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Preface

Fostered by the ongoing NIST’s standardization process of post-quantum crypto-
graphic primitives, the research area of post-quantum cryptography is experiencing a
dramatic speed-up in these years. Cryptographic primitives relying on the hardness of
decoding a random-looking error-correcting code are notoriously resistant to quantum
computer-based attacks, and indeed the branch of code-based cryptography today
represents one of the most promising lines of research in the area of post-quantum
cryptography.

The Code-Based Cryptography Workshop (CBC) was born in 2009 as an informal
forum following the initiative of a group of researchers mainly based in Europe. Since
then, it has become an important event for a growing academic community in the area
of code-based cryptography. The 6th edition (CBC 2018), hosted by the Florida
Atlantic University in 2018, was the first one organized in the USA. The 7th edition
(CBC 2019) was held in Darmstadt, Germany, in co-location with Eurocrypt 2019, and
represented another turning point for the conference with the introduction of submitting
works for publication in the form of a post-proceedings volume. The goal of this first
edition of CBCrypto was to build on the success of the previous editions of CBC and
continue the hybrid publication model which was utilized therein. The choice to move
to a new nomenclature was made to accommodate the ever growing interest and
differentiate it from the previous series of informal events.

CBCrypto 2020 was supposed to take place in Zagreb, Croatia, during May 9–10,
2020, co-located with Eurocrypt 2020. Due to the COVID-19 global pandemic, the
workshop was moved to an online-only format, and was held through live streaming on
May 9, 2020. Nevertheless, it proved to be a great success, with over 200 registered
participants attending the talks from around the world. The program was enriched with
two invited presentations by the internationally recognized researchers Shay Gueron
and Alessandro Barenghi. Furthermore, the program included two contributed talks
presenting recent research and works in progress.

This book collects the 7 contributions out of 10 submissions that were selected for
publication by the Program Committee through careful peer review. These contribu-
tions span all aspects of code-based cryptography, from design to implementation,
including studies of security, new systems, and improved decoding algorithms. As
such, the works presented in this book provide a synthetic yet significant overview
of the state of the art of code-based cryptography, laying out the groundwork for future
developments.

We wish to thank the Program Committee members and the external reviewers for
their hard and timely work. We are also very grateful to our sponsor, Oak Ridge



Associated Universities (ORAU), for their generous support. Finally, we thank the
Organizing Committee of Eurocrypt 2020 for the inclusion of CBCrypto 2020 among
Eurocrypt 2020 co-located events.

May 2020 Marco Baldi
Edoardo Persichetti

Paolo Santini

vi Preface



Organization

Organizing Committee

Marco Baldi Università Politecnica delle Marche, Italy
Edoardo Persichetti Florida Atlantic University, USA
Paolo Santini Università Politecnica delle Marche, Italy

Program Committee

Marco Baldi Università Politecnica delle Marche, Italy
Gustavo Banegas Technische Universiteit Eindhoven, The Netherlands
Alessandro Barenghi Politecnico di Milano, Italy
Emanuele Bellini Technology Innovation Institute, UAE
Sergey Bezzateev Saint Petersburg University of Aerospace

Instrumentation, Russia
Olivier Blazy Université de Limoges, France
Pierre-Louis Cayrel Laboratoire Hubert Curien, France
Franco Chiaraluce Università Politecnica delle Marche, Italy
Tung Chou Osaka University, Japan
Alain Couvreur LIX, École Polytechnique, France
Jean-Christophe Deneuville École Nationale de l’Aviation Civile, France
Taraneh Eghlidos Sharif University of Technology, Iran
Shay Gueron University of Haifa, Israel
Cheikh T. Gueye University of Dakar, Senegal
Grigory Kabatiansky Skoltech, Russia
Gianluigi Liva German Aerospace Center (DLR), Germany
Chiara Marcolla Technology Innovation Institute, UAE
Gretchen Matthews Virginia Tech, USA
Giacomo Micheli University of South Florida, USA
Kirill Morozov University of North Texas, USA
Gerardo Pelosi Politecnico di Milano, Italy
Edoardo Persichetti Florida Atlantic University, USA
Simona Samardjiska Radboud University, The Netherlands
Paolo Santini Università Politecnica delle Marche, Italy
John Sheekey University College Dublin, Ireland
Jean-Pierre Tillich Projet Secret, Inria, France
Antonia Wachter-Zeh Technical University of Munich, Germany
Øyvind Ytrehus University of Bergen, Norway



Additional Reviewers

Junaid Ahmad Khan
Lina Mortajine
Nicolas Sendrier
Violetta Weger

viii Organization



Contents

On the Security of NTS-KEM in the Quantum Random Oracle Model. . . . . . 1
Varun Maram

On the Decipherment of Sidel’nikov-Type Cryptosystems . . . . . . . . . . . . . . 20
Vladimir M. Deundyak, Yury V. Kosolapov, and Igor A. Maystrenko

A New Code-Based Cryptosystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Fedor Ivanov, Grigory Kabatiansky, Eugeny Krouk,
and Nikita Rumenko

On Constant-Time QC-MDPC Decoders with Negligible Failure Rate . . . . . . 50
Nir Drucker, Shay Gueron, and Dusan Kostic

Protograph-Based Decoding of Low-Density Parity-Check Codes
with Hamming Weight Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Hannes Bartz, Emna Ben Yacoub, Lorenza Bertarelli,
and Gianluigi Liva

MURAVE: A New Rank Code-Based Signature with MUltiple
RAnk VErification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Terry Shue Chien Lau and Chik How Tan

Optimized and Secure Implementation of ROLLO-I . . . . . . . . . . . . . . . . . . 117
Lina Mortajine, Othman Benchaalal, Pierre-Louis Cayrel,
Nadia El Mrabet, and Jérôme Lablanche

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



On the Security of NTS-KEM in the
Quantum Random Oracle Model

Varun Maram(B)

Department of Computer Science, ETH Zurich, Zurich, Switzerland
vmaram@inf.ethz.ch

Abstract. NTS-KEM is one of the 17 post-quantum public-key encryp-
tion (PKE) and key establishment schemes remaining in contention for
standardization by NIST. It is a code-based cryptosystem that starts
with a combination of the (weakly secure) McEliece and Niederreiter
PKE schemes and applies a variant of the Fujisaki-Okamoto (Journal
of Cryptology 2013) or Dent (IMACC 2003) transforms to build an
IND-CCA secure key encapsulation mechanism (KEM) in the classical
random oracle model (ROM). Such generic KEM transformations were
also proven to be secure in the quantum ROM (QROM) by Hofheinz et
al. (TCC 2017), Jiang et al. (Crypto 2018) and Saito et al. (Eurocrypt
2018). However, the NTS-KEM specification has some peculiarities which
means that these security proofs do not directly apply to it.

This paper identifies a subtle issue in the IND-CCA security proof of
NTS-KEM in the classical ROM, as detailed in its initial NIST second
round submission, and proposes some slight modifications to its specifica-
tion which not only fixes this issue but also makes it IND-CCA secure in
the QROM. We use the techniques of Jiang et al. (Crypto 2018) and Saito
et al. (Eurocrypt 2018) to establish our IND-CCA security reduction for
the modified version of NTS-KEM, achieving a loss in tightness of degree
2; a quadratic loss of this type is believed to be generally unavoidable
for reductions in the QROM (Jiang et al. ePrint 2019/494). Following
our results, the NTS-KEM team has accepted our proposed changes by
including them in an update to their second round submission to the
NIST process.

Keywords: Code-based · KEM · Quantum random oracle model ·
IND-CCA security · NIST standardization

1 Introduction

NIST’s post-quantum cryptography (PQC) standardization project reached its
second phase when, on 30th January 2019, a shortlist of 26 second-round can-
didate algorithms was announced – out of which 17 are public-key encryption
(PKE) and key establishment schemes, and the rest are digital signature schemes
[NIS19]. In a public-key setting, a key encapsulation mechanism (KEM) is consid-
ered to be a versatile cryptographic primitive, as it can be used for efficient black-
box constructions of secure PKE (via the KEM-DEM paradigm [CS03]), key
c© Springer Nature Switzerland AG 2020
M. Baldi et al. (Eds.): CBCrypto 2020, LNCS 12087, pp. 1–19, 2020.
https://doi.org/10.1007/978-3-030-54074-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-54074-6_1


2 V. Maram

exchange and authenticated key exchange schemes [BCNP08,FOPS01]. Hence,
a majority of these 17 second-round submissions are proposals for KEMs.

Indistinguishability against chosen-ciphertext attacks (IND-CCA) is widely
accepted as the standard security notion for KEMs and PKE schemes, but it is
usually more difficult to prove than weaker notions of security such as indistin-
guishability (IND-CPA) and one-wayness (OW-CPA) against chosen-plaintext
attacks. Therefore, most of the NIST KEM submissions employ some generic
transformations, as studied by Dent [Den03] and Hofheinz et al. [HHK17], to
construct an IND-CCA secure KEM from a weakly (OW-CPA or IND-CPA)
secure PKE. To be specific, these generic constructions are usually variants of
the Fujisaki-Okamoto transformation [FO13], e.g., FO⊥, FO�⊥, FO⊥

m and FO�⊥
m

(as named in [HHK17]). Figure 1 contains a description of the FO�⊥
m transforma-

tion that, given hash functions G(.) and H(.), turns an OW-CPA secure PKE
(KGenPKE,Enc,Dec) to an IND-CCA secure KEM (KGenKEM,Encap,Decap) –
see Subsect. 2.3 for definitions of PKEs and KEMs. (Also, Enc(pk,m;G(m))
denotes that G(m) is used as random coins in the encryption of message m
sampled from the message space M.)

KGenKEM

1 : (pk, sk) ← KGenPKE

2 : z ←$ M
3 : sk′ = (sk, z)

4 : return (pk, sk′)

Encap(pk)

1 : m ←$ M
2 : c = Enc(pk,m;G(m))

3 : K = H(m)

4 : return (K, c)

Decap(c, sk′)

1 : m̂ = Dec(sk, c)

2 : if Enc(pk, m̂;G(m̂)) = c

3 : return H(m̂)

4 : else return H(z | c)

Fig. 1. IND-CCA secure KEM = FO�⊥
m[PKE, G, H].

The other three variants (namely FO⊥, FO�⊥ and FO⊥
m) have slight differ-

ences: the subscript m (without m, resp.) means that, in the corresponding trans-
formation, the encapsulated key K is equal to H(m) (K = H(m | c), resp.), and
the superscript ⊥ (�⊥, resp.) means explicit1 (implicit, resp.) rejection of invalid
ciphertexts during decapsulation.

Typically, the security of such schemes is analyzed (heuristically) in the ran-
dom oracle model (ROM), introduced in [BR93], where a hash function is ide-
alized as a publicly accessible random oracle. But as pointed out by Boneh et al.
[BDF+11], in a post-quantum setting, an adversary could evaluate a hash func-
tion on an arbitrary superposition of inputs. This is not captured in the ROM
as an adversary is only given a classical access to the random oracle. In order
to fully assess the post-quantum security of cryptosystems, the quantum ran-
dom oracle model (QROM) was advocated in [BDF+11]. Here, the adversary

1 In explicit rejection, the symbol “⊥” is returned (instead of a pseudorandom key
H(z | c) as is the case in implicit rejection) for the decapsulation of invalid cipher-
texts.
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is allowed to make quantum queries to the random oracle. The above generic
KEM transformations (FO⊥, FO�⊥, FO⊥

m, FO�⊥
m) were initially only analyzed in

the ROM by Hofheinz et al. [HHK17] but then later were proven to be secure in
the QROM by Jiang et al. [JZC+18] and Saito et al. [SXY18], giving confidence
in the NIST KEM candidates that rely on these transformations.

NTS-KEM is a KEM proposal that is shortlisted by NIST for PQC stan-
dardization. It is also one of a handful of second-round candidates that are
code-based, as it is based on the well-known McEliece cryptosystem [McE78].
NTS-KEM employs a transformation similar to the Fujisaki-Okamoto [FO13] (or
Dent [Den03]) transforms to achieve IND-CCA security of its KEM in the ROM.
In particular, the transformation looks similar to FO�⊥

m since, as will be detailed
in Sect. 3, NTS-KEM does an implicit rejection of invalid ciphertexts during
decapsulation, and when computing the encapsulated keys, the ciphertext is not
included in the input to the hash function. But at the same time, NTS-KEM con-
tains significant variations from FO�⊥

m in its specification, meaning that straight-
forward application of known QROM security proofs for FO-transformations
([JZC+18,SXY18]) do not work. One of these major variations from FO�⊥

m is
that, during the encapsulation of keys, the message m to be encrypted is not
sampled uniformly from the message space, but is determined from the random-
ness e that is used in the McEliece-type encryption function.

1.1 Our Contributions

In this paper, we make two contributions:

– We identify a flaw in the IND-CCA security proof for NTS-KEM in the ROM,
as described in its initial NIST second round submission. We also propose
some changes to the specification of NTS-KEM which, in addition to fixing
the flaw, preserve the tightness of the intended ROM proof.

– We present a proof of IND-CCA security for the modified version of NTS-
KEM in the QROM. On a high level, our proof is structurally similar to
[JZC+18]’s QROM security proof of FO�⊥

m. At the same time, our proof needs
to account for significant differences between FO�⊥

m and the new NTS-KEM
specification.

To be specific, we recommend a re-encryption step in the NTS-KEM decap-
sulation routine (similar in spirit to the FO-type transformations) to account for
invalid ciphertexts that may not be implicitly rejected. This change not only fixes
NTS-KEM’s tight IND-CCA security proof in the classical ROM but also leads
to an IND-CCA security reduction in the QROM, only incurring a quadratic
loss w.r.t. degree of tightness. This loss might be impossible to avoid [JZM19].

In order to formulate a security proof in the QROM for the modified NTS-
KEM, we consider the FO�⊥

m transformation which is proven to be secure in
the QROM. So to devise a proof based on the FO�⊥

m framework, we view the
random bits of the encryption function used in NTS-KEM, i.e., the error vec-
tors e, as “messages” encrypted by OW-CPA secure PKEs in the context of
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FO�⊥
m. Namely, we start with the scheme NTS−, a variant of NTS-KEM as will

be defined in Sect. 4, that involves a “randomized encryption” of error vectors
during key encapsulation. By doing this, we found it necessary to work with
a non-standard security notion called error one-wayness or EOW security, as
introduced in [ACP+19a], which is an analogue to OW-CPA security but for
schemes that mainly process error vectors. Then the challenge is to account for
notable differences between the modified NTS-KEM scheme and FO�⊥

m in the
proof, which includes the fact that to derive the encapsulated keys K in NTS-
KEM, the message m itself is not hashed but a modified version of it is.

It is worth mentioning that the NTS-KEM team has adopted our pro-
posed changes. On 3rd December 2019, an updated specification of NTS-KEM
[ACP+19b] was posted on the website https://nts-kem.io/. Hence, in the rest
of this paper, “NTS-KEM” will be used to refer to the updated version of the
second round submission to NIST’s PQC standardization process, unless stated
otherwise.

2 Preliminaries

2.1 Notation

In this section, we outline notation borrowed from [ACP+19a] regarding NTS-
KEM. We denote by F2 the field with two elements, and by F2m an extension
field of F2 with 2m elements. If F is a field, then F[x] is the ring of univariate
polynomials with coefficients in F. We denote by F

n
2 the n-dimensional vector

space with entries in F2, and by F
k×n
2 the kn-dimensional vector space of matrices

with k rows and n columns with entries in F2. We denote vectors of Fn
2 in bold

lowercase, for example e = (e0, e1, . . . , en−1) ∈ F
n
2 ; and matrices of F

k×n
2 in

bold uppercase, for example G ∈ F
k×n
2 . The Hamming weight of a vector e

is the number of non-zero components in the vector and is denoted by hw(e).
Given a vector e of length n over a field F, and positive integers � < k < n, we
adopt the following notation to denote the partition of e into three sub-vectors:
e = (ea | eb | ec), where ea ∈ F

k−�, eb ∈ F
� and ec ∈ F

n−k. More generally, if
v ∈ F

n1 and w ∈ F
n2 are vectors over F, we will denote by (v | w) the vector

in F
n1+n2 constructed as the concatenation of v and w. A permutation vector

p = (p0, p1, . . . , pn−1) is a permutation of the n elements {0, 1, . . . , n − 1}. Then
given the sequence b = (b0, b1, . . . , bn−1), we denote the permuted sequence
b′ = b · P = πp(b) such that b′

i = bpi
, and the inverse permutation is given by

b = b′ · P−1 = π−1
p (b′) such that bpi

= b′
i. We denote the length of a vector x

by |x|.
The security parameter is denoted by λ. Given a set X, we denote by x ←$ X

the operation of sampling an element x ∈ X uniformly at random, and we denote
the sampling according to some arbitrary distribution D by x ← D. We denote
probabilistic computation of an algorithm A on input x by y ←$ A(x). AH(.)

implies that the algorithm has access to the oracle H(.).

https://nts-kem.io/


On the Security of NTS-KEM in the Quantum Random Oracle Model 5

2.2 Quantum Random Oracle Model

We introduce some lemmas in the QROM that will be used to derive the main
results of this paper.

Lemma 1 (Simulating a QRO, [Zha12, Theorem 6.1]). Let H(.) be an oracle
drawn from the set of 2q-wise independent functions uniformly at random. Then
the advantage any quantum algorithm making at most q quantum queries to H(.)
has in distinguishing H(.) from a truly random oracle is identically 0.

Lemma 2 ([SY17, Lemma C.1]). Let gz : {0, 1}� → {0, 1} denotes a function
defined as gz(z) = 1 and gz(z′) = 0 for all z �= z′, and g⊥ : {0, 1}� → {0, 1}
denotes a function that returns 0 for all inputs. Then for any unbounded adver-
sary C that issues at most q quantum queries to its oracle, we have

|Pr[Cgz(.)(.) → 1 | z ←$ {0, 1}�] − Pr[Cg⊥(.)(.) → 1]| ≤ q · 2− �+1
2

Lemma 3 (Generalized OW2H2 lemma, [JZC+18, Lemma 3 con-
densed]).3 Let oracles O1(.),O2(.), input parameter inp and x be sampled from
a joint distribution D, where x ∈ {0, 1}n (the domain of O1(.)). Consider a
quantum oracle algorithm UO1,O2 which makes at most q1 queries to O1(.) and q2
queries to O2(.). Denote Ö1(.) to be a reprogrammed oracle such that Ö1(x) = y,
for a uniformly random y in {0, 1}�, and Ö1(.) = O1(.) everywhere else. Let
VÖ1,O2 be an oracle algorithm that on input (inp, x,O1(x)) does the following:
picks i ←$ {1, . . . , q1}, runs U Ö1,O2(inp, x,O1(x)) until the i-th query to O1(.),
measures the query in the computational basis and outputs the measurement
outcome (when U makes less than i queries, V outputs ⊥/∈ {0, 1}n). Define the
events E1, E2 and probability PV as follows,

Pr[E1] = Pr[b′ = 1 : (O1, O2, inp, x) ← D, y ←$ {0, 1}�, b′ ← UO1,O2(inp, x, O1(x))]

Pr[E2] = Pr[b′ = 1 : (O1, O2, inp, x) ← D, y ←$ {0, 1}�, b′ ← U Ö1,O2(inp, x, O1(x))]

PV = Pr[x′ = x : (O1, O2, inp, x) ← D, y ←$ {0, 1}�, x′ ← VÖ1,O2(inp, x, O1(x))]

Then |Pr[E1] − Pr[E2]| ≤ 2q1
√

PV .

2 The one-way to hiding (OW2H) lemma, introduced in [Unr14], provides a generic
reduction from a hiding-style property (indistinguishability) to a one-wayness-style
property (unpredictability) in the QROM.

3 We are referring to the latest version of [JZC+18] on the Cryptology ePrint Archive
– Report 2017/1096, Version 20190703 – which differs from the conference version in
that Lemma 3 no longer requires O1(x) to be independent from O2(.). Also we would
be working with a condensed version of the lemma where we do not needO1(x) to
be uniformly distributed for any fixed O1(x

′) (x′ �= x), O2(.), inp and x.
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2.3 Cryptographic Primitives

Definition 1. A Public Key Encryption scheme (PKE) consists of the following
triple of polynomial-time algorithms (KGen,Enc,Dec).

– The Key Generation algorithm KGen takes as input a security parameter 1λ

and outputs a public/private key-pair (pk, sk).
– The Encryption algorithm Enc takes as input a public key pk and a valid

message m, and outputs a ciphertext c.
– The Decryption algorithm Dec takes as input a ciphertext c and a private key

sk, and outputs a message m (or an error message indicating a decryption
failure).

For example, McEliece [McE78] proposed a PKE scheme which is based on
linear error-correcting codes. Let C = [n, k, d]2 be such a code over F2 of length n
and dimension k, with minimal distance d. The code C is capable of correcting at
most τ =

⌊
d − 1
2

⌋
errors, and can be described by a generator matrix G ∈ F

k×n
2 .

Then a vector w ∈ F
k
2 can be encoded as a codeword in C as c = w · G ∈ F

n
2 .

Now the McEliece scheme could be described as follows.

KGen: Generate a special type of [n, k, d]2 linear error-correcting code CG4 with
generator matrix G′ ∈ F

k×n
2 and that is capable of correcting up to

τ errors; this special code is defined by a polynomial G(z) ∈ F2m [z] of
degree τ . Let S be a non-singular matrix in F

k×k
2 and P be a permutation

matrix in F
n×n
2 , both generated at random. Then, define G = S ·G′ ·P.

The public key is given by pk = (G, τ) and the private key is sk =
(G(z),S−1,P−1).

Enc: To encrypt a message m ∈ F
k
2 , sample e ∈ F

n
2 with Hamming weight τ

and output the ciphertext c = m · G + e ∈ F
n
2 .

Dec: To recover the message m, compute c′ = c·P−1 = m·S·G′+e·P−1, and
decode c′ using a decoder for CG to recover the permuted e, and hence
m′ = (m · S) ∈ F

k
2 . Finally, recover m = m′ · S−1 and output m.

The McEliece PKE scheme achieves a certain notion of security known as
one-wayness (OW), relying on hardness of the well-known problem of decoding
random linear codes. Roughly speaking, the notion states that an adversary
cannot recover the underlying message m from a given ciphertext c. The OW
security notion is formalized in Fig. 2, where we write {0, 1}poly(λ) for the message
space, indicating that it consists of bit-strings of some length that depends on
some polynomial function of the security parameter.

An adversary A is said to be a (t, ε)-adversary against OW security of a PKE
scheme if that adversary causes the OWA

Enc game to output “1” with probability
at least ε (where 0 < ε ≤ 1) and runs in time at most t. A PKE scheme is said
to be (t, ε)-secure with respect to a given security notion, such as OW security,
if no (t, ε)-adversary exists for that notion.

Definition 2. A Key Encapsulation Mechanism (KEM) consists of the follow-
ing triple of polynomial-time algorithms (KGen,Encap,Decap).
4 Known as a binary Goppa code, as described in [ACP+19a].
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OWA
Enc

1 : (pk, sk) ← KGen(1λ)

2 : m ←$ {0, 1}poly(λ)

3 : c ← Enc(pk,m)

4 : m′ ← A(1λ, pk, c)

5 : return (m′ = m)

Fig. 2. OW-security game for PKE.

– The Key Generation algorithm KGen takes as input a security parameter 1λ

and outputs a public/private key-pair (pk, sk).
– The Encapsulation algorithm Encap takes as input a public key pk and outputs

an encapsulated key and ciphertext (K, c).
– The Decapsulation algorithm Decap takes as input a ciphertext c and a private

key sk, and outputs a key K encapsulated in c (or an error message “⊥”
indicating a decapsulation failure).

Compared to OW security, the desired notion for a KEM or a PKE scheme
is IND-CCA security, i.e. indistinguishability under chosen ciphertext attacks. In
the KEM version of this security notion, informally, an adversary should not be
able to decide whether a given pair (K, c∗) is such that c∗ encapsulates K or if
K is a random key independent of c∗. In addition, the adversary is also given
access to a decapsulation oracle that returns the output of Decap(c′, sk) for any
c′ �= c∗ (and where we assume the adversary never queries c∗ to this oracle,
to prevent trivial wins). We denote this capability of accessing an oracle by
the adversary as ADecap(·,sk)(1λ, pk,Kb, c∗) in Fig. 3. Here we write {0, 1}poly(λ)

for the key space, indicating that it consists of bit-strings of some length that
depends on a polynomial function of the security parameter λ.

IND-CCAA
KEM

1 : b ←$ {0, 1}
2 : (pk, sk) ← KGen(1λ)

3 : (K0, c∗) ← Encap(pk)

4 : K1 ←$ {0, 1}poly(λ)

5 : b′ ← ADecap(·,sk)(1λ, pk,Kb, c
∗)

6 : return (b′ = b)

Fig. 3. IND-CCA-security game for KEM.
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Formally, a (t, ε)-adversary against the IND-CCA security of a KEM causes
the above game to return “1” with probability at least 1/2 + ε (where 0 < ε ≤
1/2) and runs in time at most t. We say that a KEM is (t, ε)-secure in the
IND-CCA sense if no (t, ε)-adversary exists; NTS-KEM is IND-CCA secure in
the classical random oracle model with a tight relationship to the OW-security
of the McEliece PKE.

Finally, a KEM (respectively, PKE scheme) is said to be perfectly cor-
rect if for any public/private key pair (pk, sk) generated by KGen, we have
Pr[Decap(c, sk) = K | (c,K) ← Encap(pk)] = 1 (respectively, Pr[Dec(c, sk) =
m | c ← Enc(pk,m)] = 1 for any valid message m). For example, the McEliece
scheme is a perfectly correct PKE and NTS-KEM is a perfectly correct KEM as
shown in [ACP+19a].

3 NTS-KEM Specification

NTS-KEM is a key encapsulation mechanism that can be seen as a mixture of
the McEliece and Niederreiter PKE schemes [McE78,Nie86] combined with a
transform similar to the Fujisaki-Okamoto [FO13] or Dent [Den03] transforms
to achieve (tight) IND-CCA security in the classical ROM. We provide a higher-
level overview of the scheme’s three main operations – namely Key Generation,
Encapsulation and Decapsulation – that is relevant to the main results of this
paper (refer to [ACP+19a,ACP+19b] for a more detailed description). Most
importantly, the description below also includes our proposed changes to the
decapsulation routine.

In the following, (n, τ, �) are public parameters where n = 2m denotes the
length of codewords, τ denotes the number of errors that can be corrected by
the code (see McEliece PKE scheme in Subsect. 2.3) and � denotes the length
of the random key to be encapsulated. Also k is a value which is chosen such
that k = n− τm with � < k < n. NTS-KEM uses a pseudorandom bit generator
H�(.) to produce �-bit binary strings; the current version uses the SHA3-256
hash function [NIS15] to implement H�(.).

Key Generation: Without going into details on how the keys are generated, it
is sufficient to know that an NTS-KEM public key is given by pk = (Q, τ, �)
where Q ∈ F

k×(n−k)
2 is a matrix used in the encryption of messages during

encapsulation, and private key is defined as sk = (a∗,h∗,p, z, pk) where a∗,h∗ ∈
F

n−k+�
2m are used in the decoding algorithm used for decapsulation, p ∈ F

n
2m is a

permutation vector and z ∈ F
�
2 is used in the decapsulation of invalid ciphertexts.

Encapsulation: Given an NTS-KEM public key pk = (Q, τ, �), the encapsulation
algorithm produces two vectors over F2 – a random vector K, where |K| = �,
and the ciphertext c∗ encapsulating K. It uses the following function that acts
on n-bit error vectors, and denoted as Encode(pk, e), which proceeds as follows.

1. Partition e as e = (ea | eb | ec), where ea ∈ F
k−�
2 , eb ∈ F

�
2 and ec ∈ F

n−k
2 .

2. Compute ke = H�(e) ∈ F
�
2 and construct message vector m = (ea | ke) ∈ F

k
2 .
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3. Perform systematic encoding of m with Q:

c = (m | m · Q) + e

= (ea | ke | (ea | ke) · Q) + (ea | eb | ec)
= (0a | cb | cc) ,

where cb = ke + eb and cc = (ea | ke) · Q + ec. Then remove the first k − �
coordinates (all zero) from c to output c∗ = (cb | cc) ∈ F

n−k+�
2 .

NTS-KEM encapsulation is then defined as:

1. Generate uniformly at random an error vector e ∈ F
n
2 with hw(e) = τ .

2. Compute ke = H�(e) ∈ F
�
2.

3. Output the pair (K, c∗) where K = H�(ke | e) and c∗ = Encode(pk, e).

Decapsulation: 5The decapsulation of an NTS-KEM ciphertext c∗ = (cb | cc)
proceeds as follows.

1. Consider the vector c = (0a | cb | cc) ∈ F
n
2 , and apply a decoding algorithm—

using the secret parameters (a∗,h∗)—to recover a permuted error pattern e′.
2. Compute the error vector e = πp(e′), partition e = (ea | eb | ec), where

ea ∈ F
k−�
2 , eb ∈ F

�
2 and ec ∈ F

n−k
2 , and compute ke = cb − eb.

3. Compute c′ = Encode(pk, e). Verify that c′ = c∗ and hw(e) = τ . If yes,
return K = H�(ke | e) ∈ F

�
2; otherwise return H�(z | 1a | cb | cc).

3.1 Changes to the Initial NTS-KEM Decapsulation [ACP+19a]

The NIST second round submission for NTS-KEM [ACP+19a] does not perform
the re-encoding check in the decapsulation algorithm. Specifically, the evaluation
of Encode(pk, e) in step 3 of the Decapsulation operation above is not performed,
and instead it only verifies if hw(e) = τ and H�(e) = ke to identify valid cipher-
texts. But this may allow some invalid ciphertexts c to evade implicit rejection by
the decapsulation oracle, leading to a possible attack in the IND-CCA security
game of NTS-KEM.

To be specific, the initial IND-CCA security proof for NTS-KEM in the
ROM [ACP+19a] failed to account for ciphertexts c which, when given as input
to the decoding algorithm used in NTS-KEM decapsulation, result in an error
vector e such that hw(e) = τ and H�(e) = cb − eb, but Encode(pk, e) �= c.
Because of the correctness of NTS-KEM (as shown in [ACP+19a]), it is not
hard to see that such a ciphertext c is not the result of any valid NTS-KEM
encapsulation.6 This might lead to a potential attack in the IND-CCA security
game of NTS-KEM. Given a challenge ciphertext c∗ = (c∗

b | c∗
c) (along with

5 Our suggested routine, as adopted in the updated version of NTS-KEM [ACP+19b].
6 On the contrary, if there exists an error vector e′ with hw(e′) = τ such that

Encode(pk, e′) = c, then because of NTS-KEM correctness, the decoding algorithm
should recover error vector e′(�= e) when given c as input.
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a key Kb, see Subsect. 2.3 for definitions of security games w.r.t. KEMs), the
adversary could possibly construct the above invalid ciphertext c = (c∗

b | cc)
by modifying the last (n − k) bits of c∗, such that the decoding algorithm in
NTS-KEM decapsulation would recover the error vector e∗ used in the NTS-
KEM encapsulation that produced c∗; the attack would then be to query the
decapsulation oracle on c (�= c∗) to recover the encapsulated key.

At the same time, we stress that the above described attack is just a possibil-
ity and is not a concrete attack. Because it is quite possible that, by analyzing
the decoding algorithm used in NTS-KEM decapsulation, one might show such
invalid ciphertexts are computationally hard to generate adversarially.

A re-encoding step during NTS-KEM decapsulation, which is in line with
the FO transformations, would entirely resolve this issue by correctly rejecting
such invalid ciphertexts. Our proposed changes also perform the hash check
H�(e) = ke implicitly because of the following proposition shown in [ACP+19a].

Proposition 1 ([ACP+19a]). Let c∗ = (cb | cc) be a correctly formed cipher-
text for NTS-KEM with public key pk = (Q, τ, �). Then there exists a unique
pair of vectors ((ea | rb), e) such that hw(e) = τ and c∗ = (ea | rb) · [Ik | Q] + e.

If a ciphertext c is not rejected by the new decapsulation oracle, it means
that there is an error vector e with hw(e) = τ such that Encode(pk, e) = c. From
Proposition 1, there then exists a unique pair of vectors ((ea | rb), e) w.r.t. c,
with hw(e) = τ , such that c = (ea | rb) · [Ik | Q]+e. It is clear that rb = cb −eb,
and because of the uniqueness of rb, we must have H�(e) = cb − eb in the
evaluation of Encode(pk, e). Because of this observation, our changes to NTS-
KEM decapsulation also preserve the tightness of the initial IND-CCA security
proof for NTS-KEM in the ROM, while fixing the flaw discussed above (refer to
[ACP+19b] for more details on the updated ROM proof for NTS-KEM).

4 IND-CCA Security of NTS-KEM in the QROM

In this section, we will be providing a (game-hopping) security proof for NTS-
KEM in the QROM, relying on techniques used in [JZC+18,SXY18]. Specifi-
cally, we show that NTS-KEM is IND-CCA secure in the QROM, if McEliece is
OW secure as a PKE scheme.

Theorem 1. In the quantum random oracle model, if there exists an adversary
A winning the IND-CCA game for NTS-KEM with advantage ε, issuing at most
qD queries to the decapsulation oracle and at most qH quantum queries to the
random oracle H�(.) , then there exists an adversary B̂ against the OW security
of the McEliece PKE scheme with advantage at least 1

4

(
ε

qH
− 1√

2�−1

)2, and the

running time of B̂ is about that of A.

Similar to the IND-CCA security proof for NTS-KEM in the classical ROM
given in [ACP+19a], we define NTS−, a variant of NTS-KEM, which creates
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key encapsulations that are McEliece-type encryptions of message vectors of the
form m = (ea | rb), where rb ←$F

�
2, and rb is considered to be the encapsulated

key for NTS−. This is in contrast to the original NTS-KEM scheme in which
the encapsulations are encryptions of messages of the form m = (ea | ke), where
ke = H�(e) ∈ F

�
2, and K = H�(ke | e) is the encapsulated key. As will be seen

later on, this step is convenient for our proof because we essentially decouple the
need for random oracles from the NTS− scheme.

Towards a reduction in the QROM from the IND-CCA security of NTS-KEM
to the OW security of the McEliece PKE scheme, as an intermediate step we first
note that NTS− satisfies a non-standard security notion, denoted as error one-
wayness or EOW security (as introduced in [ACP+19a]). This notion is specific
to McEliece-type KEM schemes, e.g., NTS-KEM, which encrypt messages of the
form m = (ea | rb) with error vector e = (ea | eb | ec) during key encapsulation.
Roughly speaking, this notion states that it is hard to recover the error vector e
used to generate a given challenge ciphertext c. EOW security for NTS-KEM-like
KEMs is defined formally in Fig. 4 where the adversary gets the encapsulation
of a random key and is required to produce the error vector which led to that
particular encapsulation.

EOWA
KEM

1 : (pk, sk) ← KGen(1λ)

2 : (K, c∗) ← Encap(pk)

3 : e : error vector used to produce c∗

4 : e′ ← A(1λ, pk, c∗)

5 : return (e′ = e)

Fig. 4. EOW-security game for KEM.

Now NTS− is EOW-secure because of the following security reduction shown
in [ACP+19a], which does not rely on any random oracles.

Theorem 2 ([ACP+19a]). If there is a (t, ε)-adversary B against the
EOWsecurity of NTS−, then there is a (t, ε)-adversary B̂ against the OW
security of the McEliece PKE scheme.

So we can focus on reducing the IND-CCA security of NTS-KEM to the EOW
security of NTS− in the QROM.

Proof (of Theorem1). Let A be an adversary against the IND-CCA game for
NTS-KEM with advantage ε, issuing at most qD queries to the decapsulation
oracle and at most qH queries to the quantum random oracle H�(.).

