Joachim von Braun - Margaret S. Archer
Gregory M. Reichberg - Marcelo Sanchez Sorondo Editors

Robotics, Al and
numanity

Science, Ethics, and Policy

OPEN ACCESS %\ Springer



Robotics, Al, and Humanity



Joachim von Braun - Margaret S. Archer

Gregory M. Reichberg « Marcelo Sanchez Sorondo
Editors

Robotics, Al, and Humanity

Science, Ethics, and Policy

@ Springer



Editors

Joachim von Braun Margaret S. Archer

Bonn University University of Warwick

Bonn, Germany Coventry, UK

Gregory M. Reichberg Marcelo Sanchez Sorondo
Peace Research Institute Pontifical Academy of Sciences
Oslo, Norway Vatican City, Vatican

ISBN 978-3-030-54172-9 ISBN 978-3-030-54173-6  (eBook)
https://doi.org/10.1007/978-3-030-54173-6

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-54173-6
http://creativecommons.org/licenses/by/4.0/

Message from Pope Francis

1\
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Artificial intelligence is at the heart of the epochal change we are experiencing. Robotics can
make a better world possible if it is joined to the common good. Indeed, if technological
progress increases inequalities, it is not true progress. Future advances should be oriented
towards respecting the dignity of the person and of Creation. Let us pray that the progress
of robotics and artificial intelligence may always serve humankind ... we could say, may it
“be human”.

Pope Francis, November Prayer Intention, 5 November 2020



This edited volume, including the suggestions for action, emerged from a Conference on
“Robotics, Al and Humanity, Science, Ethics and Policy”, organized jointly by the Pontifical
Academy of Sciences (PAS) and the Pontifical Academy of Social Sciences (PASS), 16-17
May 2019, Casina Pio IV, Vatican City. Two related conferences had previously been held at
Casina Pio IV, Vatican City: “Power and Limitations of Artificial Intelligence” (December
2016) and “Artificial Intelligence and Democracy” (March 2018). The presentations and
discussions from these conferences are accessible on the website of the Pontifical Academy
of Sciences www.pas.va/content/accademia/en.html. The contributions by all the participants
in these conferences are gratefully acknowledged. This publication has been supported by
the Center for Development Research (ZEF) at Bonn University and the Research Council
of Norway.
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This introduction to the volume gives an overview of
foundational issues in Al and robotics, looking into AI’s
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computational basis, brain—Al comparisons, and conflict-
ing positions on Al and consciousness. Al and robotics
are changing the future of society in areas such as work,
education, industry, farming, and mobility, as well as ser-
vices like banking. Another important concern addressed
in this volume are the impacts of Al and robotics on
poor people and on inequality. These implications are
being reviewed, including how to respond to challenges
and how to build on the opportunities afforded by Al
and robotics. An important area of new risks is robotics
and Al implications for militarized conflicts. Throughout
this introductory chapter and in the volume, Al/robot-
human interactions, as well as the ethical and religious
implications, are considered. Approaches for fruitfully
managing the coexistence of humans and robots are eval-
uated. New forms of regulating Al and robotics are called
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for which serve the public good but also ensure proper data
protection and personal privacy.

Keywords
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Introduction!

Advances in artificial intelligence (AI) and robotics are accel-
erating. They already significantly affect the functioning of
societies and economies, and they have prompted widespread
debate over the benefits and drawbacks for humanity. This
fast-moving field of science and technology requires our
careful attention. The emergent technologies have, for in-
stance, implications for medicine and health care, employ-
ment, transport, manufacturing, agriculture, and armed con-
flict. Privacy rights and the intrusion of states into personal
life is a major concern (Stanley 2019). While considerable
attention has been devoted to Al/robotics applications in
each of these domains, this volume aims to provide a fuller
picture of their connections and the possible consequences
for our shared humanity. In addition to examining the current
research frontiers in Al/robotics, the contributors of this
volume address the likely impacts on societal well-being,
the risks for peace and sustainable development as well
as the attendant ethical and religious dimensions of these
technologies. Attention to ethics is called for, especially as
there are also long-term scenarios in Al/robotics with conse-
quences that may ultimately challenge the place of humans
in society.

Al/robotics hold much potential to address some of our
most intractable social, economic, and environmental prob-
lems, thereby helping to achieve the UN’s Sustainable De-
velopment Goals (SDGs), including the reduction of cli-
mate change. However, the implications of Al/robotics for
equity, for poor and marginalized people, are unclear. Of
growing concern are risks of Al/robotics for peace due to
their enabling new forms of warfare such as cyber-attacks
or autonomous weapons, thus calling for new international

IThe conclusions in this section partly draw on the Concluding
Statement from a Conference on “Robotics, Al and Humanity, Science,
Ethics and Policy*, organized jointly by the Pontifical Academy
of Sciences (PAS) and the Pontifical Academy of Social Sciences
(PASS), 16-17 May 2019, Casina Pio IV, Vatican City. The statement
is available at http://www.casinapioiv.va/content/accademia/en/events/
2019/robotics/statementrobotics.html including a list of participants
provided via the same link. Their contributions to the statement are
acknowledged.
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security regulations. Ethical and legal aspects of Al/robotics
need clarification in order to inform regulatory policies on
applications and the future development of these technolo-
gies.

The volume is structured in the following four sections:

* Foundational issues in Al and robotics, looking into AI’s
computational basis, brain—Al comparisons as well as Al
and consciousness.

» Al and robotics potentially changing the future of society
in areas such as employment, education, industry, farming,
mobility, and services like banking. This section also
addresses the impacts of Al and robotics on poor people
and inequality.

* Robotics and Al implications for militarized conflicts and
related risks.

e Al/robot—human interactions and ethical and religious
implications: Here approaches for managing the coexis-
tence of humans and robots are evaluated, legal issues are
addressed, and policies that can assure the regulation of
Al/robotics for the good of humanity are discussed.

Foundational Issues in Al and Robotics
Overview on Perspectives

The field of Al has developed a rich variety of theoretical
approaches and frameworks on the one hand, and increas-
ingly impressive practical applications on the other. Al has
the potential to bring about advances in every area of science
and society. It may help us overcome some of our cognitive
limitations and solve complex problems.

In health, for instance, combinations of Al/robotics with
brain—computer interfaces already bring unique support to
patients with sensory or motor deficits and facilitate caretak-
ing of patients with disabilities. By providing novel tools for
knowledge acquisition, Al may bring about dramatic changes
in education and facilitate access to knowledge. There may
also be synergies arising from robot-to-robot interaction and
possible synergies of humans and robots jointly working on
tasks.

While vast amounts of data present a challenge to human
cognitive abilities, Big Data presents unprecedented oppor-
tunities for science and the humanities. The translational po-
tential of Big Data is considerable, for instance in medicine,
public health, education, and the management of complex
systems in general (biosphere, geosphere, economy). How-
ever, the science based on Big Data as such remains em-
piricist and challenges us to discover the underlying causal
mechanisms for generating patterns. Moreover, questions
remain whether the emphasis on AI’s supra-human capacities
for computation and compilation mask manifold limitations


http://www.casinapioiv.va/content/accademia/en/events/2019/robotics/statementrobotics.html
http://www.casinapioiv.va/content/accademia/en/events/2019/robotics/statementrobotics.html

Al, Robotics, and Humanity: Opportunities, Risks, and Implications for Ethics and Policy 3

of current artificial systems. Moreover, there are unresolved
issues of data ownership to be tackled by transparent institu-
tional arrangements.

In the first section of this volume (Chaps. 2-5), basic
concepts of Al/robotics and of cognition are addressed from
different and partly conflicting perspectives. Importantly,
Singer (Chap. 2) explores the difference between natural
and artificial cognitive systems. Computational foundations
of Al are presented by Zimmermann and Cremers (Chap.
3). Thereafter the question “could robots be conscious?” is
addressed from the perspective of cognitive neuro-science of
consciousness by Dehaene et al., and from a philosophical
perspective by Gabriel (Chaps. 4 and 5).

Among the foundational issues of Al/robotics is the ques-
tion whether machines may hypothetically attain capabilities
such as consciousness. This is currently debated from the
contrasting perspectives of natural science, social theory,
and philosophy; as such it remains an unresolved issue, in
large measure because there are many diverse definitions of
“consciousness.” It should not come as a surprise that the
contributors of this volume are neither presenting a unani-
mous position on this basic issue of robot consciousness nor
on a robotic form of personhood (also see Russell 2019).
The concept of this volume rather is to bring the different
positions together. Most contributors maintain that robots
cannot be considered persons, for which reason robots will
not and should not be free agents or possess rights. Some,
however, argue that “command and control” conceptions may
not be appropriate to human-robotic relations, and others
even ask if something like “electronic citizenship” should be
considered.

Christian philosophy and theology maintain that the
human soul is “Imago Dei” (Sanchez Sorondo, Chap. 14).
This is the metaphysical foundation according to which
human persons are free and capable of ethical awareness.
Although rooted in matter, human beings are also spiritual
subjects whose nature transcends corporeality. In this respect,
they are imperishable (“incorruptible” or “immortal” in
the language of theology) and are called to a completion
in God that goes beyond what the material universe can
offer. Understood in this manner, neither Al nor robots
can be considered persons, so robots will not and should
not possess human freedom; they are unable to possess a
spiritual soul and cannot be considered “images of God.”
They may, however, be “images of human beings” as they
are created by humans to be their instruments for the good of
human society. These issues are elaborated in Sect. Al/robot—
Human interactions of the volume from religious, social
science, legal, and philosophical perspectives by Sanchez
Sorondo (Chap. 14), Archer (Chap. 15), and Schroder
(Chap. 16).

Intelligent Agents

Zimmermann and Cremers (Chap. 3) emphasize the tremen-
dous progress of Al in recent years and explain the conceptual
foundations. They focus on the problem of induction, i.e.,
extracting rules from examples, which leads to the question:
What set of possible models of the data generating process
should a learning agent consider? To answer this question,
they argue, “it is necessary to explore the notion of all pos-
sible models from a mathematical and computational point
of view.” Moreover, Zimmermann and Cremers (Chap. 3)
are convinced that effective universal induction can play an
important role in causal learning by identifying generators of
observed data.

Within machine-learning research, there is a line of devel-
opment that aims to identify foundational justifications for
the design of cognitive agents. Such justifications would en-
able the derivation of theorems characterizing the possibili-
ties and limitations of intelligent agents, as Zimmermann and
Cremers elaborate (Chap. 3). Cognitive agents act within an
open, partially or completely unknown environment in order
to achieve goals. Key concepts for a foundational framework
for Al include agents, environments, rewards, local scores,
global scores, the exact model of interaction between agents
and environments, and a specification of the available compu-
tational resources of agents and environments. Zimmermann
and Cremers (Chap. 3) define an intelligent agent as an agent
that can achieve goals in a wide range of environments.>

A central aspect of learning from experience is the rep-
resentation and processing of uncertain knowledge. In the
absence of deterministic assumptions about the world, there
is no nontrivial logical conclusion that can be drawn from
the past for any future event. Accordingly, it is of interest
to analyze the structure of uncertainty as a question in its
own right.> Some recent results establish a tight connection
between learnability and provability, thus reducing the ques-
tion of what can be effectively learned to the foundational
questions of mathematics with regard to set existence axioms.
Zimmermann and Cremers (Chap. 3) also point to results
of “reverse mathematics,” a branch of mathematical logic
analyzing theorems with reference to the set of existence
axioms necessary to prove them, to illustrate the implications
of machine learning frameworks. They stress that artificial
intelligence has advanced to a state where ethical questions
and the impact on society become pressing issues, and point
to the need for algorithmic transparency, accountability, and

2For an overview of inductive processes that are currently employed
by Al-systems, see Russell (2019, pp. 285-295). The philosophical
foundations of induction as employed by Al were explored inter alia
by Goodman (1954).

3Probability-based reasoning was extended to Al by Pear] (1988).
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unbiasedness. Until recently, basic mathematical science had
few (if any) ethical issues on its agenda. However, given
that mathematicians and software designers are central to the
development of Al, it is essential that they consider the ethical
implications of their work.* In light of the questions that are
increasingly raised about the trustworthiness of autonomous
systems, Al developers have a responsibility—that ideally
should become a legal obligation—to create trustworthy and
controllable robot systems.

Consciousness

Singer (Chap. 2) benchmarks robots against brains and points
out that organisms and robots both need to possess an internal
model of the restricted environment in which they act and
both need to adjust their actions to the conditions of the
respective environment in order to accomplish their tasks.
Thus, they may appear to have similar challenges but—
Singer stresses—the computational strategies to cope with
these challenges are different for natural and artificial sys-
tems. He finds it premature to enter discussions as to whether
artificial systems can acquire functions that we consider
intentional and conscious or whether artificial agents can be
considered moral agents with responsibility for their actions
(Singer, Chap. 2).

Dehaene et al. (Chap. 4) take a different position from
Singer and argue that the controversial question whether
machines may ever be conscious must be based on consid-
erations of how consciousness arises in the human brain.
They suggest that the word “consciousness” conflates two
different types of information-processing computations in the
brain: first, the selection of information for global broadcast-
ing (consciousness in the first sense), and second, the self-
monitoring of those computations, leading to a subjective
sense of certainty or error (consciousness in the second
sense). They argue that current Al/robotics mostly imple-
ments computations similar to unconscious processing in
the human brain. They however contend that a machine
endowed with consciousness in the first and second sense as
defined above would behave as if it were conscious. They ac-
knowledge that such a functional definition of consciousness
may leave some unsatisfied and note in closing, “Although
centuries of philosophical dualism have led us to consider
consciousness as unreducible to physical interactions, the
empirical evidence is compatible with the possibility that
consciousness arises from nothing more than specific com-
putations.” (Dehaene et al., Chap. 4, pp....).

4The ethical impact of mathematics on technology was groundbreak-
ingly presented by Wiener (1960).
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It may actually be the diverse concepts and definitions
of consciousness that make the position taken by Dehaene
et al. appear different from the concepts outlined by Singer
(Chap. 2) and controversial to others like Gabriel (Chap. 5),
Sanchez Sorondo (Chap. 14), and Schroder (Chap. 16). At
the same time, the long-run expectations regarding machines’
causal learning abilities and cognition as considered by Zim-
mermann and Cremers (Chap. 3) and the differently based
position of Archer (Chap. 15) both seem compatible with the
functional consciousness definitions of Dehaene et al. (Chap.
4). This does not apply to Gabriel (Chap. 5) who is inclined
to answer the question “could a robot be conscious?” with a
clear “no,” drawing his lessons selectively from philosophy.
He argues that the human being is the indispensable locus of
ethical discovery. “Questions concerning what we ought to
do as morally equipped agents subject to normative guidance
largely depend on our synchronically and diachronically
varying answers to the question of “who we are.” ” He argues
that robots are not conscious and could not be conscious
“... if consciousness is what I take it to be: a systemic feature
of the animal-environment relationship.” (Gabriel, Chap. 5,

pp--..)-

Al and Robotics Changing the Future
of Society

In the second section of this volume, Al applications (and
related emergent technologies) in health, manufacturing, ser-
vices, and agriculture are reviewed. Major opportunities for
advances in productivity are noted for the applications of
Al/robotics in each of these sectors. However, a sectorial
perspective on Al and robotics has limitations. It seems
necessary to obtain a more comprehensive picture of the
connections between the applications and a focus on public
policies that facilitates overall fairness, inclusivity, and equity
enhancement through Al/robotics.

The growing role of robotics in industries and conse-
quences for employment are addressed (De Backer and
DeStefano, Chap. 6). Von Braun and Baumiiller (Chap.
7) explore the implications of Al/robotics for poverty
and marginalization, including links to public health.
Opportunities of Al/robotics for sustainable crop production
and food security are reported by Torero (Chap. 8). The hopes
and threats of including robotics in education are considered
by Léna (Chap. 9), and the risks and opportunities of Al in
financial services, wherein humans are increasingly replaced
and even judged by machines, are critically reviewed by
Pasquale (Chap. 10). The five chapters in this section of the
volume are closely connected as they all draw on current and
fast emerging applications of Al/robotics, but the balance of
opportunities and risks for society differ greatly among these
domains of Al/robotics applications and penetrations.
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Work

Unless channeled for public benefit, Al may raise important
concerns for the economy and the stability of society. Jobs
may be lost to computerized devices in manufacturing, with
a resulting increase in income disparity and knowledge gaps.
Advances in automation and increased supplies of artificial
labor particularly in the agricultural and industrial sectors
can significantly reduce employment in emerging economies.
Through linkages within global value chains, workers in low-
income countries may be affected by growing reliance of in-
dustries and services in higher-income countries on robotics,
which could reduce the need for outsourcing routine jobs to
low-wage regions. However, robot use could also increase
the demand for labor by reducing the cost of production,
leading to industrial expansion. Reliable estimates of jobs
lost or new jobs created in industries by robots are currently
lacking. This uncertainty creates fears, and it is thus not
surprising that the employment and work implications of
robotics are a major public policy issue (Baldwin 2019).
Policies should aim at providing the necessary social security
measures for affected workers while investing in the develop-
ment of the necessary skills to take advantage of the new jobs
created.

The state might consider to redistribute the profits that
are earned from the work carried out by robots. Such re-
distribution could, for instance, pay for the retraining of
affected individuals so that they can remain within the work
force. In this context, it is important to remember that many
of these new technological innovations are being achieved
with support from public funding. Robots, Al, and digital
capital in general can be considered as a tax base. Cur-
rently this is not the case; human labor is directly taxed
through income tax of workers, but robot labor is not. In
this way, robotic systems are indirectly subsidized, if com-
panies can offset them in their accounting systems, thus
reducing corporate taxation. Such distortions should be care-
fully analyzed and, where there is disfavoring of human
workers while favoring investment in robots, this should be
reversed.

Returning to economy-wide Al/robotic effects including
employment, De Backer and DeStefano (Chap. 6) note that
the growing investment in robotics is an important aspect
of the increasing digitalization of economy. They note that
while economic research has recently begun to consider
the role of robotics in modern economies, the empirical
analysis remains overall too limited, except for the potential
employment effects of robots. So far, the empirical evidence
on effects of robotics on employment is mixed, as shown
in the review by De Backer and DeStefano (Chap. 6). They
also stress that the effects of robots on economies go fur-
ther than employment effects, as they identify increasing
impacts on the organization of production in global value

chains. These change the division of labor between richer
and poorer economies. An important finding of De Backer
and DeStefano is the negative effect that robotics may have
on the offshoring of activities from developed economies,
which means that robotics seem to decrease the incentives
for relocating production activities and jobs toward emerging
economies. As a consequence, corporations and governments
in emerging economies have also identified robotics as a de-
terminant of their future economic success. Thereby, global
spreading of automation with Al/robotics can lead to faster
deindustrialization in the growth and development process.
Low-cost jobs in manufacturing may increasingly be con-
ducted by robots such that fewer jobs than expected may
be on offer for humans even if industries were to grow in
emerging economies.

Al/Robotics: Poverty and Welfare

Attention to robot rights seems overrated in comparison to
attention to implications of robotics and Al for the poorer
segments of societies, according to von Braun and Baumiiller
(Chap. 7). Opportunities and risks of Al/robotics for sustain-
able development and people suffering from poverty need
more attention in research and in policy (Birhane and van
Dijk 2020). Especially implications for low-income coun-
tries, marginalized population groups, and women need study
and consideration in programs and policies. Outcomes of
Al/robotics depend upon actual designs and applications.
Some examples demonstrate this crosscutting issue:

— Big Data-based algorithms drawing patterns from past
occurrences can perpetuate discrimination in business
practices—or can detect such discrimination and provide
a basis for corrective policy actions, depending on their
application and the attention given to this issue. For
instance, new financial systems (fintech) can be designed
to include or to exclude (Chap. 10).

— Al/robotics-aided teaching resources offer opportunities
in many low-income regions, but the potential of these
resources greatly depends on both the teaching content
and teachers’ qualifications (Léna, Chap. 9).

— As a large proportion of the poor live on small farms,
particularly in Africa and South and East Asia, it mat-
ters whether or not they get access to meaningful digital
technologies and Al. Examples are land ownership cer-
tification through blockchain technology, precision tech-
nologies in land and crop management, and many more
(Chaps. 7 and 8).

— Direct and indirect environmental impacts of Al/robotics
should receive more attention. Monitoring through smart
remote sensing in terrestrial and aquatic systems can
be much enhanced to assess change in biodiversity and
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impacts of interventions. However, there is also the
issue of pollution through electronic waste dumped by
industrialized countries in low-income countries. This
issue needs attention as does the carbon footprint of
Al/robotics.

Effects of robotics and Al for such structural changes
in economies and for jobs will not be neutral for people
suffering from poverty and marginalization. Extreme poverty
is on the decline worldwide, and robotics and Al are potential
game changers for accelerated or decelerated poverty reduc-
tion. Information on how Al/robotics may affect the poor is
scarce. Von Braun and Baumiiller (Chap. 7) address this gap.
They establish a framework that depicts Al/robotics impact
pathways on poverty and marginality conditions, health, ed-
ucation, public services, work, and farming as well as on the
voice and empowerment of the poor. The framework identi-
fies points of entry of Al/robotics and is complemented by a
more detailed discussion of the pathways in which changes
through Al/robotics in these areas may relate positively or
negatively to the livelihoods of the poor. They conclude
that the context of countries and societies play an important
role in determining the consequences of Al/robotics for the
diverse population groups at risk of falling into poverty.
Without a clear focus on the characteristics and endowments
of people, innovations in Al/robotics may not only bypass
them but adversely impact them directly or indirectly through
markets and services of relevance to their communities.
Empirical scenario building and modelling is called for to
better understand the components in Al/robotics innovations
and to identify how they can best support livelihoods of
households and communities suffering from poverty. Von
Braun and Baumiiller (Chap. 7) note that outcomes much
depend on policies accompanying Al and robotics. Lee points
to solutions with new government initiatives that finance care
and creativity (Chap. 22).

Food and Agriculture

Closely related to poverty is the influence of Al/robotics on
food security and agriculture. The global poor predominantly
work in agriculture, and due to their low levels of income they
spend a large shares of their income on food. Torero (Chap.
8) addresses Al/robotics in the food systems and points out
that agricultural production—while under climate stress—
still must increase while minimizing the negative impacts on
ecosystems, such as the current decline in biodiversity. An
interesting example is the case of autonomous robots for farm
operations. Robotics are becoming increasingly scale neutral,
which could benefit small farmers via wage and price effects
(Fabregas et al. 2019). Al and robotics play a growing role in
all elements of food value chains, where automation is driven
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by labor costs as well as by demands for hygiene and food
safety in processing.

Torero (Chap. 8) outlines the opportunities of new tech-
nologies for smallholder households. Small-size mechaniza-
tion offers possibilities for remote areas, steep slopes or soft
soil areas. Previously marginal areas could be productive
again. Precision farming could be introduced to farmers that
have little capital thus allowing them to adopt climate-smart
practices. Farmers can be providers and consumers of data,
as they link to cloud technologies using their smartphones,
connecting to risk management instruments and track crop
damage in real time.

Economic context may change with technologies. Buying
new machinery may no longer mean getting oneself into
debt thanks to better access to credit and leasing options.
The reduced scale of efficient production would mean higher
profitability for smallholders. Robots in the field also rep-
resent opportunities for income diversification for farmers
and their family members as the need to use family labor for
low productivity tasks is reduced and time can be allocated
for more profit-generating activities. Additionally, robots can
operate 24/7, allowing more precision on timing of harvest,
especially for high-value commodities like grapes or straw-
berries.

Education

Besides health and caregiving, where innovations in
Al/robotics have had a strong impact, in education and
finance this impact is also likely to increase in the future.
In education—be it in the classroom or in distance-learning
systems, focused on children or on training and retraining
of adults—robotics is already having an impact (Léna,
Chap. 9). With the addition of Al, robotics offers to expand
the reach of teaching in exciting new ways. At the same
time, there are also concerns about new dependencies
and unknown effects of these technologies on minds.
Léna sees child education as a special case, due to it
involving emotions as well as knowledge communicated
between children and adults. He examines some of the
modalities of teacher substitution by Al/robotic resources
and discusses their ethical aspects. He emphasizes positive
aspects of computer-aided education in contexts in which
teachers are lacking. The technical possibilities combining
artificial intelligence and teaching may be large, but the
costs need consideration too. The ethical questions raised
by these developments need attention, since children are
extremely vulnerable human beings. As the need to develop
education worldwide are so pressing, any reasonable solution
which benefits from these technological advances can
become helpful, especially in the area of computer-aided
education.
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Finance, Insurance, and Other Services

Turning to important service domains like finance and insur-
ance, and real estate, some opportunities but also worrisome
trends of applications of Al-based algorithms relying on Big
Data are quickly emerging. In these domains, humans are in-
creasingly assessed and judged by machines. Pasquale (Chap.
10) looks into the financial technology (Fintech) landscape,
which ranges from automation of office procedures to new
approaches of storing and transferring value, and granting
credit. For instance, new services—e.g., insurance sold by the
hour—are emerging, and investments on stock exchanges are
conducted increasingly by Al systems, instead of by traders.
These innovations in Al, other than industrial robotics, are
probably already changing and reducing employment of (for-
mer) high-skill/high-income segments, but not routine tasks
in manufacturing. A basis for some of the Fintech operations
by established finance institutions and start-ups is the use
of data sources from social media with algorithms to assess
credit risk. Another area is financial institutions adopting
distributed ledger technologies. Pasquale (Chap. 10) divides
the Fintech landscape into two spheres, “incrementalist Fin-
tech” and “futurist Fintech.” Incrementalist Fintech uses new
data, algorithms, and software to perform traditional tasks
of existing financial institutions. Emerging Al/robotics do
not change the underlying nature of underwriting, payment
processing, or lending of the financial sector. Regulators still
cover these institutions, and their adherence to rules accord-
ingly assures that long-standing principles of financial regu-
lation persist. Yet, futurist Fintech claims to disrupt financial
markets in ways that supersede regulation or even render
it obsolete. If blockchain memorializing of transactions is
actually “immutable,” the need for regulatory interventions
to promote security or prevent modification of records may
no longer be needed.

Pasquale (Chap. 10) sees large issues with futurist Fin-
tech, which engages in detailed surveillance in order to get
access to services. These can become predatory, creepy,
and objectionable on diverse grounds, including that they
subordinate inclusion, when they allow persons to compete
for advantage in financial markets in ways that undermine
their financial health, dignity, and political power (Pasquale,
Chap. 10). Algorithmic accountability has become an im-
portant concern for reasons of discriminating against women
for lower-paying jobs, discriminating against the aged, and
stimulating consumers into buying things by sophisticated
social psychology and individualized advertising based on
“Phishing.” Pistor (2019) describes networks of obligation
that even states find exceptionally difficult to break. Capital

SRelevant for insights in these issues are the analyses by Akerlof and
Shiller (2015) in their book on “Phishing for Phools: The Economics of
Manipulation and Deception.”

has imbricated into international legal orders that hide wealth
and income from regulators and tax authorities. Cryptocur-
rency may become a tool for deflecting legal demands and
serve the rich. Golumbia (2009) points at the potential desta-
bilizing effects of cryptocurrencies for financial regulation
and monetary policy. Pasquale (Chap. 10) stresses that both
incrementalist and futurist Fintech expose the hidden costs
of digital efforts to circumvent or co-opt state monetary
authorities.

In some areas of innovations in Al/robotics, their future
trajectories already seem quite clear. For example, robotics
are fast expanding in space exploration and satellite systems
observing earth,® in surgery and other forms of medical
technology,” and in monitoring processes of change in the
Anthropocene, for instance related to crop developments at
small scales.® Paradigmatic for many application scenarios
not just in industry but also in care and health are robotic
hand-arm systems for which the challenges of precision,
sensitivity, and robustness come along with safe grasping
requirements. Promising applications are evolving in tele-
manipulation systems in a variety of areas such as healthcare,
factory production, and mobility. Depending on each of these
areas, sound IP standards and/or open-source innovation
systems should be explored systematically, in order to shape
optimal innovation pathways. This is a promising area of eco-
nomic, technological, legal, and political science research.

Robotics/Al and Militarized Conflict

Robotics and Al in militarized conflicts raise new challenges
for building and strengthening peace among nations and for
the prevention of war and militarized conflict in general. New
political and legal principles and arrangements are needed but
are evolving too slowly.

Within militarized conflict, Al-based systems (including
robots) can serve a variety of purposes, inter alia, extract-
ing wounded personnel, monitoring compliance with laws
of war/rules of engagement, improving situational aware-
ness/battlefield planning, and making targeting decisions.
While it is the last category that raises the most challenging
moral issues, in all cases the implications of lowered barriers
of warfare, escalatory dangers, as well as systemic risks must
be carefully examined before Al is implemented in battlefield
settings.

6See for instance Martin Sweeting’s (2020) review of opportunities of
small satellites for earth observation.

7For a review on Al and robotics in health see for instance Erwin Loh
(2018).

80n assessment of fossil fuel and anthrogpogenic emissions effects on
public health and climate see Jos Lelieveld et al. (2019). On new ways
of crop monitoring using Al see, for instance, Burke and Lobell (2017).
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Worries about falling behind in the race to develop new
Al military applications must not become an excuse for
short-circuiting safety research, testing, and adequate train-
ing. Because weapon design is trending away from large-
scale infrastructure toward autonomous, decentralized, and
miniaturized systems, the destructive effects may be mag-
nified compared to most systems operative today (Danzig
2018). Al-based technologies should be designed so they
enhance (and do not detract from) the exercise of sound moral
judgment by military personnel, which need not only more
but also very different types of training under the changed
circumstances. Whatever military advantages might accrue
from the use of AI, human agents—political and military—
must continue to assume responsibility for actions carried out
in wartime.

International standards are urgently needed. Ideally, these
would regulate the use of Al with respect to military plan-
ning (where Al risks to encourage pre-emptive strategies),
cyberattack/defense as well as the kinetic battlefields of
land, air, sea, undersea, and outer space. With respect to
lethal autonomous weapon systems, given the present state
of technical competence (and for the foreseeable future), no
systems should be deployed that function in unsupervised
mode. Whatever the battlefield—cyber or kinetic—human
accountability must be maintained, so that adherence to
internationally recognized laws of war can be assured and
violations sanctioned.

