. is a pear(x) ∧ is ripe(x).

The syntax of Dβ below follows Peircean considerations. Let Σ be a monoidal
signature: symbols R each with an arity ar(R) ∈ N and coarity coar(R) ∈ N.

Example 1. The signature for our running example is

Σ = {adores, is a woman, is a catholic}

with ar(adores) = coar(adores) = 1, ar(is a woman) = ar(is a catholic) = 1,
coar(is a woman) = coar(is a catholic) = 0. The diagrammatic convention for an
element R ∈ Σ is to draw it as a box, with ar(R) wires, ordered from top to
bottom, “dangling” on the left and, similarly, coar(R) wires on the right. Thus:

Σ = { adores , is a woman , is a catholic } .
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Below we define our recursively defined syntax using BNF notation. These
are the basic syntactical elements from which terms in DβΣ are constructed.2

c ::= | | | | R ∈ Σ (1)

| | | (2)

| c ⊕ c | c ; c | c− (3)

At this point, the diagrammatic elements of the syntax in (1) and (2) ought to
be considered as mere symbols that denote constants. The operations are given
in (3): two binary operations ‘;’, ‘⊕’ and one unary operation •−. These have their

own diagrammatic convention: c ; c′ is drawn c c′...
...

... , c ⊕ c′ is drawn
c

c′ ...

...
...

...
,

and c− is drawn ...
...c . Roughly the operations here can again be seen in terms

of our relational story from above. ‘⊕’ allows us to scribe relations adjacent to
each other (i.e. in parallel) on the sheet, ‘;’ allows us to wire relations together in
series (similar to connecting relations via lines of identity), and placing a relation
inside a cut expresses its negation/complement.

: (1, 0) : (1, 2) : (0, 1) : (2, 1) : (0, 0) : (1, 1) : (2, 2)

R : (ar(R), coar(R))

c : (n, z) d : (z,m)

c;d : (n,m)

c : (n,m) d : (r, z)

c⊕d : (n+r,m+z)

c : (n,m)

c− : (n,m)

Fig. 1. Sort inference rules.

As opposed to the usual syntax of FOL, ours (1) (2) (3) does not have
variables, nor variable binding. The price is an inductive discipline, given in
Fig. 1. Intuitively, it keeps track of “dangling” wires—terms are associated with
a sort, a pair of natural numbers (n, m) that counts the wires on the left and
on the right—and ensures that for a term c ; c′, c and c′ have the right number
of wires on their corresponding boundaries so that ‘;’ as “connecting wires” to
make sense. It is easy to prove that if a term has a sort, it is unique.

Example 2. The term ; has no sort and no diagrammatic depiction. On
the other hand ⊕ : (2, 0). Given the signature of Example 1, consider
the term (( ; ) ; ((adores ; is a woman)− ⊕ is a catholic))

−
with sort (0, 0).

2 Henceforward we will not write the subscript Σ, assuming a fixed ambient monoidal
signature.
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Using the diagrammatic conventions yields the following, where the dotted-line
boxes play the role of the parentheses.

adores is a woman

is a catholic

It is not difficult to see that sorted terms are in 1-1 correspondence with such
diagrams, provided that enough dotted-line boxes are inserted to disambiguate
the associativity of ‘;’ and ‘⊕’ and the priority between them.

2.1 Translating to and from Traditional Syntax

The (traditional) syntax below is expressive enough to capture first order logic,
containing equality, relation symbols, existential quantification and negation.

Φ ::= � | Φ ∧ Φ | xi = xj | R(
→
x) | ∃x.Φ | ¬Φ (FOL)

To ease the translation between the diagrammatic and the traditional, we intro-
duce a half-way formalism that constraints the syntax FOL with explicit free-
variable management. This is a mild extension of a similar calculus in [1, Sec. 2]
where an analogous translation is given, albeit without the presence of negation.

(�)
0 � �

R ∈ Σ ar(R) = n
(Σ)

n � R(x0, . . . , xn−1)

n � Φ
(∃)

n − 1 � ∃xn−1.Φ

(=)
2 � x0 = x1

m � Φ n � Ψ
(∧)

m + n � Φ ∧ (Ψ [
→
x [m,m+n−1]/

→
x [0,xn−1]])

n � Φ
(¬)

n � ¬Φ

n � Φ (0 ≤ k < n − 1)
(Swn,k)

n � Φ[xk+1, xk/xk, xk+1]

n � Φ
(Idn)

n − 1 � Φ[xn−2/xn−1]

n � Φ
(Nun)

n + 1 � Φ

The idea is that a judgment n � Φ expresses the fact that Φ is a formula with
free variables from the set {x0, x1, . . . , xn−1}. Indeed, we have the following:

Proposition 1. A formula Φ with free variables in {x0, x1, . . . , xn−1} is deriv-
able from (FOL) if and only if n � Φ.

Using the above, we can present a translation Θ from (FOL) to Dβ by induction
on the derivation of n � Φ. The rules are given in Fig. 2. A similar translation
can be given from Dβ to (FOL). Another important fact is that the translations
respect the underlying semantics of the logics—due to space restrictions we are
not able to show this here. We shall introduce the semantics of Dβ in Sect. 4.
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Θ (0 � �) = (�) Θ (n � φ[xk+1, xk/xk, xk+1]) = Θ(n � φ)

k

n − k − 2 (Swn,k)

Θ (2 � x0 = x1) = (=) Θ (n − 1 � φ[xn−2/xn−1]) = Θ(n � φ)

n − 2

(Idn)

Θ (n � R(x0, . . . , xn−1)) = R
n (Σ) Θ (n − 1 � ∃xn−1.φ) = Θ(n � φ)

n − 1
(∃)

Θ (n + 1 � φ) = Θ(n � φ)
n

(Nun) Θ (m + n � φ ∧ (ψ[. . . ])) =
m Θ(m � φ)

n Θ(n � ψ)
(∧)

Θ (n � ¬φ) = Θ(n � φ)n (¬)

Fig. 2. Translation Θ from FOL to Dβ.

Example 3. Referring to Example 2, the formula expressed by the diagram is

¬(∃x. is a catholic(x) ∧ ¬(∃y. adores(x, y) ∧ is a woman(y)))
≡ ∀x. (¬is a catholic(x) ∨ (∃y. adores(x, y) ∧ is a woman(y)))

≡ ∀x. is a catholic(x) → ∃y. adores(x, y) ∧ is a woman(y).

2.2 String Diagrams

In order not to clutter diagrams with dotted-line boxes, we will not consider
raw terms, but terms quotiented by the laws of symmetric strict monoidal cat-
egories [11,12] of a particularly simple nature: the set of objects is the natural
numbers and m ⊕ n

def= m + n. Such categories are called props. Some care has
to be taken with the •− operation, which is not standard: we introduce a simple
extension to the usual definition below.

Definition 1. A prop X with a unary operation on homsets (uoh-prop) is a
prop with a family of operations −

m,n : X[m,n] → X[m,n], where m,n ∈ N.

We are ready to define the notion of syntax we will use throughout the paper.

Definition 2. (Syntax). Let Dβ be the uoh-prop where arrows m → n are
(m,n)-sorted terms, modulo the laws of symmetric monoidal categories. The
additional unary operation on homsets is given by •−.
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While Definition 2 emphasises the construction of terms from the grammar, Dβ
has an extremely concise mathematical description: it is the free uoh-prop on
Σ. The characterisation of Dβ as a free algebraic structure is important: first,
it means that our string diagrams are a bona fide notion of syntax, not unlike
usual syntax trees. Second, just as syntax admits elegant inductive definitions
(not unlike, for instance, Tarski’s semantics of first order logic), in order to
define a structure preserving translation (homomorphism of uoh-props) from
Dβ to some target semantic universe (some uoh-prop), it suffices to define the
target of the constants (1). We shall use this for the concept of model in Sect. 4.

Example 4. For the category-theory uninitiated reader, let us give an intuitive
summary of the algebraic structure given by Definition 1, used in Definition 2.

– the two composition operations are strictly associative, e.g.

is a catholic

is a womanadores

=
is a catholic

is a womanadores
.

This means the result is the same irrespective of the order we compose, i.e.
whether we start with the adored woman or the adoring catholic.

– the two composition operations are compatible, e.g.

is a woman

is a catholic

adores

adores
= is a woman

is a catholic

adores

adores
.

– the first two constants of (2) are identities; the first the identity on 0, the
second the identity on 1. This means, e.g.

is a woman

= is a woman = is a woman = is a woman

adores = adores = adores .

The combination of identity laws and the compatibility of ‘;’ with ‘⊕’ means
that unconnected components can be “slid” past each other, e.g.

is a womanadores

is a catholic
=

is a womanadores

is a catholic
.

In Peirce’s EGs these features are built directly into the conventions of the
sheet of assertion. The identities follow from the properties of composition
with a blank sheet or with a line of identity. In regards to composition and
associativity on the sheet itself, Peirce writes: “If two propositions are writ-
ten, detached from one another, on the sheet of assertion, both are asserted,
regardless of whether one is to the right, to the left, at the top, or at the
bottom of the other. . . If three or more propositions are all written, detached
from one another, on the sheet of assertions, the logical relation of any pair
of them is the same as that of any other pair” [16, p. 488].
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– the last constant of (3) is a symmetry. This means that diagrams constructed
from it and the identity “behave” as permutations, e.g.

= ,

and arbitrary diagrams can “slide” across symmetries3, e.g.

is a woman

adores is a catholic
=

is a womanadores

is a catholic
.

3 The Algebra of Lines of Identity

In this section we identify some of the algebraic structure of Dβ that will, in
Sect. 5, result in a calculus for diagrammatic reasoning. In addition, the structure
introduced here will allow us to specify the correct concept of model in Sect. 4.

Figure 3 depicts the laws of cartesian bicategories (of relations) [7]. Equations
(coas), (coco), (counl) say that ( , ) is a cocommutative comonoid, while (as),
(co), (unl) say that ( , ) is a commutative monoid.

The three equations (fr) are the Frobenius equations. While any two of the
three can be used to derive the others, all three are useful in diagrammatic
reasoning. The equation (sp) is the so-called “special” law. The equations thus far
define what is usually referred to as a (commutative) special Frobenius bimonoid.

It is worth reflecting on how these laws are captured in Peirce’s EGs. As
mentioned previously, associativity and commutativity are built into the con-
ventions of the sheet of assertion, where the order of composition of relations on
the sheet is immaterial. Each of the other rules can be seen as following from
the combination of monadic, dyadic, triadic identity elements. (unl) and (counl) are
equivalent to being able to add a branch to any line of identity. Peirce called

(coas)
=

(coco)
=

(counl)
=

(as)
=

(co)
=

(unl)
=

(fr)
=

(fr)
=

(sp)
=

R
m

n

n

(wh1)
≤

R

R

m

n

n

R
m n

(wh2)
≤ m

Fig. 3. The laws of cartesian bicategories of relations.

3 These equations are examples of naturality of the symmetry.
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this triadic identity element, where a branch forms a point with three extending
wires, the teridentity relation. Peirce’s interpretation of this rule in EGs, given
in a letter to Lady Welby, is worth quoting: “every line of identity ought to be
considered as bristling with microscopic points of teridentity” [14].4

The (fr) and (sp) equations can be seen as observations about the composition
of teridentity relations. Two teridentity relations brought together by connecting
two of each of the three wires is equivalent to a single (dyadic) line of identity.
This yields the (sp) equation. Similarly, the various combinations of two teriden-
tity relations connected through one wire likewise yield the (fr) equalities. Peirce
is explicit about the interpretation of this rule in his EGs. He writes: “Qua-
teridentity [Peirce’s term for a point with four extending wires] is obviously

composed of two teridentities; i.e. This is or or ” [14]. Clearly,
Peirce had the topological intuitions conveyed by the Frobenius structure.5

Notice that (wh1) and (wh2) are not equalities and as such, in subsequent dia-
grammatic reasoning, derivations can only use them left-to-right. Moreover, they
use the diagrammatic convention where a wire with a natural number label m
stands for m wires stacked on top of each other. The inequations (wh1) and (wh2)

specify that all arrows are weakly homomorphic w.r.t. the comonoid structure.
In cartesian bicategories, moreover, the monoid structure is required to be right
adjoint to the comonoid structure. This means the following inequalities:

(ra1)

≤
(ra2)

≤

(ra3)

≤
(ra4)

≤ .

In the context of Frobenius bimonoids that satisfy (wh1) and (wh2), all of (ra1)-
(ra4) are redundant. As we will see, (wh1) and (wh2) (along with the redundant
(ra1)-(ra4)) give rise to Peirce’s transformation rules in EGs. Peirce’s assertion,
for example, that any graph scribed on the sheet itself (i.e. that is not scribed
within a cut) can be erased can be proved as follows.

Lemma 1. R
m n

(er)

≤ .

Proof. R
m n

(ra3)

≤ R

(wh2)

≤ .

4 See, also, [CP 4:583]: “the line of identity. . . must be understood quite differently.
We must hereafter understand it to be potentially the graph of teridentity by which
means there will virtually be at least one loose end in every graph”.

5 Elsewhere Peirce writes: “There is no need of a point from which four lines of identity
proceed; for two triple points answer the same purpose ” [16, p. 357].
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Remark 1. It is well-known that the Frobenius equations induce a self-dual com-
pact closed structure. Roughly speaking, this allows us to “rewire” diagrams,
moving wires between the boundaries. We have used this already in the first
diagrams of Example 4, on the is a catholic relation.

4 Models

Recal uoh-props, introduced in Definition 1. Below we identify an important
class of uoh-props, which together serve as the semantic universe for Dβ.

Definition 3. Let X be a set. The uoh-prop RelX has, as arrows m → n, rela-
tions Xm → Xn (subsets of Xm×Xn), where Xm is the m-fold cartesian product
of X. Given a relation R : Xm → Xn, R− is the (set-theoretical) complement
of R as a subset of Xm × Xn.

Composition in RelX is relational composition: given R : m → k and S : k →
n, R ; S = { (x,y) | ∃z ∈ Xk. (x,z) ∈ R ∧ (z,y) ∈ S } ⊆ Xm × Xn. The
monoidal product is cartesian product of relations.

It is well-known that RelX is a cartesian bicategory of relations, that is, it
satisfies all of the equations of Fig. 3. In the setting of RelX , is the diagonal
relation {(x,

(
x
x

)
) | x ∈ X} while is the relation {(x, �) | x ∈ X}, where � is

the unique element of the singleton set X0. The relations denoted by and
are, respectively, the opposite relations. Henceforward we will call these four

relations the canonical Frobenius structure of RelX .

The following is the central definition of this section.

Definition 4. A model for Dβ consists of a set X and a morphism of uoh-props

[[−]] : Dβ → RelX

that maps { , , , } to the canonical Frobenius structure of RelX.

Referring back to the syntax definition (1), to give such a morphism is to
give, for each σ : (m, n) ∈ Σ, a relation [[σ]] ⊆ Xm×Xn. The rest of the mapping
is induced compositionally.

Remark 2. Note that closed diagrams, that is those of sort (0, 0) map to relations
of type 0 → 0, that is, subsets of X0 × X0. Since X0 is a singleton, there are
precisely two such relations – the empty (∅) and the full ({(�, �)}). We identify
these with truth values – ∅ with ⊥ (false) and {(�, �)} with � (true).

Example 5. Take the signature of Example 1. Let X = {m,w}. To define
[[−]] : Dβ → RelX we need only choose valuations of adores , is a woman ,
and is a catholic as relations. Let is a woman ⊆ X1 × X0 = {(w, �)}. Similarly,
let is a catholic = {(m, �)}. If we set adores ⊆ X1 × X1 = {(m,w)}
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then �
adores is a woman

is a catholic

� ⊆ X0 × X0 = {(�, �)} = �.

On the other hand, if we assign adores = {(m,m)} then

�
adores is a woman

is a catholic

� ⊆ X0 × X0 = ∅ = ⊥.

Having established the notion of model, we introduce the notions of soundness,
completeness and logical equivalence. Two terms t, u of Dβ are said to be logically
equivalent if they have the same semantics in all models, [[t]] = [[u]]. An equation
is sound if it preserves logical equivalence. A calculus is complete if it equates all
logically equivalent terms. Note that the fact that RelX is a cartesian bicategory
of relations means that all of the laws introduced in Sect. 3 are sound.

5 The Algebra of Cut

In Sect. 3 we began the process of axiomatising logical equivalence. Thus far,
negation has not played a significant role in our exposition. In Fig. 4 we identify
a calculus that is sound, and—taken in conjunction with the laws of Fig. 3—
we conjecture to be complete. The equations of Fig. 4 describe the interactions
between the algebraic structure of Fig. 3 and Peirce’s cut (negation). First, we
explain the jagged-line notation, which emphasizes the local nature of the inter-
actions. It is shorthand for an arbitrary context inside the cut. For example,
(frcut) stands for

R

S

T
m1

m2

n1

n2k
l

=
R

S

T
m1

m2

n1

n2

k
l

for arbitrary R, S and T . Thus with (frcut) we can, roughly speaking, “rewire” a
cut to move wires between its left and right boundaries. Indeed (frcut) is a kind
of Frobenius law for cuts. In short, the combination of (symcut) and (frcut) means
that the cut boundary is permeable to “wiring” and the permutation structure.
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(symcut)
=

(frcut)
=

R
m n (dcut)

= R
m n

R ≤ S

(ctrpos)

S ≤ R

R
m n (it-deit)

=
R

R

m
n

Fig. 4. The algebra of cut.

(dcut) is a diagrammatic representation of Peirce’s rule for adding or erasing
a double cut around any partial graph. Of course, this is a non-constructive
rule; in this paper we only consider classical logic. Some progress has been made
recently [13] in the study of how EGs can be used as an intuitionistic logic and
we plan to investigate this in our framework in future work.

The (ctrpos) judgement single-handedly captures much of the behavior of the
transformation rules within the cut. Peirce explains it as follows: “Of whatever
transformation is permissible on the sheet of assertion, the reverse transforma-
tion is permissible within a single cut.” [16, p. 353]. While our presentation of
(ctrpos) represents this point with respect to a single cut, it is worth noting that
the reversal continues within subsequent nested cuts. The result is that the same
transformation rules that apply on the sheet itself (i.e. to graphs that are not
within a cut) also apply to graphs within an even number of cuts.6 As a rule the

6 Following the passage quoted above, Peirce writes: “In short, whatever transforma-
tion is permissible on the sheet of assertion is permissible on the sheet of assertion
within any even number of cuts while the reverse transformation is permissible within
any odd number of cuts” [16, p. 353] Or alternatively: “All illative processes are sub-
ject to the apagogical principle, or principle of contraposition, which, as applied to
graphs, is as follows: If any illative process is valid within an even number of enclo-
sures, its reverse is valid within an odd number, and vice versa” [15, p. 94]. See also
[16, p. 257-8, p. 478-9, & p. 539].
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principle of contraposition has been markedly absent from other presentations
of Peirce’s transformation rules in the literature. The latter point is all the more
significant in that Peirce often emphasizes the principle at the beginning of his
presentations of EGs and often motivates the other transformation rules from
it.7 Our presentation situates the principle in its position of primary importance.

Intuitively, the principle of contraposition captures the symmetry between
the valid twin inference rules of modus ponens and modus tollens. If we can
infer the transformation from R to S then we can likewise infer from the denial
of S the denial of R. In terms of Dβ and Peirce’s EGs, and as stated above,
the principle of contraposition allows us to perform the reverse transformations
when working within a cut. Our previous proof of the erasure rule, which states
that any graph written on the sheet itself (i.e. in an even area) can be erased,
can be reversed using (ctrpos) to yield Peirce’s insertion rule. Likewise, Peirce’s
rule that a line of identity can be broken on the sheet itself (ra3) can be reversed
using (ctrpos) to yield his rule that a line of identity can be joined in an odd area.8

The rule (it-deit) is a statement of Peirce’s principle of iteration/deiteration. In
Peirce’s own words the rule is stated as follows: “. . . any partial graph, detached
or attached, may be iterated within the same or additional cuts provided every
line or hook of the iterated graph be attached in the new replica to identically
the same ligatures as in the primitive replica; and if a partial graph be already
so iterated it can be deiterated by the erasure of one of the replicas which must
be within every cut that the replica left standing is within” [16, p. 358]. This
rule applies in the same area as the partial graph—i.e. the same rule holds in
the case where no cut is present. For us, it is useful to separate the two ideas
conceptually, since the latter is implied by the algebraic structure in Sect. 3.

It is worth noting that our (it-deit) rule is similar to Burch’s presentation of
“Dopplegänger pairs” that form when a line of identity crosses a cut (or two
lines of identity abut each other at a cut) [6]. Our rule is more general, as it
applies not simply to lines of identity but to relations and partial graphs. Each
case is unified under the same rule here.

While the soundness of the other rules in Fig. 4 is straightforward, (it-deit) is
more involved and less intuitive.

7 See, for example, the passages in the previous footnote.
8 In Peirce’s words: “. . . it is to be noted that a line of identity may be broken within

an even number of cuts or on the sheet of assertion, while two lines may be joined
within an odd number of cuts” [16, p. 358].
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Lemma 2. (it-deit) is sound.

Proof. Since we can “rewire” any cut so that it only has wires on its left bound-
ary, without loss of generality it suffices to show that:

R

S =
R

R
S

is sound for all possible valuations of R and S. Using traditional syntax, and
simplifying somewhat, this is to show the following logical equivalence:

∃z. R(x2,z) ∧ ¬S(x1,z)
≡ ∃z1. R(x1,z1) ∧ ¬(∃z2,z3. R(x1,z2) ∧ z1 = z3 ∧ z2 = z3 ∧ S(x1,z3))

Instead of dealing with the complicated formulas above, we instead directly use

the definition of model introduced in Sect. 4. Suppose for some model,
(

x1

x2

)

is on the LHS. This happens exactly when there is some y2 s.t. x2Ry2 and(
x1

x2

)
/∈ S.

Suppose now that
(

x1

x2

)
∈ RHS. This happens exactly when there is some y2

s.t. x2Ry2 and

⎛

⎝
x1

x2

y2

⎞

⎠ /∈
R

S . This non-inclusion happens exactly

when it is not the case that x2Ry2 or
(

x1

x2

)
/∈ S. Since x2Ry2 by assumption,

it happens precisely when x2Ry2 and
(

x1

x2

)
/∈ S.

It follows that LHS and RHS denote the same relation in all models. ��
We can use (it-deit) to obtain two similar laws that are useful in diagrammatic

proofs. We omit proofs for space reasons but note that Peirce can be seen using
an instance of (ii) in his 1903 Lowell Lectures [16, p. 358-9].
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Lemma 3.

(i)
S

(it-deit2)
=

S

S

(ii)
R

(it-deit3)
= R

R

We can also use (it-deit) to extend a line of identity into a cut. Note that
Lemma 4 follows from (it-deit2) when S is the counit.

Lemma 4. (pencut)
= .

Both Lemma 3 and Lemma 4 show how (it-deit) captures both iteration for a line
of identity and for a relation/partial graph.

6 Diagrammatic Reasoning in Action

Example 6. We return to our running example and conclude with a complete
diagrammatic derivation of the judgement

isacatholic(Charles) ∧ ∀x. isacatholic(x) → ∃y. adores(x, y) ∧ isawoman(y)
∃y. adores(Charles, y) ∧ isawoman(y)

.

In the derivation we use the triangle notation9 to denote a constant symbol of
the logic, that is, a relation that is guaranteed to have singleton models. This
(and similarly function symbols) are easily encoded in the graphical formalism
and do not add expressivity; it suffices to assert that:

Charles =

Charles

Charles

Charles =

9 Borrowed from the notation for states in categorical quantum mechanics [8].
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We proceed with the derivation below:

adores is a woman

is a catholic

is a catholicCharles

((c)unl)
=

adores is a woman

is a catholic

Charles

is a catholic

(pencut)
=

adores is a woman

is a catholic

Charles

is a catholic

(ctrpos)

≤ adores is a woman

is a catholic

Charles

is a catholic

(fr)
= adores is a woman

is a catholic

Charles
is a catholic

(it-deit2)
=

adores is a woman

is a catholic

Charles

≤ adores is a womanCharles
(dcut)
= adores is a womanCharles

7 Conclusion

Peirce’s EGs arose out of his continued study of the algebra of relations and
his concern for developing an efficient graphical notation. Seen through con-
temporary string diagrams, Peirce’s lines of identity obey the rules of special
Frobenius algebras, while Peirce’s inference rules for lines of identity are the
axioms of cartesian bicategories of relations. Moreover, diagrammatic reasoning
can be extended to cover negation in a straightforward manner.

The category theoretic account of EGs presented here yields a diagrammatic
calculus that is as expressive as first-order logic. We summarize the specific ben-
efits of the graphical logical language when we say that it is compositional. The
syntax is string diagrams, the semantics is RelX , and models structure-preserving
maps. In particular sub-formulas (sub-diagrams) have their own meaning as rela-
tions, with the meaning of the entire formula (diagram) obtained by composing
these. In these respects our approach follows Peirce’s original intentions.

In regards to Peirce scholarship, our presentation suggests new means of
interpreting the transformation rules in EGs. Following Peirce, this presentation
showcases contraposition as the governing duality between positive and negative
contexts on the sheet. We also clarify the rule of iteration. Robert’s presentation
[17, pp. 57-8] includes important but fairly ad hoc clauses to the Beta rules of
iteration. These clauses, as well as Burch’s more recent developments in [6], are
unified here with a single principle of iteration. Finally, situating Peirce’s EGs
in contemporary category theory [2,3] allows for further study and comparisons.
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Abstract. In this paper we compare two types of diagrams for the
representation of logical relations such as contradiction and contrariety,
namely Logical Space diagrams (LSD) and Aristotelian diagrams (AD).
The cognitive potential of Free Ride – defined in terms of tracking by
consequence (Shimojima 2015) – is shown to hold for LSDs but not for
ADs. The latter, however, do exhibit a greater inspection potential –
defined in terms of tracking by correlation. The translational or infor-
mational equivalence between LSDs and ADs is contrasted to their lack
of computational equivalence and their different degrees of iconicity.

Keywords: Cognitive potential · Free Ride · Logical Space Diagram ·
Aristotelian diagram · Translation · Informational/computational
equivalence · Degrees of iconicity

1 Introduction

The overall aim of this paper is to apply the general framework for the anal-
ysis of diagrams proposed by Shimojima [6] to two different types of diagrams
for Aristotelian relations (such as contradiction or contrariety). In Sect. 1 we
briefly present both the general framework – with a special focus on the cogni-
tive potential of Free Ride – and the four Aristotelian relations. In Sect. 2 we
introduce a new representation system for Aristotelian relations, namely Logi-
cal Space diagrams (LSDs), and study their cognitive (Free Ride) potential
in terms of tracking by consequence. In Sect. 3 we observe that, although the
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cognitive potential of Free Ride does not hold of the standard representation
of Aristotelian relations by means of Aristotelian diagrams (ADs), the lat-
ter do allow a weaker mechanism of tracking by correlation. In Sects. 4 and 5
we investigate the translation relation between LSDs and ADs, which observes
informational equivalence but not computational equivalence, and which reflects
differences in degree of iconicity between the two types of diagrams.

Fig. 1. General framework for the analysis of diagrams [6, Figure 21].

General Framework for the Analysis of Diagrams. In order to characterise
the semantic content of a diagrammatic representation, the framework adopted
in this paper [6, p. 23ff] has a two-tier semantics. It draws a distinction between
a token level at the bottom of Fig. 1 – with a representation relation �
from a representation s to represented object t – and a type level at the top of
Fig. 1 – with an indication relation ⇒ from a source type σ to a target type
θ. In the case of a street map, for instance, the representation s is a particular
sheet of paper (token) and the arrangement of lines and symbols is the source
type σ or property holding of (or ‘being supported’ by) that s. The represented
object t is a particular region of a city (token) and the arrangement of streets
and buildings is the target type θ or property holding of that t. A representation
s represents an object or situation t as being of target type θ if s represents t
and s supports a source type σ that indicates θ [6, p. 27].

Since the notions of consequence tracking and Free Ride will be defined in
terms of source and target types, this paper will focus on the type level and
the indication relation established by the semantic conventions for the relevant
representational practice.1 We say that a set Γ of source types collectively
indicates a set Δ of target types (Γ ⇒ Δ) if Γ and Δ stand in a one-to-one
correspondence under the indication relation ⇒.

Furthermore, a constraint is a regularity governing the distribution of sets
of types Γ and Δ in a particular class of tokens. There is a constraint Γ � Δ from
antecedent set Γ to consequent set Δ if some type in Δ must hold of a token if
all types in Γ hold of that token [6, p. 30f]. Thus {γ1, γ2} � {δ1, δ2} means that if
γ1 and γ2 hold of a token (conjunctively), then δ1 or δ2 must hold of that token

1 A semantic convention is essentially arbitrary in its origin, but once people start
conforming to it [...] it becomes a “self-perpetuating” constraint over the represen-
tational acts of a group of people [6, p. 26].
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(disjunctively). A constraint of the form Γ � {δ}, with a singleton consequent
set, is called a consequential constraint (CC) and rewritten as Γ � δ: if all
members of Γ hold of a token, then the definite type δ must hold of it. Constraints
may hold both between sets of source types and between sets of target types.
It is precisely the correspondences between constraints involving source types
and those involving target types that account for many characteristic cognitive
potentials of diagrammatic representation systems [6, p. 31].

