)

Check for
updates

On Constant-Time QC-MDPC Decoders
with Negligible Failure Rate

Nir Drucker 2@, Shay Gueron'2®, and Dusan Kostic?

! University of Haifa, Haifa, Israel
drucker.nir@gmail.com
2 Amazon, Seattle, USA
3 EPFL, Lausanne, Switzerland

Abstract. The QC-MDPC code-based KEM Bit Flipping Key Encap-
sulation (BIKE) is one of the Round-2 candidates of the NIST PQC
standardization project. It has a variant that is proved to be IND-CCA
secure. The proof models the KEM with some black-box (“ideal”) prim-
itives. Specifically, the decapsulation invokes an ideal primitive called
“decoder”, required to deliver its output with a negligible Decoding Fail-
ure Rate (DFR). The concrete instantiation of BIKE substitutes this
ideal primitive with a new decoding algorithm called “Backflip”, that is
shown to have the required negligible DFR. However, it runs in a variable
number of steps and this number depends on the input and on the key.
This paper proposes a decoder that has a negligible DFR and also runs
in a fixed (and small) number of steps. We propose that the instantiation
of BIKE uses this decoder with our recommended parameters. We study
the decoder’s DFR as a function of the scheme’s parameters to obtain a
favorable balance between the communication bandwidth and the num-
ber of steps that the decoder runs. In addition, we build a constant-time
software implementation of the proposed instantiation, and show that
its performance characteristics are quite close to the IND-CPA variant.
Finally, we discuss a subtle gap that needs to be resolved for every IND-
CCA secure KEM (BIKE included) where the decapsulation has nonzero
failure probability: the difference between average DFR and “worst-case”
failure probability per key and ciphertext.

Keywords: BIKE - QC-MDPC codes + IND-CCA - Constant-time
algorithm - Constant-time implementation

1 Introduction

BIKE [3] is a code-based Key Encapsulation Mechanism (KEM) using Quasi-
Cyclic Moderate-Density Parity-Check (QC-MDPC) codes. It is one of the
Round-2 candidates of the NIST PQC Standardization Project [16]. BIKE sub-
mission includes three variants (BIKE-1, BIKE-2, and BIKE-3) with three secu-
rity levels for each one. Hereafter, we focus mainly on BIKE-1, at its Category
1 (as defined by NIST) security level.

© Springer Nature Switzerland AG 2020
M. Baldi et al. (Eds.): CBCrypto 2020, LNCS 12087, pp. 50-79, 2020.
https://doi.org/10.1007/978-3-030-54074-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_4&domain=pdf
http://orcid.org/0000-0002-7273-4797
http://orcid.org/0000-0002-9145-7609
http://orcid.org/0000-0002-7415-1587
https://doi.org/10.1007/978-3-030-54074-6_4

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 51

The decapsulation algorithm of BIKE invokes an algorithm that is called a
decoder. The decoder is an algorithm that, given prescribed inputs, outputs an
error vector that can be used to extract a message. There are various decoding
algorithms and different choices yield different efficiency and DFR properties.

QC-MDPC Decoding Algorithms. We briefly describe the evolution of sev-
eral QC-MDPC decoding algorithms. All of them are derived from the Bit-
Flipping algorithm that is commonly attributed [10]. The Round-1 submission
of BIKE describes the “One-Round” decoder. This decoder is indeed imple-
mented in the accompanying reference code [3]. The designers of the constant-
time Additional implementation [7] of BIKE Round-1 chose to use a different
decoder named “Black-Gray”!, with rationale as explained in [6]. The study pre-
sented in [20] explores two additional variants of the Bit-Flipping decoder: a) a
parallel algorithm similar to that of [10], which first calculates some thresholds
for flipping bits, and then flips the bits in all of the relevant positions, in parallel.
We call this decoder the “Simple-Parallel” decoder; b) a “Step-by-Step” decoder
(an enhancement of the “in-place” decoder described in [8]). It recalculates the
threshold every time that a bit is flipped.

The Round-2 submission of BIKE uses the One-Round decoder (of Round-1)
and a new variant of the Simple-Parallel decoder. The latter introduces a new
trial-and-error technique called Time-To-Live (TTL). It is positioned as a deriva-
tive of the decoders in [20]. All of these decoders have some nonzero probability
to fail in decoding a valid input. The average of the failure probability over all
the possible inputs (keys and messages) is called Decoding Failure Rate (DFR).
The KEMs of Round-1 BIKE were designed to offer IND-CPA security and to
be used only with ephemeral keys. They had an approximate DFR of 1077,
which is apparently tolerable in real systems. As a result, they enjoyed accept-
able bandwidth and performance. Round-2 submission presented new variants
of BIKE KEMs that provide IND-CCA security. Such KEMs can be used with
static keys. The IND-CCA BIKE is based on three changes over the IND-CPA
version: a) a transformation (called FO#) applied to the key generation, encap-
sulation and decapsulation of the original IND-CPA flows (see [3][Section 6.2.1]);
b) adjusted parameters sizes; ¢) invoking the Backflip decoder in the decapsula-
tion algorithm.