Consider the games G0 – G5 described in Fig. 5. Here pk = (Q, τ, �) and
sk = (a∗,h∗,p, z, pk) as described in Sect. 3 on NTS-KEM key generation. Also
H+

0 : {0, 1}∗ → {0, 1}�,Hn
1 : {0, 1}n → {0, 1}�,H�+n

2 : {0, 1}�+n → {0, 1}�,
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Games G0 – G5

1 : b ←$ {0, 1}
2 : (pk, sk) ← KGenNTS-KEM(1λ)

3 : e∗ ←$ {e ∈ F
n
2 | hw(e) = τ}

4 : k∗
e = H�(e∗)// G0–G4; k∗

e ←$F
�
2// G5

5 : (0a | c∗) = (e∗
a | k∗

e) · [Ik | Q] + e∗

6 : K∗
0 = H�(k∗

e | e∗)// G0–G4; K∗
0 ←$F

�
2// G5

7 : K∗
1 ←$F

�
2

8 : b′ ← AH�(.),Decap(.,sk)(1λ, pk,K∗
b , c∗)// G0–G3

9 : Ḧ�(.) = H�(.);

Ḧ�(e∗) ←$F
�
2; Ḧ�(k∗

e | e∗) ←$F
�
2// G4

10 : b′ ← AḦ�(.),Decap(.,sk)(1λ, pk,K∗
b , c∗)// G4

11 : return (b′ = b)// G0–G4

12 : i ←$ {1, . . . , qH}// G5

13 : run AH�(.),Decap(.,sk)(1λ, pk,K∗
b , c∗) until

i-th query to (Hn
1 × [Hn

4 ◦ g])(.)// G5

14 : measure the i-th query to be ê// G5

15 : return (ê = e∗)// G5

H�(x) // |x| �= n, (� + n)

1 : return H+
0 (x)

H�(e) // |e| = n

1 : return Hn
1 (e)

H�(ke | e)// |(ke | e)| = (� + n)

1 : if hw(e) = τ and

ke = H�(e) then// G2–G5

2 : c = Encode(pk, e)// G2–G5

3 : return Hn
4 (1a | c)// G2–G5

4 : return H�+n
2 (ke | e)

Decap(c �= c∗, sk) // G0–G2

1 : Parse sk = (sk′, z)

2 : e = Decode(sk′, c)

3 : ke = cb − eb

4 : if hw(e) = τ and Encode(pk, e) = c then

5 : return K = H�(ke | e)
6 : else return

7 : K = H�(z | 1a | c)// G0

8 : K = Hn
3 (1a | c)// G1–G2

Decap(c �= c∗, sk) // G3–G5

1 : return K = Hn
4 (1a | c)

Fig. 5. Games G0–G5 for the proof of Theorem 1.

Hn
3 : {0, 1}n → {0, 1}� and Hn

4 : {0, 1}n → {0, 1}� are independent random
functions that are used in the evaluation of queries (of varying lengths) w.r.t. the
oracles H�(.) and Decap(., sk) in the games. Decode(sk′, c) defined over cipher-
texts c ∈ F

n−k+�
2 recovers an error vector after applying the decoding algorithm

used in NTS-KEM decapsulation [Decapsulation, Sect. 3] and the permutation p
of the secret key.

Game G0. The game G0 is exactly the IND-CCA game for NTS-KEM. So,

|Pr[GA
0 =⇒ 1] − 1

2
| = ε
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where “GA
i =⇒ 1” denotes the event that the game Gi returns 1 w.r.t. the

adversary A.
Game G1. In game G1, we modify the decapsulation oracle such that

Hn
3 (1a | c) is returned instead of H�(z | 1a | c) for an invalid ciphertext c,

i.e., pseudo-random decapsulations of invalid ciphertexts are replaced by truly
random outputs. We use Lemma 2 to claim that there is a negligible difference
between A’s winning probabilities in games G0 and G1, i.e.,

|Pr[GA
1 =⇒ 1] − Pr[GA

0 =⇒ 1]| ≤ qH · 2− �+1
2

The proof for this claim follows along similar lines to that of [SXY18, Lemma
2.2], but with modifications to account for the specific way NTS-KEM rejects
invalid ciphertexts during decapsulation. To prove our claim, we again consider
the following sequence of games for A based on the random oracles it has access
to, that are relevant during the transition from G0 to G1.

G0: The game returns accordingly as AH�+n
2 (.),H�+n

2 (z|1a|.)(.) outputs, where
z ←$ {0, 1}� is a part of the secret key sk.

G0.5: The game returns accordingly as AO�+n[z,a,H�+n
2 ,Hn

3 ](.),Hn
3 (1a|.)(.) out-

puts, where O�+n[z,a,H�+n
2 ,Hn

3 ](.) is a function defined as

O�+n[z,a,H�+n
2 ,Hn

3 ](z′ | c) =

{
H�+n

2 (z′ | c) if z′ �= z or [c]a �= 1a

Hn
3 (c) otherwise

Here, [x]b denotes the first b-bits of input x.
G1: The game returns accordingly as AH�+n

2 (.),Hn
3 (1a|.)(.) outputs.

Note that Pr[GA
0.5 =⇒ 1] = Pr[GA

0 =⇒ 1]: for (� + n)-bit queries of
the form (z | 1a | .), the function O�+n[z,a,H�+n

2 ,Hn
3 ](.) makes sure that we

maintain consistency of the oracle evaluations when replacing H�+n
2 (z | 1a | .)

with Hn
3 (1a | .).

We show that |Pr[GA
1 =⇒ 1]−Pr[GA

0.5 =⇒ 1]| ≤ qH ·2− �+1
2 via a reduction

to Lemma 2. Consider the algorithm C that has oracle access to the function
g(.) which is either gz(.) for uniformly random z ←$ {0, 1}� or g⊥(.), where the
functions gz(.) and g⊥(.) are as defined in Lemma 2. Cg(.) runs AÔ�+n(.),Hn

3 (1a|.)(.)
where C simulates the oracles H�+n

2 (.) and Hn
3 (.) using two different 2qH -wise

independent functions respectively (see Lemma 1), and simulates Ô�+n(.) as
follows: When A queries (z′ | c) to Ô�+n(.), B queries z′ to g(.) and gets a bit b.
If b = 1 and [c]a = 1a, then C returns Hn

3 (c). Otherwise, C returns H�+n
2 (z′ | c).

It is clear that if g(.) = gz(.) for uniformly random z ←$ {0, 1}�, C perfectly
simulates G0.5 in A’s view, and similarly if g(.) = g⊥(.), C simulates G1. Thus,
we get

|Pr[GA
1 =⇒ 1] − Pr[GA

0.5 =⇒ 1]| = |Pr[Cg⊥(.)(.) → 1] − Pr[Cgz(.)(.) → 1 | z ←$ {0, 1}�]|
Since the number of C’s oracle queries to g(.) is the same as the number of A’s
queries to Ô�+n(.), we can use Lemma 2 to further obtain

|Pr[Cg⊥(.)(.) → 1] − Pr[Cgz(.)(.) → 1 | z ←$ {0, 1}�]| ≤ qH · 2− �+1
2
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which proves our claim regarding the adversary A’s winning probabilities in
games G0 and G1.

Game G2. In game G2, the encapsulated keys are derived in a different way:
if the (�+n)-bit input (ke | e) to H�(.) is of the correct form, i.e., hw(e) = τ and
ke = H�(e), then the output is replaced by Hn

4 (1a | c), where c = Encode(pk, e).
Because NTS-KEM is a perfectly correct scheme as shown in [ACP+19a] (see

Subsect. 2.3 for correctness definition), we note that Encode(pk, .) is injective,
and thus, Hn

4 (1a | Encode(pk, .)) returns perfectly random values for distinct
inputs of the type (H�(e) | e) with hw(e) = τ . As the oracle distributions of
H�(.) are equivalent in games G1 and G2, we have

Pr[GA
2 =⇒ 1] = Pr[GA

1 =⇒ 1]

Game G3. In game G3, we change the decapsulation oracle such that there
is no need for the secret key sk. Specifically, when the adversary A asks for the
decapsulation of a ciphertext c (�= c∗, the challenge ciphertext), Hn

4 (1a | c) is
returned. Let e = Decode(sk′, c) and ke = cb − eb. Consider the following two
cases:

Case 1: If the checks in NTS-KEM decapsulation – i.e., hw(e) = τ and
Encode(pk, e) = c – are satisfied, then the decapsulation oracles in games G2

and G3 return H�(ke | e) and Hn
4 (1a | c) respectively. In G2, as discussed in

Subsect. 3.1, the re-encoding step does an implicit hash check, and hence, we
also have H�(e) = cb − eb = ke. Therefore, H�(ke | e) evaluates to Hn

4 (1a |
Encode(pk, e)) = Hn

4 (1a | c) in G2, which is the value returned in G3 as well.
Case 2: If one of the checks is not satisfied, then the values Hn

3 (1a | c) and
Hn

4 (1a | c) are returned in games G2 and G3 respectively. In G2, the function
Hn

3 (.) is independent of all other random oracles, and thus, the output Hn
3 (1a | c)

is uniformly random in A’s view. In G3, the only way A gets prior access to the
oracle Hn

4 (.) is if it already queried H�(.) with an input of the type (k′
e | e′) such

that hw(e′) = τ and k′
e = H�(e′), and got back Hn

4 (1a | Encode(pk, e′)). Now
it’s not hard to see that Encode(pk, e′) cannot be equal to c,7 which implies that
the output of the modified decapsulation oracle Hn

4 (1a | c) is a fresh random
value like Hn

3 (1a | c).
Because the output distributions of the decapsulation oracles in games G2

and G3 are the same in both cases, we have

Pr[GA
3 =⇒ 1] = Pr[GA

2 =⇒ 1]

Game G4. In game G4, we reprogram the random oracle H�(.) on inputs e∗

and (k∗
e | e∗) such that they result in fresh uniformly random outputs. To be

specific, we replace H�(.) with the function Ḧ�(.) where Ḧ�(e∗) = r∗
b ←$F

�
2 and

Ḧ�(k∗
e | e∗) = K̇∗

0 ←$F
�
2, and Ḧ�(.) = H�(.) everywhere else. It is clear that in

7 On the contrary, if Encode(pk, e′) = c, then because of NTS-KEM correctness,
we have Decode(sk′, c) = e′ = e. This means that the checks hw(e) = τ and
Encode(pk, e) = c are satisfied, a contradiction.
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this game, as we are masking the information used to derive the challenge pair
(K∗

b , c
∗) from A’s view, its output is independent of bit b. Therefore,

Pr[GA
4 =⇒ 1] =

1
2

In order to bound the difference in A’s winning probabilities in games G3 and
G4, we use Lemma 3. Let the function g(.) defined over error vectors e ∈ F

n
2 be

as follows,

g(e) =

{
1a | Encode(pk, e) if hw(e) = τ

0a | eb | ec if hw(e) �= τ

Looking at game G3, the oracle query H�(k∗
e | e∗) evaluates to Hn

4 (g(e∗)) =
Hn

4 ◦ g (e∗). So we are actually reprogramming the oracles Hn
1 (.) and Hn

4 ◦ g (.)
at the input e∗.

Define the function Ḧn
4 ◦ g (.) such that Ḧn

4 ◦ g (e∗) ←$F
�
2 and Ḧn

4 ◦ g (.)
= Hn

4 ◦ g (.) everywhere else. Similarly, let Ḧn
1 (e∗) ←$F

�
2 and Ḧn

1 (.) = Hn
1 (.)

everywhere else. Now let the oracles (Hn
1 × [Hn

4 ◦ g])(.) = (Hn
1 (.),Hn

4 ◦ g (.))8

and (Ḧn
1 × [Ḧn

4 ◦ g])(.) = (Ḧn
1 (.), Ḧn

4 ◦ g (.)). If we also have a function Ĥn
4 (.)

such that Ĥn
4 (g(e∗)) =⊥ and Ĥn

4 (.) = Hn
4 (.) everywhere else, then Ĥn

4 (1a | .) is
precisely the (unchanged) decapsulation oracle in games G3 and G4.

Let U (Hn
1 ×[Hn

4 ◦g]),Ĥn
4 be an algorithm described in Fig. 6 that has quan-

tum access to the oracles (Hn
1 × [Hn

4 ◦ g])(.) and Ĥn
4 (.), and takes an input

(pk, e∗, (k∗
e,K

∗
0)) which is derived in the same way as in games G3 and G4; i.e.,

(pk, sk) ← KGenNTS-KEM(1λ), e∗ ←$ {e ∈ F
n
2 | hw(e) = τ},k∗

e = Hn
1 (e∗) and

K∗
0 = Hn

4 ◦ g(e∗), with functions Hn
1 (.),Hn

4 (.) and g(.) as previously described.
Here the random functions H+

0 : {0, 1}∗ → {0, 1}� and H�+n
2 : {0, 1}�+n →

{0, 1}� are independently sampled by the algorithm. Note that, U (Hn
1 ×[Hn

4 ◦g]),Ĥn
4

on input (pk, e∗, (k∗
e,K

∗
0)) simulates G3 in the adversary A’s view, whereas the

algorithm U (Ḧn
1 ×[Ḧn

4 ◦g]),Ĥn
4 on the same input (pk, e∗, (k∗

e,K
∗
0)) simulates G4.

Also A can have (separate) access to the internal oracles Hn
1 (.) and [Hn

4 ◦g](.) by
querying H�(.), which could be simulated by U by accessing (Hn

1 ×[Hn
4 ◦g])(.) and

ignoring part of the output of the oracle using a trick9 described in [BZ13,TU16].
Therefore, the number of oracle queries to (Hn

1 × [Hn
4 ◦ g])(.) is at most qH .

Let V(Ḧn
1 ×[Ḧn

4 ◦g]),Ĥn
4 be an algorithm that on input (pk, e∗, (k∗

e,K
∗
0)) does the

following: samples i ←$ {1, . . . , qH}, runs U (Ḧn
1 ×[Ḧn

4 ◦g]),Ĥn
4 until the i-th query to

(Ḧn
1 × [Ḧn

4 ◦ g])(.) and returns the measurement outcome of the query in the
computational basis (if U makes less than i queries, the algorithm outputs ⊥).

8 For error vectors e ∈ F
n
2 with hw(e) �= τ , the reason we defined g(e) – even though

A only has access to Hn
4 (1a | .) in games G3 and G4 – is to have a consistent domain

(Fn
2 ) and co-domain (F�

2) between the oracles Hn
1 (.) and Hn

4 ◦ g (.). This would be
helpful, for example, when applying Lemma 3 in our setting.

9 For example, if we want to access Hn
1 (.) by making queries to (Hn

1 × [Hn
4 ◦g])(.), then

we just have to prepare a uniform superposition of all states in the output register
corresponding to Hn

4 ◦ g(.).



16 V. Maram

U (Hn
1 ×[Hn

4 ◦g]),Ĥn
4 (pk, e∗, (k∗

e,K
∗
0))

1 : c∗ = Encode(pk, e∗)

2 : K∗
1 ←$F

�
2

3 : b ←$ {0, 1}
4 : b′ ← AH�(.),Decap(.,sk)(1λ, pk,K∗

b , c∗)

5 : return (b′ = b)

Decap(c �= c∗, sk)

1 : return K = Ĥn
4 (1a | c)

H�(x) // |x| �= n, (� + n)

1 : return H+
0 (x)

H�(e) // |e| = n

1 : return Hn
1 (e)

H�(ke | e)// |(ke | e)| = (� + n)

1 : if e = e∗ then

2 : if ke = k∗
e then

3 : return Hn
4 ◦ g(e)

4 : else return H�+n
2 (ke | e)

5 : elseif hw(e) = τ and

ke = H�(e) then

6 : return Hn
4 ◦ g(e)

7 : else return H�+n
2 (ke | e)

Fig. 6. Algorithm U (Hn
1 ×[Hn

4 ◦g]),Ĥn
4 for the proof of Theorem 1.

Game G5. From the description of G5, we see that Pr[V(Ḧn
1 ×[Ḧn

4 ◦g]),Ĥn
4 =⇒

e∗] = Pr[GA
5 =⇒ 1] because, as previously discussed regarding the winning

probability in G4, the oracle (Ḧn
1 × [Ḧn

4 ◦ g])(.) does not reveal any information
about H�(e∗) and H�(k∗

e | e∗). So applying Lemma 3 with the setting O1 =
(Hn

1 × [Hn
4 ◦ g])(.), Ö1 = (Ḧn

1 × [Ḧn
4 ◦ g])(.),O2 = Ĥn

4 (1a | .), inp = pk, x = e∗

and y = (k∗
e,K

∗
0), we obtain10,

|Pr[GA
4 =⇒ 1] − Pr[GA

3 =⇒ 1]| ≤ 2qH

√
Pr[GA

5 =⇒ 1]

Finally, we construct an adversary B against the EOW security of NTS− (as
described in Fig. 4) such that its advantage is Pr[GA

5 =⇒ 1]. Given an input
(1λ, pk, c∗), B does the following:

– Runs A as a subroutine in game G5.
– Uses four different 2qH -wise independent functions to perfectly simulate the

random oracles H+
0 (.), Hn

1 (.),Hn
4 (.) and H l+n

2 (.) respectively in A’s view, as
described in Lemma 1. Also evaluates Hn

1 (.) and [Hn
4 ◦ g](.) at A’s queries

using the oracle (Hn
1 × [Hn

4 ◦ g])(.).
– Answers decapsulation queries using the function Hn

4 (1a | .).
– For A’s challenge query, it samples K∗ ←$F

�
2 and responds with (K∗, c∗).

10 The original OW2H lemma of [Unr14] would have required e∗ to be sampled uni-
formly in F

n
2 , the domain of (Hn

1 × [Hn
4 ◦ g])(.). Therefore we use Lemma 3 which

generalizes to arbitrary distributions of e∗; in particular, e∗ ←$ {e ∈ F
n
2 | hw(e) = τ}.
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– Samples i ←$ {1, . . . , qH}, measures the i-th query to the oracle (Hn
1 × [Hn

4 ◦
g])(.) and returns the outcome ê.

From the above description of B, we note that its EOW advantage against
NTS− is indeed Pr[GA

5 =⇒ 1]. Coming to the running times of A and B,
say tA and tB respectively, if tEnc denotes the time needed to perform a single
Encode(pk, .) operation, we have tB ≈ tA + (qH + qD) · O(qH) + qH · tEnc, i.e.,
the overhead is due to the simulation of H�(.) and Decap(., sk) oracles by B.

By combining the bounds obtained w.r.t. the winning probabilities of A in
each of the previous games and applying the security reduction of Theorem 2
to the EOW adversary B, we obtain an adversary B̂ against the OW security of
the McEliece PKE scheme with a running time (= tB) close to that of A, and
advantage ε̂ where

ε̂ ≥ 1
4

( ε

qH
− 1√

2�−1

)2

(1)

�

5 Conclusion

In this paper, we analyzed the security of NTS-KEM – a second round
PKE/KEM candidate in NIST’s PQC standardization project – in the QROM.
Specifically, we identified an issue in the IND-CCA security proof of NTS-KEM
in the classical ROM and suggested some modifications to the scheme towards
fixing it. We later showed that our changes not only preserve the tightness of
the intended ROM proof for NTS-KEM but also lead to an IND-CCA secu-
rity reduction in the QROM. The proposed changes were later adopted by the
NTS-KEM team in an update to their second round submission [ACP+19b].

We also note that our QROM reduction can be made tighter by using newer
OW2H lemmas of [AHU19] and [BHH+19]. For example, one could consider
the improved security reduction of the U�⊥

m transform in [BHH+19] to get rid of
the factor 1/qH from the term “ε/qH” in Eq. (1). However, the quadratic loss in
degree of tightness incurred by our reduction might still be unavoidable in the
QROM [JZM19].

Acknowledgments. It is my pleasure to thank Kenny Paterson, and the rest of the
NTS-KEM team, for helpful discussions. I would also like to thank the anonymous
reviewers of CBCrypto 2020 for their comments.
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Abstract. Asymmetric Sidel’nikov-type code-based cryptosystem is one
of the generalizations of McEliece-type cryptosystems. The secret key in
this generalization is the set of u randomly selected generator matrices
GC1 ,...,GCu of different [ni, k]-codes Ci, i ∈ {1, ..., u}. In addition, a part
of the secret key is a random permutation (

∑u
i=1 ni×∑u

i=1 ni)-matrix P .

The public key matrix G̃ is the result of multiplying the concatenation
of secret generator matrices and the matrix P : G̃ = [GC1 |...|GCu ]P .
The security of these cryptosystems is based on the assumption that for
u � 2 it is computationally difficult to find in G̃ such (k×ni)-submatrices
composed of ni columns of G̃, which would be generator matrices of codes
permutably equivalent to the codes Ci, i = 1, ..., u. In the present paper,
we construct an algorithm for the efficient search for such submatrices
in the case when several conditions are satisfied. One of the conditions
is the decomposability of the square of the connected codes C1,...,Cu

into the direct sum of the squares of the codes Ci, i ∈ {1, ..., u}. An
experimental assessment of the probability of fulfilling this condition for
some Reed–Solomon codes, binary Reed–Muller codes, and Goppa code
are also provided.

Keywords: Sidel’nikov-type systems · Cryptanalysis ·
Decomposability of codes

1 Introduction

Code-based cryptosystems are considered as a possible alternative to asymmetric
cryptosystems, the strength of those is based on the complexity of the factoriza-
tion problem or the discrete logarithm problem in the cyclic group [1]. In [2] R.
McEliece proposed an asymmetric code cryptosystem based on the hardness of
decoding a random linear code. For the cryptosystem described in [2], which is
based on Goppa codes, an effective algorithm for finding a secret key by public
key has not been found yet. However, since the public keys of Goppa code–based
cryptosystem is very large, it makes sense to consider other codes. In general,
the public key matrix G̃ of the McEliece-type system is of the form

G̃ = SGCP, (1)
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where the nonsingular (k × k)-matrix S, the permutation (n × n)-matrix P and
generator matrix GC of [n, k, d]q-code C form the secret key of the cryptosystem.
Note that the code C should have a polynomial decoder. For fast decipherment,
without knowing (S, P,C), it is sufficient to find a nonsingular (k × k)-matrix
S′, a permutation matrix P ′ and a generator matrix GC′ for linear [n, k, d′]-code
C ′ with a polynomial decoder that

S′GC′P ′ = G̃

and d′ � d. These attacks are called structural attacks or key attacks. The results
of [3]–[7] show that this complex problem can be solved in polynomial time for
some well-known codes. Unfortunately, an algorithm for finding a suitable key
(S′, P ′, GC′) in the general case is unknown. By Sn we denote the symmetric
group of degree n. Note that if adversary knows the code C, then for quick
decipherment it is enough to solve the problem of finding a permutation σ ∈
Sn such that σ(C) = C̃ [8], where C̃ is a code generated by the rows of G̃.
(Hereinafter by σ(C) we mean the code obtained from C by permutation the
coordinates in the codewords under σ.)

In [9] a new asymmetric code cryptosystem was proposed by V. M.
Sidel’nikov. The public key of this cryptosystem is obtained from (1) by replacing
SGC with a concatenation of u(∈ N) randomly selected generator matrices for
one fixed [n, k, d]q-code C. The security of this cryptosystem against structural
attacks is based on the assumption that for u � 2 in the public key matrix G̃ it is
computationally hard to find u such (k × n)-submatrices, composed of different
n columns, where each submatrix generates some code permutably equivalent
to the code C. In particular it was believed that for u � 4 such cryptosys-
tems can be more secure than McEliece-type systems on Reed–Muller codes Ci,
i ∈ {1, ..., u} [9]. Note that for u = 1 the results of cryptanalysis Sidel’nikov-type
system based on Reed–Muller codes are given in [6,7], and for u = 2 such results
are considered in [10]. In [11,12] Sidel’nikov-type system is generalized by using
concatenation of u(∈ N) randomly selected generator matrices for different codes
C1, ..., Cu of the same dimension.

In this paper, it is shown that for any u the problem of finding secret keys
for cryptosystems from the [9,11,12] can be reduced to cryptanalysis of the
McEliece’s systems if some conditions are met. This paper is organized as fol-
lows. Section 2 provides the necessary information about linear codes and merged
codes. Section 3 provides an algorithm from [13] for decomposing a linear code
into a direct sum of indecomposable subcodes. In Sect. 4, using this, we con-
struct a new algorithm for splitting the support of merged codes. This algorithm
is used in Sect. 5 to attack the public key of Sidel’nikov-type cryptosystem. Also
Sect. 5 presents the experimental results to assess the probability of satisfying
conditions, sufficient for cryptanalysis for Sidel’nikov-type systems on some well-
known codes. In particular, these results show that for u � 4 Sidel’nikov-type
system on Reed–Muller codes can be broken by using [6,7]. Note that for u = 2
the results of cryptanalysis Sidel’nikov-type system on some codes are given
in [14].
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2 Preliminaries

2.1 Linear Codes and Schur Product

By n denote the set {1, ..., n}. Let x = (x1, ..., xn) ∈ F
n
q ; recall that the support of

x is supp(x) = {i ∈ n : xi �= 0}. Cardinality of this set is called Hamming weight
of x, we denote it by wt(x). The support of a set of vectors is the union of the
supports of vectors from this set. In the space F

n
q we consider a linear [n, k, d]q-

code C of dimension k, effective length n and code distance d. By the effective
length of code, we mean the cardinality of the set ∪c∈Csupp(c). Sometimes, when
the code distance d is unknown or when its value is not important, we say that
a [n, k, d]q-code C is just [n, k]q-code. By DecC we denote a decoding algorithm
for C that can correct up to t = �(d − 1)/2� errors. The output of DecC is an
information vector from F

k
q . Such decoder have to know the generator matrix

GC used in the encoding. Note that reconstructing the information vector from
the code vector and GC is a trivial procedure. Because of this, decoders are often
defined as algorithms that find error vectors by the received ones.

It is said that a [n, k, d]q-code C is permutably equivalent to a [n, k, d]q-code
D if there exists a permutation σ from the symmetric group Sn such that

D = σ(C) = {σ(c) = (cσ(1), ..., cσ(n)) : c = (c1, ..., cn) ∈ C}.

For these codes we use the botation C ∼ D. The group

PAut(C) = {σ ∈ Sn : σ(C) = C}
is said to be the group of permutation automorphisms of C. Let Pσ be the
permutation (n × n)-matrix corresponding to σ(∈ Sn). For a = (a1, ..., an) and
b = (b1, ..., bn) from F

n
q we consider component-wise multiplication

a � b = (a1b1, ..., anbn);

it is also called the Schur product [15]. It is easy to verify that for any a,b, c ∈ F
n
q ,

σ(∈ Sn), and α, β, γ ∈ Fq the following equalities hold:

(αa + βb) � γc = αγ(a � c) + βγ(b � c), (2)

σ(a) � σ(b) = σ(a � b). (3)

The square of the linear [n, k]q-code C is the code generated by the set
{a � b : a,b ∈ C}; we denote it by C2. If g1, ..., gk are the rows of GC then C2

is generated by the rows of the (k(k +1)/2×n)-matrix (gi �gj)k
i=1,j�i. It is easy

to show that for [n, k]q-code C the following inequality holds

dim(C2) � min
{

n,
k(k + 1)

2

}
. (4)

In [16] for a random linear code C theoretical estimates on the probability of
equality in (4) are obtained. For some well-known codes, exact formulas for the
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dimension of its squares have been found. Let GRSk,n be a generalized [n, k]q-
Reed–Solomon code, RM(r,m) be a binary Reed–Muller code of order r and
lengths 2m. Using (2) one can show that

GRS2
k,n = GRSmin{2k−1,n},n,

RM(r,m)2 = RM(min{2r,m},m)

(see [5,7,17]).
We need the following simple lemma.

Lemma 1. Let D,K be [n, k]q-codes, π ∈ Sn. If K = π(D), then

K2 = π(D2). (5)

Lemma 1 implies that π(D2) = (π(D))2, and if (π(D))2 = D2, then π ∈
PAut(D2).

Using the definition of the square-code, follows that for any D(⊆ C) the
embedding D2 ⊆ C2 holds. Finding conditions on C and D for D2 = C2 is of
interest. Note that the square of subcode of GRS is more likely to be the GRS
code of higher dimension. This fact is used in [5] to reduce the attack on the
Berger-Loidreau cryptosystem to the cryptanalytic algorithm from [3]. In [18] a
similar approach is applied to attack a key of the Berger-Loidreau system, which
is based on Reed–Muller binary subcodes. In [19] finding the Reed–Solomon
code by the square of the subcode is used to attack one modification of the
McEliece-type cryptosystem, different from the Berger-Loidreau modification.
In the following sections, we consider the case when a code D is a merging of u
codes and a code C is a direct sum of these u codes.

2.2 The Construction of Merging of Linear Codes

Let G(C) be the set of all generator matrices of the code C, L(A) be the linear
span of the rows of the matrix A. Let τ ⊆ n; by Aτ we denote the matrix
composed of columns of the matrix A with indices from τ . For [ni, k, di]q-codes
Ci, i ∈ u, and n =

∑u
i=1 ni let’s consider the family of [n, k]q-codes

E(C1, ..., Cu) = {L([GC1 |...|GCu
]) : GCi

∈ G(Ci), i ∈ u}, (6)

where [A|B] is concatenation of A and B. Codes from E(C1, ..., Cu) will be called
as merged codes (sometimes in literature, such codes are called as connection of
codes [20]). Let GD = [G′

C1
|...|G′

Cu
] be the generator matrix of the code D from

E(C1, ..., Cu), let DecCi
be a decoder for Ci in which the fixed generator matrix

ĜCi
is used. By matrix GD one can easily find (with complexity O(

∑u
i=1 n3

i ))
such u nonsingular (ki × ki)-matrices Mi that

GD = [M1ĜC1 |...|MuĜCu
]. (7)
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Each code D from this family has a code distance dD of at least

d(C1, ..., Cu) :=
u∑

i=1

di,

i.e. dD � d(C1, ..., Cu). Note that there is a code in the family whose minimum
code distance is d(C1, ..., Cu). Hence the exhaustive decoder can correct up to

�(dD − 1)/2� � �(d(C1, ..., Cu) − 1)/2�
errors. In the general case, the problem of constructing a fast decoder for an
arbitrary code D(∈ E(C1, ..., Cu)) that corrects up to �(dD − 1)/2� errors is not
solved. If the vector has no more than �(d(C1, ..., Cu) − 1)/2� errors, then the
following method can be used. The method is based on the scheme from [9];
where a decoder for merged Reed–Muller binary codes is proposed. Let

m[G′
C1

|...|G′
Cu

] + e = c

be noisy codeword of D,

wt(e) � t = �(d(C1, ..., Cu) − 1)/2�. (8)

The vectors c and e can be represented as the merging of u subvectors:

c = (c1, ..., cu), e = (e1, ..., eu), ci, ei ∈ F
ni
q .

To decode c, it is sufficient to find

m′
i = DecCi

(ci)M−1
i , i ∈ u,

and choose the index i such that the inequality holds:

wt(c − m′
iGD) � t. (9)

In fact, the condition (8) implies that there is at least one such vector ej0(∈ F
nj
q )

that wt(ej0) � tj0 = �(dj0 − 1)/2�. Therefore, among the vectors m′
1, ..., m′

u

there is at least one for such that (9) holds. In the general case, this inequality
can hold for different m′

i0
, m′

j0
, i0 �= j0. Hence, under the condition (8), decoding

by the legal recipient may be wrong (this follows from the fact that the recipient,
without knowing additional information about m′

i0
and m′

j0
, cannot give pref-

erence to any information vector). Using a checksum in information vectors will
make it possible to choose the message for which such sum would be correct.
However, this method decreases the information coding rate. Another way to
exclude decoding indetermination is to decrease the maximum number of cor-
rectable errors in a channel. For example, in [9] for merged Reed–Muller binary
codes the maximum number of errors is

∑u
i=1 ti + u − 1, ti = �(di − 1)/2�, and

in [11] for two merged different codes the maximum number of errors is t1 + t2.
Moreover, the correct decoding is always guaranteed in [9], and the probability
of the correct decoding in [11] is close to 1.
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Further, by tlim(� �(d(C1, ..., Cu) − 1)/2�) we mean the permissible number
of errors that can be corrected in this way. Using the above consideration, it
follows that for some families of codes, tlim can be determined theoretically. For
some other codes, the threshold can be estimated experimentally. The described
decoding method will be denoted by DecE(C1,...,Cu),tlim .

3 Decomposition of Linear Codes

For linear [ni, ki, di]q-codes Ci, i ∈ u, and n =
∑u

i=1 ni a code

C = C1 ⊕ ... ⊕ Cu = {(c1, ..., cu) : ci ∈ Ci} ⊆ F
n
q , (10)

will be called as the external direct sum of u codes. Let C̃i(⊆ F
n
q ) be a code

obtained from the code Ci(⊆ F
ni
q ) by adding n − ni zero coordinates in the

appropriate places. Then the code C is represented as inner direct sum

C = C̃1 + ... + C̃u ⊆ F
n
q , supp(C̃i) ∩ supp(C̃j) = ∅. (11)

Note that the representations (10) and (11) are equivalent, therefore, we will
often write direct sum in short.

It is said that the code C is decomposable if this code is permutably equiva-
lent to the direct sum of two or more nontrivial codes [21]. The code C is called
a decomposable code with decomposition length u if it can be represented as the
direct sum of u codes by the permutation of coordinates (see (10)) [13]. If in
the decomposition (10) all codes Ci are indecomposable, then such decompo-
sition will be called complete. Note that in this case the representation (10) is
unique up to a permutation of the codes Ci in the sum. For convenience the
indecomposable code C can be called as decomposable code with decomposition
length one. Note that if the code Ci has the decomposition length vi, i ∈ u, then
the code C1 ⊕ ... ⊕ Cu is a decomposable code with the decomposition length
v1 + ... + vu. Thus, the decomposable code is permutably equivalent to the code
with the block-diagonal generator matrix. Otherwise, the code is called inde-
composable. Any maximum distance separable code (MDS) is an example of an
indecomposable code [22].

An algorithm for the code decomposition (see Algorithm 1) was constructed
in [13]. Recall that c(∈ C) is minimal if there is no vector c′ linearly independent
with c such that supp(c′) ⊆ supp(c) [23]. In [24] it is shown that for [n, k]q-code
C any generator matrix in a systematic form consists of minimal vectors of this
code. The algorithm that brings the matrix to a systematic form is denoted by
Systematic. A set of vectors M = {x1, ...,xs} ⊆ F

n
q is called connected if there is

such order xi1 , ..., xis that for any 2 � k � s

supp(xik) ∩ (∪k−1
j=1 supp(xij )

) �= ∅.

All minimal vectors of the code C denote by M(C), the set of maximal con-
nectivity components of C denote by Z(C) and any basis of minimal vectors is
denoted by BM (C).
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Lemma 2. Let C be a decomposable code of view (11) where C̃j is indecompos-
able subcode for all i = 1, ..., u. Then

1) M(C) = ∪u
i=1M(C̃i);

2) Z(C) = {M(C̃1), ...,M(C̃u)};
3) BM (C) = ∪u

i=1BM (C̃i).

Proof. The first two statements follow directly from the conditions of the lemma
and the definitions. The third statement follows from the first two.

Theorem 1. Let C be a decomposable code with the complete decomposition
length u. Then the algorithm Decomposition by an arbitrary generator matrix
finds bases of indecomposable subcodes C̃1, ..., C̃u whose supports do not intersect
in pairs. The found bases consist of minimal code vectors and the complexity of
the algorithm is O(n3 + k2n).

Proof. At the first step of the algorithm Decomposition (see Algorithm 1), a basis
BM (C) is constructed from the minimal code vectors. The complexity of this step
is O(n3). On the next steps the connected sets Bi, i = 1, ..., u are constructed
from the found minimal basic code vectors. The supports of the sets Bi do not
intersect and the basis BM (C) constructed at the first step consists of minimal
code vectors. Then it follows from item 3 of the lemma 2 that Bi = BM (C̃i), and
consists of minimal code vectors. The complexity of constructing the sets Bi is
O(k2n).

Algorithm 1. Decomposition

Input: GC is generator matrix of [n, k]q-code C
Output: B1, ..., Bu are bases of codes C̃i(⊆ C), consisted of minimal vectors, such that
C = C̃1 + ...+ C̃u, supp(C̃i)∩supp(C̃j) = ∅ for i �= j

{g′
1, ...,g

′
k} = Systematic(GC), V = k, i = 1

while V �= ∅ do
For any j ∈ V : Vi = {j}, Wi = supp(g′

j), changed = true
while changed = true do

changed = false
for all l ∈ V \ {j} do

if supp(g′
l) ∩ Wi �= ∅ then

changed = true, Vi = Vi ∪ {l}, Wi = Wi ∪ supp(g′
l)

end if
end for

end while
Bi = {g′

j : j ∈ Vi}, V = V \ Vi, i = i + 1
end while

Return B1, ..., Bu

The Decomposition algorithm is used in [13] for cryptanalysis the McEliece-
type cryptosystem based on a direct sum of codes. The algorithm Decomposition
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can be modified to the algorithm DiagonalDecomposition with the same complex-
ity. The last algorithm for the code C with complete decomposition (10) uses the
generator matrix GC in the systematic form and constructs such permutations
σl(∈ Sk), σr(∈ Sn) that the matrix Pσl

GCPσr
has a block-diagonal form:

Pσl
GCPσr

= diag(B1, ..., Bu),

where Bi is the generator matrix of a code that is permutably equivalent to the
code Cρ(i) for some ρ ∈ Su.

In [25] it was proved that for any code D from the family E(C,C), considered
in the Sect. 2.2, the embedding D2 ⊆ C2 ⊕ C2 holds. The following lemma is a
natural generalization of this result.

Lemma 3. For any D ∈ E(C1, ..., Cu) the relation holds:

D2 ⊆ C2
1 ⊕ ... ⊕ C2

u. (12)

Further the rank of the matrix A will be denoted by r(A). If the generator
matrices GD, GC1 , ..., GCu

are known then the checking whether the code D2

is decomposable into direct sum of codes C2
1 , ..., C2

u, i.e. whether equality holds
in (12), can be performed using the sequential exclusion algorithm. To do this
it is sufficient to calculate r(G2

D) and compare it with the sum of r(G2
C1

), ...,
r(G2

Cu
).