Fig. 2. (a) Free ride in Euler diagram (b–c) Consequence tracking [6, Figure 28–30].

Free Rides and CC Tracking by Consequence. Suppose we take the target
types C ⊂ B (θ1) and B ∩ A = ∅ (θ2) as the premises of a syllogism at the top
of Fig. 2(c). In order for the Euler diagram in Fig. 2(a) to express these two pieces
of information, the semantic conventions require us to realise two source types at
the bottom of Fig. 2(c), namely the circle labeled ‘C’ is inside the circle labeled ‘B’
(σ1) and the circle labeled ‘B’ is outside the circle labeled ‘A’ (σ2). By virtue of
the natural spatial (geometrical and topological) constraints on the arrangements
of symbols in Euler diagrams, the realisation of σ1 and σ2 automatically realises a
third source type, namely that the circle labeled ‘C’ is outside the circle labeled ‘A’
(σ3). Although this is a side effect of the original operation, σ3 has an independent
semantic value, namely that C ∩A = ∅ (θ3). This target type θ3 is a piece of infor-
mation that we get ‘for free’. Hence, to check the validity of the syllogism, we do
not have to infer conclusion θ3 from the premises {θ1, θ2}. The constraint govern-
ing Euler diagrams takes over the work of making the necessary inference, a mech-
anism called Free Ride [6, p. 33]. In the case of a Free Ride potential, expressing
a set of information Δ in a representation automatically results in the expression
of other, consequential information δ1. This enables us to skip the mental deduc-
tive steps from Δ to δ1, and to substitute them with the task of reading off δ1 from
the representation [6, p. 36]. Figure 2(b) represents this general constellation of
consequence tracking. Vertically, Γ collectively indicates Δ (Γ ⇒ Δ) and
γ1 indicates δ1 (γ1 ⇒ δ1). Horizontally, there is a match (‘tracking’) between the
CC Γ � γ1 on the source types of the representation and the CC Δ � δ1 on the
target types of the represented object. In order to distinguish it from other types
of tracking between source and target type constraints, we refer to the Free Ride
mechanism in Fig. 2(b–c) – rendering inference unnecessary – more explicitly as
CC tracking by consequence.

Aristotelian Relations. In the research programme of Logical Geometry [3,7]
a central object of investigation is the so-called ‘Aristotelian square’ or ‘square
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of opposition’, which visualises logical relations of opposition and implication.
Table 1 defines these Aristotelian relations in an informal way.2 Two propo-
sitions α and β are said to be:

Fig. 3. Logical space diagram (LSD).

Table 1. Aristotelian relations.

a. contradictory CD(α,β) iff α and β cannot be true together and

α and β cannot be false together

b. contrary C(α,β) iff α and β cannot be true together but

α and β can be false together

c. subcontrary SC(α,β) iff α and β can be true together but

α and β cannot be false together

d. in subalternation SA(α,β) iff α entails β but β doesn’t entail α

Assuming a meaning postulate relating dead and not alive, the propositions
The fly was alive and the fly was dead are contradictory (it has to be one situa-
tion or the other, but not both), whereas The fly was alive and The fly was killed
are contrary (it may be neither, namely when the fly died a natural death).

2 CC Tracking by Consequence in Logical Space
Diagrams

Basic Syntax and Semantics. In Fig. 3 we introduce a new type of diagram,
namely the Logical Space diagram (or LSD for short). The big rectangle
represents the complete Logical Space, i.e. the set of possible situations in the
world, or the set of all relevant entities of a given logical type (the ‘universe of
discourse’). Logical Space can then be subdivided in different parts, i.e. subsets
of those possible situations, indicated by means of vertical lines inside the big
rectangle.3 Curly brackets accompanied by a small Greek letter then indicate for
2 In model-theoretic semantics, these relations receive a modal definition in terms of

the (non-)existence of models/possible worlds in which both formulas are true/false.
3 Although the full 2D potential of LSD diagrams is not exploited in the present

analysis, subdivisions of Logical Space can be both vertical and horizontal.
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which part of Logical Space a given proposition, indicated by the Greek letter,
holds, i.e. in which situations that proposition is true, or for which subset of enti-
ties of a given logical type a property holds. The LSD format could be considered
a notational variant of the Linear Diagram System [1] or the Euler diagram sys-
tem4 in which an area is visually represented if and only if it is non-empty. One
advantage of such LSDs is the very natural and intuitive representation of the
opposition and implication relations.

Fig. 4. LSDs for Aristotelian relations.

Aristotelian Relations and LSDs. In Fig. 4 we use the Logical Space dia-
grams to visualise each of the Aristotelian relations defined in Table 1. Three
out of the four Aristotelian relations are defined in terms of the two conditions
of ‘possibly being true together’ and ‘possibly being false together’. In terms of
the LSDs, for two propositions to ‘possibly be true together’ means that there is
an overlap between their two designated areas, whereas for two propositions
to ‘possibly be false together’ means that their is a gap between their two desig-
nated areas. When two propositions are contradictory, the LSD in Fig. 4(a) has
no gap and no overlap between their two areas. They are mutually exclusive and
jointly exhaustive, and thus yield a perfect bipartition of Logical Space. With
the contrary propositions in Fig. 4(b), by contrast, there is no overlap but there
is a gap between the two areas. Subcontrary propositions result in the inverse
constellation in Fig. 4(c), in which there is no gap but there is an overlap in
the middle. Notice that the fourth Aristotelian relation, namely subalternation
in Table 1(d), is the odd one out in that it is defined in terms of unidirectional
(i.e. asymmetric) entailment instead of in terms of (symmetric) opposition. This
hybrid nature of the set of Aristotelian relations in Table 1 is discussed in full
detail in [7]. Nevertheless, the LSD for subalternation in Fig. 4(d) can be charac-
terised by means of the same two visual ingredients as the other three relations
in Fig. 4(a–c): the two areas designated to the two propositions reveal both a
gap (on the right) and an overlap (on the left).

2.1 CC Tracking by Consequence with Two Premises in LSDs

Remember from the Euler diagram in Fig. 2 above that the starting point for
a Free Ride mechanism is the combination of two pieces of information, namely
4 The crucial ingredients are basically the same, namely a universe set U and two

subsets A and B, which yield four areas to be considered, namely A ∩ B, A \ B,
B \ A and U \ (A ∪ B) (see also [9]). Given the definition of a proposition as a class
of possible worlds, relations between classes in Euler diagrams straightforwardly
correspond to relations between propositions in Aristotelian diagrams.
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a first relation between objects A and B, and a second relation between objects
B and C. All four LSDs in Fig. 5 take as their first relation a contradiction
between α and β. The gap in the middle of Fig. 5(a–b) can be characterised
either in terms of a contrariety between α and γ in Fig. 5(a) or in terms of a
subalternation between γ and β in Fig. 5(b). The overlaps in Fig. 5(c–d) are
either due to the subcontrariety between β and δ in the middle of Fig. 5(c) or to
the subalternation between α and δ at the left of Fig. 5(d). Depending on which
‘perspective’ is taken as the second relation – indicated by the asterisks – the
four LSDs in Fig. 5 each give rise to their own Free Ride constellation.

Fig. 5. LSDs for (a–b) {C, CD, SA} and (c–d) {SC, CD, SA}.

Fig. 6. CC tracking by consequence in LSDs (a) Free Ride 1a: {C, CD} � SA and
(b) Free Ride 1b: {SA, CD} � C.

Let us first consider the case of Fig. 5(a), spelled out in full detail in Fig. 6(a).
The target type θ1 – the contrariety relation C(γ,α) – is indicated by the gap in
the source type σ1 LSD, whereas the θ2 contradiction CD(α,β) is indicated by
the bipartition in the σ2 LSD. If we now combine σ1 and σ2, the natural spatial
(geometrical and topological) constraints on the arrangements of symbols in the
LSD representation format automatically yield the LSD in Fig. 5(a). The latter
now also reveals both a gap and an overlap between γ and β in σ3 of Fig. 6(a),
and thus conveys a new piece of information ‘for free’, namely the subalternation
relation SA(γ,β) in θ3. Thus, Fig. 6(a) nicely illustrates the general mechanism
of CC tracking by consequence in Fig. 2(b) above between the CC on the target
level – {θ1, θ2} � θ3 – and that on the source level – {σ1, σ2} � σ3. The
physical operations of drawing a diagram let us project the premises {θ1, θ2} of
our inference onto an external diagram {σ1, σ2}, exploit the spatial constraints
holding there (yielding σ3), and gain a Free Ride to the logical consequence θ3.
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Although the LSD is identical in Fig. 5(a) and Fig. 5(b), we get a shift in
perspective from the gap between α and γ in the former case to the inclusion
of γ in β in the latter case. The corresponding shift from Fig. 6(a) to Fig. 6(b)
involves the switch of the first premise θ1 and the conclusion θ3. The two premises
{SA(γ, β),CD(β, α)} in Fig. 6(b) are expressed by the inclusion of γ in β in σ1

and the bipartition between α and β in σ2. By spatial necessity, the combination
of the latter two results in the gap between α and γ in σ3, which expresses the
valid conclusion of the inference – namely the contrariety relation C(γ,α) – as a
Free Ride.

Completely analogously, the identical LSDs in Fig. 5(c) and Fig. 5(d) switch
the perspective from the overlap between β and δ in the former case to the
inclusion of α in δ in the latter case. The corresponding shift from Fig. 7(a) to
Fig. 7(b) involves the switch of the second premise θ2 and the conclusion θ3. The
two premises {CD(α, β),SC(β, δ)} in Fig. 7(a) are indicated by the bipartition
between α and β in σ1 and the overlap between β and δ in σ2. By virtue of
the spatial constraints on LSDs, the combination of the latter two necessarily
yields the inclusion of α in δ in σ3. This in turn serves as a Free Ride and gets
interpreted as the valid conclusion of the inference – namely the subalternation
SA(α, δ) in θ3. With the two premises {CD(β, α),SA(α, δ)} in Fig. 7(b), the
combination of the bipartition between α and β in σ1 and the inclusion of α in
δ in σ2 automatically results in the overlap between β and δ in σ3. This Free
Ride yields the valid conclusion in θ3 of the subcontrariety relation SC(β, δ).

Fig. 7. CC tracking by consequence in LSDs (a) Free Ride 2a: {CD, SC} � SA and
(b) Free Ride 2b: {CD, SA} � SC.

Fig. 8. LSDs for {CD, C, SC, SA}.
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In both LSD constellations in Fig. 5(a–b) and Fig. 5(c–d) three Aristotelian
relations are involved, namely {C, CD, SA} and {SC, CD, SA} respectively.
Both these sets gave rise to two valid syllogisms each, namely Free Ride 1a {C,
CD} � SA in Fig. 6(a), Free Ride 1b {SA, CD} � C in Fig. 6(b), Free Ride 2a
{CD, SC} � SA in Fig. 7(a) and Free Ride 2b {CD, SA} � SC in Fig. 7(b). What
all these valid patterns have in common is that the CD relation is always one
of the premises, whereas the other two relations may serve both as premise and
as conclusion. In other words, the third logical combination – with CD in the
conclusion and the other two relations as the premises – turns out to be excluded
in both cases: {C, SA} � CD and {SC, SA} � CD respectively. What is more,
these two pairs of premises are compatible with any possible Aristotelian relation.
Although this situation can be related to the notions of over-specificity and
indeterminacy in [6, p. 60ff], more research is needed to clarify the special
status of the CD relation.5

Fig. 9. CC tracking by consequence in LSDs: Free Ride 3a {CD, C, CD} � SC.

2.2 CC Tracking by Consequence with Three Premises in LSDs

Let us now move from CCs with two premises to the constellations in Fig. 8
with three premises. All four LSDs contain two contradiction relations, namely
between α and β as well as between γ and δ. Depending on which ‘perspective’
is taken as the third relation, these LSDs each give rise to their own Free Ride
mechanism.

Taking the gap between α and γ in Fig. 8(a) as the second premise in Fig. 9
yields the Free Ride 3a. If you combine the two bipartitions α-β (σ1) and γ-δ
(σ3) with the α-γ gap (σ2), the spatial constraints of LSDs automatically give
you the β-δ overlap (σ4), which expresses the conclusion θ4 of the valid syllogism
{CD, C, CD} � SC. Focusing on the overlap between β and δ in Fig. 8(b), by
contrast, would yield a variation of the pattern in Fig. 9 in which the second
premise σ2/θ2 and the conclusion σ4/θ4 are switched around. In other words,
whenever you observe a β-δ overlap in combination with the two bipartitions
(α-β and γ-δ), you get an α-γ gap as a Free Ride. This modification of the
original Free Ride 3a in Fig. 9 thus results in the Free Ride 3b for the valid
5 In particular in terms of the tracking of the two disjunctive constraints {C, SA} �

{CD, C, SC, SA, Un} and {SC, SA} � {CD, C, SC, SA, Un}, where Un stands for
unconnectedness, the absence of any Aristotelian relation [7].
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syllogism {CD, SC, CD} � C. If we take the inclusion of α in δ in Fig. 8(c) as
our perspective, we get the Free Ride 4a in Fig. 10. The combined observation
of the two bipartitions α-β (σ1) and γ-δ (σ3) with the gap plus overlap between
α and δ (σ2) by spatial necessity results in the gap plus overlap between γ
and β (σ4), which expresses the conclusion θ4 of the valid syllogism {CD, SA,
CD} � SA. And finally, focusing on the inclusion of γ in β in Fig. 8(d) would
yield a variation of the pattern in Fig. 10 in which the second premise σ2/θ2
and the conclusion σ4/θ4 are again switched around. This modification of the
original Free Ride 4a in Fig. 10 thus results in the Free Ride 4b for the same
valid syllogism {CD, SA, CD} � SA. The observation made at the end of the
previous subsection concerning the particular status of the CD relation turns
out to generalise to the patterns with three premises: both in Fig. 9 and Fig. 10
the two CD relations have to be among the premises. Notice, finally, that the
combination of Free Rides 4a and 4b in Fig. 8(c–d) and Fig. 10 serves as an
elegant visualisation of the Law of Contraposition: ¬α = β (CD), ¬δ = γ (CD),
(α → δ) (SA) ⇔ (¬δ → ¬α) ⇔ (γ → β) (SA).

Fig. 10. CC tracking by consequence in LSDs: Free Ride 4a {CD, SA, CD} � SA.

Fig. 11. (a) Aristotelian diagram (AD) and (b) coding conventions.

3 CC Tracking by Correlation in Aristotelian Diagrams

Basic Syntax and Semantics. In order to draw an Aristotelian diagram
(AD for short), we first of all need a (non-empty) fragment F of a language L,
i.e. a subset of formulas of that language. The formulas in the fragment F must
be contingent and pairwise non-equivalent, and the fragment has to be closed
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under negation: if formula ϕ belongs to F, then its negation ¬ϕ also belongs to
F. For the language S5 of Modal Logic (with operators � for necessity and ♦ for
possibility), for instance, such a fragment F could be {�p, ¬�p, ♦p, ¬♦p}.

An Aristotelian diagram for F is then defined as a diagram that visualizes
an edge-labeled graph G. Figure 11(a) presents the AD for the modal fragment
{�p, ¬�p, ♦p, ¬♦p}. The vertices of G are the elements of F, whereas the edges
of G are labeled by all the Aristotelian relations holding between those elements,
using the coding conventions in Fig. 11(b): full line for CD, dashed line for C,
dotted line for SC, and arrow for SA.

Subdiagrams in ADs. From a diagrammatic point of view there are (at least)
two ways of looking at a standard square AD. First of all, an AD can be seen
as consisting of two triangular subdiagrams: the ‘right triangle’ in Fig. 12(a)
and the ‘left triangle’ in Fig. 12(b).6 Secondly, the AD contains two X-shaped
subdiagrams: the ‘hour glass’ in Fig. 12(c) and the ‘bow tie’ in Fig. 12(d).

It is important to stress here that these four Aristotelian subdiagrams
(henceforth AsDs) are not ADs themselves. Since ADs always consist of an even
number of vertices, triangles are excluded in principle.7 The hour glass and the
bow tie in Fig. 12(c–d), by contrast, do contain an even number of vertices, and
do respect the constraint of closure under negation. However, that still does not
make them ADs, because the latter have to represent all Aristotelian relations
holding between the vertices.8 Nevertheless, in spite of the four AsD shapes in
Fig. 12 not being ADs themselves, they play a crucial role as the elementary
building blocks of such ADs. In the second part of this paper we will precisely
demonstrate how these four AsD shapes relate to the different types of Free Ride
that were distinguished for the Logical Space diagrams in the first part.

Fig. 12. Triangular and X-shaped Aristotelian subdiagrams (AsDs).

3.1 CC Tracking by Correlation with Two Premises in ADs

Observe, first of all, that the ‘right triangle’ in Fig. 12(a) and Fig. 13(a) repre-
sents the same {C, CD, SA}-constellation as the LSDs in Fig. 5(a–b). Hence,

6 We ignore the fact that both triangles have a mirror image along the vertical axis.
7 The right and left triangle in Fig. 12(a–b) are not closed under negation, since the

negations of γ and δ are absent from the respective triangles.
8 The hour glass in Fig. 12(c) does not visualise the two vertical SA relations, whereas

the bow tie in Fig. 12(d) does not visualise the horizontal C and SC relations.
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Fig. 13. AsDs for (a-b-c) {C, CD, SA} and (d-e-f) {SC, CD, SA}.

Fig. 13(b–c) each represent the two premises of the valid syllogisms {C, CD} �
SA and {SA, CD} � C, given in detail in Fig. 14(a) and Fig. 14(b) respectively.

Let us first consider Fig. 14(a) in some detail. Due to the semantic constraints
on ADs, we know for sure that – whenever we get from γ to α by means of a
dashed C-line in σ′

1, and from α to β by means of a full CD-line in σ′
2 – there

will be an SA-arrow from γ to β in σ′
3. This is a typical constellation of ‘diagram

chasing’ [2] or ‘transitive closure’: if you first get from A to B and then from B to
C, then you also get from A to C directly. On the target type level, Fig. 6(a) and
Fig. 14(a) have exactly the same CC (for the valid syllogism). On the source type
level of the actual LSD and AD, however, the two are fundamentally different.
With the Free Ride 1a in the LSD, there is a matching CC: the σ3 conclusion
from the {σ1,σ2} premises is a matter of inevitable spatial constraints. Although
the σ′

3 source type in Fig. 14(a) is equally inevitable, it is not a matter of spatial
necessity. There is nothing in the act of drawing the dashed line and the full line
for the {σ′

1,σ
′
2} ‘premises’ which would force you to draw the arrow of the σ′

3 as
a ‘conclusion’. Hence, the bottom part of Fig. 14(a) does not constitute a source
type level CC, and the overall constellation is not an instance of the Free Ride
mechanism.

Fig. 14. CC tracking by correlation in ADs (a) {C, CD} � SA and (b) {SA, CD} � C.

Nevertheless, when we inspect a well-formed AD, the combined observation
of the two source types {σ′

1,σ
′
2} systematically correlates with the observation

of σ′
3, by virtue of their correspondence (through the indication relation ⇑) with

the premises and the conclusion of the CC on the target type level. In order
to reflect this fundamental difference between ADs and LSDs, we replace the
turnstile symbol � between the {σ1,σ2} premises and the σ3 conclusion in the
LSDs with the correlation symbol |∼ between the {σ′

1,σ
′
2} and the σ′

3 source
types in the AD. The overall constellation – which is manifestly weaker than that
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Fig. 15. CC tracking by correlation in ADs (a) {CD,SC}�SA and (b) {CD,SA}�SC.

of CC tracking by consequence with the Free Rides in LSDs – will accordingly
be referred to as CC tracking by correlation in ADs.

As we observed in connection with the move from Fig. 6(a) to Fig. 6(b), the
first premise and the conclusion are switched going from Fig. 14(a) to Fig. 14(b)
to yield the second valid inference, i.e. {SA, CD} � C. Visually speaking, the
combined observation of the SA-arrow from γ to β in σ′

1 and the full CD-line
from β to α in σ′

2 by semantic convention correlates with the observation of the
dashed C-line from γ to α in σ′

3. The overall constellation of CC tracking by
correlation in Fig. 14(b) thus counts as the weaker counterpart of the Free Ride
1b in Fig. 6(b).

Completely analogously, the ‘left triangle’ in Fig. 12(b) and Fig. 13(d) rep-
resents the same {SC, CD, SA}-constellation as the LSDs in Fig. 5(c–d). Hence,
Fig. 13(e–f) each represent the two premises of the respective valid syllogisms
{CD, SC} � SA and {CD, SA} � SC. Thus, the CC trackings by correlation in
Fig. 15(a–b) count as the weaker versions of the CC trackings by consequence
with Free Rides 2a and 2b in Fig. 7(a–b), respectively. As we observed above
with the Free Rides in LSDs, in all four valid syllogisms in Fig. 14(a–b) and
Fig. 15(a–b) the CD relation is always one of the premises, whereas the other
two relations serve both as premise and as conclusion.9

Fig. 16. AsDs for (a–c) {CD, C, CD, SC} and (d-f) {CD, SA, CD, SA}.

3.2 CC Tracking by Correlation with Three Premises in ADs

At the end of the previous section we moved from the CC tracking by conse-
quence with two premises to that with three premises. In this subsection we make
9 An analysis in terms of over-specificity or indeterminacy [6, p. 60ff] remains a

topic for further research.
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Fig. 17. CC tracking by correlation in ADs: {CD, C, CD} � SC.

the corresponding move for CC tracking by correlation. The hour glass pattern
in Fig. 12(c) and Fig. 16(a) first of all allows the perspective in Fig. 16(b), which
is elaborated in Fig. 17, and which can be seen as the AD counterpart of the
LSD Free Ride 3a in Fig. 9. The ‘diagram chasing’ now consists of three steps
from start to finish (instead of two in the previous subsection). By virtue of the
semantic constraints on ADs, we know for sure that – whenever we get from β
to α by means of a full CD-line in σ′

1, from α to γ by means of a dashed C-line
in σ′

2, and from γ to δ by means of a full CD-line in σ′
3 – there will be a dotted

SC-line from β to δ in σ′
4. By means of the indication relation, this correlation

on the source level is mapped onto the CC on the target level which captures
the valid syllogism {CD, C, CD} � SC.

Moving to the second perspective on the hour glass in Fig. 16(c), we get a
modification of the configuration in Fig. 17 in which the second ‘premise’ σ′

2/θ′
2

and the ‘conclusion’ σ′
4/θ′

4 are interchanged. In other words, moving from α to
β (CD) in σ′

1, from β to δ (SC) in σ′
2, and from δ to γ (CD) in σ′

3 would be
equivalent to moving in one big step from α to γ (C) in σ′

4. This source level
correlation is then again mapped onto the target level CC capturing the valid
syllogism {CD, SC, CD} � C from the Free Ride 3b discussed with Fig. 9.

The two perspectives on the bow tie pattern in Fig. 12(d) and Fig. 16(d),
namely Fig. 16(e–f), together yield another visual representation of the Law of
Contraposition. Figure 16(e) and Fig. 18 can be seen as the AD counterpart of
the LSD Free Ride 4a in Fig. 10. The joint observation of moving from γ to δ
(CD) in σ′

1, from δ to α (SA) in σ′
2, and from α to β (CD) in σ′

3 systematically
correlates with the observation of the SA move from γ to β. This correlation
matches the target level CC capturing the valid {CD, SA, CD} � SA syllogism.
Figure 16(f) then corresponds to the LSD Free Ride 4b, discussed in connection
with in Fig. 10, and requires a modification of Fig. 18 in which σ′

2/θ′
2 and σ′

4/θ′
4

are again interchanged. Notice, to conclude, that both in Fig. 17 and Fig. 18, the
two CD relations once again have to be among the ‘premises’ of the correlation.

4 The Translation Relation Between LSDs and ADs

From an informational point of view, the Logical Space diagrams introduced in
Sect. 2 and the Aristotelian diagrams introduced in Sect. 3 are by and large
equivalent to one another. The two diagonals for contradiction in Fig. 19(b)
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Fig. 18. CC tracking by correlation in ADs: {CD, SA, CD} � SA.

Fig. 19. (a) Logical space diagram versus (b) Aristotelian diagram.

correspond to the two bipartitions at the top and the bottom of Fig. 19(a),
whereas the two subalternation arrows in Fig. 19(b) correspond to the fact that
in Fig. 19(a) the areas for both �p and ♦p at the left and those for ¬�p, and ¬♦p
at the right exhibit both a gap and an overlap. The dashed line for contrariety
at the top of Fig. 19(b) reflects the gap between the areas for �p and ¬♦p in
Fig. 19(a), while the dotted line for subcontrariety at the bottom of Fig. 19(b)
reflects the overlap between the areas for ¬�p and ♦p in Fig. 19(a).

In order to capture these systematic correspondences between the two types
of representations, we introduce the notion of a translation relation between
visual representations. Figure 20 demonstrates how such a relation fits into an
extension of the general framework for the semantic analysis of diagrams intro-
duced in Fig. 1. Remember that the latter’s two-tier semantics draws a distinc-
tion between the token level and the type level. Hence, at the bottom of Fig. 20,
we first of all define a transformation relation – indicated with the dashed
double arrow – between the two material (token level) representations s (i.e. the
LSD) and s’ (i.e. the AD). The actual translation relation – indicated with
the full line double arrow – holds on the type level between the source types σ
and σ′. The translational equivalence between the latter is then expressed by
the fact they both stand in an indication relation with the same target type θ.

The source of the natural language metaphor of translation is straightfor-
ward: two natural language expressions (source types σ and σ′) stand in a rela-
tion of translational or informational equivalence with one another if they are
mapped onto the same meaning, i.e. the same target type θ.10 Furthermore, the
analogy with natural language nicely announces the distinction between infor-
mational and computational equivalence [4] to be discussed in the next section.

10 Both with the diagrams in Fig. 20 and with natural languages, we want to emphasize
the bidirectionality of the transformation and translation relations, as opposed to
the (basic) unidirectionality of the indication and representation relations.
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Fig. 20. General framework for the analysis of diagrams in translation.

Consider, for instance, the translation relation between a Dutch sentence writ-
ten in the phonographic Roman alphabet and a Japanese sentence written in
kanji and kana signs. Although the sentences may be perfectly equivalent from
an informational point of view, there are huge computational or cognitive dif-
ferences between the two writing system in terms of production, perception and
learnability. In the next section, a similar discrepancy will be shown to hold for
the two visual representation systems of LSDs and ADs under scrutiny.

5 Different Degrees of Iconicity with LSDs and ADs

The overall constellation of CC tracking by consequence that gives rise to the
Free Ride potential of the LSDs is first and foremost a matter of constructing
the diagrams step by step. The weaker constellation of CC tracking by correla-
tion with the ADs, by contrast, is primarily a matter of inspecting complete
diagrams, i.e. of eye-tracking steps through the diagram. The cognitive utility
of the regularities in ADs thus lies in the fact that the transitivity from origin
to goal allows you to read off in one big step the effect of two or three small
steps. In other words, what you see as ‘conclusion’ is the logical consequence
of what you have read off during the initial inspection of the first two or three
steps. Hence, ADs can be considered as convenient pedagogical tools for learning
about consequential relationships. Although this inspection value perspective is
still there with the LSDs, it is less perspicuous. Since the visual components are
more intertwined, more effort is needed, often involving so-called perspective or
aspect shifting [6, p. 149ff]. Furthermore, when the structures get more complex
– representing Aristotelian relations holding between six or more entities – the
greater spatial independence or separation of the relations in the hexagonal (or
bigger) ADs results in greater visual clarity and transparency.

The manifest differences between LSDs and ADs in terms of cognitive poten-
tials (or the lack of computational equivalence [4]) can also be related to the
semiotic notion of iconicity. On the standard view, iconicity is defined in terms
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of an isomorphism between the structure of the source domain and the structure
of the target domain. Hence, the LSDs in this paper would be iconic represen-
tations, by virtue of the relationship of similarity between the constellations of
surface areas in 2D space and subsets of situations in the outside world. The
ADs, by contrast, are – semiotically speaking – no iconic but symbolic rep-
resentations, without any such relationship of similarity, and purely based on
visualisation conventions within a given research community.

