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Abstract In this chapter, we propose a method of analyzing the motion equations in
the case of a beam in rotation in plane, in order to determine the domain of instability
without actually calculating the eigenvalues or to integrate the obtained equations
of motion. This can ease the computational effort needed to solve such a problem.
Some examples are studied in the paper.

1 Introduction

The first research in the field of elastic elements with a general rigid motion using
numerical methods (especially Finite Element Method) has begun in the 1970s. The
first studies were made for a single-beam one-dimensional finite element, using
third-degree-shape functions. The complexity of the studied cases increased, and the
method was developed for fifth-degree-shape polynomials. The method was used
for a plane motion and for the three-dimensional rigid motion of a beam. In all
these cases, a one-dimensional finite element was used [1–5]. The first model was a
Bernoulli model. Other models, such as the Rayleigh model or Timoshenko model,
were studied in [6–11]. Thereafter, the researchers developed two-dimensional and
three-dimensional finite elements [12–14]. The developed models created new theo-
retical problems related to the methods of solving and qualitative analysis of such
equations [15, 16]. To study a mechanical system with elastic elements which also
involve a previous dynamical analysis, soweuse ofMBS (multibodymodels)models.
In this paper, we propose to make a study, for a set of geometrical parameters, if the
mechanical system is stable or not, in the case of a beam with a rotation around one
of the ends. More elaborated models are made in [17–19].

E. Chircan (B) · M. L. Scutaru · A. Toderiţă
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In the study, an analysis is made of the motion equations in the case of a beam
in rotation in plane, in order to determine the domain of instability without actually
calculating the eigenvalues or to integrate the obtained equations of motion. This
problem can be important in the engineering of the multibody with elastic elements.

2 One-Dimensional Finite Element

The problem of the study of a one-dimensional finite element in a centrifugal field
was made by many researchers, for a general three-dimensional motion and for a
planemotion [12, 14]. In the following, wewill use the notation from [4, 5] in order to
obtain the motion equations for a single element. We need this approach to apply our
proposal concerning the study of such a system. Let’s consider a pointM of beam and
its displacements [δ(u, v, w)] that can be expressed in terms of nodal displacements
at the ends as follows:

{δ} =
⎧
⎨

⎩

u
v
w

⎫
⎬

⎭
= [N ]

{
δe,L

} = [N ]

{
δ_1

δ_2

}

(1)

where we have the vector of nodal displacements {δe}:

{
δe,L

} =
{

δ_1

δ_2

}

= {δe} (2)

where {δe} is the displacement vector for e-th finite element in the local coordinate
system, δ_1 and δ_2, are, respectively, the displacement vectors of the nodes one and
two.

Consider a finite element with a rotational motion around an axis. The nodal
coordinates: the displacements of the beam ends in the three directions x, y, and z,
the torsion angles at the end, the angles of rotation β and γ of the cross section at
ends around the two y and z axes, and the curvatures of the neutral axis in the two
xOz and xOy planes at both ends. If we consider the two ends, then the displacements
at the ends, the rotations, and the curves are [20]:

{ f1} =
⎧
⎨

⎩

u1
v1
w1

⎫
⎬

⎭
; { f2} =

⎧
⎨

⎩

u2
v2
w2

⎫
⎬

⎭
; {φ1} =

⎧
⎨

⎩

α1

β1

γ1

⎫
⎬

⎭
; {φ2} =

⎧
⎨

⎩

α2

β2

γ2

⎫
⎬

⎭
;

{m1} =
{
mxOz1

mxOy1

}

; {m2} =
{
mxOz2

mxOy2

}

(3)
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where β1, γ 1 and β2, γ 2 are the slopes of the ends of the beam; α1 and α2 represent
the torsion of the end sections; mxOz1, mxOy1 and mxOz2, mxOy2 are the curvatures in
the corresponding plane.

If v and w are the displacements of a beam point on the directions Oy and Oz,
respectively, we shall have the equations known from the continuummechanics [12]:

β = −dw

dx
and γ = dv

dx
. (4)

The matrix [N] contains shape functions. The lines of the matrix [N] correspond
to the displacements u, v, and w. We have denoted as N(u), N(v), and N(w):

N =
⎡

⎣
N(u)

N(v)

N(w)

⎤

⎦ (5)

The displacements of the nodes at beam ends (left and right ends) have been
named {δ_1} and {δ_2}.

