Chapter 11 ®)
Microbial Technologies for Biorefineries: |
Current Research and Future

Applications

Deepika Goyal, Sushma Mishra, and Prem Kumar Dantu

Abstract Conventional resources becoming limited due to the increase in popula-
tion and energy demand. This rise in energy demand has increased consumer prices
and pressure on the environment. This prompted researchers to take care of sustain-
able energy resources. In this case, biomass is only environmentally friendly renew-
able resource which is used for the production of chemicals and fuels. A system
similar to a petroleum refinery is required to produce fuels and useful chemicals
from biomass and is known as a biorefinery. Biorefineries have been subdivided into
various categories on the basis of technology and biomass used. In this chapter, types
of biorefineries and microbes which are used for the production of valuable products
are discussed.

11.1 Introduction

International Energy Agency (IEA) Bioenergy Task 42 has defined biorefinery as the
sustainable processing of biomass into a variety of marketable products (food, feed,
materials, chemicals) and energy (fuels, power, heat) (de Jong and Jungmeier 2015).
The National Renewable Energy Laboratory (NREL) defined biorefinery as a facility
that facilitates conversion of biomass into fuels, power, and chemicals. A biorefinery
can utilize all types of biomass and producing agricultural by-products (wheat bran,
rapeseed meal, straw, corn stover, bagasse), waste from the food industry (including
kitchen and household waste), grains/cereals (wheat, maize, corn, soybean), starch
and sugars, aquatic biomass (algae and seaweeds), as well as wood and lignocellulosic
materials. A biorefinery is not a completely new concept.

According to Berntsson et al., biorefinery promotes industrial trades, economic,
and environmental sustainability. Biorefineries are found helpful in generating added-
value products, bio-based products, and bioenergy utilizing sustainable biomass (de
Jong and Jungmeier 2015). As per the increasing energy demand nowadays, interest
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of scientists is increasing in renewable and sustainable biotechnological processes
for energy, biofuels, and chemicals. Use of microorganisms in chemical industries
is to derive the same product; using biological materials is an alternative sustainable
and economical approach. It is estimated that by 2025, 15% of chemical products
will be bioformulated (Vijayendran 2010). Thus, the development of biorefineries is
an alternative to diesel and petroleum-based products. Biorefineries can be defined
as processing of biomass (mainly lignocelluloses) into marketable and commercial
products (food, feed, material, and chemicals) and energy (fuels, power, and heat)
mediated by physical, chemical, or biological materials (IEA 2010).

The biorefinery concept is eye-catching because it facilitates production of high
added-value products at lesser price and reducing waste disposal and maintaining
ecological harmony. Few biorefineries have established, for instance, the pulp- and
paper-based biorefinery, Borregaard, in Norway (Borregaard 2014), but attempts are
required to establish such biorefineries in several other countries aswell. Microorgan-
isms are the basis of biorefineries and backbone of industrial bioprocesses; they either
produce desired chemical or produce intermediate required for the process. Most of
the industries in world utilize the potential of microorganisms for the production
of food additives, medicines, antibiotics, enzymes, bioethanol, biodiesel, and other
chemicals. Lignocellulosic biomass is the most abundant biomass on earth obtained
as agricultural by-product and renewable source of sugars, and is an advisable feed-
stock for the production of biodiesel, biogas, biohydrogen, and chemical products
through the biorefinery processes (Menon and Rao 2012). In biorefinery processes,
lignocellulosic biomass is firstly pre-treated, and then cellulosic and hemicellulosic
are decomposed into simple sugars mediated by enzymes (Rastegari et al. 2019a).
Microbes metabolize and ferment these simple sugars producing chemical products
such as alcohols, fatty acids, organic acids, and amino acids. Bioethanol is a more
preferred alternative over conventional petroleum-based transport fuels. However,
complex structure of lignocellulosic biomass is a challenge in its bioconversion than
simple starch and sugar materials (Mussatto et al. 2010; Yadav et al. 2020). Cellulose,
hemicellulose, and lignin are building blocks of lignocellulosic biomass.

