
On Constant-Time QC-MDPC Decoders
with Negligible Failure Rate

Nir Drucker1,2(B) , Shay Gueron1,2 , and Dusan Kostic3

1 University of Haifa, Haifa, Israel
drucker.nir@gmail.com
2 Amazon, Seattle, USA

3 EPFL, Lausanne, Switzerland

Abstract. The QC-MDPC code-based KEM Bit Flipping Key Encap-
sulation (BIKE) is one of the Round-2 candidates of the NIST PQC
standardization project. It has a variant that is proved to be IND-CCA
secure. The proof models the KEM with some black-box (“ideal”) prim-
itives. Specifically, the decapsulation invokes an ideal primitive called
“decoder”, required to deliver its output with a negligible Decoding Fail-
ure Rate (DFR). The concrete instantiation of BIKE substitutes this
ideal primitive with a new decoding algorithm called “Backflip”, that is
shown to have the required negligible DFR. However, it runs in a variable
number of steps and this number depends on the input and on the key.
This paper proposes a decoder that has a negligible DFR and also runs
in a fixed (and small) number of steps. We propose that the instantiation
of BIKE uses this decoder with our recommended parameters. We study
the decoder’s DFR as a function of the scheme’s parameters to obtain a
favorable balance between the communication bandwidth and the num-
ber of steps that the decoder runs. In addition, we build a constant-time
software implementation of the proposed instantiation, and show that
its performance characteristics are quite close to the IND-CPA variant.
Finally, we discuss a subtle gap that needs to be resolved for every IND-
CCA secure KEM (BIKE included) where the decapsulation has nonzero
failure probability: the difference between average DFR and “worst-case”
failure probability per key and ciphertext.

Keywords: BIKE · QC-MDPC codes · IND-CCA · Constant-time
algorithm · Constant-time implementation

1 Introduction

BIKE [3] is a code-based Key Encapsulation Mechanism (KEM) using Quasi-
Cyclic Moderate-Density Parity-Check (QC-MDPC) codes. It is one of the
Round-2 candidates of the NIST PQC Standardization Project [16]. BIKE sub-
mission includes three variants (BIKE-1, BIKE-2, and BIKE-3) with three secu-
rity levels for each one. Hereafter, we focus mainly on BIKE-1, at its Category
1 (as defined by NIST) security level.
c© Springer Nature Switzerland AG 2020
M. Baldi et al. (Eds.): CBCrypto 2020, LNCS 12087, pp. 50–79, 2020.
https://doi.org/10.1007/978-3-030-54074-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_4&domain=pdf
http://orcid.org/0000-0002-7273-4797
http://orcid.org/0000-0002-9145-7609
http://orcid.org/0000-0002-7415-1587
https://doi.org/10.1007/978-3-030-54074-6_4

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 51

The decapsulation algorithm of BIKE invokes an algorithm that is called a
decoder. The decoder is an algorithm that, given prescribed inputs, outputs an
error vector that can be used to extract a message. There are various decoding
algorithms and different choices yield different efficiency and DFR properties.

QC-MDPC Decoding Algorithms. We briefly describe the evolution of sev-
eral QC-MDPC decoding algorithms. All of them are derived from the Bit-
Flipping algorithm that is commonly attributed [10]. The Round-1 submission
of BIKE describes the “One-Round” decoder. This decoder is indeed imple-
mented in the accompanying reference code [3]. The designers of the constant-
time Additional implementation [7] of BIKE Round-1 chose to use a different
decoder named “Black-Gray”1, with rationale as explained in [6]. The study pre-
sented in [20] explores two additional variants of the Bit-Flipping decoder: a) a
parallel algorithm similar to that of [10], which first calculates some thresholds
for flipping bits, and then flips the bits in all of the relevant positions, in parallel.
We call this decoder the “Simple-Parallel” decoder; b) a “Step-by-Step” decoder
(an enhancement of the “in-place” decoder described in [8]). It recalculates the
threshold every time that a bit is flipped.

The Round-2 submission of BIKE uses the One-Round decoder (of Round-1)
and a new variant of the Simple-Parallel decoder. The latter introduces a new
trial-and-error technique called Time-To-Live (TTL). It is positioned as a deriva-
tive of the decoders in [20]. All of these decoders have some nonzero probability
to fail in decoding a valid input. The average of the failure probability over all
the possible inputs (keys and messages) is called Decoding Failure Rate (DFR).
The KEMs of Round-1 BIKE were designed to offer IND-CPA security and to
be used only with ephemeral keys. They had an approximate DFR of 10−7,
which is apparently tolerable in real systems. As a result, they enjoyed accept-
able bandwidth and performance. Round-2 submission presented new variants
of BIKE KEMs that provide IND-CCA security. Such KEMs can be used with
static keys. The IND-CCA BIKE is based on three changes over the IND-CPA
version: a) a transformation (called FO �⊥) applied to the key generation, encap-
sulation and decapsulation of the original IND-CPA flows (see [3][Section 6.2.1]);
b) adjusted parameters sizes; c) invoking the Backflip decoder in the decapsula-
tion algorithm.

Our Contribution

– We define Backflip+ decoder as the variant of Backflip that operates with a
fixed XBF number of iterations (for some XBF). We also define the Black-
Gray decoder that runs with a given number of iterations XBG (for some
XBG). Subsequently, we analyze the DFR of these decoders as a function
of XBF and XBG and the block size (which determines the communica-
tion bandwidth of the KEM). The analysis finds a new set of parameters
where Backflip+ with XBF = 8, 9, 10, 11, 12 and the Black-Gray decoder with

1 This decoder appears in the pre-Round-1 submission “CAKE” (the BIKE-1 ances-
tor). It is due to N. Sendrier and R. Misoczki. The decoder was adapted to use the
improved thresholds published in [3].

52 N. Drucker et al.

XBG = 3, 4, 5 have an estimated average DFR of 2−128. This offers multiple
IND-CCA proper BIKE instantiation options.

– We build an optimized constant-time implementation of the new BIKE
CCA flows together with a constant-time implementation of the decoders.
This facilitates a performance comparison between the Backflip+ and the
Black-Gray decoders. All of our performance numbers are based only on
constant-time implementations. The comparison leads to interesting results.
The Backflip+ decoder has a better DFR than the Black-Gray decoder if
both of them are allowed to have a very large (practically unlimited) XBF

and XBG values. These values do not lead to practical performance. However,
for small XBF and XBG values that make the performance practical and DFR
acceptable, the Black-Gray decoder is faster (and therefore preferable).

– The BIKE CCA flows require higher bandwidth and more computations com-
pared to the original CPA flows, but the differences as measured on x86-
64 architectures are not very significant. Table 1 summarizes the trade-off
between the BIKE-1 block size (r), the estimated DFR and the performance of
BIKE-1 decapsulation (with IND-CCA flows) using the Black-Gray decoder.
It provides several instantiations/implementations choices. For example, with
XBG = 4 iterations and targeting a DFR of 2−64 (with r = 11, 069 bits) the
decapsulation with the Black-Gray decoder consumes 4.81M cycles. With a
slightly higher r = 11, 261 the decoder can be set to have only XBG = 3
iterations and the decapsulation consumes 3.76M cycles.

Table 1. The BIKE-1 Level-1 block size r (in bits) for which the Black-Gray decoder
achieves a target DFR with a specified number of iterations, and the decapsulation
performance (in cycles; the precise details of the platform are provided in Sect. 5). A
DFR of 2−128 is required for the IND-CCA KEM. The IND-CPA used with ephemeral
keys can settle with higher DFR.

DFR 3 iterations 4 iterations 5 iterations

2−23 ≈ 10−7 r 10, 259 10, 163 10, 141

Cycles 3.50M 4.52M 5.53M

2−30 ≈ 10−9 r 10, 427 10, 331 10, 301

Cycles 3.52M 4.56M 5.63M

2−40 ≈ 10−12 r 10, 667 10, 589 10, 501

Cycles 3.55M 4.63M 5.69M

2−64 r 11, 261 11, 069 11, 003

Cycles 3.76M 4.81M 5.96M

2−128 r 12, 781 12, 437 12, 373

Cycles 4.06M 5.22M 6.47M

– The FO �⊥ transformation from QC-MDPC McEliece Public Key Encryption
(PKE) to BIKE-1 IND-CCA relies on the assumption that the underlying

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 53

PKE is δ-correct [12] with δ = 2−128. The relation between this assumption
and the (average) DFR that used in [3] is not yet addressed. We identify this
gap and illustrate some of the remaining challenges.

The paper is organized as follows. Section 2 offers background, notation and
surveys some QC-MDPC decoders. In Sect. 3 we define and clarify subtle differ-
ences between schemes using idealized primitives and concrete instantiations of
the schemes. In Sect. 4 we explain the method used for estimating the DFR. We
explain the challenges and the techniques that we used for building a constant-
time implementation of IND-CCA BIKE in Appendix B. Section 5 reports our
results for the DFR and block size study, and also the performance measurements
of the constant-time implementations. The gap between the estimated DFR and
the δ-correctness needed for IND-CCA BIKE is discussed in Sect. 6. Section 7
concludes this paper with several concrete proposals and open questions.

2 Preliminaries and Notation

Let F2 be the finite field of characteristic 2. Let R be the polynomial ring
F2[X]/ 〈Xr − 1〉. For every element v ∈ R its Hamming weight is denoted by
wt(v). The length of a vector w is denoted by |w|. Polynomials in R are viewed
interchangeably also as square circulant matrices in F

r×r
2 . For a matrix H ∈ F

r×r
2

let hj denote its j-th column written as a row vector. We denote null values and
protocol failures by ⊥. Uniform random sampling from a set W is denoted by
w

$←− W . For an algorithm A, we denote its output by out = A() if A is deter-
ministic, and by out ← A() otherwise. Hereafter, we use the notation x.ye−z to
denote the number (x + y

10) · 10−z.

