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Abstract We study state estimation for nonlinear differential-algebraic systems,
where the nonlinearity satisfies a Lipschitz condition or a generalized monotonicity
condition or a combination of these. The presented observer design unifies earlier
approaches and extends the standard Luenberger type observer design. The design
parameters of the observer can be obtained from the solution of a linear matrix
inequality restricted to a subspace determined by the Wong sequences. Some
illustrative examples and a comparative discussion are given.
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1 Introduction

The description of dynamical systems using differential-algebraic equations
(DAEs), which are a combination of differential equations with algebraic
constraints, arises in various relevant applications, where the dynamics are
algebraically constrained, for instance by tracks, Kirchhoff laws, or conservation
laws. To name but a few, DAEs appear naturally in mechanical multibody
dynamics [16], electrical networks [36] and chemical engineering [23], but also
in non-natural scientific contexts such as economics [33] or demography [13].
The aforementioned problems often cannot be modeled by ordinary differential
equations (ODEs) and hence it is of practical interest to investigate the properties
of DAEs. Due to their power in applications, nowadays DAEs are an established
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field in applied mathematics and subject of various monographs and textbooks, see
e.g. [12, 24, 25].

In the present paper we study state estimation for a class of nonlinear differential-
algebraic systems. Nonlinear DAE systems seem to have been first considered by
Luenberger [32]; cf. also the textbooks [24, 25] and the recent works [3, 4]. Since it
is often not possible to directly measure the state of a system, but only the external
signals (input and output) and an internal model are available, it is of interest to
construct an “observing system” which approximates the original system’s state.
Applications for observers are for instance error detection and fault diagnosis,
disturbance (or unknown input) estimation and feedback control, see e.g. [14, 42].

Several results on observer design for nonlinear DAEs are available in the
literature. Lu and Ho [29] developed a Luenberger type observer for square systems
with Lipschitz continuous nonlinearities, utilising solutions of a certain linear matrix
inequality (LMI) to construct the observer. This is more general than the results
obtained in [19], where the regularity of the linear part was assumed. Extensions of
the work from [29] are discussed in [15], where non-square systems are treated, and
in [43, 45], inter alia considering nonlinearities in the output equation. We stress
that the approach in [11] and [22], where ODE systems with unknown inputs are
considered, is similar to the aforementioned since these systems may be treated as
DAEs as well. Further but different approaches are taken in [1], where completely
nonlinear DAEs which are semi-explicit and index-1 are investigated, in [41], where
a nonlinear generalized PI observer design is used, and in [44], where the Lipschitz
condition is avoided by regularizing the system via an injection of the output
derivatives.

Recently, Gupta et al. [20] presented a reduced-order observer design which is
applicable to non-square DAEs with generalized monotone nonlinearities. Systems
with nonlinearities which satisfy a more general monotonicity condition are consid-
ered in [40], but the results found there are applicable to square systems only.

A novel observer design using so called innovations has been developed in [34,
37] and considered for linear DAEs in [6] and for DAEs with Lipschitz continuous
nonlinearities in [5]. Roughly speaking, the innovations are “[. . . ] a measure for the
correctness of the overall internal model at time t” [6]. This approach extends the
classical Luenberger type observer design and allows for non-square systems.

It is our aim to present an observer design framework which unifies the above
mentioned approaches. To this end, we use the approach from [6] for linear DAEs
(which can be non-square) and extend it to incorporate both nonlinearities which
are Lipschitz continuous as in [5, 29] and nonlinearities which are generalized
monotone as in [20, 40], or combinations thereof. We show that if a certain LMI
restricted to a subspace determined by the Wong sequences is solvable, then there
exists a state estimator (or observer) for the original system, where the gain matrices
corresponding to the innovations in the observer are constructed out of the solution
of the LMI. We will distinguish between an (asymptotic) observer and a state
estimator, cf. Sect. 2. To this end, we speak of an observer candidate before such a
system is found to be an observer or a state estimator. We stress that such an observer
candidate is a DAE system in general; for the investigation of the existence of ODE
observers see e.g. [5, 7, 15, 20].
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This paper is organised as follows: We briefly state the basic definitions and some
preliminaries on matrix pencils in Sect. 2. The unified framework for the observer
design is presented in Sect. 3. In Sects. 4 and 5 we state and prove the main results
of this paper. Subsequent to the proofs we give some instructive examples for the
theorems in Sect. 6. A discussion as well as a comparison to the relevant literature
is provided in Sect. 7 and computational aspects are discussed in Sect. 8.

1.1 Nomenclature

A ∈ R
n×m The matrix A is in the set of real n × m matrices;

rk A, im A, ker A The rank, image and kernel of A ∈ R
n×m, resp.;

C k(X → Y ) The set of k−times continuously differentiable functions
f : X → Y , k ∈ N0;

dom(f ) The domain of the function f ;
A >V 0 : ⇐⇒ ∀ x ∈ V \ {0} : x�Ax > 0, V ⊆ R

n a subspace;
R[s] The ring of polynomials with coefficients in R.

2 Preliminaries

We consider nonlinear DAE systems of the form

d
dt

Ex(t) = f (x(t), u(t), y(t))

y(t) = h(x(t), u(t)),
(2.1)

with E ∈ R
l×n, f ∈ C (X × U × Y → R

l ) and h ∈ C (X × U → R
p), where

X ⊆ R
n, U ⊆ R

m and Y ⊆ R
p are open. The functions x : I → R

n, u : I → R
m

and y : I → R
p are called the state, input and output of (2.1), resp. Since solutions

not necessarily exist globally we consider local solutions of (2.1), which leads to the
following solution concept, cf. [5].

Definition 2.1 Let I ⊆ R be an open interval. A trajectory (x, u, y) ∈ C (I →
X × U × Y ) is called solution of (2.1), if x ∈ C 1(I → X ) and (2.1) holds for
all t ∈ I . The set

B(2.1) :=
{
(x, u, y) ∈ C (I →X ×U ×Y )

∣∣ I ⊆ R open intvl., (x, u, y) is a solution of (2.1)
}

of all possible solution trajectories is called the behavior of system (2.1).

We stress that the interval of definition I of a solution of (2.1) does not need to be
maximal and, moreover, it depends on the choice of the input u. Next we introduce
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E ẋ(t) = f x(t),u(t),y(t)
)

y(t) = h x(t),u(t)
)

Eo ẋo(t) = fo xo(t),u(t),y(t)
)

z(t) = ho xo(t),u(t),y(t)
)

u(t) y(t)

z(t)

Fig. 1 Interconnection with an acceptor

the concepts of an acceptor, an (asymptotic) observer and a state estimator. These
definitions follow in essence the definitions given in [5].

Definition 2.2 Consider a system (2.1). The system

d
dt

Eoxo(t) = fo(xo(t), u(t), y(t)),

z(t) = ho(xo(t), u(t), y(t)),
(2.2)

where Eo ∈ R
lo×no , fo ∈ C (Xo×U ×Y → R

lo ), ho ∈ C (Xo×U ×Y → R
po ),

Xo ⊆ R
no open, is called acceptor for (2.1) , if for all (x, u, y) ∈ B(2.1) with

I = dom(x), there exist xo ∈ C 1(I → Xo), z ∈ C (I → R
po) such that

(
xo,

(
u
y

)
, z

)
∈ B(2.2).

The definition of an acceptor shows that the original system influences, or
may influence, the acceptor but not vice-versa, i.e., there is a directed signal flow
from (2.1) to (2.2), see Fig. 1.

Definition 2.3 Consider a system (2.1). Then a system (2.2) with po = n is
called

(a) an observer for (2.1), if it is an acceptor for (2.1), and

∀ I ⊆ R open interval ∀ t0 ∈ I ∀ (x, u, y, xo, z) ∈ C (I → X × U × Y × Xo × R
n) :

(
(x, u, y) ∈ B(2.1) ∧ (xo,

(
u
y

)
, z) ∈ B(2.2) ∧ Ez(t0) = Ex(t0)

)

⇒ z = x;

(2.3)
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(b) a state estimator for (2.1), if it is an acceptor for (2.1), and

∀ t0 ∈ R ∀ (x, u, y, xo, z) ∈ C ([t0,∞) → X × U × Y × Xo × R
n) :

(
(x, u, y) ∈ B(2.1) ∧ (xo,

(
u
y

)
, z) ∈ B(2.2)

)

⇒ lim

t→∞ z(t) − x(t) = 0;
(2.4)

(c) an asymptotic observer for (2.1), if it is an observer and a state estimator
for (2.1).

The property of being a state estimator is much weaker than being an asymptotic
observer. Since there is no requirement such as (2.3) it might even happen that
the state estimator’s state matches the original system’s state for some time, but
eventually evolves in a different direction.

Concluding this section we recall some important concepts for matrix pencils.
First, a matrix pencil sE − A ∈ R[s]l×n is called regular, if l = n and det(sE −
A) �= 0 ∈ R[s]. An important geometric tool are the Wong sequences, named after
Wong [39], who was the first to use both sequences for the analysis of matrix pencils.
The Wong sequences are investigated and utilized for the decomposition of matrix
pencils in [8–10].

