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Preface

This book, LNCS vol. 12145, constitutes the proceedings of the 11th International
Conference on Swarm Intelligence (ICSI 2020) held virtually online during July 14-20,
2020, due to the pandemic of COVID-19.

The theme of ICSI 2020 was “Serving Life with Swarm Intelligence.” ICSI 2020
provided an excellent opportunity and/or an academic forum for academics and
practitioners to present and discuss the latest scientific results and methods, innovative
ideas, and advantages in theories, technologies, and applications in swarm intelligence.
The technical program covered a number of aspects of swarm intelligence and its
related areas.

ICSI 2020 was the eleventh international gathering in the world for researchers
working on most aspects of swarm intelligence, following successful events in Chiang
Mai (ICSI 2019), Shanghai (ICSI 2018), Fukuoka (ICSI 2017), Bali (ICSI 2016),
Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013), Shenzhen (ICSI
2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010), which provided a high-level
academic forum for participants to disseminate their new research findings and discuss
emerging areas of research. It also created a stimulating environment for participants to
interact and exchange information on future challenges and opportunities in the field of
swarm intelligence research. ICSI 2020 was held in conjunction with the 5th Inter-
national Conference on Data Mining and Big Data (DMBD 2020) in Belgrade, Serbia,
sharing common mutual ideas, promoting transverse fusion, and stimulating
innovation.

ICSI 2020 was originally planned to be held at Singidunum University, Serbia, but
after carefully evaluating most announcements and guidance regarding COVID-19, as
well as restrictions on overseas travel released by relevant national departments, the
ICSI 2020 Organizing Committee made the decision to host ICSI 2020 as a virtual
conference, keeping the scheduled dates of July 14-19, 2020. The ICSI 2020 technical
team provided the ability for the authors of accepted papers to present their work
through an interactive online platform or video replay. The presentations by accepted
authors will be made available to all registered attendees online.

ICSI 2020 received 127 submissions and invited submissions from about 291
authors in 24 countries and regions (Brazil, Bulgaria, Cameroon, Canada, China,
Colombia, Ecuador, Germany, Greece, India, Iran, Italy, Japan, Mexico, Peru, Russia,
Serbia, Slovakia, Taiwan (SAR China), Thailand, Turkey, the UK, the USA, and
Venezuela) across 6 continents (Asia, Europe, North America, South America, Africa,
and Oceania). Each submission was reviewed by at least 2 reviewers, and on average
2.4 reviewers. Based on rigorous reviews by the Program Committee members and
reviewers, 63 high-quality papers were selected for publication in this proceedings
volume with an acceptance rate of 49.6%. The papers are organized into 12 cohesive
sections covering major topics of swarm intelligence research and its development and
applications.



vi Preface

On behalf of the Organizing Committee of ICSI 2020, we would like to express our
sincere thanks to the International Association of Swarm and Evolutionary Intelligence
(IASEI)(iasei.org), which is the premier international scholarly society devoted to
advancing the theories, algorithms, real-world applications, and developments of
swarm intelligence and evolutionary intelligence. We would also like to thank Peking
University, Southern University of Science and Technology, and Singidunum
University for their cosponsorship, and to Computational Intelligence Laboratory of
Peking University and IEEE Beijing Chapter for its technical co-sponsorship, as well as
to our supporters of International Neural Network Society, World Federation on Soft
Computing, Beijing Xinghui Hi-Tech Co., and Springer Nature.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the International Program Committee and additional
reviewers for reviewing the papers, and the members of the Publication Committee for
checking the accepted papers in a short period of time. We are particularly grateful to
the proceedings publisher Springer for publishing the proceedings in the prestigious
series of Lecture Notes in Computer Science. Moreover, we wish to express our
heartfelt appreciation to the plenary speakers, session chairs, and student helpers. In
addition, there are still many more colleagues, associates, friends, and supporters who
helped us in immeasurable ways; we express our sincere gratitude to them all. Last but
not the least, we would like to thank all the speakers, authors, and participants for their
great contributions that made ICSI 2020 successful and all the hard work worthwhile.
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Abstract. The Swarm Intelligence (SI) algorithms have been proved
to be a comprehensive method to solve complex optimization problems
by simulating the emergence behaviors of biological swarms. Nowadays,
data science is getting more and more attention, which needs quick man-
agement and analysis of massive data. Most traditional methods can
only be applied to continuous and differentiable functions. As a set of
population-based approaches, it is proven by some recent research works
that the SI algorithms have great potential for relevant tasks in this field.
In order to gather better insight into the utilization of these methods in
data science and to provide a further reference for future researches, this
paper focuses on the relationship between data science and swarm intel-
ligence. After introducing the mainstream swarm intelligence algorithms
and their common characteristics, both the theoretical and real-world
applications in the literature which utilize the swarm intelligence to the
related domains of data analytics are reviewed. Based on the summary of
the existing works, this paper also analyzes the opportunities and chal-
lenges in this field, which attempts to shed some light on designing more
effective algorithms to solve the problems in data science for real-world
applications.

Keywords: Swarm Intelligence - Data science + Evolutionary
computation - Unified Swarm Intelligence
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1 Introduction

Data science has been widely concerned in recent years. One of the most impor-
tant aspects of data science is data analytics, which aims to automatic extraction
of knowledge from massive data. Traditional model-based methods are mainly
on fitting the collected data to some predefined mathematical models. How-
ever, these models may fail when encountering problem varieties such as the
volume, the dynamical changes, noise, and so forth. With the increase of the
above varieties, traditional data processing approaches will become inefficient
or even ineffective. Because of the above difficulties, new and efficient methods
should be developed to deal with data analysis tasks [11]. Now the mainstream
methods are shifting from traditional model-driven to data-driven paradigms.
Many applications in data science can be transferred to optimization problems.
Thus it requires the algorithms to have the ability to search the solution space
and find the optimums [9]. Traditional model-based methods need the problems
that can be written into the form of continuous and differentiable functions.
However, in the face of a large amount of data and complex tasks, it is often
difficult to achieve.

The population-based meta-heuristic algorithms are good at solving those
problems, which the traditional methods can not deal with or, at least, be chal-
lenging to solve [10]. Swarm Intelligence (SI), a kind of meta-heuristic algorithms,
is attracting more and more attention and has been proven to be sufficient to
handle the large scale, dynamic, multi-objective problems in data analytics. As
shown in Fig.1, there are mainly two categories of approaches that utilize SI
algorithms in data science [41]. The first approach uses swarm intelligence as a
parameter tuning/optimizing method of data mining technologies may includ-
ing machine learning, statistics, and others. The second category directly applies
the ST algorithms on data organization, i.e., move data instances place on a low-
dimensional feature space to reach a suitable clustering or reduce the dimension-
ality of the data.

r—) Parameter Tuning [~ Models

Swarm Intelligence Data Il
\ 5

> Data Organizing

Fig. 1. Two approaches of Swarm Intelligence for data science

Swarm Intelligence is a group of nature-inspired searching and optimization
techniques that studies collective intelligence in a population of low complex-
ity individuals [32]. The SI algorithms are inspired by the interactions among
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individuals within a group or several groups, which involves the patterns of com-
petition and cooperation [16]. SI algorithms use a population of individuals to
search in a problem domain. Each individual represents a potential solution for
the problem being optimized. During a guided search process, SI algorithms
maintain and improve a collection of potential solutions successively until some
predefined stopping condition is met, i.e., either the result is acceptable, or the
number of iterations is reached [26].

In order to gather better insight into the utilization of these methods in data
science and to provide a further reference for future researches, this paper focuses
on the data science related works that utilizing swarm intelligence in the past
few years. After introducing the mainstream swarm intelligence algorithms and
their common characteristics, both the theoretical and real-world applications in
the literature which utilize the swarm intelligence to the related domains of data
analytics are reviewed. Based on the summary of the existing works, this paper
also analyzes the opportunities and challenges in this field, which attempts to
shed some light on designing more effective algorithms to solve the problems in
data science for real-world applications. The remaining of the paper is organized
as follows. Section 2 briefly reviews the development of swarm intelligence and
some major algorithms in this field. Section 3 introduces some theoretical appli-
cations in the literature that adopt swarm intelligence algorithms in data science.
Section 4 gives a set of real-world applications. The opportunities and challenges
of applying SI algorithms to data science are discussed in Sect. 5, followed by
the conclusions reached in Sect. 6.

2 Swarm Intelligence Algorithms

2.1 General Procedure of SI Algorithms

SI Algorithms is a set of artificial intelligence techniques inspired by biologi-
cal swarm behaviors at both macro and micro levels. They generally have self-
organizing and decentralizing paradigms with the characteristics of scalability,
adaptability, robustness, and individual simplicity. In ST algorithms, a population
of individuals, which indicates potential candidate solutions, cooperating among
themselves and statistically becoming better and better over iterations, then
eventually finding good enough solutions [45]. In recent years, a large number of
swarm intelligence methods have been proposed. These methods have different
inspiration sources and various operations. In general, these different operations
are trying to balance the convergence and diversity of the search process, i.e.,
the balance between exploration and exploitation.

