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Abstract. Unlike most papers devoted to improvements of code-based
cryptosystem, where original Goppa codes are substituted by some
other codes, we suggest a new method of strengthening which is code-
independent. We show (up to some limit) that the security of the new
code-based cryptosystem is much closer to the hardness of maximum
likelihood decoding than in the original McEliece cryptosystem.
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1 Introduction

In 1976 W. Diffie and M. Hellman proposed the concept of public-key cryp-
tography concept [1]. To construct this public-key cryptosystem one needs to
construct a one-way trap-door function. To achieve this, a hard computational
problem should be selected, which nevertheless has simple solutions in some
special cases. It is supposed that an eavesdropper who desires to “break” the
system, i.e. compute the correspondent plaintext from a given ciphertext, has to
solve this hard problem, while a legitimate user, using the corresponding private
key, obtains the simple special instance of the hard problem and solves it for
decryption.

However, to break the system one may not search for a solution to the
hard problem being used, but tries to recover hidden secrets or to construct
an equivalent system that produces the same encryption-decryption instead. If
the construction of an equivalent system is computationally feasible, this leads
to breaking the system without solving the initial hard problem. Such an attack
on Merkle-Hellman cryptosystem [2] was given by A. Shamir [3], and in code-
based cryptography the most famous analogous example of attack was given in
[4] to break McEliece cryptosystem [5] based on modified Reed-Solomon codes
proposed in [6].

McEliece cryptosystem is the oldest and most popular code-based cryptosys-
tem. It was proposed in 1978 and it uses irreducible Goppa codes [7]. It relies
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on NP-hardness of maximum likelihood decoding (MLD for short) for general
linear codes, i.e., the hardness of finding the nearest codeword regarding the
Hamming distance for a given received vector [24]. Since there are some classes
of codes such as Reed-Solomon (RS), Bose–Chaudhuri–Hocquenghem (BCH),
Goppa, Low-Density Parity-Check (LDPC) codes that have polynomial-time
decoding algorithms, they can be used in the construction of the corresponding
trap-door function. The main idea underlying in the McEliece cryptosystem is
to hide a given structured code with a simple decoding algorithm (secret key),
hence presenting it as a random code (open key) for which a simple decoder is
unknown. The main point of our improvement is the following. The security of
the McEliece cryptosystem is not based on the NP-hardness of the MLD prob-
lem, since in the frame of the McEliece cryptosystem only errors of weight up to
d/2 must be corrected, where d is the minimal code distance of the underlying
code. Such algorithms are called half minimal distance decoding, or HMD decod-
ing. Note that it is unknown if HMD decoding is NP-hard (or not). The best
known estimates for the complexity of HMD decoding can be found in [9,10].
We hence propose a new cryptosystem, that relies more on the hardness of the
MLD problem than the original McEliece cryptosystem. For the best estimates
of the complexity of ML (i.e., minimum distance) decoding see [11].

There is no known effective quantum algorithm to break the McEliece cryp-
tosystem but nevertheless it gains no wide practical usage mainly because of the
very large size of its public key. For example, in the original paper by McEliece
[5] the public key has size of order 250 Kbits.

There were many attempts to attack or to improve the original McEliece
cryptosystem, see [12]. The main idea for improvements is to substitute the
original Goppa code that is used in McEliece cryptosystem with some other code
with a specific structure that allows to reduce the key size. For instance in [13]
Goppa codes were substituted by subfield subcodes of quasi-cyclic generalized
Reed-Solomon codes. Similar instances based on QC-LDPC codes and LDGM
codes (Low-Density Generator Matrices) were proposed in [15–21].

Also it should be mentioned that there are some frameworks for code-based
cryptography, where authors do not only exchange the secret code within the
McEliece cryptosystem. For instance, see [22–25].

The new code-based cryptosystem proposed in this paper forces the eaves-
dropper to correct seemingly random errors and gives another way to shrink
public key sizes due to shorter codes.

The structure of the paper is the following: we start from the standard
McEliece cryptosystem, then we describe a “prototype” cryptosystem which has
nice mathematical structure but unfortunately provides gain compared with the
original McEliece, and finally we propose a new scheme with better parameters.
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2 McEliece Cryptosystem

2.1 Design

In the following we recall how the McEliece cryptosystem works. There are two
users Alice and Bob, where Bob wants to send a k bit message m to Alice.
Alice takes a k × n generator matrix G of some linear (n, k)-code C with the
minimal code distance d(C) ≥ 2t + 1, which has an efficient decoding algorithm
Φ, correcting t errors. The matrix G is a secret, known only to Alice, and the
code C is called the secret code.