Definition 2.4 Consider a matrix pencil sE − A ∈ R[s]l×n. The Wong sequences
are sequences of subspaces, defined by

V 0[E,A] := R
n, V i+1

[E,A] := A−1(EV i
[E,A]) ⊆ R

n, V ∗[E,A] := ⋂
i∈N0

V i
[E,A],

W 0[E,A] := {0}, W i+1
[E,A] := E−1(AW i

[E,A]) ⊆ R
n, W ∗[E,A] := ⋃

i∈N0

W i
[E,A],

where A−1(S) = {x ∈ R
n | Ax ∈ S} is the preimage of S ⊆ R

l under A. The
subspaces V ∗[E,A] and W ∗[E,A] are called the Wong limits.

As shown in [8] the Wong sequences terminate, are nested and satisfy

∃ k∗ ∈ N ∀j ∈ N : V 0[E,A] � V 1[E,A] � · · · � V k∗
[E,A] = V k∗+j

[E,A] = V ∗[E,A] ⊇ ker(A),

∃ l∗ ∈ N ∀j ∈ N : W 0[E,A] ⊆ ker(E) = W 1[E,A] � · · · � W l∗
[E,A] = W l∗+j

[E,A] = W ∗[E,A].

Remark 2.1 Let sE − A ∈ R[s]l×n and consider the associated DAE d
dt

Ex(t) =
Ax(t). In view of Definition 2.1 we may associate with the previous equation the
behavior

B[E,A] =
{

x ∈ C 1(I → R
n)

∣∣∣ Eẋ = Ax, I ⊆ R open interval

}
.
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We have that all trajectories in B[E,A] evolve in V ∗[E,A], that is

∀ x ∈ B[E,A] ∀ t ∈ dom(x) : x(t) ∈ V ∗[E,A]. (2.5)

This can be seen as follows: For x ∈ B[E,A] we have that x(t) ∈ R
n = V 0[E,A]

for all t ∈ dom(x). Since the linear spaces V i
[E,A] are closed they are invariant

under differentiation and hence ẋ(t) ∈ V 0[E,A]. Due to the fact that x ∈ B[E,A] it

follows for all t ∈ dom(x) that x(t) ∈ A−1(EV 0[E,A]) = V 1[E,A]. Now assume that

x(t) ∈ V i
[E,A] for some i ∈ N0 and all t ∈ dom(x). By the previous arguments we

find that x(t) ∈ A−1(EV i
[E,A]) = V i+1

[E,A].

An important concept in the context of DAEs is the index of a matrix pencil,
which is based on the (quasi-)Weierstraß form (QWF), cf. [10, 18, 24, 25].

Definition 2.5 Consider a regular matrix pencil sE − A ∈ R[s]n×n and let S, T ∈
R

n×n be invertible such that

S(sE − A)T = s

[
Ir 0
0 N

]
−

[
J 0
0 In−r

]

for some J ∈ R
r×r and nilpotent N ∈ R

(n−r)×(n−r). Then

ν :=

⎧⎪⎨
⎪⎩

0, if r = n,

min

{
k ∈ N

∣∣∣ Nk = 0

}
, if r < n

is called the index of sE − A.

The index is independent of the choice of S, T and can be computed via the
Wong sequences as shown in [10].

3 System, Observer Candidate and Error Dynamics

In this section we present the observer design used in this paper, which invokes
so called innovations and was developed in [34, 37] for linear behavioral systems.
It is an extension of the classical approach to observer design which goes back to
Luenberger, see [30, 31].

We consider nonlinear DAE systems of the form

d
dt

Ex(t) = Ax(t) + BLfL(x(t), u(t), y(t)) + BMfM(Jx(t), u(t), y(t)),

y(t) = Cx(t) + h(u(t)),

(3.1)
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where E,A ∈ R
l×n with 0 ≤ r = rk(E) ≤ n, BL ∈ R

l×qL , BM ∈ R
l×qM ,

J ∈ R
qM×n with rk J = qM , C ∈ R

p×n and h ∈ C (U → R
p) with U ⊆ R

m

open. Furthermore, for some open sets X ⊆ R
n,Y ⊆ R

p and X̂ := JX ⊆ R
qM ,

the nonlinear function fL : X × U × Y → R
qL satisfies a Lipschitz condition in

the first variable

∀ x, z ∈ X ∀u ∈ U ∀ y ∈ Y : ‖fL(z, u, y) − fL(x, u, y)‖ ≤ ‖F(z − x)‖
(3.2)

with F ∈ R
j×n, j ∈ N; and fM : X̂ × U × Y → R

qM satisfies a generalized
monotonicity condition in the first variable

∀ x, z ∈ X̂ ∀ u ∈ U ∀ y ∈ Y : (z − x)�Θ
(
fM(z, u, y) − fM(x, u, y)

) ≥ 1

2
μ‖z − x‖2

(3.3)

for some Θ ∈ R
qM×qM and μ ∈ R. We stress that μ < 0 is explicitly allowed and Θ

can be singular, i.e., in particular Θ does not necessarily satisfy any definiteness
conditions as in [40]. We set B := [BL,BM ] ∈ R

l×(qL+qM) and

f : X × U × Y → R
qL × R

qM , (x, u, y) �→
(

fL(x, u, y)

fM(Jx, u, y)

)
.

Let us consider a system (3.1) and assume that n = l. Then another system driven
by the external variables u and y of (3.1) of the form

d
dt

Ez(t) = Az(t) + Bf (z(t), u(t), y(t)) + L(y(t) − ŷ(t))

= Az(t) + Bf (z(t), u(t), y(t)) + L(Cx(t) − Cz(t))

= (A − LC)z(t) + Bf (z(t), u(t), y(t)) + L Cx(t)︸ ︷︷ ︸
=y(t)−h(u(t))

with ŷ(t) = Cz(t) + h(u(t))

(3.4)

is a Luenberger type observer, where L ∈ R
n×p is the observer gain. The dynamics

for the error state e(t) = z(t) − x(t) read

d
dt

Ee(t) = (A − LC)e(t) + B
(
f (x(t), u(t), y(t)) − f (z(t), u(t), y(t))

)
.

The observer (3.4) incorporates a copy of the original system, and in addition the
outputs’ difference ŷ(t)−y(t), the influence of which is weighted with the observer
gain L.

In this paper we consider a generalization of the design (3.4) which incorporates
an extra variable d that takes the role of the innovations. The innovations are used
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to describe “the difference between what we actually observe and what we had
expected to observe” [34], and hence they generalize the effect of the observer
gain L in (3.4). We consider the following observer candidate, which is an additive
composition of an internal model of the system (3.1) and a further term which
involves the innovations:

d
dt

Ez(t) = Az(t) + Bf (z(t), u(t), y(t)) + L1d(t)

0 = Cz(t) − y(t) + h(u(t)) + L2d(t),
(3.5)

where xo(t) =
(

z(t)
d(t)

)
is the observer state and L1 ∈ R

l×k , L2 ∈ R
p×k , Xo =

X × R
k . From the second line in (3.5) we see that the innovations term balances

the difference between the system’s and the observer’s output. In a sense, the smaller
the variable d, the better the approximate state z in (3.5) matches the state x of the
original system (3.1).

We stress that n �= l is possible in general, and if L2 is invertible, then the
observer candidate reduces to

d
dt

Ez(t) = Az(t) + Bf (z(t), u(t), y(t)) + L1L
−1
2 (y(t) − Cz(t) − h(u(t)))

= (A − L1L
−1
2 C)z(t) + Bf (z(t), u(t), y(t)) + L1L

−1
2 (y(t) − h(u(t))︸ ︷︷ ︸

=Cx(t)

),

(3.6)
which is a Luenberger type observer of the form (3.4) with gain L = L1L

−1
2 . Hence

the Luenberger type observer is a special case of the observer design (3.5). Being
square is a necessary condition for invertibility of L2, i.e., k = p.

For later use we consider the dynamics of the error state e(t) := z(t) − x(t)

between systems (3.1) and (3.5),

d
dt

Ee(t) = Ae(t) + Bφ(t) + L1d(t)

0 = Ce(t) + L2d(t),
(3.7)

where

φ(t) := f (z(t), u(t), y(t)) − f (x(t), u(t), y(t)) =
(

fL(z(t),u(t),y(t))−fL(x(t),u(t),y(t))
fM(Jz(t),u(t),y(t))−fM(Jx(t),u(t),y(t))

)
,

and rewrite (3.7) as

d
dt
E
(

e(t)
d(t)

)
= A

(
e(t)
d(t)

)
+ Bφ(t), (3.8)
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where

E =
[
E 0
0 0

]
∈ R

(l+p)×(n+k), A =
[
A L1

C L2

]
∈ R

(l+p)×(n+k)

and B =
[
B

0

]
∈ R

(l+p)×(qL+qM).

The following lemma is a consequence of (2.5).

Lemma 3.1 Consider a system (3.1) and the observer candidate (3.5). Then (3.5)
is an acceptor for (3.1). Furthermore, for all open intervals I ⊆ R, all (x, u, y) ∈
B(3.1) and all

((
z
d

)
,
(
u
y

)
, z

)
∈ B(3.5) with dom(x) = dom

(
z
d

) = I we have:

∀ t ∈ I :
⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ ∈ V ∗

[[E ,0],[A ,B]]. (3.9)

Proof Let I ⊆ R be an open interval and (x, u, y) ∈ B(3.1). For any (x, u, y) ∈
B(3.1) it holds

((
x
0

)
,
(
u
y

)
, x

)
∈ B(3.5), hence (3.5) is an acceptor for (3.1).