On the alternative view proposed in the present paper (see also [5]), how-
ever, iconicity is not an object-level relation between structures of objects but
rather a meta-level relation of isomorphism between constraints on source types
and constraints on target types.11 As a consequence, iconicity comes in degrees,
depending on the strength of the constraints involved in the isomorphism. The
strongest form of iconicity is obviously the one based on CC tracking with Free
Rides, as illustrated with the LSDs. Diametrically opposed to the Free Rides
with certain diagrammatical representation systems is the total absence of Free
Rides in the case of linguistic representation systems [8]. The latter can thus be
considered as exhibiting a zero degree of iconicity. The main advantage of this
alternative approach to iconicity, however, is that it allows a much more fine-
grained analysis in terms of various intermediate degrees of iconicity.12 Rather
than simply dismissing the ADs as symbolic representations, i.e. as non-iconic,
they can now be argued to exhibit a weaker, intermediate degree of iconicity. In
particular, the overall constellation of CC tracking by correlation in ADs may
be ‘weaker’ than the CC tracking by consequence with the Free Rides in LSDs,
it nevertheless counts as a (partial) isomorphism between sequences of source
types and sequences of target types. Finally, also the fact that neither LSDs
nor ADs are completely commutative – in the sense that you always need the
contradiction relation(s) among the premises – may eventually be accounted for
in terms of weaker constraints or intermediate degrees of iconicity.

6 Conclusion

In Sect. 2 we introduced Logical Space diagrams (LSDs) as a new representa-
tion system for Aristotelian relations of opposition and implication, and defined
their cognitive (Free Ride) potential in terms of consequential constraint (CC)
tracking by consequence. In Sect. 3 we argued that, although the Free Ride
mechanism does not hold of the standard representation by means of Aris-
totelian diagrams (ADs), the latter do allow a weaker mechanism of CC
tracking by correlation. In Sects. 4 and 5 we investigated the translation rela-
tion between LSDs and ADs, which observes informational equivalence but not

11 The possible connection with the so-called ‘operational’ conception of similarity and
iconicity in Peirce, as elaborated by Stjernfelt [10, chapter 4] constitutes an intriguing
topic of further research.

12 For example, on this account, Euler diagrams are more iconic than Venn diagrams
because they exhibit more constraint trackings. Similarly, the Euler system 2 is
stronger and thus more iconic than system 1 since it generates more Free Rides [9].
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computational equivalence. CC tracking by consequence with LSDs is crucially
a matter of constructing the diagrams step by step, whereas CC tracking by cor-
relation with ADs is primarily a matter of inspecting complete diagrams. This
difference relates to differences in degree of iconicity between LSDs and ADs.
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Abstract. In “Gedankengefüge” Frege says that any two sentences of the form
“A and B” and “B and A” have the same sense. In a 1906 letter to Husserl he says
that sentences with the same sense should be represented in a perfect notation
by one and the same formula. Frege’s own notation, just like any linear notation
for sentential logic, is not perfect in this sense, because in it “A and B” and “B
and A” are represented by distinct formulas, as is any pair of logically equivalent
compound conditionals. A notation for the sentential calculus that meets Frege’s
worries about conjunction, and indeed about any symmetric relation that there
may be occasion to symbolize, is Peirce’s Alpha graphs.

Keywords: Frege · Peirce · Logical graphs · Notations

1 Frege

In “Gedankengefüge”, the last of his published essays, Frege says that any two sentences
of the form of (1) and (2) have the same sense, i.e. express the same thought.

(1) A and B
(2) B and A

He explains that “this divergence of expressive symbol and expressed thought is
an inevitable consequence of the divergence between spatio-temporal phenomena and
the world of thoughts” (Frege 1984, 393). Let us assume that sameness of sense can
be explained in terms of logical equivalence.1 Then, since (1) and (2) have, according
to Frege, the same sense, they are logically equivalent. In order to prove their logical
equivalence one would need to apply to them some form of commutation rule for logical
conjunction like the following, where “=” is the sign of logical equivalence:

(CR) ξ and ζ = ζ and ξ

1 It is debatable that this is how Frege would have explained sameness of sense. In a famous
1906 letter to Husserl he seems to be saying that logical equivalence is a sufficient criterion
for sameness of sense. But this is in neat contrast with his principle of sense composition; see
Dummett (1981, ch. 17). However, whether or not Frege did in fact think that logical equivalent
sentences express the same sense does not affect in the least my argument. But see Bellucci
(2020) for a discussion.
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But in order for (CR) to be applicable to sentences of the form of (1) and (2), these
have to be in fact distinct sentences. With this is meant that (1) and (2) have to be distinct
sentence types. It would make no sense to apply (CR) to two distinct sentence tokens of
the same sentence type.

In a 1906 letter to Husserl, Frege toys with the idea that in a perfect system of
logical representation, sentences with the same sense (here called, following Husserl,
“equipollent”) should be expressed by one and the same formula: “all that would be
needed would be a single standard proposition for each system of equipollent propo-
sitions” (Frege 1980, 67). It is clear that Frege’s own “Begriffsschrift” is not, in this
sense, a perfect system of logical representation. In the “Begriffsschrift” (1) and (2) are
expressed by distinct formula types (Fig. 1).

Fig. 1. Two logically equivalent sentences in Frege’s “Begriffsschrift”

It could be objected that since Frege’s “Begriffsschrift” has no primitive for con-
junction (or, for that matter, for any other symmetric sentential operator), the claim
that Frege’s “Begriffsschrift” is not a perfect system of logical representation cannot
rest upon its inability to cancel the divergence between the symbol for conjunction and
the thought of conjunction. This is of course true. However, a parallel case could be
made for the manner in which the “Begriffsschrift” represents compound conditionals.
Conditionals of the form of (3) and (4) are logically equivalent:

(3) A ⊃ (B ⊃ C)
(4) B ⊃ (A ⊃ C)

In the “Begriffsschrift” (3) and (4) are represented respectively as the formulas (a)
and (b) in Fig. 2. The logical equivalence of Fig. 2a and Fig. 2b is guaranteed in the
Begriffsschrift byAxiom8 (Frege 1879, §16), and inGrundgesetze is proved as a theorem
(Frege 2013, §12).

Fig. 2. Two logically equivalent sentences in Frege’s “Begriffsschrift”
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Now, there is a tendency in Frege’s own presentations of the “Begriffsschrift” to
consider the “transposition of the antecedents” more as a convention of the notation
than as an axiom of the system (that is, as a rule of syntactical equivalence rather
than as a rule of logical equivalence). For example, in Grundgesetze, just after having
recalled the necessity of proving the theorem of the transposition of the antecedents,
Frege adds: “as not to become tied up in excessive complexity, I here wish to assume
this interchangeability generally granted, and to make use of it in future without further
explicit mention” (Frege 2013, §12). Likewise, in the notes from the lectures held in
1910–1911 and 1913 taken by Carnap, Frege considers coordinate conditions to be
interchangeable without treating this convention as an axiom of the system (see Reck
and Awodey 2004, 52, 56, 71).

Macbeth (2005) and Schlimm (2018) seem to suggest that this is a peculiar feature
of the “Begriffsschrift”. Angelelli (2008) objects that it is not clear in what sense the
application of the principle of transposition of the antecedents in the “Begriffsschrift”
is different from the application in standard linear notations of an axiom like “A ⊃ (B
⊃ C) = B ⊃ (A ⊃ C)”. In order for the “Begriffsschrift” principle of transposition of
the antecedents to be applicable to formulas of the form of those in Fig. 2a and 2b,
these have to be in fact distinct formulas, i.e. distinct formulas types, for it would make
no sense to apply the “Begriffsschrift” principle of transposition of the antecedents to
two distinct formula tokens of the same formula type. Since Frege does introduce in his
systems this principle (even if in some presentations of the “Begriffsschrift” he tends
to consider its application obvious), then the formulas in Fig. 2a and Fig. 2b are in
fact distinct formula types. And since the formulas in Fig. 2a and Fig. 2b are logically
equivalent, then the “Begriffsschrift”, though it has no primitive for conjunction, yet
fails to cancel the divergence of expressive symbol and expressed thought in the case of
logically equivalent sentences of this form.

It is important to notice that the two cases under consideration—conjunctive sen-
tences and compound conditional sentences—manifest a divergence between expressive
symbol and expressed thought which derives from the necessity of linearly ordering the
sentential variables—the conjuncts in conjunctive sentences like (1) and (2), and the
antecedents in compound conditional sentences as those in Fig. 2a and 2b. I will come to
this in the next sections. There are, of course, other kinds of cases. For example, “A⊃ B”
and “~(A& ~ B)” are logically equivalent but notationally distinct sentences. But in this
case the divergence between expressive symbol and expressed thought has nothing to do
with a specific character of the notation: in any notation whatever that has implication,
conjunction, and negation as primitives such divergence is inescapable. The same is true
of logically equivalent sentences like “A” and “~ ~ A” – of which Frege also says, in
“Gedankengefüge”, that they have the same sense (Frege 1984, 399). But this, again,
has nothing to do with the specifics of the notation: in any notation whatever that has
negation as a primitive (as contrasted, for example, with pure implicational systems)
such divergence is inescapable. In what follows I will focus exclusively on divergences
that can be imputed to the specific character of a notation, which, I shall show, is its
linearity.
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2 Dummett and Geach

How should we devise a notation, then, in order for (1) and (2) to be formalized by one
and the same formula? Michael Dummett made a proposal: “an ideal representation of
the connective ‘and’ would involve writing the sub-sentences on top of one another, as
in a monogram, but each only half as bold as their unconjoined counterparts. In such
notation, ‘A and B’ would really be indistinguishable from ‘B and A’” (Dummett 1981,
332). The monogram that Dummett has in mind would appear roughly as the one in
Fig. 3:

Fig. 3. “A and B” in Dummett’s monogrammatic notation

But to what use can Dummett’s monogrammatic notation for conjunction be really
put? It could not be made part of a notation for the sentential calculus. For how could we
represent a sentence like “A & B & C & D” in such a notation? The overlapping of the
sentential variables in the monogram would render it unreadable. But even supposing
actual readability not to be an issue, how could we represent a sentence like “((A⊃ B)⊃
C) & D” in this notation? Can we write the conjuncts “(A ⊃ B) ⊃ C” and “D” on top of
one another as in Fig. 4? How should we then distinguish the monogram for “((A⊃ B)⊃
C) & D” from the monogram for “((A & D) ⊃ B) ⊃ C”? Dummett’s monogrammatic
notation is plainly inconsistent. The proposal has to be taken as ametaphor of a notation
that complies with the commutative spirit of conjunction, not as a principle for the
building of one.

Fig. 4. “((A ⊃ B) ⊃ C) & D” in Dummett’s monogrammatic notation

Peter Geachmade a different proposal: “The necessity of uttering or writing α before
β, or β before α, is merely physical necessity, not logical, and one can imagine a two-
mouthed race that could first sing the connective with both mouths in unison and then
sing the notes for α and β simultaneously” (Geach 1976, 442). We can no doubt imagine
such a race, but such an image is hardly sufficient for the construction of a notation that
could meet Frege’s worries about the representation of logical conjunction.

However unworkable they may be, Dummett’s and Geach’s proposals sufficiently
evidence that the “perfect” notation that Frege has contemplated has to abandon linearity.
Linearity is a feature of natural languages and of many formalized languages alike, but
while in the case of natural languages linearity is a direct consequence of its reproducing
oral speech, in the case of formalized languages linearity is only a consequence of
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their imitating natural languages. This point was clearly made by Herbert Enderton:
“Natural languages are spoken. We speak in real time, and real time progresses linearly.
Consequently formal languages were constructed with linear expressions. But formal
languages are not spoken (at least not easily). So there is no reason to be influenced by the
linearity of time into being narrow minded about formulas. And linearity is the ultimate
in narrowness” (Enderton 1970, 393). As Frege clearly saw, linearity is the reasonwhy in
most formal languages the representation of symmetric relations manifests a divergence
between expressive symbol and expressed thought. In order to overcome this divergence
and meet Frege’s worries, we have to abandon linearity, and with it the convenience of
the typesetter. This should scarcely be problematic in such a domain as the philosophy
of logic, where “the convenience of the typesetter is certainly not the summum bonum”
(Frege 1984, 236).

3 Peirce

A notation for the sentential calculus that meets Frege’s worries about the divergence
between symbol and thought in the representation of conjunction, and indeed of any
symmetric relation that there may be occasion to symbolize in a logical notation—
a notation which is neither a metaphor nor an image, but a demonstrably complete
and coherent system of sentential logic (Hammer 1996)—is Peirce’s system of Alpha
graphs. In this system it is impossible to express the logical equivalence expressed by
(CR), because no such things as two distinct sentences as (1) and (2) can be written in
this system and a fortiori can flank the “=” in (CR).

TheAlpha system, corresponding to sentential logic, is based on two primitives: con-
junction and negation.2 The sheet on which the graphs are written is called the “sheet of
assertion”, and is in itself a well-formed Alpha graph. Topologically, the sheet of asser-
tion is a two-dimensional ambient space with no direction. Conjunction is represented as
the unordered juxtaposition of sentential variables on the sheet of assertion. Negation is
represented by an oval that encircles the sentential variables that are negated. By means
of conjunction and negation, anyAlpha graphs can be constructed. The sheet of assertion
and any portion of it enclosed within an oval is called an “area”.

For example, Fig. 5 is the Alpha graph for “P & Q”, and Fig. 6 is the Alpha graph
for “P & Q & R”.

Fig. 5. “P & Q” in Peirce’s Alpha graphs

2 Peirce sometimes considers the Alpha graphs to be based on the scroll, corresponding to the
material implication, as the sole primitive, from which the meaning of the single cut (negation)
is derived as the implication of the false. If so considered, the only symmetric relation that
Alpha graphs represent is that between the antecedents of conditionals of the form of (3) and
(4). The comparison between the “Begriffsschriftt” and such scroll-based Alpha graphs awaits
investigation.
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Fig. 6. “P & Q & R” in Peirce’s Alpha graphs

Since the sheet of assertion has no direction, the position of the sentential variables
on it is not a representing fact; therefore, all the possible dispositions of the propositional
variables “P”, “Q”, and “R” within the same area—of which those in Fig. 7 below are
but a small sample—must count as different graph tokens of the same Alpha graph
type. In like manner, each formula in Fig. 8 is a graph token of the graph type that
in linear notation can be written as “P & Q & ~ R”. In a linear notation, permutation
always produces different sentence types: (1) and (2) are indeed distinct sentence types
obtained by permutation of the conjuncts. In Alpha graphs, by contrast, any movement
of sub-graphs within any one and the same area will not produce distinct graph types
but only distinct graph tokens of the same graph type. For this reason, Alpha graphs
dispense with the standard rules of commutation and associativity.3

Fig. 7. Distinct tokens of the Alpha graph type for “P & Q & R”

Fig. 8. Distinct tokens of the Alpha graph type for “P & Q & ~ R”

3 This is admitted by the finest students of the graphs, cf. Hammer (1996) and Dipert (2006).
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Each of the formulas in Fig. 7 is a distinct graph token of the same graph type. A
graph type is, in other words, a class of equivalence of graph tokens. To the Alpha graph
type in Fig. 7 there correspond in linear notation six distinct sentence types:

(7.1) P & Q & R
(7.2) P & R & Q
(7.3) R & Q & P
(7.4) R & P & Q
(7.5) Q & P & R
(7.6) Q & R & P

In like manner, to the Alpha graph type in Fig. 8 there correspond in linear notation
six distinct sentence types:

(8.1) P & Q & ~ R
(8.2) P & ~ R & Q
(8.3) ~ R & Q & P
(8.4) ~ R & P & Q
(8.5) Q & P & ~ R
(8.6) Q & ~ R & P

In linear notation, one can apply (CR) to pairs of sentences, because in this language
the permutation of elements in a string always yields distinct sentence types; and (CR) is
only applicable if two distinct sentence types flank the “=”. In Alpha graphs, by contrast,
one cannot apply (CR) to pairs of graphs, because in this language no rearranging of
graphs lying on the same area yields distinct graph types but only distinct graph tokens
of the same graph type (which is a class of equivalence of graph tokens).

As far as conjunction is concerned (but the proposal is extendible to any represen-
tation of symmetric connectives that exploits a two-dimensional ambient space with no
direction, as the sheet of assertion of the Alpha graphs), no “divergence of expressive
symbol and expressed thought” is present. Linear languages force us to write a con-
junct before or after the other, while no such ordering belongs to the thought of the
conjunction. One may also put the matter thus: the commutativity (and associativity)
of conjunction (or, for that matter, of any symmetric relation there may be occasion to
express) is so fundamental that it should be reflected at the level of syntax. Think of the
usual treatment of the disjunctive (or conjunctive) normal forms in propositional logic:
when a normal form is expressed in standard syntax, one has to choose an ordering of
the conjuncts and the disjuncts. These choices are somehow not in rebus, but only reflect
the linearity of the notation.

Is Frege’s own “Begriffsschrift” linear? If the principle of transposition of the
antecedents is a special rule of the “Begriffsschrift”, which Frege in some sense “took
for granted”, then the horizontal in a “Begriffsschrift” formula is not linearly ordered,
but only partially ordered, i.e. partially ordered by the signs of negation. But if the
principle of transposition of the antecedents is no specific rule of the “Begriffsschrift”,
because it does for the “Begriffsschrift” compound conditionals what the rule “A ⊃ (B
⊃ C) = B ⊃ (A ⊃ C)” does in linear notation, then the horizontal in a “Begriffsschrift”
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formula is linearly ordered. In the one case, we could describe the “Begriffsschrift” as
a two-dimensional notation in which one axis, the vertical, is linearly ordered, while
the other, the horizontal, is partially ordered: in this case, interchanging the conditions
attached to a portion of the horizontal in which no sign of negation occurs would not
yield distinct formula types, but distinct tokens of the same type. In the other case, we
should describe the “Begriffsschrift” as a two-dimensional notation in which both axes
are linearly ordered, so that switching elements on either dimension yields not distinct
formula tokens of the same formula type, but distinct formula types (whether logically
equivalent or not). As I argued above, the fact that the principle of transposition of the
antecedents is assumed as an axiom in the Begriffsschrift and proved as a theorem in
Grundgesetze should lead us to conclude that for Frege Fig. 2a and 2b contain distinct
formula types (which are logically equivalent). And if these formulas are distinct for-
mula types, then the horizontal is linearly, and not partially, ordered. And thus Frege’s
notation, though two-dimensional, suffers from the same limitations with respect to the
representation of symmetric logical relations as standard linear notations.

The limitation in question, and the divergence that derives from it, only concerns
linear languages, or languages which, like the “Begriffsschrift”, can be assimilated to
linear ones with respect to the representation of symmetric logical relations. Of course,
linear languages are more effectively written and typeset than non-linear ones. But if we
agree with Frege that the convenience of the typesetter cannot be the summum bonum—
not, at least, in the philosophy of logic—then there should be in principle no reason
not to consider Peirce’s Alpha graphs as a better notation for the representation of the
sentential calculus than any other equivalently expressive linear notation—and, in a very
precise sense, the embodiment of Frege’s worries about the divergence between symbol
and thought in the representation of symmetric logical relations.
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Abstract. In recent years CL diagrams inspired by Lange’s Cubus
Logicus have been used in various contexts of diagrammatic reasoning.
However, whether CL diagrams can also be used as a formal system
seemed questionable. We present a CL diagram as a formal system, which
is a fragment of propositional logic. Syntax and semantics are presented
separately and a variant of bitstring semantics is applied to prove sound-
ness and completeness of the system.

1 Introduction

Calculus CL is a new interpretation of a Cubus Logicus described by Johann
Christian Lange in 1714 [8]. CL is a logic diagram that combines features of
Euler-Venn diagrams, line diagrams, tree diagrams and squares of opposition. It
can be used for various logics and thus the original idea of Lange has been called a
‘logica universalis’ and an ‘algebra universalis’ by Leibniz [9, vol. V, 405]. Today,
there are three views on logic diagrams: (1) a ‘suspicious’ one, viewing diagrams
only as a heuristic means; (2) a ‘practical view’, according to which diagrams
can present theorems or solve problems in a certain context; and (3) a ‘formal
one’ viewing diagrams as a formal language [14]. Since the paradigmatic work
of Sun-Joo Shin in 1994, many logicians have discarded the ‘suspicious view’
on diagrams and elaborated Leibniz’s and Lange’s ‘practical’ or ‘formal view’
on diagrams: Shin demonstrated that logic diagrams can have a syntax on their
own which can be clearly distinguished from their semantics. Furthermore, she
proved that Venn-type diagram systems can be constructed as a formal system
that is sound and complete.

Shin’s work has been extended in the last decades for many other diagram
systems using different kinds of logic: Hammer applied Shin’s method to Euler
diagrams and expanded her completeness theorem [5]; inspired by Shin’s work,
Howse et al. developed so-called ‘Spider’ and ‘Concept Diagrams’ which can
be applied in ontology engineering, artificial intelligence and computer science
in general [7]; an Euler diagrammatic inference system in Gentzen-style was
introduced by Takemura et al. [13]; and diagrams for non-classical logic were
recently elaborated by Bhattacharjee et al. [2] and Castro-Manzano [3].
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Lange’s diagrams are new to the debate, and they have been discussed from
a ‘practical view’, i.e. in the context of extended syllogistics [12], of analogical
reasoning [1], of oppositional geometry [11], of bitstring semantics [15] and onto-
logical reasoning [10]. In this paper, it is our main goal to demonstrate that also
a formal view on CL diagrams is possible. Thus we will develop a CL calcu-
lus for a fragment of propositional logic. This formal system follows Shin and
Hammer in many ways. In contrast to logic systems based on Euler-Venn-Peirce
diagrams, CL is strictly hierarchical in structure. This can be interpreted such
that CL follows ontological structures, for example based on jointly exhaustive
and pairwise disjoint (JEPD) classifications and can therefore be applied partic-
ularly well in disciplines such as knowledge representation, artificial intelligence,
medicine, biology, and philosophy, to name but a few [6].

The system we are presenting here is a specific and simple case that demon-
strates how to use such a hierarchically ordered diagram type. Since it is a specific
case of many other possible interpretations of CL, we simply call it CLI . Our
overall motivation is that showing how a formal system of CL can be proven to
be sound and complete will convince other researchers to work on further and
more complex forms and uses of Lange-type diagrams.

In Sect. 2, we will present the syntax of the diagrams, Sect. 3 introduces
a non-exhaustive bitstring semantics which allows one to use Boolean Algebra
in the proofs for soundness (Sect. 4) and completeness (Sect. 5). In Sect. 6, we
conclude by comparing CLI to standard propositional logic.

2 Syntax

In normal symbolic logic, a calculus consists of axioms and inference rules. In
diagrammatic reasoning systems, transformation rules are included instead of
inference rules [16]. In this section, we will present the syntax of CLI by defining
what a diagram is (2.1) and by giving examples of diagrams (2.2). Transforma-
tion rules (2.3) show how to manipulate diagrams, so that all and only diagrams
are consequences of given diagrams.

2.1 Diagrams of CLI

CL diagrams consist of two kinds of diagrammatic objects: structural and content
elements. Structural elements are the same in all CL diagrams. The content
elements may differ from system to system.

Definition 1 (Diagrammatic objects). CLI consists of the following dia-
grammatic objects:

(a) Structural elements of CLI are basics and classes:

Solid boxes Solid boxes containing no dotted lines
are called ‘basics’.

Dotted lines Solid boxes containing dotted lines are
called ‘classes’.
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(b) Content elements of CLI are shadings, tensors, and lines:

Shadings Solid boxes may be shaded completely.
Tensors ⊗ Solid boxes may have a tensor inside.
Lines Tensors may be connected to other tensors using lines to

form a tensor sequence.

Definition 2 (Minimal CLI diagram). A diagram is a minimal CLI diagram
iff it is a diagram such that it consists only of structural elements (basics and
classes), such that

(a) there are only basics in the lowest row,
(b) in no row there is any class that is smaller than the classes or basics in the

row below,
(c) every vertical line is a continuation of a vertical delineation of the basics in

the lowest row,
(d) every vertical delineation of the basics in the lowest row is continued through

the upper rows,
(e) vertical lines may be solid or dotted, but once they have started to be dotted

(looking from the bottom to the top) they do not become solid again, and
(f) every box or class is completely contained in exactly one row.

Definition 3 (Comprisal). A class comprises a solid box below iff all vertical
lines of the box lead to vertical lines of the class.

Definition 4 (CLI diagram). Every minimal CLI diagram is a CLI diagram.
If a CLI diagram can be drawn by adding a shading of a complete solid box to
a CLI diagram, then it is a CLI diagram. If a CLI diagram can be drawn by
putting a tensor into a solid box of a CLI diagram, then it is a CLI diagram.
If a CLI diagram can be drawn by adding a line between two tensors of a CLI
diagram, then it is a CLI diagram. Nothing else is a CLI diagram.

A regular CL diagram is based on 2n basics in the lowest row. All other CL
diagrams are irregular [15]. In the following, we make extensive use of regular
CL diagrams with four basics in the bottom row. The use of four basics in our
examples is without loss of generality of CLI diagrams. What is a limitation of
our discussion here is that we discuss diagrams of the same size only.
We use the Roman alphabet to denote boxes and classes: The lower case letters
{d, e, f, g} indicate the four basics in our examples; uppercase letters {A,B,C}
denote classes. Letters are not themselves diagrammatic objects, but only names
of structural elements.

2.2 Examples of CLI Diagrams

The diagrams 1.1–1.6 are CLI diagrams: D1.1 is a minimal diagram without any
information. In all other diagrams content elements are represented.
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D1.2 shows exactly one in one solid box which is called B; D1.3 demon-
strates that a CLI diagram can also have more than one shading; D1.4 depictes
two ⊗’s at C and d, and D1.5 a ⊗-sequence with links in e and g; in D1.6 all
content elements are involved and combined with each other.

d e f g

B C

A

D1.1

d e f g

B C

A

D1.2

d e f g

B C

A

D1.3

d e f g

B C

A

D1.4

d e f g

B C

A

D1.5

d e f g

B C

A

D1.6

D2.1−2.6 are not CLI diagrams: In D2.1, the two basics d, e are not distin-
guished by solid boxes. In D2.2 we find two solid, instead of dotted lines within
the box of A. In D2.3, does not fill the whole solid boxes of B or C. In D2.4,
both ⊗ are not located inside a solid box. In D2.5, the line does not connect two
⊗’s to ⊗-sequence. D2.6 is a well-formed diagram in another CL system, but not
in CLI [10].

d e f g

B C

A

D2.1

d e f g

B C

A

D2.2

d e f g

B C

A

D2.3

d e f g

B C

A

D2.4

d e f g

B C

A

D2.5

d e f g

B C

A

D2.6
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2.3 Rules of Transformation

In this section, we introduce seven rules of transformation which can be classified
into four types of manipulations, i.e. (I) erasure, (II) addition, (III) unification,
and (IV) inconsistency.

Definition 5 (Obtainability). Let D be a diagram and Δ be a set of diagrams,
Δ � D iff D is an element of Δ or is obtainable from elements of Δ by means
of the transformation rules.

In general, rules of transformation allow us to manipulate diagrams, and thus
are similar to rules of inferences in algebraic deduction systems which allow us
to manipulate algebraic formulas. The rules of transformation are as follows:

I Erasure
I.1 We may erase a , a whole ⊗-sequence or an isolated ⊗.
I.2 We may erase any ⊗ of a ⊗-sequence if that ⊗ is in .
II Addition/Replacement

II.1 We may add any number of ⊗’s to an existing ⊗-sequence or to an isolated
⊗ such that they build a new ⊗-sequence.

II.2 A ⊗ in a solid box can be replaced by a ⊗-sequence in exactly the solid
boxes in the row below that are comprised by the original box, such that
this sequence is connected with the remainder of the original ⊗-sequence
if the replaced ⊗ was part of a ⊗-sequence.
A ⊗-sequence in a row of solid boxes can be replaced by a ⊗ in the solid
box that comprises exactly these boxes, such that this new ⊗ is connected
with the remaining ⊗-sequence if it replaces a part of ⊗-sequence only.

III Unification
Given two diagrams D1 and D2, we can obtain a unified diagram D1+2 iff
any content element of D1+2 is contained in D1 or D2.

IV Inconsistency
IV.1 For any diagram that includes and ⊗ in the same box, any other

diagram can follow.
IV.2 For any diagram in which all ⊗ of a ⊗-sequence are also , any other

diagram can follow.

Most of the above given rules are similar to the rules of transformation which
are to be found in the systems of Shin, Hammer etc., mentioned above in Sect. 1.
Therefore, we will not explain them in detail, but illustrate them by giving
examples. However, RII.2 is unique to CLI and does not correspond to any of
the above mentioned systems. We will therefore insert a short explanation at the
appropriate place.
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The following are three examples of RI:

d e f g

B C

A

D1

RI.1

d e f g

B C

A

D2

d e f g

B C

A

D1

RI.1

d e f g

B C

A

D2

d e f g

B C

A

D1

RI.2

d e f g

B C

A

D2

The following is an examples of RII.1:

d e f g

B C

A

D1

RII.1

d e f g

B C

A

D2
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The following illustrates RII.2:

d e f g

B C

A

D1

RII.2

RII.2

d e f g

B C

A

D2

Using RII.2, diagram D1 with a single ⊗ in C is transformed into diagram
D2 with a ⊗-sequence in the two basics f and g immediately below the class
C. The second arrow, going from D2 to D1 indicates that RII.2 also allows to
replace the ⊗-sequence connecting f and g in D2 with a single ⊗ in C in D1.