The general procedure of swarm intelligence algorithms can be summarized
in Algorithm 1. Starting from the random initialization of a population of indi-
viduals in solution space, followed by the corresponding evaluation process and
new solution generation process, after a certain number of iterations, swarm
intelligence algorithms can eventually find acceptable solutions.

As a general principle, the expected fitness value of a solution should improve
as more computational resources in time and/or space are given. More desirable,
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Algorithm 1. General procedure of swarm intelligence algorithms

=

Population Initialization: Generate random solutions for an optimized problem,
repair solutions if solutions violate any of the constraints;
Evaluate all initialized individuals;
while not terminated do
Reproduce individuals to form a new population;
Evaluate the fitness of each solution;
Select solutions with better fitness values;
Update solutions in the archive;

N O v wN

Result: Relatively good solution(s)

the quality of the solution should improve monotonically over iterations, i.e., the
fitness value of the solution at time ¢ + 1 should be no worse than the fitness at
time ¢.

2.2 Developments

In the past 30years, a large number of swarm intelligence algorithms have
emerged. They get inspiration from different phenomena, and design correspond-
ing new solution generation operations with the considerations of balancing con-
vergence and diversity of the swarm. As shown in Table 1, the source of inspira-
tions are varying from human society (BSO, TLBO), animals (BA, GWO, MA,
LOA), insects and birds (PSO, ACO, ABC, FA, CS, GSO), bacterias (BFO),
and also some human-made phenomenon (FWA).

With the increasing prominence of NP-hard problems, it is almost impossi-
ble to find the optimal solutions in real-time. The number of potential solutions
to these problems is often infinite. In this case, it is essential to find a feasi-
ble solution within the time limit. SI algorithms have found its practicability
in the practical application of solving nonlinear problems in almost all fields of
science, engineering, and industrial fields: From data mining to optimization,
computational intelligence, business planning, bioinformatics, as well as indus-
trial applications. Now is the era of big data, those mentioned above scientific
and engineering problems, more or less, are related to data issues. Swarm intel-
ligence has made a lot of successful applications in data relevant applications.
Meanwhile, with the increasing dynamics, noises, and complexity of tasks, there
still are many opportunities along with challenges in the applications of swarm
intelligence with data sciences.

3 Theoretical Applications

For decades, data mining has been a hot academic topic in the field of com-
puter science statistics. As mentioned, the SI algorithm is mainly used in data
mining tasks in two forms: parameter tuning or data organizing. Main applica-
tions, including dimensionality reduction, classification, and clustering, as well
as automated machine learning.
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Table 1. Some Swarm Intelligence algorithms with source of inspiration

Algorithms Source of inspiration

Brain Storm Opt., BSO [49] Brainstorming process of human Human society
Teaching-learning-based Opt., TLBO [48] | How teachers influence learners

Particle Swarm Opt., PSO [31] Bird flocking and foraging Insects, birds, etc.
Ant Colony Opt., ACO [15] Ants foraging mechanisms

Artificial Bee Colony, ABC [29] Foraging behavior of honey bees

Firefly Algorithms, FA [66] Bioluminescence of fireflies

Glowworm Swarm Opt., GSO [36] Luciferin induced glow of a glowworm

Cuckoo Search, CS [67] Obligate brood parasitism in cuckoos

Bat Algorithm, BA [68] Echolocation behaviors of micro-bats | Animals

Grey Wolf Opt., GWO [42] Leadership and hunting of grey wolves

Monkey Algorithm, MA [73] Climbing techniques used by monkeys

Lion Opt. Algorithm, LOA [69] Cooperation characteristics of lions

Bacterial Foraging Opt, BFO [13] Group foraging behavior of bacteria Microscopic
Fireworks Algorithm, FWA [57] Fireworks explosion Other

3.1 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of random vari-
ables or attributes in a dataset under consideration. It plays a vital role in data
preprocessing for data mining. There are generally two operations for dimen-
sionality reduction: feature selection and feature extraction. Feature selection is
a process of selecting an optimal subset of relevant features for use in model
construction. While feature extraction is a process of project original data in a
high dimensional space onto a smaller space. The accuracy of a model will be
enhanced by using wisely selected/projected features rather than all available
features in a large amount of data.

Since feature selection is an NP-hard combinatorial optimization problem,
SI algorithms are found to be a promise option to solve those kinds of problems.
A lot of related works has emerged recently, the following are some examples:
Gu et al. proposed a feature selection method for high dimensional classification
based on a very recent PSO variant, known as Competitive Swarm Optimizer
(CSO) [23]. Hang et al. designed an FA based method for feature selection, which
has the ability to prevent premature convergence [72]. Pourpanah et al. combine
the Fuzzy ARTMAP (FAM) model with the BSO algorithm for feature selection
tasks [47], etc. A more detailed survey about SI powered feature selection can
be found in [44].

3.2 Classification and Clustering

Classification and clustering are essential aspects of data science. They have been
studied widely in the domain of statistics, neural networks, machine learning, and
knowledgeable systems over the decades. In general, classification is to predict
the target class by analyzing the training dataset, while clustering is to group
the similar kind of targets by considering the most satisfying condition.
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The SI applications in those two aspects are mainly related to parameter
tuning. For classification, works can be found in literature that combine SI algo-
rithms with regression model [53], support vector machine [7,14,60], k-nearest
neighbor classifiers [58,65], Decision trees [3,35], as well as the neural networks
[30,62]. For clustering, some recent works are related to utilizing ST with k-means
[28,59,61], c-means [21], and other linear or non-linear clustering algorithms
[19,27].

3.3 Automated Machine Learning

In the past decade, the research and application of machine learning have seen
explosive growth, especially the Deep neural networks (DNNs) [37] has made
great progress in many application fields. However, the performance of many
machine learning methods is very sensitive to too many design decisions. In
particular, the architecture designing of DNNs is very complex and highly rely on
the experts’ prior knowledge. To address this problem, many SI based methods
are proposed to automatically design DNNs [54].

Wang et al. [64] propose an efficient particle swarm optimisation (EPSOCNN)
approach to automatically design the architectures of convolutional neural net-
works (CNNs). Specifically, in order to reduce the computation cost, EPSOCNN
minimises the hyperparameter space of CNNs to a single block and evaluates
the candidate CNNs with the small subset of the training set. Wang et al.
[63] propose a multi-objective evolutionary CNNs (MOCNN) to search the non-
dominant CNN architectures at the Pareto front in terms of the classification
accuracy objective and the computational cost objective. It introduces a novel
encoding strategy to encode CNNs and utilizes a multi-objective particle swarm
optimization (OMOPSO) to optimize the candidate CNNs architectures.

4 Real-World Applications

Social Community Network Analysis. Social network analysis plays an
important role in many real-world problems, such as the community detection
techniques [20,46] which aims to mine the implicit community structures in the
networks. Recently, many SI methods have shown a promising potential in many
community detection problems. Lyu et al. [40] propose a novel local community
detection method called evolutionary-based local community detection (ECLD),
which utilizes the entire obtained information and PSO algorithm to find the
local community structures in the complex networks. Sun et al. [55] introduce
a Parallel Self-organizing Overlapping Community Detection (PSOCD) method
inspired by the swarm intelligence system to detect the overlapping communities
in the large scale dynamic complex networks. It treats the complex networks as a
decentralized, self-organized, and self-evolving system. They can iteratively find
the community structures. Other releavant works can be refer to [6,22,25].
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Scheduling and Routing. Scheduling and routing problems are very common
in real world, as long as there are resources to manage. For example, the PSO
algorithm was used in power systems for demand response management [17],
consumer demand management [38], etc.

Internet of Things. Internet of Things (IoT) is another real-world application
in which ST algorithms have been widely used [5]. For example, in IoT-based
systems, the SI algorithm has been used for task scheduling [4]. In IoT-based
smart cities, SI algorithms have been used due to its population-based feature
to make the system flexible and scalable [70].

Bioinformatics is an interdisciplinary field that develops algorithms and soft-
ware tools for processing biological data samples. Various biological problems
could be represented as an optimization problem and solved by SI algorithms.
For example, the protein design problem could be represented as a combinatorial
optimization problem [24]. More information is summarized in [56].

Resource Allocation. Resource allocation is the process of allocating and
managing assets in an optimized way to support the strategic objectives of an
organization. SI algorithms have been used in many related applications such as
Cloud service resource allocation [8], wireless network planning [2], etc.

Others. Apart from the real-world applications discussed above, SI algorithms
have also been applied to many other real-world systems that are data related.
For example, the wind farm decision system [74] to reduce the cost of wind farms,
autonomous DDoS attack detection [33], anomaly intrusion detection [18], image
analysis [34,51], facial recognition [43], Medical Image Segmentation [52], and
natural language processing [1,39], etc.