Robots are increasingly utilized on the battlefield for a va-
riety of tasks (Swett et al., Chap. 11). Human-piloted, remote-
controlled fielded systems currently predominate. These in-
clude unmanned aerial vehicles (often called “drones’), un-
manned ground, surface, and underwater vehicles as well
as integrated air-defense and smart weapons. The authors
recognize, however, that an arms race is currently underway
to operate these robotic platforms as Al-enabled weapon
systems. Some of these systems are being designed to act
autonomously, i.e., without the direct intervention of a human
operator for making targeting decisions. Motivating this drive
toward Al-based autonomous targeting systems (Lethal Au-
tonomous Weapons, or LAWS) brings about several factors,
such as increasing the speed of decision-making, expanding
the volume of information necessary for complex decisions,
or carrying out operations in settings where the segments
of the electromagnetic spectrum needed for secure commu-
nications are contested. Significant developments are also
underway within the field of human—machine interaction,
where the goal is to augment the abilities of military per-
sonnel in battlefield settings, providing, for instance, en-
hanced situational awareness or delegating to an Al-guided
machine some aspect of a joint mission. This is the concept
of human—AI “teaming” that is gaining ground in military
planning. On this understanding, humans and AI function
as tightly coordinated parts of a multi-agent team, requiring
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novel modes of communication and trust. The limitations of
Al must be properly understood by system designers and
military personnel if Al applications are to promote more,
not less, adherence to norms of armed conflict.

It has long been recognized that the battlefield is an espe-
cially challenging domain for ethical assessment. It involves
the infliction of the worst sorts of harm: killing, maiming,
destruction of property, and devastation of the natural envi-
ronment. Decision-making in war is carried out under con-
ditions of urgency and disorder. This Clausewitz famously
termed the “fog of war.” Showing how ethics are realistically
applicable in such a setting has long taxed philosophers,
lawyers, and military ethicists. The advent of Al has added
a new layer of complexity. Hopes have been kindled for
smarter targeting on the battlefield, fewer combatants, and
hence less bloodshed; simultaneously, warnings have been
issued on the new arms race in “killer robots,” as well as the
risks associated with delegating lethal decisions to increas-
ingly complex and autonomous machines. Because LAWS
are designed to make targeting decisions without the direct
intervention of human agents (who are “out of the killing
loop”), considerable debate has arisen on whether this mode
of autonomous targeting should be deemed morally permis-
sible. Surveying the contours of this debate, Reichberg and
Syse (Chap. 12) first present a prominent ethical argument
that has been advanced in favor of LAWS, namely, that Al-
directed robotic combatants would have an advantage over
their human counterparts, insofar as the former would operate
solely on the basis of rational assessment, while the latter are
often swayed by emotions that conduce to poor judgment.
Several counter arguments are then presented, inter alia, (i)
that emotions have a positive influence on moral judgment
and are indispensable to it; (ii) that it is a violation of human
dignity to be killed by a machine, as opposed to being killed
by a human being; and (iii) that the honor of the military
profession hinges on maintaining an equality of risk between
combatants, an equality that would be removed if one side
delegates its fighting to robots. The chapter concludes with a
reflection on the moral challenges posed by human—AlI team-
ing in battlefield settings, and on how virtue ethics provide a
valuable framework for addressing these challenges.

Nuclear deterrence is an integral aspect of the current
security architecture and the question has arisen whether
adoption of Al will enhance the stability of this architecture
or weaken it. The stakes are very high. Akiyama (Chap. 13)
examines the specific case of nuclear deterrence, namely, the
possession of nuclear weapons, not specifically for battle-
field use but to dissuade others from mounting a nuclear or
conventional attack. Stable deterrence depends on a complex
web of risk perceptions. All sorts of distortions and errors are
possible, especially in moments of crisis. Al might contribute
toward reinforcing the rationality of decision-making under
these conditions (easily affected by the emotional distur-
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bances and fallacious inferences to which human beings
are prone), thereby preventing an accidental launch or un-
intended escalation. Conversely, judgments about what does
or does not fit the “national interest” are not well suited to
Al (at least in its current state of development). A purely
logical reasoning process based on the wrong values could
have disastrous consequences, which would clearly be the
case if an Al-based machine were allowed to make the launch
decision (which virtually all experts would emphatically
exclude), but grave problems could similarly arise if a human
actor relied too heavily on Al input.

Implications for Ethics and Policies

Major research is underway in areas that define us as humans,
such as language, symbol processing, one-shot learning, self-
evaluation, confidence judgment, program induction, con-
ceiving goals, and integrating existing modules into an over-
arching, multi-purpose intelligent architecture (Zimmermann
and Cremers, Chap. 3). Computational agents trained by re-
inforcement learning and deep learning frameworks demon-
strate outstanding performance in tasks previously thought
intractable. While a thorough foundation for a general theory
of computational cognitive agents is still missing, the concep-
tual and practical advance of Al has reached a state in which
ethical and safety questions and the impact on society overall
become pressing issues. For example, Al-based inferences of
persons’ feelings derived from face recognition data are such
an issue.

Al/Robotics: Human and Social Relations

The spread of robotics profoundly modifies human and social
relations in many spheres of society, in the family as well as in
the workplace and in the public sphere. These modifications
can take on the character of hybridization processes between
the human characteristics of relationships and the artificial
ones, hence between analogical and virtual reality. Therefore,
it is necessary to increase scientific research on issues con-
cerning the social effects that derive from delegating relevant
aspects of social organization to Al and robots. An aim of
such research should be to understand how it is possible to
govern the relevant processes of change and produce those
relational goods that realize a virtuous human fulfillment
within a sustainable and fair societal development.

We noted above that fast progress in robotics engineering
is transforming whole industries (industry 4.0). The evolution
of the internet of things (IoT) with communication among
machines and inter-connected machine learning results in
major changes for services such as banking and finance as
reviewed above. Robot—robot and human-robot interactions

are increasingly intensive; yet, Al systems are hard to test
and validate. This raises issues of trust in Al and robots, and
issues of regulation and ownership of data, assignment of
responsibilities, and transparency of algorithms are arising
and require legitimate institutional arrangements.

We can distinguish between mechanical robots, designed
to accomplish routine tasks in production, and Al/robotics
capacities to assist in social care, medical procedures, safe
and energy efficient mobility systems, educational tasks, and
scientific research. While intelligent assistants may benefit
adults and children alike, they also carry risks because their
impact on the developing brain is unknown, and because peo-
ple may lose motivation in areas where Al appears superior.

Basically robots are instruments in the perspective of
Sénchez Sorondo (Chap. 14) with the term “instrument”
being used in various senses. “The primary sense is clearly
that of not being a cause of itself or not existing by itself.”
Aristotle defines being free as the one that is a cause of
himself or exists on its own and for himself, i.e., one who
is cause of himself (causa sui or causa sui ipsius).” From
the Christian perspective, “...for a being to be free and
a cause of himself, it is necessary that he/she be a person
endowed with a spiritual soul, on which his or her cognitive
and volitional activity is based” (Sdnchez Sorondo, Chap.
14, p. 173). An artificially intelligent robotic entity does not
meet this standard. As an artifact and not a natural reality,
the Al/robotic entity is invented by human beings to fulfill a
purpose imposed by human beings. It can become a perfect
entity that performs operations in quantity and quality more
precisely than a human being, but it cannot choose for itself
a different purpose from what was programmed in it for by
a human being. As such, the artificially intelligent robot is a
means at the service of humans.

The majority of social scientists have subscribed to a
similar conclusion as the above. Philosophically, as distinct
from theologically, this entails some version of “human es-
sentialism” and “species-ism” that far from all would en-
dorse in other contexts (e.g., social constructionists). The
result is to reinforce Robophobia and the supposed need to
protect humankind. Margaret S. Archer (Chap. 15) seeks
to put the case for potential Robophilia based upon the
positive properties and powers deriving from humans and Al
co-working together in synergy. Hence, Archer asks “Can
Human Beings and AI Robots be Friends?” She stresses
the need to foreground social change (given this is increas-
ingly morphogenetic rather than morphostatic) for structure,
culture, and agency. Because of the central role the social
sciences assign to agents and their “agency” this is crucial as
we humans are continually “enhanced” and have since long
increased their height and longevity. Human enhancement
speeded up with medical advances from ear trumpets, to
spectacles, to artificial insertions in the body, transplants, and
genetic modification. In short, the constitution of most adult
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human bodies is no longer wholly organic. In consequence,
the definition of “being human” is carried further away from
naturalism and human essentialism. The old bifurcation into
the “wet” and the “dry” is no longer a simple binary one. If
the classical distinguishing feature of humankind was held
to be possession of a “soul,” this was never considered to
be a biological organ. Today, she argues, with the growing
capacities of Al robots, the tables are turned and implicitly
pose the question, “so are they not persons too?” The paradox
is that the public admires the Al who defeated Chess and
Go world champions. They are content with Al roles in
care of the elderly, with autistic children, and in surgical
interventions, none of which are purely computational feats,
but the fear of artificially intelligent robots “taking over”
remains and repeats Asimov’s (1950) protective laws. Per-
ceiving this as a threat alone owes much to the influence of
the Arts, especially sci-fi; Robophobia dominates Robophilia
in popular imagination and academia. With Al capacities now
including “error-detection,” “self-elaboration of their pre-
programming,” and “adaptation to their environment,” they
have the potential for active collaboration with humankind,
in research, therapy, and care. This would entail synergy or
co-working between humans and Al beings.

Wolfgang Schroder (Chap. 16) also addresses robot—
human interaction issues, but from positions in legal
philosophy and ethics. He asks what normative conditions
should apply to the use of robots in human society, and
ranks the controversies about the moral and legal status of
robots and of humanoid robots in particular among the top
debates in recent practical philosophy and legal theory. As
robots become increasingly sophisticated, and engineers
make them combine properties of tools with seemingly
psychological capacities that were thought to be reserved
for humans, such considerations become pressing. While
some are inclined to view humanoid robots as more than
just tools, discussions are dominated by a clear divide: What
some find appealing, others deem appalling, i.e., “robot
rights” and “legal personhood” for Al systems. Obviously,
we need to organize human-robot interactions according
to ethical and juridical principles that optimize benefit and
minimize mutual harm. Schroder concludes, based on a
careful consideration of legal and philosophical positions,
that, even the most human-like behaving robot will not lose
its ontological machine character merely by being open to
“humanizing” interpretations. However, even if they do not
present an anthropological challenge, they certainly present
an ethical one, because both Al and ethical frameworks are
artifacts of our societies—and therefore subject to human
choice and human control, Schroder argues. The latter holds
for the moral status of robots and other Al systems, too. This
status remains a choice, not a necessity. Schroder suggests
that there should be no context of action where a complete
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absence of human respect for the integrity of other beings
(natural or artificial) would be morally allowed or even
encouraged. Avoiding disrespectful treatment of robots is
ultimately for the sake of the humans, not for the sake of
the robots. Maybe this insight can contribute to inspire an
“overlapping consensus” as conceptualized by John Rawls
(1987) in further discussions on responsibly coordinating
human-robot interactions.

Human-robot interactions and affective computing’s eth-
ical implications are elaborated by Devillers (Chap. 17).
The field of social robotics is fast developing and will have
wide implications especially within health care, where much
progress has been made toward the development of “‘compan-
ion robots.” Such robots provide therapeutic or monitoring
assistance to patients with a range of disabilities over a
long timeframe. Preliminary results show that such robots
may be particularly beneficial for use with individuals who
suffer from neurodegenerative pathologies. Treatment can be
accorded around the clock and with a level of patience rarely
found among human healthcare workers. Several elements
are requisite for the effective deployment of companion
robots: They must be able to detect human emotions and in
turn mimic human emotional reactions as well as having an
outward appearance that corresponds to human expectations
about their caregiving role. Devillers’ chapter presents labo-
ratory findings on Al-systems that enable robots to recognize
specific emotions and adapt their behavior accordingly. Emo-
tional perception by humans (how language and gestures are
interpreted by us to grasp the emotional states of others) is
being studied as a guide to programing robots so they can
simulate emotions in their interactions with humans. Some
of the relevant ethical issues are examined, particularly the
use of “nudges,” whereby detection of a human subject’s
cognitive biases enables the robot to initiate, through verbal
or nonverbal cues, remedial measures to affect the subject’s
behavior in a beneficial direction. Whether this constitutes
manipulation and is open to potential abuse merits closer
study.

Taking the encyclical Laudato si’ and its call for an “in-
tegral ecology” as its starting point, Donati (Chap. 18) ex-
amines how the processes of human enhancement that have
been brought about by the digital revolution (including Al
and robotics) have given rise to new social relationships. A
central question consists in asking how the Digital Techno-
logical Mix, a hybridization of the human and nonhuman that
issues from Al and related technologies, can promote human
dignity. Hybridization is defined here as entanglements and
interchanges between digital machines, their ways of operat-
ing, and human elements in social practices. The issue is not
whether Al or robots can assume human-like characteristics,
but how they interact with humans and affect their social
relationships, thereby generating a new kind of society.
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Advocating for the positive coexistence of humans and
Al, Lee (Chap. 22) shares Donati’s vision of a system that
provides for all members of society, but one that also uses
the wealth generated by Al to build a society that is more
compassionate, loving, and ultimately human. Lee believes
it is incumbent on us to use the economic abundance of
the Al age to foster the values of volunteers who devote
their time and energy toward making their communities more
caring. As a practical measure, they propose to explore the
creation not of a universal basic income to protect against
Al/robotics’ labor saving and job cutting effects, but a “social
investment stipend.” The stipend would be given to those who
invest their time and energy in those activities that promote
a kind, compassionate, and creative society, i.e., care work,
community service, and education. It would put the economic
bounty generated by Al to work in building a better society,
rather than just numbing the pain of Al-induced job losses.

Joint action in the sphere of human—human interrelations
may be a model for human-robot interactions. Human—
human interrelations are only possible when several prereq-
uisites are met (Clodic and Alami, Chap. 19), inter alia:
(i) that each agent has a representation within itself of its
distinction from the other so that their respective tasks can
be coordinated; (ii) each agent attends to the same object, is
aware of that fact, and the two sets of “attentions” are causally
connected; and (iii) each agent understands the other’s action
as intentional, namely one where means are selected in view
of a goal so that each is able to make an action-to-goal
prediction about the other. The authors explain how human—
robot interaction must follow the same threefold pattern. In
this context, two key problems emerge. First, how can a
robot be programed to recognize its distinction from a human
subject in the same space, to detect when a human agent is
attending to something, and make judgments about the goal-
directedness of the other’s actions such that the appropriate
predictions can be made? Second, what must humans learn
about robots so they are able to interact reliably with them in
view of a shared goal? This dual process (robot perception of
its human counterpart and human perception of the robot) is
here examined by reference to the laboratory case of a human
and a robot who team up in building a stack with four blocks.

Robots are increasingly prevalent in human life and their
place is expected to grow exponentially in the coming years
(van Wynsberghe, Chap. 20). Whether their impact is positive
or negative will depend not only on how they are used,
but also and especially on how they have been designed. If
ethical use is to be made of robots, an ethical perspective
must be made integral to their design and production. Today
this approach goes by the name “responsible robotics,” the
parameters of which are laid out in the present chapter.
Identifying lines of responsibility among the actors involved
in a robot’s development and implementation, as well as
establishing procedures to track these responsibilities as they

impact the robot’s future use, constitutes the “responsibility
attribution framework™ for responsible robotics. Whereas
Asimov’s (1950) famous “three laws of robotics” focused
on the behavior of the robot, current “responsible robotics”
redirects our attention to the human actors, designers, and
producers, who are involved in the development chain of
robots. The robotics sector has become highly complex, with
a wide network of actors engaged in various phases of devel-
opment and production of a multitude of applications. Under-
standing the different sorts of responsibility—moral, legal,
backward- and forward-looking, individual and collective—
that are relevant within this space, enables the articulation of
an adequate attribution framework of responsibility for the
robotics industry.

Regulating for Good National
and International Governance

An awareness that Al-based technologies have far outpaced
the existing regulatory frameworks has raised challenging
questions about how to set limits on the most dangerous
developments (lethal autonomous weapons or surveillance
bots, for instance). Under the assumption that the robotics
industry cannot be relied on to regulate itself, calls for gov-
ernment intervention within the regulatory space—national
and international—have multiplied (Kane, Chap. 21). The
author recognizes how Al technologies offer a special diffi-
culty to any regulatory authority, given their complexity (not
easily understood by nonspecialists) and their rapid pace of
development (a specific application will often be obsolete
by the time needed untill regulations are finally established).
The various approaches to regulating Al fall into two main
categories. A sectoral approach looks to identify the societal
risks posed by individual technologies, so that preventive or
mitigating strategies can be implemented, on the assumption
that the rules applicable to Al in say the financial industry,
would be very different from those relevant to heath care
providers. A cross-sectoral approach, by contrast, involves
the formulation of rules (whether norms adopted by indus-
trial consensus or laws set down by governmental authority)
that, as the name implies, would have application to Al-
based technologies in their generality. After surveying some
domestic and international initiatives that typify the two
approaches, the chapter concludes with a list of 15 recom-
mendations to guide reflection on the promotion of societally
beneficial Al

Toward Global Al Frameworks

Over the past two decades, the field of Al/robotics has
spurred a multitude of applications for novel services. A
particularly fast and enthusiastic development of AI/Robotics
occurred in the first and second decades of the century around
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industrial applications and financial services. Whether or not
the current decade will see continued fast innovation and
expansion of Al-based commercial and public services is an
open question. An important issue is and will become even
more so, how the Al innovation fields are being dominated
by national strategies especially in the USA and China, or if
some global arrangement for standard setting and openness
can be contemplated to serve the global common good along
with justifiable protection of intellectual property (IP) and
fair competition in the private sector. This will require nu-
merous rounds of negotiation concerning Al/Robotics, com-
parable with the development of rules on trade and foreign
direct investment. The United Nations could provide the
framework. The European Union would have a strong interest
in engaging in such a venture, too. Civil society may play key
roles from the perspective of protection of privacy.

Whether Al may serve good governance or bad gover-
nance depends, inter alia, on the corresponding regulatory
environment. Risks of manipulative applications of Al for
shaping public opinion and electoral interference need at-
tention, and national and international controls are called
for. The identification and prevention of illegal transactions,
for instance money received from criminal activities such
as drug trafficking, human trafficking or illegal transplants,
may serve positively, but when Al is in the hands of op-
pressive governments or unethically operating companies,
Al/robotics may be used for political gain, exploitation, and
undermining of political freedom. The new technologies
must not become instruments to enslave people or further
marginalize the people suffering already from poverty.

Efforts of publicly supported development of intelligent
machines should be directed to the common good. The im-
pact on public goods and services, as well as health, educa-
tion, and sustainability, must be paramount. Al may have un-
expected biases or inhuman consequences including segmen-
tation of society and racial and gender bias. These need to be
addressed within different regulatory instances—both gov-
ernmental and nongovernmental—before they occur. These
are national and global issues and the latter need further
attention from the United Nations.

The war-related risks of Al/robotics need to be addressed.
States should agree on concrete steps to reduce the risk
of Al-facilitated and possibly escalated wars and aim for
mechanisms that heighten rather than lower the barriers of
development or use of autonomous weapons, and fostering
the understanding that war is to be prevented in general. With
respect to lethal autonomous weapon systems, no systems
should be deployed that function in an unsupervised mode.
Human accountability must be maintained so that adherence
to internationally recognized laws of war can be assured and
violations sanctioned.

J.von Braun et al.

Protecting People’s and Individual Human Rights
and Privacy
Al/robotics offer great opportunities and entail risks; there-
fore, regulations should be appropriately designed by legit-
imate public institutions, not hampering opportunities, but
also not stimulating excessive risk-taking and bias. This
requires a framework in which inclusive public societal dis-
course is informed by scientific inquiry within different dis-
ciplines. All segments of society should participate in the
needed dialogue. New forms of regulating the digital econ-
omy are called for that ensure proper data protection and
personal privacy. Moreover, deontic values such as “permit-
ted,” “obligatory,” and “forbidden” need to be strengthened
to navigate the web and interact with robots. Human rights
need to be protected from intrusive Al

Regarding privacy, access to new knowledge, and infor-
mation rights, the poor are particularly threatened because of
their current lack of power and voice. Al and robotics need to
be accompanied by more empowerment of the poor through
information, education, and investment in skills. Policies
should aim for sharing the benefits of productivity growth
through a combination of profit-sharing, not by subsidizing
robots but through considering (digital) capital taxation, and
a reduction of working time spent on routine tasks.

Developing Corporate Standards

The private sector generates many innovations in Al/robotics.
It needs to establish sound rules and standards framed by
public policy. Companies, including the large corporations
developing and using Al, should create ethical and safety
boards, and join with nonprofit organizations that aim to es-
tablish best practices and standards for the beneficial deploy-
ment of Al/ robotics. Appropriate protocols for Al/robotics’
safety need to be developed, such as duplicated checking by
independent design teams. The passing of ethical and safety
tests, evaluating for instance the social impact or covert racial
prejudice, should become a prerequisite for the release of new
Al software. External civil boards performing recurrent and
transparent evaluation of all technologies, including in the
military, should be considered. Scientists and engineers, as
the designers of Al and robot devices, have a responsibility to
ensure that their inventions and innovations are safe and can
be used for moral purposes (Gibney 2020). In this context,
Pope Francis has called for the elaboration of ethical guide-
lines for the design of algorithms, namely an “algorethics.”
To this he adds that “it is not enough simply to trust in the
moral sense of researchers and developers of devices and al-
gorithms. There is a need to create intermediate social bodies
that can incorporate and express the ethical sensibilities of
users and educators.” (Pope Francis 2020). Developing and
setting such standards would help in mutual learning and
innovation with international spillover effects. Standards for
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protecting people’s rights for choices and privacy also apply
and may be viewed differently around the world. The general
standards, however, are defined for human dignity in the UN
Human Rights codex.
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Abstract

This chapter identifies the differences between natural and
artifical cognitive systems. Benchmarking robots against
brains may suggest that organisms and robots both need
to possess an internal model of the restricted environment
in which they act and both need to adjust their actions to
the conditions of the respective environment in order to
accomplish their tasks. However, computational strategies
to cope with these challenges are different for natural and
artificial systems. Many of the specific human qualities
cannot be deduced from the neuronal functions of indi-
vidual brains alone but owe their existence to cultural
evolution. Social interactions between agents endowed
with the cognitive abilities of humans generate immaterial
realities, addressed as social or cultural realities. Inten-

tionality, morality, responsibility and certain aspects of
consciousness such as the qualia of subjective experience
belong to the immaterial dimension of social realities. It
is premature to enter discussions as to whether artificial
systems can acquire functions that we consider as inten-
tional and conscious or whether artificial agents can be
considered as moral agents with responsibility for their
actions.
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stricted environment in which they act and both need to
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adjust their actions to the idiosyncratic conditions of the
respective environment in order to accomplish particular
tasks. However, the computational strategies to cope with
these challenges exhibit marked differences between natural
and artificial systems.

In natural systems the model of the world is to a large
extent inherited, i.e. the relevant information has been ac-
quired by selection and adaptation during evolution, is stored
in the genes and expressed in the functional anatomy of
the organism and the architecture of its nervous systems.
This inborn model is subsequently complemented and refined
during ontogeny by experience and practice. The same holds
true for the specification of the tasks that the organism needs
to accomplish and for the programs that control the execution
of actions. Here, too, the necessary information is provided in
part by evolution and in part by lifelong learning. In order to
be able to evolve in an ever-changing environment, organisms
have evolved cognitive systems that allow them to anal-
yse the actual conditions of their embedding environment,
to match them with the internal model, update the model,
derive predictions and adapt future actions to the actual
requirements.

In order to complement the inborn model of the world
organisms rely on two different learning strategies: Unsuper-
vised and supervised learning. The former serves to capture
frequently occurring statistical contingencies in the environ-
ment and to adapt processing architectures to the efficient
analysis of these contingencies. Babies apply this strategy for
the acquisition of the basic building blocks of language. The
unsupervised learning process is implemented by adaptive
connections that change their gain (efficiency) as a function
of the activity of the connected partners. If in a network two
interconnected neurons are frequently coactivated, because
the features to which they respond are often present simulta-
neously, the connections among these two neurons become
more efficient. The neurons representing these correlated
features become associated with one another. Thus, statis-
tical contingencies between features get represented by the
strength of neuronal interactions. “Neurons wire together if
they fire together”. Conversely, connections among neurons
weaken, if these are rarely active together, i.e. if their activity
is uncorrelated. By contrast, supervised learning strategies
are applied when the outcome of a cognitive or executive
process needs to be evaluated. An example is the generation
of categories. If the system were to learn that dogs, sharks and
eagles belong to the category of animals it needs to be told
that such a category exists and during the learning process it
needs to receive feedback on the correctness of the various
classification attempts. In case of supervised learning the
decision as to whether a particular activity pattern induces
a change in coupling is made dependent not only on the
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local activity of the coupled neurons but on additional gating
signals that have a “now print” function. Only if these signals
are available in addition can local activity lead to synaptic
changes. These gating signals are generated by a few special-
ized centres in the depth of the brain and conveyed through
widely branching nerve fibres to the whole forebrain. The
activity of these value assigning systems is in turn controlled
by widely distributed brain structures that evaluate the be-
havioural validity of ongoing or very recently accomplished
cognitive or executive processes. In case the outcome is
positive, the network connections whose activity contributed
to this outcome get strengthened and if the outcome is neg-
ative they get weakened. This retrospective adjustment of
synaptic modifications is possible, because activity patterns
that potentially could change a connection leave a molecular
trace at the respective synaptic contacts that outlasts the
activity itself. If the “now print” signal of the gating systems
arrives while this trace is still present, the tagged synapse will
undergo a lasting change (Redondo and Morris 2011; Frey
and Morris 1997). In this way, the network’s specific activity
pattern that led to the desired outcome will be reinforced.
Therefore, this form of supervised learning is also addressed
as reinforcement learning.

Comparing these basic features of natural systems with the
organization of artificial “intelligent” systems already reveals
a number of important differences.

Artificial systems have no evolutionary history but are the
result of a purposeful design, just as any other tool humans
have designed to fulfil special functions. Hence, their internal
model is installed by engineers and adapted to the specific
conditions in which the machine is expected to operate. The
same applies for the programs that translate signals from the
robot’s sensors into action. Control theory is applied to assure
effective coordination of the actuators. Although I am not
a specialist in robotics I assume that the large majority of
useful robots is hard wired in this way and lacks most of the
generative, creative and self-organizing capacities of natural
agents.

However, there is a new generation of robots with en-
hanced autonomy that capitalize on the recent progress in
machine learning. Because of the astounding performance of
these robots, autonomous cars are one example, and because
of the demonstration that machines outperform humans in
games such as Go and chess, it is necessary to examine in
greater depth to which extent the computational principles
realized in these machines resemble those of natural systems.

Over the last decades the field of artificial intelligence has
been revolutionized by the implementation of computational
strategies based on artificial neuronal networks. In the second
half of the last century evidence accumulated that relatively
simple neuronal networks, known as Perceptrons or Hopfield
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nets, can be trained to recognize and classify patterns and
this fuelled intensive research in the domain of artificial
intelligence. The growing availability of massive computing
power and the design of ingenious training algorithms pro-
vided compelling evidence that this computational strategy
is scalable. The early systems consisted of just three layers
and a few dozens of neuron like nodes. The systems that
have recently attracted considerable attention because they
outperform professional Go players, recognize and classify
correctly huge numbers of objects, transform verbal com-
mands into actions and steer cars, are all designed according
to the same principles as the initial three-layered networks.
However, the systems now comprise more than hundred
layers and millions of nodes which has earned them the
designation “deep learning networks”. Although the training
of these networks requires millions of training trials with a
very large number of samples, their amazing performance is
often taken as evidence that they function according to the
same principles as natural brains. However, as detailed in
the following paragraph, a closer look at the organization of
artificial and natural systems reveals that this is only true for
a few aspects.

Strategies for the Encoding of Relations: A
Comparison Between Artificial and Natural
Systems

The world, animate and inanimate, is composed of a rel-
atively small repertoire of elementary components that are
combined at different scales and in ever different constella-
tions to bring forth the virtually infinite diversity of objects.
This is at least how the world appears to us. Whether we
are caught in an epistemic circle and perceive the world as
composite because our cognitive systems are tuned to divide
wholes into parts or because the world is composite and
our cognitive systems have adapted to this fact will not be
discussed further. What matters is that the complexity of
descriptions can be reduced by representing the components
and their relations rather than the plethora of objects that
result from different constellations of components. It is prob-
ably for this reason that evolution has optimized cognitive
systems to exploit the power of combinatorial codes. A
limited number of elementary features is extracted from the
sensory environment and represented by the responses of
feature selective neurons. Subsequently different but com-
plementary strategies are applied to evaluate the relations
between these features and to generate minimally overlap-
ping representations of particular feature constellations for
classification. In a sense this is the same strategy as utilized
by human languages. In the Latin alphabet, 28 symbols
suffice to compose the world literature.

Encoding of Relations in Feed-Forward
Architectures

One strategy for the analysis and encoding of relations is
based on convergent feed-forward circuits. This strategy is
ubiquitous in natural systems. Nodes (neurons) of the input
layer are tuned to respond to particular features of input
patterns and their output connections are made to converge
on nodes of the next higher layer. By adjusting the gain
of these converging connections and the threshold of the
target node it is assured that the latter responds preferen-
tially to only a particular conjunction of features in the
input pattern (Hubel and Wiesel 1968; Barlow 1972). In
this way consistent relations among components become
represented by the activity of conjunction-specific nodes (see
Fig. 1). By iterating this strategy across multiple layers in
hierarchically structured feed-forward architectures complex
relational constructs (cognitive objects) can be represented
by conjunction-specific nodes of higher order. This basic
strategy for the encoding of relations has been realized in-
dependently several times during evolution in the nervous
systems of different phyla (molluscs, insects, vertebrates) and
reached the highest degree of sophistication in the hierarchi-
cal arrangement of processing levels in the cerebral cortex
of mammals (Felleman and van Essen 1991; Glasser et al.
2016; Gross et al. 1972; Tsao et al. 2006; Hirabayashi et
al. 2013; Quian Quiroga et al. 2005). This strategy is also
the hallmark of the numerous versions of artificial neuronal
networks designed for the recognition and classification of
patterns (Rosenblatt 1958; Hopfield 1987; DiCarlo and Cox
2007; LeCun et al. 2015). As mentioned above, the highly
successful recent developments in the field of artificial intel-
ligence, addressed as “deep learning networks” (LeCun et al.

