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Abstract Microbial biofuel production has gained great interest over the last 3
decades due to an increase in global energy demand. Fossil fuels are not consid-
ered good as they release large volumes of greenhouse gas into the environment
and ultimately cause global warming. Microorganisms from extreme environments
are especially important because they have enzymes and proteins that can work
properly in extreme environmental conditions, such as, extreme temperatures, pH,
salinity, drought, and pressure. These microorganisms can be used in different
biotechnological applications, providing great momentum for biofuel production.
Extremophilic microorganisms including thermophiles, psychrophiles, halophiles,
alkaliphiles, and acidophiles have the ability to produce biofuels, such as bioethanol,
biobutanol, biodiesel, and biogas or methane, by using various starting materials,
such as sugars, starch crops, plant seeds, lignocellulosic agricultural waste, and
animal waste, under extreme environments.With progress being made with bioinfor-
matics and gene-editing tools, microorganisms such as Saccharomyces cerevisiae,
Escherichia coli, Clostridium thermocellum, Pyrobaculum calidifontis, and Ther-
mococcus kodakarensis have been genetically engineered to upscale biofuel produc-
tion. This chapter provides an overview of the various types of biofuels produced
by extremophiles, their commercial scale production, and research conducted to
improve current technologies. Biofuel production by thermophiles, psychrophiles,
halophiles, alkaliphiles, and acidophiles is explained thoroughly. Finally, we discuss
the metabolic engineering of extremophiles for upscaling biofuel production.

7.1 Introduction

The global population explosion caused an increase in industry and transport that ulti-
mately led to an increased demand for fossil fuels. This led to their depletion, making
them unsecure and expensive (Agrawal 2007; Uzoejinwa et al. 2018). Burning most
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fossil fuels causes an increase in greenhouse gas emissions and contributes to global
pollution and climate change (Escobar et al. 2009; Singh et al. 2010). Research
on microbial biofuel production, by the degradation of cellulose and other organic
compounds, has been undertaken since the mid-20th century. Currently, biofuel
production usingmicroorganisms has become an area of interest for scientists around
the world due to the increased demand for petroleum-based fuels relative to their
availability.

Biofuel production by the conversion of plant-based and algal-based biomass,
such as corn, wheat, beets, sugar cane, and other lignocellulosic agricultural waste,
has been reported in several studies over the last few years (Decker 2009; Linger
et al. 2014). Microbial biofuel production has received great interest over the
last decade. Extremophilic microorganisms have great biotechnological potential
because they have special physiological and genetic characteristics that allow them
to survive in extreme environments (Demain 2009; Gerday and Glansdorff 2007).
These organisms can thrive under various extreme environments, including condi-
tions of high salinity, acidity, aridity, and pressure, as well as high and low temper-
atures. Extremophiles have novel enzymes that can efficiently work under extreme
conditions of temperature, salinity, pressure, radiation, etc. (Kour et al. 2019a; Yadav
et al. 2016). These enzymes are eco-friendly and efficient, offering a good alterna-
tive to current industrial biocatalysts. They can be used in different biotechnological
and industrial applications like biofuel production (Egorova and Antranikian 2005;
Gurung et al. 2013).

Among the different extremophilic microorganisms, thermophiles are the most
commonly used, providing a number of industrial applications. These organ-
isms are able to work at high temperatures and pH levels. Thermophiles have
the ability to degrade complex biomass, like carbohydrates, and ferment pentose
or hexose sugars to produce biofuels (Gerday and Glansdorff 2007; Jiang
et al. 2017; Zaldivar et al. 2001). Moderate thermophiles including Clostridium,
Geobacillus, and Sulfobacillus, and hyperthermophiles including Thermococcus,
Pyrobaculum, Pyrococcus, and Pyrolobus play an important role in the produc-
tion of biofuels—especially ethanol, butanol, and methane (Barnard et al. 2010;
Wagner et al. 2008). Enzymes from halophiles (Halobacillus spp. and Haloarchaea)
have contributed to the production of bioethanol and biobutanol by the degrada-
tion of lignocellulosic compounds (Miriam et al. 2017). Acidophilic microorgan-
isms including Acidithiobacillus, Pseudomonas, and Pyrococcus furiosus have been
used for the degradation of agricultural waste and the production of biodiesel and
biogas (Hu et al. 2014; Kernan et al. 2016; Sonntag et al. 2014). Psychrophilic
bacteria including Bacillus, Pseudomonas, Methanosarcina, and Methylobacterium
are capable of producing bioethanol and biodiesel by the degradation of lignocel-
lulosic agricultural waste (Lidstrom 1992; Mukhtar et al. 2019b; Sonntag et al.
2014).