4 Splitting Algorithm for the Merged Codes

Let us consider the family E(C1, ..., Cu) generated by [ni, k]q-codes Ci, i ∈ u (see
(6)). For a code D(∈ E(C1, ..., Cu)) and n =

∑u
i=1 ni let us define such group of

all permutations Γ (D) that

σ(D) ∈ E(C1, ..., Cu)

for σ from Γ (D).

Lemma 4. If C1,...,Cu are indecomposable and D(∈ E(C1, ..., Cu)) is such that
D2 = C2

1 ⊕ ... ⊕ C2
u, then

PAut(C1 ⊕ ... ⊕ Cu) ⊆ Γ (D) ⊆ PAut(C2
1 ⊕ ... ⊕ C2

u).

Proof. Left inclusion follows from the structure of PAut(C1 ⊕ ... ⊕ Cu) for inde-
composable codes (see the paper by D. Slepian [21], Theorem 2).

Let σ ∈ Γ (D), then there are nonsingular (k × k)-matrices M1 ,..., Mu that

([GC1 |...|GCu
]Pσ)2 = ([M1GC1 |...|MuGCu

])2

= ([M1|...|Mu]diag(GC1 , ..., GCu
))2

for fixed generator matrices GC1 ,...,GCu
. So

L(([M1|...|Mu]diag(GC1 , ..., GCu
))2) ⊆ C2

1 ⊕ ... ⊕ C2
u.
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From (3) we obtain

([GC1 |...|GCu
]Pσ)2 = ([GC1 |...|GCu

])2Pσ.

The condition of the theorem imply that

rank(([GC1 |...|GCu
])2) =

u∑
i=1

dim(C2
i ).

As a permutation of the columns does not change the rank of a matrix, then

L(([M1|...|Mu]diag(GC1 , ..., GCu
))2) = C2

1 ⊕ ... ⊕ C2
u.

It means that σ ∈ PAut(C2
1 ⊕ ... ⊕ C2

u). So right inclusion is proved.

Let K be a code permutably equivalent to some [n, k, d]q-code from the family
E(C1, ..., Cu), GK is any generator matrix of K. Consider the problem of finding
the permutation π(∈ Sn) such that GKPπ = [W1|...|Wu] and L(Wi) ∼ Ci for
i ∈ u.

Theorem 2. Let Ci be a linear [ni, k]q code, i ∈ u, n =
∑u

i=1 ni, and K be
a [n, k]q-code permutably equivalent to some unknown [n, k]q-code D from the
family E(C1, ..., Cu) for which

Γ (D) = PAut(C2
1 ⊕ ... ⊕ C2

u), (13)

D2 = C2
1 ⊕ ... ⊕ C2

u. (14)

Suppose that one of two conditions is satisfied:

1) C2
1 = ... = C2

u = C, and there are not subcodes with the same dimension and
length in the complete decomposition of C,

2) for i �= j in the complete decomposition of the codes C2
i and C2

j there are no
codes that coincide in dimension and effective length.

Then there exists a polynomial algorithm CodeSplitting, which by an arbitrary
generator matrix GK of the code K finds such a permutation π(∈ Sn) that

GKPπ = [W1|...|Wu],L(Wi) ∼ Ci, i ∈ u. (15)

Proof. Let Ĉi,1 ⊕ ... ⊕ Ĉi,Ri
be a complete decomposition of the code C2

i , i ∈ u,
i.e.

Ĉi,1 ⊕ ... ⊕ Ĉi,Ri
∼ C2

i .

From (14) it follows that the length of complete decomposition of D2 is equal to

v =
u∑

i=1

Ri. (16)

Note that if we apply the algorithm DiagonalDecomposition to the generator
matrix GD2 in the systematic form then we obtain the permutations φl(∈ Sk̂),
φr(∈ Sn), such that

Pφl
GD2Pφr

= diag(..., Ai,1, ..., Ai,Ri
, ...), (17)
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where k̂ = dim(D2) and L(Ai,l) ∼ Ĉi,s, i ∈ u, l, s ∈ {1, ..., Ri}. By condition
of the theorem, the codes C1, ..., Cu are known, and the code D is unknown.
However, the equality (14) holds for it. Therefore in (17) the matrix GD2 can
be selected in the form diag(GC2

1
, ..., GC2

u
), where GC2

i
is the generator matrix

of C2
i in the systematic form, i ∈ u.

By the condition of the theorem the codes K and K2 are known, and codes
D and K are permutably equivalent. Therefore, by the lemma 1 the codes
D2 and K2 are also permutably equivalent. Let GK2 be an arbitrary genera-
tor matrix of the code K2 in the systematic form. We can use the algorithm
DiagonalDecomposition for this matrix to find a permutations σl(∈ Sk̂) and
σr(∈ Sn) such that

Pσl
GK2Pσr

= diag(B1, ..., Bv). (18)

Suppose that there is an effective algorithm ArrangeBlocks, which sequentially
for each i ∈ u selects Ri blocks Bj1 , ..., BjRi

in the matrix (18) so that

C2
i ∼ L(diag(Ai,1, ..., Ai,Ri

)) ∼ L(diag(Bj1 , ..., BjRi
)) = D̂i.

A method for constructing ArrangeBlocks will be described below under condition
1) or 2) from the theorem. In the theorem it is supposed that K = π′(D) and
π′ is unknown. Thus, using ArrangeBlocks one can find permutations δl(∈ Sk̂),
δr(∈ Sn) such that

PδlPσl
GK2Pσr

Pδr = PδlPσl
G′

D2Pπ′Pσr
Pδr = diag(B′

1, ..., B
′
u), (19)

where G′
D2 is some generator matrix of the code D2 in the systematic form,

B′
i = GD̂i

is the generator matrix of the code D̂i, permutably equivalent to
the code C2

i , i ∈ u. The permutation matrix Pπ′Pσr
Pδr can be represented as

product Pαdiag(Pβ1 , ..., Pβu
), where α ∈ PAut(C2

1 ⊕ ... ⊕ C2
u), βi ∈ Sni

, i ∈ u.
Since (13), then α ∈ Γ (D). Therefore, for some (unknown) generator matrix G′

D

of code D the matrix GKPσr
Pδr can be represented in the form

GKPσr
Pδr = G′

DPπ′Pσr
Pδr = G′

DPαdiag(Pβ1 , ..., Pβu
). (20)

As α ∈ Γ (D) then there is a code D′ in E(C1, ..., Cu) that

GKPσr
Pδr = GD′diag(Pβ1 , ..., Pβu

) = [W1|...|Wu],

where L(Wi) ∼ Ci, i ∈ u. So, we have

π = δr ◦ σr. (21)

Now we show how under conditions 1) or 2) the algorithm ArrangeBlocks for
finding permutations δr, δl can be constructed.

Let condition 1) be hold. Then (16) will take the form v = uR, where R is
the length of complete decomposition of C. If C is an indecomposable code, then
R = 1, v = u. In this case in the block-diagonal representations (17) and (18)
there will be u blocks, all the same size (due to the permutative equivalence of
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the codes D2 and K2, as well as the uniqueness of the complete decomposition
of these codes up to a permutation of the code summands). Therefore, in the
algorithm ArrangeBlocks we can set δl and δr equal to the identity permutations.
If C is a decomposable code, but in the complete decomposition there are no
codes that match both the dimension and the effective length, then the set of
all v blocks of the matrix (17) splits into R different classes. Each class contains
u blocks of the same dimension and the same effective length. The same can be
said about the blocks of the matrix (18). The bijective correspondence in the
algorithm ArrangeBlocks between R classes for the matrix (17) and R classes
for the matrix (18) is established naturally considering the size of the matrices.
In the algorithm ArrangeBlocks within each class, a bijective correspondence
between u blocks of (17) and u blocks of (18) is set arbitrarily. The choice of
such a correspondence will only affect the final permutation π, which is not
unique.

If condition 2) is fulfilled, then in the complete decomposition of φr(D2)
and σr(K2) there are no subcodes that coincide in both dimension and effective
length and in the same time corresponding to different codes C2

i and C2
j . There-

fore, in the algorithm ArrangeBlocks the correspondence between the blocks in
(17) and (18) is also established naturally taking into account the size of the
matrices.

The algorithm CodeSplitting (see the Algorithm 2) implements the described
above method for finding π. The input of this algorithm is the matrices GK ,
GC1 , ..., GCu

, and the output is the permutation π. The complexity of finding
(σl, σr) does not exceed the complexity of DiagonalDecomposition applied to the
matrix GK2 . Since this matrix has at most k(k + 1)/2 rows and n columns,
the complexity of the algorithm DiagonalDecomposition is O(n3 + k2n)). Under
conditions 1) and 2) of the theorem, the permutations (δl, δr) can be found in
polynomial time: the complexity does not exceed O(2kn).

Algorithm 2. CodeSplitting
Input: GK

Output: π

G′ = Systematic(G2
K)

(σl, σr) = DiagonalDecomposition(G′)
(δl, δr) = ArrangeBlocks(PσlG

′Pσr )

Return π = δr ◦ σr

5 Structural Cryptanalysis of Sidel’nikov-Type Systems

5.1 Sidel’nikov-Type Cryptosystems

The code cryptosystem proposed by R. McEliece in [2] is based on the generator
matrix GC of [n, k, d]q-code C, randomly selected nonsingular (k × k)-matrix
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S and permutation (n × n)-matrix P [2]. The secret key is the triple (S, P,C),
and the public one is the pair (G̃, t), where the matrix G̃ has the form (1),
t = �(d − 1)/2�. The encryption rule for the vector m(∈ F

k
q ) has the form:

c = mG̃ + e, wt(e) � t, (22)

where e is randomly selected error vector. The rule m = S−1DecC(cP−1) is
applied for decryption. A McEliece-type cryptosystem on the code C will be
denoted by McE(C).

It was noted above that for a few linear codes a McEliece-type system is not
resistant to attacks on a key (see [7]–[8]). For McE(C) let us denote by AttackC

an known algorithm of structural attack that finds the suitable secret key by the
public key of McE(C). If the code C is known for adversary then the algorithm
AttackC can be based on the support splitting algorithm [8]. Note that the best
known algorithm AttackC may be non polynomial. Known polynomial attack
algorithms include Sidel’nikov–Shestakov algorithm [3] and Wieschebrink [5]
algorithm for generalized Reed–Solomon codes GRSk,n, the Minder–Shokrollahi
algorithm [6] and the Borodin–Chizhov algorithm [7] for Reed–Muller binary
codes RM(r,m).

In order to increase strength, some modifications of this system are proposed.
In [9] V. M. Sidel’nikov proposed a system based on the merging of generator
matrices of single code. Let GC be the generator matrix of the [n, k, d]q-code C,
u(∈ N) be the system parameter. The public key G̃ matrix is

G̃ = [G1|...|Gu]P, Gi = MiGC i ∈ u, (23)

where Mi are randomly selected nonsingular (k × k)-matrices, P is a randomly
selected permutation (un × un)-matrix. The encryption rule has the form (22),
where t = tlim is allowable number of errors that the decoder can correct for code
from the family E(C1, ..., Cu), with Ci = C, i ∈ u. For decryption it is enough to
decode the vector cP−1. For decoding one may use the decoder DecE(C1,...,Cu),tlim

for C1 = ... = Cu = C (see the Sect. 2.2). This cryptosystem further is denoted
by Sidu(C).

The apparent generalization of the Sidel’nikov-type system is a cryptosystem
based on merging u(∈ N) generator matrices of u different codes [11,12]. Let Ci

be [ni, k, di]q-code with the generator matrix GCi
, i ∈ u, n =

∑u
i=1 ni. Then the

public key matrix G̃ has the form (23), where Gi = MiGCi
, i ∈ u. Encryption and

decryption is performed similarly to the corresponding operations in Sidu(C).
We will denote such a cryptosystem by SidMod(C1, ..., Cu). Note that code L(G̃)
is permutably equivalent to some code from E(C1, ..., Cu).

5.2 Structural Attacks

One way to obtain information about the secret key of SidMod(C1, ..., Cu) by
the corresponding public key G̃ of the form (23) is to obtain the matrix G̃2

(using Schur product) and further attempt to decompose the code K = L(G̃2)
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into the direct sum of subcodes. Indeed the Schur product was used earlier in
the cryptanalysis of the Sidel’nikov-type system Sidu(C) for u = 2, namely the
structure of the set of equivalent keys for Sid2(C) was studied in [17,25] for
the binary Reed–Muller code and in [25] for the Reed–Solomon code. In [10] for
binary Reed–Muller code C an algorithm for finding a suitable secret key by the
public key of the system Sid2(C) was constructed.

As Sidu(C) = SidMod(C1, ..., Cu) for C1 = ... = Cu = C therefore further
we will consider the cryptosystem SidMod(C1, ..., Cu) and use CodeSplitting to
reduce the cryptanalysis of this system to the cryptanalysis of McE(Ci) for i ∈ u.

Theorem 3. Let (G̃, tlim) be the public key of the system SidMod(C1, ..., Cu)
and conditions of the Theorem 2 for K = L(G̃) and codes C1,...,Cu be sat-
isfied. Then the computational complexity of structural attack on the system
SidMod(C1, ..., Cu) does not exceed

O(n3 + k2n + 2kn +
u∑

i=1

Q(Ci)), (24)

where Q(Ci) is the complexity of the AttackCi
.

Proof. Since the conditions of Theorem 2 are satisfied, the algorithm
CodeSplitting can be applied to the code K to find a permutation π such that
(15) is fulfilled. Therefore the matrix G̃Pπ can be represented as concatenation
of public keys for the systems McE(Ci):

G̃Pπ = [W1|...|Wu].

For i ∈ u one can apply attacks AttackCi
to the corresponding matrix Wi for

finding suitable secret key. To decrypt the vector c obtained by the rule (22)
for t = tlim, it suffices to decode the vector π−1(c) using suitable keys in the
decoding algorithm like DecE(C1,...,Cu),tlim .

So, the complexity of the structural attack does not exceed (24).

Remark 1. Let the conditions of Theorem 3 be satisfied. Then the cryptanal-
ysis of the system SidMod(C1, ..., Cu) is reduced to the cryptanalysis of the
systems McE(Ci), i ∈ u. Moreover if for some McE(Ci) there are polynomial
algorithms AttackCi

, then there is a polynomial algorithm to decipher messages
in some cases. Suppose, for example, such an algorithm is known only for the
cryptosystem McE(C1). Then the adversary, having the permutation π of the
view (21), can correctly decipher the message if the first n1 coordinates of the
vector π(e) have no more than �(d1 − 1)/2� nonzero elements. So, given the
random nature of errors in the rule (22), an adversary can effectively decipher a
fraction of encrypted vectors. Moreover if AttackCi1

,..., AttackCir
are polynomial

algorithms, then the size of such fraction increases and depends on di1 , ..., dir .

Remark 2. Theorem 3 impies that the reducibility of the cryptanalysis of system
SidMod(C1, ..., Cu) to u attacks on public keys of McEliece-type systems on codes
C1, ..., Cu is possible in some cases. Since the fulfillment of equality (14) is one of
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the conditions of theorem, and since it is probabilistic, so, in the present paper we
experimentally study its probability. By pR(C1, ..., Cu) we denote the probability
that the rank of the square of the matrix (7) is equal to R, when matrices M1,...,Mu

are selected uniformly random from GLk(Fq). Since column permutation does not
change rank of matrix, it follows that pR(C1, ..., Cu) is also probability that the
rank of the square of the matrix (23) is equal to R. Note that pR(C1, ..., Cu) for
R =

∑
i∈u dim(C2

i ) is the probability of equality (14) fulfillment for randomly
selected D. In [14] for some cryptosystems of Sidel’nikov-type, the results of an
experimental estimate of pR(C1, ..., Cu) for u = 2 were given.

Even not all conditions of Theorem 3 are fulfilled, in some cases one can find
a key that allows to decipher some (perhaps not all) messages.

For example even (14) does not hold it is possible to decipher some messages
if one can find columns in an arbitrary order of at least one matrix Gi in the
public matrix G̃ of the form (23). For this one can use Schur product for the
public key G̃, try to decompose the code L(G̃)2 into direct sum of codes and
find comlumns of unknown matrix using connectivity components.

Without loss of generality, suppose that an adversary knows the column
indices of the matrix G1 = M1GC1 in the matrix (23) (the order of the columns
does not matter). We denote the set of these indices by τ , |τ | = n1, and by Aτ

we denote as usual the matrix composed of the columns of the matrix A with
the indices from τ . Let c be the ciphertext of the system SidMod(C1, ..., Cu)
obtained by the (22) rule. It follows from this rule that

cτ = mG̃τ + eτ .

Then the adversary can apply the well-known key attack algorithm for McE(C1)
to the matrix G̃τ and find a suitable key for it. This key can be used further to
decipher cτ into m′(∈ F

k
q ). In the case

wt(eτ ) � �(d1 − 1)/2� (25)

the original clear text and decrypted vectors are the same: m′ = m. An adversary
can establish the correct decipherment by checking the inequality

wt(m′G̃ − c) � t.

If (25) does not hold, then the equality m′ = m is not guaranteed. Thus, given
the random nature of e, it is possible to decipher not all ciphertexts, but only
those for which (25) is fulfilled. Obviously, the number of successful decipher-
ments will be the greater, the more an adversary can find the corresponding
columns of different Gi in (23).

In many cases the equality (14) holds (see the next section with experimental
results) but it is not known whether the equality (13) holds. Thus, in general
case we cannot directly apply found permutation π of the view (21) to transform
the public key G̃ of Sidel’nikov-type system to concatenation of the public keys
of McEliece-type systems. But if we additionaly know that for some code C2

i
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it is unlikely that such a code C ′(dim(C ′) = k) exists that (C ′)2 = C2
i and

C ′ �∼ Ci. Then we can try to find the columns in G̃ that form public key Wi

for McE(Ci). As a result, one can apply algorithm AttackCi
to Wi and perform

partial decipherment with suitable secret key. For this case the corresponding
example will be considered in the next subsection.

5.3 Examples and Experimental Results

Sidu (GRSk,n )-System. Recall that the GRS code GRSk,n = GRSk,n(x,y)
is given by the vector x = (x1, ..., xn), where x1, ..., xn are pairwise distinct
elements of the field Fq, n � q + 1, and the vector y = (y1, ..., yn) of nonzero
elements of the field Fq. The generator matrix GC for C = GRSk,n(x,y) has the
form:

GC =

⎛
⎜⎜⎜⎝

x0
1y1 ... x0

nyn

x1
1y1 ... x1

nyn

...
. . .

...
xk−1
1 y1 ... xk−1

n yn

⎞
⎟⎟⎟⎠ . (26)

Equation (26) implies that GRS2
k,n(x,y) = GRSmin{2k−1,n},n(x,y � y). For the

experiment, the parameters q = n ∈ {257, 523}, k ∈ {1, ..., �n/2�}, u ∈ {2, ..., 8}
are chosen. For each triple (n, k, u) 100000 experiments were carried out. In each
experiment the square of a matrix (7) is constructed and rank of the result-
ing matrix is calculated (C1 = ... = Cu = GRSk,n). Note that for the chosen
parameters k and n the equality min{2k − 1, n} = 2k − 1 holds. Therefore, we
have

dim(C2
1 ⊕ ... ⊕ C2

u) =
∑
i∈u

r(G2
Ci

) = u(2k − 1). (27)

Using (4) and (27), we obtain that pR(C1, ..., Cu) = 0 for all k such that

k2 + k

4k − 2
< u. (28)

The experiments showed that for all considered triples (n, k, u) and for all k for
which the inequality (28) holds, except for the triple (257, 6, 2), the rank of the
square of the matrix (7) is equal to k(k + 1)/2 in all experiments. In the case
of (n, k, u) = (257, 6, 2), the rank of such a matrix is k(k + 1)/2 − 1 = 20 in
three experiments and in other cases it is equal to k(k + 1)/2 = 21. Let (28) not
hold, then the rank of the square of matrix (7) is u(2k−1). Consider the triplets
(n, k, u), let (28) not hold for k, then using (27), we see that the probability is
pR(C1, ..., Cu) is close to one for R = u(2k − 1). In other words, for the most
considered codes D from E(C1, ..., Cu), we have D2 = C2

1 ⊕ ... ⊕ C2
u. Let (28) be

violated. Since MDS codes are indecomposable, using the obtained experimental
results and Theorem 2 we see that for the considered parameters n, k and u, a
structural attack on a Sidel’nikov-type cryptosystem based on GRS codes can
be reduced in polynomial time to u attacks on the cryptosystem McE(GRSk,n)
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in the case Γ (D) = PAut(C2
1 ⊕ ...⊕C2

u). Note that for the system McE(GRSk,n)
there are effective structural attacks for all n (see [3–5]). Thus, a Sidel’nikov-
type cryptosystem based on GRS codes with the considered parameters can be
effectively broken. It seems that the probability pu(2k−1)(C1, ..., Cu) is close to
one for the other (not considered) triples (n, k, u) such that (28) does not hold.
The theoretical justification of this assumption is of interest.

Sidu (RM(r,m))-System. Let us consider the case C1 = ... = Cu = RM(r,m).
Recall that the generator matrix of the code RM(r,m) consists of r + 1 subma-
trices and generally has the form

GRM(r,m) =
(
G�

0 |G�
1 | · · · |G�

r

)�
,

here G0 is the (1 × 2m)-matrix of units, G1 is (m × 2m)-matrix such that a
column with the number i (starting from zero) represents the binary notation of
the number i; and Gi block for 1 < i � m consists of all possible Schur products
of i rows from the matrix G1. Since the matrix G1 contains only m rows it follows
that the matrix Gi for 1 < i � m contains only m!

i!(m−i)! rows.

Lemma 5. Let r = 0, ...,m − 1; then RM(r,m) is an indecomposable code.

Proof. Note that the code RM(0,m) is a repetition code generated by a single
unit vector. The indecomposability of this code is obvious. Since RM(m − 1,m)
is dual code of RM(0,m) it follows that RM(m − 1,m) is indecomposable. The
indecomposability of the codes RM(1,m) and RM(m − 2,m) was shown, e.g.
in [13] (p. 94, Example 2). Let us show that the code RM(m− 3,m) is indecom-
posable. In [7] it was proved that

RM(r1,m) � RM(r2,m) = RM(min{r1 + r2,m},m). (29)

Hence RM(m−2,m) = RM(m−3,m)�RM(1,m). Since the codes RM(m−2,m)
and RM(1,m) are indecomposable, it follows that the code RM(m − 3,m) is
also indecomposable. Similarly, the indecomposability of the code RM(m− i,m)
implies the indecomposability of the code RM(m − i − 1,m) for i = 1, ...,m − 3.

It is known (see [26], Chap. 13, §9) that

PAut(RM(1,m)) = ... = PAut(RM(m − 2,m)).

So, using lemma 5, equality (29) and result of D. Slepian about decomposition
of linear codes (see [21], Theorem 2), we obtain

PAut(C1 ⊕ ... ⊕ Cu) = PAut(C2
1 ⊕ ... ⊕ C2

u) (30)

for C1 = ... = Cu = RM(r,m) and r = 1, ..., �(m − 2)/2�.
Lemma 6. Let C1 = ... = Cu = RM(1,m). Then D2 �= C2

1 ⊕ ... ⊕ C2
u for any D

from E(C1, ..., Cu).
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Proof. It suffices to coinsider the case u = 2. Let GD = [G1|G2] be any generator
matrix of D, L(G1) = L(G2) = RM(1,m). The definition of RM(1,m) implies
that the matrices G1 and G2 have at least one pair of the same columns. So
we conclude that the systematic form of G2

D contains a connectivity component
of the length al least 2m + 1 (note that the code RM(1,m) is indecomposable).
Then D2 �= C2

1 ⊕ C2
2 .

So, by Lemmas 4–6 and (30) we obtain the following theorem.

Theorem 4. Let C1 = ... = Cu = RM(r,m) and r = 2, ..., �(m − 2)/2�. If (14)
is hold for D from E(C1, ..., Cu), then (13) is hold, i.e.

Γ (D) = PAut(C2
1 ⊕ ... ⊕ C2

u).

Thus, all conditions of Theorem 2 are satisfied in the case (14) and one can
use the algorithm CodeSplitting to find permutation π by the code K = π′(D).

To get estimation of pR(C1, ..., Cu) the codes RM(r,m) are considered for r ∈
{2, 3}, m ∈ {5, 6, 7, 8}, u ∈ {2, ..., 18}. By Rmax(r,m) we denote the maximum
possible rank of a square of matrix of the form (23) in the case Ci = RM(r,m).
Let also R(r,m, u) = u · dim(RM(2r,m)) be the dimension of the direct sum of
u squares of the code RM(r,m). For each triple (r,m, u), 100000 experiments
were carried, in each case the probability pR(C1, ..., Cu) was estimated. The
experimental results are shown in the Table 1. Since the codes C1, ..., Cu are the
same and their squares are indecomposable then Theorem 4 implies that if (14)
holds, then all conditions of Theorem 3 are fulfilled. Note that for a McEliece-
type cryptosystem on the Reed–Muller binary codes, effective attacks are known
(see [6,7]). Therefore, for the parameters considered above, a Sidel’nikov-type
cryptosystem on these codes can also be broken with high probability, but in [9]
it was supposed that these cryptosystems are highly resistant for u � 4. We also
note that as m increases, the probability of (14) tends to 1.

SidMod-System on Some Binary Reed–Muller and Goppa Codes. Let’s
consider SidMod(RM(4, 10),Goppa386,512)-system based on the [1024, 386]2-code
RM(4, 10) and the binary [512, 386]229 -Goppa code Goppa386,512 with a design
distance of 29 [26] (a “toy example” from [12]). Let D be the [1535, 386]2-code
permutably equivalent to the code with the generator public key matrix G̃. In
our work, computational experiments were carried out, showed that, with the
probability close to 1, the equality in (12) holds. Note that [1024, 1013]2-code
RM(4, 10)2 = RM(8, 10) is indecomposable and the length of [512, 386]229 -code
Goppa386,512 is less than the length of RM(4, 10). Therefore, in the complete
decomposition of D2, a code that is permutably equivalent to RM(4, 10)2 can
be found easily. Note it is unknown whether the equality

Γ (D) = PAut(RM(8, 10) ⊕ (Goppa386,512)
2)

holds in this case (see (13)). Nevertheless, for randomly generated π′ ∈ S1536

after applying DiagonalDecomposition we get only one block with dimen-
sion dim(RM(8, 10)) and length 1024 in complete decomposition of the code
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Table 1. The results of estimating pR(C1, ..., Cu), Ci = RM(r, m), i ∈ u.

(π′(D))2. In our 10000 experiments we found that in systematic generator
matrix of (π′(D))2 the connectivity component with length 1024 and dimension
dim(RM(8, 10)) always corresponds to the 1024 columns of G̃ which generate
the code V and V ∼ RM(4, 10). So, we conclude that, with high probability,
using the algorithm CodeSplitting one can find such permutation π that

G̃Pπ = [W1|W2],

where L(W1) ∼ McE(RM(4, 8)). To find the secret permutation for
McE(RM(4, 8)) by W1, one can use algorithms from [6] or [7]. Currently there
is no efficient algorithm AttackGoppa for Goppa’s code. So, using the obtained
partial secret key, it is possible to efficiently decipher some ciphertexts (see the
Remark 1).
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6 Conclusion

In [13] it is shown that the analysis of McEliece-type system on the direct sum of
codes can be reduced to the analysis of McEliece-type systems on the summands.
In this paper, we have shown that the analysis of Sidel’nikov-type systems can
also be reduced to the analysis of McEliece-type systems in some cases. This
reduction is based on the use of the Schur product, popular in the field of crypt-
analysis (see [5,7,13,14], [17]-[19], [25,27]). For some fixed parameters of the
generalized Reed–Solomon codes, Reed–Muller codes, and Goppa codes it was
experimentally shown that with high probability, cryptanalysis of Sidel’nikov-
type systems can be reduced to cryptanalysis of McEliece-type systems based on
Reed–Solomon codes and Reed–Muller codes. Note that for these codes effective
cryptanalytic algorithms are known (see [3]-[6]). A theoretical estimate of the
probability of fulfilling the equality (14) for randomly selected code D from a
given family E(C1, ..., Cu) seems to be an actual task. We think that our app-
roach can be applied not only for splitting merged codes of the same dimension
but also for splitting codes of different dimensions. In particular, this approach
can help to clarify the resistance of a cryptosystem from [28] based on the
modification of (u, u + v)-construction.

We believe that the cryptosystem SidMod(C1, ..., Cu) can be modified by
replacing the permutation matrix P in the key (23) with a matrix of a different
structure. Such approach is applied in [29] for a McEliece-type cryptosystem.
This can complicate the use of attacks based on the Schur product.

The authors sincerely thank G.A. Kabatiansky for discussing the results and
useful recommendations for results presentation.
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Abstract. Unlike most papers devoted to improvements of code-based
cryptosystem, where original Goppa codes are substituted by some
other codes, we suggest a new method of strengthening which is code-
independent. We show (up to some limit) that the security of the new
code-based cryptosystem is much closer to the hardness of maximum
likelihood decoding than in the original McEliece cryptosystem.
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1 Introduction

In 1976 W. Diffie and M. Hellman proposed the concept of public-key cryp-
tography concept [1]. To construct this public-key cryptosystem one needs to
construct a one-way trap-door function. To achieve this, a hard computational
problem should be selected, which nevertheless has simple solutions in some
special cases. It is supposed that an eavesdropper who desires to “break” the
system, i.e. compute the correspondent plaintext from a given ciphertext, has to
solve this hard problem, while a legitimate user, using the corresponding private
key, obtains the simple special instance of the hard problem and solves it for
decryption.

However, to break the system one may not search for a solution to the
hard problem being used, but tries to recover hidden secrets or to construct
an equivalent system that produces the same encryption-decryption instead. If
the construction of an equivalent system is computationally feasible, this leads
to breaking the system without solving the initial hard problem. Such an attack
on Merkle-Hellman cryptosystem [2] was given by A. Shamir [3], and in code-
based cryptography the most famous analogous example of attack was given in
[4] to break McEliece cryptosystem [5] based on modified Reed-Solomon codes
proposed in [6].

McEliece cryptosystem is the oldest and most popular code-based cryptosys-
tem. It was proposed in 1978 and it uses irreducible Goppa codes [7]. It relies
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M. Baldi et al. (Eds.): CBCrypto 2020, LNCS 12087, pp. 41–49, 2020.
https://doi.org/10.1007/978-3-030-54074-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-54074-6_3


42 F. Ivanov et al.

on NP-hardness of maximum likelihood decoding (MLD for short) for general
linear codes, i.e., the hardness of finding the nearest codeword regarding the
Hamming distance for a given received vector [24]. Since there are some classes
of codes such as Reed-Solomon (RS), Bose–Chaudhuri–Hocquenghem (BCH),
Goppa, Low-Density Parity-Check (LDPC) codes that have polynomial-time
decoding algorithms, they can be used in the construction of the corresponding
trap-door function. The main idea underlying in the McEliece cryptosystem is
to hide a given structured code with a simple decoding algorithm (secret key),
hence presenting it as a random code (open key) for which a simple decoder is
unknown. The main point of our improvement is the following. The security of
the McEliece cryptosystem is not based on the NP-hardness of the MLD prob-
lem, since in the frame of the McEliece cryptosystem only errors of weight up to
d/2 must be corrected, where d is the minimal code distance of the underlying
code. Such algorithms are called half minimal distance decoding, or HMD decod-
ing. Note that it is unknown if HMD decoding is NP-hard (or not). The best
known estimates for the complexity of HMD decoding can be found in [9,10].
We hence propose a new cryptosystem, that relies more on the hardness of the
MLD problem than the original McEliece cryptosystem. For the best estimates
of the complexity of ML (i.e., minimum distance) decoding see [11].

There is no known effective quantum algorithm to break the McEliece cryp-
tosystem but nevertheless it gains no wide practical usage mainly because of the
very large size of its public key. For example, in the original paper by McEliece
[5] the public key has size of order 250 Kbits.

There were many attempts to attack or to improve the original McEliece
cryptosystem, see [12]. The main idea for improvements is to substitute the
original Goppa code that is used in McEliece cryptosystem with some other code
with a specific structure that allows to reduce the key size. For instance in [13]
Goppa codes were substituted by subfield subcodes of quasi-cyclic generalized
Reed-Solomon codes. Similar instances based on QC-LDPC codes and LDGM
codes (Low-Density Generator Matrices) were proposed in [15–21].

Also it should be mentioned that there are some frameworks for code-based
cryptography, where authors do not only exchange the secret code within the
McEliece cryptosystem. For instance, see [22–25].

The new code-based cryptosystem proposed in this paper forces the eaves-
dropper to correct seemingly random errors and gives another way to shrink
public key sizes due to shorter codes.

The structure of the paper is the following: we start from the standard
McEliece cryptosystem, then we describe a “prototype” cryptosystem which has
nice mathematical structure but unfortunately provides gain compared with the
original McEliece, and finally we propose a new scheme with better parameters.
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2 McEliece Cryptosystem

2.1 Design

In the following we recall how the McEliece cryptosystem works. There are two
users Alice and Bob, where Bob wants to send a k bit message m to Alice.
Alice takes a k × n generator matrix G of some linear (n, k)-code C with the
minimal code distance d(C) ≥ 2t + 1, which has an efficient decoding algorithm
Φ, correcting t errors. The matrix G is a secret, known only to Alice, and the
code C is called the secret code.

Alice constructs a public matrix Gpub = SGP , where a k × k nonsingular
matrix S and a n × n permutation matrix P are chosen randomly from the
corresponding ensembles and they are also keeping as secrets.

Bob sends to Alice the following ciphertext y

y = mGpub + e, (1)

where e is a vector of weight t which is randomly generated by Bob. Alice reveals
the message m by the following chain of simple calculations:

y′ := yP−1 = mGpubP
−1 + eP−1 = m′G + e′, (2)

where m′ = mS, e′ = eP−1 and wt(e′) = wt(e) = t, since P is a permutation
matrix. Then Alice applies the decoding algorithm Ψ to the vector y′ = m′G+e′

and receives Ψ(y′) = m′ and finally finds m := m′S−1.
Any other user will deal either with the problem of correcting t errors of a

random looking linear code Cpub with generator matrix Gpub or with the problem
of reconstructing the code structure from its public-key matrix, these attacks are
called structural attacks. In the original paper [5] irreducible Goppa codes [7] were
chosen as the family of codes for the scheme. In particular, it was suggested to
use Goppa code of length n = 1024 dimension k = 524 and minimum distance
d = 101, hence t = 50.

Later H. Niederreiter proposed a cryptosystem [6], which is based on solving
a syndrom equation and in some sense is dual to the McEliece scheme. These
two schemes have equivalent security [26] and we restrict our consideration to
the McEliece type schemes.

2.2 Decoding Attacks on McEliece Cryptosystem

An attacker (or eavesdropper) Eve tries to find a vector ê such that

y − ê ∈ Cpub. (3)

If ê = e then (3) holds and E finds the message m from mGpub = y − ê.
Note that for ê �= e the Eq. (3) does not hold. Indeed, let y − ê ∈ Cpub. Since

y −e ∈ Cpub we have that e− ê ∈ Cpub. The public code Cpub is equivalent to the
code C, therefore its distance d(Cpub) ≥ 2t + 1, but wt(e−ê) ≤ wt(e)+wt(ê) = 2t
and hence ê = e.
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In the worst case Eve must try
(
n
t

)
(q−1)t vectors ê over Fq, and on average it

takes half of this value, which is nevertheless a huge number for any reasonable
code parameters.

Much more effective is the attack based on Information Set Decoding (ISD).
This attack was already mentioned in the initial security analysis of McEliece [5]
and further developed in numerous papers, see [12] and references there. There
are different interpretations and modifications of the initial ISD algorithm. Sev-
eral different improvements have been proposed, such as ball-collision decoding
[12] and improvements based on generalized birthday approaches. For instance,
in paper [9] the complexity of ISD was reduced to Õ(20.054n) and in [10] the
complexity exponent is Õ(20.0494n) which is the currently the best result.

In the following we recall the basic properties of ISD algorithms. Goal of ISD
algorithms is to recover the message m from a given vector y = mĜ + e, where
Ĝ is a generator matrix of an (n, k) code Ĉ with minimal distance d ≥ 2t + 1
and wt(e) ≤ t.

Let I be a k-subset of the coordinates set [n] := {1, 2, . . . , n} such that I is
an information set of Ĉ and ĜI be the submatrix of Ĝ consisting of columns
indexed by I. In the same way let eI be the vector consisting of coordinates of
the vector e indexed by I. ISD algorithms work in the following way:

1. Randomly choose an information set I.
2. Find a codeword ĉ such that ĉI = yI
3. Check if wt(ĉ − y) = t. If Yes then output the message corresponding to the

codeword ĉ. Else return to Step 1.

