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Foreword

It was on August 13, 2009, that I began my (virtual) relationship on Twitter with
the SABIEN Group at ITACA Institute, Universitat Politècnica de València, in
particular with my good colleague Vicente Traver. More recently, I had the pleasure
of meeting Carlos Fernandez-Llatas, who is the person responsible for putting
together a number of remarkable health professionals and engineers to produce this
book on the use of an interactive process mining paradigm in the healthcare domain.

At that time, Carlos and Vicente were already working on ways to improve the
healthcare sector through the use of technology. In addition to writing hundreds
of scientific publications, they started this line of work beginning in 1998 until
their team was recognized as one of the most prestigious international research
groups in the application of digital solutions in the health and well-being sector, with
participation in several international research projects. Therefore, I have no doubt
whatsoever that the content of this book, based on wide experience from different
points of view, will make a difference in the world of healthcare.

In 2009, I was a technical officer at the Ministry of Health and Consumer
Affairs in Spain, where we were promoting the idea that the present and future of
health information is based on digital solutions and knowledge management. After
this experience, I moved to the international health sector, working for the World
Health Organization (WHO), the international agency that directs and coordinates
international health within the United Nations system. For the last 10 years, I have
had the opportunity and great honor to lead and contribute to several projects and
initiatives related to digital health, data, and health information in the health and
well-being area in more than 100 countries and territories. Carlos, Vicente, and I
chose different paths-academia versus government and policymaking-but we shared
the same dream, to leverage the potential of data and digital solutions to improve
population health.

Almost 11 years have passed since we met, and the world has dramatically
changed since then. Now, we live longer and healthier lives, we are more connected,
and the spread and uptake of digital solutions are a reality. However, considerable
challenges in the health and well-being sector persist, including the lack of invest-
ment in the health sector where, according to WHO, the current health expenditure
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vi Foreword

(percentage of gross domestic product, GDP) has only increased 0,06% since 2009,
representing nowadays less than 10% of global GDP spent on health. In addition,
the coronavirus (COVID-19) pandemic, the most serious public health emergency
in 100 years, threatens to disrupt all the progress achieved by countries in the social
and economic sectors throughout these years.

If we want to overcome the present and future health challenges, we must act
together to encourage countries towards a coordinated response and investment with
the target of a global impact. Hence, it is imperative for each country to strengthen
its data and healthcare systems so that data gaps can be closed and every country
can generate and use timely, reliable, and actionable data to ensure that decisions
are data-driven.

As a response to these challenges, and in the midst of these unprecedented times,
this book presents an opportunity to introduce a new paradigm for integrating health
experts in the process of generating new evidence with a data-driven philosophy
to enhance healthcare and overcome health threats through the use of interactive
process mining.

Recent experiences have shown that we cannot predict the future, but it is true
that it is possible to infer new knowledge from past actions through a combination
of process mining technologies using a new machine learning paradigm. As a
result, this mixture can provide accurate and personalized knowledge for future
decisions and improve patient treatment and quality of life. Throughout this book,
the authors guide us through a pathway to discover new ways to provide information
to healthcare professionals by involving them in the complex process of generating
knowledge with the idea of reducing costs and enhancing these processes. As part of
this workflow, process mining algorithms are executed in a human-understandable
way and high-quality data are needed to lead to the right decisions in the healthcare
domain. As a consequence, methods and techniques allow for the development of
new models from reality, while experts have a way to validate these models that can
be applied to human behavior.

A total of 33 experts from 20 different institutions around the world have agreed
to guide us through this journey across 17 chapters, and I hope that you enjoy this
trip as much as I have.

We do not know what will happen tomorrow, but today we know, as the American
engineer and statistician William Edwards Deming said, “Without data, you’re just
another person with an opinion,” and this book will help us fill that gap with the use
of interactive process mining.

David Novillo-Ortiz
Denmark, Unit Head, Health Information, Monitoring and Analysis
May 2020 World Health Organization, Regional Office for Europe

The author is a staff member of the World Health Organization (WHO) and is
solely responsible for the views expressed in the foreword, which do not necessarily
represent the views, decisions, or policies of the WHO.



Preface

Nowadays, writing a book about the use of artificial intelligence in the medical
domain is a challenge. Numerous advances in the last years have resulted in a large
number of work in this area. Artificial intelligence technologies have proven highly
successful in several scenarios. However, these have not yet solved some ethical
and technical issues that are raising inevitable questions in the medical community:
What is the role of the health professional in this scenario? Are these systems safe?
This is raising suspicion among certain professionals who feel these technologies
can may lose control of healthcare. This mistrust is motivating the appearance of
certain works in the literature that aid in understanding the results obtained by
artificial intelligence algorithms.

This book attempts to go a step further by proposing technology that involves
the health professional in the process of learning. The aim of this book is to present
and deepen the use of Interactive Process Mining as a new paradigm for integrating
health experts in the process of generating new evidence. This paradigm combines
the application of process mining technologies in healthcare using interactive
machine learning for supporting health professionals in inferring new knowledge
from past actions and providing accurate and personalized knowledge for future
decisions and improve patients’ treatments and quality of life.

This book has an eminent practical focus providing not only methodologies and
technologies for the application of interactive process mining paradigm, but an
important part of the book is also dedicated to presenting examples of real uses cases
where this paradigm has been successfully applied in different medical domains like
surgery, emergency, obesity behavior, diabetes, and human behavior modelling.

Although, inevitably, making a practical book requires tools for supporting the
proposed techniques, the objective of this book is not to be tool-specific. The
aim is to provide solutions, by explaining the real concepts and the engineering
behind the solution, and not the tools used in detail, keeping the content timeless
and independent of the tools used. The book is intended to provide a common
view between health professionals and data scientists in a general way. The deep
analysis of the techniques that are used is out of the scope of this book. To make
it accessible for a wider audience, we have skipped the more technical parts and
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viii Preface

Fig. 1 Book chapters

have focused on philosophical and organizational aspects. That means, the what
and the how Interactive Process Mining Techniques can support professionals in the
improvement of health processes.

Figure 1 shows the relation of chapters that are included in the book. The
remainder of the book is the following:

The first chapter introduces the problem and explains the main concepts that will
be revisited later in the book in more detail. Apart from this introduction, the book
is organized into three parts and a final chapter discussing the challenges we are
facing in the application of Interactive Process Mining in the medical domain.

The first part revisits the basic aspects and the current medical background.
Chapter 2, analyze the effects that are producing the Health Digital Transformation
in the medical domain and shows the aspects in the appearance of Value-Based
Medicine Paradigm. Chapter 3 provides an introductory background to medical
processes and what approaches exist for their design and automation. Chapter 4



Preface ix

introduces Process Mining focused on their application in the healthcare domain,
highlighting the differences, singularities, and barriers in their application in real
medical environments. Chapter 5 goes deeper into the problem of Data Quality,
specifically in the case of Process Mining. To close this part Chap. 6 shows the use
of semantics for a better way to define processes using Process Mining and Health
Data Standards.

The second part of this book is focused on the presentation of the Interactive
Process Mining Paradigm in the healthcare domain. Chapter 7 explains what is
the Interactive Process Mining paradigm, presenting its singular advantages for
application in the medical domain. Chapter 8 deepens the methodological aspects of
Interactive Process Mining, revisiting the concept of Data Rodeos for supporting the
deployment of Interactive Process Mining in health. Finally, Chap. 9 introduces the
concept of Interactive Process Indicator (IPI) as a new way to provide information
to the doctor to achieve better knowledge in medical processes and supporting them
in taking better decisions.

The third part of the book is a selection of real cases for illustrating the
application of Interactive Process Mining in the healthcare domain. Chapters 10,
11, 12, 13, 14, and 15 present real cases in real scenarios where Interactive Process
Mining is being applied, highlighting specific aspects, advantages, and barriers of
this methodology. The cases have been selected covering different fields inside the
medical domain. Chapters are talking about applying this technology in hospitals
with the existing information in medical databases, as well as enriched with Real-
Time Location Systems, and supporting medical education. But we also have
selected cases analyzing the patient process in chronic diseases, discovering its
dynamical processes and analyzing the data that comes from the Internet of Things
for discovering the patient’s individual behavior.

Chapter 16 introduces the application of organizational techniques, like Change
Management, proposing techniques for improving the success probability in the
application of Interactive Process Mining in a singular case, like it is in healthcare
domain. The last chapter summarizes new challenges that have to be addresses in the
coming years in order to successfully apply this methodology in healthcare domains.

This book is the humble result of more than 15 years of research in the medical
informatics field, looking for the best ways to support the decisions of health
professionals, increase the quality of care, and achieve better patient experience via
continuous improvement in medical processes.

A part of my life is in this book. I hope you enjoy reading.

Valencia, Spain Carlos Fernandez-Llatas
May 2020
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Chapter 1
Interactive Process Mining in Healthcare:
An Introduction

Carlos Fernandez-Llatas

1.1 A New Age in Health Care

In the last decades, in parallel to the industrial and social progress, several healthcare
paradigms have appeared in the scientific medical community. These paradigms
are proposing changes in the way in which healthcare is deployed in our society.
The image of Traditional Medicine, were physicians are artists that are isolated and
taking decisions based only on their knowledge and experience, are changing to
a new doctor always connected and with access to the last evidence existing in a
globalized world.

With the development of Evidence-based Medicine in the 1990s [26] a new
paradigm for standardizing the cares appears. Influenced by the fever of standard-
ization of processes, Evidence-Based Medicine proposes the creation of protocols
and guidelines using the best evidence existing in literature in combination with
the running knowledge of the professionals taking into account the preferences
of patients. However, in the implantation of Evidence-Based medicine in health
centres have some barriers [16]. The collection of evidence was usually Knowledge-
Driven by creating guidelines for disease cares as a result of consensus groups.
However, these guidelines are usually written by professionals having the risk of
incompleteness and ambiguity.

Other of the critics that are receiving the Evidence-Based Medicine is their
impersonality. Excessively general protocols ignore the patients that have different
responses to the treatment, that should be treated out of the guideline. This can sup-

C. Fernandez-Llatas (�)
Process Mining 4 Health Lab – SABIEN – ITACA Institute, Universitat Politècnica de València,
Valencia, Spain

CLINTEC – Karolinska Institutet, Sweden
e-mail: cfllatas@itaca.upv.es
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pose adverse effects in the treatments due to not taking into account the individuality
of the patient before defining a treatment. In this line, other paradigms promote
individualization of the cares. Personalized Medicine [15] or Precision Medicine
[7] are examples of that. These paradigms are looking for new treatments that are
taking the individual into account. This new concept is developing new strategies for
analyzing individual variability for improving the cares by personalizing existing
treatments. An example of that is human genomics, that takes into account the
genetic information in humans for selecting the best treatments. However, Personal
and Precision Medicine is not only genomics but also, use all data available of a
single patient and build high computing systems that can support professionals in
the selection of the best cares for each case. This is a new way to promote the
creation of a new medical centre in patient’s individualities.

This paradigm in combination with Integrated Care [2] one, looks for a complete
view of the patient taking into account all the information available of the
patient. This information can be collected from the data available in Electronic
Health Records available on hospitals and primary care centres or Patient Health
Records that store the information reported by the patient. Besides, other paradigms
propose a more ambitious data collection and actuation protocols framework for
providing an, even, richer data source that can offer a complete holistic view of the
patient using, not only directly related medical information, that arse accessible in
Electronic Health Records, but also personal, social and lifestyle information, that
can support health professionals in the understanding of the behavioural models of
the patients. Ambient Assisted Living and Internet of Things paradigms [9] propose
the creation of always-connected smart environments, that not only provides a way
to recover the information related to the daily routine of the patients but also build
and smart environment to put in practice advanced Integrated Care treatments that
can be deployed wherever the patient is.

In a world worried about the sustainability of health due to the increase of life
expectancy and age-related commodities and chronic diseases, there is a need for a
continuous evaluation of the health systems. The increase in the number of patients
requires a more effective way to provide health to not collapse the system. In terms
of defining health policies for next years, it is crucial to provide the best cares
using the fewer resources a possible. Then, the deployment of new technologies
and methodologies in medical domain for Health technology assessment is decisive
in the supporting of the medical domain decisions.

When a new technology is deployed it necessary to evaluate variables as
effectiveness, efficacy or the real cost. Sometimes, in complex environments like
health, it is difficult to evaluate the cost-effectiveness of the actions performed.
In this line, a new paradigm called Value-Based Healthcare [14] appeared in the
field. Value-Based Healthcare promotes the assessment of the technologies based
on the value chain that those technologies offer to the patient. In this line, Value-
Based Healthcare, look for the analysis of technologies taking into account the
information reported by the patient. In this way, there are defined two different kinds
of measures reported by the patient; the Patient Reported Experience Measures
(PREMs), that are referred to the experience perceived by the patient and the Patient-
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Reported Outcomes Measures (PROMs) that are referent to the information about
the effectiveness and safety of the treatment provided [3].

However, the value reported by the patient might be insufficient, to evaluate
the cost-effectiveness of health technology. Other paradigms, like Quadruple Aim
[4], offers others value perspectives. Quadruple Aim, define the value in four
parts: The patient experience; that measures how the patient perceives their health.
The population health, that evaluates the real health status of the patient in the
most objective way as possible. The costs, that shows the resources (Economical,
material, staff. . . ) that should be used to provide the cares to the patient. And, finally,
we should take into account the experience of the health professional. An adequate
health technology assessment should be focused on the combination of those values,
taking into account the different perspectives. This enables a better analysis of the
value provided by the technology.

1.2 The Look for the Best Medical Evidence: Data Driven vs
Knowledge Driven

Despite these large attempts to create an effective way of leading the digital health
transformation, there are still problems to join in real practice all these research
fields. In this scenario, it is clear the need for a way to provide technological tools
to align all these paradigms and framework to daily practice.

The first attempt for developing an Artificial Intelligence system that supports
medical doctors were the MYCIN system [27]. MYCIN was a Rule-based expert
system that provides support in the daily practice decisions in a consultation.
MYCIN was built using a simple inference engine that uses a knowledge base of
around 500 rules. This expert system asked the doctor a predefined set of questions
about the signs and symptoms of the patient, and according to the answers, the
computer provides a set of possible causes. Posterior studies show that the accuracy
of MYCIN was around 65%[30]. This percentage was better than non-specialist
physicians (42.5% to 62.5%) but worst than a specialist (80%). In practice, the
creation of this kind of expert systems can support the guidance of non-experts
in their daily decisions. Currently, these systems are being successfully used for
supporting doctors in their decisions through bots in specific diseases [19].

Rule-based systems are created based on the knowledge existing extracted
from experts. These rules require the creation of consensus of experts that should
formalize their knowledge in computer understandable statements. This requires a
high exclusivity for expressing all the possible patterns in the medical knowledge,
but with the adequate complexity to allow computerized automation. To approach
this formalization, there are some tools and languages in literature [22]. Computer
Interpretable Guidelines (CIG) ensures a correct and formal way for expressing
Clinical Guidelines providing tools for automating them, avoiding ambiguities and
inconsistencies.
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However, the creation of those pathways has not acquired the expected pen-
etration in healthcare domain to the difficulties in the manual creation of these
formal models. The creation of these systems requires the consensus of experts
groups that, usually have different opinion and approaches. The creation of this
consensus is highly time-consuming. Besides, the high variability in healthcare
increase the difficulty of model unambiguous and non-deterministic models to allow
their automation. These barriers lead to simplified models that usually does not
cover the reality of patients, inducing the frustration of professionals and, then, the
rejection of the system.

In parallel, to the Knowledge-Driven paradigm, Data-Driven paradigms appear
on scene. While Knowledge-Based systems are though to take decisions making
deductions based on rules known from professionals, Data-Driven approaches want
to learn the rules of the models based on the data existing in reality.

Leveraging current healthcare digital transformation era, Pattern Recognition
[10], Machine Learning [1], and Deep Learning [23] paradigms can infer the
real models from actual data existing in health databases.The use of big data
technologies for inferring new evidence from patient information provides a great
opportunity to support the diagnosis, treatments and healthcare holistically. Data-
Driven Models can discover the reality inducing the relationship among the data
available, even when these relations are not known from experts. This characteristic
provides a significant advantage over Knowledge systems. The models are automat-
ically inferred and show the statistical reality existing in the data, in an automated
way without the necessity of the involvement of human experts in the loop reducing
the time of creation, and offer a model able to represent new knowledge that is not
known in the medical community.

However, behind this advantage, resides its main disadvantage. The new knowl-
edge inferred in these models keeps hidden to health professionals. These systems
are Black Boxes for Health professionals and should trust in their decisions,
provoking an innumerable set of ethical issues [6]. Data-Driven systems are not
infallible and an error can suppose the life of a patient.

1.3 To an Interactive Approach

At this point, although Data-Driven systems can create real scientific evidence to
improve daily healthcare protocols, the lack of understandability is a huge barrier
difficult to overcome. For that, the creation of mixed paradigms that allow the
creation of models from data, but can be analyzed and understood by professionals
to extract real scientific evidence can be the solution to this problem.

But, what means scientific evidence? Most studies in the medicine domain are
based on descriptive statistics that are used classical methodologies used in classical
studies like the well known Framingham study [20]. However, there is an increasing
number of works that are demanding to evolve this way of producing evidence [13,
24, 28]. It is necessary to differentiate between Truth, Knowledge, and Certainty.



1 Interactive Process Mining in Healthcare: An Introduction 5

Truth, are the facts objectively correct; Knowledge is the information that we have
due to our experience in our understanding, that means subjectively, and Certainty
is a measure of confidence that we can apply to a fact that we are studying. In our
problem, the Truth is the medical model that we are looking for; the Knowledge is
what we know from the disease; and the Certainty is the tool that we have to evaluate
the signs, symptoms and evolution that we see in the patients. So, Certainty is giving
us the needed information for creating new Knowledge, in looking for the Truth.

Data-Driven models are giving to us Black Box Knowledge to take decisions.
Cognitive Computing paradigm [21] promote to mimic the human brain in order
to substitute the human in the knowledge phase and take the decisions based on
the knowledge provided by the machine. But, that means to lose control over the
information that we have. In that paradigm, our medical knowledge not only is not
increasing but also we are giving our confidence to machines that are infinitely less
powerful that our main computer system: The brain.

On the other hand, Interactive Models [12] promotes the interaction of the
human with the machine using the human brain as another computation node in the
learning system. While computers can provide the best memory and computation
capabilities, Human brain can coordinate computation using heuristics, leading
the experiments and isolating the atoms of evidence that are forming our medical
knowledge. The Human-Computer interaction has been demonstrated its advantages
in the learning domain decreasing the convergence time over classical cognitive
models [12].

Interpreting Wisdom as the Decision we can show the differences between the
paradigms based on the Pyramid of Wisdom [25]. Figure 1.1 shows this difference.
Cognitive models provide computerized tools to provide models that provide the
knowledge required for making the best decisions. Interactive Models advocate

Fig. 1.1 Cognitive Models vs Interactive Models
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producing the information in combination with computers letting the knowledge
and the decision to the human.

However, the application of Interactive Methodology requires the involvement
of human experts in the process of learning. This requires acceptance professionals.
For achieving this aim, it is crucial to use adequate tools and methodologies to
enable the interaction between the human and the learning systems. For that,
the number of Data-Driven techniques that can be used in an interactive, are
those that provide a way to communicate the results in a human-understandable
way. Unfortunately, most used machine learning techniques, like Neural Networks,
Hidden Markov Models, or Support Vector Machines are not thought to be humanly
understandable. For that, to apply the Interactive Learning paradigm, it is necessary
to select algorithms, methods and tools adapted for providing understandable
information to discover new knowledge through new evidence.

As said, most of Machine Learning models are based on mathematical algorithms
that produce accurate models, but not understandable. Currently, there are appearing
works in literature demanding for an Explainable Artificial Intelligence in medical
domain [17]. Explainable Artificial Intelligence is a research field that advocates for
creating tools, methods and algorithms that translate the results of Machine Learning
systems, to human-understandable information, providing not only the answer of a
question, for example, a diagnosis, but also the reasons of the selection, the signs
and symptoms that have pointed to the solution.

However, although the application of those techniques allows having the clues for
a better understanding of the knowledge existing in the Black Boxes. The techniques
are not designed to be understandable and there is not the needed fluid interaction
between the expert and the machine. Also, Explainable models offer a unidirectional
interaction, from the model to the expert. These systems can’t be corrected and
improved by experts reducing the capabilities of the interactive learning, that is
based on the correction produced by experts to improve the system in the next
iteration.

1.4 Why Process Mining?

Taking a look at the health paradigms analyzed in Sect. 1.1, in all of them there
is an underlying process associated with the care protocols. Independently if the
focus is based on the patient or the professional, clinical methodologies are based
on processes. Clinical Guidelines created by health experts are usually described
as processes, showing the behaviour of the disease and guiding the actions that
should follow to correctly treat the disease. In this line, a process view can be a good
interaction language. In this line, the Process Mining Paradigm can be an interesting
suitable option for creating Interactive Learning systems.

Process Mining [29] is a relatively new paradigm that is increasing this presence
in the medical domain by inferring the Processes based on data available from
medical databases. Process Mining uses the events of the patients, that are the
actions and its timestamp, for discovering the actual processes performed by
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patients, in a process view specially designed for being human understood. Also,
Process Mining provides tools for enhancing the views highlighting the most
interesting parts of the processes and techniques for comparing the processes,
enabling the assessment of health protocols implemented [5].

Usually, Process Mining techniques are not the most accurate Data-Driven that
you can apply to a machine learning problem, but its capability to be human-
understandable supposes a new way to extract knowledge from the Data-Driven
world. This allows mix Data and Knowledge-Driven worlds through the application
of interactive models [12]. This not only increases the acceptability of the technol-
ogy by the experts that can understand how its processes are deployed but also, the
expert is enabled to correct the inferred model, the inference errors produced by the
Data-Driven system, that are potentially zero in each stage [12].

1.5 Interactive Process Mining

The characteristics of Process Mining framework are perfect for applying Interactive
paradigm in the optimization of process. The application of Interactive Process
Mining techniques can support in the Data-Driven inference of the Protocols and
guidelines that can be understood and adapted by healthcare professionals in an
iterative way [12]. Evidence-Based Medicine paradigms can use these techniques
for achieving a Data-Driven actual combination of human knowledge and best
evidence in daily practice. This is because it allows the real interaction between
the health professional running knowledge, and the best evidence existing that is
accessible and understandable by the professional.

However, Interactive Process Mining technologies also can support health profes-
sionals for putting in practice these personalized paradigms. Process Mining is used
for discovering individualized behaviours of patients [8, 11] using Ambient Assisted
Living or Internet of Things information available in smart environments. This can
provide new ways for helping health professionals not only in the individuals’
processes discovery but also in the evaluation of the effects of new treatments in
a holistic, integrated and personalized way. Besides, Process Mining can support
in the value chain evaluation in the patient processes promoted in Value-Based
Medicine according to Quadruple Aim aspects [18].

Interactive Process Mining supposes the application of machine learning algo-
rithms that could offer an understandable view of processes. The purpose of that
is taking advantage of human judgment in order to achieve the acquisition of
real usable evidence from automatic data mining techniques. This allows not only
answer research questions that physicians have in mind but also, produces new
questions about the patients’ patterns behaviour that, in another way, keep hidden
into the data. This, on one hand, allow experts to use Interactive Process Mining
looking for a first confirmation of the intuition evidence acquired from experience
but, on the other hand, enable them to discover new evidence that is not expected and
after that can be verified using clinical cases. These techniques allow a first step for
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selecting the best questions that can be stated for the development of clinical cases,
with better guarantees, optimizing the process of obtaining evidence. Moreover,
these techniques can support in the deployment of medical process resultant of
the evidence acquisition, not only by helping in their traceability but also in the
continuous adaption of the standardise process to the local reality in each medical
centre in each moment in time, actions that are not sustainable using clinical cases.

The main aim of this book is to deepen in the aspects of this paradigm in the
healthcare domain. In following chapters we analyze in more detail some aspects
of the background, challenges and limitations, we propose a methodology, and we
show a set of some real applications for showing how Process Mining can be used
for interacting with medical experts to achieve evidence. Enjoy the reading!
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Chapter 2
Value-Driven Digital Transformation in
Health and Medical Care

Fernando Seoane, Vicente Traver, and Jan Hazelzet

2.1 Evolution of Patient-Centric Medical Care

Since the beginning of modern medicine, medical care has been practiced with a
strong focus on the patients needs beyond re-stating the patient’s health. We can
find in Hippocrates oath the origin for both patient safety stating the nonmaleficence
principle and patient privacy. Therefore, we can state that medical care has been
patient centric from the very beginning.

The development of public health between late 1700s and beginning of 1900s
[44] first and the rising of Evidence-based medicine (EBM) [19] later where
attempts to provide a standard of care of the highest quality to all. The remarked
focus on population, seemed like medical care had shifted temporarily the focus
away from the patient as individual. On the contrary, public health and EBM were
actually incorporating more needs of the patient into the care process, needs of the
patient not limited to the individual but as part of a society.

As response to such apparent focus shift at the end of the twentieth century, a
renewed person-centric effort spread through care practitioners and medical care
associations aiming to refocus care back into the patient [43] incorporating more
patient needs beyond the medical interventions it-self, including patient values and
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Fig. 2.1 EBM triade inspired
on the original diagram in
[38] from 1996

preferences. As a result, the EBM concept developed into the EBM triad, including
patient values, needs and preferences as one of its fundamental pillars [38] (See
Fig. 2.1).

2.1.1 Holistic Approaches to Healthcare Improvement in a
Patient-Centric Framework

While the patient centric movement [8] continued growing through the first decade
of this century, new trends about healthcare delivery raised to meet the incipient
challenge caused by the global demographic pressure of a larger, older and sicker
population: Healthcare sustainability.

Concepts like value based health care (VBHC) introduced by Porter and Teisberg
[33] or the triple aim of healthcare [4] promoted by the Institute of Healthcare
Improvement (IHI) acknowledge the complexity of the healthcare ecosystem and
presented a more holistic approach to provide care taking into consideration all
significant factors influencing the future sustainability of healthcare (See Fig. 2.2).

2.1.2 VALUE Based HC Concept

While Value-based healthcare is a framework with a holistic approach integrating
several dimensions, the initial given definition of value [34] “as the health outcomes
achieved per dollar spent” was relatively limited, reducing the whole concept to a
mere cost-efficiency question. Fortunately for the sake of future sustainability the



2 Value-Driven Digital Transformation in Health and Medical Care 15

Fig. 2.2 Conceptual representation of Value-based Health care (left) and the triple aim of the
Institute of Health Improvement

Table 2.1 Evolution of value definition in value-based health care. (Source: Modified from [10])

Narrow (price-based)
utilization of Value
[13, 16, 29, 31]

Value defined as the ehealth outcomes by dollar spent

Value = (Outcomes + Patient Experience)

Cost(Direct + Indirect)of Care Intervention

Value = Healthcare that matters to the patient

Cost along the entire cycle of care

Comprehensive
(normative) utilisation of
“value”[17]

Allocative value: equitable distribution of resources across all
patient groups

Technical value: achievement of best possible outcomes with avail-
able resources

Personal value: appropriate care to achieve patients’ personal goals

Societal value: contribution of healthcare to social participation and
connectedness

definition of value has evolved in the last decade from a narrow, price-based, to
a comprehensive, normative, definition, see Table 2.1 [10], not just preserving the
wide holistic approach but making VBHC applicable to a wide range of healthcare
systems.
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2.1.3 The Triple Aim of Healthcare with Attention for Health
Care Professionals: The Quadruple AIM

Simultaneously to the development of VBHC, the Institute of Healthcare Improve-
ment proposed in 2007 a comprehensive framework to improve healthcare including
population health in the triple aim [4] of healthcare. Conceptually very similar to
VBHC, IHI’s approach to health outcome was not limited to a specific disease and
the care intervention provided. In the Triple aim, both the health outcome and the
value for the patient were considered to a higher level: the whole population.

The three tenets building the Triple Aim are [4]:

• improving the individual experience of care,
• improving the health of populations and
• reducing the per capita costs of care for populations.

Probably, a wider framework that includes population health, i.e. incorporates the
public health dimension with the patient centric approach and the financial aspect
should be better useful to tackle the future sustainability challenge of healthcare.

Anyhow, it turned out that the triple aim was missing an essential component that
is crucial for the other three tenets: The experience of the care team. As pointed out
by Bodenheimer and Sinsky in 2014 [5] the triple aim cannot be achieved without
including the wellbeing of the workforce. Any improvement achieved neglecting
the experience of the health care staff will have a short-lasting effect, especially if it
is achieved at their expenses. This way through the incorporation of the experience
of the workforce, the triple aim evolved into the quadruple aim of healthcare [41]
(See Fig. 2.3).

Fig. 2.3 Conceptual
representation of the triple
aim of the Institute of Health
Improvement adding the
perspective of the health care
worker, known as the
quadruple aim



2 Value-Driven Digital Transformation in Health and Medical Care 17

2.2 Data-Driven Sustainable Healthcare Framework

2.2.1 International Consortium for Health Outcome Measures

The medical and healthcare community realized that the novel frameworks revolved
around optimization concepts, targeting improvement, reducing cost and burden,
increasing health outcome of intervention, and improving quality of life of patients.
It was self-evident that the implementation of such holistic frameworks into practice
required access to accurate information relevant to the different care processes. Not
only such data should be condition specific but should be also standardized [12].

Health outcome measures have been collected and have been used for managing
patients [36] for several decades. Accepting the claim by Porter in 2010 [30] that
“Outcomes are the true measures of quality in health care” then measuring outcomes
is indeed critical for assessing and maintaining the standard of quality of care
provided to its prime.

Upon agreement that standardized health outcome measures were required to
implement and maintain any healthcare improvement action [32] in any holistic
manner, healthcare organizations collaborated and formed the International Consor-
tium for Health Outcome Measures (ICHOM) in 2012. Since then, through a global
collaboration effort ICHOM has developed more than 30 standardized sets of health
outcomes measures with an evident patient-centric perspective.

ICHOM has identified and defined disease specific sets of clinical and Patient-
Reported Outcomes Measures (PROMs), as well as Patient-Reported Experience
Measures (PREMs) relevant for assessing value using outcomes that matter to
patients and by doing so ICHOM has significantly contributed to spread the meaning
of VALUE as the most comprehensive definition combining healthcare that matters
to the patients with the cost along the entire cycle of care. This way unifying in a
practical manner the conceptual frameworks proposed in VBHC and the multiple
AIM of healthcare originally proposed by IHI.

2.2.2 Digital Health Transformation

Society as a whole and through specific branches has benefited from the application
of advances in data storage, display technology, computing capacity and mobile data
communications among others during more than a century, but specially in the two
last decades. Despite that digital transformation is based on technological advances,
it is not actually driven by technology but through the strategy of organizations
aiming to meet certain needs or overcome specific challenges. The transformative
power of novel technologies does not come from the enabling technologies but from
the significance of the needs pulling for adopting given technological solutions,
where disruptive innovation can multiply exponentially the value [22].
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Table 2.2 Elements demanding a digital health transformation

Element
Constraints on Healthcare system

Patient Cost Quality

Population
growth

Reduce access to care Increase cost Less time with
patient

Increased patient
demands

Demands better
outcome

May lead to cost
increase

Increase
likelihood to
perceive poor
experience

Increased life
expectancy

Increased likelihood to
require care
interventions

Increase cost

Larger
proportion of
chronic patients

Patient required
medical attention for
life

Increase cost Increase
complexity of
care delivery

Increased
co-morbidities
among chronic
patient

Increased complexity
of care

Increase cost per
patient

Care cost
increase

Less budget available per patient Less resources available

Inequity in care Risk in drop in quality Large variability

During the last 30 years a number of issues (see Table 2.2) have risen, demanding
for changes in healthcare delivery of such magnitude that instead of changes it is
actually a full transformation that is required, a transformation that can only be
achieved through a paradigm shift (and thinking positively, the COVID-19 pandemic
has pushed intensively towards such direction, forcing some of such expected
changes).

As shown in Table 2.2, all changes, involve information: medical, clinical
financial or patient-reported information and data. Basically, every single aspect
of data is involved: collecting, storage, access, analysis, visualization, sharing,
protecting etc. All the changes required to make future healthcare sustainable are
data-related, consequently the seek transformation must be digital.

2.2.3 IT Infrastructure as Enabling Agent of Digital
Transformation

The role of IT infrastructure and IT systems in health care has changed significantly
in last decades. From originally heavily devoted to host the electronic patient
record, basically just collecting the minimum necessary patient data and providing
clinicians with limited access to patient data. IT systems at hospitals evolved
to computer networks interconnecting the hospital databases, ensuring access to
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health-related data across the hospital and enabling information services to benefit
all levels of the health care system [14].

Nowadays, IT systems at hospitals should focus mainly on data management,
including data collection, data sharing, data presentation, preserving security and
privacy while providing the data infrastructure required to leverage data analytics
for both managerial, clinical and medical purposes. It is precisely the availability
of high quality, relevant and shareable data, one of the factors digital healthcare
transformation and consequently IT systems have become the core of the ongoing
paradigm shift in healthcare.

2.2.4 Artificial Intelligence Widely Available for Contributing
to the Transformation

Another enabling factor catalyzing digital transformation is Artificial Intelligence
(AI). For over 40 years AI has been applied into medicine through the so-called
Computer-Aided medical Diagnostics [1, 28] or Expert Systems [26, 40], but it has
been during the last 10 years that AI has been incorporated into any future healthcare
strategy. Such development has not been driven by only the strong pull of the market
in need to meet increasing demands in number, expectations and complexity, but
also by two very important facts:

• Overwhelming number of success cases of AI analytics outside healthcare.
For over 40 years, enterprises have benefited from all sort of rule-based decision
support [39] systems first, statistical descriptive analytics later and machine
learning-based prediction analytics last. AI applications have showed their
benefits through society from extremely application specific e.g. Identification
of flicker disturbances in power quality [2], quality improvement in product
manufacturing [23] to generic-daily life situations e.g. smartphone key typing
[3], faceID unlocking tablets [6], best traffic route provided by google maps.
Therefore, it is very well proven what AI-boosted analytics can do in basically
any data-driven scenario.

• The Birth of Big data. The rapid expanding of big data through all branches of
science, engineering [47] and business [25] fuelled by the emergence of the data
scientist [11, 46] and the quick development of platforms for data management
and cloud computing [20] like Hadoop prepared the runaway for AI predictive
analytics to take off.

Through the years several different definitions have been given to AI, currently
the official definition given by the EU parliament is the following “AI is the
capability of a computer program to perform tasks or reasoning processes that we
usually associate with intelligence in a human being.” In the right conditions, that is
with accurate and trustable data available, AI solutions can have a significant impact
in several areas of healthcare [21], see Table 2.3. AI enabling (1) improvement of
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Table 2.3 Mapping AI
potential impact areas with
current constraint dimensions
in Healthcare

Healthcare area Cost Quality Patient

Self-care, prevention and wellness x x x
Triage and diagnosis x
Diagnostics x x
Chronic care management x x x
Care delivery x
Clinical decision support x x

population-health management, (2) improvement of operations and (3) strengthen-
ing innovation would most likely will contribute to the revolution required to ensure
future sustainability of the healthcare systems.

When mapping these potential areas where AI can make a difference with
the constraints in healthcare imposed by the elements demanding a digital health
transformation listed in Table 2.2, it is possible to identify a large overlap that
indicates the true transformative power of AI in Healthcare.

2.3 Challenges and Adoption Barriers to Digital Healthcare
Transformation

Despite the strong pull from the healthcare systems with needs specifically demand-
ing solutions with the transformative power of digital technologies, there are all
sort of implementation challenges, organizational hurdles and acceptance barriers
stopping to fully embrace digital healthcare transformation just yet.

Many of those challenges and hurdles [24] are generally related to incorporating
digital technologies and implementation novel data management approaches within
hospital operation and clinical practice but others are specifically related to aspects
of AI.

2.3.1 Data Management Clash

Availability of all sort of data, patient, operational, financial, medical, is one of the
catalyzers behind digital transformation, but patient privacy from one side and data
interoperability [18, 27] issues from another are slowing down adoption of digital
healthcare.

Legislation to enforce patient privacy should be in place, and in Europe, the
GDPR has precisely defined it to preserve the privacy of everyone in the current
information era. Unfortunately for Big Data Analytics in healthcare, GDPR is
limiting heavily potential applications at the moment due to uncertainties from legal
stand points of what can be done or not with certain data and how and in which
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way it should be interpreted to preserve the legal framework defined by GDPR
[9]. This caution has resorted in many healthcare organizations through Europe to
complete standstill, awaiting for other first adopters to present viable solutions, or
specific guidelines from European or national authorities about how AI and big data
analytics should be implemented under the umbrella of GDPR.

The true potential of big data AI-driven analytics requires that all sort of data
is collected, stored, computed and visualized in completely different IT systems,
that implies that data is shareable through the IT systems. Unfortunately, that is
not the case in most of practical scenarios. Despite important initiatives to define
interoperability frameworks for data sharing, currently, old legacy systems remain
being active and used among hospitals all over the world slowing down the path to
the digital healthcare transformation journey.

2.3.2 Organizational Self-awareness for Digital Adoption
Readiness

The journey towards digital health transformation requires to interconnect many dif-
ferent dimensions within a care organization and requires certain level of readiness
across the whole organization to implement any data analytics strategy, otherwise
the implementation will fail and the potential benefits will not be achieved. The
depth of such interrelation required to successfully implement any given data
analytics solution is commonly underestimated, between the manual collection of
a given parameter during daily routine to the availability of such value in a database
of a hospital information system may pass days even weeks. Moreover, just because
the parameters are digitalized, further data manipulation might be required due to
incompatibility issues and lack of interoperability.

2.3.3 Inherent Risks of AI

Data analytics boosted by AI is certainly very useful but even when used to analyze
what happens it is not infallible and is subjected to external factors, human error
often. When AI is boosting predictive data analytics, the source of error might not
be only external but inherent to the core fundamentals of AI.

One of the fundamental pillars of AI is a strong statistical core, the more solid
the statistics available for an application the more accurate the analysis will be done
and the more certain the predictions. It happens that when the number of cases are
low the supporting statistics will be poor and the produced prediction will not be
reliable. Inconveniently, in medical care when a practitioner is unsure and requires
support this is often not with common everyday cases, where AI-support potentially
will perform at its best, but with odd and complex cases, for which AI predictions
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will fail most often. Such kind of performance issue when AI is needed the most,
creates a bad reputation and produces mistrust among practitioners that will impact
their acceptance.

Limited traceability is also a common and significant downfall when dealing with
machine learning based algorithms. In medical care patient safety and quality of
care in general are critical factors driving clinical operations. Therefore, when there
is a failure, sources must be identified, and measures should be taken to prevent
the same failure to occur again. While the learning capacity of AI systems will
potentially and eventually deal after several failures, preventing the miss-judgement,
the opacity of [35] black-box model at the core of the most of AI algorithms will
make it impossible to trace back the stage within the algorithm that failed and led
to a wrong prediction. Nowadays in normal circumstance in clinical practice it is
not acceptable to work with a tool that if it fails, the source for the failure cannot be
located.

The inherent probability of an error in certain circumstances, and the lack of
the true understanding of the underlying process at the core of the AI process, will
impact heavily the acceptance of most clinicians to adopt the use of these tools into
clinical practice.

Even in organizations with high data analytics maturity and strong user pull to
incorporate already-proven innovative technologies, and even when considering the
current landscape of AI solutions provided by trust-worthy vendors of established
reputation, the task of selecting the most appropriate technological solution is
tedious and complex, and requires a careful planning incorporating a holistic
approach.

2.3.4 Actions to Reduce Challenges, Hurdles and Barriers

The shadow casted by the relatively novelty of the GDPR over healthcare organiza-
tion requires certain guidelines with clear examples from the responsible authorities
or the development of best practice guidelines to enlighten up the journey.

A well-thought strategy to implement digital health transformation accounting
for all aspects intertwined with the future implementation steps required to take
would definitely facilitate the digitalization journey. Such a strategy should be
designed according to the maturity level of the organization for adopting data
analytics and the implementation should be paced accordingly to the progression
of the maturity level for adopting data analytics of the healthcare organization.

For nearly a decade ago, HIMSS, the Healthcare Information and Management
Systems Society, developed the adoption model for analytics maturity (AMAM)
and has been using it to support healthcare organizations to evaluate and advance
their own analytics capabilities. HIMSS in a new effort to support healthcare
organizations to eliminate organizational challenges and technology readiness
barriers has just launched the HIMSS Digital Health Framework [42] and the Digital
Health Indicator.
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A framework based on the seven maturity levels developed by HIMSS and an
indicator to measure progress towards a digital health ecosystem by measuring both
operational features of digital health systems, as well as transformation of digital
care delivery.

The trust of clinicians and medical managers is critical to increase the acceptance
of AI solutions within healthcare. Education actions targeted to improve the
understanding of the black-box engine driving the AI algorithms would increase
the technology readiness of users and decision makers but the true impact on
improving understandability among clinical stakeholders would come from using
understandable AI methods with an inclusive methodology engaging the clinician
in the whole AI modelling process.

Under the umbrella of Artificial Intelligence and information theory, Process
Mining [45] is a research discipline that uses existing information to create human-
understandable views that support healthcare stakeholders in enhancing their insight
in the clinical process. One of the distinct features of process mining is that it focuses
on the analysis of logs of activities from process creating visual models. The direct
visualization of the modeling output and direct connection of the model elements
with the source provides the method with a transparency that allows to identify
causality and enhance traceability. Such transparency is the opposite of a black box
model and it is an incentive for users in the health care field, demanding to be able
to inspect the inside of analytical and predictive core.

A novel interactive process mining methodology [15] has been developed that
specifically requires the engagement of the clinicians in the extraction of the
operational model. Such engagement provides the clinician with insights about
the internal functioning of the analysis phase that preserve their trust, wondering
the reasons and engaging them in the continuous improvement loop, following a
question-based methodology [37].

Another initial advantage intrinsic to process mining analysis methods is that
the object of study are processes from events logs not patient data per se, therefore
reducing constraints imposed by preserving privacy.

Availability of evidence is critical to reach an acceptance across the health and
medical care community, therefore a well-documented catalogue of success cases
of improving healthcare through assessing value for patients using digital health
solutions is required.

Giving the need for healthcare improvement with a holistic perspective and
the target pursued by process mining, improvement of output based on the key
performance processes, seems like a match difficult to overlook.

2.4 Summary

Medical care has been patient centered from the origin and has evolved closely
along the evolution of patient needs from the patient as individual to the patient as
population, pursuing to provide the medical care of the highest quality standard.
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The holistic unification of patient individual health and patient population
approaches through health and patient outcomes as predicted by Cairns back in 1996
[7] and has been catalysed first by the availability of information technologies and
then the rising and development of VBHC.

Considering value in VBHC as achieving the best outcomes from the perspective
of the patient versus executing the care process needed to achieve these outcomes in
the most optimal way. It is of paramount importance to identify and understand the
processes to be improved in order to be able to improve the outcomes.

Digital health tools enable deployment of information services and data analysis
technologies like process mining precisely adequate for discovery, analysis and
optimizing of the operational models underlying the actual care processes.

Despite that the undergoing transformational change is pulled by global needs
and driven by information technologies, data availability and data science, the
journey ahead for digital health transformation is full of all sort of barriers:
regulatory, clinical adoption, medical trust, and patient acceptance.
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Chapter 3
Towards a Knowledge and Data-Driven
Perspective in Medical Processes

Carlos Fernandez-Llatas and Mar Marcos

3.1 Introduction

Healthcare is one of the most challenging problems that our society is facing
currently. The population of the world is growing around 1% per year [33]. In
addition, the expectancy of life is increasing thanks to the new advances and the
better quality of health solutions. For this reason, people are reaching older ages,
which entails more chronic illnesses, with more co-morbidities. This supposes a
great increase in the complexity of the illnesses. In addition, thanks to the new age
of internet patients are more aware of their illnesses, having higher expectations
of the health system. Altogether, this causes a great impact in the sustainability of
healthcare, which should cover this scenario with the same budget. This juncture
is demanding a new paradigm that will be able to deal with the complexity and
continuous changes in the health domain in the coming years, in order to guarantee
the sustainability of the system.

From the 1990s, when the Evidence-Based Medicine paradigm emerged [35],
there has been an increasing interest in providing tools for empowering health
professionals in the application of new methodologies and paradigms that could
solve this problem. Sacket defined Evidence-Based Medicine as the “conscientious,
explicit, and judicious use of current best evidence in making decisions about
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the care of individual patients” [35]. This paradigm tried to unify knowledge
gathered from the best research evidence (what the literature says), with the clinical
experience (what the clinician knows), centered in providing the best experience to
the patient (what the patient wants). In this scenario, the idea of creating formalized
processes that support the daily clinical practice with the best evidence available
arises. In this scenario, the idea of creating formalized processes (or protocols)
that support the daily clinical practice with the best evidence available arises. It
promotes the formalization of clinical research results so that they can be applied
in daily practice by clinical professionals. This is done through the specification
of protocols that are thought to be well-defined standards of care. In this line,
these protocols can serve to improve the clinical effectiveness, provide solutions
for risk management, and trace the actual care process to reduce the variability of
the treatments in healthcare.

In the literature there are different approaches for the definition of such formal-
ized processes. The aim of this chapter is to analyse the most prominent approaches
for supporting clinical experts in the representation of medical processes. First, the
two process-related perspectives in healthcare (which we have named as patient &
process centered and clinician & knowledge centered, respectively) are presented
and compared. Moreover, the different instruments developed by the medical
profession related to this concept are described. After that, the two main approaches
available in the literature for building medical processes are reviewed: on one hand,
knowledge-driven Clinical Decision-Making technologies, and, on the other hand,
Clinical Process Management technologies, which rely on a data-driven approach.
Finally, the concluding section discusses new challenges towards the formalization
of medical processes leveraging the advantages of these two technologies.

3.2 Process-Related Perspectives in Healthcare

Health systems are struggling to meet the growing demand for healthcare services
from ageing population while maintaining consistent quality standards. As Peleg
and González-Ferrer point out, two strategies are being used for this purpose,
both sharing a process-based perspective [30]. One strategy focuses on improving
the management of the processes (e.g. interventions, interactions) that the patient
goes through in relation to a clinical encounter. The other strategy concentrates on
supporting decision making by the clinician at the point of care using specific-
purpose tools (i.e. dedicated to a specific medical condition) that incorporate
knowledge about clinical processes. This knowledge is mostly based on the best
evidence available that can be found in documents such as clinical practice
guidelines, but can also refer to medical background knowledge contained in
textbooks and manuals. The former strategy takes the perspective of the patient
journey and considers organizational issues of healthcare processes, including the
coordination of multidisciplinary teams and the allocation of resources, and thus can
be described as patient & process centered. In contrast, the latter strategy focuses
on the perspective of the clinician when managing an individual patient, with an
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Table 3.1 Summary of the features of the clinician & knowledge centered (CKC) and patient &
process centered (PPC) strategies in healthcare
��������Features

Strategies
CKC PPC

Main subject Health professional Patient

Main process Health professional’s actions Patient journey
and decisions

Patients Individual patient Multiple patients

Health professionals Individual health professional Multidisciplinary health team

Diseases Single disease Single or multi-disease

Main usage Prescriptive Analytical

Orientation Knowledge-driven Knowledge or data-driven

emphasis on knowledge-intensive decision tasks, therefore it might be considered
as clinician & knowledge centered.

There exist significant differences in how the previous strategies can be exploited
in the healthcare context. Most notably, the clinician & knowledge centered (CKC)
strategy, relying on the recommendations issued by medical experts, can be used
to determine what should be performed (or what is prescribed) given the specific
clinical circumstances of a patient, typically in the context of a single disease. On the
other hand, the patient & process centered (PPC) strategy can be applied to inspect
what has been performed and makes it possible e.g. to monitor the itinerary (or
itineraries) actually followed by patients with a particular clinical profile, possibly
involving multiple diseases. In other words, the usage of the CKC strategy would
be primarily prescriptive, whereas that of the PPC one would be analytical. Lastly,
the two strategies may differ in their positioning with respect to knowledge and
data. Although a knowledge-driven orientation can be taken in both cases, in the
case of the PPC strategy the use of process models obtained from clinical data in
the Electronic Health Record, i.e. a data-driven orientation, is a common practice.
Table 3.1 summarises the main characteristics (and differences) of these strategies.

The instruments developed by the medical profession to support the concept
of consistent and high-quality healthcare are very much related to what has been
exposed. Clinical Practice Guidelines (CPGs) are the core instrument. According
to the most recent definition, CPGs are defined as “statements that include rec-
ommendations intended to optimize patient care that are informed by a systematic
review of evidence and an assessment of the benefits and harms of alternative care
options” [15]. In line with the view of Evidence-Based Medicine, the development
of CPGs is usually commissioned to a group of experts who are responsible for
collecting and analysing the best and most up-to-date evidence about a particular
clinical condition, and for agreeing a set of general recommendations regarding the
main management aspects thereof.

Clinical Protocols are related yet distinct from CPGs. A clinical protocol is a
locally agreed statement about a specific clinical issue with steps based on CPGs
and/or organizational consensus [2]. Usually, clinical protocols are specific to a
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health organization. Care Pathways likewise adapt CPG recommendations to the
needs and particularities of a health organization. Thus, both clinical protocols and
care pathways can be regarded as instruments for the implementation at local level
of the evidence base from CPGs. However, care pathways differ in that they describe
many more aspects (and in more detail), including: an explicit statement of the goals
and key elements of care when solving one or several clinical issues, the description
of the communication among the care team members and with patients and their
families, and the specification of the coordination aspects of the care process (with
roles, sequencing of decisions and actions, etc.) [36]. Care pathways also define
the information to be recorded so that it is possible to monitor deviations of the
actual care with respect to the recommended procedure. Clinical Pathways (CPs)
in turn differ from care pathways in that they are confined to the paths within a
hospital, i.e. excluding outpatient clinic and follow-up activities. Common to most
of the concepts, it is possible to distinguish the general instrument (template) from
the versions adapted to the values and preferences of the patient, giving rise e.g.
to “personalised care pathways”. Figure 3.1 depicts the relationships among these
concepts.

As explained before, the CKC strategy strongly relies on knowledge about
clinical processes and decisions. Most typically, CPGs are used as source for such
knowledge. For their part, CPs (and pathways in general) are very well suited for the
purposes of the PPC strategy, due to their focus on the monitoring of care processes.
Naturally, CPGs have a knowledge-driven orientation, whereas either a knowledge-
driven or a data-driven orientation can be adopted for CPs.

Fig. 3.1 Relationships
between clinical practice
guidelines, clinical protocols,
and pathways, including
pathway variations. (Adapted
from Figure 1 in Benson’s
article [2])
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3.3 Technologies for Clinical Decision-Making

3.3.1 Computer-Interpretable Guidelines

CPGs have shown the potential to foster the translation of clinical research results
into practice, and to improve the quality and outcomes of healthcare. However, the
practical utility of CPGs is often hindered by the text-based format in which they
are predominantly disseminated. Another problem is their emphasis on the general
principles of care, rather than on the actual processes along the patient journey [30].
In this context, Computer-Interpretable Guidelines (CIGs) emerge as a tool to make
patient-customized CPG recommendations available to clinicians in an easier and
more immediate way, compared to text-based CPGs. Thus, CIGs can be defined
as formalized versions of CPG contents intended to be used as decision-support
systems. The beneficial effects of the use of CIGs in the clinical setting have been
documented in the literature, and include improved CPG adherence and increased
efficiency of the healthcare processes (e.g. thanks to the reduction of unnecessary
test requests) [20].

Several CIG representation languages have been proposed in the fields of
Artificial Intelligence in Medicine and Medical Informatics, the most prominent
of which are Arden Syntax, PROforma, Asbru, EON, GLIF, and GUIDE [5, 31].
CPGs contain a wealth of knowledge of diverse types. To accommodate this variety,
CIG languages provide a wide range of modelling constructs. Peleg et al. recognize
two main representational categories, namely structuring in plans of decisions and
actions, and linking to patient data and medical concepts, and identify a total of
eight dimensions within them [31]. These dimensions are: (1) organization of plans,
(2) goals, (3) action model, (4) decision model, (5) expression language, (6) data
interpretation/abstraction, (7) medical concept model, and (8) patient model.

Many of the CIG languages take an approach to the description of plans (above
dimensions (1) through (4)) which has been named Task-Network Model (TNM).
The TNM approach consists in describing guidelines in terms of a hierarchical
decomposition of networks of component tasks. The task types, as well as the
types of control-flow constructs (sequence, in parallel, etc.), vary in the different
TNM approaches. Still, all of them provide support for actions, decisions and nested
tasks. A highly distinctive feature of CIG languages lies in the decision model. In
this regard, PROforma’s decision model, which was subsequently adopted by other
CIG languages, deserves a special mention. In PROforma, decisions are described
in terms of the alternative options (or candidates) considered, each one with an
associated set of arguments. These arguments are logical conditions that, when they
are met, provide different kinds of support for the candidate, namely for, against,
confirming or excluding the candidate.

As an illustration, Fig. 3.2 shows a PROforma excerpt corresponding to the
algorithm for the diagnosis of heart failure in the non-acute setting [23], based on
the 2016 guidelines of the European Society of Cardiology. It comes as no surprise
that, although CIG languages were specifically geared for CPGs, they have also



32 C. Fernandez-Llatas and M. Marcos

Fig. 3.2 PROforma model for the diagnosis of heart failure in the non-acute setting [23].
To the left, task tree representing the hierarchical decomposition of tasks; to the right, task
network corresponding to the plan Step_1_assessment_of_HF_probability (first step
of diagnosis), including action, enquiry and decision tasks

proven to be useful for modelling and supporting complex clinical processes from a
broad spectrum. This includes care pathways for different purposes, e.g. for the
management of triple assessment in breast cancer [28] or for the monitoring of
patients with multiple comorbidities [21].

3.3.2 Development and Maintenance Issues with
Computer-Interpretable Guidelines

The representational richness of CIG languages makes them difficult to use (not to
mention mastering them) for non-technical users like clinicians. Furthermore, it is
well recognized that CPG knowledge is intrinsically complex and hence difficult to
comprehend and formalize [19]. As a consequence of these factors, the encoding
of CPG knowledge in a CIG language is a difficult and labour-intensive task which
requires the joint collaboration of both clinical and IT professionals. On the one
hand, clinical expertise is essential for a complete and adequate understanding of
CPG recommendations. On the other hand, IT skills are required to analyse the
clinical processes they include, as well as to shape them in terms of the constructs
of the CIG language chosen [25]. This explains why the topic of CIG knowledge
acquisition and specification has been the focus of a large number of research works
in the literature. Concretely, in relation with the life-cycle of CIG development,
knowledge acquisition and specification is the topic to which more efforts have
been devoted, after CIG languages [29]. Noteworthy among these approaches are
the application of cognitive methodologies to guide the encoding of CPGs into
CIGs, and the use of pattern-based information extraction methods to support the
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translation of CPG texts into a semi-structured format. Despite these efforts, CIG
development tasks remain largely manual. This may lead to a significant delay
between the time when a CPG is issued and the time when a fully functional and
validated CIG is ready for its implementation, which could be unacceptable from a
clinical perspective.