Alice constructs a public matrix Gpub = SGP , where a k × k nonsingular
matrix S and a n × n permutation matrix P are chosen randomly from the
corresponding ensembles and they are also keeping as secrets.

Bob sends to Alice the following ciphertext y

y = mGpub + e, (1)

where e is a vector of weight t which is randomly generated by Bob. Alice reveals
the message m by the following chain of simple calculations:

y′ := yP−1 = mGpubP
−1 + eP−1 = m′G + e′, (2)

where m′ = mS, e′ = eP−1 and wt(e′) = wt(e) = t, since P is a permutation
matrix. Then Alice applies the decoding algorithm Ψ to the vector y′ = m′G+e′

and receives Ψ(y′) = m′ and finally finds m := m′S−1.
Any other user will deal either with the problem of correcting t errors of a

random looking linear code Cpub with generator matrix Gpub or with the problem
of reconstructing the code structure from its public-key matrix, these attacks are
called structural attacks. In the original paper [5] irreducible Goppa codes [7] were
chosen as the family of codes for the scheme. In particular, it was suggested to
use Goppa code of length n = 1024 dimension k = 524 and minimum distance
d = 101, hence t = 50.

Later H. Niederreiter proposed a cryptosystem [6], which is based on solving
a syndrom equation and in some sense is dual to the McEliece scheme. These
two schemes have equivalent security [26] and we restrict our consideration to
the McEliece type schemes.

2.2 Decoding Attacks on McEliece Cryptosystem

An attacker (or eavesdropper) Eve tries to find a vector ê such that

y − ê ∈ Cpub. (3)

If ê = e then (3) holds and E finds the message m from mGpub = y − ê.
Note that for ê �= e the Eq. (3) does not hold. Indeed, let y − ê ∈ Cpub. Since

y −e ∈ Cpub we have that e− ê ∈ Cpub. The public code Cpub is equivalent to the
code C, therefore its distance d(Cpub) ≥ 2t + 1, but wt(e−ê) ≤ wt(e)+wt(ê) = 2t
and hence ê = e.
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In the worst case Eve must try
(
n
t

)
(q−1)t vectors ê over Fq, and on average it

takes half of this value, which is nevertheless a huge number for any reasonable
code parameters.

Much more effective is the attack based on Information Set Decoding (ISD).
This attack was already mentioned in the initial security analysis of McEliece [5]
and further developed in numerous papers, see [12] and references there. There
are different interpretations and modifications of the initial ISD algorithm. Sev-
eral different improvements have been proposed, such as ball-collision decoding
[12] and improvements based on generalized birthday approaches. For instance,
in paper [9] the complexity of ISD was reduced to Õ(20.054n) and in [10] the
complexity exponent is Õ(20.0494n) which is the currently the best result.

In the following we recall the basic properties of ISD algorithms. Goal of ISD
algorithms is to recover the message m from a given vector y = mĜ + e, where
Ĝ is a generator matrix of an (n, k) code Ĉ with minimal distance d ≥ 2t + 1
and wt(e) ≤ t.

Let I be a k-subset of the coordinates set [n] := {1, 2, . . . , n} such that I is
an information set of Ĉ and ĜI be the submatrix of Ĝ consisting of columns
indexed by I. In the same way let eI be the vector consisting of coordinates of
the vector e indexed by I. ISD algorithms work in the following way:

1. Randomly choose an information set I.
2. Find a codeword ĉ such that ĉI = yI
3. Check if wt(ĉ − y) = t. If Yes then output the message corresponding to the

codeword ĉ. Else return to Step 1.

Observe that, if one assumes that the support of the error vector is disjoint
from the information set, then the corresponding probability Pk that chosen k
coordinates are error-free is

Pk =

(
n−t
k

)
(
n
k

) =

(
n−k
t

)
(
n
t

) , (4)

and hence the the average number of required iterations is of order

(
n
t

)

(
n−k
t

) , which

is significantly less than the complexity of the brute-force attack.
In the next section we will describe a “prototype” of a new cryptosystem.