Now let (x, u, y) ∈ B(3.1) and
((

z
d

)
,
(
u
y

)
, z

)
∈ B(3.5), with I = dom(x) = dom

(
z
d

)
and rewrite (3.8) as

d
dt

[E , 0]
⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ = [A ,B]

⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ .

Then (3.9) is immediate from Remark 2.1. ��
In the following lemma we show that for a state estimator to exist, it is necessary

that the system (3.1) does not contain free state variables, i.e., solutions (if they
exist) are unique.

Lemma 3.2 Consider a system (3.1) and the observer candidate (3.5). If (3.5) is a
state estimator for (3.1), then either

(
∀ (x, u, y) ∈ B(3.1) ∃ t0 ∈ R : dom(x) ∩ [t0,∞) = ∅

)

∨
(
∀ ( (

z
d

)
,
(

u
y

)
, z

) ∈ B(3.5) ∃ t0 ∈ R : dom(z, d) ∩ [t0,∞) = ∅
)
,

(3.10)

or we have rkR(s)

[
sE−A

C

]
= n.
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Proof Let (3.5) be a state estimator for (3.1) and assume that (3.10) is not true. Set
E′ := [

E
0

]
, A′ := [

A
C

]
and let (x, u, y) ∈ B(3.1) with [t0,∞) ⊆ dom(x) for some

t0 ∈ R. Then we have that, for all t ≥ t0,

d
dt

E′x(t) =
[
A

C

]
x(t) +

[
B L1

0 L2

](
f (x(t), u(t), y(t))

d(t)

)
=: A′x(t) + g(x(t), u(t), y(t), d(t))

(3.11)

with d(t) ≡ 0. Using [8, Thm. 2.6] we find matrices S ∈ Gll+p(R), T ∈ Gln(R)

such that

S
(
sE′ − A′) T = s

⎡
⎢⎣

EP 0 0
0 ER 0
0 0 EQ

⎤
⎥⎦ −

⎡
⎢⎣

AP 0 0
0 AR 0
0 0 AQ

⎤
⎥⎦ , (3.12)

where

(i) EP ,AP ∈ R
mP ×nP ,mP < nP , are such that rkC(λEP − AP ) = mP for all

λ ∈ C ∪ {∞},
(ii) ER,AR ∈ R

mR×nR ,mR = nR , with sER − AR regular,
(iii) EQ,AQ ∈ R

mQ×nQ,mQ > nQ, are such that rkC(λEQ − AQ) = nQ for all
λ ∈ C ∪ {∞}.

We consider the underdetermined pencil sEP −AP in (3.12) and the corresponding
DAE. If nP = 0, then [8, Lem. 3.1] implies that rkR(s) sEQ − AQ = nQ and
invoking rkR(s) sER − AR = nR gives that rkR(s) sE′ − A′ = n. So assume that
np > 0 in the following and set

⎛
⎜⎝

xp

xR

xQ

⎞
⎟⎠ := T −1x,

⎛
⎜⎝

gp

gR

gQ

⎞
⎟⎠ := Sg.

If mp = 0, then xP can be chosen arbitrarily. Otherwise, we have

d
dt

EP xP (t) = AP xP (t) + gP

(
T

(
xP (t)
xR(t)
xQ(t)

)
, u(t), y(t), d(t)

)
. (3.13)

As a consequence of [8, Lem. 4.12] we may w.l.o.g. assume that sEP − AP =
s[Imp , 0] − [N,R] with R ∈ R

mP ×(nP −mP ) and nilpotent N ∈ R
mP ×mP . Partition

xP =
(

x1
P

x2
P

)
, then (3.13) is equivalent to

ẋ1
P (t) = Nx1

P (t) + Rx2
P (t) + gP

(
T (x1

P (t)�, x2
P (t)�, xR(t)�, xQ(t)�)�, u(t), y(t), d(t)

)
(3.14)
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for all t ≥ t0, and hence x2
P ∈ C ([t0,∞) → R

nP −mP ) can be chosen arbitrarily and
every choice preserves [t0,∞) ⊆ dom(x). Similarly, if

( (
z
d

)
,
(

u
y

)
, z

) ∈ B(3.5)
with [t0,∞) ⊆ dom(z)—w.l.o.g. the same t0 can be chosen—then (3.11) is
satisfied for x = z and, proceeding in an analogous way, z2

P can be chosen
arbitrarily, in particular such that limt→∞ z2

P (t) �= limt→∞ x2
P (t). Therefore,

limt→∞ z(t) − x(t) = limt→∞ e(t) �= 0, which contradicts that (3.5) is a state
estimator for (3.1). Thus nP = 0 and rkR(s) sE′ − A′ = n follows. ��

As a consequence of Lemma 3.2, a necessary condition for (3.5) to be a state
estimator for (3.1) is that n ≤ l + p. This will serve as a standing assumption in the
subsequent sections.

4 Sufficient Conditions for State Estimators

In this section we show that if certain matrix inequalities are satisfied, then there
exists a state estimator for system (3.1) which is of the form (3.5). The design
parameters of the latter can be obtained from a solution of the matrix inequalities.
The proofs of the subsequent theorems are inspired by the work of Lu and Ho [29]
and by [5], where LMIs are considered on the Wong limits only.

Theorem 4.1 Consider a system (3.1) with n ≤ l + p which satisfies
conditions (3.2) and (3.3). Let k ∈ N0 and denote with V ∗

[[E ,0],[A ,B]] the

Wong limit of the pencil s[E , 0] − [A ,B] ∈ R[s](l+p)×(n+k+qL+qM), and
V

∗
[[E ,0],[A ,B]] := [

In+k, 0
]
V ∗

[[E ,0],[A ,B]]. Further let Â = [
A 0
C 0

]
,

H =
[

0n×n 0
0 Ik

]
= H�, F = [F, 0] ∈ R

j×(n+k), j ∈ N,

Θ̂ =
[

0 J�Θ

0 0

]
∈ R

(n+k)×(qL+qM), J =
[
J�J 0

0 0

]
∈ R

(n+k)×(n+k)

and ΛqL
:=

[
IqL

0
0 0

]
∈ R

(qL+qM)×(qL+qM).

If there exist δ > 0, P ∈ R
(l+p)×(n+k) and K ∈ R

(n+k)×(n+k) such that

Q :=
[
Â�P + P�Â + H�K � + K H + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

]
<V ∗

[[E ,0],[A ,B]]
0

(4.1)

and

P�E = E �P >
V

∗
[[E ,0],[A ,B]]

0, (4.2)
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then for all L1 ∈ R
l×k , L2 ∈ R

p×k such that P�
[

0 L1
0 L2

]
= K H the system (3.5)

is a state estimator for (3.1).
Furthermore, there exists at least one such pair L1, L2 if, and only if, imK H ⊆

imP�.

Proof Using Lemma 3.1, we have that (3.5) is an acceptor for (3.1). To show
that (3.5) satisfies condition (2.4) let t0 ∈ R and (x, u, y, xo, z) ∈ C ([t0,∞) →
X × U × Y × Xo × R

n) such that (x, u, y) ∈ B(3.1) and (xo,
(
u
y

)
, z) ∈ B(3.5),

with xo(t) = (
z(t)
d(t)

)
and Xo = X × R

k .

The last statement of the theorem is clear. Let L̂ = [0(l+p)×n, ∗] be a solution

of P�L̂ = K H and A = Â + L̂, further set η(t) :=
(

e(t)
d(t)

)
, where

e(t) = z(t) − x(t). Recall that

φ(t) = f (z(t), u(t), y(t)) − f (x(t), u(t), y(t))

=
(

fL(z(t), u(t), y(t)) − fL(x(t), u(t), y(t))

fM(Jz(t), u(t), y(t)) − fM(Jx(t), u(t), y(t))

)
=:

(
φL(t)

φM(t)

)
.

In view of condition (3.2) we have for all t ≥ t0 that

δ(η�(t)F�Fη(t) − φ�
L (t)φL(t)) ≥ 0 (4.3)

and by (3.3)

([J, 0]η(t))�ΘφM(t) + φ�
M(t)Θ�[J, 0]η(t) − μ([J, 0]η(t))�([J, 0]η(t)) ≥ 0.

(4.4)

Now assume that (4.1) and (4.2) hold. Consider a Lyapunov function candidate

Ṽ : Rn+k → R, η �→ η�E �Pη

and calculate the derivative along solutions for t ≥ t0:

d
dt

Ṽ (η(t)) = η̇�(t)E �Pη(t) + η�(t)P�E η̇(t)

= (
A η(t) + Bφ(t)

)�
Pη(t) + η�(t)P� (

A η(t) + Bφ(t)
)

= η�(t)A �Pη(t) + η�(t)P�A η(t) + φ�(t)B�Pη(t) + η�(t)P�Bφ(t)

= η�(t)Â�Pη(t) + η�(t)L̂�Pη(t) + η�(t)P�Âη(t) + η�(t)P�L̂η(t)

+ φ�(t)B�Pη(t) + η�(t)P�Bφ(t)

(4.3),(4.4)≤ η�(t)
(
Â�P + P�Â + K H + H�K �) η(t)
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+ φ�(t)B�Pη(t) + η�(t)P�Bφ(t) + δ(η�(t)F�Fη(t) − φ�
L (t)φL(t))

+ ([J, 0]η(t))�ΘφM(t) + φ�
M(t)Θ�[J, 0]η(t) − μ([J, 0]η(t))�([J, 0]η(t))

= η�(t)
(
Â�P + P�Â + K H + H�K � + δF�F − μJ

)
η(t)

+ φ�(t)B�Pη(t) + η�(t)P�Bφ(t)

+ η�(t)Θ̂φ(t) + φ�(t)Θ̂�η(t) − δφ�(t)ΛqL
φ(t)

=
(

η(t)

φ(t)

)�[
Â�P + P�Â + H�K � + K H + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

]

︸ ︷︷ ︸
=Q

(
η(t)

φ(t)

)
.