Once implemented, CIGs necessitate some kind of quality control to determine
whether the impact they have on the healthcare processes is as expected. The aim
of clinical decision support systems in general, and of CIGs in particular, is to
improve the quality, safety and cost-effectiveness of care processes. A monitoring
of evidence-grounded quality metrics, together with an appropriate feedback to the
health organization, can serve as a stimulus for process improvement [8]. Quality
metrics provide a framework for comparison, e.g. to detect outlier cases in which
CPG recommendations have not been followed. Such cases may point to procedure
parts where modifications should be considered. CIG compliance analysis has been
the topic of a number of works in the literature [29]. There are two types of
approaches for evaluating compliance with CIGs: approaches directly comparing
the concrete actions performed by the physician, and those comparing the actual
processes discovered from clinical activity logs using Process Mining methods. The
former range from informal (manual) methods to more formal methods based e.g. on
model checking. The approaches based on Process Mining methods have recently
attracted growing interest because of their potential to recognize variations with
respect to the prescriptive process embodied in CIGs.

3.4 Technologies for Clinical Process Management

3.4.1 Process Discovery and Continuous Improvement

Due to the difficulties of the manual development process of CPGs, data-driven
approaches have emerged in the literature for supporting health experts in the
definition of guidelines. Data-driven models use the data available in healthcare
databases to infer the underlying processes and thereby provide Decision Support
Systems without the need for a purely manual development by clinical experts. The
idea is to develop algorithms that discover automatically such underlying processes.

Data-driven solutions have been used successfully for the automatic learning
of models that can support experts in different fields. With this aim, different
approaches within this paradigm have been applied to the medicine domain. One of
the most common approach is the creation of classifiers for supporting in the daily
decisions [40]. However, these tools do not provide a process view. These systems
only provide a statistical probability of the current status of the patient at a certain
moment in time. Other options, like Temporal Abstractions [4], offer a vision about
the trends in the biomedical signals that enable a dynamic measure of the patient
status. However, although these techniques can be incorporated in the CKC or PPC
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strategies, they do not allow to discover the rules behind the progression of the
disease in the patient.

Other works have tried to discover the behaviour of the medical processes by
inferring their inherent rules using information routinely collected in healthcare
databases [6]. However, from a process management perspective, these rules do not
provide the natural view of the process as it is provided by workflows. This fact has
a negative impact on the understandability of these systems, which as a consequence
usually appear as black boxes in the eyes of medical practitioners.

Process Mining appears in the middle of this juncture [38]. This paradigm uses
time-stamped events existing in healthcare databases to offer a workflow-based
view. Using these techniques, there are works providing tools to infer the underlying
medical process, offering partial patterns [18], general patterns avoiding infrequent
behavior [17], or complete views of CP [11, 39]. But Process Mining is not only
about the discovery of processes. Process Mining aims to provide a complete set
of technologies for supporting medical professionals not only in the process design
phase but also in the traceability, analysis and optimization of the process deployed.
Health systems produce continuous data flow that can be used for analyzing how
the processes behave in actual scenarios [9]. With that, it is possible not only
to show a snapshot of the pathway, but also to make a comparison over time to
discover any variation of the medical procedures, e.g. due to the application of new
protocols [3, 32].

Figure 3.3 shows an example of how Process Mining can represent the processes
inferred from data available in medical databases. This process represents the flow of
patients in a surgery area, and was automatically inferred from real data in existing
databases [9]. The model not only represents the flow of the process but, also,
colours represent the performance in their execution. This information can be crucial
for a better understanding of how processes are deployed in a real scenario.

These technologies can be applied in a iterative way allowing for a continuous
optimization of the process [12]. This allows the user not only an easier design of
the process, but also an iterative adaption of the process that converges to the best
optimized solution.

3.4.2 Workflow Inference Models

For achieving an adequate process standardization, algorithms should provide
formal models that can be used for standardize the care. In this line, The Business
Process Management (BPM) field [7] aims to offer solutions for supporting the
creation of those processes in a general-purpose way. In this way, the concept
of Workflow is proposed. The Workflow Management Coalition defines it as
“the computerised facilitation or automation of a business process, in whole or
part” [16]. In other words, a Workflow is a formal specification designed to
automate a process. Process Mining provides tools for building Workflows from
events existing in medical databases.
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Fig. 3.3 Process inferred using a Process Mining Discovery algorithm. The colours of the nodes
represent the average Length of Stay in each one of the stages, and the colours in the arcs represent
the percentage of patients that follows each path

Workflows are designed to deal with process standardization via the definition
of graphical structures, without ambiguities and focused on their automation, with
a view towards automatic guidance by computer systems or replication by human
experts. Workflows are devised for supporting the design of a process that: (1) needs
high-level legibility, intended to be understood by human experts, not only for its
creation but also for its optimization; (2) requires traceability, to make possible a
continuous analysis of the current status of the process flow; and (3) guides users
over a set of steps, allowing them to know the trace of the process flow to the current
status and showing the possibilities after it.

BPM techniques have been tested in the medical field for representing clinical
workflows. In this line, there are some works in the literature dealing with differ-
ent Workflow models. Some works use well known mathematical representation
languages like: Petri Nets [22, 32]; Deterministic Finite Automatons (DFA) or
graphs [26]; other more specific formal mathematical models like Timed Parallel
Automatons (TPA) [10]; and other models specifically created for increasing the
understandability like the Business Process Management Notation (BPMN) [27].



36 C. Fernandez-Llatas and M. Marcos

To select an adequate Workflow Language for each problem it is necessary to
analyze its characteristics. In healthcare, three characteristics should be taken into
account [10]:

• Expressivity. It is the capability for representing all the dynamic flow behaviours
of the processes in the field. This characteristic can be measured thanks to the
so-called Workflow Patterns [34]. Workflow patterns are different situations that
are possible in a process (sequences, parallelism, milestones, etc.). The more
workflow patterns a language can express, the best expressivity it has. The
objective is to have the best language able to express all the possible patterns
in each medical field. Otherwise, the lack of expressivity can result in inaccurate
and ambiguous models.

• Understandability. It represents how easy to read and understand is a language.
Clinicians are not IT engineers and not all the languages are suitable for them
to comprehend. The lack of understandability increases the risk of rejection by
the clinician. Even worst, it can result in inaccuracies and errors in the models’
design that could not only make the system to fail but also lead to an inappropriate
recommendation for the patient.

• Complexity. The complexity of a language is related to the quantity of informa-
tion that it conveys and how computers can process it. This complexity depends
on the grammar on which the language is based. The complexity of a grammar
has an influence on its interaction with computers. It is well known in compilation
theory that the more complex a language of a specific grammar is, the more
difficult it is to process and interpret it [1]. A complex language is harder
to execute and to infer using data-driven techniques. So, the more complex a
language is, the more difficult it is to create applications to understand it and to
create data-driven accurate models without the use of heuristics.

Selecting the best language for a specific field requires a trade-off between having
the desired expressivity, while maximizing the understandability and keeping the
least possible complexity. For example, Petri Nets are probably the most expressive
language for representing any kind of process, but the difficulty for clinicians
to understand it and its complexity makes it necessary to use heuristics for the
inference algorithm. On the other hand, DFA has a very low complexity and this
allows an easy interpretation and very powerful techniques for inference. It is
also easy to understand, however its expressivity is very limited. There are mixed
solutions like TPAs, which are expressive as Safe Petri Nets and low complexity
as DFAs. Other specific languages, like BPMN, have been specifically created so
that the users can understand them, using graphical metaphors for adding semantics
to workflows in a human-understandable way. However, BPMN has a higher
complexity to be executed. In this line, all the characteristics of the problem to be
solved should be evaluated, for selecting an adequate solution in each case.
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3.5 Challenges of Clinical Decision-Making and Process
Management Technologies

Despite the hard work in research to leverage the advantages of clinical decision-
making and process management technologies in the medical domain, there is still
a big gap between the possibilities of these technologies and their joint application
in real scenarios.

On one hand, from the perspective of clinicians, there is a need for creating
safe, non-intrusive, adaptive and trusted tools that offer the confidence required for
their implementation in real scenarios. CPGs and CIGs can offer solutions in this
direction, but the problems associated to their development process, requiring a high
consensus of experts and the need for a continuous revision, make the judicious and
successful use of these instruments a challenge. On the other hand, from a cognitive
and perceptual computing perspective [37], there is a need for more data as well
as for better self-adaptive algorithms to provide a holistic approach from a data-
driven point of view [39]. However, this would imply reducing to a minimum human
intervention during the process of model creation and adaption. But, is there a real
need for completely self-adaptive tools? Why exclude the human in the process of
automatic learning? In the Interactive Pattern Recognition paradigm, it has been
demonstrated that the involvement of the expert in the loop not only provides better
and quicker results than classical Data-Driven approaches, but also ensures a better
understanding and improved confidence in each iteration [12].

The research community of the fields of CIGs and process mining for health
is claiming for the combination of these technologies, taking advantage of the
best of two worlds [14]. The importance of combining clinical decision-support
and workflow technologies to provide realistic support for complex processes, like
extended care pathways and multidisciplinary care, was identified more than a
decade ago [13]. Beyond that, the need for human expert participation is key for
ensuring the adequacy of the models inferred by data-driven approaches. With this
assistance experts could incorporate their background knowledge in the model,
e.g. to correct possible inference errors. This would allow the creation of models,
Workflow or CIG ones, of a better quality and error-free. Furthermore, in process
mining, the implementation of solutions to the problem of data denoising would be
more effective in an interactive way [24].

The involvement of the expert in the loop using an interactive paradigm mixing
data and knowledge-driven solutions opens a set of new perspectives with huge
potential. On one hand, process mining approaches could greatly benefit from
knowledge intensive models such as CIGs, e.g. using them as a layer for the purpose
of improving the explainability of their models to clinicians. On the other hand, the
application of interactive process mining methods could play a role of paramount
importance in the development and continuous adaption of CPGs (and CIGs), e.g.
enabling the integration of tried-and-tested procedures inferred from healthcare data
as a complementary source of knowledge in addition to evidence-based and expert
knowledge. The main challenge will be how to articulate the design of tools so that a
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perfect integration of these two technologies can be achieved and, at the same time,
their respective benefits can be leveraged to improve both the quality standards and
the management aspects of healthcare processes.
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Chapter 4
Process Mining in Healthcare

Carlos Fernandez-Llatas, Jorge Munoz-Gama, Niels Martin, Owen Johnson,
Marcos Sepulveda, and Emmanuel Helm

4.1 Process Mining

Since medical processes are hard to be designed by consensus of experts, the use of
data available for creating medical processes is a recurrent idea in literature [3, 7, 8].
Data-driven paradigms are named to be a feasible solution in this field that can
support medical experts in their daily decisions [20]. Behind this paradigm, there
are frameworks specifically designed for dealing with process-oriented problems.
This is the case of process mining.

Process Mining [32] is a relatively new framework that is thought to provide use-
ful human-understandable information about the processes that are being executed
in reality. The process mining paradigm provides tools, algorithms and visualization
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instruments to allow human experts to obtain information about the characteristics
of execution processes, by analyzing the trace of events and activities that occurs in
a determinate procedure, from a process-oriented perspective.

Process mining has a close relationship with workflow technologies. Usually,
process mining algorithms represent their findings as workflows. Workflows are
the most commonly used representation framework for processes. Workflows are
not only used in enterprises to automate processes but also clinical guidelines
represent some decision algorithms using workflows due to their simplicity and ease
of understanding [14]. Besides, the use of formal workflows allows the creation
of engines that can automate flows in computer systems. Figure 4.1 shows a
possible use of process mining technology. Process mining algorithms use the events
recorded in each process and represent it as a workflow. This workflow represents
the real flow in an understandable and enriched way, for supporting experts in the
actual knowledge of what is occurring in reality. For that, this paradigm can offer a
high-level view to professionals, allowing a better understanding of the full process.

Process Mining algorithms are usually divided in three groups [32]

• Process Mining Discovery Algorithms [31]: these are systems that can create
graphically described workflows from the events recorded in the process. Dif-
ferent process discovery algorithms are used in several healthcare scenarios [5].
The selection of an adequate discovery algorithm depends on the quantity of
data available, and the kind of representation workflow desired. Figure 4.1 shows
the inference of a discovery algorithm. This algorithm graphically represents the
flow of the patient process from raw data coming from events and activities.

• Process Mining Conformance Algorithms: Process Mining Conformance Algo-
rithms [2] can detect if the flow followed by a patient conforms to a defined
process. This can be used to measure the patient’s adherence to a specific
treatment but allows also the graphical representation of the moments the patient
is not fulfilling the treatment flow, supporting the physicians in the improvement
process of patients’ adherence. These techniques can be also used to compare
processes to detect the differences in their executions. Conformance algorithms
can compare workflows and show the differences graphically, allowing experts
to quickly detect changes in different processes. For example, this technique has
been used to detect behavioural changes over time in humans [12].

• Process Mining Enhancement Algorithms: Process Mining Enhancement Algo-
rithms extend the information value of a process model using colour gradients,
shapes, or animations to highlight specific information in the workflow, providing
an augmented reality for a better understanding of the process. For example,
Fig. 4.1 shows an example of the enhancement of a workflow. In this case, the
workflow is representing the common flow of patients in the surgical area of a
hospital [9]. A workflow with colour gradients in nodes is shown, representing
the duration of the stay in each stage of the surgical process, and in arrows,
representing the change frequency among phases. With this information, experts
can have a better idea of the dynamic behaviour of the process and can perform
changes to improve the process and evaluate the effectiveness of actions by
comparing the current flow with past inferences.
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Fig. 4.1 Process mining discovery

The main issue to solve when applying an interactive pattern recognition problem
is that the experts should understand the model inferred to provide corrections and
infer knowledge from the models [11]. Process mining technology is data-driven
but with a focus on understandability. In this line, we can define process mining
as a Syntactic Data Mining technique that supports the domain experts in the
proper understanding of complex processes in a Comprehensive, Objective way.
This characteristic makes process mining one of the most suitable technologies for
applying interactive models.
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4.2 Process Mining in Healthcare

Recent reviews are analyzing the application of process mining techniques in
healthcare in detail [5, 27]. Some works analyze the change of hospital processes
[27], and management of emergencies [1], support the medical training in surgical
procedures [21], the flow of patients in specifically critical departments, like surgery
[9], or oncology [26], or even, this framework has been used to analyze the
behavioural change in humans to detect early dementia signs [12].

In [5], 447 Process Mining for Healthcare relevant papers were identified. 24
of these papers are indexed on PubMed. PubMed is the most used search engine
of the MEDLINE database, containing biomedical research articles offered for the
Medicine National Library of the United States. That means that only 5% of the
papers that are considered relevant in the Process Mining for Healthcare literature
are indexed in the clinical domain. That points to clear difficulties in the application
of process mining techniques in real domains. Figure 4.2 shows the trends in
publishing in PubMed Library since 2005. This histogram shows that, although
there are works about process mining technologies since the start of the century
[31], the penetration of these technologies are now starting to be applied in the
medical domain.

The difficulties to apply process mining in the healthcare domain are due to
distinguishing characteristics of the clinical domain. In this way, it is crucial to take
these particularities into account to create a successful process mining system in the
health domain:

Fig. 4.2 Number of Process Mining articles in PubMed library 2005–2018
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4.2.1 Variability in the Medical Processes

Medical processes are intended to holistically cover clinical treatments. Medical
processes do not only cover diagnosis, treatments, and clinical decisions but
also care prevention, patient preferences and medical expertise. That implies that
medical processes inherit the complexity of the treatments and diagnosis, as well
as the intangible know-how of healthcare professionals [25]. Moreover, patients are
usually involved in several health episodes at the same time which causes the co-
existence of a different set of pluripathologies and co-morbidities associated to the
same patient that can be related, or not, among themselves. This scenario requires
close collaboration where many different health professionals interact to define,
usually offline, a multi-disciplinary strategy for each patient.

Besides, medical paradigms, like evidence-based medicine [29], value-based
healthcare [15], or personalized medicine [16] put the patient in the centre of
the medical process. In these paradigms, the attitudes and beliefs of patients are
taken into account. This provokes different responses to the treatments, due to the
psychology and personal behaviour that take part in the decisions of the patient
in terms of the acceptation, or not, of the treatment proposed by the doctor. The
adherence of the patient regarding the treatment is one of the most important
problems when applying a new treatment to patients [23]. The adherence is key
dealing with a disease. The selection of the treatment not only depends on the
best option available according to medical evidence, but also on the beliefs, family
condition, fears, ambitions, and quality of life of the patient. We should not forget
that the real decision-maker in the medical treatment of the patient. In this way, it
is crucial to understand their psychological and physical situation before making a
clinical decision.

This variability in the medical processes increases the size of the model in
terms of arcs and nodes. This provokes one of the most well-known problems in
process mining literature, the Spaghetti Effect. The application of process discovery
algorithms on highly variable systems results in unreadable models. In this way, it
is important to select adequate tools for each problem that support the highlighting
of the interesting process structures and abstracting or splitting the model in simpler
protocols that show the relevant information for the doctors [10]. Process mining
researchers should be aware of this problem and provide solutions, tools and
frameworks to characterize and extract information about this variability, to extract
better and more understandable knowledge of real patients.

4.2.2 Infrequent Behaviour Could be the Interesting One

One of the most common solutions that process mining and other data mining
practitioners use to infer models is to discard outliers in the data. These outliers are
considered as noise and are removed from the data. This decreases the variability,
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which creates cleaner models that can provide better understandable solutions.
However, infrequent behaviour should not always be discarded from the system
like, for example, for the detection of adverse effects [30].

Outlier-free logs will produce clean models that produce views representing the
most common paths that are followed by the most common patients occurring in
most common cases. This implies that the inferred model should be close to the
standard clinical processes that are, generally, followed by the patient, and should
match with the perception of the medical experts which are providing care. That
means that these logs, formed by standard patients, will allow discovering the
standard process. However, the standard process is not always the most interesting
one. Health professionals usually are familiar with the standard case. The standard
patient is covered by the standard treatment. As a consequence, showing the
standard model inferred to the doctor does not provide any knowledge to him.

Infrequent cases are cases that do not follow the standard process properly. That
means that these cases are the patients that are usually out of the guideline and
require special treatment. In those cases, the medical doctor needs help, not as in
the standard case. Infrequent behaviour patients processes do not only provide a
view about the flow of non-standard cases, but can also provide help to understand
the different patient circuits, or even find non-standard similar patients that have
followed the same path [22]. This can be a real support to health professionals in
daily practice that can’t be offered by standard noise reduction techniques.

4.2.3 Medical Processes Should be Personalized

Since the appearance of the evidence-based medicine paradigm, there have been
attempts to automate the care provided to patients [29]. The idea of this paradigm
is to discover the best medical protocols that can be applied to take care of the
disease not only in terms of treatment but also in terms of diagnosis and prevention.
However, evidence-based medicine detractors criticize the lack of flexibility in the
definition of these protocols [13, 28]. Standard protocols produced by evidence-
based medicine has been perceived as incompatible with patient-centred care
[28]. Patient-centred care pleads for a more personal application of health where
individual’s health beliefs, values and behaviours are taken into account when
deciding on the best treatments.

All of this criticism on evidence-based medicine originates from the difficulties
in the application of clinical pathways due to different health deployment cultures
existing in health systems [6, 24]. That means that the application of health care
protocols to tackle the same illness can differ significantly from one centre to
another, depending not only on the culture of the local population but also on
time constraints, the level of staff involvement, the costs associated, among a
huge quantity of different factors [6]. Consequently, to replicate the best practices
based on medical evidence, it is crucial to iteratively adapt medical processes
based on continuous analysis and refinement of the deployed protocols, taking into
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account the cultural differences of the target population. Process mining techniques
should provide tools and paradigms that allow evolving iteratively the clinical
protocols using with the real information collected from target scenarios and led
by health professionals. This should be done not only for discovering the standard
processes but also supporting health experts in the understanding of the personal
characteristics of individual patients.

4.2.4 Medical Processes Are Not Deterministic

Differences in personal preferences of patients, their beliefs and attitudes affect
the effectiveness and efficacy of the treatments. That means that in healthcare,
cause-effect relationships are often fuzzy. Medical evidence is based on estimations
extracted from clinical trials that usually works in most of the cases. However,
The same treatment, provided to two different patients with the same illness and,
even, the same co-morbidities can result in totally different processes due to many
additional factors that cannot be observed or taken into account in the model. This
is because there is a gap between each patient and the medical model that represent
the clinical knowledge. Formal medical processes are supposed to be automatable
and unambiguous, but this is incoherent with the intrinsic nature of patients flow.

This uncertainty is critical in data-driven models. While knowledge systems
can offer semantic explanations and rules for describing the ambiguities. Data-
driven models can only offer statistical approaches that can inform about the
probabilities. The incorporation of process mining techniques, that allow dealing
with in-determinism in medical models, like the inference of semantics [4] or the
incorporation of information that can point to the ambiguity reasons should be taken
into account for better support of the medical decision.

4.2.5 Medical Decisions Are Not Only Based on Medical
Evidence, But Also on Medical Expertise

Although one of the most key features of evidence-based medicine is to extract
medical evidence, the final decision in medical treatments is always taken by
the health professional. Evidence-based medicine looks for the fusion of the best
medical evidence with the personal knowledge of medical professionals. This means
that medical processes are, in fact, guidelines, that might be followed by the
physician. Clinical guidelines aim to offer support to healthcare professionals, based
on insights from accumulated clinical evidence.

Data driven systems should focus on providing the most relevant information
in the most understandable way to support the practitioner in their daily practice.
The decisions taken by health professionals are determined by medical knowledge,
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represented by guidelines proposed in the medical models, and their personal
feelings obtained from the communication with the patient, which can be verbal
or not. The validation of these decisions should aim to provide a holistic value-
based healthcare analysis in order to provide medical indicators (like P-Value [18])
that allow professionals to trust the tools provided. These decisions, which can be
different from the ones recommended by the models, are registered in the logs
and can, consequently, be used in next iterations to improve the models through
interactive models [11].

4.2.6 Understandability Is Key

Given the difficulties of the manual definition of medical protocols, pathways and
guidelines, data-driven technologies are being called to support medical profes-
sionals in their formalization. Traditional machine learning techniques are thought
to provide the best accuracy in the models, but the interaction with professionals
is not available due to the lack of readability of these techniques. Consequently,
the resulting models are black boxes for health professionals. Machine learning
inferred models are based on statistical mathematical models. In this line, the more
patients we have in the dataset, the more precise models we can infer [19]. On the
contrary, the fewer patients we have the more probable is that the system fails in
their prediction. For that, machine learning models are accurate in the prediction of
standard cases, but, have a higher probability to fail in infrequent cases. The standard
case is usually covered by standard treatment and, in those cases, the expert does
not need support. The expert needs support for infrequent cases, where the machine
learning models have more problems. This creates suspicion amongst the experts
whether to trust a system that has a higher probability of failure for the cases when
they are more needed. This is pushing to a new way of explainable machine learning
for creating understandable models for health professionals [17].

In the healthcare domain, process mining algorithms should be thought to
maximize the understandability of the models inferred. While classical data mining
solutions are intended to provide accurate models, process mining enables health
professionals a better understanding of the processes and the correction of the
models based on their knowledge. Understandable data-driven systems, like process
mining, allow the expert to understand the reasons behind the system’s recommen-
dation, providing clues for better decisions in daily practice. Besides, it is key to
select the correct graphical models that allow the understanding of the processes.
Highly expressive models, like Petri nets, can be too complex for the understanding
of non-process experts like clinicians, that are used to define their models with more
graphically oriented systems as was explained in the previous chapter.



4 Process Mining in Healthcare 49

4.2.7 Must Involve Real World Data

Due to the necessity to preserve the privacy of individuals, current laws impose a
high barrier for the creation of adequate data-driven models. One potential solution
is the use of simulated data for the creation of algorithms to create healthcare
solutions. However, the complexity of simulation models is bounded by their model
representation capability, which is always much lower than complexity in the real
world. Great algorithms and tools that have demonstrated impressive efficacy in
other application contexts, can be pointless in healthcare due to unexpected aspects
due to unknown variability in the health domain that cannot be simulated. Simulated
data cannot offer medical evidence, so, we cannot assume that techniques are
adequate for health if we have not tested them with real data.

4.2.8 Solving the Real Problem

The medical expert is the only one able to notice if discovered evidence is relevant
or not. Data scientists can find impressive results by creating algorithms to highlight
specific aspects of a process. However, if these results do not tackle a real medical
problem, or the discovered evidence is well known in the medical community, it
makes no sense to use these algorithms. The involvement of medical professionals
in the definition of problems and the interpretation of results is key in the creation
of useful tools and the discovery of new medical evidence.

4.2.9 Different Solutions for Different Medical Disciplines

Medicine is a huge field formed by several disciplines and specialities having very
different variables to measure. Health managers should have different views of the
process than clinicians, but even in a single clinical domain, different specialities
should have different views. For example, the key biomedical variables for an
endocrinologist can be different than the information relevant for a cardiologist.
The information available in the medical domain is so huge that it is mandatory to
provide the adequate tools and views for each problem to solve, taking into account
the real needs of the health professional at any moment. The information overload
provokes a paradox effect: the more information is accessible, the more difficult it
is to find the relevant one.

For that, the application of process mining technologies in the healthcare domain
should be completely adapted to the medical field, creating customized methods and
tools for supporting physicians in their daily practice, avoiding one-fits-all solutions
and creating adaptive and customizable frameworks for facilitating their real use
and highlighting the relevant information in each case.
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4.2.10 Medical Processes Evolve in Time

Medical processes are being improved every day due to the continuous appearance
of new clinical evidence in the literature. Also, as patients are humans, their person-
ality, beliefs and general behaviour evolve in time. That means that the treatment
response of a patient changes depending on several factors that can or cannot be
observable. A change in a medical process might suppose an indeterminate change
in the behaviour of the process in the next iteration. This is because the effects of
change in medical protocols are dependent on an unknown number of variables that
makes the result indeterministic.

In this way, process mining technologies should be not only focused on dis-
covering better processes for taking care of the patients but also to be constantly
aware of their continuous evolution. This requires tools to trace, measure and
analyze how patients adapt their life to the proposed treatments in each stage of
their disease. Within a process mining approach, the process can be continuously
tracked iteratively. In each one of the iterations of creating optimized and adapted
medical protocols, the experts can understand and correct the processes, allowing to
be resilient to the concept drift problem produced by the evolution in time of medical
processes via the utilization of interactive methods. This is because the interactive
paradigm ensures the convergence in the limit of the learning process by involving
the expert in the loop [11].

4.3 Conclusion

In the domain of data-driven technologies, process mining has acquired a certain
prominence in case of process oriented problems. Its capability to discover, analyze
and enhance graphical processes in an easy to understand way supposes a new
way to provide information to professionals by involving them in the process
of generating knowledge. This characteristic is especially valuable in healthcare,
were the expert usually has no engineering knowledge and no data science skills.
Unlike other data science paradigms, process mining can provide information to
the expert about what is actually occurring with their patients, allowing them in a
better understanding of the effectiveness of the treatments selected. This facilitates
close collaboration between the computer and the experts that might enable the
imbrication between the clinical evidence and the professional knowledge that is
required in the evidence-based medicine paradigm.

However, to ensure the applicability of process mining technologies to the
clinical domain, it is necessary to take into account their special characteristics.
Selected process mining algorithms, methods and tools should be specifically
designed to deal with this highly demanding field. In this chapter, we have analyzed
and stated the most important of these specificities. The selection of the best
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process mining technologies for each specific case is crucial for creating successful
deployments of intelligent systems in health centres.
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Chapter 5
Data Quality in Process Mining

Niels Martin

5.1 Introduction

Healthcare organizations such as hospitals are confronted with multiple challenges
such as tightening budgets combined with increased care needs due to an aging
population [19, 21]. To cope with these challenges, hospitals need to understand
their processes in order to improve their effectiveness and efficiency. In this respect,
the previous chapter has discussed the potential of process mining. Process mining
will enable healthcare organizations to gain profound insights in, amongst others,
the order of activities prevailing in reality, the relationship between the involved
resources, and the real-life performance of the process. To obtain such a real-life
view on the process, event logs originating from process-aware information systems
such as a Hospital Information System (HIS) are used.

In the last decade, a multitude of algorithms have been developed to retrieve
valuable process-related information from event logs [2]. Despite the great potential
of these algorithms to analyze healthcare processes, the reliability of process
mining outcomes ultimately depends on the quality of the input data used by the
algorithm [21]. Consistent with the notion “Garbage In, Garbage Out”, applying
process mining algorithms to low quality data can lead to counter-intuitive or even
misleading results [5]. Using such results for decision-making purposes entails the
risk of taking ineffective actions, which could cause adverse effects in healthcare
processes such as inefficient resource allocations, leading to increased waiting times
and patient dissatisfaction.
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Fig. 5.1 Chapter overview

Real-life event logs typically suffer from several data quality issues [3, 9, 21, 31].
This especially holds in flexible and dynamic environments with extensive manual
recording, such as healthcare [9, 28]. For instance: suppose that a nurse performs
several activities for different patients and only records these activities in the system
at a later point in time. When the insertion time in the system is automatically
recorded as the timestamp of an activity, this can constitute a data quality issue from
a process mining perspective as there is a discrepancy between the moment at which
the activity is actually executed and its trail in the HIS. This could, for instance, lead
to misleading process performance information and could even change the order of
activities, depending on the order in which activities are entered into the system.

This chapter provides an introduction to data quality in the process mining field.
As shown in Fig. 5.1, three main topics are discussed. Firstly, Sect. 5.2 discusses
the key data quality taxonomies defined in literature, which describe potential data
quality issues. A distinction is made between generic taxonomies and taxonomies
from the process mining field, where the latter focus on the specific input data format
that process mining uses. Secondly, Sect. 5.3 focuses on data quality assessment,
which reflects the identification of data quality issues in a dataset. Besides some
examples of assessment results of real-life healthcare logs, three data quality
assessment frameworks from process mining literature are discussed. Moreover, the
available tool support is briefly introduced. Finally, Sect. 5.4 centers around data
cleaning, which involves the use of heuristics to tackle specific data quality issues
present in the event log.
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5.2 Data Quality Taxonomies

Given the potential impact of data quality issues on process mining outcomes,
a profound insight in the variety of issues that can be present in real-life data
is required. In literature, several authors have conceptualized the data quality
notion and proposed taxonomies to categorize them. This section discusses a
selection of these taxonomies. While Sect. 5.2.1 focuses on general taxonomies, i.e.
classifications without a specific process mining focus, Sect. 5.2.2 discusses the key
data quality taxonomies in the process mining field.

5.2.1 General Data Quality Taxonomies

Before proceeding to the key data quality taxonomies in the process mining field,
some general taxonomies are outlined first. While a full outline of these taxonomies
is beyond the scope of this chapter, some concepts are highly relevant for the process
mining context. These will be briefly discussed in the remainder of this section.

When identifying data quality issues, the ‘fitness for use’ notion is often
highlighted. This implies that data is of sufficient quality when it is fit for use for
the question at hand [35]. This suggests that data quality is a relative notion, in the
sense that it depends upon the goal(s) of the analysis. For instance: when resource
information is missing in the event log, this only constitutes a relevant data quality
issue when the analysis would require the use of this information.

Building upon the ‘fitness of use’ perspective and based on surveys amongst
professionals and MBA students, Wang and Strong [35] distinguish four types of
data quality: intrinsic, contextual, representational and accessibility data quality.
Firstly, intrinsic data quality refers to characteristics such as the data’s believability,
accuracy, objectivity, and the reputation of the data source. Secondly, contextual
data quality, amongst others, refers to the relevance of the data, its completeness,
the adequacy of the volume of available data, and how recent the available data
is. Thirdly, representational data quality relates to the interpretability of the data,
its ease of understanding, the consistency of its format, and the conciseness of its
representation. Finally, accessibility data quality includes characteristics such as
the ease with which the data can be accessed, and which security measures are
in place to avoid access by unauthorised individuals or organizations [35]. While
the taxonomy of Wang and Strong [35] is widely applicable, a simplified version is
converted to a clinical research setting by Kahn et al. [17].

Besides ‘fitness for use’, other common dimensions to classify data quality issues
are included in the taxonomy of Rahm and Do [27]. These authors firstly distinguish
between single-source and multi-source quality issues, referring to the number of
data sources from which the dataset originates. When the dataset is composed based
on multiple data sources, i.e. in a multi-source setting, issues related to differences in
data representation and the presence of contradicting data values can occur. Within



56 N. Martin

both single-source and multi-source problems, a further distinction is made between
schema level and instance level errors. Issues at the schema level originate from
problems with the data model design or a poor enforcement of data entry rules. For
instance: if two nurses share the same unique staff identifier, a schema level issue
is present. Instance level issues, such as typos or contradicting values, are related to
the specific values of a data field and, hence, cannot be avoided at the schema level
[15, 27].

Gschwandtner et al. [15] use the distinction between single-source and multi-
source problems with a particular focus on time-oriented data. In a single-source
setting, different categories of data quality issues are specified: missing data, dupli-
cate data (e.g. the same patient occurs twice in the dataset with slightly different
timestamps), implausible values (e.g. a nurse with a 20-hour shift), outdated values
(e.g. only very old data is included in the dataset), wrong data, and ambiguous
data (e.g. unknown abbreviations). When multiple data sources are involved in the
composition of the dataset, other data quality issues can occur: heterogeneous syntax
(e.g. different date formats in distinct data sources), heterogeneous semantics (e.g.
timestamps are recorded at different levels of granularity), and reference-related
issues (e.g. incorrect references across different data sources). It should be noted that
the single-source quality issues can also be present in the individual components of
a dataset in a multi-source setting.

While the aforementioned taxonomies tend to have a high-level nature and
refrain from identifying specific data quality issues, others define issues at a lower
level of granularity. Consider, for example, the taxonomy of Kim et al. [18],
where data quality issues such as wrong data entries, duplicated data and different
word orderings are identified. These issues are categorised, starting from a general
distinction between missing data and non-missing data. While the former relates
to data values which should be present, but are absent, the latter category refers to
data values which are present, regardless of whether or not they are correct. The
category non-missing data is further subdivided in wrong data on the one hand and
not wrong, but unusable data on the other hand. Wrong data are all data entries that
do not correspond to the true data value when the data is consulted. Not wrong, but
unusable data is data which is not wrong in itself, but which can lead to misleading
results when used for analysis purposes. The inconsistent use of abbreviations is an
example of the latter [18].

5.2.2 Data Quality Taxonomies in Process Mining

Section 5.2.1 presented some general data quality classifications. While these
taxonomies highlight some relevant concepts for process mining, they are not geared
towards the specific data structure used as an input for process mining. This specific
data structure, i.e. an event log, can give rise to specific data quality issues, e.g.
related to the relationship between events within a case [31]. Several process mining
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researchers have conceptualised the notion of event log quality. This section outlines
the key data quality taxonomies in the process mining field.

5.2.2.1 Process Mining Manifesto

A high-level taxonomy of event log data quality is provided in the Process
Mining Manifesto [3], a document compiled by the IEEE Task Force on Process
Mining.1 Even though no detailed data quality issues are defined, the event log
maturity levels which are introduced provide a preliminary view on event log data
quality. In total, five maturity levels are specified, where the first level represents a
poor quality event log, while the fifth level reflects an event log of excellent quality.
In general, the maturity levels can be described as follows:

• Maturity level 1. Event log in which events are typically not recorded automati-
cally. In such a log, events might not correspond to reality or can be missing.

• Maturity level 2. Event log in which events are recorded automatically, but
where a systematic approach for logging is absent. Moreover, the system can be
circumvented. As a consequence, events can be missing or might not correspond
to reality.

• Maturity level 3. Event log in which events are recorded automatically, but
no systematic approach is followed for logging. Even though events might be
missing, there is reasonable confidence that the events which are recorded match
reality.

• Maturity level 4. Event log in which events are recorded automatically and
systematically, i.e. the log’s content is both reliable and complete. Moreover,
explicit case and activity notions are present.

• Maturity level 5. Event log in which events are recorded automatically and
systematically. These high-quality event logs also assign clear semantics to all
events and attributes. This implies that ontologies exist to which events and
attributes are explicitly related. Moreover, privacy and security concerns are
tackled [3].

Even though it is technically possible to apply process mining techniques to an
event log of maturity level 1 or 2, the outcomes tend to be highly unreliable. Hence,
as a general recommendation, event logs at maturity level 3 or higher are required
to perform process mining [3].

Within a healthcare context, an example of an event log at maturity level 1
would be a log composed using input from a paper-based file system. When moving
towards higher levels of maturity, event logs will originate from a HIS. The maturity
level of these logs will depend, amongst others, upon the type of HIS, the usage
patterns of the system, and the extent to which the recorded events have clear
semantics. Inevitably, some events will be recorded manually by medical staff,

1https://www.tf-pm.org

https://www.tf-pm.org
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Table 5.1 Data quality taxonomy by Bose et al. [9]
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asynchronously from the execution of an activity. A prime example of the latter
are patient-related activities. This stresses that data quality should always be a key
concern when performing process mining in healthcare.

5.2.2.2 Taxonomy by Bose et al. [9]

While the Process Mining Manifesto [3] conveys some high-level ideas on event
log quality, Bose et al. [9] define more specific data quality issues. Based on their
experience with process mining projects within a variety of organisations, Bose et al.
[9] define 27 distinct classes of event log quality issues, which are summarized in
Table 5.1. These issues are subdivided in four classes:

• Missing data. Pieces of data which are missing, even though they should be
present in the event log. The absence of data typically indicates issues with the
logging process.

• Incorrect data. Data entries which are present, but for which the recorded values
do not reflect reality.

• Imprecise data. Pieces of data are imprecise when they are recorded at an
insufficiently detailed level.

• Irrelevant data. A data entry is considered irrelevant when it cannot be used in
its current format. Filtering or transformation might be required to retrieve useful
information from this data entry [9].

When combining these four classes with key event log components (e.g. activity
label, timestamp) and characteristics (e.g. position of an event within a trace), the
set of 27 event log quality issues is obtained. These include missing events (i.e.
events which occurred in reality, but were not recorded in the event log), incorrect
timestamps (i.e. timestamps which do not correspond to the moment at which an
event took place in reality), imprecise resources (i.e. resource information recorded
at a coarse-grained level) and irrelevant cases (i.e. cases which are not relevant for
the question at hand). A brief description of all event log quality issues is included
in Table 5.2.
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Table 5.2 Description of the event log quality issues according to Bose et al. [9]

Class Code Quality issue Description

Missing data I1 Missing cases Cases which have been processed in reality are not
included in the event log. In this way, process
mining outcomes might not reflect reality

I2 Missing events Events which are not recorded within a trace,
causing the retrieval of relationships which might
not hold in reality

I3 Missing
relationships

The absence of an explicit link between an event
and a case, causing difficulties to retrieve the
correct relationships between events

I4 Missing case
attributes

Case attribute values which are not recorded,
requiring algorithms using these values to leave
out the case

I5 Missing position In the absence of timestamps, missing position
implies that the position of an event within the
trace is unknown

I6 Missing activity
names

Events for which the activity name is not present,
making the origin of this event unclear

I7 Missing
timestamps

Events for which the timestamp is not recorded in
the log. Besides making process performance
analysis a complex task, control-flow discovery
might also become unreliable (unless the position
within the trace is guaranteed to be correct)

I8 Missing resources The resource associated to an event is not
registered, impacting all process mining
algorithms using resource information

I9 Missing event
attributes

Event attribute values which are absent, causing
difficulties for algorithms using these values

Incorrect data I10 Incorrect cases Cases in the event log which, in reality, relate to a
different process. These cases will behave as
outliers in process mining analyses

I11 Incorrect events Events which are recorded incorrectly, e.g. events
that did not occur in reality are present in the log

I12 Incorrect
relationships

An incorrect link between a case and an event is
recorded, causing events to be associated to the
wrong case

I13 Incorrect case
attributes

Case attribute values which are logged incorrectly,
causing difficulties for algorithms using these
values

I14 Incorrect position When timestamps are absent, this issue occurs
when an event is incorrectly positioned within the
trace

I15 Incorrect activity
names

Events for which the activity name is incorrectly
recorded

I16 Incorrect
timestamps

Events for which the timestamp does not
correspond to the time that the event took place in
reality

(continued)
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Table 5.2 (continued)

Class Code Quality issue Description

I17 Incorrect resources The resource associated to an event is incorrect,
leading to issues with algorithms using resource
data

I18 Incorrect event
attributes

Event attribute values which are logged
incorrectly, causing problems when applying
algorithms which leverage these values

Imprecise data I19 Imprecise
relationships

Events which cannot be linked to a particular case
specification because of the case specification that
is chosen for log construction purposes. For
instance, it is no longer possible to connect an
event to a patient consult because the log is
constructed with a patient as a case

I20 Imprecise case
attributes

Case attribute values which cannot be used
because they are recorded in a coarse-grained wat

I21 Imprecise position In the absence of timestamps, an imprecise
position implies that events that occur in parallel
are recorded sequentially in a systematic way

I22 Imprecise activity
names

Events for which the activity name is recorded in a
coarse-grained way, leading to multiple events
having the same activity name, even though they
refer to different activities

I23 Imprecise
timestamps

Events having a timestamp which is recorded at a
coarse level of granularity. Consider, for instance,
that timestamps are recorded at the day level, even
though a large number of events occurs for a
particular case on a single day

I24 Imprecise
resources

The resource information available in the event log
is of a more coarse-grained nature than the
resource information that is actually known. This
limits the potential of resource-related algorithms

I25 Imprecise event
attributes

Event attribute values which cannot be used
because they are recorded at a coarse level

Irrelevant data I26 Irrelevant cases Cases which are not relevant for the analysis
question at hand. Including such cases can have a
negative impact on the understandability of the
process mining outcomes

I27 Irrelevant events Events which are not relevant for the analysis in
their current form, implying that filtering and
aggregation are required

5.2.2.3 Taxonomy by Verhulst [33]

Another event log quality taxonomy has been proposed by Verhulst [33]. It is
a literature-based framework, drawing upon both general data quality literature,
the taxonomy of Bose et al. [9] and the guidelines for event log creation defined
by van der Aalst [1]. Based on an analysis of this literature, 12 event log



5 Data Quality in Process Mining 61

Table 5.3 Description of the event log quality dimensions according to Verhulst [33]

Quality dimension Description

Completeness Dimension capturing how complete the data is, e.g. whether
missing values are present, whether transactional information is
present

Uniqueness/duplicates Dimension expressing the attribute values which only occur once,
which also relates to the presence of duplicate events

Timeliness Quality dimension demonstrating whether the event log fits the
expected timeframe

Validity Dimension highlighting whether the data conform to the syntactical
requirements in its definitions, e.g. related to data types

Accuracy/correctness Dimension capturing whether the available values closely match the
(unknown) real values

Consistency Dimension related to the consistency of data entries, e.g., expressed
in terms of the length of data entries

Believability/credibility Dimension expressing whether users have confidence in the
objectivity of the data entries

Relevancy Dimension measuring the importance of data entries

Security/confidentiality Dimension capturing the ability to safeguard the data

Complexity Dimension outlining the complexity of the process generating the
data

Coherence Quality dimension focusing on the logical interconnection between
data entries

Representation/format Dimension capturing whether data is presented in a compact way
and in the same format

data quality dimensions are specified. These dimensions, which are summarized
in Table 5.3, include completeness (expressing how complete the data is) and
accuracy/correctness (expressing whether values closely match reality). While these
examples constitute dimensions which are closely related to the specific data entries
in the event log, Verhulst [33] also incorporate dimensions such as the timeliness of
the log (i.e. whether it fits the expected timeframe) and the security of the data (i.e.
the ability to safeguard the data).

For most dimensions, Verhulst [33] provide a measuring method to quantify a
dimension. Quantification is performed by either assigning a score to the log (e.g.
for completeness, a score between 0 and 10 is required), or by adding a boolean
true/false judgment (e.g. for timeliness). For some dimensions, such as believability/
credibility, it is stated that no measurement is possible [33].

5.2.2.4 Event Log Imperfection Patterns by Suriadi et al. [31]

Another important contribution to event log quality research are the event log
imperfection patterns defined by Suriadi et al. [31]. Based on their experience
with real-life case studies in a variety of domains, they define 11 imperfection



62 N. Martin

patterns. These patterns highlight data quality issues which are specific to event logs.
While Bose et al. [9] and Verhulst [33] categorise event log quality and provide a
taxonomy, Suriadi et al. [31] focus on providing an elaborate description on the 11
fine-grained patterns they distinguish. These patterns are:

• Form-based event capture. This imperfection occurs when event data is
captured using electronic forms in an information system. Working with forms
typically causes multiple events to be recorded when the form is submitted in the
system. These events will share the same timestamp, even though the underlying
actions might have taken place at different points in time.

• Inadvertent time travel. Inadvertent time travel occurs when events carry
incorrect timestamps because the real timestamp is ‘close’ to the wrong value.
Consider, for instance, a setting in which timestamps are manually recorded and
events occur just after midnight. Under these conditions, staff members recording
the date of the day before, together with the correct time, would cause inadvertent
time travel in the event log.

• Unanchored event. This issue takes place when timestamps are recorded in a
different format from the format expected by the tooling.

• Scattered event. This imperfection patters refers to the presence of information
in the attribute values which highlights the presence of additional events.
However, these events are not explicitly recorded, but are hidden in the attribute
values which are recorded in the log. For example: the attribute values of an event
in an operating theatre log conveys information on the phases of the surgery,
which could be used to enrich the log with additional events.

• Elusive case. This issue occurs when events are not linked to a case, as is often
observed when data originates from information systems which are not process-
aware.

• Scattered case. A scattered case refers to a case for which key activities are not
recorded in the event log under consideration. However, events related to these
activities are present in a different system. To obtain insights in the full process
flow for this case, the log needs to be composed using the content of several
information systems.

• Collateral events. Collateral events are several events which refer to the same
process action.

• Polluted label. This imperfection pattern occurs when several event attribute
values have the same structure, but differ in terms of their specific values.
Consider, for instance, that each activity label includes a reference to a specific
patient and staff member (e.g. ‘Clinical examination – patient 51545 – physician
4’). When such a log would be used for control-flow discovery purposes, it would
suffer from the large number of unique activity labels.

• Distorted label. Distorted labels are multiple event attribute values which are not
identical, but demonstrate very strong syntactic and semantic similarities. When,
the diagnosis attribute contains values ‘neurological condition’ and ‘neurologcal
condition’ (with an ‘i’ missing in the latter specification), this constitutes an
example of a distorted label.
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• Synonymous labels. This issue occurs when several values differ at the syntactic
level, but are similar at the semantic level. For instance: in two distinct informa-
tion systems, the same activity is referred to with two different labels.

• Homonymous labels. This imperfection pattern manifests itself when an activity
is repeated for a particular case, but the semantics of this activity is not the same
across these instances. For instance: when the activity ‘Initial assessment’ occurs
for the first time, it implies that an ED physician has seen the patient. However,
when this same activity takes place a second time, it implies that a medical
specialist from an inpatient unit has been called to see a patient [31].

5.2.2.5 Taxonomy by Vanbrabant et al. [32]

In contrast to the prior taxonomies and the imperfection patterns of Suriadi et al.
[31], Vanbrabant et al. [32] developed a taxonomy starting from a healthcare use
case, i.e. the development of a simulation model for an emergency department. A
simulation model is a computer model used to evaluate ‘what if?’-scenarios in order
to reason about potential process changes [4]. As process mining techniques can be
used during the development of such a simulation model [24, 30], event log data
quality is also a prime concern within this context.

To provide a structured insight in the variety of event log quality issues,
Vanbrabant et al. [32] propose a taxonomy based on a thorough analysis of both
general and healthcare-specific taxonomies in literature. From this analysis, the
authors conclude that, while their categorisation tends to differ, most taxonomies
demonstrate strong similarities regarding the specific data problems that are spec-
ified. In their synthesized taxonomy, Vanbrabant et al. [32] distinguish between
missing data and non-missing data, where the latter category is further subdivided
in wrong data on the one hand and not wrong but not directly usable data on the
other hand. These generic categories, which are consistent with Kim et al. [18], are
translated into 14 specific event log quality issues.

Missing Data

Missing data relates to data entries which are absent in the log, even though they
should be recorded. Within this category, three quality issues are identified:

• Missing values. Missing values are data values which should be present, but
which are not recorded. In this respect, a distinction needs to be made between
genuinely missing values and data entries for which it makes sense that no value
is recorded. For instance: for patients who did not undergo a blood test, it makes
sense that an attribute related to blood results has no value.

• Missing attributes. Missing attributes refer to attributes which are needed for the
analysis, but which are not present in the event log. This can be either because it
has not been exported to the provided dataset, or because it is not recorded in the
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system altogether. While missing values reflect specific data entries which are
missing for particular patients, missing attributes imply that an attribute value is
missing for all patients.

• Missing cases. Missing cases implies that cases, which were handled in reality,
do not appear in the event log. In healthcare, this could, for instance, imply that
data of particular patients is not included in the log [32].

Non-missing Data

The category non-missing data contains event log quality issues which are related
to data values which are recorded in the log. Within this category, a distinction is
made between wrong data on the one hand and not wrong, but not directly usable
data on the other hand.

The first subcategory, wrong data, consists of the following data quality issues:

• Violation of logical order. A violation of logical order implies that the order of
particular activities is incorrect due to issues with the recorded timestamps. This
could, for instance, lead to data entries making it seem as if a patient is discharged
before receiving treatment.

• Violation of mutual dependency. A violation of mutual dependency occurs
when two mutually dependent attributes have contradicting values. For example:
when an infant patient is not assigned to a paediatrician, this could be considered
as a violation of mutual dependency.

• Inexactness of timestamps. Inexact timestamps are timestamps which do not
reflect the actual time at which an event took place. This is a common data
quality issue in healthcare as many timestamps are recorded following a manual
action by healthcare staff (e.g. sending a request or saving a file). When there is a
discrepancy between the moment at which an action is executed and the moment
at which it is recorded in the system, this data quality issue occurs.

• Typing mistakes. Typing mistakes in textual fields can also cause errors in
attribute values, leading to issues for algorithms which use these attributes.

• Outside domain range. Domain range violations refer to timestamps, numerical
and categorical data values which are outside the range of possible values. For
instance: triage codes at the emergency department are often expressed as a
number between, and including, 1 and 5. Within that context, a value of 7 would
be outside the domain range, indicating that an entry error took place.

• Other implausible values. This issue is a residual category of wrong data values
which do not correspond to one of the earlier specifications [32].

As shown in Fig. 5.2, the aforementioned wrong data issues are combined in
two groups. A violation of logical order and a violation of mutual dependency
are grouped as ‘violated attribute dependencies’, while the remaining issues are
categorized as ‘incorrect attribute values’.

Next to wrong data, the second subcategory of non-missing data consists of
not wrong, but not directly usable data. This subcategory reflects data which is
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Fig. 5.2 Data quality taxonomy adapted from Vanbrabant et al. [32]

not wrong, but for which preprocessing is required in order to use it for analysis
purposes. The following event log quality issues are specified:

• Inconsistent formatting. Inconsistent formatting implies that the format of data
values of a particular attribute, or different attributes of the same type, is not
consistent within a case or across cases. For instance: the timestamp format might
differ when data originates from different systems.

• Implicit value needed. This quality issue refers to attribute values which are not
available explicitly, but which can be derived from available data. Suppose, for
instance, that the height and weight of a patient is available. In that case, the Body
Mass Index is implicitly available as it can be calculated based on the recorded
data.

• Embedded values. Embedded values are attribute values which are an aggrega-
tion of several usable pieces of information. Consider, for example, that gender
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and age are codified in the dataset as F28 for a 28 year old female patient. When
the format is consistent, a gender and age attribute can be obtained by separating
this codified data entry.

• Abbreviations. Abbreviations are often used to shorten specific domain ter-
minology. From an analysis perspective, abbreviations can be problematic,
especially when they are not used consistently.

• Imprecise data. Imprecise data refers to data entries which are not specified at
the required level of granularity. An example are timestamps which are recorded
at the day level instead of at the minute or second level [32].

5.3 Data Quality Assessment

From the previous section, it follows that a multitude quality issues can potentially
occur in real-life event logs. This observation stresses the need for thorough data
quality assessment, i.e. determining whether data quality issues are present in the
event log. When an analyst is aware of the prevailing data quality issues, initiatives
can be taken to alleviate them (e.g. by collecting additional data) or, in case it is not
possible to tackle an issue, knowledge about its presence can be taken along when
conducting process mining analyses.

This section focuses on the topic of data quality assessment. Section 5.3.1
discusses some case studies to illustrate data quality issues prevailing in real-
life healthcare logs. Section 5.3.2 presents frameworks having the ambition to
structure the data quality assessment process. Section 5.3.3 discusses tools which
are available to conduct data quality assessment.

5.3.1 Data Quality Issues in Real-Life Healthcare Logs

Taking the taxonomies presented in Sect. 5.2.2 as a starting point, this subsection
illustrates data quality issues actually detected in real-life healthcare event logs.

While the taxonomy of Bose et al. [9] does not focus on a particular application
domain, three healthcare-related logs are used to illustrate the presence of event
log quality issues. Firstly, the logs from X-ray machines of Philips healthcare are
evaluated. These machines record high volumes of fine-grained data on a wide
variety of examinations. An additional source of variation are the personal habits
of physicians when executing a particular examination. Three data quality issues
are observed: incorrect timestamps (due to synchronisation issues with the clocks in
the system), irrelevant cases (depending on the analysis goals) and irrelevant events
(also depending on the analysis goals) [9].

Secondly, the public BPI challenge 2011 log is assessed, which relates to the
treatment procedures of cancer patients at a large Dutch academic hospital. Besides
the high control-flow complexity due to the variety of procedures included in the log,
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several data quality issues are detected: missing resources, missing event attributes
(e.g. diagnosis codes), imprecise activity names (mixed granularity of activity
names and duplicate activity names), imprecise timestamps (several timestamps are
recorded at the day level) and irrelevant events (i.e. each case contains events linked
to a variety of departments and patient visits, which can be irrelevant for the question
at hand) [9]. The same BPI challenge 2011 log is also assessed by Verhulst [33].
They detected that the granularity level of timestamps is inconsistent: while some
timestamps are recorded at the level of seconds, others are recorded at the hour or
even at the day level. Moreover, 2% traces contain duplicate events and multiple
data types are detected for a single attribute (Activity Code) as this attribute contains
integer, double and string values.

Finally, Bose et al. [9] study an event log originating from the systems of
the intensive care unit at the Catharina Hospital in the Netherlands. The log
mainly consists of events on the characteristics of patients, examinations which
are conducted and clinical measurements which are performed. The identified
data quality issues in this log are missing events (due to manual recording of
some activities), missing case attributes (such as the main diagnosis at discharge),
missing event attributes (e.g. related to blood results), incorrect timestamps (batch
registration due to manual recording), imprecise activity names (duplicate activity
names), imprecise timestamps (several timestamps are recorded at the day level) and
irrelevant cases (due to the presence of patients with a variety of diagnoses in the
same log) [9].