3 The “Prototype” Code-Based Cryptosystem

Let C be a linear (n, k)-code with the minimum distance d(C) ≥ 2t + 1, which
has an efficient decoding algorithm Φ, correcting t errors. We also assume that
C belongs to some rather big family of codes (like Goppa codes in the original
McEliece cryptosystem). Alice takes k × n generator matrix G of this code C.
The matrix G as well as the code C are secrets, known only to Alice, and we
call code C is called the secret code.
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Alice constructs two public matrices, namely Gpub = GM , where M is a
randomly chosen n×n non-singular matrix, and Epub = (Cn +P )M , where P is
a randomly chosen n×n permutation matrix and Cn is n×n matrix which rows
are codewords of the code C, i.e. Cn = UG for some random n × k matrix U .
We put some additional restriction on joint choice of matrices P and Cn later,
in order to avoid structural attacks. Matrices P and Cn are kept secret.

Bob sends to Alice the following ciphertext y

y = mGpub + eEpub = (mG + e(Cn + P ))M, (5)

where e is a vector of weight t randomly generated by Bob. Alice reveals the
message m by the following chain of calculations:

y′ := yM−1 = mG + e(Cn + P ) = m′G + e′, (6)

where m′ = m + eU, e′ = eP and wt(e′) = wt(e) = t, since P is a permutation
matrix, then Alice applies the decoding algorithm Ψ to the vector y′ = m′G+e′,
which outputs the error vector e′, hence Alice knows e = e′P−1 and finally finds
m, for instance, from mGpub = y − eEpub, see (5).

3.1 First Attack or Why Matrix Epub Must be Singular

Let us show that if the matrix Epub is non-singular then the new scheme can
be attacked the same way as the original McEliece scheme. Indeed, if Epub =
(Cn + P )M is non-singular then Eve can compute vector ỹ := yE−1

pub. Hence,
according to (5),

ỹ = (mGpub + eEpub)E−1
pub = mG(Cn + P )−1 + e = mG̃ + e, (7)

where G̃ = G(Cn +P )−1 can be considered as a generator matrix of some linear
(n, k)-code C̃. It is easy to see that the Eq, (7) cannot have more than one
solution for a given ỹ. Hence, the code C̃ has distance at least 2t + 1 and ISD
algorithms can be applied. Moreover, we shall show that codes C and C̃ are
permutation equivalent and thus to break our scheme in the case where Epub is
invertible is the same as to break the McEliece cryptosystem.

Remark 1. To prove that codes C and C̃ are equivalent recall that the rows of
the matrix Cn are of the form uG (for some k-tuple u) since they are vectors of
the code C and it would be convenient to represent matrix Cn as UG, where U
is the corresponding n × k matrix.

Let us start from the following obvious equality

G(In + P−1UG) = (Ik + GP−1U)G,

and hence
(Ik + GP−1U)−1G = G(In + P−1UG)−1. (8)
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By the definition G̃ = G(UG + P )−1 and thus

G̃ = G(P (P−1UG+ In))−1 = G(P−1UG+ In)−1P−1 = (Ik +GP−1U)−1GP−1.

Hence, we proved that G̃ = (Ik + GP−1U)−1GP−1, and therefore codes C and
C̃ are permutation equivalent (if matrix (Ik + GP−1U)−1 exists).

3.2 How to Make Matrix Epub Singular

The matrix Epub = (Cn + P )M is singular iff matrix Cn + P is singular since
matrix M is non-singular. Let us show how to construct many singular matrices
of the form Cn + P . Note that w.l.o.g. we can restrict our consideration to the
case Cn + In and then transform the obtained singular matrices to the desired
ones of the form C̆n + P , where C̆n = CnP .

Let us first, for simplicity, consider the binary case. Let c = (c1, . . . , cn) ∈ C
be a codeword of the Hamming weight w and let cj1 , . . . , cjw be its w nonzero
coordinates. Construct rows ci of Cn in the following way: rows not indexed by
J = supp(c) will be taken randomly, and the rest of the rows are chosen in such
a way that ∑

j∈J

cj = c. (9)

Denote by Bn = Cn + In and let bi = ci + δi be the i-th row of the matrix B,
where δi = (δi,1, . . . , δi,n) and δi,j is the Kronecker delta. Then

∑
j∈J bj = 0

and thus the matrix Bn = Cn + In is singular.
In the general case one should replace Eq. (9) on

∑

j∈J

cjcj = −c (10)

and then
∑

j∈J cjbj = 0 and thus the matrix Bn = Cn + In is singular.
Obviously the number of solutions of Eq. (9) equals to qk(w−1), since say

first w − 1 vectors cj can be chosen as arbitrary codevectors, and the last one is
chosen uniquely according to (9). Hence the total number of matrices constructed
according to (9) for a given nonzero codeword c equals to qk(n−1), among total
number qkn n × n matrices, whose rows are vectors of the code C.

