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Abstract Overdetermined polynomial least-squares collocation for two-point
boundary value problems for higher index differential-algebraic equations shows
excellent convergence properties while at the same time being only slightly
more expensive than the widely used collocation method for ordinary differential
equations by piecewise polynomials. In the present paper, basic properties of this
method when applied to initial value problems by a windowing technique are
proven. Some examples are provided in order to show the potential of time-stepping
approach.
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1 Introduction

In a number of recent papers [7–10] convergence results for an overdetermined
polynomial least-squares collocation for two-point boundary value problems for
higher index differential-algebraic equations (DAEs) have been established. This
method is comparable in computational efficiency with the widely used collocation
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method for ordinary differential equations using piecewise polynomials. For initial
value problems (IVPs), a considerable increase in numerical efficiency of the
overdetermined polynomial least-squares collocation method is expected if one can
construct time-stepping or windowing techniques. Below, we consider some key
issues in this respect. Our ultimate goal is that overdetermined collocation is used
on succeeding individual time-windows, though we emphasize that the present note
deals with the very first attempts in this context only.

We are interested in general initial-value problems (IVPs),

f ((Dx)′(t), x(t), t) = 0, t ∈ [a, b], Gax(a) = r. (1.1)

x : [a, b] → R
m is the unknown vector-valued function defined on the finite interval

[a, b] ⊂ R. We assume an explicit partitioning of the unknowns into differentiated
and nondifferentiated (also called algebraic) components by selecting

D ∈ R
k×m, D = [Ik 0]

with the identity matrix Ik ∈ R
k×k . The function f : R

k × R
m × R → R

m is
assumed to be sufficiently smooth, at least continuous and with continuous partial
derivatives with respect to the first and second arguments.

The initial values deserve some special attention. For a solution to exist they must
be consistent. We will ensure this by requiring special properties on the matrix Ga .
It is reasonable to assume that at most the differentiated components x1, . . . , xk are
fixed by initial conditions, which leads to the requirement

Ga ∈ R
l×m, ker Ga ⊇ ker D,

such that Gax(a) = GaD
+Dx(a). Moreover, we will assume that the initial

conditions are independent of each other, that is rank Ga = l, where l denotes
the actual dynamical degree of freedom. Later on, more detailed requirements,
depending on the DAE will be posed.

Let the interval [a, b] be decomposed into L subintervals,

a = w0 < w1 < · · · < wL = b,

with lengths Hλ = wλ − wλ−1, λ = 1, . . . , L. First, for λ = 1, we provide
an approximating segment x̃[1] : [w0, w1] → R

m by applying overdetermined
collocation to the IVP

f ((Dx̃[1])′(t), x̃[1](t), t) = 0, t ∈ [w0, w1], Gax̃
[1](a) = r. (1.2)

For λ > 1, having already the segment x̃[λ−1] : [wλ−2, wλ−1] → R
m, we intend to

determine the next segment x̃[λ] : [wλ−1, wλ] → R
m by solving the DAE

f ((Dx̃[λ])′(t), x̃[λ](t), t) = 0, t ∈ [wλ−1, wλ]. (1.3)
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In order to obtain an appropriate approximation to the solution of (1.1), we need
to compensate the now unavailable initial conditions by certain transfer conditions
using x̃[λ−1]. Below we investigate two different approaches, namely,

G(wλ−1)x̃
[λ](wλ−1) = G(wλ−1)x̃

[λ−1](wλ−1), (1.4)

with a suitably prescribed matrix function G : [a, b] → R
l×m, and

Dx̃[λ](wλ−1) = Dx̃[λ−1](wλ−1). (1.5)

The construction of appropriate transfer conditions is crucial for the success of the
method.1

In the present note we merely deal with the linear version of the IVP,

A(t)(Dx)′(t) + B(t)x(t) − q(t) = 0, t ∈ [a, b], (1.6)

Gax(a) = r, (1.7)

in which the right-hand side q : [a, b] → R
m and the matrix coefficients A :

[a, b] → R
m×k and B : [a, b] → R

m×m are assumed to be sufficiently smooth,
however at least continuous, thus uniformly bounded.