A simple neural network
hidden layer

input layer output layer

A

Conjunction of AMB

Fig. 1 The encoding of relations by conjunction-specific neurons (red)
in a three-layered neuronal network. A and B refer to neurons at the
input layer whose responses represent the presence of features A and B.
Arrows indicate the flow of activity and their thickness the efficiency
of the respective connections. The threshold of the conjunction-specific
neuron is adjusted so that it responds only when A and B are active
simultaneously
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Fig. 2 Topology of a deep Hidden
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2015; Silver et al. 2017, 2018), capitalize on the scaling of composite objects can not only be related to one another by
this principle in large multilayer architectures (see Fig. 2). the formation of conjunction-specific cells but also by the

formation of functionally coherent assemblies of neurons. In

this case, the neurons that encode the features that need to
Encoding of Relations by Assemblies be bound together become associated into an assembly. Such

assemblies, so the original assumption, are distinguished as
In natural systems, a second strategy for the encoding of re- a coherent whole that represents a particular constellation
lations is implemented that differs in important aspects from of components (features) because of the jointly enhanced
the formation of individual, conjunction-specific neurons activation of the neurons constituting the assembly. The joint
(nodes) and requires a very different architecture of connec- enhancement of the neurons’ activity is assumed to be caused
tions. In this case, relations among components are encoded by cooperative interactions that are mediated by the recip-
by the temporary association of neurons (nodes) represent- rocal connections between the nodes of the network. These
ing individual components into cooperating assemblies that connections are endowed with correlation-dependent synap-
respond collectively to particular constellations of related tic plasticity mechanisms (Hebbian synapses, see below) and
features. In contrast to the formation of conjunction-specific  strengthen when the interconnected nodes are frequently co-
neurons by convergence of feed-forward connections, this activated. Thus, nodes that are often co-activated because
second strategy requires recurrent (reciprocal) connections the features to which they respond do often co-occur in the
between the nodes of the same layer as well as feed-back environment enhance their mutual interactions. As a result of
connections from higher to lower levels of the processing these cooperative interactions, the vigour and/or coherence of
hierarchy. In natural systems, these recurrent connections the responses of the respective nodes is enhanced when they
outnumber by far the feed-forward connections. As proposed are activated by the respective feature constellation. In this
by Donald Hebb as early as 1949, components (features) of = way, consistent relations among the components of cognitive
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objects are translated into the weight distributions of the
reciprocal connections between network nodes and become
represented by the joint responses of a cooperating assembly
of neurons. Accordingly, the information about the presence
of a particular constellation of features is not represented by
the activity of a single conjunction-specific neuron but by the
amplified or more coherent or reverberating responses of a
distributed assembly of neurons.

A Comparison Between the Two Strategies

Both relation-encoding strategies have advantages and
disadvantages and evolution has apparently opted for a
combination of the two. Feed-forward architectures are
well suited to evaluate relations between simultaneously
present features, raise no stability problems and allow for
fast processing. However, encoding relations exclusively
with conjunction-specific neurons is exceedingly expensive
in terms of hardware requirements. Because specific
constellations of (components) features have to be
represented explicitly by conjunction-specific neurons
via the convergence of the respective feed-forward
connections and because the dynamic range of the nodes
is limited, an astronomically large number of nodes and
processing levels would be required to cope with the
virtually infinite number of possible relations among the
components (features) characterizing real-world objects,
leave alone the representation of nested relations required to
capture complex scenes. This problem is addressed as the
“combinatorial explosion”. Consequently, biological systems
relying exclusively on feed-forward architectures are rare
and can afford representation of only a limited number of
behaviourally relevant relational constructs. Another serious
disadvantage of networks consisting exclusively of feed-
forward connections is that they have difficulties to encode
relations among temporally segregated events (temporal
relations) because they lack memory functions.

By contrast, assemblies of recurrently coupled, mutually
interacting nodes (neurons) can cope very well with the
encoding of temporal relations (sequences) because such
networks exhibit fading memory due to reverberation and
can integrate temporally segregated information. Assembly
codes are also much less costly in terms of hardware re-
quirements, because individual feature specific nodes can be
recombined in flexible combinations into a virtually infinite
number of different assemblies, each representing a different
cognitive content, just as the letters of the alphabet can
be combined into syllables, words, sentences and complex
descriptions (combinatorial code). In addition, coding space
is dramatically widened because information about the sta-
tistical contingencies of features can be encoded not only in
the synaptic weights of feed forward connections but also
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in the weights of the recurrent and feed-back connections.
Finally, the encoding of entirely new or the completion of
incomplete relational constructs (associativity) is facilitated
by the cooperativity inherent in recurrently coupled networks
that allows for pattern completion and the generation of novel
associations (generative creativity).

However, assembly coding and the required recurrent
networks cannot easily be implemented in artificial systems
for a number of reasons. First and above all it is extremely
cumbersome to simulate the simultaneous reciprocal inter-
actions between large numbers of interconnected nodes with
conventional digital computers that can perform only sequen-
tial operations. Second, recurrent networks exhibit highly
non-linear dynamics that are difficult to control. They can
fall dead if global excitation drops below a critical level and
they can engage in runaway dynamics and become epileptic
if a critical level of excitation is reached. Theoretical analysis
shows that such networks perform efficiently only if they
operate in a dynamic regime close to criticality. Nature takes
care of this problem with a number of self-regulating mech-
anisms involving normalization of synaptic strength (Turri-
giano and Nelson 2004), inhibitory interactions (E/I balance)
(Yizhar et al. 2011) and control of global excitability by
modulatory systems, that keep the network within a narrow
working range just below criticality (Plenz and Thiagarajan
2007; Hahn et al. 2010).

The third problem for the technical implementation of
biological principles is the lack of hardware solutions for
Hebbian synapses that adjust their gain as a function of
the correlation between the activity of interconnected nodes.
Most artificial systems rely on some sort of supervised learn-
ing in which temporal relations play only a minor role if at
all. In these systems the gain of the feed-forward connec-
tions is iteratively adjusted until the activity patterns at the
output layer represent particular input patterns with minimal
overlap. To this end very large samples of input patterns are
generated, deviations of the output patterns from the desired
result are monitored as “errors” and backpropagated through
the network in order to change the gain of those connections
that contributed most to the error. In multilayer networks this
is an extremely challenging procedure and the breakthroughs
of recent developments in deep learning networks were due
mainly to the design of efficient backpropagation algorithms.
However, these are biologically implausible. In natural sys-
tems, the learning mechanisms exploit the fundamental role
of consistent temporal relations for the definition of semantic
relations. Simultaneously occurring events usually have a
common cause or are interdependent because of interactions.
If one event consistently precedes the other, the first is likely
the cause of the latter, and if there are no temporal corre-
lations between the events, they are most likely unrelated.
Likewise, components (features) that often occur together are
likely to be related, e.g. because their particular constellation
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is characteristic for a particular object or because they are
part of a stereotyped sequence of events. Accordingly, the
molecular mechanisms developed by evolution for the estab-
lishment of associations are exquisitely sensitive to tempo-
ral relations between the activity patterns of interconnected
nodes. The crucial variable that determines the occurrence
and polarity of gain changes of the connections is the fem-
poral relation between discharges in converging presynaptic
inputs and/or between the discharges of presynaptic afferents
and the activity of the postsynaptic neuron. In natural systems
most excitatory connections—feed forward, feed-back and
recurrent—as well as the connections between excitatory
and inhibitory neurons are adaptive and can change their
gain as a function of the correlation between pre- and post-
synaptic activity. The molecular mechanisms that translate
electrical activity in lasting changes of synaptic gain evaluate
correlation patterns with a precision in the range of tens
of milliseconds and support both the experience-dependent
generation of conjunction-specific neurons in feed-forward
architectures and the formation of assemblies.

Assembly Coding and the Binding Problem

Although the backpropagation algorithm mimics in a rather
efficient way the effects of reinforcement learning in deep
learning networks it cannot be applied for the training of
recurrent networks because it lacks sensitivity to temporal
relations. However, there are efforts to design training algo-
rithms applicable to recurrent networks and the results are
promising (Bellec et al. 2019).

Another and particularly challenging problem associated
with assembly coding is the binding problem. This problem
arises whenever more than one object is present and when
these objects and the relations among them need to be en-
coded within the same network layer. If assemblies were
solely distinguished by enhanced activity of the constituting
neurons, as proposed by Hebb (1949), it becomes difficult
to distinguish which of the neurons with enhanced activity
actually belong to which assembly, in particular, if objects
share some common features and overlap in space. This con-
dition is known as the superposition catastrophe. It has been
proposed that this problem can be solved by multiplexing,
i.e. by segregating the various assemblies in time (Milner
1992; von der Malsburg and Buhmann 1992; for reviews see
Singer and Gray 1995; Singer 1999). Following the discovery
that neurons in the cerebral cortex can synchronize their
discharges with a precision in the millisecond range when
they engage in high frequency oscillations (Gray et al. 1989),
it has been proposed that the neurons temporarily bound
into assemblies are distinguished not only by an increase of
their discharge rate but also by the precise synchronization of
their action potentials (Singer and Gray 1995; Singer 1999).
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Synchronization is as effective in enhancing the efficiency of
neuronal responses in down-stream targets as is enhancing
discharge rate (Bruno and Sakmann 2006). Thus, activation
of target cells at the subsequent processing stage can be
assured by increasing either the rate or the synchronicity
of discharges in the converging input connections. The ad-
vantage of increasing salience by synchronization is that
integration intervals for synchronous inputs are very short,
allowing for instantaneous detection of enhanced salience.
Hence, information about the relatedness of responses can
be read out very rapidly. In extremis, single discharges can be
labelled as salient and identified as belonging to a particular
assembly if synchronized with a precision in the millisecond
range.

Again, however, it is not trivial to endow artificial re-
current networks with the dynamics necessary to solve the
binding problem. It would require to implement oscillatory
microcircuits and mechanisms ensuring selective synchro-
nization of feature selective nodes. The latter, in turn, have to
rely on Hebbian learning mechanisms for which there are yet
no satisfactory hardware solutions. Hence, there are multiple
reasons why the unique potential of recurrent networks is
only marginally exploited by Al systems.

Computing in High-Dimensional State Space

Unlike contemporary Al systems that essentially rely on
the deep learning algorithms discussed above, recurrent net-
works exhibit highly complex non-linear dynamics, espe-
cially if the nodes are configured as oscillators and if the cou-
pling connections impose delays—as is the case for natural
networks. These dynamics provide a very high-dimensional
state space that can be exploited for the realization of func-
tions that go far beyond those discussed above and are based
on radically different computational strategies. In the follow-
ing, some of these options will be discussed and substantiated
with recently obtained experimental evidence.

The non-linear dynamics of recurrent networks are ex-
ploited for computation in certain Al systems, the respective
strategies being addressed as “echo state, reservoir or liquid
computing” (LukoSevicius and Jaeger 2009; Buonomano and
Maass 2009; D’Huys et al. 2012; Soriano et al. 2013). In most
cases, the properties of recurrent networks are simulated in
digital computers, whereby only very few of the features of
biological networks are captured. In the artificial systems the
nodes act as simple integrators and the coupling connections
lack most of the properties of their natural counterparts. They
operate without delay, lack specific topologies and their gain
is non-adaptive. Most artificial recurrent networks also lack
inhibitory interneurons that constitute 20% of the neurons in
natural systems and interact in highly selective ways with
the excitatory neurons. Moreover, as the updating of network
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states has to be performed sequentially according to the clock
cycle of the digital computer used to simulate the recurrent
network, many of the analogue computations taking place in
natural networks can only be approximated with iterations if
at all. Therefore, attempts are made to emulate the dynamics
of recurrent networks with analogue technology. An original
and hardware efficient approach is based on optoelectron-
ics. Laser diodes serve as oscillating nodes and these are
reciprocally coupled through glass fibres whose variable
length introduces variations of coupling delays (Soriano et
al. 2013). All these implementations have in common to use
the characteristic dynamics of recurrent networks as medium
for the execution of specific computations.

Because the dynamics of recurrent networks resemble
to some extent the dynamics of liquids—hence the term
“liquid computing”—the basic principle can be illustrated
by considering the consequences of perturbing a liquid. If
objects impact at different intervals and locations in a pond
of water, they generate interference patterns of propagating
waves whose parameters reflect the size, speed, location and
the time of impact of the objects. The wave patterns fade with
a time constant determined by the viscosity of the liquid,
interfere with one another and create a complex dynamic
state. This state can be analysed by measuring at several
locations in the pond the amplitude, frequency and phase of
the respective oscillations and from these variables a trained
classifier can subsequently reconstruct the exact sequence
and nature of the impacting “stimuli”. Similar effects occur
in recurrent networks when subsets of nodes are perturbed
by stimuli that have a particular spatial and temporal struc-
ture. The excitation of the stimulated nodes spreads across
the network and creates a complex dynamic state, whose
spatio-temporal structure is determined by the constellation
of initially excited nodes and the functional architecture
of the coupling connections. This stimulus-specific pattern
continues to evolve beyond the duration of the stimulus due
to reverberation and then eventually fades. If the activity has
not induced changes in the gain of the recurrent connections
the network returns to its initial state. This evolution of the
network dynamics can be traced by assessing the activity
changes of the nodes and is usually represented by time
varying, high-dimensional vectors or trajectories. As these
trajectories differ for different stimulus patterns, segments
exhibiting maximal distance in the high-dimensional state
space can be selected to train classifiers for the identification
of the respective stimuli.

This computational strategy has several remarkable ad-
vantages: (1) low-dimensional stimulus events are projected
into a high-dimensional state space where nonlinearly sep-
arable stimuli become linearly separable; (2) the high di-
mensionality of the state space can allow for the mapping
of more complicated output functions (like the XOR) by
simple classifiers, and (3) information about sequentially
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presented stimuli persists for some time in the medium
(fading memory). Thus, information about multiple stimuli
can be integrated over time, allowing for the representation
of sequences; (4) information about the statistics of natural
environments (the internal model) can be stored in the weight
distributions and architecture of the recurrent connections
for instantaneous comparison with incoming sensory evi-
dence. These properties make recurrent networks extremely
effective for the classification of input patterns that have
both spatial and temporal structure and share overlapping
features in low-dimensional space. Moreover, because these
networks self-organize and produce spatio-temporally struc-
tured activity patterns, they have generative properties and
can be used for pattern completion, the formation of novel
associations and the generation of patterns for the control
of movements. Consequently, an increasing number of Al
systems now complement the feed-forward strategy imple-
mented in deep learning networks with algorithms inspired
by recurrent networks. One of these powerful and now widely
used algorithms is the Long Short Term Memory (LSTM) al-
gorithm, introduced decades ago by Hochreiter and Schmid-
huber (1997) and used in systems such as AlphaGo, the
network that outperforms professional GO players (Silver et
al. 2017, 2018). The surprising efficiency of these systems
that excels in certain domains human performance has nur-
tured the notion that brains operate in the same way. If one
considers, however, how fast brains can solve certain tasks
despite of their comparatively extremely slow components
and how energy efficient they are, one is led to suspect
implementation of additional and rather different strategies.

And indeed, natural recurrent networks differ from their
artificial counterparts in several important features which is
the likely reason for their amazing performance. In sensory
cortices the nodes are feature selective, i.e. they can be
activated only by specific spatio-temporal stimulus configu-
rations. The reason is that they receive convergent input from
selected nodes of the respective lower processing level and
thus function as conjunction-specific units in very much the
same way as the nodes in feed forward multilayer networks.
In low areas of the visual system, for example, the nodes
are selective for elementary features such as the location
and orientation of contour borders, while in higher areas
of the processing hierarchy the nodes respond to increas-
ingly complex constellations of elementary features. In ad-
dition, the nodes of natural systems, the neurons, possess
an immensely larger spectrum of integrative and adaptive
functions than the nodes currently used in artificial recur-
rent networks. And finally the neurons and/or their em-
bedding microcircuits are endowed with the propensity to
oscillate.

The recurrent connections also differ in important respects
from those implemented in most artificial networks. Because
of the slow velocity of signals conveyed by neuronal ax-
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ons interactions occur with variable delays. These delays
cover a broad range and depend on the distance between
interconnected nodes and the conduction velocity of the
respective axons. This gives rise to exceedingly complex
dynamics and permits exploitation of phase space for coding.
Furthermore and most importantly, the connections are en-
dowed with plastic synapses whose gain changes according
to the correlation rules discussed above. Nodes tuned to
features that often co-occur in natural environments tend
to be more strongly coupled than nodes responding to fea-
tures that rarely occur simultaneously. Thus, through both
experience-dependent pruning of connections during early
development and experience-dependent synaptic plasticity,
statistical contingencies between features of the environment
get internalized and stored not only in the synaptic weights of
feed-forward connections to feature selective nodes but also
in the weight distributions of the recurrent connections. Thus,
in low levels of the processing hierarchy the weight distribu-
tions of the recurrent coupling connections reflect statistical
contingencies of simple and at higher levels of more complex
constellations of features. In other words, the hierarchy of
reciprocally coupled recurrent networks contains a model of
the world that reflects the frequency of co-occurrence of typ-
ical relations among the features/components of composite
perceptual objects. Recent simulation studies have actually
shown that performance of an artificial recurrent network is
substantially improved if the recurrent connections are made
adaptive and can “learn” about the feature contingencies of
the processed patterns (Lazar et al. 2009; Hartmann et al.
2015).

Information Processing in Natural Recurrent
Networks

Theories of perception formulated more than a hundred years
ago (von Helmholtz 1867) and a plethora of experimental ev-
idence indicate that perception is the result of a constructivist
process. Sparse and noisy input signals are disambiguated
and interpreted on the basis of an internal model of the world.
This model is used to reduce redundancy, to detect charac-
teristic relations between features, to bind signals evoked
by features constituting a perceptual object, to facilitate
segregation of figures from background and to eventually
enable identification and classification. The store containing
such an elaborate model must have an immense capacity,
given that the interpretation of ever-changing sensory input
patterns requires knowledge about the vast number of dis-
tinct feature conjunctions characterizing perceptual objects.
Moreover, this massive amount of prior knowledge needs to
be arranged in a configuration that permits ultrafast readout
to meet the constraints of processing speed. Primates perform
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on average four saccades per second. This implies that new
visual information is sampled approximately every 250 ms
(Maldonado et al. 2008; Ito et al. 2011) and psychophysical
evidence indicates that attentional processes sample visual
information at comparable rates (Landau 2018; Landau and
Fries 2012). Thus, the priors required for the interpretation of
a particular sensory input need to be made available within
fractions of a second.

How the high-dimensional non-linear dynamics of delay-
coupled recurrent networks could be exploited to accomplish
these complex functions is discussed in the following para-
graph.

A hallmark of natural recurrent networks such as the
cerebral cortex is that they are spontaneously active. The dy-
namics of this resting activity reflects the weight distributions
of the structured network and hence harbours the entirety
of the stored “knowledge” about the statistics of feature
contingencies, i.e. the latent priors used for the interpretation
of sensory evidence. This predicts that resting activity is high
dimensional and represents a vast but constrained manifold
inside the universe of all theoretically possible dynamical
states. Once input signals become available they are likely
to trigger a cascade of effects: They drive in a graded way a
subset of feature sensitive nodes and thereby perturb the net-
work dynamics. If the evidence provided by the input patterns
matches well the priors stored in the network architecture,
the network dynamics will collapse to a specific substate
that provides the best match with the corresponding sensory
evidence. Such a substate is expected to have a lower dimen-
sionality and to exhibit less variance than the resting activity,
to possess a specific correlation structure and be metastable
due to reverberation among nodes supporting the respective
substate. Because these processes occur within a very-high-
dimensional state space, substates induced by different input
patterns are usually well segregated and therefore easy to
classify. As the transition from the high-dimensional resting
activity to substates follows stimulus-specific trajectories,
classification of stimulus-specific patterns is possible once
trajectories have sufficiently diverged and long before they
reach a fix point and this could account for the extremely fast
operations of natural systems.

Experimental studies testing such a scenario are still rare
and have become possible only with the advent of massive
parallel recordings from the network nodes. So far, how-
ever, the few predictions that have been subject to exper-
imental testing appeared to be confirmed. For the sake of
brevity, these experimental results are not discussed here.
They have been reviewed recently in Singer (2019a). A
simplified representation of the essential features of a delayed
coupled oscillator network supposed to be realized in the
superficial layers of the cerebral cortex is shown in Fig. 3
(adapted from Singer 2018).
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Fig. 3 Schematic representation of wiring principles in supra-granular
layers of the visual cortex. The coloured discs (nodes) stand for cortical
columns that are tuned to specific features (here stimulus orientation)
and have a high propensity to engage in oscillatory activity due to
the intrinsic circuit motif of recurrent inhibition. These functional
columns are reciprocally coupled by a dense network of excitatory
connections that originate mainly from pyramidal cells and terminate
both on pyramidal cells and inhibitory interneurons in the respective
target columns. Because of the genetically determined span of these

Concluding Remarks

Despite considerable effort there is still no unifying theory
of information processing in natural systems. As a conse-
quence, numerous experimentally identified phenomena lack
a cohesive theoretical framework. This is particularly true for
the dynamic phenomena reviewed here because they cannot
easily be accommodated in the prevailing concepts that em-
phasize serial feed-forward processing and the encoding of
relations by conjunction-specific neurons. It is obvious, how-
ever, that natural systems exploit the computational power
offered by the exceedingly complex, high-dimensional and
non-linear dynamics that evolve in delay-coupled recurrent
networks.

Here concepts have been reviewed that assign specific
functions to oscillations, synchrony and the more complex
dynamics emerging from a delay-coupled recurrent network
and it is very likely that further computational principles
are realized in natural systems that wait to be uncovered.
In view of the already identified and quite remarkable dif-
ferences between the computational principles implemented
in artificial and natural systems it appears utterly premature
to enter discussions as to whether artificial systems can
acquire functions that we consider proper to natural systems
such as intentionality and consciousness or whether artificial

connections coupling decreases exponentially with the distance between
columns. However, these connections undergo use-dependent selection
during development and remain susceptible to Hebbian modifications of
their gain in the adult. The effect is that the weight distributions of these
connections and hence the coupling strength among functional columns
(indicated by thickness of lines) reflect the statistical contingencies of
the respective features in the visual environment (for further details see
text). (From Singer W (2018) Neuronal oscillations: unavoidable and
useful? Europ J Neurosci 48: 2389-2398)

agents can or should be considered as moral agents that are
responsible for their actions. Even if we had a comprehensive
understanding of the neuronal underpinnings of the cognitive
and executive functions of human brains—which is by no
means the case—we still would have to consider the likely
possibility, that many of the specific human qualities cannot
be deduced from the neuronal functions of individual brains
alone but owe their existence to cultural evolution. As argued
elsewhere (Singer 2019b), it is likely that most of the conno-
tations that we associate with intentionality, responsibility,
morality and consciousness are attributions to our self-model
that result from social interactions of agents endowed with
the cognitive abilities of human beings. In a nutshell the
argument goes as follows: Perceptions—and this includes
also the perception of oneself and other human beings—are
the result of constructivist processes that depend on a match
between sensory evidence and a-priory knowledge, so-called
priors. Social interactions between agents endowed with the
cognitive abilities of humans generate immaterial realities,
addressed as social or cultural realities. This novel class of re-
alities assume the role of implicit priors for the perception of
the world and oneself. As a natural consequence perceptions
shaped by these cultural priors impose a dualist classification
of observables into material and immaterial phenomena,
nurture the concept of ontological substance dualism and
generate the epistemic conundrum of experiencing oneself
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The Emergence of Qualia
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Fig. 4 Phase transitions during biological (left) and cultural evolution (right) that lead to the emergence of new qualities. For details see text.
(From Singer W (2019) A naturalistic approach to the hard problem of consciousness. Front Syst Neurosci 13: 58)

as existing in both a material and immaterial dimension.
Intentionality, morality, responsibility and certain aspects of
consciousness such as the qualia of subjective experience
belong to this immaterial dimension of social realities.

This scenario is in agreement with the well-established
phenomenon that phase transitions in complex systems can
generate novel qualities that transcend the qualities of the
systems’ components. The proposal is that the specific hu-
man qualities (intentionality, consciousness, etc.) can only
be accounted for by assuming at least two-phase transitions:
One having occurred during biological evolution and the
second during cultural evolution (Fig. 4). The first consists
of the emergence of cognitive and executive functions from
neuronal interactions during biological evolution and the
second of the emergence of social realities from interac-
tions between the cognitive agents that have been brought
forth by the first phase transition. Accordingly, different
terminologies (Sprachspiel) have to be used to capture the
qualities of the respective substrates and the emergent phe-
nomena, the neuronal interactions, the emerging cognitive
and executive functions (behaviour), the social interactions
among cognitive agents and the emerging social realities. If
this evolutionary plausible scenario is valid, it predicts, that
artificial agents, even if they should one day acquire functions
resembling those of individual human brains,—and this is
not going to happen tomorrow—will still lack the immaterial
dimensions of our self-model. The only way to acquire this
dimension—at least as far as I can see—would be for them

to be raised like children in human communities in order
to internalize in their self-model our cultural achievements
and attributions—and this would entail not only transmission
of explicit knowledge but also emotional bonding. Or these
man-made artefacts would have to develop the capacity and
be given the opportunity to engage in their own social inter-
actions and recapitulate their own cultural evolution.
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Abstract

foundation for a general theory of cognitive agents is

The term Artificial Intelligence was coined in 1956. Since
then, this new research area has gone through several
cycles of fast progress and periods of apparent stagnation.
Today, the field has broadened and deepened significantly,
and developed a rich variety of theoretical approaches and
frameworks on the one side, and increasingly impressive
practical applications on the other side. While a thorough

still missing, there is a line of development within Al
research which aims at foundational justifications for the
design of cognitive agents, enabling the derivation of
theorems characterizing the possibilities and limitations
of computational cognitive agents.

J. Zimmermann (0<)) - A. B. Cremers
Institute of Computer Science, University of Bonn, Bonn, Germany
e-mail: jz@cs.uni-bonn.de

© The Author(s) 2021

Keywords

Artificial intelligence - Machine learning -
Computational cognitive agents - Universal induction -
Algorithmic transparency

29

J. von Braun et al. (eds.), Robotics, Al, and Humanity, https://doi.org/10.1007/978-3-030-54173-6_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54173-6_3&domain=pdf
mailto:jz@cs.uni-bonn.de
https://doi.org/10.1007/978-3-030-54173-6_3

30
Introduction

In its most general form, artificial intelligence is an area of
computer science which is concerned with the design and
analysis of agents acting within an open, partially, or com-
pletely unknown environment. The agent and the environ-
ment are coupled by observations and actions, i.e., the agent
observes the environment and executes actions which can
affect the environment. Additionally, the agent has an internal
state, which can serve as memory and as a resource for
internal reflection. The environment, too, has a state, which
in general is not directly accessible by the agent. Only by
observations the agent gets indirect and partial information
about the state of the environment.

In total, the agent—environment system is a coupled dy-
namical system, which can be described by the following two
functions:

E : Ing x Stateg — Stater x Outg,

A :Iny X Statey — Statey X Outy,

where E is the function defining the dynamics of the envi-
ronment and A is the function defining the agent. These two
functions are coupled by setting Outg = Iny and Outy
Ing. Typically, the elements of the input set of the agent are
called percepts, and the elements of the output set of the agent
actions. The agent function is often referred to as agent policy
(Fig. 1).

In order to define good or even optimal agent policies,
it is necessary to introduce the concept of goal or reward.

J. Zimmermann and A. B. Cremers

An agent policy is optimal if it reaches a goal with minimal
resources or maximizes reward. Ans infelligent agent is now
defined as an agent which achieves goals in a wide range
of environments. This definition was extracted by Legg and
Hutter from more than 70 informal definitions occurring in
cognitive science and Al research (Legg & Hutter, 2007a).
In Legg and Hutter (2007b) they introduce the first general,
formal definition of the intelligence of a computational agent.
With the 7 -functional and its successors, e.g. for the incor-
poration of spatio-temporal aspects, see Orseau and Ring
(2012), there are finally formal definitions of the core concept
of artificial intelligence. The formal definition of intelligence
by Legg and Hutter is briefly discussed in section “Defining
Intelligence”.

Learning from Data: The Problem of
Induction

The problem of induction, which can be informally described
as extracting rules from examples, leads to the following
question:

*  What set of possible models of the data generating process
should a learning agent consider?

To answer this question in its full generality, it is neces-
sary to explore the notion of “all possible models” from
a mathematical and computational point of view, and dis-
cuss the question of effective learnability in the context of

Percept

P

R

Reward

Agent

Environment

A

Action

Fig. 1 Reinforcement learning agent
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such generic model spaces. In Zimmermann and Cremers
(2012) we showed that within the learning framework in-
troduced by Solomonoff (1964a,b), Li and Vitanyi (2008)
the notion of “all possible models™ cannot be defined in an
absolute sense, but only with regard to a reference proof
system. This dependence is used to establish a relation-
ship between the fime complexity of the data generating
process and the logical complexity—defined as the proof-
theoretic strength of a background axiom system—of the
algorithmic learning system, thus shedding new light on
the undecidability of the induction scheme introduced by
Solomonoff.

The incomputability of Solomonoff induction can be
traced back to the fact that the learning system does not
know how much time has passed between two observations,
i.e., how much time the data generating process has
“invested” in order to produce the next observation. Such
learning frameworks, where the generator and the learner
are suspended while the other one is busy, will be called
asynchronous learning frameworks. If one introduces a
synchrony condition, which couples the time scales of the
generator and the learner, one gets a synchronous learning
framework and we will show that within such a learning
framework effective and universal induction is possible, i.e.,
every effectively generated data sequence can be effectively
learned.

Learning Frameworks

Every formal analysis of learning has to define a framework
which specifies the exact type of learning problems
considered and what successful learning means within this
framework. The details of such a learning framework can
have major implications for the question which learning
tasks are solvable and which are not. In the following
we will introduce two learning frameworks and we will
show that these frameworks answer the same question—
are universality and effectivity compatible properties?—
differently.

The Asynchronous Learning Framework

A widely used model for analyzing sequential learning or
decision tasks is, for example, defined in Hutter (2005),
p. 126:

Definition 1 An agent is a system that interacts with an
environment in cycles k = 1, 2, 3, .. .. In cycle k the action
(output) y, € Y of the agent is determined by a policy p
that depends on the I/O history y;x;- - -y,—1x¢—1. The envi-
ronment reacts to this action, and leads to a new perception

31

(input) x; € X determined by a deterministic function ¢
or probability distribution p, which depends on the history
Y1X1- - Yk—1Xk—1Yk- Then the next cycle k + 1 starts.

Here X is a set containing all possible perceptions and
Y is a set containing all possible actions of the agent. If the
actions affect the future observations, then we call the above
model an asynchronous agent framework, and if the actions
are predictions which do not affect future observations, we
call it an asynchronous learning framework.

In these asynchronous frameworks the resources, espe-
cially time, needed for generating the perceptions or the ac-
tions and predictions by the environment (the data generating
process) or the agent are not modeled. This, for example,
does imply that an agent does not know whether a new
observation has arrived after 1s or after one billion years,
or, more importantly, that it has to wait longer and longer
for each new observation. This last implication means that
the time scales of the environment and the agent are not
coupled, that, in a way, they belong to different universes.
This decoupling of time scales is the reason why we call the
framework asynchronous, and we will see that this property
has deep implications.

Figure 2 illustrates the coupling of a learning system and
an environment in the asynchronous learning framework.

The following notions are based on definitions in Zimmer-
mann and Cremers (2012). Real-valued probabilistic learning
systems are a specific type of learning system within the
asynchronous learning framework:

Definition 2 A real-valued probabilistic learning system is
a function

A {0, 1) x {0,1) — [0, 1]g, with A(x,0) + A(x, 1)
=1 forall x € {0, 1}*.