(4.5)

Let S ∈ R
(n+k+qL+qM)×nV with orthonormal columns be such that im S =

V ∗
[[E ,0],[A ,B]] and rk(S) = nV . Then inequality (4.1) reads Q̂ := S�QS < 0.

Denote with λ−
Q̂

the smallest eigenvalue of −Q̂, then λ−
Q̂

> 0. Since S has

orthonormal columns we have ‖Sv‖ = ‖v‖ for all v ∈ R
nV .

By Lemma 3.1 we have
(

η(t)
φ(t)

)
∈ V ∗

[[E ,0],[A ,B]] for all t ≥ t0, hence
(

η(t)
φ(t)

)
=

Sv(t) for some v : [t0,∞) → R
nV . Then (4.5) becomes

∀ t ≥ t0 : d
dt

Ṽ (η(t)) ≤
(

η(t)

φ(t)

)�
Q

(
η(t)

φ(t)

)
= v�(t)Q̂v(t)

≤ −λ−
Q̂

‖v(t)‖2 = −λ−
Q̂

∥∥∥∥∥∥

(
η(t)

φ(t)

)∥∥∥∥∥∥

2

.

(4.6)

Let S ∈ R
(n+k)×nV with orthonormal columns be such that im S =

V
∗
[[E ,0],[A ,B]] and rk(S) = nV . Then condition (4.2) is equivalent to S

�
E �PS >

0. Since
(

η(t)
φ(t)

)
∈ V ∗

[[E ,0],[A ,B]] for all t ≥ t0 it is clear that η(t) ∈ V
∗
[[E ,0],[A ,B]]

for all t ≥ t0. If V
∗
[[E ,0],[A ,B]] = {0} (which also holds when V ∗

[[E ,0],[A ,B]] = {0}),
then this implies η(t) = 0, thus e(t) = 0 for all t ≥ t0, which completes the proof.
Otherwise, nV > 0 and we set η(t) = Sη̄(t) for some η̄ : [t0,∞) → R

nV and

denote with λ+, λ− the largest and smallest eigenvalue of S
�
E �PS, resp., where

λ− > 0 is a consequence of (4.2). Then we have

Ṽ (η(t)) = η�(t)E �Pη(t) = η̄�(t)S
�
E �PSη̄(t) ≤ λ+‖η̄(t)‖2 = λ+‖η(t)‖2

(4.7)
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and, analogously,

∀ t ≥ t0 : λ−‖η(t)‖2 ≤ η̄�(t)S
�
E �PSη̄(t) = Ṽ (η(t)) ≤ λ+‖η(t)‖2. (4.8)

Therefore,

∀ t ≥ t0 : d
dt

Ṽ (η(t))
(4.6)≤ −λ−

Q̂

∥∥∥∥∥∥

(
η(t)

φ(t)

)∥∥∥∥∥∥

2

≤ −λ−
Q̂

‖η(t)‖2 (4.7)≤ −
λ−
Q̂

λ+ Ṽ (η(t)).

Now, abbreviate β := λ−
Q̂

λ+ and use Gronwall’s Lemma to infer

∀ t ≥ t0 : Ṽ (η(t)) ≤ Ṽ (η(0))e−βt . (4.9)

Then we obtain

∀ t ≥ t0 : ‖η(t)‖2 (4.8)≤ 1

λ− Ṽ (η(t))
(4.9)≤ Ṽ (η(0))

λ− e−βt ,

and hence limt→∞ e(t) = 0, which completes the proof. ��
Remark 4.1

(i) Note that A = Â+ L̂, where L̂ = [0(l+p)×n, ∗] is a solution of P�L̂ = K H

and hence the space V ∗
[[E ,0],[A ,B]] on which (4.1) is considered depends on

the sought solutions P and K as well; using P�A = P�Â + K H , this
dependence is still linear. Furthermore, note that K only appears in union with

the matrix H =
[

0 0
0 Ik

]
, thus only the last k columns of K are of interest. In

order to reduce the computational effort it is reasonable to fix the other entries
beforehand, e.g. by setting them to zero.

(ii) We stress that the parameters in the description (3.1) of the system are not
entirely fixed, especially regarding the linear parts. More precisely, an equation
of the form d

dt
Ex(t) = Ax(t) + f (x(t), u(t)), where f satisfies (3.2) can

equivalently be written as d
dt

Ex(t) = fL(x(t), u(t)), where fL(x, u) =
Ax + f (x, u) also satisfies (3.2), but with a different matrix F . However, this
alternative (with A = 0) may not satisfy the necessary condition provided in
Lemma 3.2, which hence should be checked in advance. Therefore, the system
class (3.1) allows for a certain flexibility and different choices of the parameters
may or may not satisfy the assumptions of Theorem 4.1.

(iii) In the special case E = 0, i.e., purely algebraic systems of the form
0 = Ax(t) + Bf (x(t), u(t), y(t)), Theorem 4.1 may still be applicable.
More precisely, condition (4.2) is satisfied in this case if, and only if,
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V
∗
[[E ,0],[A ,B]] = {0}. This can be true, if for instance B = 0 and A has

full column rank, because then V
∗
[[E ,0],[A ,B]] = [In+k, 0] ker[A , 0] = {0}.

In the following theorem condition (4.2) is weakened to positive semi-
definiteness. As a consequence, the system’s matrices have to satisfy additional
conditions, which are not present in Theorem 4.1. In particular, we require that E
and A are square, which means that k = l + p − n. Furthermore, we require that
JGM is invertible for a certain matrix GM and that the norms corresponding to F

and J are compatible if both kinds of nonlinearities are present.

Theorem 4.2 Use the notation from Theorem 4.1 and set k = l+p−n. In addition,
denote with V ∗

[E ,A ],W
∗

[E ,A ] ⊆ R
n+k the Wong limits of the pencil sE − A ∈

R[s](l+p)×(n+k) and let V ∈ R
(n+k)×nV and W ∈ R

(n+k)×nW be basis matrices
of V ∗

[E ,A ] and W ∗
[E ,A ], resp., where nV = dim(V ∗

[E ,A ]) and nW = dim(W ∗
[E ,A ]).

Furthermore, denote with λmax(M) the largest eigenvalue of a matrix M .
If there exist δ > 0, P ∈ R

(l+p)×(n+k) invertible and K ∈ R
(n+k)×(n+k) such

that (4.1) holds and

(a) E �P = P�E ≥
V

∗
[[E ,0],[A ,B]]

0,

(b) the pencil sE − A ∈ R[s](l+p)×(n+k) is regular and its index is at most one,

(c) F is such that ‖FGL‖ < 1, where GL := −[In, 0]W [0, In+k−r ][E V,A W ]−1
[

BL
0

]
,

(d) JGM is invertible and μ > λmax(Γ ), where Γ := Θ̃ + Θ̃�, Θ̃ := Θ(JGM)−1,

GM := −[In, 0]W [0, In+k−r ][E V,A W ]−1
[

BM
0

]
,

(e) there exists α > 0 such that ‖Fx‖ ≤ α‖Jx‖ for all x ∈ R
n and, for

S := Θ̃�(Γ − μIqM
)−1Θ̃ we have

α‖JGL‖
1 − ‖FGL‖

⎛
⎝
√

max{0, λmax(S)}
μ − λmax(Γ )

+ ‖(Γ − μIqM
)−1(Θ̃� − μIqM

)‖
⎞
⎠ < 1,

(4.10)

then with L1 ∈ R
l×k , L2 ∈ R

p×k such that
[

0 L1
0 L2

]
= P−�K H the system (3.5)

is a state estimator for (3.1).