Research onmicrobial biofuel production has been reported extensively.However,
only a few studies have focussed on the production of biofuels by extremophiles
(Gurung et al. 2013; Jiang et al. 2017; Kernan et al. 2016; Miriam et al. 2017).
This chapter provides an overview of the different types of biofuels produced by



7 Biofuel Synthesis by Extremophilic Microorganisms 117

extremophilic microorganisms. The role of different extremophilic enzymes in the
production of biofuels, such as biogas, ethanol, butanol, hydrogen, and biodiesel,
is discussed. The chapter explains developments in this area during the last decade
and considers the current applications and future implications of using extremophilic
microorganisms and their enzymes for the production of biofuels.

7.2 Types of Biofuel Produced by Extremophiles

Biofuels can be divided into two different generations according to their starting
materials. First-generation biofuels can be defined as those that utilize readily avail-
able crops, such as sugarcane, corn, wheat, and soybean, ultimately being subjected
to bioethanol, biobutanol, and biodiesel production using conventional technolo-
gies (Luque et al. 2008; Taylor et al. 2009; Kour et al. 2019b, c; Kumar et al.
2019). Second-generation biofuels can be produced using raw materials such as
natural/perennial growing plants and agricultural waste that contains lignocellulosic
material (Carere et al. 2008; Dutta et al. 2014). Marine or freshwater microalgal
biofuels are often considered as third-generation (Dragone et al. 2010). Genetically
modified algae is considered a fourth-generation biofuel that may require evaluation
of its effects in terms of hazards to the environment and human health. Bioethanol
and biodiesel are the main biofuels produced on a large scale, comprising more than
90% of total global biofuel (Fig. 7.1).

Fig. 7.1 Types of biofuel produced by extremophiles
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7.2.1 Bioethanol

From the mid-20th century, many studies have considered the microbial production
of ethanol.Many facultative anaerobic bacteria includingLactobacillus, Clostridium,
Alloiococcus, Pediococcus, Aerococcus, Carnobacterium, Streptococcus, and Weis-
sella have been reportedly used for ethanol production using various waste materials,
such as corncob, paper, pine cones, and rice straw (Rogers et al. 1982; Sommer et al.
2004; Sun et al. 2003; Tan et al. 2010;Wagner et al. 2008). Some geneticallymodified
strains of Zymomonas mobilis and S. cerevisiae have been used on an industrial scale
for the production of bioethanol from starch crops such as corn, sugar cane, andwheat
(Fig. 7.1). Zymomonas mobilis produce about 20% more ethanol compared with S.
cerevisiae. This usually involves the processes of fermentation and saccharifica-
tion being undertaken independently while the addition of lignocellulosic-degrading
microorganisms allows simultaneous fermentation and saccharification (Glazer and
Nikaido 1995; Ho et al. 1998; Lynd et al. 2002; Sanchez and Cardona 2006).

Ethanol production by extremophilic microorganisms using lignocellulosic agri-
cultural waste material is more economic compared with the traditional production
of ethanol using starch crops (Rastegari et al. 2019a). Xylose-degrading, genetically
modified strains of Erwinia, Geobacillus and Klebsiella have the ability to produce
ethanol more efficiently using pure substrates as well as sugars obtained from waste
plant materials (Gulati et al. 1996; Hartley and Shama 1987; Kuyper et al. 2005;
Sedlak et al. 2004; Wouter et al. 2009). Several extremophilic archaeal, bacterial,
or fungal strains can survive under different abiotic stress conditions and produce
ethanol efficiently under extreme conditions of temperature, pH, and salt concen-
tration (Yadav et al. 2019a). These strains have the ability to produce biofuels by
degrading lignocellulosic agricultural waste, such as sugarcane bagasse, corn stover,
and pine cones (Fig. 7.1) (Lau and Dale 2009; Luli et al. 2008).

7.2.2 Biobutanol

Water solubility and available energy content makes butanol less attractive as a
biofuel. Butanol has been industrially produced since the 1960s as an organic solvent,
however, in the last few decades has it been used more as a biofuel for the trans-
portation industry because it has a 25% higher energy content than bioethanol (Lee
et al. 2008; Zheng et al. 2009). Recently, a group of scientists from the University of
California, Los Angeles (UCLA) produced different alcohols such as isopropanol,
n-butanol, and 2-methyl-1-butanol by the geneticmodification ofE. coli andC aceto-
butylicum (Atsumi et al. 2008; Hanai et al. 2007; Shen and Liao 2008). Biobutanol
production from lignocellulosic agricultural waste, using non-fermentable pathways,
was a major discovery and attracted a number of multinational companies wishing
to fund research on an industrial scale (Fig. 7.1). Some studies have reported on
the production of biobutanol from syngas using thermophilic and halophilic bacteria
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such as C carboxidivorans, Bacillus, and Synechococcus (Bengelsdorf et al. 2013;
Durre 2005, 2016).