5 Opportunities and Challenges

Unified Swarm Intelligence. Unified Swarm Intelligence Are there any uni-
versal rules behind this growing field? What are the fundamental components of
a good swarm intelligence algorithm to have? There are dozens of SI algorithms
proposed so far and sharing similar operations on solving problems. Is there a
unified framework for SI algorithms that has the ability to develop its learn-
ing capacity that can better solve an optimization problem which is unknown at
the algorithms design or implementation time [50]. How to correctly identify and
extract the fundamental components of SI algorithms, so that they can form new
algorithms automatically according to the character of the problem on hand, is
a challenge. Some efforts are trying to solve this problem [12,50,71], but more
work is needed to make it a reality.
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Handling High Dimensional and Dynamical Data. The “curse of dimen-
sionality” happens on high-dimensional data mining problems when the dimen-
sion of the data space increases. For example, the nearest neighbor approaches
are instrumental in categorization. However, for high dimensional data, it is com-
plicated to solve the similarity search problem due to the computational com-
plexity, which was caused by the increase of dimensionality. Furthermore, when
the problems are in non-stationary environments, or uncertain environments,
i.e., the conditions of data dynamically change over time, additional measures
must be taken, so that swarm intelligence algorithms are still able to solve sat-
isfactorily dynamic problems.

SI Based AutoML. As mentioned before, swarm intelligence algorithms can
not only be used for automatic optimization of hyper-parameters of the machine
learning model, but also the automated design of the model structure. With the
development of AutoML, the swarm intelligence algorithm has great potential in
this field. However, in addition to hyper-parameter optimization, the represen-
tation of learning model and the mechanism of model evaluation are also come
with challenges.

6 Conclusion

This paper has reviewed related works that applying swarm intelligence algo-
rithms in data science. The fundamentals and developments of swarm intelligence
are briefly summarized. The theoretical applications such as SI based dimension-
ality reduction, classification, clustering, as well as automated machine learning
are also introduced. A short review of real-world applications, including social
community network analysis, scheduling and routing, internet of things, bioinfor-
matics, and resource allocation, are also given, then followed by the opportunities
and challenges in this field. Generally speaking, the swarm intelligence algorithm
has been widely used in the field of data science in the past decades, including
theoretical and practical applications. Moreover, with the development of artifi-
cial intelligence technology and data science, swarm intelligence algorithms have
great opportunities in different aspects of data science. Nevertheless, it also faces
a series of challenges, which need more in-depth research.

References

1. Abualigah, .M., Khader, A.T., Hanandeh, E.S.: A new feature selection method
to improve the document clustering using particle swarm optimization algorithm.
J. Comput. Sci. 25, 456-466 (2018)

2. Ari, A.A.A., Gueroui, A., Titouna, C., Thiare, O., Aliouat, Z.: Resource allocation
scheme for 5G C-RAN: a swarm intelligence based approach. Comput. Netw. 165,
106957 (2019)

3. Bida, I., Aouat, S.: A new approach based on bat algorithm for inducing optimal
decision trees classifiers. In: Rocha, A., Serrhini, M. (eds.) EMENA-ISTL 2018.
SIST, vol. 111, pp. 631-640. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-03577-8_69


https://doi.org/10.1007/978-3-030-03577-8_69
https://doi.org/10.1007/978-3-030-03577-8_69

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Swarm Intelligence in Data Science 11

Boveiri, H.R., Khayami, R., Elhoseny, M., Gunasekaran, M.: An efficient swarm-
intelligence approach for task scheduling in cloud-based internet of things applica-
tions. J. Ambient Intell. Humaniz. Comput. 10(9), 3469-3479 (2019)
Chakraborty, T., Datta, S.K.: Application of swarm intelligence in internet of
things. In: 2017 IEEE International Symposium on Consumer Electronics (ISCE),
pp. 67-68. IEEE (2017)

Honghao, C., Zuren, F., Zhigang, R.: Community detection using ant colony opti-
mization. In: 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico,
pp. 3072-3078. IEEE (2013)

Chen, H.L., Yang, B., Wang, G., Wang, S.J., Liu, J., Liu, D.Y.: Support vector
machine based diagnostic system for breast cancer using swarm intelligence. J.
Med. Syst. 36(4), 2505-2519 (2012)

Cheng, S., et al.: Cloud service resource allocation with particle swarm optimization
algorithm. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds.) BIC-TA 2017. CCIS, vol.
791, pp. 523-532. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
7179-9.41

Cheng, S., Liu, B., Shi, Y., Jin, Y., Li, B.: Evolutionary computation and big
data: key challenges and future directions. In: Tan, Y., Shi, Y. (eds.) DMBD 2016.
LNCS, vol. 9714, pp. 3-14. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-40973-3_1

Cheng, S., Liu, B., Ting, T., Qin, Q., Shi, Y., Huang, K.: Survey on data science
with population-based algorithms. Big Data Anal. 1(1), 3 (2016)

Cheng, S., Shi, Y., Qin, Q., Bai, R.: Swarm intelligence in big data analytics.
In: Yin, H., et al. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 417-426. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-3_51

Chu, X., Wu, T., Weir, J.D., Shi, Y., Niu, B., Li, L.: Learning-interaction-
diversification framework for swarm intelligence optimizers: a unified perspective.
Neural Comput. Appl. 32, 1-21 (2018). https://doi.org/10.1007/s00521-018-3657-0
Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization
algorithm: theoretical foundations, analysis, and applications. In: Abraham, A.,
Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational
Intelligence, vol. 3, pp. 23-55. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01085-9_2

Ding, S., An, Y., Zhang, X., Wu, F., Xue, Y.: Wavelet twin support vector machines
based on glowworm swarm optimization. Neurocomputing 225, 157-163 (2017)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1(4), 28-39 (2006)

Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, London (2001)
Faria, P., Vale, Z., Soares, J., Ferreira, J.: Demand response management in power
systems using particle swarm optimization. IEEE Intell. Syst. 28(4), 43-51 (2011)
Feng, Y., Wu, Z.F., Wu, K.G., Xiong, Z.Y., Zhou, Y.: An unsupervised anomaly
intrusion detection algorithm based on swarm intelligence. In: 2005 International
Conference on Machine Learning and Cybernetics, vol. 7, pp. 3965-3969. IEEE
(2005)

Figueiredo, E., Macedo, M., Siqueira, H.V., Santana Jr., C.J., Gokhale, A., Bastos-
Filho, C.J.: Swarm intelligence for clustering-a systematic review with new perspec-
tives on data mining. Eng. Appl. Artif. Intell. 82, 313-329 (2019)

Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75-174
(2010). arXiv:0906.0612


https://doi.org/10.1007/978-981-10-7179-9_41
https://doi.org/10.1007/978-981-10-7179-9_41
https://doi.org/10.1007/978-3-319-40973-3_1
https://doi.org/10.1007/978-3-319-40973-3_1
https://doi.org/10.1007/978-3-642-41278-3_51
https://doi.org/10.1007/s00521-018-3657-0
https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/10.1007/978-3-642-01085-9_2
http://arxiv.org/abs/0906.0612

12

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

J. Yang et al.

Fuchs, C., Spolaor, S., Nobile, M.S., Kaymak, U.: A swarm intelligence approach
to avoid local optima in fuzzy c-means clustering. In: 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-6. IEEE (2019)

Ghasabeh, A., Abadeh, M.S.: Community detection in social networks using a
hybrid swarm intelligence approach. Int. J. Knowl. Based Intell. Eng. Syst. 19(4),
255-267 (2015). IOS Press

Gu, S., Cheng, R., Jin, Y.: Feature selection for high-dimensional classification
using a competitive swarm optimizer. Soft. Comput. 22(3), 811-822 (2018)
Hallen, M.A., Donald, B.R.: Protein design by provable algorithms. Commun.
ACM 62(10), 76-84 (2019)

Hassan, E.A., Hafez, A.l., Hassanien, A.E., Fahmy, A.A.: Community detection
algorithm based on artificial fish swarm optimization. In: Filev, D., et al. (eds.)
Intelligent Systems’2014. AISC, vol. 323, pp. 509-521. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-11310-4_44

Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a compre-
hensive survey. Artif. Intell. Rev. 52(4), 2191-2233 (2019)

Inkaya, T., Kayalgil, S., Ozdemirel, N.E.: Swarm intelligence-based clustering algo-
rithms: a survey. In: Celebi, M., Aydin, K. (eds.) Unsupervised Learning Algo-
rithms, pp. 303-341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
24211-8_12

Kang, Q., Liu, S., Zhou, M., Li, S.: A weight-incorporated similarity-based clus-
tering ensemble method based on swarm intelligence. Knowl. Based Syst. 104,
156-164 (2016)

Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459471 (2007). https://doi.org/10.1007/s10898-007-9149-x

Karpat, Y., Ozel, T.: Hard Turning Optimization Using Neural Network Modeling
and Swarm Intelligence. Society of Manufacturing Engineers, Dearborn (2000)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942-1948. IEEE
(1995)

Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lisher, San Francisco (2001)

Kesavamoorthy, R., Soundar, K.R.: Swarm intelligence based autonomous DDOS
attack detection and defense using multi agent system. Cluster Comput. 22(4),
9469-9476 (2019). https://doi.org/10.1007/s10586-018-2365-y