A real-valued probabilistic learning system has bits as
perceptions and the predictions are probabilities for the next
bit. One can extend the prediction horizon of A by feeding it
with its own predictions. This leads to a learning system A®
which makes probabilistic predictions for the next k bits (xy
is the concatenation of strings x and y):

AV = A,

Ay = AP, y) - Ay, D), x € {0, 11,y € {0, 1}*

A¥D(x, y0) = AP (x, y) - A(xy, 0).

Finally, the learnability of an infinite bit sequence s (s;.; is
the subsequence of s starting with bit i and ending with bit
J) is defined as follows:
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Fig. 2 Asynchronous learning framework

Definition 3 An infinite bit sequence s is learnable in the
limit by the probabilistic learning system A, if for all e > 0
there is an ng so that for all n > ny and all kK > 1:

k
A( )(Slil‘la Sn+1:n+k) >1—e.

This type of learnability criterion (learning in the limit) only
requires that the learning system eventually will be nearly
correct, but says nothing about the prediction accuracy on
initial segments of the bit sequence.

Solomonoff Induction

The induction scheme introduced by Solomonoff (1964a,b)
can be seen as a real-valued probabilistic learning system
within an asynchronous learning framework. Solomonoff
induction can learn (in the sense of Definition 3) all bit
sequences generated by Turing machines. In this sense it
is universal. In the following we will analyze the incom-
putability of Solomonoff induction and discuss why this
incomputability cannot be resolved within the asynchronous
learning framework.

The possible environments for Solomonoff induction can
be described as programs p (represented as finite binary
strings) executed by a fixed universal Turing machine U.
Specifically, the universal Turing machine U has a one-way
read-only input tape, some work tapes, and a one-way write-
only output tape (such Turing machines are called mono-
tone). The choice of the specific universal Turing machine
affects space complexity only by a constant factor and time
complexity at most by a logarithmic factor (Arora & Barak,
2009). Since the resources for generating the percepts are

not modeled in an asynchronous learning framework, these
effects are irrelevant and we can use any universal Turing
machine as our reference machine. The program strings are
chosen to be prefix-free, i.e. no program string is the prefix of
another program string. This is advantageous from a coding
point of view, and does not restrict universality (Li & Vitanyi,
2008).

A program p is a generator of a possible world, if it outputs
an infinite stream of bits when executed by U. Unfortunately,
it is not decidable whether a given program p has this well-
definedness property. This is the reason why Solomonoff in-
duction is incomputable: the inference process uses the whole
set of programs (program space) as possible generators, even
the programs which are not well-defined in the above sense. It
follows that either one restricts the model space to a decidable
set of well-defined programs, which leads to an effective
inference process but ignores possibly meaningful programs,
or one keeps all well-defined programs, but at the price of
necessarily keeping ill-defined programs as well.

The Synchronous Learning Framework

We will now introduce a learning framework where the
learning system gets information about the time the data
generating process has used in order to produce the next
observation. This concept is inspired by an analysis of real-
world sequential learning situations, where both the environ-
ment and the learning system are not suspended while the
other one is busy. But first we need the notion of the generator
time function, generator function for short, of a program p
(see Zimmermann & Cremers 2012):
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Definition 4 The generator time function GfDU ) N —
NU{oo} of a program p wrt. the universal reference machine
U assigns every n € N the number of transitions needed to
generate the first n bits by the reference machine U executing
p. If ng is the smallest number for which p does not generate
a new bit, then G;U)(n) = oo forall n > ny.

Further we call two programs p and g observation equivalent
if they generate the same bit sequence s. The equivalence
class of all programs corresponding to an infinite bit sequence
s will be denoted by [s]. According to the Oxford Dictionar-
ies Online (2013), synchrony can be defined as:

The state of operating or developing according to the same time
scale as something else.

This is a good description of what we have in mind, so we call
bit sequences having the following property synchronous:

GY )
n

Definition 5 s is synchronous (wrt. U) if limsup,,_, o
< oo for at least one p € [s].

As stated in section “Solomonoff Induction”, the time com-
plexity between different universal Turing machines can vary
by a logarithmic factor, so we have to define the notion of
synchrony relative to a fixed universal Turing machine U. A
bit sequence s is called synchronous, if there is a universal
Turing machine U so that s is synchronous wrt. U.

Synchrony entails that the time scales of the learning
system and the environment are coupled, that they cannot
ultimately drift apart. As long as one not assumes a mali-
cious environment, i.e., an environment that decelerates the
computing speed of the learning system more and more,
synchrony seems to be a natural property. A setting where
observable bit sequences can be assumed to be synchronous
will be called a synchronous learning framework.

Effective Universal Induction

We will now show that the problem of universal induction in
the synchronous learning framework is effective and discuss
implications of this result. The first step is formulated by the
following theorem:

Theorem 1 All synchronous bit sequences are learnable in
the limit by an effective learning system.

Proof This can be shown straightforward by using the
generator-predictor theorem proved in Zimmermann and
Cremers (2012), which states that a bit sequence s is learnable
in the limit by a learning system A(XY), if X' (a background
axiom system) proves the totality of a recursive functions
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which dominates the generator function of at least one
program in [s].

Now combining the synchrony condition wrt. a specific
universal Turing machine and the fact that the time com-
plexities of different universal Turing machines vary at most
by a logarithmic factor, it suffices to find a background
axiom system which proves the totality of a function which
dominates ¢ - n - log(n) for all positive constants c. Because
the function > will eventually be greater than ¢ - n -log(n) for
all fixed c, and the axiom system RC A (Recursive Compre-
hension Axiom, see Zimmermann & Cremers 2012) proves
the totality of n?, the effective learning system A(RC Ag) will
learn all synchronous bit sequences in the limit. O

The next idea is that via a process called clockification an
arbitrary computable bit sequence can be transformed into
a synchronous one (see Fig.3). Clockification is a process
by which a learning system extends in regular time inter-
vals (measured by its internal transitions) an observed bit
sequence s by inserting “clock signals” (coding a clock signal
by “00” and the original observed bits by “10” and “11”)
marking the passing of time. The resulting bit sequence is
a synchronous one.

Theorem 2 Within a synchronous learning framework, all
effectively generated bit sequences can be effectively learned
in the limit.

Proof By combining clockification and Theorem 1 we will
get the desired result. O

Caveats

The previous section has established an important result:
all effective generators can eventually be effectively learned
within the synchronous learning framework. This implies,
for example, that if a universe can be described by a Turing
machine, and we assume the assumptions of the synchronous
learning framework as valid, then there is an effective learn-
ing system A which would converge to the “theory of every-
thing” (TOE). This is an interesting result, but here is a list of
caveats which help to put this theorem into perspective:

1. A converges to the TOE, but we will never know when
this has happened or how close the current predictions are
to the truth.

2. The true model probably is not useful, learnability and
predictability fall apart, i.e., the true model could be
extremely complex, its evaluation would take so long that
its predictions would only arrive after the fact.

3. Even having a TOE does not mean that one can answer all
questions: there are cellular automata like “Game of Life”
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Fig. 3 Clockification: using an internal clock transforms all computable bit sequences into synchronous bit sequences

(Berlekamp, Conway, & Guy, 2001) or “Langton’s Ants”
(Langton, 1986) which can be seen as possible universes,
and the transition rules define the TOE of these universes.
But questions like “Are there self-reproducing patterns?”
or “Does this ant build a highway (i.e., a certain repetitive
pattern)?” cannot be answered in general, despite the fact
that we know the TOE of the “Game of Life” and the ant
world.

4. Finally, the information content of the universe could be
infinite: imagine a Turing machine which has a work
tape initialized to an infinite random bit sequence. Then
the transition process is effective, but the output stream
could still be incomputable by using ever more bits of the
random bit sequence.

The second caveat can be termed the “postdiction problem”:
one can in principle predict the future exactly, but the re-
sources needed to compute the predictions are prohibitive:
they would arrive long after the predicted event has happened.
This situation, where the notions of determinism and pre-
dictability fall apart, is discussed, for example, in Rummens
and Cuypers (2010).

In summary, the compatibility of universality and effec-
tiveness of inductive inference within the synchronous learn-
ing framework is an interesting theoretical finding, but has no
immediate practical implications. However, it can shed some
light on the path towards learning systems which are both
efficient and extremely general at the same time.

The Structure of Uncertainty

One central aspect of learning from experience is the rep-
resentation and processing of uncertain knowledge. In the
absence of assumptions about the world, there is no nontrivial
logical conclusion which can be drawn from the past on any
future event. Accordingly, it is of foundational interest to ana-
lyze the structure of uncertainty as a question in its own right,
and it has spawned a subfield of research within artificial
intelligence and philosophy. A plethora of approaches has
emerged over the last century to address this question, for
example, Dempster—Shafer theory (Dempster, 1967; Shafer,
1976), Possibility theory (Dubois & Prade, 1988; Dubois,
2006), Revision theory (Gérdenfors, 1992), Ranking theory
(Spohn, 1999, 2009), and non-monotonic logic (Ginsberg,
1987). A survey and discussion of many of the existing
approaches is given in Huber and Schmidt-Petri (2009).

In the following we discuss an approach to reasoning
under uncertainty by introducing a small axiom system de-
scribing necessary conditions for uncertainty measures. Fur-
thermore, this axiom system does not define the structure of
uncertainty explicitly, e.g. that uncertainty can be measured
by one real number, but entails the algebraic structure of
uncertainty values. This approach, which can be called al-
gebraic uncertainty theory, enables a unifying perspective
on reasoning under uncertainty. A good overview and a
discussion with examples of this algebraic approach can be
found in Arnborg (2016).
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Formalizing Uncertainty

First we have to discuss a subtle issue of terminology. Above
we have used the notion “uncertainty values” to denote
generalized truth values. Unfortunately, there is the following
problem when using this term in a formalized context: no
uncertainty about a proposition can be identified with sure
knowledge, but maximal uncertainty about a proposition is
not certainty with regard to the negation of the proposition.
The domains of truth values we want to axiomatize contain
a greatest and a least element, where the greatest element
should represent certainty and the least element impossibility,
i.e. certainty of the negated proposition. For this reason, we
adopt the notion “confidence measure” instead of uncertainty
measure in the following definitions and axioms.

The Algebra of Truth Bearers

Before delving into the structure of uncertainty, we have to
define the objects and their relations which are capable to
take on truth values, the truth bearers. In a context of crisp
events, i.e., after the fact it is unambiguously decidable if
the event has occurred or not, the algebra of truth bearers
is normally considered to be a Boolean algebra, but when
truth bearers are not crisp, then another proposition algebra
has to be considered, i.e., a fuzzy logic where the law of
complementation is not valid: x V —x # 1, or quantum logic.
The propositional algebra in quantum logic is “formally
indistinguishable from the calculus of linear subspaces of a
Hilbert space with respect to set products, linear sums, and
orthogonal complements” corresponding to the roles of and,
or, and not in a Boolean algebra. These linear subspaces
form orthomodular lattices which in general do not satisfy the
distributivity laws, see Padmanabhan and Rudeanu (2008),
page 128ff. The investigation of uncertainty measures for
non-Boolean proposition algebras is open to future research.

Uncertainty: The Boolean Case

A conditional confidence measure for a Boolean Algebra
U and a domain of confidence values C is a mapping I" :
Ux U\ {l} - C.Let A,B € U, then the expression
I" (A|B) reads: “the confidence value of A given B (wrt. I")”.
The domain of confidence values is partially ordered and has
a greatest () and a least (1) element. A confidence space
is a triple (U, I", C). One of the following axioms (Extensi-
bility) for confidence measures deals with relations between
confidence spaces defined over different Boolean algebras.
Thus it is necessary to introduce a set of confidence spaces all
sharing the same domain of confidence values. Such a set of
confidence spaces we will call a confidence universe, and the
following axiom system is concerned with such confidence
universes, and not single confidence spaces. This seemingly
technical shift in perspective is essential for the formalization
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of natural properties like extensibility, which plays a crucial
role as an intuitive axiom complementing Cox’s assumptions.

In Zimmermann (2012) seven axioms are introduced,
which can be grouped in three connective axioms, two order
axioms, and two “infrastructure axioms,” where the connec-
tive axioms concern properties of the logical connectives,
the order axioms relate the order structures of a proposition
algebra and the confidence domain, and the infrastructure
axioms deal with the combinability of confidence spaces
and a closure property. Here we only state two of the seven
axioms as examples; for a complete list of axioms and a
discussion, see Zimmermann (2012).

Axioms for Uncertainty
In the following, we use I'(A) as an abbreviation for
L' (A|T).

(Not) For all (Uy, I, C) and (_Uz, I, C)i
If I (Ay) = I3(A3), then I (Ay) = I3(A3).

The axiom Not expresses that the information in the
confidence value of a statement A is sufficient to determine
the confidence value of A. This is justified by the requirement
that every piece of information which is relevant for the
confidence value of A is relevant for the confidence value
of A and vice versa.

The other two connective axioms concern similar proper-
ties for the conjunction of two propositions. The next axiom
states that if a proposition A implies a proposition B (the
implication relation defines an order relation on a proposition
algebra), denoted by A < B, then the confidence in B is at
least as high as the confidence in A.

(Order;) Forall (U,I",C) and all A, B € U: If A < B,
then I'(A) < I'(B).

The order axioms connect the implication ordering of
the proposition algebra with the ordering on the confidence
domain, where Order; specifies the forward direction and a
second order axiom specifies the backward direction (Fig. 4).

The infrastructure axioms require the extensibility of do-
mains of discourse, i.e., two independently defined confi-
dence spaces shall be embeddable into one frame of ref-
erence, and a closure property of conditioning which as-
sures that for every confidence measure conditioned on some
background knowledge there is an equivalent unconditional
confidence measure.

For the justification of the axioms it is important to inter-
pret the expression I"(A|B) as: “all that can be said about the
confidence of A given B (wrt. I").” Given this interpretation,
the common justification of the connective axioms is that a
violation of these axioms will necessarily lead to a loss of
relevant information. Note that the axioms use only equations
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r(e)

Fig. 4 Ordered confidence values v and w with corresponding propo-
sitions in a suitably chosen confidence space (U, I, C)

and inequalities between confidence values, because there are
no algebraic operations defined on the domain of confidence
values yet.

It is now possible to characterize the algebraic structure
of a confidence domain as the [0, 1]-interval of a partially
ordered ring. Rings are algebraic structures which generalize
fields. For example, the real numbers with addition and
multiplication form a field. In a field all elements except zero
have a multiplicative inverse, in a ring this is not required,
i.e., a ring can contain elements other than 0 which are not
invertible. Confidence measures satisfy the analogs of the
axioms of probability, but with regard to the ring operations.
This is stated by the following theorem:

Ring Theorem The domain of confidence values C of a
confidence universe satisfying the connectivity, order, and
infrastructure axioms can be embedded into a partially or-
dered commutative ring. All confidence measures I" of the
confidence universe satisfy:

rm=1, (1)
IF(AVvB) =A@ (B, ifAAB=L1, (2
I'(AANB)=T(AIB)® '(B). (3)

In the next chapter we discuss a model for a general compu-
tational agent called AIXI, which was introduced by Hutter
(2005). This agent satisfies certain optimality conditions
with regard to its long-term behavior within the class of
computational agents. AIXI combines Solomonoff induction
and reinforcement learning, which captures also interactions
of an agent with the environment generating its perceptions.
AIXI, like Solomonoff induction, uses the Bayesian frame-
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work for representing and processing uncertainty, which does
not utilize the full generality of uncertainty calculi discussed
in this chapter, like infinitesimal or incomparable uncertainty
values, but Bayesian inference is a possible model of the
axioms introduced in Zimmermann (2012). How uncertainty
calculi using the full expressiveness of confidence domains
can be combined and integrated with the AIXI agent model
is open to future research.

A General Agent Architecture: AIXI

The framework of universal induction introduced by
Solomonoff only treats the modeling and predicting aspect of
learning, but the agent does not act based on its predictions,
so in the Solomonoff framework the environment affects the
learning agent, but not vice versa. In this sense, the loop
between agent and environment is not closed (no senso-
motoric loop). Enhancing the Solomonoff framework in
order to incorporate the possibility of actions leads to a
framework introduced by Hutter (2005), which can be seen
as an integration of the reinforcement learning framework
(Sutton, 1984) and the framework of Solomonoff. Now
the agent acts based on its predictions, and these actions can
affect the environment and change its future course, thus also
changing future observations of the agent. In order to define
the quality of an agent policy, we need generalization of the
loss function used to evaluate the predictions of learning
agents. Success is now defined by the environment and is
the second feedback channel, besides the percepts, from the
environment to the agent.

The search for optimal policies in this framework leads
to a generalization of Solomonoff induction, and agents
following such an optimal policy are called AIXI agents.
AIXI is a reinforcement learning agent which maximizes
the expected total rewards received from an environment. It
simultaneously considers every computable environment as
a possible generator of its perceptions. In each time step, it
looks at every computable environment and evaluates how
many rewards that environment generates depending on the
next action taken. The expected rewards are then weighted
by the subjective belief that this program constitutes the true
environment. This belief is computed from the length of the
program describing the environment: longer programs are
considered less likely, in line with Occam’s razor. AIXI then
selects the action that has the highest expected total reward
in the weighted sum of all these programs.

However, in Leike and Hutter (2015) it is shown, that a
bad prior for inductive inference can affect the agent behavior
indefinitely, because it does not sufficiently incite the agent
to explorative behavior. Accordingly, no theorem compara-
ble to the invariance theorem for Solomonoff induction is
available, and the choice of the reference machine becomes
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crucial. Unfortunately, investigations into suitable reference
machines are still in an early stage and have not yet resulted
in a clear candidate for a reference machine on which to base
a general cognitive agent.

Defining Intelligence

Legg and Hutter (2007b) used the combination of a general
reinforcement learning agent and Solomonoff induction to
define an intelligence functional 7" by assigning every agent
policy 7 an intelligence score describing its expected reward
averaged over all possible computable environments. It is an
attempt to translate their informal definition of intelligence,
“the ability to achieve goals in a wide range of environments,”
in a quantitative intelligence measure.

Let X be a set of perceptions, R be a set of rewards,
and ) be a set of actions of an agent. A deterministic agent
policy assigns to all possible sequences of percepts from
X and rewards from R an action from ). A probabilistic
policy assigns to all percept/reward sequences a probability
distribution on the action set ). The total reward V,,(7) of a
policy 7 for an environment p is the accumulated reward an
agent executing policy 7 in environment p collects during its
lifetime.

Now the computable environment @ can be seen as a
binary program running on a suitable universal Turing ma-
chine used as a reference machine. Solomonoff induction
assumes that the prior probability of an environment w is
proportional to 27!, where || is the length of the binary
program describing p (Li & Vitdnyi, 2008). Thus simpler
environments, meaning that there is a shorter program to
describe them, get a higher prior probability. These prior
probabilities are used to define the expected reward of policy
7 over all computable environments:

Y(r) = 22*‘“' -V, (),

nek

where E is the set of all computable environments. Legg
and Hutter call 7 (;r) the universal intelligence of an agent
using policy 7. The first aspect of their informal definition of
intelligence, “achieving goals,” is encoded in the value V), (7r)
of policy m with regard to each environment, the second
aspect, “in a wide range of environments,” is represented by
averaging over all computable environments. This measure
was the first formal definition of the intelligence of a general
computational agent, and thus represents an important mile-
stone in the foundations of artificial intelligence.

37
The Quest for a Standard Reference Machine

The results of Leike and Hutter (2015) made it abundantly
clear that in order to make progress in understanding the
simplicity or complexity of finite objects it is necessary to
reach a consensus on a meaningful reference machine, i.e.,
which operations are available and executable in unit time.
Such a consensus on a reference machine could serve as a
standard for measuring descriptive and computational com-
plexity. Like today’s physical units, such a standard reference
machine would contain contingent elements, but if it is cho-
sen in a “natural” way it could nevertheless be tremendously
useful.

Reference Machines and Initial Complexity

In order to analyze the computational complexity (or sim-
plicity) of a computational object (algorithm, model, agent),
it is necessary to define a reference machine which executes
the computations. The first precisely defined mathematical
model of computation, an abstract machine, was introduced
by Alan Turing in 1936. There were many different attempts
to define a model of computation, for example, the A-calculus
or Markov algorithms, but they were all found to equiv-
alent to or weaker than Turing machines. This led to the
formulation of the Church—Turing thesis, that all conceivable
mathematical models of computation are equivalent to the
Turing machine. The thesis found widespread acceptance,
and today Turing machines are seen as defining an absolute
notion of computability. Turing also showed that there are
incomputable problems, of which the halting problem is the
most famous. Another important discovery was the existence
of universal Turning machines, i.e., Turning machines which
are capable to simulate all other Turing machines. For a
discussion of the Church-Turing thesis, universal Turing
machines, and related topics, see Herken (1994).

If one is only interested whether a problem can be solved
by computation or not, one can use any universal Turing
machine U as a reference machine and if there is a program
for U which solves the problem, then the problem is com-
putable, otherwise not. So for questions of computability any
universal Turing machine can be used and will lead to the
same answers. But things become much more complicated
when one is not only interested in computability, but also
in complexity, i.e. the resources needed to actually execute
the computations. Typically, one is interested in time and
space complexity, and a central theorem relates the time and
space complexity of a universal Turing machine to any Turing
machine (Arora & Barak, 2009):
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Theorem There exists a TM U such that for every x, p €
{0, 1}*, with U(x, p) = M,(x), where M, denotes the TM
represented by p.

Furthermore, if M), halts on input x within T steps, then
U (x, p) halts within C-T -log(T) steps, where C is a number
independent of |x| and depending only on M),’s alphabet size,
number of tapes, and number of states.

This means if one is interested only in the general growth
of the time complexity with the input length, i.e., with the
asymptotic behavior, a suitably chosen UTM can serve as
a reference machine for analyzing the time complexity of
computational problems. Current computational complexity
theory tries to classify problems with regard to the asymptotic
complexity, and for this goal the above specification of a
reference machine is sufficient. For example, one of the most
important problem classes, P, i.e., the problems solvable in
polynomial time, does not change when one changes from
one UTM Uj to another UTM U,, provided they can simulate
all other TM’s within polynomial time. This has led to a very
successful theory of computational complexity, which can
help to classify the hardness of a computational problem.
The famous P = NP problem is one of the major open
questions of this field, and problems which can be shown to
be NP — hard are generally believed to have no efficient
algorithms to solve them (Arora & Barak, 2009).

For questions aiming at the asymptotic growth of needed
resources depending on the size of the input, this is a suitable
resolution of computational complexity. But for questions
regarding the computational complexity of a finite problem,
like the computational complexity of a good strategy for a
game like Go, or for deciding which of two binary strings has
a shorter description, we need to look closer at the reference
machine.

Iterated Boolean Circuits

We now introduce a proposal for a reference machine in-
spired by the basic functionality of current computing de-
vices, but also by striving for mathematical simplicity. Cur-
rent computing devices can be seen as the iterative appli-
cation of a hardwired Boolean circuit to a vector of bits.
Accordingly, an iterated Boolean circuit is defined as a
Boolean function on B", the set of n-bit vectors, which then
is applied iteratively, generating a sequence of bit vectors.
Additionally, the Boolean circuit is build entirely of NAND-
gates, i.e., the Boolean function which is false if both inputs
are true and otherwise true. The NAND-gate is a Boolean
base, so all Boolean functions can be expressed entirely with
NAND-gates. Interestingly, a similar machine model was
already defined by Alan Turing in a National Physical Labo-
ratory Report “Intelligent Machinery” published in 1948. He
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Fig. 5 A Boolean circuit
consisting of 4 NAND-gates

called networks of binary nodes connected by NAND-gates
“Unorganized Machines,” and introduced them as a possible
model for information processing in the human brain. This
report is reproduced in Cooper and Leeuwen (2013), pp. 501—
516.

These iterated Boolean circuits are now used to generate
sequences of output bits, and for an observed bit sequence the
learning problem is to find a small (measured by the number
of NAND-gates) Boolean circuit which, when iterated, gen-
erates the observed bit sequence. As an example, consider
the following bit sequence: 00010001000. There is a Boolean
circuit with 4 NAND-gates which generates this sequence,
see Fig.5. The leftmost bit is considered the output bit. In
Fig. 6 the sequence of output bits generated by the Boolean
circuit after 1 and after 11 iterations is depicted. Finally, when
the output sequence matches the observed sequence, we can
just continue with the iterated applications of the Boolean
circuit to generate predictions, see Fig.7. In this case, the
prediction for the 12th bit is “1.”

The problem of finding a generating Boolean circuit
matching an observed sequence can be seen as an inversion
problem. Inversion problems often lead to a combinatorial
search space, where no exhaustive strategy is applicable. We
now discuss an approach to deal with such combinatorial
search problems based on recent advances in machine
learning.

Outlook: Search in Circuit Space

The number of possible circuits grows like 200 je., super-
exponentially fast with the number n of gates. Even for small
numbers (like 10) an exhaustive search is not possible any-
more. The current advancements in combining deep learning,
a variant of artificial neural networks using many hidden
layers, with reinforcement learning can lead the way how
to explore huge combinatorial search spaces with limited
resources (Silver et al., 2018). In March 2016 a Go program
based on deep learning and a self-play loop won against
one of the best professional Go-players. This progress of
Computer Go was not expected within the next decade, which
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Fig. 6 Left: output sequence
after one iteration. Right: output
sequence after 11 iterations is
matching the observed sequence

000100010001 =—| 1 0 1

e

Prediction

Fig. 7 The twelfth bit is the prediction generated by the iterated
Boolean circuit

is a reason to hope that the basic principles of AlphaGo, and
its subsequent generalization AlphaZero, can be applied to
other combinatorial search problems as well. The core idea
is to use deep reinforcement learning to focus the exploration
of combinatorial search spaces on the most promising parts
(Fig. 8).

By introducing operators on circuit space (like adding a
gate, removing a gate, rewire a connection,...) the inversion
problem can be transformed into a reachability problem for
graphs and will thus be accessible to AlphaZero-like search
strategies (Fig. 9).

Conclusions and Outlook

Despite foundational results on learnability within the syn-
chronous and asynchronous learning frameworks, an axiom-
atization of uncertain reasoning, a formal definition of intel-
ligence, and many results on general reinforcement learning
agents, there is still no unifying axiomatization of general
cognitive agents comparable, for example, to the axiomatic
foundations of probability theory or set theory. Especially the
topics of a standard reference machine and cognition with
bounded resources have to be explored much further in order
to reach a meaningful and integrated foundational framework
for artificial intelligence.
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Nevertheless, the theoretical and practical advance of arti-
ficial intelligence has reached a state where ethical questions
and the impact on society become pressing issues. In the
following outlook we will discuss the emerging landscape of
ethical and social questions arising from the expansion of Al
systems to increasingly critical applications.

Algorithmic Accountability, Transparency, and
Fairness

The increase of computational resources and available data
on the one side, and the latest advancements in machine
learning, notably deep learning, on the other side have now
reached a critical level where Al systems start to leave highly
specialized and controlled environments and become part—
now or in the foreseeable future—of our daily lives, on an
individual and a societal level. Examples are autonomous
driving, natural language processing, and applications in the
judicial system. The prospect of general Al systems which
are not limited to narrow applications has led to growing
concerns about safety and trustworthiness. See Everitt, Lea,
and Hutter (2018) for a comprehensive review of current
literature.

The potential impact of Al applications on individuals and
society as a whole leads to an increased need for transparency
and accountability of Al systems which keeps pace with
the technical development. For example, autonomous driving
can lead to moral dilemmas when during an accident the
loss of human life becomes unavoidable, but the autonomous
driving system still can influence whose life will be endan-
gered (Awad et al., 2018). Natural language processing can
be used to facilitate fraud or to wield political influence, e.g.
via bots in social networks (Simonite, 2019). One especially
controversial decision support system already used by the
US judicial system is COMPAS, a system which assesses
the likelihood of a defendant becoming a recidivist. These
risk assessments can inform decisions about who will be set
free and who is not. Even if the race of the defendant is
not part of the variables considered by COMPAS, reports
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Fig. 8 The search strategy of [ J
AlphaGo

Fig. 9 The exploration of
Boolean circuits using an
AlphaZero-like search strategy
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have emerged that COMPAS risk levels are racially biased
(Angwin, Larson, Mattu, & Kirchner, 2016). A closer look
shows that the exact definition of unbiasedness or fairness
is instrumental, and different definitions can lead to different
outcomes (Corbett-Davies, Pierson, Feller, & Goel, 2016). In
this case, no decision system can be simultaneously unbiased
or fair with regard to all desirable definitions of unbiasedness
or fairness, and only an emerging consensus on which defini-
tion is the “right” or the “least problematic” one can mitigate
this dilemma.

From Association Learning to Causal Learning
The need for algorithmic transparency, accountability, and

unbiasedness adds new urgency to a topic which has af-
fected machine learning and statistics from the beginning:

the learned relationships are in general only association re-
lations and not causal relations, i.e., the observed covariation
between two variables A and B is caused by an unknown third
variable C. When actions based on predictions significantly
feed back into the observed system, association learning
cannot answer important questions arising with regard to the
consequences of the executed actions. In order to develop
and apply standards of transparency, accountability, and un-
biasedness, the result of learning has to identify the causal
factors that determine the predictions. The notion of causality
and the detection of causal relationships is a longstanding
problem in machine learning and statistics, but recently there
has been some progress, most notably the theory of causal
inference by Pearl, Glymour, and Jewell (2016), but also attri-
bution science (Otto, 2017) and causal deconvolution (Zenil,
Kiani, Zea, & Tegnér, 2019) are interesting developments.
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Attribution science, or probabilistic event attribution (PEA),
is an emerging field that assigns probabilities to possible
causes for observed effects, especially in the context of
climate change, but is still in an early stage and the validation
of its claims is subject to further research.

We are convinced that effective universal induction can
play an important role in causal learning by identifying
generators of observed data and not only associations within
the observed data. The importance of universal induction
was emphasized by one of the founding figures of artificial
intelligence, Marvin Minsky, during a discussion panel in
2010:

“It seems to me that the most important discovery since
Godel was the discovery by Chaitin, Solomonoff, and Kol-
mogorov of the concept called Algorithmic Probability which
is a fundamental new theory of how to make predictions given
a collection of experiences and this is a beautiful theory,
everybody should learn it, but it has got one problem, that is,
that you cannot actually calculate what this theory predicts
because it is too hard, it requires an infinite amount of work.
However, it should be possible to make practical approxi-
mations to the Chaitin, Kolmogorov, Solomonoff theory that
would make better predictions than anything we have today.
Everybody should learn all about that and spend the rest of
their lives working on it.”
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Abstract

The controversial question of whether machines may ever
be conscious must be based on a careful consideration
of how consciousness arises in the only physical system
that undoubtedly possesses it: the human brain. We sug-
gest that the word “consciousness” conflates two differ-
ent types of information-processing computations in the
brain: the selection of information for global broadcast-
ing, thus making it flexibly available for computation
and report (C1, consciousness in the first sense), and
the self-monitoring of those computations, leading to a
subjective sense of certainty or error (C2, consciousness
in the second sense). We argue that despite their recent
successes, current machines are still mostly implementing
computations that reflect unconscious processing (C0) in
the human brain. We review the psychological and neural
science of unconscious (C0) and conscious computations
(C1 and C2) and outline how they may inspire novel
machine architectures.