Proof Assume (4.1) and (4.10) (a)–(e) hold. Up to Eq. (4.9) the proof remains the
same as for Theorem 4.1. By (4.10) (b) we may infer from [10, Thm. 2.6] that there

exist invertible M =
[
M�

1 ,M�
2

]� ∈ R
(n+k)×(l+p) with M1 ∈ R

r×(l+p), M2 ∈
R

(n+k−r)×(l+p) and invertible N = [
N1, N2

] ∈ R
(n+k)×(l+p) with N1 ∈ R

(n+k)×r ,
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N2 ∈ R
(n+k)×(l+p−r) such that

M (E − A )N =
[
Ir − Ar 0

0 −In+k−r

]
, (4.11)

where r = rk(E ) and Ar ∈ R
r×r , and that

N = [V,W ], M = [E V,A W ]−1. (4.12)

Let

P = M�
[
P1 P2

P3 P4

]
N −1 (4.13)

with P1 ∈ R
nV ×nV , P4 ∈ R

nW ×nW and P2, P
�
3 ∈ R

nV ×nW . Then condi-
tion (4.10) (a) implies P1 > 0 as follows. First, calculate

E �P = N −T

[
Ir 0
0 0

]
M−T M T

[
P1 P2

P3 P4

]
N −1 = N −T

[
P1 P2

0 0

]
N −1

(4.14)

which gives P2 = 0 as P�E = E �P . Note that therefore P1 and P4 in (4.13) are
invertible since P is invertible by assumption. By (4.14) we have

E �P = N −T

[
P1 0
0 0

]
N −1 = [V,W ]−T

[
P1 0
0 0

]
[V,W ]−1. (4.15)

It remains to show P1 ≥ 0. Next, we prove the inclusion

V ∗
[E ,A ] ⊆ V

∗
[[E ,0],[A ,B]] = [In+k, 0]V ∗

[[E ,0],[A ,B]]. (4.16)

To this end, we show V i
[E ,A ] ⊆ [In+k,0]V i

[[E ,0],[A ,B]] for all i ∈ N0. For i = 0 this

is clear. Now assume it is true for some i ∈ N0. Then

[In+k, 0]V i+1
[[E ,0],[A ,B]] = [In+k, 0][A ,B]−1([E , 0]V i

[[E ,0],[A ,B]])

= [In+k, 0]
⎧⎨
⎩

(
η(t)

φ(t)

)
∈ R

n+k+q

∣∣∣∣∣ A η

+ Bφ ∈ E
(
[In+k, 0]V i

[[E ,0],[A ,B]]
)

⎫⎬
⎭
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=
{

η ∈ R
n+k

∣∣∣ ∃ φ ∈ R
q : A η + Bφ ∈ E V

i

[[E ,0],[A ,B]]
}

φ=0⊇
{

η ∈ R
n+k

∣∣∣ A η ∈ E V
i

[[E ,0],[A ,B]]
}

= A −1
(
E V

i

[[E ,0],[A ,B]]
)

⊇ A −1
(
E V i

[E ,A ]
)

= V i+1
[E ,A ],

which is the statement. Therefore it is clear that im V ⊆ V
∗
[[E ,0],[A ,B]] =

im V , with V ∈ R
(n+k)×nV a basis matrix of V

∗
[[E ,0],[A ,B]] and nV =

dim(V
∗
[[E ,0],[A ,B]]). Thus there exists R ∈ R

nV ×nV such that V = V R. Now the

inequality V
�
P�E V ≥ 0 holds by condition (4.10) (a) and implies

0 ≤ R�V
�
P�EV R = V �P�EV =

⎛
⎝[V,W ]

[
InV

0

]⎞
⎠

�
P�E

⎛
⎝[V,W ]

[
InV

0

]⎞
⎠

(4.15)= [InV , 0]
[
P1 0

0 0

][
InV

0

]
= P1.

Now, let N −1η(t) =
(

η1(t)
η2(t)

)
, with η1(t) ∈ R

r and η2(t) ∈ R
n+k−r and consider

the Lyapunov function Ṽ (η(t)) = η�(t)E �Pη(t) in new coordinates:

∀ t ≥ t0 : Ṽ (η(t)) = η�(t)E �Pη(t)
(4.14)=

(
η1(t)

η2(t)

)� [
P1 0
0 0

](
η1(t)

η2(t)

)

= η�
1 (t)P1η1(t) ≥ λ−

P1
‖η1(t)‖2,

(4.17)

where λ−
P1

> 0 denotes the smallest eigenvalue of P1. Thus (4.17) implies

∀ t ≥ t0 : ‖η1(t)‖2 ≤ 1

λ−
P1

η�(t)E �Pη(t) = 1

λ−
P1

Ṽ (η(t))
(4.9)≤ Ṽ (η(0))

λ−
P1

e−βt −→
t→∞ 0.

(4.18)

Note that, if V ∗
[E ,A ] = {0}, then r = 0 and N −1η(t) = η2(t), thus the

above estimate (4.18) is superfluous (and, in fact, not feasible) in this case; it
is straightforward to modify the remaining proof to this case. With the aid of
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transformation (4.11) we have:

M d
dt
E η(t) = MA η(t) + MBφ(t)

⇐⇒ MEN d
dt

(
η1(t)

η2(t)

)
= MAN

(
η1(t)

η2(t)

)
+ MBφ(t)

⇐⇒
[
Ir 0
0 0

]
d
dt

(
η1(t)

η2(t)

)
=

[
Ar 0
0 In+k−r

](
η1(t)

η2(t)

)
+

[
M1

M2

]
Bφ(t),

(4.19)

from which it is clear that η2(t) = −M2Bφ(t). Observe

e(t) = [In, 0]η(t) = [In, 0]N
(

η1(t)

η2(t)

)
= [In, 0]V η1(t) + [In, 0]Wη2(t) =: e1(t) + e2(t),

where limt→∞ e1(t) = 0 by (4.18). We show e2(t) = −[In, 0]WM2Bφ(t) → 0
for t → ∞. Set

eL
2 (t) := GLφL(t), eM

2 (t) := GMφM(t)

so that e2(t) = eL
2 (t) + eM

2 (t). Next, we inspect the Lipschitz condition (3.2):

‖φL(t)‖ ≤ ‖Fe(t)‖ ≤ ‖Fe1(t)‖ + ‖FeL
2 (t)‖ + ‖FeM

2 (t)‖
≤ ‖Fe1(t)‖ + ‖FGL‖‖φL(t)‖ + ‖FeM

2 (t)‖,

which gives, invoking (4.10) (c),

‖φL(t)‖ ≤ (
1 − ‖FGL‖)−1(‖Fe1(t)‖ + ‖FeM

2 (t)‖). (4.20)

Set ê(t) := e1(t) + eL
2 (t) = e1(t) + GLφL(t) and κ := α‖JGL‖

1−‖FGL‖ and observe
that (4.20) together with (4.10) (e) implies

‖J ê(t)‖ ≤ ‖Je1(t)‖ + ‖JGL‖‖φL(t)‖ (4.20)≤ (1 + κ)‖Je1(t)‖ + κ‖JeM
2 (t)‖.

(4.21)

Since JGM is invertible by (4.10) (d) we find that

φM(t) = (JGM)−1JeM
2 (t), (4.22)
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and hence the monotonicity condition (3.3) yields, for all t ≥ t0,

μ
∥∥Je(t)

∥∥2 ≤ (J e(t))�ΘφM(t) + φ�
M(t)Θ�Je(t)

= (J ê(t) + JeM
2 (t))�Θ̃J eM

2 (t) + (J eM
2 (t))�Θ̃�(J ê(t) + JeM

2 (t))

= 2(J ê(t))�Θ̃J eM
2 (t) + (J eM

2 (t))�
(
Θ̃ + Θ̃�
︸ ︷︷ ︸

=Γ

)
JeM

2 (t)

and on the left-hand side

μ
∥∥Je(t)

∥∥2 = μ

(∥∥J ê(t)
∥∥2 +

∥∥∥JeM
2 (t)

∥∥∥
2 + 2(J ê(t))�(J eM

2 (t))

)
.

Therefore, we find that

0 ≤ −μ

∥∥∥JeM
2 (t)

∥∥∥
2 − μ

∥∥J ê(t)
∥∥2 − 2μ(J ê(t))�(J eM

2 (t))

+ 2(J ê(t))�Θ̃(J eM
2 (t)) + (J eM

2 (t))�Γ (JeM
2 (t))

=
(

J ê(t)

J eM
2 (t)

)� [
−μIqM

Θ̃ − μIqM

Θ̃� − μIqM
Γ − μIqM

](
J ê(t)

J eM
2 (t)

)
.

Since Γ − μIqM
is invertible by (4.10) (d) we may set Ξ := Θ̃� − μIqM

and
ẽM

2 (t) := (Γ − μIqM
)−1ΞJ ê(t) + JeM

2 (t). Then

0 ≤
(

J ê(t)

J eM
2 (t)

)� [
−μIqM

Θ̃ − μIqM

Θ̃� − μIqM
Γ − μIqM

](
J ê(t)

J eM
2 (t)

)

=
(

J ê(t)

ẽM
2 (t)

)� [
−μIqM

− Ξ�(Γ − μIqM
)−1Ξ 0

0 Γ − μIqM

](
J ê(t)

ẽM
2 (t)

)
.

Therefore, using μ − λmax(Γ ) > 0 by (4.10) (d) and computing

−μIqM
− Ξ�(Γ − μIqM

)−1Ξ = Θ̃�(Θ̃ + Θ̃� − μIqM
)−1Θ̃ = S,

we obtain

0 ≤ max{0, λmax(S)}‖J ê(t)‖2 − (μ − λmax(Γ ))‖ẽM
2 (t)‖2,
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which gives

‖JeM
2 (t)‖ ≤ ‖(Γ − μIrM )−1Ξ‖‖J ê(t)‖ + ‖ẽM

2 (t)‖

≤
⎛
⎝
√

max{0, λmax(S)}
μ − λmax(Γ )

+ ‖(Γ − μIrM )−1Ξ‖
⎞
⎠ ‖J ê(t)‖

(4.21)≤
⎛
⎝
√

max{0, λmax(S)}
μ − λmax(Γ )

+ ‖(Γ − μIrM )−1Ξ‖
⎞
⎠(

(1 + κ)‖Je1(t)‖ + κ‖JeM
2 (t)‖).