2.1 BIKE-1

The computations of BIKE-1-(CPA/CCA) are executed over R, where r is a
given parameter. Let w and t be the weights of (h0, h1) in the secret key h =
(h0, h1, σ0, σ1) and the errors vector e = (e0, e1), respectively. Denote the public
key, ciphertext, and shared secret by f = (f0, f1), c = (c0, c1), and k, respectively.
As in [3], we use H, K to denote hash functions. Currently, the parameters of
BIKE-1-CPA for NIST Level-1 are r = 10, 163, |f | = |c| = 20, 326 and for BIKE-
1-CCA are r = 11, 779, |f | = |c| = 23, 558. In both cases, |k| = 256, w = 142,
d = w/2 = 71 and t = 134. Figure 1 shows the BIKE-1-CPA and BIKE-1-CCA
flows [3], see details therein.

2.2 The IND-CCA Transformation

Round-2 BIKE submission [3] uses the FO �⊥ conversion ([12] which relies on [9])
to convert the QC-MDPC McEliece PKE into an IND-CCA KEM BIKE-1-CCA.
The submission claims that the proof results from [12][Theorems 3.1 and 3.42].
2 Theorems 3.1 and 3.4 appear only in the ePrint version [13] of [12]. In [12] they

appear as Theorems 1 and 4, respectively.

54 N. Drucker et al.

BIKE-1 IND-CPA BIKE-1 IND-CCA

Key generation

h0, h1
$←− R of odd weight wt(h0) = wt(h1) = w/2

- σ0, σ1
$←− R

g
$←− R of odd weight (so wt(g) ≈ r/2)

(f0, f1) = (gh1, gh0)

Encapsulation

m
$←− R

e0, e1
$←− R (e0, e1) = H(mf0, mf1)

where wt(e0) + wt(e1) = t
(c0, c1) = (mf0 + e0, mf1 + e1)

k = K(e0, e1) k = K(mf0, mf1, c0, c1)

Decapsulation

Compute the syndrome s = c0h0 + c1h1

(e′
o, e

′
1) ← decode(s, h0, h1)

If wt (e′
0, e

′
1)

) �= t or decoding failed then
return ⊥ k = K(σ0, σ1, c)

else
k = K(e′

0, e
′
1) k = K(c0 + e′

0, c1 + e′
1, c0, c1)

Fig. 1. BIKE-1 IND-CPA/IND-CCA flows (full details are given in [3]).

These theorems use the term δ-correct PKEs. For a finite message space M , a
PKE is called δ-correct when3

E

[
max
m∈M

Pr
[
Decrypt(sk, c) �= m | c ← Encrypt(pk,m)

]] ≤ δ (1)

a KEMs is δ-correct if

Pr
[
Decaps(sk, c) �= K|(sk, pk) ← Gen(), (c,K) ← Encaps(pk)

] ≤ δ (2)

2.3 QC-MDPC Decoders

The QC-MDPC decoders discussed in this paper are variants of the Bit Flipping
decoder [10] presented in Algorithm 1. They receive a parity check matrix H ∈
F
r×n
2 and a vector c = mf + e as input4. Here, c,mf, e ∈ F

n
2 , mf is a codeword

(thus, H(mf)T = 0) and e is an error vector with small weight. The algorithm
calculates the syndrome s = eHT and subsequently extracts e′ from s. The goal
of the Bit Flipping algorithm is to have e′ such that e′ = e.

Algorithm 1 consists of four steps: I) calculate some static/dynamic threshold
(th) based on the syndrome (s) and the error (e) weights; II) compute the number
of unsatisfied parity check equations (upci) for a given column i ∈ {0, . . . , n−1};
III) Flip the error bits in the positions where there are more unsatisfied parity-
check equations than the calculated threshold; IV) Recompute the syndrome.
3 In BIKE-1, the secret key (sk) and public key (pk) are h and f , respectively.
4 In BIKE-1, n = 2r, the parity-check matrix H is formed by the two circulant blocks

(h0, h1), the vectors c, e, and f are defined as c = (c0, c1), e = (e0, e1), and mf =
(m · f0, m · f1).

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 55

We refer to Algorithm 1 as the Simple-Parallel decoder. The Step-By-Step
decoder inserts Steps 4, 9 into the “for” loop (Step 5), i. e., it recalculate the
threshold and the syndrome for every bit. The One-Round decoder starts with
one iteration of the Simple-Parallel decoder, and then switches to the Step-by-
Step decoder mode of operation.

Algorithm 1. e=BitFlipping(c, H)
Input: Parity-check matrix H ∈ F

r×n
2 , c ∈ F

n
2 , maxIter (maximal # of iterations),

u maximal syndrome weight
Output: The error e ∈ F

n
2

Exception: “decoding failure” return ⊥
1: procedure BitFlipping(c, H)
2: s = HcT , e = 0, itr = 0
3: while (wt(s) > u) and (itr < maxIter) do
4: th = computeThreshold(s,e) � Step I
5: for i in 0 . . . n − 1 do
6: Compute upci � Step II
7: if upci > th then e[i] = e[i] ⊕ 1 � Step III

8: s = H(cT + eT) � Step IV
9: itr = itr + 1

10: if itr = maxIter then
11: return ⊥
12: else
13: return e

The Black-Gray decoder (in the additional code [7]) and the Backflip decoder
[3] use a more complex approach. Similar to the Simple-Parallel decoder, they
operate on the error bits in parallel. However, they add a step that re-flips the
error bits according to some estimation.

The “while” loop of an iteration of the Black-Gray decoder consists of: 1)
Perform 1 iteration of the Simple-Parallel decoder and define some bits position
candidates that should be reconsidered (i. e., bits that were mistakenly flipped).
Then, split them into two lists (black, gray); 2) Reevaluate the bits in the black
list, flip them according to the evaluation. Then, recalculate the syndrome; 3)
Reevaluate the bits in the gray list, and flip according to the evaluation. Then,
recalculate the syndrome.

The Backflip decoder has the following steps: 1) Perform 1 iteration of the
Simple-Parallel decoder. For every flipped bit assign a value k. This value indi-
cates that if the algorithm does not end after k iterations, this bit should be
flipped back; 2) Flip some bits back according to their k values.

The Backflip+ is variant of Backflip that uses a fixed number iterations as
explained in Sect. 1. Technically, the difference is that the condition on the weight
of s is moved from the while loop to the if statement (line 10). This performs
the appropriate number of mock iterations.

56 N. Drucker et al.

Remark 1. The decoders use the term iterations differently. For example, one
iteration of the Black-Gray decoder is somewhat equivalent to three iterations of
the Simple-Parallel decoder. The iteration of the One-Round decoder consists of
multiple (not necessarily fixed) “internal” iterations. Comparison of the decoders
needs to take this information into account. For example, the performance is
determined by the number of iterations times the latency of an iteration, not
just by the number of iterations.

3 Idealized Schemes and Concrete Instantiations

We discuss some subtleties related to the requirements from a concrete algorithm
in order to be acceptable as substitute for an ideal primitive, and the relation
to a concrete implementation.

Cryptographic schemes are often analyzed in a framework where some of the
components are modeled as ideal primitives. An ideal primitive is a black-box
algorithm that performs a defined flow over some (secret) input and commu-
nicates the resulting output (and nothing more). A concrete instantiation of
the scheme is the result of substituting the ideal primitive(s) with some spe-
cific algorithm(s). We require the following property from the instantiation to
consider it acceptable: the algorithm should be possible to implement without
communicating more information than the expected output. From the practical
viewpoint, this implies that the algorithm could be implemented in constant-
time. Note that a specific implementation of an acceptable instantiation of a
provably secure scheme can still be insecure (e.g., due to side channel leakage).
Special care is needed for algorithms that run with a variable number of steps.

Remark 2. A scheme can have provable security but this does not imply that
every instantiation inherits the security properties guaranteed by the proof, or
that there even exists an instantiation that inherits them, and an insecure instan-
tiation example does not invalidate the proof of the idealized scheme. For exam-
ple, an idealized KEM can have an IND-CCA secure proof when using a “random
oracle” ideal primitive. An instantiation that replaces the random oracle with
a non-cryptographic hash function does not inherit the security proof, but it is
commonly acceptable to believe that an instantiation with SHA256 does.

Algorithms with a Variable Number of Steps. Let A be an algorithm
that takes a secret input in and executes a flow with a variable number of
steps/iterations v(in) that depends on in. It is not necessarily possible to imple-
ment A in constant-time. In case (“limited”) that there is a public parameter
b such that v(in) ≤ b we can define an equivalent algorithm (A+) that runs in
exactly b iterations: A+ executes the v(in) iterations of A and continues with
some b − v(in) identical mock iterations. With this definition, we can assume
that it is possible to implement A+ in constant-time. Clearly, details must be
provided, and such an implementation needs to be worked out. This could be a
challenging task.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 57

Suppose that v(in) is unlimited, i. e., there is no (a-priori) parameter b such
that v(in) ≤ b (we call this case “unlimited”). It is possible to set a constant
parameter b∗ and an algorithm A+ with exactly b∗ iterations, such that it emits a
failure indication if the output is not obtained after exhausting the b∗ iterations.
It is possible to implement A+ in constant-time, but it is no longer equivalent to
A, due to the nonzero failure probability. Thus, analysis of A+ needs to include
the dependency of the failure probability on b∗, and consider the resulting impli-
cations. Practical considerations would seek the smallest b∗ for which the upper
bound on the failure probability is satisfactory. Obviously, if A has originally
some nonzero failure probability, then A+ has a larger failure probability.