7.2.3 Biodiesel

Biodiesel can be defined as a non-petroleum-based diesel fuel that mainly contains
alkyl esters including methyl, ethyl, and propyl groups. Most importantly, biodiesel
does not emit carbon monoxide or carbon dioxide, or cause environmental pollu-
tion (Gerpen 2005; Singh and Singh 2010). Biodiesel is biodegradable, sulfur-free,
and non-toxic in comparison to petroleum diesel (Demain 2009). It also extends
engine life as it contains desirable aromatic compounds with appropriate lubricity
(Luque et al. 2008). Different extremophiles can produce biodiesel using animal,
plant, and algal biomass (Fig. 7.1). This process involves the esterification of triglyc-
erides and alcohols (Chisti 2007; Fukuda et al. 2001). Recently, biodiesel produc-
tion by microalgae from different extreme environments, especially marine algae,
have attracted a great deal of interest and have been called third-generation biofuels
(Tollefson 2008). Biodiesel production using microalgae offers several advantages
such as rapid growth compared with other algae and plants and very rich lipid content
(80% of dry weight). Some companies in the United States use carbon dioxide–emit-
ting coal for the growth of different acidophilic microalgae (Metting 1996; Spolaore
et al. 2006; Tollefson 2008). A number of bacterial (P. fluorescens, B. cepacian,
and Rhizopusoryzae) and yeast strains (Lipomyces starkeyi, Yarrowia lipolytica,
Rhodotorula glutinis, andCryptococcus albidus) have the ability to produce biodiesel
from animal and plant sources (Fig. 7.1) (Al-Zuhair 2007; Du et al. 2004; Meng et al.
2009).

7.2.4 Biogas

Biogas or methane can be produced from anaerobic degradation or the methanogenic
decomposition of organic waste (Barnard et al. 2010; Schink 1997; Youssef et al.
2007). On a large scale, biogas is usually produced using a defined culture of a
syntroph, an acetoclastic or acetate-degradingmicroorganism, and hydrogenotrophic
methanogens. A lot of biogas-producing extremophilic bacteria, including Lacto-
bacilli, Clostridia, Bifidobacteria, and Bacteriocides, have been isolated from
different waste materials including activated sludge, cow dung, slaughter waste,
and household organic waste (Chandra et al. 2011; Gao et al. 2018; Narihiro and
Sekiguchi 2007; Singh et al. 2000). These bacteria have the ability to degrade complex
organicwastematerial into soluble small organicmolecules, such as glucose,maltose,
amino acids, and fatty acids, from which acetogenic and hydrogenotrophic bacteria
produce acetate and carbon dioxide (Fig. 7.1). Finally, archaeal methanogenic
strains, including Metanonococcus mazei, Methanosarcina thermophile, M lacustri,
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M. barkerican Methanothermococcus okinawensis, Methanosaet aconcilii, and
Methanolobus psychrophilus, and Ma. barkerican, produce methane and carbon
dioxide by the process ofmethanogensis (Franzmann et al. 1997; Nozhevnikova et al.
2003; Ronnow andGunnarsson 1981; Takai et al. 2002; Zhang et al. 2008). For indus-
trial applications, thermophilic or psychrophilicmethanogens can be used, depending
upon the anaerobic digestion process and temperature of the fermenter. Recently,
several studies have reported the use of mixed bacterial and archaeal methanogenic
communities to maximise biogas production (Holm-Nielsen et al. 2009; McKeown
et al. 2009).

7.2.5 Biohydrogen

Biohydrogen is a better alternative to petroleum-based fuels as it is the cleanest, non-
toxic, cost-effective biofuel producing no emissions of carbon monoxide or carbon
dioxide gas (Figs. 7.1 and 7.2). Biohydrogen also has the ability to convert chem-
ical energy into electrical energy in fuel cells (Das and Veziroglu 2001; Malhotra
2007). Hydrogen is produced in many naturally occurring chemical reactions as a
final product or a side product, like during the process of photosynthesis (Esper
et al. 2006; Vignais and Billoud 2007). The idea of utilization of unused biomass to
produce biohydrogen has gained the attention of many scientists (Figs. 7.1 and 7.2).
Many bacteria, archaea, and fungi have a variety of hydrogenases that are involved
in hydrogen production (Rastegari et al. 2020; Yadav et al. 2017, 2019b). Different
approaches have been used for microbial production of hydrogen, for example,

Fig. 7.2 Advantages of biohydrogen as a biofuel Adapted from Rathore et al. (2019)
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hydrogen is produced as a side product during cyanobacteria and algal photosyn-
thesis processes as well as during the anaerobic fermentation of organic substances
by using anaerobic bacteria and archaea (Enterobacter, Megasphaera, Lactobacillus,
and Prevotella) (Cheng and Zhu 2013; Claassen et al. 2004; Lopez-Hidalgo et al.
2018).