It then follows from (4.10) (e) that limt→∞ JeM
2 (t) = 0, and additionally

invoking (4.20) and (4.22) gives limt→∞ φL(t) = 0 and limt→∞ φM(t) = 0, thus∥∥e2(t)
∥∥ ≤ ∥∥GLφL(t)

∥∥ + ∥∥GMφM(t)
∥∥ −→

t→∞ 0, and finally limt→∞ e(t) = 0. ��
Remark 4.2

(i) If the nonlinearity f in (3.1) consists only of fL satisfying the Lipschitz
condition, then the conditions (4.10) (d) and (e) are not present. If it consists
only of the monotone part fM , then the conditions (4.10) (c) and (e) are not
present. In fact, condition (4.10) (e) is a “mixed condition” in a certain sense
which states additional requirements on the combination of both (classes of)
nonlinearities.

(ii) The following observation is of practical interest. Whenever fL satisfies (3.2)
with a certain matrix F , it is obvious that fL will satisfy (3.2) with any other F̃

such that ‖F‖ ≤
∥∥∥F̃

∥∥∥. However, condition (4.10) (c) states an upper bound

on the possible choices of F . Similarly, if fM satisfies (3.3) with certain Θ

and μ, then fM satisfies (3.3) with any μ̃ ≤ μ, for a fixed Θ . On the other
hand, condition (4.10) (d) states lower bounds for μ (involving Θ as well).
Additional bounds are provided by (4.1) and condition (4.10) (e). Analogous
thoughts hold for the other parameters. Hence F , δ, J , Θ and μ can be utilized
in solving the conditions of Theorems 4.1 and 4.2.

(iii) The condition ‖Fx‖ ≤ α‖Jx‖ from (4.10) (e) is quite restrictive since it
connects the Lipschitz estimation of fL with the domain of fM . This relation
is far from natural and relaxing it is a topic of future research. The inequality
would always be satisfied for J = In by taking α = ‖F‖, however in view
of the monotonicity condition (3.3), the inequality (4.1) and conditions (4.10)
this would be even more restrictive.

(iv) In the case E = 0 the assumptions of Theorem 4.2 simplify a lot. In fact, we
may calculate that in this case we have V ∗

[[E ,0],[A ,B]] = ker[A ,B] and hence
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the inequality (4.1) becomes

Q =
⎡
⎣A �P + P�A + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

⎤
⎦ <ker[A ,B] 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] :

(
η
φ

)�
Q

(
η
φ

)
< 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] : η� (

A �P + P�A + δF�F − μJ
)

η − δ
∥∥ΛqL

φ
∥∥2

+ φ� (
B�P + Θ̂

)
η + η� (

P�B + Θ̂�)
φ < 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] : (η�A � + φ�(t)B�

︸ ︷︷ ︸
=0

)Pη + η�P�(A η + Bφ︸ ︷︷ ︸
=0

)

+ δ
( ∥∥Fη

∥∥2 − ∥∥ΛqL
φ
∥∥2 ) + η�Θ̂φ + φ�Θ̂�η − μη�J η < 0.

Now, A is invertible by (4.10) (b) and hence η = −A −1Bφ. Therefore, the
inequality (4.1) is equivalent to

δ
(
(FA −1B)�(FA −1B) − ΛqL

)
− (A −1B)�Θ̂ − Θ̂�A −1B

− μ(A −1B)�J (A −1B) < 0,

which is of a much simper shape.
(v) The conditions presented in Theorems 4.1 and 4.2 are sufficient conditions

only. The following example does not satisfy the conditions in the theorems but
a state estimator exists for it. Consider ẋ(t) = −x(t), y(t) = 0, then the system
ż(t) = −z(t) , 0 = d1(t) − d2(t) of the form (3.5) with L1 = [0, 0] and L2 =
[1,−1] is obviously a state estimator, since the first equation is independent of
the innovations d1, d2 and solutions satisfy limt→∞ z(t) − x(t) = 0. However,
we have n + k = 3 > 2 = l + p and therefore Theorem 4.2 is not applicable.
Furthermore, the assumptions of Theorem 4.1 are not satisfied since

V
∗
[[E ,0],[A ,B]] = V ∗

[E ,A ] = im

⎡
⎢⎣

1 0
0 1
0 1

⎤
⎥⎦ and E V =

[
1 0
0 0

]
,

by which kerE V �= {0} and hence (4.2) cannot be true. We also like to stress
that therefore, in virtue of Lemma 3.2, n ≤ l + p is a necessary condition for
the existence of a state estimator of the form (3.5), but n + k ≤ l + p is not.



278 T. Berger and L. Lanza

5 Sufficient Conditions for Asymptotic Observers

In the following theorem some additional conditions are asked to be satisfied in
order to guarantee that the resulting observer candidate is in fact an asymptotic
observer, i.e., it is a state estimator and additionally satisfies (2.3). To this end, we
utilize an implicit function theorem from [21].

Theorem 5.1 Use the notation from Theorem 4.2 and assume that X = R
n, U =

R
m and Y = R

p. Additionally, let M , N ∈ R
(n+k)×(l+p) be as in (4.12), set

¯N := [In, 0]N and

[
B̂1

B̂2

]
:= M

[
BL BM 0
0 0 Ip

]
, where B̂1 ∈ R

r×(qL+qM+p), B̂2 ∈
R

(n+k−r)×(qL+qM+p). Let

G : Rr × R
n+k−r × R

m × R
p → R

n+k−r , (x1, x2, u, y) �→ x2 + B̂2

⎛
⎜⎜⎝

fL

( ¯N
(
x1
x2

)
, u, y

)

fM

(
J ¯N

(
x1
x2

)
, u, y

)

h(u) − y

⎞
⎟⎟⎠

and Z0 :=
{

(x1, x2, u, y) ∈ R
r × R

n+k−r × R
m × R

p
∣∣∣ G(x1, x2, u, y) = 0

}
.

If there exist δ > 0, P ∈ R
(l+p)×(n+k) invertible and K ∈ R

(l+p)×(n+k) such
that (4.1) and (4.10) hold and in addition

(a) ∂
∂x2

G(x1, x2, u, y) is invertible for all (x1, x2, u, y) ∈ Z0,

(b) there exists ω ∈ C ([0, ∞) → (0, ∞)) nondecreasing with
∫ ∞

0

dt

ω(t)
= ∞ such that

∀ (x1, x2, u, y) ∈ Z0 :
∥∥∥∥
(

∂
∂x2

G(x1, x2, u, y)
)−1

∥∥∥∥
∥∥∥ ∂

∂(x1,u,y)
G(x1, x2, u, y)

∥∥∥ ≤ ω(‖x2‖),

(c) Z0 is connected,

(d) fM is locally Lipschitz continuous in the first variable,

(5.1)

then with L1 ∈ R
l×k , L2 ∈ R

p×k such that
[

0 L1
0 L2

]
= P−�K H the system (3.5)

is an asymptotic observer for (3.1).

Proof Since (3.5) is a state estimator for (3.1) by Theorem 4.2, it remains
to show that (2.3) is satisfied. To this end, let I ⊆ R be an open interval,
t0 ∈ I , and (x, u, y, z, d) ∈ C (I → R

n × R
m × R

p × R
n × R

k) such that

(x, u, y) ∈ B(3.1) and
((

z
d

)
,
(
u
y

)
, z

)
∈ B(3.5). Recall that B = [BL,BM ] and
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f (x, u, y) =
(

fL(x,u,y)
fM(Jx,u,y)

)
. Now assume Ex(t0) = Ez(t0) and recall the equations

d
dt

Ex(t) = Ax(t) + Bf (x(t), u(t), y(t)),

y(t) = Cx(t) + h(u(t)),

d
dt

Ez(t) = Az(t) + Bf (z(t), u(t), y(t)) + L1d(t),

0 = Cz(t) − y(t) + h(u(t)) + L2d(t).

This is equivalent to

d
dt
E

(
x(t)

0

)
= A

(
x(t)

0

)
+

[
B 0
0 Ip

](
f (x(t), u(t), y(t))

h(u(t)) − y(t)

)
(5.2)

and

d
dt
E

(
z(t)

d(t)

)
= A

(
z(t)

d(t)

)
+

[
B 0
0 Ip

](
f (x(t), u(t), y(t))

h(u(t)) − y(t)

)
.

Let
(

x1(t)
x2(t)

)
= N −1

(
x(t)

0

)
and

(
z1(t)
z2(t)

)
= N −1

(
z(t)
d(t)

)
. Application of transfor-

mations (4.11) to (5.2) gives

[
Ir 0
0 0

](
ẋ1(t)

ẋ2(t)

)
=

[
Ar 0
0 In+k−r

](
x1(t)

x2(t)

)
+

[
B̂1

B̂2

](
f ( ¯N

(
x1(t)
x2(t)

)
, u(t), y(t))

h(u(t)) − y(t)

)

or, equivalently,

ẋ1(t) = Arx1(t) + B̂1

(
f ( ¯N

(
x1(t)
x2(t)

)
, u(t), y(t))

h(u(t)) − y(t)

)

0 = x2(t) + B̂2

(
f ( ¯N

(
x1(t)
x2(t)

)
, u(t), y(t))

h(u(t)) − y(t)

)

︸ ︷︷ ︸
=G(x1(t),x2(t),u(t),y(t))

with ¯N := [In, 0]N and M
[

B 0
0 Ip

]
=

[
B̂1

B̂2

]
.