The taxonomy of Bose et al. [9] is also used by Mans et al. [21] to evaluate the
data quality of the hospital information system at the Maastricht University Medical
Centre. This evaluation is conducted by interviewing domain experts familiar with
the raw data, and the assessment of the database tables by the authors. Based on this
input, the prevalence of each data quality issue from the taxonomy of Bose et al. [9]
is estimated. As shown in Table 5.4, three prevalence levels are considered: N refers
to event log quality issues which do not occur, L indicates a low prevalence and H
reflects a higher prevalence. Cells which are empty reflect event log quality issues

Table 5.4 Data quality assessment of the HIS at the Maastricht University Medical Centre [21]
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which are not applicable. For instance: irrelevant cases and events are not applicable
as each HIS data point is considered to be relevant for a particular patient.

From their case study at Maastricht University Medical Centre, Mans et al. [21]
conclude that the three data quality issues which occur the most frequently are:

• Missing events. Missing events, i.e. events which took place in reality, but were
not recorded in the system, are one of the most frequent event log quality issues.
This can be attributed to the fact that many events require manual recording on
behalf of caregivers, entailing the risk that they forget to record some actions that
were executed.

• Imprecise timestamps. Several departments within the hospital use dedicated
systems alongside the HIS. For instance, the radiology department uses a specific
system for the creation, processing and management of medical images. For
billing purposes, all departments transfer data to the HIS at a later stage. During
this export, detailed timestamps are not always transferred and times might be
defined at the day level in the HIS. More fine-grained timestamps are typically
retrievable from the dedicated systems of a department.

• Imprecise resources. Imprecise resource data is the third frequently occurring
event log quality issue. While the HIS records information about the resource
entering an event, this resource does not always link to a specific staff member.
For instance: the resource associated to an event might relate to a physical
location within the hospital instead of to a staff member [21].

While the case of Mans et al. [21] aims to assess the data quality of a HIS as a
whole, Suriadi et al. [31], Vanbrabant et al. [32] focus on one specific department:
the emergency department. In the Belgian emergency department considered by
Vanbrabant et al. [32], the largest data quality issue is batch recording of statuses as
for 91.68% of all patients, several statuses are recorded within the same minute. This
implies that, for many of these statuses, the recorded timestamp does not correspond
to the moment in time at which an action was actually performed. Besides batch
recording, several other data quality issues are detected. An example relates to
the absence of required activities in the event log. Domain experts indicate that,
for each patient, registration, triage, clinical examination, medical completion by
a physician, and departure need to be recorded. However, for all patients, at least
one of these actions is missing. For instance, for 88.53% of the patients, the clinical
examination was missing. The absence of required actions can be problematic for
control-flow discovery purposes [32].

In contrast to Vanbrabant et al. [32], Suriadi et al. [31] do not study the entire
patient population at the emergency department, but focus on patients with chest
pain. The raw data used to analyze the process flows of this patient population was
provided in four distinct tables. Several data quality issues are detected, including
form-based event capture as many medical parameters are recorded in a single form,
leading to several events sharing the same timestamp. Moreover, Suriadi et al. [31]
want to follow patients throughout their entire stay at the emergency department
and, when relevant, during their admission to an inpatient unit. However, when
a patient is admitted to the hospital, a different identifier is used for this patient,
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which constitutes a data quality issue. Other event log imperfection patterns, such
as unanchored and scattered events, are also detected.

With the aforementioned BPI Challenge 2011 log as an exception, all event
logs discussed until this point consist of private data. Open source healthcare data
can, amongst others, be retrieved from the Medical Information Mart for Intensive
Care III, or MIMIC-III in short, composed by the MIT Lab for Computational
Physiology.2 Kurniati et al. [20] evaluate the data quality of MIMIC-III for process
mining purposes. An important data quality issue, which is purposefully introduced
for anonymization purposes, is date shifting. This implies that all timestamps, which
are recorded at the date level of granularity, are shifted by a random offset. As
this offset is not consistent for all actions related to a specific patient, this causes
issues for process mining purposes as the order of activities in the data might
be changed. A multitude of other issues were detected, including missing events,
missing timestamps, incorrect timestamps and duplicated events. Moreover, the
system capturing the data has changed during the data collection period, which
causes data format changes within the dataset. Despite the multitude of data quality
problems, Kurniati et al. [20] still consider MIMIC-III a valuable data source for
process mining purposes given the richness of the data in terms of attributes.

5.3.2 Data Quality Assessment Frameworks

The presence of a wide range of data quality issues in real-life healthcare event
logs demonstrates the importance of thorough data quality assessment when
applying process mining techniques. Existing frameworks which aim to structure
process mining projects, such as the L*-methodology [2], the Process Diagnostics
Method [10] and the PM2-methodology [13], have limited attention for data quality
assessment. However, recent literature provides some frameworks which have a
more predominant focus on data quality assessment. These will be discussed in the
remainder of his subsection.

5.3.2.1 Framework by Fox et al. [14]

The framework by Fox et al. [14] aims to mark electronic health records data
with quality labels bad, compromised, or good. While bad data is of unacceptable
quality, compromised data has issues but can still be used for some purposes. To
add these quality markings, the Care Pathway Data Quality Framework (CP-DQF)
is proposed, consisting of three key steps.

In the first step, a data quality register for the research question(s) (called
experiments in Fox et al. [14]) at hand is created. This involves adding known data

2https://mimic.physionet.org/

https://mimic.physionet.org/
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quality issues to the register and linking each research question to these issues. At
a later stage, these links will be used to determine which data cannot be used to
answer particular questions due to the presence of data quality problems.

The second step, the application of CP-DQF on the available data, consists of
several substeps:

• Metadata fields are added to the available data, which will be used to add quality
labels. Fox et al. [14] suggest the addition of a Boolean BadRow and a vector
string BadRowCodes, where the latter can hold several data quality issue codes.

• For each data quality issue, it is determined whether they can be handled by
means of preprocessing, or whether they should be outlined in the discussion
section of the report of the results.

• It is decided whether the presence of a particular quality issue would make
the data unusable for a particular research question. When this is the case, the
research question is marked and the data should be excluded for this research
question.

• Following the conclusions from the previous step, the effect of excluding the
data is determined. Marking some data as bad data might cause particular data
integrity constraints to be violated.

• Marking code is written or executed to populate the metadata fields related to
data quality, which were added in the first substep.

• In case mitigation code is available or can be developed to tackle a data quality
issue, this is written or executed.

• Information about the scope of data quality issues and the mitigation actions that
have been implemented are recorded in the data quality register for documenta-
tion purposes.

• To obtain a dataset to answer a research question, dataset collection code is
written. This code takes into account the values of the metadata fields that have
been added [14].

The final step of the framework entails reporting about the outcomes of the prior
two steps. This involves a discussion of topics such as the general data quality of the
available data, and the impact that data quality issues can have on the results [14].

5.3.2.2 Framework by Andrews et al. [6]

Andrews et al. [6] propose a framework which is inspired on the Cross Industry
Standard Process for Data Mining (CRISP-DM). They specify steps that should
take place before the final data extraction, i.e. in the early stages of a process mining
project. This cyclical framework, visualized in Fig. 5.3, consists of seven steps:

• Step 1: Process understanding. In this step, the analyst should get acquainted
with the process. To this end, potential information sources include existing
process models and consultations with stakeholders.
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Fig. 5.3 Data quality assessment framework adapted from Andrews et al. [6]

• Step 2: Data understanding. Data understanding involves understanding the
data, using instruments such as data dictionaries.

• Step 3: Data attribute quality. This step involves investigating the quality of the
data at the level of individual attributes, e.g. by determining their completeness.

• Step 4: Event log preparation. While steps 2 and 3 consider the raw data, this
step requires that the raw data is transformed into an initial event log. This log
can be used for pre-study process mining purposes (step 6).

• Step 5: Event quality. In this step, the data quality is checked at the level of
events. To this end, taxonomies such as the ones proposed in Sect. 5.2.2 can be
used.

• Step 6: Pre-study process mining. Pre-study process mining implies that some
initial process mining algorithms are applied to the event log to highlight data
quality issues, e.g. by applying control-flow discovery algorithms.

• Step 7: Evaluation and feedback. Based on the input of the prior steps, this
step involves communicating the identified issues to process owners, checking
and potentially revising the questions at hand, and shaping the final event log
that will be used to perform the study [6].

5.3.2.3 Framework by Martin et al. [25]

Martin et al. [25] propose an interactive data cleaning framework, which is shown
in Fig. 5.4. Within this framework, a distinction is made between two types of
data quality assessment: data-based and discovery-based assessment. Data-based
assessment focuses on the identification of problematic patterns in the event log,
i.e. by solely looking at the available data. However, even when data quality tests
are thoroughly applied to the event log, there still exists a real risk that some issues
are overlooked. To this end, Martin et al. [25] suggest to add discovery-based data
quality assessment. A discovery-based approach implies that data quality problems
are retrieved by discovering process models. For instance, the discovery of a control-
flow model might visualize incorrect relationships between activities. From these
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Fig. 5.4 Data quality assessment framework of Martin et al. [25]

erroneous relationships, such as a patient being discharged before being registered,
incorrect timestamps for some cases can be discovered [25]. The discovery-based
component in the framework of Martin et al. [25] conveys a similar idea than step
6 in the framework of Andrews et al. [6]. Both frameworks highlight the potential
of applying, for instance, control-flow discovery algorithms to detect data quality
issues.

When the data quality assessment results highlight the presence of quality issues,
which will often be the case in real-life healthcare data, three main courses of
actions are available to the analyst. Firstly, it might be possible to solve the problem
by applying a particular data cleaning heuristic. Such a heuristic implements a
particular data cleaning action, which will be the topic of Sect. 5.4. Secondly, data
quality issues such as missing events might be rectified by collecting additional
data, i.e. by returning to the data extraction phase. After additional data has been
retrieved from the information systems, new assessment queries can be specified
to verify whether the quality issues are resolved. Finally, quality assessment results
might make it impossible to answer a particular research question. Consider, for
instance, questions regarding resource involvement in case no resource information
is available in the event log. Under these circumstances, the detected data quality
issues require a reformulation of the research questions [25].

As shown in Fig. 5.4, the analyst is positioned at the center of the data quality
assessment and data cleaning process. This stresses the interactive character of the
framework, in which the analyst is in full control during the specification of data
quality assessment queries and data cleaning heuristics.

5.3.3 Tools for Data Quality Assessment

Within the process mining field, data quality assessment often occurs on an ad-hoc
basis [5, 22]. This implies that some tests are being performed, often based on an
analyst’s experience within the healthcare organization. Given the key importance of
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data quality to ensure reliable process mining outcomes, more elaborate data quality
assessment is warranted. This would be facilitated when it is supported by adequate
tooling. Such tooling should move beyond showing error messages when data inputs
are inconsistent with the expected data format, as this only constitutes one potential
data quality issue.

In an effort to support systematic event log quality assessment, the open source
R-package DaQAPO3, Data Quality Assessment for Process-Oriented data, has
been developed [23]. R4 is a programming language providing extensive functional-
ities for data manipulation and statistical analysis. Additional functionalities can be
obtained by installing packages with a specific purpose, of which DaQAPO focuses
on supporting data quality assessment of process execution data. The package is part
of bupaR,5which is an integrated suite consisting of R-packages targeted towards
handling and analyzing process execution data [16].

The key functionalities of DaQAPO can be grouped in three categories: (1)
functions to read in data, (2) functions to identify data quality issues, and (3) a
function to remove anomalies from the data. Within the second category, DaQAPO
provides a wide range of functions which detect commonly occurring data quality
issues in healthcare data. These include missing values, incomplete cases, batch
registration of events by a staff member (e.g. a physician who records his/her
findings after having seen several patients), and the absence of related activities (e.g.
a bed at an inpatient unit being assigned without being requested). Every function
can be fine-tuned to the context of a specific hospital by entering the appropriate
parameter values. The function-based architecture enables users of DaQAPO to
iteratively and interactively dig deeper to gain a thorough insight in the prevailing
data quality issues.

Within the same line of thought, i.e. enabling efficient and effective data quality
assessment, the recent work of Andrews et al. [5] is promising. They introduce
the foundations of a new log query language QUELI, Querying Event Log for
Imperfections. In the long run, QUELI should evolve into a query language
which can be used to detect the event log imperfection patterns discussed in
Sect. 5.2.2.4. At the time of writing, detection algorithms had been developed for
the following five imperfection patterns: form-based event capture, inadvertent time
travel, collateral events, synonymous labels and homonymous labels.

5.4 Data Cleaning

Based on the data quality assessment results, healthcare organizations gain insight
in the data quality issues which are prevailing. These insights should be taken into
account when performing process mining analyses as the identified issues might

3https://github.com/nielsmartin/daqapo/
4https://www.r-project.org/
5https://bupar.net/

https://github.com/nielsmartin/daqapo/
https://www.r-project.org/
https://bupar.net/
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impact the credibility of the results. For some specific data quality issues, heuristics
have been developed in an effort to rectify them. While some researchers proposed
alternative solutions to data quality issues in HIS-data, such as its integration with
alternative sources of process execution information [22], this section focuses on
data cleaning heuristics using the event log as the only source of process execution
data. In particular, Sect. 5.4.1 describes exemplary data cleaning heuristics and
Sect. 5.4.2 contains a reflection on such heuristics.

5.4.1 Data Cleaning Heuristics

Several data cleaning heuristics have been proposed in literature. These typically
target one particular data quality issue and build upon several assumptions about
the event log or the way in which the event log quality issue manifests itself.
This subsection describes data cleaning heuristics regarding the following event
log quality issues: incorrect timestamps (Sect. 5.4.1.1), missing case identifiers
(Sect. 5.4.1.2), missing events (Sect. 5.4.1.3), and incorrect/missing attribute values
at a more generic level (Sect. 5.4.1.4).

5.4.1.1 Incorrect Timestamps

From Sect. 5.3.1, it follows that many event log quality issues originate from
timestamp-related problems. These might, for instance, be incorrect or might be
recorded at different granularity levels because they originate from different systems
[9, 32]. Such timestamp-related data quality issues are problematic for control-flow
discovery purposes as they distort the order of events. Within this context, Dixit
et al. [12] propose an interactive approach to rectify such event ordering issues.
Their approach consists of the following four steps:

• Step 1: Automated detection. The first step automatically generates a list of
potential timestamp-related data quality problems. To this end, three indicators
for such issues are considered: (1) the level of granularity of timestamps, (2)
potential order anomalies based on the algorithm’s guess about the correct order,
and (3) statistical anomalies, e.g., based on the temporal position of an event
compared to other events.

• Step 2: User-driven repair. Based on the list of potential data quality issues
from step 1, the user can start to interactively repair these issues. To this end, the
user can model relationships between events in an interactive Petri Net editor and
highlight the way in which the timestamps should be repaired. Besides changing
a timestamp, repair actions can also involve the addition of removal of events.
To actually repair the event log, alignment techniques from the conformance
checking field are used.
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• Step 3: Impact analysis. Besides the repaired event log, a copy of the log before
the repair action is also saved. In the third step of the approach, impact analysis,
the impact of the repair on the event log is made explicit. Several metrics are used,
including the Levenshtein distance between both logs, the number of removed
events, and the number of events for which the timestamp has been changed.

• Step 4: Log update. Based on the impact analysis results, the user should decide
whether or not the repair is confirmed. When the change to the log is confirmed,
the repaired log will replace its predecessor before the repair action was taken.

5.4.1.2 Missing Case Identifiers

Bayomie et al. [7] propose an approach to handle missing case identifiers. However,
in contrast to a situation in which case identifiers are missing for some events, they
consider a setting in which all case identifiers are missing. The developed method,
which is built around the concept of decision trees, requires the event log and a
correct control-flow model as input, together with the mean and standard deviation
of the duration of each activity. This latter information can be provided by domain
experts, or retrieved from the event log. The generated output is a series of event logs
with case identifiers, together with a measure expressing the level of confidence in
the imputed case identifiers [7].

In order to apply the method of Bayomie et al. [7], the following assumptions
must hold: (1) an event’s timestamp should mark the completion of the current
activity and the start of the next activity, (2) the process control-flow does not
contain loops, and (3) the process has a single start activity which makes it possible
to recognize a new case.

5.4.1.3 Missing Events

Another common data quality issue are missing events, i.e. events which took
place in reality, but were not recorded in the event log. In this respect, Rogge-
Solti et al. [29] propose a method to add missing events and impute an appropriate
timestamp value. To this end, the most likely missing events are determined based on
path probabilities of process models developed by domain experts (modeled using
Stochastic Petri Nets). Afterwards, Bayesian networks are leveraged to determine
the most likely timestamp for the imputed events. The approach of Rogge-Solti
et al. [29] builds on several assumptions, including the fact that all non-missing
timestamps are correct, that events are missing at random, and that activity durations
follow a normal distribution.

Regarding the same data quality issue, i.e. missing events, Di Francescomarino
et al. [11] highlight that, e.g., manual activities are often not recorded in the
information system and, hence, not present in the event log. Such non-observable
activities are considered problematic from a process mining perspective as they will
not appear in process mining outcomes such as a control-flow model. To this end,
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Di Francescomarino et al. [11] propose a technique to add non-observable activities
to traces in the event log using action languages. Focusing on event logs without
timestamps, the proposed algorithm uses a control-flow model and data attributes
to complete traces. This control-flow model, delivered by domain experts and
assumed to be correct and complete, is encoded as a planning problem. Besides the
constraints that the control-flow model imposes, additional constraints can originate
from data attributes. For instance: a particular activity might only be executed when
the patient has a particular characteristic. To formulate the planning problem, the
action language K is used [11].

Besides Rogge-Solti et al. [29] and Di Francescomarino et al. [11], other
heuristics have also been developed to add missing events. These include Wang et al.
[34], where a method is developed to add missing events to an event log without
timestamps using a branching framework, and Bertoli et al. [8], where the notion of
a satisfiability problem is leveraged. Both Wang and Strong [35] and Bertoli et al.
[8] assume the availability of a control-flow model, the former in the form of a Petri
net and the latter as a BPMN-model.

5.4.1.4 Incorrect/Missing Attribute Values

The heuristics outlined in Sects. 5.4.1.1, 5.4.1.2 and 5.4.1.3 all require domain
knowledge to perform data cleaning. Domain expertise can, for instance, be
conveyed by means of a process model, which is a commonly required input for
existing data cleaning algorithms. Recently, Nguyen et al. [26] proposed a data
cleaning approach which does not require any form of domain expertise. Their
approach focuses on two data quality issues, i.e. the correction of incorrect attribute
values and the imputation of missing attribute values. To tackle these issues without
the need for any domain expertise, they use autoencoders, which are a specific type
of neural network which is trained using unlabelled data.

Even though preliminary results on structured artificial data are promising,
their approach still experiences difficulties to manage the complexity of real-
life data. Especially the correction of timestamps in real-life event logs proves
to be a daunting task for autoencoders. The authors attribute the algorithm’s
underperformance to correct these timestamps to the significant variability of case
and activity durations in real-life data. In contrast, the generated artificial data used
normal distributions for timestamp specification, which facilitates the training of the
autoencoder [26]. Moreover, the approach of Nguyen et al. [26] assumes randomly
introduced anomalies and missing values, while in practice some patterns might
exist. Given such limitations, future refinements of this type of algorithms would
benefit from incorporating domain knowledge in the data cleaning process.



5 Data Quality in Process Mining 77

5.4.2 A Reflection on Data Cleaning Heuristics

From the previous, it follows that data cleaning heuristics have been developed
to tackle some specific event log quality issues. However, these heuristics tend
to be based on strong assumptions, which can hamper their application in a real-
life context. When certain assumptions do not hold in reality, the application of
data cleaning heuristics might lead to unwarranted manipulations of the data. This
can, in its turn, lead to incorrect and misleading conclusions when used for process
mining purposes. Besides the need to check the validity of the assumptions, domain
expertise will also be required to determine whether the corrections proposed by
the algorithm make sense in practice. This stresses the potential of interactive data
cleaning approaches (e.g., the one proposed in Sect. 5.3.2.3) in which the healthcare
professional is in full control of the data cleaning efforts.

Regardless of the data cleaning approach that has been used, it is important
to take into consideration the fact that the original data has been changed in the
remainder of the process mining analysis. Some conclusions might immediately
follow from changes that have been made to the event log. Such conclusions need
to be handled with care and have to be interpreted against the background of the
performed data cleaning actions.

5.5 Conclusion

Given its impact on the reliability of process mining outcomes, data quality should
be a prime concern to all researchers and practitioners in the field. This especially
holds in healthcare, where real-life data typically suffers from a multitude of data
quality issues, amongst others because many events are recorded following a manual
action by healthcare staff.

Against this background, this chapter provided an introduction to data quality
in the process mining field. Firstly, data quality taxonomies were discussed in
which potential data quality issues are described. A distinction is made between
generic taxonomies and dedicated taxonomies from the process mining domain.
The issues identified in this latter category of taxonomies show that process mining
is confronted with specific data quality problems due to the specific characteristics
of an event log. Secondly, attention was attributed to data quality assessment, i.e.
the identification of data quality issues prevailing in an event log. As insights in
the existing data quality issues are indispensable for the remainder of the process
mining project, data quality assessment should be an integral part in each process
mining project. Finally, this chapter outlined some data cleaning heuristics which
aim to alleviate specific event log quality issues. However, such methods often build
upon strong assumptions which might not hold for a real-life healthcare process.
This highlights the need to closely involve domain experts during the data cleaning
process.
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Even though literature provides data cleaning heuristics to cope with some
specific event log problems, it needs to be recognized that improved data collection
at the source is always desirable. In that respect, healthcare organizations are encour-
aged to take measures to improve the accuracy of data registration. Management
can emphasize the importance of accurate data registration to nurses and physicians
by making its potential explicit. Moreover, investments can be done in systems
which enable swift data registration as healthcare staff tends to already experience
a high work pressure. Efforts to promote better data registration at the source are
worthwhile as they would enable process mining to reach its full potential in helping
healthcare organizations to understand their processes. These process insights can
be leveraged to instigate process improvement initiatives.
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Chapter 6
Towards Open Process Models in
Healthcare: Open Standards and Legal
Considerations

Luis Marco-Ruiz, Thomas Beale, Juan José Lull, Silje Ljosland Bakke,
Ian McNicoll, and Birger Haarbrandt

6.1 Introduction

6.1.1 Pathways, Guidelines and Computerized Clinical
Decision Support

Previous chapters have explained the relationship between clinical process work-
flows and process mining. In order to discuss further topics related to interoper-
ability and specification of workflows, a more thorough description becomes handy.
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In the following, we leverage the definitions provided by Field and Lorr [28], Fox
[19], Kinsman et al. [32], and the openEHR specifications [5] to define the types of
workflow models in the clinical domain as:

• Clinical guidelines are “systematically developed statements designed to assist
practitioner and patient on decisions about appropriate health care for specific
clinical circumstances” [28].

• A care pathway is a structured multidisciplinary description of a set of time-
framed activities focused on a specific condition that provide guidance on how
to deal with the situations that may arise during the treatment of the condition [5,
19, 32]. Care pathways aim to reduce variability and are developed considering
clinical guidelines adapting their content to local contexts [5, 32].

• A care plan is a concrete set of activities to be performed for the treatment of a
specific patient in order to achieve a pre-defined goal leveraging patient´s specific
features (preferences, co-morbidities, etc.) [5, 19].

• A task plan is the term we will use to refer to the computable specification of the
tasks and goals that formally define a care plan [5].

The medical informatics community has traditionally approached the support
of clinical processes as part of Computerized Clinical Decision Support (CCDS).
Particularly, the CCDS community has focused on providing support for the interop-
erability of workflows by implementing computer interpretable clinical guidelines
(CIGs) [47, 48]. In a nutshell, CIGs attempt to formally specify the ideal clinical
process and interact with the EHR to recommend appropriate actions to clinicians
with the objective of increasing the adherence to clinical guidelines [47]. Various
standards have been developed to specify clinical guidelines (published as free text
documents) as CIGs and defining the architecture to allow their interoperation with
the EHR [35]. However, several challenges have imposed strong barriers for their
general adoption and, nowadays, the real use of (EHR-embedded) CIGs is scarce
[47]. Examples of these challenges are the complexities inherent to the description
of processes that need to be agreed at national level, the lack of good options to deal
with ambiguity, and the local adaption needed to deal with the specificities inherent
to each clinical organization [35, 47].

Several studies have pointed out the complexities in the clinical knowledge
elicitation process [31, 35, 52]. An example are national infrastructures for CCDS
[31, 36] and the conceptual CREDO framework proposed by Fox [18]. Those
frameworks are interesting for understanding the decision making process and its
connection with CIGs development. However, there is a challenge in being able
to measure the effect and observing the full care process that may not be directly
observable by clinicians due to its complexity. Currently, this problem is one of the
main barriers for CIGs adoption since local adaptation to specific contexts where
the particularities of the local workflow need to be leveraged has proved to be one
of the main barriers affecting CIGs adoption and interoperability [41, 47].

Interestingly, the information for describing the real process is available in EHRs.
But it is represented in a format that does not easily allow for understanding
the full process details. The format that EHRs use is oriented towards providing
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one specific patient care rather than representing pathways common to a specific
cohort of patients. In order to observe clinical processes, it is necessary to filter
noise and present events in a human-comprehensible way so the clinical expert
can make sense of them [45]. This requirement is also related to the perceptual
computing paradigm, the concept of computing for the human experience [53, 54]
and the co-pilot paradigm [4]. In perceptual computing, Artificial Intelligence (AI)
serves as a mechanism for balancing the human perception enabling better decisions
and perceiving aspects crucial for treating complex cases that, otherwise, would
remain hidden in health information systems´ logs. When combined with clinical
knowledge, Process Mining has the potential to act as a perceptual mechanism that
allows the clinical expert to explore, understand, and identify areas of improvement
of the clinical process [57]. Its main difference with respect to the CIGs and BPM
approaches is that, instead of defining an ideal workflow that must be mapped to a
particular organization, it analyzes the logs of the information system to infer the
actual events and traces present in each system. Therefore, the workflow described
is based on events from the real one, rather than an ideal workflow from a guideline.
In medical organizations, this means that Process Mining has the potential to let us
observe the real operation of different actors by connecting the events recorded in
the EHR. This has the potential to determine in a quantitative manner which parts of
a clinical workflow deviate significantly from the ideal path described by a clinical
guideline and understand why a deviation is caused. In most cases, these deviations
have a clear reason with a specific clinical interest since they are related to cases
that do not comply with the ideal patient that a specific guideline focuses on, but
on complex cases that require the interaction of various medical experts in order to
determine the optimal treatment for one patient. That is the case of patients suffering
from multimorbidities. Process Mining can help clinicians to better understand those
cases and facilitate the decision on how to deal with those patients by, for example,
developing computable phenotypes for detecting those uncommon cases so their
optimal treatment can be rapidly determined using previous experiences with similar
cases.

This vision complements frameworks like CREDO [18] in two ways. First, it
allows for visualizing and understanding the real process before designing new
care plans, thus determining what stages of the new care plan require interventions
for approaching the ideal care pathway. Second, it allows for observing the effect
after adopting the new care plan. This sets the foundations for working iteratively
performing DMAIC cycles implementing continuous improvement in complex
areas that require constant monitoring, thus, helping to realize the concept of
Learning Healthcare System (LHS) [21, 44].

6.2 The Need of Semantics for Clinical Processes

The ability to observe real processes in operation and, furthermore, the results of a
specific CCDS intervention is needed for the implementation of the LHS [20, 44].
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In this sense, the results of Process Mining techniques should not only be delivered
to a process manager in a report; but they should be delivered as tailored advice
back to clinicians embedded in their clinical workflow [2]. This would enable the
implementation of cognitive health information systems capable of learning and
improving from their own experience. For this, Process Mining would need to be
combined with EHR information representation formats so daily EHR operation
can be analyzed by Process Mining algorithms, and the results of these analyses
can be delivered back to clinicians as tailored CCDS. However, nowadays, the
automatic generation of workflow models is mostly limited to formalisms that do
not allow for embedding clinical semantics. One of these formats are Petri nets
and their derivatives [58]. While Petri Nets, YAWL, and other process specification
formalisms, are very powerful in terms of expressing complex workflows with
branching, conditional executions, etc. they are mathematical abstractions that lack
clear semantics and context. In addition, they are designed to define systems where
the actor is a passive agent, while in the healthcare domain actors are active agents
who make choices, react to drugs etc. [5].

Noteworthy, clinical processes are extremely sensitive to context semantics. This
is depicted in Fig. 6.1 where the left side shows how traditional enterprise Data
Warehousing (DW) methods require effectiveness to deal with massive amounts
of data and few contextual data to make sense of these large data sets [34, 39].
However, as shown on the right of Fig. 6.1, clinical DW traditionally operates
with lower amounts of data, but it requires complex data structures and semantic
enrichment to be able to interpret clinical data sets [34, 39]. For example, spine
surgery to relieve back pain is a concept which requires many contextual attributes
to correctly specify the exact process: the surgical approach (laminectomy, fusion
surgery, etc.), the access devices used (bone flap elevator, microscope, immo-
bilization frame, spinal decompression cutter), the access approach to the spine
(anterior or posterior), the programmed date for the procedure, the parties that will
carry out the procedure, and so on. In fact, this example only refers to situational
context, more contextual properties are commonly linked to EHR data such as
protocols, order workflows, episodes of care, etc. [7]. Therefore, there is a need
for representing processes that are discovered and linked to the context where their
traces originated. This requires the specification of different types of semantics in
order to ensure the adequate interpretation of clinical information. Otherwise, the

Fig. 6.1 Amount of contextual semantics needed in Enterprise Data Warehouses and Clinical Data
Warehouses
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complexity inherent to the clinical domain can easily become ambiguous in the
definition of clinical terms. Processes and actions are not an exception to this since
clinical processes often involve various professionals that are placed in different
organizations. Examples include: the treatment of COPD patients which usually
involves lung specialists, GPs, and physiotherapists; the follow-up and treatment
of pre-birth cardiac pathologies which are carried out by the collaboration of
the gynecologist and a team usually situated in a reference hospital consisting
of pediatric cardiologists; the performance of genetic analyses which are often
undertaken by a molecular biologist in a specialist laboratory and reported to the
requester physician, etc. Furthermore, enabling continuous improvement requires
understanding how the same type of complex patient was managed by various
health organizations. However, this is problematic when the semantics of the clinical
concepts involved in the process are not precise since they cannot be traced across
different health organizations [11, 34].

The Process Mining community has approached this challenge in a general way
by defining the eXtensible Event Stream (XES) standard [59]. As shown in the
figure, XES defines logs as the wrapper element of process information, which in
turn contain traces formed by several events. Attributes of various data types can
be bound to these entities for describing information about them. XES provides
an important contribution since it establishes a way for defining events and traces
in XML format. An excerpt of the XES class diagram is provided in Fig. 6.2. As
shown in the diagram, an event log can declare the so-called extensions for defining
more granular attributes to define the semantics of processes.

However, at the time of writing, these extensions have not been further developed
and it is up to the specialists of each domain to define them for allowing the
definition of their processes. If one considers the complexity of the clinical domain,
the semantic extensions using XES would take an enormous amount of effort to
be developed. For example, the core of 100 archetypes approved and published
by the Norwegian Clinical Knowledge Manager (CKM) have taken 6 years to be
developed and clinically approved since the CKM began its operation in 2014 as a
collaboration among Norwegian health regions that provided clinical reviewers [26].
In addition, the archetypes that conform the openEHR EHR structure in Norway
have not been developed in isolation, but they have been developed and approved
in collaboration with the International openEHR CKM that receives feedback from
various countries, thus increasing their robustness as generic information models
[26]. Furthermore, the amount of experts to develop them would be unaffordable
and the models developed may, in the best case, be iso-semantic (e.g. structurally
different but semantically equivalent) to those defined as archetypes or FHIR
profiles [29]. A more sensible approach is to directly reuse the existing methods in
the healthcare domain for specifying clinical data and process features. However,
this requires to carefully assess the different types of semantics involved in the
specification of a process to make it clinically relevant and precise enough to drive
conclusions from its analysis.

When it comes to healthcare, the semantic extension of processes involves the
definition of different types of semantics. Different classifications of semantics exist
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Fig. 6.2 Extract of XES model class diagram

depending on the point of view [39, 46, 50]. For convenience, in this chapter, we will
classify the semantics involved in three main types:

• The first type is data semantics that capture the information recorded with
regards to a process in one particular stage of this process. For example, in
a blood pressure measurement, data semantics specify the values observed as
systolic = 110, and diastolic = 95. These kinds of semantics may also specify
constraints on the specification of some data such as maximum values, number
of digits, occurrences, etc.

• The second type is workflow semantics, i.e. the semantics that allow specifying
the order and status of stages in a specific process. For example, which stage
occurred before, what was the initial stage or entry point, what is the termination
stage, which activities terminated successfully, which stages did not occur or
terminated partially etc.

• The third type is contextual semantics that allow specifying the provenance of
a particular event. These semantics specify, for example, the parties involved,
the institution, the department, the devices used for a particular procedure, the
date where it occurred etc. An example is the place of measurement for the blood
pressure, the device used, the identifier of the nurse performing the measurement,
etc.
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The reader should note that these semantics are often not clearly separated and
they are often interlinked at different levels in health information systems [34].

In order to enable developing a LHS, Process Mining will require the clear defi-
nition of all three types of semantics for enabling cross-institutional interoperability.
The last decade has seen many initiatives for enabling interoperability in healthcare.
Examples are the well-known Meaningful Use initiative in the US that promoted
the adoption of EHRs [9], and the epSOS project in Europe communicating
continuity of care data from different countries [42]. However, these initiatives have
been mostly limited to data and contextual semantics interoperability. Data and
contextual semantics interoperability is necessary, but not sufficient for enabling
cross-institutional Process Mining. Process interoperability builds on data and
contextual semantics for further specifying the intra-organizational processes, but
it also requires workflow semantics in order to make sense of EHR data at a process
level.

Clinical information standards have extensively worked on the definition of data
and contextual semantics leading to the definition of various data interoperability
standards (e.g. openEHR, HL7 CDA, FHIR, CDISC, to name a few). These
standards also provide the connection with biomedical terminologies for the precise
specification of clinical information. Process interoperability standards have also
been proposed by CCDS researchers for CIG implementations as explained before.
Among these standards, openEHR was created for defining the full structure of
the EHR allowing for version control and dynamic management of the application
domain model [16]. This is done by relying on a two-level information architecture.
The first level acts as a reference meta-model that specifies the EHR structures that
do not vary over time originally defined in the GeEHR Australia and GEHR EU
projects [17, 27, 30]. The second model allows for the definition of more complex
constraints for developing health information schemas known as archetypes defined
by Beale [6]. Archetypes are combined to form complex information schemas to
represent full EHR data-sets known as templates. OpenEHR repositories allow the
import of templates in a dynamic way without the need for performing changes
at software level [6]. This boosts the scalability of openEHR systems since health
is a complex domain in continuous evolution that often requires the redefinition
of models for accommodating new evidence and supporting new procedures.
OpenEHR has traditionally focused on the representation of data and contextual
semantics. However, in the last few years, the openEHR community has developed
the openEHR Task Planning Specification that allows for the specification of
workflow semantics [3, 5].

With the addition of the Task Planning Model, the openEHR specifications cover
most of the semantics needed to build on process mining methods for specifying
rich process definitions after using Process Mining discovery algorithms.

In the following, we specify the model governance of archetypes and establish
the link between clinical processes and the openEHR task model. There are other
standards available for describing clinical information models (data and contextual
semantics) in combination with terminologies. However, in this chapter we will
present openEHR because it allows us to represent the full EHR structure, not
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only extracts, which is needed for providing the most complete information to PM
algorithms. In addition, a workflow model built on openEHR archetypes will be
precisely defined and seamlessly executed over various EHRs if they use the same
set of archetypes for defining their model.

6.3 Data and Contextual Semantics with openEHR

As mentioned before, data and contextual semantics are specified in openEHR by
means of Archetypes. Archetypes are commonly agreed models that represent (aspi-
rational) maximum data sets of a specific reusable section of the electronic health
record. For example, the Norwegian CKM develops archetypes as a nationally
coordinated effort. These archetypes are reviewed by means of a Web application
among clinicians from all over the country and, when consensus is reached, they
are published openly so vendors can base their developments on these models
[26]. Sharing a common library for clinical information models allows Norwegian
vendors to rely on robust validated information models to build their applications.
Since these models are common to all the vendors that implement openEHR,
interoperability is granted as long as they rely on the same set of archetypes.

Archetypes are defined by means of the Archetype Definition Language (ADL).
ADL can be visualized as a highly expressive language that was conceived for the
specification of reusable information schemas known as Archetypes. Archetypes
are defined in ADL instead of other well-known languages for expressivity reasons,
since, for example, it provides properties such a rich set of leaf types (particularly
intervals, date/times, coded terms, slots, and external references), and it provides a
regular structuring (like JSON) for human readability. ADL models can be exported
losslesly to other machine-readable formats such as XML, JSON, YAML etc.

Current openEHR-based systems allow for dynamic storage of data models. This
means that their persistence model is not directly based on a proprietary database
(e.g. relational or documental), but rather on the openEHR reference model and
the templates (defined by combining archetypes). Therefore, when support for new
functionality needs to be provided, they can obtain the archetypes published by
their national CKM, localize them as openEHR templates, and use these templates
as persistence schemas. This allows for directly storing and retrieving data in an
openEHR compliant manner. This facilitates scalability and reduces the burden on
the development of new functionality because the evolution of the models does
not require modifying the software for enabling their persistence and management.
Furthermore, this allows building open platforms in the sense that the transition from
one vendor to another requires little effort since the information schema is shared
across all of them.
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6.3.1 Governance of Clinical Models

In order to develop a common interoperable model, governance of the archetypes
that build these models is needed. As stated before, clinical information models
specified as archetypes are (aspirational) maximal data sets formally specified in
the ADL language. The process for publishing archetypes varies from country to
country, but in general terms it is made by sharing the archetypes in a common
national or regional repository where revisions with both clinical and technical
experts are performed [10, 23]. This is an iterative process. The first step of the
process is to create a draft archetype that covers a minimum set of requirements.
The second step is to produce iterative reviews with clinicians that are users of
the model (e.g. cardiologists for echocardiography report). Reviewers participate by
commenting on the different elements that constitute the archetype and iteratively
evolve it into a stable model that contains the requirements that satisfy the reviewers.
The result is a clinical information model (CIM) that has been carefully validated by
domain experts. Thus, it is a valuable information schema to drive the development
of health information systems that defines an implicit ontology of the concepts that
are required to represent a section of the EHR [24].

6.3.2 The Connection of Process Mining with OpenEHR

Figure 6.3 depicts the archetype for body temperature. One may attempt to redefine
the archetype in a compliant manner with the XES model but this would end
up in a replication of the work performed for developing the archetype which
is, in fact, very costly due to the amount of time that clinicians have invested
for implementing it. It makes more sense to keep the archetype model, which
is actually a rich model since it is intended for storing all the attributes in the
EHR, and reuse it for process mining performing queries to filter data. If these
queries are defined using the Archetype Query Language, they will be interoperable

Fig. 6.3 Mindmap of the archetype body temperature
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across openEHR EHRs, thus opening the door to apply the same process mining
discovery strategy over different EHRs with the same openEHR model and therefore
comparing and unveiling differences in the processes across hospitals. In addition,
processes need to understand complex patterns such as events, intervals etc. that are
actually modeled in openEHR taking care of covering the majority of clinical use
cases. Besides, most clinical semantics cannot be represented only with semantic
expressions since biomedical ontologies do not possess context rich semantics and
the connection among them is still immature [37, 38]. The XES specification allows
for performing extensions, some of them called semantic extensions that allow for
referencing an external ontology. However, these extensions and how to deal with
the specification of complex concepts that require the use of several ontological
entities and relationships among them is not defined. The semantic link of XES
allows for using a URI to refer to an ontology concept to specify its semantics.
However, the way of expressing the semantics of complex entities that encompass
a specific context, performer etc. is not elucidated. This is not a flaw in XES, since
it was not designed for that purpose, but as a pragmatic format for sharing logs
and events specifications. However, in the clinical domain the precise specification
of both data and context semantics related to a process is needed if one wants to
obtain valid inferences from the analysis of EHR information. Otherwise, confusing
or erroneous conclusions may be derived from the analysis of clinical process data
[34, 51].

6.4 Workflow Semantics with openEHR

Modern EHRs, and particularly Computerized-Provider Order Entry (CPOE), often
define groups of activities or tasks that should be executed following a clear time
pattern in a particular context [1, 43, 55]. Examples are chemotherapy regimes or
preoperative tests.

From a temporal perspective, several types of plans appear in healthcare such
as scheduled tasks, long running tasks, and coordinated activities [5]. OpenEHR
uses two main classes to define what are commonly known as order sets in health
information systems. These classes are Instruction and Action [15]. However, the
precise specification of clinical logic often requires more expressivity. For this
reason, Beale et al. recently developed a new specification for the definition of
clinical workflows [5]. The openEHR task plan specification aims to extend the
openEHR Reference Model for allowing the fine-grained definition of workflow
semantics using archetypes.

In the following, we present an example from Process Mining provided by
Ibanez-Sánchez et al. [25]. This example will be used to explain how process mining
may be combined with the openEHR task model for defining a continuous learning
loop. In their study, Ibanez-Sánchez et al. present the application of process mining
to emergency units showing the flow of stroke patients in the emergency unit and
detecting possible improvements such as the need for more triage units. In the
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Fig. 6.4 Graph diagram inferred by Process Mining algorithms

emergency service presented, triage is performed using the Manchester Scale [33].
The Manchester scale is a triage method that classifies patients with a color and
assigns a maximum waiting time depending on their priority. The code of colors is:
red for cases requiring immediate attention, amber for very urgent cases, yellow for
urgent cases, green for standard cases, and blue for non-urgent cases. The under-
triage rate of the Manchester scale has been reported to be around 20% [56]. The
study shows how Process Mining can help to understand a complex workflow and
contribute to its improvement [25]. From left to right, Fig. 6.4 shows the path of
patients across the emergency service generated by the process mining visualization
tool PM App. The path starts in the hospital admission stage (on the left side of
the figure), after it, patients go over triage and wait for medical attention. During
medical attention, medical personnel examine them and they may undergo some
tests while staying at the emergency department. Once they have gone through the
medical attention stage, three scenarios may occur: (a) patients can be diverted to
the stroke treatment unit, if stroke is suspected; (b) they may be admitted to other
areas of the hospital; or, (c) they may be discharged home if their health problem
does not require hospitalization.

A compelling finding by the Process Mining method used in the study presented
is that young adults (20–40 years old) and adults (40–65 years old) classified
in the same priority group had waiting times (after triage and before receiving
medical attention) that did not significantly differ from older adults (65+) [25].
However, older adults (+65) showed differences of up to two hours during the
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Fig. 6.5 Openehr Task Plan example for emergency service

medical attention stage with respect to young adults. This indicates that older adults
required more time and resources in the medical attention stage, but their waiting
time was the same as younger adults. In the case of stroke, the fast detection and
treatment of stroke is needed in order to maximize survival and avoid cognitive
damage. Waiting times among these patients represent an important issue since
patients under-diagnosed with stroke (that are more prevalent in older adults) may
suffer cognitive decay during that time.

In Fig. 6.5, we show an openEHR Work Plan defined from the process-mining
chart generated with PM App. The emergency activities are grouped as a task group
represented by the activities between the symbols named “Start Emergency” and
“CASE” figure in green that diverts the patient to the adequate procedure after he
has received emergency attention. The task plan defines the entrance of patients into
the emergency service, where the patient waits for triage. When triage starts, a logic
module triggered from the task workflow is activated to execute the Manchester
Scale classification which assigns the patient a priority. The work plan also enhances
the triage by activating a reminder in 10 min when the patient is an older adult. The
new workflow aims to tailor the triage by helping the staff performing triage to
be alert of possible stroke in those patients that are >65 years old and that often
require more time during medical attention. In this way, the task plan acts as an
alert system for triage services which are under high pressure by reminding them of
possible stroke cases and monitoring the waiting time when patients are >65 years
old. In the latter case, they alert attention personnel about them in the waiting lists.
This improves the triage taking care of those patients that need more urgent care
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despite being classified in a group that does not precisely indicate their urgency.
Thus, it uses knowledge from Process Mining output for providing a specific level of
local adaption for this emergency service that can be combined with more standard
protocols and scales such as the Manchester Scale. Once the emergency task group
finishes an XOR logic is followed for determining which other tasks plans may be
executed. In this case, three alternatives are available. If stroke is suspected, the
stroke task plan starts its execution for the patient; if other hospitalization is needed,
other task plans represented as other-hospital-admission can be triggered; if the
patient is discharged because the health problem does not require hospitalization,
the activity discharge-home is executed.

The reader should be aware that the example task plan is presented with
illustration purposes only. It does not intend to represent a deployable task plan in
an emergency department. In addition, the example shows the specific case for early
detection reducing waiting times in patients with risk of stroke, but this should be
leveraged with many other diseases and evaluated in a real environment determining
the effect of the workflow.

Noteworthy, the main potential of the openEHR Task Model in combination with
Process Mining Techniques lies in cases where one specific clinical guideline cannot
be directly applied. Often, these cases are much more complex than the example
presented and require the involvement of many more actors and departments of
the hospital. An example of cases that can benefit from using process mining
in combination with the openEHR task model are multimorbid patients where
patterns and new cohorts need to be discovered in order to optimize their treatment
[8]. OpenEHR allows for combining Process Mining with more patient specific
information based on its descriptive and highly structured format. Also, it allows
for cross-institutional process mining if the same set of archetypes are used.

So far, these techniques are in a very early stage of application, but they
can make a significant contribution to the LHS paradigm if they are correctly
leveraged. Figure 6.6 depicts an abstraction of an LHS cycle performing continuous
improvement in the example previously presented. The figure is based on the
concepts of Friedman and Macy [21, 22]. In the figure, the initial iteration starts
by the motivation of understanding and improving the emergency service (1).
In a second stage (2) resources are allocated and a multidisciplinary task force
is assembled. Clinical experts should lead the task force working closely with
process mining engineers. The task force studies process logs, meets all participant
stakeholders and prepares data for the next stage. In stage (3), process-mining
algorithms (e.g. PALIA) [14] are run on the data gathered. The task force analyzes
the outcomes on stage (4) interpreting the outcomes and designing filters for better
observing specific process flows. Stages (3) and (4) are iterative; the gray arrows
between them in the picture represent the iterative behavior. Once the process is
understood, all relevant ramifications observed and the areas that could be improved
have been identified, the task force designs a task plan that aims to deliver advise and
monitor the process making a specific intervention in the areas where improvement
was considered necessary. Again, this is an iterative process that occurs between
stage (5) and stage (6) where the advice from the task plan is delivered to the clinical
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Fig. 6.6 LHS loop using process mining and openEHR Task Plans

personnel working in the emergency department and some adaptions requested
by the clinical staff may be required. The cycle finishes with stage (6). However,
since clinical staff uses the work plan in their daily activities, they generate new
events stored in the EHR as openEHR compliant data. These new data can be used
to measure if the intervention performed has improved the process and identify
new areas that may be improved starting a new learning cycle and effectively
implementing continuous improvement.

6.5 Privacy and Legal Framework

Since Process Mining in healthcare is based on clinical data reuse, special attention
must be paid to compliance with privacy, legal, and ethical regulations. Interactive
Process Mining, as well as other process mining techniques, uses real data as input
in order to generate a workflow that describes reality, e.g. how a treatment has been
applied to a large proportion of a population. The workflow model generated by
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means of Process Mining algorithms (such as the one depicted in Fig. 6.4) includes
personal data from every subject. Since unveiling hidden subprocesses is one of the
Process Mining objectives, it is important for the model not to exclude rare cases,
because those often are the ones with co-morbidities and other complications. In
Fig. 6.6, the LHS loop for the integration of Process Mining and openEHR was
presented. This loop includes some stages that lead the user to access personal data:
In stage (2), personal data is gathered, in stage (3) the Process Mining algorithms
are executed, and in stage (4) the outcomes of the algorithms are interpreted.

This general data access vision from Process Mining contrasts with the EHR
profile-based access. When accessing the EHR, most of the actors in a medical
institution cannot see the whole EHR from any person, e.g. a traumatologist is
not allowed to see the psychiatric record from the patients (this is known as data
minimisation). However, for process discovery more complete data access may be
required to unveil hidden workflow paths. Therefore the use of Process Mining
imposes extra care over the data: Who will be able to act in each stage, what
information will be available for each user and how it will be treated, should be
defined.

In the European Union, through the General Data Protection Regulation (GDPR)
[13], a new fundamental right has been created, the protection of personal data
(Article 1, n.2). Clinical data, specifically, belongs to the special category -a type
of data that is defined as the most sensitive data and thus extremely protected,
as defined in Article 9 of the GDPR. The Regulation does not focus on research,
but rather on protecting people from unethical use of personal data, mainly by
companies. The importance of protecting personal data from EU citizens appears
mainly related to the economy, with little information about the implementation
of data protection practices in research (“Because the GDPR was intended as a
law of general applicability that would offer protection to personal data when
processed in all sectors of the EU economy, the unique challenges it has created
for the research enterprise were likely unanticipated and unintended”) [40]. In this
line, some authors claim that there are too many uncertainties in the regulation
around research and that research-friendly regulation should be created [49]. Since
the research that is conducted in the stages (2) to (4) in the LHS is oriented to
enhance the medical system already in place, the data processing could be deemed
as compliant with the GDPR, as Article 9 in n. 2(h) and n. 3 state.

When Process Mining is to be conducted, the normal restrictions that apply to
data in the medical field would still be valid: Data minimisation, accuracy, and so on.
One important factor is data anonymization. In the context of the Regulation, there is
the process of pseudonymization. In fact, the word anonymization does not appear
in the whole GDPR document. Pseudonymization consists on removing personal
information so the data cannot be traced back to the original person. A pseudonym
is generated instead, so the person could be identified if necessary, but with some
safeguards. If data was completely anonymized (i.e. it was not possible to trace the
original user by any means) then it would not be personal data anymore, so the
GDPR would not apply. However, if data from a subject such as post code and age
were stored, it could be traced back to the person in some cases: e.g. if there were
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few people in the area within that age range, or in case another subject or company
could make him/her stand out by crossing information with other sources [12].
Thus, complete anonymization as such is nearly impossible, and pseudonymization
(rendering data with maximized anonymity) will be performed on data, reducing the
risk of identification.

In order to conduct the research that will lead to a better medical system, the
submission to an Ethical Review Board is needed. The same principles as in any
other research apply here, but one: when “processing is necessary for the purposes of
preventive or occupational medicine, for the assessment of the working capacity of
the employee, medical diagnosis, the provision of health or social care or treatment
or the management of health or social care systems and services on the basis of
Union or Member State law or pursuant to contract with a health professional and
subject to the conditions and safeguards referred to in paragraph 3” (Article 9, n.2).
In this case, processing could be considered as necessary, since it allows preventive
medicine and especially it is a means of management of the health systems.

Process Mining initiatives must therefore be careful to follow these regulations
and be performed as a joint effort for healthcare improvement with organizational,
ethical, and legal stakeholders backup. In particular, when involving data from
various institutions.
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Part II
Interactive Process Mining in Health



Chapter 7
Applying Interactive Process Mining
Paradigm in Healthcare Domain

Carlos Fernandez-Llatas

7.1 Dealing with Digital Transformation Paradigm
in Healthcare

Healthcare is one of the most challenging problems that our society is currently
facing. The life expectancy is increasing thanks to the new advances and the better
quality of health solutions. According to demographic studies, the population over
60 was around 11% of the global population, and it is expected that in 2050 it will
reach 22% [21]. It is a fact that people are reaching older ages, that implies more
chronic illnesses, with more co-morbidities. This supposes a great increase in the
complexity of the illnesses. Also, thanks to the new age of the internet, patients
are more aware of their illnesses having larger expectations of the health systems,
causing a great impact in the healthcare sustainability, which should cover this
scenario with the same budget. This critical juncture is demanding the necessity
of a new paradigm that will be able to deal with the drift of the health domain in the
next years, to avoid the collapse of the system.

In this line, currently, the Digital Transformation paradigm is changing how
health is distributed in society [17]. This profound revolution is stressing the system
pushing health stakeholders to adapt not only their computer systems but also their
culture and the way of working. According to Kawamoto et al. [23], to achieve
successful clinical decision support systems, their application should be integrated
into the clinical workflow, involving the physician and providing actionable actions.
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However, the use of Information Technologies (IT) for supporting the processes
management in the healthcare domain is not a crucial task [24].

In healthcare, there are huge efforts to try to adopt business and industrial
methodologies that have been successfully applied in other fields, like Lean
Six Sigma or Change Management [6, 38]. However, these techniques have not
achieved successful results in healthcare domains [7]. The engagement of healthcare
professional stakeholders that should understand the current process and the effects
expected by the processes optimization is the key factor that supposes the success
or not in the application of these technologies [7].

To create scenarios where the processes may be optimized, it is critical to have
methods for measuring and analyzing the processes. The definition of Evidence-
Based Health Informatics (EBHI) [28], in close relationship with the definition of
Evidence-Based Medicine (EBM) [29], shows the importance of Information and
Communication Technologies (ICT) and Big Data in the health field. Information
systems in hospitals should provide enough data for measuring the processes
and to analyze their efficiency and efficacy. Traditionally, the lack of data was
one of the classically defined barriers for creating evidence that would allow the
improvement of care processes to patients. With the arrival of new mobile personal
technologies and wearable sensors, the amount of data available to monitor the
people’s behaviour is dramatically growing [3]. The rapid digitization of society
leads to the exponential growth of data from Internet of Things (IoT) devices [2].
According to statistical forecasts of the Institute for Humane Studies (IHS), the
number of connected devices on the Internet will rise to 75.4 billion by 2025 [4].
All this information, added to the information already stored in Electronic Health
Records (EHR), social media or/and patient portals, among others, suppose a great
opportunity to extract valuable knowledge that will help improve the quality of life
of citizens [25].

7.2 Data Science for Medicine: Filling the Gap Between Data
and Decision

On the one hand, there exist methodologies for improving processes and on the
other hand, there are data available for measuring and analyzing processes. So,
the next step is to find the appropriate methods and technologies to support health
professionals in understanding, measuring, and optimizing their processes. In this
line, Artificial Intelligence and Machine Learning are called to be the paradigms in
charge of providing the next generation of smart tools, methodologies and solutions
in the world of medicine [34].

As already shown in previous chapters, the design of medical processes rules
is not trivial due to difficulties in the formalized consensus among the medical
doctors. In Fig. 7.1 we can see in a very abstract way how Machine Learning
techniques work. While traditional medicine uses both the patient’s signs and
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Fig. 7.1 Abstract view of Machine Learning diagnosis analysis compared with traditional
medicine

symptoms and the medical knowledge rules for providing adequate diagnosis for
specific patients, Machine Learning uses the signs and symptoms, with the set of
diagnoses previously made by traditional medicine, to discover, by using advanced
mathematical methods, the intrinsic rules behind the diagnosis model.