Thermophilic microorganisms including C thermocellum, Thermotogoelfii, P
furiosus, Caldicellulos iruptorsaccharolyticus, T kodakarensis, and Aeropyrum
camini contain different hydrogenases and can be used in the production of biohy-
drogen (Baker et al. 2009; Cheng et al. 2014; Claassen et al. 2004; de Vrije et al.
2002;Dien et al. 2003).Microbial hydrogenases can generate hydrogen fromglucose,
maltose, starch, or some animal carbohydrate sources (Sommer et al. 2004; Zaldivar
et al. 2001).Hydrogenases aremostlymetal-dependent (nickel and iron) enzymes that
can catalyze reactions in reversible conditions, for example, they produce protons
from hydrogen gas by using direct sunlight or organic molecules (Barnard et al.
2010; Rogers et al. 1982; Yun et al. 2018). Recently, many multinational companies
in United States have funded the production of biohydrogen on a commercial scale.

7.3 Biofuel Production by Thermophiles

Several thermophilic bacterial and archaeal species including Clostridium, Ther-
moanaerobacter, Thermococcus, and Pyrococcus are well known for their role in
biofuel production (Table 7.1). Alcohol dehydrogenase enzymes, involved in ethanol
production, are widely present in hyperthermophilic arachea strains, including T.s
kodakarensis (Wu et al. 2013), P. furiosus (Van-der Oost et al. 2001; Machielsen
et al. 2006), T. litoralis (Ma et al. 1994), T. sibiricus, and Thermococcus strain ES1
(Stekhanova et al. 2010). Primarily, the end products of carbohydrate metabolism in
P. furiosus are hydrogen, carbon dioxide, and acetate (Kengen et al. 1996). Recently,
a report on the conversion of acetate into ethanol in P. furiosus (Basen et al. 2014;
Nguyen et al. 2015) showed the potential of this organism to produce bioethanol. The
AAA pathway in P. furiosus, involving aldehyde oxidoreductase (AOR), acetyl-CoA
synthetase (ACS), and alcohol dehydrogenase (AdhA), also showed ethanol produc-
tion via the formation of acetyl-CoA from other metabolic pathways (Keller et al.
2017). When adhA (bacterial alcohol dehydrogenase) and CODH (carbon monoxide
dehydrogenase) were introduced to P. furiosus the engineered strain was able to
convert glucose, various organic acids, C2–C6 aldehydes, and phenyl acetaldehyde
into various alcoholic products. An engineered strain of P. furiosus was able to
produce ethanol up to 70 °C (Basen et al. 2014). T. kodakarensis enzymes can be
useful to degrade chitin and cellulose from raw shrimp shell and rice straw waste to
produce ethanol (Chen et al. 2019). This makes cellulose and chitin waste an attrac-
tive and potentially valuable future bioethanol source. Some archaeal strains have
also been reported to produce butanol from glucose. In the case of P. furiosus, when
butyrate/isobutyrate was supplied to the growth media (Basen et al. 2014) a large
amount of butanol was produced compared with ethanol. An engineered P. furiosus
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Table 7.1 Biofuel production using different extremophilic bacterial and archaeal strains

Abiotic
stress

Extremophiles Biofuel
production

Biomass Reference

Heat Thermococcus
kodakarensis

Ethanol and
biohydrogen

Chitin, sugars,
starch

Kanai et al.
(2005),
Aslam et al.
(2017)

Pyrococcus furiosus Biohydrogen Sugars, starch
crops

Basen et al.
(2014)

Sulfolobus solfataricus Ethanol Wood, straw,
grass,
lignocellulose

Quehenberger
et al. (2017)

Sulfolobus acidocaldarius Ethanol Lignocellulose Keasling et al.
(2008),
Quehenberger
et al. (2017)

Thermotoga maritima Biohydrogen Starch and xylan
polymers

Auria et al.
(2016)

Thermoanaerobacterium
saccharolyticum

Ethanol Xylan polymers,
hemicellulose

Liu et al.
(1996)

Clostridium
thermohydrosulfuricum

Ethanol,
hydrogen

Starch, xylose Wagner et al.
(2008)

Clostridium
thermocellum

Ethanol Lignocellulosic
waste

Lynd et al.
(2002),
Wagner et al.
(2008)

Geobacillus
stearothermophilus

Ethanol Xylan polymers Hartley and
Shama (1987)

Cold Rhodobacter ovatus Ethanol and
biohydrogen

Starch crops and
sugars

Srinivas et al.
(2008)