As it is well-known,2 conventional time-stepping methods such as the BDF in
the famous DAE solver DASSL work well only when applied to index-1 DAEs and
special form index-2 DAEs. The so far available time-stepping solvers for more
general higher-index DAEs are definitely bound to the construction and evaluation
of so-called derivative array systems,3 e.g., [3, 4, 12, 16, 17], which accounts for
a serious limitation in view of applications. The recently discussed ansatz of
overdetermined least-squares collocation [7–10] fully avoids the use of derivative
arrays and no reduction procedures are incorporated, which is highly beneficial.
However, this is a global ansatz over the entire interval, not a time-stepping method
and large ill-conditioned discrete systems may arise. For this reason, eventually, a
time-stepping version would be much more advantageous. Recall that we come up
with very first related ideas here.

The paper is organized as follows: We describe the global overdetermined
collocation procedure in Sect. 2 and collect there the relevant convergence results. In
Sect. 3 we derive basic error estimates for overdetermined collocation on arbitrary
individual subintervals corresponding to both procedures (1.2)–(1.3) and (1.4). A
corresponding result for the approach (1.2)–(1.3) and (1.5) is provided in Sect. 4.
We study the simpler time-stepping version with uniform window-size H and the

1It should be noted that also an appropriate continuous functional of x̃[λ−1] can be considered as a
suitable candidate for defining a transfer condition.
2We refer to [1, 6] for an early discussion and to [2, 13] for a topical one.
3Also called prolongation. The necessary differentiations have to be provided analytically or via
automatic differentiation.
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same uniform stepsize on all subintervals in Sect. 5. Convergence of the method
using the transfer condition (1.4) is shown in Sect. 5.1. However, our estimates in
Sect. 4 are not sufficient to show convergence for the case (1.3), (1.5). Therefore,
an investigation of a very special system in Sect. 5.3 provides some hints on what
could be expected in that case. In order to demonstrate the behavior of the method,
we provide a more complex example in Sect. 6 using both approaches, (1.4) as well
as (1.5).

2 Global Overdetermined Collocation

2.1 The Global Procedure

Let us consider first the case of global overdetermined collocation, that is L = 1
and H = b − a. Let, for a given n ∈ N, a grid π on the interval [a, b] be defined:

π : a = t0 < · · · < tn = b,

where tj = a + jh and h = (b − a)/n.4

In order to be able to introduce collocation conditions we will need a space of
piecewise continuous functions. Let Cπ([a, b],Rm) denote the space of all functions
x : [a, b] → R

m which are continuous on each subinterval (tj−1, tj ) and feature
continuous extensions onto [tj−1, tj ], j = 1, . . . , n. Furthermore, let PN denote
the set of polynomials of degree less than or equal to N , N ≥ 1. We define the
ansatz space

Xπ = {p ∈ Cπ([a, b],Rm)|Dp ∈ C([a, b],Rk),

pκ |(tj−1,tj ) ∈ PN, κ = 1, . . . , k,

pκ |(tj−1,tj ) ∈ PN−1, κ = k + 1, . . . , m,

j = 1, . . . , n}.

Let now M points τi be given such that 0 < τ1 < · · · < τM < 1. The set of
collocation points is given by

Sπ,M = {tj i = tj−1 + τih| j = 1, . . . , n, i = 1, . . . ,M}. (2.1)

4A generalization to quasi-uniform grids is easily possible.
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Using this set Sπ,M , an interpolation operator Rπ,M : Cπ([a, b],Rm) →
Cπ([a, b],Rm) is given by assigning, to each w ∈ Cπ([a, b],Rm), the piecewise
polynomial Rπ,Mw with

Rπ,Mw|(tj−1,tj ) ∈ PM−1, j = 1, . . . , n, Rπ,Mw(t) = w(t), t ∈ Sπ,M.

The functional

Φπ,M(x) = ‖Rπ,M(f ((Dx)′(·), x(·), ·))‖2
L2 + |Gax(a) − r|2, x ∈ Xπ,

can be represented as (cf. [10, Subsection 2.3], also [8, 9])

Φπ,M(x) = WT LW + |Gax(a) − r|2, x ∈ Xπ,

with the vector W ∈ R
mMn,

W =

⎡
⎢⎢⎣

W1
...