Khadhraoui, T., Ktata, S., Benzarti, F., Amiri, H.: Features selection based on
modified PSO algorithm for 2D face recognition. In: 2016 13th International Con-
ference on Computer Graphics, Imaging and Visualization (CGiV), pp. 99-104.
IEEE (2016)

Kozak, J., Boryczka, U.: Collective data mining in the ant colony decision tree
approach. Inf. Sci. 372, 126-147 (2016)

Krishnanand, K., Ghose, D.: Glowworm swarm optimization for simultaneous cap-
ture of multiple local optima of multimodal functions. Swarm Intell. 3(2), 87-124
(2009)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436444
(2015)

Lin, Y.H., Hu, Y.C.: Residential consumer-centric demand-side management based
on energy disaggregation-piloting constrained swarm intelligence: towards edge
computing. Sensors 18(5), 1365 (2018)


https://doi.org/10.1007/978-3-319-11310-4_44
https://doi.org/10.1007/978-3-319-24211-8_12
https://doi.org/10.1007/978-3-319-24211-8_12
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10586-018-2365-y

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Swarm Intelligence in Data Science 13

Lu, Y., Liang, M., Ye, Z., Cao, L.: Improved particle swarm optimization algorithm
and its application in text feature selection. Appl. Soft Comput. 35, 629-636 (2015)
Lyu, C., Shi, Y., Sun, L.: A novel local community detection method using evolu-
tionary computation. IEEE Trans. Cybern., 1-13 (2019). https://doi.org/10.1109/
TCYB.2019.2933041

Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for
data mining. Mach. Learn. 82(1), 1-42 (2011). https://doi.org/10.1007/s10994-
010-5216-5

Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46-61 (2014)

Nebti, S., Boukerram, A.: Swarm intelligence inspired classifiers for facial recogni-
tion. Swarm Evol. Comput. 32, 150-166 (2017)

Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to
feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)
Panigrahi, B.K., Shi, Y., Lim, M.H.: Handbook of Swarm Intelligence: Concepts,
Principles and Applications, vol. 8. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-17390-5

Pizzuti, C.: Evolutionary computation for community detection in networks: a
review. IEEE Trans. Evol. Comput. 22(3), 464-483 (2018)

Pourpanah, F.; Shi, Y., Lim, C.P., Hao, Q., Tan, C.J.: Feature selection based on
brain storm optimization for data classification. Appl. Soft Comput. 80, 761-775
(2019)

Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: a
novel method for constrained mechanical design optimization problems. Comput.
Aided Des. 43(3), 303-315 (2011)

Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang,
G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303-309. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21515-5_36

Shi, Y.: Unified swarm intelligence algorithms. In: Shi, Y. (ed.) Critical Devel-
opments and Applications of Swarm Intelligence, pp. 1-26. IGI Global, Hershey
(2018)

Silva, P.H., Luz, E., Zanlorensi, L.A., Menotti, D., Moreira, G.: Multimodal feature
level fusion based on particle swarm optimization with deep transfer learning. In:
2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE (2018)
Singh, T.I., Laishram, R., Roy, S.: Comparative study of combination of swarm
intelligence and fuzzy C means clustering for medical image segmentation. In:
Luhach, A., Hawari, K., Mihai, I., Hsiung, P.A., Mishra, R. (eds.) Smart Compu-
tational Strategies: Theoretical and Practical Aspects, pp. 69-80. Springer, Singa-
pore (2019). https://doi.org/10.1007/978-981-13-6295-8_7

Soltani, M., Chaari, A., Hmida, F.B.: A novel fuzzy C-regression model algorithm
using a new error measure and particle swarm optimization. Int. J. Appl. Math.
Comput. Sci. 22(3), 617-628 (2012)

Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nat. Mach. Intell. 1(1), 24-35 (2019)

Sun, H., et al.: A parallel self-organizing overlapping community detection algo-
rithm based on swarm intelligence for large scale complex networks. Future Gener.
Comput. Syst. 89, 265-285 (2018)

Tan, Y., Shi, Y.: Special section on swarm-based algorithms and applications
in computational biology and bioinformatics. IEEE/ACM Trans. Comput. Biol.
Bioinf. 15(6), 18631864 (2018)


https://doi.org/10.1109/TCYB.2019.2933041
https://doi.org/10.1109/TCYB.2019.2933041
https://doi.org/10.1007/s10994-010-5216-5
https://doi.org/10.1007/s10994-010-5216-5
https://doi.org/10.1007/978-3-642-17390-5
https://doi.org/10.1007/978-3-642-17390-5
https://doi.org/10.1007/978-3-642-21515-5_36
https://doi.org/10.1007/978-981-13-6295-8_7

14

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

J. Yang et al.

Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355-364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1_44

Tang, H., et al.: Predicting green consumption behaviors of students using efficient
firefly grey wolf-assisted k-nearest neighbor classifiers. IEEE Access (2020)
Tarkhaneh, O., Isazadeh, A., Khamnei, H.J.: A new hybrid strategy for data clus-
tering using cuckoo search based on mantegna levy distribution, PSO and k-means.
Int. J. Comput. Appl. Technol. 58(2), 137-149 (2018)

Tuba, E., Mrkela, L., Tuba, M.: Support vector machine parameter tuning
using firefly algorithm. In: 2016 26th International Conference Radioelektronika
(RADIOELEKTRONIKA), pp. 413-418. IEEE (2016)

Tuba, E., Strumberger, 1., Bacanin, N., Zivkovic, D., Tuba, M.: Cooperative clus-
tering algorithm based on brain storm optimization and k-means. In: 2018 28th
International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 1-5.
IEEE (2018)

Vrbanci¢, G., Fister Jr., 1., Podgorelec, V.: Swarm intelligence approaches for
parameter setting of deep learning neural network: case study on phishing web-
sites classification. In: Proceedings of the 8th International Conference on Web
Intelligence, Mining and Semantics, pp. 1-8 (2018)

Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep neural networks by multi-
objective particle swarm optimization for image classification. arXiv:1904.09035
(2019)

Wang, B., Xue, B., Zhang, M.: Particle swarm optimisation for evolving deep neu-
ral networks for image classification by evolving and stacking transferable blocks.
arXiv:1907.12659 (2019)

Wu, Q., Liu, H., Yan, X.: Multi-label classification algorithm research based on
swarm intelligence. Cluster Comput. 19(4), 2075-2085 (2016)

Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169-178. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), pp. 210-214. IEEE (2009)
Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Eng. Comput. 29(5), 464-483 (2012)

Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired meta-
heuristic algorithm. J. Comput. Des. Eng. 3(1), 24-36 (2016)

Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., Fortino, G.:
Swarm intelligence and IoT-based smart cities: a review. In: Cicirelli, F., Guerrieri,
A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart
Urban Ecosystems. IT, pp. 177-200. Springer, Cham (2019). https://doi.org/10.
1007/978-3-319-96550-5_8

Zhang, S., Lee, C.K., Yu, K., Lau, H.C.: Design and development of a unified
framework towards swarm intelligence. Artif. Intell. Rev. 47(2), 253-277 (2017).
https://doi.org/10.1007/s10462-016-9481-y

Zhang, Y., Song, X.F., Gong, D.W.: A return-cost-based binary firefly algorithm
for feature selection. Inf. Sci. 418, 561-574 (2017)

Zhao, R.Q., Tang, W.S.: Monkey algorithm for global numerical optimization. J.
Uncertain Syst. 2(3), 165-176 (2008)

Zhao, X., Wang, C., Su, J., Wang, J.: Research and application based on the swarm
intelligence algorithm and artificial intelligence for wind farm decision system.
Renew. Energy 134, 681-697 (2019)


https://doi.org/10.1007/978-3-642-13495-1_44
http://arxiv.org/abs/1904.09035
http://arxiv.org/abs/1907.12659
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-319-96550-5_8
https://doi.org/10.1007/978-3-319-96550-5_8
https://doi.org/10.1007/s10462-016-9481-y

®

Check for
updates

Synchronized Swarm Operation

Eugene Larkin! &, Tatyana Akimenko!, and Aleksandr Privalov?

! Tula State University, Tula 300012, Russia
elarkin@mail.ru
2 Tula State Lev Tolstoy Pedagogical University, Tula 300026, Russia
privalov.6l@mail.ru

Abstract. Physical swarm system, including number of units, operated in phys-
ical time according to corporative algorithm, is considered. It is shown, that for
proper corporative algorithm interpretation it is necessary to synchronize compu-
tational processes in units. Structural-parametric model of synchronized swarm
operation, based on Petri-Markov nets apparatus, is worked out. In the Petri-
Markov net transitions are abstract analogues of synchronization procedure, while
places simulate corporative algorithm parts interpretation by swarm units. Primary
Petri-Markov model is transformed into complex semi-Markov process. Formulae
for calculation of stochastic and time characteristics of the process are obtained.
It is shown, that after transformation all methods of ordinary semi-Markov pro-
cesses investigation may be used for synchronized systems. With use the concept
of distributed forfeit effectiveness of synchronization is evaluated.