Suppose that a cryptographic scheme relies on an ideal primitive. In the
limited case an instantiation that substitutes A (or A+) is acceptable. However,
in the unlimited case, substituting the primitive A with A+ is more delicate, due
to the failure probability that is either introduced or increased. We summarize
the unlimited case as follows.

– To consider A as an acceptable ideal primitive substitute, v(in) needs to
be considered as part of its output, and the security proof should take this
information into consideration. Equivalently, the incremental advantage that
an adversary can gain from learning v(in) needs to be added to the adversary
advantage of the (original) proof.

– Considering A+ as an acceptable ideal primitive substitute, requires a proof
that it has all the properties of the ideal primitive used in the original proof
(in particular, the overall failure probability).

Example 1. Consider the IND-CPA RSA PKE. Its model proof relies on the
existence of the ideal primitive MODEXP for the decryption (MODEXP (a, x,
N) = ax (mod N), where x is secret). Suppose that a concrete instantiation
substitutes MODEXP with the square-and-multiply algorithm (S&M). S&M
has a variable number of steps, t = bitlength(x) + wt(x) (modular multiplica-
tions), that depends on (secret) x, where wt(t) ≤ bitlength(x) is the Hamming
weight of x. By definition, in RSA PKE we have that x < φ(N) < N so x is
a-priori bounded and consequently the number of steps in S&M is bounded by
t ≤ 2·bitlength(x) < 2·bitlength(N). It is easy to define an equivalent algorithm
(S&M+) that runs in exactly 2 · bitlength(N) steps by adding mock operations.
An instantiation that substitutes S&M (through S&M+) for MODEXP can
therefore be considered acceptable (up to the understanding of how to define
mock steps). This is independent of the practical security of an implementa-
tion of RSA PKE instantiated with S&M+. Such an implementation needs to
account for various (side-channel) leaks e.g., branches and memory access pat-
terns. These considerations are attributed to the implementation rather than
to the instantiation, because we can trust the possibility to build such a safe
implementation.

Application to BIKE. The IND-CCA security proof of BIKE relies on the
existence of a decoder primitive that has a negligible DFR. This is a critical

58 N. Drucker et al.

decoder’s property that is used in the proof. The concrete BIKE instantiation
substitutes the idealized decoder with the Backflip decoding algorithm. Backflip
has the required negligible DFR. By its definition, Backflip runs in a variable
number of steps (iterations) that depends on the input and on the secret key
(this property is built into the algorithm’s definition).

It is possible to use Backflip in order to define Backflip+ decoder that has
a fixed number of steps: a) Fix a number of iterations as a parameter XBF ; b)
Follow the original Backflip flow but always execute XBF iterations in a way
that: if the errors vector (e) is extracted after Y < XBF iterations, execute
additional (XBF − Y) identical mock iterations that do not change e; c) After
the XBF iterations are exhausted, output a success/failure indication and e on
success or a random vector of the expected length otherwise. The difficulty is
that the DFR of Backflip+ is a function of XBF (and r) and it may be larger
from the DFR of Backflip that is critical for the proof.

It is not clear from [3,20] whether the Backflip decoder is an example of
the limited or the unlimited case, but we choose to assume the limited case,
based on the following indications. Backflip is defined in [3, Algorithm 4] and
the definition is followed by the comment: “The algorithm takes as input [...]
and, if it stops, returns an error [...] with high probability, the algorithm stops
and returns e”. This comment suggests the unlimited case. Here, it is difficult to
accept it as a substitution of the ideal primitive, and claim that the IND-CCA
security proof applies to this instantiation. In order to make Backflip an ideal
primitive substitute, the number of executed steps needs to be considered as part
of its output as well. As an analogy, consider a KEM where the decapsulation has
nonzero failure probability. Here, an IND-CCA security proof cannot simply rely
on the (original) Fujisaki-Okamoto transformation [9], because this would model
an ideal decapsulation with no failures. Instead, it is possible to use the FO �⊥

transformation suggested in [12] that accounts for failures. This is equivalent to
saying that the modeled decapsulation outputs a shared key and a success/fail
indication. Indeed, this transformation was used in the BIKE CCA proof.

On the other hand, we find locations in [3], that state: “In all variants of
BIKE, we will consider the decoding as a black box running in bounded time”
(Sect. 2.4.1 of [3]) and “In addition, we will bound the running time (as a function
of the block size r) and stop with a failure when this bound is exceeded” (Sect. 1.3
of [3]). No bounds and dependency on r are provided. However, if we inspect the
reference code [3], we can find that the code sets a maximal number of Backflip
iterations to 100 (no explanation for this number is provided and this constant is
independent of r). Therefore, we may choose to interpret the results of [3,20] as
if the 2−128 DFR was obtained from simulations with this XBF = 100 bound5,
although this is nowhere stated and the simulation data and the derivation of
the DFR are also not provided (the reference code operates with XBF = 100).
With this, it is reasonable to hope that if we take Backflip+ and set XBF = 100
we would get a DFR below 2−128 and this makes BacklFlip with XBF = 100 an
acceptable instantiation of an IND-CCA secure BIKE (for the studied r values).

5 See discussion with some extrapolation methodologies in Appendix C.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 59

The challenge with this interpretation is that the instantiation (Backflip+ and
XBF = 100) would be impractical from the performance viewpoint. Our paper
solves this by showing acceptable instantiations with a much smaller values of
XBF . Furthermore, it also shows that there are decoders with a fixed number of
iterations that have better performance at the same DFR level.

Implementation. In order to be used in practice, an IND-CCA KEM should
have a proper instantiation and also a constant-time implementation that is
secure against side-channel attacks (e.g., [8]). Such attacks were demonstrated
in the context of QC-MDPC schemes, e.g., the GJS reaction attack [11] and
several subsequent attacks [8,15,19]. Other reaction attacks examples include
[18] for LRPC codes and [22] for attacking the repetition code used by the HQC
KEM [2]. This problem is significantly aggravated when the KEM is used with
static keys (e.g., [5,8]).

4 Estimating the DFR of a Decoder with a Fixed
Number of Iterations

The IND-CCA BIKE proof assumes a decapsulation algorithm that invokes an
ideal decoding primitive. Here, the necessary condition is that the decapsulation
has a negligible DFR, e.g., 2−128 [3,12]. Therefore, a technique to estimate the
DFR of a decoder is an essential tool.

The Extrapolation Method of [20]. An extrapolation method technique for
estimating the DFR is shown in [20]. It consists of the following steps: a) Simulate
proper encapsulation and decapsulation of random inputs for small block sizes
(r values), where a sufficiently large number of failures can be observed; b)
Extrapolate the observed data points to estimate the DFR for larger r values.

The DFR analyses in [20] and [3] applies this methodology to decoders that
have some maximum number of iterations XBF (we choose to assume that
XBF = 100 was used). In our experiments Backflip+ always succeeds/fails before
reaching 100 iterations for the relevant values of r. Practically, it means that set-
ting XBF = 100 can be considered equivalent to setting an unlimited number of
iterations.

Our goal is to estimate the DFR of a decoder that is allowed to perform
exactly X iterations (where X is predefined). We start from small values of X
(e.g., X = 2, 3, . . .) and increase it until we no longer see failures (in a large
number of experiments) caused by exhausting X iterations. Larger values of X
lead to a smaller DFR.

We tested BIKE-1 and BIKE-3 in Level-1 and Level-3 with the Black-Gray
and the Backflip+ decoders. In order to acquire a sufficient number of data points
we tested multiple prime r values such that xr − 1 is a primitive polynomial [3].
The specific values are listed in Appendix D.

For our study, we used a slightly different extrapolation method. For every
combination (scheme, level, decoder, r) we ran Nexp = 48, 000, 000 experi-
ments as follows: a) Generate, uniformly at random, a secret key and an errors

60 N. Drucker et al.

vector (e), compute the public key, and perform encapsulation-followed-by-
decapsulation (with e); b) Allow the decoder to run up to X = 100 iterations6;
c) Record the actual number of iterations that were required in order to recover
e. If the decoder exhausts the 100 iterations it stops and marks the experiment
as a decoding failure. For every X < 100 we say that the X-DFR is the sum
of the number of experiments that fail (after 100 iterations) plus the number of
experiments that required more than X iterations divided by Nexp. Next, we fix
the scheme, the level, the decoder, and X, and we end up with an X-DFR value
for every tested r. Subsequently, we perform linear/quadratic extrapolation on
the data and receive a curve. We use this curve to find the value r0 for which
the X-DFR is our target probability p0 and use the pair (r0, p0) as the BIKE
scheme parameters.

We target three p0 values: a) p0 = 2−23 ≈ 10−7 that is reasonable for most
practical use cases (with IND-CPA schemes); b) p0 = 2−64 also for an IND-CPA
scheme but with a much lower DFR; c) p0 = 2−128, which is required for an
IND-CCA Level-1 scheme. The linear/quadratic functions and the resulting r0
values are given in Appendix E [Table 4].

Our Extrapolation Methodology. In most cases, we were able to confirm the
claim of [20] that the evolution of the DFR as a function of r occurs in two phases:
quadratic initially, and then linear. As in [20], we are interested in extrapolating
the linear part because it gives a more conservative DFR approximation. We
point out that the results are sensitive to the method used for extrapolation
(see details in Appendix C). Therefore, it is important to define it precisely so
that the results can be reproduced and verified. To this end, we determine the
starting point of the linear evolution as follows: going over the different starting
points, computing the fitting line and picking the one for which we get the best
fit to the data points. Here, the merit of the experimental fit is measured by the
L2 norm (i. e., mean squared error). The L2 norm is a good choice in our case,
where we believe that the data may have a few outliers.