Keywords

Consciousness - Mind - Brain - Perception -
Metacognition

Imagine that you are driving when you suddenly realize
that the fuel-tank light is on. What makes you, a complex
assembly of neurons, aware of the light? And what makes
the car, a sophisticated piece of electronics and engineering,
unaware of it? What would it take for the car to be endowed
with a consciousness similar to our own? Are those questions
scientifically tractable?

Alan Turing and John von Neumann, the founders of the
modern science of computation, entertained the possibility
that machines would ultimately mimic all of the brain’s
abilities, including consciousness. Recent advances in arti-
ficial intelligence (AI) have revived this goal. Refinements
in machine learning, inspired by neurobiology, have led
to artificial neural networks that approach or, occasionally,
surpass humans (Silver et al. 2016; Lake et al. 2017). Al-
though those networks do not mimic the biophysical prop-
erties of actual brains, their design benefitted from several
neurobiological insights, including non-linear input-output
functions, layers with converging projections, and modifi-
able synaptic weights. Advances in computer hardware and
training algorithms now allow such networks to operate on
complex problems (e.g., machine translation) with success
rates previously thought to be the privilege of real brains. Are
they on the verge of consciousness?

S.Dehaene et al.

We argue that the answer is negative: the computations
implemented by current deep-learning networks correspond
mostly to nonconscious operations in the human brain.
However, much like artificial neural networks took their
inspiration from neurobiology, artificial consciousness may
progress by investigating the architectures that allow the
human brain to generate consciousness, then transferring
those insights into computer algorithms. Our aim is to
foster such progress by reviewing aspects of the cognitive
neuroscience of consciousness that may be pertinent for
machines.

Multiple Meanings of Consciousness

The word “consciousness,” like many pre-scientific terms, is
used in widely different senses. In a medical context, it is
often used in an intransitive sense (as in “the patient was no
longer conscious”), in the context of assessing vigilance and
wakefulness. Elucidating the brain mechanisms of vigilance
is an essential scientific goal with major consequences for
our understanding of sleep, anesthesia, coma, or vegetative
state. For lack of space, we do not deal with this aspect here,
however, because its computational impact seems minimal:
obviously, a machine must be properly turned on for its
computations to unfold normally.

We suggest that it is useful to distinguish two other es-
sential dimensions of conscious computation. We label them
using the terms global availability (C1) and self-monitoring
(C2).

* CI: Global availability. This corresponds to the transitive
meaning of consciousness (as in “The driver is conscious
of the light”). It refers to the relationship between a
cognitive system and a specific object of thought, such as
a mental representation of “the light.” This object appears
to be selected for further processing, including verbal and
nonverbal report. Information which is conscious in this
sense becomes globally available to the organism: we
can recall it, act upon it, speak about it, etc. This sense
is synonymous with “having the information in mind”:
among the vast repertoire of thoughts that can become
conscious at a given time, only that which is globally
available constitutes the content of C1-consciousness.

* (C2: Self-monitoring. Another meaning of consciousness
is reflexive. It refers to a self-referential relationship in
which the cognitive system is able to monitor its own pro-
cessing and obtain information about itself. Human beings
know a lot about themselves, including such diverse infor-
mation as the layout and position of their body, whether
they know or perceive something, or whether they just
made an error. This sense ofconsciousness corresponds



What Is Consciousness, and Could Machines Have It?

to what is commonly called introspection, or what psy-
chologists call “meta-cognition”—the ability to conceive
and make use of internal representations of one’s own
knowledge and abilities.

We propose that C1 and C2 constitute orthogonal dimen-
sions of conscious computations. This is not to say that
C1 and C2 do not involve overlapping physical substrates;
in fact, as we review below, in the human brain, both de-
pend on prefrontal cortex. But we argue that, empirically
and conceptually, the two may come apart, as there can be
C1 without C2, for instance when reportable processing is
not accompanied by accurate metacognition, or C2 without
Cl1, for instance when a self-monitoring operation unfolds
without being consciously reportable. As such, it is advan-
tageous to consider these computations separately before
we consider their synergy. Furthermore, many computations
involve neither C1 nor C2 and therefore properly called
“unconscious” (or CO for short). It was Turing’s original
insight that even sophisticated information processing can
be realized by a mindless automaton. Cognitive neuroscience
confirms that complex computations such as face or speech
recognition, chess-game evaluation, sentence parsing, and
meaning extraction occur unconsciously in the human brain,
i.e., under conditions that yield neither global reportability
nor self-monitoring (Table 1). The brain appears to operate,
in part, as a juxtaposition of specialized processors or “mod-
ules” that operate nonconsciously and, we argue, correspond
tightly to the operation of current feedforward deep-learning
networks.

We now review the experimental evidence for how
human and animal brains handle CO-, C1-, and C2-level
computations—before returning to machines and how they
could benefit from this understanding of brain architecture.

Unconscious Processing (C0): Where Most
of Our Intelligence Lies

Probing Unconscious Computations

“We cannot be conscious of what we are not conscious of”
(Jaynes 1976). This truism has deep consequences. Because
we are blind to our unconscious processes, we tend to under-
estimate their role in our mental life. However, cognitive neu-
roscientists developed various means of presenting images or
sounds without inducing any conscious experience (Fig. 1),
and then used behavioral and brain-imaging to probe their
processing depth.

The phenomenon of priming illustrates the remarkable
depth of unconscious processing. A highly visible target
stimulus, such as the written word “four,” is processedmore
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efficiently when preceded by a related prime stimulus, such
as the Arabic digit “4,” even when subjects do not notice the
presence of the prime and cannot reliably report its identity.
Subliminal digits, words, faces, or objects can be invariantly
recognized and influence motor, semantic, and decision lev-
els of processing (Table 1). Neuroimaging methods reveal
that the vast majority of brain areas can be activated noncon-
sciously.

Unconscious View-Invariance and Meaning
Extraction in the Human Brain

Many of the difficult perceptual computations, such as invari-
ant face recognition or speaker-invariant speech recognition,
that were recently addressed by Al, correspond to noncon-
scious computations in the human brain (Dupoux et al. 2008;
Kouider and Dehaene 2007; Qiao et al. 2010). For instance,
processing someone’s face is facilitated when it is preceded
by the subliminal presentation of a totally different view of
the same person, indicating unconscious invariant recogni-
tion (Fig. 1). Subliminal priming generalizes across visual-
auditory modalities (Faivre et al. 2014; Kouider and Dehaene
2009), revealing that cross-modal computations that remain
challenging for Al software (e.g., extraction of semantic vec-
tors, speech-to-text) also involve unconscious mechanisms.
Even the semantic meaning of sensory input can be processed
without awareness by the human brain. Compared to related
words (e.g., animal-dog), semantic violations (e.g., furniture-
dog) generate a brain response as late as 400 ms after stimulus
onset in temporal-lobe language networks, even if one of the
two words cannot be consciously detected (Luck et al. 1996;
van Gaal et al. 2014).

Unconscious Control and Decision-Making

Unconscious processes can reach even deeper levels of the
cortical hierarchy. For instance, subliminal primes can in-
fluence prefrontal mechanisms of cognitive control involved
in the selection of a task (Lau and Passingham 2007) or
the inhibition of a motor response (van Gaal et al. 2010).
Neural mechanisms of decision-making involve accumulat-
ing sensory evidence that affects the probability of the various
choices, until a threshold is attained. This accumulation
of probabilistic knowledge continues to happen even with
subliminal stimuli (de Lange et al. 2011; Vorberg et al.
2003; Dehaene et al. 1998a; Vlassova et al. 2014). Bayesian
inference and evidence accumulation, which are cornerstone
computations for Al (Lake etal. 2017), are basic unconscious
mechanisms for humans.
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Table 1 Examples of computations pertaining to information-processing levels C0, C1, and C2 in the human brain

Computation Examples of experimental findings References

CO: Unconscious processing

Invariant visual recognition Subliminal priming by unseen words and faces, | Kouider and Dehaene (2007)
invariant for font, size or viewpoint.
fMRI and single-neuron response to unseen Sergent et al. (2005), Kreiman et al. (2002),
words and faces Dehaene et al. (2001), Vuilleumier et al. (2001)
Unconscious judgment of chess-game Kiesel et al. (2009)
configurations
Access to meaning N400 response to unseen out-of-context words | Luck et al. (1996), van Gaal et al. (2014)
Cognitive control Unconscious inhibition or task set preparation by Lau and Passingham (2007), van Gaal et al.
an unseen cue (2010)
Reinforcement learning Subliminal instrumental conditioning by unseen | Pessiglione et al. (2008)
shapes

Consciousness in the first sense (C1): global availability of information

All-or-none selection and broadcasting of a | Conscious perception of a single picture during | Moreno-Bote et al. (2011)
relevant content visual rivalry

Conscious perception of a single detail in a Vul et al. (2009), Aly and Yonelinas (2012)
picture or stream

All-or-none memory retrieval Harlow and Yonelinas (2016)

Attentional blink: conscious perception of item | Asplund et al. (2014), Vul et al. (2008), Pincham
A prevents the simultaneous perception of item | et al. (2016), Sergent and Dehaene (2004)
B

All-or-none “ignition” of event-related potentials| Sergent et al. (2005), Marti et al. (2012), Marti et
and fMRI signals, only on trials with conscious | al. (2015), Del Cul et al. (2007), Marois et al.

perception (2004), Moutard et al. (2015)
All-or-none firing of neurons coding for the Panagiotaropoulos et al. (2012), Logothetis
perceived object in prefrontal cortex and other | (1998), Kreiman et al. (2002), Quiroga et al.
higher areas (2008), Rey et al. (2014)
Stabilization of short-lived information for | Brain states are more stable when information is | King et al. (2016), Schurger et al. (2015)
off-line processing consciously perceived; unconscious information

quickly decays (1 s)
Conscious access may occur long after the Sergent et al. (2013)
stimulus is gone

Flexible routing of information Only conscious information can be routed Sackur and Dehaene (2009)

through a series of successive operations (e.g.,
successive calculations 3 x 4 + 2)

Sequential performance of several tasks Psychological refractory period: conscious Marti et al. (2012), Marois and Ivanoff (2005)
processing of item A delays conscious
processing of item B
Serial calculations or strategies require de Lange et al. (2011), Sackur and Dehaene
conscious perception (2009)
Serial organization of spontaneous brain activity | Barttfeld et al. (2015)
during conscious thought in the “resting state”

Consciousness in the second sense (C2): self-monitoring

Self-confidence Humans accurately report subjective confidence, Meyniel et al. (2015), Fleming et al. (2010)
i.e., a probabilistic estimate in the accuracy of a
decision or computation

Evaluation of one’s knowledge Humans and animals can ask for help or “opt Smith (2009), Goupil and Kouider (2016),
out” when unsure Goupil et al. (2016)
Humans and animals know when they don’t Dunlosky and Metcalfe (2008), Smith (2009)
know or remember

Error detection Anterior cingulate response to self-detected Charles et al. (2013), Goupil and Kouider
errors (2016), Gehring et al. (1993)
Listing one’s skills Children know the arithmetic procedures at their| Siegler (1988)

disposal, their speed, and error rate.

Sharing one’s confidence with others Decision-making improves when two persons | Bahrami et al. (2010)
share knowledge



What Is Consciousness, and Could Machines Have It?

Objective stimulus

Identical
Related ~ e
Unrelated
500ms 50ms 33ms 500ms
Objective stimulus Subjective perception
Coherent
) .
Random

Fig. 1 Examples of paradigms probing unconscious processing (CO0).
(Top) Subliminal view-invariant face recognition (Kouider et al. 2009).
On each trial, a prime face is briefly presented (50 ms), surrounded
by masks that make it invisible, followed by a visible target face
(500 ms). Although subjective perception is identical across conditions,
processing is facilitated whenever the two faces represent the same
person, in same or different view. At the behavioral level, this view-
invariant unconscious priming is reflected by reduced reaction time
in recognizing the target face. At the neural level, it is reflected by
reduced cortical response to the target face (i.e., repetition suppression)
in the Fusiform Face Area of human inferotemporal cortex. (Bottom)

Unconscious Learning

Reinforcement learning algorithms, which capture how hu-
mans and animals shape their future actions based on the
history of past rewards, have excelled in attaining supra-
human Al performance in several applications, such as play-
ing Go (Silver et al. 2016). Remarkably, in humans, such
learning appears to proceed even when the cues, reward,
or motivation signals are presented below the consciousness
threshold (Pessiglione et al. 2008, 2007).

In summary, complex unconscious computations and in-
ferences routinely occur in parallel within various brain ar-
eas. Many of these CO computations have now been captured
by Al, particularly using feedforward convolutional neural

Subjective perception
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Subliminal accumulation of evidence during interocular suppression
(Vlassova et al. 2014). Presentation of salient moving dots in one eye
prevents the conscious perception of paler moving dots in the opposite
eye. Despite their invisibility, the gray dots facilitate performance when
they moved in the same direction as a subsequent dot-display, an effect
proportional to their amount of motion coherence. This facilitation
only affects a first-order task (judging the direction of motion), not a
second-order metacognitive judgment (rating the confidence in the first
response). A computational model of evidence accumulation proposes
that subliminal motion information gets added to conscious information,
thus biasing and shortening the decision

networks (CNNs). We now consider what additional compu-
tations are required for conscious processing.

Consciousness in the First Sense (C1): Global
Availability of Relevant Information

The Need for Integration and Coordination

The organization of the brain into computationally special-
ized subsystems is efficient, but this architecture also raises
a specific computational problem: the organism as a whole
cannot stick to a diversity of probabilistic interpretations—it
must act, and therefore cut through the multiple possibilities
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and decide in favor of a single course of action. Integrating
all of the available evidence to converge towards a single
decision is a computational requirement which, we contend,
must be faced by any animal or autonomous Al system, and
corresponds to our first functional definition of conscious-
ness: global availability (C1).

For instance, elephants, when thirsty, manage to determine
the location of the nearest water hole and move straight to it,
from a distance of 5 to 50 km (Polansky et al. 2015). Such
decision-making requires a sophisticated architecture for (1)
efficiently pooling over all available sources of information,
including multisensory and memory cues; (2) considering
the available options and selecting the best one based on
this large information pool; (3) sticking to this choice over
time; and (4) coordinating all internal and external processes
towards the achievement of that goal. Primitive organisms,
such as bacteria, may achieve such decision solely through
an unconscious competition of uncoordinated sensorimotor
systems. This solution, however, fails as soon as it becomes
necessary to bridge over temporal delays and to inhibit short-
term tendencies in favor of longer-term winning strategies.
Cobherent, thoughtful planning required a specific C1 archi-
tecture.

Consciousness as Access to an Internal Global
Workspace

We hypothesize that consciousness in the first sense (C1)
evolved as an information-processing architecture that ad-
dresses this information-pooling problem (Baars 1988; De-
haene et al. 1998b; Dennett 2001; Dehaene and Naccache
2001). In this view, the architecture of C1 evolved to break
the modularity and parallelism of unconscious computations.
On top of a deep hierarchy of specialized modules, a “global
neuronal workspace,” with limited capacity, evolved to select
a piece of information, hold it over time, and share it across
modules. We call “conscious” whichever representation, at a
given time, wins the competition for access to this mental
arena and gets selected for global sharing and decision-
making. Consciousness is therefore manifested by the tempo-
rary dominance of a thought or train of thoughts over mental
processes, such that it can guide a broad variety of behaviors.
These behaviors include not only physical actions, but also
mental ones such as committing information to episodic
memory or routing it to other processors.

Relation Between Consciousness and Attention
William James described attention as “the taking possession

by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought”
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(James 1890). This definition is close to what we mean by
consciousness in the first sense (C1): the selection of a single
piece of information for entry into the global workspace.
There is, however, a clear-cut distinction between this final
step, which corresponds to conscious access, and the previous
stages of attentional selection, which can operate uncon-
sciously. Many experiments have established the existence of
dedicated mechanisms of attention orienting and shown that,
like any other processors, they can operate nonconsciously:
(1) in the top-down direction, attention can be oriented to-
wards an object, amplify its processing, and yet fail to bring
it to consciousness (Naccache et al. 2002); (2) in the bottom-
up direction, attention can be attracted by a flash even if
this stimulus ultimately remains unconscious (Kentridge et
al. 1999). What we call attention is a hierarchical system of
sieves that operate unconsciously. Such unconscious systems
compute with probability distributions, but only a single
sample, drawn from this probabilistic distribution, becomes
conscious at a given time (Asplund et al. 2014; Vul et al.
2009). We may become aware of several alternative interpre-
tations, but only by sampling their unconscious distributions
over time (Moreno-Bote et al. 2011; Vul et al. 2008).

Evidence for All-Or-None Selection
in a Capacity-Limited System

The primate brain comprises a conscious bottleneck and
can only consciously access a single item at a time (see
Table 1). For instance, rivalling pictures or ambiguous words
are perceived in an all-or-none manner: at any given time,
we subjectively perceive only a single interpretation out of
many possible ones (even though the others continue to
be processed unconsciously (Panagiotaropoulos et al. 2012;
Logothetis 1998)). The serial operation of consciousness is
attested by phenomena such as the attentional blink and the
psychological refractory period, whereby conscious access to
a first item A prevents or delays the perception of a second
competing item B (Luck et al. 1996; Asplund et al. 2014;
Vul et al. 2008; Sergent et al. 2005; Marti et al. 2012, 2015).
Such interference with the perception of B is triggered by
the mere conscious perception of A, even if no task is per-
formed (Nieuwenstein et al. 2009). Thus, C1-consciousness
is causally responsible for a serial information-processing
bottleneck.

Evidence for Integration and Broadcasting

Brain-imaging in humans and neuronal recordings in mon-
keys indicate that the conscious bottleneck is implemented by
a network of neurons which is distributed through the cortex,
but with a stronger emphasis on high-level associative areas.
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Table 1 lists some of the publications that have evidenced an
all-or-none “‘ignition” of this network during conscious per-
ception, using a variety of brain-imaging techniques. Single-
cell recordings indicate that each specific conscious percept,
such as a person’s face, is encoded by the all-or-none firing of
a subset of neurons in high-level temporal and prefrontal cor-
tices, while others remain silent (Fig. 2) (Panagiotaropoulos
et al. 2012; Logothetis 1998; Kreiman et al. 2002; Quiroga et
al. 2008).

Stability as a Feature of Consciousness

Direct contrasts between seen and unseen pictures or words
confirm that such ignition occurs only for the conscious per-
cept. As explained earlier, nonconscious stimuli may reach
into deep cortical networks and influence higher levels of
processing and even central executive functions, but these
effects tend to be small, variable, and short-lived (although
nonconscious information decays at a slower rate than ini-
tially expected (King et al. 2016; Triibutschek et al. 2017)).
By contrast, the stable, reproducible representation of high-
quality information by a distributed activity pattern in higher
cortical areas is a feature of conscious processing (Table 1).
Such transient “meta-stability” seems to be necessary for
the nervous system to integrate information from a variety
of modules and then broadcast it back to them, thereby
achieving flexible cross-module routing.

C1 Consciousness in Human and Nonhuman
Animals

C1 consciousness is an elementary property which is present
in human infants (Kouider et al. 2013) as well as in animals.
Nonhuman primates exhibit similar visual illusions (Pana-
giotaropoulos et al. 2012; Logothetis 1998), attentional blink
(Maloney et al. 2013), and central capacity limits (Watanabe
and Funahashi 2014) as human subjects. Prefrontal cortex
appears to act as a central information sharing device and
serial bottleneck in both human and nonhuman primates
(Watanabe and Funahashi 2014). The considerable expan-
sion of prefrontal cortex in the human lineage may have
resulted in a greater capacity for multimodal convergence
and integration (Elston 2003; Neubert et al. 2014; Wang
et al. 2015). Furthermore, humans possess additional cir-
cuits in inferior prefrontal cortex for verbally formulating
and reporting information to others. The capacity to report
information through language is universally considered as
one of the clearest signs of conscious perception, because
once information has reached this level of representation in
humans, it is necessarily available for sharing across mental
modules, and therefore conscious in the C1 sense. Thus,
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while language is not required for conscious perception and
processing, the emergence of language circuits in humans
may have resulted in a considerable increase in the speed,
ease, and flexibility of Cl-level information sharing.

Consciousness in the Second Sense (C2):
Self-Monitoring

While C1-consciousness reflects the capacity to access exter-
nal, objective information, consciousness in the second sense
(C2) is characterized by the ability to reflexively represent
oneself (Cleeremans et al. 2007; Cleeremans 2014; Dunlosky
and Metcalfe 2008; Clark and Karmiloff-Smith 1993). A
substantial amount of research in cognitive neuroscience
and psychology has addressed self-monitoring under the
term of “metacognition,” roughly defined as cognition about
cognition or knowing about knowing. Below, we review
the mechanisms by which the primate brain monitors itself,
while stressing their implications for building self-reflective
machines.

A Probabilistic Sense of Confidence

When taking a decision, humans feel more or less confident
about their choice. Confidence can be defined as a sense
of the probability that a decision or computation is correct
(Meyniel et al. 2015). Almost anytime the brain perceives or
decides, it also estimates its degree of confidence. Learning
is also accompanied by a quantitative sense of confidence:
humans evaluate how much trust they have in what they have
learned, and use it to weigh past knowledge versus present
evidence (Meyniel and Dehaene 2017). Confidence can be
assessed nonverbally, either retrospectively, by measuring
whether humans persist in their initial choice, or prospec-
tively, by allowing them to opt out from a task without even
attempting it. Both measures have been used in nonhuman
animals to show that they too possess metacognitive abilities
(Smith 2009). By contrast, most current neural networks lack
them: although they can learn, they generally lack meta-
knowledge of the reliability and limits of what has been
learned. A noticeable exception is biologically constrained
models that rely on Bayesian mechanisms to simulate the
integration of multiple probabilistic cues in neural circuits
(Ma et al. 2006). These models have been fruitful in describ-
ing how neural populations may automatically compute the
probability that a given process is performed successfully.
Although these implementations remain rare and have not
addressed the same range of computational problems as
traditional Al, they offer a promising venue for incorporating
uncertainty monitoring in deep-learning networks.
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Fig. 2 Global availability: consciousness in the first sense (C1): Con-
scious subjective percepts are encoded by the sudden firing of stimulus-
specific neural populations distributed in interconnected, high-level
cortical areas, including lateral prefrontal cortex, anterior temporal
cortex, and hippocampus. (Top) During binocular flash suppression, the
flashing of a picture to one eye suppresses the conscious perception of a
second picture presented to the other eye. As a result, the same physical
stimulus can lead to distinct subjective percepts. This example illustrates
a prefrontal neuron sensitive to faces and unresponsive to checkers,
whose firing shoots up in tight association with the sudden onset of
subjective face perception (Panagiotaropoulos et al. 2012). (Bottom)
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During masking, a flashed image, if brief enough and followed by a
longer “mask,” can remain subjectively invisible. Shown is a neuron in
the entorhinal cortex firing selectively to the concept of “World Trade
Center.” Rasters in red indicate trials where the subject reported recog-
nizing the picture (blue = no recognition). Under masking, when the
picture is presented for only 33 ms there is little or no neural activity—
but once presentation time is longer than the perceptual threshold (66 ms
or larger), the neuron fires substantially only on recognized trials.
Overall, even for identical objective input (same duration), spiking
activity is higher and more stable for recognized trials (Quiroga et al.
2008)
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Explicit Confidence in Prefrontal Cortex

According to Bayesian accounts, each local cortical circuit
may represent and combine probability distributions in order
to estimate processing uncertainty (Ma et al. 2006). How-
ever, additional neural circuits may be required in order to
explicitly extract and manipulate confidence signals. MRI
studies in humans and physiological recordings in primates
and even in rats have specifically linked such confidence
processing to the prefrontal cortex (Fleming et al. 2010;
Miyamoto et al. 2017; Kepecs et al. 2008). Inactivation of
prefrontal cortex can induce a specific deficit in second-order
(i.e., metacognitive) judgments while sparing performance
on the first-order task (Miyamoto et al. 2017; Rounis et al.
2010). Thus, circuits in prefrontal cortex may have evolved
to monitor the performance of other brain processes.

Error Detection: Reflecting on One’s Own
Mistakes

Error detection provides a particularly clear example of self-
monitoring: just after responding, we sometimes realize that
we made an error and change our mind. Error detection
is reflected by two components of EEG activity, the error-
relativity negativity (ERN) and the positivity upon error (Pe),
which emerge in cingulate and medial prefrontal cortex just
after a wrong response, but before any feedback is received.
How can the brain make a mistake and detect it? One possi-
bility is that the accumulation of sensory evidence continues
after a decision is made, and an error is inferred whenever
this further evidence points in the opposite direction (Resulaj
et al. 2009). A second possibility, more compatible with
the remarkable speed of error detection, is that two parallel
circuits, a low-level sensory-motor circuit and a higher-level
intention circuit, operate on the same sensory data and signal
an error whenever their conclusions diverge (Charles et al.
2014, 2013).

Meta-Memory

Humans don’t just know things about the world—they actu-
ally know that they know, or that they don’t know. A familiar
example is having a word “on the tip of the tongue.” The term
“meta-memory” was coined to capture the fact that humans
report feelings of knowing, confidence, and doubts on their
memories. Meta-memory is thought to involve a second-
order system that monitors internal signals (e.g., the strength
and quality of a memory trace) to regulate behavior. Meta-
memory is associated with prefrontal structures whose phar-
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macological inactivation leads to a metacognitive impairment
while sparing memory performance itself (Miyamoto et al.
2017). Meta-memory is crucial to human learning and ed-
ucation, by allowing learners to develop strategies such as
increasing the amount of study or adapting the time allocated
to memory encoding and rehearsal (Dunlosky and Metcalfe
2008).

Reality Monitoring

In addition to monitoring the quality of sensory and memory
representations, the human brain must also distinguish self-
generated versus externally driven representations. Indeed,
we can perceive things, but also conjure them from imagina-
tion or memory. Hallucinations in schizophrenia have been
linked to a failure to distinguish whether sensory activity is
generated by oneself or by the external world (Frith 1992).
Neuroimaging studies have linked this kind of reality moni-
toring to the anterior prefrontal cortex (Simons et al. 2017).
In nonhuman primates, neurons in the prefrontal cortex dis-
tinguish between normal visual perception and active main-
tenance of the same visual content in memory (Mendoza-
Halliday and Martinez-Trujillo 2017).

Foundations of C2 Consciousness in Infants

Self-monitoring is such a basic ability that it is already
present during infancy (Fig. 3). The ERN, indicating error
monitoring, was observed when one-year-old infants made
a wrong choice in a perceptual decision task (Goupil and
Kouider 2016). Similarly, after 1-%—year-old infants pointed
to one of two boxes in order to obtain a hidden toy, they
waited longer for an upcoming reward (e.g., a toy) when
their initial choice was correct than when it was wrong, sug-
gesting that they monitored the likelihood that their decision
was right (Kepecs et al. 2008; Goupil and Kouider 2016).
Moreover, when given the opportunity to ask (nonverbally)
their parents for help instead of pointing, they chose this
opt-out option specifically on trials where they were likely
to be wrong, revealing a prospective estimate of their own
uncertainty (Goupil et al. 2016). The fact that infants can
communicate their own uncertainty to other agents further
suggests that they consciously experience metacognitive in-
formation. Thus, infants are already equipped with the ability
to monitor their own mental states. Facing a world where
everything remains to be learned, C2 mechanisms allow them
to actively orient towards domains that they know they don’t
know—a mechanism that we call “curiosity.”
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Fig. 3 Self-monitoring: consciousness in the second sense (C2): Self-
monitoring (also called “meta-cognition”), the capacity to reflect on
one’s own mental state, is available early during infancy. (Top) One-
and-half-year-old infants, after deciding to point to the location of a
hidden toy, exhibit two types of evidence for self-monitoring of their
decision: (1) they persist longer in searching for the hidden object
within the selected box when their initial choice was correct than
when it was incorrect. (2) When given the opportunity to ask for help,
they use this option selectively to reduce the probability of making

Dissociations Between C1 and C2

According to our analysis, C1 and C2 are largely orthogonal
and complementary dimensions of what we call conscious-
ness. On one side of this double dissociation, self-monitoring
can exist for unreportable stimuli (C2 without C1). Auto-
matic typing provides a good example: subjects slow down
after a typing mistake, even when they fail to consciously
notice the error (Logan and Crump 2010). Similarly, at the
neural level, an ERN can occur for subjectively undetected
errors (Nieuwenhuis et al. 2001). On the other side of this
dissociation, consciously reportable contents sometimes fail
to be accompanied by an adequate sense of confidence (C1
without C2). For instance, when we retrieve a memory, it
pops into consciousness (C1) but sometimes without any
accurate evaluation of its confidence (C2), leading to false
memories. As noted by Marvin Minsky, “what we call con-
sciousness [in the C1 sense] is a very imperfect summary
in one part of the brain of what the rest is doing.” The

an error. (Bottom) One-year-old infants were presented with either
a meaningless pattern or a face that was either visible or invisible
(depending on its duration) and then decided to gaze left or right in
anticipation of face reappearance. As for manual search, post-decision
persistence in waiting at the same gaze location increased for correct
compared to incorrect initial decisions. Moreover, EEG signals revealed
the presence of the error-related negativity over fronto-central electrodes
when infants make an incorrect choice. These markers of metacognition
were elicited by visible but not by invisible stimuli, as also shown in
adults (Charles et al. 2013)

imperfection arises in part from the fact that the conscious
global workspace reduces complex parallel sensory streams
of probabilistic computation to a single conscious sample
(Asplund et al. 2014; Vul et al. 2009; Moreno-Bote et al.
2011). Thus, probabilistic information is often lost on the
way, and subjects feel over-confident in the accuracy of their
perception.

Synergies Between C1 and C2 Consciousness

Because C1 and C2 are orthogonal, their joint possession
may have synergistic benefits to organisms. In one direction,
bringing probabilistic metacognitive information (C2) into
the global workspace (C1) allows it to be held over time,
integrated into explicit long-term reflection, and shared with
others. Social information sharing improves decisions: by
sharing their confidence signals, two persons achieve a better
performance in collective decision-making than either person
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alone (Bahrami et al. 2010). In the converse direction, the
possession of an explicit repertoire of one’s own abilities
(C2) improves the efficiency with which C1 information is
processed. During mental arithmetic, children can perform
a C2-level evaluation of their available competences (e.g.,
counting, adding, multiplying, memory retrieval . . . ) and use
this information to evaluate how to best face a given arith-
metic problem (Siegler 1988). This functionality requires a
single “common currency” for confidence across difference
modules, which humans appear to possess (de Gardelle and
Mamassian 2014).