There is a wide quantity of Machine Learning systems that are applied to
clinical Medicine [10, 33, 34]. There are real-time decision support systems that
help physicians in a wide variety of medical fields [22], there is a continuous
appearance in literature of Risk models covering all clinical disciplines [18, 19, 36],
intelligent systems for supporting Epidemiological surveillance [20], technologies
that are looking for providing individualized through personalized medicine [30]
among others.

Machine Learning techniques can support Medical Doctors in the formalization
of medical protocols by inferring these rules from the data available from cases.
Thanks to that, Machine Learning techniques can reduce the time and workload
in the definition of clinical protocols, increasing the quality of care, reducing the
variability and, then, promoting prevention medicine by creating best practices that
can be universally published [25].

7.2.1 Will the Doctors Be Replaced by Computers?

The impact of Artificial Intelligence and Machine Learning techniques is getting
so big that some researchers are starting to argue that probably one solution would
be to replace the doctors in some specific medical fields [13]. These researchers
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Fig. 7.2 Machine Learning techniques flow

defend that Artificial Intelligence systems make fewer errors than human doctors.
The futuristic concept of Perceptual Computing [31] as an evolution of Cognitive
computing [26] bets for an Artificial Intelligence where computers mimic the human
brain and are able to act as humans being aware of their environment, understanding
the human problems and acting accordingly. However, these paradigms require that
actual models have, at least, the same computational power than the human brain.
Otherwise, Artificial Intelligence and Machine Learning systems will never be able
to mimic human decisions. There is not a mathematical model able to describe
the capabilities of the human brain, but we have bounded the capacities of actual
computational systems thanks to the work of Alan Turing [5]. So, in theory, it
seems that intelligent computers are far from replacing humans with the current
computation framework.

As long as this new revolutionary intelligent framework finally comes, we should
use the techniques that we have at hand. Currently, Machine Learning techniques
are not acquiring the expected presence in actual medical field [8]. Figure 7.2 shows
the flow followed by a typical Machine Learning research. First, the question to
be answered should be translated to a machine language, normalizing and pre-
processing data to obtain the best accuracy in the results. As an example, a set
of fruits with different sizes and colours is presented and it is required to create
a system able to classify the fruits and determine which are apples and which
are not. After that, a set of mathematical tools is applied to train a model only
understandable by computers that is able to perform this classification. This model,
given a set of data from the fruits measures (colour, size,..), processed in the same
way than trained one, can automatically classify new elements eliminating the noise
(variability) in them. In the example, the model can differentiate apples from other
fruits, and removing the noise, worms, that makes it different from the prototypical
apple.

Currently, the application of innovative algorithms and apps to patient diagnosis
and treatments should prove that they work in the specific real conditions in which
they should be applied using clinical cases. That means that it is mandatory to
obtain enough evidence of the validity of the methods used prior to be deployed in
a real scenario. Due to the appearance of Precision Medicine paradigm, each time
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the assessment of medical applications is harder. Health applications are each time
more accurate and focused in a more reduced group of patients, even, one patient
in case of Personal Medicine. This makes more complex to find a sufficient cohort
of patients that produce enough statistical significance to make health professionals
confident of the results of the case. Due to that, the accuracy of clinical automated
systems decreases their utility in real scenarios.

Besides, Machine Learning techniques can infer complex models, but with some
limitations. While Machine Learning algorithms are deterministic, human behaviour
is not. Protocols that humans follow are affected by the variability of the human
being. They are affected by beliefs, attitudes, and other external factors that usually
can’t be taken into account by mathematical algorithms. That means that while
Machine Learning assumes that the same inputs provide the same outputs, in
medicine it is possible that two patients with the same illness and the same treatment
have different results due to differences in variability and external factors. These
models can’t be perfectly inferred by Machine Learning techniques and can only be
an approximation.

But, probably the most limiting problem is that no Machine Learning system
is error-free. Even in those applications where the full automation paradigm might
make sense, Machine Learning developments often require an additional step of
post-edition where a human expert corrects errors produced by the system. However,
full automation often proves elusive or unnatural in many applications where
technology is expected to assist rather than replace the human agents. In the case
of Machine Learning applied to medicine, models are becoming black boxes for
practitioners. The full automation will provide only the final decision, and health
professionals should trust the result achieved by the intelligent system, even though
all of those systems are not error-free and the error in the health domain might
suppose dangerous situations for the patient. This provokes some suspicions in
health professionals that, usually, suppose unsurmountable barriers for applying
technology in daily practice. Because of this, the figure of a human expert who
supervises the outcome of the process is unavoidable.

On the other hand, human error is an important problem to take into account in
clinical medicine. Any mistake made by a physician could potentially suppose a life.
Clinical errors might be due to different situations. Machine Learning techniques
are supposed to support better decisions avoiding human errors. However, there
are situations where the use of Machine Learning can increase clinicians’ errors
[32]. Medical errors happen every day in the health domain due to the influence
of statistics misunderstandings in medical evidence [15]. Zebra Retreat errors
are referred to rare diseases that have low evidence. These techniques tend to
select the most common situations over the less probable. That means that these
technologies are much less accurate in rare cases than in standard cases. However,
physicians usually do not need help in the standard case, because in these cases the
standard treatment works. But, in rare cases, Machine Learning systems can point
to erroneous diagnosis or treatments that can, even, increase the human error. Other
related examples are Diagnosis Momentum, this error is related to the correct or
incorrect diagnostics that have been diagnosed in the past and perpetuated over
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time producing an error in the current treatment. This Diagnosis Momentum is
produced by the assumption of the doctor that the clinical history is correct. This
is the same feeling, or even worse, that a physician can face when he or she is
working with a black box Machine Learning system. In a real situation with a high
load of patients,the physician might have an overconfident position with the system
and accept Machine Learning results as the reality.

Furthermore, these models also are black boxes for the Data Scientist who is
selecting the Machine Learning techniques for the data. Algorithms selected by
Data scientist are usually based on decisions that are not medical. Sometimes,
models selection depends on its popularity amongst the data science community;
its accuracy; its speed to return results; its ease of use compared to other options.
This adds more limitations for the selection of the best tools for each problem.

7.2.2 Towards an Interactive Pattern Recognition Approach

There is not new knowledge without medical understanding. That means that, in
current medicine, doctors should understand the illness processes to add evidence
to medical knowledge. Machine Learning systems based in cognitive computing
theory are not human-understandable, and for that, they can’t offer knowledge to
medical doctors. In this way, instead of use paradigms that mimic the human brain,
why not create models that cooperate with humans taking advantage of the process-
ing capabilities of human brains? This paradigm aims the promotion of interaction
between human and intelligent systems. The idea is creating Machine Learning
algorithms that produce human-understandable models allowing the extraction of
evidence from the intelligent models.

In past works, we presented the Interactive Pattern Recognition (IPR) [12] as an
alternative to the black box Pattern Recognition approach in health environments.
Interactive Pattern Recognition is an iterative probabilistic approach that incorpo-
rates the expert in the middle of the inference process. IPR algorithms assume the
priority of the human understandability over the accuracy of the findings achieved
on the inference. This allows the expert, on the one hand, to correct the model in
each learning iteration, avoiding undesirable errors, and on the other hand, converge
to a solution iteratively, allowing the closely adaption to the real problem.

IPR has been applied to some classical PR problems such as interactive
transcription of handwritten and spoken documents, computer-assisted translation,
interactive text generation and parsing, among others [35]. In this new IPR
framework, the most important factor to be minimized is the human effort that has
to be applied to transform the system’s potentially incorrect output into validated
and error-free output. Given that the user effort is usually inversely proportional
to the quality of the system output, most research related to this IPR framework
ends up minimizing the system error rate as well. In this IPR framework, four main
advantages have also been found:
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Fig. 7.3 Interactive pattern recognition

• Feedback: Take direct advantage of the feedback information provided by the
expert user in each interaction step to improve raw performance,

• Multimodality: The expert user can correct the system output in the most
comfortable and closest modality. This characteristic arises as a natural property
of an interaction. By properly acknowledging this fact, improved overall system
performance and usability can be achieved.

• Adaption: Use feedback-derived data to adaptively (re-)train the system and tune
it to the expert user behaviour and the specific task considered.

• Comprehension: Since the expert user is actively involved in developing the
system output, this increases his/her understanding of the process and allows to
export this development to other potentially less experienced users.

Figure 7.3 shows a graphical description of the Interactive Pattern Recognition
Approach. The patients or citizens produce health data not only from the signs
and symptoms of their illnesses but also from their treatments followed and their
lifestyle data. This data represents the user status in a moment or a period. Using
this data, Interactive Pattern Recognition algorithms can present findings over the
data in an understandable view to experts’ groups. These represent formal views of
the user behaviour that can be used by those experts to provide formally described
scientific literature. The findings achieved by IPR algorithms can be corrected by
experts and are stored in databases representing the new medical evidence, updating
the current clinical protocols in iterative iterations. This formal scientific literature
is different from the traditional one because it is described in a human and machine-
understandable way. This allows expert humans not only to correct by hand all
the inaccuracies but also, to apply all the advantages and available frameworks for
formal methods, like analysis of completeness, incoherence or ambiguity, among
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others. Physicians decide the diagnosis and treatments for the patient. This decision
is taken based not only on the signs and symptoms and the clinical protocols but
also on their medical experience. On the other side, patients’ signs and symptoms
are based on the disease evolution, as well as on their adherence and personality.

Besides, formal scientific literature can be used directly in daily practice. These
formal descriptions can be matched with the user status in real-time. This match
will allow healthcare professionals, formal and informal caregivers and other
stakeholders to know the negative or positive deviations of patient status over
the most common medical evidence. Using these data, it is possible to create
a computer-assisted treatment or recommender systems, which allow creating
formally defined protocols that can be used to support decision processes of the
healthcare professional, any other stakeholder or even the patient in his/her daily
life, improving his/her quality of life.

The Interactive Pattern Recognition paradigm is based on Bayesian theory.
In [12] we presented a probabilistic framework that demonstrates the theoretical
convergence of the model. In other words, if the problem follows the iterative
paradigm, the system will find, in the limit, the most adequate lifestyle and care
protocol for users and patients.

It is also important to highlight the importance of experts in the process. In the
Interactive paradigm, the experts can correct the findings inferred by the algorithms,
this allows the elimination of critical errors in the protocols applied to users.
Also, these expert’ corrections are very useful to accelerate the convergence of the
pattern recognition paradigm [35]. In that way, the methodology not only uses the
theoretical power of pattern recognition paradigms, but it is also used in combination
with the knowledge of human experts as well as their common sense, allowing the
creation of more robust and effective interventions.

7.2.3 Through Explainable Models

The main problem in the use of Interactive Paradigm is that it require the use
of human-understandable models. Classical Machine Learning tools like Neural
Networks, Support Vector Machines, or Hidden Markov Models, are aimed at
learning the best accurate models, but the internal rules that are behind the models
are not able for being human-understandable by. Thus way, in order to be interactive,
it is needed to select new tools and algorithms that aim at the best accuracy but
taking into account human readability.

This need for a new way to support experts in the understanding of Machine
Learning decisions, is providing new research frameworks seeking to translate
Machine Learning models to human language. As a result of this, theExplainable
Artificial Intelligence appear in literature [9]. These techniques are trying to make
human-understandable the results obtained by Machine Learning algorithms [1].

Explainable Models change the way of Machine Learning traditional flow, by
creating a translation action after the Training phase that support human experts in
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the understanding of the models inferred by the system. This translation is made by a
computerized system that is composed by an Explanation Interface that can show the
results in a human-understandable fashion by using advanced process analytic tools,
creating conversational recommender systems explaining that justify the decision
taken by the system. This idea enables the expert to understand the reason of these
decisions. In general, Explainable Models can communicate with experts in four
ways [16]:

• Explainable Statements: The system provides natural language statements that
explain to the expert the reasons for the selections made by the system.

• Process Analytic View: If the model was trained to allow a partial human
understanding, the system can highlight some parts of the general model to
strengthen the hypothesis by providing clues about the decisions taken in the
raw model.

• Similar cases: The system provides similar cases that reinforce the decision.
• Dissimilar cases: The system provides cases that are not suitable in that case for

reinforcing the decision taken.

In this line, some tools try to translate the models produced by Machine Learning
Techniques. One of the most known is Local Interpretable Model-agnostic Expla-
nations (LIME). LIME [27] is a model explainer that tries to explain the prediction
of classifiers independently of the method used in a human-understandable way.

Using explainers, it is possible to bring the Machine Learning tools closer to
Interactive methodologies. However, explainable models need to have a translator
in order to provide knowledge. This allows a unidirectional interaction, with the
system. The user can understand why the decisions are taken, but it is difficult to
discover other alternatives to the decision taken. Besides, if the expert modifies the
model to optimize it, the model should be retrained and the structures created can
be different and incomparable. So the expert can understand the decisions, but the
expert can´t easily correct the actions taken by the next decisions.

7.3 Interactive Process Mining

The Interactive Pattern Recognition approach has clear advantages over other
methodologies due to its integration with experts. As said, the main disadvantage of
this paradigm is that the Pattern Recognition framework requires to have a human-
understandable focus. This allows professionals to analyze and correct the evidence
inferred by algorithms. However, most Pattern Recognition algorithms are machine-
oriented and are not human-understandable. In this way, it is necessary to find an
adequate Pattern Recognition framework that allows the application of Interactive
Pattern Recognition thesis. In this chapter, we propose the use of Process Mining
Technologies as an adequate framework for the application of the Interactive Pattern
Recognition Paradigm.
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Fig. 7.4 Interactive process mining

Process Mining [37] solutions can offer a clear care process understanding in
a better way compared to other data mining techniques that are seen as black
box systems. Process Mining can build human-understandable models without the
need for an intermediate translation language. This allows, on the one hand, the
direct understanding of the medical processes, and on the other hand, the direct
modification of processes and permits the objective measurement of the effects of
the changes. This enables the medical expert in the understanding of the models
that explain the behaviour of their patients. Besides, it allows to modify the models
according to their experience and measure their effects in an iterative way of
optimizing the clinical protocols, empowering them in the use of fully bidirectional
interactive systems.

Applying process mining through the Interactive Pattern Recognition approach
allows an iterative way to control the process of care holistically. Figure 7.4
shows the authors’ proposal for the application of Process Mining techniques
over the Interactive Pattern Recognition paradigm. Process Mining algorithms can
take advantage of available Big Data to infer the lifestyle and care processes
followed by patients and citizens. This information is adequately presented as
formal workflows. Based on this, experts can filter and analyze data looking for
evidence using discovery and enhancement algorithms. By correcting possible
errors and applying their professional knowledge, expert groups can create formal
libraries of evidence and publish lifestyle and care protocols. These protocols
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support general practitioners in their daily practice as well as formal and informal
caregivers or the patient him/herself. These stakeholders can have an enhanced view
of the patient, highlighting the most interesting issues in their flow. To do this,
they can apply conformance algorithms with formal scientific evidence, showing
deviations of the process followed by the user with the ideal protocol. Furthermore,
it is possible to analyze the patient’s individualized behaviour change by comparing
the current status with past inferred workflows. Using this information, it is possible
to measure, for example, changes in treatment adherence by using individualized
process mining conformance algorithms or even detect behaviour changes due to
psychological illness [11]. Moreover, comparing patient’s individual behaviour and
response with other patients’ flow, lets us find similar patients or patients who have
a similar response to a specific treatment. Analysis of the effectiveness of treatments
and recommendations on similar patient, can be valuable information to decide the
best treatments to future patients.

With this information, as well as the knowledge about it, the health care
stakeholders can modify the protocol or care processes to follow. As the protocols
are formally described, it is possible to automate the cares using computerized
systems as workflow engines [14]. Furthermore, since the execution of lifestyle
and care protocols can be computerized, the digital data collection is easier,
improving the formal evidence iteratively and progressively. This methodology
allows professionals to infer initial formal processes from the available data. This
facilitates the configuration of the system from scratch, allowing to discover and
formalize the real processes that occur in reality, to optimize and correct them in
an iterative way, without the necessity to manually create formal care protocols.
Besides, this methodology is self-adapted to the population in which it is applied.
Thanks to the acquired evidence and the current knowledge of the experts, in each
iteration, the system improves the care protocols and, finally, the quality of life of
the patients. By avoiding the black box concept in the pattern recognition paradigm,
physicians can correct the protocols in each iteration, preventing critical errors due
to automatic learning errors and extracting evidence from the results presented by
intelligent algorithms.

7.4 Discussion and Conclusions

The presented methodology proposes a model for the continuous integration of
human knowledge and the common sense of experts with the learning power of
Pattern Recognition frameworks. This represents a new alternative to support the
application of Evidence-Based Medicine in real combination with daily practice of
physicians, formal and informal caregivers as well as the proper patient, providing a
holistic system of care to improve their quality of life. In addition, thanks to the use
of Process Mining technologies to provide formal evidence protocols as workflows,
direct deployment of care and continuously learned recommendations is possible.
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Fig. 7.5 Interactive process mining flow

These protocols can be automated over the emerging cloud of personal devices,
anytime and everywhere thanks to computerized systems.

To meet this challenge, it is crucial to engage clinical experts, who demand
solutions to real problems in daily practice. For that, to build real solutions, it is
necessary to advance in new methodologies that involve the medical expert and can
be incorporated in the workflow of medical professionals.

Applying Interactive Process Mining Solutions has some advantages over Classi-
cal Machine Learning. Figure 7.5 shows how Interactive Process Mining paradigm
can be applied analogously to Fig. 7.2. The human person can provide a question
to the system that is evaluated with the human in the loop, taking advantage of
the human-understandable Process Mining techniques. While this model training is
performed, the human being has access to the information provided by the system
and this can inspire him/her to have new ideas or questions that may indicate
new lines of research. This supposes that Interactive Process Mining not only
provides answers to questions but can also empower medical doctors in a deeper
understanding of medical processes leading to new questions that provide new
knowledge. After training the model, the resultant one is human-understandable
and provides a view of the clinical process that allows conclusions to be drawn.
And when a new element enters with some noise, like an apple with a worm, the
expert can not only detect the apple but also see and quantify the noise (the worm).

Table 7.1 summarizes the advantages of the application of Interactive Process
Mining in several health fields. Interactive Process Mining brings the expert into
the middle of the learning process making it more effective. This allows experts
to become involved in the findings achieved by the global system, minimizing
the rejection of findings due to the black box effect. In addition to that, since all
the processes are continuously moderated by a human expert, and the learned and
automated protocols can be corrected by them at any time, the system is potentially
free from learning errors. This provides continuous monitoring and traceability of
the process for healthcare professionals and caregivers, increasing confidence in the
improved protocols.
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Table 7.1 Advantages of interactive process mining

Field Advantages of the use of interactive process mining

Value based healthcare Support the measurement of the chain of value in clinical protocols

Evidence-based medicine Incorporates the expert in the middle of the process of generating
knowledge

Support the definition of formal evidence for easier use in daily
practice

Incorporates the running knowledge of health experts

Break the Black Box concept in statistical-based evidence

Precision medicine Allows individualized inference of the behaviour of the patient

Patient can be compared in different timelines to measure his/her
behavioural changes

Patients with a similar behaviour can be found to support the
treatment decisions (Patient Twins)

Integrated care It allows a direct matching of formal evidence with daily cares

The use of Formal Evidence (Workflows) makes the automation
and deployment of care protocols easier

The patient is holistically tracked and the physician has a complete
view of the status of the patient in each moment

Preventive medicine Learn formal best practices to be applied to population

Automated protocols can be widely deployed over healthy
population

Use all the information available for creating individualized
protocols and measure behavioural changes

In this way, this methodology can be used to apply Precision Medicine in a
more individualized and precise way, supporting the experts in the evolution of
care protocols in parallel to the continuous evolution of patient behaviour. Process
Mining technologies can build individualized behaviour models [11]. Thanks to
Process Mining conformance algorithms, these models can be compared to the
current status, detecting and highlighting differences in the patient behaviour at
any time. Experts can use these differences to detect psychological changes in the
early stages and deploy prevention protocols to avoid potential complications. This
human understanding of individualized protocols allows us to provide insight that
is difficult to obtain with databases queries or other different techniques.

Interactive Process Mining is an emerging paradigm that offers a broad range
of capabilities in the healthcare field. This framework promotes a data-driven
approach, like machine learning techniques, but offering a human-understandable
vision such as knowledge-driven techniques, combining the best parts of both
worlds. The next step is to provide appropriate tools and methodologies to help
professionals put this paradigm into practice.
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Chapter 8
Bringing Interactive Process Mining to
Health Professionals: Interactive Data
Rodeos

Carlos Fernandez-Llatas

8.1 Introduction

As we have argued in previous chapters, the application of new emerging computer
technologies is causing a major earthquake in the healthcare field, promising a new
era of digital health [31]. In past years, in the middle of a new fever of Artificial
Intelligence and Machine Learning, there is a growing interest in the application
of Process Mining techniques in the health domain [15, 34, 39]. However, this
domain has some barriers that must be overcome to provide usable tools and
methodologies [18].

In the world of digital health, there is a continuous change in methodologies,
treatments and protocols. The high variability of medical treatments, local ethics and
data protection laws, the suspicions of medical staff about the use of new emerging
technologies, among a large set of other variables, significantly affect the success of
the application of Information and Communication Technologies. This is because,
in health, the success of a technology application is due, not only to the quality
and new advances it provides, but also to the trust, use and acceptance that health
professionals profess for it [25].

The creation of an appropriate Process Mining methodology is crucial to achieve
good results. Some inspiring methodologies have appeared in the literature [44, 48]
providing a new framework for the application of Process Mining techniques in a
wide way in a large number of scenarios. In the case of health, due to the charac-
teristics of the field, the penetration of these techniques has more difficulties than
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in other fields. Because of this, new methodologies specifically designed for their
application in health are appearing in the literature. Most of these methodologies,
based on questions [40] or goals [14], are trying to involve the professional in the
learning process, in an interactive way [19], looking for a better understanding, trust
and user experience, which are crucial for the success of the application of a new
way of providing health.

Health is a very complex domain where the expert is the only recognized voice
to decide whether the results provided are adequate or not. Therefore, to create
a full interactive methodology it is essential to have a high commitment from
professionals. This commitment depends on the personal interest of health staff,
the added value that they expect to achieve with new technologies and the burden
that these methodologies cause in their daily practice. The main priority of health
professionals is to take care of their patients. In this line, physicians, who generally
have little time, are not interested in techniques that do not provide added value
to their main objective. Even in cases where Data Science can provide a clear
improvement over the current state of the art, if this value is not properly presented
to the expert, in an adequate time, or if the expert does not trust it, the probability
of rejection is very high. This is because, in the case of health, the most precious
resource that must be rationalized is the time dedicated by the health professional.
Process Mining practitioners must provide the quality of results in the same way
that the expert is expending time.

For that, in each iteration of the data analysis, especially in the firsts ones,
each contact with the health professional must be productive. These iterations must
follow a perfectly programmed strategy that requires special skills for the Data
Scientist who is in charge of extracting the knowledge from professionals and
providing the results that they are looking for. For example, in [40], Data Scientists
use questions to interact, while in [14], the strategy is based on the definition of
goals. However, in these methodologies, there is no analysis of what are the best
tools to solve specific situations in the case of health.

In this chapter, we analyze some available frameworks, techniques, and algo-
rithms in the process mining literature, to provide guidelines based on the multi-
disciplinary interaction of health professionals, with the intention being prepared to
offer the best process indicators in the most optimal way.

8.2 Interactive Process Mining Data Rodeos

The main objective of a Process Mining methodology is to provide solutions for
experts that help them understand how their processes behave. Thus, Process Mining
should provide tools and algorithms to empower experts with understandable
Process Indicators. An Indicator is an information that helps to understand or
measure the characteristics or intensity of one fact, or even to evaluate its evolution.
A Process Indicator is a Process representation that can be used as an indicator to
understand or measure the behaviour of a process. To create Process Indicators
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that support health professionals in their daily practice, it is necessary to have
data analysis interactions that transform raw data into understandable information.
We named each of these interactions Interactive Process Mining Data Rodeo (or
Data Rodeo, for simplicity). A Data Rodeo is a highly coupled multidisciplinary
interactive data analysis aimed at building process indicators that allow under-
standing, quantifying and qualifying processes and their changes in an objective,
comprehensive and exploratory way. Data Rodeos can range from a session of a
couple of hours to complete researches that can take up to one month. Analogously
to the concept of Sprint in the SCRUM development methodology [42], a Data
Rodeo must provide results in short periods that need to be validated iteratively, by
healthcare professionals.

8.2.1 Data Rodeo Sessions

The objective of a Data Rodeo session is to create Process Indicators that are
useful for experts to understand, evaluate and optimize their processes. For each
Data Rodeo session,the contribution of all stakeholders involved in the process is
required. In the medical domain, there are, mainly, three kinds of professionals
who have a role in the adequate implantation of digital health processes; Managers,
Clinicians, and Information Technology (IT) professionals.

• Contrary to what may be thought, most of the time, managers are one of the main
recipients of Process Mining systems applied in healthcare domains. Not only
because managers are usually the ones who make the decisions about the possible
deployment, or not, of new technologies, but also because they are the ones who
have a wider view of the general processes in a health centre. Managers want
tools that allow them to understand and control hospital processes. Managers can
use Process Mining tools to analyze the general administrative behaviour of the
hospital to gain insight into cross services, such as pharmacology or logistics, or
to analyze specific areas, and to optimize their Quality of Service [26].

• Clinicians are the main holders of medical information. They can also be
subdivided into two main groups, which are medical doctors by one side, and
nursing and auxiliary staff by another. On the one hand, medical doctors are
the ones who have the medical knowledge and evidence and have a broad
vision of how treatments should be deployed. Besides, medical doctors decide
on changing treatments. On the other hand, nursing and auxiliary staff are
the professionals in charge of the daily operational actions. From a process
perspective, constructing medical dashboards that do not reflect the knowledge,
requirements, and concerns of doctors, could result in panels that do not provide
useful medical information for professionals, and, consequently, reject their
use. Furthermore, creating medical indicators that do not take into account the
knowledge of nurses runs the risk of not reflecting the real operative that occurs
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in a hospital and, as a result, the information that reaches managers and clinicians
may be erroneous.

• IT professionals are the ones who control access to data. Most of the times, man-
agers and clinicians have a partial idea of how the data is stored in the Hospital
Information Systems (HIS), and its availability. For that, the involvement of IT
Professionals is crucial for real support in data extraction and having a realistic
scenario of how a process mining system can be integrated into the health centre.

In summary, to prepare an effective data analysis interaction in the healthcare
domain it is necessary to have the agreement and interaction of all the stakeholders
in the process. It is necessary that in the Data Rodeo session there be, at least one
representative from each group. Otherwise, the results of the Data Rodeo session
could fall on deaf ears.

As already stated, the objective of a Data Rodeo Session is to find process
indicators that support health professionals in the real understanding, measurement,
and assessment of the health processes that occur in clinical centres. By interactively
involving professionals in the creation loop these process indicators, the risk of
rejection and/or misuse of the provided tools can be significantly decreased. For the
method to be interactive, it is crucial to use models that medical doctors understand
[18, 36]. Otherwise, the feedback from health professionals will be erroneous,
reducing the usability of the systems, and increasing the risk of rejection by the
user.

These process indicators should be created to provide operational information
that can be checked against the HIS, thereby increasing professionals’ confidence
in the indicators provided. These indicators should allow the health professional to
have a real interaction with the system. They could navigate through the data having
a real understanding of the behaviour of their processes and patients. This should
cover from the general process to the individual patient analysis, detecting patients
who do not conform to the standard case and discovering where in the process there
are differences.

To achieve these process indicators, it is needed to provide the appropriate
measurement tools that can quantify in an objective, comprehensive and exploratory
way the health process as well as their changes.

8.2.2 Data Rodeos in an Interactive Process Methodology

Taking into account the life cycle of the implantation of new medical infrastructure,
and the necessity of making that interactive,it is possible to divide this deployment
into three main phases:

• Shakedown: This phase is the first contact of professionals with the method-
ology. In this phase, the main objective is to show to health professionals the
potential of using Process Mining in their area. In this phase, professionals may
have some suspicions and prejudices from previous experiences. Therefore, this
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phase is critical to building trust between health practitioners and data scientists.
This phase is usually very short and generally provides throw-away process
indicators that are used as the basis for the indicators that are generated in
subsequent iterative phases.

The most effective way to implement Data Rodeos in this phase is to create
short face-to-face Data Rodeo sessions with managers, clinicians, IT profes-
sionals, and the Process Mining Data Scientist (Interactive Process Miners). To
avoid Data Privacy issues, meetings can take place in the data environment, with
anonymous data being deleted from the system after each session. This session
should be performed by an experienced Health Interactive Process Miner who
could apply different Process Mining solutions to create specific indicators.

Each session must be especially time effective. Each meeting must finish with
a view of the data to demonstrate what process mining technologies can offer
them. In this phase the importance is not the accuracy of the content, so it is
possible to use tools that can reduce noise, working with ideal data. This is
because the focus is not to find medical evidence. The aim is to make health
professionals aware of the possibilities in the use of Process Mining techniques.
If this phase is successfully accomplished, the professionals’ expectations soar
and the next phase can be tackled.

• Research: After the shakedown phase a research project begins with the aim
of developing a Process Mining dashboard that supports health professionals.
In this phase, the main aim is to use all the process mining tools available to
create accurate Process Indicators that provide adequate ways to measure and
understand the processes and their changes. Assuming professionals are highly
interested, we can schedule offline multi-session Data Rodeos to apply a more
standard Process Mining methodology [44] that includes: understanding the real
process, analyzing what data is available to show in the process and its quality
(applying corrections if necessary); preparing the logs; and applying process
Mining discovery, conformance and enhancement techniques to achieve the best
process indicators for the problem at hand.

At this stage, we should request the approvals of the Ethical Committees in
accordance with the current laws depending on the country in which the system
is implemented. Then, depending on the possibilities of accessing to the data,
Interactive Process Miners can perform the Research actions using different
models:

– Secure Environments: In this model, Interactive Process Miners can access
the data environment. This access can be full or partial, depending on the
rights provided by the ethical committees. Interactive Process Miners can
access the data physically entering the health centre or accessing the system
through a Virtual Private Network (VPN) if this is possible according to the IT
system of the health centre. This model is usually in close collaboration with
units where a framework agreement is signed between the parts.

– Anonymous Data: In the case that the access to secure environments is
not available, it is possible to create Process Mining indicators by using
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Anonymous data. This model requires a pre-process that makes the data free
of personally identifiable information. The main disadvantage of this model is
that professionals cannot navigate to the individual level to better understand
the process of single patients.

– Simulations: Sometimes, when anonymizing the data is not possible, or even
while the ethical committees are in the evaluation process, it is possible to
start the research phase with simulated data. In this scenario, the data used
is fake, so there are no privacy laws to comply with. This model is useful
to test Process Mining methods before installing the tools in the hospital.
However, this data is not enough to extract any kind of conclusions. Even
if this data has been simulated based on statistical information of real data,
the relationship among the different measures, dates, doctors, etc. are lost.
Moreover, the models to simulate are always abstractions of reality, and for
that, the results can be significantly different from real data analysis.

The importance of this phase is not the efficiency of the techniques to be used.
The aim is to select the best algorithms to show the data in the best possible way.
For that, complex research algorithms that require high computation capabilities
are acceptable in this phase.

• Production: Once the research phase has finished, the next step is to put
in production the identified Process Indicators in production. In this phase, a
Process Mining dashboard should be deployed in the hospital that allows health
experts to analyze the indicators. The efficiency of algorithms is of critical
importance at this stage. The system response must be adequate to deliver the
results to experts on time.

The integration of the systems should now be complete. It can be direct,
connecting the system to the HIS or through an Integration Engine. It can
also be indirect, creating a specific Process Mining Data Warehouse that has
the logs specified appropriately. The direct way allows just-in-time mining to
permit a real-time vision of the process, on the contrary, the indirect version
should periodically update the middleware database used for Process Mining.
This version could be more efficient because a specific Process Mining Log-
based Data Warehouse can be composed in advance to improve access to the
data in terms of events.

Inspired in the well-known Hype Cycle Gartner Curve [29] the behavioural
process of implantation of a new Interactive Process Mining system in a health
centre can be represented. Figure 8.1 shows the curve of expectations depending
on the phases. The Shakedown phase is the first contact with the methodology
that increases the expectations of the expert in an exponential way. After the
first moment, the expert can enter a psychological stage of disappointment due to
the lack of quality data, the difficulties in accessing it, as well as the difference
between the perceived and the actual process. Before reaching user rejection, a new
Research Data rodeo can suppose a new impulse to the expectations of health
professionals. Repeating this process in several iterations allow us to achieve an
adequate set of process indicators in the Production phase that can perfectly cover
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Fig. 8.1 Phases in the application of a Interactive Process Mining Methodology

the expectations of the experts and provide the correct view to analyze, measure and
optimize their processes.

8.3 Interactive Data Tools for Data Rodeos

To perform adequate Data Rodeos, it is necessary to have adequate process mining
tools depending on the phase. Figure 8.2 shows the characteristics of the tools that
can be used in each of the phases.

Mature general Process Mining algorithms that are widely used in different areas
and fields, and can be used in all the phases of the stages. Examples of those tools are
General Process Discovery algorithms, like Inductive Miner [28], Heuristic Miner
[50], or PALIA [21], as well as filters, conformance and enhancement tools, that are
widely tested in different scenarios [15, 39, 44].

Quick research tools are those that are not mature enough to ensure their
accuracy, but can show views that can provide interesting clues about the processes
behaviour. Examples of those are techniques to make quick over-abstractions that
can easily show easily models with low noise, that might have accuracy problems
in some cases [45]. These tools can be used on Shakedown and in research phases.

General automated Views are complete views that have a demonstrated utility
in other scenarios and can be applied directly in some similar cases. For example,
Indicators that have been used to analyze emergency processes can be used in sub-
processes like Stroke in emergencies [26]. These views can be used in the Research
and Production Phases. Their use is not recommended in shakedown phases because
this automation usually requires a complete data cleaning that is not desirable in
quick Data Rodeos.
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Fig. 8.2 Tools used in Phases of a Process Mining system deployment

In Quick Data Rodeos in the Shakedown phase, Session Specific tools can usually
be created to quickly correct data, eliminate data quality issues that produce an
excess of spaghetti in the models, or remove outliers, among a vast amount of
different situations. These tools are usually created using quick scripts to prepare
the logs prior to the discovery. These algorithms can be discarded in the next stages
and changed for more detailed, mature and accurate data correction techniques.

Long Processing Research Tools that require a long processing time are not
usually suitable for daily practice due to their low usability. However, these
techniques can be used in research phases, e.g. to train classification systems, to
stratify some models, or even create trace clusters that show different behaviours in
a huge quantity of patients [11].

Finally, Domain Specific Views can be created for a better understanding of
processes in the production phase, for example specific colour maps can be created
to highlight precise situations that are only valid for a specific domain.

The selection of the tools to be used depends on the decisions of Interactive
Process Miners who manage Data Rodeos, according to the problems to solve at
each moment. Interactive Process Miners must build their own Data Rodeo Toolkit
depending on their experience and programming skills. There is a big set of tools
available on the literature, for Python Programmers [1], R [22], as well as complete
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Fig. 8.3 General Purpose Data Rodeo flow

suites to perform Data Rodeos, some are open-source, like ProM [47] or Apromore
[27] while there are other commercial ones such as Celonis1 and DISCO.2

Figure 8.3 shows the flow of a general-purpose Data Rodeo. The first stage is
the Process Mining Ingestion. At this stage, the data is extracted from the HIS and
a Process Mining log is created by collecting the available events. In the second
stage, called Log Filtering & Processing, the log is processed with the objective
of filtering, correcting, or grouping activities among others. This will produced
a refined Process Mining log that shows more adequately the process, according
to what the professional wants. Once the log is prepared, the process model is
inferred using Process Mining Discovery algorithms. In the third stage, after the
discovery, in the Model Processing stage the model can be enriched with more
data to construct a meta-model that contains not only nodes and edges but also
the statistical information about timings, frequency and the events referred to each
of the structures in the visual model. Finally, Process Enhancement & Conformance
stage, produces the final Process Indicators that highlight the specificities that health
experts needs to understand, measure and compare their clinical processes.

In the next subsections, each one of the stages is detailed.

1https://www.celonis.com/
2https://fluxicon.com/disco/

https://www.celonis.com/
https://fluxicon.com/disco/
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Fig. 8.4 Process Mining ingestion flow

8.3.1 Process Mining Ingestion

The ingestion process is in charge of providing the Datalog to start the Process
Mining flow. In the Process Mining flow, several stages can be identified that are
shown in Fig. 8.4. In a health IT system, the data is usually stored in a Hospital
Information System. In case that access to the raw databases is possible, and to build
Query languages to access the available data. In the case of informal data rodeos,
usually in the Shakedown phase, the experts generally provide the data in Comma-
Separated Values (CSV) files. In both cases, the data can be represented in a set of
rows and columns that represent the available data. Most Data Science tools use this
way of representing data, but in case of data sources available in other formats, it
is recommended to transform these data to facilitate its processing. Therefore, in an
Interactive Process Miner toolkit, it is highly recommended to have tools to manage
CSV Files or SQL Connections to facilitate data access.

Once raw data tables have been collected, it is time to start selecting the relevant
data for creating process indicators. The first action is the validation of the rows.
With the help of clinicians and IT professionals, the Interactive Process Miner can
select the adequate rows that will be processed in the next stages. In an example,
suppose that we are accessing a database with all the laboratory data (which can
be a large amount of data) that in each row has a different kind of value. To create
a process indicator for diabetes and be only interested in glycosylated values, we
can skip the rest of the data by ignoring all the rows that are not interesting. This
can be implemented through IF-THEN tools that allow Interactive Process Miners
to greatly reduce considerably the amount of data to process in the following stages.
In case of query sentences to access databases we can usually tune the queries to
avoid this data previously, but this option is not always possible (e.g. in CSV files),
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and this selection of data is easy to understand by physicians that can follow the
process of ingestion process more easily.

After reducing the data table to process, we need to convert the data to compute
the variables that are used to create the events and trace data that will be used on
the Process Mining log. The idea of this stage is to create new values, which are
not available on the working data but provide a semantic vision that facilitates the
understanding of the clinical process semantically. For example, Temporal Abstrac-
tions [20, 41] can provide a temporal semantic interpretation that can be inferred
from the data to provide a high-level view of the medical process that will facilitate
it understandability. Besides, the creation of discrete values from numerical data
[43] using the adequate medical standards that can provide a semantically health
professional understandable view. Also at this stage, format corrections (e.g. dates),
variable aggregations, variable renaming,. . . etc. are performed. The resulting table
is called Enhanced table.

Once the data is processed and the variables updated, the next stage is the creation
of events and trace data. The event data is made up of the timestamp information,
the node name, the identification of the trace, and some metadata associated with
the event. On the other hand, the trace data are a set of metadata associated with
the same case. Depending on the nature of the data, and the expectations of health
professionals three kinds of events can be created, Named events, whose name is
defined by the clinician according to the mapping of the process, Variable events,
whose name depends on the value of a computed (or not) value of one of the
variables existing in the Enhanced table, or Mixed events, which have a named
part and a variable part that is linked in the event name. For example, in case of
Emergency Rooms [26] the Admission event is named by the expert and represents
the moment when the patient entered in the system; in the case of the discharge
it is interesting to split it in different nodes depending on the destination (Home,
Exitus, Transfer. . . ); and in the case of Attention, health professionals prefer to
have separated nodes depending on the level of triage (Attention1, Attention2. . . ).
Figure 8.5 shows a process model with the three types of events in the example.

Depending on where the data needed to create the events is, the actions to be
performed can be divided into two groups:

• One Row – One or multiple Events: All the information to create one or more
events is located in each one of the rows. This schema allows efficient creation
of the events. Processing of all the table is not required to create the events and
each row and event can be deleted from memory after being processed.

• Multiple Rows – One or multiple Events: The information to create events is
not in one row and it’s needed to process several rows to create each event. For
example, the name and the start date are in different rows. This schema requires
full processing of the rows, before creating each event. This supposes to keep in
memory rows and events to create the log. This can be a problem when working
with a big quantity of data. It is possible to save memory by creating mechanisms
to update the events in the log with each row, but that usually affects directly to
the computation time.



130 C. Fernandez-Llatas

Fig. 8.5 Process indicator for emergency rooms

Also at this stage, data quality is evaluated and the interactive data cleaning
process is performed [35]. By analyzing the obtained results, Interactive Process
Miner can detect, in combination with the IT professionals and clinicians, what the
data problems are and what the possible solutions are. All the quality issues should
be reflected in the Ingestion Report (errors in dates, incomplete logs,. . . ). This is
a document that shows all the corrections performed over the rows to construct
the final log, ingestion stats and relevant information. This document is crucial to
show the health and IT experts the possible limitations of the Process Indicators
that can be constructed with this log. Not only the base quality of the data can be
shown but also the report can be used as the starting document to detect problems
in the IT system of the hospital that can be corrected interactively. For Interactive
Process Miners, it will be recommendable that this report is automatically or semi-
automatically created by their toolkit after the application of each one of the
correction algorithms.

In a Shakedown phase it is suitable to use rude data denoising tools to limit
spaghetti effect [18]. For example, removing all the infrequent data [7] or all the
traces that do not conform to a given model [4]. In Research and Production phases,
there is time to analyze the data quality and perform the adequate corrections
to create a clean log, using the knowledge given by health and IT professionals
iteratively and interactively. In that way, it is recommended to create specific filters
for production or to even correct the data in the HIS source logs if possible.

Once a clean log has been created, it can be merged with already existing Process
Mining logs to create a Process Mining Data Warehouse to create a more efficient
way of applying Process Mining techniques to create Process Indicators for the
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production phase. This process can be automated using Extract, Transform and Load
(ETL) systems that can incrementally create these Data Warehouses.

8.3.2 Log Filtering and Processing

After creating the log, the next stage filters and processes the data to select the
adequate log to construct the process indicators.

One of the most common tools that can be used in this phase is stratification
filters, which are tools that extract sub-logs from the main log, representing a sub-
population depending on a specific characteristic. For example, filters to select
patients based on their age, gender, or specific illnesses. These filters can be devel-
oped using algorithms that process the log and select only the patients (traces) that
have the specified characteristics. The trace variable could be discrete, where only a
set of possibilities is valid. For example, gender can be male or female; or numeric,
for example, age. In this case, in the filter, the maximum and minimum value should
be specified. Furthermore, using the adequate discretizers in the ingestion phase,
numerical values can be converted into semantically understandable terms based on
medical algorithms existing in the literature [43]. The use of these medical terms
facilitates the understanding of the medical experts, making the interaction with
them easier.

Doctors might explore new ideas to stratify patients. Sometimes, looking to
facilitate the understanding of the process due to excess of Spaghetti Effect [18],
or trying to discover a new stratification based on different behaviours of patients
[6]. Clustering techniques [12] are classic pattern recognition techniques that allow
creating partitions of the log based on the similarity of its elements. One of the
main disadvantages that clustering techniques have in the field of pattern recognition
is the selection of the best distance and configuration to ensure the validity of
the partitions [24]. However, interactive methodologies have the advantage of
integrating an expert in the loop. Using the adequate distances, the expert can
interpret the partitions giving them a semantic sense that provides a very interesting
view to health professionals [19]. This technique, known as Trace clustering, has
been used several times in literature; to analyze the behaviour of cardiovascular
patients depending on its risk model [38], or analyzing the obesity dynamics to
create new risk models that can increase the medical knowledge [43], or analyzing
behaviours of different hospital circuits [33]. The selection of the adequate distance
is crucial to provide proper groups, there are classic distances available for general
sequential analysis [2], distances that take into account the topological similarity
between the models [6, 16] or distances that take not only into account the topology,
but also the metadata available (length of stay, frequency,..) to compute the distance
[11].

Besides, filters that split the log by dates, or daily times can be very useful to
detect the behaviour of the process over time.



132 C. Fernandez-Llatas

Moreover, not only filters can be applied in this phase, but also, processing
algorithms that can correct or simplify the log according to the information that
the expert is giving us. For example, algorithms that fuse sequential events that are
equivalent, that group or rename specific events, that assume that the completion
of one activity is the start of the next one, or other specific algorithms that are
semantically described by the expert, and provided support in the better definition
of the Process Mining log, thanks to interactive methodology.

8.3.3 Process Mining Discovery

Process Mining Discovery algorithms are the ones that, given a log, provide a model
that represents them. Discovery algorithms are the most common, representative and
differentiating technique of Process Mining paradigm.

There are several Discovery algorithms available in literature [15, 39, 44]. Also,
there are some works in literature dealing with Interactive Process Discovery
techniques. These techniques are thought to use experts’ feedback to increase the
effectiveness of Process Discovery algorithms [10]. While automatic Process Dis-
covery algorithms provide models using different statistical strategies, Interactive
Process Discovery algorithms take advantage of the know-how and common sense
of human experts for a better and quicker convergence [19]. Interactive Process
Discovery not only provides solutions to support humans in models corrections but
also provide conformance checking algorithms for the measurement of the accuracy
of the human modifications suggestions [9] and Model Repair solutions that support
the experts by suggesting modifications in the models to achieve more accurate
ones. [5, 8]. Also, there are discovery algorithms specifically designed to try to
cover special features of medical models, where the results of the activities can be a
reason for the selection of the next event. For example, after a diagnosis test activity,
depending on the result of the test, there is a selection of the adequate treatment.
Activity-Based Process discovery algorithms, like PALIA [21], enrich the logs with
the results of the activities to tag the edges with the reason for the transitions.

In the interactive methodology, the selection of one adequate model is crucial
to collect human expert feedback. In case of health, physicians have difficulties
to understand complex models [36]. The use of these models, not only have
important limitations in the use of process indicators but also, by using interactive
process discovery techniques, it is necessary a translation from the model to the
expert language that should be performed by the Interactive Process Miner. In
this translation, some important information can be lost and the feedback could
be erroneous. In that way, it is recommended to use field understandable models,
assuming some loss of expressivity, instead of complex models that can cause
erroneous feedback and rejection from the user.
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8.3.4 Model Processing

After the discovery process, the models that represent the logs can be processed to
compute the metadata associated with the model. To create useful solutions, models
should be beyond topological processes where only nodes and edges are being
taken into account. Two processes can have the same events, but their timing and
frequency can be different. The analysis of those differences, can support medical
doctors in the understanding of the dynamical characteristics of the process and,
then, allowing them to optimize the processes. In this line, metadata associated with
the process is key to assess experts in the dissimilitudes among processes. In an
Interactive Process Miner toolkit, algorithms should be available to process models
to compute common and specific metadata and associate it to models.

Three kinds of metadata associated with models can be defined.

• Computing Nodes and Edges Metadata: Statistical information associated with
model structures is crucial to understand how the executions of models have
been performed. Statistics like frequency, average or median duration, unique
number of patients, . . . provide vital information to understand the behaviour
of the process. Also, it is possible to compute specific statistics depending on
the problem. For example, in [26] a new variable is computed measuring the
adequacy of the waiting states in emergency rooms according to the Manchester
gold standard.

Besides, it is possible to add semantic information associated with model
structures to increase the interactivity of the models. For example, identifying
semantic task structures [23], or Workflow Patterns [46] can facilitate the
understanding of the models not only for their syntactical behaviour but also,
for the semantics associated with nodes.

• Computing Model Abstractions Sometimes, the simplification of the mod-
els can be a good option to provide quick views. Usually, Process Mining
applications offer simplifications of models via removing infrequent behaviour.
Although this can be an adequate solution in some cases, these techniques should
be managed with care and guarantee the correctness of the information presented,
because otherwise it could create some confusion in the expert [45]. In the case of
clinical data, infrequent behaviours sometimes are more interesting than standard
cases. While standard cases are covered by standard treatments, infrequent cases
are the ones that doctors consider of interest. Adverse effects are one of the most
interesting cases in several clinical domains [30]. For that, before applying these
abstraction techniques, an Interactive Process Miner should ensure that confusion
is not created in the health professionals. Another option to simplify models
is, instead of removing infrequent behaviour, to group nodes hierarchically to
present the model with the required granularity in each case. Guided by the
expert, the whole process can be divided into sub-processes, making the model
more readable.

• Event References: Nodes and edges represent actions and transitions that have
been produced. Storing the relationship between topological structures of the
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model with the log events allows the complete navigation from the process to
the individual. This enables medical doctors to analyze all the events associated
to a specific structure. That, for example, permits the evaluation of the specific
patients that follow a specific path, or allows the computing of specific statistics
such as statistical significance when comparing two models [26]. Supporting
the navigation from the model to the individual, has a positive effect on the
understandability of the model and the trust of the professional in the tool.
Sometimes, medical doctors have problems to understand some transitions to
actions that might have no sense in the model, due to process inefficiencies or
data quality issues. In these cases, analyzing the events associated with strange
edges allows the understanding of the unexpected behaviour. However, keeping
the event references associated with the model can suppose a high computing and
memory cost that, is some cases, cannot be viable.

8.3.5 Model Enhancement

Once the model has been discovered, and their metadata computed, it is the moment
to present the result to experts. In the Interactive Paradigm, having the expert in the
loop requires a complete communication between the expert and the data science
algorithms [19]. So far we have analyzed tools to access, collect and process the
data. However, the success of an interactive system lies not only in its capability
to extract information but also in the way it is presented to the human expert. In
that way, although very relevant information is extracted, if the Interactive Process
Miner fails in the selection of visual tools for the adequate presentation of data,
the experts will probably not understand the final result and, as a consequence, the
complete model will be useless.

The Model Enhancement phase is the last one and its result is the Process
Indicator that will be presented to the user. The tools used by Interactive Process
Miners should provide very expressive and flexible solutions to show enhanced
models in different ways. In the Process Mining literature, there are a huge quantity
of works that create useful process indicators by using enhancement models. These
provide an augmented model view where the model is presented highlighted with
the available metadata information. The selection of highlighting tools depends on
the characteristics of the process to be presented.

One of the most used techniques in the literature to show statistical data in
the model is the creation of maps that reflect some characteristics in the model
like the colour [17, 26, 32], size [37], tags or transparency of nodes and edges.
Figure 8.6 shows an example where the nodes have been coloured with a gradient
that represents the median length of stay, and gradient for arcs represents the number
of patients that, proportionally, follow this transition. In this example, the redder the
colour, the greater the proportion. Also, tooltips can be used to show the whole stats
offering detailed information to the user, that can easily detect the most common
paths and in what activities the patient stay more time than in others. Other solutions
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Fig. 8.6 Process Inferred using a Process Mining Discovery algorithm and Enhanced with
gradient colors representing stats

can tag the transitions with the number of patients or the average time of the
transition [45].

Furthermore, it is interesting to combine process information with business
intelligence statistics that can be obtained from the cohort of patients selected
to infer the Process Indicator. Creating Dashboards combining both informations
can provide a richer view for the health professional. There are a huge quantity
of process analytic views that can show medical processes [13, 33] and business
intelligence systems applied to healthcare [3, 49]. Besides, it numerical information
can be used in Process analytic tools to create abstractions that can show models as
single points in a graph that can be presented as a point in a two-dimension graph
[33], as a curve representing the change in time [16] or as an enhanced calendar to
show different kinds of behaviours depending on the period in the year [11].

The comparison of groups can help health professionals to discover their
differences and this can allow them to understand groups characteristics. In
medicine, a classic trust measure to discover differences between two cohorts
of patients is Statistical Significance. This technique can be used to highlight
the differences between the two models referring to two cohorts. This approach
can not only discover when a process is different but also in which parts of the
models the differences lie [26]. Also, we can simply subtract the values showing
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Fig. 8.7 Difference enhancement model

maps that highlight the differences between the process nodes and edges and their
degree. Figure 8.7 shows a Process Indicator with enhancement showing negative
differences in red colour and the positive ones in green colour. The saturation of the
colour reflects the degree of difference in negative or positive respectively.

Moreover, the model can be enriched with figures that ease the understanding
of the map. Figure 8.8 shows an example of a Real-Time Location System Process
Indicator that uses a map of the building for a better understanding of movement
behaviour of a patient at home.

There are more options in the literature to enrich the models, like showing the
cases associated with nodes and edges [26], or displaying the traces as relational
Social networks [33].

8.4 Conclusions

Process Mining has a high quantity of algorithms and tools that can be used to
provide Process Indicators that can support Health professionals in understanding
clinical processes. Interactive Process Miners should analyze the process and select
the best algorithms in each phase to provide the best Process Indicators that
maximize the Medical Professionals’ understanding of the process.
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Fig. 8.8 Process with maps methaphors

This formalization of processes allows the creation of tools for Data Rodeos
that facilitates the process of learning interactively. The selection of enhancement
models is as important as the algorithms used to extract the information. In this case,
it is very important not only to select the best algorithms and enhancement tools but
also to select the best possible models, with the adequate meta-model information,
and choose the adequate cohort after ingestion that deals with the data quality in the
best possible way.

The final result are Process Indicators that can show the actual behaviour of
the process. However, the creation of Process indicators should take into account
the previous experts’ knowledge about the medical process, comparing it with
existing medical evidence, algorithms and gold standards. This allows comparing
the behaviour of the actual process with the ideal one.
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Chapter 9
Interactive Process Mining in Practice:
Interactive Process Indicators

Carlos Fernandez-Llatas

9.1 Approaching the Process Assessment to Health
Professionals

In the previous chapter, we analyzed algorithms and tools that can be used in
Data Rodeos for constructing Process Indicators. With the objective of supporting
Medical professionals, we should also provide dashboards that present the best
indicators to understand, measure and optimize the processes.

In current systems, the analysis and evaluation of processes are usually addressed
using numerical indicators that represent the status of the process in a moment in
time. These are known as Key Performance Indicators (KPI) [16] and are compared
with previously defined values that represent the expected value in the execution of
the processes. These KPIs should be defined before the start of the processes and
are directly related to specific goals required to measure the success of a specific
process. This success indicator can be related to different concepts to be evaluated
such as finance, quality of service (QoS), efficiency, efficacy, adherence. . . among
others. Adequate KPIs should be Specific, Measurable, Achievable, Relevant and
Timely (SMART).

Thinking about Perceptual Computing, the application of KPIs is not always
easy. The lack of contextual information, the difference between the perceived
and the real processes, the indeterminacy of human behaviour make the use of
KPIs insufficient to provide an adequate vision to experts. They are still more
inadequate in processes such as ergonomics, which involve human beliefs, mood
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and attitudes. Sometimes, KPIs are approached by using subjective questionnaires
due to the difficulty of having objective measures that represent the correct execution
of interventions of ergonomists. Also, the reasoning behind KPIs is not always easily
interpretable by humans.

To implement KPIs that can provide a contextual and personalized view, to
support the evaluation of perceptual questions and supporting ergonomist in the real
understanding of the process, it is necessary to bring a new KPIs framework that, on
the one hand, provides more rich and human-understandable indicators and, on the
other hand, can be automatically formalized and learned. In this chapter, we propose
Interactive Process Indicators (IPIs) as the way to overcome the limitations of KPIs.

9.2 Interactive Process Indicators (IPIs)

Interactive Process Indicators (IPIs) are Process Indicators produced as a result of
the application of the interactive paradigm with professionals. IPIs not only provide
a way to understand, measure, and optimize the process but also allow the expert to
navigate behind the model discovering the features and specificities of the process.