If a ⊗-sequence is given in two basics or classes which are not comprised
in the same class by Definition 3, RII.2 cannot be applied. For example, if e is
comprised by B and f by C, RII.2 cannot be applied to a ⊗-sequence of e and f .

If RII.2 is applied to a ⊗-sequence in which not all ⊗ have been replaced, then
the remaining ⊗’s must be linked with the replaced ⊗ or ⊗-sequence. For exam-
ple, take diagram D2 from the example of RII.1 given above, in which we find a
⊗-sequence in d, e, and C. Here, it is also possible to replace the single ⊗ in C
with a ⊗-sequence in f and g by using RII.2. Let D3 be the result of this process of
manipulating, then D3 has a ⊗-sequence in d, e, f , and g. Furthermore, it is pos-
sible to replace the ⊗-sequence in d and e with a single ⊗ in B by using RII.2. Let
D3 be the result of this process of manipulating, then D3 has a ⊗-sequence in B C.

The following are two examples of RIII. Due to lack of space, we do not draw
arrows leading from D1 and D2 to D1+2:

d e f g

B C

A

D1

d e f g

B C

A

D2

d e f g

B C

A

D1 2

d e f g

B C

A

D1

d e f g

B C

A

D2

d e f g

B C

A

D1 2
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The following are two examples of RIV:

d e f g

B C

A

D1

RIV.1

d e f g

B C

A

D2

d e f g

B C

A

D1

RIV.2

d e f g

B C

A

D2

3 Bitstring Semantics

In this section a variant of bitstring semantics for CLI diagrams is given. A
bitstring is a finite sequence of characters consisting of the bit-alphabet Σ =
{0, 1}. Normally, bitstring semantics is used to study logical relations between
formulas in a fragment [4]. In contrast, we here use bitstrings to study the
relations between fragments of diagrams, using them as a device to systematically
describe CLI diagrams. The bitstring semantics we use here is one possible
variant of many. A detailed description of this specific bitstring semantic for CL
is given in [15].

By using a bitstring semantics for CLI , we raise two questions as follows: (1)
If a CLI diagram D is obtainable from a set of CLI diagrams Δ (Δ � D) is it the
case that D follows from Δ (Δ |= D)? (2) Whenever D follows from the diagrams
in Δ, is it the case that D can be transformed on the basis of Δ? Question (1)
asks for the soundness of the system, question (2) asks for the completeness.
With the help of a bitstring semantics, we will answer both questions in Sect. 4
and 5. But before, we will focus on what a bitstring model for CLI is (Sect. 3.1)
and show the connection between diagrammatic and bitstring representations in
CLI by giving an example (Sect. 3.2).

3.1 Bitstring Models

In CLI , we use bitstrings to systematically name basics and classes. The length
of each bitstring is determined by the number of basics. As said in Sect. 2, we will
use only CLI diagrams with four basics as examples here. The n-th bit-position
in a bitstring represents the n-th basic in the CLI diagram. In the bitstring
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of a solid box, exactly the positions of those basics are flagged ‘1’ which are
comprised by the box. Since basics are just one single solid box in one of the
columns of the bottom row, they always have a Hamming weight w = 1, i.e.
there occurs exactly one ‘1’ in the bitstring. Two higher classes in the middle
row, each comprising the two basics below them, have a w = 2. The class A
given in the highest row has the maximum w = 4 since it overarches all four
basics (see Fig. 1).

Column number

R
ow

nu
m
be

r
H
am

m
ing

w
eight

=
w

1 2 3 4

3

2

1

1

2

4

1000 0100 0010 0001

1100 0011

1111

Fig. 1. Interpretation of basics and classes

We adopt bitstring semantics to interpret information given in a CLI diagram
and to perform a limited set of bitwise operations (similar to Boolean operations)
with these information:

Definition 6 (Bitstring terms). A term b is a bitstring term iff one of the
following holds:

(a) b is a bitstring,
(b) b is the negation of a bitstring term (¬b),
(c) b is the conjunction of two bitstring terms (b1 ∧ b2),
(d) b is the disjunction of two bitstring terms (b1 ∨ b2).

Normally, Boolean operations on bitstrings are well-defined operations that lead
to well-defined resulting bitstrings. Some of these results, however, would not
match to well-defined CLI diagrams since there are bitstrings with length of 4
that do not name any solid boxes. In the system presented here, for example, it
is not intended that the negation inverts all bits of the bitstring.

As an interpretation of a CLI diagram we define the bitstring function β. β
is a function that interprets diagrammatic elements, diagrams, as well as whole
sets of diagrams.

Definition 7 (Interpretation of basics). If x is a basic, β(x) is a bitstring
such that exactly one position is ‘1’ and the length of the bitstring equals the
number of basics in that diagram.
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Without loss of generality, we will fix the convention to flag the first bit as ‘1’
for the outmost left basic, and then move the flag one position to the right for
the next neighbour on the right side of a basic in such a way that the second
basic has a ‘1’ at the second bit position and ‘0’ at all other. This procedure is
repeated for all basics until the ‘1’ appears at the last bit position of the bitstring
of the last basic in the diagram, so that all basics have a Hamming distance of 2.

Definition 8 (Interpretation of classes). If x is a class, β(x) is a bitstring
such that a position in the string is flagged ‘1’ iff it is flagged ‘1’ in one of the
basics comprised by x.

Figure 1 shows a minimal diagram in which bitstrings are substituted for lower
case and uppercase letters of CLI . It shows how bitstrings are systematically
assigned to basics and classes.

Definition 9 (Interpretation of diagrams). If D is a diagram, then β(D)
is the set of bitstring terms B that consists of exactly the following elements:

(a) for every isolated tensor, the bitstrings of every basic or class that contains
that isolated tensor,

(b) for every shading, the negations of the bitstrings of every basic or class that
is shaded, and

(c) for every sequence, the disjunctions of the bitstrings of the classes or basics
connected through the tensor sequence.

As indicated in the discussion of Definition 6, we will treat negation and dis-
junction of bitstrings here as mere syntactic operations and will not make use of
the underlying semantics with the exception of what we state in Definition 11.

Definition 10 (Interpretation of sets of diagrams). If Δ is a set of dia-
grams, β(Δ) is the union of all sets of bitstrings terms that are interpretations
of the elements of Δ.

Definition 11 (Satisfiability of bitstring terms). A bitstring term b is sat-
isfiable given a set of bitstring terms B (or B-satisfiable, for short) iff one of the
following is the case:

(a) b is an element of B;
(b) b is the result of deleting a conjunct from a B-satisfiable conjunction of

bitstrings or negated bitstrings;
(c) b is the result of replacing a B-satisfiable disjunction of bitstrings b1, b2, . . .

such that the n-th bit-position of b is ‘1’ iff there is some bi such that the
n-th position of bi is ‘1’, or vice versa;

(d) b is the result of combining two B-satisfiable bitstring terms satisfiable in B
into a conjunction;

(e) b is the result of combining a bitstring term that is B-satisfiable with any
other bitstring term in a disjunction;

(f) b is the result of deleting a bitstring term from a disjunction if that disjunc-
tion and the negation of bitstring are B-satisfiable;
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(g) b is any bitstring term if, for some bitstring term, both this term and its
negation are B-satisfiable.

Note that bitstring terms correspond to single content elements in a diagram
(i.e. ⊗, , or ⊗-sequence). Whole diagrams thus correspond to sets of bitstring
terms; a minimal diagram corresponds to the empty set of bitstring terms. We
thus have also to define the satisfiability of whole sets of bitstring terms.

Definition 12 (Satisfiability of sets of bitstring terms). A set of bitstring
terms B2 is satisfiable given a set of bitstring terms B1 (or B1-satisfiable, for
short) iff every element of B2 is B1-satisfiable.

Corollary 1. The empty set is trivially B1-satisfiable for any B1.

Corollary 2. Any subset of a B1-satisfiable set is B1-satisfiable.

Definition 13 (Satisfiability). Δ |= D iff β(D) is satisfiable in β(Δ), i.e. iff
the set of bitstring terms B2 corresponding to D is B1-satisfiable, whereby B1 is
the union of all those sets of bitstring terms which correspond to the elements
of Δ.

3.2 Correspondance between Syntax and Semantics

The correspondence between syntax and semantics can be illustrated by an
example. The example shows at first how to obtain a conclusion diagram D
from a set of premise diagrams Δ (Δ � D) and then the translation of Δ and
D into a common prooftree by using bitstrings. For better comparison we have
inserted the bitstrings directly into the diagrams (as explained in Sect. 3.1).

1000 0100 0010 0001

1100 0011

1111

D1

1000 0100 0010 0001

1100 0011

1111

D2

1000 0100 0010 0001

1100 0011

1111

D

There is no rule to go directly from D1 and D2 to D. For this reason, there must
be intermediate steps. First, RII.2 is applied twice, starting from D2, so that
the ⊗-sequence is shifted from the basics in the lowest row 3 to the classes in
the middle row. This leads us from D2 via D3 to D4. In the next step, D1 is
combined with D4 with the help of RIII. The result is D5. RI.2 is now applied
to D5, whereby D is obtainable.
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1000 0100 0010 0001

1100 0011

1111

D3

1000 0100 0010 0001

1100 0011

1111

D4

1000 0100 0010 0001

1100 0011

1111

D5

By using Definition 6, the following prooftree shows the analogues reasoning on
the semantic bitstring level corresponding to the above example. For a better
comparison we have added the diagrammatic rules at each step as a label.

D1{¬1100}

D2{1000 ∨ 0100 ∨ 0010 ∨ 0001}
(RII.2)

D3{1000 ∨ 0100 ∨ 0011}
(RII.2)

D4{1100 ∨ 0011}
(RIII)

D5{¬1100 ∧ (1100 ∨ 0011)}
(RI.2)

D{0011}

4 Soundness

In this section, we prove that the transformation rules are stated correctly given
the bitstring semantics outlined in Sect. 3. In other words, we prove, that if
D is obtainable from a set of diagrams Δ (Δ � D), then it is the case that
β(D) is satisfied given β(Δ), i.e. Δ |= D. We are proving this hypothesis in two
steps: First, we prove that all transformation rules are valid; second, we show
by induction that for any D obtainable from Δ (Δ � D), the bitstring term D
follows from the set of bitstring terms Δ, Δ |= D.

Theorem 1 (RI–RIV). For every D that is obtainable from a set of diagrams
Δ by exactly one application of RI–IV, it is the case that β(D) is satisfied given
β(Δ) is satisfied, i.e.: If Δ � D, then Δ |= D.

Proof. The following cases are possible:

(RI.1) Suppose D follows from Δ by erasing a , a ⊗ or a ⊗-sequence. Then
there is a negated bitstring, a bitstring sequence or a single bitstring in
β(Δ) that is not an element of β(D). If content information is erased,
β(D) is obviously a subset of β(Δ) and by Definition 12 and 11 (a),
Δ |= D.

(RI.2) Suppose D follows from Δ by erasing a ⊗ in a box x of a ⊗-sequence,
which is also . If β(x) is erased from a disjunction of bitstring terms,
we have β(Δ) by Definition 11 (f), so that Δ |= D.

(RII.1) Suppose D follows from Δ by adding a link x to a ⊗-sequence. If β(x) is
added to a conjunction of bitstring terms, we have Δ |= D by Definition
11 (e).
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(RII.2) Suppose D is obtained from Δ by replacing a ⊗ in a solid box x by a
⊗-sequence in exactly the solid boxes y and z in the row below that
are comprised by x. According to Definition 8, β(x) is flagged ‘1’ iff the
bitstring of one of the boxes comprised by x. There are two cases: (a)
If the replaced ⊗ in x was not part of a ⊗-sequence, then β(y ∨ z) is
satisfiable iff β(x) is, according to Definition 11 (c). (b) If the replaced
⊗ in x was part of a ⊗-sequence continuing in x1, x2, . . ., then β(y ∨
z ∨ x1 ∨ x2 ∨ . . .) is satisfiable iff β(x ∨ x1 ∨ x2 ∨ . . .) is, according to
Definition 11 (c). Hence, for both cases Δ |= D.

(RIII) Suppose D follows from Δ by unification. Then D contains content
elements from various diagrams in Δ, but in any case each bitstring in
β(D) is also an element of β(Δ). Hence Δ |= D.

(RIV.1) Suppose D follows from Δ by inconsistency. Then in one D′ ∈ Δ there
is a box x that is both shaded and contains a ⊗. Thus, β(Δ) contains
both β(x) and its negation. Then by Definition 11 (g), any bitstring
term is Δ-satisfiable, including D. Hence Δ |= D.

(RIV.2) Suppose D follows from Δ by inconsistency. Then in one D′ ∈ Δ there
is a set of boxes x that is both shaded and contains a ⊗. Thus, β(Δ)
contains both β(x) and its negation. Then by Definition 11 (g), any
bitstring term is Δ-satisfiable, including D. Hence Δ |= D. ��

The soundness theorem that follows assures us that reasoning with RI–IV can
never lead to a false conclusion from true premises:

Theorem 2 (Soundness). Every D that is obtainable in CLI from a set of
diagrams Δ is such that its corresponding set of bitstring terms β(D) is satisfiable
given the set of bitstring terms β(Δ) corresponding to Δ, i.e.: If Δ � D, then
Δ |= D.

Proof. We prove this by induction over length of derivation L of D from Δ:
Induction basis: L = 0, i.e. D ∈ Δ. Then trivially every element of β(D) is an
element of β(Δ) by Definition 10.

Induction step: If we suppose that D is directly derived from a satisfiable set of
diagrams Δ′ by exactly one transformation rule, Theorem 2 follows immediately
from Theorem 1. ��

5 Completeness

Theorem 3 (Completeness). For every bitstring term b that is satisfiable in
B there is a diagram D matching to b that can be derived from the set of diagrams
Δ matching to B, i.e.: If Δ |= D, then Δ � D.

Proof. We prove this by induction over length of derivation L of the bitstring
term in question:
Induction basis: L = 0, i.e. b is an element of B. Then d is an element of Δ and,
trivially, d is derivable from Δ.
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Induction step: Assume that the theorem holds for L = n, show that it also
holds for L = n + 1. The last step of the derivation of satisfiable bitstring terms
can be any of (a) to (f).

(a) b is the result of combining two bitstrings terms satisfiable in B in a con-
junction. If we have a diagram for the two bitstrings to be combined, we get
a diagram for the conjunction with RIII.

(b) b is the result of deleting a conjunct from a B-satisfiable conjunction. Dia-
gram derivable with RI.1 or RI.2, depending on whether the conjunct is a
bitstring or a negated bitstring.

(c) b is the result of replacing a B-satisfiable disjunction of bitstrings b1, b1, . . .
such that the n-th position of b is ‘1’ iff one of b1 or b2 has there is some bi
such that the n-th position of bi is ‘1’ or vice versa.
Diagram derivable with RII.2.

(d) b is the result of combining a bitstring term that is satisfiable in B with any
other bitstring term in a disjunction. If we have a diagram for the original
satisfiable bitstring term, we get a diagram for b with RII.1.

(e) b is the result of deleting a bitstring term from a disjunction if that disjunc-
tion and the negation of the bitstring are satisfiable. The diagram can be
derived by RIV.

(f) b is any bitstring term if, for some bitstring, both this bitstring and its negation
are satisfiable in B. If we have a diagram for a bitstring and its negation, we
have a diagram with ⊗ in a certain box and another diagram with in that
very box. With RIII, we get a diagram that contains ⊗ and in the same box.
But then we can get a diagram for any arbitrary b with RIV.
As these are all possible cases, Theorem 3 follows. ��

6 Discussion and Conclusion

Our aim was to show that it is possible to have not only a practical view on CL,
but also a formal one. For this purpose we designed a system called CLI , which
can be interpreted as a fragment of propositional logic applied to a hierarchical
structure. The structural elements of CL, such as basics and classes, represent
hierarchically structured propositions to which content elements such as tensors,
shading and lines can be applied. The intepretation of structural and content
elements of CLI in terms of propositional logic can be illustrated by the follow-
ing table:

Structural elements , Propositions
Content elements Negation

⊗ Affirmation
⊗-sequence Disjunction
Co-occurrence of unconnected con-
tent elements in the same diagram

Conjunction
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Four types of rules allow transformations of diagrams with respect to these
content elements. The transformation rules can also be seen as equivalents to
deduction rules in propositional logic. These equivalences are shown in the fol-
lowing table:

RI.1 Conjunction elimination
RI.2 Disjunctive modus tollendo ponens
RII.1 Disjunction introduction
RII.2 p ↔ (q ∨ r), q ∨ r � p or

p ↔ (q ∨ r), p � q ∨ r

RIII Conjunction introduction
RIV.1, RIV.2 Ex falso quodlibet

Using a specific bitstring semantics we have shown that this system is sound and
complete.

It is, however, only a fragment of propositional logic. For example, there
is no obvious way to express a material conditional, and there are only very
restricted possibilities to translate complex expressions from propositional logic
into CLI . In particular, only boxes can be shaded, i.e. only atomic propositions
and disjunctions of these can be negated.

Throughout the paper we have used regular CL diagrams with the same very
small number of basics. This was an example to show how CLI actually works.
As mentioned before, this limitation to four basics was not a limitation of the
generality of the system. The definitions, rules and proofs of CLI apply to any
regular CL diagram, regardless of size.

However, unlike many diagram systems mentioned in the introduction, CLI is
a static system in which there is no transformation rule that allows the structural
elements of the diagram to be changed. Instead, all transformation rules describe
transformation between CL diagrams of the same size. This indeed limits the
applicability of CLI . However, it is conceivable that this disadvantage could be
remedied in future dynamic CL systems including CL diagrams of different size.

After all, our aim here was simply to show that CL can be systematized at
all. But achieving this goal is important for several reasons. Not only does it
show that it will soon be possible to build more complex systems with the struc-
tural elements of CL, in which dynamic principles represent a larger fragment
of propositional logic. It also is a motivation to test CL systems for other parts
of logic. Since there is already a practical view on CL in areas such as extended
syllogistics, it should also be possible to create different formal systems that
correspond to predicate logic. And since Lange already described possible appli-
cations of the structural elements for modal logic 300 years ago, there is reason
to suspect that CL can be extended in the above mentioned directions.

In addition, other extensions of CL can be envisaged: Similar to diagrams
used in areas such as ontology engineering, content elements in CL do not have
to be restricted to only one structure. If one wants to represent relations between
several CL diagrams, representing various ontologies, it is also conceivable that
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CL is not only understood as a two-dimensional structure, but that the system
can be extended to n-dimensional objects. If these ideas were to be realised at
some point, Leibniz’s assessment that Lange’s calculus is an ‘algebra universalis’
might become plausible to us.
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Abstract. Boolean algebra expressions are used by stakeholders from a
range of disciplines, such as engineers, to build logic circuits. To reduce
the cost and transaction numbers of logic circuits, engineers minimize
Boolean expressions by reducing the number of terms or arithmetic oper-
ations. A well-known pictorial method applied for minimizing Boolean
expressions is the Karnaugh map. However, a drawback is that these
maps are not effective for minimizing Boolean expressions involving more
than four variables. We introduce a novel method for minimizing Boolean
expressions by using graphs, which we call a “Truth Graph” that can be
effectively applied when many variables exist.

Keywords: Boolean algebra · Minimizing Boolean expressions

1 Introduction

Stakeholders, such as engineers, use Boolean algebra expressions for building
logic circuits. To reduce the cost of these circuits, they must reduce (or minimize)
the original Boolean expressions to an equivalent expression that includes fewer
terms or arithmetic operations. The process of minimizing Boolean expressions
is not straightforward, and understanding circuits and the connections between
its components is challenging for engineering students [13]. Geoffrey et al., who
studied students’ misconceptions of circuits, revealed that “ these misconceptions
result from the need to manage a lot of information that has not been properly
organized in the students’ minds.” [9].

Tools, such as truth tables and the Karnaugh map (K-map), were introduced
to help simplify minimizing Boolean expressions [14]. However, these tools have
drawbacks. Truth tables grow very fast as the number of rows for an n-variable
function is 2n. Therefore, having more than five variables, for example, will make
the construction of the table laborious and prone to error.

The K-map is another form of the truth table that facilitates the minimiza-
tion of Boolean algebra expressions without requiring the use of Boolean alge-
bra theorems. However, the K-map becomes highly confusing when minimizing
expressions that involve more than four variables. For example, a 4-variable K-
Map will include 24 = 16 cells, each having a value of either 0 or 1. These 16 cells
consist of four rows and four columns, each labelled with two binary numbers
c© The Author(s) 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 461–469, 2020.
https://doi.org/10.1007/978-3-030-54249-8_36
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that bring the total binary number in a 4-variable K-Map to 32. Analyzing the
relations between these binary numbers by grouping adjacent cells that contain
the one values to determine a minimum expression can also be arduous and prone
to error. Studies demonstrated that students find K-maps difficult to use, such
as Zilles et al. who interviewed students taking a logic course that incorporated
using K-maps, and reported,“because Karnaugh maps are a major topic in both
ECE 290 and CS 231, we were surprised to find that students were generally
reluctant to use them.” [15]. Considering that both truth tables and the K-map
are utilized as pedagogical tools, having an enhanced teaching approach that
supports many variables and reduced visual complexity would be valuable.

Learning with an appropriate representation can enhance learners’ perfor-
mance [1]. Cromley investigated if different representations led learners to use
different strategies and reported that “students verbalize more inferences when
reading diagrams compared to text” [8]. The superiority of visual notations over
textual and symbolic versions has been reported by Larkin and Simon [10],
Cheng [7], and many others, including Ainsworth and Loizou [2], Alharbi [3],
and Butcher [5].

By considering the superiority of visual notations, especially in logic with
their support for observational advantages and reasoning [11,12], in terms of
visual complexity and drawability [4,6], visual notations can be effective rep-
resentations for minimizing Boolean expressions. This paper introduces a new
method for minimizing Boolean algebra expressions that takes advantage of the
benefits of visual representations to overcome the limitations of truth tables and
the K-Map approaches.

2 Truth Graph Expressions

A truth table is a simple tool for showing the truth-value of all possible com-
binations of the variables within an expression. Combinations leading to false
outputs are not involved in the minimization process. Therefore, truth graphs
only represent combinations that lead to truth outputs. Figure 1 and Table 1
illustrate how a truth graph and truth table represent the Boolean expression
(A+B) ∗C with values. In Fig. 1, each variable can have one of two values, 1 or

Fig. 1. Truth graph. (Color figure online)

Table 1. Truth values.

A B C Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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0. The upper nodes represent the 1 values, and lower nodes represent 0. Values
not included in the graph do not lead to truth outputs, such as the value 0 for
variable C is not included in the graph.

Values (or nodes) are connected by edges that represent truth paths. In
Fig. 1, there exist three truth paths highlighted in green, red, and blue. These
truth paths represent the truth outputs of the combinations of the values. For
example, in the green path, the value 0 from A is linked with the value 1 of B,
which is linked with the value 1 of C. This truth path is read as 011 or FTT,
which is equivalent to the fourth row in Table 1. The red path represents the
values 1 A, 0 B, and 1 C, and the blue path represents the values 1 A, 1 B, and
1 C. If there exists no edge (link) between two values, then the combination of
these values is false. For example, no link exists between 0 A, 0 B, and 0 C.

In the graph, we include nodes with written values of 1 and 0 to illustrate
the idea. These elements can be eliminated to make the graph simpler without
impacting the semantics. Figure 2 shows the same graph after removing the
nodes and written values, which reduces the visual complexity and transforms
the graph into a representation similar to electrical signals that can be read
easily and matched to its meaning, where high waves represent 1 values and low
waves represent 0. This version of the graph appears more straightforward and
easier to draw compared to a truth table, especially with many variables.

Fig. 2. Truth graph after removing nodes and written values.

3 Truth Graph Minimization Method

Reducing the number of variables or connections corresponds to minimizing
Boolean expressions. The truth graph method minimizes Boolean expressions
by following two rules:

If two paths pass through the same variables and values, except for one variable
where one path passes through 1 and the other passes through 0, then this variable
can be eliminated from the two paths. For example, ABC + ABC = BC.

If one path passes through fewer variables than another path, and the shortest
path passes through the same variables and values, except for one variable, then
the value can be eliminated only from the path that has more variables. For
example, AB + ABC = AB + BC.

Regardless of the values, in the first rule, two expressions must have the
same variable, and in the second rule, one expression is subsumed by another. In
Fig. 2, the green and blue paths pass through the same values, except the values
of variable A. Therefore, these two paths can be minimized to BC. In Fig. 3, the
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black path represents the combined result of the green and blue paths. Next, we
combine this result with the red path. Both black and red paths pass through the
values 1 and 0 of variable B, and the red path passes by more values. Therefore,
we eliminate the value of variable B from the red path. The result of the red
path becomes AC.

Fig. 3. The result of minimizing the green and blue paths. (Color figure online)

The final minimization result of the truth graph in Fig. 2 becomes AC + BC,
as shown in Fig. 4. The dashed line is used instead of a solid line to avoid visual
complexity and illustrates that A is linked to C without B. The solid line links
all variables it passes through, where the dashed line skips some variables. In
this example, the dashed line passes through AB and C, and the small black
dots below the variables A and C represent that A is linked to C without B.

Fig. 4. The result of minimizing the three paths. (Color figure online)

The final minimization result is not affected by the order of the combinations
because combining any two paths first will lead to the same result. For example,
we can start by combining the red and blue paths by eliminating the variable B.
The result is AC, as shown in Fig. 5. The black dotted line represents the result
of minimizing the red and blue paths. Then, the black dotted and green paths
can be minimized by eliminating the value 0 of variable A from the green path.
The reason for eliminating the value of A from the green path only is because
the green path passes through more variables than the black path, which passes
through only two variables. The result is the same as the previous result, as
shown in Fig. 4.

Fig. 5. The result of minimizing the green and blue paths. (Color figure online)
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The minimization rule cannot be applied to the combination of the green and
red paths because the two paths pass through three values and share only one
value. Figure 6 shows several examples of combining truth paths that cannot be
minimized. The truth paths in graphs a and b do not share any values, and the
truth paths in graphs c, d, e, and f share only one value as they pass through
three values. The truth paths in graphs g and h share two values as they pass
through four values.

Fig. 6. Examples of graphs that cannot be minimize. (Color figure online)

4 Truth graph and K-Map (Three Variables)

K-map cells filled with either 1s or 0s, where the 1 values indicate that the true
values of the combination and 0 values indicate the falsity. To find the minimum
logic function, these 1 values must be grouped in a specific way for determining
the function F of the K-Map. Tables 2 and 3 show how both the K-map and truth
graph, respectively, represent 000 + 001 + 110. Figure 7 presents the result of
combining the two truth paths in the first row of Table 3. The red and green
paths share the same values, except for the one variable C, which is eliminated.
Figure 8 shows the results of combining the two paths. Then, we add the third
path from the second row of Table 3 into the results of the combination of
the two previous paths. Figure 9 illustrates the results of this combination that
includes no common value for the black and blue paths to share. Therefore, this
represents the simplest expression of 00 + 110 (AB + ABC).

Table 2. K-Map with truth values.

BC
00 01 11 10

0 1 1 0 0
A

1 0 0 0 1

Table 3. K-Map with truth paths.

BC
00 01 11 10

0
A

1
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Fig. 7. Graph 1 and 2 Fig. 8. Results of Graph 1 and 2 (Color figure online)

Fig. 9. Graph 3 and the results of Graph 1 and 2 (Color figure online)

5 Truth Graph and K-Map (Four Variables)

The same process is followed with four variables. Table 4 shows how the K-map
represents all possible combinations, and Table 5 includes the same information
represented by the truth graph.

Table 4. K-Map with values.

CD
00 01 11 10

00 0000 0001 0011 0010
AB

01 0100 0101 0111 0110
11 1100 1101 1111 1110
10 1000 1001 1011 1010

Table 5. K-Map with truth paths.

CD
00 01 11 10

00
AB

01
11
10

Let us assume that four combinations lead to true values, including ABCD+
ABCD+ABCD+ABCD. Figure 10 illustrates how the K-map and truth graph
represent this information. Table 6 shows step-by-step how the combination of
these values is minimized using our method. Step 1 combines the red and green
paths so that we can eliminate variable B with the result shown in Step 2. Step
3 combines the result of step 1 with the blue path, and the value of variable A
is eliminated from the blue path only because it passes through more variables
(ABCD) compared to the black path (ACD). Step 4 shows the results of step
3, and step 5 combines the result of step 3 with the yellow path. The yellow
path shares only one variable with the other paths, which means no further
minimization may occur. So, step 5 represents the final minimization of the truth
graph in Fig. 10. As discussed above, we can select any two paths to begin the
minimization process because any combination order leads to the same results.
Moreover, the method is not affected by increasing the number of variables,
which is a drawback of other methods.
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CD
00 01 11 10

00 0 0 1 0
AB

01 0 0 1 0
11 0 0 1 0
10 0 0 0 1

Fig. 10. Truth graph and K-map (4 variables).