Biorefineries have led new opportunities to the industrial application of microor-
ganisms. Potential of unexplored or new microbe for desired product can be checked.
New substrates may be added, and along with these industrial processes can be opti-
mized to achieve maximum conversion processes. In addition, we highlight and
exemplify general strategies to develop microorganisms that are able to produce
fuels and chemicals from renewable feedstocks. All types of biomass from forestry,
aquaculture, agriculture, organic and forest residues, and aquatic biomass (algae and
seaweeds) are converted into valuable products of humankind. Many of the industries
converting sugar, starch, pulp, and paper industries are considered as biorefineries.
There are many differences between refineries and biorefineries (Table 11.1).
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Table 11.1 Comparison of refineries and biorefineries regarding feedstocks, building block
composition, processes, and chemical intermediates produced at commercial scale

Sources Refinery Biorefinery

Feedstock Feedstock heterogeneous
regarding bulk components
e.g., carbohydrates, lignin,
proteins, oils, extractives,
and/or ash Most of the starting
material present in polymeric
form (cellulose, starch,

proteins, lignin)

Feedstock relatively
homogeneous

Low in oxygen content High in oxygen content

The weight of the product
(mole/mole) generally
decreases with processing. It is
important to perceive the
functionality in the starting
material

The weight of the product
(mole/mole) generally
increases with processing

Sometimes high in inorganics,
especially silica

Sometimes high in sulfur

Building block composition

Main building blocks:
Ethylene, propylene, methane,
benzene, toluene, xylene
isomers

Main building blocks:
Glucose, xylose, fatty acids
(e.g., oleic, stearic, sebacic)

(Bio)chemical processes

Introduction of heteroatoms
(O,N,S)

Removal of oxygen

Relative homogeneous
processes to arrive at building
blocks: Steam cracking,

Relative heterogeneous
processes to arrive building
blocks

Chemical intermediates
produced at commercial scale

Many

Few but increasing (e.g.,
ethanol, furfural, biodiesel,

mono-ethanol glycol, lactic
acid, succinic acid)

11.2 Classification of Biorefineries

Biorefineries have been classified in different categories on the basis of different
criteria (de Jong and Jungmeier 2015). On the basis of technologies used, biore-
fineries are divided into conventional and advanced biorefineries: first-, second-,
and third-generation biorefineries. On the basis of raw material used, biorefineries
are divided into whole crop biorefineries, oleochemical biorefineries, lignocellulosic
feedstock biorefineries, green biorefineries, and marine biorefineries. On the basis
of conversion process used, biorefineries are divided into thermochemical biore-
fineries, biochemical biorefineries, and two-platform concept biorefineries. On the
basis of intermediate produced, biorefineries are syngas platform biorefineries and
sugar platform biorefineries. On the basis of availability of biomass, biorefineries
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have been classified into six types (Lange 2017). Yellow biorefinery utilize straw, corn
stover, and wood. Green biorefinery utilizes fresh green biomass, grass for protein-
rich feed. Blue biorefineries use fish by-catch/cut-offs, fish discards and innards,
mussels as biomass, brown seaweed, red and green algae, and invertebrates such as
sea cucumber. Red biorefinery utilizes slaughterhouse waste. White biorefinery uses
agro-industry-side streams.

11.3 Microbial Fermentation Processes
for the Development of Biorefineries

Due to large consumption of fuels and foods, sustainable way to produce new foods
and fuels from agro-residues is required. Sustainable production is an effective tech-
nology utilizing raw materials, agro-waste to produce new, commercial, and valuable
products. Solid-state fermentation is an alternative and long term used approach for
the production of biotechnology-based commercial products. Fermentation tech-
nology of microbes has been used in East for the manufacture of fermented foods
and for manufacture of mold-ripened cheese in West. In fermentation technology,
microbes are allowed to grow on solid material with low moisture content. Fermen-
tation is an economical, large-scale process of bioconversion and biodegradation
process. With the aid of this technology food, enzymes, chemicals, cosmetics, and
pharmaceutical compounds have been produced (Kour et al. 2019a; Kumar et al.
2019). This fermentation technology is driving attention of researchers widely nowa-
days. Various alternative terms are currently being used as synonyms of solid-state
fermentation likewise solid-state fermentation, surface cultivation, surface culture,
solid-state digestion, and solid-state fermentation.

Botellaetal. (2009) used a new term “particulate bioprocessing”, in order to define
solid-state fermentation. Particulate bioprocessing defines growth of microorganism
in moist condition in a particulate solid medium. Amore and Faraco (2012) used
the term consolidated bioprocessing (CBP) defining fungi as alternative microbe
for the degradation of lignocellulosic materials. Cellulose degrading fungi produce
saccharolytic enzymes for the digestion of lignocellulose and converting sugars to
ethanol. These technologies reduce the cost of production of ethanol and show
that the fungi have all the pathways required for conversion of lignocellulose to
bioethanol. Viniegra-Gonzalez (1997) defined solid-state fermentation as a process
where microbes grow on the surface of solid material without the addition of nutrients.
Pandey et al. (2000) defined solid-state fermentation, a technology, where microbes
are grown on moist solid support, either on inert carriers or on insoluble substrates
that can also be used as carbon and energy source.