Our Contribution

— We define Backflip™ decoder as the variant of Backflip that operates with a
fixed Xpp number of iterations (for some Xpr). We also define the Black-
Gray decoder that runs with a given number of iterations Xpg (for some
Xpg). Subsequently, we analyze the DFR of these decoders as a function
of Xpr and Xpg and the block size (which determines the communica-
tion bandwidth of the KEM). The analysis finds a new set of parameters
where Backflip™ with Xgpr = 8,9, 10,11, 12 and the Black-Gray decoder with

! This decoder appears in the pre-Round-1 submission “CAKE” (the BIKE-1 ances-
tor). It is due to N. Sendrier and R. Misoczki. The decoder was adapted to use the
improved thresholds published in [3].

52 N. Drucker et al.

XBag = 3,4,5 have an estimated average DFR of 27!2%, This offers multiple
IND-CCA proper BIKE instantiation options.

— We build an optimized constant-time implementation of the new BIKE
CCA flows together with a constant-time implementation of the decoders.
This facilitates a performance comparison between the Backflip™ and the
Black-Gray decoders. All of our performance numbers are based only on
constant-time implementations. The comparison leads to interesting results.
The Backflip™ decoder has a better DFR than the Black-Gray decoder if
both of them are allowed to have a very large (practically unlimited) Xpgp
and X gg values. These values do not lead to practical performance. However,
for small Xpr and X g values that make the performance practical and DFR
acceptable, the Black-Gray decoder is faster (and therefore preferable).

— The BIKE CCA flows require higher bandwidth and more computations com-
pared to the original CPA flows, but the differences as measured on x86-
64 architectures are not very significant. Table1 summarizes the trade-off
between the BIKE-1 block size (1), the estimated DFR and the performance of
BIKE-1 decapsulation (with IND-CCA flows) using the Black-Gray decoder.
It provides several instantiations/implementations choices. For example, with
Xpg = 4 iterations and targeting a DFR, of 274 (with » = 11,069 bits) the
decapsulation with the Black-Gray decoder consumes 4.81M cycles. With a
slightly higher » = 11,261 the decoder can be set to have only Xpg = 3
iterations and the decapsulation consumes 3.76M cycles.

Table 1. The BIKE-1 Level-1 block size r (in bits) for which the Black-Gray decoder
achieves a target DFR with a specified number of iterations, and the decapsulation
performance (in cycles; the precise details of the platform are provided in Sect.5). A
DFR of 27?8 is required for the IND-CCA KEM. The IND-CPA used with ephemeral
keys can settle with higher DFR.

DFR 3 iterations | 4 iterations | 5 iterations
278~ 1077 |r 10,259 10,163 10,141
Cycles | 3.50M 4.52M 5.563M
2730~ 1079 |r 10,427 10,331 10,301
Cycles | 3.52M 4.56M 5.63M
2740 ~ 10712 | ¢ 10,667 10, 589 10,501
Cycles | 3.556M 4.63M 5.69M
964 r 11,261 11,069 11,003
Cycles | 3.76M 4.81M 5.96M
2-128 r 12,781 12,437 12,373
Cycles | 4.06M 5.22M 6.47TM

— The FO* transformation from QC-MDPC McEliece Public Key Encryption
(PKE) to BIKE-1 IND-CCA relies on the assumption that the underlying

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 53

PKE is d-correct [12] with § = 27128, The relation between this assumption
and the (average) DFR that used in [3] is not yet addressed. We identify this
gap and illustrate some of the remaining challenges.

The paper is organized as follows. Section 2 offers background, notation and
surveys some QC-MDPC decoders. In Sect. 3 we define and clarify subtle differ-
ences between schemes using idealized primitives and concrete instantiations of
the schemes. In Sect. 4 we explain the method used for estimating the DFR. We
explain the challenges and the techniques that we used for building a constant-
time implementation of IND-CCA BIKE in Appendix B. Section 5 reports our
results for the DFR and block size study, and also the performance measurements
of the constant-time implementations. The gap between the estimated DFR and
the §-correctness needed for IND-CCA BIKE is discussed in Sect.6. Section 7
concludes this paper with several concrete proposals and open questions.

2 Preliminaries and Notation

Let Fy be the finite field of characteristic 2. Let R be the polynomial ring
Fy[X]/ (X" —1). For every element v € R its Hamming weight is denoted by
wt(v). The length of a vector w is denoted by |w]|. Polynomials in R are viewed
interchangeably also as square circulant matrices in F5*". For a matrix H € Fy*"
let h; denote its j-th column written as a row vector. We denote null values and
protocol failures by L. Uniform random sampling from a set W is denoted by

w < W. For an algorithm A, we denote its output by out = A() if A is deter-
ministic, and by out « A() otherwise. Hereafter, we use the notation x.ye—z to
denote the number (z + 75) - 1077.