Keywords: Swarm - Unit - Corporative algorithm - Semi-Markov process -
Petri-Markov net - Time characteristics - Stochastic characteristics - Distributed
forfeit effectiveness

1 Introduction

Physical swarms, which solve corporative task, are widely used in different branches of
human activity, industrial and mobile robotics, concurrent computation, control systems,
etc. [1-5]. Such systems include number of units, each of which operates accordingly
to its own algorithm realized on Von Neumann type controllers. Due to consecutive
interpretation of algorithm operators and accidental character of data processed, runtime
of controller is a random value, and outcome of program operation is stochastic [6]. So
for proper operation, when solving a corporative task, swarm should be tuned in such a
way, that corporative algorithm should be divided on pieces, which are realized on swarm
units, and interpretation of algorithm pieces should be carried out in the proper sequence
[7]. Such alignment is called synchronization. For optimal synchronization adequate
model of parallel process should be worked out. Below approach to simulation, based
on Petri-Markov nets [8], which from one side permits to evaluate random time intervals
characteristics, and from other side take into account interaction of parallel processes, is
used. Also for optimal synchronization it is necessary to have criterion, which permits
to evaluate effectiveness of corporative algorithm division. Below universal criterion,

© Springer Nature Switzerland AG 2020
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called distributed forfeit, is proposed, and formulae for effectiveness estimation with use
proposed criterion are obtained.

Approaches to simulation of synchronized operation of swarm are currently known
insufficiently, that explains necessity and relevance of the investigations in this domain.

2 Petri-Markov Model of Synchronized Operation

Operation of swarm, which includes M units and solves some corporative task, may be
described with use Petri-Markov net (PMN) apparatus [8]. Swarm operation model is
as follows (Fig. 1).

Fig. 1. Petri-Markov network describing the synchronous operation of equipment.

II={A,Z,(2),0(2)}, (D
where A = {Al, AL Aj} is the set op places, which describes operation of
M swarm units; Z = {Z,...,Z;,...,Z;} is the set of transitions, which describes

synchronization procedures; L(Z) o(Z) are input and output functions of transitions,
correspondingly; J number of operators in corporative algorithm of swarm behavior
when solving corporative task;

Aj={aj‘o’aj,lv"'5aj,mv"'9aj,M}’ 1 E]EJ; (2)
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Zi={go. g1}, 1<j=<J; 3
() == (L@, ... (Z), .. L<z/>}
1(Z)) = {u(g.0). (CJ D)1 < 4)
4(g.0) = .05
l(Cj,l) = {Otj,l, v Oy e aj,M};
o(Z) == {0(Z1), ce o(Zj), R O(ZJ)};
0(Zj) = {o(gj.0). o)} 1 < j < U )
O(Cj,()) = {OLj,l, e O s O M };
0(§j,1) = {0(11(), cees OG0y (X.]’()}.

PMN operation may be considered as sequence semi-steps, which may be done
either from places to transitions, (Otj,o, Cj,o), (oq/,m,j(e), Gi),1 <j<J,1<m=<M,
1 < j(e) < J(e),or from transitions to places, (Cj,o, Wm)l <m<M,1 <j<J;
(€1, 01,0)s «-os (81, 0,0)s +-s (81, @s0), 1 < j < J. For semi-step execution from
places 0 0, %1, .- ., &m, - - -, &j p into corresponding transitions random time interval
t should be spent, which begins from the moment, when semi-step was done into this
place. Time intervals are determined with an accuracy to time densities f; 0 (1), fj,m.j(e) (),
1 <j<J,1 <m<M,1 < jle) < J(e). For semi-step execution from transition
gj,0 simultaneously to all places o 1, ..., Oj s, . . ., & p, constituting its output function
0(t;,0) only semi-step (o0, §j,0) should be done. For execution of one of semi-step from
the transition g; 1, the proper (ocj, myj(e)s Gj, 1) semi-steps combination to named transition
must be done, due to only one direction of the set {1(e), ..., j(e),...,J(e)} may be
choose for doing semi-step (Fig. 1).

In such a way, transitions g; o, and g; 1, are the synchronized one: transition g; o
in the sense that all semi-steps, included into its output function O(Cj,o), are executed
simultaneously (synchronous start), but transition g; 1 in the sense, that semi-step from
it would not be done until all semi-steps from places of L(ngl) will be done.

PMN timing elements are places. Time of residence PMN at places
A1,05 - -+ ®j,0,5 - .-, 0y 0 18 as follows

fio(®) = 3(1), (6)

where 3(¢) is the Dirac 3-function.
Time of residence PMN at places 01 1,..., % my-ver U1 Ms  -oes
QL eees Qs v ves Oj My wevy O 15w vy O s« -, 0 ¢ 1S defined as the time of wan-

dering through semi-Markov processes [9, 10] wjn(®),1 <j < J, 1 <m < M,
which are abstract analogues of swarm unit onboard computers operation, and are defined
as follows (Fig. 2):

Wjm = {Aj,ms Vim, hj,m(t)}’ @)

where A; Aj,m| = J(a)+ 1, is the set of states, which are abstract analogues of swarm
unit onboard computer algorithm operators; r; , is the [J (a) + 1] x [J (a) + 1] adjacency
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Fig. 2. Semi-Markov process |, (¢)

matrix, which describes links between operators; k; ,,,(¢) is the [J (a) + 1] x [J(a) + 1]
semi-Markov matrix, which define time intervals of operators interpretation;

Ajm = {Gm0@: Gjm1@): - G @I @) - > Gmd @ ~I (@) }: ®)
rim = [1jmj@n@]; ©)
R (®) = [ljm.jant@) D] (10)

The set A; ,, is divided onto two disjoint subsets, subset of non-absorbing states

Ejm = {aj.m 0@ Gm1@@)s - - -+ Gmj(a)s - - - » Gom,d (@)—J () }» (11)

and subset of absorbing states Ej ;.

Ejm = {ajmi@—s@+1s s Gmje)s ---» Gmia - (12)

Wandering through states of semi-Markov process h; () start at the state a;,;,0(a)»
which is the abstract analogue of “begin” operator. States @; ;. j(e) € Ej », are the abstract
analogues of “end” operators for different outcomes of algorithm operation.

Element A j(a),n(a)(t) € hjm(t) performs weighted time density of m-th swarm
unit residence in the state g; , j() when decision was made about next switch into the
state a;j m,n(a)-

Weighted time density of the semi-Markov process |, ,, wandering from the state
aj.m,0(a) till the state aj.m,J (a)—J (e)+j(e) € E is as follows:

o0
_ k
hjm je)®) = "To@) - L 1[2 L[]} } L@ -J @+ (13)
k=1
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where Rlo(a) is the row vector of size [J(a) + 1], whose O(a)-th element is equal to
one, and all other elements are equal to zeros; “I;()—j(e)+j(e) is column vector, whose
[J (a) —J(e) + j(e)]-th element is equal to one, and all other elements are equal to zeros;
L[...Ju L™'[.. ] are correspondingly direct and inverse Laplace transforms.

When J(e) = 1 the algorithm simulated has the only outcome, and consequently
Rjmge)®) = fjmae) (). When J(e) > 1, then semi-Markov process W; ,, gets subset
E, veraciously, but the state a;,u,J (a)—J (e)+j(e) it gets with probability [12]

e¢]

Djm.jle) = /hj,m,j(e)(t)dt- (14)
0

Pure (non-weighted) time density, expectation and dispersion are equal, correspond-
ingly [13]

hjm.jce)(®)

Jimje (@) = (15)
Pjm.j(e)
o0
Tjmje) = /Z-ﬁ,m,j(e)(f)dl‘; (16)
0
o0
2
Djm.je) = / (t = Tnyne))” - frmijeo (D). (17)
0
Due to p;,» gets subset E, veraciously,
Je)
> Pimje = 1. (18)
Jje)=1(e)

3 Transformation PMN to Complex Semi-Markov Process

With use formulae (13), (14), (15) obtained, Petri-Markov sublet, circled on the Fig. 2
with dashed line, may be replaced with the single state, and so the PMN IT may be
replaced with complex semi-Markov process, which describes behavior of the swarm as
a whole. Circled with dashed line subset is as follows

; = {A}. Z;, (Z)). o(Z))}, (19)
Aj= {Otj,(),OLj’l,...,OLj,m,...,OLj,M}, (20)
Zj = {g.0.5.1};

4(g,0) = a0; , 1)
L(Cj,l) = {ocj,l, ces Oy e, O };
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0(2)) = {o(t0). o(t;1) };
0(§j,0) = {OLj’l,...,OLj,m,...,OLj,M}; ) (22)
O(Ej,l) = {OLL(), s OG0y e OL],()}

Semi-Markov process is as follows
w={B,r h(n}, (23)

where B = {bl, oo by bJ} is the set of states, which are abstract analogues of
execution by swarm the complex operation due to algorithm of swarm behavior;

r = [rj,n] is the J x J adjacency matrix; hj (1) = [hj,»(1)] is the J x J semi-Markov
matrix.