Bacillus pumilus Ethanol and
butanol

Starch crops Siddiqui and
Cavicchioli
(2006)

Pseudomonas fluorescens Biodiesel Lignocellulosic
agricultural waste
and seeds

Luo et al.
(2010)

Sejongia marina Biohydrogen Starch crops and
sugars

Zhang et al.
(2008)

Brevumdimonas sp. Biohydrogen Lignocellulosic
agricultural waste

Bao et al.
(2012)

Trichococcus collinsii Biohydrogen Starch crops and
sugars

Bottos et al.
(2014)

Methanosarcina barkeri Biogas/methane Animal and
agricultural waste

Nozhevnikova
et al. (2003)

(continued)
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Table 7.1 (continued)

Abiotic
stress

Extremophiles Biofuel
production

Biomass Reference

Methanosaeta concilii Biogas/methane Lignocellulosic
agricultural waste

Zhang et al.
(2008)

Salinity Nesterenkonia sp. Ethanol and
butanol

Starch crops and
sugars

Amiri et al.
(2016)

Aquisalibacillus
elongatus

Ethanol Starch crops and
sugars

Rezaei et al.
(2017)

Kocuria varians Biohydrogen Starch crops and
sugars

Taroepratjeka
et al. (2019)

Enterobacter aerogenes Biohydrogen Starch crops and
sugars

Ike et al. (1999)

Vibrio furnissii Butanol Starch crops and
sugars

Park et al.
(2007)

Flammeovirga pacifica Biohydrogen Lignocellulosic
agricultural waste

Cai et al.
(2018)

Bacillus atrophaeus Biodiesel Lignocellulosic
agricultural waste
and seeds

Amiri et al.
(2016)

Dunaliella salina Biodiesel Lignocellulosic
agricultural waste
and seeds

Rasoul-Amini
et al. (2014)

Salinivibrio sp. Biodiesel Lignocellulosic
agricultural waste
and seeds

Amoozegar
et al. (2008)

Arthrospira maxima Biogas/methane Animal and
agricultural waste

Varel et al.
(1988)

Clostridium
carboxidivorans

Butanol Lignocellulosic
agricultural waste

Liou et al.
(2005)

Halolamina pelagica Biohydrogen Lignocellulosic
agricultural waste

Gaba et al.
(2017)

Methanosaeta concilii Biogas/methane Animal and
agricultural waste

Barber et al.
(2011)

Alkalinity Bacillus alcalophilus Ethanol and
butanol

Starch crops and
sugars

Meng et al.
(2009)

Clostridium cellulovorans Ethanol and
butanol

Starch crops and
sugars

Wen et al.
(2014)

Butyribacterium
methylotrophicum

Bioethanol Lignocellulosic
agricultural waste

Kumari and
Singh (2018)

Carboxydibrachium
pacificus

Biohydrogen Starch crops and
sugars,
lignocellulosic
agricultural waste

Sokolova et al.
(2001)

(continued)
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Table 7.1 (continued)

Abiotic
stress

Extremophiles Biofuel
production

Biomass Reference

Pseudomonas
nitroreducens

Biodiesel Lignocellulosic
agricultural waste
and seeds

Watanabe et al.
(1977)

Halanaerobium
hydrogeniformans

Biohydrogen Lignocellulosic
agricultural waste

Begemann
et al. (2012)

Methanosalsus zhilinaeae Biogas/methane Animal and
agricultural waste

Kevbrin et al.
(1997)

Acidity Alicyclobacillus
acidoterrestris

Bioethanol Starch crops and
sugars,
lignocellulosic
agricultural waste

Wisotzky et al.
(1992)

Thiobacillus acidophilus Bioethanol Starch crops and
sugars,
lignocellulosic
agricultural waste

Guay and
Silver (1975)

Acidiphilium angustum Biohydrogen Lignocellulosic
agricultural waste

Wichlacz et al.
(1986)

Acidobacterium
capsulatum

Biohydrogen Lignocellulosic
agricultural waste

Kishimoto
et al. (1991)

Sulfolobus solfataricus Biohydrogen Lignocellulosic
agricultural waste

Schelert et al.
(2006)

Methylacidiphilum
infernorum

Biogas/methane Animal and
agricultural waste

Hou et al.
(2008)

Methylococcus capsulatus Biogas/methane Animal and
agricultural waste

Islam et al.
(2015)

Methylocaldum
szegedienseare

Biogas/methane Animal and
agricultural waste

Takeuchi et al.
(2014)

strain has been reported to produce 1-butanol and 2-butanol with high yields at 60 °C
(Keller et al. 2015). Several bacterial and archaeal strains, as well as isolated/purified
enzymes from thermophilic environments, have been investigated in the last decade.
Several archaeal strains have been reported to evolve hydrogen from surplus/unused
biomass, including T. kodakarensis (Kanai et al. 2005; Aslam et al. 2017), P. furiosus
(Schicho et al. 1993), and T. onnurineus NA1 (Kim et al. 2010).