This means IPIs use the benefits of the Interactive framework to create process-
based indicators that provide human-readable and contextualized KPIs. IPIs can
be created using Process Mining technologies via Interactive Data Rodeos. The
capabilities of Interactive Process Mining technologies can support not only the
characterization of general process-based KPIs, which show how the process is
executed in an organization, but also the analysis of individual and personalized
aspects of the processes going to the general to the individual. IPIs are not numbers
but advanced views in the form of enhanced processes that provide a human-
understandable view that supports the expert in the better perception of the processes
for an advanced assessment.

To support the evaluation of processes in a predictive, contextual and person-
alized way, IPIs take time into account. For example, using IPIs to compare the
evolution of the processes, it is possible to evaluate the degree of completion of the
objectives. Furthermore, this evolution should be processed to convert the acquired
data into formal knowledge. In this way we propose the following hierarchy of
IPIs:

• IPIs take the raw information acquired as log events (e. g. from the Internet of
Things systems) and provide an enhanced Process view that supports a better
understanding of the current status of the worker. For example, by applying
Process Mining Technologies a view of the flow of a surgery area can be provided
[6], or to discover the usual behaviour of a human [10].

• IPIs Evolution. These are IPIs that make a timely or stratification comparison
between two IPIs to support experts in the understanding of the produced
changes. In that case, flows can be produced that highlight the changes by
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Fig. 9.1 IPIs hierarchy

comparing different stratification of patients or measuring the changes produced
on the process after an organizational change [12].

• IPI Abstractions. These are IPIs aimed to provide a high semantic view of the
findings to support experts in the easy analysis of the general findings. They can
be numbers describing an objective measure acquired from the flows that can be
represented by graphics [5], or even semantic sentences like The user is adherent
to the treatment. The IPI Abstractions are computations performed over other
IPIs that summarize the achieved findings. In that way, it is always possible to
access the origin of the results in a human-understandable way. So, if an expert
has doubts about an IPIs Abstraction he/she can access the IPIs that have been
used for this reasoning and discover the reality behind these results.

Figure 9.1 shows how experts can use IPIs to apply interactive methodology [8]
in their daily practice. The expert can create IPIs in iterative Data Rodeos creating
IPI definitions that can be computed with the data available in the system. IPIs offer
a view of the status of the current processes.

When the expert wants to make a change in the process in order to improve it, the
effects of these changes affect the data collected and, after computing the IPI, they
can show the effects of this change in the process. Furthermore, the evolution of
the process can be compared, highlighting the differences between the processes in
time, to measure the value chain of the performed actuation. Having this evolution in
time, models can compute abstraction and be shown as process analytics views (for
example, histograms or curves) that can display the evolution in time of the process.
The expert should be able to interact with these Process Analytic views to access
the processes that are behind these abstractions and from the processes, the expert
should be able to access to individuals. This interaction capability from general to
individual is called Full Crawling. Full Crawling allows experts to navigate models,
allowing them to discover the reasons for the differences among processes.

The Data Rodeos performed in different iterations will produce rich IPIs that
could provide a contextual and personalized view. This enables the evaluation of
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perceptual questions and supports professionals to understand the real process.
Besides, by comparing the evolution of the processes, it is possible to evaluate
the degree of completion of the objectives. Moreover, this evolution should be
processed to convert the data acquired into formal knowledge. This procedure
will be iterative and interactive over time. Professionals will keep the person’s
progression monitored iteratively and interact with the system making adjustments
to maximize the value chain obtained by the patient.

9.3 Measuring the Value Chain

The Interactive Process Indicator is a view of the behaviour of the patients in the
health system. To use this indicator in the Value-Based Healthcare paradigm [17], it
should supply information about the different aspects that give benefits to the patient
in the value chain. According to the Triple Aim paradigm, [2] three main aspects can
be used to measure the value in a medical process:

• Population Health: Since ancient times, when the concept of medicine was born,
the main interest of physicians was to keep the population healthy. According
to the definition of the World Health Organization (WHO), Health is a state
of complete physical, mental and social well-being and not merely the absence
of disease or infirmity [14]. In this line, all the efforts in medicine would be
intended to provide health to citizens, in all the aspects of their life. The objective
measurement of healthy population has been one of the most challenging
research activities of the medical community. The definition and computation of
basic statistical medical variables, like prevalence and incidence, of the diseases,
using bio-statistics [15], the development of the epidemiology research field [18],
as well as the creation of risk models [3], are examples of attempts to model
patients’ health status.

• Economical Cost: Although the main interest in healthcare is to provide better
health to patients, this is not always possible due to the lack of resources. The
most classical way to measure the value in the medical process is to measure
the economical costs of the process. The continuous population increase and the
appearance of chronic illnesses associated with age, require the reduction of the
general budget of the health service to make it sustainable. For that, it is crucial
to optimize the health protocols, in order to provide the best results using as few
resources as possible.

• Patient Experience: The traditional medical focus, intended to provide better
health to patients, usually ignores the person behind the patient [11]. In this
paradigm, the patient has no decisions about his/her health, in this approach the
relationship between doctors and patients follows a paternalist model. In the last
decades, a new vision of the patient as the main responsible of his/her disease
has changed the concept of medicine to a patient-centred one [4]. The idea of
patient-centred medicine takes into account the concerns, beliefs and attitudes
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of the patient to select the best treatment. The personality of the patient has a
big impact on patient health. An adequate adherence of the patient is crucial
to improve the patient’s health [13]. Besides, it promotes self-care as well as
self-efficacy [1] to empower patients in the prevention and management of their
illnesses. It not only supposes a more direct and better experience for the patient
but also will imply an increase in the sustainability of health systems due to the
better control of the patients [19].

9.4 Interactive Process Indicators by Example

In this chapter, we have designed an example with the objective of showing how
to use IPIs in practice. As already stated in many occasions along the book, each
medical problem requires specific solutions. However, going too deep into specific
solutions can make it more difficult to understand the general purposes of IPIs. This
example is based on simulations. In the third part of the book, we analyze specific
cases and how Interactive Process Indicators work in real situations. However, in
this chapter, we have designed a purely academic example whose objective is far
from extracting medical conclusions.

For this example, we have designed a hypothetical disease where stabilization
time is critical, not only for the survival of the patient but also for the posterior
rehabilitation of the patient. In this case, the more time the patient is not stabilized,
the more probabilities there are for the decease of the patient. In the same way, if the
patient survives, the time to stabilization affects the time of rehabilitation and even
death of the patient during the rehabilitation phase. If the patient survives for more
than 9 months it is assumed that the patient is out of danger.

For the simulation, we have used an Ambient Assisted Living Simulation
system [9] specifically designed to simulate complex situations to evaluate human
behaviour. These simulations have been designed to illustrate how Process Mining
technologies can show the value chain effects of the specific actions deployed by
professionals.

The simulated disease has a different behaviour in different patients. The
objective is to have a very complex illness with wide variability. Figure 9.2 shows a
graphical representation of the problem. Using this distribution, we have simulated
the behaviour of patients in the hospital. Patients should be stabilized in less than
a predetermined time following a Gaussian distribution (Mean: 10 h, Standard
Deviation: 5 h). If the patient is not stabilized during this time (TimeToDeath), the
patient dies. No patient can die in less than 1 h, and if the patient has more than 24 h
of TimeToDeath it’s supposed that the patient is stabilized and always recovers, even
if the stabilization occurred very late. The time of stabilization affects directly to the
mortality of patients in the rehabilitation process. Patients with late stabilization
have more probabilities of death on the rehabilitation stage. On the other hand,
patients with quick stabilization have more probabilities to reach discharge without
the need for a rehabilitation process (Fig. 9.3).
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Fig. 9.2 Gaussian representing the behavior of the simulated illness

Fig. 9.3 Effects on stabilization of the disease

9.4.1 Analyzing the Hospital Process

In our example, this disease is treated in the health system as a common critical
illness. This means that the patients follow the usual paths as general patients in a
sanitary centre. Using the simulation system, we have reproduced how a usual health
system covers this problem. In this line, we have assumed that the health system is
digitized, and all the events can be recovered from the hospital Electronic Health
Record (EHR). Besides, we have considered an ideal system, where the data quality
errors are negligible.

Figure 9.4 shows the graphical representation of the process. After having the
initial symptoms, the patient has three different possibilities to access the health
system. He/she can call an ambulance to go to the hospital, can go to a primary
care center or, can even decide to go to the hospital by his/her own (Walking). If
the patient selects the Primary Care way, Primary practitioners detect the anomalies
in the patient status and can recommend to the patient to go to the hospital. The
variability of care or even the difference of experience of primary care doctors
supposes that the recommendation of professionals might be the derivation to
hospital emergencies, by his/her own means or, if the practitioner has suspicions,
he/she can call an ambulance.
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Fig. 9.4 Hospital Protocol to cover the illness

Once the patient enters the emergency system, the professionals diagnose the
illness and stabilize the patient. The patient can die (Exitus) at any moment in the
process according to the model presented in Fig. 9.2. Once the patient has been
stabilized, there is not an immediate risk of death for the patient. After being
stabilized, the patient is moved to a bed in the hospital. When the patient is ready
to leave the hospital the rehabilitation protocol begins. The rehabilitation lasts a
maximum of nine months separated into three stages. At the end of each stage,
the patient is evaluated and the rehabilitation doctor decides if the patient should
continue the rehabilitation or not. Also, as a consequence of the co-morbidities
acquired by the patient due to the effect of the disease, the patient might die during
the rehabilitation stages. The co-morbidities of the patient are directly related to the
stabilization time. The later the patient is stabilized, the higher the probability of
his/her decease. On the other hand, the earlier he/she is stabilized, the less probable
it is that the patient needs a new stage of rehabilitation.

Table 9.1 presents the base probabilities and timing (average and standard devia-
tion) of the activities that we selected for the simulation. After the initial symptoms,
Walking action has a probability of 0.3, Ambulance 0.5 and PrimaryCare 0.2.
Besides, the selection of Primary Care requires some administrative actions (getting
a pre-appointment) that suppose a delay of 1 Day (with 2 h 30 min of Standard
Deviation) in the treatment. After PrimaryCare action, the patient is derived to the
hospital Emergency by an Ambulance or by Walking with the same probability,
depending on the criteria of the physician. After the patient has been stabilized in
Emergency, he/she is admitted to the hospital. The HospitalAdmission action
takes 8 days (1 day of standard deviation). When the patient exits the hospital, the
appointment to the Rehab first visit takes 7 days (1 day of standard deviation). This
starts the rehabilitation process that can have a maximum of three blocks of sessions
of three months each.

These base probabilities are affected by the time of stabilization, i.e. the time
between the initial symptoms and the admission in the hospital and the t imetodeath

computed for each patient. If the patient overcomes the t imetodeath at any moment
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Table 9.1 Base timing (average and standard deviation) and flow probabilities of the simulated
experiment

Activity Activity duration Next action Probability Duration transition

Walking 0.3 –

Ambulance 0.5 –Initial symptoms –

PrimaryCare 0.2 1d(2:30)

Walking 0.5 –
PrimaryCare 0:30(0:10)

Ambulance 0.5 –

Walking 1:30(0:30) Emergency 1 –

Ambulance 0:20(0:10) Emergency 1 –

Emergency 1:30(0:30) HospitalAdmission 1 –

Hospital admission 8d(1d) Rehab 1 7d(1d)

Rehab 2:30(1:30) Rehab 3 months 1 90d(1d)

Rehab 3 months 1:30(0:30) Rehab 6 months 1 90d(1d)

Rehab 6 months 1:30(0:30) Discharge 1 90d(1d)

Discharge – –

before the stabilization, the patient dies and passes to Exitus status. After the
stabilization, if the patient is in the latestabilization area, he/she can die in
one of the three stabilization blocks depending on the difference between the
t imeof stabilization and the t imeof death. If this difference is bellowed the 5%,
10% 20%, or 30% the patient will die in the Hospital during the first, second or
third Rehab phases, respectively. On the contrary, if the difference is in the early
stabilization area and the difference is above 95%, 90% or 80% the patient will
be discharged in advance from the hospital, without the need of rehabilitation,
after the first or the second phase of rehabilitation, respectively. The third phase
of rehabilitation is the last possible one and ends on Exitus or Discharge.

9.4.2 Base Process

Using this information, we have simulated a log with the events of the process.
Figure 9.5 shows an Interactive Process Indicator that can represent the behaviour
of the process in the hospital. Gradient colours show how the patient is treated in
this health system. This IPI is the result of applying a Process Mining Discovery
algorithm. For this example, we have used PMApp and the PALIA [12] algorithm to
create the indicator. At first sight, the IPI on the Fig. 9.5 shows the current behaviour
of patients at a glance. Most patients go to the emergency department of the hospital
by ambulance (2171). About a third of the patients do not need rehabilitation(1502)
and the majority of the patients that start Rehabilitation (2278) finish the three stages
adequately (1320).

In our example, quantifying the health in case of a life-threatening illness,
some measures like the number of exitus (Deaths), of reduction of co-morbidities
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Fig. 9.5 Illness Interactive Process Indicator with Enhancement heat map

associated to the illness can be the main objective to cover to provide better health
to population. By having an abstraction IPI of the Exitus ratio, we can get an idea of
the mortality of the illness that is around 16% of the patients, that means that from
4320 patients, 3648 finish the treatment, while 672 die in the process. However,
Fig. 9.5 provides a richer view of the process. In that enhanced model, we can easily
see the status of the illness flow. Most of the patients follow the Discharge with
the three phases of rehabilitation.

To measure the costs in Process Mining problems, it is only required to provide
the cost associated with each one of the activities. This easily allows the computation
of each trace cost. Table 9.2 shows the cost associated with the activities in
our example. Some services have fixed costs like Ambulance or PrimaryCare,
while others have a variable cost depending on the time spent in the activity,
like Emergency and HospitalAdmission. This means that the start and the end
events of the activity are needed for a precise cost measurement. XES [20] allows
the incorporation of this information in the process of mining logs. Furthermore,
Activity-Based Logs [7] store enough information to deal with this problem. PALIA
is the discovery algorithm in this example. This has been selected because it is able
to natively use Activity-Based Logs.

Having this table in mind, we can construct an abstraction IPI that shows the
costs of the different patients according to the activities performed. In the example,
the total cost of all the 4320 patients was around 51M e(51181590.6).
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Table 9.2 Cost associated to
activities (in e)

Activity Cost

Ambulance 500

Primary care 300

Emergency 300 X hour

Hospital admission 500 X day

Rehabilitation phase 6000

Table 9.3 Cost Groups of
illness (in e)

Cost group Cost group number Cost group %

>15 K 1749 0,40

1–5 K 921 0,21

5–10 K 690 0,16

10–15 k 499 0,12

<1 K 461 0,11

Moreover, we can make groups depending on the costs. Table 9.3 shows the
distributions of patients based on the costs. 40% of the patients expend more than
15Ke in treatments. Figure 9.6 shows the flow of patients that have an individual
cost above 15Ke. As can be seen, the most critical cost path is the one that
represents the patients that require all the rehabilitation stages.

In our problem, patient experience is related to their expectatives and the contact
quality with the health system. In life-threatening diseases, patients want a diagnosis
as soon as possible, waiting as short as possible. Moreover, patients want to be
healthy as soon as possible with no secondary effects that affect their lifestyle,
having little rehabilitation time and with the fewer possible co-morbidities. Statistics
associated with IPI can show important information to evaluate the patient’s
experience. Table 9.4 shows the percentage of patients (33%) that require the
maximum rehabilitation sessions (9 months) and Table 9.5 shows that most of the
patients (68%) are stabilized in less than 4 h.

9.4.3 Adding a Special Unit

After the first round of analysis, the managers intend to improve the flow of more
expensive patients to decrease their cost. To do that, by analyzing the literature, the
managers discover that improving the quality of care in the hospital, they can reduce
the mortality and, therefore, the co-morbidities of patients. Those co-morbidities
affect the number of needed rehabilitation phases, and consequently, make each
patient treatment more expensive. In our example case, we suppose that the medical
evidence demonstrates that the creation of a new Special Unit reduces the mortality
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Fig. 9.6 Interactive Process Indicator of all the patients with a cost above 15Ke

Table 9.4 Rehabilitation
sessions need of patients

Rehab Rehab number Rehab %

No 2042 0,47

9 month 1420 0,33

3 month 528 0,12

6 month 330 0,08

Table 9.5 Stabilization time groups

Stabilization time Stabilization time number Stabilization time %

<4 h 2959 0,68

4–6 h 535 0,12

6–8 h 407 0,09

No stabilized 320 0,07

8–10 h 95 0,02

>10 h 4 0,00
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of patients by a 3% in the hospital and a 5%, a 10% and a 15% in each rehabilitation
phase. Also, these innovative treatments reduce the need of rehabilitation in a 5% in
the hospital and a 10% in each one of the rehabilitation phases. The cost of this new
unit is greater than a usual hospital admission (800e per day) as well as the average
length of stay in the unit (10 days with 2 days of standard deviation). Besides, the
treatment proposed by this unit is only adequate for 70% of the patients. 30% of the
patients, who have a specific type of this illness, should be treated as usual.

Having seen this, the hospital managers decide to deploy a new special unit to
treat the disease in a more specific way. With the deployment of this new unit,
the hospital expects to improve the population health by reducing the mortality;
reducing the economical costs by decreasing the number of patients that require the
maximum rehabilitation time; and increasing the patient satisfaction, by reducing
the rehabilitation time.

Updating the simulator configuration with this information, we have simulated a
new set of 4320 patients, the same number as in the first set. Figure 9.7 shows the
new results. The most important change that can be seen is the appearance of a new
node in the flow referring to the new SpecialUnit . As expected, the Special Unit
patients have a greater Length of Stay (LoS) than usual patients, and the number of
patients that are covered by this Unit is two thirds of the patients that are admitted

Fig. 9.7 Interactive Process Indicator after the deployment of the Special Unit
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Table 9.6 Rehabilitation
Phases patients after Special
Unit Deployment

Rehab Rehab number Rehab % Difference

No 2409 0,56 +367

9 month 1190 0,28 −230

3 month 403 0,09 +125

6 month 318 0,07 +12

Fig. 9.8 Difference base Evolution Interactive Process Indicator between the Process with and
without Special Unit

to the hospital. This can be seen by the colour gradient of the nodes and the colour
gradient of edges, respectively.

Table 9.6 shows the rehabilitation groups. As expected, the number of patients
that require the three phases of rehabilitation decreased (−5%), but the number of
patients that requires none, one or two phases have increased. That means the change
has adequately affected the rehabilitation needs.

Seeing this information as a process, Fig. 9.8 shows the number of patients
difference between the base case and the Special Unit case. As can be seen (by the
red colour gradient), all the rehab stages have decreased in the number of patients
because in all stages there are more patients with fewer co-morbidities. In the same
way, the normal hospital admission has dramatically reduced the number of patients
since most of them were covered by the new unit. Special Unit colour remains grey
because there is no previous information about this activity.
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Table 9.7 Cost Groups after Special unit deployment

Cost group Cost group number Cost group % Difference

>15 k 1611 0,37 −138

5–10 K 1226 0,28 +536

10–15 K 660 0,15 +161

<1 K 487 0,11 +26

1–5 K 336 0,08 −585

Fig. 9.9 Flows of cost groups. (a) Flow of patients with cost from 1–5Ke (b) Flow of patients
with cost from 5–10Ke

However, differently than the Hospital managers foresaw, the global economical
costs were increased. The Economical-Cost in this second round was around 56Me
(56342436,35e) (an increased Cost in more than 5Me). Table 9.7 shows the cost
changes depending on the groups. In the same line, although the number of patients
that have a global cost greater than 15Ke has significantly decreased, the rest of the
costs have increased, except the 1–5Ke.

Analyzing the costs in detail, Fig. 9.9 shows the flow of patients with costs from
1–5Ke (Fig. 9.9a) and 5–10Ke (Fig. 9.9b). As can be seen, patients in the first
group are the ones that stay less time in the hospital (that are the ones that decrease
the number of patients), and patients in the second group are the ones that stay more
time in the hospital (that are the ones that increase the number of patients). So,
although the number of patients that make the three phases has decreased, it seems
that the cost of maintenance of the special unit makes the total budget much more
expensive than expected.

From the Patient Experience perspective, globally, the rehabilitation in the three
phases has decreased a 5%. That supposes that patients have an increase in their
quality of life after the acute event. On the other hand, Table 9.8 shows the
differences in the Stabilization time with no significant changes.



9 Interactive Process Mining in Practice: Interactive Process Indicators 155

Table 9.8 Stabilization Time after Special Unit Deployment

Stabilization time Stabilization time number Stabilization time % Difference

<4 h 2921 0,68 +38

4–6 h 543 0,13 −8

6–8 h 415 0,10 −8

No stabilized 334 0,08 −14

8–10 h 104 0,02 −9

>10 h 3 0,00 1

Fig. 9.10 Exitus Influence map after Special Unit deployment

Analyzing the population health improvement, the increase in costs has no
significant changes on the patients’ survival. In this case, 85% of the patients
survived, which supposes a mere 1% increase in the survival rate.

At this moment, the hospital managers do not understand why the application
of this new unit does not have effects in the survival rate of the patients. In order
to get some clues, the Interactive Process Miners provide an Exitus influence map
(Fig. 9.10). This Exitus Influence Map is a problem specific map, designed in a Data
Rodeo, which shows the influence on the previous activities of deceased patients. In
that way, the colours in the map are related to the percentual number of deceased
patients that have visited the related activity. This Exitus Influence Map can be seen
as a Bayesian Network. This map is very useful to detect the statistical causality
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based on a temporal relationship between the decease of the patient and the rest of
the activities. This figure shows that most Exitus are related to the first activities after
the emergency visit. After seeing this influence map, Hospital Managers realize that
the key problem in the management of this disease is not at the hospitalization level.
Most Exitus are dependent on the decisions taken at the first hours after the initial
symptoms.

9.4.4 Creating an Information Campaign

Having analyzed the results of the last phase, the hospital managers prepare a
new plan to improve the process of disease care. The IPIs obtained show that
the mortality of patients is mostly related to the primary care process. It seems
that Primary care protocols are not adequate to take care of this disease properly.
Therefore, experts decide to start an information campaign to train patients and
primary care professionals in the diagnosis and early stabilization of patients. The
assumed cost of the Information Campaign is 1Me. Thanks to this campaign,
the citizens are more aware of the symptoms and the number of ambulance calls
increase from 50% to 80%. Also, Primary Care professionals are better prepared
and have the instruments to make the stabilization of the patients in 80% of the

Fig. 9.11 Interactive Process Indicator between the Process after the Information Campaign
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cases, allowing a quick derivation to emergencies. With these modifications in the
probabilities, we simulated a new set of data.

Figure 9.11 shows the new discovered IPI. With the new configuration, the
survival rate was increased until 94% (an increase of 9%). A quick visual com-
parison shows, as expected, that the flow of patients that call an ambulance has
clearly increased and the patients that are discharged in the special unit without
rehabilitation needs increase dramatically.

The global economic is now around 45Me (45730803,74e) (Saving more than
10Me). Table 9.9 shows the new cost groups compared with the previous one. The
number of High-Cost patients (>15Ke) decrease dramatically (801 patients) and
the medium-low cost patients (5–10 K) increased in the same way. It seems that the
decrease in rehabilitation patients is positively affecting the economical cost.

Analyzing the stabilization time (Table 9.10), the patients that have been
stabilized in less than 4 h have increased in a 21% (+876 patients), and the rest
of groups have all decreased. This decrement seems to be related to the number of
patients that comes in the ambulance and the improvement in primary care quick
stabilization.

According to the rehabilitation needs (Table 9.11), the number of patients that
needs some rehabilitation has decreased to 12% (−16%). The most important
change is that people who do not need rehabilitation increase an 18% (+753

Table 9.9 Cost Groups after Information Campaign

Cost group Cost group number Cost group % Difference

5–10 K 1976 0,46 +750

10–15 k 891 0,21 +231

>15 k 810 0,19 −801

1–5 K 437 0,10 +101

<1 K 206 0,05 −281

Table 9.10 Stabilization Time after Information Campaign

Stabilization time Stabilization time number Stabilization time % Difference

<4 h 3797 0,88 +876

4–6 h 250 0,06 −293

6–8 h 135 0,03 −280

No stabilized 118 0,03 −216

8–10 h 19 0,00 −85

>10 h 1 0,00 −2

Table 9.11 Rehabilitation
Phases Patients after
Information Campaign

Rehab Rehab number Rehab Difference

No 3162 0,73 +753

9 month 528 0,12 −662

3 month 429 0,10 +26

6 month 201 0,05 −117
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Fig. 9.12 Difference base Evolution Interactive Process Indicator after the Information Campaign

patients). This significant change seems to be due to the decrease of stabilization
time that ease off the risk of co-morbidities, abating the needs of rehabilitation.

All this information can be easily shown using a Difference Map. Figure 9.12
shows the Difference map after the Information Campaign. This map clearly shows
the differences in the evolution of the process after the improvement. There is a clear
increase of patients coming to emergencies by ambulance that obviously suppose a
decrease of patients going trough primary care by their own, showing the effects
of the Information Campaign both qualitatively and quantitatively. This supposes
an increment in the people that reach the Emergency Department that reach the
Emergency Department without dying. Because of this, the number of patients
that are treated in the hospital increase, but the patients that need rehabilitation
significantly decrease, with a very highlighted red colour. Therefore, there is less
mortality than in the previous stage.

Another interesting view can be the differences between the Exitus influence
map. Figure 9.13 shows this Evolution IPI. As can be seen, the influence to
mortality patient going to Primary care has decreased, as well as the presence in
the hospital. This means that people that reach the admission in the hospital have
less probability to die than in the previous scenario. However, it can be shown
that people that come by ambulance have increased their probability of Exitus,
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Fig. 9.13 Exitus Influence map Difference after Information Campaign

and more patients die in emergencies. If we see that as a complete process thanks
to IPIs, we can understand that the increase of effectiveness in the primary care
process has permitted that patients that have fewer probabilities to survive, that in
previous process configurations died on the way, can now reach the Emergency
Department, even in the case that stabilization was not possible. This is the cause of
the increase of mortality in the emergency. If we would have had these numbers as
individual KPIs we would have thought that there was a problem in the Emergency
Department, but IPIs can offer enriched and contextual information that can better
support the healthcare experts in their decisions, beyond simple numbers.

Each one of the IPIs can be abstracted to provide numbers that can provide a
high-level view of the main statistical results according to main goals. Figure 9.14
shows a possible basic dashboard with the most important values comparing the
three stages. According to the three main points in the Value Chain, we can infer
some general conclusions. The population health, related to mortality, has been
improved by increasing the survival rate in a 10%. The Economic Costs has been
decreased globally in 5Me. Regarding patient experience, the waiting time of
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Fig. 9.14 IPI abstractions dashboard

patients, as well as the number of co-morbidities related to the rehabilitation needed,
have been also decreased.

To enable a Full Crawling dashboard, the system should keep the relations
between the abstractions and the associated processes to allow navigation from the
Abstraction Dashboard to the IPIs and their evolution. This navigation is crucial to
support health experts in understanding the reasons for the changes produced in the
process over the different stages.

9.5 Conclusions

The use of IPIs to analyze the process in interactive iterations can offer a more
enriched views, and more adequate to understand how the process is deployed in real
scenarios. Experts can discover the processes based on the real one, and compare
it with clinical pathways that are available in the literature. Also, process can be
traced to provide performance indicators that can be used to measure the effects of
the improvement actions over the patient value chain.

Figure 9.15 shows the flow of different kinds of IPIs. In each iteration Data from
Hospital Information systems can be used to compute the base IPIs. Evolution IPIs
can be used to measure qualitatively and quantitatively the impact of the process
changes over time. It is also possible to provide high-level IPI abstractions that
show a quick view of the process. These IPI abstractions can be used to create
Process Analytic Dashboards, which can be combined with the other IPI views to
offer a complete and navigable process view. These combined views are crucial to
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Fig. 9.15 IPI flow

show the process globally, supporting experts in taking better decisions than those
based on numeric indicators.
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Chapter 10
Interactive Process Mining in
Emergencies

Gema Ibanez-Sanchez, Maria Angeles Celda, Jesus Mandingorra,
and Carlos Fernandez-Llatas

10.1 The Emergency Process

The Emergency Department(ED) is one of the most critical areas that exist in a
hospital. ED is usually formed by a set of professionals that offers multidisciplinary
assistance due to the high variability of patients that can be treated. This department
is normally located in a specific area that follows a set of functional, structural and
organizational requirements for guaranteeing the security, quality and efficiency of
care to Emergency patients. The patients that are suitable to be treated by these units
are those that have a sudden appearance of a health problem of diverse cause and
variable severity that requires the imminent attention of a health professional.

According to the severity, we can separate the patients that are treated in emer-
gency departments in three groups: Critical, Emergency, Urgent patients. Critical
patients are those that require immediate reanimation measures and advanced life
support, like, heart attack. Emergency patients are those that are in a life-threatening
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situation, like upper gastrointestinal bleeding, and require a short time attendance
for stabilizing the patient. Finally, urgent patients are those that are not in a life-
threatening situation, but requires the correction of the situation as soon as possible,
like for example acute pain patient.

Due to these differences in the process, the patient should follow a different
circuit depending on the complexity of their illness. Then, one of the most critical
processes occurring in the emergency process is triage. The triage is the first step
in the emergency process, in which the patient severity is evaluated, classified and
distributed to the most adequate circuit. There are some standards of triage [7] but,
usually, the triage process has 5 levels depending on the attention priority:

• Level 1 (A.K.A. Red) that are the circuit reserved for critical patients. These
patients usually skip the administrative phases of the process and receive the
immediate attention of all the required ED staff, that can stop all their current
activities to take care of the prioritized patient. Usually, these patients have
reserved a specific care area, usually called Reanimation area or Box Zero, with
the advanced equipment required for cardio-respiratory resuscitation and life
support.

• Level 2 (A.K.A. Orange) Are the emergency patients. These should be treated in
a short time, usually less than 10 min.

• Level 3 (A.K.A. Yellow) Are urgent patients. These should be treated in medium
time, usually less than 30 min.

• Level 4 (A.K.A. Green) Are the minor urgent patients. These should be treated
in a long time, usually less than 90 min.

• Level 5 (A.K.A. Blue) Are the non-urgent patients. According to some standards,
these patients can wait until 120 min before being treated.

After the triage process, the patient stays in the waiting room until a physician
takes care of their case. This instant is called First Attention. From this moment,
the patient is considered officially attended by the doctor. The patient stays in the
unit until the doctor considers that the problem of the patient is controlled and no
more immediate actions are needed in a short time, or, due to the severity of the
problem, the patient should be treated in a more specific unit. At this moment the
doctors Signs a Discharge document, and the patient, officially, is considered out of
the Emergency Department. The time elapsed from the entry of the patient in the
ED and the Discharge is called Length of Stay (LoS). Depending on the situation
the patient after the discharge, it can be admitted in the hospital for deeper care,
sent to home, or derived to primary care or Home Hospitalization Units (HHU). If
the severity of the patient is so high, producing the death of the patient, this fact is
usually called Exitus.

Although after the Discharge the patient is considered free of urgent measures,
it is possible that, in some hours, the patient can come back to the emergency
department due to an increase in the complexity of their health problem. In the
literature, usually, the return of patient in short-term is stated when is less than
72 h [17, 25], and in the long-term, in less than 30 days [27]. In these cases, the
emergency visits are considered part of the same episode of the patient, even if
the patient is admitted due to other different problem. These Returns are usually
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declared as adverse effects in the Emergency Department indicators. Also if, as a
consequence of a Return, the patient is finally admitted in the hospital, this fact is
called Readmission. The excessive Readmission rate of patients is considered an
adverse effect in the emergency.

10.2 An Interactive Process Indicator for Emergency
Departments

In emergencies, some Key Performance Indicators (KPI) have been used for
evaluating the performance of Emergency Departments [24]. Measures like, Returns
or Re-admissions in 72 h or 30 days, Length of Stay in the unit or Time of First
Attention are usual indicators that are used in Emergency Departments. These
numerical indicators can offer a way for measuring the process of key features
objectively. However, these numeric indicators do not offer a complete view of the
process of supporting experts in the evaluation of the value chain of the emergency
process.

Using Process Mining technologies we can produce indicators, not only for
providing a way for offering an evaluation of the Emergency Departments but also,
for showing the behaviour of the process more completely and understandably,
enabling doctors to better evaluate the differences among the processes.

In Fig. 10.1 we show a proposed Interactive Process Indicator (IPI) that uses
the existing data in a real hospital that we have tested for a specific disease [13].

Fig. 10.1 Interactive Process Indicator in Emergencies
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In this example, we have used a set of one year of data from the Emergency
Department of the Hospital General in Valencia (Spain). We have identified five
general stages in this IPI. Admission event, that is when the patient enters in the
Emergency Department. This time is determined by the hour of the first registry of
the episode of the patient in the Hospital Information System (HIS) at the hospital.
The Triage corresponds to the event that occurs when the patient is classified and
his/her seriousness is stated. The timing of this activity is determined for the start
and the end of the triage in the computer application used by the nurse for this
action. The Wait is the period since the triage of the patient until the first attention.
This action is divided depending on the seriousness. When a doctor is free can call a
patient in one of the priority queues, and the Attention activity starts. The action ends
with the Discharge of the patient. In the IPI we have separated the discharge of the
patient depending on the final destiny (Home, Hospitalization, Primary Care,. . . ). If
the patient returns in less time than the configured return limit (72 h or 30 days), the
emergency flow is repeated. In other cases, the episode ends.

In Fig. 10.1 we have shown the nodes with a gradient of colour representing
the medians of duration in each one of the stages, and the transitions with the
number of patients. This set of colours represents the footprint of the behaviour
of the Emergency Department of the hospital. This footprint is different depending
on the behaviour of the hospital, the current status, the number and seriousness of
the patients treated in the unit and all other the variables that affect the emergency
process in a specific hospital.

This IPI can be compared with others to evaluate the effects of different features
over the behaviour of the Emergency Department. In the next sections, some
examples of how Interactive Process Mining technologies can be used for analyzing
the most classical characteristics of Emergency Departments are shown. In our
study, we have analyzed all the patients of the Emergency Service of Hospital
General of Valencia during 2018. There are a total of 80,164 unique patients that
visit emergencies a total of 218,965 times.

10.2.1 Seasons

One of the open analysis in the case of an Emergency Department is the case of
the seasonality in the patients [19, 21]. According to this scenario, the patients have
not the same behaviour during all the year. For example, the influenza [21], that is
much more prevalent in winter than in summer, can affect seriously the capability
of management of an Emergency Department unit. Also, some studies analyze the
effects of weather in the Emergency Department [19]. In this study, the less serious
patients have a larger number of visits to emergencies in summer than in winter due
to the better weather.

Using the IPI base, we have compared the patients that have visited the
Emergency area in winter with those that are treated in summer. Figure 10.2 shows
a difference map between the two groups. This map shows in nodes the median
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Fig. 10.2 Differences between Summer and Winter Flow

difference in the time of stay in each one of the areas. In the case of the edges, the
difference represents the percentual difference in the number of patients. The redder
the colour represents more ratio of patients in summer. The green colour represents
winter. The nodes highlighted with a yellow ring are those that have significant
differences (computing P-Value with a confidence of 95%) in the time spent in the
stages. As can be seen, in general, the patients spend more time in the Emergency
Department in winter. Especially, interesting is the node of attention of patients of
level 2. However, in summer the number of hospitalizations increase.

10.2.2 Working Days and Weekends

The differences in the days are not only based on temperatures and environmental
variables. In the literature, there are works that advice about the discrepancies in
the Quality of Care in the Emergency Department in weekends [18]. Some of
those works argue that the different experience of professionals that are active on
weekends, or the decrease of them, or even the lack of activity of some services
can delay or even change the usual care protocols that patients follow. Also, some
works in the literature suggest that those differences can even increase the mortality
in weekends [5, 22].
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Fig. 10.3 Differences between weekends and working days

Figure 10.3 shows the differences between weekends and working days. Taking
a look at the flow of patients, we realize that their normal path has changed. As
it can be seen in the base IPI Fig. 10.1 the common patient is classified as Level
3, however, in weekends the percentage of level 3 patients decreases and the non-
urgent patients increase. This might be because most primary care centres are closed
on weekends. As has been mentioned, a measure of the quality of care is the number
of returns to the hospital. As can be seen in the figure, there is an increase in the
returns from home. As literature says, it seems that the Quality of Care has decreased
on weekends, in this process. As it can be seen the time of waiting and attention
decrease on weekends in comparison with working days. Especially interesting is
the time of waiting for first attention that, in Waiting 2, 3 and 5 stages, has statistical
significant differences. Also, it is important to notice that Level 1 patients, has not
differences in their attention.

10.2.3 Age

One of the discriminators that traditionally have been used in the Emergency
Departments is age. There are lots of studies that point out that older people have
differences in the way to access the Emergency Department than young people
[11, 20]. Some studies have discovered a difference in the priority achieved by
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Fig. 10.4 Elderly patients(>65) compared with rest

elderly people in the emergency triage [26]. Other studies suggest that older people
have a greater Length of Stay than young people, but shorter when they are admitted
to the hospital [4, 16]. Also, we can found in the literature studies that indicate
that elderly visit more the Emergency Department of the hospital than young
people [16, 23]. However, other studies have not found any difference in age-related
behaviors in Emergency Department [9]

Process Mining technologies can support us in the understanding of the
behaviour of elderly people in each health department centre. Figure 10.4 shows the
differences in the behaviours between the patients >65 and the rest of the patients.
The red represents elderly people and green represent younger patients.

In our case, elderly patients have different geometry in the triage, but differently
than other health centers [26]. In this hospital, elderly acquire a more priority in the
triage phase. Also, this kind of patients, stay more time in attention than others and
are more probability to be admitted in the hospital than younger people, as said in
literature.

In case of the relation of age and the admission to the hospital, Fig. 10.5 shows
a difference of the hospitalization influence map between elderly people and the
rest. In this map, the gradients of colours at the arcs are computed using the ratio of
patients that finally are hospitalized starting from this arc. As can be seen, elderly
people with high priority have more probabilities to be admitted in the hospital. On
the other hand, the patients with less priority (level 4) that are finally admitted in the
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Fig. 10.5 Elderly patients(>65) Hospitalization Influence map difference with rest of patients

hospital, are more probable to be younger people. These views are more complex to
acquire with other KPI that are not process-oriented.

10.2.4 Hyperfrequenters

Hyperfrequency is a well known common problem in Emergency Departments [2].
Hyperfrequenters are patients that visit the Emergency Department at a high rate.
Usually, the rate that is used for considering a patient as hyperfrequenter is 10
visits per year. Usually, these patients are associated with psychological or chronic
diseases, however, there is not a clear profile of these patients [2]. For that, there is a
growing interest in the characterization of these patients and in the analysis of their
impact over the health system [2, 3, 15].

Figure 10.6 shows the behaviour of hyperfrequenters. In our case, green colours
refer to hyperfrequenters and red, for the rest. In nodes, it can be seen how the time
of attention and the waiting time is fewer in hyperfrequenters than in the rest of
cases. Also, in arcs, we can see that usually hyperfrequenters acquire a higher level
of priority in the triage and have fewer probabilities to be hospitalized. As expected,
these patients have more probability of return. Also, it’s important to notice that if
the patient is critical, there is no difference in the flow.
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Fig. 10.6 Difference between not frequenters and hyperfrequenters

10.2.5 Returns and Readmissions

For analyzing the quality of care in an emergency we should the efficacy in the
stabilization of the patient and the capability of suppression of the immediate neces-
sity of care. One of the measures that are related to that point is the readmission.
Readmissions are the patients that return to the emergency after discharge in less of
a given time. Short term limits are around 72 h [17, 25] and are associated with a
deficient resolution to the emergency. On the other hand, long term limits, around
30 days, are associated with the wrong management of chronic diseases like diabetes
[27] or elderly people comorbidities [14].

In addition to the quality of care, those readmission visits, and even, only returns
with no hospital admission, can affect the patient and health professional experience.
This is because of the increase in the number of patients, imposing additional
pressure in the unit that can produce delays in care.

Figure 10.7 shows the differences between the readmitted patients and those that
not return in less than 72 h. As it can be seen the waiting time it’s not affected by
the return. The triage has a significant little increase of time (less than a minute)
probably for the explanation of the previous history. However, the time of attention
has big differences in non-critical episodes. Readmitted patients stay more time in
attention than not returning patients.

Figure 10.8 shows the difference between Returns with no admission in the
hospital and Readmission. The effect observed with no returns is even more marked.
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Fig. 10.7 Differences between Readmissions and No Return Flow

The returned patients wait for more time in the first attention than readmitted
patients.

As patients that are finally admitted are supposed to have a greater seriousness
than only returned, it seems that these patients are detected by health professionals
and are quickly transferred to specific units for better care.

10.2.6 Length of Stay

The Emergency Department overcrowding is a problem that can produce critical
situations in the hospital. One of the main effects that produce this circumstance is
the increase in the length of stay of patients in the area. This is associated in the
literature with patient experience [6] and with the care efficiency [28].

Some reasons make this time grows. The increasing of hospital occupancy can
delay the admission of patients in the hospital. As a consequence of that, patients
should stay in the Emergency area waiting for a bed, not only occupying space,
but also consuming precious resources from emergencies like nurses, auxiliary
personnel, or specific medical devices. This produces saturation in emergencies
increasing the Length of Stay(LoS) [8].
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Fig. 10.8 Differences between Return and Readmission Flow

But the hospital occupancy is not the only variable that can affect the Length of
Stay. The triage level, the test realized to the patients, and the efficiency in the care
[28] or the delay in providing analgesic medication [12] are aspects that can affect
to the Length of Stay.

Figure 10.9 shows the flow that indicates the differences between the patients
that stay in the unit less than 4 h (green) compared with those that stay more than
4 h (red). As it is expected, the Length of Stay is directly related to the time of
attention, that is the most durable activity in the unit. But also we can see that affects
the time of waiting. It is important to notice that in critical and very urgent patients
the time of waiting not to affect the patients. According to the arcs, as the literature
says, there is a relationship and the triage with the LoS variable. There is a higher
percentage of high LoS patients in higher priority triage levels, and, on the contrary,
there is a higher percentage of low LoS patients in lower priority triage levels. Also,
there is a higher relation on patients with lower LoS in returns and hospitalizations.

10.2.7 Exitus

One of the worst adverse effects that can occur in emergencies is mortality. In
medical jargon, the death of a patient is usually named Exitus. The Exitus in
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Fig. 10.9 Length of Stay (LoS) comparing >4h with <4h

an Emergency Department is infrequent [10]. This can be because highly critical
patients are usually quickly derived to the Intensive Care Unit or Surgery areas.
In Emergency Rooms, the Exitus is usually associated with the complexity of the
disease of the patient at the admission to emergencies [1].

Figure 10.10 shows an influence map of the processes in the Exitus. The colour
nodes in the influence map refer to the number of Exitus that have previously
performed this stage. The higher number of patients has finally deceased after
the activity, the redder is the colour in the node. As can be seen, the mortality is
representative of critical and urgent people, as expected according to literature.

10.3 Discussion and Conclusion

The application of Interactive Process Mining methodologies and technologies can
offer a new perspective for analyzing the aspects that should be taken into account
to understand the behaviour of the processes in an Emergency Department.

In this study, we have analyzed different Key Performance Indicators that are
being usually used in Emergency Department. From that starting, we have offered
a new view, using Interactive Process Indicators, that not only offers the required
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Fig. 10.10 Total Influence over Exitus

numerical view but also offers a process-oriented view that supposes a quick and
understandable way for discovering the root causes behind of these indicators.

The Interactive Process Indicator has been created using minimum information
that can be easily collected in a wide percentage from all digitally transformed
Emergency Departments around the world. In our experience, it is possible that
the quality of the data was not always optimum, but most of the times, the data that
we have used in this study is usually available in most of Emergency Departments
around the world. This supposes a better probability of acquiring quality data for
the creation of these IPIs. Of course, complex situations like critical patients (Level
1) can have quality problems due to the fact that the priority is to take care of
the patient above the administrative actions, and for example, the administrative
admission of the patient can occur after the care. In any case, these cases are few
and can be corrected assuming the adequate way of the emergency protocols. Also,
some hospitals have not information to the time of triage, in these cases, the triage
can be assumed as a fixed time. IPIs information also should be complemented with
classical numerical stats, but, in this chapter, we are focused on the analysis of the
information that Interactive Process Mining can provide to medical doctors. This
statistical information is easy to achieve and is out of the scope of this work.

In our studies, we have verified that the number of patients and the time spent
in each one of the stages depend directly not only in the capabilities of the hospital
but also on the kind of the target population, demographics, weather. . . . This adds
a high variability in the analysis of emergencies that difficult the comparison of the
practices that are applied in each hospital. The application of a protocol can work
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properly in a specific moment for a specific population but fail in another case.
In this way, in the application of new protocols and best practices, it is necessary to
continuously measure their effects in their value chain focused on the patient. In that
way, it is more effective to compare the unit before and after the change, that tries to
compare different hospitals. Another interesting view is to split the behaviour of the
unit depending on the disease-causing the emergency. There is a high variability of
the different diseases that are usually treated in an emergency unit. This separation
can increase the precision in the effects discovered by the methodology. However,
as this information has usually difficulties to be recovered because is in free text or,
has a low quality, we have left it out of the study.

Among the aspects that we have analyzed in this chapter using Process Mining
technologies, we have discovered different facts in the behaviour of the emergency
unit process.

In critical scenarios (Level 1), there is not a difference in the care of patients. It
supposes that critic patients are always treated in high priority independently from
environmental issues.

According to weather, it seems that in this case, although there are differences in
the same way as seen in the literature, there is not too much gap between winter and
summer. In Valencia, where the study is made, the weather is stable over the year and
there are not the same high differences in temperature than other parts in the world.
This is a possible cause of having not a big gap in seasons. This shows the variability
in the evidence depending on the different hospitals. The age and other demographic
variables have different effects in distinct hospitals. Hyperfrequenters are outlier
patients and its behaviour is very interesting for medical staff. The reduction of noise
has a direct impact on these patients. For that is very important to not denoise data
log in order to keep the integrity of this information in the Emergency Department
problems. We have also analyzed how influence maps can show the effects of the
different circuits in the process.

These discoveries can suggest new questions to health professionals that should
be validated with studies. The application of this methodology in an iterative way,
allow the confirmation of the first of medical intuitions that allows a more efficient
and effective way to improve the medical process.
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Chapter 11
Interactive Process Mining in Surgery
with Real Time Location Systems:
Interactive Trace Correction

Carlos Fernandez-Llatas, Jose Miguel Benedi, Jorge Munoz Gama,
Marcos Sepulveda, Eric Rojas, Salvador Vera, and Vicente Traver

11.1 Introduction

The collection of adequate data is key not only for creating Interactive Process
Indicators (IPIs) but also for analyzing and evaluating the evolution of the process
for its posterior optimization. The quality of data gathered is crucial to have precise
models. With the arrival of new mobile personal technologies, Internet of Things
Paradigm and wearable sensors, the quantity of data available for monitoring the
people’s behaviour is dramatically growing [8]. Within this idea, a new generation
of hospital room sensors, lab equipment, employee wearable and patient monitoring,
among others, are generating Intelligent Environments spaces [30]. In these spaces,
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the amount of data available for analysis, in terms of patient records, population
health data and other databases, has massively increased, bringing a new complexity
level. Moreover, it provides a new opportunity for creating new models to use more
advanced analytic, visualizations and decision support tools, to improve accuracy
in the diagnostics, allowing more effective and precise treatments [16]. Conse-
quently, new algorithms and methods are appearing to analyze human vision [6],
and human activity [4], among others. Below this umbrella, Real-Time Location
Systems (RTLS) have been appeared to take advantage of tracking, navigation and
positioning on indoor locations, to follow the behaviour of the business processes.

There are large quantity of RTLS solutions in the literature [9, 17, 18]. Some
systems use the localization to support the activity recognition of human in smart
homes [1]; systems that monitor the daily activity of elderly in Ambient Assisted
Living (AAL) environments [27]; systems that create a movement behaviour model
of users in smart places [13]; or systems that use location to support analysis and
optimization of the organization processes, for example, for measuring unobtru-
sively the time of treatment on hospitals for better management and improvement
of Quality of Service [3, 21, 25], or for tracking the surgery process inside a
hospital [10].

In this context, Pattern Recognition and Machine Learning techniques can use
this amount of data for automatically creating process models. Process Mining [29]
is can discover models from RTLS logs that provide human-understandable models.
Process Mining technologies [29] can support individual behaviour analysis not
only for detecting behavioural changes, but also to offer a human-understandable
view of the real changes of a user [13]. Maps of models extracted from RTLS can
be used to build IPIs that shows the behaviour processes of patients in a precise way
in an objective an unobtrusive way.

However, the deployment of RTLS is still under research [9, 17]. There are
several problems to be addressed when an RTLS is deployed in a real scenario.
Noisy environments and building structures can interfere with RTLS signals and can
affect their accuracy. In this way, it is critical to perform a precise deployment of the
RTLS to optimize the system and to avoid undesirable interference [18]. However,
mobile elements of indoor spaces, like furniture and, even humans, as well as
environmental factors, like humidity and temperature, can unpredictably affect the
signal propagation due to reflection, refraction, diffraction and absorption [7]. This
noise produces an undesirable effect on Process Mining algorithms called Spaghetti
Effect [11]. This effect dramatically decreases the human understandability of
Workflows produced by the Process Mining discovery algorithms.

This RTLS noise can be assessed by human experts that can correct the models
obtained by the system, in an iterative and interactive way [12]. Error models can be
built by professionals that can support automatic system in the better correction of
results to provide clean systems that make fully understandable the models inferred.
In this work, we present an Interactive Error-Correcting based method (EC) [2]
using an Edit Distance framework, to correct the data and obtain an insight of
the executed process. Error Correcting techniques have been successfully used to
calculate distances between processes and RTLS traces [13], in previous studies
involving process analysis. This method was tested in a hospital of Spain (who
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wants to remain anonymous) using the existing RTLS infrastructure deployed in
that environment with 3915 patients collected between March 2012 and May 2013.

11.2 Background

In literature, there are several techniques thought to get the position of a mobile
point in an area. Radio Frequency Identification (RFID) systems for Indoor Location
are growing exponentially [7, 9, 15]. Due to the increase in the presence of WiFi
networks in cities, WiFi triangulation [7] is a solution used for positioning. WiFi
triangulation not only is used for indoor positioning problems, but most of the
current mobile phones also use WiFi networks to enrich GPS signal to get more
accuracy. However, one of the more important problems of WiFi-based systems that
can suppose a barrier for its adequation to the problem is the batteries duration.
WiFi signal requires a relatively high quantity of energy to perform communication
among nodes. This made that objects to be located should recharge its batteries
more regularly than other lower energy RFID protocols, and this is not desirable in
some scenarios, where the recharge of batteries can affect the proper process itself.
Other RFID protocols, like ZigBee or Bluetooth 4.0, can increase the time of life
of the nodes without a battery recharge. In fact, with some configurations, these
technologies can create nodes with an autonomy of years [13].

RTLS are valuable systems than can increase data gathered from hospitals, to
automatically build models using Process Mining techniques [19]. Process Mining
is a research field that focuses on extracting information from data generated and
stored in the databases of the information systems; in this specific case, the Hospital
Information Systems (HIS). These data are extracted to build events logs, to view
all set of traces executed, each containing all the activities executed for a process
instance [28, 29]. Events logs correspond to a series of traces of each executed case
in the past for the studied process. The event log must contain the minimum required
data (case id, timestamp and activity name [29]), to allow the application of the
available methods, techniques and algorithms of Process Mining.

In the past, previous studies have used process mining in Healthcare with sensors
and RTLS, obtaining significant insights about the executed processes [29]. Studies
showed, through the use of Process Mining techniques, activities followed in a
surgery process [10] and the personal process followed through the personalized
healthcare sensor data [26]. Both studies demonstrate process mining ability to
understand executed activities, but also that this directly depends on data quality,
from the systems, in this case, sensors and RTLS.

However, the main problem of RTLS is the accuracy [9, 15]. The unpredictable
reflections, refractions or absorptions of signals due to the heterogeneity of walls
and furniture of rooms, environmental factors or, even, the position of human
stakeholders, act as a signal attenuator that, depending on their position, can cause
a large number of localization errors. This noise produced by RTLS produces an
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important spaghetti effect in the Discovery. This makes more difficult to understand
the process and become complex even to visualize.

Those errors are very difficult to detect and evaluate. The most efficient way to
deploy an RTLS is to integrate it into the infrastructure as an additional layer to the
building construction. However, this is not always possible, and the beacons usually
are not in the most efficient position to avoid signal problems. Also, the intended use
of the room affects dynamically to the quality of the signals. There are not the same
signal reflections when the room is void than when it is at full capacity. For that, it is
necessary a continuous redesign of the RTLS network to ensure a correct accuracy
[17]. One of the most common techniques performs this evaluation comparing the
position of the object (got through the RTLS) with a manually collected log of
the objects. However, the use of this invasive evaluation methodologies can affect
the process that might produce unpredictable measurement errors, especially if the
locating objects are humans that are affected by the presence of other humans
that are auditing his movements [17]. For that, the use of non-invasive evaluation
methods can suppose a great advantage to provide a more accurate log of the system.

In this chapter, we propose an unobtrusive correction of traces By using Error
Correcting techniques Error Correcting (EC) [2] for reducing the Spaghetti effect
in Process Mining. EC is based on the definition of edition primitives (Insertions,
Deletions, etc.) for correcting syntactic patterns. EC algorithms are intended to
discover the most probable sequence of edition primitives that should be applied
to each trace to make it compatible with the ideal model. Using this method, the
RTLS accuracy can be improved, resulting in better models to study and analyze
through Process Mining techniques and tools. These clean models can be used as
IPIs in the better understanding of medical processes.

11.3 Trace Correction

Formally, the aim of this paper is to provide an algorithm is to correct Traces T in
the RTLS log according the model defined by the expert M:

Definition 1 A Trace T is defined as a set of tuples T = (x1, t1) . . . (xn, tn); Where
xi is the position and ti the time spent

Definition 2 Given a Finite State Model M and Trace T; a sequence Ti, Tj ∈ T is
compatible (≈) with a transition (i → j) ∈ M if ∃qi → qj ∧ qj = xj

In Pattern Recognition field, Error Correcting technique usually is based on
the definition of an edit distance. Edit distance [14] defines a set of operations
(Insertions, Deletions,. . . ) that can be applied to a noisy input to correct it according
to a goodness model. Formally:

Definition 3 Given a Finite State Model M and a Trace T; an Edition Operation O

is a function O(i) = (i′, c) Where i ∈ T, i’ is the corrected event and c is the cost
associated to apply the function
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Definition 4 O is the set of possible Edition Operations O

According to that, Edit Distance provides a dissimilarity measure between a
given modelM and an input trace T by calculating the set of operations (∈ O) with
the lower cost according to an error model. Formally:

Definition 5 The Edit Distance of the input trace T to a given model M, based on
an operation set f = {o1, .., on} ∈ O|f (T) ≈ M is:

EDO(T,M) = ED
f̂
(T,M) = min

T∈O
ED(f,M)

f̂ = arg min
f ∈O

EDf (T,M)

where f is an error function for correcting the input T according the model M; and
f̂ is the optimal error function.