2.1 BIKE-1

The computations of BIKE-1-(CPA/CCA) are executed over R, where 7 is a
given parameter. Let w and ¢ be the weights of (hg, h1) in the secret key h =
(ho, h1,00,01) and the errors vector e = (eg, e1), respectively. Denote the public
key, ciphertext, and shared secret by f = (fo, f1), ¢ = (co, ¢1), and k, respectively.
As in [3], we use H, K to denote hash functions. Currently, the parameters of
BIKE-1-CPA for NIST Level-1 are r = 10, 163, | f| = |¢| = 20, 326 and for BIKE-
1-CCA are r = 11,779, |f| = |¢| = 23,558. In both cases, |k| = 256, w = 142,
d=w/2="71 and t = 134. Figure 1 shows the BIKE-1-CPA and BIKE-1-CCA
flows [3], see details therein.

2.2 The IND-CCA Transformation

Round-2 BIKE submission [3] uses the FO# conversion ([12] which relies on [9])
to convert the QC-MDPC McEliece PKE into an IND-CCA KEM BIKE-1-CCA.
The submission claims that the proof results from [12][Theorems 3.1 and 3.4%].

2 Theorems 3.1 and 3.4 appear only in the ePrint version [13] of [12]. In [12] they
appear as Theorems 1 and 4, respectively.

54 N. Drucker et al.

[BIKE-1 IND-CPA T BIKE-1 IND-CCA
ho, h1 < R of odd weight wt(ho) = wt(hy) = w2
- go,01 i R
g £ R of odd weight (so wt(g) ~r/2)
(fo, f1) = (gh1, gho)

Key generation

me R
. coer < R | (eo,er) = H(mfo,mf1)
Encapsulation where wt(eo) + wi(e1) = ¢
(co,c1) = (mfo+eo,mf1 +e1)
k = K(eo, €1) { k = K(mfo,mf1,co,c1)

Compute the syndrome s = coho + c1h1
(e, e}) < decode(s, ho, h1)
If wt (e, €1)) # t or decoding failed then
return L [k=K(oo,01,c¢)
else
k=K(ep, el) [k=K(co + e, c1 + €, co,c1)

Decapsulation

Fig. 1. BIKE-1 IND-CPA/IND-CCA flows (full details are given in [3]).

These theorems use the term d-correct PKEs. For a finite message space M, a
PKE is called é-correct when?

E max Pr [Decrypt(sk,c) #m | ¢ — Encrypt(pk,m)|| <6 (1)

me

a KEMs is d-correct if

Pr [Decaps(sk, c) # K|(sk,pk) < Gen(), (¢, K) < Encaps(pk)] <8 (2)

2.3 QC-MDPC Decoders

The QC-MDPC decoders discussed in this paper are variants of the Bit Flipping
decoder [10] presented in Algorithm 1. They receive a parity check matrix H €
F5*™ and a vector ¢ = mf + e as input*. Here, ¢, mf,e € F¥, mf is a codeword
(thus, H(mf)T = 0) and e is an error vector with small weight. The algorithm
calculates the syndrome s = eH” and subsequently extracts e’ from s. The goal
of the Bit Flipping algorithm is to have e’ such that ¢’ = e.

Algorithm 1 consists of four steps: I) calculate some static/dynamic threshold
(th) based on the syndrome (s) and the error (e) weights; IT) compute the number
of unsatisfied parity check equations (upc;) for a given column i € {0,...,n—1};
III) Flip the error bits in the positions where there are more unsatisfied parity-
check equations than the calculated threshold; IV) Recompute the syndrome.

3 In BIKE-1, the secret key (sk) and public key (pk) are h and f, respectively.
4 In BIKE-1, n = 2r, the parity-check matrix H is formed by the two circulant blocks
(ho, h1), the vectors ¢, e, and f are defined as ¢ = (co,c1), e = (eo,€1), and mf =

(m'f07m'fl)~

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 55

We refer to Algorithm 1 as the Simple-Parallel decoder. The Step-By-Step
decoder inserts Steps 4, 9 into the “for” loop (Step 5), i.e., it recalculate the
threshold and the syndrome for every bit. The One-Round decoder starts with
one iteration of the Simple-Parallel decoder, and then switches to the Step-by-
Step decoder mode of operation.