Since (5.1) (a)–(c) hold, the global implicit function theorem in [21, Cor. 5.3]
ensures the existence of a unique continuous map g : Rr × R

m × R
p → R

n+k−r

such that G(x1, g(x1, u, y), u, y) = 0 for all (x1, u, y) ∈ R
r ×R

m ×R
p, and hence

x2(t) = g(x1(t), u(t), y(t)) for all t ∈ I . Thus x1 solves the ordinary differential
equation

ẋ1(t) = Arx1(t) + B̂1

(
f ( ¯N

(
x1(t)

g(x1(t),u(t),y(t))

)
, u(t), y(t))

h(u(t)) − y(t)

)
(5.3)
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with initial value x1(t0) for all t ∈ I ; and z1(t) solves the same ODE with same
initial value z1(t0) = x1(t0). This can be seen as follows: Ex(t0) = Ez(t0) implies

E
(

x(t0)
0

)
= E

(
z(t0)
d(t0)

)
, and the transformation (4.11) gives

E

(
x(t0)

0

)
= M−1

[
Ir 0

0 0

]
N −1

(
x(t0)

0

)
= M−1

[
Ir 0

0 0

](
x1(t0)

x2(t0)

)
= M−1

(
x1(t0)

0

)
,

E

(
z(t0)

d(t0)

)
= M−1

[
Ir 0

0 0

]
N −1

(
z(t0)

d(t0)

)
= M−1

[
Ir 0

0 0

](
z1(t0)

z2(t0)

)
= M−1

(
z1(t0)

0

)
,

which implies x1(t0) = z1(t0).
Furthermore, g(x1, u, y) is differentiable, which follows from the properties of

G: Let v = (x1, u, y) and write G(x1, g(v), u, y) = G̃(v, g(v)), then taking the
derivative yields

d

dv
G̃(v, g(v)) = ∂

∂v
G̃(v, g(v)) + ∂

∂g
G̃(v, g(v))g′(v) = 0

⇒ g′(v) = −
(

∂G̃(v, g(v))

∂g

)−1 (
∂G̃(v, g(v))

∂v

)
,

which is well defined by assumption. Hence g(x1, u, y) is in particular locally
Lipschitz. Since fL is globally Lipschitz in the first variable by (3.2) and fM

is locally Lipschitz in the first variable by assumption (5.1) (d), (x1, u, y) �→
f
( ¯N

(
x1(t)

g(x1(t),u(t),y(t))

)
, u(t), y(t)

)
is locally Lipschitz in the first variable and

therefore the solution of (5.3) is unique by the Picard–Lindelöf theorem, see e.g. [28,
Thm. 4.17]; this implies z1(t) = x1(t) for all t ∈ I . Furthermore,

x2(t) = g(x1(t), u(t), y(t)) = g(z1(t), u(t), y(t)) = z2(t)

for all t ∈ I , and hence (3.5) is an observer for (3.1). Combining this with the fact
that (3.5) is already a state estimator, (3.5) is an asymptotic observer for (3.1). ��

6 Examples

We present some instructive examples to illustrate Theorems 4.1, 4.2 and 5.1. Note
that the inequality (4.1) does not have unique solutions P and K and hence the
resulting state estimator is just one possible choice. The first example illustrates
Theorem 4.1.
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Example 6.1 Consider the DAE

d
dt

⎡
⎢⎢⎢⎣

1 0
1 1
0 0
0 1

⎤
⎥⎥⎥⎦

(
x1(t)

x2(t)

)
=

⎡
⎢⎢⎢⎣

0 −3
−2 0

1 −2
0 0

⎤
⎥⎥⎥⎦

(
x1(t)

x2(t)

)
+

⎡
⎢⎢⎢⎣

0 2
1 −1
0 1
1 0

⎤
⎥⎥⎥⎦

(
sin(x1(t) − x2(t))

x2(t) + exp(x2(t))

)
,

y(t) =
[
1 −1

](
x1(t)

x2(t)

)
.

(6.1)

Choosing F = [1,−1] the Lipschitz condition (3.2) is satisfied as
∥∥fL(x) − fL(x̂)

∥∥ = ‖ sin(x1 − x2) − sin(x̂1 − x̂2)‖

≤ ∥∥(x1 − x2) − (x̂1 − x̂2)
∥∥ =

∥∥∥∥∥∥
[
1 −1

](
x1 − x̂1

x2 − x̂2

)∥∥∥∥∥∥

for all x, x̂ ∈ X = R
2. The monotonicity condition (3.3) is satisfied with Θ =

IqM
= 1, μ = 2 and J = [0, 1] since for all x, z ∈ X̂ = JX = R we have

(z − x)
(
fM(z) − fM(x)

) = (z − x)
(
z + exp(z) − x − exp(x)

)

= (z − x)2 + (z − x)
(
exp(z) − exp(x)

)
︸ ︷︷ ︸

≥0

≥ μ

2
(z − x)2.

To satisfy the conditions of Theorem 4.1 we choose k = 2. A straightforward
computation yields that conditions (4.1) and (4.2) are satisfied with the following
matrices P ∈ R

(4+1)×(2+2), K ∈ R
(2+2)×(2+2), L1 ∈ R

4×2 and L2 ∈ R
1×2 on

the subspace V ∗
[[E ,0],[A ,B]] with δ = 1:

P = 1
10

⎡
⎢⎢⎢⎢⎢⎣

2 −2 0 0
0 0 0 0
0 0 0 0

−2 3 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, K = 1
5

⎡
⎢⎢⎢⎣

∗ ∗ 4 10
∗ ∗ −4 −10
∗ ∗ 0 0
∗ ∗ 0 0

⎤
⎥⎥⎥⎦ ,

[
L1

L2

]
=

⎡
⎢⎢⎢⎢⎢⎣

4 10
1 9
9 4
0 0
2 1

⎤
⎥⎥⎥⎥⎥⎦

, V ∗
[[E ,0],[A ,B]] = im

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
5 −4 0

−11 9 0
0 0 1

−2 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then Theorem 4.1 implies that a state estimator for (6.1) is given by

d
dt

⎡
⎢⎢⎢⎢⎢⎣

1 0

1 1

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝z1(t)

z2(t)

⎞
⎠ =

⎡
⎢⎢⎢⎢⎢⎣

0 −3

−2 0

1 −2

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝z1(t)

z2(t)

⎞
⎠ +

⎡
⎢⎢⎢⎢⎢⎣

0 2

1 −1

0 1

1 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝ sin(z1(t) − z2(t))

z2(t) + exp(z2(t))

⎞
⎠ +

⎡
⎢⎢⎢⎢⎢⎣

4 10

1 9

9 4

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝d1(t)

d2(t)

⎞
⎠

0 =
[
1 −1

]
⎛
⎝z1(t)

z2(t)

⎞
⎠ − y(t) +

[
2 1

]
⎛
⎝d1(t)

d2(t)

⎞
⎠

(6.2)

Note, that L2 is not invertible and thus the state estimator cannot be reformulated
as a Luenberger type observer. Further, n + k < l + p and therefore the pencil
sE − A is not square and hence in particular not regular; thus (4.10) (b) cannot
be satisfied. In addition, for F and J in the present example, condition (4.10) (e)
does not hold (and is independent of k), thus Theorem 4.2 is not applicable here.
A closer investigation reveals that for k = l + p − n inequality (4.2) cannot be
satisfied. We like to emphasize that Q <V ∗

[[E ,0],[A ,B]]
0 but Q < 0 does not hold

on R
n+k+qL+qM = R

6.

The next example illustrates Theorem 4.2.

Example 6.2 We consider the DAE

d
dt

[
1 −1

0 0

](
x1(t)

x2(t)

)
=

[
−1 0

0 1

](
x1(t)

x2(t)

)
+

[
2 −1

−1 1

](
sin

(
x1(t) + x2(t)

)

x1(t) + x2(t) + exp(x1(t) + x2(t))

)
,

y(t) =
[
1 1

](x1(t)

x2(t)

)
.

(6.3)

Similar to Example 6.1 it can be shown that the monotonicity condition (3.3) is
satisfied for fM(x) = x + exp(x) with J = [1, 1], Θ = 1 and μ = 2; the Lipschitz
condition (3.2) is satisfied for fL(x1, x2) = sin(x1 + x2) with F = [1, 1].
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Choosing k = 1 a straightforward computation yields that conditions (4.1) and
(4.10) (a) are satisfied with δ = 1.5, the following matrices P,K ∈ R

(2+1)×(2+1),
L1 ∈ R

2×1 and L2 ∈ R
1×1 = R and subspaces V ∗

[[E ,0],[A ,B]],V ∗
[E ,A ] and W ∗

[E ,A ]:

P = 1
10

⎡
⎢⎣

1 −1 0
1 17 0
0 0 17

⎤
⎥⎦ , K = 1

10

⎡
⎢⎣

∗ ∗ 8
∗ ∗ −134
∗ ∗ 17

⎤
⎥⎦ ,

[
L1

L2

]
=

⎡
⎢⎣

15
−7
1

⎤
⎥⎦ ,

V ∗
[[E ,0],[A ,B]] = im

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0

−1 −1 0
0 0 1

−7 −8 1

⎤
⎥⎥⎥⎥⎥⎦

, V ∗
[E ,A ] = im

⎡
⎢⎣

8
−7
−1

⎤
⎥⎦ , W ∗

[E ,A ] = im

⎡
⎢⎣

1 0
1 0
0 1

⎤
⎥⎦ .