Table 6. An example of minimzation process.

Step Symbolic Representation Graphical Representation

1 ABCD + ABCD

2 ACD

3 ACD + ABCD

4 ACD + BCD

5 ACD + BCD + ABCD

6 Truth Graph (Six Variables)

The truth graph method can be effectively applied to Boolean expressions with
many variables. Figure 11 shows a truth graph representing an ABCDEF +
ABCDEF + ABCDF expression. The blue and yellow paths pass through the
same variables and values, except for variable B. Therefore, B is eliminated
from the two paths, as shown in Fig. 12. The black path represents the result of
the combination of the blue and yellow paths. The black dotted line indicates
that variable B is not included in the path. The red path passes through more
than one value from the blue and yellow paths. Therefore, this represents the
minimum expression as ACDEF + ABCDEF .
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Fig. 11. Truth graph (6 variables). Fig. 12. Truth graph minimization result.

7 Conclusion

We introduced a novel method for minimizing Boolean expressions with graphs
by considering the advantages of visual representations, including their simplic-
ity, to overcome the limitations of truth tables and K-maps. Our next step will
perform student tests to determine if an advantage exists for using these graph
when minimizing Boolean algebra expressions compared to other representa-
tions, such as the K-map. Additional future work will be the implementation
of tool support, as developing a tool that can automatically minimize drawn
sketches will be valuable.
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Abstract. In this article we propose diagrams with the ability to represent syllo-
gisms that, in addition to the traditional quantifiers “all”, “some” and “none”, can
represent the so-called intermediate quantifiers or probabilistic quantifiers “most”,
“a few”, “half”, etc. The graphs contained in this paper have been developed based
on the Marlo diagram, a tool for teaching logical reasoning that operates with
propositional models that are constructed by quantifying the predicate in a way
similar to Hamilton or Jevons in the 19th century. The quantification of the predi-
cate allows us to represent the possibilities implicit in the premises, so that when
the synthesis of the propositions is made later, the working memory can take these
possibilities into account. In this way, we prevent our students from committing
the persistent fallacies of denying the antecedent and affirming the consequent.

Keywords: Logic diagrams · Visual reasoning · Diagrammatic reasoning ·
Intermediate quantifiers · Syllogism

1 Propositional Models Beyond Traditional Quantifiers

Traditionally, the syllogism propositions have been divided into universal and particular,
affirmative and negative. However, as Valiña [8] indicates, this choice is arbitrary and
does not take into account other quantifiers, such as Most (M) and Few (F), with which
people reason naturally [4–7]. With the intention of representing the logic of probability,
some of the first modern logicians developed linear diagrams in which it was important
to represent the relative extent of class B compared to class A. However, Venn [9] stated
that any introduction of considerations such as these should be avoided as they tend to
confuse the domains of logic and mathematics, and because ambiguous representations
also occur. In fact, to solve certain ambiguities in the graphs, we ourselves have had
to match the graphic representation of “Some A”, “A few A” and “At least one A”
in the propositional models. To interpret Fig. 1, what must be remembered is that we
place the name of the variable that works as a subject in the center of the propositional
models. A explanation of Marlo diagram is available on Youtube [1]. The universal
models are not divided, and the areas that remain undetermined in particular models are
left blank or labeled with a question mark (see Fig. 3 now). On the other hand, when
the variable that functions as a predicate is taken universally, it only appears within
the subject’s model, but when it is considered in a particular way, it is also indicated
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outside the model with a question mark. The exterior of the A model is interpreted as
¬A. Only combinations incompatible with the explicit and necessary associations are
prohibited. The rest are possibilities neither confirmed nor refuted by the models [2, 3].
For example, in the conditional model All A is B, it is no longer possible to include ¬B
in any region of A, because in the entire extension of A we have B, but it is still possible
to suppose ¬B associated with ¬A and that’s why we write “¬b?” outside the model
of A. The subscript x indicates “whole” and can be interpreted as the conditional “→”.
The subscript m indicates “most”.

Fig. 1. Syllogisms with intermediate quantifiers and conversion of their conclusions.
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Fig. 2. Syllogism solved with intermediate quantifiers in Marlo diagram.

The subscript f indicates “A few” and in this work it is equivalent to no subscript,
which indicates “some”, “at least one” or “part”. If we interpret the expression “A few
A are B” as “Only a few A are B and the rest are ¬B”, then we would write ¬B without
question mark in the larger region of A. All variables located on the sides of triangles or
squares are potentially combinable. For example, in the square model of “At least some
A are BC”, all A could finally be BC, but there is a possibility that a small part of A
is ¬B¬C. In this square, the possibilities of AB¬C and AC¬B are represented on the
sides labeled B and C respectively, although finally both sides could be ABC. Figure 2
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represents a syllogismwith five dichotomous variables that are quantified with All, Most
and Few.

Fig. 3. A) Meaning of the model regions. B) Explanation of propositional models with “Half”.
(The divided models mean some when we limit ourselves to the quantifiers “All” and “some”).
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Abstract. It has traditionally been considered that, while Aristotelian syllogism
was limited to justifying a logic of terms, the indemonstrables established by the
Stoics and Chrysippus of Soli (280–206 BC) laid the foundation for the validity
of the logic of sentences. However, and thanks to the quantification of the predi-
cate postulated by Hamilton and Jevons among others, we do not apply different
principles when representing propositional calculus or Aristotelian syllogisms in
our diagrams. The differences we find depend on what diagram we use, but not
on what kind of logic we represent. Peirce claimed that reasoning is subject to the
general laws of nervous action. In this regard, when representing the indemonstra-
bles in Marlo expectations networks, which try to emulate the parallel processing
related to the excitatory and inhibitory synapses of our neurons, it seems suffi-
cient to appeal to the fact that by eliminating certain combinations their alternatives
become necessary. However, in Marlo diagram, serial processes related to reason-
ing using verbal propositions take center stage: we reach conclusions by linking
the middle term of the premises in the same way that we do in the syllogism, and
in this case, reasoning is also subject to the general laws of communication.

Keywords: Logic diagrams · Indemonstrables · Visual reasoning · Syllogism

1 Could Propositional Calculus Be Nothing but Syllogisms?

All logical connectives (↔, → , �, etc.) can be expressed in networks by eliminating
nodes forever (�), except the conjunction of two variables, which we express by acti-
vating the node that represents said association. In figure number one we can see tree
diagrams that contain the four combinations that we obtain from two variables consid-
ered dichotomously. The node d, which is underlined, is a criterion node from which the
branches “d” and “¬d” arise. The first premise always removes a combination from the
universe of discourse and, sometimes, categorically affirms that there is “something” that
is present here and now. The second premise only affirms or temporarily denies some
of the combinations that still remain. The conclusion is obtained by spreading truth and
falsehood through the network nodes [3]. For example, if “D node” is true and “d¬l”
is impossible (�), then “DL node” is true. And if “¬DN node” is false and “¬d¬n” is
impossible, then “¬D node” is false [2] (Fig. 1).
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Fig. 1. First and fifth indemonstrables of Chrysippus solved in the expectation networks.

The representation of inferences inMarlo diagrams seems to showdifferent cognitive
processes than networks (see Fig. 2). Only relevant regions of the universe of discourse
are explicitly represented inMarlo diagrams. Anything outside the “a region” of a model
must be considered as “¬a”. Any combination that does not contradict what was already
indicated as necessary within the models is considered as possible. Variables with a
question mark, as well as the blank regions in the models, represent possible combina-
tions, which can be removed without denying the proposition. For instance, in Fig. 2(2),
in the diagram number one, the variable “b?” represents the combination “b¬a”, which
is neither asserted nor denied in a conditional statement; the blank region within model
number two means “b¬a” and the one in number three means “¬b¬a”. The subject
and the predicate of a proposition can be considered universal or particular. Particular
subject: divided model. Universal subject: undivided model. Universal predicate: it only
appears within the model. Particular predicate: it is written inside and outside the model.
As we can see in Fig. 2(3), models whose subjects are identical can be synthesized
into one. Necessary conclusions are only drawn when superimposing the models of the
middle term we cannot avoid associating the variables that now act as predicates within
the same region (all or part of one with all or part of the other).
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Fig. 2. 1. Elementary propositions in Venn. 2. Elementary propositions in Marlo models: con-
version and transformation are based on networks of expectations. 3. Example of universal and
particular synthesis: at least one universal model. 4. First indemonstrable of Chrysippus solved
by synthesis in a syllogistic way.
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The fifth indemonstrable has been solved in Fig. 3 by means of synthesis processes,
which have been made possible by the transformation of the first premise to match
the quality of the middle term. However, we can also infer through the perception of
impossible relationships (exclusion) [1], although this task has always beenmore difficult
for many of my students. To perceive the impossible associations, it is sufficient to
observe that in the first premise, the “¬d model” is determined in its entirety by “n”, and
that it is therefore incompatible with the “¬N model” (second premise). In Aristotelian
syllogism we can also avoid inferences by exclusion by reducing the second figure to
the first [4]. To sum up, the Marlo diagram seems to work through serial processes that
allow us to reason using verbal propositions. Networks of expectations try to emulate
the parallel processing related to the excitatory and inhibitory synapses of our neurons,
without which neither thought nor language would be possible. We, based on common
sense, combine both diagrams in the classroom. And it really works for us.

Fig. 3. Fifth indemonstrable of Chrysippus of Soli solved in Marlo diagram.
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Abstract. Novel ‘Compositional’ designs based on the Animation processing
Model (APM) allow learners to build mental models of referent content that are
superior to those acquired from conventionally-designed animations. Additional
gains in the effectiveness of APM-based designs appear feasible if the animation’s
external depiction of content was to be better aligned with characteristics of the
internal tokens by excising parts of the animation’s constituent graphic entities
not central to their functional role. Dynamic inferences would let learners men-
tally elaborate the resulting fragmentary depiction to produce the required tokens.
Implementation of this tokenized design approach are discussed.

Keywords: Animated diagrams ·Mental models · Tokens · Information
processing · Comprehension

1 Introduction

The Animation Processing Model (APM) is concerned with perceptual and cognitive
processes that are central to constructing a high quality mental model from a dynamic
depiction of complex subject matter [1]. Mental model theory [2, 3] posits that tokens
are fundamental to how the mind represents knowledge – they are the raw material
from which mental models are composed. Conventionally-designed ‘comprehensive’
animations depict their subject matter in an essentially literal manner with characteristics
that have little in common with hypothesized properties of tokens [4]. One possible
approach for optimizing the effectiveness of animations would be to design them so that
internal ‘tokenization’ of the externally presented information is facilitated.

2 Animation Design and Tokens

Using the APM, failures of traditionally-designed comprehensive animations to produce
anticipated learning benefits [e.g., 5, 6] can be accounted for in terms of the barriers they
present to (i) successful decomposition of these demanding external representations into
event units (entities plus their associated dynamics), and (ii) composition of such event
units into adequate higher order knowledge structures that internally represent the target
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subject matter. The failures can be substantially ameliorated by an alternative ‘Com-
position Approach’ design regime [7]. Recent research on animated piano mechanism
diagrams indicated a key reason for the benefits of a compositional design is that its pre-
decomposed chunks of information (‘Relation Sets’) result in far more targeted learner
processing behavior [8]. In particular, learners’ foveal visual attention tended to be
primarily devoted to causally-relevant contact interactions between adjacent functional
components.

Learner processing of compositional animations could perhaps be facilitated further
if the design of the presentation treated ‘less crucial’ aspects of information differently
frommore functionally important aspects. In particular, instead of indiscriminately incor-
porating all the detail of each component in the depiction, they could be ‘tokenized’ by
omitting details that are functionally non-crucial. The presence of dynamics would allow
the discontinuities in such tokenized depictions to be mentally ‘filled-in’ by the learner
using domain general knowledge about real-world dynamics and related Gestalt ideas.
For example, apparently separate graphic fragments that move together in a regular fash-
ion are likely to in fact be connected, even if the connection is invisible (Common Fate).
Figure 1 illustrates an implementation of such modification for a dynamic diagram of
how an upright piano mechanism functions.

Fig. 1. (a) Piano mechanismwith key-whippen relation set (grey). (b) Key-whippen pair showing
fragments retained in tokenized version (black). (c) Tokenized key-whippen pair after movement,
plus original positions (dotted lines). Coordinated displacements allow inferences to be made
about which fragments are parts of the same wholes and how they are connected.
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According to the APM, successful animation processing relies on interplay between
bottom-up information (as provided by the externally presented animation) and infor-
mation that is available top-down (as provided internally by the viewer’s existing back-
ground knowledge). Appropriate elaboration of sets of fragments in a tokenized ani-
mation in order to generate functionally effective mental tokens requires inferences that
rely on both these types of information. A pilot study assessed viewers’ capacity to make
such inferences.

Fig. 2. Example completions of entity fragments drawn by pilot study participants after having
viewed a tokenized version of the piano mechanism animation.

Participants were presented with tokenized versions of various animated relation set
pairs from the piano mechanism in which only 50% of the entity (by area) was retained
and asked to draw in what would be required to complete each of the entities involved.
In all instances, the fundamental connections existing between fragments were correctly
indicated in the drawings (Fig. 2).

3 Conclusion

An implicit goal of educational animations that portray complex content is to help learn-
ers to acquire a high quality metal model of the depicted referent material. However
at first sight, changing from standard depictions of the content to tokenized represen-
tations could appear potentially counterproductive. Converting standard depictions of
the entities in an animation into sets of fragments as suggested involves introducing a
high level of abstraction that severely reduces the amount of information available to
the viewer. In the piano example given here, we removed 50% of what was present in
the original. Nevertheless, there is a compelling threefold rationale for this seemingly
drastic surgery:

1. Research on learners’ processing of a Compositional animation found that foveal
attention was dedicated primarily to small, functionally-crucial aspects (i.e., contact
interactions between entities) rather than to entities’ non-functional details.

2. Tokenized entities are highly consistent with the form of representation posited to be
fundamental tomental models (so that learners need to carry out less representational
conversion in order to internalize externally presented information)
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3. Patterns of coordinated motion amongst the fragments of entities remaining after
tokenization of a dynamic display allow the fundamental connections and overall
configuration to be reconstituted through everyday inference processes.

Tokenized animations involve a radical departure from the prevailing design
approaches used to develop conventional comprehensive animations. However, in prin-
ciple the disparity between the actual appearance of the referent content and the highly
abstracted version depicted in the animation is not dissimilar to that between a photo-
graph of an electronic device and its formal circuit diagram. In the case of an electronic
diagram, it is assumed that the viewer will possess the specialized knowledge and skills
required to carry out the necessary interpretative processes. Training to develop these
capacities is an accepted part of science education, even for high school students. An
important potential advantage we envisage for this tokenized approach is that the learner
will likely acquire a more generalizable and flexible representation of the target content.
This is because the resulting mental model should be less tied to specific surface features
of the system being represented. The learner would thus be able to apply this represen-
tational framework to a wider range of superficially diverse examples that nevertheless
share common deep structural characteristics. This robust underpinning of fundamen-
tals would have particular advantages for more demanding high level activities such as
transfer and problem solving.
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Abstract. It is often claimed that pictures are not well suited to rep-
resenting negative information. Against this widely held view, we argue
that a close look at how ordinary people use visual representations will
show that negative information can be depicted in various interesting
ways. We focus on three types of representations, namely, photographs,
videos, and comics, and discuss design varieties for depicting negation.
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1 Introduction

Negation plays a substantial role in conveying information in human thinking
and communication. Although negation in natural language has been a major
research topic in logic, philosophy, and linguistics (cf. [9]), it is often claimed
that negation is not well suited to visual thinking and communication [2,5,12].

Against this widely held view, we argue that a close look at how people use
visual representations in the real world will show that negative information can
be depicted in various interesting ways. Among them, we focus on three types
of visual representations: photograph, video (film), and comics (manga). These
three types of visual representations can be roughly classified in the following
way. Videos and comics are distinguished from photographs in that they consist
of temporal sequences, which typically represent sequences of multiple events
or scenes. Comics are similar to linguistic representations in that they have a
variety of conventional devices for expressing thoughts, emotions and other non-
visual properties and attitudes. By contrast, photographs and videos typically
do not involve conventional devices, though they can be enriched with symbols
or linguistic materials such as subtitles.

In recent years, semantic analyses of these visual representations have been
developed, including those for photographs [8], films [6], and comics [1]. To our
knowledge, however, the question of how such visual representations can express
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negation has been largely unexplored. As a first step towards an analysis of
negation in visual representations, this paper presents a preliminary sketch of
design varieties for depicting negation in the three types of visual representations.

Fig. 1. (a) a photograph of bicycle; (b) a video on buildings; (c) an augmented picture
of 1a; (d) an augmented picture of 1b; (e) a comic page with a dotted line convention

2 Photographs
Of the three type of visual representations, we begin with photographs or pic-
tures. What information can we extract from a photograph? Fig. 1a shows a
photograph of a bicycle. Here one could easily extract conjunctive information;
e.g., there are tires, wheels, pedals, and a handle. Furthermore, if you look at
the photograph carefully, you would notice something strange: there is no saddle
in this orange-colored bicycle. This in turn suggests that, in contrast to the case
of conjunctive information, extracting negative information from photographs is
more involved in that it usually requires background knowledge; in the case of
Fig. 1a, it requires the prior knowledge that a bicycle usually has a saddle. For
those who do not know what bicycles are and what they are composed of, it
would be much difficult to extract negative information from Fig. 1a.

To see the difficulty involved in extracting negative information from pho-
tographs, it is illustrative to consider the case of AI researches on the automation
of image description as machine learning tasks (see [3] for a survey). Here one
of the goals is to generate a description or a caption for a given image in terms
of objects, attributes, and relationships appearing in it using machine learning
techniques. This usually requires collecting training data by means of human
annotation. In many cases, however, images referring to objects that are not
directly depicted and hence requiring background knowledge are outside of the
scope (see p. 412 of [3]).

These observations enable us to consider the question of what type of picture
or photograph is well suited to expressing negative information. Our conjecture
is that a photograph can deliver a negative proposition (e.g. “the bicycle does
not have a saddle”) if it easily evokes an alternative context in which a positive
counterpart (e.g. “the bicycle has a saddle”) holds. The psychological findings
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on sentence verification by picture could be supportive for this conjecture. In
cognitive psychology, it has been widely observed that negative sentences (e.g.,
the door is not open) take a longer time to verify the meaning in a picture
than positive sentences (e.g., the door is closed). More specifically, in the typical
experiments, participants were asked to judge whether sentences were true of
pictures. Interestingly, it is reported that, given an appropriate context (e.g.,
looking for something, lifting something, playing something), the time differences
between positives and negatives were not found in cognitive outcomes [7].

3 Videos

As analyzed in the previous section, photographs, which are typically given as
one sheet, can convey negative information with the aid of some background
knowledge or context. Such background knowledge or context can be naturally
realized in multiple pictures presented in a temporal sequential manner; i.e.,
videos. Consider the case of Fig. 1b. This is a video (sequential images) of the
renovation of a building. Here the temporal order is from top to bottom; the top
side image is earlier in time than the bottom side image. Compared to the top
side image, we can extract the negative information that “there is no building”
from the bottom side image. Note here that it would be difficult to derive the
above negative information only from the bottom side image, while it could be
easily derived from the comparison of temporal-sequential multiple sheets.

Note that not only the negative information that there is no building but
also the action event of “the building was demolished” can be described in the
video in Fig. 1b. In contrast to our focus, prior work in psychology [13] and AI on
video description [11] has focused on the latter aspect. They have dealt with the
problem of how we give temporal sequential and multiple simultaneous events
(especially, actions such as jump) in video segmentation and annotation.

4 Comics

As discussed in the previous section, even the content of a video (multiple pho-
tographs) is ambiguous in that it can be interpreted either as conveying neg-
ative information or as the action relation across multiple frames. In order to
selectively express negative information, we can add conventional devices into
images. The idea is similar to the one in augmented reality [10]; so we call it
“augmented picture”. Figure 1c is an augmented picture of Fig. 1a. Here the neg-
ative information that there is no saddle is expressed by dotted lines, without
using background knowledge. Likewise, by using the dotted lines, Fig. 1d depicts
the negative information that there is no building as one-sheet representation,
in contrast to the video in Fig. 1b where temporal-sequential multiple frames are
used.

In the real world, the technique of enclosing by dotted lines can be frequently
found in comics (manga), as emphasized in Cohn’s [4] visual narrative gram-
mar of comics. Here comics are illustrations having temporal-sequential multiple
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frames. Figure 1e is an example of comics, which expresses that “a character
is not there” by using a dotted line (written based on the original comic1). In
addition, we can find various designs using conventional devices to represent
negative information in comics. In Osamu Tezuka’s Phoenix: Resurrection2, a
boy was dead, then “everything returned to nothing”, which is depicted by what
the frame is filled with black. In Tezuka’s Budda3, a fox can find some food but
a rabbit can not find any food. Here, the fact that the rabbit could not find
food is expressed by placing just a cross in a balloon. In Tezuka’s Phoenix: Civil
War4, a monkey says to a dog, “Do not walk in large numbers!”, by putting a
cross on a herd of dogs in a balloon. Note here that the negation here is not
the negative form of a verb but a speech act of prohibition. Interestingly, the
above conventional devices are used not only in comics but also in other complex
visual representations. For example, unknown and unexplored regions in a map
was represented by filling a portion of an area with gray color. In pictograms of
laundry symbols, which is standardized as ISO 3758, a cross notation expressing
prohibition is also used. For instance, when a cross is put on an iron mark, it is
designed to mean Do not iron.

Our next step is to run some experiments to test whether ordinary people
interpret the meaning of visual representations as designers intended. Through
the experiments, we would try to shed light on the factors affecting people’s
interpretation of visual representations. It is expected that the experiments and
analyses would provide some evidence for the naturalness of conventional devices
in diagrammatic representations (e.g., shading in Venn diagrams), and the design
guide of information visualization.
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Abstract. In this paper we present some results obtained using theMarlo diagram
for the didactic of logic in a High School in Huelva, Spain, between 2014 and
2019. This tool was created by the author to improve the bad results obtained with
traditional methods of propositional calculus, excessively complex, abstract and
far from common sense. To avoid the most frequent fallacies in the classroom, we
developed a simple and intuitive diagrammatic deduction system that allows us
to decompose and visualize the simplest and most elementary steps of reasoning.
Our goal was reinforcing valid inference patterns by synchronizing natural, formal
and diagrammatic languages. Although in 2014 we could only solve syllogisms
in our diagram, since 2016 we can also solve propositional logic exercises. This
is possible by expressing all logical connectives by quantifying the predicate.
Proceeding this way allows us to solve any inference of the propositional calculus
in our diagrams through the same processes of analysis and synthesis that take
place in the syllogism. The fact of recovering the middle term as the basis for
any inference allows us to teach logic from common sense and, consequently,
obtain better results in performance tests. The first comparisons we have made
of our teaching method with the conventional method encourage us to continue
developing a tool that, according to our experience, allows us to improve abstract
thinking from an earlier age than conventional methods.

Keywords: Critical thinking · Diagrammatic reasoning · Didactics of logic

1 The Marlo Diagram Results

Disappointed by the low performance of our logic students, we try to develop a system
of diagrammatic representation that allows us to visualize each of the steps that the
mind must follow when it passes from the premises of an argument to its conclusion.
In 2013, we began to systematically observe our students solving logical problems in
the classroom. They were asked to “think aloud” and, meanwhile, we analyzed their
eye movements on the chalkboard: do they look, point and name the elements of the
exercise in a coordinated manner? Where is the difficulty for them? Where have they
gone out of the way? Finally, we generated diagrams that quantify the predicate and
allow us to explicitly indicate which combinations of variables should be considered
in the conclusions. Thus, we avoid the fallacies of the affirmation of the consequent
and the denial of the antecedent. The initial version of Marlo diagram was tested with
sixteen-year-old students of the I.E.S. Pablo Neruda de Huelva in 2014 [1] (Fig. 1).
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Fig. 1. Example of syllogism solved in the Marlo diagram in 2014.

Students received theoretical instruction on the diagram through the teacher’s expla-
nations on the chalkboard for seven hours and then received a workbook with thirty
solved exercises in which they spent an average of three hours according to them. The
subsequent examination consisted in solving, step by step, six syllogisms of varying
difficulty. 88.3% of students passed the exam. And there were 36.6% perfect exams,
without a single mistake. The bar graph shows the results in number of students and
points obtained in the exam. The maximum score was 10 (Fig. 2).

Fig. 2. Results of the 2014 test on syllogism with the Marlo diagram [1].

These results persuaded us to work with a group of eleven and twelve year old
students and we were able to verify that 90% of them understood the principles of the
method (Fig. 3).

In 2016, we developed a formal notation system that quantifies the variables with a
subscript xwhichmeans “all” and that has allowed us to represent the logical connectives
[3]. Thus, we begin to solve the propositional logic exercises as if they were syllogisms.
And now, when our students solve these types of problems, they look for the variables
that act as a middle term by linking the premises with the conclusion.

We compared academic achievement of four groups of students in a logic test in
2018. The traditional method was applied by a teacher, with more than twenty-five
years of experience, in a group of Humanities (30 students) and another of Sciences (35
students). The first had an average equal to 5.9 in the final grade of June considering the
grades of all students in all subjects. The second got a 7.1. The author, with twenty years
of experience, applied Marlo diagram in two groups, one of Humanities (32 students)
and another of Sciences (28 students). The first had an average in the final grade of
June equal to 6.7 and the second 7.6. Here we limit ourselves to offering data on the
performance of each group in the execution of the most complex exercise of the logical
test we did. The study sample contained 125 people (Fig. 4).
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Fig. 3. Eleven and twelve-year-old children solving syllogisms [2, 7].

Fig. 4. Exercise solvedwith conventional formal notation andMarlo diagramnotation quantifying
the predicate. The bars show the percentage of students who successfully completed the exercise.

We apply the same correction criteria to all students. In the Science groups, the
exercise was solved by 40% of the students who used the traditional method and by 50%
of the students who were instructed in the Marlo diagram. In the Humanities groups,
the exercise was solved only by 3% of the students who used the traditional method.
However, 34% of the students who were instructed in theMarlo diagram did the exercise
well. The fact that some of our students benefit more than others from theMarlo diagram
is consistent with the results in cognitive research [4]. However, we believe that it is
necessary to go beyond the classic distinction between visual and non-visual students
who do not need to use any type of visual support to work with abstract schemes [6, 8].
From our point of view, diagrams improve logical competence insofar as they allow us
to integrate the linguistic, formal and visual processes that take place during inference.
And in this sense, the perspective of the quantification of the predicate [5] will allow us to
benefit from common sense, because it allows the return of the middle term as the basis
of the inference. Although our research can only be considered a pilot study, it allows us
to open new lines of research on how to improve the logical competence of our students.
It would be very difficult to carry out an experimental design that would determine
with certainty in which sense the improvement has depended on the specific use of our
diagrams, on solving the propositional calculus in a syllogistic way or on the integration
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between natural language, formal languages and Marlo diagrams. However, in 2014 we
obtained our best results without using any formal notation. Because of this, we believe
that Marlo diagrams improve understanding of the logical form of propositions, as well
as understanding the exact conditions under which argument patterns are valid or invalid.
Since 2013, around 500 students have worked with these diagrams (Fig. 5).

Fig. 5. [(a ∨ b)∧ (c → ¬a) → (c → b)] solved in the Marlo diagram by recovering the middle
term as the basis of the inference. Subscript x works like a conditional, but it means “totality”; his
absence means “part”.
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Abstract. Could Peirce?s Existential Graphs (EGs) have any advantage over
propositional logical systems using symbols? Shin concludes that EGs are efficient
compared to symbolic logic and comes up with ways to improve it. I consider how
this argument can be interpreted. For that purpose, typical cases showing such
efficiency are given and discussed.
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1 The Efficiency of EGs

C. S. Peirce invented the system of Existential Graphs (EGs) as ?a very simple system
of diagrammatization of propositions? (CP 4.354). Could EGs have any advantage over
propositional logical systems using symbols? Sun-Joo Shin answers this question affir-
matively and proposes improvements to increase their efficiency (Shin 2002). I think
that two-dimensional representation of EGs plays important role in its efficiency.

By utilizing such representations that are effectively realized by two-dimensional
grouping, it is easy to regard diagrams within a flexible range as ?one diagram?. Such
representations are examples of the multiple readings that Shin has discovered. Of par-
ticular importance in such cases are disjunction, conditional, and double cuts shown in
Fig. 1.

Fig. 1. The representation of disjunction, conditional, and double cuts using EGs
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2 Cases and Considerations

In this section, we will confirm the efficiency that can be achieved in the various stages
of constructing proofs using EGs. In the proof, the following efficiency is realized.