For the rotations angles, we have:

⎧
⎨

⎩

α

β

γ

⎫
⎬

⎭
= [

N ∗]{δe};
⎧
⎨

⎩

α̇

β̇

γ̇

⎫
⎬

⎭
= [

N ∗]{δ̇e
}; (6)

where: [N ∗] =
⎡

⎢
⎣

N ∗
(α)

N ∗
(β)

N ∗
(γ )

⎤

⎥
⎦. Can be noted that:

[
N ∗

(β)

]
= [

N ′
w

]
and

[
N ∗

(γ )

]
= [

N ′
v

]
.

For axial displacements u linear interpolation polynomials are chosen:

u = N1u1 + N2u2 (7)

with:

N1 = 1 − ξ ; N1 = ξ ; where: ξ = x

L
(8)

Let us consider now the transversal displacements v and w:

v = N3v1 + N5γ1 + N7mxOz1 + N4v2 + N6γ2 + N8mxOz2; (9)

w = N3w1 − N5β − N7mxOy1 + N4w2 − N6β2 − N8mxOy2, (10)

The interpolation polynomials will be chosen as:
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N3 = 1 − 10ζ 3 + 15ζ 4 − 6ζ 5; N4 = 10ζ 3 − 15ζ 4 + 6ζ 5;
N5 = l

(
ζ − 6ζ 3 + 8ζ 4 − 3ζ 5

); N6 = l
(−4ζ 3 + 7ζ 4 − 3ζ 5

);
N7 = l2

2

(
ζ 2 − 3ζ 3 + 3ζ 4 − ζ 5

); N8 = l2

2

(
ζ 3 − 2ζ 4 + ζ 5

)
. (11)

The shape function matrix is:

[N] =
⎡

⎣
N(u)

N(v)

N(w)

⎤

⎦

=
⎡

⎣
N1 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0
0 N3 0 0 0 N5 0 0 N7 0 N4 0 0 0 N6 0 0 N8

0 0 N3 0 −N5 0 0 −N7 0 0 0 N4 0 −N6 0 0 −N8 0

⎤

⎦ (12)

The rotations of the beam ends can be obtained as:

β = − d

dx
([Nw]{δe}) = −[

N ′
w

]{δe}; γ = d

dx
([Nv]{δe}) = [

N ′
v

]{δe}; (13)

Let’s also note:

[
N ∗] =

⎡

⎢
⎣

N ∗
(α)

N ∗
(β)

N ∗
(γ )

⎤

⎥
⎦

=
⎡

⎣
0 0 0 N1 0 0 0 0 0 0 N2 0 0 0 0 0
0 0 −N ′

3 0 N ′
5 0 N ′

7 0 0 0 −N ′
4 0 N ′

6 0 N ′
8 0

0 N ′
3 0 0 0 N ′

5 0 N ′
7 0 N ′

4 0 0 0 N ′
6 0 N ′

8

⎤

⎦ (14)

[
N ∗∗] =

[
N ∗∗

(z)

N ∗∗
(y)

]

=
[
0 0 −N ′′

3 0 N ′′
5 0 −N ′′

7 0 0 0 −N ′′
4 0 N ′′

6 0 −N ′′
8 0

0 N ′′
3 0 0 0 N ′′

5 0 N ′′
7 0 N ′′ 0 0 0 N ′′

6 0 N ′′

]

(15)

So:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v
w
α

β

γ

mxOz

mxOy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡

⎣
N
N ∗

N ∗∗

⎤

⎦

{
δ1

δ2

}

(16)

The internal energy stored in the beam shall be calculated. The internal energy
due to bending is given by the relation:

Epi = 1

2

L∫

0

[

E Iy

(
d2w

dx2

)2

+ E Iz

(
d2v

dx2

)2
]

dx

= 1

2

L∫

0

[
E Iyβ

′2 + E Izγ
′2]dx

= 1

2
{δe}T

⎡

⎣

L∫

0

(
E Iy

[
N ′′

(w)

]T [
N ′′

(w)

] + E Iz
[
N ′′

(v)

]T [
N ′′

(v)

])
dx

⎤

⎦{δe}

= 1

2
{δe}T [keb]{δe} (17)

where E is Young’s modulus, Iy and Iz represent the geometrical moment of inertia
around the axis Oy and Oz.