Rahardjo et al. (2006) defined solid-state fermentation as the growth of microor-
ganisms on moistened solid substrate with enough moisture is to maintain micro-
bial growth and metabolism. Adopting the technology of solid-state fermentation,
microbes have been used in biorefineries for conversion of sugar containing polymers



11 Microbial Technologies for Biorefineries: Current Research ... 233

such as cellulose and hemicellulose in commercial products. Biofuels, bioethanol,
biomethanol, biogas, pharmaceutical products, and biodegradable products have
been produced using microbes (Koutinas et al. 2007). Webb et al. proposed a model
for wheat-based biorefining strategy in economical way using microbial fermentation
(Fig. 11.1).

11.4 Genetic Improvement of Microorganisms
for Development of Biorefinery Products

Microbial strains are required which can result in high yield and productivity of
compounds tolerating several stresses (Rastegari et al. 2019b, c¢). For the same,
microbes are genetically modified. S. cerevisiae has been used in bio-industries since
last 30 years, each year with an improved version. Different strategies have been
adopted for this genetic engineering likewise (i) driving carbon flux, (ii) increase
tolerance to toxic compounds, (iii) increase of substrate uptake range, and (iv)
generation of new products (Fig. 11.2).

11.4.1 Driving Carbon Flux

Naturally, microbes have capability to produce desired chemical compounds, and
they are optimized for maximal growth. But the production of bioactive compounds
is hindered due to expense of carbon, energy, and by-product formation. Thus, modi-
fications in microorganisms which lead to higher production are driving carbon flux.
Microbes of different groups such as bacteria, fungi, and yeast have been geneti-
cally modified to enhance production of biofuel and desired compounds. Microbial
strains which are able to produce 90% m/m of desired chemical compound are avail-
able (Table 11.2). There are many steps where microbes have been modified such
as modification in microbial metabolism by overexpression or knockout of enzymes
(Jiang et al. 2009; Mojzita et al. 2010), modification in transcription and change in
redox reactions (Alper and Stephanopoulos 2007; Almeida et al. 2009; Nissen et al.
2000). For instance, S. cerevisiae is modified to produce ethanol from sugars present
in lignocellulosic biomass (Hahn-Hégerdal et al. 2007).

11.4.2 Increased Tolerance to the Substrate

Low tolerance to end product also hampers product formation by microbes. Fermen-
tation medium also causes a harsh environment for the microorganism. In case of
unavailability of tolerant strains, genetic engineering approaches have been used to
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improve strain response for toxic and end product. Strains have been improved to
produce biofuels from lignocellulosic hydrolysate. Lignocellulose is composed of
cellulose, hemicellulose, and lignin (Hahn-Hégerdal et al. 2007). Prior to fermenta-
tion, this hydrolysate is allowed for pretreatment to reduce its recalcitrance. Later,
it is allowed for hydrolysis where sugar monomers have been formed from cellu-
lose and hemicellulose. These sugar monomers form biofuels. During this pretreat-
ment and hydrolysis, many toxic compounds are produced which inhibit micro-
bial processes, microbial metabolism, and microbial growth as well. Compounds
like furaldehyde, organic acids (acetic, levulinic, and furoic), and phenolic deriva-
tives are found in lignocellulose. These compounds inhibit microbial growth, cause
lowering in product yield, and reduce cellular viability (Almeida et al. 2007, 2011).
Metabolic engineering and genetic engineering have been applied to make these
strains tolerant. S. passalidarum, S. cerevisiae, and P. stipites have been evolutionary
engineered to ferment lignocellulose more than the native strains (Heer and Sauer
2008; Hughes et al. 2012; Liu et al. 2004; Kour et al. 2019b). Yeast tolerance to
lignocellulose has been improved by genetic engineering (Almeida et al. 2011)
(Table 11.2). Genes having resistance to inhibitors are transferred in microbial strain
for providing tolerance to end product.

11.4.3 Increase of Substrate Uptake Range

Genetic engineering of microbes has been done to increase substrate and its better
utilization in product formation. Utilization of lignocellulosic biomass requires
xylose utilization. Xylose is the second most abundant pentose sugar present in sugar-
cane bagasse (30%) (Ferreira-Leitdo et al. 2010). Naturally, S. cerevisiae does not
utilize pentose sugars; it is genetically modified to use this pentose sugar (Table 11.2).