Error Correcting has been applied to several research fields; it have been used for
manuscript text recognition [20]; Image and video Indexing [24] or DNA Analysis
[5] among others.

For correcting an input Trace T using EC techniques it is needed a Model M
that represent all the possible valid sequences. In our problem, RTLS provides the
sequence of rooms in the user’s trace (See Table 11.1). So, the most direct Model
that can be used is the building’s map. The building’s map can be defined formally as
a Finite State Automaton (FSA), where the nodes are the possible rooms that can be
reached by the user, and the edges are the possible transitions among the different
rooms. An example is shown in Fig. 11.1. In that case, only adjacent rooms have
arcs between them. So according to that, a valid sequence of rooms is the one that
is accepted by the automaton. For example, according to the figure, the sequence
Start → T ransf er → OR1 → T ransf er → End is accepted by the automaton,
but the sequence Start → OR1 → T ransf er → End is not valid, because OR1
node is not reachable from Start .

Also, a set of defined operations should be defined that could be used for
correcting the sequence according to the automaton. According to the literature [14]
we can select a minimum set of basic operations like Insertions, that suppose the
addition of a Room in the sequence at a determined position; Deletions, that suppose
the deletion of a Room in the trace; or Substitutions, that suppose the substitution
of a Room to other in the sequence at a determined position, among others.

In the example, a possible valid correction sequence for Start → OR1 →
T ransf er → End is the addition of a T ransf er Node after Start . This solution
is not unique, other solutions can be the deletion of OR1 Node or the addition of
WakeUp and T ransf er after Start .

According to that, an Error-Correcting algorithm for denoising of RTLS traces
should find the optimal set of edition operations f̂ that transforms the input trace
T to one accepted by the language defined by the Model M. That means the
calculation of the dissimilarity between the trace and the automaton. However,
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calculate the dissimilarity with an automaton is a complex problem [31]. As our
problem can be shown as a simplification of Graph Edit Distance problem [14]. Due
to the different set of valid sequences, that could be infinite, there is not possible
to apply dynamic programming like in string comparisons [22]. In the literature,
a similar problem has been approximated using A∗ search algorithms [23] for
calculating sub-optimal Edit Distance between two graphs. In our case, we propose
a windowed correction between −μ1 to μ2. When the trace fails, instead to perform
a Breadth-first search, we limit the correction search to μ1 positions before and μ2
positions after. In that case, the expert will decide the quality of the correction. If
the window is 0 the behaviour will be similar to a basic greedy algorithm and if the
Window is −∞ to ∞ the behaviour will be equivalent to a Full Breadth-first search.
This is formally described in Algorithm 1.

Algorithm 1 Correct Trace Algorithm
1: function CORRECT TRACE(T, M, O Analysis Window (μ1, μ2))
2: INITIALIZATION:
3: i = 0; Last Event
4: j = 1; Current Event
5: S0; Cost of Correcting Trace (Score)
6: � = ∅; Corrected Trace
7: STEP1:
8: if then∃(i → j) ≈ M
9: Sj = Si + C0 + ti,j

10: � = � ∨ {(xj , tj , C0)}
11: else
12: O(i − μ1, i + μ1) = ∀O(l) ∈ O; l|[i − μ1, i + μ1]
13: β = {(xl , tl , cl ), . . . , (xm, tm, cm)} where
14: arg minf ∈O(i−μ1,i+μ2)

∑m
n=l C(on)|∀β ≈ M

15: if thenβ ≤ i

16: � = � − {β, . . . , i}
17: end if
18: � = � + β

19: Sj = Si + Cβ + tβ

20: goto STEP1
21: end if
22: end function

Intuitively, for each event in the trace, the algorithm is evaluated. If (i → j) is
according to the model, the event is not corrected and the Score is updated with the
cost of no correction and a time adjustment cost. This time adjustment is dependent
on the time spent in the activities. If (i → j) is not compatible the algorithm start a
windowed search over all the possible correction operations between i −μ1, i +μ2
(O(i − μ1, i + μ1)) in order to find the minimum cost sequence that makes the
transition compatible (β). After that, the resulting trace is corrected � and the Score
is updated with the cost of the operation and the time adjustment. In our example, a
short time position has not the same probability to be a reflection error than a long
time position. For that, time adjustment should be different.

These traces are formatted as an ordered list of locations with their timestamp and
duration, that are referred to the position of a user in a specific area at a determined
moment. An example of raw observation stream is shown in Table 11.1.
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Table 11.1 Sample of an RTLS log

Id Start End Location

. . .

57232 22/08/2013 9:37 22/08/2013 9:43 Transfer

57232 22/08/2013 9:43 22/08/2013 9:52 Operating Room 2

57232 22/08/2013 9:52 22/08/2013 10:47 Wake Up

56458 22/08/2013 9:57 22/08/2013 10:01 Transfer

56458 22/08/2013 10:01 22/08/2013 11:15 Operating Room 2

55859 22/08/2013 10:05 22/08/2013 10:06 Transfer

55859 22/08/2013 10:06 22/08/2013 11:02 Wake Up

57418 22/08/2013 10:48 22/08/2013 11:29 Wake Up

56164 22/08/2013 10:57 22/08/2013 11:00 Transfer

55859 22/08/2013 11:02 22/08/2013 11:04 Transfer

55859 22/08/2013 11:04 22/08/2013 13:02 Operating Room 5

56164 22/08/2013 11:13 22/08/2013 12:29 Operating Room 1

56458 22/08/2013 11:15 22/08/2013 11:15 Transfer

56458 22/08/2013 11:15 22/08/2013 11:53 Wake Up

. . .

The result of the algorithm is the most probable ordered set of correctional
operations that modify the input trace for producing the trace compatible with the
structural model with the minimum total cost, that is the sum of all the correctional
operations costs. The result might not be optimal if the window selected is not
(−∞,+∞).

11.4 Experiments

In this section, an evaluation of the method described in the previous section is
presented. This evaluation was performed in a real scenario using prospective RTLS
data of the Surgery Department of a Hospital in Spain. The corpus was collected real
patients who have surgery programmed between mars of 2012 and may of 2013.
All the patients wear a Zigbee bracelet that interconnects with a set of beacons
that are installed in each one of the rooms of the Surgery area of the hospital. The
RTLS collect all positions of patients during their intervention process in a corpus.
In total, 3915 patients were studied for collecting the log that is formed by 22.315
location changes. For the experiments, we use PALIA Algorithm as Process Mining
Discovery because it has a specific RTLS module [10].

In Table 11.1 a piece of the complete Log is presented. The corpus is stored in
csv format and has five main fields that are used by the algorithm. Id represents
the anonymized identification of the patient. Start is the moment when the patient
enters in the specified area. End is the moment when the patient leaves the room.
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Finally, Location represents the identification of the Surgery area where the patient
is located at the specified period.

11.4.1 Interactive Pattern Recognition for Improving the
Application of Error-Correcting Techniques to RTLS

The errors in the RTLS can suppose mistakes that add a layer of noise-making
more difficult the understanding of processes after a discovery. The errors can
be produced by inefficiencies in the placement of the RTLS beacons, lack of
granularity in RTLS in short time stay areas, or proximity of the patients to the
walls that produce confusions in the beacons detections, among others. These errors
are usually repeated because the topology of the beacons has a direct effect on
the quality of detection. Although these errors can be high in numbers, the time
of errors usually is very short. That means that these errors have a low effect in
the length of stay in areas, but a high effect in the number and kind of transitions.
This has a big impact in techniques like process mining where the topology of the
models discovered acquire more spaghetti. The correction of these common errors
supported by the interaction with professionals can reduce the errors providing a
cleaner view of the model that makes the model more usable.

For correcting the log, the expert should define a goodness model that could be
used to correct the model according to the knowledge of the experts. On one hand,
we need to define a Graph Model that define the restrictions of the process, and an
Error Model, that describes the available edition operations and their cost. In the
next subsections, the Graph Model and Error Model used for the experiments are
described:

11.4.2 Physical Model as Graph Model

The easiest graph model that can be used for correcting an RTLS is the room’s
physical model. This model shows the distribution of the rooms of the RTLS
deployed area. The Physical model is very easy to create. It is based on the physical
map of the building and defines the transitions restrictions among physical rooms.

Figure 11.1 presents a graphic Physical model represented as a TPA. This model
represents the possible transitions among the rooms. In that figure, circles represent
the possible locations of patients, that are rooms or areas of the surgery department,
and arrows represent the possible transitions that are possible to perform due to
the disposition of the building. Start and End represents the starting and ending
of a valid track. In that figure, you can see three kinds of areas. The Wake Up
Area, the Transfer Area and the Operating Rooms. The Operating Rooms are the
locations where the surgery take place. Transfer is the area of interchange among
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Fig. 11.1 Physical Model of the experiment expressed as a TPA

all the roomsWake Up is the area where the patients can be placed before or after the
surgery. However, if patients are admitted in the hospital they can avoid the stay in
this room. For that, although is usual that patients spend some time in the Wake Up
area, the tracking of the patients can start and finish directly on the Transfer area.

11.4.3 Interactive Error Model

The Error Model describes the possible adjustments that are compatible with the
problem to solve. As the Graph model, the human expert can define the error model
identifying all the available edition primitives that are desirable for the problem,
as well as their cost, that can be used by the EC Algorithm for correct the input
samples. For this experiment, we have defined three edition primitives that represent
the three possible different kinds of corrections. The cost functions of each operation
were defined using heuristics described in conjunction with process experts and



190 C. Fernandez-Llatas et al.

depends on the semantic meaning of the locations on the process. The primitives
defined are the following:

• Delete: This edition primitive is applied for correcting errors that are produced by
signal reflections that insert locations in the RTLS sample that are not logical. For
example, a user is in a room and a few seconds after that goes to the immediate
upper room and then returns to the same room. This situation is a clear case of
the localization error.
The cost function is defined by using the cost of localization for correcting that
situation, the algorithm can remove the illogical location from the sample using
the Delete primitive. The cost of deleting a location is defined as:

DLocation = K + T 2 (11.1)

where T is the duration time of the permanence of the patient in a specific
location, expressed in minutes and K is a constant that we have fixed to 10 for
this experiment. According to the equation, the less duration has a location, the
easier is to remove it and, on the contrary, the higher duration, the higher cost
has. The rationale of this rule is that the longer duration of a location detected
by a RTLS system the less probable is that this location is due to an error. For
this experiment, This rule has been defined with an exception. If the location is
unknown by the grammar, that it means is not in the list of possible locations,
the cost of deleting is 0. This is because, if a location is not reachable by the
structural model its error probability is the maximum.

• Insertion: This edition primitive solves the problems due to failures in a location
that skips some areas in the samples. For example, when in a sample, the user
has passed immediately from one area to another and, according to the structural
model, these areas are not connected, the transition between this areas is a
localization error. This error can be produced by reflections, signal inhibitions,
beacons failure, etc. This primitive inserts a possible specific location in the
middle of the illogical transition as a step of the search EC algorithm. The cost
of deleting a location is a constant J , except if the location is an Operating
Room that the constant is fixed to 104J . J is fixed to 100 for this experiment.
The rationale of this exception is that the addition of an Operating Room has
an important semantic charge. That means that this operation can easily change
the meaning of the trace, producing more errors than corrections. For that, this
operation should be avoided if possible. An important thing to take into account
is that the locations added in a position of the trace are selected from the set
of possible locations that are reachable from the previous node according to the
Graph Model. This limits the number of operations available for the next iteration
of the algorithm, making it more efficient in processing time and memory use.

• Fusion.The Fusion edition primitive fuse two consecutive locations that are
referred to the same room. The cost associated with this operation is 0. The
rationale of this is that, in RTLS, a continuous sequence of intervals of the same
location is, usually, equivalent to a unique location which interval is the union
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of all of those intervals. RTLS systems do not provide consecutive locations.
However, the inclusion of this edition primitive is important because in the
middle of the process of search of the EC algorithm these situations are possible.
In any case, the application of this edition primitive is not due to an error of the
RTLS.

11.4.4 Results of the Algorithm Using the Physical Model

Figure 11.2 presents some real examples of corrected samples using the physical
model. Figure 11.2a presents a simple insertion operation between Operating Room
5 and Wake Up locations. According to the structural model, is not possible a
transition between these rooms, and the algorithm found that the most efficient
change is to add a Transfer Location. This mistake can be produced for a quick
transition between the Operating Room 5 and Wake Up Areas. Figure 11.2b shows a
more complex case, there is a not valid sequence formed by three Operating Rooms;
that is corrected by removing the location with the lower time of stay and fusing
the other two, referred to the same location. This mistake of the RTLS system
probably was produced by reflections in Operating room 3 in the middle of the
surgery process. Figure 11.2c sample presents a surgery in two Operating Rooms.
The EC algorithm corrects the error removing the less probable location and adding
the Transfer Area.

We have experimented with different Windows between −5 and +5. In Fig. 11.3
it is possible to see a graph representing the performance of the experiments.
The blue line represents the time taken for the experiment in seconds by sample.
The yellow line represents the percentual difference between the Correction trees
of the windowed search in comparison to the Correction trees of the exhaustive
search. The exhaustive search is equivalent to a − inf to inf Window and finds the

Fig. 11.2 Samples corrected according Physical Model
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Fig. 11.3 Performance Comparison By Window in Physical Model Experiment

Table 11.2 Physical Model
Sample Corrections

Incorrect Correct Total

Samples 2244 1671 3915

% 57% 43% 100%

Table 11.3 Physical Model
Events Statistics corrected

# Events # Events by Sample

Before correction 22.315 5,70

After correction 24.240 6,19

optimal correction tree for the selected Error Model. In other words, this difference
represents the percentage of samples corrected that have a different correction set of
operations in comparison with the correction set performed with exhaustive search,
namely, the percentage of not optimal corrections tree inferred.

In the graph, we can see that in this problem the low limit window has a
low impact on the discovery of the optimal correction tree. On the other hand,
the high limit window has an important impact on the discovery of the optimal
correction tree. In this problem, an upper window higher than 2 finds a good index
of corrections with better performance.

Table 11.2 shows the number of correct samples according to the Physical Model.
According to this data, 57% of the samples are not according to the physical model.

Table 11.3 compare the number of events of the original log, in comparison to the
corrected log, and Table 11.4 shows the distribution of operations by type. As it can
be seen most of the corrections are Transfer insertions. Taking a look at the results
of the corrected sample, these corrections are due to the resolution of the RTLS
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Table 11.4 Physical Model
Events Statistics corrected by
type

OR Transfer WakeUp Total

# Insertions – 2.386 – 2.386

# Deletions 95 295 7 397

# Fusions 54 1 9 64

Fig. 11.4 TPA inferred without error Correcting

system in short-stay rooms like transfer. In these cases, the patient goes quickly
from the WakeUp area to the OR area and the T ransf er pass is not detected.
In this case the algorithm corrects the system Inserting T ransf er Locations in the
middle (See Fig. 11.2a, c). Usually, Also, medium time reflection errors like the
connection between different OR are solved adding Transfer states between the two
operating rooms.

In the case of Process Mining inference, Fig. 11.4 shows the workflow inferred
by PALIA algorithm using the Original Log. On the other hand, Fig. 11.5 shows the
workflow inferred by PALIA using the log corrected using the Physical Model. It
can be seen that the Corrected Model is easier to understand that original one.

Table 11.5 shows the Confusion Time computed aligning the original samples
with the corrected samples. According to this, the total of confusion time is 0.05%.
As expected, most confusions are produced between Transfer and rest of areas, as
well as, consecutive Operating Rooms. This shows that although the correction
has not a significant effect on the model because most of the problems are quick
reflection errors, it has a clear effect on the human understanding of the flow.
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Fig. 11.5 TPA inferred with Physical Model experiment

11.4.5 Interactive Process Correction: Process Graph Model

Although the physical model can be used, as is, as a universal model for correcting
errors of RTLS, it is possible to enrich the model with additional semantic
restrictions to provide more precise indicators that can be provided by the expert
interactively. In this line, we can take into account not only the physical model but
also the process that patients follow, using heuristic information.

Figure 11.6 shows an example that, although is perfectly following the physical
model, it seems illogical from the patient process point of view. In the example, the
corrected sample shows that patient surgery takes place in two different Operating
Rooms. Looking at the original trace, we can see that probably there was a long
reflection error close to the end of the surgery. In this way, according to the process
that the patients follow, it is logical to add a restriction limiting to one the valid
number of Operating Rooms that can be occupied in the same trace.

Figure 11.7 shows a model that represents the process followed by the patient in
the surgery department by applying this restriction. In this model, it is not allowed
the presence of more than one operating room in the same patient flow. we have
named this model Process Model because take into account the process restrictions
in addition to the physical restrictions of the building rooms.

Figure 11.8 shows samples corrected using the process model that was not
corrected using with the physical model. The Fig. 11.8a shows the new correction
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Fig. 11.6 Correcting limitations of Physical Model

Fig. 11.7 Process Model of the Surgical Department

Fig. 11.8 Samples corrected according Process Model

of the sample of the previous Fig. 11.6. Also, Fig. 11.8b shows the elimination of a
Transfer confusion in a surgery that was accepted by the physical model.

Comparing the performance of the algorithm in the Process Model Experiment
(See Fig. 11.9) it is possible to see that this experiment requires more computation
time than the previous one. Also, as in the Physical Model example, the higher
window limit has more effect in the selection of optimal of the correction. In this
case, it is needed a high limit window upper than 3 for achieving more optimal
correction trees.
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Fig. 11.9 Performance Comparison By Window in Process Model Experiment

Table 11.6 Process Model
Sample Corrections

Incorrect Correct Total

Samples 2.294 1.621 3915

% 59% 41% 100%

Table 11.7 Process Model
Events Statistics corrected

# Events # Events by Sample

Before correction 22.315 5,70

After correction 23.902 6,11

Table 11.8 Process Model
Events Statistics corrected by
type

OR Transfer WakeUp Total

# Insertions – 2.374 – 2.374

# Deletions 104 446 7 557

# Fusions 214 7 9 230

Table 11.6 shows the number of correct samples according to the Physical Model.
According to this data, 59% of the samples are not according to the Process model.
As expected, this index is higher than Physical Model example, because is more
restrictive.

Seeing Tables 11.7 and 11.8, we can see that the corrections have decreased
the number of events in comparison with the Physical Model experiment. Also,
the number of deletions and fusions in OR and T ransf er have been significantly
increased. This is because of the limitation of the new model in the acceptance of
transitions among Operating Rooms, producing shorter sequences.
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Fig. 11.10 TPA inferred with Process error model experiment

Figure 11.10 shows the final workflow inferred by PALIA. in a similar way to the
Physical Model, the flow inferred is better understood than the not corrected model
(Fig. 11.4).

Taking a look to Confusion Time of Process Model Correction Experiment
(Table 11.9), it can be seen that in a similar way than Physical Model, there
are confusions among T ransf er and the ORs as well as the contiguous ORs.
However, the total of confusion time is, in this case, suppose a 0.4%. In comparison
with Physical Model (0.05% of Confusion Time), Process Model Correction
has discovered 8 times more RTLS detection problems. This supposes that the
correction based on the Process Model is more accurate than the Physical Model
one.

11.5 Discussion and Conclusions

The use of Interactive Trace Correction can be used for correcting RTLS models
for providing better understandable IPIs. According to our experiments, the use of
Error-Correcting techniques via the Edit Distance paradigm can correct the errors
of RTLS systems conforming to the expected flows (Physical and Process Models),
providing a much cleaner view in Process Mining solutions without other intrusive
techniques that can affect the proper measure and without the manual correction of
the corpus.

As we have seen in our experiments, although the RTLS System analyzed
does not have a high percentage of error in terms of confusion time (0.05% and
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0.4% depending on the selected model), the impact in the view inferred by the
Process Mining model is very high. This points out that without a big impact in
the correction of the sample we can achieve much better Process Mining results.

Our experiments have demonstrated that it is important to select an adequate
model for detecting and correcting more precisely the samples of the corpus. This
technique applies a correction to a specific model, and if the model is not adequately
selected, the perception of users about the real process might be erroneous. The
Physical Model is a good starting point for defining this Model, being sure that the
algorithm does not add more errors to the log and can be used for analyzing all the
processes that take place in the same set of rooms, and to obtain more adequate
corrections, the creation of richer models is required, like the Process Model. This
interactive correction of traces combines the power of automatic correction with
the heuristics provided by expert as heuristics incorporated to the error model. This
not only allows a better correction, but also make the expert aware of the problem
existing on the RTLS deployment. These kinds of Models help the correction of
samples and provide more precise location results. In any case, this techniques can
be used to objectively measure the difference between the real process deployed and
the process perceived by the experts Using this information, Process experts, in our
case, Medical Staff, can understand the errors in the processes and take decisions
about their continuous improvement.

Another important issue to remark is the performance of the system. As the
system follows an A∗ search within a Windowed-Breadth First Search, the memory
and the processing time can be compromised. In our experiments, we have analyzed
the behaviour of the algorithm using different windows. We have compared the
optimal solution discovering the better windows for each problem. Although in our
example we have no performance problems, the length of the sequences can affect
significantly the performance of the algorithm; in that case, the error model is crucial
for having a better performance. The more precise the heuristics provided by the
error model are, the quicker and more efficient the A∗ search will be, improving the
performance of the algorithm.
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Chapter 12
Interactive Process Mining in Type 2
Diabetes Mellitus

Antonio Martinez-Millana, Juan-Francisco Merino-Torres,
Bernardo Valdivieso, and Carlos Fernandez-Llatas

12.1 Introduction

Type 2 Diabetes Mellitus (T2DM) is a chronic disease with a rapidly growing
prevalence in the world [10]. Epidemiological studies estimate that there will be
693 million of people with T2DM by 2045 and that, almost half of all people
will be living with an un-diagnosed diabetes [2, 4]. The disease is directly related
to an increased morbidity and mortality [3], but several studies have shown that
early diagnose and sustained life-style interventions reduced the incidence of
complications and all-cause mortality, as well as an increased life expectancy [9, 18].

Diabetes mellitus is a syndrome involving several factors which cause an
impaired insulin secretion and/or action. This affection leads to a chronic hyper-
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glycemia (high blood glucose levels). Untreated diabetes leads to several micro-
and macro- vascular injuries on several organs [11].

The normal process of glucose regulation starts when digestive system absorbs
molecules of blood glucose from foods and drinks and transports them to the
blood stream. Once in the blood, glucose molecules are used to fuel cells in their
normal processes, but to get into the cell, there should be a mediator hormone
produced by Langerhans islets β-cells in the pancreas. This hormone is the insulin.
Among the several types of diabetes [17], T2DM is characterized by both an insulin
action resistance and a progressive miss-function on the endogenous insulin release
process. Different from other types of diabetes, like Type 1 Diabetes (related to an
autoimmune reaction) or gestational diabetes (hormone-induced), T2DM is strongly
linked with long-term defect originated by ageing and obesity [12]. T2DM accounts
for the 90% of all diabetes cases and it has a prevalence in adult population that
reaches 6% to 14%. The prevalence and incidence are region and cultural specific
[16].

T2DM has no cure, but it can be controlled through a combination of lifestyle
and pharmacological treatments. A good control of blood glucose levels decreases
the risk of developing vascular and nervous complications. T2DM is commonly
asymptomatic and is usually detected accidentally, as an abnormal blood glucose
result in a routine laboratory test and confirmed with a Glycated Hemoglobgin
(HbA1c) test . T2DM treatment consist on controlling blood glucose levels into
normal thresholds to:

• Forewarn and delay macro-vascular complications and cardiovascular disease
• Forewarn microvascular and nervous complications

The American Diabetes Association (ADA) recommends a combination of
interventions based on the risk of the patient. These interventions involve life-style,
drugs and continuous follow-up ([1]):

• Changes on the food intake and nutritional habits. Adjusting the calories
proportion of meals to the specific case and context of each subject and the
overall strategy (weight loss or maintenance). Providing nutritional education is
paramount to empower T2DM patients to design their own meal routines instead
of following strict recipe compositions [14].

• Regular Physical Activity which increases insulin sensitivity and improves plas-
matic parameters like blood glucose, fatty acids. Intensity should be moderate
and prolonged during more than 30 min. Moderate intensity is calculated with
several parameters, but a naäve approach is on the average beats per minute, that
should be around 50% and 70% of the maximum peace (beats per minute) which
is 220- Age. [18].

• Pharmacological treatment: There is no ideal pharmacological treatment for
T2DM to help to control blood glucose levels (6%< HbA1c >7%) because all
of them have side effects such as hypoglycemia, damage on B-cells and weight
gain



12 Interactive Process Mining in Type 2 Diabetes Mellitus 205

• Diabetes self-management education to facilitate the knowledge, skills, and
ability necessary for diabetes self-care and to manage the treatments.

The ultimate goal of the treatment is to individualize glycemic targets and
perform interventions for the blood glucose lowering

12.2 Type 2 Diabetes as a Process

A process is defined as a series of actions or changes that happen either naturally
or by the intervention of someone/something which ultimately leads to a result.
Facing healthcare as a process is a difficult challenge. The number of actions and
changes happening both naturally and by human intervention (or nonintervention)
exceeds the current knowledge and understanding of T2DM processes, but decades
of clinical research have leaded to a considerable body of agreement on the actions
which lead to a correct management of the disease.

As a chronic disease, the clinical objectives of T2DM consist on maintaining the
indicators of the disease into normality ranges and to delay or prevent the onset
of complications. As we have seen, T2DM is a risk factor for co-morbidity and
mortality but for the sake of clarity this chapter will focus solely on T2DM processes
independently to other co-morbidities.

Variables related to T2DM evolution have been extensively studied. The stan-
dards of medical care defined by the American Diabetes Association (ADA)
consider two main indicators for the glycemic control: Self-Monitored Blood Glu-
cose (SMBG) and Glycated Heboglobine (HbA1c). Actually, these two indicators
are elementary for a diagnosis of T2DM, and so, they are well-established indicators
of the quality of care.

Besides, the (ADA) established goals for successful management of diabetes
known as the ABCs of Diabetes: HbA1c <7.0 %, blood pressure <130/80 millime-
ters mercury , and low-density lipoprotein cholesterol (LDL-C) <100 mg/dL [20].
Another interesting indicator is the fasting blood glucose (the SMBG before having
breakfast), which should be under 126mg/dL for people without the condition. The
literature usually appeals to other indicators such as the Body Mass Index (BMI),
cholesterol, creatinine and other indicators related to the life-style.

HbA1c reflects the blood glucose levels average during approximately three
months and is the major tool to assess glycemic control and the evolution of the
disease. ADA recommends to perform an HbA1c test two to four times year to
evaluate the level of achievement of glycemic goals. A reasonable HbA1c level
for T2DM adults is below 6.5–7%, but these tagets depend on several factors
(duration of disease, lifestyle treated disease, life expectancy, sever hypoglycemia,
etc..). Beyond HbA1c, ABCs recommends blood pressure below 130/80 millimeters
mercury (Systolic/Diastolic) and low-density lipoprotein cholesterol (LDL-C) <100
mg/dL.
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Despite the clinical and scientific evidence and the iterative release of guidelines,
the management of T2DM is still not adequate. Prospective and observational
studies reveal a significant distance between clinical guidelines and clinical practice
[5, 19].

T2DM sails over different seas during its progression and regression. The
regular follow-up of aforementioned indicators will produce changes in the therapy
and recommendations of the diabetologists. But most specially, the sensitivity of
glycemic values to changes in food intake habits, physical activity patterns and
the normal evolution of the insulin resistance/production makes T2DM a dynamic
process.

Previous studies have proposed risk prediction models to detect pre-diabetic
and diabetic states by the use of Cox proportional hazards and logistic regression
models [8, 15]. More recently, Nazari et al proposed the implementation of multi-
state Markov model with continuous-time process to model T2DM [13]. In this
work, authors proposed to consider time intervals between the changes in the disease
states to provide a comprehensive view of pre-diabetes/diabetes states. Dagliati et
al proposed careflow mining algorithm to detect the most frequent patterns of care
in T2DM patients in a cohort of more than 1000 patients [7]. Authors concluded
that progression of the disease is slow and the process of care is characterized by
frequent modifications. Based on these findings, techniques that allow to handle
high variability and noisy data have been suggested as more suitable, such as fuzzy
models or Hierarchical Bayesian Logistic Regression [6, 21]. These models are
based on probabilistic graphical models that allow to simplify complex networks
of interactions and providing a better understanding of T2DM processes.

12.3 Process Mining Approach to Type 2 Diabetes

As we have seen in previous chapters, process mining is a technique that focuses on
extracting knowledge from data stored in a warehouse or a corporate system which
has the objective of providing analytics on the processes that produced that data. The
management T2DM is based on the continuous adjustment of therapies and lifestyle
counselling (e.g.: diet, physical activity, drugs) that aims to maintain and increase
patients quality of life, by preventing, diagnosing and treating any type of episode,
comorbidity or complication that may appear. This continuous process is supported
by clinical and non-clinical activities that vary from one context to another and is
highly influenced by the characteristics of the patient (which also change in the
course of the disease).

Healthcare processes to manage T2DM are highly dynamic, complex, multidis-
ciplinary and fitted-for-purpose, in the way that each endocrinology unit has its
own interpretation to implement standard clinical guidelines. Understanding T2DM
processes is not an easy task, even though it is clear that by its optimization patients’
quality of life and use of clinical resources can be increased and optimized. The
definition of Interactive Process Indicators (IPIs) for T2DM management would
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provide significant and meaningful information to analyze and understand the care
process from both a single patient perspective or groups of patients.

The irruption and popularization of information and communication technologies
has enables the collection and structured storage of any activity executed in a
hospital. Any action or decision performed by a clinician, nurse, technician or
manager is susceptible to be stored in a Hospital Information System (HIS) that
compounds a huge number of databases, servers and components. Activities are
stored as events, in a log format or as structured records in a database, containing
information about when, who, what, to whom, and the result of that activity (among
other relevant data). Process modelling techniques use this information to define
how an entire process (composed by several activities) is being deployed using
the data stored when the activity was held. Therefore it provides a high realistic
view on how the process was implemented, helping the involved stakeholders to
obtain information about the sequential order of the activities, the role of each actor,
bottlenecks and unexpected paths. In this chapter we will analyze IPIs for the major
indicator in T2DM management: HbA1c.

The types of data in which process mining is executed is crucial to determine
which kind of techniques and approaches can be driven to obtain valuable informa-
tion key indicators. Event logs (or records) are the most common way to organize
data, nonetheless, it is important to discriminate which kind of data these records
contain. In our experiments we analyze vital signs consisting of laboratory tests
which are related to the therapies, the response of the patient ( to the treatment
and to the compliance) and his/her behaviours. Dealing with quantitative data and
process mining needs to establish a level of abstraction to convert it into categorical
data (temporal abstractions, categories consisting of ranges, rules, etc..)

Prior to apply the process mining models we need to perform some tasks to
extract data, pre-process the data corpus, and finally to apply preliminary filters
depending on the type of analysis. The extraction algorithms gathers and sorts all the
recorded events using a temporal axis and then filtering for the type of observation
(HbA1C). Thereafter, the corpus is built by connecting all the records. Finally the
filtering algorithms extract only the activities matched to rules that have driven
the analysis. After compiling all the relationships, discovering the nodes and the
transitions, the model provides a set of workflows that reveal the pathways present
into the analysed data set.

The workflows discovered using process mining are built up by nodes (activities)
that are connected with arrows (transitions). According to the Business Process
Theory, all the workflows must have a START and an END node, which will be
represented by grey @Start and @End nodes that represent the first and the last
record for a given patient in the data set considering a specific time range. In-
between this nodes, a health process will be represented using the components
shown in Fig. 12.1. Each node will contain the label defined in each type of analysis
(in this example nodes are LOW, MED and HIGH) and will be connected through
arrows to other nodes, indicating that a patient (or group of patients) has passed
from one node (activity or status) to another.
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Fig. 12.1 Components of the workflows. Nodes are the states, in which the color reveals the time
each patient remains in that state and the arrows are the transitions between the states, in which the
color indicates the absolute frequency of the transition

Moreover, by applying an enhancement algorithm we are able to add a colour
code to these components. This colour, which follows the traffic light approach,
explains which is the absolute frequency of a given node or transition. A node will
be red if it is a common activity or stage among patients and green if it is rare. The
same will be applied to the transitions, an arrow will be red if there is a high flow
of patients following that path or green if the flow is reduced. As mentioned the
frequency is absolute, it represent the set of patients in each node/transition taking
into account all the patients that accomplish the inferred workflow.

Figure 12.2 shows three illustrative cases of Interactive Process Indicators in
the case of HbA1c in T2DM management. On the left side the Fig. 12.2 shows
three examples of HbA1c trend and on the right side the corresponding process
indicator. The first case (upper chart and workflow) shows the ideal case of therapy
adjustment until the patient reaches the target value of 7%. In this case reflects that
the measurements go up and down depending on the adjustment of pharmacological
treatment and other supplemental interventions such diet and physical activity.
The patient has HbA1c records every 2 months, which means is compliant with
regular check recommendation. The inferred workflow has many indicators for this
behaviour. The most significant is that there are only two transitions from start
(S) and to end (E) nodes and these are in green. This characteristic reveals that
the patient is compliant with the regular check-ups. Looking into the nodes, the
workflow shows an intense transitions (in red) between HbA1c high (H) and low
(L), which reveals the excursions of the tests up and down. This reveals that the
patient has gone under an intense process of therapy adjustment or that the HbA1c
was not successfully controlled. Finally there are two transitions for the medium
(M) node, which is also connected to the end revealing that the patient was finally
stabilized in a normal HbA1c value. The second case (middle chart and workflow)
shows the case of a patient with high values of HbA1c during a long period. Even
though the patient is compliant with the check ups (transition from S to H is in
green), he expends most of the time with high values (node H in red), but finally is
controlled and thus the transition to the end node comes from the medium node. The
third case (lower chart and workflow) illustrate the paradigmatic case of a patient
who has few tests. In this case the process is highlighted by a red transition from
the start to the high node as the observations are considered as isolated events and
not part of the same process due to the time distance between them, and this leads
to assume that the patient has been in high state during this time. Moreover, the end
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Fig. 12.2 Examples of Interactive Process Indicators for HbA1c management

transitions comes from the two nodes (H and L) showing that this patient has up and
down episodes.

These three examples are useful to illustrate the Interactive Process Indicators
which should be considered when analyzing real data, as they will be grouping data
from several patients and a lot of information will be contained in the workflows.

Once data is defined and understood, process mining analysis should be driven
to answer specific questions posed by endocrinologists and healthcare managers
dealing with T2DM management:

• Which are the common paths followed by the majority of patients?
• Is there any recurrent exceptional or unexpected path?
• Does the care process comply with the clinical protocols?
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12.4 Type 2 Diabetes Management Processes

In this example of the application of IPIs to T2DM we analyze an anonymized data
set from La Fe Hospital (Valencia, Spain) consisting of 107,338 observations from
10,730 T2DM patients from 2010 to 2015 (See Fig. 12.3).

According to the medical guidelines for the management of Type 2 diabetes and
consulted medical experts, population can be segmented according to their age into
three main groups: less than 45 years old(45-), between 45 and 70 years old (45–70)

Fig. 12.3 Descriptive
statistics of the HbA1c during
the observed period.
Temporal distribution of tests
and their result. Histogram on
the number of tests per
patient
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Fig. 12.4 Distribution of the
HbA1c levels for the three
age groups

and over 70 years old (70+). Our analysis will be done based on these three groups
(See Fig. 12.4).

12.4.1 Analysis of HbA1C

HbA1c has been validated as a good estimator of the average blood glucose values
during the last 3 months, and despite it does not reflect some important events (e.g.:
blood glucose excursions), it is one of the main indicators for T2DM follow-up and
treatment decisions.

The main recommendations from standard guidelines can be synthesised into
two actions: to check up regularly through laboratory test and to keep the values
as closest as it is possible to 6.5–7%. For the first action patients are scheduled
to perform blood extractions and visits to endocrinologists in outpatient clinics
or general practitioners. For the second action, patients can have a wide range of
interventions, that depend upon several factors (life-style, diet or pharmacological
treatment). These interventions are primarily aimed to decrease HbA1c values, but
they should be balanced with patient’s quality of life.

Based on the process oriented perspective of T2DM management, HbA1c should
be represented by three nodes, each of them standing for the category of the
measured value: LOW (HbA1c ≤ 6%), MED (6%<HbA1c≤ 8%), HIGH (>8%). It
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Fig. 12.5 Workflows for HbA1c in the three considered age groups

is clear that measurements beyond 8% should be categorized with more resolution,
but for the sake of this chapter we will focus on the aforementioned targets.

The data set containing HbA1c observations is transformed into a event log in
which each event has the following fields: Patient identification, timestamp of the
observation, value of the observation. The process mining algorithm will process the
data by assuming that two observations happening in a time range below 6 months
are part of the same group of events (the second observation is a control of the effect
of the proposed intervention), whereas a longer duration will lead to assume that the
two observations are independent (regular follow-up).

The group of patients below 45 years old is composed by 127 patients. In
the workflow (a) of Fig. 12.5 we can observe that the relative frequency of first
observations are balanced between the three HbA1c levels (high, medium and low).
The majority of the patients are more time in the Medium and High states than in
the Low state and we can see that the transitions between these states are barely
significant. This is an indicator of either a low compliance of the regular check ups
or the inability to reduce the glycemic values during time.

The group of patients between 45 and 70 years old is composed by 1360 patients.
In the workflow (b) of Fig. 12.5 we can observe a similar behaviour to the previous
group but in this case patients are more time in the Medium state than in the High,
which reveals a better performance of the interventions to keep patients in a normal
range of glycemic values. However, the number of transitions and their absolute
frequency could be indicating a low compliance to regular check ups.

The group of patients over 70 years old is composed by 2803 patients. In the
workflow (c) of Fig. 12.5 we can observe that patients are more compliant with the
regular check-ups, as denoted by the red transition to the medium node, and even
more than in the previous group, patients stay more time in the medium range and
less in the high state, which is also indicating the good response to the interventions
in this group of age.

From a general perspective there are no clear paths in the management of
HbA1c in T2DM patients, and the analysis must rely in the Interactive Process
Indicators such as the strength of the transitions and the average time on each state.
However, these analytics are useful to observe that the time between HbA1c tests
is exceeding the ADA recommendations (transitions departing from start should be



12 Interactive Process Mining in Type 2 Diabetes Mellitus 213

less populated) and as a consequence it is difficult to define the paths that each
intervention and the patient response is reflected in the HbA1c behaviour.

Moreover, these analysis are also able to show exceptional or unexpected paths,
as for example the transitions from High to Low in the three age groups. These
transitions are revealing a significant decrease in the glycemic values, and thus a
good response to the interventions. These patients could be analyzed more in detail
to study the reasons underneath this good behaviour.

And finally, we can see that the group of patients showing a better behaviour is
composed by patients over 70 years old, as the expend most of the time in normality
(not healthy though) values. But also that the care process partially complies with
the clinical protocols of regular follow-up of this crucial indicator in the T2DM
management.

12.5 Conclusion

T2DM prevalence will increase in next decades, and will be proportionally linked
to the ageing of population and increase in life-expectancy. Health institutions and
healthcare professionals are currently highlighting the importance of reactive care
in T2DM. HbA1c, as a reference parameter in the management of T2DM should
be exploited to investigate the process of care and therapy and build processes
which allow advancing in the understanding of both patient behaviour and individual
responses to treatments.

In this chapter we have shown a first approximation of T2DM management to
IPIs and process mining. The adjustment of process mining techniques enables the
definition of IPIs revealing valuable information about the adherence to clinical
guidelines and the ability of the interventions to meet their goals with respect to
the blood glucose regulation. Besides, process mining methods for discovery and
enhancement allowed to identify common and uncommon paths of patients by
just loading HbA1c test in the form of an event log. The information contained
in the workflows showed that some patient groups yield a better performance of
the treatments in terms of HbA1c and that other patient groups need important
interventions to normalize HbA1c values.

Flagship clinical trials such as the United Kingdom Prospective Diabetes Study
(UKPDS) and the Kumamoto study confirmed the validity of this indicator to
predict the development of complications. IPIs would be an interesting perspective
to analyze temporal series of HbA1c and the onset of complications. Future work
should look into the integration of other sources of data, such as the treatment
recommendations and the complications development (using International Disease
Codes for instance) to trace the care-paths that prevent/delay the worsening of
T2DM patients and the effective therapies for patient’s fenotypes.
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Chapter 13
Interactive Process Mining in IoT and
Human Behaviour Modelling

Juan J. Lull, José L. Bayo, Mohsen Shirali, Mona Ghassemian,
and Carlos Fernandez-Llatas

13.1 Introduction

The implementation of IoT means that sensors can be introduced in an area, enabling
continuous human activity measurement and, through Wireless Sensor Networks,
the output data may be sent to servers where information about the person may be
processed and interpreted.

Ambient Intelligence (AmI), a concept that was proposed in 1990 by the Euro-
pean Commission Information Society and Technology Advisory Group (ISTAG)
and Philips, consists on the creation of spaces where the technology serves the
person in the most transparent way [12].

AmI lets the technology perform smart actions depending on the person’s
behaviour, such as switching lights on and off when the home resident moves from
room to room [5].
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In AmI, the Ambient side of the system includes sensors that provide the subject’s
context, i.e. a projection of the person as realistic as possible. The Intelligence side
introduces the processing of the context so the environment around the subject may
be enhanced. This enhancement depends heavily on the subject, since there are
differences at the cultural level as well as gender, height, age, etc., so technology
improvements in the environment are totally dependent on the specific person.
Furthermore, the same person’s behaviour changes in time, and the system should
adapt accordingly. As an example, if the home or environment “knew” the person
was feeling anxious or depressed, it could change lights or music accordingly. This
would improve the life of a person invisibly.

One challenge for AmI is that IoT generates large amounts of data. For example,
a simple heart rate measurement every second through a wearable, would account
for around 90,000 measurement instances per day. If a person was monitored by
a doctor every three months, around 8 million measurement instances would be
available from visit to visit. This is something the doctor would not be able to
interpret directly. The context would also be key here: heart rate could be high
because of different possibilities, such as practicing sports, a stressful situation, a
cardiovascular problem with no external manifestation, etc. GPS or other sensor data
such as passive infrared sensors (PIR) or Bluetooth beacons, would add a context
about the person. The situation in which we have a context as accurate as possible
about the person is better than the nowadays usual way of following the person’s
health or wellness: A subjective survey based on what the person remembers about
his health status during the previous months. As we can see, AmI may be of great
help, by obtaining a more specific model of the person and ameliorating the subject’s
condition or dispatching the person to the doctor when necessary, than a visit to the
doctor every three months with subjective data from what the subject remembers
about his health condition.

By introducing IoT devices with sensors, the following aim could be achieved:
the monitorization of the activity would generate and send the data through the IoT
devices to a central server. The activity data would then be analysed and turned into
meaningful behavioural data, e.g. the person is walking less than usual; heart rate is
high and there is sleep deprivation; etc. Systems with computing capabilities analye
the assimilated data to recognize the activities of inhabitants or events. These can
automate the domestic utilizations effectively and also can support the inhabitant
by reducing the costs and improving the standard of living [13].

It was stated earlier that the context of the subject is key. The correct analysis
and integration of all the sensors may create an accurate context about the subject,
so that real improvements could be introduced in the subject’s life. Big data plays
a key role here: Lots of information are available, and they must be interpreted
correctly. The system that, based on the data, generates accurate human behaviour
models, should be easily understood, since it is of vital importance that the models
and decisions taken to help the person are correct. As seen in previous chapters,
general pattern recognition models are prone to errors; those that act as black boxes,
without information about how the models were generated, should be used with
great care. Interactive pattern recognition models would be preferred, since they let
us know and review the validity of the models. As [14] state, at present, biology is
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the foremost field generating enormous amounts of data needing to be sorted. These
data also need to be analyzed for a better understanding of the research at hand.

Since we are trying to model behaviour, process mining techniques are suitable
for this study. A person’s conduct is easily modelled as a series of steps or activities
with their corresponding timestamps. This has already been applied to different
fields, mainly the medical and elderly care one [7, 8], but also to education [1, 11],
consumer conduct [3, 10], etc. Examples include the successful differentiation and
modelling of male and female behaviours in shopping malls for customer experience
personalization [3], or the behaviour in a group of 25 in-house patients [4], amongst
others. In these cases, the interest is on how their behaviours are different, what is
unique e.g. in men’s behaviour as opposed to women’s behaviour, so that an added
value can be introduced in the consumers’ experience.

In this chapter, an interactive process mining system is applied to data obtained
through IoT, specifically through PIR. The methodology lets us see different
behaviours in one single person and how this could be applied to intra-subject
studies with millions of measurement instances, discovering changes in individual
conduct and their specific characteristics.

13.2 Study Data and Procedure

The type of data that has been used here was described in [4]. Basically, data from
PIR sensors was acquired for 70 days. The sensors were at the person’s home,
covering different areas:

• Kitchen
• Living room
• TV room
• Bathroom
• Bedroom
• Corridor
• Entrance
• Storage
• WC

The subject was a 28-year-old healthy male who was then studying and working
at the University.

Approximately 80,000 detection instances were recorded by the PIR sensors
(around 1,150 instances per day).

The process mining algorithm that was used is PALIA, implemented by the Insti-
tute of Information and Communication Technologies (ITACA) of the Universitat
Politècnica de València, Valencia, Spain [9].

We introduced the data for our model as: Whenever the sensor detected the
person, we classified that the person was in that area until he moved to another
area. In this way, we could assign times for each activity, in the following fashion:
One action is modelled as: Location (Activity) + Start time + End time.
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Whenever the subject is detected in the entrance and until a new detection is
performed, we assume the time in the entrance as outside the house.

An event log was created that included the different actions in time. Therefore,
we had a single log that showed the actual position of the subject through time. The
log was divided per day by separating the log into 24 h-days, that initiated at 0:00.
Each 24 h-day is stored as a trace inside the log.

Since PIR data is usually contaminated, we discarded data that could have been
generated because of problems with the sensors, inside a noise removal process.

The correction algorithm, based on the heuristic topological distance, has been
formally defined elsewhere [8]. Informally, it consists on the comparison and edition
of two different Timed Parallel Automata (TPA), one of them representing the
possible transitions inside the house, the base Interactive Process Indicator (base
IPI), and the other one representing the trace that we want to correct. The edition of
each trace TPA minimizes the differences between the evolved IPI corresponding to
a trace, and the base IPI, deleting, adding or fusing nodes.

Specifically:

• Consecutive events in the same place were fused into one event (fusion weight
was set to 0).

• Consecutive events between areas that were not connected, were discarded (e.g.
the entrance and the bathroom are not directly connected so two consecutive
events with entrance and bathroom were discarded; this was achieved by
assigning a weight of 0 to the deletion of nodes).

• The creation of nodes was not permitted (weight of node addition: −200).

The possible movements inside the house are represented in the graph that shows
the base IPI, depicted at Fig. 13.1.

Fig. 13.1 Base IPI graph representing possible connections between areas in the house (Start and
End nodes have been omitted in the Figure)
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According to the structure of the house, the subject could move from the kitchen
to the living room and vice versa. From the corridor, he could move to the bedroom,
the WC, the bathroom or the storage, etc. However, places such as the corridor and
the kitchen are not directly connected in the house, so two consecutive events with
a corridor and a kitchen events do not appear as connected in the base IPI and this
kind of connection would be discarded as an outlier when comparing a trace TPA
against it.

Each corrected TPA is defined as an evolution IPI. Those indicators represent
different behaviours in the subject.

13.2.1 Clustering Behaviour Models

Finally, a Quality Threshold Clustering algorithm based on heuristic distance (see
[8]) was applied, in order to group similar behaviours. The algorithm has two
parameters, similarity and minimum density.

The first parameter, similarity percentage, indicates that individual traces in a
cluster cannot be differentiated by more than the parameter value, according to their
distance.

The second parameter, minimum density percentage, indicates that in order to
consider a group as a valid one, the density of members should account at least for
a minimum density size. In practice, this means that groups will need a minimum
number of trace TPAs that constitute them. Otherwise, it would be considered as an
outlier TPA and would not be introduced in any group.

Both parameters were optimized, by testing with different levels of similarity and
density. In the end, 20% similarity and 5% minimum density were selected. Lower
levels of similarity generated groups with similar behaviour but subtle changes,
while 5% minimum density lead to classify groups with less than four elements
as outliers. The parameters should be changed depending on the study. If subtler
changes should be detected (i.e. in the case of an elderly person that we need to
study because she or he has changed their behaviour as of late), the parameter values
would be different (in that case, a lower similarity ratio would be chosen). The user
needs to interact with the model, so it is perfected.

The applied clustering method discovers the number of groups (i.e. there is no
previous definition of the number of groups that must be achieved, [4]).

The days classified as outliers were reviewed and two days were detected that did
not have data from parts of the day and were discarded. The two days were removed
from the data.

13.3 Results

Four groups, showing different behaviour through the day, were detected. Apart
from them, 3 outliers were found that did not fulfil the conditions of distances
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Table 13.1 Groups obtained
through heuristic distance
clustering

Group Days Calendar colour

0 35 Red

1 22 Navy blue

2 4 Green

3 4 Yellow

Outliers 3 Light blue

Total 68

and density. The groups were formed by 35, 22, 4 and 4 days. These are shown
in Table 13.1.

The groups show several differences among them. A table with average duration
and standard deviation per activity per day, along with a workflow, are presented for
each group.

In each workflow, the colour of the nodes reflects the average time per day
dedicated in each area via a heat map: The redder a node representing a location,
the longer the subject stayed at that location. The greener, the less time the subject
spent there. The same colour scale is shared across the different day groups. This
means that green represents 0 h while red represents the maximum amount of time
spent at a single location, around 13 h.

The arrow colours represent the number of times the subject moved from one
place to another. The colours range from green to red (few movements up to highest
number of movements). This scale has been adjusted for each group, so opposite to
the node duration colours, this one does not represent the same number of executions
at every workflow.

The different classified days can be seen in the calendar represented in Fig. 13.2,
with the colour codes that appear at Table 13.1.

13.3.1 Group 0

The group 0, consisting of 35 days/traces (1 trace per day) out of 68 day, has the
characteristics shown in Fig. 13.3 and in Table 13.2.

The subject spent most of the time outside the house (as stated previously, it is
assumed that detection instances in the entrance correspond to either entering or
leaving the house). The second place the resident stayed most was the bedroom and
then the tv room. We can see this in Fig. 13.3 (reddest colour is associated to the
entrance and then the next ones are the bedroom and the tv room) and in Table 13.2.
Specifically, the subject was outside for approximately 14,5 h and 4 h in the kitchen.

When using PALIA, the user may hover the cursor over the node and see specific
data, such as the information shown in Table 13.2.
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Fig. 13.2 Distribution of classified days in a calendar view

Fig. 13.3 Group 0 Flow
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Table 13.2 Group 0, duration in hours per day and standard deviation between different days per
location

Location Bathroom Bedroom Corridor Entrance Kitchen Liv. room Storage TVroom WC

Avge. duration 0,22 7,05 0,18 11,41 0,57 0,28 0,03 3,90 0,31

Std. deviation 0,13 1,67 0,03 5,37 0,09 0,06 0,05 0,39 0,04

Fig. 13.4 Group 1 Flow

Table 13.3 Group 1, duration in hours per day and standard deviation between different days per
location

Location Bathroom Bedroom Corridor Entrance Kitchen Liv. room Storage TVroom WC

Avge duration 0,26 13,13 0,35 0,68 1,67 0,39 0,07 6,90 0,50

Std. deviation 0,16 1,40 0,05 0,91 0,14 0,02 0,11 0,44 0,05

13.3.2 Group 1

The group 1, consisting of 22 days/traces has the characteristics shown in Fig. 13.4
and in Table 13.3.

As shown both in Fig. 13.4 and in Table 13.3, it is straightforward that the
maximum amount of time was spent in the bedroom, followed by the tv room. The
home resident moved frequently between the corridor, the tv room and the living
room and less frequently between the living room and the kitchen. He moved still
less frequently between the corridor and the bedroom. In this second cluster of days,
the subject did not practically leave the house, less than 3/4 h per day. In the rest of
the groups, the subject left the house for longer periods.
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Fig. 13.5 Group 2 Flow

Table 13.4 Group 2, duration in hours per day and standard deviation between different days per
location

Location Bathroom Bedroom Corridor Entrance Kitchen Liv. room Storage TVroom WC

Avge duration 0,12 11,95 0,22 6,52 0,83 0,31 0,03 3,54 0,43

Std. deviation 0,05 1,45 0,01 2,61 0,06 0,01 0,03 0,26 0,04

13.3.3 Group 2

The group 2, consisting of 4 days/traces (1 trace per day) has the characteristics
shown in Fig. 13.5 and in Table 13.4.

As Table 13.4 and Fig. 13.5 show, the subject stayed most of the time in the
bedroom, but it was less than the time spent there on days from Group 1. The
second place was the entrance, i.e. outside home, and then the tv room. This group
represented four days.

13.3.4 Group 3

The group 3, consisting of 4 days/traces (1 trace per day) has the characteristics
shown in Fig. 13.6 and in Table 13.5.

During the four days in group 3, the subject stayed most of the time in the tv
room. In the second place was the bedroom and in the third place was the entrance.
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Fig. 13.6 Group 3 Flow

Table 13.5 Group 3, duration in hours per day and standard deviation between different days per
location

Location Bathroom Bedroom Corridor Entrance Kitchen Liv. room Storage TVroom WC

Avge duration 0,53 6,29 0,24 2,15 1,21 0,36 0,07 12,68 0,40

Std. deviation 0,19 1,47 0,01 1,38 0,08 0,01 0,02 0,56 0,04

13.4 Interpreting Group IPIs

As can be seen in the results, the automatic clustering identified two main cluster
evolution IPIs that accounted for most of the days, groups 0 and 1. The reason
behind the classification can be easily seen by visual inspection of the aggregated
workflow.

The results may be interpreted as shown in Table 13.6. This understanding of
what the relation is between the data and the real person, needs the expert that can
add critical meta-information to the context. In this case, there was information
about the subject that was available: he studied and worked at the same time, at the
University, with a flexible timetable. So, it is feasible he was mainly studying some
days, while on other days (most of them) he was working.

Individual days can be seen (in PALIA, the calendar view lets the user enter into
any of the days and see the workflow corresponding to that day). Thus, it is easy to
inspect the individual TPA corresponding to a day in a group.

As an example, we can see the individual traces for some of the days that were
classified differently. Figure 13.7 shows one of the days classified as group 0.
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Table 13.6 Interpretation of group IPIs

Group Main characteristics Interpretation

0 High time in entrance; kitchen: around half hour; around 7 h
sleep; less than 4 h in the living room

Working outside

1 High time in bedroom, then tv room; nearly no time outside Studying for an exam

2 High time in bedroom; less than 8 h outside; less than 1 h in the
kitchen

Leisure: Going out

3 High time in the tv room; more than 1 h in the kitchen Leisure: At home

Fig. 13.7 Workflow corresponding to the resident’s behaviour on January 14 2017, group 0

Figure 13.8 shows the workflow for a day in group 1. Another workflow for group
1 is shown at Fig. 13.9. They can be compared to the cluster TPA and between them
and see their similarities. Figure 13.10 shows the workflow for a day that was not
classified in any group, and was thus considered an outlier.