Algorithm 1. e=BitFlipping(c, H)

Input: Parity-check matrix H € F;*", ¢ € F3, maxIter (maximal # of iterations),
u maximal syndrome weight

Output: The error e € F5

Exception: “decoding failure” return L

1: procedure BITFLIPPING(c, H)

2: s=Hcl e=0,itr=0

3: while (wt(s) > u) and (itr < maxIter) do

4: th = computeThreshold(s,e) > Step I
5: foriin0...n—1do

6: Compute upc; > Step 11
7 if upce; > th then efi] = efi] ® 1 > Step III
8: s=H(cT +¢eT) > Step IV
9: itr =itr + 1

10: if itr = maxIter then

11: return |

12: else

13: return e

The Black-Gray decoder (in the additional code [7]) and the Backflip decoder
[3] use a more complex approach. Similar to the Simple-Parallel decoder, they
operate on the error bits in parallel. However, they add a step that re-flips the
error bits according to some estimation.

The “while” loop of an iteration of the Black-Gray decoder consists of: 1)
Perform 1 iteration of the Simple-Parallel decoder and define some bits position
candidates that should be reconsidered (i.e., bits that were mistakenly flipped).
Then, split them into two lists (black, gray); 2) Reevaluate the bits in the black
list, flip them according to the evaluation. Then, recalculate the syndrome; 3)
Reevaluate the bits in the gray list, and flip according to the evaluation. Then,
recalculate the syndrome.

The Backflip decoder has the following steps: 1) Perform 1 iteration of the
Simple-Parallel decoder. For every flipped bit assign a value k. This value indi-
cates that if the algorithm does not end after k iterations, this bit should be
flipped back; 2) Flip some bits back according to their k values.

The Backflip* is variant of Backflip that uses a fixed number iterations as
explained in Sect. 1. Technically, the difference is that the condition on the weight
of s is moved from the while loop to the if statement (line 10). This performs
the appropriate number of mock iterations.

56 N. Drucker et al.

Remark 1. The decoders use the term iterations differently. For example, one
iteration of the Black-Gray decoder is somewhat equivalent to three iterations of
the Simple-Parallel decoder. The iteration of the One-Round decoder consists of
multiple (not necessarily fixed) “internal” iterations. Comparison of the decoders
needs to take this information into account. For example, the performance is
determined by the number of iterations times the latency of an iteration, not
just by the number of iterations.

3 Idealized Schemes and Concrete Instantiations

We discuss some subtleties related to the requirements from a concrete algorithm
in order to be acceptable as substitute for an ideal primitive, and the relation
to a concrete implementation.

Cryptographic schemes are often analyzed in a framework where some of the
components are modeled as ideal primitives. An ideal primitive is a black-box
algorithm that performs a defined flow over some (secret) input and commu-
nicates the resulting output (and nothing more). A concrete instantiation of
the scheme is the result of substituting the ideal primitive(s) with some spe-
cific algorithm(s). We require the following property from the instantiation to
consider it acceptable: the algorithm should be possible to implement without
communicating more information than the expected output. From the practical
viewpoint, this implies that the algorithm could be implemented in constant-
time. Note that a specific implementation of an acceptable instantiation of a
provably secure scheme can still be insecure (e.g., due to side channel leakage).
Special care is needed for algorithms that run with a variable number of steps.

Remark 2. A scheme can have provable security but this does not imply that
every instantiation inherits the security properties guaranteed by the proof, or
that there even exists an instantiation that inherits them, and an insecure instan-
tiation example does not invalidate the proof of the idealized scheme. For exam-
ple, an idealized KEM can have an IND-CCA secure proof when using a “random
oracle” ideal primitive. An instantiation that replaces the random oracle with
a non-cryptographic hash function does not inherit the security proof, but it is
commonly acceptable to believe that an instantiation with SHA256 does.

Algorithms with a Variable Number of Steps. Let A be an algorithm
that takes a secret input in and executes a flow with a variable number of
steps/iterations v(in) that depends on in. It is not necessarily possible to imple-
ment A in constant-time. In case (“limited”) that there is a public parameter
b such that v(in) < b we can define an equivalent algorithm (A™) that runs in
exactly b iterations: AT executes the v(in) iterations of A and continues with
some b — v(in) identical mock iterations. With this definition, we can assume
that it is possible to implement AT in constant-time. Clearly, details must be
provided, and such an implementation needs to be worked out. This could be a
challenging task.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 57

Suppose that v(in) is unlimited, i.e., there is no (a-priori) parameter b such
that v(in) < b (we call this case “unlimited”). It is possible to set a constant
parameter b* and an algorithm A™ with exactly b* iterations, such that it emits a
failure indication if the output is not obtained after exhausting the b* iterations.
It is possible to implement A™ in constant-time, but it is no longer equivalent to
A, due to the nonzero failure probability. Thus, analysis of AT needs to include
the dependency of the failure probability on b*, and consider the resulting impli-
cations. Practical considerations would seek the smallest b* for which the upper
bound on the failure probability is satisfactory. Obviously, if A has originally
some nonzero failure probability, then A" has a larger failure probability.