Let us define probabilities and time densities of switch from the complex state b; € B
to the complex state b,, € B. Semi-steps ((xj,o, §j,o) and (gj,o, ocj,m), 1 <m < M are
executed during the time which is defined with Dirac §-function. Semi-steps (;,, 1, 0o, ,,),
1 < n < J are executed after logical conditions fulfillment also during defied with
Dirac 3-function time. So time of residence the complex semi-Markov process in the state
b; till switch to the complex state b, may be defined as result of competition between
ordinary semi-Markov processes W; ,, with taking into account outcomes of getting
subsets Ej , states.

For definition of all possible outcomes, from indexes trios [j ,m,j (e)], 1l<m<M,
following set may be constructed

Tm={lm1@],....[J,mj@] ....[l,mJ@]}, 1 <m =< M. (24)

Cartesian product of sets ]j,m gives all possible combinations of outcomes of swarm
units operation:

M
Ji=1Jm={0 110 ... [im 1@ ... [, M, 1)), -,

m=1
[ 1@ - [ mi @], - M. j@])..... - rI@ - fom @], ... imi@)k (25)
From (25) may be selected those vectors, combination of trios of which permit to do
emi-step (5,1, @,0):
jj 2 ‘7](}1) == {([] 17 i(@, n)]5 LI ) []’ maj(ea n)]v L) [Ja M’ k(e’ n)]) ’
e ([] 1, (e, n)], e [j, m, q(e, n)], cee, [j,M, s(e, n)])}; (26)

T | = K0 27)

Probability of k(n)-th combination emergence is as follows:

M
Piwny = | [ Pimitewim. 1 =< k@) < K(n). (28)
m=1
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So, probability p; ,, of switch the complex semi-Markov process | from b; to by, is
equal to the sum

K(n)

Djn = Z Dj(n),k(n)- 29)
k(n)=1

For calculation of time density f; ,(#) one should consider the competition [9, 14]
on the transition ¢; ; between ordinary semi-Markov processes ;. Residence at the
state b; is considered as completed, when last ordinary semi-Markov process reaches its
Ej ,u state according the combination (25). This is why semi-Markov processes compete
for not being the last in the competition. Time of reaching subset E; ,,, by all M may be
described with the following formula:

M
d TT Fjmjtexo(®

m=1

L. 1) =
Sijte.xmn(®) o

M M
= Zﬁ,m,j[e,.c(n)](l) 1_[ Fj i jlexmi (D). (30)
m=1 i=l1,
i#=m
where fj . jle,c(n)](?) 1s the time density of reaching the transition g; ; by m-th semi-

t
Markov process due to k(n)-th combination; F_ (1) = f f..(v)d if the function of
0

distribution of probabilities.
With taking into account combination of outcomes, weighted and pure time densities
of switch from the state b; to the state b, are as follows:

K(n)

hjn(t) = Z Pj.cmdjte,cn (1) (€29)
k(=1
hi n(t
finty = 0. (32)
Jsn

After transformation for investigation of swarm behavior investigation and calcula-
tion of wandering time intervals all possible methods of semi-Markov process analysis
may be used [9-12].

4 Effectiveness of Synchronization

One of the important aspects of swarm operation organization is elimination of unpro-
ductive units downtime when corporative task is solved. Parameter, which defines effec-
tiveness, may be any, but when investigation of relay-races, distributed forfeit is of widely
used. Let us considered competition of m-th u I-th swarm units, first of which gets the
transition g; | during time f; jn jle,c(n)] (2), but second - during the time f; ; je, ()] () In
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the case of winning in competition the first swarm unit he waits until /-th swarm unit
gets g; 1. Waiting time is calculated as follows [15]:

o0
@ [ fimjtecomn(Of 1 jlecm(t + DdT
0
Jim—t1jlecm (@) = = , (33)
I Fjm jtecoy)(dFj 1 jie.c(ny ()
0

where T is an auxiliary argument; 1(¢) is the Heaviside function.
Probability of such event, expectation and dispersion of waiting time are as follows

o
Djm—s1jle,xn)] = /Fj,m,j[e,K(n)](t)dFj,l,j[e,lc(n)](t); 34
0
o0
Ti i jlecn)] = /t‘ﬁ,mel,j[e,K(n)](t)dt; (35)
0
o0
2
Dj 1 jlecm] = / [t = Tjms 1 je.xconn ] frum—t.jlecon1 (dt. (36)
0

Every of value (34), (35), (36) may characterized those or that effectiveness
aspect, but more universal is the criterion, which is defined as distributed forfeit [15]
Cj m—1,jle,x(m)] (1) Forfeit, receives m-th swarm unit from the /-th swarm unit if it gets the
transition ; | earlier. Latecomer pays forfeit during whole the time until he m-th swarm
unit waits him. In this case weighted forfeit sum is equal to

oo
Cim—1.jle,c(m)] =pj,m%l,j[e,|<(n)]/Cj,m%l,j[e,lc(n)](t)f]",m%l,j[e,lc(n)](t)dt; 37
o

Common forfeit sum, which m-th swarm unit receives from all other units by k(n)-th
combination variant is as follows:

M
Cimjlexn = Y, Cimsl jlexin)] (38)
=1,
1#m
Common forfeit sum, which m-th swarm unit receives from all other units in the case
of further switch into state b, is equal to

K(n)
Cimn=Y_, Pimjlexn - Cimjiesml- (39
k(n)=1

Sum Cj),m depends on parameters of ordinary semi-Markov processes (7), and
forfeit discipline. Such sum may be used as optimization criterion in the task of producing
optimal swarm behavior.
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5 Conclusion

Working out the model of swarm synchronized operation opens new page in parallel
systems theory because it permits to link real physical parameters of hardware with
structure and logics of operation oh corporative algorithm, distributed among swarm
units. Algorithm splitting may be done with those or that way, but with use approach
proposed, swarm program designer for every mode of splitting may evaluate main char-
acteristics both corporative algorithm as a whole, and parts of it, realized on swarm
units.

Further investigation in this area should be directed to working out an algorithm
splitting optimization method, based on proposed approach to parallelization modeling
and evaluation of effectiveness.

The research was supported by the Foundation for Basic Research under the project
19-47-710004 r_a.
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Abstract. Prediction of photovoltaic (PV) energy is an important task.
It allows grid operators to plan production of energy in order to secure
stability of electrical grid. In this work we focus on improving prediction
of PV energy using nature-inspired algorithms for optimization of Sup-
port Vector Regression (SVR) models. We propose method, which uses
different models optimized for various types of weather in order to achieve
higher overall accuracy compared to single optimized model. Each sample
is classified by Multi-Layer Perceptron (MLP) into some weather class
and then model is trained for each weather class. Our method achieved
slightly better results compared to single optimized model.

Keywords: Firefly Algorithm - Optimization - Support Vector
Regression

1 Introduction

Renewable sources of energy are increasingly involved in total energy production.
One of the most important sources of renewable energy is solar radiation. PV
panels are used in order to obtain energy from solar radiation. However this type
of energy can be unstable, resulting in large fluctuations of energy production
which might cause instability of electrical grid. Therefore, it is necessary to
predict the output of these power plants so that grid operators can plan power
generation or effectively regulate the grid to ensure its stability.

Various approaches to prediction of PV energy are used. According to
[1] there are 3 types of approaches: physical, statistical and hybrid. Physical
approaches use technical parameters of PV power plants and weather forecasts.
Statistical approaches use only data from the past, which contains information
about weather and production of PV power plant. Statistical methods are further
subdivided into regression and artificial intelligence methods, which are able to
use these data to create prediction models. Hybrid approaches combine previous
approaches to the ensembles to improve prediction.
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Artificial intelligence methods are powerful in predicting PV power produc-
tion, but their accuracy is highly dependent on their hyperparameter setting.
The hyperparameter setting can be done in various ways, either manually or
by using algorithms capable of finding and evaluating different hyperparameter
settings. A group of algorithms used for hyperparameter setting is called nature-
inspired algorithms. These algorithms are able to avoid local minima and find
global minimum. Many of these algorithms use large amounts of agents repre-
senting specific solutions. Firefly algorithm (FA), particle swarm optimization
(PSO) and genetic algorithm (GA) are some of nature-inspired algorithms.

In this paper artificial intelligence approach is used. We are using SVR for
predictions. In order to increase prediction accuracy we are using FA to optimize
SVR hyperparameters. We also classify each sample with MLP and we train
multiple SVR models, one for each weather type.

2 Related Work

There are many different approaches to prediction of PV power in the literature.

Multiple SVR models were used for different weather types, which were
obtained with SOM and LVQ, were used in [16]. In [9] comparison of ANN,
kNN, SVM and MLR was done. Simple parameter optimization was performed
for each algorithm. Multiple weather types were also used in [12]. In [6] ten dif-
ferent optimized machine learning algorithms were used for predicting. Various
algorithms were also used in [14], specifically FFNN, SVR and RT. Parame-
ter optimization was done for each algorithm. Classifying weather into weather
types with SOM was used in [2]. For each weather type one model of RBF net-
work was trained. SVR and ensemble of NN were used in [11]. They also used
CFS for feature selection. In [10] they compared accuracy of SVR to accuracy
of physical model. In [13] they used GBDT with Taylor formula for predictions
and compared it to original data and prediction of optimized SVM with RBF
kernel. Different approach was used in [3]. They used v-SVR with parameter
optimization. In order to achieve best results, model was retrained each night.
MARS was used for predictions in [8], where it was compared to multiple differ-
ent algorithms. In [7] ELM, ANN and SVR were used. MLP, LSTM, DBN and
Auto-LSTM neural networks along with physical P-PVFM model were used in
[5] for prediction of PV power production of 21 power plants. In [15] multiple
physical and SVR models were used for various time intervals for 921 power
plants. SVR was optimized using GridSearch to obtain higher accuracy.