The utilization of hyperthermophilic archaea and their enzymes at high tempera-
tures make them highly attractive for biohydrogen production. Some archaeal strains
can utilize the crude glycerol phase (CGP), which can easily be obtained from
biodiesel production and is an inexpensive surplus product. It can be converted into
polyhydroxyalkanoate (PHA) co- and ter-polyesters (Hermann-Krauss et al. 2013).



7 Biofuel Synthesis by Extremophilic Microorganisms 125

7.4 Biofuel Production by Psychrophiles

Psychrophilic microorganisms have been isolated and characterized from different
cold environments around the world, especially from Antarctic and Arctic regions
(Bottos et al. 2014; Margesin and Miteva 2011). Psychrophilic enzymes have been
used for several biotechnological applications due to their ability to function properly
at very low temperatures (Feller et al. 2003;Margesin and Feller 2010). Cold-adapted
cellulases, lipases, and esterases can produce biofuels using cellulosic plantmaterials
from cold environments. For example, yeast cellulases have the potential to produce
ethanol directly from cellulosicmaterials in cold environments or at low temperatures
(Tutino et al. 2009; Ueda et al. 2010). Psychrophilic bacterial strains, including
Arthrobacter, Bacillus, Sejongia, Polaromonas, andPseudomonas isolated from cold
environments, have the ability to produce ethanol and butanol using starch crops,
sugars, and lignocellulosic agricultural waste, as shown in Table 7.1 (Cavicchioli
et al. 2010; Garcıa-Echauri et al. 2011; Singh et al. 2016; Yadav and Saxena 2018;
Yadav et al. 2019c).

Most of the anaerobic fermenters for biohydrogen production operate at
room temperature (mesophilic) or high temperatures (thermophilic). However,
psychrophilic microorganisms produce biohydrogen at low temperatures and there-
fore save energy heating the digesters (Weng et al. 2008; Zazil et al. 2015). A
large number of bacterial genera including Klebsiella, Clostridium, Brevumdimonas,
Carnobacterium, Trichococcus, Polaromonas, Rhodobacter, and Pseudomonas have
the potential to produce biohydrogen at low temperatures (Rathore et al. 2019; Yadav
and Saxena 2018; Zazil et al. 2015). Psychrophilic members of the Firmicutes,
such as Bacillus, Carnobacterium, Clostridium, and Trichococcus, can produce a
high volume of hydrogen at low temperatures (Margesin and Miteva 2011; Zazil
et al. 2015). Gram-negative bacteria including members of Rhodobacter, Klebsiella,
Brevumdimonas, and Pseudomonas produce hydrogen under aerobic conditions in
the dark using lignocellulosic waste material. These bacteria can also work in anaer-
obic conditions in the presence of sunlight (Table 7.1) (Bao et al. 2012; Srinivas et al.
2008).

Several studies have described cold-adapted lipases and esterases for the produc-
tion of biodiesel at low temperatures (Luo et al. 2010; Tutino et al. 2009).
Psychrophilic microbial biodiesel production has been reported in different environ-
ments, e.g., Arctic and Antarctic sediments, mountainous rocks and soil from cold
environments, deep-sea sediments, and mangrove soils (Couto et al. 2010; Heath
et al. 2009; Jeon et al. 2009a; Park et al. 2007; Wei et al. 2009). Methanogens, such
as Methanosarcina, Methanosaeta, and Methanolobus, isolated and characterized
from cold environments, play an important role in the production of biogas at low
temperatures (Table 7.1) (Franzmann et al. 1997; Nozhevnikova et al. 2003; Ronnow
and Gunnarsson 1981; Zhang et al. 2008).
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7.5 Biofuel Production by Halophiles

Halophilic bacteria and archaea are widely distributed in hypersaline environments
such as salt lakes, saline soils, salt marshes, and marine water and sediments (Irshad
et al. 2014; Mukhtar et al. 2018, 2019a, b), and have the ability grow in high salt
concentrations. They are classified as slight halophiles, with salt requirements of
0.21–0.85 M NaCl; moderate halophiles, with salt requirements of 0.85–3.4 M
NaCl; and extreme halophiles, with salt requirements of 3.4–5.1 MNaCl. Halophilic
microorganisms have developed special physiological and genetic modifications to
live under hypersaline environments (Irshad et al. 2014; Mukhtar et al. 2019a, c).