Conditions (4.10) (b)–(e) are satisfied as follows:

(b) det(sE −A ) �= 0 and, using [2, Prop. 2.2.9], the index of sE −A is ν = k∗ = 1,
where k∗ is from Def. 2.4;

(c) this holds since GL = [1/15, 1/15]� and thus ‖FGL‖ < 1;
(d) JGM is invertible since GM = −[1/15, 1/15]� and λmax(Γ ) = −15 < 2 =

μ;
(e) this condition is satisfied with e.g. α = 1 since F = J , and

α‖JGL‖
1 − ‖FGL‖

⎛
⎝
√

max{0, λmax(S)}
μ − λmax(Γ )

+ ‖(Γ − μIqM
)−1(Θ̃� − μIqM

)‖
⎞
⎠ = 19

221
< 1.

Then Theorem 4.2 implies that a state estimator for system (6.3) is given by

d
dt

[
1 −1

0 0

](
z1(t)

z2(t)

)
=

[
−1 0

0 1

](
z1(t)

z2(t)

)
+

[
2 −1

−1 1

](
sin

(
z1(t) + z2(t)

)

z1(t) + z2(t) + exp(z1(t) + z2(t))

)

+
[

15

−7

]
d(t),

0 =
[
1 1

](z1(t)

z2(t)

)
− y(t) + d(t).

(6.4)

Straightforward calculations show that conditions (4.10) (a)–(e) are satisfied, but
condition (4.2) is violated; thus, Theorem 4.1 is not applicable for k = l+p−n = 1.
The matrix L2 is invertible and hence the state estimator (6.4) can be transformed
as a standard Luenberger type observer. We emphasize that Q < 0 does not hold on
R

5, i.e., the matrix inequality (4.1) on the subspace V ∗
[[E ,0],[A ,B]] ⊆ R

5 is a weaker

condition.
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−
+

R

L

+−
q= g(v)

Fig. 2 Nonlinear RLC circuit

The last example is an electric circuit where monotone nonlinearities occur,
which is taken from [35].

Example 6.3 Consider the electric circuit depicted in Fig. 2, where a DC source
with voltage ρ is connected in series to a linear resistor with resistance R, a
linear inductor with inductance L and a nonlinear capacitor with the nonlinear
characteristic

q = g(v) = (v − v0)
3 − (v − v0) + q0, (6.5)

where q is the electric charge and v is the voltage over the capacitor.
Using the magnetic flux φ in the inductor, the circuit admits the charge-flux

description

q̇(t) = 1

L
φ(t),

φ̇(t) = −R

L
φ(t) − v(t) + ρ(t).

(6.6)

We scale the variables q =C q̃, φ =Vs φ̃, v =V ṽ (where s, V and C denote the SI
units for seconds, Volt and Coulomb, resp.) in order to make them dimensionless.
For simulation purposes we set ρ = ρ0 = 2 V (i.e. ρ trivially satisfies
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condition (3.2)), R = 1 Ω and L = 0.5 H, q̃0 = ṽ0 = 1. Then with (x1, x2, x3)
� =(

q̃ − q̃0, φ̃, ṽ − ṽ0

)�
the circuit equations (6.5) and (6.6) can be written as the DAE

d
dt

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦

⎛
⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎠ =

⎡
⎢⎣

0 2 0
0 −2 −1

−1 0 −1

⎤
⎥⎦

⎛
⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎠ +

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦
(

1
x3(t)

3

)

y(t) =
[
1 0 −1

]
⎛
⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎠ ,

(6.7)

where the output is taken as the difference q(t) − v(t). Now, similar to the previous
examples, a straightforward computation shows that Theorem 4.2 is applicable and
yields parameters for a state estimator for (6.7), which has the form

d
dt

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦

⎛
⎜⎝

z1(t)

z2(t)

z3(t)

⎞
⎟⎠ =

⎡
⎢⎣

0 2 0
0 −2 −1

−1 0 −1

⎤
⎥⎦

⎛
⎜⎝

z1(t)

z2(t)

z3(t)

⎞
⎟⎠ +

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦
(

1
z3

3(t)

)
+

⎡
⎢⎣

−1
5
5

⎤
⎥⎦ d(t)

0 =
[
1 0 −1

]
⎛
⎜⎝

z1(t)

z2(t)

z3(t)

⎞
⎟⎠ − y(t) + 4d(t).

(6.8)

Note that since L2 = 4 is invertible, the given state estimator can be reformulated
as an observer of Luenberger type with gain matrix L = L1L

−1
2 . As before we

emphasize that Q < 0 is not satisfied on R
6.

Note that this example also satisfies the assumptions of Theorem 4.1 with k = 0,
i.e., the system copy itself serves as a state estimator (no innovation terms d are
present).

7 Comparison with the Literature

We compare the results found in [5, 15, 20, 29, 44] to the results in the present
paper. In [29, Thm. 2.1] a way to construct an asymptotic observer of Luenberger
type is presented. In the works [15, 20] reduced-order observer designs for non-
square nonlinear DAEs are presented. An essential difference to Theorems 4.1, 4.2
and 5.1 is the space on which the LMIs are considered. While in [15, 20, 29] the
LMI has to hold on the whole space R

n̄ for some n̄ ∈ N, the inequalities stated in
the present paper as well as the inequalities stated in [5, Thm. III.1] only have to
be satisfied on a certain subspace where the solutions evolve in. While solving the
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LMIs stated in [15, 20, 29] on the entire space R
n̄ is a much stronger condition, an

advantage of this is that it can be solved numerically with little effort.
The LMI stated in [15] is similar to (4.1) and has to hold on R

a+qL , where a ≤ n

is the observer’s order (a = n corresponds to a full-order observer comparable to
the state estimator in the present work), and qL is as in the present paper. Hence, the
dimension of the space where the LMI has to be satisfied scales with the observer’s
order and the range of the Lipschitz nonlinearity. Similarly, the matrix inequal-
ity (4.1) in the present paper (in the case qM = 0) is asked to hold on a subspace
of Rn+k+qL with dimension at most n + k + qL − rk[C,L2]. Therefore, the more
independent information from the output is available, the smaller the dimension of
the subspace V ∗

[[E ,0],[A ,B]] is. We stress that the detectability condition as identified
in [15, Prop. 2] is implicitly encoded in the LMI (4.1) when qL = 0 and qM = 0, cf.
also [5, Lem. III.2]. More precisely, a certain (behavioral) detectability of the linear
part is a necessary condition for (4.1) to hold, since it is stated independent of the
specific nonlinearities, which only need to satisfy (3.2) and (3.3), resp.

Another difference to [5, 15, 29] is that the nonlinearity has to satisfy a Lipschitz
condition of the form (3.2), and the nonlinearity f ∈ C 1(Rr → R

r ) in [20] has to
satisfy the generalized monotonicity condition f ′(s)+f ′(s)� ≥ μIr for all s ∈ R

r ,
which is less general than condition (3.3), cf. [26]. In the present paper we allow
the function f = (

fL

fM

)
to be a combination of a function fL satisfying (3.2) and a

function fM satisfying (3.3). Therefore the presented theorems cover a larger class
of systems. In the work [44], the Lipschitz condition on the nonlinearity is avoided.
However, the results of this paper are restricted to a class of DAE systems, for
which a certain transformation is feasible, that regularizes the system by introducing
the derivative of the output in the differential equation for the state. Then classical
Luenberger observer theory is applied to the resulting ODE system.

The work [29] considers square systems only, while in Theorems 4.1, 4.2 and 5.1
we allow for any rectangular systems with n �= l. Therefore, the observer design
presented in the present paper is a considerable generalization of the work [29].

Compared to [5, Thm. III.1], we may observe that in this work the invertibility
of a matrix consisting of system parameters and the gain matrices L2 and L3 is
required. This condition as well as the rank condition is comparable to the regularity
condition (4.10) (b) in the present paper. However, in the present paper we do
not state explicit conditions on the gains, which are unknown beforehand and
constructed out of the solution of (4.1). Hence only the solution matrices P and K
are required to meet certain conditions.

8 Computational Aspects

The sufficient conditions for the existence of a state estimator/asymptotic observer
stated in Theorems 4.1, 4.2 and 5.1 need to be satisfied at the same time, in each
of them. Hence it might be difficult to develop a computational procedure for
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the construction of a state estimator based on these results, in particular since the
subspaces V ∗

[[E ,0][A ,B]], V ∗
[E ,A ] and W ∗

[E ,A ] depend on the solutions P and K

of (4.1). The state estimators for the examples given in Sect. 6 are constructed using
“trial and error” rather than a systematic numerical procedure. The development of
such a numerical method will be the topic of future research.

Nevertheless, the theorems are helpful tools in examining if an alleged observer
candidate is a state estimator for a given system. To this end, we may set K H =
P�L̂ with given L̂. Then A = Â + L̂ and the subspace to which (4.1) is restricted
is independent of its solutions and hence (4.1) can be rewritten as a LMI on the
space R

n∗
, where n∗ = dimV ∗

[[E ,0],[A ,B]]. This LMI can be solved numerically
stable by standard MATLAB toolboxes like YALMIP [27] and PENLAB [17]. For
other algorithmic approaches see e.g. the tutorial paper [38].
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