Efficiency by being free from the order of the arrangement of signs.
(Proof 1) P?Q? Q?P

This proof related to the commutative law of disjunction is completed in six steps,
including the rules of inference of the disjunction elimination and the disjunction intro-
duction, and two sub-proofs related to disjunction introduction. The same proof using
EGs is shown below.

Fig. 2. Proof 1 using EGs

In this case, EGs complete the proof just by drawing the premise of inference. In other
words, by drawing the premise of this inference with EGs, we can see the conclusion in
the diagram. This is one of the things I call Free-Ride in EGs, whereby we automatically
grasp the conclusion without inference. This Free-Ride in EGs leads to efficiencies,
especially in proofs using ?Intro, ?Elim, and part of proofs using ?Elim in Fitch proof.

The reason why the Free-Ride in EGs is realised in these cases is that EGs are free
from the restriction of the order of signs when they are arranged on a sheet. For example,
in symbolic notation where symbols are arranged in a line, P?Q must be regarded as a
different notation from Q?P, which is the conclusion. However, in EGs, they are just two
ways in which P and Q can be juxtaposed and are considered the same. In Fig. 2, P and
Q are side by side for convenience, but, as long as the two are juxtaposed, in EGs they
are considered the same in principle, whether they are arranged horizontally, vertically,
or diagonally.
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Especially for proofs involving negation, such as Proof 1 and Fig. 1, it is important
to realise this is the transition from parentheses to cuts (Sasaki 2018). This is because
the transition realises a cut as a logical connective of negation and designation of the
scope of negation in one notation, and also frees us of the restriction of arranging the
signs in a line.

Utilizing logical connectives as figures. This is the efficiency realised by recognising
some diagrams as a single figure in units of the area surrounded by the outermost cut
and applying the transformation rules. In the following, examples are shown for some
of the five transformation rules of the Alpha part of EGs (Figs. 3, 4 and 5).

Fig. 3. Drawing

Fig. 4. Erasing



Typical Cases Showing the Efficiency of Existential Graphs 497

Fig. 5. De-iteration

In order to realize these transformations efficiently, it is necessary to draw or delete
the entire diagram at once using a logical connective as a figure. Thus, in the practice
of proofs using EGs, it is possible to obtain an efficiency that is difficult to realize
with symbolic logic systems by effectively utilizing the two-dimensional grouping. In
addition, it is speculated that EGs have their own advantages, such as the efficiency of
making proofs including sub-proofs unnecessary. Many of the EGs? strengths are still
awaiting elucidation, and I think they will continue to be of value for further research.

References

Shin, S.: The Iconic Logic of Peirce’s Graphs. The MIT Press, Cambridge (2002)
Sasaki, T.: Multiple readings of existential graphs. In: Chapman, P., Stapleton, G., Moktefi, A.,

Perez-Kriz, S., Bellucci, F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 598–604.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91376-6_54

https://doi.org/10.1007/978-3-319-91376-6_54


The Sung Diagram: Revitalizing the
Eisenhower Matrix

Hannah Bratterud1, Mac Burgess2, Brittany Terese Fasy2(B) ,
David L. Millman2 , Troy Oster2, and Eunyoung (Christine) Sung2

1 Purpose & Performance Group, Tulsa, OK, USA
hbratterud@purposeandperformancegroup.com
2 Montana State University, Bozean, MT, USA

{mburgess,brittany.fasy,david.millman,christinesung}@montana.edu,
toster1011@me.com

Abstract. The Eisenhower Decision Matrix, credited to the task man-
agement system of US President Dwight Eisenhower, is a graphical dia-
gram used in strategy and planning for tasks. This matrix, however,
only provides four types of priorities. We identify a collection of scenar-
ios in which the traditional matrix provides misleading suggestions and
propose an extension to the matrix that addresses the misleading sugges-
tions illustrated with examples and implementation in a web application.

Keywords: Eisenhower matrix · Prioritization

1 Introduction

I have two kinds of problems, the urgent and the important. The urgent
are not important, and the important are never urgent.

– Dwight D. Eisenhower [5]

The Eisenhower matrix is a graphical diagram used in strategy and planning. The
diagram contains four quadrants: important/urgent, important/non-urgent, non-
important/urgent, and non-important/non-urgent; see Fig. 1a. The user of the
matrix places their tasks into one of the four quadrants. In practice, the diagram
is a useful tool to avoid the trap of spending time on urgent but unimportant
tasks and not enough time on important and not urgent tasks.

Indeed, Covey [4] suggested marking the urgent/important tasks the high-
est priority, making time for the important/not urgent tasks and delegating
urgent/important tasks. But, we believe that the simple matrix is missing a key
detail: the fit . For example, consider the important/urgent task in which Chris-
tine is packing for a move in two days. The Eisenhower matrix would suggest
that she start packing for the move. But, if Christine has the resources to hire
a moving company, it does not require Christine’s time and therefore should be
delegated. We propose an extension of the Eisenhower matrix, called the Sung
Diagram1 that incorporates the fit for the agent that will perform the task.
1 The diagram is named in honor of the coauthor who’s upcoming move inspired the

extension of the diagram.
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Fig. 1. Comparison of the Eisenhower decision matrix and the Sung Diagram.

2 Methods

We extend the Eisenhower Matrix to The Sung Diagram by adding fit . That is,
if the agent (e.g., person, company, or group) is required for the task. By adding
a third binary variable, a Venn diagram is a suitable representation; see Fig. 1.

First Dimension: Importance Important means “of great significance or value;
likely to have a profound effect on success” [9]. How one defines importance,
therefore, potentially affects success. Tasks can be important for various rea-
sons: societal (e.g., curing cancer), individual (e.g., exercising regularly), orga-
nizational (e.g., marketing product), etc. Importance is about the impact of
accomplishing the task; bringing intrinsic benefit to someone or some group.

Second Dimension: Urgency Urgency is defined as promptly requiring atten-
tion [11,13]. Often, task order is based on the urgency. In both the Eisenhower
Matrix and the Sung Diagram, however, task order is not dictated by urgency
alone. In the Sung Diagram, we require that no urgent task has a blocker; that
is, any urgent task can begin immediately.

Forgotten Third Dimension: Fitness From the moving example, recall that pack-
ing is urgent and important yet she has the resources to hire help, which implies
she does not need to do the packing. The example highlights the missing ele-
ment of the Eisenhower Matrix: the fitness for the agent to complete the task.
The decision for fitness has two components: (1) Capability: is the agent the
most capable to accomplish this task? Certain tasks require training (e.g., home
electrical work) or practice (e.g., a piano recital). In fact, evidence shows that
aligning tasks with strengths or capabilities increases productivity and satis-
faction [8,12]. In addition, the agent must not have the ability to delegate to
someone else who is more trained or practiced. (2) Ipseity: does completing
this task contribute to the agent’s ipseity (sense of self)? The agent has values,
be it explicitly stated in a mission statement or informally as goals. We ask the
agent to assess: Does this task contribute to a “Big Hairy Audacious Goal” [3]?
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2.1 Outcomes

After deciding whether or not the task is important, urgent, and fit, the task is
assigned one of the eight regions (or outcomes); see Fig. 1b. The rules for the
outcome have simple overarching principles: (1) Delegation: If the task is not
fit, then the agent should delegate the task. (2) Re-evaluation: Tasks that are
urgent must be re-evaluated for their importance and fitness. Tasks that are fit
but not important should be critically evaluated.

Delegate Now. Tasks that are urgent and important, but not fit, must be
delegated now. Before delegating, the agent must first ensure that the task is fit
for the delegate. For example, suppose a person is notified that their renal unit
has recently been sold, and that they have 14 days to move out. They walk into
Joe the real estate agent’s office, but Joe specializes in house commercial sales,
not in rentals. He immediately calls his colleague who does specialize in rentals
in order to make a referral for the person.

Do Now. Tasks that are urgent, important, and fit must be done now, by
the agent. Consistent application of the Sung Diagram will limit the number
of tasks that appear in this region at the same time. For example, a pre-med
college student who has an exam tomorrow in their microbiology class will have
to study. Studying is urgent, important, and fit (as no one can do it for them).

Delegate Next. Tasks that are urgent, but not important nor fit, must be dele-
gated next. First, you need to assess: do you know the right person to accomplish
this task? If not, this task should be deleted. For example, if you are a researcher
and asked to review a research paper in a field only tangentially related to your
own, this task is neither important nor fit for you, but is usually urgent. You
can decline to review the paper, or you can assign this to your graduate student
as a learning experience to prepare for being an independent scholar.

Do Next. Tasks that are urgent and fit, but not important, must be done
next, by the agent. An effort should be made to get all of the tasks in both the
‘Do Now’ and ‘Do Next’ regions as soon as possible. For example, the pre-med
student may want to respond to phone notifications. The task is urgent and
fit. However, we include a caveat: these tasks are not important, so the fitness
much be re-evaluated first. If re-evaluation finds that they are not fit (such as
the phone notifications [1,10]), then these tasks should be deleted.

Schedule. Tasks that are important and fit, but not urgent, must be scheduled.
Tasks in this region are discussed exhaustively by Covey [4]. For example, if your
life goal is to write a novel, but your job is a computer programmer at a start-up
company, you must block-off time to work on the novel.

Plan. For tasks that are important, but not fit nor urgent, you must create a
plan for how they should be accomplished. The first step of this planning is to
decide who is the best person to accomplish this task? If the task is an easy
one to accomplish and your current set of ‘Do Now’ and ‘Do Next’ tasks are
short, you can be the one to do this. However, most of the tasks in the ‘Plan’
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region can be delegated. For example, if you often travel to meet donors for
your institution and have an assistant that knows your travel preferences and
calendar, then booking your trips takes a few minutes for them to plan.

Delete. Tasks that are not urgent, important, nor fit should be deleted. The
hours in the day are limited, and some things must be let go. For example, sup-
pose a friend recommends that you ride on a roller coaster at a local amusement
park, but you are afraid of heights.

2.2 Interactive Diagram

We created an application2 implementing the Sung Diagram. To use the applica-
tion, enter the task name, select appropriate check boxes (important/urgent/fit),
and click “Submit”. The task name will be added to a visualization. The appli-
cation was written in JavaScript and using the React framework [14]. React was
chosen as it is an industry standard tool for front end web development and
it supports continued feature development. The application was initialized with
Create React App [6], which removes boilerplate setup in a React application.
The visualization is implemented using libraries Venn.js [7] and D3.js [2]. The
libraries enable the rendering and layout of area proportional Venn diagrams.

Acknowledgements. We thank Luke Freeman and Chris Province for their thought-
ful discussions. We also thank our friends and family who have provided inspiration
for the numerous examples scattered throughout this paper.
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Abstract. In this article we present some results obtained between 2016 and 2019
using Marlo’s expectations networks (M.E.N.) as a tool in the teaching of logic in
a secondary school in Huelva, Spain. M.E.N is a Bayesian tree structure imple-
mented with logical nodes in which the propositions can be encoded as true, false,
probable or uncertain. These networks have been used with students be-tween the
ages of 14 and 18 to solve problems of first-order logic andmathematical probabil-
ity. The networks, which have been developed in parallel with the Marlo diagram,
represent in an exhaustive and heterogeneous manner all combinations of vari-
ables that can take place in the universe of discourse. Students make inferences by
interpreting, on the one hand, the spatial information offered by the coordinates
of the variables within the system, and on the other hand, the labels of natural and
formal languages. But in addition, the truth values of each of these nodes can be
expressed by perfectly synchronized numerical and chromatic scales. From these
heterogeneous forms of graphic representation, we have created digital infograph-
ics that can be used on laptops and mobile phones in the classroom. From daily
practice with these tools, we verify that some students with mathematical learning
disabilities can reason in a surprisingly fluid and rigorous manner using colors. It
is also notable that some of the best mathematical students cannot reason using
colors. In any case, all students (chromatic, based on numbers and mixed) benefit
from the diagrams.

Keywords: Logic diagrams · Diagrammatic reasoning · Visual reasoning

1 Marlo’s Expectation Networks (M.E.N.)

Marlo Expectations networks [2] allow visualizing how truth (activation) and falsehood
(inhibition) propagate through the nodes of a network structure configured as a tree
diagram. They are inspired by neural networks that process information in parallel and
accept uncertainty as part of the argumentative processes. Because of this, it is easy to
use abductive reasoning with them. The sets formed by associations ofOr nodes,Object
nodes and And nodes are the basis of inferences in the more complex versions of the
network. An Object node represents a unique and distinct combination of variables that
may be present (True) or absent (False) here and now. An Or node represents a more
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general and less specific combination of variables than those represented in the Object
nodes. For instance, if it is true that there are cheap pencils (Object node A=+1= blue)
and expensive pencils (Object node B=+1= blue), then it is true that there are pencils
(Or node = +1 = blue). Moreover, if it is false that there are pencils (Or node = –1 =
red), then it will be false that there are cheap pencils (Object node A = –1 = red) and
it will also be false that there are expensive pencils (Object node B = –1 = red). When
the And node is false, we can infer that we don’t have Object A or we don’t have Object
B. And in this case, all we know about A and B is that both are probably false (–0,5 =
orange), despite the fact that one of them may finally be true. All the propagation laws
of activation and inhibition by network nodes can be easily deduced from Fig. 1.

Fig. 1. Laws of inference within a set.

Fig. 2. Syllogism in the Alpha system solved on a mobile phone.
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As we can see in Fig. 2, the objects are grouped together into sets and, in turn, the
groups are grouped together into the systemwe call Alpha.We developed these networks
in the classroom as a tool that allowed fifteen-year-olds to solve syllogisms on computing
devices using colors in 2016. Later we code the colors using numbers.

In 2017we created a simpler version of the networks inwhich the logical connectives
are represented by eliminating certain nodes from the network: in the exercise of Fig. 3,
the network numbers indicate which premises eliminate the black nodes).

Fig. 3. Exercise of propositional logic solved in a logical tree diagram of Marlo. Pepe Amoedo
infographic design.

Based on our experience of the past four years using networks of expectations in the
classroom, students can be classified as chromatic, mathematician andmixed, depending
on the way they solve the problems. Remember that the use of colors in the teaching
of logic is not something new. It goes back at least to Ramon Lull [5] and was used by
Lewis Carroll, Charles Sanders Peirce and, more recently, Barwise and Etchemendy’s
Tarski’s world [3], and Ferdinando Cavaliere [4], among others (Fig. 4).

Krutetskii [6] has already made a classification of students in “visual” and “non-
visual”: Visual students have a marked inclination towards the visual aspects of Math-
ematics and, consequently, make use of visual reasoning; Non-visual students do not
need to use any type of visual support to work with abstract schemes. The intermediate
or harmonic group would be formed by students who make a balanced use of visual
and analytical reasoning [7]. Perhaps our chromatic students correspond to the so-called
visual students, while the ones we call mathematicians are the analytical ones. However,
the speed with which some chromatic students make inferences, as opposed to the preci-
sion of those who use numbers, reminds us of the old classification of reasoning systems
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Fig. 4. Student with mathematical learning disabilities solving syllogisms with colors [1].

in Type One and Two. Traditionally, the Type One reasoning system is considered intu-
itive, unconscious and is said to use cognitive shortcuts instead of logic. The Type Two
System is considered biologically more recent, deliberate and conscious, and is said to
be based on logic. Cognitive researchers claim that the Type Two System involves cog-
nitive effort, and that is why it is slower than SystemOne to reach conclusions [8]. In any
case, it seems to us that perhaps we are not quite fair when we affirm that the Type One
System is not logical. Students with acalculia who have learned to solve syllogisms with
colors using our networks are logical and force us to question the traditional dogmas of
logocentrism. It will be easier to address the diversity of cognitive styles of our students
from a heterogeneous conception of reasoning.
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Abstract. In this paper a way of understanding differences between diagrams is
proposed, based on how their spatial properties relate to conceptual content they
refer to and on how this content is assigned to diagrams. It is also argued that some
uses of one of the distinguished classes of diagrams can be construed as a specific
kind of experiment.

Keywords: Philosophy of mathematics · Diagrammatic reasoning

1 Introduction

Literature on mathematical diagrams points at various properties that characterize dia-
grammatic representation on epistemological, semiotic and methodological levels. In
this paper, a way of understanding differences among diagrams themselves is proposed,
based on how spatial properties of diagrams relate to conceptual content they refer to and
on how this content is assigned to them. Focus will be put on the distinct characteristics
of one class of diagrams that can be called “conventional”, in particular it is argued that
some of their uses can be construed as a specific kind of experiment. Being aware of an
ongoing discussion concerning diagrammatic (or spatial) aspects of mathematical nota-
tion, I will focus on diagrams only, and assume a “working” definition of a diagram as
a representation in which meaning is assigned not only to symbols but to such physical
marks as lines, points or colors and two-dimensional relations between them.

2 Two Classes of Mathematical Diagrams

The distinction to be introduced attempts to explain how diagrams of branches of math-
ematics like geometry and topology, that originate in analysis of inherently spatial con-
cepts, differ from diagrams that are constructed in an arbitrary way in order to represent
concepts that are not spatial. Mathematical concepts represented by diagrams of the
first type evolve as idealization of spatial properties of physical objects – topological
properties and relations (“X lies left of Y”, “X is inside Y”, “X and Y cross”), geometric
properties of metric character (length, measure of an angle) or other characteristics of
shapes or processes that occur in space. Those diagrams are characterized by the fact
that topological relations between their elements denote actual topological properties of
the represented mathematical objects. This is not intended to mean that spatial language

© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 507–510, 2020.
https://doi.org/10.1007/978-3-030-54249-8_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54249-8_45&domain=pdf
http://orcid.org/0000-0002-6888-3407
https://doi.org/10.1007/978-3-030-54249-8_45


508 M. Sochański

actually refers to physical objects, but rather to precise formulations or idealizations of
spatial concepts, such as point, surface or distance. Whether a diagram belongs to this
class or not is a matter of degree, as various mathematical concepts idealize physical
properties in different ways and to a different degree (e.g. topology studies properties
that do not change under continuous transformation and disregard metric properties). In
case of diagrams of plane geometry and knot theory this reference to spatial properties is
perhaps most direct. Topological properties are also directly referred to when diagrams
are used to study e.g. planar graphs or wallpaper groups. In turn, diagrams used in non-
Euclidean geometry or general topology may refer to spatial concepts in a less direct
way (via further conceptualization and idealization).

Diagrams of the second kind, which I propose to call “conventional” diagrams, are
constructed in order to study mathematical concepts that are not spatial, but which the
mathematician attempts to investigate with use of a suitable diagrammatic representa-
tion. For that purpose, selected properties of those concepts are translated into a spatial
language in order to gain insight into them with help of the known advantages of dia-
grammatic representation, such as its ability to grant free rides, aspect shift or provide
simultaneous display of information [7, 8]. In this way, and in contrast to the diagrams of
the first class, the direction in which mathematical practice proceeds is from concepts to
visualization. In this case diagrams are used as a tool and the choice of spatial language is
arbitrary, in the sense that it may be constructed or chosen in any way the mathematician
wants, as long as it adequately represents the investigated mathematical properties and
as long as it is fruitful. In that sense diagrams are used in a conventional way. Exam-
ples include Euler and Venn diagrams, diagrams used in mathematical analysis or graph
theory, as well as various computer-generated images (examples are discussed in more
depth in the next section).

The distinction sketched above can be juxtaposed with the issue of iconicity of math-
ematical diagrams, that is the question whether they somehow resemble the represented
mathematical object. One could consider such resemblance to be either a direct, pictorial
one or structural resemblance understood as homomorphism between elements of the
diagram and appropriate properties of mathematical objects. It is a matter of dispute,
what could be resembled by the topological properties of diagrams of the first type dis-
cussed. On the other hand, both types of diagrams can be argued to structurally resemble
their subject matter (see e.g. discussion in [1] and [6]). However, diagrams of the second
type are also conventional in the sense that choice of the spatial language is arbitrary and
in that sense shapes and topological relations relate to the represented object by conven-
tion. This issue has been discussed in [5] where it is distinguished between resemblance
diagrams, which “have a direct likeness to the physical objects that the corresponding
mathematical concepts are supposed to model” and abstract diagrams which are “only
meaningful if the mathematical content they represent is understood through a particular
conceptual map”1. In [4] Marcus Giaquinto suggests in turn that mathematical diagrams
“belong to a spectrum, depending on the extent to which they depend on resemblance on
the one hand and on conventions of representation on the other hand” [4]. This interest-
ing debate will not be taken further in this paper, I believe that it would require a more
in-depth discussion of particular viewpoints on the nature of mathematical objects.

1 In [5] it is proposed to take Cartesian diagrams as the third subclass of mathematical diagrams.
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3 Experimental Nature of “Conventional” Diagrams

In the remaining part of the paper Iwill focus on an aspect ofmathematical practicewhich
involves creation of a “conventional” diagram in order to investigate properties of non-
spatial mathematical concepts. Examples of several types of “conventional” diagrams
will be discussed, followed by comments on experimental nature of such practice.

Firstly, “conventional” diagrams can be simple arrangements of “traditional” sym-
bolic marks in space in a way that may make it possible to notice patterns and discover
new facts about the investigated objects. Patterns or subsets of the arranged elements
can then be marked by colors or other visual means, in order to make it easier for the eye
to notice them. The experimental element in this case is just the simple act of arranging
or coloring elements of the diagram. Examples include dot diagrams in number theory,
noticing patterns in Pascal’s triangle or the construction of Ulam spiral which led to the
discovery that primes often occur on diagonals of the diagram2. Secondly, properties
of the investigated object may be translated into a well-known type of “conventional”
diagram. In this way sets can be represented by Euler or Venn diagrams, relations by
diagrams of graph theory and functions by Cartesian diagrams3, to name the most com-
mon examples. In all those cases selected topological properties of the diagram represent
properties of non-spatial concepts4. Thirdly, a new spatial language may be created or
“tried out”. Such situation often takes place in case of computer visualizations which are
used to explore large amounts of “mathematical data”. Examples include number theory,
where various colored diagrams are used to investigate distributions of digits in expan-
sions or finite and infinite series and summations [3] as well as fractal theory, in which
visual techniques are used to study the behavior of iterations (one famous example is the
visualization of Mandelbrot’s set which is in fact an example of creative use a Cartesian
diagram). In order to investigate large amounts of such data, e.g. large body of examples
that may serve to confirm (or falsify) conjectures like Riemann hypothesis or Goldbach’s
conjecture, computational mathematics also uses standard charts used in data analysis
like scatterplots or bar charts, as well as other novel visualization techniques.

The experimental nature of all the above mentioned uses of “conventional” diagrams
consists firstly in the freedom of “trying out” new types of spatial language and assigning
mathematical meaning to its elements, in order to gain best insight into the investigated
object. Other aspects of such practice also have an experimental flavour: it is not known
in advance what the effect of the translation of mathematical properties into spatial ones
will be; further, some spatial properties of the diagram may strike the mathematician

2 It should be noted that Stanisław Ulam came up with this way of representing the set of natural
numbers while playing around with a pencil and sheet of paper. This fits well the described
practice of “experimenting with representation”.

3 Cartesian diagrams are various visualizations that make use of the Cartesian coordinate system
to represent objects that can be characterized by two numeric values such as a function with
single real argument and value, two numeric properties of an object or a set of pairs of real
numbers which satisfy a certain property P(x,y).

4 It may also happen that the translation is made into a geometric language, e.g. when properties
of numbers are investigated after representing them as line segments or areas. In this case the
geometric diagram should also be treated as “conventional” diagram.
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as surprising, inspire further research and gain new interpretation (those could be unex-
pected patterns in the visualization of Mandelbrot’s set, decimal expansions or Ulam
spiral). This understanding of a “mathematical experiment” differs from experimenta-
tion understood as manipulation of representations that was present, among other, in
writings of Peirce. It is also different from the concept of mathematical experimentation
as the use of computation to analyse examples, test new ideas and search for patterns as
described in [2]. However, visual investigations that are aspects of experiments in that
sense are often also experiments in the sense described in this paper. The practice of
“trying out spatial representations” can be called experimental on a broad understanding
of the term “experiment”. In particular, this does not have to mean that such practices
are not a priori, no specific analogies with experiments in the natural sciences also need
to be involved. However, it seems that it is possible to consider creation of new diagrams
as a specific kind of mathematical practice that requires skills in semiotics and good
acquaintance with different types of visual languages and available spatial properties.
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Abstract. It is common to meet with timelines in popular history books. Yet,
historians seldomacknowledge the usage of such diagrams in their practice. Rather
than a general prejudice against diagrams, we argue that timelines suffer from their
embodiment of biases that do not match with widespread standards of historical
writing. For instance, the linearity of timelines suggests continuity between events
that might actually be disconnected. Timelines visualise a specific narrative and
hide historian’s act of selection. To exhibit this hidden face, one needs to depict the
events that have not been selected in the narrative. For the purpose, we introduce
a scheme that can be used to visualise the narrative’s construction. An application
to the historiography of modern logic is provided.

Keywords: Timeline · Historiography · Chronology · History of logic

1 The Historian’s Timelines

Recent literature shows how timelinesmay be used in historical research both for discov-
ery and exposition [2, 3]. Timelines are scientific instruments at the disposal of historians
[8]. Yet, the latter tend to dismiss timelines in their actual practices:

Strangely, despite the “spatial turn” in the humanities […], this recent wave of
research on diagrams has not yet reached the shores of history. No one objects
to using timelines as pedagogical aids […] But, outside the classroom, we find
resistance to the idea that manipulating diagrams might yield genuine historical
insight. Timelines, it seems, aremeant for history teachers, not historians. [2, p. 19]

We argue that there are good reasons for this dismissal. Indeed, timelines suffer from
an overspecification that carries misconceptions about historical research.

Timelines commonly consist of a directed line on which historical events are
attributed spots. It is easy to understand their forcewhen it comes to visualizing sequences
of discrete events. Indeed, the spots do not merely represent the relations between the
events; they have those relations [7, p. 610]. For instance, a spot A precedes a spot B on
the timeline the same way event A precedes event B in time (Fig. 1). This matchedness
make it possible to visually obtain new information: from the fact that A precedes B and
B precedes C, one may observe that A precedes C.
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A B C

Fig. 1. A timeline

2 Fallacies

Timelines are appropriate for the representation of ordered discrete events, such as
genealogies, lists of Queens and Kings, chronologies of life events, etc. However, the
discipline of history does not merely order events of the past, it also attempts to connect
and explain them. In this respect, timelines suggest more than there is and may lead the
historian to fallacious conclusions.

A fallacy, that wemay name the ‘continuity fallacy’, consists in connecting historical
events A and B merely on the ground that A precedes B, as suggested by the positions
of their spots on the timeline (Fig. 2). Another fallacy that we may call the ‘direction
fallacy’, results from the assumption that historical events are directed towards us. This
is shown by the arrow in the timelines (Fig. 3) and may be interpreted in terms of
determinism or progress. Yet, in both fallacies, other paths may exist.

A

B

Fig. 2. The continuity fallacy

B

A

Fig. 3. The direction fallacy

These fallacies are often committed in intellectual histories that select past events
from a modern standpoint and favor logical over historical connections between past
events. As such, they produce a distorted image of science as a cumulative enterprise.
Thomas Kuhn famously opened his seminal The Structure of Scientific Revolutions with
a discussion of the role of history in the shaping of the image of science and praised the
ongoing historiographical revolution among historians of science:

The result of all these doubts and difficulties is a historiographic revolution in the
study of science, though one that is still in its early stages. Gradually, and often
without entirely realizing they are doing so, historians of science have begun to ask
new sorts of questions and to trace different, and often less than cumulative, devel-
opmental lines for the sciences. Rather than seeking the permanent contributions
of an older science to our present vantage, they attempt to display the historical
integrity of that science in its own time […] Seen through the works that result,
[…] science does not seem altogether the same enterprise as the one discussed by
writers in the old historiographic tradition. By implication, these historical studies
suggest the possibility of a new image of science. [4, p. 3]
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This new historiographic tradition does not aim at recording the advancements of
science. It rather accounts for scientific activity in its context. The timeline’s overspeci-
fication does not match well with this agenda. Yet, it can be used with benefit to exhibit
the historian’s selected narrative.

3 Visualizing the Narrative

Timelines order the events they depict and, hence, suggest that those events were steps
directed towards us rather than mere historical moments. They cannot be blamed for
visualizing a specific narrative which is constructed by the historian himself. However,
timelines hide that construction process and the historian’s act of selection. To exhibit
this hidden face, one needs to visualize the historicalmoments that have not been selected
as part of the narrative and which, hence, are kept “out of the line”. For the purpose, we
introduce a scheme that can be employed in historiography to visualize the narrative and
its construction (first used in [6]).