Several halophiles have the ability to synthesize biofuels, such as bioethanol,
butanol, biodiesel, biohydrogen, and biogas, using plant and animal biomass under
extreme conditions of salinity (Amoozegar et al. 2019). Bioethanol is the most
promising biofuel produced by halophilic microorganisms. Halophilic bacterial
genera including Nesterenkonia, Aquisalibacillus, and Clostridium can produce
bioethanol from the decomposition of plant and agriculture biomass (Table 7.1)
(Amiri et al. 2016; Marriott et al. 2016; Rezaei et al. 2017). Some bacterial genera,
such as Vibrio furnissii and C carboxidivorans, can produce butanol using lignocel-
lulosic or hemicellulosic agricultural waste (Liou et al. 2005; Park et al. 2007). The
production of ethanol or butanol includes four major steps: (1) pretreatment of plant
biomass; (2) enzymatic hydrolysis of biomass; (3) fermentation; and (4) distillation
and purification of biofuels (Indira et al. 2018; Khambhaty et al. 2013).

Some halophilic microalgae such as Dunaliella salina are considered a safe
source of fuel production, such as biodiesel (Table 7.1). They provide the largest
biomass for energy production and decrease environmental pollution and global
warming (Rasoul-Amini et al. 2014; Tandon and Jin 2017). Halophilic bacterial
strains including Salinivibrio sp. and B. atrophaeus can also produce biodiesel
using lignocellulosic and hemicellulosic agricultural waste and seeds in hypersaline
environments (Amiri et al. 2016; Amoozegar et al. 2008).

Halophilic bacterial strains includingK varians, E aerogenes, Flammeovirga paci-
fica, and archaeal strainHalolaminapelagica are capable of producing hydrogen from
starch crops and lignocellulosic or hemicellulosic agricultural waste under condi-
tions of high salinity (Table 7.1) (Cai et al. 2018; Gaba et al. 2017; Ike et al. 1999;
Taroepratjeka et al. 2019). Some halophilic methanogenic bacterial and archaeal
strains including Arthrospira maxima and Methanosaeta concilii produce biogas or
methane from animal and lignocellulosic agricultural waste (Barber et al. 2011; Varel
et al. 1988). Some halophilic methanogenic archaeal strains can produce methane
using brown algae biomass in marine environments (Miura et al. 2015).
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7.6 Biofuel Production by Alkaliphiles

It is mostly mesophilic microorganisms that can produce ethanol and butanol at pH
levels between 4.0 and 7.2. However, alkaliphiles can produce biofuels at pH levels
between 8.0 and 9.0. A number of bacteria and archaea, including B alcalophilus, C
cellulovorans, Alkalibaculumbacchi, and Butyribacterium methylotrophicum, have
cellulases and glucanases that break down lignocellulosic agricultural waste into
ethanol and butanol (Table 7.1) (Allen et al. 2010; Kumari and Singh 2018; Meng
et al. 2009; Wen et al. 2014). Carboxydibrachium pacificus and Halanaerobium
hydrogeniformans are novel alkaliphilic and thermophilic bacteria that can produce
hydrogen using starch crops and lignocellulosic agricultural waste (Liu et al. 2012;
Sokolova et al. 2001; Rana et al. 2019).

Biodiesel is well known as a first-generation biofuel that can be produced by
transesterification processes of vegetable oils and lignocellulosic agricultural waste.
P. nitroreducens and B. alcalophilus are alkaliphilic bacteria that produce biodiesel
using bio-transesterification processes under alkaline conditions (Table 7.1). These
bacteria are also involved in the biodegradation of xylan and lignin under alka-
line conditions (Meng et al. 2009; Watanabe et al. 1977). Methanogens, such as
Arthrospira maxima and M. zhilinaeae, isolated and characterized from alkaline
environments, play an important role in the production of biogas at high pH levels
(Begemann et al. 2012; Kevbrin et al. 1997; Varel et al. 1988).

7.7 Biofuel Production by Acidophiles

Acidophilic bacteria and archaea are widely distributed in acidic water found in
mines and the acidic springs around the world. They can grow in environments
with pH levels between 2.5 and 6.3, but their optimum pH is 4 (Schelert et al.
2006; Sharma et al. 2012). Acidophiles produce biofuels such as bioethanol, biobu-
tanol, biohydrogen, and biogas/methane and greatly reduce carbon emissions to the
environment (Yadav et al. 2020). Many acidophiles have been reported for biofuel
production. Acidophilic bacterial and archaeal genera, including Alicyclobacillus,
Acidianus, Sulfolobus, Thermotoga, Desulphurolobus, and Pyrococcus, can produce
cellulases, amylases, xylanases, and esterases (Table 7.1). Bacterial strains, such
as Alicyclobacillus, Thiobacillus, Sulfolobus, and Picrophilus, can produce ethanol
or butanol using starch crops and lignocellulosic agricultural waste under acidic
environments (Bertoldo et al. 2004).