3 Firefly Algorithm

Firefly algorithm [17] is a metaheuristic inspired by firefly behaviour in nature.
Idea of this algorithm is that each firefly represents one solution of optimized
problem. All fireflies move towards other fireflies they see according to move-
ment equation. Since fireflies represent solutions, change of position of firefly
also means change of solution.
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We use firefly algorithm to optimize SVR models. In our case firefly represents
model hyperparameters which change when firefly moves. SVR hyperparameters
we optimized using FA are C, €, v and tolerance for stopping criterion.

We chose FA because its parameters «, 3y and 7, which are described in fol-
lowing subsection, allow great control over optimization process. Several exper-
iments were performed to find the best setting of those parameters.

3.1 Movement Equation

In our implementation, each firefly moves according to following equation:

ot = ot 4 Boe i (x§ — b)) + aels’ (1)
where x’é“ is new position of a firefly, z! is actual position of a firefly. Attrac-
tivity coefficient By determines how fast fireflies move towards each other. Visi-
bility coefficient 7y is used to change perceived attractivity of fireflies. « is ran-
dom movement coefficient, which decreases with every generation, €! is vector
of random numbers representing random movement of firefly and §* is vector of
coefficients used for changing range from which random movement is generated.

4 Methods of Prediction

We are using two methods of prediction. Both of our methods are based on SVR
[4], which is regression method based on an idea of Support Vector Machine.
SVR utilizes hyperplane that maximizes margins of tolerance for data points
while tolerating some error. In case data are not linear, SVR also uses kernel
functions to transform them to linear feature space.

First method is single SVR model optimized on entire training data set.
Second method (Fig.1) is based on multiple models of SVR with each model
optimized on specific weather class. Weather class is a numerical representation
of weather type (sunny, cloudy, etc.). We use combination of clustering and
classification to obtain weather classes.

4.1 Weather Classes Discovery

First step to discover weather classes is obtaining of initial weather class labels
from training data set. We are using agglomerative clustering to obtain labels.
Each cluster that agglomerative clustering discovers is considered a unique
weather class. Before clustering is started, we specify the number of initial classes
it should discover. Initial classes represent the first division of samples according
to weather. After initial weather classes are discovered, we train MLP classifier
S0 we can use it to classify new samples.

With weather classes discovered, we use FA to optimize one SVR model for
each class. Then accuracy of SVR for each weather class is compared to accuracy
of the first method on that class. After accuracy of models of all weather classes
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Are some models less accurate than first method?

No Yes Merge classes whose
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than first method
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Predict PV power for each
sample with SVR
corresponding to weather
class of sample

Fig. 1. Diagram showing how method based on weather classes works.

is checked, all classes whose SVR performed worse compared to the first method
are merged. Obtained weather class should be more similar to the whole training
data set than any of the classes that were merged together, therefore model
optimized for this new class should perform more similarly to the first method.
After merging, SVR model is optimized for new weather class and MLP
classifier is retrained. Then accuracy of prediction on all classes is checked again.
Because of merging of classes and retraining of classifier, some samples might be
classified into different classes than before. This might cause that models of some
classes, which were better before merging, are now worse that the first method.
Then merging of classes and optimization will happen again. This process of
optimization, accuracy evaluation and merging of classes repeats in a cycle while
there are at least two weather classes to merge. When cycle ends, we have final
weather classes and SVR models, which we can now use for prediction.

4.2 Use of Multiple Weather Classes for Prediction

We use MLP classifier to obtain weather classes. This classifier can predict prob-
ability that sample belongs to a specific weather class. We use these probabilities
to improve accuracy of a prediction according to the following equation:

X = Z PiZ; (2)
=0

where X is final prediction, z; is prediction if sample belongs to weather class ¢, p;
is probability of sample belonging to weather class i and n is a number of weather
classes. When predicting, we first obtain probabilities of sample belonging to
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specific weather classes. Then for each weather class we make prediction with its
SVR model and multiply it by probability of sample belonging to that weather
class. Sum of all augmented predictions is considered as the final prediction.

4.3 Bias Correction

Since machine learning models might be slightly biased if not trained perfectly,
we decided to use simple bias correction for all models in order to decrease
prediction error. To perform bias correction, we first evaluate Mean Bias Error
according to Eq. 8 on validation data set. Then from simple equation:

MBE
=1—-— 3
coef 7 (3)
where MBFE and R are described in Sect. 6.1, we obtain bias coefficient which we
use to correct bias of prediction. This correction is performed by multiplicating
predicted values with obtained bias coefficient.

5 Data

In our experiments we used data set from University of Queensland®. This data
set has one minute resolution, but we aggregated it to higher resolution depend-
ing on what series of experiments we were performing. Data sets contain follow-
ing attributes: air temperature, humidity, wind speed and direction, insolation,
power production in watts (W) and timestamp.

For the first and second series of experiments we used data from UQ Centre
from 1.1.2014 to 31.12.2017 and aggregated it to hourly resolution. Time interval
of data we used was 5am to 7 pm. Data from years 2014 and 2015 were used for
training, data from year 2016 were used for validation and data from year 2017
were used for testing.

In order to compare our results to [11], we used the same subset of data,
therefore data were only from years 2013 and 2014 from 7am to 5pm and we
aggregated it to 5 min resolution. In case of insolation and power we used addition
to aggregate them. Other attributes were aggregated as mean hourly values.
Training data were from year 2013. As validation data we chose every other day
from year 2014 starting with 2nd January. Test data were chosen in the same
way as validation data, however it started with 1st January.

In all experiments training and validation data were used in optimization
process and test data were used to evaluate accuracy of optimized models.

5.1 Data Preprocessing

We transformed production to kilowatts (kW) and we also extracted minute
(for third series of experiments), hour, day, month and year for each sample

! https://solar-energy.uq.edu.au/research /open-access-data.
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from timestamp. We also derived weather changes in last hour for the first and
second series of experiments and in last 55 min for third series of experiments.
We also scaled power production and all attributes used for prediction.

For each sample we also used hourly production from last 3h for the first
and second series of experiments and last 6h for third series of experiments.
In some experiments we used also production from the most similar sample in
entire data set if the first method was used or only in specific weather class if
second method was used. We checked for similar production only in samples
where absolute hour difference between original and similar sample is not larger
than 1. This difference in case of months was set to 2. We decided to use those
limits because production difference between those limits is not too large.

6 Experiments

We made three series of experiments. In the first series we focused on finding
a good setting of FA. In the second series we used our methods of prediction
to predict hour ahead PV production and in the third series we compared our
approach with existing approach.

6.1 Evaluation Metrics

To evaluate accuracy of both of our methods of prediction, we use Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) and their percentage
transformations: normalized RMSE (nRMSE) and Mean Relative Error (MRE).
Because we are using simple bias correction, we also use Mean Bias Error (MBE)
to obtain bias. Following are formulas used for calculation of errors:

N
MAE:;[*;I%—?M (4)
MRE = 100% « AE (5)
1 N
RMSE = || - ;(x —y;)? (6)
nRMSE = 100% = %RSE (7)
1

(w5 — i) (8)

-

MBE = N *

i=1
where x; is predicted value, y; is real value, N is number of samples and R
is computed as a difference between maximal and minimal power production
in training data set. In case of predictions for one hour ahead we used largest
value in training data set where R = 21856.645 kW and in case of predictions
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Table 1. Experiments to find good settings of FA.

a|fBo |v|RMSE | MAE | Best generation | Scattering
0/0.2/0/2229.0 |1258.8 | 1 None
01]0.2/1/2579.3 [2230.5 | O Very small
0/0.22/1983.5 |1382.0 | 0 Very small
1/0 |0/|2043.7 |1397.7 |18 Medium
1/1 |0/1920.5|1221.7 19 Very small
112 |0]1972.1 |1258.8 | 6 Small

11 [1/1921.9 |1223.5 |30 Very small
11 |2]1958.3 |1316.8 |29 Big

12 1/1931.4 |1230.5 |15 Small

112 |2/2061.5 |1451.5 |27 Big

for 55-60 min ahead interval we used largest value in entire dataset (training,
validation and test) R = 1150.27 kW because same approach was used in solution
with which we compare our methods.

In all experiments metrics RMSE and MAE are in kW and metrics nRMSE
and MRE are in %.

6.2 Experiments with Settings of Firefly Algorithm

In this series of experiments we tried various settings of FA to find the most
suitable setting we could use in further experiments. We investigated the impact
of parameters «, § and -y described in Subsect. 3.1 on the speed of finding the best
solution in that run (column Best generation) and how scattered were fireflies
after last generation. This series of experiments were performed on first method
of prediction which used only current weather to forecast hour ahead production.
For each experiment we used 15 fireflies and 30 generations.