Observe that, if one assumes that the support of the error vector is disjoint
from the information set, then the corresponding probability Pk that chosen k
coordinates are error-free is

Pk =

(
n−t
k

)
(
n
k

) =

(
n−k
t

)
(
n
t

) , (4)

and hence the the average number of required iterations is of order

(
n
t

)

(
n−k
t

) , which

is significantly less than the complexity of the brute-force attack.
In the next section we will describe a “prototype” of a new cryptosystem.

3 The “Prototype” Code-Based Cryptosystem

Let C be a linear (n, k)-code with the minimum distance d(C) ≥ 2t + 1, which
has an efficient decoding algorithm Φ, correcting t errors. We also assume that
C belongs to some rather big family of codes (like Goppa codes in the original
McEliece cryptosystem). Alice takes k × n generator matrix G of this code C.
The matrix G as well as the code C are secrets, known only to Alice, and we
call code C is called the secret code.
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Alice constructs two public matrices, namely Gpub = GM , where M is a
randomly chosen n×n non-singular matrix, and Epub = (Cn +P )M , where P is
a randomly chosen n×n permutation matrix and Cn is n×n matrix which rows
are codewords of the code C, i.e. Cn = UG for some random n × k matrix U .
We put some additional restriction on joint choice of matrices P and Cn later,
in order to avoid structural attacks. Matrices P and Cn are kept secret.

Bob sends to Alice the following ciphertext y

y = mGpub + eEpub = (mG + e(Cn + P ))M, (5)

where e is a vector of weight t randomly generated by Bob. Alice reveals the
message m by the following chain of calculations:

y′ := yM−1 = mG + e(Cn + P ) = m′G + e′, (6)

where m′ = m + eU, e′ = eP and wt(e′) = wt(e) = t, since P is a permutation
matrix, then Alice applies the decoding algorithm Ψ to the vector y′ = m′G+e′,
which outputs the error vector e′, hence Alice knows e = e′P−1 and finally finds
m, for instance, from mGpub = y − eEpub, see (5).

3.1 First Attack or Why Matrix Epub Must be Singular

Let us show that if the matrix Epub is non-singular then the new scheme can
be attacked the same way as the original McEliece scheme. Indeed, if Epub =
(Cn + P )M is non-singular then Eve can compute vector ỹ := yE−1

pub. Hence,
according to (5),

ỹ = (mGpub + eEpub)E−1
pub = mG(Cn + P )−1 + e = mG̃ + e, (7)

where G̃ = G(Cn +P )−1 can be considered as a generator matrix of some linear
(n, k)-code C̃. It is easy to see that the Eq, (7) cannot have more than one
solution for a given ỹ. Hence, the code C̃ has distance at least 2t + 1 and ISD
algorithms can be applied. Moreover, we shall show that codes C and C̃ are
permutation equivalent and thus to break our scheme in the case where Epub is
invertible is the same as to break the McEliece cryptosystem.

Remark 1. To prove that codes C and C̃ are equivalent recall that the rows of
the matrix Cn are of the form uG (for some k-tuple u) since they are vectors of
the code C and it would be convenient to represent matrix Cn as UG, where U
is the corresponding n × k matrix.

Let us start from the following obvious equality

G(In + P−1UG) = (Ik + GP−1U)G,

and hence
(Ik + GP−1U)−1G = G(In + P−1UG)−1. (8)



46 F. Ivanov et al.

By the definition G̃ = G(UG + P )−1 and thus

G̃ = G(P (P−1UG+ In))−1 = G(P−1UG+ In)−1P−1 = (Ik +GP−1U)−1GP−1.

Hence, we proved that G̃ = (Ik + GP−1U)−1GP−1, and therefore codes C and
C̃ are permutation equivalent (if matrix (Ik + GP−1U)−1 exists).

3.2 How to Make Matrix Epub Singular

The matrix Epub = (Cn + P )M is singular iff matrix Cn + P is singular since
matrix M is non-singular. Let us show how to construct many singular matrices
of the form Cn + P . Note that w.l.o.g. we can restrict our consideration to the
case Cn + In and then transform the obtained singular matrices to the desired
ones of the form C̆n + P , where C̆n = CnP .

Let us first, for simplicity, consider the binary case. Let c = (c1, . . . , cn) ∈ C
be a codeword of the Hamming weight w and let cj1 , . . . , cjw be its w nonzero
coordinates. Construct rows ci of Cn in the following way: rows not indexed by
J = supp(c) will be taken randomly, and the rest of the rows are chosen in such
a way that ∑

j∈J

cj = c. (9)

Denote by Bn = Cn + In and let bi = ci + δi be the i-th row of the matrix B,
where δi = (δi,1, . . . , δi,n) and δi,j is the Kronecker delta. Then

∑
j∈J bj = 0

and thus the matrix Bn = Cn + In is singular.
In the general case one should replace Eq. (9) on

∑

j∈J

cjcj = −c (10)

and then
∑

j∈J cjbj = 0 and thus the matrix Bn = Cn + In is singular.
Obviously the number of solutions of Eq. (9) equals to qk(w−1), since say

first w − 1 vectors cj can be chosen as arbitrary codevectors, and the last one is
chosen uniquely according to (9). Hence the total number of matrices constructed
according to (9) for a given nonzero codeword c equals to qk(n−1), among total
number qkn n × n matrices, whose rows are vectors of the code C.

3.3 Second Attack Based on Parity-Check Matrix Hpub

Unfortunately, there is another attack which shows that the “prototype” cryp-
tosystem can be successfully attacked at least by ISD algorithms.

Namely, Eve computes a parity-check matrix Hpub for the generator matrix
Gpub, i.e. GpubH

T
pub = HpubG

T
pub = 0. Let H be a parity-check matrix for the

code C, i.e. GHT = 0. Then it is easy to see that HT
pub = M−1HTST , where S
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is some non-singular r × r-matrix and r = n − k. After that Eve multiplies both
parts of Eq. (5), where Cn = UG, from the right side with HT

pub and receives

ỹ := yHT
pub = (mG + e(UG + P ))MM−1HTST = ePHTST = eH̃T . (11)

Hence (11) is a usual syndrome equation for the code C̃ with parity-check
matrix H̃ = SHPT . Since obviously codes C and C̃ are permutation equivalent
and the “prototype” cryptosystem is not more secure that the ordinary McEliece
system but even worse its public keys are at least twice as large.

4 The New Code-Based Cryptosystem

In order to improve the “prototype” system we shall make the structure of the
matrix Epub more complicated. Namely, let Epub = WD(Cn + P )M , where
(Cn + P )M is the same as for the prototype, D is a randomly chosen n × n
diagonal matrix with t non-zero elements on the diagonal, and W is random n×n
non-singular matrix. Alice forms two public matrices: k × n matrix Gpub = GM
and n × n matrix Epub = WD(Cn + P )M .

Bob sends to Alice the following ciphertext y

y = mGpub + eEpub = (mG + eWD(Cn + P ))M, (12)

where e is a vector randomly generated by Bob. Let us stress that the vector e
does not bear any restriction on its weight. Recall that Cn can be represented
as Cn = UG, where U is the appropriate n × k matrix, and Alice reveals the
message m by the following chain of calculations:

y′ := yM−1 = mG + eWD(UG + P ) = m′G + e′P, (13)

where m′ = m + eWDU, e′ = (eW )D. Note that wt(e′) ≤ t, since D is
a diagonal matrix of “weight” t. Then as for the prototype Alice applies the
decoding algorithm Ψ to the vector y′ = m′G+e′′, where e′′ = e′P , which outputs
“error vector” e′′. Hence Alice knows e′ = e′′P−1, thereafter subsequently finds
eWD, then eWDCn and finally finds m, for instance, from mGpub = y − eEpub,
see (12).

It is straightforward to check that both attacks described for the “prototype”
system do not work for the new system. Indeed, matrix Epub has rank t, since
matrix D has rank t, and thus the first attack cannot be applied.

For the second attack Eve multiplies both parts of Eq. (12) from the right
side on HT

pub = M−1H̃T , where H̃ is some parity-check matrix of the code C.
She receives the following equation

yHT
pub = (mG + eWD(UG + P ))MM−1H̃T = eWDPH̃T = (eWDP )H̃T (14)
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which is a usual syndrome equation for a code with parity-check matrix H̃
and hence Eve can find vector eWDP of weight t but she cannot “extract” from
it the vector e since all three multipliers W , D and P are unknown to her.

The new cryptosystem forces Eve to apply brute-force attacks which have
complexity at least

(
n
t

)
trials.

Consider the following example

Example 1. Let C be an irreducible Goppa code of length n = 256 and rate
R = 1/2, i.e. with k = 128 and t = 16. Then the number of trials is

(
16
256

)
> 2100

and the public key length is 128 × 256 + 2562 = 3 × 215.

5 Conclusion

In this paper we considered a new modification of the well-known McEliece
cryptosystem in which we transform an error vector of weight t (or ≤ t) to an
error vector of arbitrary weight.
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Abstract. The QC-MDPC code-based KEM Bit Flipping Key Encap-
sulation (BIKE) is one of the Round-2 candidates of the NIST PQC
standardization project. It has a variant that is proved to be IND-CCA
secure. The proof models the KEM with some black-box (“ideal”) prim-
itives. Specifically, the decapsulation invokes an ideal primitive called
“decoder”, required to deliver its output with a negligible Decoding Fail-
ure Rate (DFR). The concrete instantiation of BIKE substitutes this
ideal primitive with a new decoding algorithm called “Backflip”, that is
shown to have the required negligible DFR. However, it runs in a variable
number of steps and this number depends on the input and on the key.
This paper proposes a decoder that has a negligible DFR and also runs
in a fixed (and small) number of steps. We propose that the instantiation
of BIKE uses this decoder with our recommended parameters. We study
the decoder’s DFR as a function of the scheme’s parameters to obtain a
favorable balance between the communication bandwidth and the num-
ber of steps that the decoder runs. In addition, we build a constant-time
software implementation of the proposed instantiation, and show that
its performance characteristics are quite close to the IND-CPA variant.
Finally, we discuss a subtle gap that needs to be resolved for every IND-
CCA secure KEM (BIKE included) where the decapsulation has nonzero
failure probability: the difference between average DFR and “worst-case”
failure probability per key and ciphertext.

Keywords: BIKE · QC-MDPC codes · IND-CCA · Constant-time
algorithm · Constant-time implementation

1 Introduction

BIKE [3] is a code-based Key Encapsulation Mechanism (KEM) using Quasi-
Cyclic Moderate-Density Parity-Check (QC-MDPC) codes. It is one of the
Round-2 candidates of the NIST PQC Standardization Project [16]. BIKE sub-
mission includes three variants (BIKE-1, BIKE-2, and BIKE-3) with three secu-
rity levels for each one. Hereafter, we focus mainly on BIKE-1, at its Category
1 (as defined by NIST) security level.
c© Springer Nature Switzerland AG 2020
M. Baldi et al. (Eds.): CBCrypto 2020, LNCS 12087, pp. 50–79, 2020.
https://doi.org/10.1007/978-3-030-54074-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_4&domain=pdf
http://orcid.org/0000-0002-7273-4797
http://orcid.org/0000-0002-9145-7609
http://orcid.org/0000-0002-7415-1587
https://doi.org/10.1007/978-3-030-54074-6_4


On Constant-Time QC-MDPC Decoders with Negligible Failure Rate 51

The decapsulation algorithm of BIKE invokes an algorithm that is called a
decoder. The decoder is an algorithm that, given prescribed inputs, outputs an
error vector that can be used to extract a message. There are various decoding
algorithms and different choices yield different efficiency and DFR properties.

QC-MDPC Decoding Algorithms. We briefly describe the evolution of sev-
eral QC-MDPC decoding algorithms. All of them are derived from the Bit-
Flipping algorithm that is commonly attributed [10]. The Round-1 submission
of BIKE describes the “One-Round” decoder. This decoder is indeed imple-
mented in the accompanying reference code [3]. The designers of the constant-
time Additional implementation [7] of BIKE Round-1 chose to use a different
decoder named “Black-Gray”1, with rationale as explained in [6]. The study pre-
sented in [20] explores two additional variants of the Bit-Flipping decoder: a) a
parallel algorithm similar to that of [10], which first calculates some thresholds
for flipping bits, and then flips the bits in all of the relevant positions, in parallel.
We call this decoder the “Simple-Parallel” decoder; b) a “Step-by-Step” decoder
(an enhancement of the “in-place” decoder described in [8]). It recalculates the
threshold every time that a bit is flipped.

The Round-2 submission of BIKE uses the One-Round decoder (of Round-1)
and a new variant of the Simple-Parallel decoder. The latter introduces a new
trial-and-error technique called Time-To-Live (TTL). It is positioned as a deriva-
tive of the decoders in [20]. All of these decoders have some nonzero probability
to fail in decoding a valid input. The average of the failure probability over all
the possible inputs (keys and messages) is called Decoding Failure Rate (DFR).
The KEMs of Round-1 BIKE were designed to offer IND-CPA security and to
be used only with ephemeral keys. They had an approximate DFR of 10−7,
which is apparently tolerable in real systems. As a result, they enjoyed accept-
able bandwidth and performance. Round-2 submission presented new variants
of BIKE KEMs that provide IND-CCA security. Such KEMs can be used with
static keys. The IND-CCA BIKE is based on three changes over the IND-CPA
version: a) a transformation (called FO �⊥) applied to the key generation, encap-
sulation and decapsulation of the original IND-CPA flows (see [3][Section 6.2.1]);
b) adjusted parameters sizes; c) invoking the Backflip decoder in the decapsula-
tion algorithm.

Our Contribution

– We define Backflip+ decoder as the variant of Backflip that operates with a
fixed XBF number of iterations (for some XBF ). We also define the Black-
Gray decoder that runs with a given number of iterations XBG (for some
XBG). Subsequently, we analyze the DFR of these decoders as a function
of XBF and XBG and the block size (which determines the communica-
tion bandwidth of the KEM). The analysis finds a new set of parameters
where Backflip+ with XBF = 8, 9, 10, 11, 12 and the Black-Gray decoder with

1 This decoder appears in the pre-Round-1 submission “CAKE” (the BIKE-1 ances-
tor). It is due to N. Sendrier and R. Misoczki. The decoder was adapted to use the
improved thresholds published in [3].
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XBG = 3, 4, 5 have an estimated average DFR of 2−128. This offers multiple
IND-CCA proper BIKE instantiation options.

– We build an optimized constant-time implementation of the new BIKE
CCA flows together with a constant-time implementation of the decoders.
This facilitates a performance comparison between the Backflip+ and the
Black-Gray decoders. All of our performance numbers are based only on
constant-time implementations. The comparison leads to interesting results.
The Backflip+ decoder has a better DFR than the Black-Gray decoder if
both of them are allowed to have a very large (practically unlimited) XBF

and XBG values. These values do not lead to practical performance. However,
for small XBF and XBG values that make the performance practical and DFR
acceptable, the Black-Gray decoder is faster (and therefore preferable).

– The BIKE CCA flows require higher bandwidth and more computations com-
pared to the original CPA flows, but the differences as measured on x86-
64 architectures are not very significant. Table 1 summarizes the trade-off
between the BIKE-1 block size (r), the estimated DFR and the performance of
BIKE-1 decapsulation (with IND-CCA flows) using the Black-Gray decoder.
It provides several instantiations/implementations choices. For example, with
XBG = 4 iterations and targeting a DFR of 2−64 (with r = 11, 069 bits) the
decapsulation with the Black-Gray decoder consumes 4.81M cycles. With a
slightly higher r = 11, 261 the decoder can be set to have only XBG = 3
iterations and the decapsulation consumes 3.76M cycles.

Table 1. The BIKE-1 Level-1 block size r (in bits) for which the Black-Gray decoder
achieves a target DFR with a specified number of iterations, and the decapsulation
performance (in cycles; the precise details of the platform are provided in Sect. 5). A
DFR of 2−128 is required for the IND-CCA KEM. The IND-CPA used with ephemeral
keys can settle with higher DFR.

DFR 3 iterations 4 iterations 5 iterations

2−23 ≈ 10−7 r 10, 259 10, 163 10, 141

Cycles 3.50M 4.52M 5.53M

2−30 ≈ 10−9 r 10, 427 10, 331 10, 301

Cycles 3.52M 4.56M 5.63M

2−40 ≈ 10−12 r 10, 667 10, 589 10, 501

Cycles 3.55M 4.63M 5.69M

2−64 r 11, 261 11, 069 11, 003

Cycles 3.76M 4.81M 5.96M

2−128 r 12, 781 12, 437 12, 373

Cycles 4.06M 5.22M 6.47M

– The FO �⊥ transformation from QC-MDPC McEliece Public Key Encryption
(PKE) to BIKE-1 IND-CCA relies on the assumption that the underlying
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PKE is δ-correct [12] with δ = 2−128. The relation between this assumption
and the (average) DFR that used in [3] is not yet addressed. We identify this
gap and illustrate some of the remaining challenges.

The paper is organized as follows. Section 2 offers background, notation and
surveys some QC-MDPC decoders. In Sect. 3 we define and clarify subtle differ-
ences between schemes using idealized primitives and concrete instantiations of
the schemes. In Sect. 4 we explain the method used for estimating the DFR. We
explain the challenges and the techniques that we used for building a constant-
time implementation of IND-CCA BIKE in Appendix B. Section 5 reports our
results for the DFR and block size study, and also the performance measurements
of the constant-time implementations. The gap between the estimated DFR and
the δ-correctness needed for IND-CCA BIKE is discussed in Sect. 6. Section 7
concludes this paper with several concrete proposals and open questions.

2 Preliminaries and Notation

Let F2 be the finite field of characteristic 2. Let R be the polynomial ring
F2[X]/ 〈Xr − 1〉. For every element v ∈ R its Hamming weight is denoted by
wt(v). The length of a vector w is denoted by |w|. Polynomials in R are viewed
interchangeably also as square circulant matrices in F

r×r
2 . For a matrix H ∈ F

r×r
2

let hj denote its j-th column written as a row vector. We denote null values and
protocol failures by ⊥. Uniform random sampling from a set W is denoted by
w

$←− W . For an algorithm A, we denote its output by out = A() if A is deter-
ministic, and by out ← A() otherwise. Hereafter, we use the notation x.ye−z to
denote the number (x + y

10 ) · 10−z.

2.1 BIKE-1

The computations of BIKE-1-(CPA/CCA) are executed over R, where r is a
given parameter. Let w and t be the weights of (h0, h1) in the secret key h =
(h0, h1, σ0, σ1) and the errors vector e = (e0, e1), respectively. Denote the public
key, ciphertext, and shared secret by f = (f0, f1), c = (c0, c1), and k, respectively.
As in [3], we use H, K to denote hash functions. Currently, the parameters of
BIKE-1-CPA for NIST Level-1 are r = 10, 163, |f | = |c| = 20, 326 and for BIKE-
1-CCA are r = 11, 779, |f | = |c| = 23, 558. In both cases, |k| = 256, w = 142,
d = w/2 = 71 and t = 134. Figure 1 shows the BIKE-1-CPA and BIKE-1-CCA
flows [3], see details therein.

2.2 The IND-CCA Transformation

Round-2 BIKE submission [3] uses the FO �⊥ conversion ([12] which relies on [9])
to convert the QC-MDPC McEliece PKE into an IND-CCA KEM BIKE-1-CCA.
The submission claims that the proof results from [12][Theorems 3.1 and 3.42].
2 Theorems 3.1 and 3.4 appear only in the ePrint version [13] of [12]. In [12] they

appear as Theorems 1 and 4, respectively.
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BIKE-1 IND-CPA BIKE-1 IND-CCA

Key generation

h0, h1
$←− R of odd weight wt(h0) = wt(h1) = w/2

- σ0, σ1
$←− R

g
$←− R of odd weight (so wt(g) ≈ r/2)

(f0, f1) = (gh1, gh0)

Encapsulation

m
$←− R

e0, e1
$←− R (e0, e1) = H(mf0, mf1)

where wt(e0) + wt(e1) = t
(c0, c1) = (mf0 + e0, mf1 + e1)

k = K(e0, e1) k = K(mf0, mf1, c0, c1)

Decapsulation

Compute the syndrome s = c0h0 + c1h1

(e′
o, e

′
1) ← decode(s, h0, h1)

If wt (e′
0, e

′
1)

) �= t or decoding failed then
return ⊥ k = K(σ0, σ1, c)

else
k = K(e′

0, e
′
1) k = K(c0 + e′

0, c1 + e′
1, c0, c1)

Fig. 1. BIKE-1 IND-CPA/IND-CCA flows (full details are given in [3]).

These theorems use the term δ-correct PKEs. For a finite message space M , a
PKE is called δ-correct when3

E

[
max
m∈M

Pr
[
Decrypt(sk, c) �= m | c ← Encrypt(pk,m)

]] ≤ δ (1)

a KEMs is δ-correct if

Pr
[
Decaps(sk, c) �= K|(sk, pk) ← Gen(), (c,K) ← Encaps(pk)

] ≤ δ (2)

2.3 QC-MDPC Decoders

The QC-MDPC decoders discussed in this paper are variants of the Bit Flipping
decoder [10] presented in Algorithm 1. They receive a parity check matrix H ∈
F
r×n
2 and a vector c = mf + e as input4. Here, c,mf, e ∈ F

n
2 , mf is a codeword

(thus, H(mf)T = 0) and e is an error vector with small weight. The algorithm
calculates the syndrome s = eHT and subsequently extracts e′ from s. The goal
of the Bit Flipping algorithm is to have e′ such that e′ = e.

Algorithm 1 consists of four steps: I) calculate some static/dynamic threshold
(th) based on the syndrome (s) and the error (e) weights; II) compute the number
of unsatisfied parity check equations (upci) for a given column i ∈ {0, . . . , n−1};
III) Flip the error bits in the positions where there are more unsatisfied parity-
check equations than the calculated threshold; IV) Recompute the syndrome.
3 In BIKE-1, the secret key (sk) and public key (pk) are h and f , respectively.
4 In BIKE-1, n = 2r, the parity-check matrix H is formed by the two circulant blocks

(h0, h1), the vectors c, e, and f are defined as c = (c0, c1), e = (e0, e1), and mf =
(m · f0, m · f1).
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We refer to Algorithm 1 as the Simple-Parallel decoder. The Step-By-Step
decoder inserts Steps 4, 9 into the “for” loop (Step 5), i. e., it recalculate the
threshold and the syndrome for every bit. The One-Round decoder starts with
one iteration of the Simple-Parallel decoder, and then switches to the Step-by-
Step decoder mode of operation.

Algorithm 1. e=BitFlipping(c, H)
Input: Parity-check matrix H ∈ F

r×n
2 , c ∈ F

n
2 , maxIter (maximal # of iterations),

u maximal syndrome weight
Output: The error e ∈ F

n
2

Exception: “decoding failure” return ⊥
1: procedure BitFlipping(c, H)
2: s = HcT , e = 0, itr = 0
3: while (wt(s) > u) and (itr < maxIter) do
4: th = computeThreshold(s,e) � Step I
5: for i in 0 . . . n − 1 do
6: Compute upci � Step II
7: if upci > th then e[i] = e[i] ⊕ 1 � Step III

8: s = H(cT + eT ) � Step IV
9: itr = itr + 1

10: if itr = maxIter then
11: return ⊥
12: else
13: return e

The Black-Gray decoder (in the additional code [7]) and the Backflip decoder
[3] use a more complex approach. Similar to the Simple-Parallel decoder, they
operate on the error bits in parallel. However, they add a step that re-flips the
error bits according to some estimation.

The “while” loop of an iteration of the Black-Gray decoder consists of: 1)
Perform 1 iteration of the Simple-Parallel decoder and define some bits position
candidates that should be reconsidered (i. e., bits that were mistakenly flipped).
Then, split them into two lists (black, gray); 2) Reevaluate the bits in the black
list, flip them according to the evaluation. Then, recalculate the syndrome; 3)
Reevaluate the bits in the gray list, and flip according to the evaluation. Then,
recalculate the syndrome.

The Backflip decoder has the following steps: 1) Perform 1 iteration of the
Simple-Parallel decoder. For every flipped bit assign a value k. This value indi-
cates that if the algorithm does not end after k iterations, this bit should be
flipped back; 2) Flip some bits back according to their k values.

The Backflip+ is variant of Backflip that uses a fixed number iterations as
explained in Sect. 1. Technically, the difference is that the condition on the weight
of s is moved from the while loop to the if statement (line 10). This performs
the appropriate number of mock iterations.
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Remark 1. The decoders use the term iterations differently. For example, one
iteration of the Black-Gray decoder is somewhat equivalent to three iterations of
the Simple-Parallel decoder. The iteration of the One-Round decoder consists of
multiple (not necessarily fixed) “internal” iterations. Comparison of the decoders
needs to take this information into account. For example, the performance is
determined by the number of iterations times the latency of an iteration, not
just by the number of iterations.

3 Idealized Schemes and Concrete Instantiations

We discuss some subtleties related to the requirements from a concrete algorithm
in order to be acceptable as substitute for an ideal primitive, and the relation
to a concrete implementation.

Cryptographic schemes are often analyzed in a framework where some of the
components are modeled as ideal primitives. An ideal primitive is a black-box
algorithm that performs a defined flow over some (secret) input and commu-
nicates the resulting output (and nothing more). A concrete instantiation of
the scheme is the result of substituting the ideal primitive(s) with some spe-
cific algorithm(s). We require the following property from the instantiation to
consider it acceptable: the algorithm should be possible to implement without
communicating more information than the expected output. From the practical
viewpoint, this implies that the algorithm could be implemented in constant-
time. Note that a specific implementation of an acceptable instantiation of a
provably secure scheme can still be insecure (e.g., due to side channel leakage).
Special care is needed for algorithms that run with a variable number of steps.

Remark 2. A scheme can have provable security but this does not imply that
every instantiation inherits the security properties guaranteed by the proof, or
that there even exists an instantiation that inherits them, and an insecure instan-
tiation example does not invalidate the proof of the idealized scheme. For exam-
ple, an idealized KEM can have an IND-CCA secure proof when using a “random
oracle” ideal primitive. An instantiation that replaces the random oracle with
a non-cryptographic hash function does not inherit the security proof, but it is
commonly acceptable to believe that an instantiation with SHA256 does.

Algorithms with a Variable Number of Steps. Let A be an algorithm
that takes a secret input in and executes a flow with a variable number of
steps/iterations v(in) that depends on in. It is not necessarily possible to imple-
ment A in constant-time. In case (“limited”) that there is a public parameter
b such that v(in) ≤ b we can define an equivalent algorithm (A+) that runs in
exactly b iterations: A+ executes the v(in) iterations of A and continues with
some b − v(in) identical mock iterations. With this definition, we can assume
that it is possible to implement A+ in constant-time. Clearly, details must be
provided, and such an implementation needs to be worked out. This could be a
challenging task.
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Suppose that v(in) is unlimited, i. e., there is no (a-priori) parameter b such
that v(in) ≤ b (we call this case “unlimited”). It is possible to set a constant
parameter b∗ and an algorithm A+ with exactly b∗ iterations, such that it emits a
failure indication if the output is not obtained after exhausting the b∗ iterations.
It is possible to implement A+ in constant-time, but it is no longer equivalent to
A, due to the nonzero failure probability. Thus, analysis of A+ needs to include
the dependency of the failure probability on b∗, and consider the resulting impli-
cations. Practical considerations would seek the smallest b∗ for which the upper
bound on the failure probability is satisfactory. Obviously, if A has originally
some nonzero failure probability, then A+ has a larger failure probability.

Suppose that a cryptographic scheme relies on an ideal primitive. In the
limited case an instantiation that substitutes A (or A+) is acceptable. However,
in the unlimited case, substituting the primitive A with A+ is more delicate, due
to the failure probability that is either introduced or increased. We summarize
the unlimited case as follows.

– To consider A as an acceptable ideal primitive substitute, v(in) needs to
be considered as part of its output, and the security proof should take this
information into consideration. Equivalently, the incremental advantage that
an adversary can gain from learning v(in) needs to be added to the adversary
advantage of the (original) proof.

– Considering A+ as an acceptable ideal primitive substitute, requires a proof
that it has all the properties of the ideal primitive used in the original proof
(in particular, the overall failure probability).

Example 1. Consider the IND-CPA RSA PKE. Its model proof relies on the
existence of the ideal primitive MODEXP for the decryption (MODEXP (a, x,
N) = ax (mod N), where x is secret). Suppose that a concrete instantiation
substitutes MODEXP with the square-and-multiply algorithm (S&M). S&M
has a variable number of steps, t = bitlength(x) + wt(x) (modular multiplica-
tions), that depends on (secret) x, where wt(t) ≤ bitlength(x) is the Hamming
weight of x. By definition, in RSA PKE we have that x < φ(N) < N so x is
a-priori bounded and consequently the number of steps in S&M is bounded by
t ≤ 2·bitlength(x) < 2·bitlength(N). It is easy to define an equivalent algorithm
(S&M+) that runs in exactly 2 · bitlength(N) steps by adding mock operations.
An instantiation that substitutes S&M (through S&M+) for MODEXP can
therefore be considered acceptable (up to the understanding of how to define
mock steps). This is independent of the practical security of an implementa-
tion of RSA PKE instantiated with S&M+. Such an implementation needs to
account for various (side-channel) leaks e.g., branches and memory access pat-
terns. These considerations are attributed to the implementation rather than
to the instantiation, because we can trust the possibility to build such a safe
implementation.

Application to BIKE. The IND-CCA security proof of BIKE relies on the
existence of a decoder primitive that has a negligible DFR. This is a critical
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decoder’s property that is used in the proof. The concrete BIKE instantiation
substitutes the idealized decoder with the Backflip decoding algorithm. Backflip
has the required negligible DFR. By its definition, Backflip runs in a variable
number of steps (iterations) that depends on the input and on the secret key
(this property is built into the algorithm’s definition).

It is possible to use Backflip in order to define Backflip+ decoder that has
a fixed number of steps: a) Fix a number of iterations as a parameter XBF ; b)
Follow the original Backflip flow but always execute XBF iterations in a way
that: if the errors vector (e) is extracted after Y < XBF iterations, execute
additional (XBF − Y ) identical mock iterations that do not change e; c) After
the XBF iterations are exhausted, output a success/failure indication and e on
success or a random vector of the expected length otherwise. The difficulty is
that the DFR of Backflip+ is a function of XBF (and r) and it may be larger
from the DFR of Backflip that is critical for the proof.

It is not clear from [3,20] whether the Backflip decoder is an example of
the limited or the unlimited case, but we choose to assume the limited case,
based on the following indications. Backflip is defined in [3, Algorithm 4] and
the definition is followed by the comment: “The algorithm takes as input [...]
and, if it stops, returns an error [...] with high probability, the algorithm stops
and returns e”. This comment suggests the unlimited case. Here, it is difficult to
accept it as a substitution of the ideal primitive, and claim that the IND-CCA
security proof applies to this instantiation. In order to make Backflip an ideal
primitive substitute, the number of executed steps needs to be considered as part
of its output as well. As an analogy, consider a KEM where the decapsulation has
nonzero failure probability. Here, an IND-CCA security proof cannot simply rely
on the (original) Fujisaki-Okamoto transformation [9], because this would model
an ideal decapsulation with no failures. Instead, it is possible to use the FO �⊥

transformation suggested in [12] that accounts for failures. This is equivalent to
saying that the modeled decapsulation outputs a shared key and a success/fail
indication. Indeed, this transformation was used in the BIKE CCA proof.

On the other hand, we find locations in [3], that state: “In all variants of
BIKE, we will consider the decoding as a black box running in bounded time”
(Sect. 2.4.1 of [3]) and “In addition, we will bound the running time (as a function
of the block size r) and stop with a failure when this bound is exceeded” (Sect. 1.3
of [3]). No bounds and dependency on r are provided. However, if we inspect the
reference code [3], we can find that the code sets a maximal number of Backflip
iterations to 100 (no explanation for this number is provided and this constant is
independent of r). Therefore, we may choose to interpret the results of [3,20] as
if the 2−128 DFR was obtained from simulations with this XBF = 100 bound5,
although this is nowhere stated and the simulation data and the derivation of
the DFR are also not provided (the reference code operates with XBF = 100).
With this, it is reasonable to hope that if we take Backflip+ and set XBF = 100
we would get a DFR below 2−128 and this makes BacklFlip with XBF = 100 an
acceptable instantiation of an IND-CCA secure BIKE (for the studied r values).

5 See discussion with some extrapolation methodologies in Appendix C.
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The challenge with this interpretation is that the instantiation (Backflip+ and
XBF = 100) would be impractical from the performance viewpoint. Our paper
solves this by showing acceptable instantiations with a much smaller values of
XBF . Furthermore, it also shows that there are decoders with a fixed number of
iterations that have better performance at the same DFR level.

Implementation. In order to be used in practice, an IND-CCA KEM should
have a proper instantiation and also a constant-time implementation that is
secure against side-channel attacks (e.g., [8]). Such attacks were demonstrated
in the context of QC-MDPC schemes, e.g., the GJS reaction attack [11] and
several subsequent attacks [8,15,19]. Other reaction attacks examples include
[18] for LRPC codes and [22] for attacking the repetition code used by the HQC
KEM [2]. This problem is significantly aggravated when the KEM is used with
static keys (e.g., [5,8]).

4 Estimating the DFR of a Decoder with a Fixed
Number of Iterations

The IND-CCA BIKE proof assumes a decapsulation algorithm that invokes an
ideal decoding primitive. Here, the necessary condition is that the decapsulation
has a negligible DFR, e.g., 2−128 [3,12]. Therefore, a technique to estimate the
DFR of a decoder is an essential tool.

The Extrapolation Method of [20]. An extrapolation method technique for
estimating the DFR is shown in [20]. It consists of the following steps: a) Simulate
proper encapsulation and decapsulation of random inputs for small block sizes
(r values), where a sufficiently large number of failures can be observed; b)
Extrapolate the observed data points to estimate the DFR for larger r values.

The DFR analyses in [20] and [3] applies this methodology to decoders that
have some maximum number of iterations XBF (we choose to assume that
XBF = 100 was used). In our experiments Backflip+ always succeeds/fails before
reaching 100 iterations for the relevant values of r. Practically, it means that set-
ting XBF = 100 can be considered equivalent to setting an unlimited number of
iterations.

Our goal is to estimate the DFR of a decoder that is allowed to perform
exactly X iterations (where X is predefined). We start from small values of X
(e.g., X = 2, 3, . . .) and increase it until we no longer see failures (in a large
number of experiments) caused by exhausting X iterations. Larger values of X
lead to a smaller DFR.

We tested BIKE-1 and BIKE-3 in Level-1 and Level-3 with the Black-Gray
and the Backflip+ decoders. In order to acquire a sufficient number of data points
we tested multiple prime r values such that xr − 1 is a primitive polynomial [3].
The specific values are listed in Appendix D.

For our study, we used a slightly different extrapolation method. For every
combination (scheme, level, decoder, r) we ran Nexp = 48, 000, 000 experi-
ments as follows: a) Generate, uniformly at random, a secret key and an errors



60 N. Drucker et al.

vector (e), compute the public key, and perform encapsulation-followed-by-
decapsulation (with e); b) Allow the decoder to run up to X = 100 iterations6;
c) Record the actual number of iterations that were required in order to recover
e. If the decoder exhausts the 100 iterations it stops and marks the experiment
as a decoding failure. For every X < 100 we say that the X-DFR is the sum
of the number of experiments that fail (after 100 iterations) plus the number of
experiments that required more than X iterations divided by Nexp. Next, we fix
the scheme, the level, the decoder, and X, and we end up with an X-DFR value
for every tested r. Subsequently, we perform linear/quadratic extrapolation on
the data and receive a curve. We use this curve to find the value r0 for which
the X-DFR is our target probability p0 and use the pair (r0, p0) as the BIKE
scheme parameters.

We target three p0 values: a) p0 = 2−23 ≈ 10−7 that is reasonable for most
practical use cases (with IND-CPA schemes); b) p0 = 2−64 also for an IND-CPA
scheme but with a much lower DFR; c) p0 = 2−128, which is required for an
IND-CCA Level-1 scheme. The linear/quadratic functions and the resulting r0
values are given in Appendix E [Table 4].

Our Extrapolation Methodology. In most cases, we were able to confirm the
claim of [20] that the evolution of the DFR as a function of r occurs in two phases:
quadratic initially, and then linear. As in [20], we are interested in extrapolating
the linear part because it gives a more conservative DFR approximation. We
point out that the results are sensitive to the method used for extrapolation
(see details in Appendix C). Therefore, it is important to define it precisely so
that the results can be reproduced and verified. To this end, we determine the
starting point of the linear evolution as follows: going over the different starting
points, computing the fitting line and picking the one for which we get the best
fit to the data points. Here, the merit of the experimental fit is measured by the
L2 norm (i. e., mean squared error). The L2 norm is a good choice in our case,
where we believe that the data may have a few outliers.

5 Results

A description of the Backflip+ constant-time implementation is provided in
Appendix B.