5 Results

A description of the Backflip+ constant-time implementation is provided in
Appendix B.

The Experimentation Platform. Our experiments were executed on an AWS
EC2 m5.metal instance with the 6th Intel R©CoreTM Generation (Micro Archi-
tecture Codename “Sky Lake”[SKL]) Xeon R©Platinum 8175M CPU 2.50 GHz. It
has 384 GB RAM, 32K L1d and L1i cache, 1MiB L2 cache, and 32MiB L3 cache,
where the Intel R© Turbo Boost Technology was turned off.

The Code. The core functionality was written in x86−64 assembly and wrapped
by assisting C code. The code uses the PCLMULQDQ, AES-NI and the AVX2 and

6 Recall that different decoders have different definition for the term “iterations”, see
Sect. 2.3.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 61

AVX512 instructions. The code was compiled with gcc (version 7.4.0) in 64-bit
mode, using the “O3” Optimization level, and run on a Linux (Ubuntu 18.04.2
LTS) OS. It uses the NTL library [21] compiled with the GF2X library [17].

Figure 8 in Appendix F shows the simulation results for BIKE-1, Level-1
and Level-3, using the Black-Gray and Backflip+ decoders. Note that we use
the IND-CCA flows. The left panels present linear extrapolations and the right
panels present quadratic extrapolations. The horizontal axis measures the block
size r in bits, and the vertical axis shows the simulated log10(DFR) values. Every
panel displays several graphs associated with different X values. The minimal
X is chosen so that the extrapolated r value for DFR = 2−128 is still considered
to be secure according to [3]. The maximal value of X is chosen to allow a
meaningful extrapolation. We give two examples:

Example 2. Consider Black-Gray. Typically, there exists some number of itera-
tions j < XBG, where if decoding a syndrome requires more than j then the
decoder fails (w.h.p) even if a large number of iterations XBG is allowed.

The quadratic approximations shown in Fig. 8 yield a nice fit to the data
points. However, we prefer to use the more pessimistic linear extrapolation in
order to determine the target r.

Validating the Extrapolation. We validated the extrapolated results for every
extrapolation graph. We chose some r that is not a data point on the graph (but
is sufficiently small to allow direct simulations). We applied the extrapolation
to obtain an estimated DFR value. Then, we ran the simulation for this value
of r and compared the results. Table 2 shows this comparison for several values
of r and the Black-Gray decoder with XBG = 3. We note that for 10, 267 and
10, 301 we tested at least 960 million and 4.8 billion tests respectively. In case
of 10, 301 decoding always succeeded after XBG = 4 iterations, while for 10, 267
there were too few failures for meaningful computation of the DFR. Therefore,
we use XBG = 3 in our experimentation in order to observe enough failures.
For example, the extrapolation for the setting (BIKE-1, Level-1, Black-Gray,
10, 301) estimates 3-DFR = 10−7.55 this is very close to the experimented DFRs
10−7.56.

Table 2. Validating the extrapolation results for the Black-Gray decoder with XBG = 3
over two values of r.

r Extrapolated DFR Experimented DFR Number of tests

10, 267 10−7.13 10−7.26 9.6e8

10, 301 10−7.55 10−7.56 4.8e9

62 N. Drucker et al.

5.1 Extensive Experimentation

To observe that the Black-Gray decoder does not fail in practice with r = 11, 779
(i. e., the recommended r for the Backflip decoder) we run extensive simulations.
We executed 1010 ≈ 233 tests that generate a random key, encapsulate a mes-
sage and decapsulate the resulting ciphertext. Indeed, we did not observe any
decoding failure (as expected).

5.2 Performance Studies

The performance measurements reported hereafter are measured in processor
cycles (per single core), where lower count is better. All the results were obtained
using the same measurement methodology, as follows. Each measured function
was isolated, run 25 times (warm-up), followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the effect
of background tasks running on the system, every experiment was repeated 10
times, and the minimum result was recorded.

For every decoder, the performance depends on: a) X - the number of itera-
tions; b) the latency of one iteration. Recall that comparing just the number of
iterations is meaningless. Table 3 provides the latency (�decoder,r) of one iteration
and the overall decoding latency (ldecoder,r,i = Xdecoder · �decoder,r) for the Black-
Gray and the Backflip+ decoders, for several values of r. The first four rows of
the table report for the value r = 10, 163 that corresponds to the BIKE-1-CPA
proposal, and for the value r = 11, 779 that corresponds to the BIKE-1-CCA
proposal. The following rows report values of r for which the decoders achieve
the same DFR.

Clearly, the constant-time Black-Gray decoder is faster than the constant-
time Backflip+ decoder (when both are restricted to a given number of itera-
tions).

We now compare the performance of the BIKE-1-CCA flows to the per-
formance of the BIKE-1-CPA flows, for given r values, using the Black-Gray
decoder with XBG = 3, 4. Note that values of r that lead to DFR > 2−128 can-
not give IND-CCA security. Furthermore, even with BIKE-1-CCA flows and r
such that DFR ≤ 2−128, IND-CCA security is not guaranteed (see the discus-
sion in Sect. 6). The results are shown in Fig. 2. The bars show the total latency
of the key generation (blue), encapsulation (orange), and decapsulation (green)
operations. The slowdown imposed by using the BIKE-1-CCA flows compared
to using the BIKE-1-CPA flows is indicated (in percents) in the figure. We see
that the additional cost of using BIKE-1-CCA flows is only ∼6% in the worst
case.

6 Weak Keys: A Gap for Claiming IND-CCA Security

Our analysis of the decoders, the new parameters suggestion, and the constant-
time implementation makes significant progress towards a concrete instantiation

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 63

Table 3. A performance comparison of the Black-Gray and the Backflip+ decoders for
BIKE-1 Level-1. The r values were chosen according to Table 4.

DFR Decoder r Xdecoder �decoder,r (cycles) ldecoder,r,i (million cycles)

2−19 Black-Gray 10,163 3 702,785 2.1

2−17 Backflip+ 10,163 8 751,246 6.0

2−101 Black-Gray 11,779 4 784,903 3.13

2−58 Backflip+ 11,779 9 841,806 6.73

2−23 Black-Gray 10,253 3 743,168 2.22

2−23 Black-Gray 10,163 4 702,785 2.8

2−23 Backflip+ 10,499 8 777,478 6.22

2−23 Backflip+ 10,253 9 764,959 6.88

2−64 Black-Gray 11,261 3 769,212 2.3

2−64 Black-Gray 11,003 4 769,820 3.0

2−64 Backflip+ 12,781 8 907,905 7.26

2−64 Backflip+ 12,011 9 856,084 7.7

2−128 Black-Gray 12,781 3 849,182 2.54

2−128 Black-Gray 12,347 4 841,310 3.36

2−128 Backflip+ 14,797 9 1,024,798 9.22

(a) XBG = 3 (b) XBG = 4

Fig. 2. Comparison of BIKE-1-CPA flows and BIKE-1-CCA flows, running with the
Black-Gray decoder and XBG = 3, 4 for several values of r: r = 10, 163 the original
BIKE-1-CPA; r = 11, 779 the original BIKE-1-CCA; r values that correspond to DFR
of 2−23, 2−64, 2−128, according to Table 4. Note that values of r that lead to DFR >
2−128 do not give IND-CCA security. The vertical axis measures latency in millions of
cycles (lower is better). The additional cost of using the IND-CCA flows it at most 6%.

and implementation of IND-CCA BIKE. However, we believe that there is still a
subtle missing gap for claiming IND-CCA security, that needs to be addressed.

The remaining challenge is that a claim for IND-CCA security depends on
having an underlying δ-correct PKE (for example with δ = 2−128 for Level-
1) [12]. This notion is different from having a DFR of 2−128, and leads to the
following problem. The specification [3] defines the DFR as “the probability for

64 N. Drucker et al.

the decoder to fail when the input (h0, h1, e0, e1) is distributed uniformly”. The
δ-correctness property of a PKE/KEM is defined through Eqs. (1), (2) above.
These equations imply that δ is the average of the maximum failure probability
taken over all the possible messages. By contrast, the DFR notion relates to the
average probability.

Remark 3. We also suggest to fix a small inaccuracy in the statement of the
BIKE-1 proof [3]: “... the resulting KEM will have the exact same DFR as the
underlying cryptosystem ...”. Theorem 3.1 of [12] states that: “If PKE is δ-
correct, then PKE1 is δ1-correct in the random oracle model with δ1(qG) =
qG · δ.[...]”. Theorem 3.4 therein states that: “If PKE1 is δ1-correct then KEM�⊥

is δ1-correct in the random oracle model [..]”7. Thus, even if DFR = δ, the
statement should be “the resulting KEM is (δ ·qG)-correct, where the underlying
PKE is δ-correct”.

To illustrate the gap between the definitions, we give an example for what can
go wrong.