Suppose that a cryptographic scheme relies on an ideal primitive. In the
limited case an instantiation that substitutes A (or A™T) is acceptable. However,
in the unlimited case, substituting the primitive A with A™ is more delicate, due
to the failure probability that is either introduced or increased. We summarize
the unlimited case as follows.

— To consider A as an acceptable ideal primitive substitute, v(in) needs to
be considered as part of its output, and the security proof should take this
information into consideration. Equivalently, the incremental advantage that
an adversary can gain from learning v(in) needs to be added to the adversary
advantage of the (original) proof.

— Considering A" as an acceptable ideal primitive substitute, requires a proof
that it has all the properties of the ideal primitive used in the original proof
(in particular, the overall failure probability).

Ezxample 1. Consider the IND-CPA RSA PKE. Its model proof relies on the
existence of the ideal primitive MODEXP for the decryption (MODEXP (a, x,
N) = a® (mod N), where z is secret). Suppose that a concrete instantiation
substitutes MODEXP with the square-and-multiply algorithm (S&M). S&M
has a variable number of steps, ¢t = bitlength(z) + wt(z) (modular multiplica-
tions), that depends on (secret) x, where wt(t) < bitlength(x) is the Hamming
weight of z. By definition, in RSA PKE we have that < ¢(N) < N so z is
a-priori bounded and consequently the number of steps in S&M is bounded by
t < 2-bitlength(x) < 2-bitlength(N). It is easy to define an equivalent algorithm
(S&M™) that runs in exactly 2 - bitlength(N) steps by adding mock operations.
An instantiation that substitutes S&M (through S&M™) for MODEXP can
therefore be considered acceptable (up to the understanding of how to define
mock steps). This is independent of the practical security of an implementa-
tion of RSA PKE instantiated with S&M ™. Such an implementation needs to
account for various (side-channel) leaks e.g., branches and memory access pat-
terns. These considerations are attributed to the implementation rather than
to the instantiation, because we can trust the possibility to build such a safe
implementation.

Application to BIKE. The IND-CCA security proof of BIKE relies on the
existence of a decoder primitive that has a negligible DFR. This is a critical

58 N. Drucker et al.

decoder’s property that is used in the proof. The concrete BIKE instantiation
substitutes the idealized decoder with the Backflip decoding algorithm. Backflip
has the required negligible DFR. By its definition, Backflip runs in a variable
number of steps (iterations) that depends on the input and on the secret key
(this property is built into the algorithm’s definition).

It is possible to use Backflip in order to define Backflipt decoder that has
a fixed number of steps: a) Fix a number of iterations as a parameter Xpp; b)
Follow the original Backflip flow but always execute Xpp iterations in a way
that: if the errors vector (e) is extracted after Y < Xpp iterations, execute
additional (Xpr — Y') identical mock iterations that do not change e; ¢) After
the Xpp iterations are exhausted, output a success/failure indication and e on
success or a random vector of the expected length otherwise. The difficulty is
that the DFR of Backflip™ is a function of Xpp (and 7) and it may be larger
from the DFR of Backflip that is critical for the proof.

It is not clear from [3,20] whether the Backflip decoder is an example of
the limited or the unlimited case, but we choose to assume the limited case,
based on the following indications. Backflip is defined in [3, Algorithm 4] and
the definition is followed by the comment: “The algorithm takes as input [...]
and, if it stops, returns an error [...] with high probability, the algorithm stops
and returns €”. This comment suggests the unlimited case. Here, it is difficult to
accept it as a substitution of the ideal primitive, and claim that the IND-CCA
security proof applies to this instantiation. In order to make Backflip an ideal
primitive substitute, the number of executed steps needs to be considered as part
of its output as well. As an analogy, consider a KEM where the decapsulation has
nonzero failure probability. Here, an IND-CCA security proof cannot simply rely
on the (original) Fujisaki-Okamoto transformation [9], because this would model
an ideal decapsulation with no failures. Instead, it is possible to use the FO*
transformation suggested in [12] that accounts for failures. This is equivalent to
saying that the modeled decapsulation outputs a shared key and a success/fail
indication. Indeed, this transformation was used in the BIKE CCA proof.

On the other hand, we find locations in [3], that state: “In all variants of
BIKE, we will consider the decoding as a black box running in bounded time”
(Sect. 2.4.1 of [3]) and “In addition, we will bound the running time (as a function
of the block size r) and stop with a failure when this bound is exceeded” (Sect. 1.3
of [3]). No bounds and dependency on r are provided. However, if we inspect the
reference code [3], we can find that the code sets a mazimal number of Backflip
iterations to 100 (no explanation for this number is provided and this constant is
independent of). Therefore, we may choose to interpret the results of [3,20] as
if the 27128 DFR was obtained from simulations with this Xzz = 100 bound?,
although this is nowhere stated and the simulation data and the derivation of
the DFR are also not provided (the reference code operates with Xpp = 100).
With this, it is reasonable to hope that if we take Backflip™ and set Xgr = 100
we would get a DFR below 27128 and this makes BacklFlip with Xgr = 100 an
acceptable instantiation of an IND-CCA secure BIKE (for the studied r values).