The Experimentation Platform. Our experiments were executed on an AWS
EC2 m5.metal instance with the 6th Intel R©CoreTM Generation (Micro Archi-
tecture Codename “Sky Lake”[SKL]) Xeon R©Platinum 8175M CPU 2.50 GHz. It
has 384 GB RAM, 32K L1d and L1i cache, 1MiB L2 cache, and 32MiB L3 cache,
where the Intel R© Turbo Boost Technology was turned off.

The Code. The core functionality was written in x86−64 assembly and wrapped
by assisting C code. The code uses the PCLMULQDQ, AES-NI and the AVX2 and

6 Recall that different decoders have different definition for the term “iterations”, see
Sect. 2.3.
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AVX512 instructions. The code was compiled with gcc (version 7.4.0) in 64-bit
mode, using the “O3” Optimization level, and run on a Linux (Ubuntu 18.04.2
LTS) OS. It uses the NTL library [21] compiled with the GF2X library [17].

Figure 8 in Appendix F shows the simulation results for BIKE-1, Level-1
and Level-3, using the Black-Gray and Backflip+ decoders. Note that we use
the IND-CCA flows. The left panels present linear extrapolations and the right
panels present quadratic extrapolations. The horizontal axis measures the block
size r in bits, and the vertical axis shows the simulated log10(DFR) values. Every
panel displays several graphs associated with different X values. The minimal
X is chosen so that the extrapolated r value for DFR = 2−128 is still considered
to be secure according to [3]. The maximal value of X is chosen to allow a
meaningful extrapolation. We give two examples:

Example 2. Consider Black-Gray. Typically, there exists some number of itera-
tions j < XBG, where if decoding a syndrome requires more than j then the
decoder fails (w.h.p) even if a large number of iterations XBG is allowed.

The quadratic approximations shown in Fig. 8 yield a nice fit to the data
points. However, we prefer to use the more pessimistic linear extrapolation in
order to determine the target r.

Validating the Extrapolation. We validated the extrapolated results for every
extrapolation graph. We chose some r that is not a data point on the graph (but
is sufficiently small to allow direct simulations). We applied the extrapolation
to obtain an estimated DFR value. Then, we ran the simulation for this value
of r and compared the results. Table 2 shows this comparison for several values
of r and the Black-Gray decoder with XBG = 3. We note that for 10, 267 and
10, 301 we tested at least 960 million and 4.8 billion tests respectively. In case
of 10, 301 decoding always succeeded after XBG = 4 iterations, while for 10, 267
there were too few failures for meaningful computation of the DFR. Therefore,
we use XBG = 3 in our experimentation in order to observe enough failures.
For example, the extrapolation for the setting (BIKE-1, Level-1, Black-Gray,
10, 301) estimates 3-DFR = 10−7.55 this is very close to the experimented DFRs
10−7.56.

Table 2. Validating the extrapolation results for the Black-Gray decoder with XBG = 3
over two values of r.

r Extrapolated DFR Experimented DFR Number of tests

10, 267 10−7.13 10−7.26 9.6e8

10, 301 10−7.55 10−7.56 4.8e9
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5.1 Extensive Experimentation

To observe that the Black-Gray decoder does not fail in practice with r = 11, 779
(i. e., the recommended r for the Backflip decoder) we run extensive simulations.
We executed 1010 ≈ 233 tests that generate a random key, encapsulate a mes-
sage and decapsulate the resulting ciphertext. Indeed, we did not observe any
decoding failure (as expected).

5.2 Performance Studies

The performance measurements reported hereafter are measured in processor
cycles (per single core), where lower count is better. All the results were obtained
using the same measurement methodology, as follows. Each measured function
was isolated, run 25 times (warm-up), followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the effect
of background tasks running on the system, every experiment was repeated 10
times, and the minimum result was recorded.

For every decoder, the performance depends on: a) X - the number of itera-
tions; b) the latency of one iteration. Recall that comparing just the number of
iterations is meaningless. Table 3 provides the latency (�decoder,r) of one iteration
and the overall decoding latency (ldecoder,r,i = Xdecoder · �decoder,r) for the Black-
Gray and the Backflip+ decoders, for several values of r. The first four rows of
the table report for the value r = 10, 163 that corresponds to the BIKE-1-CPA
proposal, and for the value r = 11, 779 that corresponds to the BIKE-1-CCA
proposal. The following rows report values of r for which the decoders achieve
the same DFR.

Clearly, the constant-time Black-Gray decoder is faster than the constant-
time Backflip+ decoder (when both are restricted to a given number of itera-
tions).

We now compare the performance of the BIKE-1-CCA flows to the per-
formance of the BIKE-1-CPA flows, for given r values, using the Black-Gray
decoder with XBG = 3, 4. Note that values of r that lead to DFR > 2−128 can-
not give IND-CCA security. Furthermore, even with BIKE-1-CCA flows and r
such that DFR ≤ 2−128, IND-CCA security is not guaranteed (see the discus-
sion in Sect. 6). The results are shown in Fig. 2. The bars show the total latency
of the key generation (blue), encapsulation (orange), and decapsulation (green)
operations. The slowdown imposed by using the BIKE-1-CCA flows compared
to using the BIKE-1-CPA flows is indicated (in percents) in the figure. We see
that the additional cost of using BIKE-1-CCA flows is only ∼6% in the worst
case.

6 Weak Keys: A Gap for Claiming IND-CCA Security

Our analysis of the decoders, the new parameters suggestion, and the constant-
time implementation makes significant progress towards a concrete instantiation
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Table 3. A performance comparison of the Black-Gray and the Backflip+ decoders for
BIKE-1 Level-1. The r values were chosen according to Table 4.

DFR Decoder r Xdecoder �decoder,r (cycles) ldecoder,r,i (million cycles)

2−19 Black-Gray 10,163 3 702,785 2.1

2−17 Backflip+ 10,163 8 751,246 6.0

2−101 Black-Gray 11,779 4 784,903 3.13

2−58 Backflip+ 11,779 9 841,806 6.73

2−23 Black-Gray 10,253 3 743,168 2.22

2−23 Black-Gray 10,163 4 702,785 2.8

2−23 Backflip+ 10,499 8 777,478 6.22

2−23 Backflip+ 10,253 9 764,959 6.88

2−64 Black-Gray 11,261 3 769,212 2.3

2−64 Black-Gray 11,003 4 769,820 3.0

2−64 Backflip+ 12,781 8 907,905 7.26

2−64 Backflip+ 12,011 9 856,084 7.7

2−128 Black-Gray 12,781 3 849,182 2.54

2−128 Black-Gray 12,347 4 841,310 3.36

2−128 Backflip+ 14,797 9 1,024,798 9.22

(a) XBG = 3 (b) XBG = 4

Fig. 2. Comparison of BIKE-1-CPA flows and BIKE-1-CCA flows, running with the
Black-Gray decoder and XBG = 3, 4 for several values of r: r = 10, 163 the original
BIKE-1-CPA; r = 11, 779 the original BIKE-1-CCA; r values that correspond to DFR
of 2−23, 2−64, 2−128, according to Table 4. Note that values of r that lead to DFR >
2−128 do not give IND-CCA security. The vertical axis measures latency in millions of
cycles (lower is better). The additional cost of using the IND-CCA flows it at most 6%.

and implementation of IND-CCA BIKE. However, we believe that there is still a
subtle missing gap for claiming IND-CCA security, that needs to be addressed.

The remaining challenge is that a claim for IND-CCA security depends on
having an underlying δ-correct PKE (for example with δ = 2−128 for Level-
1) [12]. This notion is different from having a DFR of 2−128, and leads to the
following problem. The specification [3] defines the DFR as “the probability for
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the decoder to fail when the input (h0, h1, e0, e1) is distributed uniformly”. The
δ-correctness property of a PKE/KEM is defined through Eqs. (1), (2) above.
These equations imply that δ is the average of the maximum failure probability
taken over all the possible messages. By contrast, the DFR notion relates to the
average probability.

Remark 3. We also suggest to fix a small inaccuracy in the statement of the
BIKE-1 proof [3]: “... the resulting KEM will have the exact same DFR as the
underlying cryptosystem ...”. Theorem 3.1 of [12] states that: “If PKE is δ-
correct, then PKE1 is δ1-correct in the random oracle model with δ1(qG) =
qG · δ.[...]”. Theorem 3.4 therein states that: “If PKE1 is δ1-correct then KEM�⊥

is δ1-correct in the random oracle model [..]”7. Thus, even if DFR = δ, the
statement should be “the resulting KEM is (δ ·qG)-correct, where the underlying
PKE is δ-correct”.

To illustrate the gap between the definitions, we give an example for what can
go wrong.

Example 3. Let S be the set of valid secret keys and let |S| be its size. Assume
that a group of weak keys W exists8, and that |W|

|S| = δ̄ > 2−128. Suppose that
for every key in W there exists at least one message for which the probability in
Eq. (1) equals 1. Then, we get that δ > δ̄ > 2−128. By comparison the average
DFR can still be upper bounded by 2−128. For instance, let |S| = 2130, |W| = 24

and let the failure probability over all messages for every weak key be 2−10. Let
the failure probability of all other keys be 2−129. Then,

DFR = Pr(fail | k ∈ W) · Pr(k ∈ W) + Pr(fail | k ∈ S \ W) · Pr(k ∈ S \ W)

=
|W|
|S| · 2−10 +

|S| − |W|
|S| · 2−129

= 2−126 · 2−10 + (1 − 2−126) · 2−129

= 2−136 + 2−129 − 2−255 < 2−128

6.1 Constructing Weak Keys

Currently, we are not aware of studies that classify weak keys for QC-MDPC
codes or bound their numbers. To see why this gap cannot be ignored we designed
a series of tests that show the existence of a relatively large set of weak keys.
Our examples are inspired by the notion of “spectrum” used in [8,11,15]. To
construct the keys we changed the BIKE key generation. Instead of generating
a random h0, we start by setting the first f = 0, 20, 30, 40 bits, and then select
randomly the positions of the additional (d − f) bits. The generation of h1 is
unchanged.
7 Here, KEM �⊥ refers to a KEM with implicit rejection, and qG is the number of

invocation of the random oracle G (H in the case of BIKE-1).
8 Our definition of weak keys is different form that of [4], where a weak key is a secret

key that can be exposed from the public key alone.
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Since it is difficult to observe failures and weak keys behavior when r is
large, we study r = 10, 163 (of BIKE-1 CPA) and also r = 9, 803 that amplify
the phenomena.

Figure 7 in Appendix F shows the behavior of the Black-Gray decoder for
r = 9, 803 and r = 10, 163 with f = 0, 20, 30, 40 after XBG = 1, 2, 3, 4 iterations.
In every case (Panel) we choose randomly 10, 000 keys. For every key we choose
randomly 1, 000 errors vectors. The histograms show the weight of an “ideal”
errors vector e after the XBG iteration (horizontal axis). We see that as f grows
the number of un-decoded error bits after every iteration increases. For f ≤ 30,
decoding often succeeds after 3 iterations. However, for f = 40 it is possible to
decode the error after 4 iterations only when r = 10, 163, but not for r = 9, 803.
In other words, if we fix XBG = 3 for the Black-Gray decoder and use r = 9, 803
we see ∼100% failures with weak keys defined by f = 40. This shows that for a
given decoder the set of weak keys depends on r and X.

Remark 4 (Other decoders). Figure 7 shows how the weak keys impact the decod-
ing success probability for chosen r and XBG with the Black-Gray decoder. Note
that such results depend on the specific decoder. To compare, Backflip+ calcu-
lates the unsatisfied parity checks threshold in a more conservative way, and
therefore requires more iterations. Weak keys would lead to a different behavior.
When we repeat our experiment with the Simple-Parallel decoder, we see that
almost all tests fail even with f = 19.

Figure 3 shows additional results with the Black-Gray decoder and r = 9, 803.
Panel (a) shows the histogram for f = 0 (i. e., reducing to the standard h0

generation), and Panel (b) shows the histogram for f = 30. The horizontal axis
measures the number of failures x out of 10, 000 random errors. The vertical axis
counts the number of keys that have a DFR of x/10, 000. For f = 0, the average
and standard deviation are E(x) = 119.06, and σ(x) = 10.91. However, when
f = 30, the decoder fails much more often and we have E(x) = 9, 900.14, and
σ(x) = 40.68. This shows the difference between the weak keys and the “normal”
randomized keys and that the DFR cannot be predicted by the “average-case”
model. It is also interesting to note that for f = 30 we do not get a Gaussian
like distribution (unlike the histogram with f = 0).

The remaining question is: what is the probability to hit a weak key when
the keys are generated randomly as required? Let Wf be the set of weak keys
that correspond to a given value of f . Define zr,f as the relative size of Wf . Then

zr,f =
|Wf |
|S| =

(
r−f
d−f

)
(
r
d

) (3)

Note that choosing a larger f decreases the size of Wf , i. e., if f2 < f1 then
Wf1 ⊆ Wf2 . It is easy to compute that

z9803,0 = z10163,0 = 1

z9803,10 = 2−72, z9803,20 = 2−146, z9803,30 = 2−223, z9803,40 = 2−304,
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z10163,10 = 2−72, z10163,20 = 2−147, z10163,30 = 2−225, z10163,40 = 2−306

The conclusion is that while the set Wf is large, its relative size (from the set
of all keys) is still below 2−128. Therefore, this construction does not show that
BIKE-1 after our fix is necessarily not IND-CCA secure. However, it clearly
shows that the problem cannot be ignored, and the claim that BIKE is IND-
CCA secure requires further justification. In fact, there are other patterns and
combinations that give sets of weak keys with a higher relative size (e.g., setting
every other bit of h0, f times). We point out again that any analysis of weak
keys should relate to a specific decoder and a specific choice of r.

Fig. 3. Black-Gray decoder, r = 9, 803 with f = 0 (Panel (a)) and f = 30 (Panel (b)).
The horizontal-axis measures the number of failures x out of 10, 000 random errors
vectors. The vertical-axis counts the number of keys that have a DFR of x/10, 000.
The conclusion is that there are keys that lead to higher DFR.

7 Discussion

The Round-2 BIKE [3] represents significant progress in the scheme’s design,
and offers an IND-CCA version, on top of the IND-CPA KEM that was defined
in Round-1. This paper addresses several difficulties and challenges and solves
some of them.

– The Backflip decoder runs in a variable number of steps that depends on the
input and the secret key. We fix this problem by defining a variant, Backflip+,
that, by definition, runs XBF iterations for a parameter XBF . We carry out
the analysis to determine the values of XBF where Backflip+ has DFR of
2−128, and provide all of the details that are needed in order to repeat and
reproduce our experiments. Furthermore, we show that for the target DFR,
the values of XBF are relatively small e.g., 12. (much less than 100 as implied
for Backflip).

– Inspired by the extrapolation method suggested in [20], we studied the Black-
Gray decoder (already used in Round-1 Additional code [7]) that we defined
to have a fixed number of steps (iterations) XBG. Our goal was to find values
of XBG that guarantee the target DFR for a given r. We found that the values
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of r required with Black-Gray are smaller than the values with Backflip+. It
seems that achieving the low DFR (2−128) should be attributed to increasing
r, independently of the decoding algorithm. The ability to prove this for some
decoders is attributed to the extrapolation method.

– After the decoders are defined to run a fixed number of iterations, we
could build constant-time software implementations (with memory access
patterns and branches that reveal no secret information). This is nowadays
the standard expectation from cryptographic implementations. We measured
the resulting performance (on a modern x86-64 CPU) to find an optimal
“decoder-X-r” combination. Table 3 shows that for a given DFR, the Black-
Gray decoder is always faster than Backflip+.

– The analysis in Sect. 6 identifies a gap that needs to be addressed in order to
claim IND-CCA security for BIKE. It relates to the difference between aver-
age DFR and the δ-correctness definition [12]. A DFR of (at most) 2−128 is a
necessary requirement for IND-CCA security, which BIKE achieves. However,
it is not necessarily sufficient. We show how to construct a “large” set of weak
keys, but also show that it still not sufficiently large to invalidate the neces-
sary δ-correctness bound. This is a positive indication, although there is no
proof that the property is indeed satisfied. This gap remains as an interesting
research challenge to pursuit. The problem of bounding (or eliminating) the
number of weak keys is not specific to BIKE. It is relevant for other schemes
that claim IND-CCA security and their decapsulation has nonzero failure
probability. With this, we can state the following.

BIKE-1-CCA, instantiated with Black-Gray (or Backflip+) decoder with
the parameters that guarantee DFR of 2−128, and with the accompanying
constant-time implementation, is IND-CCA secure, under the assumption
that its underlying PKE is 2−128-correct.

7.1 Methodologies

Our performance measurements were carried on an x86-64 architecture. Stud-
ies on different architectures can give different results we therefore point to an
interesting study of the performance of other constant-time decoders on other
platforms [14]. Note that [14] targets schemes that use ephemeral keys with
relatively large DFR and only IND-CPA security.

Differences in the DFR Estimations. Our DFR prediction methodology may
be (too) conservative and therefore yields more pessimistic results than those
of [3]. One example is the combination (BIKE-1, Level-1, Backflip+ decoder,
r = 11, 779, XBF = 10). Here, [3] predicts a 100−DFR of 2−128 and our linear
extrapolation for the 10-DFR predicts only 2−71(≈ 10−21). To achieve a 10-DFR
of 2−128 we need to set r = 13, 892(>11, 779). Although the Backflip+ decoder
with XBF = 10 is not optimal, it is important to understand the effect of differ-
ent extrapolations. Comparing to [3,20] is difficult (no information that allows
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us to repeat the experiments), we attempt to provide some insight by acquir-
ing data points for Backflip+ with XBF = 100 and applying our extrapolation
methodology. Indeed, the results we obtain are still more pessimistic, but if we
apply a different extrapolation methodology (“Last-Linear”) we get closer to [3].
The details are given in Appendix C.

Another potential source of differences is that Backflip has a recovery mech-
anism (TTL). For Backflip+ this mechanism is limited due to setting XBF ≤ 11.
It may be possible to tune Backflip and Backflip+ further by using some fine-
grained TTL equations that depend on r. Information on the equations that
were used for [3] was not published, so we leave tuning for further research.

7.2 Practical Considerations for BIKE9

Our Decoder Choice. We report our measurements only for Black-Gray and
Backflip+ because other decoders that we know either have a worse DFR (e.g.,
Parallel-Simple) or are inherently slow (e.g., Step-by-Step). Our results suggest
that instantiating BIKE with Black-Gray is recommended. We note that the
higher number of iterations required by Backflip+ is probably because it uses a
more conservative threshold function than Black-Gray.

Recommendations for the BIKE Flows. Currently, BIKE has two options
for executing the key generation, encapsulation, and decapsulation flows. One
for an IND-CPA KEM, and another (using the FO �⊥ transformation [12]) for
an IND-CCA scheme, to deny a chosen ciphertext attack from the encapsulat-
ing party. It turns out that the performance difference is relatively small. As
shown in Fig. 2 for BIKE-1, the overhead of the IND-CCA flows is less than
6% (on x86-64 platforms). With such a low overhead, we believe that the BIKE
proposal could gain a great deal of simplification by using only the IND-CCA
flows. This is true even for applications that intend to use only ephemeral keys,
in order to achieve forward secrecy. Here, IND-CCA security is not mandatory,
and IND-CPA security suffice. However, using the FO �⊥ transformation could
be a way to reduce the risk of inadvertent repetition (“misuse”) of a supposedly
ephemeral key, thus buying some multi-user-multi-key robustness. By applying
this approach, the scheme is completely controlled by choosing a single parame-
ter r (with the same implementation). For example, with the Black-Gray decoder
and XBG = 4, the choice r = 11, 001 gives DFR = 2−64 with competitive per-
formance. A DFR of 2−64 is sufficiently low and can be ignored by all practical
considerations.

Choosing r. The choice of r and XBG gives an interesting trade-off between
bandwidth and performance10. A larger value of r increases the bandwidth but
reduces the DFR when XBG is fixed. On the other hand, it allows to reduce

9 The recommendations given here are the opinion of the authors of this paper.
10 BIKE specification [3, Section 2.4.5] states: “An interesting consequence is that if

w and t are fixed, a moderate modification of r (say plus or minus 50%) will not
significantly affect the resistance against the best known key and message attacks”.
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XBG while maintaining the same DFR. This could lead to better performance.
We give one example. To achieve DFR = 2−23 the choice of XBG = 4 and
r = 10, 163 leads to decoding at 2.8M cycles. The choice XBG = 3 and a slightly
larger r = 10, 253 leads to decoding at 2.22M cycles. Complete details are given
in Table 3.

General Recommendations for the BIKE Suite. Currently, BIKE [3] con-
sists of 10 variants: BIKE-1 (the simplest and fastest); BIKE-2 (offering band-
width optimization at the high cost of polynomial inversion); BIKE-3 (simpler
security reduction with the highest bandwidth and lowest performance). In addi-
tion, there are also BIKE-2-batch and BIKE-3 with bandwidth optimization.
Every version comes with two flavors IND-CPA and IND-CCA. On top of this,
every option comes with three security levels (L1/L3/L5). Finally, the implemen-
tation packages include generic code and optimization for AVX2 and AVX512.
We believe that this abundance of options involves too high complexity and
reducing their number would be very useful. For Round-3 we recommend to
define BIKE as follows: BIKE-1 CCA instantiated with the Black-Gray decoder
with XBG = 3 iterations. Offer Level-1 with r = 11, 261 targeting DFR = 2−64

and r = 12, 781 targeting DFR = 2−128, as the main variants. In all cases, use
ephemeral keys, for forward secrecy. For completeness, offer also a secondary
variant for Level-3 with r = 24, 659 targeting DFR = 2−128.

The code that implements these recommendations was contributed to (and
already merged into) the open-source library LibOQS [1]. It uses the choice of
r = 11, 779, following the block size of the current Round-2 specification (this
choice of r leads to a DFR of 2−86).

Vetting Keys. We recommend to use BIKE with ephemeral keys and forward
secrecy. In this case we do not need to rely on the full IND-CCA security prop-
erties of the KEM. However, there may be usages that prefer to use static keys.
Here, we recommend the following way to narrow the DFR-δ-correctness gap
pointed above by “vetting” the private key. For static keys we can assume that
the overall latency of the key generation generation phase is less significant.
Therefore, after generating a key, it would be still acceptable, from the practical
viewpoint, to vet it experimentally. This can be done by running encapsulation-
followed-by-decapsulation for some number of trials, in the hope to identify a
case where the key is obviously weak. A more efficient way is to generate random
(and predefined) errors and invoke the decoder. We point out that the vetting
process can also be applied offline.

Acknowledgments. This research was partly supported by: NSF-BSF Grant
2018640; The BIU Center for Research in Applied Cryptography and Cyber Secu-
rity, and the Center for Cyber Law and Policy at the University of Haifa, both in
conjunction with the Israel National Cyber Directorate in the Prime Minister’s Office.
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A Black-Gray Decoder

Algorithm 2. e=Black-Gray(c, H)
Input: Parity-check matrix H ∈ F

r×n
2 , c ∈ F

n
2 , XBG (maximal # of iterations)

Output: The error e ∈ F
n
2

Exception: “decoding failure” return ⊥
1: procedure Black-Gray(c, H)
2: s = HcT , e = 0, δ = 4
3: B = ∅, G = ∅ � Black and Gray position sets
4:
5: for itr in 0 . . . XBG − 1 do
6: th = computeThreshold(s)
7: upc[n − 1 : 0] = computeUPC(s, H)
8: for i in 0 . . . n − 1 do � Step I
9: if upc[i] ≥ th then

10: e[i] = e[i] ⊕ 1 � Flip an error bit
11: B = B ∪ i � Update the Black set
12: else if upc[i] > th − δ then
13: G = G ∪ i � Update the Gray set

14: s = H(cT + eT ) � Update the syndrome
15:
16: upc[n − 1 : 0] = computeUPC(s, H) � Step II
17: for b ∈ B do
18: if upc[b] > ((d + 1)/2) then
19: e[b] = e[b] ⊕ 1 � Flip an error bit

20: s = H(cT + eT ) � Update the syndrome
21:
22: upc[n − 1 : 0] = computeUPC(s, H) � Step III
23: for g ∈ G do
24: if upc[g] > ((d + 1)/2) then
25: e[g] = e[g] ⊕ 1 � Flip an error bit

26: s = H(cT + eT ) � Update the syndrome
27:
28: if (wt(s) 	= 0) then
29: return ⊥
30: else
31: return e

B Implementing Backflip+ in Constant-Time

Here, we show how to define and implement a constant-time Backflip+ decoder,
based on a constant-time Black-Gray decoder. The Backflip+ decoder differs
from the Black-Gray decoder in two aspects: a) it uses a new mechanism called
TTL; b) it uses new equations for calculating the thresholds. The TTL mech-
anism is a “smart queue” where the decoder flips back some error bits when
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it believes that they were mistakenly flipped in previous iterations. It does
so unconditionally and it can flip bits even after 5 iterations. The Black-Gray
decoder uses a different type of TTL, where the black and gray lists serve as the
“smart queue”. However, the error bits are flipped back after only 1 iteration,
conditionally, through checking certain thresholds. Indeed, as we report below
the differences are observed in cases where the Black-Gray decoder failed to
decode after 4 iterations and then w.h.p fails completely. The Backflip decoder
shows better recovery capabilities in such cases. Implementing the new TTL
queue in constant-time relies mostly on common constant-time techniques.

Handling the New Threshold Function. The Backflip decoder thresholds
are a function of two variables [3][Section 2.4.3]: a) the syndrome weight wt(s) as
in the Black-Gray decoder; b) the number of error bits that the decoder believes
it flipped (denoted ē). This function outputs higher thresholds compared to the
Black-Gray decoder. This is a conservative approximation. We believe that the
design of the Backflip decoder tends to avoid flipping the “wrong” bits so that
the decoder would have better recovery capabilities and a lower DFR (assuming
that it can execute an un-bounded number of iterations). We point out that
evaluating the function involves computing logarithms, exponents, and function
minimization, and it is not clear how this can be implemented in constant-time
(the reference code [3] is not implemented in constant-time).

One way to address this issue is to pre-calculate the finite number of pairs
(wt(s), ē) and their function evaluation, store them in a table, and read them
from the table in constant-time. This involves very high latencies.

Similarly to the Black-Gray decoder (in BIKE-1-CPA [3]), we approximate
the thresholds function - which is here a function of two variables. A first attempt
is shown in Fig. 4. We compute the function over all the valid/relevant inputs
and then compute an approximation by fitting it to a plane. Unfortunately, this
approximation is not sufficiently accurate, an experiment with r = 11, 779 (as
in BIKE-1-CCA [3]) gave an estimated DFR of 10−4 .

(a) The thresholds function.
(b) Approximating the function (blue) us-
ing a plane (yellow,turquoise).

Fig. 4. Approximating the Backflip decoder thresholds function.
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To improve the approximation we project the function onto the plane ē = e1
(0 ≤ e1 ≤ t). Then, for every valid e1, we compute the linear approximation and
tabulate the coefficients. Figure 5, Panel (a) illustrates the linear approximation
for e1 = 25. These thresholds improve the DFR but it is still too high.

A refinement can be obtained by partitioning the approximation into five
regions. The projection graph in Fig. 5 can be partitioned in five intervals as
follows: a) [a0, a1], [a2, a3], where the threshold is fixed to some minimum value
(min); b) [a4, a5] where the threshold is d; c) [a1, a2] and [a3, a4] where the
threshold (th) is approximated using th = b0wt(s) + b1 and th = c0wt(s) + c1,
respectively. For r = 11, 779 the values we use are a0 = 0, a1 = 1, 578, a2 = 1, 832
a3 = 3, 526, a4 = 9, 910 a5 = r. The results is shown Fig. 5 Panel (b) for ē = 25.
We use these values to define the table (T ) with t rows and 8 columns. Every row
contains the a1, a2, a3, a4, b0, b1, c0, c1 values that correspond to the projection
on the plane ē.

(a) Linear approximation of wt(s) ∈ [0, r] (b) Five linear approximation per part.

Fig. 5. Approximating the threshold function when ē = 25 is fixed.

For every (s1, e1) = (wt(s), ē) the threshold is computed by

if (s1 < T[e1][0]) threshold = min;
elif (s1 < T[e1][1]) threshold = T[e1][4] * s1 + T[e1][5];
elif (s1 < T[e1][2]) threshold = min;
elif (s1 < T[e1][3]) threshold = T[e1][6] * s1 + T[e1][7];
else threshold = d

To evaluate the thresholds in constant-time we used a constant-time function
secure le mask that compares two integers j, k and returns the mask 0x0 if
j < k and the mask 0xffffffff otherwise. The threshold computation is now:
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cond0 = secure_le_mask(T[e1][0], s1)

cond1 = secure_le_mask(T[e1][1], s1) & ~secure_le_mask(T[e1][0], s1)

cond2 = secure_le_mask(T[e1][2], s1) & ~secure_le_mask(T[e1][1], s1)

cond3 = secure_le_mask(T[e1][3], s1) & ~secure_le_mask(T[e1][2], s1)

cond4 = ~secure_le_mask(T[e1][3],s1)

res = cond0 & min

res += cond1 & round(T[e1][4] * s1 + T[e1][5])

res += cond2 & min

res += cond3 & round(T[e1][6] * s1 + T[e1][7])

res += cond4 & max

return res

With this we can implement Backflip+ in constant-time, provided that we
fix a-priori the number of iterations.

C Achieving the Same DFR Bounds as of [20]

We ran experiments with Backflip+ and XBF = 100 for BIKE-1 Level-1, scan-
ning all the 34 legitimate r ∈ [8500, 9340] (prime r values such that xr − 1 is a
primitive polynomial) with 4.8M tests for every value. Applying our extrapola-
tion methodology (see Sect. 4) to the acquired data leads to the results illustrated
in Fig. 6 Panels (a) and (b). The figure highlights the pairs (DFR; r) for DFR
2−64 and 2−128 with the smallest possible r. For example, with r = 12, 539 the
linear extrapolation gives DFR of 2−128. Note that [3] claims a DFR of 2−128

for a smaller r = 11, 779. For comparison, with r = 11, 779 our methodology
gives a DFR of 2−104. We can guess that either different TTL values were used
for every r, or that other r values were used, or that a different extrapolation
methodology was applied.

We show one possible methodology (“Last-Linear”) that gives a DFR of
∼2−128 with r = 11, 779 when applied to the acquired data: a) Ignore the points
from the data-set for which 100−DFR is too low to be calculated reliably (e.g.,
the five lower points in Fig. 6); b) Draw a line through the last two remaining
data points with the highest values of r. The rationale is that the “linear regime”
of the DFR evolution starts for values of r that are beyond those that can be
estimated in an experiment. Thus, a line drawn through two data points where
r is smaller than the starting point of the linear regime leads to an extrapolation
that is lower-bounded by the “real” linear evolution. With this approach, the
question is how to choose the two points for which experimental data is obtained
and the DFR is extrapolated from.

This shows that different ways to acquire and interpret the data give different
upper bounds for the DFR. Since the extrapolation shoots over a large gap of
r values, the results are sensitive to the chosen methodology. It is interesting to
note that if we take our data points for Black-Gray and XBG = 5 and use the
Last-Linear extrapolation, we can find two points that would lead to 2−128 and
r = 11, 779, while more conservative methodology gives only 2−101.
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(a) lin. ext., our method. (DFR, r) =
(2−64; 10, 589), (2−128; 12, 539)

(b) lin. ext. Last-Linear. (DFR, r) =
(2−64; 10, 253), (2−128; 11, 813)

Fig. 6. BIKE-1 Level-1 Backflip+ different extrapolation methods. See the text for
details. The sub-captions detail the (DFR; r) for DFR values: 2−64, 2−128.

D Additional Information

The following values of r were used by the extrapolation method:

– BIKE-1 Level-1: 9349, 9547, 9749, 9803, 9859, 9883, 9901, 9907, 9923, 9941,
9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139.

– BIKE-1 Level-3: 19013, 19037, 19051, 19069, 19141, 19157, 19163, 19181,
19219, 19237, 19259, 19301, 19333, 19373, 19387, 19403, 19427, 19469, 19483,
19507, 19541, 19571, 19597, 19603, 19661, 19709, 19717, 19739, 19763, 19813,
19853.

E The Linear and the Quadratic Extrapolations

Table 4 gives the equations for the linear and the quadratic extrapolation
together with the extrapolated values of r for a DFR of 2−23, 2−64, and 2−128. It
covers the tuple (scheme, level, decoder, X), where decoder ∈ {BG=Black-Gray,
BF=Backflip+}.

The BIKE specification [3] chooses r to be the minimum required for achiev-
ing a certain security level, and the best bandwidth trade-off. It also indicates
that it is possible to increase r by “plus or minus 50%” (leaving w, t fixed) with-
out reducing the complexity of the best known key/message attacks. This is an
interesting observation. For example, increasing the BIKE-1 Level-3 r = 19, 853
by 50% gives r = 29, 779 which is already close to the BIKE-1 Level-5 that has
r = 32, 749 (of course with different w and t). We take a more conservative app-
roach and restrict r values to be at most 30% above their CCA values stated in
[3]. Table 4 labels values beyond this limit as N/A.
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F Illustration Graphs

(a) r = 9803, iteration 1 (b) r = 10163, iteration 1

(c) r = 9803, iteration 2 (d) r = 10163, iteration 2

(e) r = 9803, iteration 3 (f) r = 10163, iteration 3

(g) r = 9803, iteration 4 (h) r = 10163, iteration 4

Fig. 7. Histograms of the cases (vertical axis; measured in percentage) that end-up
with some weight of an “ideal” errors vector (horizontal axis) after the XBG = 1, 2, 3, 4
iterations. The decoder is the Black-Gray decoder. Panels a, c, e, g represents the
results for r = 9, 803 and Panels b, d, f, h for r = 10, 163 with f = 0, 20, 30, 40. A lower
error weight is better. See explanation in the text.
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(a) BIKE-1-L1, Black-Gray, lin. ext. (b) BIKE-1-L1, Black-Gray, quad. ext.

(c) BIKE-1-L1, Backflip+, lin. ext. (d) BIKE-1-L1, Backflip+, quad. ext.

(e) BIKE-1-L3, Black-Gray, lin. ext. (f) BIKE-1-L3, Black-Gray, quad. ext.

(g) BIKE-1-L3, Backflip+, lin. ext. (h) BIKE-1-L3, Backflip+, quad. ext.

Fig. 8. BIKE-1 Level-1 and Level-3 extrapolations (see Sect. 4 for details).
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13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017).
https://eprint.iacr.org/2017/604
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Abstract. A new protograph-based framework for message passing
(MP) decoding of low density parity-check (LDPC) codes with Hamming
weight amplifiers (HWAs), which are used e.g. in the NIST post-quantum
crypto candidate LEDAcrypt, is proposed. The scheme exploits the cor-
relations in the error patterns introduced by the HWA using a turbo-like
decoding approach where messages between the decoders for the outer
code given by the HWA and the inner LDPC code are exchanged. Decod-
ing thresholds for the proposed scheme are computed using density evolu-
tion (DE) analysis for belief propagation (BP) and ternary message pass-
ing (TMP) decoding and compared to existing decoding approaches. The
proposed scheme improves upon the basic approach of decoding LDPC
code from the amplified error and has a similar performance as decoding
the corresponding moderate-density parity-check (MDPC) code but with
a significantly lower computational complexity.

Keywords: Mceliece cryptosystem · LDPC codes · Hamming weight
amplifiers · Code-based cryptography

1 Introduction

In 1978, McEliece proposed a code-based public-key cryptosystem (PKC) [1]
that relies on the hardness of decoding an unknown linear error-correcting code.
Unlike the widely-used Rivest-Shamir-Adleman (RSA) cryptosystem [2], the
McEliece cryptosystem is resilient against attacks performed on a quantum com-
puter and is considered as post-quantum secure. One drawback of the McEliece
cryptosystem compared to the RSA cryptosystem is the large key size and the
rate-loss. Many variants of the McEliece cryptosystem based on different code
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https://doi.org/10.1007/978-3-030-54074-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54074-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-54074-6_5


Protograph-Based Decoding 81

families have been considered. In particular, McEliece cryptosystems based on
low density parity-check (LDPC) codes allow for very small keys but suffer from
feasible attacks on the low-weight dual code [3].

A variant based on quasi cyclic (QC)-LDPC codes that uses a sparse column
scrambling matrix, a so-called Hamming weight amplifier (HWA), to increase
the density of the public code parity-check matrix was proposed in [4]. However,
poor choices of the column scrambling matrix allow for structural attacks [5].
In [6] a scheme that defeats the attack in [5] by using dense row scrambling
matrices and less structured column scrambling matrices was presented. Opti-
mized code constructions for the cryptosystem proposed in [6] were presented
in [7]. The ideas and results of [6,7] are the basis for the LEDAcrypt [8] PKC
and authentication schemes that are candidates for the current post-quantum
cryptosystem standardization by NIST.