Wn

⎤
⎥⎥⎦ ∈ R

mMn, Wj =
(

h

M

)1/2

⎡
⎢⎢⎣

f ((Dx)′(tj1), x(tj1), tj1))
...

f ((Dx)′(tjM), x(tjM), tjM))

⎤
⎥⎥⎦ ∈ R

mM,

with the matrix L being positive definite, symmetric and independent5 of h.
Moreover there are constants κl, κu > 0 such that

κl |V |2 ≤ V T L V ≤ κu |V |2, V ∈ R
mMn. (2.2)

If the DAE in (1.1) is regular with index one, l = k, and M = N , then there is
an element x̃π ∈ Xπ such that Φπ,M(x̃π ) = 0, which corresponds to the classical
collocation method resulting in a system of nMm + l equations for nNm + k =
nMm + l unknowns. Though classical collocation works well for regular index-1
DAEs (e.g., [14]), it is known to be useless for higher-index DAEs.

Reasonably, one applies l initial conditions in compliance with the dynamical
degree of freedom of the DAE. In the case of higher-index DAEs, the dynamical
degree of freedom is always less than k. For 0 ≤ l ≤ k and M ≥ N + 1, necessarily
an overdetermined collocation system results since nMm + l > nNm + k.
Overdetermined least-squares collocation consists of choosing M ≥ N + 1 and
then determining an element x̃π ∈ Xπ which minimizes the functional Φπ,M , i.e.,

x̃π ∈ argmin{Φπ,M(x)|x ∈ Xπ }.

This runs astonishingly well [9, 10], see also Sect. 6.

5The entries of L are fully determined by the corresponding M Lagrangian basis polynomials,
thus, by M and τ1, . . . , τM .
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2.2 Convergence Results for the Global Overdetermined
Collocation Applied to Linear IVPs

We now specify results obtained for boundary value problems in [8–10] for a
customized application to IVPs. Even though we always assume a sufficiently
smooth classical solution x∗ : [a, b] → R

m of the IVP (1.6), (1.7) to exist, for
the following, an operator setting in Hilbert spaces will be convenient. The spaces
to be used are:

L2 = L2((a, b),Rm}, H 1
D = {x ∈ L2|Dx ∈ H 1((a, b),Rk}, Y = L2 × R

l .

The operator T : H 1
D → L2 given by

(T x)(t) = A(t)(Dx)′(t) + B(t)x(t), a.e. t ∈ (a, b), x ∈ H 1
D,

is bounded. Since, for x ∈ H 1
D , the values Dx(a) and thus Gax(a) = GaD

+Dx(a)

are well-defined, the composed operator T : X → Y given by

T x =
[

T x

Gax(a)

]
, x ∈ H 1

D,

is well-defined and also bounded.
Let Uπ : H 1

D → H 1
D denote the orthogonal projector of the Hilbert space H 1

D

onto Xπ .
For a more concise notation later on, we introduce the composed interpolation

operator Rπ,M : Cπ([a, b],Rm) × R
l → Y ,

Rπ,M

[
w

r

]
=
[

Rπ,M 0
0 I

][
w

r

]
.

With these settings, overdetermined least-squares collocation reduces to the mini-
mization of

Φπ,M(x) = ‖Rπ,M(T x − q)‖2
L2 + |Gax(a) − r|2 = ‖Rπ,M(T x − y)‖2

Y , x ∈ Xπ,

that is, to find

x̃π ∈ argmin{Φπ,M(x)|x ∈ Xπ }.

Later on, we will provide conditions which ensure that kerRπ,MT Uπ = X⊥
π such

that x̃π is uniquely defined. Therefore,

x̃π = (Rπ,MT Uπ)+Rπ,M y.
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We consider also the related functional

Φ(x) = ‖T x − q‖2
L2 + |Gax(a) − r|2 = ‖T x − y‖2

Y , x ∈ H 1
D,

and the corresponding method for approximating the solution x∗ by determining

xπ ∈ argmin{Φ(x)|x ∈ Xπ }.

As before, the conditions assumed below will guarantee that the minimizer xπ is
unique such that

xπ = (T Uπ)+y.