5 See discussion with some extrapolation methodologies in Appendix C.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 59

The challenge with this interpretation is that the instantiation (Backflip™ and
Xpr = 100) would be impractical from the performance viewpoint. Our paper
solves this by showing acceptable instantiations with a much smaller values of
Xpp. Furthermore, it also shows that there are decoders with a fixed number of
iterations that have better performance at the same DFR level.

Implementation. In order to be used in practice, an IND-CCA KEM should
have a proper instantiation and also a constant-time implementation that is
secure against side-channel attacks (e.g., [8]). Such attacks were demonstrated
in the context of QC-MDPC schemes, e.g., the GJS reaction attack [11] and
several subsequent attacks [8,15,19]. Other reaction attacks examples include
[18] for LRPC codes and [22] for attacking the repetition code used by the HQC
KEM [2]. This problem is significantly aggravated when the KEM is used with
static keys (e.g., [5,8]).

4 Estimating the DFR of a Decoder with a Fixed
Number of Iterations

The IND-CCA BIKE proof assumes a decapsulation algorithm that invokes an
ideal decoding primitive. Here, the necessary condition is that the decapsulation
has a negligible DFR, e.g., 27128 [3,12]. Therefore, a technique to estimate the
DFR of a decoder is an essential tool.

The Extrapolation Method of [20]. An extrapolation method technique for
estimating the DFR is shown in [20]. It consists of the following steps: a) Simulate
proper encapsulation and decapsulation of random inputs for small block sizes
(r values), where a sufficiently large number of failures can be observed; b)
Extrapolate the observed data points to estimate the DFR for larger r values.

The DFR analyses in [20] and [3] applies this methodology to decoders that
have some maximum number of iterations Xppr (we choose to assume that
Xpr = 100 was used). In our experiments Backflip™ always succeeds/fails before
reaching 100 iterations for the relevant values of r. Practically, it means that set-
ting Xpr = 100 can be considered equivalent to setting an unlimited number of
iterations.

Our goal is to estimate the DFR of a decoder that is allowed to perform
exactly X iterations (where X is predefined). We start from small values of X
(e.g., X = 2,3,...) and increase it until we no longer see failures (in a large
number of experiments) caused by exhausting X iterations. Larger values of X
lead to a smaller DFR.

We tested BIKE-1 and BIKE-3 in Level-1 and Level-3 with the Black-Gray
and the Backflip™ decoders. In order to acquire a sufficient number of data points
we tested multiple prime r values such that " — 1 is a primitive polynomial [3].
The specific values are listed in Appendix D.

For our study, we used a slightly different extrapolation method. For every
combination (scheme, level, decoder, r) we ran N, = 48,000,000 experi-
ments as follows: a) Generate, uniformly at random, a secret key and an errors

60 N. Drucker et al.

vector (e), compute the public key, and perform encapsulation-followed-by-
decapsulation (with e); b) Allow the decoder to run up to X = 100 iterations®;
¢) Record the actual number of iterations that were required in order to recover
e. If the decoder exhausts the 100 iterations it stops and marks the experiment
as a decoding failure. For every X < 100 we say that the X-DFR is the sum
of the number of experiments that fail (after 100 iterations) plus the number of
experiments that required more than X iterations divided by Negp. Next, we fix
the scheme, the level, the decoder, and X, and we end up with an X-DFR value
for every tested r. Subsequently, we perform linear/quadratic extrapolation on
the data and receive a curve. We use this curve to find the value rg for which
the X-DFR is our target probability pg and use the pair (rg,po) as the BIKE
scheme parameters.

We target three pg values: a) pg = ~ 1077 that is reasonable for most
practical use cases (with IND-CPA schemes); b) pg = 2754 also for an IND-CPA
scheme but with a much lower DFR; ¢) pg = 27128, which is required for an
IND-CCA Level-1 scheme. The linear/quadratic functions and the resulting 7
values are given in Appendix E [Table 4].

2723

Our Extrapolation Methodology. In most cases, we were able to confirm the
claim of [20] that the evolution of the DFR as a function of r occurs in two phases:
quadratic initially, and then linear. As in [20], we are interested in extrapolating
the linear part because it gives a more conservative DFR approximation. We
point out that the results are sensitive to the method used for extrapolation
(see details in Appendix C). Therefore, it is important to define it precisely so
that the results can be reproduced and verified. To this end, we determine the
starting point of the linear evolution as follows: going over the different starting
points, computing the fitting line and picking the one for which we get the best
fit to the data points. Here, the merit of the experimental fit is measured by the
L2 norm (i.e., mean squared error). The L2 norm is a good choice in our case,
where we believe that the data may have a few outliers.