LEDAcrypt [8] uses a variant of the bit-flipping1 decoder [10], called “Q-
decoder”, that exploits the correlation in the error patterns due to the HWA.
The “Q-decoder” has the same error-correction performance as a BF decoder for
the corresponding moderate-density parity-check (MDPC) code but with a sig-
nificantly lower computational complexity [7]. In this paper, a new protograph-
based decoding scheme for LDPC codes with HWAs is presented [8, Chap. 5].
The new scheme provides a turbo-like decoding framework, where information
between the decoder of an outer rate-one code given by the HWA and the decoder
of the inner LDPC codes, is exchanged. The proposed framework allows to com-
pare, analyze and optimize message passing (MP) decoding schemes for LDPC
codes with HWAs.

The density evolution (DE) analysis for belief propagation (BP) and ternary
message passing (TMP) decoding shows that the proposed protograph-based
scheme has a similar error-correction capability as the corresponding MDPC
code under MP decoding and improves upon the basic approach of decoding the
amplified error using an LDPC decoder. For some parameters, the protograph-
based scheme improves upon the corresponding MDPC decoding approach while
having a lower computational complexity due to the sparsity of the extended
graph. The gains in the error-correction capability predicted by DE analysis are
validated by Monte Carlo simulations under BP and TMP decoding.

2 Preliminaries

2.1 Circulant Matrices

Denote the binary field by F2 and the set of m×n matrices over F2 by F
m×n
2 . The

set of all vectors of length n over F2 is denoted by F
n
2 . Vectors and matrices are

written as bold lower-case and upper-case letters such as a and A, respectively.
A binary circulant matrix A of size p is a p × p matrix with coefficients in F2

1 In [8] and other literature the bit-flipping (BF) decoder is referred to as “Gallager’s
BF” algorithm although it is different from the algorithm proposed by Gallager in [9].
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obtained by cyclically shifting its first row a = (a0, a1, . . . , ap−1) to the right,
yielding

A =

⎛
⎜⎜⎜⎝

a0 a1 · · · ap−1

ap−1 a0 · · · ap−2

...
...

. . .
...

a1 a2 · · · a0

⎞
⎟⎟⎟⎠ .

The set of p × p circulant matrices together with matrix multiplication and
addition forms a commutative ring that is isomorphic to the polynomial ring
(F2[X]/ (Xp − 1) ,+, ·). In particular, there is a bijective mapping between a cir-
culant matrix A and a polynomial a(X) = a0+a1X+. . .+ap−1X

p−1 ∈ F2[X]. We
indicate the vector of coefficients of a polynomial a(X) as a = (a0, a1, . . . , ap−1).
The weight of a polynomial a(X) is the number of its non-zero coefficients, i.e.,
it is the Hamming weight of its coefficient vector a. We indicate both weights
with the operator wht (·), i.e., wht (a(X)) = wht (a). In the remainder of this
paper we use the polynomial representation of circulant matrices to provide an
efficient description of the structure of the codes.

2.2 McEliece Cryptosystem Using LDPC Codes with Hamming
Weight Amplifiers

For n = N0p, dimension k = K0p, redundancy r = n − k = R0p with R0 =
N0 − K0 for some integer p, a parity-check matrix H(X) of a QC-LDPC2 code
in polynomial form is a R0 ×N0 matrix where each entry (polynomial) describes
the corresponding circulant matrix. We denote the corresponding R0 × N0 base
matrix that indicates the Hamming weights of the polynomials in H(X) by

BH =

⎛
⎜⎜⎜⎝

b00 b01 . . . b0(N0−1)

b10 b11 . . . b1(N0−1)

...
...

. . .
...

b(R0−1)0 b(R0−1)1 . . . b(R0−1)(N0−1)

⎞
⎟⎟⎟⎠ .

The column scrambling matrix Q(X) is of the form

Q(X) =

⎛
⎜⎝

q00(X) . . . q0(N0−1)(X)
...

. . .
...

q(N0−1)0(X) . . . q(N0−1)(N0−1)(X)

⎞
⎟⎠ . (1)

2 As in most of the literature, we loosely define a code to be QC if there exists a
permutation of its coordinates such that the resulting (equivalent) code has the
following property: if x is a codeword, then any cyclic shift of x by � positions is
a codeword. For example, a code admitting a parity-check matrix as an array of
R0×N0 circulants does not fulfill this property. However the code is QC in the loose
sense, since it is possible to permute its coordinates to obtain a code for which every
cyclic shift of a codeword by � = N0 positions yields another codeword.
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We denote the corresponding base matrix for Q(X) by

BQ =

⎛
⎜⎜⎜⎝

b0 b1 . . . bN0−1

bN0−1 b0 . . . bN0−2

...
...

. . .
...

b1 b2 . . . b0

⎞
⎟⎟⎟⎠

where
∑N0−1

i=0 bi = dQ. This implies that Q(X) has constant row and column
weight dQ.

Without loss of generality we consider in the following codes with r = p
(i.e. R0 = 1). This family of codes covers a wide range of code rates and is of
particular interest for cryptographic applications since the parity-check matrices
can be characterized in a compact way. QC-LDPC codes with r = p admit a
parity-check matrix of the form

H(X) =
(
h0(X) h1(X) . . . hN0−1(X)

)
. (2)

Let DECH (·) be an efficient decoder for the code defined by the parity-check
matrix H that returns an estimate of a codeword or a decoding failure.

Key Generation

– Randomly generate a parity-check matrix H ∈ F
r×n
2 of the form (2) with

wht (hi(X)) = d
(i)
c for i = 0, . . . , N0 − 1 and an invertible column scrambling

matrix Q ∈ F
n×n
2 of the form (1). The matrix H with low row weight dc =∑N0−1

i=0 d
(i)
c and the matrix Q with low row and column weight dQ is the

private key.
– From the private matrices H(X) and Q(X) the matrix H ′(X) is obtained as

H ′(X) = H(X)Q(X) =
(
h′
0(X) . . . h′

N0−1(X)
)
.

The row weight d′
c of H ′(X) is upper bounded by

d′
c ≤ dcdQ.

Due to the low density of H and Q we have d′
c ≈ dcdQ. Hence, the density of

H ′ is higher than H which results in a degraded error-correction performance.
Depending on dc and dQ, H ′ may be a parity-check matrix of a QC-MDPC
code [11].

– The public key is the corresponding binary k × n generator matrix G′(X) of
H ′(X) in systematic form3.

3 We assume that G′(x) can be brought into systematic form which is possible with
high probability (see [8]).
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Encryption

– To encrypt a plaintext4 u ∈ F
k
2 a user computes the ciphertext c ∈ F

n
2 using

the public key G′ as
c = uG′ + e

where e is an error vector uniformly chosen from all vectors from F
n
2 of Ham-

ming weight wht (e) = e.

Decryption

– To decrypt a ciphertext c the authorized recipient uses the secret matrix Q
to compute the transformed ciphertext

c̃ = cQT = uG′QT + eQT . (3)

A decoder DECH (·) using the secret matrix H is applied to decrypt the
transformed ciphertext c̃ as

ĉ = DECH (c̃) = DECH (uG′QT + eQT ). (4)

– The generator matrix corresponding to H is used to recover the plaintext u
from ĉ.

2.3 Protograph Ensembles

A protograph P [13] is a small bipartite graph comprising a set of N0 variable
nodes (VNs) (also referred to as VN types) {V0,V1, . . . ,VN0−1} and a set of M0

check nodes (CNs) (i.e., CN types) {C0,C1, . . . ,CM0−1}. AVN typeVj is connected
to a CN type Ci by bij edges. A protograph can be equivalently represented in
matrix form by an M0 × N0 matrix B. The jth column of B is associated to VN
type Vj and the ith row of B is associated to CN type Ci. The (i, j) element of
B is bij . A larger graph (derived graph) can be obtained from a protograph by
applying a copy-and-permute procedure. The protograph is copied p times (p is
commonly referred to as lifting factor), and the edges of the different copies are
permuted preserving the original protograph connectivity: If a type-j VN in the
derived graph is connected to a type-i CN with bij edges in the protograph, each
type-j VN is connected to bij distinct type-i CNs (multiple connections between a
VN and a CN are not allowed in the derived graph). The derived graph is a Tanner
graph with n0 = N0p VNs and m0 = M0p CNs that represent a binary linear
block code. A protograph P defines a code ensemble C . For a given protograph
P, consider all its possible derived graphs with n0 = N0p VNs. The ensemble C
is the collection of codes associated to the derived graphs in the set.

A distinctive feature of protographs is the possibility of specifying graphs that
have VNs which are associated to codeword symbols, as well as VNs which are
4 We assume that the CCA-2 security conversions from [12] are applied to the McEliece

cryptosystem to allow for systematic encoding without security reduction.
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not associated to codeword symbols. The latter class of VNs are often referred
to as state or punctured VNs. The term “punctured” is used since the code
associated with the derived graph can be seen as a punctured version of a longer
code associated with the same graph for which all the VNs are associated to
codeword bits. The introduction of state VNs in a code graph allows designing
codes with excellent performance in terms of error correction [14–16].

2.4 Decoding Algorithms for LDPC Codes

In this work we consider two types of MP decoding algorithms for LDPC codes.

Scaled Sum-Product Algorithm. We consider a BP decoding algorithm that
generalizes of the classical sum-product algorithm (SPA), where the generaliza-
tion introduces an attenuation of the extrinsic information produced at the CNs
(see [17] for details). As we shall see, the attenuation is a heuristic to control the
code performance at low error rates where trapping sets may lead to error floors.

Ternary Message Passing (TMP). TMP is an extension of binary message
passing (BMP) decoding introduced in [18]. The exchanged messages between
CNs and VNs belong to the ternary alphabet M = {−1, 0, 1}, where 0 corre-
sponds to an erasure. At the CNs the outgoing message is the product of the
incoming messages. The update rule at the VNs involves weighting the channel
and the incoming CN messages. The corresponding weights can be estimated
from a DE analysis (see [19]). A quantization function is then applied to map
the sum of the weighted messages to the ternary message alphabet M.

2.5 Decoding of QC-LDPC codes with Hamming Weight Amplifiers

The decoding step in (4) using the parity-check matrix H is possible since
uG′QT = x′QT is a codeword x of the LDPC code C described by H since

x′H ′T = x′QTHT = 0 ⇐⇒ x′QT ∈ C.

The error weight of transformed error e′ = eQT in (4) is increased and upper
bounded by

wht (e′) ≤ edQ.

Due to the sparsity of H, Q and e we have wht (e′) ≈ edQ. In other words, the
matrix Q increases the error weight and thus we call Q a HWA.

In the following we consider two decoding principles for LDPC codes with
HWAs.

Basic Decoding Approach. A simple approach to decode an LDPC code
with HWA is to decode the transformed ciphertext uG = DECH (c̃) using a
decoder for the LDPC code defined by H (see [6,7]). The sparse parity-check
matrix DECH (·) has a good error-correction performance but the decoder must
correct the amplified error e′ of weight wht (e′) ≈ edQ.
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Decoding QC-LDPC-HWA Codes as QC-MDPC Codes. An alternative
decoding approach is to consider H ′ as a parity-check matrix of a QC-MDPC
code and decode the ciphertext c without using the transformation in (3):

uG′ = DECH ′(c). (5)

Compared to DECH (·), the error-correction performance of DECH ′(·) is
degraded due to the higher density of H ′. However, the decoder must only
correct errors of weight wht (e) = e (instead of edQ) since the Hamming weight
is not increased by the transformation of the ciphertext c in (3).

Comparison of Decoding Strategies. In order to evaluate the performance
of the previously described decoding strategies for LDPC codes with HWA, we
analyze the error-correction capability using DE. The analysis, which addresses
the performance of the relevant code ensembles in the asymptotic regime, i.e., as
n goes to infinity, can be used to estimate the gains achievable in terms of error
correction capability. We denote the iterative decoding threshold under SPA by
δ�
SPA and the decoding threshold of TMP by δ�

TMP. For a fair comparison, we
consider the QC-MDPC ensemble for 80-bit security from [11] as a reference.
For the reference ensemble, the estimate of the error-correction capability for a
given n under SPA and TMP decoding can be roughly obtained as nδ�

SPA and
nδ�

TMP, respectively.
The parameters of the corresponding LDPC codes and the HWAs are cho-

sen such that the row-weights of the resulting parity-check matrices H ′ = HQ
match with the reference ensemble, i.e., we have d′

c = dcdQ = 90. In this set-
ting, a rough estimate of the error-correction capability of the basic decoder is
nδ�

SPA/dQ and nδ�
TMP/dQ, where δ�

SPA and δ�
TMP are the decoding thresholds of

the corresponding LDPC code under SPA and TMP decoding, respectively.
Table 1 shows, that decoding the MDPC code (dQ = 1) gives a better error-

correction performance than decoding the LDPC code from the amplified error.

Table 1. Comparison of decoding thresholds for basic (LDPC) and MDPC decoding.

Base matrix n dQ nδ�
SPA/dQ nδ�

TMP/dQ

(45 45) 9602 1 113 113

(15 15) 9602 3 99 89

(9 9) 9602 5 87 78

(5 5) 9602 9 72 62

There is a bit-flipping-based [10] decoder, called “Q-decoder”, that incorpo-
rates the knowledge of the HWA matrix Q during the decoding process [8]. The
Q-decoder is equivalent to the bit-flipping decoder of the corresponding MDPC
code [8, Lemma 1.5.1] but has a significantly lower computational complexity [8,
Lemma 1.5.2].
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3 Improved Protograph-Based Decoding of LDPC Codes
with Hamming Weight Amplifiers

Motivated by the observations above, we derive a new protograph-based decod-
ing framework for LDPC codes with HWAs that incorporates the knowledge
about the HWA matrix Q at the receiver. The decoding framework allows to
apply known MP decoding algorithms and has an improved error-correction
capability compared to the naive approach and a significantly reduced compu-
tational complexity compared to the corresponding MDPC decoding approach
(see (5)).

3.1 Protograph Representation of LDPC-HWA Decoding

Let C be an LDPC code with parity-check matrix H and let C′ denote the code
with parity-check matrix

H ′ = HQ. (6)

We have

xHT = 0, ∀x ∈ C and x′H ′T = 0, ∀x′ ∈ C′. (7)

Using (6) we can rewrite (7) as

x′H ′T = x′(HQ)T = x′QTHT = 0, ∀x′ ∈ C′.

Hence, x′QT must be contained in C for all x′ ∈ C′. Defining x = x′QT we can
restate (7) as

x = x′QT

xHT = 0

which we can write as (x′ x)HT
ext = 0 with

Hext =
(
Q In×n

0 H

)
. (8)

The matrix Hext in (8) is a (n + r) × 2n parity-check matrix of an LDPC code
of length 2n and dimension n − r. The corresponding base matrix of Hext is

Bext =
(
BQ I
0 BH

)
. (9)

The extended parity-check Hext can be used for decoding where the n right-
most bits are associated to the punctured VNs and the n leftmost bits are asso-
ciated to the ciphertext c′. As mentioned in Sect. 2.3, introducing state VNs in a
code graph can improve the error-correction capability of the code significantly
[14–16].

The protograph corresponding to the base matrix Bext is depicted in Fig. 1.
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Fig. 1. Protograph representation of the LDPC code with HWA.

3.2 Complexity Considerations

The complexity of MP decoding depends on the CN and VN degrees of the
underlying graph. Hence, the complexity of decoding the LDPC code is signifi-
cantly lower than the complexity of decoding the corresponding MDPC code (see
e.g. [7]). For the protograph-based decoding approach, we have O ((dc + dQ)n)
CN and VN messages per iteration whereas for MDPC decoding we have
O (dvdQn) CN and VN messages per iteration. Hence, the protograph-based
decoding approach has a significantly lower complexity compared to the MDPC
decoding approach.

Example 1. This effect was also observed in a Monte Carlo simulation for the first
ensemble in Table 3. The simulation with a non-optimized ANSI C implementa-
tion of the TMP decoder took 36.9 · 10−3 s/iteration for the protograph-based
approach and 1.1 s/iteration for the corresponding MDPC approach.

4 Density Evolution Analysis

We now provide an asymptotic analysis of the code ensembles resulting from
the different decoding approaches for LDPC codes with HWAs. The analysis is
performed by means of DE under BP (SPA) and TMP decoding in order to get
a rough estimate of the error correction capability of the codes drawn from the
proposed ensembles.
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4.1 BP: Quantized Density Evolution for Protographs

For BP, we resort to quantized DE (see [20,21] for details). The extension to pro-
tograph ensembles is straightforward and follows [16,22]. Simplified approaches
based on Gaussian approximations are discarded due to the large CN degrees [23]
of the MDPC ensembles.

4.2 TMP: Density Evolution for Protographs

The decoding threshold δ�
TMP, the optimal quantization threshold and the

weights for the CN messages for TMP can be obtained by the DE analysis
in [19].

4.3 Estimation of the Error Correction Capability

In order to evaluate the error correction performance of the above described
decoding scheme we compare the protograph ensembles described by (9) with the
corresponding QC-MDPC ensemble. As a reference we take the MDPC ensemble
BMDPC = (45 45) for 80-bit security from [11].

For a fair comparison, the reference ensembles in Table 2 are designed such
that the base matrix B of HQ equals the base matrix BMDPC of the corre-
sponding QC-MDPC ensemble, i.e., we have

BHBQ
!= BMDPC.

For each ensemble, we computed the iterative decoding threshold, i.e., the
largest channel error probability for which, in the limit of large n, DE predicts
successful decoding convergence. We denote the iterative decoding threshold
under SPA by δ�

SPA and the decoding threshold of TMP by δ�
TMP. In Table 2 we

provide a rough estimate of the number of errors at which the waterfall region
of the block error probability is expected to be.

The result show, that for the considered parameters the error-correction capa-
bility of the protograph-based approach improves upon the MDPC-based app-
roach under SPA decoding.

Table 2. Thresholds computed for different protographs.

Ensemble Base matrix n nδ�
SPA nδ�

TMP

CA (45 45) 9602 113 113

CB

(
2 1 1 0
1 2 0 1
0 0 15 15

)
9602 121 103

CC

(
3 2 1 0
2 3 0 1
0 0 9 9

)
9602 126 101

CD

(
5 4 1 0
4 5 0 1
0 0 5 5

)
9602 127 80
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4.4 Estimation of the Error Correction Capability
for the LEDAcrypt Code Ensembles

Table 3 shows the decoding thresholds under SPA and TMP decoding for the pro-
tograph ensembles corresponding to the parameters in the current LEDAcrypt
specifications [8, Table 3.1]. The decoding thresholds for the MDPC ensembles
under SPA decoding could not be obtained by the quantized DE due to the high
CN degrees. The results show that the proposed protograph-based approach has
a similar error correction capability as the corresponding MDPC code. Further,
the error correction capability under SPA and the efficient TMP decoding sig-
nificantly improves upon the basic decoding approach [6,7].

Table 3. Thresholds for different protographs for the parameters of LEDAcrypt [8,
Table 3.1] for the NIST categories 1 (128 Bit), 3 (192 Bit) and 5 (256 Bit).

SL[Bit] Bext BMDPC n Proto MDPC Basic

nδ�
SPA nδ�

TMP nδ�
TMP nδ�

SPA/dQ

128

(
4 3 1 0
3 4 0 1
0 0 11 11

)
(77 77) 29878 239 203 227 167⎛

⎝ 4 3 2 1 0 0
2 4 3 0 1 0
3 2 4 0 0 1
0 0 0 9 9 9

⎞
⎠ (81 81 81) 23559 116 98 110 72

192

(
5 3 1 0
3 5 0 1
0 0 13 13

)
(104 104) 51386 316 272 303 222⎛

⎝ 4 4 3 1 0 0
3 4 4 0 1 0
4 3 4 0 0 1
0 0 0 11 11 11

⎞
⎠ (121 121 121) 48201 162 144 163 106

256

(
7 6 1 0
6 7 0 1
0 0 11 11

)
(143 143) 73754 344 302 331 223⎛

⎝ 4 4 3 1 0 0
3 4 4 0 1 0
4 3 4 0 0 1
0 0 0 15 15 15

⎞
⎠ (165 165 165) 82311 205 189 214 144

5 Simulation Results

In order to evaluate the error correction capability and validate the gains pre-
dicted by DE analysis, we performed Monte Carlo simulations for codes picked
from the ensembles in Table 2. The number of iterations for the SPA and TMP
algorithm was fixed to 100.

Figure 2 shows that the error correction performance of CB significantly
improves upon the performance of CA under SPA decoding. For TMP decod-
ing we observe, that we can recover much of the loss with respect to CA. The
figure also shows that the decoding thresholds predicted by DE (see Table 2)
give a good estimate of the error correction performance gains.
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Fig. 2. Block error rate for codes from the ensembles in Table 2 under SPA and TMP
decoding with 100 iterations.

6 Conclusions

In this paper, message passing (MP) decoding schemes for low density parity-
check (LDPC) codes with Hamming weight amplifiers (HWAs), such as those
used in the post-quantum crypto NIST proposal LEDAcrypt, were considered.
A new protograph-based decoding framework that allows to analyze and opti-
mize MP decoding schemes for LDPC codes with HWAs was presented. The
new scheme uses a turbo-like principle to incorporate partial information about
the errors that is available at the decoder and recovers most of the loss due
to the error amplification of the HWA. Decoding thresholds for the resulting
code ensembles under sum-product algorithm (SPA) and ternary message pass-
ing (TMP) decoding were obtained using density evolution (DE) analysis. The
results show that the proposed decoding scheme improves upon the basic decod-
ing approach and has a similar performance as the moderate-density parity-check
(MDPC) decoding approach with a significantly lower complexity.
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Abstract. We propose a new rank metric code-based signature scheme
constructed via the Schnorr approach. Our scheme is designed in a way
to avoid leakage of the information on the support for the secret key
used in the signature generation. We define some new problems in rank
metric code-based cryptography: the Rank Support Basis Decomposition
problem and the Advanced Rank Support Basis Decomposition problem.
We also discuss their hardness and solving complexity. Furthermore, we
give a proof in the EUF-CMA security model, by reducing the security of
our scheme to the Rank Syndrome Decoding problem, the Ideal LRPC
Codes Indistinguishability problem and the Decisional Rank Support
Basis Decomposition problem. We analyze the practical security for our
scheme against the known attacks on rank metric signature schemes. Our
scheme is efficient in terms of key size (5.33 KB) and of signature sizes
(9.69 KB) at 128-bit classical security level.

Keywords: Rank metric · Digital signature scheme · Provable
security · Code-based cryptography

1 Introduction

In 2019, the National Institute of Standards and Technology (NIST) has
announced second round candidates in the post-quantum standardization pro-
cess. None of the code-based digital signature schemes (pqsigRM [25], RaCoSS
[29] and RankSign [6]) were selected as the signature candidates in second round.
In particular, both RaCoSS and RankSign were cryptanalyzed in [13,16] respec-
tively, while pqsigRM has large key size comparing to other signature scheme
submissions. Recently, Debris-Alazard et al. [15] has proposed a code-based
signature scheme in Hamming metric, namely Wave, constructed via a code-
based one way trapdoor function that meets the preimage sampleable property.
Although it is still secure up-to-date, it requires public key size of 3 MB with
signature size of around 1.6 KB for 128-bit security. Constructing a secure sig-
nature scheme with compact key sizes still remains as a challenging problem in
code-based cryptography.
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Besides code-based signature constructed via the Hash-and-Sign approach
(for instances RankSign and Wave), there are two other approaches in con-
structing code-based signature in the rank metric settings. The first approach
considers a zero-knowledge authentication algorithm and applies Fiat-Shamir
transformation to convert it into a signature scheme. Signature schemes such
as Rank CVE and Veron [9], cRVDC [10] were constructed via this approach.
Although such signatures are efficient in terms of public key size and secret key
size (about one thousand bits), they suffered a major drawback in terms of sig-
nature size (up to two hundred thousand bits) as the number of necessary rounds
for the protocol is large.

On the other hand, the second approach adapts the Schnorr signature scheme
[30] into rank metric context. Signature schemes such as TPL [32] and RQCS
[31] were proposed via this approach. The signature of these schemes consists
of a vector z = y + c ◦ x, where y is an ephemeral key, c is the output of a
hash function commited with a message to be signed, x is the secret key of the
signature scheme and ◦ is an operation on c and x. In the verification step,
one needs to verify that rk(z) ≤ rk(y) + rk(c) × rk(x). Although these schemes
constructed via the Schnorr approach have compact key size and signature size,
the main drawback of the signature is the leakage of the information in the
signature to recover the secret key. Lau et al. [24] generalized the attack on RQCS
in [2] and proposed a generic key recovery attack (denoted as LTP attack), which
can be applied to cryptanalyze TPL signature schemes within a few seconds. In
particular, an adversary can exploit the information from z and c to recover a
support basis for the secret key x. With the recovered basis, the adversary can
compute a support matrix for the secret key using the information on public key.

In 2019, Aragon et al. [3] proposed a signature scheme called Durandal which
overcomes the drawback of rank metric signatures constructed via the Schnorr
approach. Let W and V be subspaces of Fqm . Instead of having a signature z in
the form of z = y + c ◦ x ∈ (W + V )n, Durandal includes an extra secret x′ in
the signature so that z = y + c ◦ x + p ◦ x′ ∈ (W + U)n, where U is a filtered
subspace of V . Such U is filtered in a way that an adversary is not able to exploit
the information from z, c and p to recover a support basis for the secret key x
and x′, hence LTP attack is difficult to be applied on the Durandal signature.
Although Durandal has good performance in the compactness of public key size
(of 15.25 KB) and signature size (4.06 KB), it has the following challenges in
implementation:

1. Durandal is a signature scheme that applies the “Fiat-Shamir with Aborts” (FS
Aborts) strategy [27]. Inparticular, in the offline signature generationphase, the
probability that a random U satisfies the required filtered conditions is approx-
imately e−2 ≈ 0.135. As a consequence, the process of randomizing U has to be
repeated 7.5 times on average to obtain a suitable subspace U .

2. In the offline signature generation phase, it is required to compute an md×md-
matrix D, which would be required for the computation of the signature in
the online phase. The computation of D requires inverting a linear system
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with md equations, hence the cost is O (mω
d ) multiplications in the underlying

base field, where ω is the constant of linear algebra.

As a consequence, this results in longer signature generation timing, especially
during the offline phase.

Our Contribution. In this paper, we propose a new signature scheme con-
structed via the Schnorr approach. We propose a new method to avoid leakage
of the information on the support for the secret key used in the signature gen-
eration, hence able to resist against LTP attack.

In particular, let U , V and F be random subspaces of Fqm with dimensions
ru, rv and rf respectively. We consider U , V and F to be the secret key of our
signature scheme. Let b be a random qm-ary vector of rank rb, λ be a random
qm-ary vector of rank rλ, and f be a random vector in F . Then, compute z =
b + λ(v′′ − u′′f) where u′′ and v′′ are random vectors in U and V respectively.
Although z is sent out as signature, the support bases of the secret U , V and
F are masked with λ which is not made public. Our signature scheme has the
following advantages:

1. We use only random vectors λ to mask the secret key. Our masking only
involves polynomial additions and multiplications and does not require any
costly computation (such as solving a linear system).

2. Each steps in our signature generation is deterministic, i.e., we are not
required to apply the Fiat-Shamir with Aborts strategy. As such, our sig-
nature generation can be much more efficient.

3. Our signature scheme has the most compact public key size (of 5.33 KB)
among all the rank metric signature schemes constructed via the Schnorr
approach.

In addition, we define some new problems in rank metric code-based cryptog-
raphy: the Rank Support Basis Decomposition problem and the Advanced Rank
Support Basis Decomposition problem. We also discuss their hardness and solv-
ing complexity. Furthermore, we give a proof in the EUF-CMA security model, by
reducing the security of our scheme to the Rank Syndrome Decoding problem,
the Ideal LRPC Codes Indistinguishability problem and the Advanced Rank
Support Basis Decomposition problem. We also analyze the practical security
for our scheme against the known attacks on rank metric signature schemes.

Organization of the Paper. This paper is organized as follows: Sect. 2 reviews
some definitions and preliminary results in rank metric coding theory. Section 3
presents the specification for our new signature scheme, MURAVE. In Sect. 4, we
define some new problems in rank metric code-based cryptography with discus-
sions on their hardness and solving complexity. We prove that MURAVE achieves
EUF-CMA security in Sect. 5. We also show that MURAVE is secure against the
existing attacks on rank metric signature schemes. Section 6 presents the param-
eters and the implementations timing for MURAVE. We conclude our paper in
Sect. 7.
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2 Rank Metric Codes

In this section, we introduce some basic definitions and preliminaries in rank
metric coding theory. Let q be a prime power. We denote Fq as the finite field
with q elements, and Fqm as the finite field with qm elements. We can view
Fqm as an m-dimensional vector space over Fq with basis {β1, . . . , βm}, i.e.,
Fqm = 〈β1, . . . , βm〉Fq

where 〈β1, . . . , βm〉Fq
is the Fq-linear span of the elements

in {β1, . . . , βm}. We will omit the term Fq if there is no ambiguity on Fq.

Definition 1. An [n, k]-linear code C of length n and dimension k is a linear
subspace of Fn

qm with dimension k. Moreover, C can be represented by a generator

matrix G ∈ F
k×n
qm with rk(G) = k, or by a parity-check matrix H ∈ F

(n−k)×n
qm

with rk(H) = n − k and GHT = 0. More specifically,

C =
{
x ∈ F

n
qm : x = mG, for all m ∈ F

k
qm

}
=

{
x ∈ F

n
qm : xHT = 0

}
.

We say that G (respectively H) is in systematic form if it is of the form [Ik | A]
where A ∈ F

k×(n−k)
qm (respectively [In−k | B] where B ∈ F

(n−k)×k
qm ).

Definition 2. Let x = (x1, . . . , xn) ∈ F
n
qm and β = (β1, . . . , βm) ∈ F

m
qm where

{β1, . . . , βm} is a basis of Fqm . For 1 ≤ i ≤ n, we can write xi =
m∑

j=1

cjiβj where

cji ∈ Fq, i.e., x = βC where C = [cji]1≤j≤m,
1≤i≤n

∈ F
m×n
q . The rank weight rk(·) of

x is defined as rk(x) := rk(C).

The following is a well known result for a vector x of rank r:

Lemma 1 ([23, Proposition 10]). Let x = (x1, . . . , xn) ∈ F
n
qm be a vector such

that rk(x) = r. Then there exist x̂ = (x̂1, . . . , x̂r) ∈ F
r
qm and Ex ∈ F

r×n
q such

that x = x̂Ex with rk(x̂) = r and rk(Ex) = r. We call supp(x) = 〈x1, . . . , xn〉 ⊂
F

n
qm as the support for x, Ex as a support matrix for x, and {x̂1, . . . , x̂r} as a

support basis for x.

Notation. The following are the notations used throughout this paper:

– By abuse of notation, we can view a vector g = (g0, . . . , gk−1) ∈ F
k
qm as a

polynomial G(X) =
k−1∑

i=0

giX
i.

– Denote Em,n,r :=
{
x : x ∈ F

n
qm , rk(x) = r

}
.

– Let g1, g2 ∈ F
k
qm and P (x) ∈ Fq[X] be an irreducible polynomial of degree k.

Let G1(X) and G2(X) be the polynomials associated respectively to g1 and
g2. We denote g1g2 mod P := G1(X)G2(X) mod P . We will often omit
mentioning the polynomial P if there is no ambiguity.

– Denote 1 := (1, 0, ..., 0) ∈ F
k
qm .

– Denote g−1 ∈ F
k
qm as the vector (or polynomial) such that 1 = gg−1 mod P .

If g−1 exists, then g is invertible.
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– Let V = supp(v). Denote V −1 := supp(v−1).

– Let X be a finite set. We write x
$← X to denote the assignment to x of an

element randomly sampled from the uniform distribution on X.
– Denote SubSp(d,Fqm) as the set of all d-dimensional Fq-subspaces of Fqm .
– Let A = 〈a1, . . . , ar〉 ∈ SubSp(r,Fqm) and B = 〈b1, . . . , bd〉 ∈ SubSp(d,Fqm).

Denote the product space A.B := 〈a1b1, . . . , arbd〉 ⊂ Fqm as a vector subspace
with dimension at most rd.

– DenoteRV(r,Fqm , k) as an algorithm that outputs a random r-dimensional vec-

tor subspace V
$← SubSp(r,Fqm) and a random k-dimensional vector v

$← V k.

We consider [2k, k] ideal codes defined as follows:

Definition 3 (Ideal Codes). Let P (X) ∈ Fq[X] be an irreducible polynomial
of degree k and g1, g2 ∈ F

k
qm . For 1 ≤ j ≤ 2, let Gj(X) =

∑k−1
i=0 gjiX

i be the
polynomials associated respectively to gj = (gj,0, . . . , gj,k−1). The [2k, k] ideal
code C with generator (g1, g2) is the code with generator matrix

G =

⎡

⎢
⎣

X0G1(X) mod P X0G2(X) mod P
...

...
Xk−1G1(X) mod P Xk−1G2(X) mod P

⎤

⎥
⎦ . (1)

Equivalently, we have C =
{
(xg1 mod P,xg2 mod P ) : for all x ∈ F

k
qm

}
. Fur-

thermore, if g1 is invertible, we may express the code in systematic form, i.e.
C =

{
(x,xg) : for all x ∈ F

k
qm

}
where g = g−1

1 g2 mod P . We call g and P as
the generator for this code C.

Remark 1. Let C be a [2k, k] ideal code with generator (g1, g2). We say that
(h1,h2) and P define a parity check matrix of C if H = [H1 | H2] is a parity
check matrix of G as defined in (1) where

H1 =

⎡

⎢
⎣

X0h1 mod P
...

Xk−1h1 mod P

⎤

⎥
⎦ and H2 =

⎡

⎢
⎣

X0h2 mod P
...

Xk−1h2 mod P

⎤

⎥
⎦ .

Similarly, if h−1
1 is invertible, we call h = h−1

1 h2 and P as the generator for the
parity check matrix of this ideal code C.

The following is a problem defined in rank metric coding theory.

Problem 1 (Rank Syndrome Decoding (RSD) Problem). Let H be a full
rank (n−k)×n matrix over Fqm , s ∈ F

n−k
qm and r an integer. The Rank Syndrome

Decoding problem RSDH(q,m, n, k, r) is to determine a vector x ∈ Em,n,r such
that xHT = s.
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The RSD problem is analogous to the classical syndrome decoding SD prob-
lem in Hamming metric (SD was shown to be an NP-complete problem [11]).
Recently, Gaborit and Zémor [19] showed that if there were efficient probabilistic
algorithms for solving the RSD problem, then there would exist efficient proba-
bilistic algorithms to solve the syndrome decoding problem in Hamming metric.
As a result, the RSD problem is accepted by the research community as a hard
problem for which a rank metric code-based cryptosystem is based on.

There are generally two types of generic attacks on the RSD problem: com-
binatorial attack and algebraic attack.

Combinatorial Attack. The combinatorial approach depends on counting the
number of possible support basis of size r or support matrix of rank r for a rank
code of length n over Fqm , which corresponds to the number of subspaces of
dimension r in Fqm . We summarize the existing combinatorial attacks with their
complexities in Table 1.

Table 1. Combinatorial attacks on RSD with their corresponding solving complexities

Attacks Complexity

CS [14] O
(
(nr + m)3q(m−r)(r−1)

)

GRS-I [18]

⎧
⎨
⎩
O

(
(n − k)3m3qr min{k,� km

n �})
if s �= 0,

O
(
(n − k)3m3q(r−1)min{k,� km

n �})
if s = 0.

OJ-I [28] O
(
r3m3q(r−1)(k+1)

)

OJ-II [28] O
(
(k + r)3r3q(m−r)(r−1)

)

GRS-II [18] O

(
(n − k)3m3q

(r−1)min
{

k+1,
(k+1)m

n

})

AGHT [5] O
(
(n − k)3m3qr

(k+1)m
n

−m
)

Algebraic Attack. The nature of the rank metric favors algebraic attacks using
Gröbner bases, as they are largely independent of the value q. There are mainly
four approaches in translating the notion of rank into algebraic setting. The
first approach considers directly the RSD problem and was introduced by Levy-
dit-Vehel and Perret [26]. In particular, they use Gröbner basis techniques to
solve the polynomial system arising in the Ourivski-Johansson algebraic mod-
eling [28]. However, the complexity of solving the quadratic system from their
attack is hard to evaluate, especially when r ≥ 4. Recently, Bardet et al. [7]
followed this approach and show that this polynomial system can be augmented
with additional equations that are easy to compute and bring on a substantial
speed-up in the Gröbner basis computation for solving the system. The second
approach reduces RSD problem into MinRank problem [17], but such reduction
only works for certain type of MinRank parameters and not for usual parame-
ters used with rank codes based cryptography. The third approach is proposed



100 T. S. C. Lau and C. H. Tan

by Gaborit et al. [18] by considering the linearized q-polynomials in solving the
RSD problem. More recently, Bardet et al. [8] followed the approach in [7] and
proposed a new modeling to solve the RSD problem. This new modeling avoids
the use of Gröbner basis algorithms and brings on a substantial speed-up in the
computations.