Endowing Machines with C1 and C2

How could machines be endowed with C1 and C2 compu-
tations? Let us return to the car light example. In current
machines, the “low gas” light is a prototypical example of
an unconscious modular signal (C0). When the light flashes,
all other processors in the machine remain uninformed and
unchanged: fuel continues to be injected in the carburetor, the
car passes gas stations without stopping (although they might
be present on the GPS map), etc. Current cars or cell phones
are mere collections of specialized modules that are largely
“unaware” of each other. Endowing this machine with global
information availability (C1) would allow these modules to
share information and collaborate to address the impending
problem (much like humans do when they become aware of
the light, or elephants of thirst).

While AI has met considerable success in solving spe-
cific problems, implementing multiple processes in a sin-
gle system and flexibly coordinating them remain difficult
problems. In the 1960s, computational architectures called
“blackboard systems” were specifically designed to post
information and make it available to other modules in a
flexible and interpretable manner, similar in flavor to a global
workspace (Baars 1988). A recent architecture called Pathnet
uses a genetic algorithm to learn which path through its
many specialized neural networks is most suited to a given
task (Fernando et al. 2017). This architecture exhibits robust,
flexible performance and generalization across tasks, and
may constitute a first step towards primate-like conscious
flexibility.

To make optimal use of the information provided by
the fuel-gauge light, it would also be useful for the car to
possess a database of its own capacities and limits. Such self-
monitoring (C2) would include an integrated image of itself,
including its current location, fuel consumption, etc., as well
as its internal databases (e.g., “knowing” that it possesses
a GPS map that can locate gas stations). A self-monitoring
machine would keep a list of its subprograms, compute
estimates of their probabilities of succeeding at various tasks,
and constantly update them (e.g., noticing if a part fails).
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Most present-day machine-learning systems are devoid of
any self-monitoring: they compute (C0O) without representing
the extent and limits of their knowledge or the fact that others
may have a different viewpoint than their own. There are
a few exceptions: Bayesian networks (Ma et al. 2006) or
programs (Tenenbaum et al. 2011) compute with probability
distributions and therefore keep track of how likely they are to
be correct. Even when the primary computation is performed
by a classical CNN, and is therefore opaque to introspection,
it is possible to train a second, hierarchically higher neural
network to predict the first one’s performance (Cleeremans
et al. 2007). This approach, whereby a system re-describes
itself, has been claimed to lead to “the emergence of internal
models that are metacognitive in nature and (...) make it
possible for an agent to develop a (limited, implicit, prac-
tical) understanding of itself” (Cleeremans 2014). Pathnet
(Fernando et al. 2017) uses a related architecture to track
which internal configurations are most successful at a given
task and use this knowledge to guide subsequent processing.
Robots have also been programed to monitor their learning
progress, and use it to orient resources towards the problems
that maximize information gain, thus implementing a form
of curiosity (Gottlieb et al. 2013).

An important element of C2 which has received relatively
little attention is reality monitoring. Bayesian approaches to
Al (Lake et al. 2017; Tenenbaum et al. 2011) have recog-
nized the usefulness of learning generative models that can
be jointly used for actual perception (present), prospective
planning (future), and retrospective analysis (past). In hu-
mans, the same sensory areas are involved in both perception
and imagination. As such, some mechanisms are needed to
tell apart self-generated versus externally triggered activity.
A powerful method for training generative models, called
adversarial learning (Goodfellow et al. 2014) involves having
a secondary network ‘“compete” against a generative net-
work, to critically evaluate the authenticity of self-generated
representations. When such reality monitoring (C2) is cou-
pled with C1 mechanisms, the resulting machine may more
closely mimic human consciousness in terms of affording
global access to perceptual representations while having an
immediate sense that their content is a genuine reflection of
the current state of the world.

Concluding Remarks

Our stance is based on a simple hypothesis: what we call
“consciousness” results from specific types of information-
processing computations, physically realized by the hard-
ware of the brain. It differs from other theories in being res-
olutely computational—we surmise that mere information-
theoretic quantities (Tononi et al. 2016) do not suffice to
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define consciousness unless one also considers the nature and
depth of the information being processed.

We contend that a machine endowed with C1 and C2
would behave as if it were conscious—for instance, it would
know that it is seeing something, would express confidence in
it, would report it to others, could suffer hallucinations when
its monitoring mechanisms break down, and may even expe-
rience the same perceptual illusions as humans. Still, such
a purely functional definition of consciousness may leave
some readers unsatisfied. Are we “over-intellectualizing”
consciousness, by assuming that some high-level cognitive
functions are necessary tied to consciousness? Are we leav-
ing aside the experiential component (“what it is like” to be
conscious)? Does subjective experience escape a computa-
tional definition?

While those philosophical questions lie beyond the scope
of the present paper, we close by noting that, empirically,
in humans, the loss of C1 and C2 computations co-varies
with a loss of subjective experience. For example, in humans,
damage to the primary visual cortex may lead to a neuro-
logical condition called “blindsight,” in which the patients
report being blind in the affected visual field. Remarkably,
those patients can localize visual stimuli in their blind field,
but they cannot report them (C1) nor can they effectively
assess their likelihood of success (C2)—they believe that
they are merely “guessing.” In this example at least, sub-
jective experience appears to cohere with possession of C1
and C2. Although centuries of philosophical dualism have
led us to consider consciousness as unreducible to physical
interactions, the empirical evidence is compatible with the
possibility that consciousness arises from nothing more than
specific computations.
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Abstract

In this chapter, the question whether robots could be con-
scious is evaluated from a philosophical perspective. The
position taken is that the human being is the indispensable
locus of ethical discovery. Questions concerning what we
ought to do as morally equipped agents subject to norma-
tive guidance largely depend on our synchronically and
diachronically varying answers to the question of “who
we are.” It is argued here, that robots are not conscious
and could not be conscious, where consciousness is un-
derstood as a systemic feature of the animal-environment
relationship. It is suggested, that ethical reflection yields
the result that we ought not to produce cerebral organoids
implanted in a robotic “body.”
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Could a Robot be Conscious? The shortest answer to the
question posed in my title is: “No.” In what follows, I will
lay out some reasons for why we should endorse the shortest
answer. At the same time, I will argue that the right way of
looking at the issues at stake has significant consequences for
our relationship to the digital landscape we inhabit today.

Robots and A.L-systems created by machine learning
experts and research teams play a central role in our “in-
fosphere” (Floridi 2014). Yet, in order to understand that
role, it is crucial to update our conception of ourselves, the
human being. For, as I will argue, the human being is the
indispensable locus of ethical discovery. Questions concern-
ing what we ought to do as morally equipped agents subject
to normative guidance largely depend on our synchronically
and diachronically varying answers to the question of who
we are.
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My paper has two parts. In the first part, I argue that
robots (1) are not conscious and (2) could not be conscious if
consciousness is what I take it to be: a systemic feature of the
animal-environment relationship.! In the second part, I will
sketch an updated argument for the age-old idea (versions
of which can be found in Plato, Aristotle, Kant, Hegel and
beyond) that human sociality and, therefore, morality hinges
on our capacity to think of ourselves as animals located
in a context inhabited by humans and non-human animals
alike. This context is grounded in inanimate nature, which
presents us with necessary, but not sufficient conditions for
consciousness.

Why There Could Not Be Any Conscious
Robots

The Meaning of Existence

Ontology is the systematic investigation into the meaning of
“existence”. If successful, it leads to knowledge of existence,
i.e. the property or properties constitutive of some object’s
being there. In a series of books, I have defended the view
that to exist means “to appear in a field of sense” (Gabriel
2015a, b). To summarize the outcome of the arguments in this
context: there is no system such that every system (except for
itself) is a subsystem of that very system. It is impossible for
there be a single, all-encompassing field of sense such that
every object is part of it. This entails that, necessarily, every
object belongs to a specific domain (or field of sense, as I call
it), which conditions the field-relative properties that put it in
touch with other objects in the same field.

For instance, the Vatican is a legal entity with an impres-
sive history. The Vatican appears in the field of sense of
history. There are other legal entities in that field: Europe,
Italy, the University of Bonn, refugees, passports, taxes,
airports etc. The number 5 appears in a different field of
sense, such as the series of natural numbers or that of prime
numbers etc. The number 5 does not belong to history; nor is
history a mathematical object.

Any view of the form that there is just one overall do-
main of entities (such as the material-energetic layer of the
universe or what have you) is incoherent, as it relies on the
inconsistent and paradox-generating notion that there is an
all of reality which encompasses everything there is.

Given that there cannot be an all-encompassing domain of
objects subject to one set of laws or principles, we are entitled
to reject “naturalism” in the sense of a view of the form
that all knowledge is natural-scientific knowledge. Natural-
scientific knowledge only deals with one domain of objects,

'The notion of consciousness is steeped in paradox and, therefore,
highly questionable. For more on this see Gabriel (2019, 2017).
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namely the kinds of objects than are part of the material-
energetic system of the universe with which we can causally
interact.

As a short-cut to this result, one could, of course, simply
point out that the very idea of such an all-encompassing
domain of natural-scientific enquiry is quite evidently incom-
patible with mathematical logic and meta-mathematics. We
actually know that there cannot be a scientific model (or any
other model for that matter) such that absolutely everything
(from the early universe to transfinite sets to Angela Merkel)
falls within the range of its explanatory power. What is more,
there is no such thing as “science” or “natural science” in the
sense of a unified theoretical project whose singular terms
(such as “boson”, “dark matter”, “molecule”, “neuron”, “glia
cell”, “galaxy”, “the universe”, “robot”, “A.L.” or what have
you) each and all refer to well-defined entities in a single
domain (“reality”, “the universe”, “being”, “the world” or
what have you).

Locating an entity in a domain of investigation presup-
poses a stable insight into what it is. What an entity is,
depends on the field(s) of sense in which it makes an ap-
pearance. If we drop the field-parameter in our description of
how certain entities relate to each other (such as humans and
robots, minds and bodies, consciousness and brain-tissue,
numbers and countable objects etc.), we will wind up with
what Gilbert Ryle famously dubbed a category mistake.?

The idea of “conscious robots” potentially rests on a cate-
gory mistake. The reason why it is easy to be misled is the fol-
lowing. Humans produce artifacts out of biological and non-
biological matter. We build cars, tables, houses, guns, subway
systems, smartphones, servers, high-performance computers,
statues, etc. Throughout the recorded history of human be-
havior, we find that humans have produced artifacts, some of
which resembled humans and other animals, including cave
paintings, statues, etc.

What is equally remarkable is the fact that we find a long-
standing desire to produce an artefact in our own image,
i.e. something that resembles the feature that we still deem
central to human beings: Logos.> The most recent and some-
what amplified version of this tendency is the idea that we

2What often goes unnoticed is that the paradigmatic category mistake
according to Ryle is precisely a mistake in ontology in the sense
deployed here: “It is perfectly proper to say, in one logical tone of
voice, that there exist minds and to say, in another logical tone of
voice, that there exist bodies. But these expressions do not indicate two
different species of existence, for “existence” is not a generic word like
“coloured” or “sexed.” They indicate two different senses of “exist,”
somewhat as “rising” has different senses in “the tide is rising”, “hopes
are rising”, and “the average age of death is rising”. A man would be
thought to be making a poor joke who said that three things are now
rising, namely the tide, hopes and the average age of death. It would be
just as good or bad a joke to say that there exist prime numbers and
Wednesdays and public opinions and navies; or that there exist both
minds and bodies” (Ryle 1949, p. 23).

3For a critique of this narrative see Smith (2019) and Gabriel (2020a).
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might be able to produce intelligent agents, which resemble
humans not only in intellectual capacity, but even in shape
and movement.

Let us call these kinds of objects anthropoids. An anthro-
poid is a robot run by the kind of software nowadays sub-
sumed under the heading of “A.L.” Both robots and machine
learning techniques are progressing at a rate that makes it
possible for us to imagine robots moving in ways strikingly
similar to humans (and other animals). To the extent to which
they perform functions we classify as “intelligent” in humans
(and other animals), we are likely to be prone to think of
them as potential candidates for membership in the “kingdom
of ends” (Kant 2016, AA IV, 439),* i.e. in the domain of
autonomous and, therefore, moral agents.

However, this is a mistake, as I now want to argue. There
is nothing we owe to our artefacts directly. What we owe to
our robots is at most a function of what we owe to each other
as proprietors of technology. If you destroy my garden robot,
you harm me, but you cannot harm my robot in a morally
relevant manner, just as you cannot harm a beach by picking
up a handful of sand. A beach is a bunch of stones arranged
in a certain way due to causal, geological pressures including
the behavior of animals in its vicinity. A beach does not have
the right kind of organization to be the direct object of moral
concern.

Ontologically speaking, robots are like a beach and not
like a human, a dog, a bee etc. Robots are just not alive at
all: they might be at most (and in the distant future) zombies
in the philosophical sense of entities hardly distinguishable
from humans on the level of their observable behavior. Anal-
ogously, A.L is not actually intelligent, but only seems to be
intelligent in virtue of the projection of human intelligence
onto the human-machine interface.

Here is a series of arguments for this view.

The Nature of Consciousness

Let us begin with the troublesome concept of consciousness.
Consciousness is a process we can know only in virtue of
having or rather being it.  know that I am a conscious thinker
in virtue of being one. To be conscious is to be a state
that is potentially self-transparent insofar as its existence is
concerned.’ This does not mean that we can know everything
about consciousness simply in virtue of being conscious. This
is obviously false and, by the way, has never been maintained

4Kant’s famous phrase for the domain within which moral agents move.
See AA 1V, 439.

3On this well-known aspect of consciousness famously highlighted (but
by no means first discovered) by Descartes, see the concept of “intrinsic
existence” in the framework of Integrated Information Theory, one of
the currently proposed neuroscientific models for the neural correlate of
consciousness. See the exposition of the theory in Koch (2019).
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by anyone, not even Descartes who is often discredited in this
regard for no good reason.® Both right now, as I am awake,
and in certain dream states, I am aware of the fact that I am
aware of something. This feature of self-awareness is con-
sciousness of consciousness, i.e. self-consciousness. Some
element of consciousness or other always goes unnoticed. As
I am right now conscious of my consciousness, I can focus,
for instance, on the structure of my subjective visual field
only to realize that many processes in my environment are
only subliminally available to conscious processing, which
means that I am conscious of them without thereby being
conscious of that very consciousness.

Trivially, not all consciousness is self-consciousness, as
this leads into a vicious infinite regress. If all consciousness
were self-consciousness, then either self-consciousness is
consciousness or it is not. If self-consciousness is conscious-
ness, there is a consciousness of self-consciousness and so
on ad infinitum. We know from our own case that we are
not conscious of anything without a suitable nervous system
embedded in an organism. We know from neurobiology and
human physiology that we are finite animals such that it is
evidently impossible for us to be in infinitary states where
each token of consciousness is infinitely many tokens of
self-consciousness. There simply is not enough space in my
organism for that many actual operations of self-reference.’

As a matter of fact, we do not know what, if anything, is
the minimal neural correlate of consciousness (the MNCC).
Recent contenders for a model designed to begin to answer
this question despite the complexity involved in the neurosci-
entific endeavor to pinpoint such a correlate include “global
workspace theory” (GWT) and “integrated information the-
ory” (IIT).2

Whatever the right answer to the question concerning
the MNCC will turn out to be (if it is even a meaningful

SFor a detailed historical argument according to which Descartes does
not even have the concept of consciousness that he is often criticized
for introducing, see Hennig (2007). For an outstanding philosophical
reconstruction of Descartes’ account of human mindedness that takes
into account that his views are actually incompatible with the dualism
typically ascribed to him see Rometsch (2018).

"The situation is different if we have a rational soul in the traditional
sense of the term introduced by Plato and Aristotle and handed down
to us via medieval philosophy. We should not naively discard this
traditional option on the ground that we mistakenly pride ourselves for
knowing that we are animals, because no one in the tradition denied this!
The widespread idea that we began to realize that humans are animals
in the wake of Darwin is unscientific and ignorant story-telling. Short

proof: {@ov Aoyov EXOV, . animal rationale. It should be obvious
that Plato and Aristotle, the inventors of logics, were able to accept
the following syllogism: (P1) All humans are rational animals. (P2) All
rational animals are animals. (C) All humans are animals.

8For a recent overview over the main contenders for the right model of
the neural correlate of consciousness see Block (2019). For a critique
of the concept of consciousness deployed by Dehaene et al. (2017), see
Gabriel (2020b, §89 and 15).
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question), it has to respect the following indispensability
thesis: the reality of the human standpoint is indispens-
able for any scientific account of consciousness.” There
is no third-person point of view, no purely observational
stance, such that we can distinguish between conscious and
non-conscious entities/processes in the universe. Scientific
knowledge-acquisition at some point or other presupposes
a conscious knowledge-claim maintained and defended by
a human thinker or group of human thinkers. For, scientific
knowledge is a paradigm case of truth-apt justified belief.
To make a (scientific) knowledge claim concerning a bit of
reality means that one has reasons to believe that the bit under
investigation has some of the central properties ascribed to
it by a model. (Scientific) knowledge claims are not blind
guesses. They are highly methodologically controlled out-
comes of human activity which will always make use of some
technology or other (including pencil and paper; conferences;
fMRI; the LHC etc.). (Scientific) knowledge claims do not
simply emerge from anonymous activity, they are high-level
performances of human beings, often making use of non-
human machinery.

Arguably, there are various potential philosophical
confusions built into the very idea of searching for the
MNCC, as there are many historically shifting meanings
of the word “consciousness” (which differ, of course,
between various natural languages dealing with the kind
of phenomena grouped together by candidate meanings of
“consciousness” in contemporary Anglophone philosophy
and mind science).

To begin with we ought not to lose track of the distinction
between “narrow” and “wide contents” of consciousness.'’
Consciousness has both an object and a content. The object
of consciousness is that which it concerns, for instance, the
Eiffel tower, if I look at it, or some of my internal states,
when I feel hungry, say. Actually, whenever I am conscious
of anything in my environment (such as the Eiffel tower), I
am at the same time also conscious of some internal states of
my organism. Typically, we are never conscious of just one

9This important methodological and ontological principle has recently
been violated, for instance, by Hoffman (2019). If our perceptual system
were constitutively out of touch with reality, how could we know
this by deploying scientific methods which presuppose that our modes
of information-processing in a laboratory are not only contingently
reliable detectors of an unknowable thing in itself, but rather the correct
instruments to figure out how things really are? The scientist who tries
to make a case that all perception as such is a form of illusion cannot
coherently establish this result, as she will make use of her perceptual
apparatus in making her blatantly self-contradictory statement.

190n this distinction see the classical paper by Block (1986).
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thing alone.!! Consciousness is of objects in a field.'> Con-
sciousness itself is a field which encompasses subfields. I can
be conscious of a recently deceased friend, say, which means
that I can have visual or olfactory memories of his presence.
In this scenario, I am conscious of a past conscious episode
relating to my friend and not directly of my friend. Memories
are not perceptions despite the fact that they involve percepts.

The content of consciousness is the way in which the
object appears to me. Sensory modality is, therefore, part
of the content, as is perspective. In general, consciousness
has an ego-centrical index: I am here and now conscious of a
scenario (a dynamic field of processes and objects) in a bunch
of sensory modalities (Burge 2013). Notice that I cannot be
conscious of any scenario without myself being part of that
scenario. I am here right now as the entire animal I am. It
is impossible to perceive anything without literally being a
part of the same field(s) as the objects, including the various
physical fields whose interaction is required as a medium for
the production of mental content.

Narrow content emerges in the context of internal self-
awareness of my organism. It deals with states I am in. Pain,
for instance, or the color sensations I experience when I close
my eyes, have narrow content. They deal with internal states
of my organism. Narrow content is a series of perspectives
of the organism upon itself. Narrow content is, as it were, an
internal window onto processes within the animal I am.

Wide content emerges in a systemic context which in-
cludes states of affairs beyond my ectodermic limitations. If [
see a table, the table is nowhere to be found in my organism.
My organism is evidently too small to encompass all objects
of perception. St. Peter’s Basilica is bigger than my organism.
If I see it, it cannot be “in me”. It is simply nonsensical to
believe that there is no external world in which St. Peter’s can
be found on the dubious ground that it is allegedly impossible
to directly perceive reality. Wide perceptual content deals
directly with external reality. Yet, it does so in a species- and
individual-relative way. St. Peter’s looks different to you and

1T Another important exception here are mystical experiences such as the
unity with the One described by Plotinus or the visio beatifica known
from the Christian tradition. Similar accounts can be found in any of the
other major world religions. Again, we should not simply discard these
accounts, which would make us incredibly ignorant vis-a-vis the very
genealogy of the idea of “‘consciousness” which (like it or not) originates
from that tradition.

12Consciousness is one field of sense among others. Not all fields of
sense are conscious or related to consciousness. The consciousness-
field and its objects are arguably entangled. In any event, there is a
strong correlation between consciousness and its objects which does
not entail without further premises that the objects of consciousness are
necessarily correlated with consciousness. I reject the kind of premises
that typically lead to the position that the objects of consciousness
would not have existed, had we not been conscious of them. For a
recent exchange on this issue, see Meillassoux (2006) and the highly
sophisticated response from the point of view of philosophy (of quantum
mechanics) by Bitbol (2019).
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me and be it for the trivial reason that we will never strictly
speaking occupy the same spatio-temporal location.'?

Both wide and narrow content owe their specific structure
in human (and non-human) conscious animals to, among
other things, evolutionary parameters. This is a fact about
animals. Consciousness is part of our adaption to our eco-
logical niche, which in turn is causally shaped by our self-
conscious adaption to that adaption guided by scientific and
technological progress. If anything, we therefore have very
strong evidence for the general hypothesis that consciousness
is a biological phenomenon.

Kinds of Possibility

The next step in my argument consists in delivering the
premise that we simply cannot reproduce the natural, neces-
sary conditions for the existence of consciousness in the sense
of anything like a full ego-centrical index. One reason for
this is that we are astronomically far away from knowing the
necessary (and jointly sufficient) conditions for human (and
non-human) consciousness in the full sense, where “the full
sense” encompasses both wide and narrow content. We do not
know enough about the causal architecture of consciousness
as a natural phenomenon in order to even begin constructing
potentially conscious robots. Therefore, if any actually ex-
isting robot is anywhere near consciousness, this would be a
sheer coincidence. It is as rational to believe that any actually
existing robot or computer is conscious as that the Milky Way
or a sandstorm in the Atacama Desert is conscious.'*

To be sure, it is apparently at least logically possible
that a given robot is conscious. But this does not entail that
we have any actual reason to believe that a given robot is
conscious (i.e. if it’s being logically possible just means we
cannot say we know it is not the case). It is, thus, irrational
and unscientific to believe that currently existing robots are
conscious.

At this point, someone might wonder if this train of
thought rules out that robots could be conscious. So far, I
seem not to have established that no robot could ever be con-
scious. At this stage, we need to be careful so that our modal
“intuitions” do not idle. The central modalities are: actuality,
possibility, contingency, and necessity. If we ask the question
“could robots be conscious?” we are after a possibility. Is it
possible that robots are conscious? So far, I have argued that

13For a paradigmatic exposition of a direct realism which takes objective
looks as relations between a perceiver and the perceived environment
into account see the discussion in Campbell and Cassam (2014).

140n the recent resurgence of panpsychism in the sense of the view
that basically everything is (or might be) conscious, see Harris (2019)
and Goff (2019). I assume that it is reason to reject a given account
of the meaning of “consciousness” if it either entails the truth of or
significantly raises the probability of panpsychism.
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there is no reason to think that any currently existing robot is
conscious. A robot is an artifact of human industry and so far,
no relevant robot in that sense is conscious.'> If we want to
consider the possibility of robot consciousness, we therefore
need either some evidence or argument that supports the
rationality of the belief that future robots could meet the
relevant threshold of consciousness. Otherwise we wind up
with what I would like to call extremely weak possibility.

A possibility is extremely weak if (1) nothing we actually
know supports it and (2) we have no reason to believe that
the possibility amounts to a logical contradiction. Conscious
robots are currently extremely weakly possible. What is
more, | now want to argue that they are currently at most
extremely weakly possible. The argument relies on the notion
of “biological externalism,” which I have proposed in my
recent book The Meaning of Thought (Gabriel 2020a).'®

In philosophy, semantic externalism is roughly the view
that some terms refer to some natural kinds in such a way
that a competent user of those terms need not know all
essential feature of the kinds in order to count as a competent
speaker.!” For instance, I am a competent user of the term
“fermion,” but not an expert user. A professional nuclear
physicist will use the term “fermion” in contexts where I
would be likely to make nonsensical utterances. One strength
of semantic externalism in general is that it gives an account
of the fact that we often speak about things in a competent
way without thereby knowing their essence. The standard
example in philosophy is use of the term “water”. When
Thales or Aristotle referred to the stuff in the Aegean Sea

as Uéwp;, they were thereby referring to something that
essentially involves H,O molecules. However, if we asked

them about Y 5(.0p, , they could not even entertain the thought
that it essentially involves H,O molecules, because there
was no such thought available to them in their linguistic
community. From the epistemic standpoint of the Ancient
Greeks, it would havelooked possible that water could consist

150f course, humans (and some non-human animals) are
artifacts of human activity. As Aristotle nicely puts it

avBpwriog AvOpwIov YeWR  (Aristotle, Metaphysics, VII
71032a 25 et passim). However, we do not classify humans as robots.
If humans count as robots, machines, A.Ls or computers, it would be
trivially true that robots, machines, A.I.s and computers are conscious
because we are. The question “could robots be conscious?” deals
exclusively with the concept of a robot as a non-biological (possibly
anthropoid) artifact of human industry.

16This is a revised version of Gabriel (2018a). See also Gabriel (2020b)
§§6-11, where I defend “mental realism,” i.e. the view that mental terms
(including: thinking, intelligence, consciousness) refer to processes
which have necessary biological preconditions. Notice that the argument
does not preclude the existence of future conscious robots controlled by
cerebral organoids. Such hybrid entities are more likely to be possible
than in silico conscious robots.

7For an overview see Rowlands (2014).
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of various arrangements of elementary particles (atoms) in
their sense. It would not have been irrational for Aristotle
to assert that water consists of some Platonic atomic figure
or other, as laid out in the Timaios. For him, that could be
the case. Yet, Aristotle would have made a mistake, had
he endorsed a view about water that rules out that water
essentially involves H,O molecules.

As far as consciousness is concerned, we are in a similar
epistemic situation. We do not know which natural kinds, if
any, are correlated with consciousness. However, we must
not forget that the mainstream of contemporary scientifi-
cally minded theorists of consciousness tends to believe that
consciousness has some necessary natural prerequisites or
other. Unfortunately, this misleads far too many theorists
into some version of “functionalism”. It is certainly true that
the biological prerequisites for conscious states significantly
vary across species, across individuals within a species and
even within an individual across time. In this sense, the
physical underpinning of consciousness is multiply realiz-
able in different structures. Yet, this factual variation in the
(neural?) support of consciousness, of course, does not per se
support the stronger claim that consciousness is realizable in
inanimate matter or any matter that preserves the functional
architecture correlated with consciousness in animals.

In this context, let functionalism be the view that con-
sciousness is identical to a process which consists in the
realization of a role in a system of sensory inputs and behav-
ioral outputs. Most functionalists are committed to multiple
realizability. According to this concept, the functional role
of consciousness can be realized in different materials. We
humans realize it in (neural?) tissue, other creatures might
realize it in some other tissue. If consciousness is multiply
realizable, it seems to be possible to produce it out of material
other than biological tissue. This possibility is stronger than
the extremely weak possibility that there could simply be
robots. Functionalism to some extent supports the hypothe-
sis that robots could be conscious. However, functionalism
combined with multiple realizability is in serious trouble,
as is well-known in the philosophical community, but often
ignored by the interested bystander.'® The major weakness is
a consequence of the fact that we currently do not even know
the MNNC. For all we know, if consciousness is identical to a
functional role, this role could be performed by the universe
as a whole or by some surprising subsystem of it (such
as a galaxy cluster or a beach). This explains the presence
of panpsychism in contemporary philosophy, i.e. the (mis-
guided) notion that consciousness might be everywhere.'”

18See especially: Block (1978) and Searle (1992). An example of
a cautionary tale of philosophical confusions concerning the alleged
substrate-independence of life and intelligence is Tegmark (2017).

19Notice that IIT entails that panpsychism is false. See Tononi and Koch
(2014). IIT’s model for consciousness provides us with a defeasible
criterion for the presence of consciousness in a system. In its current
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Functionalism tends to lead to acceptance of the notion that
consciousness could emerge out (or rather: be a property) of
basically any system whose parts are arranged in such a way
that we can describe their operations in terms of sensorial
input and behavioral output.

According to biological externalism, “consciousness” and
cognate terms in our mentalistic vocabulary refer to pro-
cesses which have necessary biological prerequisites. Thus,
there could be no conscious robot produced entirely out of
inanimate matter. Support for biological externalism can be
derived from our current knowledge base concerning con-
sciousness. There should be no doubt that ever since humans
have been in the business of thinking about their own mental
states and those of other animals, they have been think-
ing about something with some biological underpinning. At
least, this is not what is contentious between the functionalist
and her opponent.20 Thus, as far as we know, consciousness
has essentially biological preconditions. This does not mean
that consciousness is a purely biological product, as I will
now argue.

Biological externalism alone does not suffice to rule out
future robots controlled by cerebral organoids. However, [
surmise that such robots are biologically impossible. This
claim is empirical, but partially grounded in a further ma-
neuver of philosophical theorizing. Above, I mentioned an
indispensability thesis. As far as consciousness is concerned,
the indispensability of consciousness consists in the fact
that we cannot circumvent it in any complete account of
human mindedness. Scientists are conscious and, therefore,
consciously interested in consciousness for various reasons
(including ethical considerations, because we believe that we
ought to care for conscious creatures more than for entirely
non-conscious matter). However, the level of indispensability
is located on a scale which differs from that occupied by
neural tissue alone. Any theorist we have encountered so far,
has been a full-blooded human being with animal parts that
include many cell types other than neurons. Human animals
are not neural tissue implanted in an organism, as it were.
My skin is not just a bag containing a central nervous system
hidden from view by a more complex organization. Simply
put: I am not a brain.?! Human neural tissue is produced by
a human organism out of stem cells in complex biological
processes. It develops over the course of pregnancy in such

state, it rules out that beaches could be conscious. It also rules out that
computers and robots could be conscious.