5 Results

A description of the Backflip®™ constant-time implementation is provided in
Appendix B.

The Experimentation Platform. Our experiments were executed on an AWS
EC2 m5.metal instance with the 6" Intel® Core”™ Generation (Micro Archi-
tecture Codename “Sky Lake” [SKL]) Xeon®Platinum 8175M CPU 2.50 GHz. It
has 384 GB RAM, 32K L1d and L1i cache, 1MiB L2 cache, and 32MiB L3 cache,
where the Intel® Turbo Boost Technology was turned off.

The Code. The core functionality was written in x86—64 assembly and wrapped
by assisting C code. The code uses the PCLMULQDQ, AES-NT and the AVX2 and

6 Recall that different decoders have different definition for the term “iterations”, see
Sect. 2.3.

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 61

AVX512 instructions. The code was compiled with gee (version 7.4.0) in 64-bit
mode, using the “O3” Optimization level, and run on a Linux (Ubuntu 18.04.2
LTS) OS. It uses the NTL library [21] compiled with the GF2X library [17].

Figure8 in Appendix F shows the simulation results for BIKE-1, Level-1
and Level-3, using the Black-Gray and Backflip™ decoders. Note that we use
the IND-CCA flows. The left panels present linear extrapolations and the right
panels present quadratic extrapolations. The horizontal axis measures the block
size r in bits, and the vertical axis shows the simulated log1o(DF R) values. Every
panel displays several graphs associated with different X values. The minimal
X is chosen so that the extrapolated r value for DFR = 27128 is still considered
to be secure according to [3]. The maximal value of X is chosen to allow a
meaningful extrapolation. We give two examples:

Ezxample 2. Consider Black-Gray. Typically, there exists some number of itera-
tions j < Xpg, where if decoding a syndrome requires more than j then the
decoder fails (w.h.p) even if a large number of iterations Xpg¢ is allowed.

The quadratic approximations shown in Fig.8 yield a nice fit to the data
points. However, we prefer to use the more pessimistic linear extrapolation in
order to determine the target r.

Validating the Extrapolation. We validated the extrapolated results for every
extrapolation graph. We chose some r that is not a data point on the graph (but
is sufficiently small to allow direct simulations). We applied the extrapolation
to obtain an estimated DFR value. Then, we ran the simulation for this value
of r and compared the results. Table 2 shows this comparison for several values
of r and the Black-Gray decoder with Xps = 3. We note that for 10,267 and
10,301 we tested at least 960 million and 4.8 billion tests respectively. In case
of 10,301 decoding always succeeded after Xpg = 4 iterations, while for 10, 267
there were too few failures for meaningful computation of the DFR. Therefore,
we use Xpg = 3 in our experimentation in order to observe enough failures.
For example, the extrapolation for the setting (BIKE-1, Level-1, Black-Gray,
10,301) estimates 3-DFR = 10~7-55 this is very close to the experimented DFRs
10—7.56_

Table 2. Validating the extrapolation results for the Black-Gray decoder with Xpg = 3
over two values of 7.

r Extrapolated DFR | Experimented DFR, | Number of tests
10,267 | 107713 107726 9.6e8
10,301 | 10~ 7-%° 107756 4.8¢9

62 N. Drucker et al.

5.1 Extensive Experimentation

To observe that the Black-Gray decoder does not fail in practice with r = 11,779
(i. e., the recommended r for the Backflip decoder) we run extensive simulations.
We executed 10'° ~ 233 tests that generate a random key, encapsulate a mes-
sage and decapsulate the resulting ciphertext. Indeed, we did not observe any
decoding failure (as expected).

5.2 Performance Studies

The performance measurements reported hereafter are measured in processor
cycles (per single core), where lower count is better. All the results were obtained
using the same measurement methodology, as follows. Each measured function
was isolated, run 25 times (warm-up), followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the effect
of background tasks running on the system, every experiment was repeated 10
times, and the minimum result was recorded.

For every decoder, the performance depends on: a) X - the number of itera-
tions; b) the latency of one iteration. Recall that comparing just the number of
iterations is meaningless. Table 3 provides the latency ({gecoder,») Of one iteration
and the overall decoding latency (lgecoder,ri = Xdecoder - Ldecoder,r) for the Black-
Gray and the Backflip™ decoders, for several values of r. The first four rows of
the table report for the value r = 10, 163 that corresponds to the BIKE-1-CPA
proposal, and for the value r = 11,779 that corresponds to the BIKE-1-CCA
proposal. The following rows report values of r for which the decoders achieve
the same DFR.

Clearly, the constant-time Black-Gray decoder is faster than the constant-
time Backflip™ decoder (when both are restricted to a given number of itera-
tions).