The energy due to the tension/compression is:

Epa = 1

2

L∫

0

E A

(
du

dx

)2

dx = 1

2
{δe}T

L∫

0

([
N ′
u

]T [
N ′
u

]
E Adx

)
{δe}

= 1

2
{δe}T [kea]{δe} (18)

where A is the area of the cross section of the beam.
The axial load P in an axial section of the beam gives the energy if in a first

approximation the axial deformations are neglected:

Ea = 1

2

L∫

0

Ptot

[(
dv

dx

)2

+
(
dw

dx

)2
]

dx = 1

2
{δe}T

[
kGe

]{δe} (19)
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where Ptot represents the axial force in the beam cross section at distance x. The force
components acting at the right beam end considered in the local coordinate system
are represented by Px, Py = 0, Pz = 0. Beside these components, the value of P and
the components of the inertia forces acting upon the portion of the beam between x
and L are being determined.

The total internal energy is:

Ep = 1

2
{δe}T

(
[keb] + [kea] + [ket ] + [

kGe
]){δe}

= 1

2
{δe}T [ke]{δe} (20)

The external work of distributed loads is:

W =
L∫

0

(
pxu + pyv + pzw + mxα + myβ + mzγ

)
dx

=
L∫

0

[
px py pz mx my mz

]
[
N
N ∗

]

{δe}dx

= {
q∗
eL

}T {δe}, (21)

here the vector {q*eL} contains the three components of the distributed loads and the
three components of the distributed moments.

The external work of concentrated loads {qeL} in the nodes is:

Wc = {qeL}T {δe} (22)

After deformation, the position vector of pointM becomesM ′ and it is expressed
by:

{
rM ′,L

} = {
rM,L

} + {δ} = {
rM,L

} +
⎧
⎨

⎩

u
v
w

⎫
⎬

⎭
= {

ro,L
} +

⎧
⎨

⎩

x + u
v
w

⎫
⎬

⎭
, (23)

or, with respect to the global coordinate system:

{
rM ′,G

} = {
rM,G

} + [R]

⎧
⎨

⎩

u
v
w

⎫
⎬

⎭
= {

ro,G
} + [R]

⎧
⎨

⎩

x
0
0

⎫
⎬

⎭
+ [R]

⎧
⎨

⎩

u
v
w

⎫
⎬

⎭

= {
ro,G

} + [R]

⎧
⎨

⎩

x
0
0

⎫
⎬

⎭
+ [R][N ]{δe} (24)
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where thematrix [R] expresses the change of the component of a vector from the local
coordinate system Oxyz to the fixed (global) reference system O′XYZ. The velocity
is obtained by differentiation:

vM,G = ṙM ′,G = ṙo,G + Ṙ

⎧
⎨

⎩

x
0
0

⎫
⎬

⎭
+ ṘNδe + RN δ̇e (25)

The kinetic energy expression is:

Ec = 1

2

L∫

0

ρ
(
A
{
ṙM ′,G

}T {
ṙM ′,G

} + {
ω′
L

}T
[I ]

{
ω′
L

})
dx (26)

where:

[I] =
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦ (27)

Iyy and Izz represent moments of inertia of the beam cross section about coordinate
axis Oy and Oz, respectively, of a reference system with its origin in the mass center
of the element dm= ρAdx (ρ-density); Ixx is the inertiamoment about the co-ordinate
axis Ox. We have chosen y and z as principal directions of inertia Iyz = 0, we have:

{
ω′
L

} =
⎧
⎨

⎩

ω1L

ω2L

ω3L

⎫
⎬

⎭
+
⎧
⎨

⎩

α̇

β̇

γ̇

⎫
⎬

⎭
=
⎧
⎨

⎩

ω1L

ω2L

ω3L

⎫
⎬

⎭
+ [

N ∗]{δe} (28)

here ω1L, ω2L, ω3L are the components of the vector angular velocity refer to the
local coordinate system.