20There is the additional difficulty that humans have been thinking about
divine thinking for long stretches of our history harking back as far as the
first written documents of humanity. This supports the notion that there
could be divine non-biological thought and consciousness. However, it
does not back up the idea of finite, conscious robots produced by human
industry out of non-biological matter.

21For a detailed defense of a non-reductive account of human thinkers
see Gabriel (2017).
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a way that at some (as yet unknown) point a human fetus
becomes conscious. No known neural tissue outside of an
organism has the property of consciousness. This is probably
not a coincidence, as consciousness is a product of processes
that can be studied by evolutionary biology. All cell types
came into existence in this way. Neural tissue comes into
existence in causal contexts that produce organisms. Let us
call the structure of this process systemic organization.”* As
far as I know, no sample of neural tissue that even comes
close to being a candidate for a correlate of anything mental
has been found outside of systemic organization.

The absolute majority of actual conscious states we know
of has both objects and content. Consciousness is usually
about something in some particular mode of presentation
or other. Without integration into an organism, it is quite
senseless to think of neural tissue as performing any function
that correlates with consciousness, as we know it. Should it be
possible to produce cerebral organoids that are in conscious
states, those states would at most resemble a tiny fraction of
a proper subset of our conscious states. No organized heap
of neural tissue will perceive anything in its environment
without proper sense organs. To perceive our environment is
precisely not a kind of hallucination triggered by otherwise
unknowable external causes. Such a view—which I attack
under the heading of “constructivism”—is profoundly inco-
herent, as it amounts to the idea that we cannot ever really
know anything about our environment as it really is. This
makes it impossible to know that there is neural tissue sealed
off from an external environment so that the view that we are
literally “brains in a vat,” i.e. neural tissue hidden under our
skulls, is utterly incoherent (Putnam 1981). External reality
as a whole cannot be a kind of hallucination or user illusion
produced by a subsystem of the central nervous system. For,
if it were, we could not know this alleged fact by studying the
central nervous system, because the central nervous system
itself belongs to external reality. Thus, the central nervous
system is not a hallucination by the central nervous system.
If we know anything about ourselves as animals capable of
perception, we thereby know that we can know (parts of)
external reality.

Here, we can use a famous thought-experiment by Donald
Davidson as a conceptual magnifying glass. In a forthcoming
paper I have co-authored with the cosmologist George F. R.
Ellis, we use this thought-experiment in order to illustrate
the concept of top-down causation®? (Gabriel and Ellis 2020,
forthcoming). Davidson asks us to imagine that lightning

22For an ecological account of consciousness see Fuchs (2018).

23M. Gabriel/G. Ellis, “Physical, Logical, and Mental Top-Down Ef-
fects,” in: M. Gabriel/J. Voosholz (eds.), Top Down Causation and
Emergence. 2020 (forthcoming). The thought experiment can be found
in D. Davidson, “Knowing One’s Own Mind”, in: Proceedings and
Addresses of the American Philosophical Association 60 (1987), pp.
441-458.
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strikes a dead tree in a swamp while Davidson is standing
nearby. As Davidson’s body dissolves due to the causal
circumstances, the tree’s molecules by coincidence turn into
a replica of his body which begins to behave like Davidson,
moves into his house, writes articles in his name, etc. (David-
son 1987). We maintain that Swampman is physically impos-
sible. No molecule by molecule duplicate of a person could
arise spontaneously from inanimate matter. The evolutionary
pre-history and the adaptation of an organism to its causally
local environment (its niche) are essential for the organism’s
existence. To the extent to which we could possibly recreate
the conditions of survival for neural tissue complex enough
to be a candidate for a token of the MNNC, our social activity
of producing those conditions and artificially maintaining
them in existence would at best replace the structure of
organization. Thus, any robot actually capable of being run
by “mental,” i.e. actually conscious software would have to
have the relevant biological hardware embedded in a context
which plays the role of an organism.

The organism controls local patterns of causation in a top-
down way. The organism is thus ontologically prior to the
causal order of its elements (Noble 2016). If we randomly
copied the order of an organism’s elements, we would still
not have copied the organism. To be more precise, we would
have to copy the causal order of an organism’s elements
in the right way in order for a Swampman to be alive,
which means that the contextual, social constraints on his
production set the conditions for the lower-level elements to
realize Swampman. Random physical structure is not enough
for Swampman to be so much as alive for any amount of
time. Hence, there could not be a Swampman replica of
Davidson. Our use of the material of the thought experiment
is supposed to illustrate that evolutionary causal history,
including an organism’s niche construction and its social
contexts, is essential for the causal constitution of conscious
life and thought. Even if we could replicate human organisms
by some hitherto unavailable procedure, this would not be
evidence for a bottom-up process, as the relevant causal con-
text would, of course, include us and the technical apparatus
needed in order to achieve the feat of bringing organic matter
into shape.

Intelligent Robots?

One line of argument for the possibility of conscious robots
draws on the notion of artificial consciousness and assimi-
lates this discussion to that of Al Yet, this is a red herring, as
the term “intelligence” generates confusions similar to those
associated with “consciousness”.?* In general, intelligence

240n some of the confusions in artificial consciousness debates see
Schneider (2019).
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can be seen as the capacity to solve a given problem in a
finite amount of time. Let us call this concept “undemanding
intelligence”. It can be measured by constraining the exercise
of the capacity to time parameters. In this light, a system S*
is more intelligent than a System S if it is more efficacious in
solving a problem, i.e. if it finds a solution quicker. Learning
is the process of replacing a given first-order object-problem
by another higher-order meta-problem in such a way that
finding solutions to the object-problem enhances the capacity
of finding solutions to the meta-problem. A standard artifact
is a non-biological product of human industry. Usually, a
standard artifact is associated with a human goal-structure.
In the case of modern technology, the human goal-structure
is essentially tied to a division of labor. The division of labor
of modern technology is too complex for any individual to
know how each and every participating individual contributes
to the production of the outcome. The management structure
of our production of material goods (including the hardware
required for any actually functioning robot) functions by
producing meta-problems handed down in the form of object-
problems to agents on the ground-floor of production. With-
out this socially immensely complex structure of the produc-
tion of systems capable of justifying scientific knowledge-
claims, there would be no robots.

More specifically, no Al-system has the property of in-
telligence outside of the top-down context realized at the
human—machine-interface. No standard artifact (which in-
cludes software qua program-structure) has any degree of
intelligence outside of a human use-context. Al essentially
differs from human, animal intelligence for a simple rea-
son: the parameters of our goal-structure are fundamentally
set by our survival form. Intelligence first and foremost
arises in the context of solving the central maintenance
(survival) problem of human, animal organization. Animals
have interests which in turn serve the goal of maintaining
them in existence. This goal-structure came into being in
the universe as a consequence of as yet not fully under-
stood processes. We have no final answer to the question
of the origin of life. Yet, whatever the actual causal con-
text for the emergence of life, it is the breeding ground of
intelligence.

The term “intelligence” derives from the Latin in-
telligere/intelligentia which means ‘“understanding”. We
should distinguish intelligence in the traditional sense from
undemanding intelligence. Accordingly, we can introduce
the notion of demanding intelligence (D.1.). In his classic,
The Emperor’s New Mind, Sir Roger Penrose has shown that
D.I. is not a matter of explicable rule-following (Penrose
1989). D.I. consists in finding a new solution space to an
inherited problem by discovering an entirely new meta-
problem. This requires the capacity for understanding oneself
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as a creative thinker engaged in an activity of thinking that
cannot be formalized at all. In this context, I have recently
argued that our Al/machine learning programs amount at best
to thought-models (Gabriel 2020a). Thought-models can be
very powerful tools. Think of everyday modern technological
products such as search engines, which serve the function of
mining data by means of a formal representation of a mode
of organizing potential material for thought. The internet
significantly contributes to our cognitive enhancement in that
it provides us with quick solutions to given problems so that
we can use our mental time more efficiently. By deploying
thought-models as instruments in our own struggle for
survival and progress, we, humans, become more intelligent
in that we create the potential for new modes of thinking.
If anything, our digital technology produces conditions of
emergence for intelligent human behavior. We can make
intelligent use of our technology, and we should begin to
realize that this does not at all entail that our technology is
intelligent by itself.

D.IL is the capacity to change a problem space in virtue
of an account of our activity of creating and changing prob-
lem spaces. In classical philosophical parlance, D.I. is self-
consciousness or self-awareness: we, human beings, become
aware of the fact that we are intelligent animals. In the context
of exercises of that awareness we can produce thought-
models designed to re-produce elements of our thought-
activity in a simplified way. It is in the nature of a model
of something to reduce the complexity of a target system.
Models are modes of abstraction. They distinguish between
an essential and an inessential feature of a target system
relative to a goal-structure. A scientific model, such as the
contemporary standard model of particle physics, is not a
copy of physical reality, but a mode of abstracting away
from levels of the universe we inhabit. It is crucial for
the standard model that it does not mention the scientists
who produced it in the quest for understanding the uni-
verse, precisely because scientists and their actual thoughts
do not appear in the standard model. Scientists are not a
bunch of elementary particles. The idea that scientists are
ultimately reducible, i.e. logically replaceable by a bunch
of elementary particles arranged in the right way, is a ter-
rible confusion of model and reality. For more on this see
Ellis (2016).

Analogously, the notion that human thinking is a rule-
governed process exactly like that to be found in a Turing
machine (or any other model of information-processing)
conflates a model with the reality it is designed to make more
intelligible to human thinkers. If we abstract away from the
context we actually occupy as human thinkers, it should not
be a surprise that we cannot recover our own minds from
observing the behavior of our artifacts.
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The Human Context
Neo-Existentialism

Human beings are sapient creatures. When Linnaeus sug-
gested “homo sapiens” as the name for our species, he was
fully aware of the fact that human beings fundamentally
relate to themselves in a specific way. This is why he defines
the human being in terms of our capacity for self-knowledge:
“nosce te ipsum” (Linnaeus 1792). In this context, humans
produce models of themselves. The German word for this
is “Menschenbild”’, which means “image of humankind”. A
conception of man is an image, a model of what we think
we are. Evidently, there is a variety of such images. Some
believe that they have an immortal soul which is the locus
of their humanity and dignity. Others think of themselves as
sophisticated killer apes whose goal is to spread their genes.
Whatever the right answer to the question of who or what we
are as human beings, it must consider the remarkable fact that
there is a range of answers to that question in the first place.

In this context, I propose a framework for the study
of the human context I call “Neo-Existentialism” (Gabriel
2018b). Neo-Existentialism offers an account of what it is
to be human, an account of humanity. On this account, to
be human is to instantiate the capacity to think of oneself
as an agent of a certain kind and to (sometimes) act in
light of that conception. We can think of this as higher-order
anthropology. The capacity to instantiate humanity in ways
that differ synchronically and diachronically across individ-
uals and populations does not itself differ synchronically and
diachronically across individuals and populations.

Neo-Existentialism differs from many forms of classi-
cal existentialism in that it draws on a potentially unified
conception of humans as both objects of natural science,
medicine, etc. and subjects of truth-apt, historically variable
self-conceptions that are the target of the humanities and
social sciences. It thus bridges the perceived gap between
the natural sciences and the humanities by locating scientific
knowledge-acquisition in the human context.

Among other things, it has the advantage of offering a
solution to the so-called mind-body problem that is designed
to bring all academic disciplines to the same table, the one
we all sit at in virtue of our humanity. In the philosophy
of mind, neo-existentialism argues that there is no single
phenomenon or reality corresponding to the ultimately very
messy umbrella term “the mind”. Rather, the phenomena
typically grouped together under this heading are located on
a spectrum ranging from the (by now) obviously physical
to the non-existing. However, what does unify the various
phenomena subsumed under the messy concept of “the mind”
is that they result from the attempt of the human being to
distinguish itself both from the purely physical universe and
from the rest of the animal kingdom. In so doing, our self-
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portrait as specifically minded creatures evolved in light of
our equally varying accounts of what it is for non-human
being to exist.

Being a German-speaking philosopher, I suggest that we
replace the messy term “mind” by what we call “Geist” in
my neck of the woods. Geist is not a natural kind or com-
plicated structure of natural kinds, but precisely something
that does not exist independently of the specific descriptions
used in order to point out phenomena whose very existence
depends on mutual ascriptions of tokens of mental states
such that their accuracy-conditions presuppose anchoring
both in the external natural world and a linguistic division
of labor. “Geist” is what you get under conditions of mutual
action explanation in a context where you cannot delegate the
vocabulary by which you conceive of yourself and others as
human to a neutral, natural-scientific standpoint.

To look at reality from the standpoint of a human being
(Geist), means that we produce thought-models in the context
of the human life form. There is no way to circumvent this.
This is why Neo-Existentialism rejects Daniel Dennett’s in-
fluential distinction between the physical, the design and the
intentional stance (Dennett 1987, 2017). There is no physical
stance capable of dealing with the human being if this stance
abstracts from the fact that the scientist is a human being
endowed with a mind suitable for making knowledge-claims
etc. The physical stance simply evaporates if we try to think
of it entirely independently from the intentional stance. Den-
nett’s mistake consists in thinking of the intentional stance
as a kind of model or theory of human agency which serves
the function of a useful illusion. According to contemporary
philosophical classification systems, his view is a form of
“mental fictionalism” according to which attributing mental
states such as “consciousness” to an entity such as a human
animal is literally false, but useful.?’

The starting point of Neo-Existentialim’s framework is
the observation that human agents (sometimes) act in light
of a concept of who/what they are. A striking example for
this would be the difference between someone who does what
she does in virtue of her belief that she has an immortal
soul whose morality is tested during her earthly life by a
transcendent God on the one hand and, on the other, someone
who believes that she is a sophisticated killer ape without any
homuncular control center; a complex biological cellular net-
work whose goal is maintenance in the form of survival and
the spreading of her genes via procreation. There are many
other forms of actually being human, or realizing one’s own
humanity by acting in light of a shared conception of what
humanity is. The humanities, such as anthropology, religious
studies, the sociology of knowledge, etc. investigate such

Z5For a discussion of “mental fictionalism” see the various contributions
in The Monist Vol. 96, no. 4 (2013).
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ways of being human in their specific mode of institutional,
historical, etc. manifestation.

In this context, Neo-Existentialism distinguishes between
two kinds of error: error about a natural kind vs. error about
oneself as an agent. From the standpoint of the epistemic
conception of reality,”® we can define a “natural kind” as a
type of object that it is exactly what it is regardless of the
truth or falsity of our attitude. Electrons or supernovae are
candidates for natural kinds, as they have their properties no
matter what anyone believes about them. At some level or
other, the natural sciences discover properties of natural kinds
even though they cannot be reduced to this feature, because
they sometimes create new objects and, therefore, bring
properties into being that are a function of their theories. This
is what happens in material science or in a particle accelerator
which is capable of generating new particles. Science is not
just a list of natural kinds and their properties, a table of
elements.

We can distinguish “natural kinds” from what Ian Hacking
has helpfully labelled “interactive kinds” (Hacking 1999,
2002). Specifically, humans are interactive kinds in virtue of
the fact that it matters for who we are how we conceive of
ourselves. My favorite example is someone who thinks that
he is a talented Tango dancer, but in reality, can hardly dance
at all. This person might lead a deluded life to the extent to
which his integration into a group can severely suffer from his
wrong beliefs about himself. Wrong beliefs about myself—
including paradigmatically: wrong beliefs about my Self—
can change my properties. If I have wrong beliefs, I am in a
different state than if I have true beliefs. Thus, beliefs matter
for who and what we are. Our wrong beliefs can guide our
actions. The deluded tango dancer acts in light of a misguided
(partially false) conception of himself so that a feedback loop
between wrong beliefs and action comes into existence.

Some proper subset or other of our mentalistic vocabulary
is such that it comprises elements that do not refer to natural
kinds. This does not rule out a priori that there is another
proper subset of the same vocabulary that happens to pick out
natural kinds. Vigilance, various urges we consciously ex-
perience, and maybe phenomenal consciousness (what-it-is-
likeness) as a whole belong to this category. As things stand,
our mentalistic vocabulary is differentiated both diachroni-
cally and synchronically over different natural languages and
specialized idiolects. It is not unified in any specific way

26The epistemic conception of reality is the notion that to be real means
to be the target of fallible belief. This conception of reality is broad
enough to encompass immaterial objects, such as mathematical objects,
(possibly) consciousness and laws of nature and to think of them as real.
Reality cannot be reduced to the material-energetic layer of the physical
universe. As a matter of fact, this is a lesson from modern physics itself,
an insight we owe to quantum theory, which has ultimately superseded
the naive conception of “matter” and “causation” as a series of “micro-
bangings” of “atoms in the void”. For more on this see Ladyman and
Ross (2007), Ellis (2016), Ismael (2016), and Falkenburg (2007, 2012).

M. Gabriel

beyond the fact that we typically invoke it in contexts where
action explanation, including activities such as predicting
or regulating future behavior, matters. But this is precisely
a manifestation of “Geist”. As long as humans interact in
an institutionalized form of any kind, the game of mutual
action-explanation and attitude adjustment to the observed
and extrapolated actions of others will go on and produce
new vocabularies and situations. Monarchies, right- and left-
wing populism, neurosis, credit cards, fear of the Gods, love
of wisdom, class struggle, ideology, moral righteousness, and
indefinitely many other facets of human reality will never be
replaced by a unified, centralized committee of neuroscien-
tistic Newspeak headed by some eliminative materialist or
other.

Neo-Existentialism is not a relapse into metaphysical du-
alism according to which there are exactly two kinds of
objects in the universe: material and mental substances. That
would only lead us back to the unsolvable mystery of their
interaction. Mental causation is real in that tokens of the
types picked out by the relevant proper subset of our men-
talistic vocabulary that makes us geistig, are integrated into a
meshwork of necessary and jointly sufficient conditions. This
meshwork essentially involves natural conditions, such as
nervous systems embedded in healthy organisms etc. There
is no overall privileged grounding relation running through
all token meshworks. Any actual token of the meshwork, any
of its states, can take any form out of a huge, epistemically
indefinite and historically open set of possible ways of being
human. We continue to generate new ways of being human
without there being any a priori catalogue. This is the sense in
which humans do not have an essence: there is no surveyable
totality of modes of realizing humanity.

Values and the Humanities

(Moral) values are grounded in the universal form of being
human. The universal form of being human consists in our
capacity to lead a life in light of a conception of the hu-
man being and its place in animate and inanimate nature.
Our anthropological self-conception cannot be exhaustively
studied by the natural sciences. The kinds of complexity
involved in high-level human social systems, the dynamics of
historical developments, the plurality and history of human
languages, art forms, religion etc. cannot seriously be re-
duced to the models of explanation characteristic of natural-
scientific knowledge-acquisition.

The humanities remind us of our own humanity. This is
one of their crucial roles in modernity. Natural science will
not survive the materialist attacks on the humanities that,
among other things, are outcomes of a misguided scientific
worldview according to which all (real) knowledge is natural-
scientific knowledge. It is simply false that all there is the
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material-energetic layer of the physical universe. We know
that this is false from the various humanities and social
sciences, which clearly study objects and processes that are
by no means identical to objects and processes studied by any
combination of actually existing disciplines from the range of
the natural sciences.

The materialist version of the scientific worldview is an
ideological distortion of scientific activity easily exploited
by groups whose interest lies in pinning down an alleged
specific essence of the human being, such as the false idea
that the human self is identical to the brain or some other
subsystem of the nervous system (Gabriel 2018c). If we are
sophisticated Kkiller apes, it does not make sense to resist
Chinese or North-Korean style full-blown cyberdictatorship,
say. There is no normativity inherent in the concept of a
culturally sophisticated primate, let alone in that of a bunch of
neural tissue to be found in an organism. If we were identical
to one of those models of the human being, we would lose
the very concept of human dignity underpinning the value
system of the democratic rule of law.

Natural science as such is the value-free discovery of
natural facts. This is why science has not only contributed to
human health, security, and flourishing, but at the same time
turned out to be the biggest killing machine humanity has
ever witnessed. Millions of people were killed in the wake of
scientific progress, and humanity is currently on the brink
of self-extinction as a consequence of the misguided idea
that human progress can be replaced by natural-scientific and
technological progress. This ideology is quite literally a dead-
end, based on flawed metaphysics.

Concluding Remarks

What we are currently witnessing on a global scale in our
digital age is a struggle among different conceptions of the
human. We rid ourselves of the very capacity to describe our
situation, to make it transparent and, thereby, to defend the
kinds of universal values that guarantee socio-economically
mediated access to humanity’s invariant core, if we march for
science without marching for the humanities. That humanity
should not destroy itself by ruining the only planet we will
ever thrive on, cannot be deduced at all from natural scientific
and technological knowledge. As long as we do not grant the
humanities and all other academic disciplines equal episte-
mological standing, natural science too will be easy prey for
those who do not care about the facts, but really are interested
only in maximizing the reach of their will to power. Thinking
that scientific knowledge is valuable is simply not a piece
of natural-scientific knowledge. To think otherwise, is to be
deluded and to fall in the target domain of the humanities and
social sciences which, among other things, ought to study the
delusions of the so-called scientific worldview.
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For all the reasons sketched in my paper, we are entitled
to reject the very idea of conscious robots. Let me conclude
by pointing out that even if (per impossibile) there could
be conscious robots, this very possibility does not entail the
desirability of their actual existence. Rather, I suggest by way
of a conclusion that ethical reflection yields the result that
we ought not to produce cerebral organoids implanted in a
robotic “body.”

This is no argument against technological or medical
progress. Rather, it is a reminder of the fact that scientific
discovery is subject to the value-system of the human life
form, the only system we can know of as humans. Whether
or not it is somehow backed up by a transcendent God does
not matter for ethics, as morality takes care of itself: what we
ought to do cannot merely be a consequence of the fact that
the Almighty dictates what we ought to do anyhow. The fact
that a certain kind of action is good or evil, i.e. ethics, cannot
be derived from the mere decree of any kind of will. If there is
good and evil (morally recommended and morally prohibited
action), God himself does not create it.2’

References

Bitbol, M. (2019). Maintenant la finitude. Peut-on penser l'absolu?
Paris: Flammarion.

Block, N. (1978). Troubles with functionalism. In C. W. Savage (Ed.),
Perception and cognition: Issues in the foundations of psychology
(Minnesota studies in the philosophy of science) (Vol. 9, pp. 261—
325). Minneapolis: University of Minnesota Press.

Block, N. (1986). Advertisement for a semantics of psychology. Mid-
west Studies in Philosophy, 10(1), 615-678. https://doi.org/10.1111/
j-1475-4975.1987.tb00558..x.

Block, N. (2019). What is wrong with the no-report paradigm and how
to fix it. Trends in Cognitive Sciences, 23(12), 1003—1013. https://
doi.org/10.1016/j.tics.2019.10.001.

Burge, T. (2013). Self and self-understanding: The Dewey lectures
(2007, 2011). In T. Burge (Ed.), Cognition through understanding
(Self-knowledge, interlocution, reasoning, reflection: Philosophical
essays) (Vol. 3, pp. 140-226). Oxford: Oxford University Press.

Campbell, J., & Cassam, Q. (2014). Berkeley’s puzzle: What does
experience teach us? Oxford: Oxford University Press.

27In my book Moralischer Fortschritt in dunklen Zeiten (Berlin: Ullstein
2020) I defend a brand of “universal moral realism”, according to which
moral value (the good, the neutral, the bad/evil) is not in the eye of
any beholder, but rather an objectively existing property of the action
assessed by a morally trained participant in a morally relevant practice.
Like all other forms of truth-apt judgment, moral judgment is fallible.
Moral properties are relational: they essentially express relationships
between human beings and, indirectly, between different organic life
forms. Thus, there is neither a direct nor an indirect set of duties with
respect to the inanimate layer of the physical universe. What we owe
to our inanimate environment is always a function of what we owe to
each other and to the rest of the animal kingdom. Conscious cerebral
organoids implanted in a robot would be organisms to whom we owe
something. In particular, we owe it to them not to produce them in the
first place.


http://dx.doi.org/10.1111/j.1475-4975.1987.tb00558.x
http://dx.doi.org/10.1016/j.tics.2019.10.001

68

Davidson, D. (1987). Knowing one’s own mind. Proceedings and
Addresses of the American Philosophical Association, 60, 441-458.
https://doi.org/10.2307/3131782.

Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness,
and could machines have it? Science, 358, 486—492. https://doi.org/
10.1126/science.aan8871.

Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.

Dennett, D. C. (2017). From bacteria to Bach and back: The evolution
of minds. New York: W.W. Norton and Company.

Ellis, G. (2016). How can physics underlie the mind? Top-down causa-
tion in the human context. Berlin/Heidelberg: Springer.

Falkenburg, B. (2007). Particle metaphysics: A critical account of
subatomic reality. Berlin/Heidelberg: Springer.

Falkenburg, B. (2012). Mythos Determinismus: Wieviel erkldrt uns die
Hirnforschung? Berlin/Heidelberg: Springer.

Floridi, L. (2014). The fourth revolution: How the infosphere is reshap-
ing human reality. Oxford: Oxford University Press.

Fuchs, T. (2018). Ecology of the brain: The phenomenology and biology
of the human mind. Oxford: Oxford University Press.

Gabriel, M. (2015a). Why the world does not exist. Cambridge: Polity.

Gabriel, M. (2015b). Fields of sense: A new realist ontology. Edinburgh:
Edinburgh University Press.

Gabriel, M. (2017). I am not a brain: Philosophy of mind for the 21st
century. Cambridge: Polity.

Gabriel, M. (2018a). Der Sinn des Denkens. Berlin: Ullstein Buchver-
lage.

Gabriel, M. (2018b). Neo-existentialism. Cambridge: Polity.

Gabriel, M. (2018c). Review of Owen Flanagan and Gregg Caruso,
eds., Neuroextentialism: Meaning, morals, and purpose in the age
of neuroscience. Available via Notre dame philosophical reviews.
Retrieved February 12, 2020, from https://ndpr.nd.edu/news/
neuroexistentialism-meaning-morals-and-purpose-in-the-age-of-
neuroscience/.

Gabriel, M. (2019). The paradox of self-consciousness: A conversation
with Markus Gabriel. Available via edge. Retrieved February 12,
2020, from https://www.edge.org/conversation/markus_gabriel-the-
paradox-of-self-consciousness.

Gabriel, M. (2020a). The meaning of thought. Cambridge: Polity.

Gabriel, M. (2020b). Fiktionen. Berlin: Suhrkamp.

Gabriel, M., & Ellis, G. (2020). Physical, logical, and mental top-down
effects. In M. Gabriel & J. Voosholz (Eds.), Top-down causation and
emergence. Dordrecht: Springer, Forthcoming.

Goff, P. (2019). Galileo’s error: Foundations for a new science of
consciousness. New York: Pantheon Books.

Hacking, 1. (1999). The social construction
Cambridge/London: Harvard University Press.

of what?

M. Gabriel

Hacking, I. (2002). Historical ontology. In P. Gérdenfors, J. Wolenski,
& K. Kijania-Placek (Eds.), In the scope of logic, methodology and
philosophy of science (Vol. 11, pp. 583—600). Dordrecht: Springer.

Harris, A. (2019). Conscious: A brief guide to the fundamental mystery
of the mind. New York: HarperCollins.

Hennig, B. (2007). Cartesian conscientia. British Journal for the
History of Philosophy, 15(3), 455-484. https://doi.org/10.1080/
09608780701444915.

Hoffman, D. (2019). The case against reality: Why evolution hid the
truth from our eyes. New York: W. W Norton & Company.

Ismael, J. T. (2016). How physics makes us free. Oxford: Oxford
University Press.

Kant, 1. (2016). Grundlegung zur Metaphysik der Sitten. Riga: Hart-
knoch.

Koch, C. (2019). The feeling of life itself: Why consciousness is
widespread but can’t be computed. Cambridge: MIT Press.

Ladyman, J., & Ross, D. (2007). Every thing must go. Metaphysics
naturalized. Oxford/New York: Oxford University Press.

Linnaeus, C. (1792). The animal kingdom or zoological system (trans:
Kerr R) (pp. 44-53). Edinburgh: Creech.

Meillassoux, Q. (2006). Apres la finitude. Essai sur la nécessité de la
contingence. Paris: Editions du Seuil.

Noble, D. (2016). Dance to the tune of life: Biological relativity.
Cambridge: Cambridge University Press.

Penrose, P. (1989). The emperor’s new mind. Concerning computers,
minds, and the laws of physics. Oxford: Oxford University Press.
Putnam, H. (1981). Brains in a vat. In H. Putnam (Ed.), Reason, truth
and history (pp. 1-21). Cambridge: Cambridge University Press.
Rometsch, J. (2018). Freiheit zur Wahrheit: Grundlagen der Erkenntnis
am Beispiel von Descartes und Locke. Frankfurt am Main: Kloster-

mann.

Rowlands, M. (2014). Externalism: Putting mind and world back to-
gether again. New York/Oxford: Routledge.

Ryle, G. (1949). The concept of mind. Chicago: University of Chicago
Press.

Schneider, S. (2019). Artificial you: Al and the future of your mind.
Princeton: Princeton University Press.

Searle, J. R. (1992). The rediscovery of the mind. Cambridge: MIT Press.

Smith, B. C. (2019). The promise of artificial intelligence: Reckoning
and judgment. Cambridge: MIT Press.

Tegmark, M. (2017). Life 3.0: Being human in the age of artificial
intelligence. New York: Alfred A. Knopf.

Tononi, G., & Koch, C. (2014). Consciousness: Here, there but not
everywhere. Available via Cornell University. Retrieved February 12,
2020, from https://arxiv.org/ftp/arxiv/papers/1405/1405.7089.pdf.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.


http://dx.doi.org/10.2307/3131782
http://dx.doi.org/10.1126/science.aan8871
https://ndpr.nd.edu/news/neuroexistentialism-meaning-morals-and-purpose-in-the-age-of-neuroscience/
https://www.edge.org/conversation/markus_gabriel-the-paradox-of-self-consciousness
http://dx.doi.org/10.1080/09608780701444915
https://arxiv.org/ftp/arxiv/papers/1405/1405.7089.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Partll

Al and Robotics Changing the Future of Society:
Work, Farming, Services, and Poverty



™

Check for

updates
Koen De Backer and Timothy DeStefano
Contents
Introduction. . . . ... ... 72
The Changing Location of Production. .. ......... ... .. . 73
The Rapid Growth of GVCs in the 1990s and 2000S. . .. ... ..oiii it 73
The End of GVCs inthe Future?. ... ... ... e 74
Reshoring Instead of Offshoring?. .. ... ... .. 75
Growing Investment in Robotics. . ...... ... 76
The Impact of Robotics on the Global Location of Production. ............................... 78
Robotics and Offshoring. . . .. ... oo 78
Robotics and Reshoring. . . ... ..o 78
Robotics and the Reallocation of Resources within MNEs. . ........ ... .. ... .. i ... 79
Conclusion and Policy Implications. . ....... ... . . . 81
Appendix 1: Empirical Strategies and Variable Descriptions. . ................................ 82
Robot Stock and OffShOring. . . ... ... e 82
Robot Stock and Backshoring. . . ... ... e 83
Robot Stock and Reallocation. . .. ... ...t e 83
References. . . .. ... 83
Abstract research has begun to consider the role of robotics in mod-

ern economies, but the empirical analysis remains overall
limited. The empirical evidence of effects of robotics on
employment is mixed, as shown in the review in this
chapter. The effects of robots on economies go further

The growing investment in robotics is an important aspect
of the increasing digitalisation of economy. Economic

This contribution builds on the publication OECD (2018), “Industrial

robotics and the global organisation of production”, OECD Science, than employment effects, as there are impacts for the
Technology and Industry Working Papers, No. 2018/03, OECD Pub- organisation of production in global value chains. These
lishing, Paris, https://doi.org/10.1787/dd98{f58-en. The opinions and change the division of labour between richer and poorer

arguments expressed herein do not necessarily reflect the official views

of the OECD or its member countries. Koen De Backer is Head of economies. Robotics may reduce OffShormg of activities

Division and Tim DeStefano is Economist, both in the Structural and from developed economies towards emerging economies.
Industry Policy Division of the Directorate of Science, Technology Global spreading of automation with robotics can lead
and Innovation, OECD. The OECD, and not the Authors cited in the to faster de-industrialisation in the development process.