Let there be a historical narrative that accounts for the development of ideas in a
specific area of knowledge. Imagine two periods separated by an event B that produces
the shift fromone tradition to another (Fig. 4). To exhibit the construction of the narrative,
we spread historicalmoments on two-dimensions as shown in (Fig. 5). The two traditions
are exhibited on parallel dotted lines. The red line indicates the historian’s narrative. It
goes on the first tradition before moving to the second at the occurrence of event B. The
points outside the red line are not selected by the historian.

A 

C 

B 

1

2

Fig. 4. 1D timeline

A 

C

B 

1 2

Fig. 5. 2D timeline

In particular, the red line which denotes the historical narrative divides the space into
two parts. Above the line, one meets with teachers, popularisers and conservatives who
work on outdated ideas while their colleagues moved to a more ‘advanced’ tradition.
Under the line, we find the land of precursors cherished by intellectual historians [5]. It
contains actors, ideas and events that anticipate the standard narrative.

This scheme clearly shows how the historian selects a narrative and keeps out events
that are not within his purpose. If history cannot be written without a narrative, then
these schemes are useful to convey to the eye the narrative and its cost. Let us consider,
for illustration, the historiography of modern logic.

4 Towards Modern Logic

Two periods are commonly distinguished in the ‘mathematization’ of logic: first, George
Boole introduced a mathematical theory of logic in 1847. Then, Gottlob Frege’s 1879
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ideography opened the way to the logic of mathematics (Fig. 6). This account (and its
timeline) invites priority disputes on the paternity of modern logic [10].

1847

1879

Fig. 6.

1847

1879

Boolean Fregean

Fig. 7.

1879

1903

British Non-British

Fig. 8.

To visualise the construction of this narrative, we appeal to our 2D timeline. The two
traditions are on parallel dotted lines and the narrative is in red. It opens with the advent
of the Boole, ‘jumps’ to Frege in 1879 and stays there (Fig. 7). It suggests the end of
the Boolean tradition with the advent of Frege while it actually continued well beyond.
A variation is obtained by making the lines stand for geographical areas (Fig. 8). The
traditional narrative indicates work by British Booleans, then leaves in 1879 to mark
research abroad. It comes back to Britain in the early 1900s with the arrival of Bertrand
Russell. We observe a gap that falsely suggests a decline of British logic in that period.
It is, hence, unsurprising that post-1879 logicians, who were both Boolean and British
(such as Lewis Carroll and Hugh MacColl [1]), lacked exposition in literature since
they suffered from the biases exhibited by (Fig. 7) and (Fig. 8). To fill these gaps, it is
necessary to pay attention to the social dimensions that shaped the discipline of logic,
both in its development and its circulation [9].
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Abstract. Semiotic-Conceptual Analysis (SCA) considers diagrams
(and in general any signs) as consisting of representamens, denotations
and interpretations which supports investigating these three components
individually and jointly. A core notion for diagram research is “observ-
ability” which refers to logically valid statements that can be visually
extracted from diagrams. This notion is included into the SCA vocabu-
lary and discussed with respect to Euler and Hasse diagrams.

1 Introduction

Semiotic-Conceptual Analysis (SCA) is inspired by the theory of semiotics of
the American philosopher Charles S. Peirce and uses some of his terminology
[2]. SCA notions, however, are mathematically defined and thus, in some sense,
more abstract than their philosophical counterparts. The purpose of SCA is
to investigate questions of what and how something is represented and why
certain representations have advantages over others under some circumstances.
As an example, SCA is applied to Euler and Hasse diagrams in this short paper.
Definition 1 summarises the core definitions of SCA. Further detail cannot be
provided here and is presented by Priss [2].

Definition 1. For a set R (called representamens), a set D (called denotations)
and a set I of partial functions i : R �→ D (called interpretations) a semiotic
relation S is a relation S ⊆ I × R × D. A triple (i, r, d) ∈ S with i(r) = d is
called a sign.
For a semiotic relation S with a tolerance relation ∼D, a tolerance relation
∼D∩R, an equivalence relation ≈R and a partial function f : R �→ D:

• (i1, r1, d1) and (i2, r2, d2) are synonyms ⇐⇒ d1 ∼D d2;
• (i1, r1, d1) and (i2, r2, d2) are polysemous ⇐⇒ r1 ≈R r2 and d1 ∼D d2;
• (i, r, d) ∈ S is an icon ⇐⇒ r ∼D∩R d (i.e., describable by a unary relation)
• (i, r, d) ∈ S is an index ⇐⇒ f(r) = d (i.e., describable by a binary relation)
• (i, r, d) ∈ S is a symbol ⇔ (i, r, d) is neither icon nor index.
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Representamens are physical representations of signs. Denotations are mean-
ings of signs and in SCA presented as formalised concepts. Interpretations usu-
ally encode a context (time and place) of when a sign is used and possibly fur-
ther information about a sign producer. A tolerance relation is a mathematical
expression of similarity. An example of f would be an algorithm for calculating
d from r, instead of a relationship between representamens and denotations that
changes with every interpretation.

Several (partial ordering) relations can be defined for signs, for example,
implications (based on logical implications amongst denotations) and observa-
tions (derived from compound representamens). For a sign a to be observable
from a sign b, the representamen of a has to be derivable from the representamen
of b by using some kind of visual algorithm or visual moves. Observability was
motivated by Stapleton et al.’s definition [4]. Ideally, only logically true state-
ments should be observed, thus if a sign a is an observation from a sign b then
b =⇒ a should hold. Translations amongst signs are morphisms that should pre-
serve meaning in some form. They can lead to translational loss or gain because,
for example, denotations can be modelled using different conceptual models and
signs with equivalent denotations can produce different observations.

SCA starts with a qualitative framework (as in Sect. 2) that roughly char-
acterises how these notions apply to an example. It then continues with more
detailed formal analyses, in particular with respect to observations and transla-
tions. Both of which are only sketched in this short paper.

2 Applying the SCA Framework to Venn and Euler
Diagrams

Venn and Euler diagrams are a means for graphically representing sets and their
intersections and unions. A more detailed introduction is, for example, provided
by Rodgers [3]. Venn diagrams show all possible intersections for a set of sets.
Euler diagrams are similar to Venn diagrams but exclude zones which are known
to be empty. The following terminology applies to Venn and Euler diagrams in
this paper: Venn and Euler diagrams consist of closed curves which have labels.
Minimal regions are the smallest areas in a diagram which are surrounded by
edges and are not divided further. Regions are sets of minimal regions. Zones
are maximal regions that are within a set of curves and outwith the remaining
curves. Existential import means that zones must correspond to non-empty sets.

The reason for distinguishing minimal regions and zones is that zones are the
smallest set-theoretically meaningful areas in a diagram whereas minimal regions
are the smallest visible areas in a diagram. In a well-formed Euler diagram,
zones correspond to minimal regions. Further conditions for well-formed Euler
diagrams are, for example, prohibiting more than 2 curves to cross in a point
and curves to intersect themselves. Formalising and characterising well-formed
Euler diagrams is not trivial. Flower, Fish & Howse [1] present an algorithm
for well-formed Euler diagrams and provide a formalisation as dual graphs (with
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zones as sets of labels and edges between adjacent zones) and superdual graphs
(with edges between any two sets of labels that differ by a single element).

Applying (a very brief) SCA Framework yields the following initial analysis:

Interpretations: relevant choices for types of interpretations are whether exis-
tential import is required (X+) or not (X−) and whether the names of the labels
are important (L+) or the labels can be renamed arbitrarily (L−). Other inter-
pretations are possible, for example, non-standard interpretations if someone
misreads a diagram or sees a diagram but does not know what it is.
Denotations: a general conceptual model is presented by standard mathemati-
cal set theory and anything that is potentially known about it. A more concrete
model for Euler diagrams might be a mathematical characterisation of well-
formed diagrams.
Representamens: a Venn or Euler diagram is a compound sign. Diagrams
can be considered equivalent representamens if a reversible visual translation
exists between them. In particular, a translation must preserve existential import
conditions in the case of X+ and labels in the case of L+.
Synonymy: one can investigate whether one synonym is “better” than another
because it provides more observations or is well-formed or calculate how many
synonyms are possible under certain conditions.
Polysemy: one can investigate how diagrams are affected by changing the inter-
pretation, for example, from X+ to X− or by assigning actual elements to the
sets.
Icons: depend on personal preferences and historical, cultural background. Pre-
sumably, the containment and intersection of circles is considered similar to set
operations.
Indices: for example, dual graphs can be considered closely indexically related
to Venn and Euler diagrams because they can be easily algorithmically deter-
mined.
Translations: Many translations are possible, for example using set-theoretic
expressions with labels and {∩,∪,⊆,=}; dual or superdual graphs, partially
ordered sets of zones, or conjunctive normal forms.
Translational Loss and Gain: for example, the actual positions and shapes
of the curves are not considered relevant and omitted in translations. Differ-
ent translations invoke different conceptual models which may add background
information.

3 Observability of Euler and Hasse Diagrams

Stapleton et al. [4] argue that while many expressions may be implied by a set-
theoretic expression, only the expression itself is observable from a set-theoretic
expression. They conclude that Euler diagrams have a maximal observational
advantage over set-theoretic expressions because all logically valid statements
can be observed from them. An example is presented by D1 in Fig. 1 which
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shows that A ∩ B = ∅ =⇒ C ∩ B = ∅. An alternative to Euler diagrams is
provided by Hasse diagrams1 of partially ordered sets, such as D2 in Fig. 1. The
filled nodes in D2 correspond to the zones in D1 (including the top node which
corresponds to the outer zone). The empty nodes correspond to empty sets.
In many cases the Hasse diagram without the empty nodes and ignoring the
ordering is isomorphic to the superdual graph of an Euler diagram. They are
not isomorphic if the Hasse diagram contains edges between nodes that differ in
more than one label, which implies a non-well-formed Euler diagram.

In D2, the highest shared node below a set of nodes presents an intersection
(e.g. A∩B). Containment amongst sets corresponds to following upwards edges
(e.g. C ⊆ A) whereas implications amongst empty sets corresponds to following
downwards edges (e.g. A∩B = ∅ =⇒ C ∩B = ∅). One can argue that D2 has an
observational advantage over D1 because one can additionally count how many
implications are possible. Users, however, will most likely find D1 more intuitive
to read, and more iconic for set containment, than D2. D1 also conveys a feeling
of understanding of why an implication exists: it is physically impossible in a
2-dimensional space for C to get out of its container A and anywhere near B.
Because of the physical constraints, changing D1 so that (A\C) ∩ B = ∅ but
C ∩ B �= ∅ cannot be presented as a well-formed Euler diagram. In D2, however,
it would be possible to fill in the bottom node. In that case empty nodes would
only indicate that the set at that node is empty. Thus, Hasse diagrams can
express any constellation of sets (the same as Venn diagrams with shading)
whereas well-formed Euler diagrams with existential import cannot.

A

C

A

A       B∩

D4

∩     ∩     

 ⊆ A     C ⊆ A     B  ⊆ B     C

 ⊆ A     B      C ⊆ 

 ⊆ A     C, ⊆ B     C
 ⊆ A     B, ⊆ A     C  ⊆ B     C

 ⊆ A     B,

D2

B

D1

A

C

B

∩     

B

C

D3

A      B     C,
C      B

Fig. 1. Euler and Hasse Diagrams

We are proposing that even some mathematical expressions can lead to more
than one observation. For example, we would argue that the mathematical
expression A ⊆ B ⊆ C allows the same observations as D3 if one knows the
convention of abbreviating transitive operations in that manner. D4 displays
logical statements and their conjunctions instead of sets and intersections as in
D3. It contains an empty node because of A ⊆ B,B ⊆ C ⇐⇒ A ⊆ B ⊆ C.
We would argue that while these two statements are logically equivalent, with
respect to observations they are different.

1 SCA normally uses Hasse diagrams of lattices in the sense of Formal Concept Anal-
ysis but because of space limitations only partially ordered sets are discussed here.
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The purpose of SCA is to provide a vocabulary that facilitates, for example,
an investigation of why and how mathematically equivalent signs provide dif-
ferent observations. Apart from the basic definitions of SCA, it is not intended
to develop new formalisms but, instead, to incorporate existing ones and com-
bine them with a semiotic perspective. SCA is not restricted to mathematical
applications because it can also be used for analysing natural or other formal lan-
guages [2]. This paper gives rise to questions about further relationships between
well-formed Euler diagrams and partially ordered sets (or lattices) which will be
addressed in a future publication.
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Abstract. Academic writing courses tend to focus on rhetorical and linguistic
components rather than on argument making. This is unfortunate since it is pre-
cisely the purpose of scientific writing to expose arguments.We present an attempt
to overcome this divide. For the purpose, we introduce colourful argument trees
that do not merely exhibit the structure of a complex argument but also the state
of our confidence in its statements and its inferences. The visualisation of the
argument and the integration of the sources into its structure provide students with
a better understanding of scientific writing.

Keywords: Argument · Tree · Academic writing · Logic teaching · Bibliography

1 Arguments in Academic Writing

Academic work involves a literary activity since a significant part it consists in reading
and writing. It is thus unsurprising that academic writing courses are found in most
curricula for early career scientists. However, such courses tend to focus on rhetorical
and linguistic components through a set of writing guidelines while the argumentative
components are separately taught within philosophy or ‘critical thinking’ courses. A
consequence of this divide is that students are seldom taught argument making in the
specific context of scientific writing. This is unfortunate since it is precisely the purpose
of a successful scientific text to expose an argument:

“[T]hequality of the academic essaydepends on the development of an argument. It
is therefore problematic when writing instruction is not focused on argumentation,
but refers to it fleetingly, inconsistently, and under the guise of related aspects, such
as structure or style.

Currently, the teaching of writing tends to focus on linguistic or ‘surface’ fea-
tures [….] without making explicit that developing an argument is the over-
reaching requirement. Instead, academic writing instruction should start from this
requirement and treat related aspects as subordinated.” [6, p. 153]

Ursula Wingate states that developing an argument consists of three components:
“(1) the analysis and evaluation of content knowledge, (2) the writer’s development of a
position, and (3) the presentation of that position in a coherent manner” [6, p. 146]. She
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proposes an ‘essay writing framework’ in which these components are interlinked, since
the selection and use of sources is crucial to establish the writer’s position which needs
to be clearly presented. Although this (linear) framework captures traditional formats of
scientific articles, it does not suffice to account for the writing process itself. Indeed, the
latter often requires moving forth and back between these components (Fig. 1), through
an interplay of reading, revising and editing [1].

Component 1:
Selection and 
use of sources

Component 3:
Clear Presentation 

of the position

Component 2:
Establishing a 

position 

Fig. 1. (Based on [6, p. 153])

In this paper, we present an attempt to bring together argument making and academic
writing in a course jointly delivered by philosophers and engineering scientists. The
course was taught within a doctoral engineering curriculum at Tallinn University of
Technology (Estonia). For the purpose, we introduce diagrams that do not merely exhibit
the structure of a complex argument that is displayedbut also the state of our confidence in
its constituents. The writing activity is then directed towards increasing this confidence.
This dynamic process is oriented and visualized through a progressive colouring of the
tree. We present the trees in Sect. 2 and their use in Sect. 3.

2 Argument Trees

An argument is commonly understood as a set of interconnected statements, so that
some of them (i.e. premises), give support some others (i.e. conclusions). An argument
is valid when the inferential link between its premise(s) and its conclusion(s) holds.
A valid argument is, then, said to be sound if, additionally, its premise(s) are true. In
scientific literature, one faces complex arguments. It is useful to convey their structure to
the eyewith the help of argumentative graphs, known as argument trees. The construction
of these trees is not an objective in itself: they are rather understood as instruments to
manipulate the argument that is displayed [5].

Fig. 2. Fig. 3. Fig. 4.

Three main devices are needed: a (labelled) circle stands for a statement (Fig. 2),
an arrow indicates inference (Fig. 3), and a bracket gathers joint statements (Fig. 4). A
tree consists of interconnected nodes (statements) that lead from premise(s) to conclu-
sion(s). It is observed that linked nodes stand for linked statements. Hence, the force of
these diagrams springs from their high iconicity: they do not merely represent relations
between statements; they have those relations [4, p. 610]. Argument trees are commonly
found in logic and critical thinking textbooks [2, 3]:
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‘An argument tree is a device that can be used for representing arguments in
the form of a diagram. They are helpful when we are reconstructing arguments,
particularly complex ones, because they provide a means of showing the ways
in which the different parts of an argument are related to each other. They show
how the premises support the conclusion. Constructing argument trees is a very
valuable tool and you will find it helpful to use them in your own analyses of
real-world arguments.’ [2, p. 73]

In our course, students were asked to draw the trees of their prospected article (based
on pre-existing abstract or by fixing a claim and drawing the tree backward). Completed
trees offer valuable aid to grasp the structure of arguments and assess their strengths.
Yet, one needs to ascertain the extent to which premises and inferences hold in order
to ascertain the conclusion(s). For the purpose, we conventionally colour in red what
is supported by literature and in blue what is taken to be (self-) evident (i.e. does not
require justification). To some extent, the latter group gathers statements that are accepted
within the student’s community but may need to be justified (and hence become red)
for a wider readership. The colouring of the tree allows students to identify weaknesses
in their arguments and work on their improvement. This requires amending them to
justify what was hitherto unsubstantiated (uncoloured). This process is tracked through
the progressive colouring of the tree. Two trees obtained by students are reproduced
(Fig. 5 and Fig. 6) with students’ permission.

Fig. 5. (Color figure online) Fig. 6. (Color figure online)

3 On the Shoulders of Giants

The introduction of colours helps differentiating the stances that students may hold
towards their arguments. Since complex arguments may be reduced to series or com-
binations of simpler ones, let us conveniently consider a unitary argument formed of a
premise, an inference and a conclusion. We get a typology of 8 postures, depending on
how substantiated (in red) the constituents of the argument are (Fig. 7):

1) The student infers a previously unknown statement from a fact.
2) The student attempts to demonstrate a connection between two facts.
3) The premise and the inference are known. The student deduces the conclusion.
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4) All components are known. The student gathers them to form the argument
5) Nothing is known. The student conjectures a statement that would yield another.
6) The student searches for what would produce a statement that is already known.
7) Two unknown statements are linked. The student proves one to deduce the other.
8) A fact follows from an unknown statement. The student proves the latter.

(1) (2) (3) (4) (5) (6) (7) (8)

Fig. 7. (Color figure online)

In each stance, the coloured diagram exhibits what is yet to be achieved and what is
needed to achieve it. For instance, an uncoloured premise is unsubstantiated. To evidence
it, the student may provide an appropriate bibliographic reference to back it up. When
such reference is not found, he may demonstrate that the premise follows logically from
another statement that is substantiated. Otherwise, the student may justify that statement
empirically (i.e. through observation or experiment). The ensuing amendment of the
tree strengthens the argument. This example points to the role of references in academic
writing. Students commonly wonder “how many references” to include in their essays
and often over-refer to display “how much” they read:

Inexperienced writers often express doubt as to what to cite, where, and how. As
a rule of thumb, you should focus only on literature that you have actually read
and cite only those works that are necessary and sufficient to provide your reader
with a comprehensive overview of your research project and how it fits within the
broader context of your discipline. [1, p. 94].

It is disputable to strictly limit to sufficient sources since multiple (independent)
sources increase confidence in a given statement. This is exhibited in the tree with inde-
pendent premises supporting a conclusion. Yet, it is true that over-reference is undesired.
As to necessity, uncoloured arrows and nodes at the top of the tree make clear where
references are missing. In complex arguments, a tree can also be improved by cutting
branches that do not contribute to the conclusion. This eliminates irrelevant or unneces-
sary sources. Most importantly, the visualisation of the argument provides the student
with a better understanding of the role of sources in the making of arguments. As such,
it increases his awareness of both what a scientific text is and how it stands within a
tradition of research shaped by the student’s predecessors.
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Abstract. Assertive graphs (AGs) modify Peirce’s Alpha part of Exis-
tential Graphs (EGs) and are used to reason about assertions without
any ad hoc sign of assertion. This paper presents an extension of propo-
sitional AGs to Beta by lines. Absence of polarities necessitate Beta-
AGs to resort to two kinds of lines: standard lines (a certain method of
asserting), and barbed lines (a general method of asserting). A new set of
rules of transformations for Beta-AGs is presented that derive theorems
of quantificational intuitionistic logic. Beta-AGs offer a new system to
analyse assertions through quantificational diagrams.

Keywords: Existential/Assertive graphs · Quantifier · Intuitionistic
logic

1 Introduction

In many logical systems, an ad hoc sign of assertion is commonly used [1,4,6].
In contrast, some systems have no ad hoc sign for assertions, although assertions
would have a major inferential role, as in Existential Graphs (EGs), which have
an embedded sign of assertion in the sheet of assertion [1,5,8–10].

Using the resources of diagrammatic reasoning of Peirce’s EGs, we propose an
intended interpretation for acts of logical assertions involving quantification, rep-
resented in the system of Beta Assertive Graphs (Beta-AGs). It is an extension
of Alpha-AGs introduced in [3], formalising a class of (intuitionistic) quantifica-
tional linguistic acts that are assertive.

2 Beta-AGs: Two Kinds of Lines

Beta-AGs is a conservative extension of propositional AGs to first-order quan-
tification. Since it maintains the constructive nature of AGs, we need two inde-
pendent signs for quantification that are both primitive. The universal quantifier
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Program and funded by the Russian Academic Excellence Project ‘5–100’.
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is expressed as a line crossed by two barbs (barbed line) (Fig. 1a). The particular
(existential) quantifier is expressed by a standard line (Fig. 1b).1

The intended meaning of the line is “a general method to justifiably assert
something” (Fig. 1a), and of the barbed line “a specific or a certain method to
justifiably assert something” (Fig. 1b). We may call both of these lines lines of
assertion.

Figure 1:

Boxes have a key role in Beta-AGs just as they do in AGs. The box in Fig. 4a
means that “a content is asserted”. The blank sheet (space of all assertions)
means that a logical truth is asserted (Fig. 2b).

Figure 2a: Fig. 2b:

In Beta AGs, boxes are used as graphical devices to disambiguate logical
order of quantifiers and scopes. Boxes and lines may be combined as in Fig. 3a,
which expresses “anything is asserted of F” (“anything that is asserted means
asserting F of it”). The graph of Fig. 3b states that “something is asserted of F”.

Figure 3:

Figure 4 indicates the FOL formula ∀x∃yF (x, y). This is consistent with
Peirce’s “endoporeutic” interpretation of graphs.

Figure 4:

Nested quantifiers are expressed as in Fig. 5, corresponding to the formula
∀x∃y∀u∃zF (x, y, u, z).

Figure 5:

The diagrams above are examples of how quantificational lines interact with
boxes in AGs in the composition of complex formulas. The definition of well-
formed Beta-AGs is easily construed. But the graph in Fig. 6, despite its apparent
simplicity, is not a well-formed graph of the language since it does not disam-
biguate between the logical priority scopes of the two different lines of assertion.

Figure 6:

An important feature of AGs is that the boxes can be cornered. From a simple
box containing any graph inside (including the blank graph), a cornering can be

1 Symbolizing two quantifiers separately derives from Peirce’s 1882 notation [2,7].
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inferred, which contains the original graph in the inner area (consequent) of the
cornering, and conversely. That is:

(CR) From we may infer , and back.
This reversible transformation is a Cornering Rule (CR). Cornered graphs are

conditional assertions, with antecedent (the outer) and consequent (the inner)
areas [3]. The other logical connectives are, just as in Alpha-AGs, juxtaposition
of graphs on the sheet of assertion that stands for conjunction, the connector
“+” for disjunctions, and the blot “•” for absurdum.

3 Rules of Transformation of Beta-AGs

The two major irreversible rules of transformations, insertions and erasures,
are as in AGs. They are not expressed in terms of the polarities of the areas
(negative and positive) as in EGs but take into account what is permissible
within the antecedent and the consequent areas of cornerings.

The reversible Beta-iteration and its converse Beta-deiteration behave just
as they would when manipulating standard lines of identity in Beta-EGs [10].
In addition, several new rules need to be added to the rules of Alpha-AGs to
handle inferences with assertive quantificational lines:2

Insertion
(1.1) Any two loose ends of a simple line may be connected on the antecedent
of cornering:

From we may infer .
(1.2) Any two loose ends of a barbed line can be connected on the antecedent of
cornering:

From we may infer .
(1.2.1) A barb ‘//’ can be inserted on a loose end of a simple line on antecedent
areas:

From we may infer .
(1.2.2) A box can be added to a barbed line on a consequent area:

From we may infer .

Erasure
(2.1) Any simple line can be cut on a consequent area of a cornering (and on
the sheet of assertion):

From we may infer .
(2.2) Any barbed line can be cut on an antecedent area of a cornering:

From we may infer .

2 Any line depicted on antecedent areas as loose may be continuous, branching or
connected, just as ligatures may be in Beta-EGs.
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(2.2.1) A barb can be erased from the barbed line whose outermost loose end
rests on a consequent area of a cornering (or on the sheet of assertion):

From we may infer .
(2.2.2) On an antecedent area of a cornering, a box can be removed from a
barbed line that penetrates into it, thus:

From we may infer .

Axioms
(Ax.1) An unattached simple line , a simple loop , and a simple dot
(atrophied loop, not to be confused with the blot of absurdity) can be inserted
and erased anywhere on the sheet (including within boxes and cornerings).

(Ax.2) An unattached barbed line , barbed loop , and a barbed dot
can be inserted and erased anywhere on the sheet.

Remark. As is intutitionistic logic, the graph of the formula ¬∀x¬Fx → ∃xFx
is not a theorem of Beta-AGs: Asserting that ∀x¬Fx is not asserted does not
produce something that is asserted. Notice also that ¬∀xFx → ∃x¬Fx is not a
theorem of the system—semantically, “absence of an assertion is not an assertion
of an absence”.

4 Conclusion

Beta-AGs extend the system of propositional assertive graphs (AGs) to accom-
modate quantification. Two distinct notations for quantification—the lines of
assertion—are needed, and they are not interdefinable. Beta-AGs maintain all
the constructive features of AGs and result in a diagrammatic system for intu-
itionistic quantificational logic, represented by logical graphs with assertion-
based interpretation of the main logical constants. There are no polarities in
the language, and consequently the insertion and erasure rules are more bounti-
ful than in the classical case.

Further research is devoted to a more comprehensive presentation of the main
logical properties of the system of Beta-AGs, including discussion of their rele-
vance to philosophy of logic, philosophy of notation, and the logic of assertions.
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Abstract. While developing his system of Existential graphs which he viewed
as the logic of the future, Charles S. Peirce continued working on variations of
past diagrams. In particular, he introduced in the period 1896–1901 an original
variation of Eulerian diagrams where the shape of the curves indicated the sign of
the classes thatwere contained in them.These diagrams recently attracted attention
for their ability to represent negative terms more directly than earlier schemes.
Yet, we offer here a more general rationale: we argue that Peirce conceived these
diagramsbymaking inclusion themain operator, a practice that is found in his other
logical systems, both algebraic and diagrammatic. This is achieved by expressing
universal propositions in an inclusional form. This shift allows him to classify
syllogisms under just three diagrammatic forms in a style that is found in some of
his contemporaries.

Keywords: Peirce · Euler diagram · Inclusion · Syllogism

1 Inclusion Diagrams

It is well known that Charles S. Peirce invented a system of Existential Graphs (EG)
which he viewed as the logic of the future. Yet, he also developed variations of Eulerian
diagrams. This antiquarian interest in the diagrams of the past might seem anomalous.
Yet, we argue that Peirce’s variation, where the shape of the curve embodies a logical
meaning, corroborates his notational concerns.

Peirce introduced this special Eulerian scheme in two manuscripts: Ms 481 (dated
1896-7) and Ms 1147 (dated 1901) [11]. Instead of adopting the traditional Eulerian
circles where the shape has no logical meaning [5], Peirce admits a variety of figures
that are interpreted as follows: the term on the concave side of a curve is positive and
its complement is found on the convex side. For instance, the positive term A is found
inside the curve in (Fig. 1) but outside the curve in (Fig. 2). This convention eases
the representation of negative terms and propositions involving them [9]. To represent
existence, Peirce introduces a dot. For instance, (Fig. 3) asserts that ‘Some A exists’
while (Fig. 4) states that “Some non-A exists”.
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Fig. 1. Fig. 2. Fig. 3. Fig. 4.

It is tempting to name these diagrams in reference to their unusual shapes. However,
we consider them here rather from the standpoint of their use and acknowledge their
embodiment of the primacy of inclusion. Indeed, unlike Boole’s immediate followers
who claimed equation to be the cornerstone of logic, Peirce and some other logicians
favoured inclusion (in class calculus, and hence implication in propositional calculus).
This divide in the choice of the copula led to rivalry between logical systems [3]. In this
period, Peirce developed several notations for logic but maintained a regular concern
about the reduction of the number of connectives and the primacy of inclusion (or
implication), a line of thought that led to his system of Existential graphs [1, 2].