Example 3. Let S be the set of valid secret keys and let |S| be its size. Assume
that a group of weak keys W exists8, and that |W|

|S| = δ̄ > 2−128. Suppose that
for every key in W there exists at least one message for which the probability in
Eq. (1) equals 1. Then, we get that δ > δ̄ > 2−128. By comparison the average
DFR can still be upper bounded by 2−128. For instance, let |S| = 2130, |W| = 24

and let the failure probability over all messages for every weak key be 2−10. Let
the failure probability of all other keys be 2−129. Then,

DFR = Pr(fail | k ∈ W) · Pr(k ∈ W) + Pr(fail | k ∈ S \ W) · Pr(k ∈ S \ W)

=
|W|
|S| · 2−10 +

|S| − |W|
|S| · 2−129

= 2−126 · 2−10 + (1 − 2−126) · 2−129

= 2−136 + 2−129 − 2−255 < 2−128

6.1 Constructing Weak Keys

Currently, we are not aware of studies that classify weak keys for QC-MDPC
codes or bound their numbers. To see why this gap cannot be ignored we designed
a series of tests that show the existence of a relatively large set of weak keys.
Our examples are inspired by the notion of “spectrum” used in [8,11,15]. To
construct the keys we changed the BIKE key generation. Instead of generating
a random h0, we start by setting the first f = 0, 20, 30, 40 bits, and then select
randomly the positions of the additional (d − f) bits. The generation of h1 is
unchanged.
7 Here, KEM �⊥ refers to a KEM with implicit rejection, and qG is the number of

invocation of the random oracle G (H in the case of BIKE-1).
8 Our definition of weak keys is different form that of [4], where a weak key is a secret

key that can be exposed from the public key alone.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 65

Since it is difficult to observe failures and weak keys behavior when r is
large, we study r = 10, 163 (of BIKE-1 CPA) and also r = 9, 803 that amplify
the phenomena.

Figure 7 in Appendix F shows the behavior of the Black-Gray decoder for
r = 9, 803 and r = 10, 163 with f = 0, 20, 30, 40 after XBG = 1, 2, 3, 4 iterations.
In every case (Panel) we choose randomly 10, 000 keys. For every key we choose
randomly 1, 000 errors vectors. The histograms show the weight of an “ideal”
errors vector e after the XBG iteration (horizontal axis). We see that as f grows
the number of un-decoded error bits after every iteration increases. For f ≤ 30,
decoding often succeeds after 3 iterations. However, for f = 40 it is possible to
decode the error after 4 iterations only when r = 10, 163, but not for r = 9, 803.
In other words, if we fix XBG = 3 for the Black-Gray decoder and use r = 9, 803
we see ∼100% failures with weak keys defined by f = 40. This shows that for a
given decoder the set of weak keys depends on r and X.

Remark 4 (Other decoders). Figure 7 shows how the weak keys impact the decod-
ing success probability for chosen r and XBG with the Black-Gray decoder. Note
that such results depend on the specific decoder. To compare, Backflip+ calcu-
lates the unsatisfied parity checks threshold in a more conservative way, and
therefore requires more iterations. Weak keys would lead to a different behavior.
When we repeat our experiment with the Simple-Parallel decoder, we see that
almost all tests fail even with f = 19.

Figure 3 shows additional results with the Black-Gray decoder and r = 9, 803.
Panel (a) shows the histogram for f = 0 (i. e., reducing to the standard h0

generation), and Panel (b) shows the histogram for f = 30. The horizontal axis
measures the number of failures x out of 10, 000 random errors. The vertical axis
counts the number of keys that have a DFR of x/10, 000. For f = 0, the average
and standard deviation are E(x) = 119.06, and σ(x) = 10.91. However, when
f = 30, the decoder fails much more often and we have E(x) = 9, 900.14, and
σ(x) = 40.68. This shows the difference between the weak keys and the “normal”
randomized keys and that the DFR cannot be predicted by the “average-case”
model. It is also interesting to note that for f = 30 we do not get a Gaussian
like distribution (unlike the histogram with f = 0).

The remaining question is: what is the probability to hit a weak key when
the keys are generated randomly as required? Let Wf be the set of weak keys
that correspond to a given value of f . Define zr,f as the relative size of Wf . Then

zr,f =
|Wf |
|S| =

(
r−f
d−f

)
(
r
d

) (3)

Note that choosing a larger f decreases the size of Wf , i. e., if f2 < f1 then
Wf1 ⊆ Wf2 . It is easy to compute that

z9803,0 = z10163,0 = 1

z9803,10 = 2−72, z9803,20 = 2−146, z9803,30 = 2−223, z9803,40 = 2−304,

66 N. Drucker et al.

z10163,10 = 2−72, z10163,20 = 2−147, z10163,30 = 2−225, z10163,40 = 2−306

The conclusion is that while the set Wf is large, its relative size (from the set
of all keys) is still below 2−128. Therefore, this construction does not show that
BIKE-1 after our fix is necessarily not IND-CCA secure. However, it clearly
shows that the problem cannot be ignored, and the claim that BIKE is IND-
CCA secure requires further justification. In fact, there are other patterns and
combinations that give sets of weak keys with a higher relative size (e.g., setting
every other bit of h0, f times). We point out again that any analysis of weak
keys should relate to a specific decoder and a specific choice of r.

Fig. 3. Black-Gray decoder, r = 9, 803 with f = 0 (Panel (a)) and f = 30 (Panel (b)).
The horizontal-axis measures the number of failures x out of 10, 000 random errors
vectors. The vertical-axis counts the number of keys that have a DFR of x/10, 000.
The conclusion is that there are keys that lead to higher DFR.

7 Discussion

The Round-2 BIKE [3] represents significant progress in the scheme’s design,
and offers an IND-CCA version, on top of the IND-CPA KEM that was defined
in Round-1. This paper addresses several difficulties and challenges and solves
some of them.

– The Backflip decoder runs in a variable number of steps that depends on the
input and the secret key. We fix this problem by defining a variant, Backflip+,
that, by definition, runs XBF iterations for a parameter XBF . We carry out
the analysis to determine the values of XBF where Backflip+ has DFR of
2−128, and provide all of the details that are needed in order to repeat and
reproduce our experiments. Furthermore, we show that for the target DFR,
the values of XBF are relatively small e.g., 12. (much less than 100 as implied
for Backflip).

– Inspired by the extrapolation method suggested in [20], we studied the Black-
Gray decoder (already used in Round-1 Additional code [7]) that we defined
to have a fixed number of steps (iterations) XBG. Our goal was to find values
of XBG that guarantee the target DFR for a given r. We found that the values

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 67

of r required with Black-Gray are smaller than the values with Backflip+. It
seems that achieving the low DFR (2−128) should be attributed to increasing
r, independently of the decoding algorithm. The ability to prove this for some
decoders is attributed to the extrapolation method.

– After the decoders are defined to run a fixed number of iterations, we
could build constant-time software implementations (with memory access
patterns and branches that reveal no secret information). This is nowadays
the standard expectation from cryptographic implementations. We measured
the resulting performance (on a modern x86-64 CPU) to find an optimal
“decoder-X-r” combination. Table 3 shows that for a given DFR, the Black-
Gray decoder is always faster than Backflip+.

– The analysis in Sect. 6 identifies a gap that needs to be addressed in order to
claim IND-CCA security for BIKE. It relates to the difference between aver-
age DFR and the δ-correctness definition [12]. A DFR of (at most) 2−128 is a
necessary requirement for IND-CCA security, which BIKE achieves. However,
it is not necessarily sufficient. We show how to construct a “large” set of weak
keys, but also show that it still not sufficiently large to invalidate the neces-
sary δ-correctness bound. This is a positive indication, although there is no
proof that the property is indeed satisfied. This gap remains as an interesting
research challenge to pursuit. The problem of bounding (or eliminating) the
number of weak keys is not specific to BIKE. It is relevant for other schemes
that claim IND-CCA security and their decapsulation has nonzero failure
probability. With this, we can state the following.

BIKE-1-CCA, instantiated with Black-Gray (or Backflip+) decoder with
the parameters that guarantee DFR of 2−128, and with the accompanying
constant-time implementation, is IND-CCA secure, under the assumption
that its underlying PKE is 2−128-correct.

7.1 Methodologies

Our performance measurements were carried on an x86-64 architecture. Stud-
ies on different architectures can give different results we therefore point to an
interesting study of the performance of other constant-time decoders on other
platforms [14]. Note that [14] targets schemes that use ephemeral keys with
relatively large DFR and only IND-CPA security.

Differences in the DFR Estimations. Our DFR prediction methodology may
be (too) conservative and therefore yields more pessimistic results than those
of [3]. One example is the combination (BIKE-1, Level-1, Backflip+ decoder,
r = 11, 779, XBF = 10). Here, [3] predicts a 100−DFR of 2−128 and our linear
extrapolation for the 10-DFR predicts only 2−71(≈ 10−21). To achieve a 10-DFR
of 2−128 we need to set r = 13, 892(>11, 779). Although the Backflip+ decoder
with XBF = 10 is not optimal, it is important to understand the effect of differ-
ent extrapolations. Comparing to [3,20] is difficult (no information that allows

68 N. Drucker et al.

us to repeat the experiments), we attempt to provide some insight by acquir-
ing data points for Backflip+ with XBF = 100 and applying our extrapolation
methodology. Indeed, the results we obtain are still more pessimistic, but if we
apply a different extrapolation methodology (“Last-Linear”) we get closer to [3].
The details are given in Appendix C.

Another potential source of differences is that Backflip has a recovery mech-
anism (TTL). For Backflip+ this mechanism is limited due to setting XBF ≤ 11.
It may be possible to tune Backflip and Backflip+ further by using some fine-
grained TTL equations that depend on r. Information on the equations that
were used for [3] was not published, so we leave tuning for further research.