Contribution, retains all intellectual property in the Contribution. . . . . .
Low-cost jobs in manufacturing may increasingly be con-

K. De Backer (<) - T. DeStefano ducted by robots such that fewer jobs than expected may

Division of Structural and Industry Policy, Science, Technology and be on offer for humans even if industries were to grow in
Innovation (STI), OECD, Paris, France emerging economies.

e-mail: Koen.DEBACKER @oecd.org

© The Author(s) 2021 71
J. von Braun et al. (eds.), Robotics, Al, and Humanity, https://doi.org/10.1007/978-3-030-54173-6_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54173-6_6&domain=pdf
http://dx.doi.org/10.1787/dd98ff58-en
mailto:Koen.DEBACKER@oecd.org
https://doi.org/10.1007/978-3-030-54173-6_6

72

Keywords

Robotics - Economy - Manufacturing industry -
Employment - Outsourcing - Global value chains

Introduction

Industrial robotics have become an integral component in the
production processes of many firms around the world. The
growing investment in robotics is one aspect of the increasing
digitalisation of economy and society which is fundamentally
changing the outlook of manufacturing industries across the
globe. Governments in OECD and emerging economies are
betting heavily on robotics to safeguard the competitiveness
of their manufacturing industries, frequently supported by
(direct) government support for research and adoption of
robotics.

The rising prominence of robotics—and the digital
(r)evolution more broadly—is increasingly attracting the
attention of policy makers because of its possible effects
on national economies. While high on the policy agenda in
OECD economies, the impacts of new digital technologies
are however uncertain and not well understood in general.
The economic literature has recently begun to consider the
role of robotics in modern economies but the (empirical)
analysis remains overall limited. One exception is the rapidly
growing number of studies discussing the employment
impacts of robotics. Indeed, the discussion around robotics
has centred especially on the implications of labour
markets—especially in developed economies—as robots
are expected to have a major impact on employment.

There is a widespread concern that new technologies
might destroy a large number of jobs and cause “technolog-
ical unemployment”. Some economists believe that many of
the jobs today will be undertaken by robots in the coming
years (Brynjolfsson and McAfee 2014; Ford 2009)." Robots
are now capable of replacing a host of routine tasks per-
formed within the firm and as their capabilities improve their
ability to carry out non-routine tasks will increase. As for
the types of jobs thought to be the most at risk to industrial
robots and automation, these include blue collar jobs and
routine occupations, while the groups of employees who are
most at risk of wage decline or job lose are low-skilled males
(Graetz and Michaels 2015; Acemoglu and Restrepo 2017,
and Frey and Osborne 2017). But the empirical literature
has produced mixed results until now. For example, while

'Widely cited work by Frey and Osborne (2017) suggests that poten-
tially 47% of US employment may be threatened by computerisation and
automation in the future. Comparable exercises have produced similar
results for other countries, all pointing to a significant to large impact of
robots and automation.
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Acemoglu and Restrepo (2017) do find a negative impact
of robots on employment and wages, Graetz and Michaels
(2015) find only marginal effects on hours worked. Also
OECD (2016) has concluded that the effects of robots on
employment may be significantly smaller than what others
have projected.

In addition to potential employment effects, some em-
pirical work has analysed the effect of robotics on (labour)
productivity. Graetz and Michaels (2015) report for a panel
of 17 countries over the period 1993-2007 a positive im-
pact of robots on labour productivity as well as total factor
productivity—and thus economic growth. In discussing the
future of robots, also BCG (Sirkin et al. 2015) expects a
strong rise of productivity as a result of the wider adoption
or robotics in manufacturing.

But the potential effects of robots on national economies
go further than employment and productivity effects. In-
creased robot use, fuelled by the continuous decline in the
price of robots and the increased dexterity of machines, can
be expected to increasingly impact existing/future production
technologies and the organisation of production within so-
called Global Value Chains (GVCs). In economic terms,
robots can be considered as a close substitute for lower-
skilled labour and a complement to higher-skilled labour.?
Significant investments in robotics will alter relative fac-
tor endowments and thus factor costs in countries and this
will/may change the location of production.

Robotics may limit the offshoring to emerging economies
and promote the reshoring of activities back to OECD
economies (De Backer et al. 2016; Dachs and Zanker 2015).3
Increased automation and robotics will overall decrease the
importance of labour costs in total production costs, hence
making the (re-) location of productive activities in OECD
economies (again) more attractive. This is exacerbated by
the fact that the gap in hourly wages between emerging and
developed economies is decreasing and robots continue
to become more economical. Differences in the cost of
production between developed and emerging markets may
thus narrow further, encouraging firms to restructure their
global activities (Finley et al. 2017; De Backer and Flaig
2017).

2The current systems of robotics replace primarily the “routine” ac-
tivities of lower-skilled labour while higher-skilled labour is (still)
needed to handle, monitor and if necessary to intervene, the machines.
Future robots will be more autonomous and self-learning, potentially
diminishing the complementary character towards higher-skilled labour.

3De Backer et al. (2016) reported that the aggregate evidence on
reshoring is until now rather limited which stands somewhat in contrast
to the anecdotal and survey evidence on this new phenomenon. Also
the Eurofound report “European Monitor of Reshoring Annual Report
2016” notes that reshoring is a relevant phenomenon in the EU, not
decreasing in size but that further data and research are needed to
confirm whether it is growing.



Robotics and the Global Organisation of Production

This may be particularly pertinent for firms in developed
countries who previously have offshored jobs to developing
countries to benefit from lower labour costs (Lewis 2014;
UNCTAD 2016). While mostly anecdotal, there are a host
of examples of botsourcing (i.e. firms building new factories
in the home country which are based on highly automated
production plans) including Philips and Parkdale (Clifford
2013; Markoff 2012). Adidas recently opened a shoe factory
in Germany called a Speedfactory with the objective of
getting new shoe designs to consumers faster (Box 1).

This paper uses historic data on robots investments across
industries and countries to deepen the analysis and to study
the specific effects of robots on the location of production.
In the following section, the paper provides a short overview
of the changing location of production, which seems to pick
up especially in recent years with GVCs drastically changing
in nature. The following section provides empirical evidence
on the growing importance of industrial robotics in today’s
manufacturing. The Impact of Robotics on the Global Loca-
tion of Production section then analyses the links between
these growing investments in robotics and the changes in
production location across countries and industries; specific
attention is paid to recent trends in offshoring and reshoring
as well as the reallocation of resources within Multinational
Enterprises (MNEs). One important aspect that has to be
kept in mind is that the robotics revolution is (only) in its
beginning stages, meaning that the potential impacts are just
starting to emerge. The findings in this paper have to be
interpreted in the light of this and most likely only signal
more important effects to emerge once the robotics revolution
is taking place.

Box 1 Speedfactory Adidas

Following the decision of one of the company’s major
competitors, Nike, to produce shoes through a robo-
tised system in the United States, the world-known
sport footwear German company Adidas decided to
adopt a similar strategy by bringing production back
from Asia to Germany. The first robotised plant has
been opened in Ansbach in Southern Germany while
the company also plans to establish a Speedfactory in
the United States in 2017. Together, both factories are
expected to produce a minimum of 1 million pairs of
shoes every year. About 160 new jobs are expected to
be created at the German plant, mostly highly skilled
labour to maintain the robots. Bringing production
back from China and Vietnam will help the company
to offset long shipping times but also the rising cost
of labour in some Asian countries. More importantly,
it will also help Adidas to meet the demand for rapid
innovation in designs and styles. Based on the current
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supply chain model, the average industry time for
shoes to reach consumers (from design to delivery)
takes 18 months (unless transported by plane). Within
a Speedfactory, however, the use of robots and 3D
printers enables shoe components to be produced and
assembled in-house, reducing the expected delivery
time (from virtual design to a store shelf) to less than a
week (The Economist 2017).

The Changing Location of Production

The Rapid Growth of GVCs in the 1990s
and 2000s

The rapid growth of GVCs has been an important driver of
globalisation during the past decades. Because of successive
rounds of trade (and investment) liberalisation and rapid
progress in Information and Communication Technologies
(ICTs), it became easier—and profitable—for companies to
offshore activities over large distances. Production processes
have become more geographically dispersed as companies
increasingly locate different production stages across differ-
ent countries through a network of independent suppliers and
their own affiliates. Within these GVCs, intermediate inputs
such as parts and components are produced in one country
and then exported to other countries for further production
and/or assembly in final products. As aresult, production pro-
cesses have become internationally fragmented and products
increasingly “made in the world”.

After their explosive growth during the early 2000s, GVCs
have gradually become the backbone of the global econ-
omy and dramatically changed its functioning. The result is
that global production nowadays spans a growing number
of companies, industries and countries and a number of
emerging economies have become economic powerhouses
because of GVCs. The large flows of goods, services, capital,
people and technology moving across borders within these
international production networks have resulted in a growing
interconnectedness between countries (OECD 2013).

GVCs have become longer and more complex since their
emergence in the 1980s. Production stages of a growing
number of goods—more traditional products like textiles
as well as more technology-intensive products like, e.g.
electronics—and increasingly also services are spread out
across a multiple of locations. This in turn has resulted in
growing trade and transport flows over time. The organisation
of production in long and complex GVCs to take advantage
of optimal location factors for specific stages of production
across the globe has shown its advantages for companies in
terms of productivity, efficiency, scale economies, etc.
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The global dimension of economic integration has ex-
panded rapidly as emerging countries such as the People’s
Republic of China, India and Brazil have become major play-
ers in the global economy, in part because of their increasing
participation in GVCs. Numerous activities especially in
manufacturing have been relocated to emerging economies
as sourcing inputs from low-cost producers, either within or
outside the boundaries of the firm, lowered production costs.
The emergence of GVCs has allowed emerging economies to
integrate in the global economy faster than in the past. Coun-
tries are able to specialise in a certain production activity
according to their comparative advantage instead of develop-
ing the whole value chain itself (OECD 2013). Participation
in GVCs is often viewed by governments as a fast track to
industrialisation and strategies to increase the participation
within GVCs are essentially part of economic development
policies.

The emergence and growth of GVCs have been largely
documented in recent years due to new evidence. Until re-
cently, the empirical evidence on GVCs mainly consisted of
case studies of specific products; early examples include the
Barbie Doll (Tempest 1996; Feenstra 1998) and an average
“American” car (WTO 1998). While these case studies of-
fered interesting anecdotal evidence, more stylised analysis
of the geographical distribution of costs, value added and
profits has subsequently received a great deal of attention, in
particular the well-known studies of Apple products (Linden
et al. 2009; Dedrick et al. 2010). Afterwards, the OECD de-
veloped new aggregate—at the industry, national and global
level—measures* and has documented the rapid growth of

4See OECD’s Trade in Value Added Database. A similar initiative is the
World Input-Output Database.

these global production networks. OECD (2013) discussed
this new empirical evidence in detail and analysed the impor-
tant implications of these GVCs of different policy domains
(including trade, investment, competiveness, etc.).

The End of GVCs in the Future?

In contrast to the ever-growing length and complexity of
GVCs in the past, the international fragmentation of pro-
duction appears to have lost momentum in recent years. A
(limited) consolidation of GVCs had already been observed
during the economic crisis in 2008/2009, but trade as well
as GVC growth picked up again thereafter. But new OECD
results show that the foreign value added of exports—which
is largely considered to be one important indicator of GVCs,
see OECD (2013)—shows a downward trend (Fig. 1). The
recent trade and GVC slowdown is increasingly argued to
stem from more structural determinants—in addition to more
conjunctural factors—suggesting that a new normal of GVCs
may be at the horizon. Illustrating this is the growing popu-
larity of the concept of “peak trade”.

As the continuous expansion of GVCs may (have) come to
an end, concerns about future production, trade and economic
growth are rapidly rising in countries. Trade has tradition-
ally been an important driver of productivity and economic
growth of economies. One question that is increasingly raised
in discussions on (the future of) globalisation is whether
the relationship between trade and GDP growth has been
undergoing a structural shift in recent years. It is clear that
a slowdown of trade within GVCs will rapidly have conse-
quences for the global economy. Likewise, a new era of GVC
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dynamics will most likely result in a re-configuration of the
international production landscape with significant shifts in
competitiveness between regions and countries.

Different factors will (simultaneously) determine the fu-
ture of GVCs as discussed in detail in De Backer et al.
(2018) simulating how production and trade within GVCs
may look like in 2030. On the one side, there are factors
that have promoted the growth of GVCs in the past and these
are expected to facilitate the future expansion of GVCs; thus,
business as usual. New communication technologies (i.e. the
“C” in ICTs) which allow for the coordination of activities
across large distances, the integration of emerging economies
because of their low (labour costs) in manufacturing, the
growing middle class in emerging economies which gradu-
ally changes (consumer) demand and results in fast growing
end-markets in these countries, the efficient provision of
“modern” services (telecommunications, logistics, business
services, etc.) which are the glue that ties GVCs together and
the rapid growth of MNEs are all major reasons why GVCs
have expanded significantly since the 2000s.

On the other side, there are other factors that push for “a
new normal” of GVCs; these include old and new factors,
i.e. factors which are known to negatively impact GVCs
but also emerging factors of which the possible effects on
GVCs are less known. These factors are expected to in-
creasingly challenge the organisation of production in longer
and complex GVCs and may shape the future evolution
of GVCs differently. Strongly rising wage costs in (some)
emerging economies and the growing digitalisation of pro-
duction because of new information technologies (i.e. the
“I”’ in ICTs: robotics, automation, artificial intelligence, etc.)
are expected to restore the competitiveness of developed
economies and discourage further offshoring to emerging
economies. In addition, rising transport costs, the hidden and
extra-costs of offshoring including the problems in protecting
proprietary knowledge abroad, the growing need to balance
cost efficiency with risk diversification which comes at a cost,
will make the international dispersion of production more
expensive. Also future extra costs arising from policy efforts
to internalise the environmental costs of (international) trans-
port may make the international trade of goods and services
more costly and thus affect the further offshoring of activities
within GVCs.

Further on, the current organisation of production in long
and complex GVCs has made companies less responsive to
changes in customer demand while at the same time product
customisation is becoming essential for firms to maintain a
competitive edge. Some have argued that a shift from mass
production to mass customisation is happening, hence the
need for companies to be able to quickly respond to market
signals.

Using different scenarios that mirror the most likely
evolution of the different factors, the results in De Backer
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et al. (2018) indicate that the future of GVCs may indeed
look quite different from the past. Dramatic decreases in
international sourcing and intermediate trade are observed
for the future up to 2030 with GVCs regressing back to
their 2005 levels. The growing digitalisation of production
will be most likely the biggest game-changer in this process,
reversing the importance and length of GVCs and reorienting
global production and trade back towards OECD economies.

Reshoring Instead of Offshoring?

Within this changing topography of GVCs and global pro-
duction, reshoring of activities is expected to become in-
creasingly attractive especially when these activities can be
highly automated through the increased use of robots. A
growing number of (media) reports seem to indicate that
manufacturing companies in OECD economies are increas-
ingly transferring activities back to their home country (back-
shoring) or to a neighbouring country (near-shoring). This
stands in sharp contrast with the large offshoring of activities
and jobs particularly in manufacturing away from developed
economies over the past decades.

Policy makers in developed economies are banking on
this and hope that reshoring will bring back jobs in OECD
manufacturing. But within this ongoing debate on reshoring,
considerable disagreement exists about how important this
trend actually is and may become in the future. Some predict
that reshoring will become a fundamental trend in the early
twenty-first century, while more sceptical voices point to the
overall small number of companies that have actually brought
activities and jobs home. Indeed, while company surveys
and anecdotal evidence suggest the growing importance of
the reshoring trend, the more aggregate evidence indicates
that the effects on national economies are (still) limited and
only very recent (see for example De Backer et al. 2016).
For example, claims that reshoring will result in a large
number of extra jobs at home have not been received much
empirical support. One reason is that reshored production is
often highly automated through the use of robotics, meaning
that only a limited number of additional jobs are created and
that these jobs will increasingly be high-skilled.

The evidence also seems to indicate that the phenomenon
of reshoring does not necessarily mean the end of offshoring
nor that it will bring back all the activities that have been
offshored during the past decades and restore manufacturing
in OECD economies back to its level of the 1970s or 1980s.
The evidence at the company and industry level demonstrates
that offshoring is still taking place at the same time that
reshoring is picking up. Further on, that same evidence tends
to suggest that offshoring is still more important and larger
today. Offshoring is still an attractive option since proximity
to markets is a major reason for international investment:
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the large size and the strong growth of emerging markets is
an important explanation for the attractiveness of emerging
economies.

But after years of large-scale offshoring and outsourcing,
it becomes clear that companies increasingly opt for more di-
versified sourcing strategies including reshoring and consider
more options in structuring their production processes. In ad-
dition to global hubs in GVCs, production is expected to be-
come increasingly concentrated in regional/local hubs closer
to end markets both in developed and emerging economies.
For some products low (labour) costs and long value chains
will continue to form important competitive advantages for
some time, but for other goods and services production will
become increasingly organised at the more regional level.

Growing Investment in Robotics

During the last decades, robots have become increasingly
prominent in manufacturing industries with parts of—and
in some cases, complete—production processes automated.
The robotisation of manufacturing first took off in OECD
economies as it helped to compensate for high and ris-
ing labour costs and safeguard international competitiveness
(Fig. 2°). But inmore recent years, strong robotics investment

5The data on robots in this paper are sourced from the International
Federation of Robotics (IFR) and relate to the number of robots (no in-
formation is available on the size and the quality of robots). IFR defines
an industrial robot as “an automatically controlled, reprogrammable,
multipurpose manipulator programmable in three or more axes, which
can be fixed in place or mobile for use in industrial automation applica-
tions” (IFR 2016b).
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can also be observed in several emerging economies, often
supported by their governments, as part of their industri-
alisation and development strategies. The growing roboti-
sation is part of the broader trend of the digitalisation of
manufacturing, with new digital technologies expected to
radically change the outlook of industries.® In combination
with important advances in a number of complementary
technologies, greater adoption of robotics is believed to be
a key element in fostering “a next production revolution”
(OECD 2017).

While costs of hardware and enabling software are ex-
pected to fall further, the performance of robotics systems
will vastly improve. BCG (Sirkin et al. 2015) estimates that
the cost of robots will decrease by 20% and their performance
improve by around 5% annually over the next decade. Robots
which are already widely used across manufacturing indus-
tries are rather suited for repetitive activities and very pre-
cisely defined environments. While some robots are equipped
with on-board sensors, most of their movements are still pre-
planned and programmed. Machines are however expected
to become more flexible due to the progress of artificial
intelligence, self-learning and auto-correcting capabilities,

6OECD (2017) has distinguished three broad technologies underpinning
the digitalisation of production; the Internet of Things (IoT), which
enables the interconnection of machines, inventories and good; big data
and embedded software which allow for the analysis of the huge volumes
of digital data generated by these objects; and cloud computing which
provides the ubiquitous availability of computing power. The uptake and
growth of (industrial) robots or autonomous machines within sectors
will result from the conjunction of these different technologies and
applications.
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allowing them to perform a wider range of complex activities.
As a result, machines will be increasingly able to do many
tasks more precisely, cheaper and faster.

Robots are highly concentrated in a limited number of
industrial sectors (Fig. 3): the majority of robot use (roughly
70%) is concentrated within transport equipment, comput-
ers and electronics and chemical and mineral production
and food and beverage production. For most economies,
the transportation equipment sector is the largest user of
industrial robots out of the economy. The deployment of
robots in industries is generally dependent on a number
of factors. First, technical requirements of the production
process clearly determine the (further) usage of robots as
some activities and jobs are easily automatable while oth-
ers are not. Certain production tasks can only be replaced
by very advanced robotics systems with a broad range of
functions, which make them (too) expensive to implement.
However, things are expected to change over time with higher
performing robots—at a lower cost—being able to automate
a growing number of activities and tasks.

Second, manufacturing industries in which labour costs
account for a large(r) share in total production costs are more
likely to invest in robotics because robots allow to save on
labour and thus costs. But, third, location is another important

Spain
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machinery, T2930: motor vehicle and transport, T3133: other manufac-
turing and recycling, Other: to wood, paper and publishing non-metallic
minerals and education and research. Source: Own calculations based on
International Federation of Robotics (2016a)

determinant mediating this link between labour costs and
wider robotics use. Industries located in emerging economies
where labour costs are typically lower are less likely to adopt
robots and automation compared to more developed (and thus
higher labour cost) economies. The inflection point where
robots become more cost efficient than human labour lies—
cetris paribus—further in time for emerging economies. In-
terestingly however, some emerging economies are observed
to heavily invest in robotics as a deliberate (government)
strategy in order to compensate for their fast rising labour
costs and/or to compete with the growing robotics manufac-
turing deployed in developed economies.

The high concentration of robots in sectors like trans-
port equipment including automotive and electronics demon-
strates the high stakes at play for emerging economies. The
strong export position of these economies is largely based on
their low labour costs in these industries. Strong investments
in robots in developed economies may quickly result in the
erosion of such a competitive advantage and make these
activities exposed to reshoring of activities to developed
economies. In other industries where emerging economies
also benefit from their lower labour costs—e.g. garment and
textiles—robots have not made a big inroad and are not
expected to do so quickly.
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The Impact of Robotics on the Global
Location of Production

In order to address new opportunities and challenges follow-
ing digitalisation, companies are reorganising their domestic
and global production processes and adopting new business
models. In what follows, the impact of robotics on offshoring
as well as reshoring is separately analysed, as well as the
broader reallocation of resources within MNEs.” Robots with
a greater efficiency at lower costs may make it more cost-
effective for firms to keep production in the home country or
to move production back or close there.

Robotics and Offshoring

The offshoring to emerging economies in the past has been
motivated by the search for lower labour costs, in addition
to the desire to be closer to large and growing consumer
markets. Attracted by the large labour force in these coun-
tries, companies in developed economies—typically charac-
terised by higher labour costs—relocated (labour-intensive)
activities during the past decades. Since robotics allow for
labour cost savings, it can be hypothesised that this cost
motive of offshoring from developed economies will become
less pressing. In combination with the rising wage costs
in (some) emerging economies® and persisting productivity
differentials across countries, robotics are helping to lower
the difference in the cost of production between developed
and emerging economies. As robotic manufacturing becomes
cheaper and offshoring more expensive, the cost/benefit anal-
ysis changes: instead of relocating activities away from home
and sourcing inputs from abroad, production at home will
increasingly become a viable/profitable alternative for com-
panies.

Yet investments in robots are not only about saving on
labour costs. Robotics are important tools to allow for more
customised manufacturing, especially when artificially in-
telligent robots will increasingly become adaptable, pro-
grammable and autonomous. Industries in which market de-
mand and consumer preferences change quickly have a lot to
benefit from the usage of robots, compared to the alternative
of offshoring—often far away—where suppliers do not al-

TThe focus of the analyses is on the offshoring from and reshoring to
developed economies. The group of developed economies consists of
the “high-income economies” identified by the World Bank. A high-
income economy is defined by the World Bank as a country with a gross
national income per capita US$12,236 or more in 2016.

8Nevertheless, rising wages have to be considered in combination
with rising productivity. Further on, activities may be offshored from
economies with rising wage costs to other emerging economies where
wages are much lower and not rapidly increasing (for example from
China to Cambodia).

K. De Backer and T. DeStefano

ways produce according to the right specifications, resulting
in quality issues and long delivery times. The deployment of
robots can therefore help companies get new products to the
market much quicker.

The hypothesis thus is that larger robot usage increases the
attractiveness of (developed) economies for manufacturing
activities and as a result may reverse the past/current off-
shoring trends. In order to analyse the potential effects of
robotics on offshoring, the widely used Feenstra and Hanson
(1996) measure of offshoring”'? is related to investments
in robotics across countries and industries over time. As
such, the focus is on how robotics may change the extent of
international sourcing of intermediates.

The results for the whole period 2005-2016 for developed
economies do not directly seem to suggest a link between the
growth in robots investments and offshoring (for a detailed
discussion on the empirical model and variable construction,
please see Appendix 1). But when focusing on the more re-
cent years 2010-2016—i.e. a period characterised by rapidly
rising investments in robotics—the results demonstrate a
negative association of robotics investments (net of depre-
ciation) with the growth of offshoring (Table 1). Industries
in developed economies that increasingly invest in robotics
witness a lower growth in offshoring, i.e. a decrease in the
international sourcing of intermediates. In previous work,
this negative association became larger as the labour inten-
sity of industries increases, suggesting that robotics (help)
hinder/stop the relocation of especially labour-intensive ac-
tivities, as they help compensate for higher labour costs in
developed economies. In this new analysis based on more
recent data, this interaction effect disappears which may
suggest that robotics are becoming more widespread across
all manufacturing industries.

Robotics and Reshoring

The previous analysis suggests that robotics slow down—
and in some cases, stop—offshoring and thus help to keep
manufacturing activities in developed economies. A slightly
different question is if investments in robots will lead to the
actual reshoring of activities to developed economies, i.e.

9Feenstra and Hanson called this measure an indicator of “outsourcing”
although the indicator actually measures offshoring since it is defined
as companies’ purchases of intermediate goods and services—excluding
energy intermediate inputs—from foreign providers (at arms-length and
from foreign affiliates).

10The indicator has been calculated on the basis of OECD TiVA data
which are up-to-date until 2016. In addition, a number of control
variables such as labour intensity, demand and absorptive capacity
(measured by patent stock) are included. These data are sourced from
UNIDO, TiVA and PATSTAT databases, respectively. After merging
these datasets with the statistics on robotics, the sample includes roughly
40 countries over the period 2000-2016.
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Table 1 Effects of growth in robotics on the growth of offshoring

HDC
Dependent var: Offshoring (annual growth)| 2005-2016/ 2010-2016
Robot stock (annual growth) —0.001 —0.013""
0.00 0.00
Robot stock “Labour Intensity —-0.471 —0.233
—-0.35 —0.25
Labour Intensity 0.236 0.292"
—-0.27 -0.17
Patent Stock —0.002 —0.003
0.00 0.00
Demand —0.007 —0.014
—-0.03 —0.02
Control Variables
Year v v
Country”Industry v v
R-squared 0.245 0.214
Observations 4,635 2,897

Note: Robust standard errors in parenthesis. Level of significance
p <0.01,"p <0.05, p<0.1
Source: Own calculations

bringing activities that were once offshored back home. De
Backer et al. (2016) analysed the (re-)allocation of resources
abroad and at home within groups of MNEs based on firm-
level data and found some evidence of reshoring in terms
of capital investments but not in terms of employment. One
reason put forward for these trends was that robotics are very
capital intensive investments, but at the same time labour-
saving. This also explains why the employment impact of
reshoring in developed economies is often rather limited, and
does not lead to the manufacturing renaissance of (certain)
OECD economies as some have advocated.

This paper extends the empirical firm-level analysis as in
De Backer et al. (2016) and includes robotics investments
at the country-industry level (please see Appendix 1 for
a detailed discussion on the empirical model and variable
construction). The idea is to check if within groups of MNEs
a transfer of productive resources (i.e. fixed capital and
employment) takes place from the affiliates abroad to the
headquarters and affiliates at home!! because of robotics
investments. Interestingly, the results—now thus including
more recent years—for the group of developed economies
do show indications of backshoring in terms of employment
over the most recent period 2010-2016 (Table 2). A negative
change in aggregate employment abroad is associated with
a positive employment growth in the home country within

n order to check for this, the evolution of productive resources in
affiliates abroad is split out in a positive and negative component (i.e.
a negative coefficient for the negative growth abroad lends support for
reshoring); see for more details De Backer et al. (2016).
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the same business group, which thus give some support to
the claims about the growing importance of backshoring in
recent years.

Augmenting the model with robots investments—by in-
teracting the negative/positive growth abroad with robots
investments in order to see if there is more reshoring to
home countries where robots investments are relatively more
important'>—does however not get support from the model.
No extra effect is observed from robotics on the reshoring
of productive resources to developed home countries, neither
in terms of fixed capital or employment. Also the recent
reshoring seems not be driven by investments in robotics,
i.e. home countries investing strongly in robotics do not
witness a stronger reshoring of jobs in 2010-2016. All in all,
while robotics seems to have a negative effect on the pace of
offshoring, the results suggest that robots do not (yet) trigger
a reshoring of activities to developed economies.

Robotics and the Reallocation of Resources
within MNEs

The reallocation of resources within networks of MNE:s is
not a two-way street between affiliates abroad and the head-
quarters at home but instead happens between all affiliates
mutually. By broadening the analysis beyond the reshoring of
activities of MNEs to home countries, the potential effect of
robotics on the total reallocation of resources across affiliates
within groups of MNEs can be analysed. Because of their
international networks, MNEs have a large (strategic and
operational) flexibility in moving resources from one place
to the other. The labour savings and increased production
flexibility from robot use enable MNEs to shift production to
other countries, for example, by locating production closer
to the end customer so they can tailor and design goods
based on the changing interests of the local market. Firms
with plant facilities in multiple countries can quickly transfer
product designs through CAD/CAM files between teams of
robots making it easier for firms to shift production needs
throughout the world. Greater advances in cloud computing
and machine to machine communication will also facilitate
real-time learning between robots in different locations and
increase the responsiveness and efficiency of production
(PWC 2014).

The objective of the next empirical analysis thus is to
analyse if the (re-)allocation of productive resources within

12The robotics variable is constructed as the growth in robots stock of the
home country relative to the average of the growth in robots stock in the
countries where the group has affiliates; this in order to take into account
the different geographical spread of MNE grou