These concerns are also found in Peirce’s modification of Euler diagrams. Indeed, he
systematically reduced relations of exclusion in his diagrams into inclusions (a practice
that anticipates [12]). For instance, to express the fact that “No A is B”, it suffices to
state that “All A are non-B”. Actually, each universal proposition can be expressed as
an inclusion in two possible forms, depending on which term is said to be included
in the other (Fig. 5). It is of no logical matter which term is included in the other,
as Christine Ladd-Franklin, Peirce’s student, has noted: “When an exclusion is to be
made into an inclusion, it is a matter of indifference which of its terms is regarded as
predicate; every exclusion contains within itself two inclusions, of which each is the
converse by contraposition of the other” [4, p. 27]. Yet, for the purpose of diagrammatic
representation, the choice of the subject and predicate is conveniently made and proves
important to ease themerging of the premises in syllogisms. This ismade possible thanks
to Peirce’s innovation regarding the shape of the curves.

(1)

(2)

All A are B No A is B Everything is either A or B

Fig. 5. Representation of universal propositions with Peirce’s inclusion diagrams
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2 A Classification of Syllogisms

Peirce’s innovation is used with benefit in his treatment of syllogisms. Indeed, although
he does not explicitly describe the three forms that we expose below, Peirce clearly dis-
tinguishes three groups of syllogisms: universal, particular and spurious. The particular
syllogisms are slightly refined in the second manuscript [11]. Peirce’s classification is
based on the determination of three patterns (Fig. 6) in which the dotted lines indicate
uncertainty as to the shape of the curve:

Fig. 6. Peirce’s three forms of syllogisms

(a) For a universal syllogism (i.e. has two universal premises), a curve S is inside a
curve M which is itself inside a curve P. The shape of the curves depends on the types
of propositions and are chosen in such a way as to make the three terms include each
other in that order. The conclusion is necessarily a universal proposition.

(b) For a particular syllogism (i.e. has one universal and one particular premise),
a curve P is inside a curve M. A concave curve S intersects with both P and M. The
shape of curves P andM depends on the propositions and are chosen in such a way as to
maintain the existential import (marked with a dot) outside the curveM. The conclusion
is necessarily a particular proposition.

(c) For a spurious syllogism (i.e. has two particular premises), three concave curves
S, M, and P intersect with each other. Existential import is marked with dots. The
conclusion is necessarily a particular proposition.

An example of each case is provided in (Fig. 7).

(a)

No M is P

All S are M

Therefore: No S is P

(b)

All M are P

Some S are M

Therefore: Some S are P

(c) 

Some M are P

Some S are not M

Some S are not some P

Fig. 7. Examples of each form of syllogism
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Peirce’s classification resembles those made by some of his contemporaries, in par-
ticular that of Lewis Carroll. The latter also distinguished three patterns of syllogisms
[8]. His first two figures correspond to Peirce’s patterns (a) and (b). Carroll’s and Peirce’s
third patterns differ. Carroll’s is consequent to his admission of existential import in uni-
versal affirmative propositions to conform to the ‘facts of life’ [6]. Peirce held a different
view but introduced a third pattern to account for syllogismswith two particular premises
even though they yield non-standard propositional forms. Interestingly, Ladd-Franklin
identified earlier, in 1883, just two forms of syllogisms in line with Peirce’s and Carroll’s
first two forms [4]. Both Peirce and Carroll were familiar with Ladd-Franklin’s work
[7, 10]. Peirce’s classification of syllogisms, hence, connects well with similar work in
his time. However, his approach differs from those of Ladd-Franklin and Carroll, in two
main aspects. First, he presented his forms diagrammatically while the others formu-
lated them algebraically. Second, he adopted an inclusional notation while the others
rather used exclusional notations. These specificities are precisely embodied in Peirce’s
inclusion diagrams.
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Abstract. A comprehensive framework is presented for analyzing and specifying
an extensive range of visualizations in terms of their fundamental ‘DNA’ building
blocks of visual encoding and (de)composition.

1 Introduction

In their “Tour through the Visualization Zoo”, Heer et al. (2010) say that “all visualiza-
tions share a common ‘DNA’ – a set of mappings between data properties and visual
attributes” (p. 60). We use this metaphorical idea of the ‘DNA of visualization’ in a sim-
ilar vein, taking it to the extent of identifying a comprehensive set of individual DNA
building blocks of visualizations and the rules for combining them. This allows for the
construction of a broad range of different types of visualizations.

Numerous authors have written about analysing visualizations and various visual-
ization grammars have been developed (e.g. Vega-Lite www.vega.github.io). We have
reviewed this work and we have identified gaps in what is covered (see Engelhardt and
Richards 2018). The framework we present here fills these gaps. It:

1. provides a comprehensive system for exploring and checking design possibilities for
visualization.

2. offers a system of tree diagrams for representing (de)composition and visual
encoding in visualizations (constructed from their ‘DNA’).

3. presents a way of describing visualizations with rigorously systematic natural
language sentences, which specify (de)composition and visual encoding.

4. covers a very broad design space of visualization, not only including visual repre-
sentations that involve numerical information, but also visualizations such as family
trees, Venn diagrams, flow charts, texts using indenting, technical drawings and
scientific illustrations.

The above characteristics of the framework enable the analysis and comparison of
visualization types, and potentially provide a design method for exploring visualization
options. Like academic work in linguistics, the work presented here is primarily not
prescriptive but descriptive, in the sense that it enables the understanding and modelling
of (graphic) language.

Y. Engelhardt and C. Richards—both authors contributed equally to the work
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2 The Building Blocks and How They Relate to Each Other

The process diagram in Fig. 1 shows all our DNA building blocks and their possible
relationships for expressing information visually. For ease of use we have given each
DNAbuilding block a three letter abbreviation. TheDNAbuilding blocks fall into several
main groups: types of information to be represented, visual encodings to represent them,
visual components that make up the visualization, and any directions or layout principles
that may be involved. Visual encodings can be used for arranging, varying or linking
visual components. Arranging visual components into meaningful configurations is how
visualizations are constructed.

Our visual encodings include the use of Bertin’s ‘visual variables’, some Gestalt
principles of perception (e.g. grouping by proximity) and other fundamental ways of
expressing information visually. A visual component can be involved in several different
visual encodings, simultaneously representing different types of information.

We refer to a ‘well-formed’ combination of DNA building blocks as a visualization
pattern. Many common visualization patterns have been given a name (e.g. ‘pie chart’)
and are generally referred to as ‘chart types’, while novel or rare patterns often do not
have a name (yet). A visualization pattern can be transformed into another pattern by
adding, replacing or removing one or more DNA building blocks. A large number of
patterns has been analyzed using this system. Some examples can be found in Fig. 2.
Many more analyses are on our accompanying website: www.VisDNA.com.

3 Discussion and Conclusions

The framework offers a potential research tool for exploring various kinds of common-
alities, family resemblances and differences between visualization patterns within col-
lections of graphic representations. The DNA building blocks and the precisely defined
methods by which they can be combined (see www.VisDNA.com) offer the potential
for machine readable specifications. This may serve as a basis for a system providing
computer generated visualization advice, which could be linked to a rendering engine
in order to produce actual visualizations and variants of them.

Because of its flexible building block structure, additional DNA elements may be
added to the framework to accommodate any new constructions that one may want to
describe and that cannot be fully analysed using the current scheme. An example may
be the addition of DNA building blocks for interactivity in visualizations.

http://www.VisDNA.com
http://www.VisDNA.com
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Fig. 1. Process diagram showing our DNA building blocks and their possible relationships.
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Fig. 2. Example DNA analyses. See www.VisDNA.com for analyses of many more types of
visualizations. Images at 1 and 4 courtesy of the DataVizProject by Ferdio, Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License: www.datavizproject.com

http://www.VisDNA.com
http://www.datavizproject.com
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Abstract. There is growing interest in the logic of imagination. A widespread
position holds that all that is imagined is conceived and all that is conceived is
possible. Hence, (logical) impossibilities such as ‘round squares’ cannot be imag-
ined. Yet, during a tutorial at theDiagrams 2018 conference, we asked participants
to undertake this impossible task: to imagine a round square, andwe collected their
drawings. Should we then dismiss the collected round squares on the ground that
they cannot be? We present the outcomes of this experiment and explore what
it teaches us on imagination, impossible objects and diagrams. In particular, we
argue that there is no need to draw an object that is actually round and square in
order to visualise an object that is round and square. All that is needed is to visu-
alise the possession of those properties of round-ness and square-ness. Diagrams
help considerably.

Keywords: Imagination · Round square · Impossible objects

1 Imagine

Although it can be traced back at least to Leibniz [14], there has recently been growing
interest in the logic of imagination [13]. Based on earlier views held by Descartes
and Hume, it is held that all that is imagined is conceived and all that is conceived is
possible [6]. Consequently, (logical) impossibilities such as ‘round squares’ cannot be
imagined. We argue that round squares can be imagined.

We first note that recent attempts focus on propositional imagination and reduce the
imagination of objects into a propositional form:

“[An object] can be viewed as a collection of properties and can be defined,
therefore, as a collection of properties. So, each object corresponds in some
sense to a given proposition. Give any object, for instance, Manhattan, we can
associate to it a proposition: There exists Manhattan. This leads us to the view
according to which all kinds of imagination can be reduced to propositional
imagination.” [6, pp. 106–107]

This is unsatisfactory since to imagine an object is different from imagining the
existence of the object. The act of imagining is directed towards different targets.

Also, it is disputable to assess the actuality of imagination by the accuracy of the
imagined objects. Descartes’ chiliagon (a polygon with a thousand sides) is commonly
offered as an illustration of an object that can be conceived but cannot be imagined:
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“It is not easy for us to concretely draw a chiliagon on a piece of paper, however
this is not technically impossible. But it is clear that we cannot have a mental
image of it just closing our eyes.” [4, p. 71]

We argue that one may well be said to have imagined a chiliagon even though
she fails to actually picture a polygon with a thousand sides. Indeed, imagined objects
are mere approximations, even when we imagine existing objects such as monuments
or celebrities. Imagining Manhattan, for instance, can only be approximate since it
probably is more difficult to achieve than to imagine a chiliagon. Even imagining a
simple geometrical figure would be impossible if one is required to deliver a flawless
figure. That imagination produces incorrect objects does not entail that imagination is
absent or unworkable. It is simply incorrect to confuse the act of imagination with its
object, and to transfer impossibility from one to another.

Finally, drawing fromVoltaire’s distinction, imagination does not need to be ‘passive’
as would be the case when we represent perceived objects. It can also be ‘active’ by
combining them to produce new objects [2]. This creativity has throughout history
produced objects that might at first look contradictory, but that are commonly used
today (e.g. virtual reality, American Indian, science fiction, civil war, etc.). Hence, even
though ‘round squares’ might not exist yet, one could well direct her imagination to it
and produce them, as Hugh MacColl observed a century ago:

“We have all seen and drawn triangles; but a “round square” is at present meaning-
less. In the course of the future evolution of English, our descendants may some
day apply the term to some reality, and then it will cease to be unreal; just as a
horseman does not now mean an unreal combination of horse and man, like a
centaur, but a real man riding on a real horse”. [9, p. 471]

MacColl had a dispute with Bertrand Russell about the nature of such objects [15].
Russell also debated the subject with Alexius Meinong [17]. In both disputes, ‘round
squares’ were discussed, and Russell objected to their existence because they violate the
law of contradiction: “the round square is round, and also not round” [16, p. 483].

2 Seven Round Squares

Howwould a round square look like ifwewere asked to imagine it?At theDiagrams2018
conference, we asked about 30 participants in a tutorial to imagine and draw a round
square. This task is held to be impossible since whatever participants imagine, it can-
not be both round and square [4]. Yet, seven distinct ‘round squares’ were collected
(Fig. 1). Other configurations are obviously possible. Skepticism about the imaginabil-
ity of ‘round squares’ springs from the opposition between Square-ness and Round-ness
([3] rightly argued that this is not a matter of contradiction but of mere contrariety). The
difficulty consists in combining these incompatible properties. Yet, the collected ‘round
squares’ show various tricks to achieve this impossible mission. Each figure instantiates
square-ness and round-ness in a specific way: either by (1) drawing the associated figure
(square, circle), or (2) part of the figure (edge, dot) or (3) naming it (label). The com-
bination of the properties is expressed either by: (1) merging the instantiations of the
properties, (2) introducing a device (line of identity), or (3) standpoint (projections).
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(a) A square with round edges.

(b) A circle inside a square.

(c) A circle with dots standing for the edges 
of a square that is not drawn.

(d) A circle disrupted by the four edges of a 
square that is not drawn.

(e) A circle and a square connected with a 
line to indicate their identity.

(f) A circle labelled ‘Square’.

(g) A cylinder that appears as a square from 
one side and as a circle from another.

(a (b) (c) (d)

(e)

Square

(f) (g)

Fig. 1. Seven imagined ‘round squares’

We see that to imagine an object that has a property, the imagined object does not
need to have that property. We just need to show that possession. For instance, if we
wish to imagine a hot tea, our imagined object does not need to be hot itself! We may
just indicate the heat with steam. Similarly, it is not necessary to produce an object that
is round and square in order to imagine a ‘round square’. We merely need to depict the
joint possession of round-ness and square-ness. Diagrams help.

3 Diagrams Help

Figure 1 depicted some strategies that are used to imagine a ‘round square’. The recipe
may be generalized to all impossible (and also possible) objects: instantiate the properties
of the object, then express their joint possession. This design suggests an easy method of
visualization that we will introduce after a short historical digression. We alluded earlier
to MacColl’s treatment of impossible objects. Lewis Carroll also considered imaginary
objects and classes, the latter containing only imaginary objects [5, p. 2]. An imaginary
class is not empty since it does contain objects, even if they are imaginary. MacColl,
possibly under Carroll’s influence [1], extended the idea:

Let e1, e2, e3, etc. […] denote the universe of real existences. Let 01, 02, 03, etc.,
denote our universe of non-existences, that is to say, of unrealities, such as centaurs,
nectar, ambrosia, fairies, with self-contradictions, such as round squares, square
circles, flat spheres, etc. […] Finally, let S1, S2, S3, etc., denote our Symbolic
Universe, or “Universe of Discourse,” composed of all things real or unreal that
are namedor expressed bywords or other symbols in our argument or investigation.
By this definitionwe assume our SymbolicUniverse […] to consist of ourUniverse
of realities, e1, e2, e3, etc., together with our universe of unrealities, 01, 02, 03,
etc., when both these enter into our argument. [8, p. 74]

In the symbolic universe, non-existences (including Round squares) and existences
are on the same footing. Hence, one does not need to differentiate their visualisations.
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It is easy to employ diagrams for the purpose. For instance, we draw a circle for the set
of squares and another for round objects. The intersection contains objects that are both
round and square. We mark the intersection to denote a specific ‘round square’ (Fig. 2).
Of course, the shape of the curves does not logically matter [10], and we could have
shaped them differently to increase suggestiveness. Yet, what matters is that the marked
individual possesses the properties of round-ness and square-ness and, thus, stands for
a round square [12, p. 181].

SquareRound

Fig. 2. Visualization of a round square.

It is easy to imagine the disappointment that this scheme may generate among the
readers who had higher expectations in terms of naturalness. Yet, such demands are
unjustified since diagrams are not ‘pictorial images’ of the objects they stand for. They
are rather instrument that are shaped in such a way as to achieve a specific function in
a specific context and that may be manipulated with imagination [7, 11]. There are no
more natural diagrams than there are round squares, so far.
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Visualizing Curricula
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Abstract. The poster presents an approach for curriculum mapping through the
use of data visualization techniques. A sample set of six courses is selected to
study the potential of this method. Primary course data is mined from syllabi
and assignments and then organized in a database format. The structure leverages
course content as data to visualize information about learning objectives, compe-
tencies, and sequencing. Course content and sequence-based mapping examples
provide evidence of this approach.

Keywords: Mapping · Visualization · Data · Education · Curriculum

1 Introduction

Curriculummapping is a widely accepted practice in education: a curriculummap cross-
references course or program level outcomes against course content to reveal gaps or
redundancies. Curriculummaps follow a schedule to locate where and when the learning
of specific topics will occur. This format maps curricula linearly, as a path to follow,
and presumes that each student will follow that particular route and learn at the same
rate. These maps separate knowledge and abilities into individual cells, taking stock
of the learning outcomes in a binary way. However, to cross-reference outcomes, such
as concepts and skills, within a course requires more nuance. Visualizing connections
across a curriculum,whether in or out of sequence, is essential. This type of assessment is
especially useful for faculty teaching in architectural education, where skills, concepts,
standards, and critical thinking support the integration of knowledge in comprehensive
design outcomes.

The poster presents an approach for curriculummapping through the use of data visu-
alization techniques. Generating visualizations from data reveals unknown patterns and
potential connections through “mapping” rather than “tracing” or documenting expected
outcomes [1]. Tracing course outcomes defines points in time when all students realize
a specific skill or concept—traditional curriculum maps present course information as
a matrix, reinforcing a binary visual language and linear structure. Organizing course
content as a database allows for filtering and sorting permetadata, supporting amyriad of
visualization types. For instance, sorting curriculum data by learning outcome and then
by course assignment yields information about which assignments build on one another
over time. A different strategymay look at learning outcomes over time to identify which
patterns or rhythms emerge in the repetition of topics.
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2 Method

A sample set curriculum of six courses is selected. The classes are sequential and taught
over two years of a Bachelor of Architecture program. The courses cover a range of
learning outcomes for architecture students, including skills, concepts, standards, and
processes [2]. These range from freehand drawing to three-dimensional digitalmodeling.
The complexity of the course content is especially relevant to this study because it
provides a rich set of data to explore. Each assignment is multifaceted and teaches
students fundamental concepts along with the necessary skills to execute the work.
Primary course data is mined from syllabi and assignments and then organized in a
database format.

Three categories organize the data: information, outcome, and structure. Information
data defines vital information such as the title, date, and course number. Outcome data
lists information related to learning outcomes such as outcome topics, level of difficulty,
and cognitive processes. Structure data lists specific considerations of the assignment or
learning outcome, such as the format or medium used. Each course and assignment are
input with a unique ID in a stacked format (Table 1). This format lists each incidence of
a learning outcome topic as a unique component of the course sequence. This arrange-
ment allows for sorting the content in various ways, such as isolating the sequencing of
concepts versus skills in the curriculum.

Table 1. Abbreviated database sample

Information Outcome Structure

ID # Topic Level Type Process x Tool Source

001 211 Composition 1 Concept Reproduce 1.1 Model Analog

002 211 Modeling 1 Skill Produce 1.3 Model Analog

003 212 Photography 1 Skill Translate 1.2 Camera Digital

004 211 Hierarchy 1 Concept Identify 1.4 Model Analog

005 213 Lineweight 2 Standard Reproduce 1.1 Drafting Analog

Some qualitative categories included in the database are assigned numeric values.
The category “level” applies a number based on the incidence of that topic occurring in
the course sequence. Because most outcomes recur in the sequence, their level increases
over time. A multiplier (x) weights the incidence of each topic by the process applied
within the cognitive learning levels [3].

The database structure leverages course content for visualizing information about
learning objectives, competencies, and sequencing [2]. Functions such as comparison,
distribution, flow, and patterns are possible to generate using this method. Once the data
is stacked, visualization tools such as RAWGraphs, an opensource software, facilitates
the translation of data into visual form. Subsequent graphic refinement and composition
in Adobe Illustrator highlight the information presented.
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3 Results

The poster presents the curriculum in two visualization forms, content and sequence-
basedmapping [4]. Curricular content visualizations examine the learning objectives and
their distribution.Curricular content is presented here as an alluvial diagram [Fig. 1]. This
visualization type sorts the four primary learning objectives (skill, standard, concept, and
process) by course, then by topic and again by analog versus digital medium. Density
in particular areas tracks emphasis on a topic or medium in the curriculum as a whole.
Color tracks the incidence of digital tools within the connections.

Fig. 1. Content mapping as alluvial diagram.

Fig. 2. Sequence mapping as a contour plot, comparing skills and concepts over time.
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Sequence visualizations document the courses over time, considering them as a
series. Mapping flow in curricula provides insight into connections across various cat-
egories; a contour plot is presented here as a sequence-based mapping [Fig. 2]. The
contour plot assesses individual assignment difficulty (y-axis) over time (x-axis) and
displays density through the distance between contours. This visualization type pro-
vides evidence of course content and anomalies within each course. The density of
points in a particular area reveals a consistency in the level of difficulty and cognitive
processes required in each course.

4 Conclusions

The results support the potential of data visualization in curriculum mapping. Future
work may examine best-fit visualization types, corresponding student assessments, and
use of a database to support curriculum mapping as an ongoing, internally motivated
process rather than a singular exercise [5].

Acknowledgments. I wish to thank the faculty and administrators who have contributed to the
creation of the courses and curriculum studied in the poster.
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Abstract. In solving math word problems, diagram use is generally considered
effective [1]. However, although teachers often demonstrate diagram use, students
do not use them spontaneously, and when they do, they tend to use them ineffec-
tively. The prevalence of student difficulties in problem solving can at least in part
be attributed to these problems [2]. Recently, we demonstrated that both knowl-
edge about diagram use and practice are necessary to promote spontaneous use
[3], and result in improvements in correct answer rates [4]. However, the com-
ponents of instruction necessary for diagram use mastery, and the corresponding
physiological consequences (brain activity) remain unclear. Thus, we clarified
these issues in the present study. Sixteen participants (aged 15.7 ± 2.9 years)
were given math word problems for which the use of tables was deemed effective
for generating a solution. Data collection was in three phases: No-Instruction-
or-Training, Asked-to-Use-a-Table, and After-Table-Use-Training. We measured
their math word problem solving performance, and frontal brain/cerebral blood
flow using fNIRS (Functional near-infrared spectroscopy). Only after the Table-
Use-Training did participants show improvements in correct answer rates (pre- and
post-training comparison, t(15) = 2.54, p= .022), corresponding with an increase
in table use (t(15) = 7.93, p< .001). Furthermore, following training, participants
showed blood flow increase in the left frontal area of the brain (dorsolateral- and
ventrolateral-prefrontal cortex) while solving the problems. These results indicate
that simply asking students to use diagrams is not adequate: appropriate training
is necessary for effective use. They also provide evidence for physiological/brain
consequences of successful learning/skills acquisition.

Keywords: Math education · Diagrams · Tables · Skills training · Brain
measurements of learning

1 Introduction

It is necessary for us to use mathematics in various facets of everyday life. Developing
skills in solving math word problems are particularly important because such problems
contextualize the need to apply math knowledge and skills, rendering them as useful
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practice for real life situations. However, the correct answer rates tend to be low. Gen-
erally, students do not use diagrams spontaneously when solving such problems even
though diagrams are considered effective tools for solving them [1]. Furthermore, even
when they use diagrams, they do not always succeed in solving the problems [2]. Recent
studies suggest that the reduction of cognitive load following instruction and develop-
ment of diagram knowledge (knowing what, when, and how to use them) encouraged
spontaneous use [3]. They also suggest that knowledge about diagram use is domain
specific, meaning that knowledge about using particular diagrams (e.g., tables) for solv-
ing particular kinds of problems (e.g., rate of change) are not generalizable to solving
other kinds of problems (e.g., point of intersection) [4].

However, the components of instruction necessary for diagram use mastery, and the
corresponding physiological consequences (brain activity) remained unclear. Thus, the
present study was aimed at clarifying them in math word problem solving. We hypoth-
esized that instructions that encourage students to construct the appropriate diagram
would promote its use but that such use would not always result in improving the correct
answer rates as they might lack domain specific skills. Another aim was to elucidate the
physiological mechanism of acquiring diagram use skills by considering cerebral blood
flow as a measure/indicator of such mastery.

2 Method

This research was approved by the ethics committee of the lead researchers’ university.
Participants were 16 students from elementary school level to undergraduate university
level (female= 6;mean age= 15.7± 2.9 years).We employed a pre- and post-test design
within participants, with intervention phases (Pre-intervention 1: “No-Instruction-or-
Training”; Pre-intervention 2: “Asked-to-Use-a-Table”, during which the participants
were asked to use a table but not given any training; Intervention: during which “Table-
Use-Training” instruction was provided; and Post-intervention: which only comprised
problem solving assessment). Participants were randomly divided into three groups to
verify the isomorphism of the problems (see Table 1).

Table 1. Implementation schedule

Sess. Phase Instruction Group A
(N = 6)

Group B
(N = 5)

Group C
(N = 5)

1 Pre-int. 1 No-Instruction-or-Training Game Sweets Factory

Pre-int. 2 Asked-to-Use-a-Table Sweets Factory Game

2 Intervention Table-Use-Training instruction provided

3 Post-int. Only given problems to solve Factory Game Sweets

The study was conducted in three sessions: session 1 (Pre-int. 1 and Pre-int. 2 tests),
session 2 (intervention of teaching of diagram knowledge of tables), and session 3 (Post-
int. test). The test sessions were conducted in the laboratory to measure frontal brain
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activity (using fNIRS; Functional near-infrared spectroscopy) of the participants during
solving of the problems given (15–25 min each, including the time for attaching and
detaching the fNIRS equipment); only the intervention sessionwas carried out in another
room to provide diagram knowledge about Tables (30 min). Tables were deemed to be
helpful for solving the problems used (see Table 2). Preliminary analysis confirmed
their isomorphism in terms of difficulty, as no significant differences between problems
occurred in all phases. In the present study, isomorphic problems refer to problems that
have different cover stories but have equivalent solving structures. Here, the solving
structure is one in which the answer to the problem can be calculated by focusing on the
number sequence in the table or array that is constructed.

Table 2. Problems used

Prob Isomorphic problems

Game Studying and Playing Time: A boy spends a total of 150 min every day studying and
playing games. If his study time is longer than that of playing games, he will play
games 30 min longer the next day. Otherwise, he will study 45 min longer than the
time spent on playing games on the previous day. He studied for 50 min on day 1. On
day 365, how many minutes will he study for?

Sweets Sweets Tree: There is a sweets tree which bears a total of 111 macaroons and eclairs
every day. If eclairs are more than macaroons, it will bear 33 more macaroons the
next day than the number of eclairs on the previous day. Otherwise, it will bear 22
less macaroons than those on the previous day. It bore 99 macaroons on day 1. How
many macaroons will the tree bear on day 365?

Factory Automobile Factory: A factory manufactures automobile parts, packing 150 parts in
each box and carries as many boxes as possible to the assembly plant every day. If the
number of the parts left are more than 75, the factory will produce 180 parts the next
day. Otherwise, it will produce 220 parts. The number of the parts left was 130 on day
1. How many parts will be left on day 365?

In the test sessions for the three groups, the three kinds of problem were provided
in a counterbalanced order (see Table 1). A questionnaire was given immediately after
each task. In the intervention sessions, instructions to develop semantic and procedural
knowledge for use of tables were provided. Equivalent math word problems (isomor-
phic in structure and requirements), in which tables were required to efficiently arrive
at their solutions, were created and used in the instructions and tests (different prob-
lems were used in instructions and tests). All the problems were presented in sentences
only, and contained no expressions to explicitly induce diagram use. The diagrams and
answers included on answer sheets were scored by two undergraduate students with no
vested interested in the outcomes, using rubrics that allocated 0–8/0–5 points (diagram
score/problem score) depending on appropriateness, correctness, and detail [4].
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3 Results and Discussion

Fig. 1. Changes in diagram score and
problem score in all phases (N = 16)

Comparisons of scores at Pre-int. 1 and Pre-int. 2
phases revealed that diagram use scores increased
(p < .01) but correct answer rates did not (n.s.;
see Fig. 1). This suggests that asking students to
use a table increased their diagram use but did
not improve their ability to solve the problems.
Comparing Pre-int. 2 and Post-int. phases revealed
that correct answer rates also increased (p < .01).
This suggests that, after providing instruction, not
only diagram use but also correct answer rates
increased. Comparisons of brain activities at Pre-
int. 1 and Pre-int. 2 revealed that cerebral blood
flow did not change (n.s.). However, comparisons
at Pre-int. 1 and Post-int. revealed that cerebral
blood flow increased around the left frontal area
(DLPFC andVLPFC, p< .05 for both; see Fig. 2).

Fig. 2. Changes in cerebral blood
flow at points of measurement in the
frontal lobe from right (R) to left (L)
(numerical values are t-test scores;
upper = Pre-int. 2, lower = Post-int.,
both compared to Pre-int. 1 as
baseline; N = 16)

These results of the present study demonstrate that
interventions of simply asking students to use dia-
grams are not adequate, but providing instruction
and practice improves correct answer rates. These
results also suggest that students were given new
knowledge about tables through instruction, not
based on their original knowledge, and acquired
the skills of use through practice. That is, activa-
tion in the left-VLPFC is considered as reflecting
memory retention [5],while that in the left-DLPFC
is indicative of cognitive control by reconstruction
due to new memories [6].

The findings of this study reveal objective evidence by linking behavioral and physio-
logical methods. Though it has previously been difficult to distinguish the components of
instruction necessary for diagram use mastery, this integrated method helped to identify
the effects of instruction and practice on diagram use skills acquisition.
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