7.2 Practical Considerations for BIKE9

Our Decoder Choice. We report our measurements only for Black-Gray and
Backflip+ because other decoders that we know either have a worse DFR (e.g.,
Parallel-Simple) or are inherently slow (e.g., Step-by-Step). Our results suggest
that instantiating BIKE with Black-Gray is recommended. We note that the
higher number of iterations required by Backflip+ is probably because it uses a
more conservative threshold function than Black-Gray.

Recommendations for the BIKE Flows. Currently, BIKE has two options
for executing the key generation, encapsulation, and decapsulation flows. One
for an IND-CPA KEM, and another (using the FO �⊥ transformation [12]) for
an IND-CCA scheme, to deny a chosen ciphertext attack from the encapsulat-
ing party. It turns out that the performance difference is relatively small. As
shown in Fig. 2 for BIKE-1, the overhead of the IND-CCA flows is less than
6% (on x86-64 platforms). With such a low overhead, we believe that the BIKE
proposal could gain a great deal of simplification by using only the IND-CCA
flows. This is true even for applications that intend to use only ephemeral keys,
in order to achieve forward secrecy. Here, IND-CCA security is not mandatory,
and IND-CPA security suffice. However, using the FO �⊥ transformation could
be a way to reduce the risk of inadvertent repetition (“misuse”) of a supposedly
ephemeral key, thus buying some multi-user-multi-key robustness. By applying
this approach, the scheme is completely controlled by choosing a single parame-
ter r (with the same implementation). For example, with the Black-Gray decoder
and XBG = 4, the choice r = 11, 001 gives DFR = 2−64 with competitive per-
formance. A DFR of 2−64 is sufficiently low and can be ignored by all practical
considerations.

Choosing r. The choice of r and XBG gives an interesting trade-off between
bandwidth and performance10. A larger value of r increases the bandwidth but
reduces the DFR when XBG is fixed. On the other hand, it allows to reduce

9 The recommendations given here are the opinion of the authors of this paper.
10 BIKE specification [3, Section 2.4.5] states: “An interesting consequence is that if

w and t are fixed, a moderate modification of r (say plus or minus 50%) will not
significantly affect the resistance against the best known key and message attacks”.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 69

XBG while maintaining the same DFR. This could lead to better performance.
We give one example. To achieve DFR = 2−23 the choice of XBG = 4 and
r = 10, 163 leads to decoding at 2.8M cycles. The choice XBG = 3 and a slightly
larger r = 10, 253 leads to decoding at 2.22M cycles. Complete details are given
in Table 3.

General Recommendations for the BIKE Suite. Currently, BIKE [3] con-
sists of 10 variants: BIKE-1 (the simplest and fastest); BIKE-2 (offering band-
width optimization at the high cost of polynomial inversion); BIKE-3 (simpler
security reduction with the highest bandwidth and lowest performance). In addi-
tion, there are also BIKE-2-batch and BIKE-3 with bandwidth optimization.
Every version comes with two flavors IND-CPA and IND-CCA. On top of this,
every option comes with three security levels (L1/L3/L5). Finally, the implemen-
tation packages include generic code and optimization for AVX2 and AVX512.
We believe that this abundance of options involves too high complexity and
reducing their number would be very useful. For Round-3 we recommend to
define BIKE as follows: BIKE-1 CCA instantiated with the Black-Gray decoder
with XBG = 3 iterations. Offer Level-1 with r = 11, 261 targeting DFR = 2−64

and r = 12, 781 targeting DFR = 2−128, as the main variants. In all cases, use
ephemeral keys, for forward secrecy. For completeness, offer also a secondary
variant for Level-3 with r = 24, 659 targeting DFR = 2−128.

The code that implements these recommendations was contributed to (and
already merged into) the open-source library LibOQS [1]. It uses the choice of
r = 11, 779, following the block size of the current Round-2 specification (this
choice of r leads to a DFR of 2−86).

Vetting Keys. We recommend to use BIKE with ephemeral keys and forward
secrecy. In this case we do not need to rely on the full IND-CCA security prop-
erties of the KEM. However, there may be usages that prefer to use static keys.
Here, we recommend the following way to narrow the DFR-δ-correctness gap
pointed above by “vetting” the private key. For static keys we can assume that
the overall latency of the key generation generation phase is less significant.
Therefore, after generating a key, it would be still acceptable, from the practical
viewpoint, to vet it experimentally. This can be done by running encapsulation-
followed-by-decapsulation for some number of trials, in the hope to identify a
case where the key is obviously weak. A more efficient way is to generate random
(and predefined) errors and invoke the decoder. We point out that the vetting
process can also be applied offline.

Acknowledgments. This research was partly supported by: NSF-BSF Grant
2018640; The BIU Center for Research in Applied Cryptography and Cyber Secu-
rity, and the Center for Cyber Law and Policy at the University of Haifa, both in
conjunction with the Israel National Cyber Directorate in the Prime Minister’s Office.

70 N. Drucker et al.

A Black-Gray Decoder

Algorithm 2. e=Black-Gray(c, H)
Input: Parity-check matrix H ∈ F

r×n
2 , c ∈ F

n
2 , XBG (maximal # of iterations)

Output: The error e ∈ F
n
2

Exception: “decoding failure” return ⊥
1: procedure Black-Gray(c, H)
2: s = HcT , e = 0, δ = 4
3: B = ∅, G = ∅ � Black and Gray position sets
4:
5: for itr in 0 . . . XBG − 1 do
6: th = computeThreshold(s)
7: upc[n − 1 : 0] = computeUPC(s, H)
8: for i in 0 . . . n − 1 do � Step I
9: if upc[i] ≥ th then

10: e[i] = e[i] ⊕ 1 � Flip an error bit
11: B = B ∪ i � Update the Black set
12: else if upc[i] > th − δ then
13: G = G ∪ i � Update the Gray set

14: s = H(cT + eT) � Update the syndrome
15:
16: upc[n − 1 : 0] = computeUPC(s, H) � Step II
17: for b ∈ B do
18: if upc[b] > ((d + 1)/2) then
19: e[b] = e[b] ⊕ 1 � Flip an error bit

20: s = H(cT + eT) � Update the syndrome
21:
22: upc[n − 1 : 0] = computeUPC(s, H) � Step III
23: for g ∈ G do
24: if upc[g] > ((d + 1)/2) then
25: e[g] = e[g] ⊕ 1 � Flip an error bit

26: s = H(cT + eT) � Update the syndrome
27:
28: if (wt(s) 	= 0) then
29: return ⊥
30: else
31: return e

B Implementing Backflip+ in Constant-Time

Here, we show how to define and implement a constant-time Backflip+ decoder,
based on a constant-time Black-Gray decoder. The Backflip+ decoder differs
from the Black-Gray decoder in two aspects: a) it uses a new mechanism called
TTL; b) it uses new equations for calculating the thresholds. The TTL mech-
anism is a “smart queue” where the decoder flips back some error bits when

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 71

it believes that they were mistakenly flipped in previous iterations. It does
so unconditionally and it can flip bits even after 5 iterations. The Black-Gray
decoder uses a different type of TTL, where the black and gray lists serve as the
“smart queue”. However, the error bits are flipped back after only 1 iteration,
conditionally, through checking certain thresholds. Indeed, as we report below
the differences are observed in cases where the Black-Gray decoder failed to
decode after 4 iterations and then w.h.p fails completely. The Backflip decoder
shows better recovery capabilities in such cases. Implementing the new TTL
queue in constant-time relies mostly on common constant-time techniques.

Handling the New Threshold Function. The Backflip decoder thresholds
are a function of two variables [3][Section 2.4.3]: a) the syndrome weight wt(s) as
in the Black-Gray decoder; b) the number of error bits that the decoder believes
it flipped (denoted ē). This function outputs higher thresholds compared to the
Black-Gray decoder. This is a conservative approximation. We believe that the
design of the Backflip decoder tends to avoid flipping the “wrong” bits so that
the decoder would have better recovery capabilities and a lower DFR (assuming
that it can execute an un-bounded number of iterations). We point out that
evaluating the function involves computing logarithms, exponents, and function
minimization, and it is not clear how this can be implemented in constant-time
(the reference code [3] is not implemented in constant-time).

One way to address this issue is to pre-calculate the finite number of pairs
(wt(s), ē) and their function evaluation, store them in a table, and read them
from the table in constant-time. This involves very high latencies.

Similarly to the Black-Gray decoder (in BIKE-1-CPA [3]), we approximate
the thresholds function - which is here a function of two variables. A first attempt
is shown in Fig. 4. We compute the function over all the valid/relevant inputs
and then compute an approximation by fitting it to a plane. Unfortunately, this
approximation is not sufficiently accurate, an experiment with r = 11, 779 (as
in BIKE-1-CCA [3]) gave an estimated DFR of 10−4 .

(a) The thresholds function.
(b) Approximating the function (blue) us-
ing a plane (yellow,turquoise).

Fig. 4. Approximating the Backflip decoder thresholds function.

72 N. Drucker et al.

To improve the approximation we project the function onto the plane ē = e1
(0 ≤ e1 ≤ t). Then, for every valid e1, we compute the linear approximation and
tabulate the coefficients. Figure 5, Panel (a) illustrates the linear approximation
for e1 = 25. These thresholds improve the DFR but it is still too high.

A refinement can be obtained by partitioning the approximation into five
regions. The projection graph in Fig. 5 can be partitioned in five intervals as
follows: a) [a0, a1], [a2, a3], where the threshold is fixed to some minimum value
(min); b) [a4, a5] where the threshold is d; c) [a1, a2] and [a3, a4] where the
threshold (th) is approximated using th = b0wt(s) + b1 and th = c0wt(s) + c1,
respectively. For r = 11, 779 the values we use are a0 = 0, a1 = 1, 578, a2 = 1, 832
a3 = 3, 526, a4 = 9, 910 a5 = r. The results is shown Fig. 5 Panel (b) for ē = 25.
We use these values to define the table (T) with t rows and 8 columns. Every row
contains the a1, a2, a3, a4, b0, b1, c0, c1 values that correspond to the projection
on the plane ē.