We must note that data used in these experiments were later slightly changed
and therefore model performances are slightly different compared to other exper-
iments. However we did not run these experiments again because we could use
the results to decide which setting is most suitable for further experiments.

We can see in Table 1 that when o = 0 firefly algorithm was not able to
find good hyperparameter settings of SVR model, but very small scattering was
achieved. We assume that this is because there was no random movement, there-
fore fireflies moved directly towards each other. We can also see that scattering
is smaller when value of v is smaller. This happens because smaller values of ~y
mean better visibility. When 3y = 0 movement is completely random because
Bo controls attractivity of fireflies. Otherwise there does not seem to be any
significant influence of By on optimization.

We chose settings where a = 1, By = 1 and v = 0 for further use because
of the small spread after last generation and also because best solution was not
found too late nor too early.
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Table 2. Results of experiments with first method. In column Used attributes value
1 represents only current weather, value 2 represents weather change in last hour,
value 3 represents measured production in 3 previous hours and value 4 represents
measured production from most similar sample. Last row (in italic) is SVR with default
parameters and best attributes.

Used attributes | Single model Single model with bias correction
RMSE (nRMSE) | MAE (MRE) | RMSE (nRMSE) | MAE (MRE)
1 1968.2 (9.01) 1256.7 (5.75) | 1954.2 (8.94) 1267.7 (5.80)
1,2 2043.5 (9.35) 1354.0 (6.19) | 2037.9 (9.32) 1379.9 (6.31)
1,3 1511.1 (6.91) 948.1 (4.34) | 1510.1 (6.91) 947.7 (4.34)
1,4 1916.3 (8.77) 1220.6 (5.58) | 1906.6 (8.72) 1237.1 (5.66)
1,2,3 1477.2 (6.76) 932.9 (4.27) | 1475.0 (6.75) 934.8 (4.28)
1,2, 4 1959.5 (8.97) 1380.5 (6.31) | 1967.6 (9.00) 1403.3 (6.42)
1,2,3,4 1464.0 (6.70) | 888.7 (4.07) | 1461.9 (6.69) | 890.2 (4.07)
1, 2, 3, 4 1498.8 (6.86) 952.9 (4.36) | 1496.1 (6.84) 956.9 (4.38)

6.3 Experiments with Hour Ahead Prediction

In this series of experiments we used various features for prediction of hour
ahead production of PV power. We grouped those features into four sets: current
weather, weather change in last hour, power production for last three hours,
power production from most similar sample in the past.

Single Model Experiments. In order to decide which attributes are most
suitable for second method, we evaluated accuracy of the first method on mul-
tiple combinations of attributes. We include prediction with and without bias
correction for comparison. For each experiment we used 15 fireflies and 50 gen-
erations.

Best results in Table 2 were obtained when previous power production was
used. Using weather changes also improved results when it was used along with
current weather and previous production. However, when used only with current
weather, trained model was less accurate. Similar production improved accuracy
in most cases except one, where MAE of trained model was higher compared to
model trained on same attributes but without similar production.

In case of bias correction, we evaluated every model with and without bias
correction. We noticed that when using bias correction, RMSE tends to be
smaller compared to RMSE without bias correction, however MAE tends to
increase slightly. We think this happened because bias correction flattened high
errors, but increased overall error.

We have added SVR with default hyperparameters and best attributes to
show that optimization helped us to improve results. It is best seen when com-
paring the best model (in bold) with default SVR on MAE metric. Other models
were less accurate than default, but it is because of attributes.



Prediction of Photovoltaic Power Using Nature-Inspired Computing 33

Table 3. The attributes current weather and previous production were used. Initial
number of weather classes was 2. No classes merged.

Method variations RMSE (nRMSE) | MAE (MRE)
Basic 1500.8 (6.87) 914.7 (4.19)
Bias correction 1497.1 (6.85) 918.9 (4.20)
Multiclass 1498.9 (6.86) 914.1 (4.18)
Multiclass with bias correction | 1495.3 (6.84) 918.3 (4.20)

Table 4. The attributes current weather, weather change and previous production
were used. Initial number of weather classes was 5 and after merging 3.

Method variations RMSE (nRMSE) | MAE (MRE)
Basic 1486.0 (6.80) | 896.2 (4.10)
Bias correction 1484.6 (6.79) 900.1 (4.12)
Multiclass 1480.5 (6.77) | 892.1 (4.08)
Multiclass with bias correction | 1479.1 (6.77) 896.0 (4.10)

Multiple Model Experiments. In Tables 3, 4 and 5 are the best results of
the experiments with the second method for each attribute combination. We
used three best attribute combinations from experiments with first method. For
each used combination of attributes we evaluated accuracy without any improve-
ments, with bias correction, with multiclass prediction (Subsect.4.2) and with
combination of bias correction and multiclass prediction. For each experiment
we used 10 fireflies and 20 generations.

We can see in Tables 4 and 5 that RMSE slightly increased compared to
the single model experiments (Table 2) and in Table 3 that RMSE decreased.
However in all cases MAE decreased.

Increase of RMSE means that some deviations from real values are larger
compared to the first method and decrease of MAE means that overall deviations
are smaller. Increase of RMSE might have happened because optimization of
models for specific weather class did not achieve global optimum. Other reason
might be that model could not be more accurate on given class because samples
in a class were too different due to merging of classes.

Regarding improvement of accuracy of second method, we noticed that both
bias correction and usage of multiple classes for prediction decreased RMSE.
However bias correction increases MAE. Best results for MAE were achieved with
usage of multiple classes, however combination of bias correction and multiple
classes achieved smallest RMSE.

Bias correction has probably flattened high errors, but increased overall error
as in single model experiments. We think multiclass predictions improved accu-
racy because it took into consideration that samples might be misclassified.
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Table 5. The attributes current weather, weather change, previous and similar pro-
duction were used. Initial number of weather classes was 25 and after merging 8.

Method variations RMSE (nRMSE) | MAE (MRE)
Basic 1474.4 (6.75) | 874.3 (4.00)
Bias correction 1473.1 (6.74) 878.7 (4.02)
Multiclass 14715 (6.73) | 872.3 (3.99)
Multiclass with bias correction | 1470.2 (6.73) 876.5 (4.01)

Table 6. Comparison of our solution with solution from [11]. Values of MAE and MRE
for NN ensemble and SVR are taken from compared article. Single model represents
first method and Multiclass with bias correction represents second method.

Method of prediction MAE | MRE
NN ensemble 100.2 | 8.71
SVR 107.4 1 9.34
Single model 100.4 | 8.73
Multiclass with bias correction | 102.0 | 8.87

6.4 Comparison with Existing Solution

In this series of experiments, we compared the best solutions of both our methods
to the best solution from [11]. They also used data from University of Queens-
land, but from years 2013 and 2014 and from multiple buildings.

In order to obtain most accurate results, we tried to replicate data used in the
mentioned solution. However we were not able to fully reproduce data they used
and therefore results might have been slightly different as if data were identical.

They made predictions for every 5-min interval for next hour. We compared
our solutions to theirs only on the last interval (55-60 min ahead). For experi-
ments we used feature sets combinations for both methods where highest accu-
racy was acquired when predicting for one hour ahead. For both methods the
best combination was current weather, weather changes, previous and similar
production. In both experiments we used 10 fireflies and 20 generations.

In Table 6 we can see that first method has performance similar to ensemble
of neural networks, but outperformed their SVR. Difference is that in our method
SVR is optimized using FA and SVR from [11] does not seem to be optimized.
Also we did not use same features. That might have caused better performance.

We can see that second method performed worse than first method. This
probably happened because we had to change the application of second method
due to high computational complexity of SVR. Instead of optimizing for various
numbers of weather classes, models were only trained with optimal parameters
obtained from the first method on the same data. Then we optimized models
for best number of weather classes. As a result the optimal number of weather
classes might not have been used. Another reason might be that models were
not optimized enough to perform better.
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7 Conclusion

In this paper, we proposed approach to prediction of PV power based on classi-
fying samples into different weather classes and using FA to optimize model for
each weather class.

We compared this approach to single SVR model optimized on entire training
data set. Experiments show that our approach tends to decrease MAE compared
to single model. We also compared our methods with [11]. We achieved similar
accuracy with both of our methods, however the second method performed worse
than expected. This is probably caused by the fact that we did not utilize FA
optimization fully when comparing with [11]. From this and comparison of opti-
mized and unoptimized single SVR model we conclude that optimization has
visible impact on accuracy of predictions and we recommend using it.

Our approach has proven to have potential, however it still needs improve-
ments. It might be improved by changing merging of weather classes from one
large class into several smaller classes to avoid the problem of merging of two
too different classes. Also optimization of classifier could result in more accurate
assignment to classes and therefore better performance.

In the future we might also try different optimization algorithms to compare
them with FA, however we do not expect any significant improvements from
using different optimization algorithm.
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