The comparison between days inside a group, or between one day and the TPA
representing the group, visually shows the differences between data. In Fig. 13.11,
the workflow representing the subtraction of 7 November from 19 January, both in
the same group, shows the following differences: time spent at the tv room was
higher (5 h 48 min. vs 3 h 43 min.) while time spent at the bedroom was lower
(14 h 40 min. vs 15 h 55 min.). A higher number of transitions between the kitchen
and living room was also detected in day 7 Nov. compared to 19 Jan. (32 and 16
transitions, respectively). However, in general terms both workflows are very similar
between them.

The comparison between days in different groups clearly shows the distinction
in behaviour that motivated the different classification. In Fig. 13.12, big changes
can be observed both between the duration in the locations of the house and the
transition between the locations. The most significant changes between days were
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Fig. 13.8 Workflow corresponding to November 7 2016, group 1

Fig. 13.9 Workflow corresponding to January 19 2017, group 1

the time spent in the bedroom (7 h 34 min vs 15 h 55 min.) and in the entrance -
outside the house- (14 h 7 min. vs 1 h 22 min.). Areas that make nearly no difference
at all can also be seen, such as the living room, the WC or the corridor, and are thus
painted white. The transitions between areas in the house was also lower in 14 Jan.

As can be seen, automatic detection of different behaviours is straightforward.
Different patterns in the resident behaviour can be visually detected. Also, outliers
are easy to detect and inspect in order to classify them as data that must either be
discarded, or that correspond to very different behaviour to the other days.
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Fig. 13.10 Workflow corresponding to November 10, 2016, outlier

Fig. 13.11 Resulting workflow after subtracting 19 January from 7 November TPAs, both
corresponding to the same group 1
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Fig. 13.12 Resulting workflow after subtracting 14 January TPAs from 7 November, correspond-
ing to group 0 and group 1, respectively

13.5 Conclusion

IoT can improve our lives in many aspects, in case we can analyse the vast amounts
of information it provides. The more sensors and smart devices we have, the better
the context we can create around the subject, and the more accurate the information
and decisions about the subject we can take.

As Farahni et al. stated, in the terms of IoT and health, timely big data processing
and analytics are needed to have actionable data on multi-scale, multi-modal,
distributed and heterogeneous large datasets [6].

Behaviour modelling is an inherently complex task, since there is a great
inter-subject and intra-subject heterogeneity. Modelling the individual behaviour is
most complicated since the same subject changes his or her conduct every day,
in subtle or obvious ways. Creating a model that correctly displays the average
behaviour in a group of subjects is a task that has been accomplished in many
studies and with techniques different to IPM. However, modelling the intra-subject
behaviour without sacrificing the concept drift (i.e. processes are continuously
changing in time) may be a titanic task. As [2] state, Concept drift has been
shown to be important in many applications (. . . ). However, existing work tends
to focus on simple structures such as changing variables rather than changes to
complex artifacts such as process models describing concurrency, choices, loops,
cancellation, etc.

In this chapter, we have shown how different process models can be inducted
from a subject’s behaviour. We have shown how modelling differences in conduct
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in a subject, with IoT data that calls for big data, can be achieved through IPM. The
techniques applied in this chapter could easily be applied to different fields, because
of the exploratory and visual characteristics of interactive process mining.
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Chapter 14
Interactive Process Mining for Medical
Training

Jorge Munoz-Gama, Victor Galvez, Rene de la Fuente, Marcos Sepúlveda,
and Ricardo Fuentes

14.1 Process Mining in Medical Training

Process Mining has been widely used in healthcare in different medical areas [18],
and recently some applications in the medical training field has been developed. In
particular, the use of Process Mining in the training of procedural skills has opened
a branch of opportunities to fill gaps in this field.

Procedural skills are essential to perform surgical procedures and to obtain good
clinical outcomes [4]. Literature suggests that surgical procedures can be seen as a
process [16], so it is possible to analyze surgical procedures with Process Mining.
This perspective allows focusing on the sequence of steps of a surgical procedure,
an aspect rarely considered in the medical training research and practice. Also, this
view enables the development of different applications that can be useful in the
medical training context for tasks like teaching, assessment, giving feedback, among
others.

In this chapter, we will use the Central Venous Catheter insertion as a running
case to illustrate the POME (Process-Oriented Medical Education) methodology.
This surgical procedure has six main steps: first, to prepare implements and patient
for the procedure; then, a vein is punctured using a trocar (a needle with a hole
to introduce a guidewire); next, the guidewire is passed through the trocar; later,
the trocar is removed, and the catheter advanced through the guidewire; finally, the
guidewire is removed and the catheter installed.
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14.2 POME Methodology

Figure 14.1 shows the POME (Process-Oriented Medical Education) methodology
overview. This methodology facilitates the analysis of surgical procedures as a
sequence of steps and uses the results for medical training tasks. It is composed of
three stages: first “Model Stage”, second “Data Stage” and third “Analysis Stage”.
Each stage has its components and relations between them, which we explain below.

“Model Stage” consists of developing a graphical representation (i.e. a model) of
the surgical procedure as a process. In “Process Modeling” step, a first draft of the
model is designed and then is assessed the model experts agreement level through
a “Delphi Panel” step. Experts should be doctors who have experience performing
the procedure. Both steps are iterative: depending on the level of agreement reached
in the “Delphi Panel” the model is modified, to then assess the expert’s agreement
level with the model again. This stage ends when the level of agreement reached is
the desired.

“Data Stage” focus on generating data to analyze surgical procedures as pro-
cesses. That means creating Event Logs. In order to do so, executions of the
procedure are needed, which are commonly captured through video recordings
(“Execution and Recording” step). These videos are used for different tasks in
medical education, but still is not clear their effectiveness and how to use them
[6]. We tag the videos with the activities defined in the model developed in “Model
Stage”. Tagging videos allow getting the entire sequence of steps of an execution,
and therefore an Event Log with all the executions.

Execution 
and 

Recording

Process 
Modeling

Delphi 
Panel

Process
Reporting

Video 
Tagging

Process
Mining

POME
Methodology Data Stage

Analysis StageModel Stage

Fig. 14.1 POME methodology overview
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In “Analysis Stage” the Event Log generated in “Data Stage” and the model
generated in “Model Stage” are used to perform the analysis with Process Mining
algorithms. With the information obtained after treating the data, it is possible to
create a report (“Process Reporting” step). Designing the report will depend on
the goal of the application. However, the main requirement is to create an easy-
to-interpret report for doctors.

14.3 Model Stage

14.3.1 Process Modeling

The first step in our methodology is to have a Generic Surgical Process Model of
the procedure in analysis. This model has been defined as “a simplified pattern of
a medical procedure in a formal or semi-formal representation” [16]. This generic
model will not only be useful to have a reference standard to compare the executions
made; rather, it is a representation in which the procedure is broken down into
sequential steps, decision points and alternative pathways. This breakdown of the
procedure has been defined as an input that all procedural training must have
[5, 10, 24].

The development of this model is not trivial due to the inherent difficulties of
generating process models for the healthcare and medical education domains:

1. Surgical processes show a lot of variability among executions due to the experi-
ences, skills and preferences of the health personnel, the patient’s characteristics,
and the availability of resources and technology [15, 16].

2. When consulted how they perform a procedure, experts tend to omit relevant
information [25]. This omission can reach up to 70% of the steps necessary for a
correct execution [21], and it has been attributed to the automation of high levels
of expertise [9].

3. An adequate representation of a procedure requires a holistic approach to
procedural competence. Whoever performs a procedure must have not only the
necessary technical skills but also the skills that ensure the patient’s physical
and psychological comfort, such as the care necessary to avoid mechanical
and infectious complications. Thus, McKinley et al. have defined the following
dimensions as necessary components of any representation of a procedure: prepa-
ration; infection control; communication and work with the patient; teamwork;
security; procedural competence; post-procedure care [13].

In this context, the objective when developing a model for Process-Oriented
Medical Education (POME) is to have a model without local or speciality biases,
versatile to be applied to different settings and centres, complete from the point
of view of having all the technical information necessary for the execution and
complete because it includes those steps necessary to obtain a holistic representation
of the competencies required for adequate health care.
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Thus, the generic process model is obtained in two stages: one is the generation
of a first model of the procedure, and second is the validation of the model using
the Delphi Methodology. For the first stage, we rely on published checklists for
the chosen procedure. A checklist is a list of observable activities or behaviours,
organized consistently, that allows an observer to record the performance dichoto-
mously (i.e. done or not) in an assessment context [7]. All published checklists
are analyzed in terms of their psychometric validity, their completeness of activities
and the presence of the seven dimensions of competence, defined by McKinley [13].
Using the list of activities defined in the checklists as a reference, a representation of
the procedure is constructed in BPMN notation, a notation that, in addition to being
a de facto standard, has proven to be easily understood by users in the healthcare
area [19, 20]. The result of this first stage is a first generic process model, which will
be subjected to a validation process that avoids biases of speciality or local practices
that make the model little applicable to other health centres or realities. The process
is explained below.

14.3.2 Delphi Panel

Delphi methodology has proven to be an effective tool in many disciplines to
achieve consensus among experts on a given topic [3, 8]. It is characterized by
the anonymous interaction of experts, who in successive and controlled rounds can
modify their answers after knowing the answers of the rest of the participants. This
interaction concludes when the consolidated responses represent the majority of the
group [14]. The realization of the Delphi panel requires a structured characterization
and selection of experts. For this purpose, we used the recommendations of Okoli
and Pawloski [17]. In our case we define a minimum time of experience in the
procedure, a minimum number of monthly executions and additionally meet one of
the following characteristics: be the local manager of the procedure, be an accredited
instructor, be the head of a service where the procedure is performed frequently
or have participated in guides or publications regarding the performance of the
procedure.

Once the experts from different specialities and health institutions have been
selected, they are invited to participate in an online survey. In the survey, the
activities defined in the first model are ordered sequentially, asking the experts to
express their agreement with the inclusion of this activity in the final model, through
a 5-point Likert scale: (1) under no circumstances should be included, (2) should not
be included, (3) may or may not be included, (4) should be included, (5) must be
included. Also, they are asked to propose new activities, modify proposed activities,
and propose changes to the place they should occupy in the sequence. Once the
experts complete the survey, the results obtained for each activity are presented
in a second survey, showing them as the percentage obtained by each item on the
Likert scale. Also, the new proposed activities are added, and they are asked to
express themselves regarding the suggested modifications for any activity. In this
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Fig. 14.2 BPMN model of the Central Venous Catheter installation. (Adapted from [2])

second survey, they are again invited to weight the inclusion of each activity in the
final model of the procedure based on the same 5-point Likert scale. This sequence
is repeated up to a third time if the previously defined agreement criterion is not
reached. To ensure the adequate methodological quality, planning and execution
of the Delphi panel, it should follow the recommendations of Diamond et al.:
a reproducible selection of participants, the definition of a stopping criterion, a
maximum number of rounds, and an exclusion criterion for each item [3].

The proposed modelling methodology allows obtaining a representation of the
procedure in BPMN notation, based on the information available in publications and
subsequently enriched through the consensus of experts from different centres. This
mixture of information allows us to have a process model without local or speciality
biases that can be applied to analyze. Figure 14.2 shows the model obtained for the
running case.

14.4 Data Stage

14.4.1 Execution and Recording

Processes analyzed with Process Mining commonly have an information system
behind them, recording all the data generated during their execution. Even when its
database is not recording the data with an Event Log shape, it is possible to build
them using this data. In [11], these type of processes are called plugged processes
(left image in Fig. 14.3).

However, some processes are not supported by information systems, because in
some parts its execution is not recorded in common databases, is based on hands-on
work or involves the mixture of other data sources than common database systems
(e.g. paper data or logs, spoken decisions). Process Mining can help to analyze
these processes, but creating the Event Log needs a different treatment than plugged
processes. In [11], these type of processes are called unplugged processes (right
image in Fig. 14.3).
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Fig. 14.3 Process Mining for plugged processes (left) and unplugged processes (right)

How to collect data to analyze unplugged processes is the question, and the
answer will depend on the context. In the medical training field, execution of
surgical procedures commonly are video recorded, so the primary source of data
cames from them. In our running case, we uploaded the executions recorded to a
platform called POMElog [11], where it is possible to watch the executions and tag
the videos with the sequence of activities defined in the “Model Stage” of POME
methodology. With POMElog, data is created as Event Logs, and this platform
delivers it ready to analyze the data using Process Mining.

14.4.2 Video Tagging

POME methodology involves video tagging as a way to obtain data from videos,
which should be done by experts in the surgical procedure in analysis. Because of
that, the lack of surgeons experienced and the little available time they have [22] is
a challenge that needs to be addressed. In this step, experienced doctors are needed
or, at least, doctors well trained in how to execute the procedure. This is crucial to
ensure data quality and no-biased results.

Methods to control the bias generation during data collection, as well as methods
to generate the Event Logs will depend on the data resource type used. To avoid
bias, in our running case, we use the Levenstein distance [1] to decide how different
are the tags between different taggers. To generate the Event Logs, we developed
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Fig. 14.4 POMElog and features [11]

POMElog, a web-based platform where videos can be tagged and doing so generate
the data.

POMElog [11] allow doctors to tag videos in a user-friendly way, because of the
features it has. Following Fig. 14.4, POMElog contains all the activities of the model
designed in the Model Stage (section A), different views to help the tagger precisely
decide which activity is being executed (section B), give the option to select the
starting and ending point of time an activity is executed (section C), adjust the speed
of the video (section D) and finally export the event log (section E).

14.5 Analysis Stage

Once created the Event Logs, it is time for the “Process Mining” step. Process
Mining algorithms receive as input the data, and the chosen algorithm depends on
the task of interest. If the objective is to know the common pathway followed by
executions of a surgical procedure, Discovery algorithms can be used to see it and
its deviations. If the objective is to compare the model generated in the “Model
Stage” of POME methodology with data obtained in “Data Stage”, Conformance
Checking algorithms can help to accomplish this task.

After “Process Mining” step ends, it is necessary to design an easy-to-understand
report for doctors. “Process reporting” step consists of showing the results of the last
step in a way doctors can understand and use in medical training tasks. The report
will vary depending on the objective for what it was generated. Figure 14.5 shows
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Fig. 14.5 Diagram of the Guidewire Install surgical procedure stage included in the feedback
report. The expected execution is shown on the left side and the student’s performance is shown on
the right side [12]

an example. It was generated using Process Mining as a way to give feedback to
students about the sequence mistakes they did during their training [12].

Designing the reports should consider doctors are not expert in Process Mining
but healthcare. It is essential to establish requirements for the report, and then test
with them if the report accomplishes them. Also, it is crucial to evaluate their
understanding and ease of interpretation of the report. With this, the likelihood of
use of the application designed will increase. Validation techniques [23] can help on
this task (expert opinion, effects analysis, among others).
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14.6 Conclusion

This chapter describes the POME methodology, which allows considering the
sequence of steps as a point in medical training applications. This methodology
proposes a novel strategy to analyze surgical procedures as processes, creating all
the elements needed to run a Process Mining project. “Model stage” allows to
obtain an abstraction of a surgical procedure, “Data stage” proposes a new way
to use videos and obtain data from them, and “Analysis Stage” take in consideration
context variables as bias and ease-of-understanding of the information given to
doctors. We use the Central Venous Catheter insertion procedure as a running case,
showing a successful case of using this methodology. This example encourages the
use of Process Mining with other surgical procedures, enabling the development of
new tools to the medical training field.
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Chapter 15
Interactive Process Mining for
Discovering Dynamic Risk Models in
Chronic Diseases

Zoe Valero-Ramon and Carlos Fernandez-Llatas

15.1 Introduction

An enormous amount of data is nowadays available thanks to the massive introduc-
tion of Electronic Health Records (EHR) in medical systems. This data supposes
the witnesses of the patients’ journey along the health care pathway. This data by
itself does not suppose any significant progress, but it provides a great opportunity
for creating new awareness, and allowing more effective and precise treatments.
However, data analysis is needed to gain the knowledge to improve, not only the
quality of the provided care but also to improve the experience of the patient.
Data analytic gives value and meaning to collected data and facilitates personalised
decisions enabling a full circle of care around an individual in the personalised
medicine paradigm [9]. All these data have been also used to develop health risk
models in the preventive medicine approach. Risk Models are statistical tools
intended to offer an individual probability for developing a future adverse outcome
in a given time period [33]. Risk Models are computed in a moment and have
validity over time. Risk values of an individual patient, play an important role in the
decision taken by health professionals, who decide treatments delivered to patient
depending on them. Predictive models and decision support systems, including risk

Z. Valero-Ramon (�)
Process Mining 4 Health Lab – SABIEN – ITACA Institute, Universitat Politècnica de València,
Valencia, Spain
e-mail: zoevara@itaca.upv.es

C. Fernandez-Llatas
Process Mining 4 Health Lab – SABIEN – ITACA Institute, Universitat Politècnica de València,
Valencia, Spain

CLINTEC – Karolinska Institutet, Sweden
e-mail: cfllatas@itaca.upv.es

© Springer Nature Switzerland AG 2021
C. Fernandez-Llatas (ed.), Interactive Process Mining in Healthcare, Health
Informatics, https://doi.org/10.1007/978-3-030-53993-1_15

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53993-1_15&domain=pdf
mailto:zoevara@itaca.upv.es
mailto:cfllatas@itaca.upv.es
https://doi.org/10.1007/978-3-030-53993-1_15


244 Z. Valero-Ramon and C. Fernandez-Llatas

models for clinical use or diagnostic tools, support health professionals addressing
the management of patients with chronic diseases.

There are several definitions for chronic conditions, the World Health Orga-
nization (WHO) defines them as diseases of long duration and generally slow
progression [35] and other author [6] as having one or more of the following charac-
teristics: they are permanent, leave residual disability, are caused by non-reversible
pathological alteration, require special training of the patient for rehabilitation,
or may be expected to require a long period of supervision, observation or care.
Both definitions agreed in the fact of being of long duration. Some of the chronic
diseases with greater impact are coronary heart disease, stroke, many varieties
of cancer, depression, diabetes, asthma, chronic obstructive pulmonary disease or
hypertension among others. Over 50 million people in Europe have more than one
chronic disease, due to either random co-occurrence, possible shared underlying
risk profile, or synergies in disease development [29]. Chronic conditions require
ongoing management over a period of years or decades, so individuals’ behaviour
should be taken into consideration.

Personalised medicine approach lays on treatment strategy based on individuals’
unique behaviour, moving away from the one size fits all approach. Consequently,
behind the idea of precision and personalised medicine, there is a need to discover
concrete patients’ behaviour and individualised models. The adequacy of treatments
to categorised patients in a more precise way, not only increases the effectiveness
of care pathways but also improves patients’ experience of care. Precision medicine
cannot only be based on genetic sequencing, or simple stratification founded on
collected variables or risk models [10]. This scenario is even more important
in the case of chronic diseases, were the continuum of healthcare for patients
and population, focused on prevention and management of patients with chronic
conditions and/or multiple morbidities is crucial.

While current understanding of risk models relies on models that consider
static snapshots of variables or measures, rather than ongoing, dynamic feed-
back loops of behaviour considering changes and different states. Moreover,
diseases are not static, they evolve towards different destinations, especially when
talking about chronic health problems. In the same way, the human being is
not static, an individual evolves throughout her/his biography in age, lifestyle,
socioeconomic status, or intercurrent diseases, and all these aspects affect the
patient’s evolution. Conventionally, individuals’ health modelling, assessment, and
management, have been done from a static and time-invariant set of concepts,
definitions, and propositions, assuming linear relationships among variables. How-
ever, the temporal perspective of the clinical information is crucial for a complete
understanding.

Although the main benefits of using risk and prediction models in the healthcare
domain are clear, since they are now implemented, do not respond well to unex-
pected changes in patient’s conditions, as they suit standard conditions rather than
unusual or unpredictable ones [7]. Individual differences cause great variances in the
execution of risk models. In consequence, risk models of chronic conditions should
be dynamic, including disease variability and dependencies with other conditions
(such as comorbidities, social conditions or age). In this line, Process Mining
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Technologies can construct individualised behaviour models [14]. Moreover, there
is a rising interest in discovering more accurate stratification groups, that may
allow a better care delivery and maximise the process value based on each group
conditions [25]. There is a necessity to include health behaviour, mental health,
social determinants, and individual preferences to achieve a full precision medicine-
based care [17]. Accordingly, there is a concern to stratify individuals built on their
behaviour rather than in their disease [2]. Process Mining could also help with this
concern.

In this chapter, the authors propose a method for discovering different dynamic
risk models for chronic diseases, based on the stratification of individuals’ behaviour
using the Interactive Process Mining paradigm. As explained in previous chapters,
Interactive Process Indicators (IPIs) are Process Indicators produced as a result
of the application of interactive paradigm with professionals, therefore, disease
dynamic modelling is possible creating the corresponding IPIs, as explained through
this chapter. Using this method, we are not also able to discover better models, but
also to analyse and study them through Process Mining techniques and tools. These
IPIs could be used for a better understanding of medical processes.

15.2 Chronic Conditions

Obesity is nowadays considered a chronic disease which worldwide prevalence
has reached a pandemic dimension. The worldwide predominance of overweight
and obesity has doubled since 1980 to an extent that nearly a third of the world
population is now classified as overweight or obese [1]. WHO defines overweight
and obesity as abnormal or excessive fat accumulation that may impair health.
Body mass index (BMI) is a simple index of weight-for-height that is commonly
used to classify overweight and obesity in adults. It is calculated by dividing a
person’s weight in kilograms by the square of his/her height in meters (kg/m2) [36].
WHO also establishes a normal BMI range as 18.5 to 24.9, while a BMI greater
than or equal to 25 kg/m2 and below 30 kg/m2 is considered to be overweight, and
similarly, a BMI greater than or equal to 30 kg/m2 is classified as obese. However,
obesity and overweight are more than a simple excess weight, they are a major risk
factor for noncommunicable diseases. Based on literature research, comorbidities
known for their association with overweight and obesity are cardiometabolic factors,
including risk factors (hypertension, hyperlipidemia and type II Diabetes Mellitus)
and cardiovascular diseases (ischemic heart disease, cerebrovascular disease, and
peripheral vascular disease), asthma, and musculoskeletal disorders (osteoarthritis
of the lower limbs and sciatica) [4, 22, 26]. When a patient is classified as obese,
the risk of comorbidities is considered as severe [22]. However, this is not only a
question of patient’s current state but it is also indeed more important to consider
obesity onset, obesity evolution, weight fluctuations, duration of obesity (known as
the time since BMI was first known to be at least 30 kg/m2), or even parental BMI to
see comorbidities association and treatment [13, 32]. Nevertheless, in real practise,
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if a patient decreases his/her weight, and, after a re-computation, achieves a normal
BMI, automatically all these risks disappear from the actual static care approach.

In summary, the evolution of the risk model is not taken into account. The
changes in the individual risk values are usually connected to the behaviours,
attitudes, and beliefs of patients. That means, people with the same disease and
treated with the same treatment respond in different ways. Knowing the patient as
an individual is key to select the best treatment for him or her [37].

Hypertension is another of the well-known chronic conditions. Hypertension,
also known as high or raised blood pressure (BP), is a condition in which the blood
vessels have persistently raised pressure. Based on WHO information, hypertension
is a serious medical condition and can increase the risk of heart, brain, kidney and
other diseases. It is a major cause of premature death worldwide, and an estimated
1.13 billion people worldwide have hypertension [34]. Blood pressure is based in
two numbers, systolic blood pressure representing the pressure in blood vessels
when the heart contracts or beats. And the diastolic blood pressure representing
the pressure in the vessels when the heart rests between beats. Hypertension
is diagnosed if, when it is measured on two different days, the systolic blood
pressure (SBP) readings on both days is 140 mmHg or more, and/or the diastolic
blood pressure (DBP) readings on both days is 90 mmHg or more or taking
antihypertensive medication [20].

On the other hand, blood pressure shows noticeable oscillations over the
short and long term [18]. Short-term fluctuations are these occurring within a
24 h, whereas long-term fluctuations occurring over more-prolonged periods (days,
weeks, months, seasons, and even years). These variations are the result of complex
interactions between environmental and behavioural factors and cardiovascular
mechanisms [24]. It means, these variations over time are important and should
be taken into account.

Hypertension is a lifelong disease that is manageable but generally not curable.
New technologies now enable patients to generate accurate home-based BP readings
that could be stored directly into the electronic medical record. Using more frequent
BP measurements in conjunction with assessment of social health determinants and
data analytics can be generated more personalised interventions that can improve
BP control [21].

15.3 Assessing Chronic Conditions with Risk Models

In the literature, there are several approaches to standardise risk models in medicine
using time-stamped data. Knowledge-Based Temporal Abstractions (KBTA or TA)
is one of them [27]. TA are mainly methods to achieve a switch from a qualitative
time-stamped description of raw data, to a qualitative interval-based representation
of time series, intending to abstract high-level concepts from time-stamped data. TA
has been used to approach health processes in some areas such as prognosis of the
risk for coronary heart disease [23], for defining typical medial abstraction patterns
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[5], and for the assessment of costs related to Diabetes Mellitus [11]. Previous
works tried to generate an automatic summarising of the patient’s current based on
his/her data through temporal abstraction. However, the great majority of clinical
variables, such as weight, blood pressure or temperature, have numerical results,
but TA techniques are based on discrete labels, and in consequence, it is excluding
important information from the analysis. Other work in the literature performed a
dual approach, using TA in combination with Process Mining for blood pressure
and temperature [15].

In this line, other authors suggested the importance of taking into account
the full set of behaviours through real-time measurements to create models over
time and, in consequence, infer patterns, context, and states of patients, with
the ultimate objective of developing personalised interventions [28]. Nonetheless,
modelling methodologies rely on predictive strategies rather than the evolution
of patient measurements or pathways. Going a step forward, it is needed to
implement a data-driven approach capable of discovering patients’ behavioural
models as temporal and dynamic flows succeeding precision medicine paradigm
[10]. With this objective, Data-Driven Models are key for supporting the discovery
of individuals’ behaviour process [8].

15.4 Interactive Data Rodeo for Creating Dynamic Risk
Models

In this section, a complete use case of an Interactive Data Rodeo is described as a
proof of concept of the Interactive Process Mining methodology. The main objective
of the Interactive Data Rodeo was to obtain dynamic models associated with chronic
diseases, concretely to obesity and hypertension. And the ultimate goal was to
use these models as IPIs for the understanding, measurement, and optimisation
of the processes associated with obesity and hypertension diseases and related
interventions, allowing health professionals to navigate behind the models and to
discover the specificity of the processes associated with individuals. A complete
Data Rode was implemented to obtain a set of IPIs that can be used as indicators
for understanding and measuring the behaviour of individuals within obesity and
hypertension processes, that can support health professionals in their daily practice
regarding these chronic diseases. This was carried out following the flow described
in Chap. 9 and which different steps are highlighted in Fig. 15.1.

The implementation of the methodology was performed in a real scenario with
real data, using retrospective data of a tertiary hospital in Spain. The corpus
considered was collected from real patients. Data were extracted from the EHR
of the hospital between 2012 and 2017, from primary care, hospital admissions,
emergency, outpatient and morbidity diagnosis services, as described in Table 15.1.
All data were anonymised previous to the extraction. In the following sections, there
are explained all steps performed within the Data Rodeo flow.
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Fig. 15.1 General Data Rodeo Flow

Table 15.1 Data description

Unique
Table Description patients/observation Period

Patients
Anonymize

General information about
patients: age, identifier, some
diagnoses

50,196 –

Primary Care Data collected in primary
consultations: variables and
annotations

17,853/215,523 2017

Hospital Admis-
sions

Type of admission, ICD9a,
Diagnostics, DRGb, date

10,403/180,797 2012–2016

Emergency Severity description,
Admission service code,
destination service, date

34,054/180,797 2010–2017

Outpatient Provision type, date 36,667/706,888 2012–2017

Morbidity Diag-
noses

ICD9a code, diagnose date 48,080/1,048,575 1993–2017

aInternational Statistical Classification and Related Health Problems
bDiagnosis-Related Group

As explained in Chap. 9, the process of ingestion is the first step in a Data Rodeo
and is in charge of providing the Data Log to start the Process Mining flow. In this
concrete case, the hospital experts provided the data in several Comma-Separated
Values (CSV) files, concretely one CSV file per table included in Table 15.1, where
values were represented in a set of rows and columns. At this point, it was performed
the selection of the relevant data for the creation of the corresponding IPIs. As there
were established two main chronic diseases under the study, obesity and high blood
pressure or hypertension, information was extracted from Patients Anonymize and
Primary Care, which description is included in Tables 15.2 and 15.3 respectively.

At this stage, data were processed to compute the variables that were used for
creating events and trace data during the following stage. There were also completed
two actions: format corrections and adding new semantic values. Format corrections
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Table 15.2 Patients Anonymize description

Column name Data type Example

ID_ANON Global unique identifier 000269d4-b40a-df4f-a1c0-56db3f989ad2

Age Group Integer – group of age by 5 years 40

Overweight Integer: 1/0, overweight diagnose 0

Obesity Integer: 1/0, obesity diagnose 1

Unspecified
Overweight or
Obesity

Integer: 1/0 1

Table 15.3 Primary Care description

Column name Data type Example

ID_ANON Global unique identifier 000269d4-b40a-df4f-a1c0-
56db3f989ad2

Measure Date String 20170830

Code
Measurement

String – type of observation BMI, Weight, Height, SBP,
DBP,. . .

Numerical Result Floar – result of the measurement 87.5

Text Result String – indicates void numerical
result

Yes/No

Age Group Integer – group of age by 5 years 45

were applied to Measure Date and Numerical Results, whereas a new semantic
variable for the result was added. The semantic result provides a semantic vision
that facilitates the understanding of the chronic condition process semantically.
In the case of obesity, it was introduced the BMI semantic result as follows:
Underweight for BMI numerical result <18.5; Normal for BMI between 18.5 and
24.9; Overweight or Pre-Obese for BMI between 25.0 and 29.9; and Obese for BMI
greater than 30.

Cut-off points considered for BP were those specified by the American Heart
Association (AHA) for the classification of Hypertension [3]. So BP semantic result
was introduced as follows: Normal for SBP numerical result <120 mmHg and
DBP numerical result <80 mmHg; Elevated for SBP between 120 and 129 mmHg
and DBP <80 mmHg; Hypertension stage 1 for SBP between 130 and 139 mmHg
or DBP 80–89 mmHg; and Hypertension stage 2 for SBP ≥140 mmHg or DBP
≥90 mmHg.

Event data was composed by the start corresponding to Measure Date; the
completion time or end adding a second to the start; the name of the node, the
identification of the trace, and metadata correlated with the event. The name of the
node was based on the BMI and BP semantic results as Named events, defined by
the clinicians according to the mapping of the process. The identification of the
trace corresponded with the ID_ANON and finally, the metadata associated with the
event store overweight and obesity diagnoses, Obesity, and Overweight columns
respectively. Whereas the trace data, considered as the set of metadata related to
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the same case, included the Age Group. At this point the Process Mining Log was
created and ready for the next stage, Log filtering, and processing.

After creating the Log, the next stage is filtering and processing the data to select
the adequate Log for constructing the IPI. At this point, we have applied a different
filtering strategy for the two different IPIs, Obesity and Hypertension. In the case
of obesity, we have implemented five different filters in the following order. First,
void traces were deleted, second, there were selected patients with more than four
observations during the period, then traces were sequenced assuming ending of the
current trace was the beginning of the next one, fourth a fuse filter was applied to
fuse equal traces. At this point, from the 17,853 initial unique patients, there were
obtained the flows for 2,260 patients after implementing previous filters. Finally,
a clustering filter was used for stratification. The objective was to extract sub-logs
from the main log representing a set of subpopulations based on BMI characteristics.
We have selected Topological Distance as it maximises the similarity between two
traces, concretely Weighted Topological Distance (WTD) [14] augments similarity
in the topology structures of the inferred workflow. This distance was used with
Quality Threshold Cluster (QTC) [12] as the Clustering algorithm. QTC algorithm
requires a quality threshold to decide the maximum distance among traces in the
cluster. At this point, better results arose with a quality threshold of 0.12 for the
clustering algorithm and 0.01 of similarity.

A similar strategy was applied in the case of Hypertension, implementing six
different filters in the following order. First void traces were deleted, second patients
with both SBP and DBP measures at the same moment were selected, third patients
with more than four measures during the period were chosen. Fourth, traces were
sequenced assuming the ending of the current trace was the beginning of the next
one, fifth equal traces were fused. At this time, trace clustering using WTD and
QTC was used to obtain sub-populations based on BP behaviour. Better results were
achieved for the quality threshold of 0.12 and 0.02 similarity.

Process Mining Discovery phase objective is to obtain the Process Model repre-
senting the given model using the appropriate discovery algorithm. PM Discovery
algorithm used in this work was PALIA (Parallel Activity Log Inference Algorithm)
[16]. PALIA has been widely tested in real healthcare scenarios, such as follow up
protocols of patients with diabetes [11], for discovering surgery department flow
[16], malnutrition assessment [30], for the characterisation of emergency flows,
measuring organisational change effects [19] or obesity modelling [31]. For the
experimentation of this work, we have used the implementation of the PALIA
algorithm provided by the PMApp tool [19]. After applying the Process Mining
Discovery algorithm we obtained the Process Model ready to be processed in the
next step.

Model Processing stage’s main purpose is to process logs to compute the
metadata associated with the model. To create useful dynamic models of chronic
conditions is needed to compute the metadata related to the model, for example,
two patients could have the same BMI events, but their timing and frequency
are completely different. It is the analysis of these differences the key point in
the understanding of the dynamical characteristics of the model. PALIA support
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metadata associated to models in several ways, concretely in this work we have
used metadata computed to nodes and edges with statistical information, so we
can comprehend how the executions of the models have been performed. This
statistical information includes the execution number, the duration average, the
duration median, the duration aggregation, the case number and the duration by case.
PALIA also supports storing the relationship between the topological structures of
the model with the log events, so it is possible to navigate from the model to the
individual. This feature helps in the understandability of the model and the trust of
the professional in the model. The result of this step was a Process Meta-Model
ready for the next stage of the Data Rodeo.

Until this stage, we had been accessing, collecting and processing data, but the
interactive paradigm implies not only to extract information but also to present this
information to the human experts, in this case to the health professional. This phase
supposes the last one in the Data Rodeo flow and its result is the IPI presented to the
user. PMApp tool provides a visualisation area joint with enhancement capabilities.
Thanks to heat maps we were able to highlight statistical data of the model with
colours in nodes and edges. At the end of this stage, two IPIs were produced: the
Dynamic Obesity Risk Model and the Dynamic Hypertension Risk Model.

15.4.1 Interactive Process Indicators for BMI and BP

Once all steps of the interactive Data Rodeo were applied, two interactive Process
Indicators were obtained: the Dynamic Obesity Risk Model and the Hypertension
Dynamic Risk Model. These two models represent the BMI and BP behaviour of the
population considered respectively. The Strategy previously explained for BMI has,
as a result, nine different groups plus a set of outliers representing the stratified
population in nine well-defined sub-populations with the same BMI behaviour.
These nine groups are included in Figs. 15.2–15.10 from the most prevalent dynamic
behaviour to the less prevalent.

Figures represent models where, the nodes, have been colored with a gradient
that means the median time of stay, and edges have been painted with a gradient
symbolizing the number of patients, that, proportionally follow this transition,
where gradient scale goes from green (minimum value) to red (maximum value).

Fig. 15.2 Cluster 0: Stable
Obese

Fig. 15.3 Cluster 1: Stable
Overweight
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Fig. 15.4 Cluster 2:
Increasing Risk

Fig. 15.5 Cluster 3:
Increasing Obesity

Fig. 15.6 Cluster 4: Decreasing Risk

Within this IPI a two-stratification level is observed, where the first level corre-
sponds with the behaviour in the period, it is increasing, decreasing or stable BMI,
since the second level models weight itself. An example of this two-stratification
could be seen in cluster 3 (Fig. 15.4), which represents increasing BMI behaviour
from normal to the overweight stage, it means an increasing pattern over time.

Following this schema, the most numerous group is the Stable Obese Risk Model
with 742 patients representing the 32.8% of the population in Fig. 15.2, it is pursued
by Stable Overweight risk model with 683 patients, 30.2% of the population showed
in Fig. 15.3. It means 63% of the considered population was obese or overweight
during the period with no changes. The third cluster displays Increasing Risk
Model (Fig. 15.4), including 269 patients gaining weight during the period from
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Fig. 15.7 Cluster 5: Possible
errors

Fig. 15.8 Cluster 6: Decreasing to normal

Fig. 15.9 Cluster 7: Unusual
Weight Changes

Fig. 15.10 Cluster 8: Stable
Normal
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Fig. 15.11 Dynamic BP:
cluster 0

Fig. 15.12 Dynamic BP:
cluster 1

normal to the overweight stage, and consequently also increasing their risk of
comorbidities. The fourth group represents 204 patients with Increasing Obesity
Risk Model (Fig. 15.5), this group also illustrates patients within an increasing risk
model, but progressing from overweight to obese stage and worsening their risk
of comorbidities. The fifth group formed by 105 patients, represents Decreasing
Risk Model (Fig. 15.6), where the population is losing weight, slimming down
from obesity to the overweight stage, and in consequence decreasing their risk of
comorbidities. Following group Possible errors with 57 patients (Fig. 15.7), includes
obese population moving from obesity to underweight and going back to the initial
situation, in a very short period (less than three months). Navigating from the model
to the individual, health professionals were able to indicate measurement errors as
the most plausible explanation for this behaviour. The seventh group showed in
Fig. 15.8, corresponds with the Decreasing to Normal Risk Model, where all patients
moved from overweight to normal stage. Unusual Weight Changes Risk Model in
Fig. 15.9, another time navigating from the model to the individuals, health experts
detected that this population corresponded with special situations, such as surgeries
or pregnancy. Finally, a population with a Stable Normal Risk Model included in
Fig. 15.10, represents only 1.8% of the population with 40 patients.

This first obtained IPI represents the Dynamic Risk Model for obesity chronic
disease modelling the BMI behaviour of the studied population, this means a
dynamic obesity stratification based not only on BMI stage in a concrete moment
but also and more importantly, on individuals’ behaviour over time.

Likewise, the strategy applied for BP generated sixteen groups plus a set of
outliers representing the stratified population in sixteen sub-populations with the
same BP behaviour. These groups are included in Figs. 15.11–15.26 from the most
prevalent dynamic behaviour to the less prevalent.

Figures from 15.11–15.26 also represent models where the nodes have been
coloured with a gradient using the median time of stay and edges by the number
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Fig. 15.13 Dynamic BP: cluster 2

of patients, that, proportionally follow this transition, where gradient scale goes
from green (minimum value) to red (maximum value). These 16 groups show
intrinsic variability of BP, as a continuous variable that fluctuates in response
to various physical and mental changes. Nevertheless, obtained groups represent
patients’ BP behaviour in two-level as in the obesity case. The first level includes
the conduct within the period, it is increasing, decreasing, stable and irregular risk
models. Whereas the second level includes the different BP stages. With this two-
stratification level, we obtained Stable Risk Models for normal BP with 335 patients
representing only the 9.3% of the studied population (Fig. 15.12) in cluster 1, for
hypertension stage 1 with 185 patients (Fig. 15.15) in cluster 4, and hypertension
stage 2 with 118 patients (Fig. 15.19) in cluster 8.

Increasing BP Risk Models include cluster 0 (Fig. 15.11) with 655 patients
increasing their BP from hypertension stage 1 to stage 2. Cluster 3 (Fig. 15.14)
also includes an increasing pattern, with 223 patients moving from elevated and
hypertension 1 to hypertension stage 2; cluster 11 (Fig. 15.22) represents a similar
behaviour, with 103 patients mainly moving from normal BP to elevated BP or
hypertension stage 2. Last, cluster 15 (Fig. 15.26) also includes patients with an
increasing risk model, from normal BP to hypertension stage 2. Increasing BP Risk
Model represents 29.7% of the population.
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Fig. 15.14 Dynamic BP: cluster 3

Fig. 15.15 Dynamic BP: cluster 4

Fig. 15.16 Dynamic BP: cluster 5

Irregular BP Risk Models include patients with constant changes in their BP
values, showing they have not well controlled their BP. These groups are: cluster
2 shows 239 patients mainly finalising with normal BP but with long episodes of
different hypertension stages illustrating how important is to consider the whole
process (Fig. 15.13). Similarly, cluster 13 shows patients the majority of the time
with normal BP, but with several episodes of elevated and hypertension stage 2
(Fig. 15.24). The rest of clusters, cluster 7 with 122 patients (Fig. 15.18), cluster
12 with 102 patients (Fig. 15.23) and cluster 14 with 88 patients (Fig. 15.25) are
clear examples of patients with decompensated BP with several episodes of different
hypertension stages.

Decreasing BP Risk Models are represented by cluster 5 with 146 patients
decreasing from hypertension stage 2 to stage 1 (Fig. 15.16). Cluster 6 with 132
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Fig. 15.17 Dynamic BP:
cluster 6

Fig. 15.18 Dynamic BP:
cluster 7

Fig. 15.19 Dynamic BP: cluster 8

patients diminishing their BP from hypertension stage 2 to normal (Fig. 15.17).
In cluster 9, there are included 118 patients moving from hypertension stage 2 to
elevated BP (Fig. 15.20), whereas in cluster 10 106 patients finalised the period with
normal BP although they came from elevated BP (Fig. 15.21).

Once again, this second IPI, the Dynamic Risk Model for Hypertension chronic
disease, has allowed the characterisation of the population into sub-groups based on
their dynamic BP behaviour, rather than a static classification based on a BP static
measure.
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Fig. 15.20 Dynamic BP:
cluster 9

Fig. 15.21 Dynamic BP:
cluster 10

15.5 Discussion and Conclusions

The utilisation of Interactive Process Mining in a concrete health scenario, chronic
disease, through a concrete methodology implementing a Data Rodeo has permitted
to obtain two valuable and innovative Process Indicators that could be used for
understanding and measuring chronic underlying processes. Interactive Process
Mining has the potentiality of presenting findings over data in an understandable
view to health experts so they could find new medical evidence. Moreover, it can
be self-adapted to the population is applied and ca be automated over an emerging
cloud of personal devices, allowing health professionals to analyse individualised
behaviour and to compare current status with past inferred workflows, and to
measure changes in treatments or adherence. The formalisation of the application
of Interactive Process Mining through the Data Rodeos methodology has eased
the generation of the interactive Process Indicators interactively. Thanks to data
analysis interactions between health professionals and Data Rodeo experts, we have
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Fig. 15.22 Dynamic BP:
cluster 11

Fig. 15.23 Dynamic BP: cluster 12
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Fig. 15.24 Dynamic BP: cluster 13

Fig. 15.25 Dynamic BP: cluster 14
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Fig. 15.26 Dynamic BP: cluster 15

transformed raw data coming from a real HER from a tertiary hospital in Spain,
in understandable information. As a result, two Dynamic Risk Models have been
generated for obesity and hypertension chronic diseases.

On one hand, the Interactive Data Rodeo has permitted to characterise the pop-
ulation dynamically into nine sub-groups with the same BMI behaviour, building
the first IPI, the Dynamic Obesity Risk Model. Three behaviour patterns were
discovered within this IPI, one for patients with a stable BMI pattern, but two
other models for population changing their BMI during the studied period, showing
increasing and decreasing models. This finding could be very relevant for health
professionals as it shows how the population could by stratify based on their weight
evolution rather than in an isolated BMI data, and treat them in consequence. If
we consider two patients from two different sub-groups of the Dynamic Obesity
Risk Models, the first one from Stable Overweight (Fig. 15.3) and the second one
from Decreasing Risk (Fig. 15.6) groups; they have the same BMI at the end of
the period, it is Overweight, but their behaviours are different. In a classic and
static approach, the only insight is the BMI result, nevertheless, this IPI let us
consider other dimensions of the problem. The first patient has not made any
improvement in her/his health status at any moment, consequently, the patient is
probably not well-engaged with diet counselling or not properly motivated. On the
other hand, the second patient is losing weight, she or he is doing things well and
treatment is working. Therefore, interventions should not be the same for these two
patients to succeed in their weight loss. In the first case, health professionals should
influence general health behavioural changes or deep in what other things could
be influencing the patient so weight loss is not happening. Whereas in the second
case, they should continue to motivate the patient and maximise correct attitudes.
This IPI has allowed the classification of the population regarding dynamic weight
behaviour and has shown insights in an understandable way. With this information,
health professionals could put in practice concrete and personalised interventions in
specific groups trying to influence in particular behaviours.

On the other hand, we were even capable, working in close collaboration with
health professionals, to discover measure errors and unusual weight changes sub-
groups. Health professionals were able to navigate from the model to the individuals
of these clusters to analyse the population characteristics of these groups to avoid
errors that will continue occurring or what kid population is suffering from this
unusual weight changes. These facts showed the potentiality of the interactive
paradigm.

In the case of blood pressure, following the Data Rodeo methodology a second
IPI was obtained, the Dynamic Hypertension Risk Model. This IPI reflects BP
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variability and fluctuation in response to various changes, this is why hypertension
flows have more spaghetti effect than obesity flows. By analysing IPI groups
health professionals could infer if common BP behaviours have associated common
population characteristics or patterns. The Dynamic Hypertension Risk Model
has presented sixteen different sub-groups with population BP continuum and
evolution. Once again, health professionals could compare different groups’ BP
evolution, personalise interventions for the different groups and test their efficacy
and effectiveness over time.

Even more, at that point the application of a Data Rodeo allowed us to combine
both chronic conditions analysis, obesity and hypertension. We considered the IPI
for the Dynamic Obesity Risk Models, and we implemented a new Data Rodeo to
obtain BP flows for each group, intended to discover differences in BP flows among
the different BMI behaviours. This second round for the Data Rodeo run very fast,
as we started from the knowledge acquired in the first data analysis.

Figures 15.27–15.30 represent four insights of BP’ dynamic evolution for four
different groups of the Dynamic Obesity Risk Model. Figure 15.27 shows how
normal BMI population is within a normal BP stage, both in duration and path,
although with some hypertension episodes. Whereas the population with a Stable
Obese Risk Model clearly shows different dynamic behaviour for BP (Fig. 15.28).
Within this group, patients followed a hypertension flow, spending most of the time
in the elevated BP stage. Following the example, we can look at BP evolution for
an increasing weight group, concretely the Increasing Overweight Risk Model.
This model includes the population increasing their obesity risk, moving from
normal weight to overweight. Figure 15.29 illustrates BP flow for this population,
highlighting that although the most common path is normal BP, the population
included in this risk model is experimenting long episodes of hypertension stage
1, applying median to duration time spent per node. This situation endorses the
fact that excess weight is translated into a higher risk of hypertension. Looking
into a decreasing weight group, in Fig. 15.30 is presented the dynamic BP flow for
Decreasing Risk Model. The flow shows that patients spent most of the time in
Hypertension stage 1, followed by stage 2. Although patients are losing weight, the
effects of this improvement on their health status have not yet been noticed on BP.
This could mean weight loss benefits might be visible when this deficit is maintained
over time or with a more drastic weight reduction.

Chronic conditions should be approached following personalised medicine
considering several and complementary dimensions, social determinants, inter-
relationships between diseases and health behaviours among others, to achieve the
best treatment strategy for each patient, therefore patient’s unique behaviour should
be considered. This relies on a concern of stratification groups and risk models
established on behaviours and dynamic evolution rather than in static measures
or predictions. Indeed, health variables are dynamic by themselves, and diseases
not only vary over time but also are dependent on previous stages, behaviours, and
conditions. However, current risk models for chronic diseases are far from dynamic
flows, they have been approached by a static and time-invariant set of concepts
inferring linear relationships among variables. Moreover, the massive data available
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Fig. 15.27 Dynamic BP flow
for Stable Normal BMI Risk
Model

Fig. 15.28 Dynamic BP flow for Stable Obese BMI Risk Model
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Fig. 15.29 Dynamic BP flow
for Increasing Risk BMI Risk
Model

Fig. 15.30 Dynamic BP flow
for Decreasing Risk BMI
Risk Model

nowadays supposes a great opportunity to transform this data into understandable
information for health professionals.

In this chapter, we have implemented a complete Data Rodeo following Inter-
active Process Mining methodology to build two different IPIs for two chronic
conditions, obesity and hypertension, with the ultimate goal of understanding,
quantifying and qualifying obesity and hypertension processes. These two IPIs
represent the Dynamic Obesity Risk Model and the Dynamic Hypertension Risk
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Model respectively and let us go a step ahead in the area of risk modelling inferring
real processes behind data.
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Chapter 16
Interactive Process Mining-Induced
Change Management Methodology for
Healthcare

Gema Ibanez-Sanchez and Martin R. Wolf

16.1 Towards an Interactive Change Management Model in
Value-Based Healthcare

The life expectancy of world’s population is increasing vertiginously. This is
accompanied by a growth of chronical diseases, especially among older adults,
which has a direct impact on the health systems around the world. In consequence,
every major economy struggles with rising healthcare costs, and the necessity of
finding ways to assure sustainability of the healthcare systems.

A widely known paradigm is the approach of Value-Based Health Care [43]. Its
main objective is to provide value to the patient through better care, at lower costs,
resulting in better health. This is generally possible by means of an optimization of
existing resources, which implies a global change in healthcare organizations at all
levels – not only organizationally but also individually.

The Digital Transformation of healthcare is one of the options to facilitate this
shift. In a world with many data sources (mobile, HIS, IoT, wearables. . . ), Big
Data technologies [36, 45] might help to interpret this data to analyse the current
situation and to find ways to move forward. However, these techniques, in some
cases, can act as black boxes, where an health expert is not able to understand how
a result was obtained, or which criteria were used to achieve the results. These are
critical questions that cannot be answered by those traditional black box approaches,
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which is one of the reasons, why these approaches have not been well accepted
by the medical community. In particular, health experts need to trust information
technology which can be ensured by transparency in all aspects of the technology
usage, especially when it might have any negative impact on the patients’ health.
In consequence, adequate visual tools and methodologies are needed to support
healthcare professionals to understand the results of Big Data applications and to
transfer this newly generated knowledge into practical activities. Nonetheless, this
implies not only a radical change for the used tools and technologies, but also for
the mindset of healthcare professionals and its culture data value (most medical
professionals see the logging of data as a waste of time that distracts them from
the care of their patients) [36], and the coordination among teams that are usually
hardly able to adopt new approaches in a timely manner [22, 32].

There are methodologies and/or paradigms that try to help on identifying
improvements in health organizations and driving changes, such as Lean Six Sigma
[54]. Such methods have been successfully applied in other fields and are now
being adopted to the healthcare environment [8, 17]. One of these approaches is a
combination of Lean Thinking and Six Sigma, where the first part is a dynamic,
knowledge-driven and patient-centred process (flow focused) through which all
people in a defined organization continuously eliminate waste and create value,
being more effective by doing many small improvements. The second one is a
more data and process-based approach (problem-focused) resulting in dramatic
improvements in service quality and patient satisfaction, by refining system’s output
if variations in all processes inputs can be reduced. Then, the common purpose of
both is to reduce variability and waste through the identification of issues, their
prioritization and the proposition of changes to fix them. Nevertheless, changes
usually result in resistance [58]. Typical comments associated with resistance are
“Why should we change if we already have a solution in place?”, “I don’t have
time”, or “I won’t be able to understand it”, being one of the main barriers
contributing to its low penetration. Concretely, Lean Six Sigma has a failure rate
between 60% and 70% [56], being very hard to implement and sustain. Researches
highlight several barriers and possible obstacles to change [12, 34]. One of its
reasons is that multiple stakeholders with different perspectives and priorities are
involved which makes collaboration more difficult and results in resistance, even
if it is obvious that proposed tools and techniques could provide improvements.
Other barriers in the adoption of Lean Six Sigma in healthcare are the lack of
leadership, engagement of senior leaders, the understanding of what it is and how
it may benefit organizations, and appropriate culture [1, 16, 35]. These barriers can
only be reduced at the level of individuals’ behaviour because they are the basis
of each organization and of the Lean approach. Lean Six Sigma also supports the
coordination of individual’s relation, supported by effective communication, which
is needed to deal with these pitfalls. Furthermore, shared goals and knowledge
enable visibility of the overall work process and the linkages between different jobs,
facilitating employees’ alignment. Whereas, it arises other concerns related to the
dilemma between personal feelings, attitude and perceptions against team views
(experience).
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There are several more aspects that need to be taken into account at the time of
leading a change. Although Lean Six Sigma provides insights to deal with, it is more
focused on reducing waste and variability and there are other concepts, like Change
Management, heavily focused on driving organizations through changes. Nonethe-
less, Change Management, firstly, is based on exploring organization’s effectiveness
and on examining the process of organization development [57]. Furthermore,
Change Management contributes specific models, tools and techniques to prepare
and support individuals and organisations to successfully adopt changes in order
to drive organizational success, and to work on reducing resistance to carry out this
change process shortly and smoothly [23, 41]. Change of individual behaviour is the
centre of every change achievement in organizations. The behaviour of a person is
influenced by her/his personality and context, having concrete expectancies related
to change, and affecting their performance and effort into the adoption of it. Once
individuals are motivated to do something, the organization is ready to embrace any
change. But somehow, individuals are ruled by the norms of the groups they belong
to, and in many cases, those groups are interconnected composing a whole system
– so, this effort is not trivial at all.

Learning processes of acquiring knowledge that lead to behavioural changes are
part of individual changes, in which the performance of the person will be reduced
in certain phases. There are several models about the phases of a change process
from a psychodynamic point of view that usually run from a first shock or denial
phase up to a final phase of acceptance. The best known model [31] on these phases,
where most of other models are based on, is presented in the Fig. 16.1. In general,
people facing as change run through these phases successively.

Fig. 16.1 The process of change and adjustment based on [31]
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In this transition, individuals can feel learning or survival anxieties that, in a
professional environment, could take the form of fear to temporary incompetence,
punishment for incompetence, loss of personal identity or loss of group member-
ship. Survival anxiety must be greater than learning anxiety but learning anxiety
must be reduced rather than increasing survival anxiety. So, how to reduce learning
anxiety? For example, the individual could be smoothly introduced to the change,
then might agree with it, get trained, feel more involved in the process, follow
positive role models, or even have a coach. Albeit, these are actions need to be
guided by an expert.

The emphasis is on a healthy development, authentic relationships and healthy
organizations, believing that people want to continue learning, which leads us to a
set of guidelines and techniques for this purpose. Starting at the individual level,
literature [13] proposes five areas to pay attention to achieve a positive response to
change. These are (1) nature of the change (2) persons who benefit in the change (3)
organizations that handle the change (culture) [50]; (4) types of personality of each
individual, and (5) previous individual experience.