(a) Linear approximation of wt(s) ∈ [0, r] (b) Five linear approximation per part.

Fig. 5. Approximating the threshold function when ē = 25 is fixed.

For every (s1, e1) = (wt(s), ē) the threshold is computed by

if (s1 < T[e1][0]) threshold = min;
elif (s1 < T[e1][1]) threshold = T[e1][4] * s1 + T[e1][5];
elif (s1 < T[e1][2]) threshold = min;
elif (s1 < T[e1][3]) threshold = T[e1][6] * s1 + T[e1][7];
else threshold = d

To evaluate the thresholds in constant-time we used a constant-time function
secure le mask that compares two integers j, k and returns the mask 0x0 if
j < k and the mask 0xffffffff otherwise. The threshold computation is now:

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 73

cond0 = secure_le_mask(T[e1][0], s1)

cond1 = secure_le_mask(T[e1][1], s1) & ~secure_le_mask(T[e1][0], s1)

cond2 = secure_le_mask(T[e1][2], s1) & ~secure_le_mask(T[e1][1], s1)

cond3 = secure_le_mask(T[e1][3], s1) & ~secure_le_mask(T[e1][2], s1)

cond4 = ~secure_le_mask(T[e1][3],s1)

res = cond0 & min

res += cond1 & round(T[e1][4] * s1 + T[e1][5])

res += cond2 & min

res += cond3 & round(T[e1][6] * s1 + T[e1][7])

res += cond4 & max

return res

With this we can implement Backflip+ in constant-time, provided that we
fix a-priori the number of iterations.

C Achieving the Same DFR Bounds as of [20]

We ran experiments with Backflip+ and XBF = 100 for BIKE-1 Level-1, scan-
ning all the 34 legitimate r ∈ [8500, 9340] (prime r values such that xr − 1 is a
primitive polynomial) with 4.8M tests for every value. Applying our extrapola-
tion methodology (see Sect. 4) to the acquired data leads to the results illustrated
in Fig. 6 Panels (a) and (b). The figure highlights the pairs (DFR; r) for DFR
2−64 and 2−128 with the smallest possible r. For example, with r = 12, 539 the
linear extrapolation gives DFR of 2−128. Note that [3] claims a DFR of 2−128

for a smaller r = 11, 779. For comparison, with r = 11, 779 our methodology
gives a DFR of 2−104. We can guess that either different TTL values were used
for every r, or that other r values were used, or that a different extrapolation
methodology was applied.

We show one possible methodology (“Last-Linear”) that gives a DFR of
∼2−128 with r = 11, 779 when applied to the acquired data: a) Ignore the points
from the data-set for which 100−DFR is too low to be calculated reliably (e.g.,
the five lower points in Fig. 6); b) Draw a line through the last two remaining
data points with the highest values of r. The rationale is that the “linear regime”
of the DFR evolution starts for values of r that are beyond those that can be
estimated in an experiment. Thus, a line drawn through two data points where
r is smaller than the starting point of the linear regime leads to an extrapolation
that is lower-bounded by the “real” linear evolution. With this approach, the
question is how to choose the two points for which experimental data is obtained
and the DFR is extrapolated from.

This shows that different ways to acquire and interpret the data give different
upper bounds for the DFR. Since the extrapolation shoots over a large gap of
r values, the results are sensitive to the chosen methodology. It is interesting to
note that if we take our data points for Black-Gray and XBG = 5 and use the
Last-Linear extrapolation, we can find two points that would lead to 2−128 and
r = 11, 779, while more conservative methodology gives only 2−101.

74 N. Drucker et al.

(a) lin. ext., our method. (DFR, r) =
(2−64; 10, 589), (2−128; 12, 539)

(b) lin. ext. Last-Linear. (DFR, r) =
(2−64; 10, 253), (2−128; 11, 813)

Fig. 6. BIKE-1 Level-1 Backflip+ different extrapolation methods. See the text for
details. The sub-captions detail the (DFR; r) for DFR values: 2−64, 2−128.

D Additional Information

The following values of r were used by the extrapolation method:

– BIKE-1 Level-1: 9349, 9547, 9749, 9803, 9859, 9883, 9901, 9907, 9923, 9941,
9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139.

– BIKE-1 Level-3: 19013, 19037, 19051, 19069, 19141, 19157, 19163, 19181,
19219, 19237, 19259, 19301, 19333, 19373, 19387, 19403, 19427, 19469, 19483,
19507, 19541, 19571, 19597, 19603, 19661, 19709, 19717, 19739, 19763, 19813,
19853.

E The Linear and the Quadratic Extrapolations

Table 4 gives the equations for the linear and the quadratic extrapolation
together with the extrapolated values of r for a DFR of 2−23, 2−64, and 2−128. It
covers the tuple (scheme, level, decoder, X), where decoder ∈ {BG=Black-Gray,
BF=Backflip+}.

The BIKE specification [3] chooses r to be the minimum required for achiev-
ing a certain security level, and the best bandwidth trade-off. It also indicates
that it is possible to increase r by “plus or minus 50%” (leaving w, t fixed) with-
out reducing the complexity of the best known key/message attacks. This is an
interesting observation. For example, increasing the BIKE-1 Level-3 r = 19, 853
by 50% gives r = 29, 779 which is already close to the BIKE-1 Level-5 that has
r = 32, 749 (of course with different w and t). We take a more conservative app-
roach and restrict r values to be at most 30% above their CCA values stated in
[3]. Table 4 labels values beyond this limit as N/A.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 75

T
a
b
le

4
.
T

h
e

li
n
ea

r
a
n
d

th
e

q
u
a
d
ra

ti
c

ex
tr

a
p
o
la

ti
o
n

eq
u
a
ti

o
n
s,

a
n
d

th
e

co
m

p
u
te

d
r

va
lu

es
fo

r
a

g
iv

en
D

F
R

.
T

h
e

ca
se

s
la

b
el

ed
w

it
h

N
/
A

a
re

th
o
se

w
h
er

e
th

e
va

lu
e

o
f
r

to
a
ch

ie
v
e

a
ta

rg
et

D
F
R

co
u
ld

n
o
t

b
e

fo
u
n
d

in
th

e
ra

n
g
e

[0
.7

r′ ,
1
.3

r′]
,
w

h
er

e
r′

is
th

e
re

co
m

m
en

d
ed

va
lu

e
fo

r
IN

D
-C

C
A

se
cu

ri
ty

in
[3

]

K
E

M
L
ev

.
D

ec
o
d
er

It
er

.
L
in

.
st

a
rt

L
in

.
eq

.
(a

,b
)

s.
t.

lo
g
1
0
D
F
R

=
a
r

+
b

=

2
−
2
3

2
−
6
4

2
−
1
2
8

Q
u
a
d
.
eq

.
(a

,
b
,
c)

s.
t.

lo
g
1
0
D
F
R

=
a
r2

+
br

+
c

=
2

−
2
3

2
−
6
4

2
−
1
2
8

B
IK

E
-1

1
B

G
3

1
0

(−
1
.2

5
e−

2
,1

2
1
)

1
0
,2

5
3

1
1
,2

6
1

1
2
,7

8
1

(−
1
.0

5
e−

5
,1

.9
7
e−

1
,−

9
2
7
)

1
0
,2

5
3

1
0
,7

8
9

1
1
,3

1
7

B
IK

E
-1

1
B

G
4

9
(−

1
.4

5
e−

2
,1

4
0
)

1
0
,1

6
3

1
1
,0

0
3

1
2
,3

4
7

(−
1
.1

6
e−

5
,2

.1
8
e−

1
,−

1
0
2
0
)

1
0
,1

3
9

1
0
,6

6
7

1
1
,1

9
7

B
IK

E
-1

1
B

G
5

9
(−

1
.4

9
e−

2
,1

4
4
)

1
0
,1

3
3

1
0
,9

7
3

1
2
,2

5
1

(−
1
.1

8
e−

5
,2

.2
0
e−

1
,−

1
0
3
0
)

1
0
,1

3
3

1
0
,6

6
7

1
1
,1

7
1

B
IK

E
-1

1
B

F
8

9
(−

5
.4

0
e−

3
,4

9
.8

)
1
0
,4

9
9

1
2
,7

8
1

N
/
A

(−
6
.8

6
e−

7
,8

.1
1
e−

3
,−

1
6
.8

)
1
0
,4

5
9

1
2
,1

4
9

1
4
,1

0
7

B
IK

E
-1

1
B

F
9

6
(−

6
.9

2
e−

3
,6

3
.8

)
1
0
,2

5
3

1
2
,0

1
1

1
4
,7

9
7

(−
1
.1

6
e−

6
,1

.6
2
e−

2
,−

5
0
.9

)
1
0
,2

5
3

1
1
,5

7
9

1
3
,1

0
9

B
IK

E
-1

1
B

F
1
0

8
(−

8
.4

0
e−

3
,7

7
.6

)
1
0
,0

6
7

1
1
,5

4
9

1
3
,8

2
9

(−
1
.8

8
e−

6
,2

.9
0
e−

2
,−

1
0
8
)

1
0
,0

6
7

1
1
,1

9
7

1
2
,4

3
7

B
IK

E
-1

1
B

F
1
1

7
(−

1
.1

2
e−

2
,1

0
4
)