3.3 Second Attack Based on Parity-Check Matrix Hpub

Unfortunately, there is another attack which shows that the “prototype” cryp-
tosystem can be successfully attacked at least by ISD algorithms.

Namely, Eve computes a parity-check matrix Hpub for the generator matrix
Gpub, i.e. GpubH

T
pub = HpubG

T
pub = 0. Let H be a parity-check matrix for the

code C, i.e. GHT = 0. Then it is easy to see that HT
pub = M−1HTST , where S
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is some non-singular r × r-matrix and r = n − k. After that Eve multiplies both
parts of Eq. (5), where Cn = UG, from the right side with HT

pub and receives

ỹ := yHT
pub = (mG + e(UG + P ))MM−1HTST = ePHTST = eH̃T . (11)

Hence (11) is a usual syndrome equation for the code C̃ with parity-check
matrix H̃ = SHPT . Since obviously codes C and C̃ are permutation equivalent
and the “prototype” cryptosystem is not more secure that the ordinary McEliece
system but even worse its public keys are at least twice as large.

4 The New Code-Based Cryptosystem

In order to improve the “prototype” system we shall make the structure of the
matrix Epub more complicated. Namely, let Epub = WD(Cn + P )M , where
(Cn + P )M is the same as for the prototype, D is a randomly chosen n × n
diagonal matrix with t non-zero elements on the diagonal, and W is random n×n
non-singular matrix. Alice forms two public matrices: k × n matrix Gpub = GM
and n × n matrix Epub = WD(Cn + P )M .

Bob sends to Alice the following ciphertext y

y = mGpub + eEpub = (mG + eWD(Cn + P ))M, (12)

where e is a vector randomly generated by Bob. Let us stress that the vector e
does not bear any restriction on its weight. Recall that Cn can be represented
as Cn = UG, where U is the appropriate n × k matrix, and Alice reveals the
message m by the following chain of calculations:

y′ := yM−1 = mG + eWD(UG + P ) = m′G + e′P, (13)

where m′ = m + eWDU, e′ = (eW )D. Note that wt(e′) ≤ t, since D is
a diagonal matrix of “weight” t. Then as for the prototype Alice applies the
decoding algorithm Ψ to the vector y′ = m′G+e′′, where e′′ = e′P , which outputs
“error vector” e′′. Hence Alice knows e′ = e′′P−1, thereafter subsequently finds
eWD, then eWDCn and finally finds m, for instance, from mGpub = y − eEpub,
see (12).

It is straightforward to check that both attacks described for the “prototype”
system do not work for the new system. Indeed, matrix Epub has rank t, since
matrix D has rank t, and thus the first attack cannot be applied.

For the second attack Eve multiplies both parts of Eq. (12) from the right
side on HT

pub = M−1H̃T , where H̃ is some parity-check matrix of the code C.
She receives the following equation

yHT
pub = (mG + eWD(UG + P ))MM−1H̃T = eWDPH̃T = (eWDP )H̃T (14)
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which is a usual syndrome equation for a code with parity-check matrix H̃
and hence Eve can find vector eWDP of weight t but she cannot “extract” from
it the vector e since all three multipliers W , D and P are unknown to her.

The new cryptosystem forces Eve to apply brute-force attacks which have
complexity at least

(
n
t

)
trials.

Consider the following example

Example 1. Let C be an irreducible Goppa code of length n = 256 and rate
R = 1/2, i.e. with k = 128 and t = 16. Then the number of trials is

(
16
256

)
> 2100

and the public key length is 128 × 256 + 2562 = 3 × 215.

5 Conclusion

In this paper we considered a new modification of the well-known McEliece
cryptosystem in which we transform an error vector of weight t (or ≤ t) to an
error vector of arbitrary weight.
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