Teams are also a key pillar in organizational life to accomplish complex tasks.
There are different types of organizational teams, each with significant benefits and
downsides. Additionally, when a team is working in uncertainty, greater teamwork
is needed. But not only this is a matter of managing a team, the team must also
be effective. Here five elements have been identified that contribute to team’s
effectiveness, which are: define a team goal and a plan for it, identify roles,
procedures, interpersonal relationships and inter-team relations at the organizational
level. At that point, resistance can be faced in different ways, like feeling insecure
and worried, feeling of loss of prestige, or not feeling involved in the change process.
Thus, individual’s personality [38] might also influence and be influenced by the
team, so it is a challenge balance teams with all these aspects.

At the organizational level, it is highly significant to identify how the organization
works, e.g. like a machine, or like an organism [21, 42], but it is especially important
to point out the political map behind the organization as a crucial element in the
change process [49].

Acceptance is influenced by person’s behaviour, her/his personality, and the
context in which it is located, and it is necessary to facilitate its conditions in order to
gain best possible acceptance. However, if people lack the right mindset to change
and organizations do not set strategies to manage and embrace the change, they
are even though bound to fail (readiness level for a change) [59]. Here individual,
team and organizational aspects of the changes are integrated into a coherent whole,
enabling a framework for this change management.

Although these methodologies are diverse and widespread, their adoption is still
low. Some aspects where they fail are the lack of objective data, being mainly
obstacles in the situation analysis, monitoring and assessment phases. It is a key
aspect of being prepared for a change, being critical to assess the nature and extent
of its effects [2]. Furthermore, data are not always ready for analysis, which might
lead to more time, extra costs and efforts, being translated into a slow and frustrating
process [14]. Usually classical models (surveys, questionnaires, interviews. . . ) are
used [20] to measure the evolution of changes, which are based on subjective data
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coming from end-users (patients) resulting in a tremendous effort when trying to
synthesize the information gathered to evaluate the effectiveness of the changes
applied. It entails a considerable investment of energy and resources, resulting in
evaluations that need more time than expected. In consequence responsible persons
do not know if the change is going to be effective enough or not, and cannot react
in time, which leads in many cases to the failure of the project.

With that purpose, Interactive Process Mining (IPM) is proposed as an instrument
to alleviate this crucial aspect of data analysis as it has been demonstrated that
Interactive Pattern Recognition models converge better and quicker than other
do [19]. From available computerized data, Interactive Process Mining enables
process discovery automation, which reduces considerably the invested effort in the
identification of the processes. It offers medical experts a direct understanding of
it by allowing them to navigate into the different levels of data, offering a high
granularity, until to figure out the root cause of issues, being possible to apply their
experience and knowledge and modify the processes accordingly in an interactive
and iterative way. Interactive Process Mining is able to measure objectively changes,
before, during and after any optimization, to identify an initial starting point, its
evolution, its (in) effectivity and reasons for that, from top to bottom and from
bottom to up.

IPM appears to offer a completely pragmatic approach, which does not mean
that it does not take advantage of the benefits that others have. In this chapter,
we propose a knowledge-based change management methodology (Fig. 16.2) to
improve healthcare organizations based on Interactive Process Mining as the tool
and, with this, are going promote the real digital health transformation in health
organizations.

The proposed methodology has the objective of creating a team-based problem-
solving culture, encouraging digital health transformation in healthcare organi-
zations to elevate the value chain. In this system health professionals become
‘Augmented Intelligence’ through practical solutions that are provided by Interac-
tive Process Mining.

Fig. 16.2 Interactive Process Mining-informed change management methodology for healthcare
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16.2 Interactive Process Mining-Informed Change
Management Methodology for Healthcare

The proposed methodology is thought to support health organizations to develop
change culture mindset, while introducing IPM in its daily practice. Existing
clinical evidences indicate which could be a better practices, but IPM allows
investigating organization reality and providing evidences in a fast and agile way
(who, how, when, why, where. . . ). Following a painless process, where health
professionals pass from the learning to hands-on phase in a transparent way, so
that the methodology is presented in following four phases:

• Assessment. The Assessment phase comprises the first contact with the health
organization, where professionals driving the change need to know how the
organisation is really working and which barriers could exist that might obstruct
the change.

• Arrangement. When the main stakeholder who are driving the change know all
ins and outs of the organization, it is time to present the rules and frames in which
the change need to be implemented. The Arrangement phase is a flexible phase
that takes into account the complexity and necessities of the organization and
provides a general overview of the scope of the project and steps to follow. This
phase should introduce IPM to make health professionals get familiar with the
new working philosophy.

• Adaptation and Adoption. Having identified key success factors of the change
in the previous phase, the Adaption and Adoption phase takes them into account,
facilitating the entry of IPM in the organization gradually. The guidelines
established in the previous phase, help everyone involved in the change process,
to be clear about the role and how to act, reducing the risk of abandonment. At the
same time, IPM initiates an adaptation process divided into shakedown, research,
and production stages, and which results in:

– training health experts in the use of the solution proposed by IPM,
– adapting IPM to special use cases and the corresponding domain until

obtaining meaningful information in a format that health professionals can
easily understand (Interactive Process Indicators) to make decisions, and

– reaching a deeper understanding of medical data through IPM, which then can
be applied at the point of care and/or the identification of improvements in the
organization.

• Application. The Application phase comprises the implementation of any
new change process identified in the health organization to provide value to
patients.
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16.3 The Team

The team behind the methodology (Fig. 16.3) is lead by a switch manager, who
initiates and leads the change into the organization. As it has been introduced in the
previous chapter about Data Rodeos, IT professionals work closely together with
the Interactive Process Miner to make available the data needed. The Interactive
Process Miner is in charge of forming a multidisciplinary team with medical experts
to generate a symbiosis wherein the Interactive Process Miner is able to comprehend
the data coming from the hospital. Then, (s)he can connect data with the PM tool
and turn it into information, which is interpreted by health team, enabling decision
making. Health experts can be managers, directors, heads of unit, clinicians, which
can be doctors, and nurses and IT professionals. Albeit every stakeholder has her/his
concerns, there should be a common understanding of the general objective followed
by the organization, in which a combination of different interests could coexist.
I.e. managers, directors, and/or heads are more focused on measuring Quality of
Service, crossing services, or doctors that have medical knowledge that can apply
in their daily practice to change treatments and improve patients’ health, without
forgetting nurses that have know-how about real operations in hospitals.

16.4 Assessment Phase

This phase is essential to set foundations of a propitious environment for the
transformation. The main objective of this phase is to state the readiness level of
the health organization for the change, utilizing stakeholder maps, where to identify
people that can resist or foster the change.

The first step is to have informal meetings, starting with the person who leads
the change and the management of the organization that in some cases might be

Fig. 16.3 The team behind the interactive model
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the same person, being of paramount importance to get management support. For
that purpose, the premises in which the transformation is done is introduced to the
management team, how it is going to be implemented in the health organization,
presenting the methodology, tools, techniques and structure of the plan to be
executed. Furthermore, it is appropriate to agree on an additional time that health
team should dedicate to the current change process and if a reward strategy is
needed.

The switch manager carries it out, asking key questions, thus being able to
identify medical staff that should participate. The meetings should be done one by
one, maybe taking coffee in a relaxed environment, to figure out the real functioning
and dynamics of what happens in the health organization, experiencing the environ-
ment. These are the actual day-to-day activities carried out by individuals, processes
followed, pressures, expectations and concerns. Likewise, structure, systems and
policies in place, basically how things are formally organized, but most important
are all unwritten activities that emerge over time such as power, influence, culture
or norms. This information allows aligning driving forces towards change as well as
outputs as the target, policies, procedures, rules, communication, team, or resources
(not only at the human level but also at the monetary and time).

16.4.1 Readiness Assessment

The readiness assessment is supposed to be done for internal use only. Gathered
information should not be shared with the organization. For this reason, information
inquiry should not take place with the use of any questionnaire or with provided
assessment overview (because otherwise the results of the inquiry would be
requested by the customer). However, the assessment criteria should be used to
ask the right questions during preparing meetings, to structure the answers and to
generate summarizing results. Areas that should be covered during the assessment
phase are the following:

• Management Support. The extent management agrees to and (actively) sup-
ports the new changes. Management Support is the most important driver (or
preventer) of any change in an organization.

• Target Definition. The extent targets are clearly defined, communicated and
accepted in the organization. Optimally targets are defined in the scope of an
aligned strategy. Well-defined strategy and targets ensure that health profession-
als are used to aligning and following changes and innovations.

• Processes Definition. The extent processes and standardized proceedings are
defined and followed in the organization. Well-defined processes ensure – on
the one hand – that medical experts are used to aligning proceedings (i.e. at
changes) and follow these defined standards. On the other hand, permanently
defined processes may increase the resistance to change these processes.
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• Communication Level. The extent relevant information is shared within the
health organization. A good level of internal communication ensures that changes
are discussed and aligned with personal work processes. Fast communication
structures help to rapidly adopt innovations within an organization – Exception.
In some organizations, the focus is on negative communication (e.g. gossip). In
these cases, communication may slow down and hinder innovation.

• People Involvement. The extent medical teams are (voluntarily or with pleasure)
involved in (organizational) decisions of the health organization. If health
professionals can participate in decisions of an organization, they feel involved
and are more willing to accept the decisions. This affects also the acceptance
of a change, any driving forces of a change and, thus, the speed of introducing
innovations.

• Overall Performance. The overall performance of the health organization,
not just financially but also considering all relevant Performance Indicators. A
good overall performance is an indicator of effective organizational structures,
processes, communication and employees. Thus, it is a summary of the above-
mentioned criteria. It also displays a certain level of satisfaction (unless the
pressure to perform is insanely high), but also a certain extent of resisting forces
(why should we change?). That is the reason why a high overall performance
impacts the introduction of any change negatively.

• Dissatisfaction. The extent medical staff is not satisfied with the actual situation
and wishes to change. Dissatisfaction is – analogously to performance – an
indicator of ineffective organizational structures. It comprises driving forces that
may support any change in the situation.

The Fig. 16.4 may be used to continuously assess the readiness of the organi-
zation. Any actual status that has been queried in the scope of any meetings or
interviews can be depicted as ‘X’ in the sheet.

(*) Displayed ‘Minimally Required Values’ (MRV) required values are only
an estimation and may differ between organizations. Furthermore, not sufficiently
fulfilled criteria may be compensated by high fulfilment of other criteria.

Fig. 16.4 Tool to assess the Readiness of an organization (*)
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Table 16.1 Assessment criteria

Area Questions

Management
support

Does the management actively support the introduction of (1) innovations
generally (2) IPM particularly? Who is supporting? How does the support
look like?

Target definition Are there (1) any strategy (2) any concrete targets that aim to introduce
new and innovative technologies? Are these targets (or strategies) (1)
documented, (2) broadly communicated, (3) accepted and followed in the
health organization?

Processes defini-
tion

To what extent does the health organization uses processes to ensure
standardized proceeding and high-quality results? Are the processes in the
health organization (1) defined and documented (2) accepted and followed
by the medical staff, (3) frequently controlled? Are processes in the health
organization often changed and adopted to innovations?

Communication
level

Do health professionals feel informed about the actual situation of the
organization and with sufficient details? Do health professionals share
relevant information to colleagues? What is the speed of communication
in the health organization? Do they complain about not being informed (or
involved) into certain situations?

People involve-
ment

Are health team usually involved in organizational decisions (i.e. intro-
duction of new technologies)? Are health team ready to get involved in
organizational decisions? Do they like it?

Overall
performance

What is the overall performance of the health organization considering
all relevant performance indicators (i.e. finance, quality of care, patient
satisfaction, health experts’ satisfaction, process compliance, organiza-
tional effectiveness. . . )? How satisfied are health experts with the overall
performance of the organization? What is the performance of the health
organization considering (1) the ability, (2) the willingness to change?

Dissatisfaction Are health experts dissatisfied with the actual situation? Why? What do
health experts wish to change?

In order to fulfil the tool to assess the readiness of the health organization, the
following questions (Table 16.1) to interrogate assessment criteria are presented.

16.4.2 Stakeholders’ Map

Besides assessing the readiness it is important to identify relevant persons who may
influence – either in a positive or negative way – the introduction of IPM. For this
purpose, information about every stakeholder should be gathered systematically.
For documentation of this information, GDPR requirements should be considered.
Furthermore, the information in Table 16.2 should be queried in a structured way.
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16.5 Arrangement Phase

In order to prepare the participants to new working procedures, a dedicated
preparation workshop should be conducted. This workshop not just aims to inform
(and train) the medical staff about the change process, but also to introduce IPM,
presenting its potential to solve problems and to generate ideas on how (and in which
areas) it could be applied in the own hospital, as well as, to create a comfortable
atmosphere to work.

The workshop preparation is divided into 5 stages (Fig. 16.5). It is organized as
a whole morning workshop, where all the health professionals take part, optimally
voluntarily.

16.5.1 Stage 1: Team Setup

The workshop starts welcoming participants with coffee, cookies and drinks. The
idea is to make participants feel save and welcomed. Then, each participant presents
themselves, introducing their name, function and experience with technology (data
science, process mining), with the purpose to know each other and that moderators
know expectations from them, too. It should continue with a brief introduction of
the conductors, who they are, what they do, and why they are there. At this point,
participants can ask questions. Then, there should be an overview to the agenda of
the workshop.

16.5.2 Stage 2: Orientation and Creativity

It continues with a creativity session to figure out processes and main issues, for
which several creativity and consolidation techniques have been selected. Even
though these techniques are considered to be appropriate in change processes, by
helping on the development of empathy in the pursuit the value through human-
centred research [27, 46, 48], they should be considered as proposals; they can be
easily replaced by more appropriate ones [33]. Anyhow, the first part of the session is
dedicated to the identification of processes, forcing participants to envision current

Fig. 16.5 Five stages of the Arrangement phase
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issues in the organization to make them aware of worries, to, secondly, prioritize
these concerns. Some proposed methods are:

• Persona. Each persona card tries to focus on capturing different behaviours, i.e.
‘the teamworker’, ‘the shaper’. The more the needs, desires, habits and cultural
backgrounds of a specific group of people in the organization are fully expressed,
the more realistic it becomes. Participants are divided into groups with 3–4
people each. Every group has to fill in one, partially prefilled, persona sheet,
and the role of the persona-sheet should be different from the roles of its group
members.

• A day in the life. Proceeding of this exercise is to list activities of a normal
day and/or any important situations/concerns that come to participants, as well
as ideas of solving them or potential improvements. There could be crossed
interactions among stakeholders and identified processes and game characters
could be used as a source of inspiration.

• Journey patient. It is a synthetic representation that describes step-by-step
how a patient interacts with a service. The service is mapped from the patient
perspective, describing what happens at each stage, and what obstacles and
barriers patients may encounter. This map should also represent emotions
(positive/negative) experienced during the interactions, even when it is with other
services or processes.

• Empathy map. Depending on the type of target that the organization wants to
resolve, there are methods such as the empathy map that are more focused on
the patient’s experience. It is a patient’s centred canvas split into four quadrants
(says, thinks, does, and feels). It is used by putting all the existing knowledge
on the table, identifying missing information. It should follow the rule of ‘one
person per map’, producing an overview of who the patient is, and to identify
inconsistencies in the perception of the same patient from various team members
(and so intervene to mitigate the conflict) that might affect to the process.

• Experience principles. These are inspiring values that help to create a shared
experience vision within the organization, by applying it consistently across
several processes and initiatives. They might incorporate insights about what
patients expect from the organization or specific service. It should be used to
guide multiple teams or work-streams to pursue the same goals in terms of
the patient experience. Contrary to the previous one that wants to state the
experience of the patient, this method might contribute to defining values that
offer a concrete service.

• Offering map. It is also a very interesting method to clarify what a service
provides to the patients, detailing the value proposition into specific groups of
features. It could be depicted by words, pictures, diagrams, or a combination of
them, being more detailed in specific areas or functions.

• Service blueprint. It is a diagram that displays the entire process, by listing all
the activities that happen at each stage, performed by the different stakeholders.
The service blueprint is built by first listing all the roles involved on a vertical
axis, and all the steps required to deliver the process on the horizontal axis.
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The resulting matrix allows representing the flow of actions that each role needs
to perform along the process, highlighting the actions that the patient can see
and the ones that happen in the back-office. The difference with other methods
presented is that the service blueprint analyses an existing service or specifies a
well-defined concept, but is not used as an ideation tool.

Once, issues have been identified and prioritized, these are shared with the rest
of medical team.

This is an example of techniques that are helpful in inviting health professionals
to reflect, raise issues, and prioritize them. Although these techniques share some
similarities, they have characteristics that make them more appropriate in some
cases than others.

16.5.3 Stage 3: Optimization

Evidence highlights that agile methodologies are ideal for projects with high
variability due to constantly changing requirements and those where the value of
the product delivered is a priority [18, 39]. Thus, it does an especial emphasis
on agile methodologies requirements prioritization to be more efficient at the
time to prioritize tasks to be implemented taking into account project constraints,
the complexity around requirements, and available resources (time, costs, and
employees) [15]. Reflecting on what is known from agile requirement literature,
and knowledge related to change transformation, these agile practices could be
extended and applied in the proposed methodology to nurture the optimization
development, helping in the prioritization of the questions detected in the previous
step. Techniques [4] such as the 100-dollar test, or MoSCoW, among others are
contextualized in the proposed methodology and presented as follows:

• The iron triangle takes into account the triangle between (1) time, (2) cost, and
(3) scope, so if needed resources are not in place to solve a problem arisen by a
question, maybe it is necessary to make sure that it is possible to meet them by
reducing scope, or prioritizing adequately before being selected.

• MoSCoW term comes from Must-have, Should-have, Could-have and Won’t-
have and is related to user stories, although in this case should be considered
as questions or issues to be solved that directly affects the value offered to the
patients.

– Must-have user stories are critical, failing the whole project if one must-have
story is not implemented.

– Should-have user stories need to be implemented too, but are usually less
critical and can be implemented later.

– Could-have user stories improve User Xperience, not being critical.
– Won’t-have user stories are less important.
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• Kano Analysis involves features, but instead, improvements or changes should
be classified into four categories having in mind patients’ benefit:

– Delighters. are new, or of high value to the patient
– Satisfiers. offer value to the patient
– Dissatisfiers. do not affect the level of satisfaction if they are not present
– Indifferent. will not affect the patient in any way and should be eliminated

• The 100-Dollar test is a method where each person gets 100 units to distribute
among the given matters. If they are too many, it is recommended to use more
units. After distributing the units, it is calculated the total for each one and rank
them accordingly.

16.5.4 Stage 4: Mise en place

It is a crucial phase when a plan to drive the culture change in the health organization
is presented, because it clearly states the why, what, who, how and when to achieve
this transformation. Opening with the presentation of a short-term plan, which
should enclose the following points.

• Vision and mission [7]. The purpose of this first step is to give health experts a
reason to desire to be involved in the change process of adopting digital health
transformation. Linking goals to motivations facilitates their involvement in the
change, and the clearer the objectives are, the greater the benefit to the individual,
the team and the health organization is. This linkage generates an awareness of
the necessity of change and what it is needed for. Here it is important to discuss
and clarify any aspects to be sure that all people are on board in accordance with
main goals and purposes.

• Team. As introduced in Sect. 16.3 there is a list of relevant stakeholders for the
change. According to results from the Arrangement phase health professionals
could be divided into the following groups [25], specifying their roles and duties
for each one:

– Sponsors of the change. Who pays for it? Are they involved??
– Participants in the change. Anyone who is participating in the change

process.
– Authorities approving the change. They are usually managers and directors

inside the health organization, although it could be further as in the case of the
sponsors.

– Core team managing the change. It is usually composed by the change
manager and the interactive process miner, although as later is introduced,
other roles may be needed like a communicator or a training manager, that are
introduced later.

– Experts supporting the change. The interactive process miner is a crucial role
to strengthen the understanding of the rationale behind IPM and to emphasize
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its benefits for the incoming adopters. Furthermore, at this point, the role of
champions is introduced. They facilitate the change by assessing how things
are going on and by identifying what needs to be done. They are in a triangle
among sponsors, implementers and the core team. They recognize resistance
and propose ideas to work around, helping in the preparation of training
materials if needed. They are fascinated by transmitting their enthusiasm,
using their own words. Champions [24] have extensive knowledge of the
ground level, being considered as one of the most successful factors in the
process of change. As Everett Rogers suggested in his theory [47], champions
act as social influencers, persuading individuals to adopt an innovation, which
leads to that the critical mass that adopts the change when enough other
individuals have done it before. At this point, the adoption becomes self-
sustaining, and it should be taken special care of having an appropriated
number of champions on board, having clear tasks and being, of course, well
prepared (trained). Besides, managers must be aware of the additional work
that champions are doing and, if possible, there should be a kind of reward.
Any other specific role identified as being essential is also welcome to this
group.

• Communication. An effective communication is fundamental [29] for proper
implementation of the change. Findings suggest that change generates uncertain-
ties that need to be addressed [3, 44]. For that, it is needed to define clear rules
about how communications are performed in both directions from the core team
towards the rest of the group, and vice versa [52] to tackle queries of employees,
generate community spirit, and build trust until having a commitment. Aspects
that should be covered are mainly a communication plan, which entails activities
for coordinating, motivating, and managing conflicts. It might consist of periodic
updates, meetings with individuals, or in-group, as well as consultation schedule
(normal business hours, weekends, 24×7. . . ), and defining clear contact persons
for each topic (suggestions, issues. . . ), i.e. from the core team, the experts or
the champions. The plan should be agreed among all involved persons, taking
into account their agendas. Another aspect is the type of messages in terms
of content and used code (verbal or non-verbal); and methods and modalities
of communications where channels, media and technologies of communication
have to be considered. It is important to emphasis feedback as it can help to
identify not only resistance but also to diagnose gaps on why a change may
fail, as well as, to enrich significant key performance indicators, contributing
to the adoption of the change. Last but not least, from empirical researchers [30],
several recommendations may be suggested:

– Redundancy helps to keep the message.
– It is more effective to use different channels than just one.
– People prefer face-to-face communication.
– Line hierarchy is the most effective communication channel.
– Opinion leaders are effective changers of attitudes, especially to remind that

management supports any action during the change process.
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• Training. A variety of factors, besides ability, can influence training effective-
ness, e.g. management actions, but mainly employee motivation, attitude, and
expectations. Individuals who lack motivation prior to training are less likely
to succeed and may require some preparation in advance. To provide clear
guidelines could contribute significantly to training effectiveness [55]. Therefore,
employees should be informed about training content at this stage, and a
minimum set of rules should be established related to the training e.g. supervisory
and peer support (champions), the kind and amount of available resources
(in time and equipment), training sessions and follow-ups. Furthermore, other
actions contributing to employees’ involvement in the training process are e.g.
participation in the requirement assessment, choice of degree of attendance, or
preferences for training methods. Additionally, elements like rewards (which
are explained more in detail in the next point) might encourage persons taking
advantage of the new skills and knowledge on the job. It is best to pick a
method that encourages active participation of employees and provides adequate
feedback. Interactive methods that allow more individualized instruction and
increased employees control over learning, like with IPM with its interactive
and iterative nature, facilitate this active participation in the learning process.
At the same time, this is incrementally incorporated to the daily practice of
the organization, assuring the length of time that employees are using acquired
skills and behaviours on the job. The final phase of the training process, and
probably the most important in terms of increasing effectiveness, is evaluation.
Since IPM is normally used by the employees, this evaluation could be translated
into performance indicators, where the benefits of the training are reflected as
e.g. in increased productivity.

• Rewards. Reinforcement strategies are one of the most effective contributions
to change [53]. As it is mentioned in the Assessment phase, it is one of the
elements that should be agreed with the management team from the beginning
[6] in case it was identified as a facilitator. In scope of the Reward strategy it
should be identified which behaviour impacts the performance of the change,
and how it can be measured, and who interventions involved in each case can be
identified. When speaking about rewards, there are two main classes [5, 37], (a)
financial reinforcement, which is one of the most used mechanisms in practice,
and (b) non-financial reinforcement. Sometimes this might be given in form of
feedback, positive or negative, social reinforcement in terms of compliments,
general recognition etc. or even in other ways such as recognizing the effort by
giving more responsibility, or more autonomy to the employee.

• Indicators. It is well known that Key Performance Indicators (KPI) are a pow-
erful tool to measure performance in organizations. KPI are usually measured
after a process is finished, postponing results that did not provide the opportunity
to react in time [9]. By cons, KPIs should be established from the beginning to
state the current status of the organization and to monitor the progress over time,
helping on identifying which priorities should be set. But, what is an indicator?
And, what is it for? There seems to be an obvious answer to these questions, but
there is none. Many organizations are working with wrong measures, clinging
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to indicators that reflect past performance and do not contemplate the ones that
really measure states that the organization wants to achieve in the future. Even
though this is clear, the process of identifying such truly beneficial indicators
is not a trivial path. The scientific evidence [40] proposes dedicating full-
time teams for monitoring them, in order to make modifications necessary
to adapt the indicators to the changes that the organization may undergo to
increase its performance, which is costly in terms of both, downtime and money.
Furthermore, cascading down of performance measures, breaking one measure
down into parts as it goes down to different teams is not a good practice. While
this looks logical, it leads to chaos, helping the organization go nowhere quickly.
Instead, it is going in the right direction to determine which root causes hinder
the performance increase and which success factors contribute to it. With that
purpose, it is necessary to have the possibility not only to recognize the necessary
indicators to show a good summary, but also to generate more complex views.
These views should comprise information of the organization from different
perspectives, e.g. an objective could be to reduce the length of stay in the
emergency service. In this example, the patient goes through admission, triage
and the waiting room, until is called for his/her first visit with the doctor, who
can order several tests. It is a blood test that is analysed by the laboratory, a
hospital transversal service and an RX test, done in external consultations, being
both independent units of the emergency room. Meanwhile, the patient awaits the
results of the tests in the waiting room, until (s)he is called and meets the doctor
again that discharges her/him. The process followed by patients carries valuable
information that would help employees to understand what the real pathway at
the emergency service is. It may help to identify bottlenecks that directly affects
the performance. Thus, many questions need to be answered to find those success
factors that help improving the performance of the emergency service, e.g. the
laboratory takes a long time until it delivers the results, but a lot of questions
arose while waiting for an answer. As discussed in previous chapters, IPM enters
the scene to shed light on these and other questions through the definition of
Interactive Process Indicators.

16.5.5 Stage 5: First Contact

The final stage of the workshop is aimed to introduce formally IPM to the health
experts in order to make them aware of the added-value of using new technologies
and the direct benefits to their daily practice.

This phase has the aim of presenting the grounds to embrace IPM in the health
organization, and to make all involved medical staff aware of the new processes.
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16.6 Adaptation and Adoption Phase

After the two previous phases that concentrate on getting into the health organiza-
tion, the Adaptation and Adoption phase is focused on entering directly to the work
with IPM. In the first steps of the methodology, the weakest and most relevant points
of the health organization should be underlined. It is the starting point where the
organization begins to embrace the culture of change while experiencing a digital
health transformation through the adoption of IPM. From here, first indicators
could be considered as complementary information to what IPM finds out. This
technology enables process discovery iteratively by involving health experts from
the very first minute. Based on sessions known as ‘Data Rodeos’, IPM facilitates
the measuring, understanding and assessing of health process through Interactive
Process Indicators, from more abstract top overview to low-level detailed medical
information, endowing health professionals with well-rounded knowledge to the
decision making. As explained in previous chapters, the team, made of at least
one interactive process miner and a health expert, performs a series of meetings
(Data Rodeos) following the stages of shakedown, research and production. This
allows them, to find the best Interactive Process Indicators to present the medical
data until the medical team reaches a deep understanding of the reality of the health
organization. The health expert could carry out sessions on its own, where support
materials is available, as well as a communication channel with the interactive
process miner to get support. These sessions, both group and individual, allow them
to investigate new evidence.

It should be taken care to try to avoid overproduction, if different people asking
the same questions or requesting similar information with multiple forms. For that
reason, it is important to guide Data Rodeos with questions that might help in the
ongoing research:

• What is the standard case?
• How much does it differ from the real case?
• Are clinical outcomes as expected?
• Is the operational throughput good enough?
• Could be mortality numbers reduced?

The drivers within IPM are clinical processes or pathways, which are represented as
workflows, where all events could be recognized as either value-added or non-value
added. In here, it could highlight the critical path where more effort is necessary
for looking into details to identify e.g. bottlenecks. In some cases, these workflows
could become a ‘spaghetti’ diagram, which is an easy way to see the wasted
time. The more ‘spaghetti’-like the diagram is, the clearer the need for redesigned
work becomes visible, in which case clustering might shed some light. In general,
workflows could be used:

• To understand each step of the process
• To orient new staff to the process
• To clearly describe the process to other departments
• To identify where there are problems
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Looking at the three first bullets, it is clear that visual representations combined
with other techniques, as are introduced below, are primordial to let clinical staff
understand the performance of the health organization under different viewpoints.
This is what in this book is called as Interactive Process Indicator. Starting with the
Shakedown phase, Data Rodeos are conducted according to the plan defined in the
Arrangement stage. During the Research phase, several iterations are carried out,
where health experts and interactive process miners validate visual representation to
assure that the results are comprehensive, objective and explorative. These iterations
are done until figuring out the best-fitting Interactive Process Indicator. Then IPM
solution goes through the Production phase to generate a version for health experts,
with which they can continue to work more autonomously.

A deep understanding of how work currently happens is essential before trying
to fix it. Workflows are visual descriptions that improve comprehension and that
emphasize the level of variability in the process, where events can depict total
end-to-end time, e.g. length of stay, time for a specific job without waiting times
(e.g. an urgent operation), or an incident where a task must be reworked (e.g. a
medical error). It also provides a common language to talk about the process among
all stakeholders. Moreover, it could include information related to resources, e.g.
number of people to reflect the utilization and capacity of the service in terms of
available time, work time, utilization of that time and capacity of resolution per
patient’s episode.

There are cases where corresponding data is available to conduct a Data Rodeo,
but it is not like this in all cases. In a hypothetical case that the health organization
wants to reduce the number of lost medical devices, they might use a check sheet.
It is structured to collect data, keeping instances of quality problems in a specific
problem. This tool helps to know what kind of data is needed to be collected, to
be able to monitor the quality of the process and to understand where the health
organization might want to make some improvements, and then incorporate this
information to the data model.

There is no ‘one-size-fits-all’ solution in healthcare, although there are
widespread indicators that might be interesting to assess the status of the health
organization under financial (costs), patient (experience), internal (health experts)
or performance (quality of care) perspectives. For example, in the case of the
experience of a patient, it could be possible to measure PROMs and PREMs.
PROM’s (Patient Reported Outcomes Measurement) objective is to capture patients’
perception of their health, being some measures of distress/anxiety or unmet needs.
Instead, PREM’s (Patient Reported Experiences measurement) objective is to
capture patients’ perception of their experience with health care or service, e.g.
length of stay. Furthermore, ICHOM Standard Sets [28] are of valuable relevance
since it defines outcomes that matter to most patients having a certain health
condition e.g. stroke, opening up new possibilities to compare performance globally
and allowing clinicians to learn from each other. As it is introduced, the Quadruple
Aim [10, 11, 51], add the importance of the patient and practitioner experience
to these compelling goals, which is key for the good performance of any health
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organization. Additionally, a manager might be interested in knowing the workload
of each service (e.g. emergency room, laboratory. . . ), or teamwork among others.

Other representations might complement the information offered by the men-
tioned workflows. Some histograms show the frequency of occurrence of a partic-
ular event (e.g. duration in the waiting room at the emergency service). With this
information the frequency distribution, if it is a normally or randomly distributed
event or if it is spread or very concentrated distribution (e.g. there are more patients
in the morning) can be understood a little bit better. This can be either looking at
inputs and outputs in a quantitative way, and also helps to compare what needs to be
done which patient and what is required by the health organization. Control charts
are another representation, which provides information about the stability of the
process, specifically with regard to its target value and/or variation. Averages and
ranges with acceptable numbers related to the mean in the central line. When the
value is outside of the limits, it is time to figure out the root cause. Scatter diagrams
are plots of XY pairs of numerical data. It can be seen whether there is any kind of
correlation or pattern because correlation and pattern are not the same. Considered
a useful tool to root cause analysis.

Apart from workflows and some of the proposed tools to represent additional
information in the form of indicators, there are other approaches to identify when
it is needed to do a change. Process Quality measures the capability of a process
to produce to its expected capability (trying to eliminate “defects”), considered a
defect as any process output that does not meet patients’ expectations. Hence, when
an IPM solution is delivered in the Production phase, health professionals continue
monitoring the organization to detect the need for a change. At that moment,
the Application stage starts to identify root causes and applies the necessary
modifications in the organization.

Last but not least, this phase measures the technology acceptance of IPM
solution. The study of success factors for the adoption of technology is something
that has been measured for a long time. It establishes that teaching and providing
support is essential, as well as social influence in the perceived usefulness factor.
However, the one that mostly impacts is the lack of management support. The
engagement depends on health experts’ interest, expectative and effort to adopt new
technologies [26]. It is of special interest to define a plan that mitigates this sort of
issues. Medical team should trust, use and accept the new technology, which should
improve the efficiency and quality of care, which should be easy to use, and needs
the minimum effort of learning. Some relevant questions that might arise:

• How well does the system perform?
• How relevant is it to health expert’s job?
• How useful is it?
• How much does it make performance easier and satisfying?
• How does it facilitate more informed and accurate decisions?

Technology acceptance should be measured during the whole adaptation process
to be sure that improvements are welcome.
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16.7 Application Phase

This phase is where new changes happen, after improvement is identified in the
Adaptation and Adoption phase, here is necessary to go through the following steps
that frame them orderly to reduce resistance and assure a smooth transition.

16.7.1 Analysing Change

The aim of this stage is to analyse and figure out a solution. Understanding change
complexity determines an uncertain context that needs additional team work. Any
change implies time, and people, being primordial to know the availability level of
personal capability and capacity to implement the change, so that, firstly, a team
where each representative has to be familiar with the topic that is going to be
investigated need to be clearly define. Secondly, one or more preparatory meeting(s)
should be carried out.

With the information coming from IPM and proposed root cause analysis tools
(5 why’s, cause & effect. . . ), a definition of a proper solution can be elaborated.
This includes the identification of the non-value added activities, delays, rework,
bottlenecks and other forms of waste.

• What is the desired end-result? Is it to reduce waiting times in emergency
service?

• Is there clinical evidence that helps in solving the problem?
• How quickly is change needed?
• What are the teams affected by the change? Are they from the laboratory,

radiology, or dietary?
• How do you know to do your work? Do you ask your line supervisor?
• Do all health experts do a task in the same way?
• Does information arrive on time?
• Can any paperwork be eliminated?
• Is information available, reliable and up-to-date?
• Are there any immediate improvements without significant investments?

It should take special care to countermeasures and implementation plans in terms
of (what, who, when, expected outcome) and the definition of a follow-up plan.
Starting from the current state and keeping in mind the future process, it is possible
to make quick modifications in an editor available in IPM, to depict the new process
that is to be achieved. Most of the time root causes can be attributed to something
not being specified. Likewise, during a change process, there may be organizational
assets that should be preserved or practices that need to be maintained.
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16.7.2 Norming Change

As in the Arrangement phase, and after having analysed the proposed change, it is
needed to present how it is going to be performed, including:

• Scope definition to let medical staff know what the change is aimed for.
• Team involved in the change, taking new measures for better coordination. It is

required to find out current concerns about new changes and needs to be covered.
At this level, it is important to define how tasks are accomplished, by dividing
and scheduling work, defining roles in terms of what people do and what they
do together. In the case that more than one service (e.g. radiology or nursing)
are working together, a new profile that acts as a link with other parts of the
organization may be needed (link manager).

• An effective communication helps on the alignment between health profession-
als, enabling visibility of the overall work process, and linkages between different
positions, reducing resistance and contributing to that all clinical staff understand
which corrective actions are required.

• In specific cases, training will be required to teach about new ways of working.
• A reinforcement strategy may help on the motivation of the medical team

involved to accomplish with their assigned tasks.
• New indicators derived from forthcoming change should be offered in IPM.

16.7.3 Performing Change

All change should firstly be tested in scope of an experiment, starting small.
The challenge is to develop critical short-term priorities that keep health experts’
operations functioning while laying the groundwork for broader, longer-term
transformational change.

16.7.4 Monitoring Change

IPM has proper indicators to monitor change. It implies to establish a baseline
performance to compare the results during and after applying the solution into
the health organization, being possible to compare the results to the baseline
performance. To assure that no unexpected change occurs the process is monitored.
This helps to know if the actions have the expected impact, and letting us know
what actions have been successful, also confirming if the understanding of the
problem was right. Health experts should be informed about if progress goes ahead
as planned.
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16.7.5 Fixing Change

Once the change has been implemented it is needed to make the transformation stick
to ensure that no one falls back on the change journey, letting go of old identities.
To perform health-checks assures that the transformation is sustainable and that old
customs are not reverted to bewilderment times, is very important to establish a new
beginning with clear instructions on how to proceed from now on. Tools such as 1-1
interviews, surveys, focus groups or direct feedback from health professionals let us
know if the change has been finally adopted.

If derived from the new change, it is identified the need for a new research process
related to IPM, then activities will go back to the Adaptation and Adoption phase.

16.8 Conclusion

Any change in an organization requires special care to minimize its impact on
performance. There is a multitude of psychological theories that guide health experts
through the process of change, but that depend much on the person’s abilities.
In addition there are many emotional aspects that need to be considered, which
leads to a long way of a successful implementation of a change. From assessing the
current state until obtaining a plan that defines steps to follow, there is a great valley
that is hampered by the lack of tools that facilitate this process automatically and
objectively. In this regard, the proposed IPM-based solution is framed in a context in
which the best of both worlds creates a synergy. While IPM offers understandable,
objective and explorative visual representations (Interactive Process Indicators) that
allow the organization’s data to be interpreted with the minimum effort, it takes
advantage of the available methods and the scientific evidence, in an orderly manner,
to guide through the change process. As first step, this is an approach presented
under a clinical point of view which might be highly valuable for medical teams.
However, the truth is that the idea of providing value to patients is still a utopia.
Once they left the hospital, patient journey is unclear. Outside the hospital processes
can not be measures like in a medical environment, and there is no clue about
patients’ adherence to treatments, and how it affects the efficiency of the followed
interventions. Thus, there is still a lot of work until it can be considered the patient
experience, his/her behaviour and other personal circumstances as input data of
technologies as IPM is for the application of real personalized medicine.
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Chapter 17
Interactive Process Mining Challenges

Carlos Fernandez-Llatas

17.1 Introduction

Healthcare domain is facing to the new age of digital transformation. The new
challenges that digital health is proposing are dragging the medical community to
a new way to care for patients. Digital Transformation does not mean to make the
same actions with new tools. It means to leverage the presence of Information and
Communication Technologies (ICT) for changing the way of acting [28]. Digital
transformation requires a deep change in the protocols, methodologies, and, even,
in the mind of users to provide real effective and efficient use of technology.

This deep change is not easy to achieve. Usually, it is thought that resistance
to change of human stakeholders is one of the main barriers that Digital Health
transformation is facing [21]. But, this is only the top of the iceberg. Health is a
very ancient discipline that has changed during aeons and it is focused mainly on the
interaction with the patient. Digital Technologies are proposing a new, efficient and
effective way of making things that, sometimes, are contrary to this simple human
principle [8]. The dehumanization of health is one of the main accusations that tra-
ditional health community are reproaching to digital transformation promoters [7].
The loss of human contact in medical visits, the excessive computer dependence of
health professionals, or the globalization of health, that decrease the personalization
of cares [30] are only examples of the main barriers that digital health transformation
is founding in their path to their implantation on the medical community.
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Despite the fact the digitization of health is considered unavoidable, the health
professional is blindly accepting the digitization thesis and is applying healthcare
making the same things whit different tools, changing the paper by the computer.
This is because the computer is not considered a new actor in the system. The
computer is considered only a tool. Interactive paradigm [11], and Interactive
Process Mining, in particular, are promoting the interactions between the expert
and the intelligent system to not only to provide the benefits that computerized
systems are providing to society but also, present the computer as a new actor
for interacting, counselling and understanding the real behaviour of the diseases
and patients. This gives the role of the intelligent system to a new paradigm that
humanizes the presence of the computer in the consultation considering it, not only
a tool but also an actor in the health process.

The objective of this chapter is to analyze the barriers that are hindering the
interaction between medical experts and intelligent systems and highlight the new
challenges that we should face up to achieve a more adequate digital health
transformation.

17.2 Engage Health Professionals

The indeterminate behaviour of the diseases, depending not only in itself but also
in the involvement, attitudes and beliefs of patients, require a human touch for
gathering intangible information for selecting the best treatments in each specific
case. The medical staff acts as an artist for selecting the best treatment possible
according to their intuition, experience and know-how. Health is not engineering.
Although there are wide attempts to create protocols and guidelines that automatize
at the maximum the care processes [33], health domain requires always the running
knowledge of medical doctors.

The appearance of Machine Learning solutions, prediction models, and other
decision support systems has attracted the attention of health managers and
researchers for detecting the best practices and measuring the value chain of the
patient to offer an effective, efficient and quality care. However, these systems
require not only the acceptance of policymakers but also requires the involvement
of the data generators. The quality of data is crucial for obtaining precise data-driven
models [20].

To engage all the links of the health chain, these methods offer a solution in all its
strata. The weakest link in this situation is those professionals that are in charge of
collecting the precious data without adequate motivation, the general practitioners,
nurses and other auxiliary staff working at health centres. These professionals can
see the data collection process as an increased burden in their daily practice [22, 31].
This is because they don’t see the direct support of these methods in their daily work,
that is mainly focused on providing better care to the patient.

A clear example of that is the coding of diagnosis. There are lots of efforts in
health management for providing a standard that allows the classification of known
diseases. International Classification of Diseases (ICD) [32] is a worldwide attempt
for standardizing how the diseases are coded. This standard is continuously in
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improvement due to the difficulties of define diseases [39]. This makes complex
their use by general practitioners that, besides, should deal with the burden that
requires the proper selection, annotation a update of diagnosis in the patients
Electronic Health Record, selecting the correct code among more than 70,000
diagnoses currently available, in the time of a visit. In this line, Primary Care is
one of the main services that is involved in this process. Primary Care usually is in
charge to follow all the patients and their diagnosis codification. However, Primary
care professionals claim that the computerization of their patients and the use of
a computer are increasing their burden [31] and dehumanizing the communication
with the patient [22]. For that, the most interesting details of the patient history are
usually expressed as free text and the codification are generally avoided. This made
that there is some diagnosis that is deficiently coded, like for example obesity [27].

Primary care professionals do not see any advantage for their collaboration
in their crucial codification and classification task because they usually have not
accessed to population analysis tools that allow the analysis of the flow followed for
their patients. Interactive Process Mining solutions can offer a view of the patients
that other techniques can not. Involving the general practitioner in the process of co-
creation of the treatment optimization that can suppose a better way to improve the
adherence of professionals and the adaption of protocols of diseases to real patients.

The approach of professionals to Interactive Process Mining techniques not only
allows the better understanding of the behaviour of treatments to their patients
but also will allow to these professionals to have feedback for their efforts in
classification and coding of diagnosis. This not only requires the engagement of
professionals, but also the support of health managers democratizing the use of tools
and data among different health professionals in all stages.

For achieving that, it is important to provide one-medical-field solutions that
support professionals in their specific daily practice. One-fit-all solutions require
usually more adaption time and are not adapted to daily practice. Specific solutions
can create the best tools for supporting the professionals minimizing the increased
burden to health professionals [26].

17.3 Look for the Best Representation Languages

With the arrival of the standardization culture, the appearance of languages and
models for defining processes with different capabilities, expressiveness and com-
plexity have appeared in the literature [41]. Create an adequate process model is not
a trivial task [2]. It is necessary to select the proper tool, with adequate expressive-
ness and complexity, and in the case to enable interaction, this understandability is
crucial.

As medicine is not engineering, medical doctors are not engineers [17]. Repre-
sentation languages that have been used perfectly in industrial environments have
not to sense in the medical domain. Health professionals have different ways to
observe, think and act [29].
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This not means that medical doctors can not use representation languages for
defining their own processes. From the appearance of the Evidence-Based Medicine
paradigm [35], there is an increasing culture of defining processes and protocols
for reusing and disseminating best practices among the clinical community. These
protocols, called usually Clinical Pathways [15], are thought for representing the
process in a human-understandable way. Also, there are Computer Interpretable
Guidelines [33] that are though for representing these Clinical Pathways in a
computer understandable way to facilitate its automation.

Despite the huge work made in this field, the creation, implantation and evalua-
tion of processes have not achieved the expected impact in the clinical community. If
the language selected is not adequate, instead to be facilitators in the application of
Clinical Pathways, it can become an insurmountable barrier [9]. Process languages
should be expressive, flexible, automatable, with no uncertainty nor ambiguity, but
above all, it should be easily understandable by health professionals. In another case,
there is a high probability of failing in their implantation [9].

In the case of Interactive Process Mining, the problem is obvious. If there is
not understandability, there is no interaction. It is critical to provide the correct
language that not requires intermediates in the definition and understanding of the
processes. The expert should understand the model to allow the connection between
the real process and its running knowledge, not only for understanding the process
behaviour behind the model but also to produce the proper adaptions of the process
and evaluate the decisions taken.

17.4 Interactive Data Quality Assessment

One of the clearest problems, that are appearing in the application of Machine
Learning technologies to health care is Data Quality. The excessive burden of health
professionals, the necessity of better training in the use of new technologies or
the lack of engagement of health professionals, among several other factors, are
behind the cause of the low quality in most of the clinical databases. For that, there
is an increasing interest in creating methods and methodologies for Data Quality
Assessment [42].

As defined in previous chapters, there are several dimensions in the Data
Quality problems. Incompleteness, due to missing information; Inconsistency, for
the discrepancies among the different sources of data; Inaccuracy, caused by
the inexactitudes in the data collection process, etc, are examples of syntactical
problems that we can consider in the analysis of the quality in a clinical Data Base
[6].

This not only affects directly to the veracity of the information, making that
the result achieved and the models inferred have limited confidence but also to
the artificial variability added to the existing one, due to those errors. Finally, this
supposes a clear decrease in the value of the data and, therefore, to the results that
we can provide to professionals [40].
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For that, it is necessary to provide algorithms, frameworks and tools that can
support professionals not only in the assessment about the data quality to evaluate
the validity of the models presented to professionals, but also to understand and
correct the data collection process [6].

Classical black boxed Machine Learning solutions are difficult to understand,
and for that is it’s very usual to denoise logs by removing non conforming traces to
have cleaner data. However, this produces a bias in the log suppressing the patients
that are different, that are those that need more intensive care. Interactive solutions
can support health IT professionals in the process of data collection improvement
[25]. The use of Process Mining techniques can support in the real understanding
of flows and IT and Clinical experts can detect special situations and decide if those
are due to errors in the collection process, that can be improved, or due to special
characteristics of the patient, that should be treated differently. In any case, this
advantage of Interactive paradigm can support the improvement in the process, even
in noisy environments.

17.5 Data Protection Laws Barriers

In the last decades, privacy and security laws have been hardened. The development
of artificial intelligence and the use that some organizations are giving for acquiring
and process information for its benefits in detriment of the privacy of the individual
[24], are changing the rules of the world [1].

In the era of Big Data, there are available lots of algorithms, methodologies and
tools for providing better support to healthcare professionals not only in their daily
practice, but also, for providing a way to improve significantly the medical research
giving to us better treatments, diagnosis methods, and medical technologies thanks
to current information computing capabilities. Despite there is a huge amount of
academic experts in the world claiming for the use of data for creating better medical
models and the quantity of data available in hospitals are increasing, the accesses to
the data is very difficult for the data scientist.

The current legal frameworks are not adequate for research. The research
community can help in the development of a new way to acquire real evidence. For
that, it is crucial that governments, legislators and citizens accept a middle term for
creating an suitable breeding ground that facilitates the use of artificial intelligence
in benefit of all of us. Initiatives like Open Data paradigms [16] can be the solution
to start sharing knowledge between the medical community and Data Scientist in a
way that can incredibly boost medical research.
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17.6 Dealing with Medical Data

The special characteristics of medical data require special tools and methodologies
for dealing with it. Medical information systems are usually formed by a constel-
lation of tools, system and databases intended to provide fluid access to the data
in a health centre. Hospital Information Systems (HIS), that provides access to
data available at hospitals in form of different Electronic Health Records (EHR)
available on the hospital or in primary care centres; Radiology Information Systems
(RIS), Laboratory Information Systems (LIS), and even, Personal Health Records
that stores the Patient-Reported Outcomes. All of this information is segmented and
distributed logically and geographically by all the health centres. In addition to that,
there is very interesting information available from other sources not only directly
related with the health of the patient, like pharmacies but also those related with the
patient lifestyle like health apps, gyms and supermarkets that can provide a real and
valuable picture of the patient. In this line, the patient is reaching a big source of
information. Patient-Reported Experience Measures (PREMs) and Patient-Reported
Outcomes Measures (PROMs) [4] are becoming an indicator of great interest in the
measurement of the health services impact over the patient. In this line, International
Consortium for Health Outcomes Measurement (ICHOM) [19] promote the integra-
tion of this data in the Health Information Systems to enable a real assessment of
health services based on Value-Based Healthcare paradigm [14].

The different health systems have distinct methodologies and databases existing
that has diverse technical strategies that can be incompatible among themselves.
This obstructs the interconnection of the databases making difficult their interaction.
For that, there are some initiatives for ensuring the interoperability among heteroge-
neous Databases to build a way for exchanging information, for ensuring a holistic
way, and for building complete data sets that include all the information available
from the patient. Standards like HL7 FHIR [3], OpenEHR [18], or ISO/CEN 13606
[23] appeared intending to create models that allow a common way to access to
medical data. Also, these systems make use of semantic interoperability techniques
[34], that allow not only collect the data based on a direct mapping but also use
queries for accessing these data in a semantically unambiguous way by using
induction, inference and knowledge discovery techniques.

In this environment, the main challenge in the application of Process Mining
techniques is to provide the necessary mechanisms to enable their application in
a Process-Oriented way. It is necessary to create Process-Oriented Data Reference
models that allow the creation of semantic interoperability models that can leverage
the advantages of Process Oriented Philosophy. For that, it is necessary that Health
Information Systems can provide their Data standardized as logs to allow feeding
Process Mining tools. In this line, it is necessary to establish the guidelines for
the creation of specific Health Process-Oriented Data Warehouses that provide
information in a Process Mining Standardized way. These systems can provide
different granularities, different kind of traces definitions, or different layers of
information depending on the medical fields that are requiring the information.
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17.7 Validation and Adaption of Best Practices and Clinical
Guidelines

According to the Evidence-Based Medicine Paradigm [35], the creation of clinical
guidelines can support medical professionals in the selection of the best treatments
for each disease. However, these guidelines usually have problems in their deploy-
ment due to the lack of adherence [37], and sometimes for the doubts about its
validity in their application [38].

Apart from the difficulties in the creation of the guidelines, there are lots of
environmental conditions, like the intervention of pharmacological industry, the
physician-patient relationship, and the researcher’s conflicts of interest, that cast
doubts the cost-effectiveness of the clinical guidelines developed [13].

So, the question is, are Clinical Guidelines valid for the scenario in which they
are being applied?. Recent studies are trying to define methodologies for assessing
their validity [36]. But, it is necessary not only to provide validity measures for
clinical guidelines but also, solutions that help professionals in the understanding of
the adherence problems and propose clues for adapting the guidelines to the problem
in which the new protocol is deployed.

Interactive Process Mining Paradigm is a very powerful tool for supporting
professionals in the application of clinical guidelines in their daily practice. This
is not only because it enables the discovery of the real patient journeys based on
the event data collected from patient contacts, but also because Process Mining
techniques can offer a continuous view of the follow up of the protocol application
effects in a specific context. If these capabilities are applied interactively and
iteratively, a better convergence can be achieved in less time [11]. After the
deployment of a specific protocol or guideline and based on literature or defined by
the experts’ groups, Interactive systems offer a human-understandable view of the
status of the process. In this way, the current guideline is applied and continuously
validated. In each iteration the system shows the differences and the experts detect
the inefficiencies and bottlenecks and correct them, proposing a new guideline that
is iteratively improved [11].

Process Mining domain is plenty of process-oriented tools and algorithms
that can support in medical improvement of clinical guidelines. Some tools can
infer clinical pathways using specific Process Mining Discovery algorithms [12];
algorithms that offer suggestions of change in the models for repairing them
according to the observed reality [10]; or paradigms, like Concept Drift [5], that
takes into account the evolution change to discover and measure it, among others.
The challenge in the application of these techniques in the health domain resides
in the acceptance of the special characteristics of the health care domain for their
adequate application in daily practice. Algorithms and tools that used not adequate
and medical understandable models, does not take into account the real questions of
clinicians or made an excessive denoise of the logs, can be rejected by professionals.
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17.8 Conclusions

In the current conjuncture where the Digital Health Transformation is increasing
their presence in hospitals, there is a priceless opportunity for data scientist for
providing Decision Support Systems solutions to help health professionals in daily
practice. Healthcare is a challenging field. The solution is not to provide the most
accurate data science models at whatever price. There is a need for creating medical
evidence, but there is no medical evidence if they are not understandable by health
professionals. In this scenario, Interactive Process Mining methodology supposes
a clear advantage over other data science methodologies due to their capability
to discover, and present the real medical information in a human-understandable
way. However, to leverage this advantage it is crucial to provide the correct tools,
algorithms and frameworks to deepen in the necessities of health professionals
providing effective solutions in daily practice. For that, it is critical to engage health
professionals, not only in the understanding of the results provided but also in the
interaction with them. In this line, it is fundamental a multidisciplinary work that
involves Data Scientist, Health managers, and clinicians. This scenario requires
to use the selection of the best graphical languages in each case, ensuring a fluid
communication between the algorithms and health professionals, and reducing at
the maximum the need of a Data Scientist that act as a translator between them. In
the translation, crucial information might be lost reducing significantly the efficacy
of the Data Science system. In addition to that, it is necessary to take care of health
data. Data is the basis for the creation of the models. Inaccurate data, produces
inaccurate models that provide erroneous information to experts, leading them to
wrong decisions. Interactive Data curation, not only provides a better way to achieve
cleaner data, but also, make professionals aware of the precision of the data and,
then, allow them to estimate confidence on the models and evidence discovered.
Without forget, the necessity to cover data protection laws, and providing new
tools for connecting medical databases to process mining systems to allow a
fluid communication inside Health information systems. Finally, Interactive Process
Miners should provide a holistic service to health care professionals not only in the
discovery of the processes but also in the continuous validation and adaption of
their processes to their patients. These challenges require the integration of several
technical and medical technologies and the collaboration of different professionals
from several disciplines that usually have different ways to communicate and work.
For that, this gap is being filled with the appearance of mixed professionals, like
biomedical engineers, that can act as a bridge in the use of these technologies. Until
that happens, Data Scientists should create solutions that solve the medical questions
according to their needs. We are in an incredible scenario full of opportunities that
can lead us to a new age of health.
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