We summarize the existing algebraic attacks and their complexities in
Table 2, with the following notations:

– the constant of linear algebra ω, with value ω ≈ 2.807
– an integer a ≥ 0

– Binn
r :=

(
n

r

)

– p := max
{

i : mBinn−i−k−1
r ≥ Binn−i

r − 1
}

– At :=
t∑

j=1

Binn
rBin

mk+1
j

– Bt :=
t∑

j=1

(

mBinn−k−1
r Binmk+1

j +
j∑

i=1

(−1)i+1Binn
r+iBin

m+i−1
i Binmk+1

j−i

)

.

– b := min{t : 0 < t < r + 2, At ≤ Bt}

Table 2. Conditions and complexities of algebraic attacks on RSD(q,m, n, k, r).

Attacks Conditions Complexity

FLP [17] m = n, (n − r)2 = nk O
(
(log q)n3(n−r)2

)

CGK [21] O
(
k3m3qr� km

n �)

GRS [18] (r + 1)(k + 1) − (n+ 1) ≤ 0 O
(
((r + 1)(k + 1) − 1)3

)
⌈
(r + 1)(k + 1) − (n+ 1)

r

⌉
≤ k O

(
r3k3q

r
⌈
(r+1)(k+1)−(n+1)

r

⌉)

BBB+ [7] mBinn−k−1
r ≥ Binn

r O

((
((m+ n)r)r

r!

)ω)

mBinn−k−1
r < Binn

r O

((
((m+ n)r)r+1

(r + 1)!

)ω)

BBC+ [8] mBinn−p−k−1
r ≥ Binn−p

r − 1 O
(
mBinn−p−k−1

r Binn−p
r

ω−1
)

mBinn−k−1
r ≥ Binn−a

r − 1 O
(
qarmBinn−k−1

r Binn−a
r

ω−1
)

Ab − 1 ≤ Bb, q = 2 O
(
BbA

ω−1
b

)

3 MURAVE: A New Signature Scheme

The following is the specification for our new signature scheme. We name our
signature scheme as MURAVE, as we need to perform multiple rank verification
for different components of the signature in the verification phase.
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Setup: Generate global parameters with integers q, m, l, k, rλ, ru, rv,
re, rf , rw where q is a prime power. Output parameters param =
(q,m, l, k, rλ, ru, rv, re, rf , rw).

Key.Gen(param): Let HM,N : M → N be a collision-resistant hash function
where

M =
(
F
3k
qm

)l × {0, 1}∗ × F
k
qm × (

F
2k
qm

)l
, N = F

kl
q .

Choose random h
$← F

k
qm . For 1 ≤ i ≤ l:

1. ηi
$← F

k
q ,

2. (μi,Ui)
$← RV(ru,Fqm , k) and (vi,Vi)

$← RV(rv,Fqm , k),

3. (ei, Ei)
$← RV(re,Fqm , k) and (wi,Wi)

$← RV(rw,Fqm , k) such that ei,
wi are invertible,

4. (fi,Fi)
$← RV(rf ,Fqm , k) such that 1 /∈ Fi,.

Compute si = wi(ηiμi + vih) and s′
i = ei + eifih. Output (pk, sk) where

pk =
(
h, {si, s

′
i}1≤i≤l

)
, sk =

(
{wi,μi,ηi,vi,ei,fi}1≤i≤l

)
.

Sign(m, pk, sk): Let m be a message to be signed. For 1 ≤ i ≤ l:

• (ai, Ai)
$← RV(ra,Fqm , k) and (bi, Bi)

$← RV(rb,Fqm , k),

• η′
i

$← F
k
q and v′

i
$← Vk,

• (λi, Λi)
$← RV(rλ,Fqm , k) such that 1 /∈ Λi.

Compute

1. τi = λiw
−1
i , di = −λiμie

−1
i , γi = ai + λiη

′
iμi + (bi + λiv

′
i)h,

2. c = (c1, . . . , cl) = H
(
{γi, τi,di}1≤i≤l ,m, pk

)
where ci ∈ F

k
q .

3. ρi = η′
i + ciηi, u′′

i = ρiμi, v′′
i = v′

i + civi, zi = bi + λi(v′′
i − u′′

i fi).

Output signature σ =
(
{ci,ai,zi, τi,di,ρi}1≤i≤l

)
.

Verify(σ, pk): Accept a signature σ if and only if

1. For each 1 ≤ i ≤ l, rk(τi) = rk(di) = k, rk(ai) = ra and rk(zi) ≤
rb + rλ(rv + rurf ).

2. For each 1 ≤ i ≤ l, ρi ∈ F
k
q .

3. c = H
(
{γi, τi,di}1≤i≤l ,m, pk

)
where γi = ai + zih − ciτisi − diρis

′
i

for each 1 ≤ i ≤ l.
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Correctness. For each 1 ≤ i ≤ l, we have

zi = bi + λi(v′′
i − u′′

i fi) ⇒ rk(zi) ≤ rb + rλ(rv + rurf ).

ciτisi = ciλiw
−1
i (wiηiμi + wivih) = ciλi(ηiμi + vih)

diρis
′
i = −λiμie

−1
i (η′

i + ciηi)(ei + eifih) = −λiμi(η′
i + ciηi)(1 + fih)

γi = ai + zih − ciτisi − diρis
′
i

= ai + bih + λih(v′
i + civi) − λifihμi(η′

i + ciηi)
− ciλi(ηiμi + vih) + λiμi(η′

i + ciηi)(1 + fih)
= ai + bih + λiv

′
ih + λiη

′
iμi

⇒ c = H
(
{γi, τi,di}1≤i≤l ,m, pk

)
.

4 New Problems in Rank Metric Code-Based
Cryptography

In this section, we introduce some existing problems (Problem 2 and 3) in rank
metric code-based cryptography, which our signature scheme is based on. In
addition, we define some new problems (Problem 4, 5 and 6) in rank metric
code-based cryptography. Furthermore, we also discuss the hardness of these
problems.

Problem 2 (Decisional Rank Syndrome Decoding (DRSD) Problem).
Let H be a full rank (n−k)×n matrix over Fqm , s ∈ F

n−k
qm , r an integer and x ∈

Em,n,r. The Decisional Rank Syndrome Decoding problem DRSDH(q,m, n, k, r)

is to distinguish the pair (H, s = xHT ) from (H,y) where y
$← F

n−k
qm .

Remark 2. The RSD and DRSD problem is defined for random codes, but can
be specialized to the families of random ideal codes. We denote RSD and DRSD
problem for random ideal codes as I-RSD and I-DRSD problem respectively.
Although I-RSD and I-DRSD have not been proved NP-Complete, these problems
are considered hard by the research community since the best known attacks on
these problems are of exponential order.

We give the following definition for advantage Adv of an adversary A in
winning a game G:

Definition 4. The advantage of an adversary A in winning a game G, denoted
as Adv(G) is defined as the probability that A wins the game G.

Assumption 1 (I-RSD and I-DRSD Assumption). The Rank Syndrome
Decoding for random ideal codes (I-RSD) assumption is the assumption that the
advantageAdv(I-RSD) is negligible i.e.,Adv(I-RSD) < εI-RSD. The Decisional Rank
Syndrome Decoding for random ideal codes (I-DRSD) assumption is the assump-
tion that the advantage Adv(I-DRSD) is negligible i.e., Adv(I-DRSD) < εI-DRSD.

The next problem is a problem defined in [4, Problem VI.1]:
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Problem 3 (Ideal LRPC Codes Indistinguishability (I-LRPC.IND)).
Given a polynomial P ∈ Fq[X] of degree k and a vector h ∈ F

k
qm . The

Ideal LRPC Codes Indistinguishability (I-LRPC.IND) problem is to distinguish
whether the ideal code C with parity check matrix generated by h and P is a
random ideal code or whether it is an ideal LRPC code of weight d. Equiva-
lently, the I-LRPC.IND problem is to distinguish whether h is sampled uniformly
at random or as x−1y mod P where the vectors x and y have the same support
of dimension d.

By considering the arguments given in [4], we assume that solving an
I-LRPC.IND problem is hard:

Assumption 2 (I-LRPC.IND Assumption [4]). The Ideal LRPC Codes Indis-
tinguishability (I-LRPC.IND) assumption is the assumption that the advantage
Adv(I-LRPC.IND) is negligible i.e., Adv(I-LRPC.IND) < εI-LRPC.IND.

We now introduce a new problem in rank metric code-based cryptography:

Problem 4 (Rank Support Basis Decomposition (RSBD)). Let X ⊂
Fqm be an rd-dimensional product space such that X = A.B, where A ∈
SubSp(r,Fqm) and B ∈ SubSp(d,Fqm). Given X, the Rank Support Basis Decom-
position RSBD(q,m, r, d) problem is to determine bases for A and B such that
X = A.B, dim(A) = r and dim(B) = d.

The following result is a prerequisite to determine a bound for solving RSBD:

Lemma 2. Let X ⊂ Fqm be a product space such that dim(X) = rd and
X = A.B, where A = 〈a1, . . . , ar〉 ∈ SubSp(r,Fqm) and B = 〈b1, . . . , bd〉 ∈
SubSp(d,Fqm). Suppose further that j is the integer satisfying 1 < j < d, rd −
(j − 1)(m − rd) > r and rd − j(m − rd) ≤ r. Then, for all 1 ≤ i ≤ j, we have

dim
(
b−1
1 .X ∩ . . . ∩ b−1

i .X
)

= rd − (i − 1)(m − rd) ≥ r,

dim
(
b−1
1 .X ∩ . . . ∩ b−1

j+1.X
)

= r.

Proof. Denote Bi := b−1
i X and B1,...,i = B1 ∩ . . . ∩ Bi. Note that for 1 ≤ i ≤ j,

we have dim(B1,...,i ⊕ Bi+1) = dim(B1,...,i) + dim(Bi+1) − dim(B1,...,i ∩ Bi+1).
When i = 1, we have dim(B1) = dim(X) = rd, since B1 = b−1

1 X. Therefore
the statement holds for i = 1.

Now we proceed to i = 2. Since dim(B1) = dim(B2) = rd and 2rd ≥ m + r,
we have dim(B1 ⊕ B2) = m and dim(B1 ∩ B2) = 2rd − m = rd − (m − rd). The
statement holds for i = 2.

Now we proceed to i = 3. Since dim(B12) = 2rd − m, dim(B3) = rd and
3rd−m ≥ r +m, we have dim(B12 ⊕B3) = m and dim(B12 ∩B3) = 3rd−2m =
rd − 2(m − rd). The statement holds for i = 3.
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By induction on i, we assume the statement holds for i = j − 1. Now we
consider i = j. By induction hypothesis, we have dim(B1,...,j−1) = (j − 1)rd −
(j−2)m. Since dim(Bi) = rd and jrd−(j−2)m ≥ r+m, we have dim(B1,...,j−1⊕
Bi) = m and dim(B1,...,j−1 ∩ Bi) = jrd − (j − 1)m = rd − (j − 1)(m − rd). The
statement holds for i = j.

Finally, we want to show that dim(B1,...,j+1) = r. Since dim(B1,...,j) = jrd−
(j − 1)m and dim(Bj+1) = rd, we have dim(B1,...,j) + dim(Bj+1) = (j + 1)rd −
(j − 1)m < r + m, dim(B1,...,j ⊕ Bj+1) < m and dim(B1,...,j ∩ Bj+1) = r. This
completes the proof for the statement. ��

We consider two main approaches in solving the RSBD problem: the combi-
natorial approach and the algebraic approach.

Combinatorial Approach. Let A = 〈a1, . . . , ar〉 and B = 〈b1, . . . , bd〉, then
X = 〈a1b1, . . . , arbd〉. Consider a basis {x1, . . . , xrd} for X. We consider two
different cases to recover A and B.

Case 1: Determine a basis for B. We first try to determine a basis for B,
then we apply the Rank Support Recovery (RSR) algorithm [4, Algorithm 7]
(refer to Appendix A) to recover A.

Let jm,r1,r2 :=
⌈

r1 − r2
m − r1

⌉
> 0. Equivalently, jm,rd,d is the integer such that

rd − (jm,rd,d − 1)(m − rd) > d, rd − jm,rd,d(m − rd) ≤ d.

By Lemma 2, jm,rd,d +1 Fq-linearly independent elements â1, . . . , âjm,rd,d+1 ∈ A

are required so that dim(â−1
1 .X ∩ . . . ∩ â−1

jm,rd,d+1.X) = d, giving us B =
â−1
1 .X ∩ . . . ∩ â−1

jm,rd,d+1.X. We sample these jm,rd,d + 1 elements randomly
from Fqm . The probability that the random â1, . . . , âjm,rd,d+1 belong to A

is
q(jm,rd,d+1)(r−jm,rd,d−1)

q(jm,rd,d+1)(m−jm,rd,d−1)
= q−(jm,rd,d+1)(m−r). Therefore the complexity to

recover B is O
(
q(jm,rd,d+1)(m−r)

)
.

Case 2: Determine a basis for A. Similar as the arguments in case 1, we
first try to determine a basis for A, then we apply the RSR algorithm to recover
B. The argument follows analogously as in case 1. Therefore, the complexity to
recover A is O

(
q(jm,rd,r+1)(m−d)

)
.

The following result summarizes the complexity to solve an RSBD problem
via combinatorial approach:

Theorem 1. Let jm,r1,r2 :=
⌈

r1 − r2
m − r1

⌉
> 0. Then, the complexity to solve

RSBD(q,m, r, d) via combinatorial approach is bounded by

O
(
min

{
q(jm,rd,d+1)(m−r), q(jm,rd,r+1)(m−d)

})
.
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Algebraic Approach. Since X is known, we can determine a basis {x1, . . . , xrd}
for X. Let A = 〈a1, . . . , ar〉 and B = 〈b1, . . . , bd〉. For 1 ≤ t ≤ rd, there exists
P ∈ GLrd(Fq) such that

(x1, . . . , xrd)P = (a1b1, . . . , arbd) ⇔ aibj =
rd∑

t=1

pt,i,jxt

where pt,i,j ∈ Fq. Also, for all 1 ≤ i ≤ r and 1 ≤ j ≤ d,

ai =
m∑

ta=1

γta,iβta
, bj =

m∑

tb=1

δtb,jβtb
.

For 1 ≤ i ≤ r and 1 ≤ j ≤ d, we can rewrite aibj as

aibj =

(
m∑

ta=1

γta,iβta

)(
m∑

tb=1

δtb,jβtb

)

=
rd∑

t=1

pi,j,txt (2)

The above system (2) is a multivariate quadratic system with

γta,i, δtb,j : m(r + d) quadratic unknown variables over Fq

pi,j,t : (rd)2 linear unknown variables over Fq

aibj : mrd equations over Fq

giving us n′ = m(r + d) + (rd)2 unknown variables and m′ = mrd equations.
We consider the best known attacks in solving multivariate quadratic sys-

tem under Fq. Note that the attack using Gröbner basis is rather inefficient
for the settings in (2). The solving complexity by algebraic approach is of high
exponential order.

We now give the definition for the decisional version of RSBD problem:

Problem 5 (Decisional Rank Support Basis Decomposition Problem
(DRSBD)). Let X ⊂ Fqm be an rd-dimensional product space such that X =
A.B, where A ∈ SubSp(r,Fqm) and B ∈ SubSp(d,Fqm). The Decisional Rank
Support Basis Decomposition DRSBD(q,m, r, d) problem is to distinguish the

subspace X from the subspace X ′ where X ′ $← SubSp(rd,Fqm).

Next, we introduce the following problem which appears naturally when we
try to prove the indistinguishability of the signatures.

Problem 6 (Decisional Advanced Rank Support Basis Decomposition

Problem (DRSBD+)). Let U
$← SubSp(w,Fqm) be a random subspace and

X ⊂ Fqm be an rd-dimensional product space such that U ∩ X = {0} and
X = A.B, where A ∈ SubSp(r,Fqm) and B ∈ SubSp(d,Fqm). The Decisional
Advanced Rank Support Basis Decomposition DRSBD+(q,m, r, d, w) problem is

to distinguish the subspace W = U + X from the subspace W ′ where W ′ $←
SubSp(w + rd,Fqm).



106 T. S. C. Lau and C. H. Tan

It is clear that DRSBD(q,m, r, d) = DRSBD+(q,m, r, d, 0), i.e., every instance
in DRSBD is an instance in DRSBD+. This implies that if there exists an efficient
algorithm to solve DRSBD+, then there exists an efficient algorithm to solve
DRSBD. We have the following result on the hardness of DRSBD+ problem:

Proposition 1. Solving a DRSBD+(q,m, r, d, w) problem is as hard as solving
a DRSBD(q,m, r, d) problem.

The most efficient known combinatorial attack against the RSBD(q,m, r, d)
is presented in Theorem 1, which is of exponential order. Moreover, solving the
RSBD problem via the algebraic approach requires high exponential complexity,
as argued above via the modeling (2). By Proposition 1 and the arguments above,
we make the following assumption on DRSBD+ problem:

Assumption 3 (DRSBD+ Assumption). The Decisional Advanced Rank
Support Basis Decomposition (DRSBD+) assumption is the assumption that
the advantage Adv(DRSBD+) is negligible i.e., Adv(DRSBD+) < εDRSBD+ .

5 Provable Security and Practical Security

One of the desired security models for digital signature schemes is existential
unforgeability under an adaptive chosen message attack (EUF-CMA). This is
defined by a security game which is interacting between a challenger and an
adversary A. If A has access to a signature oracle, it cannot produce a valid
signature for a new message with non-negligible probability. The security game
Expeuf

S,A(λ) is described as follows:

Setup: Given a security parameter λ, the challenger first runs the Key.Gen algo-
rithm. The public key pk is sent to the adversary A and the secret key sk is kept
to the challenger. The challenger sets SM = ∅.

Signature Queries: The adversary A issues signature queries m1, . . . , mN to the
challenger. For each query mi, the challenger responds by running Sign to gen-
erate the signature σi of mi and sending σi to A. The challenger also updates
SM = SM ∪ {mi}. These queries may be asked adaptively so that each query
mi may depend on the replies to m1, . . . , mi−1.

Output: The adversary A outputs a pair (m,σ). The adversary wins if σ is a
valid signature of m according to Verify and m /∈ SM.

The probability of success against this game is denoted by

SucceufS,A(λ) = Pr
(
Expeuf

S,A(λ) = 1
)

, SucceufS (λ, t) = max
A≤t

SucceufS,A(λ).

Definition 5 (EUF-CMA [20]). A signature scheme is (t,N, ε)-existentially
unforgeable under an adaptive chosen message attack (EUF-CMA) if for any
probabilistic t-polynomial time, the adversary A making at most N signature
queries has the advantage less than ε, i.e., SucceufS,A(λ) < ε.
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Theorem 2 (EUF-CMA Security). Under the I-LRPC.IND, DRSBD+, I-DRSD
and I-RSD assumptions, our signature scheme is secure under the EUF-CMA
model in the Random Oracle Model.

Proof. Let A be an adversary who can break our signature scheme, then there
exists an attacker A who can break the I-LRPC.IND, DRSBD+, I-DRSD and
I-RSD assumptions. To prove the security of the scheme, we are using a sequence
of games, Gj . Let rz = rb + rλ(rv + rurf ). For j ≥ 0, denote Adv(Gj) as the
advantage of A in game Gj .

Game G0: This is the real EUF-CMA game for S. The adversary has access to
the signature oracle Sign to obtain valid signatures. Then

Adv(G0) = SucceufS,A(λ).

Game G1: In G0, for 1 ≤ i ≤ l, we have τi = λiw
−1
i and di = −λiμie

−1
i . We

now replace τi by a vector τ ′
i

$← Em,k,k. This corresponds to an instance of the

I-LRPC.IND problem. Similarly, we replace di by a vector d′
i

$← Em,k,k, which
corresponds to an instance of the I-LRPC.IND problem. Therefore, we have

|Adv(G1) − Adv(G0)| ≤ 2l × Adv(I-LRPC.IND).

Game G2: For each 1 ≤ i ≤ l, we replace ai by a vector a′
i

$← Ak
i and replace zi by

a vector z′
i

$← Zk
i where Ai = supp(ai) and Zi = supp(zi). Then, we sample c′

i,
τ ′

i , d′
i and ρ′

i uniformly. Set γ′
i = (a′

i+z′
ih)−c′

iτ
′si−d′

iρ
′
is

′
i and use the random

oracle to set c = H
(
{γ′

i, τ
′
i ,d

′
i}1≤i≤l ,m, pk

)
. Note that the distribution of γ′

i is

the uniform distribution over Fn−k
qm , and each γ′

i is independent from each other.
Now, consider Bi ∈ SubSp(rb,Fqm), Ui ∈ SubSp(ru,Fqm), Vi ∈

SubSp(rv,Fqm) and Λi = supp(λi) ∈ SubSp(rλ,Fqm). Suppose that a′
i

$←
(Ai + Λi.Ui)k and b′

i
$← (Bi + Λi.Vi)k. Let Δ(Xi,X ′

i ) be the statistical distance
between Xi and X ′

i , where Xi is the distribution of xi = a′
i + b′

ih and X ′
i is the

uniform distribution over F
k
qm . Let Φi be a family of functions defined by

Φi =
{
φh : (Ai + Λi.Ui)k × (Bi + Λi.Vi)k → F

k
qm

such that φh(a′
i, b

′
i) = a′

i + b′
ih = xi} .

Since h is chosen uniformly at random, then Φi is a pairwise independent family
of functions. The number of choices for (a′

i, b
′
i) depends on Ai, Bi, Λi and the

coordinates of (a′
i, b

′
i). Overall, the entropy of (a′

i, b
′
i) is

Θ

([
m

ra

]

q

[
m

rb

]

q

[
m

rλ

]

q

q(ra+rb+rλ(ru+rv))k

)

= 2δ(Φ) log q+O(1)

where δ(Φ) = ra(m − ra) + rb(m − rb) + rλ(m − rλ) + (ra + rb + rλ(ru + rv))k.
Since rk(a′

i, b
′
i) = ra + rb + rλ(ru + rv) > dRGV, any vector of F

k
qm can be
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reached, giving us the entropy of xi is equal to 2km log q. By Leftover Hash Lemma

[22], we have Δ(Xi,X ′
i ) ≤ ε

2
where ε = 2

[km−δ(Φi)] log q
2 + O(1) and δ(Φi) =

ra(m − ra) + rb(m − rb) + rλ(m − rλ) + (ra + rb + rλ(ru + rv))k. Therefore, we
have

|Adv(G2) − Adv(G1)| ≤ l × ε.

Game G3: For 1 ≤ i ≤ l, we replace ai by a vector a′
i

$← Em,k,ra
and

replace zi by a vector z′
i

$← Em,k,rz
. Then, we sample c′

i uniformly. We set
γ′

i = (a′
i + z′

ih) − c′
iτ

′
isi − d′

iρ
′
is

′
i and use the random oracle to set c =

H
(
{γ′

i, τ
′
i ,d

′
i}1≤i≤l ,m, pk

)
. This corresponds to an instance of the DRSBD+

problem. Therefore, we have

|Adv(G3) − Adv(G2)| ≤ l × Adv(DRSBD+).

Game G4: We now pick random si, s
′
i

$← F
k
qm and proceed the steps as before.

The difference between G4 and G3 resides in the public key pk. Therefore, we
have

|Adv(G4) − Adv(G3)| ≤ 2l × Adv(I-DRSD).

At this step, everything we send to the adversary is random and independent
from any sk. Hence, the security of our scheme is reduced to the case where no
signature is given to the attacker. If A can compute a valid signature after
game G3, then the challenger can compute a solution (ai,zi) of the instance
(h,γi + ciτisi + diρis

′
i, ra + rz) as an I-RSD problem. Therefore, we have

|Adv(G4)| = l × εI-RSD.

For each 1 ≤ i ≤ 4, we have |Adv(Gi−1)| − |Adv(Gi)| ≤ |Adv(Gi−1) − Adv(Gi)|.
Therefore

|Adv(G0)| − |Adv(G4)| =
4∑

i=1

|Adv(Gi)| − |Adv(Gi−1)|

≤
4∑

i=1

|Adv(Gi) − Adv(Gi−1)|

≤ l (2εI-LRPC.IND + ε + εDRSBD+ + 2εI-DRSD)
|Adv(G0)| ≤ l (2εI-LRPC.IND + ε + εDRSBD+ + 2εI-DRSD) + |Adv(G4)|

⇒ SucceufS,A(λ) ≤ l (2εI-LRPC.IND + ε + εDRSBD+ + 2εI-DRSD + εI-RSD) . ��
In the rest of this section, we analyze the structural security of our signature

scheme. Let rz = rb + rλ(rv + rurf ). Denote ORSD as the complexity to solve an
RSD problem.
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1. Recover wuv = (wiηiμi,wivi) from si. Note that rk(wuv) = rw(ru + rv).
If an adversary can solve an RSD (q,m, 2k, k, rw(ru + rv)) problem, then he
can recover the vector wuv from si = wiμiηi + wivih.

2. Recover ef = (ei,eifi) from s′
i. Note that rk(ef ) = re(1+ rf ). If an adver-

sary can solve an RSD (q,m, 2k, k, re(1 + rf )) problem, then he can recover
the vector ef from s′

i = ei + eifih.
3. For 1 ≤ i ≤ l, consider (ai,zi, ci, τi,di,ρi):

a. Recover wλ = (−λi,wi). Since τi = λiw
−1
i , we have −λi + wiτi =

0. Note that rk(wλ) = rw + rλ. Suppose an adversary can solve an
RSD(q,m, 2k, k, rw +rλ) problem, then he can recover the vector wλ with
complexity q−kORSD(q,m, 2k, k, rw + rλ).

b. Recover λue = (λiμi,ei). Since di = −λiμie
−1
i , we have λiμi + eidi =

0. Note that rk(λuv) = rλru + re. Suppose an adversary can solve an
RSD(q,m, 2k, k, rλru + re) problem, then he can recover the vector λue

with complexity q−kORSD(q,m, 2k, k, rλru + re).
c. Recover ewu = (ei,wiμi). Note that rk(ewu) = re + rwru. Since

τi = λiw
−1
i and di = −λiμie

−1
i , we have λi = τiwi = −diei(μi)−1 ⇒

eidi+wiμiτi = 0. Suppose an adversary can solve an RSD(q,m, 2k, k, re+
rwru) problem, then he can recover the vector ewu with complexity
q−kORSD(q,m, 2k, k, re + rwru).

d. LTP Attack using available basis in zi. Recall that zi = bi +λi(v′′
i −

u′′
i fi), therefore supp(zi) = supp (bi,λivi,λiμifi). We consider to apply

LTP Attack on the following vectors:
i. On γi = ai + λiη

′
iμi + (bi + λiv

′
i)h: the bases for the support

supp(ai,λiη
′
iμi) and supp(bi,λiv

′
i) are required for LTP Attack. We

now aim to recover a basis that contains supp(λiμi). Assume that we
know a basis for supp(λiμifi). Then to determine supp(λiμi) is an
instance of the RSBD(q,m, rλru, rf ) problem. On the other hand, we
have supp(bi,λivi) ⊂ supp(zi). If (ra + rλru + rz)k < mk, then we
can solve for support matrices of ai + λiη

′
iμi and bi + λiv

′
i. There-

fore, the solving complexity is at least the complexity to solve an
RSBD(q,m, rλru, rf ).

ii. On si = wi(ηiμi + vih): the bases for supp(wiμi) and supp(wivi)
are required for LTP Attack. One could compute τ−1

i zi = τ−1
i bi +

wi(v′′
i − u′′

i fi). Since rk(τ−1
i zi) = rk(τ−1

i bi) = k, then the sup-
port supp(wiμi) �⊂ supp(τ−1

i zi). The support supp(wiμi,wivi) is
not available for LTP Attack to work.

iii. On τisi = λi(ηiμi + vih): the bases for supp(λiμi) and supp(λivi)
are required for the LTP Attack. We now aim to recover a basis that
contains supp(λiμi). Assume that we know a basis for supp(λiμifi).
Then to determine a basis for supp(λiμi) is an instance of the
RSBD(q,m, rλru, rf ) problem. On the other hand, supp(λiμi) ⊂
supp(zi). If (rλru+rz)k < mk, then we can solve for support matrices
of λiηiμi and λivi. Therefore, solving for (λiμiηi,λivi) is at least of
the complexity to solve RSBD(q,m, rλru, rf ).
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iv. On s′
i = ei + eifih: the basis for supp(ei,eifi) is required for LTP

Attack. However, supp(ei,eifi) is not available for LTP Attack.
v. On dis

′
i = −λiμi −λiμifih: we require a basis of supp(λiμi,λiμifi)

for the LTP Attack. We now aim to recover a basis that contains
supp(λiμi). Assume that we know a basis for supp(λiμifi). Simi-
larly, to determine a basis of the support supp(λiμi) is an instance
of the RSBD(q,m, rλru, rf ) problem. Moreover, we have the fact that
supp(λiμifi) ⊂ supp(zi). If (rλru + rz)k < mk, then we can solve for
support matrices of λiμi and λiμifi. Therefore, the complexity to
solve for the vector (λiμi,λiμifi) is at least the complexity to solve
an RSBD(q,m, rλru, rf ).

4. Consider two signatures, σj =
(
{cji,aji,zji, τji,dji,ρji}1≤i≤l

)
for

j = 1, 2. For a fixed 1 ≤ i ≤ l, we have dji = −λjiμie
−1
i . Then,

−ei = λ1iμid
−1
1i = λ2iμid

−1
2i . This implies that 0 = λ2iμid

−1
2i − λ1iμid

−1
1i =

μi

(
λ2id

−1
2i − λ1id

−1
1i

)
, and thus 0 = λ2id1i−λ1id2i. Note that rk(λ2i,λ1i) =

2rλ. Suppose that an adversary can solve an RSD(q,m, 2k, k, 2rλ) problem,
then he can recover the secret ephemeral vector (λ2i,λ1i) with complexity of
q−kORSD(q,m, 2k, k, 2rλ).

5. Reuse ai and zi to forge a signature with a new message m′. Suppose
a forger collected a signature σ =

(
{ci,ai,zi, τi,di,ρi}1≤i≤l

)
. Then the

forger reuse γi, ai, zi, τi and di to sign a new signature m′. In particular,
the forger computes c′ = H

(
{γi, τ

′
i ,d

′
i}1≤i≤l , pk,m′

)
, where τ ′

i and d′
i are

of the forger’s own choices. To ensure the signature is valid, we require

γi = ai + zih − ciτisi − ρidis
′

= ai + zih − ciτisi − ρidis
′ + c′

iτ
′
isi + ρ′

id
′
is

′ − c′
iτ

′
isi − ρ′

id
′
is

′

= ai + zih − c′
iτ

′
isi − ρ′

id
′
is

′.

This implies that we require c′
iτ

′
isi + ρ′

id
′
is

′ − ciτisi − ρidis
′ = 0, or equiv-

alently, ρ′
i = (ρidi + (ciτi − c′

iτ
′
i )si(s′

i)
−1)(d′

i)
−1. However, ρ′

i /∈ F
k
q , since

rk(ρ′
i) > 1. Therefore, this forgery method would fail.

6. Suppose that η′
i and ηi are available from ρi. Suppose that an adver-

sary is able to solve an RSD(q,m, 2k, k, rw(ru + rv)) problem on syndrome
si = wiηiμi + wivih associated with parity check matrix generated by
(ηi,h), then he can recover the secret vector (wiμi,wivi) with complex-
ity of q−kORSD(q,m, 2k, k, rw(ru + rv)). The arguments for solving τisi =
λiμiηi + λivih and γi = (ai(η′

i)
−1 + λiμi)η′

i + (bi + λivi)h follow similarly.

6 Suggested Parameters

In this section, we discuss the rationales for the choices of our parameters.
We consider q = 2, rλ = rw and ru = rv = re = rf . For m, we choose m to be

a prime so that Fqm has no subfield, as it is a common choice in rank metric based
cryptosystems. Moreover, notice that we require rz = rb + rλ(ru + rvrf ) < k,
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which gives us k to be the order of at least O(rλr2u). Suppose we choose rλ > ru,
then we require ru to have order of O

(
k

1
3

)
.

Furthermore, the collision-resistant hash function H has output with length
kl-bit in Fq. To achieve an SecCL-classical security level against the collision
attack, the length of output for the hash function has to be at least 2 × SecCL
bits. In the quantum setting, the length of output for the has function has to be
at least 3 × SecPQ for an SecPQ-post-quantum security level. Thus, we set l to

be
⌈

2SecCL
k log2(q)

⌉
and

⌈
3SecPQ

k log2(q)

⌉
respectively for SecCL-classical and SecPQ-post-

quantum security.
Note that h can be recovered from a seed of 256 bits since h is a random vec-

tor. Moreover, we can apply Lemma 1 to represent the secret key and signature
in the form of support basis and support matrix. Let bi,m,k = min{i(m+k), km}
and rz = rb + rλ(rv + rurf ). The public key size (sizepk), secret key size (sizesk)
and signature size (sizeσ ) are in bytes (Table 3):

sizepk =
2lkm

8
log2(q) + 32,

sizesk =
l

8
(
brw,m,k + bru,m,k + brv,m,k + bre,m,k + brf ,m,k

)
log2(q),

sizeσ =
l

8
(2k(1 + m) + bra,m,k + brz,m,k) log2(q).

Table 3. Parameters for MURAVE, with the following irreducible polynomials P (X):
P67 = X67 + X5 + X2 + X + 1, P83 = X83 + X7 + X4 + X2 + 1 and P131 = X131 +
X8 + X3 + X2 + 1.

Schemes (l, q,m, k, rλ, ru, ra, rb) P (X) sizepk sizesk sizeσ

MURAVE-1 (4, 2, 79, 67, 5, 3, 23, 5) P67 5.33 KB 1.24 KB 9.69 KB

MURAVE-2 (4, 2, 92, 83, 6, 3, 26, 7) P83 8.08 KB 1.62 KB 14.50 KB

MURAVE-3 (5, 2, 149, 83, 5, 3, 33, 15) P83 15.49 KB 2.47 KB 28.08 KB

MURAVE-4 (3, 2, 139, 131, 5, 4, 57, 15) P131 13.69 KB 2.13 KB 26.35 KB

For the security level of the schemes, we consider all the attacks on the
MURAVE signature scheme as stated in Sect. 5. In particular, we will evaluate
the complexities of the following in Table 4:

(1) q−kORSD(q,m, 2k, k, 2rurλ) since 2rurλ = rw(ru + rv).
(2) ORSD(q,m, 2k, k, ru(1 + ru)) since ru(1 + ru) = re(1 + rf ).
(3) q−kORSD(q,m, 2k, k, 2rλ) since 2rλ = rw + rλ.
(4) q−kORSD(q,m, 2k, k, ru(rλ + 1)) since ru(rλ + 1) = rλru + re = re + rwru.
(5) RSBD(q,m, rλru, ru) since rf = ru.
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Note that the classical security level (denoted as “SecCL”) of the schemes
are evaluated using formulas for the complexities of the combinatorial attacks
(denoted as “CmB”) and algebraic attacks (denoted as “Alg”) in Table 1 and 2
respectively. Bernstein [12] showed that the exponential term in the decoding
complexity should be square rooted using Grover’s algorithm with quantum
computer. Therefore, for the post-quantum security level (denoted as “SecPQ”)
of the schemes, the solving complexities for the combinatorial attacks (“CmB”
in Table 5) should be evaluated by taking square root of the exponential term of
the formulas (in Table 1).

Table 4. Classical security level for MURAVE and complexities of attacks

Schemes (1) (2) (3) (4) (5) SecPQ

CmB Alg CmB Alg CmB Alg CmB Alg

MURAVE-3 1094 716 439 321 292 203 613 408 152 128

MURAVE-4 1626 886 531 332 448 249 889 488 188 128

Table 5. Post-quantum security level for MURAVE and complexities of attacks

Schemes (1) (2) (3) (4) (5) SecPQ

CmB Alg CmB Alg CmB Alg CmB Alg

MURAVE-3 1094 716 439 321 292 203 613 408 152 128

MURAVE-4 1626 886 531 332 448 249 889 488 188 128

Comparisons of Key Sizes and Signature Sizes. We compare the per-
formance of our signature scheme, MURAVE with other rank metric signature
schemes in terms of key sizes and signature sizes (Table 6).

Table 6. Comparisons of key sizes and signature sizes.