The Lagrangian for one is:

L = Ec − Ep − Ea + W + Wc. (29)

Applying the Lagrange’s equations [21–24]:

d

dt

{
∂L

∂δ̇e

}

−
{

∂L

∂δe

}

= 0. (30)

the motion equations for a single element in a centrifugal field can be obtained in the
form:
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([m11] + [m22])
{
δ̈e
} + 2ω([m21] − [m12])

{
δ̇e
}

+ [
[ke] + ε([m21] − [m12]) − ω2([m11] + (m22))

]

= {qe} + {
q∗
e

} − {
qi
e(ε)

} − {
qi
e

(
ω2
)} − [

mi
Ee

]
[I ]{ε}L

− [moe][R]
T {r̈o} (31)

where:

[
mi

oe

] =
L∫

0

ρA[N ]T dx; [
mi

Ee

] =
L∫

0

[N ]∗dx; [
mi j

] =
L∫

0

[Ni ]
T
[
N j

]
ρAdx

i, j = 1, 2, 3

{
q∗
e

} =
L∫

0

[
px py pz mx my mz

]
{

N
N ∗

}

dx (32)

3 Eigenvalues and Domain of Stability

In the following, it was studied a beam that is in a centrifugal field, following how the
eigenvalues of the system change according to the variation of the beam geometrical
parameters. Considering a certain number of finite elements in which the structure
is discretized, after assembling, the motion equations will be of the form:

[M]
{

̈
} + [C]

{

̇
} + [K ]{
} = 0 (33)

The matrix [C] is skew-symmetric. If we note:

{X} = {
}; {Y } = {

̇
}

(34)

The beam is considered clamped to one end and has a rotation motion around this
end with variable angular speed ω.

To perform the calculus, we used the soft MATLAB with its classical subroutines
(Figs. 1 and 2).

The motion equations become a linear differential system of the form:

{
Ẋ
Ẏ

}

=
[

0 E
−[M]−1[K ] −[M]−1[C]

]{
X
Y

}

(35)

In a previous paper, it has been shown that the skew-symmetric matrix [C] does
not change the nature of the system matrix’s eigenvalues (35). The eigenvalues will
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Fig. 1 Eigen pulsations for
a beam with L = 0.55 m (D
variable and ω variable)

Fig. 2 Eigen pulsations for
a beam with L = 0.55 m and
L = 1 m (D variable and ω

variable). The first
eigenvalue

be complex, without a real part (the Coriolis matrix doesn’t introduce damping in
the system) (Figs. 3 and 4).

The problem arising in calculating a beam in a centrifugal field is the loss of
stability, which happens from amathematical point of view, when the stiffnessmatrix
becomes negatively defined.

It is virtually impossible to determine analytical expressions to determine the
geometric and mass field that ensures the stability of the beam in the centrifugal
field. In this case, a numerical analysis can be made to determine the nature of the
values.

The numerical calculus of eigenvalues and eigenvectors for a matrix is a difficult
operation that consumes time resources. A simpler method is to determine whether
the stiffened matrix is positively defined. For a set of defining values for the beam,
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Fig. 3 Eigen pulsations for a
beam with L = 0.55 … 0.1 m
(D variable and ω variable).
The first eigenvalue

Fig. 4 Eigen pulsations for
a beam with L = 0.55 … 1 m
(D variable and ω variable).
The fifth eigenvalue

it is determined whether the matrix is positively defined. If it is negatively defined
then the beam enters into a field of instability. In the paper, the stiffness matrix was
analyzed for different sets of beam length, diameter, and angular speeds with which
the beam is rotated in a centrifugal field. Figures 5, 6 and 7 show these results. The
areas in which we have instability are hatched in the figure.

4 Conclusions

Operation of a machine element that can bemodeled as a beam, being in a centrifugal
field, can lead to instability phenomena, especially for the reason that the rotations
can be found frequently in technical applications. For this reason, it is the question
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Fig. 5 Domain of instability for D, ω, L variable

Fig. 6 Domain of instability for D, ω, L variable

of determining the admissible values for geometric and mass elements. Because
a theoretical approach is less useful in practical applications, only the numerical
approach can provide useful results. In the paper, the motion equations obtained by
other authors have been used, in a particular form, for the rotation of a beam around
an axis. On the basis of these equations obtained via FEA, it is analyzed for some
cases, the domain of values that the geometric and mass parameters can have. The
results are presented in graphical form and the method used to determine areas of
instability uses the calculation of the positivity of the stiffness matrix, a much easier
operation than the calculation of its eigenvalues. Our application is inspired from
the practical case of the rotor blade of helicopters, where the use of one-dimensional
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Fig. 7 Domain of instability for D, ω, L variable

finite element has the advantage of simplicity and offers, in the same time, good
results. Such kind of problems occurs often in the engineering practice where great
operation speed and high loads can lead to instability.
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