We now compare the performance of the BIKE-1-CCA flows to the per-
formance of the BIKE-1-CPA flows, for given r values, using the Black-Gray
decoder with Xpe = 3,4. Note that values of r that lead to DFR > 27128 can-
not give IND-CCA security. Furthermore, even with BIKE-1-CCA flows and r
such that DFR < 27128 IND-CCA security is not guaranteed (see the discus-
sion in Sect. 6). The results are shown in Fig. 2. The bars show the total latency
of the key generation (blue), encapsulation (orange), and decapsulation (green)
operations. The slowdown imposed by using the BIKE-1-CCA flows compared
to using the BIKE-1-CPA flows is indicated (in percents) in the figure. We see
that the additional cost of using BIKE-1-CCA flows is only ~6% in the worst
case.

6 Weak Keys: A Gap for Claiming IND-CCA Security

Our analysis of the decoders, the new parameters suggestion, and the constant-
time implementation makes significant progress towards a concrete instantiation

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 63

Table 3. A performance comparison of the Black-Gray and the Backflip™ decoders for
BIKE-1 Level-1. The r values were chosen according to Table 4.

DFR | Decoder r Xaecoder | Ldecoder,r (€ycles) | lgecoder,r,s (million cycles)
2719 | Black-Gray | 10,163 | 3 702,785 2.1
2717 | Backflip™ 10,163 |8 751,246 6.0
27100 | Black-Gray | 11,779 | 4 784,903 3.13
275 | Backflip™ 11,7799 841,806 6.73
2723 | Black-Gray | 10,253 | 3 743,168 2.22
2723 | Black-Gray | 10,163 | 4 702,785 2.8
2723 | Backflip™ 10,499 |8 777,478 6.22
2723 | Backflip™ 10,2539 764,959 6.88
2751 | Black-Gray | 11,261 | 3 769,212 2.3
27%4 | Black-Gray | 11,003 | 4 769,820 3.0
27% | Backflip™ 12,7818 907,905 7.26
27% | Backflip™ 12,0119 856,084 7.7
27128 | Black-Gray | 12,781 | 3 849,182 2.54
27128 | Black-Gray | 12,347 | 4 841,310 3.36
27128 | Backflip™ | 14,797 |9 1,024,798 9.22
M KeyGen M Encapsulation H Decapsulation B KeyGen M Encapsulation H Decapsulation
6 5 6 3.62% 3‘1.7% 4.37% 3.41%
o5 aat% 4% 542 588% ¥ s o 2« 8 8
34 S v e B 5 88 8 8 H4 B 3 4 4 &0 2 =
93 & o & o o @ & 2 I a3
2> 2
2 1
0 0
£ 3 £ 8 £ 8 £ 8 &8 £ 35 & 8§ £ 8 £ 8
10,163 10,253 11,261 11,779 12,757 10,163 11,069 11,779 12,437
(a) XBa =3 (b) Xpe =4

Fig. 2. Comparison of BIKE-1-CPA flows and BIKE-1-CCA flows, running with the
Black-Gray decoder and Xpg = 3,4 for several values of r: r = 10,163 the original
BIKE-1-CPA; r = 11, 779 the original BIKE-1-CCA; r values that correspond to DFR
of 2723 2764 97128 " ccording to Table4. Note that values of r that lead to DFR >
27128 do not give IND-CCA security. The vertical axis measures latency in millions of
cycles (lower is better). The additional cost of using the IND-CCA flows it at most 6%.

and implementation of IND-CCA BIKE. However, we believe that there is still a
subtle missing gap for claiming IND-CCA security, that needs to be addressed.

The remaining challenge is that a claim for IND-CCA security depends on
having an underlying d-correct PKE (for example with § = 2712% for Level-
1) [12]. This notion is different from having a DFR of 27128 and leads to the
following problem. The specification [3] defines the DFR as “the probability for

64 N. Drucker et al.

the decoder to fail when the input (hg, h1,e€q,€1) is distributed uniformly”. The
d-correctness property of a PKE/KEM is defined through Egs. (1), (2) above.
These equations imply that § is the average of the mazimum failure probability
taken over all the possible messages. By contrast, the DFR notion relates to the
average probability.

Remark 3. We also suggest to fix a small inaccuracy in the statement of the
BIKE-1 proof [3]: ... the resulting KEM will have the exact same DFR as the
underlying cryptosystem ...”. Theorem 3.1 of [12] states that: “If PKE is J-
correct, then PKE; is d1-correct in the random oracle model with 01(¢G) =
qG-4.[...]”. Theorem 3.4 therein states that: “If PKE; is §1-correct then KEM*
is d1-correct in the random oracle model [..]”7. Thus, even if DFR = §, the
statement should be “the resulting KEM is (§-¢G)-