Schemes sizepk sizesk sizeσ Sec Remark

Durandal-I 15.25 KB 2.565 KB 4.06 KB 128 Schnorr (with FS Aborts)

cRVDC 0.152 KB 0.151 KB 22.48 KB 125 Fiat-Shamir Transformation

CVE 7.638 KB 0.210 KB 436.6 KB 80 Fiat-Shamir Transformation

MURAVE-1 5.33 KB 1.24 KB 9.69 KB 128 Schnorr (w/o FS Aborts)

Overall, our signature scheme outperforms Durandal in terms of sizepk and
sizesk, whilst our signature size is about twice the signature size of Durandal.
Furthermore, our signature has smaller signature size than cRVDC and CVE.
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Comparisons of Implementation Timings. Furthermore, we compare the
implementation efficiency of MURAVE and Durandal. To get a good comparison
between MURAVE and Durandal, our implementation is modified based on the
implementation codes for Durandal (available at [1]), which is implemented in
C++ and based on NTL and GMP. We implement both MURAVE and Durandal
on an Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz processor with 16GB of
memory. The computation times for both MURAVE and Durandal signature
scheme are calculated based on the average timing for 1000 instances. Note that
the offline phase in Sign(m, pk, sk) refers to all the steps before Step 2, while
the online phase in Sign(m, pk, sk) starts from Step 2 (the computation of c)
(Table 7).

Table 7. Comparisons of implementation results.

Schemes Key.Gen Offline Sign Phase Online Sign Phase Verify

Durandal-I 4.7 ms 732.7 ms 8.4 ms 7.6 ms

MURAVE-1 4.6 ms 14.5 ms 3.4 ms 6.9 ms

Our implementation results show that MURAVE is much more efficient than
Durandal, especially in the Sign(m, pk, sk) phase. Our implementations confirm
the efficiency, practicality and advantages of our signature scheme, as we use
only random vectors λi to mask the secret key which involves only polynomial
additions and multiplications. Hence, our signature generation is much faster
than Durandal, as the latter requires costly computation in solving a linear
system. Furthermore, each steps in our signature generation is deterministic,
i.e., we are not required to apply the Fiat-Shamir with Aborts strategy. As
such, our signature generation (within 17.9 ms) can be much more efficient than
signature generation in Durandal (within 741.1 ms).

7 Conclusion

We have proposed a new rank metric signature scheme called MURAVE con-
structed via the Schnorr approach. Our signature scheme is efficient as it involves
only polynomial additions and multiplications. Our implementations confirm the
efficiency of our signature scheme as it requires 17.9 ms on average to produce
a valid signature. Furthermore, we have introduced some new problems in rank
metric code-based cryptography, namely the Rank Support Basis Decomposition
and the Decisional Advanced Rank Support Basis Decomposition (DRSBD+)
problem. We have given a proof in the EUF-CMA security model, reducing the
security of the scheme to the Rank Syndrome Decoding (I-RSD) problem for ideal
codes, the Ideal LRPC Codes Indistinguishability problem and DRSBD+ prob-
lem. We have shown that our scheme is secure against known attacks on rank
metric signature schemes. Finally, we have made comparison with other exist-
ing rank metric signature schemes that are still secure up-to-date. Our scheme
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is efficient in terms of key sizes (of order 5.33 KB) and of signature sizes (of
9.69 KB) for 128-bit classical security level.

Acknowledgement. We are grateful to the anonymous reviewers for their careful
reading of our manuscript and their many insightful comments and suggestions which
have greatly improved this manuscript.

Appendix A Rank Support Recovery Algorithm

Let f = (f1, . . . , fd) ∈ Em,d,d, e = (e1, . . . , er) ∈ Em,r,r and s = (s1, . . . , sn) ∈
F

n
qm such that S := 〈s1, . . . , sn〉 = 〈f1e1, . . . , fder〉. Given f , s and r as input, the

Rank Support Recovery Algorithm will output a vector space E which satisfies
E = 〈e1, . . . , er〉. Denote Si := f−1

i .S and Si,j := Si ∩ Sj .

Algorithm 1: Rank Support Recovery (RSR) Algorithm
Data: F = 〈f1, . . . , fd〉, s = (s1, . . . , sn) ∈ F

n
qm , r = dim(E)

Result: A candidate for the vector space E
1 Compute S = 〈s1, . . . , sn〉
2 Precompute every Si for i = 1 to d
3 Precompute every Si,i+1 for i = 1 to d − 1
4 for i ← 1 to d − 2 do
5 tmp ← S + F.(Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp

8 E ← f−1
1 .S ∩ . . . ∩ f−1

d .S
9 return E
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Abstract. This paper presents our contribution regarding two imple-
mentations of the ROLLO-I algorithm, a code-based candidate for the
NIST PQC project. The first part focuses on the implementations, and
the second part analyzes a side-channel attack and the associated coun-
termeasures. The first implementation uses existing hardware with a
crypto co-processor to speed-up operations in F2m . The second one is
a full software implementation (not using the crypto co-processor), run-
ning on the same hardware. Finally, the side-channel attack allows us
to recover the secret key with only 79 ciphertexts for ROLLO-I-128. We
propose countermeasures in order to protect future implementations.

Keywords: Post-quantum cryptography · Side-channel attacks ·
ROLLO-I cryptosystem

Introduction

Today, 26 candidates are still under study for the standardization campaign
launched by the National Institute of Standards and Technology (NIST) in 2016.
Among the candidates that were submitted are 8 signature schemes based on
lattices and multivariate. Also submitted were 17 public-key encryption schemes,
key-encapsulation mechanisms (KEMs), that base their security on codes, lat-
tices, or isogenies. In addition, one more signature scheme based on a zero-
knowledge proof system has also been submitted.

In this paper, we focus our analysis on the submissions based on codes. The
first cryptosystems based on codes (e.g. McEliece cryptostem [17]) uses keys far
too large to be usable by the industry. The development of new cryptosystems
based on different codes as well as the introduction of codes embedded with
the rank metric has resulted in a considerable reduction of key sizes and thus
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reaches key sizes comparable to those used in lattice-based cryptography. Despite
the evolution of research in this field, some post-quantum cryptosystems sub-
mitted to the NIST PQC project require a large number of resources. Notably
regarding the memory which becomes binding when we have to implement the
algorithms into constrained environments such that microcontrollers. It is then
hardly conceivable to imagine that these cryptosystems may replace the ones
used nowadays on chips. In that purpose, we decided to study the real cost of a
code-based cryptosystem implementation. This study is essential to prepare the
transition to post-quantum cryptography. For this study, we decided to perform
two implementations on microcontroller, the first one using only software and
the second one using the crypto co-processor featuring in the microcontroller.

One of the main criteria for the selection of the cryptosystem has been the
RAM available on the microcontroller to run cryptographic protocols. We first
decided to compare the size of elements manipulated in submitted code-based
cryptosystems. The respective sizes are reported in Table 1. Three other code-
based cryptosystems in round 2; Classic McEliece, LEDAcrypt, and NTS-KEM
use much larger keys and, thus were not taken into account in our study and
not listed in Table 1.

Table 1. Size of elements in bytes for code-based cryptosystems (security level 5)

Parameter Algorithm

BIKE [14] HQC [15] RQC [16] ROLLO

Scheme number I II III I II III

Public key 8,188 4,094 9,033 14,754 3,510 947 2,493 2,196

Secret key 548 548 532 532 3,510 1,894 4,986 2,196

Ciphertext 8,188 4,094 9,033 14,818 3,574 947 2,621 2,196

The selection of a microcontroller with only 4 kB of RAM that can be found on
the market led us to choose ROLLO-I submission. Indeed, as seen in Table 1, the
total size of its parameters is the smallest one. Thus, we will suppose that its
algorithm needs the smallest amount of RAM. Since operations on ROLLO-II
and ROLLO-III are similar, they should be integrated quickly.

Embedded implementations can lead to vulnerabilities that a side-channel
attacker can exploit. He gathers information about private data by exploiting
physical measurements. Some side-channel attacks have already been performed
on code-based cryptosystems [1,2]. Then, to provide a first secure implementa-
tion of ROLLO-I, we propose the countermeasures against a side-channel attack
that we introduce.

Our Contribution. We present two practical implementations of ROLLO-I in a
microcontroller in which 4 kB of RAM is dedicated to cryptographic data. The
first one consisting in full software implementation and the second one uses the
crypto co-processor featuring in the microcontroller.
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We finally give a first study on the security of ROLLO-I against side-channel
attacks and implement countermeasures against the attack that we have found.

Organization of this Paper. We start with some preliminary definitions and
present ROLLO-I cryptosystem in Sect. 1, then we present in Sect. 2 the memory-
optimized implementations and in Sect. 3, we finally demonstrate a first side-
channel attack on ROLLO-I and present associated countermeasures.

1 Background

In this section, we give some definitions to explain the Low-Rank Parity Check
(LRPC) codes which have been first introduced in [3]. For more details, the
reader is referred to [4]. For fixed positive integers m and n, we denote by:

Let k be an integer. A linear code C over Fqm of length n and dimension
k is a subspace of Fn

qm . It is denoted by [n, k]qm , and can be represented by a
generator matrix G ∈ F

k×n
qm such that

C := {x.G,x ∈ F
k
qm}.

The code C can also be given by its parity-check matrix H ∈ F
(n−k)×n
qm such

that
C := {x ∈ F

n
qm ,H.xT = 0}.

The vector sx = H.xT is called the syndrome of x.
ROLLO cryptosystem is based on codes in rank metric over F

n
qm . In rank

metric, the distance between two words x = (x1, · · · , xn) and y = (y1, · · · , yn)
in F

n
qm is defined by

d(x,y) := ‖x − y‖ = ‖v‖ = Rank M(v),

where ‖v‖ is the rank weight of the word v = x − y.
The rank of a word x = (x1, · · · , xn) can also be seen as the dimension of its

support Supp(x) ⊂ Fqm spanned by the basis of x. Namely, the support of x is
given by

Supp(x) = 〈x1, · · · , xn〉Fq
.
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The authors of [4] introduced the family of ideal codes that allows them to
reduce the size of the code’s representation. The associated generator matrix is
based on ideal matrices.

Given a polynomial P ∈ Fq[X] of degree n and a vector v ∈ F
n
qm , an ideal

matrix generated by v is an n × n square matrix defined by

IM(v) =

⎛
⎜⎜⎜⎝

v
Xv mod P

...
Xn−1v mod P

⎞
⎟⎟⎟⎠ .

An [ns, nt]qm -code C, generated by the vectors (gi,j)i∈[1,··· ,s−t]
j∈[1,··· ,t]

∈ F
n
qm , is an

ideal code if a generator matrix in systematic form is of the form

G =

⎛
⎜⎝

IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

⎞
⎟⎠ .

In [4], the authors restrain the definition of ideal LRPC (Low-Rank Par-
ity Check) codes to (2, 1)-ideal LRPC codes that they used in ROLLO
cryptosystems.

Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two
vectors of F

n
qm , such that Supp(h1,h2) = F , and P ∈ Fq[X] be a polynomial

of degree n. A [2n, n]qm -code C is an ideal LRPC code if it has a parity-check
matrix of the form

H =

⎛
⎝IM(h1)T IM(h2)T

⎞
⎠ .

Hereafter, we will focus on ROLLO-I submission, which has smaller param-
eters than ROLLO-II and ROLLO-III (see Table 1).

ROLLO-I Scheme

The submission of ROLLO-I is a Key Encapsulation Mechanism (KEM) com-
posed of three probabilistic algorithms: the Key generation (Keygen), Encapsu-
lation (Encap), and Decapsulation (Decap) are detailed in Table 3. During the
decapsulation process, the syndrome of the received ciphertext c is computed,
then the Rank Support Recovery (RSR) algorithm is performed to recover the
error’s support. The latter is explained in [4].

The fixed parameter sets given in Table 2 allow to achieve respectively 128,
192, and 256-bit security level according to NIST’s security strength categories
1, 3, and 5 [5]. As described in Sect. 1, the parameters n and m correspond
respectively to the degrees of irreducible polynomials Pn and Pm implied in the
fields Fq[x]/(Pm) and Fqm [X]/(Pn). We note that for the three security levels,
q = 2. The parameters d and r correspond respectively to the private key and
error’s ranks.
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Table 2. ROLLO-I parameters for each security level

Algo. Param.

d r Pn Pm Security level (bits)

ROLLO-I-128 6 5 X47 + X5 + 1 x79 + x9 + 1 128

ROLLO-I-192 7 6 X53 + X6 + X2 + X + 1 x89 + x38 + 1 192

ROLLO-I-256 8 7 X67 + X5 + X2 + X + 1 x113 + x9 + 1 256

Table 3. ROLLO-I KEM protocol

Alice Bob

KeyGen

Generate a support F of rank d

Generate the private key

sk = (x,y) from the support F

Compute the public key

h = x−1 · y mod Pn
h−−−→ Encapsulation

Generate a support E of rank r

Pick randomly two elements

(e1, e2) from the support E

Compute the ciphertext

c = e2 + e1 · h mod Pn

Derive the shared secret

Decapsulation
c←−−− K = Hash(E)

Compute the syndrome

s = x · c mod Pn = x.e2 + y.e1 mod Pn

Recover the error’s support

E = RSR(F, s, r)

Compute the shared secret

K = Hash(E)

2 ROLLO-I Implementations

In this section we detail the algorithms in the rings F2[x]/(Pm) and F2m [X]/(Pn)
required in ROLLO-I cryptosystem. The implementations are performed on 32-
bit architecture systems.

2.1 Operations in F2[x]/(Pm )

The addition in F2[x]/(Pm) consists in xoring 32-bit words. Thus, the three
main operations to implement are the multiplication, the modular reduction, and
the inversion. For the inversion in F2[x]/(Pm), we use the extended Euclidean
algorithm for binary polynomials as given in [6, Algo. 2.48].
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2.1.1 Multiplication
Regarding the multiplication between two polynomials a, b ∈ F2[x]/(Pm), we
use the left-to-right comb method with windows of width w = 4 as described
in [6, Algo. 2.36]. For any polynomial a ∈ F2[x]/(Pm), we associate the vector
A = (A0, . . . , A�m/32�−1) where Aj is the jth 32-bit word and we note Aj,i the
ith block of four coefficients in Aj . First we pre-compute the product u(x)×b(x)
for all polynomials u of degree less than 4 (16 elements are stored in a table
T). Let û denote the binary representation of the coefficients of polynomial u(x)
(i.e u(x) = 0 ↔ û = 0, u(x) = 1 ↔ û = 1, u(x) = x ↔ û = 2, · · · , u(x) =
x3 + x2 + x + 1 ↔ û = 15). Thus, we have Tû = b(x) × u(x).

Then, for 0 ≤ j < 	m/32
, we add to the result Rj = (Rj , . . . , Rn), the
element Tû, where û is the integer associated to Aj,i, for each i. If i is non zero,
we multiply the polynomial R by x4, which is equivalent to a shift of 32-bit
words.

Algorithm 1: Polynomial multiplication using the left-to-right method
with a width window w = 4
Input: Two polynomials a, b ∈ F2[x]/(Pm)
Output: r(x) = a(x) × b(x)

1 For all polynomials u(x) of degree at most w − 1, compute Tû = b(x) × u(x)
2 R ← 0
3 for i from 7 downto 0 do
4 for j from 0 to �m/32� − 1 do
5 Let û = u3u2u1u0 where uk is the bit wi + k of Aj .
6 Rj ← Rj ⊕ Tû

7 if i �= 0 then
8 R(x) ← R(x) × x4

9 return R

2.1.2 Modular Reduction
Several modular reductions with parse polynomials are performed in ROLLO-I
cryptosystem. We decide to use the same technique explained in [6, Sect. 2.3.5].

Let us take the example of ROLLO-I-128 and consider an element c =
(ci)0≤i≤156 obtained after a multiplication of two elements in F2[x]/(P79). The
modular reduction is performed on each Ci 32-bit word composing c with
0 ≤ i ≤ 4, as in Algorithm 2.

Allow us detail the method for the reduction modulo Pm(x) = x79+x9+1 of the
4th word of c which corresponds to the polynomial c96x96+c97x

97+· · ·+c127x
127.
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We have:

x96 ≡ x17 + x26 mod Pm

...

x127 ≡ x48 + x57 mod Pm

Given those congruences, the reduction of C3 is operated by adding two times
C3 to c as shown in Fig. 1.

Fig. 1. Reduction of the 32-bit word C3 modulo Pm(x) = x79 + x9 + 1

Algorithm 2: Reduction modulo Pm(x) = x79 + x9 + 1
Input: polynomial c(x) of degree at most 156
Output: c(x) mod Pm(x)

// Ci = (c31+32×i · · · c32×i)
1 C2 ← C2 ⊕ (C4 � 6) ⊕ (C4 � 15)
2 C1 ← C1 ⊕ (C4 	 17) ⊕ (C4 	 26) ⊕ (C3 � 6) ⊕ (C3 � 15)
3 C0 ← C0 ⊕ (C3 	 17) ⊕ (C3 	 26)

4 T ← C2 & 0xFFFF8000

5 C0 ← C0 ⊕ (T � 15) ⊕ (T � 6)
6 C2 ← C2 & 0x7FFF

7 C3, C4 ← 0
8 return C

2.2 Operations and Memory Costs Issues in F2m [X]/(Pn)

In this section, mb represents the length in bytes of coefficients in F2m .

2.2.1 Multiplication
The multiplication in F2m [X]/(Pn) is one of the most used operations of this
cryptosystem: it is involved in the computation of the public key, the ciphertext
and the syndrome.
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For example, let P (X) = p0+p1X and Q(X) = q0+q1X be two polynomials
of degree 1 in a given polynomial ring. The result of the product is

P (X) × Q(X) = p0q0 + (p0q1 + p1q0)X + p1q1X
2.

Naively, we have four multiplications and one addition over the coefficients.
Thus, the schoolbook multiplication [7] requires n2 multiplications in F2m . The
Karatsuba algorithm uses the following equation

(p0q1 + p1q0) = (p0 + p1)(q0 + q1) − p0q0 − p1q1,

and P (X) × Q(X) requires only three multiplications and four additions over
the coefficients. To reduce the number of multiplications in F2m , we imple-
ment a combination of Schoolbook multiplication and Karatsuba method [8],
as described in Algorithm 3.

Algorithm 3: Karatsuba multiplication
Input: two polynomials f and g ∈ F

n
2m and N the number of coefficients of f

and g
Output: f · g in F

n
2m

1 if N odd then
2 result ← Schoolbook(f ,g, N)
3 return result

4 N
′ ← N/2

5 Let f(x) = f0(x) + f1(x)xN
′

6 Let g(x) = g0(x) + g1(x)xN
′

7 R1 ← Karatsuba(f0,g0, N
′
) // Compute recursively f0g0

8 R2 ← Karatsuba(f1,g1, N
′
) // Compute recursively f1g1

9 R3 ← f0 + f1
10 R4 ← g0 + g1

11 R5 ← Karatsuba(R3, R4, N
′
) // Compute recursively R3R4

12 R6 ← R5 − R1 − R2

13 return R1 + R6x
N′

+ R2x
2N

In line 4 (Algorithm 3), we divide the polynomial’s length N by 2. Conse-
quently, we need to add a padding to the input polynomials with zero coefficients
to obtain N even. In Fig. 2, we observe that the cycles’ number is not strictly
increasing due to the division by 2.

Depending on the memory available for a multiplication in F2m [X]/(Pn),
we can add more or less padding. For example, in ROLLO-I-128 with n = 47,
we decide to add one zero coefficient which allows us to reduce considerably
the number of cycles; however, in ROLLO-I-192 with n = 53, we have two
possibilities: pad the polynomials with 3 or 11 coefficients. The second possibility
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Fig. 2. Number of cycles required by Karatsuba combined with schoolbook multipli-
cation depending on the polynomial length

is about 10% faster but requires an additional memory cost of 11×	89/32
×4 =
132 bytes per polynomial. That is why the first choice represents a good balance
between memory and execution time.

2.2.2 Inversion
For the inversion in F2m [X]/(Pn), we adjust extended Euclidean algorithm given
in [6, Algo. 2.48] to the ring F2m [X]/(Pn) as described in Algorithm 4.

During the execution of the extended Euclidean algorithm, we have in
memory:

• the polynomial to be inverted Q;
• a copy of Q (in order to keep it in memory);
• the dividend;
• the two Bézout coefficients;
• three buffers used to perform intermediates operations (swap between poly-

nomials, results of multiplications).

A way to implement it is to allocate the maximum memory size for each
element. As an element can be composed of n coefficients in F2m , the compu-
tation of the inverse in F2m [X]/(Pn) requires 8 × n × mb bytes. Considering
the parameters of ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256, the mem-
ory usage represents respectively 4, 512, 5, 088, and 8, 576 bytes, thus exceeding
the memory size available on the target microcontroller. However, during the
algorithm we notice that:
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Algorithm 4: Inversion in F2m [X]/(Pn)
Input: Q a polynomial in F2m [X]/(Pn)
Output: Q−1 mod Pn

1 U ← Q, V ← Pn

2 G1 ← 1, G2 ← 0
3 while U �= 1 do
4 j ←− deg(U) − deg(V )
5 if j < 0 then
6 U ↔ V
7 G1 ↔ G2

8 j ← −j

9 lc V ← Vdeg(V )−1 // leading coefficient of V

10 U ← U + Xj .(lc V )−1.V
11 lc G2 ← G2deg(G2)−1 // leading coefficient of G2

12 G1 ← G1 + Xj .(lc G2)
−1.G2

13 return G1

• the degree of the polynomial Q is at most n−1 and the degree of the dividend
is n at the beginning of the process, both decrease during the execution;

• the degrees of the two Bézout coefficients are 0 at the beginning and increase
during the process.

Thus, we decide to perform a dynamic memory allocation by setting the nec-
essary memory space for each element at each step of the inversion process.
The memory usage is reduced to 2, 590, 2, 904 and 4, 864 bytes respectively for
ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256.

2.2.3 Rank Support Recovery (RSR) Algorithm
The main memory issue in the RSR algorithm, given in [4, Algo. 1], is the multi-
ple intersections between sub-spaces over Fn

2m . Considering two sub-spaces U =
〈u0, u1, · · · , un−1〉 and V = 〈v0, v1, · · · , vn−1〉 and their associated vectors u =
(u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) in F

n
2m . The intersection IU,V =

U ∩ V is computed by following Zassenhaus algorithm [9], as described below:

• Create the block matrix ZU,V =
(
M(u) M(u)
M(v) 0

)
;

• Apply the Gaussian elimination on ZU,V to obtain a row echelon form matrix;

• The resulting matrix has the following shape:

⎛
⎝
M(c) ∗

0 IU,V

0 0

⎞
⎠,

where c ∈ F
n
2m .

In the initial RSR algorithm, some pre-computations are performed to avoid
additional operations on data.
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First, we pre-compute Si = f−1
i S, for 1 ≤ i ≤ d, where fi are the elements

of the support F and S the support of the syndrome. As each Si is composed of
r×d coefficients in F2m , r×d×d×mb bytes are needed for Si pre-computations.

Let Si,j = Si ∩Sj , for 1 ≤ i < j ≤ d, composed of r elements in F2m . For the
pre-computations of these intersections, we also need to consider the memory
usage induced by the Zassenhaus algorithm. It requires writing in memory four
Si, in other words 4 × r × d × mb bytes.

Furthermore, for these pre-computations, the private key’s support F (d coef-
ficients) and the support of the syndrome S (r × d coefficients) are needed.

Thus, the average memory cost of all these pre-computations is:

Memorypre−computed = (r × d × (d + 7) − 4 × r + d) × mb.

With this formula, we can predict that ROLLO-I-128 requires 4, 512 bytes to
store the pre-computations which is too high for our chosen microcontroller. In
order to reduce the memory cost, we store in memory at most three Si and
directly compute the two associated intersections as framed in Algorithm 5.

Algorithm 5: RSR (Rank Support Recover)
1 Input: F = 〈f1, · · · , fd〉 an Fq-subspace of F2m , s = (s1, · · · , sn) ∈ F

n
2m the

syndrome of an error e and r the rank’s weight of e
Output: Vector subspace E

2 Compute S = 〈s1, · · · , sn〉Fq
// Recall that Si = f−1

i S and Si,j = Si ∩ Sj

3 tmp1 ← S1

4 tmp2 ← S2

5 tmp3 ← S3

6 Compute S1,2 = tmp1 ∩ tmp2
7 for i from 1 to d − 2 do
8 Compute Si+1,i+2 = tmpi+1 ∩ tmpi+2

9 Compute Si,i+2 = tmpi ∩ tmpi+2

10 tmp(i−1)%3+1 ← Si+3

11 for i from 1 to d − 2 do
// Direct sum of vector spaces

12 tmp ← S + F · (Si,i+1 + Si+1,i+2 + Si,i+2)
13 if dim(tmp) ≤ rd then
14 S ← tmp;

15 E ←
⋂

1≤i≤d

f−1
i · S

16 return E

After the modifications, the total memory cost is:

Memorypre−computed = (10 × r × d − 4 × r + d) × mb.
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This method allows us to save (d− 3) × r × d×mb bytes. The gains in memory
for each security level are presented in the Table 4.

Table 4. Memory gains with the modified RSR algorithm

Algorithm Bytes Save bytes

ROLLO-I-128 3,432 1,080

ROLLO-I-192 4,836 2,016

ROLLO-I-256 8,100 4,480

2.3 Performance Evaluation

The cryptosystem is implemented in C. We target a microcontroller, based on a
widely used 32-bit SecureCore R© SC300TM, which has an embedded 32-bit math-
ematical crypto co-processor to perform operations in GF (p) and GF (2m) and a
True Random Number Generator (TRNG). Among the 24 kB of RAM featuring
on the microcontroller only 4 kB are available for cryptographic computations.

For performance measurements, we use IAR Embedded Workbench IDE for
ARM [10] compiler C/C++ with high-speed optimization level.

We count the number of cycles with the debugging functionality of IAR.
An element in F

n
2m is represented by n×	m/32
×4 bytes. For ROLLO-I-128,

m = 79 and for ROLLO-I-192, m = 89, so we obtain 	79/32
 = 	89/32
 = 3
32-bit words for both. Thus, the memory usages for ROLLO-I-128 and ROLLO-
I-192 only differ according to n. Nevertheless, for ROLLO-I-256, 	113/32
 = 4,
which explains the significant difference of memory usage between the higher
security level and the two lower ones in the Table below.

In Table 5, the memory usage refers to the RAM required to perform the
cryptosystem. The keys being stored in the EEPROM (Electrically Erasable
Programmable Read-Only memory), we provide the memory usage with and
without counting the public and secret keys. As we can see, ROLLO-I-256 can-
not be implemented in our target device because its memory usage exceeds
significantly the 4 kB of RAM but it can be executed with 8 kB of RAM, that is
still reasonable.

Table 5. Memory usage for ROLLO-I (in bytes)

Security Algo.

With keys Without counting the keys

GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 3,520 3,592 3,964 2,940 2,940 3,320

ROLLO-I-192 4,120 4,188 5,096 3,448 3,432 4,334

ROLLO-I-256 7,440 7,152 8,992 6,288 5,872 7,776



Optimized and Secure Implementation of ROLLO-I 129

All the operations in F2[x]/(Pm) take advantage of the crypto co-processor in
GF (2m), leading the implementations using the crypto co-processor of ROLLO-
I-128 and ROLLO-I-192 to be faster than their full software versions. We provide
in Table 6 the number of cycles and the time in milliseconds required by ROLLO-
I for the different security levels with the microcontroller running at 50 MHz.

In this paper, we do not compare our implementations with the reference
implementation as it does not fit into the target microcontroller.

Table 6. Execution time of ROLLO-I

Security Full software on SC300 On SC300 with co-processor

GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 cycles (×106) 15.47 1.99 4.31 8.68 0.55 3.75

ms 309 40.8 86.3 173.6 11 75

ROLLO-I-192 cycles (×106) 21.31 3.38 7.8 11.11 0.8 6.63

ms 426 67.6 156 222.2 16 132.6

ROLLO-I-256 cycles (×106) 39.92 6.62 15.54 ND ND ND

ms 798.5 132.5 310.8 ND ND ND

To see if ROLLO-I can be a realistic alternative to the current key exchange
schemes, we compare in Table 7 the full software implementations with Elliptic
Curve Diffie-Hellman key exchange (ECDH) [11] that is integrated in the same
platform.

For ROLLO-I, the key agreement takes into account the Encapsulation and
Decapsulation processes. As a remainder, for ECDH, two entities compute two
scalars multiplication over E(Fq) in parallel to establish a shared secret. Thus,
for its cost’s estimation, we executed the scalar multiplications.

Table 7. Performance comparison between ROLLO-I and ECDH for two different
security levels.

Security Algorithm Clock cycle (×106)

128 ROLLO-I-128 6.3

ECDH Curve 256 3.49

192 ROLLO-I-192 11.18

ECDH Curve 384 8.45

We observe that the two implementations are of the same order of magnitude.

3 Side-Channel Attack on ROLLO-I

Side-channel attacks were first introduced by Kocher in 1996 [12]. Some of
these attacks exploit the leakage information coming from a device executing a
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cryptographic protocol. An adversary extracts these information without having
to tamper with the device.

In this section, we deal with chosen-ciphertext Simple Power Analysis (SPA)
attack. With the observation of the power traces, SPA attack consists of identi-
fying sequences of an algorithm. This analysis leads a side-channel attacker to
compute the secret key, used to establish the shared secret between two entities.

3.1 Attack

ROLLO-I does not require the use of ephemeral keys. The generation of keys is
generally performed once in the life cycle of a component. The Encapsulation
and Decapsulation processes are performed several times with the same key pair
((x,y,F),h).

The decapsulation process is a good target for side-channel attacks because
it involves the secret key x during the syndrome computation

s = x · c mod Pn.

Then, the aim of the attack is to recover the syndrome. The syndrome’s support
computation S applies Gaussian elimination algorithm to the matrix associated
to the syndrome s. The standard Gaussian elimination on a binary matrix is
given in Algorithm 6.

Algorithm 6: Gaussian elimination algorithm
Input: Matrix M ∈ Mn,m(F2)
Output: Matrix M under row echelon form and the rank of the matrix

1 Rank ← 0
2 for i = 0 to m − 1 do
3 for j = i to n − 1 do

4 if Mj,i = 1 then // Non-zero element - pivot

5

6 // The row j is a pivot

7 row i ↔ row j
8 Rank ← Rank +1
9 break

10 for k = row i + 1 to n do

11 if Mk,i = 1 then // row treatment

12

13 row k ← row k + row i

14 return (M,Rank)

The first non-zero coefficient in the column is the pivot. With the first for loop
(line 3 – Algorithm 6) we scan each coefficient in the column to find the pivot.
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Then we exchange the current row of the founded coefficient with the pivot row.
The time required to determine the pivot indicates the number of coefficients pro-
cessed and allows us to recover the pivot row.

With the second for loop (line 10 - Algorithm 6), we remove the other non-
zero coefficients in the column.

Specifically, two different treatments are performed on each coefficients:

1. If the coefficient is 0 then no operation is performed.
2. If the coefficient is 1 then an addition in F2[x]/(Pm) is performed between

the pivot row and the one processed.

This difference of treatment leads us to determine the rows where are the
non-zero coefficients. The syndrome’s rank is at most r × d. Thus, at the end of
the process, we obtain a matrix Ms in row echelon form with the first column
known by the attacker.

Ms =

⎛
⎜⎜⎜⎝

s0,0 ∗ ∗ ∗ ∗ ∗
s1,0 s1,1 ∗ ∗ ∗ ∗

...
...

. . . ∗ ∗ ∗
sn−1,0 sn−1,1 · · · sn−1,r×d−1 ∗ ∗

⎞
⎟⎟⎟⎠

As the matrix is not under its reduced form and since it’s a binary matrix,
the systems of equations should be complicated to solve. That is why we only
consider the first column for the attack.

To recover the syndrome, we perform m rotations of the matrix Ms with
the use of the initial ciphertext. Namely, we multiply the ciphertext c by xi in
F2m [X]/(Pn), with 1 ≤ i < m.

However, we have to consider the modular rotation during the recovering of
the columns’ syndrome matrix. Considering ROLLO-I-128 parameters given in
Table 2. Multiplying the ciphertext by x in F279 [X]/(P47) implies that the last
column of the matrix syndrome is xored with the columns 0 and 9 as depicted
in Fig. 3. This is due to the modulo P79(x) = x79 + x9 + 1 involved in the field
F279 [X]/(P47).

Fig. 3. Example of modular rotation for the syndrome’s matrix for ROLLO-I-128

The column 78 is recovered as explained above and to recover the column 9
xored with column 78, we multiply the ciphertext by x69 modulo P79(x).
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In ROLLO-I-128 and ROLLO-I-256, we need to keep in mind the xor when
recovering the columns 1 to 8. For ROLLO-I-192, columns 1 to 38 are concerned
by a xor.

To develop this attack, we target the implementation using the co-processor.
For the experiment, we consider the parameters of ROLLO-I-128, namely n = 47,
and m = 79. The secret key x and the ciphertext c involved in the syndrome com-
putation are generated during the Key Generation and Encapsulation processes.
ROLLO-I-128 traces are captured with a Lecroy SDA 725Zi-A oscilloscope. We
observe in Fig. 4 the difference of patterns between the treatment of bits 1 and
0. This trace allows us to recover the first column of the syndrome’s matrix
corresponding to

10110101110111010001010111001111001001110010110.

Fig. 4. SPA performed on the first column during Gaussian elimination process

We use the same technique to recover all the columns after the matrix rota-
tion and finally the syndrome.
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3.2 Countermeasures

Let us discuss solutions to secure the cryptosystem against the attack explained
previously. Several solutions are available to protect the Gaussian elimination
against SPA attacks.

Two solutions consist of:

• implementing a constant-time algorithm in which the additions in F2[x]/(Pm)
are independent from the processed coefficients, as presented in [13]. Thus,
the execution time is no longer depending on the private key;

• adding dummy operations when processing the coefficients 0 as described in
Algorithm 7.

These solutions require an additional element in F2m to store intermediate
results.

Algorithm 7: Gaussian elimination algorithm with dummy operations
Input: Matrix M ∈ Mn,m(F2)
Output: Matrix M in row echelon form and the rank of the matrix

1 Rank ← 0
2 Temp ← 0
3 for i = 0 to m − 1 do
4 for j = i to n − 1 do
5 if Mj,i = 1 then
6 // The row j is a pivot

7 row i ↔ row j
8 Rank ← Rank +1
9 break

10 for k = row i + 1 to n do
11 if Mk,i = 1 then
12 row k ← row k + row i

13 else
14 Temp ← row k + row i

15 return (M,Rank)

The Fig. 5 presents the trace of Gaussian elimination with dummy operations.
We observe a uniformization of the trace due to the added noises.

With the proposed countermeasures, an attacker is not able to exploit pat-
terns according to the processed bit. However, these solutions are subjected to
other side-channel attacks that are not covered in this paper such as Differential
Power Analysis (DPA) attacks.
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Fig. 5. Trace for the first column in Gaussian elimination with dummy operations.

Another solution is to randomize the treatment of coefficients in each column
as described in Algorithm 8. An attacker is not able to recover the indices of
pivots and processed rows. Considering the first column, the attacker has n
possibilities for the pivot and (n − 1)! possibilities for the row treatment. Thus,
the complexity of the SPA attack is (n!)m. For example, with ROLLO-I-128, the
complexity is (47!)79 which corresponds to about 215,591 possibilities.

Algorithm 8: Gaussian elimination with randomization
Input: Matrix M ∈ Mn,m(F2)
Output: Matrix under row echelon form and the rank of the matrix

1 Rank ← 0
2 for i = 0 to m − 1 do
3 for j = i to n − 1 do
4 jrand = (j + random()) mod (n − i) // randomization

5 if Mjrand,i = 1 then
6 // The row jrand is a pivot

7 row i ↔ row jrand

8 Rank ← Rank +1
9 break

10 for k = row i + 1 to n do
11 krand = (k + random()) mod (n − k) // randomization

12 row k ↔ line krand

13 if Mk,i = 1 then
14 row krand ← row krand + row i

15 return (M,Rank)
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Fig. 6. Trace of the first column in Gaussian elimination process after application of
randomization

Figure 6 provides the trace of the execution of Gaussian elimination with the
countermeasure presented in Algorithm 8.

Although we can still distinguish the coefficients 0 and 1, the order of ele-
ments in each column is completely random so we can no longer exploit this
information.

As we can see in Table 8, regarding the randomization in Gaussian elimination
process, exchanging two rows at each iteration has a significant impact on the
execution time of decapsulation process, increasing it by about 50%. The second
countermeasure impacts the execution time by about 40%.

Table 8. Executing time of ROLLO-I decapsulation with countermeasures.

Security Decapsulation

With randomization With dummy operation Without countermeasures

128 cycles (×106) 8.09 5.84 4.31

ms 161.8 116.6 86.3

192 cycles (×106) 17.01 11.23 7.8

ms 340.2 224.6 156

256 cycles (×106) 32.45 21.62 15.54

ms 649 432.4 310.8

Conclusion

In this paper, we have highlighted that ROLLO-I can be implemented in a cho-
sen constraint device and the structure used allows the cryptosystem to benefit
from the current crypto co-processor. We have also shown that in comparison
with existing algorithms such as ECDH, our implementation’s performances were
compelling.
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Moreover, we have provided a first side-channel attack against ROLLO-I as
well as associated countermeasures.

For future works, it will be interesting to look at some optimizations in
time for operations in Fqm [X]/(Pn) and extend the study to ROLLO-II and
ROLLO-III.
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