Sulfolobussol fataricus is awell-known acidophilic bacteriumused for the produc-
tion of butanol and hydrogen at a pH of 4.1 (Table 7.1). Acidiphilium angustum
and Acidobacterium capsulatum can produce hydrogen as a biofuel from ligno-
cellulosic plant biomass at low pH levels between 4.0 and 6.0 (Kishimoto et al.
1991; Limauro et al. 2001; Wichlacz et al. 1986). Methylacidiphilum infernorum,
Methylococcus capsulatus, and Methylocaldum szegediensis are biogas and methane
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producers (Table 7.1). They have the ability to produce methane under acidic condi-
tions using different carbon sources, such as animal and plant biomass (Hou et al.
2008; Islam et al. 2015; Takeuchi et al. 2014). Acidophilic bacteria and thermostable
enzymes are a better combination for biofuel production on an industrial scale than
acidophilic bacteria and mesophilic enzymes (Galbe and Zacchi 2007).

7.8 Metabolic Engineering of Extremophiles to Upscale
Biofuel Production

Several extremophiles have been engineered for different types of catalytic enzymes
used for biofuel production. Genetic and adaptive engineering approaches have
provided new insights into the manipulation of cellulose and chitin metabolic path-
ways to produce biohydrogen using surplus chitinous biomass (Aslam et al. 2017;
Chen et al. 2019; Rastegari et al. 2019b; Rastegari et al. 2019c). Such modifica-
tions provide an example of how to manipulate metabolic pathways across many
archaea as well as bacteria. Another example of genetic manipulation includes that
ethanol and butanol produced by P. furious by genetic engineering techniques made
it possible to enhance their yields from trace levels to 35% (Basen et al. 2014; Keller
et al. 2017).

Yeast (S. cerevisiae) andE. coli are themost usedmicroorganisms for the commer-
cial production of biofuels through genetic engineering (Fig. 7.3). S. cerevisiae
can produce ethanol directly from the decarboxylation of pyruvate (Liao et al.

Fig. 7.3 An overview of the microbial metabolic pathways for biofuel production
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2016). Other microorganisms have been genetically engineered using this metabolic
pathway to produce ethanol.

The overexpression of certain genes involved in biofuel production increases the
catalytic activity of both enzyme and substrate and helps to produce more biofuel
(Fig. 7.3). Recently, artificial metabolic pathways or mRNAs have been used for the
efficient production of biofuels. For example, microbial electrolysis cells (MECs)
are used for biohydrogen and bioelectricity production (Dai et al. 2016; Kracke et al.
2015).UseofMECsprovides a platform for biofilm formation anddevelopsmicrobe–
metal interactions which transfer electrons from bacterial cell walls/membranes to
an electrode (Kracke et al. 2015; Kumar and Kumar 2017). Certain proteins and
enzymes produced by exoelectrogens are used to enhance this process. However, the
MEC technique is not capable of producing biofuels on a commercial scale.

Despite the great potential archaeal enzymes have for biofuel production they
require harsh conditions for optimum growth and enzyme functionality. This has
made them unsuitable for industrial fermentation and downstream processing.
However, recent developments involving several genetic engineering/manipulation
techniques, i.e., pop-in/pop-out, development of archaea–E. Coli shuttle vectors, and
site-directed mutagenesis (Rashid and Aslam 2019), have provided breakthroughs
in utilizing their hyper-thermostable enzymes in thermophilic/mesophilic organisms
and environments. CRISPR–CAS approaches can also be used to improve specific
biofuel production and downstream processing in both archaea and bacteria.

7.9 Conclusions and Future Prospects

Microbial biofuel production is still particularly challenging since it is difficult to
produce a large amount of fuel more economically and efficiently from raw biomass
than conventional fossil fuels. With progress being made in the strategies used for
biofuel production, such as biomass based on lignocellulosic agricultural waste,
the process has become relatively economic compared to production based on the
biomass of sugars or starch crops. Bioethanol, biobutanol, biodiesel, and biogas are
important biofuels produced by extremophilicmicroorganisms.Different sequencing
approaches have been used to understand the complexity of microbial communities
in various extreme environments. The advances in sequencing technology make it
possible to study microbial enzymes and proteins using genomics, transcriptomics,
and proteomics. Enzymes from extremophilic microorganisms are especially impor-
tant because they can work properly in extreme environmental conditions, such as
extremes of temperature, pH, salinity, drought, and pressure. Continued research
on genetic manipulation of various extremophilic bacterial and archaeal strains will
create innovations to produce economically available biofuels. In the near future a
wide range of extremophilic enzymes, with the ability to degrade or utilize ligno-
cellulosic waste materials, will be successfully used for biofuel production on a
commercial scale.
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