9
,9

4
9

1
1
,0

6
9

1
2
,7

8
1

(−
3
.4

1
e−

6
,5

.7
7
e−

2
,−

2
4
3
)

9
,9

4
9

1
0
,8

8
3

1
1
,8

6
7

B
IK

E
-1

3
B

G
3

1
0

(−
6
.9

7
e−

3
,1

3
3
)

2
0
,0

5
1

2
1
,8

2
1

2
4
,6

5
9

(−
2
.3

9
e−

6
,8

.6
4
e−

2
,−

7
8
0
)

1
9
,9

9
7

2
1
,0

5
9

2
2
,1

8
9

B
IK

E
-1

3
B

G
4

1
0

(−
8
.7

0
e−

3
,1

6
6
)

1
9
,8

5
3

2
1
,2

6
9

2
3
,4

5
9

(−
3
.3

4
e−

6
,1

.2
2
e−

1
,−

1
1
1
0
)

1
9
,8

1
3

2
0
,7

1
7

2
1
,6

8
3

B
IK

E
-1

3
B

G
5

1
0

(−
9
.1

0
e−

3
,1

7
3
)

1
9
,8

1
3

2
1
,1

3
9

2
3
,2

5
1

(−
3
.6

7
e−

6
,1

.3
4
e−

1
,−

1
2
2
0
)

1
9
,7

6
3

2
0
,6

2
7

2
1
,5

5
7

B
IK

E
-1

3
B

F
8

1
0

(−
5
.3

6
e−

3
,9

9
.7

)
1
9
,8

6
7

2
2
,1

7
1

2
5
,7

7
1

(−
9
.0

8
e−

7
,3

.0
2
e−

2
,−

2
4
8
)

1
9
,8

5
3

2
1
,5

2
3

2
3
,3

3
9

B
IK

E
-1

3
B

F
9

9
(−

6
.1

4
e−

3
,1

1
4
)

1
9
,6

6
1

2
1
,6

6
1

2
4
,7

8
1

(−
1
.3

7
e−

6
,4

.7
1
e−

2
,−

4
0
3
)

1
9
,6

6
1

2
1
,0

5
9

2
2
,6

1
3

B
IK

E
-1

3
B

F
1
0

5
(−

6
.5

1
e−

3
,1

2
0
)

1
9
,4

6
9

2
1
,3

7
9

2
4
,3

7
1

(−
8
.6

4
e−

7
,2

.6
9
e−

2
,−

2
0
4
)

1
9
,4

6
9

2
1
,0

1
1

2
2
,7

8
7

B
IK

E
-1

3
B

F
1
1

6
(−

7
.0

5
e−

3
,1

3
0
)

1
9
,3

7
3

2
1
,1

0
1

2
3
,8

6
9

(−
1
.6

6
e−

6
,5

.6
9
e−

2
,−

4
8
8
)

1
9
,3

7
3

2
0
,6

9
3

2
2
,0

6
7

76 N. Drucker et al.

F Illustration Graphs

(a) r = 9803, iteration 1 (b) r = 10163, iteration 1

(c) r = 9803, iteration 2 (d) r = 10163, iteration 2

(e) r = 9803, iteration 3 (f) r = 10163, iteration 3

(g) r = 9803, iteration 4 (h) r = 10163, iteration 4

Fig. 7. Histograms of the cases (vertical axis; measured in percentage) that end-up
with some weight of an “ideal” errors vector (horizontal axis) after the XBG = 1, 2, 3, 4
iterations. The decoder is the Black-Gray decoder. Panels a, c, e, g represents the
results for r = 9, 803 and Panels b, d, f, h for r = 10, 163 with f = 0, 20, 30, 40. A lower
error weight is better. See explanation in the text.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 77

(a) BIKE-1-L1, Black-Gray, lin. ext. (b) BIKE-1-L1, Black-Gray, quad. ext.

(c) BIKE-1-L1, Backflip+, lin. ext. (d) BIKE-1-L1, Backflip+, quad. ext.

(e) BIKE-1-L3, Black-Gray, lin. ext. (f) BIKE-1-L3, Black-Gray, quad. ext.

(g) BIKE-1-L3, Backflip+, lin. ext. (h) BIKE-1-L3, Backflip+, quad. ext.

Fig. 8. BIKE-1 Level-1 and Level-3 extrapolations (see Sect. 4 for details).

78 N. Drucker et al.

References

1. C library for quantum-safe cryptography (2019). https://github.com/open-
quantum-safe/liboqs/pull/554

2. Melchor, C.A., et al.: Hamming Quasi-Cyclic (HQC) (2017). https://pqc-hqc.org/
doc/hqc-specification 2017-11-30.pdf

3. Aragon, N., et al.: BIKE: Bit Flipping Key Encapsulation (2017). https://bikesuite.
org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf

4. Bardet, M., Dragoi, V., Luque, J.G., Otmani, A.: Weak keys for the quasi-cyclic
MDPC public key encryption scheme. In: Pointcheval, D., Nitaj, A., Rachidi,
T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 346–367. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31517-1 18

5. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryptosys-
tem. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp.
1366–1370 (2016). https://doi.org/10.1109/ISIT.2016.7541522

6. Drucker, N., Gueron, S.: A toolbox for software optimization of QC-MDPC code-
based cryptosystems. J. Cryptogr. Eng. 9(4), 341–357 (2019). https://doi.org/10.
1007/s13389-018-00200-4

7. Drucker, N., Gueron, S.: Additional implementation of BIKE (2019). https://
bikesuite.org/additional.html

8. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: a timing attack
and a CCA2 KEM. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 47–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 3

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

10. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962). https://doi.org/10.1109/TIT.1962.1057683

11. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

12. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017).
https://eprint.iacr.org/2017/604

14. Maurich, I.V., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece encryp-
tion. ACM Trans. Embed. Comput. Syst. 14(3), 44:1–44:27 (2015). https://doi.
org/10.1145/2700102. http://doi.acm.org/10.1145/2700102

15. Nilsson, A., Johansson, T., Wagner, P.S.: Error amplification in code-based cryp-
tography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1, 238–258 (2019). https://
doi.org/10.13154/tches.v2019.i1.238-258

16. NIST: Post-Quantum Cryptography (2019). https://csrc.nist.gov/projects/post-
quantum-cryptography. Accessed 20 Aug 2019

17. Gaudry, P., Brent, R.P.Z., Thome, E.: gf2x-1.2 (2017). https://gforge.inria.fr/
projects/gf2x/

https://github.com/open-quantum-safe/liboqs/pull/554
https://github.com/open-quantum-safe/liboqs/pull/554
https://pqc-hqc.org/doc/hqc-specification_2017-11-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2017-11-30.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
https://doi.org/10.1007/978-3-319-31517-1_18
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1007/s13389-018-00200-4
https://doi.org/10.1007/s13389-018-00200-4
https://bikesuite.org/additional.html
https://bikesuite.org/additional.html
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2017/604
https://doi.org/10.1145/2700102
https://doi.org/10.1145/2700102
http://doi.acm.org/10.1145/2700102
https://doi.org/10.13154/tches.v2019.i1.238-258
https://doi.org/10.13154/tches.v2019.i1.238-258
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 79

18. Samardjiska, S., Santini, P., Persichetti, E., Banegas, G.: A reaction attack against
cryptosystems based on LRPC codes. In: Schwabe, P., Thériault, N. (eds.) LAT-
INCRYPT 2019. LNCS, vol. 11774, pp. 197–216. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30530-7 10

19. Santini, P., Battaglioni, M., Chiaraluce, F., Baldi, M.: Analysis of reaction and
timing attacks against cryptosystems based on sparse parity-check codes. In: Baldi,
M., Persichetti, E., Santini, P. (eds.) CBC 2019. LNCS, vol. 11666, pp. 115–136.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25922-8 7

20. Sendrier, N., Vasseur, V.: On the decoding failure rate of QC-MDPC bit-flipping
decoders. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp.
404–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 22

21. Shoup, V.: Number theory C++ library (NTL) version 11.3.4 (2019). http://www.
shoup.net/ntl

22. Wafo-Tapa, G., Bettaieb, S., Bidoux, L., Gaborit, P.: A practicable timing attack
against HQC and its countermeasure. Technical report 2019/909 (2019). https://
eprint.iacr.org/2019/909

https://doi.org/10.1007/978-3-030-30530-7_10
https://doi.org/10.1007/978-3-030-30530-7_10
https://doi.org/10.1007/978-3-030-25922-8_7
https://doi.org/10.1007/978-3-030-25510-7_22
http://www.shoup.net/ntl
http://www.shoup.net/ntl
https://eprint.iacr.org/2019/909
https://eprint.iacr.org/2019/909

	On Constant-Time QC-MDPC Decoders with Negligible Failure Rate
	1 Introduction
	2 Preliminaries and Notation
	2.1 BIKE-1
	2.2 The IND-CCA Transformation
	2.3 QC-MDPC Decoders

	3 Idealized Schemes and Concrete Instantiations
	4 Estimating the DFR of a Decoder with a Fixed Number of Iterations
	5 Results
	5.1 Extensive Experimentation
	5.2 Performance Studies

	6 Weak Keys: A Gap for Claiming IND-CCA Security
	6.1 Constructing Weak Keys

	7 Discussion
	7.1 Methodologies
	7.2 Practical Considerations for BIKE

	A Black-Gray Decoder
	B Implementing Backflip+ in Constant-Time
	C Achieving the Same DFR Bounds as of ch4pqcrypto
	D Additional Information
	E The Linear and the Quadratic Extrapolations
	F Illustration Graphs
	References