11.4.4 New Products

Genetically modified microorganisms are able to produce compounds that are not
possible by natural pathways. For this, enzymes and pathways from one organism
have been transferred in an organism of choice. Nowadays, many new compounds
have been reported by microbes rather than bioethanol which increase economy and
can be produced in lesser time (Table 11.2). Acids produced from this lignocellu-
lose serve as precursors of plastics (Werpy et al. 2004). Acetobacter, Aerobacter,
Pseudomonas, Gluconobacter, and Erwinia produce a five-carbon acid xylonic acid,
derived from xylose. Obviously, wild-type bacteria are able to produce this xylonic
acid; however, this yield was very low. E. coli, S. cerevisiae, Kluyveromyces lactis,
and Pichia kudriavzevii have been produced by genetic recombination to enhance
yield of this xylonic acid (Toivari et al. 2010; Nygéard et al. 2011; Liu et al. 2012).
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11.5 Microbial Technologies for Biodiesel-Based
Biorefineries

Production of biofuels from renewable feedstocks is demanded in the period of crisis
of energy where petrol fuels are becoming limited and expensive (Rastegari et al.
2020; Yadav et al. 2019). Production of biofuels is a costly process, and various
residues are produced; however, this cost can be reduced if residues can be converted
into valuable coproducts (Zhang 2011; Yazdani and Gonzalez 2007). Biodiesel is
an alternative biofuel obtained by the transesterification of fat and vegetable oils
and reduces net greenhouse effect (O’Connor 2011). Many plants such as sunflower,
soybean, rape, and palm oils are used to produce biodiesel. In Brazil, soybean oil was
the source of 80% of biodiesel in 2010. Pies and glycerol are produced as residues
in the production of biodiesel. Pies are used as animal feed or fertilizers, whereas
glycerol is used as crude sample in biorefineries and many valuable products are
formed (Fig. 11.3).

Microaerobic

E. Coli and other bacteria

Lactic acid Glyceric acid

Dihydroxyacetone

PHB

Citric acid

Mannitol Arabitol

2,3 Butanediol

Butanol Oxalic acid

Fig. 11.3 List of chemicals produced by microbes by the fermentation of glycerol



11 Microbial Technologies for Biorefineries: Current Research ... 243

Many microbes such as Klebsiella, Enterobacter, Clostridium, Yeasts, and fila-
mentous fungi are used for the production of organic acids, polyols, 1,3-propanediol,
2,3-butanediol, butanol, and ethanol (Yadav et al. 2017). 1,3-propanediol (1,3-PDO)
can be produced by Klebsiella spp. and Clostridium spp. from glycerol (Celinska
2010). K. pneumoniae G31 also produces 2,3-Butanediol (BDO) from the fermenta-
tion of glycerol (Petrov and Petrova 2009). This BDO can be used in the preparation
of synthetic rubber, plastics, and as a precursor of pharmaceutical drugs and medicine
(Syu 2001; Ji et al. 2011). Ethanol is a widely used fuel and solvent in industries,
produced from lignocellulose by yeasts. However, there are many reports where
glycerol also acts as a source of ethanol (Liu et al. 2007; Petrov and Petrova 2009).
E. coli can convert glycerol to ethanol aerobically and anaerobically (Dharmadi et al.
2006; Durnin et al. 2009). Hansenula polymorpha, a methylotrophic yeast, possesses
potential to produce ethanol from glycerol (Hong et al. 2010). Genes encoding for
pyruvate decarboxylase and aldehyde dehydrogenase II, from Zymomonas mobilis,
are transferred into H. polymorpha, and increase in ethanol production was found
(Hong et al. 2010). Butanol is an alternative fuel which is used in the manufacturing
of plastics, paints, resin formulation, and lacquers (Harvey and Meylemans 2011). C.
pasteurianum has been found to produce butanol from glycerol (Taconi et al. 2009).
Apart from these, glycerol has been used to produce mannitol, arabitol, erythritol,
succinic acid, lactic acid, oxalic acid, citric acid, and glyceric acid (Table 11.3).

11.6 Conclusion

Plant cell wall is composed of cellulose and lignin, which are very complex and poorly
understood. Utilization of this for bioenergy needs more understanding and research
inputs. In biorefineries, a consortium of microbes is used, where microbe—microbe
interaction takes place. Attention should be paid toward population dynamics, interre-
lationship between species for scale-up of a process. It is possible to optimize micro-
bial processes with the aid of computer simulations. Application of biotechnolog-
ical aspects such as CRISPR/Cas, genome shuffling, transcription, and translational
machinery in microbes can make them more potent for biorefineries
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