Below, the operator T is ensured to be injective. Since T is associated with
a higher-index DAE, the inverse T −1 is unbounded and the IVP is essentially ill-
posed in the sense of Tikhonov. Following ideas to treat ill-posed problems, e.g.,
[11], the proofs in [8–10] are based on estimates of the type

‖xπ − x∗‖H 1
D

≤ βπ

γπ

+ απ,

‖x̃π − x∗‖H 1
D

≤ β̃π

γ̃π

+ απ,

in which

απ = ‖(I − Uπ)x∗‖H 1
D
,

βπ = ‖T (I − Uπ)x∗)‖Y ,

β̃π = ‖Rπ,MT (I − Uπ)x∗‖Y ,

γπ = inf
p∈Xπ ,p �=0

‖T p‖Y

‖p‖H 1
D

= inf
p∈Xπ ,p �=0

⎛
⎝‖Tp‖2

L2 + |Gap(a)|2
‖p‖H 1

D

⎞
⎠

1/2

,

γ̃π = inf
p∈Xπ ,p �=0

‖Rπ,MT p‖Y

‖p‖H 1
D

= inf
p∈Xπ ,p �=0

⎛
⎝‖Rπ,MTp‖2

L2 + |Gap(a)|2
‖p‖H 1

D

⎞
⎠

1/2

.

The most challenging task in this context is to provide suitable positive lower bounds
of the instability thresholds γπ and γ̃π , [8–10] and, what is the same, upper bounds
for the Moore-Penrose inverses

‖(T Uπ)+‖ = 1

γπ

, ‖(Rπ,MT Uπ)+‖ = 1

γ̃π

.
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It should be noted that T and Rπ,MT are of very different nature: While T
is bounded, Rπ,MT is unbounded owing to the fact that Rπ,M is an unbounded
operator in L2, see [8].

We now briefly summarize the relevant estimations resulting from [8, 9] for IVPs.
For details we refer to [8, 9].

The general assumptions with respect to the DAE and the initial conditions are:6

1. The operator T is fine with tractability index μ ≥ 2 and characteristic values
0 < r0 ≤ · · · ≤ rμ−1 < rμ = m.

2. The initial conditions are accurately stated such that l = m − ∑μ−1
i=0 (m − ri)

and Ga = GaΠcan(a), with the canonical projector Πcan. This implies imT =
im T × R

l , see [14, Theorem 2.1].
3. The coefficients A, B, the right-hand side q ∈ im T , and the solution x∗ are

sufficiently smooth.

Result (a), see [9]: Assume M ≥ N +1. Then there are positive constants cα, cβ ,
cγ and c such that, for all sufficiently small stepsizes h > 0,

γπ ≥ cγ hμ−1, απ ≤ cαhN, βπ ≤ cβhN,

and eventually

‖xπ − x∗‖H 1
D

≤ c hN−μ+1.

Result (b), see [8]: Assume M ≥ N+μ. Then there are positive constants cα, c̃β ,
c̃γ , and c̃ such that, for all sufficiently small stepsizes h > 0,

γ̃π ≥ c̃γ hμ−1, απ ≤ cαhN, β̃π ≤ c̃βhN ,

and eventually

‖x̃π − x∗‖H 1
D

≤ c̃ hN−μ+1.

By [8], one can do with c̃γ = cγ /2. We refer to [9, 10] for a series of tests which
confirm these estimations or perform even better. Recall that so far, IVPs for higher-
index DAEs are integrated by techniques which evaluate derivative arrays, e.g., [5].
Comparing with those methods even the global overdetermined collocation method
features beneficial properties. However, a time-stepping version could be much
more advantageous.

6The following results are also valid for index-1 DAEs. However, we do not recommend this
approach for μ = 1 since standard collocation methods work well, see [14].
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3 Overdetermined Collocation on an Arbitrary Subinterval
[t̄ , t̄ + H ] ⊂ [a, b]

3.1 Preliminaries

We continue to consider the IVP (1.6), (1.7) as described above, but instead of
the global approach immediately capturing the entire interval [a, b] we now aim at
stepping forward by means of consecutive time-windows applying overdetermined
least-squares collocation on each window. As special cases, we have in mind the
two windowing procedures outlined by (1.2), (1.3), and (1.4), and by (1.2), (1.3),
and (1.5). At the outset we ask how overdetermined collocation works on an
arbitrary subinterval,

[t̄ , t̄ + H ] ⊆ [a, b].

It will become important to relate global quantities (valid for overdetermined least-
squares collocation on [a, b]) to their local counterparts (appropriate on subintervals
of length H ). We introduce the function spaces related to this subinterval,

L2
sub = L2((t̄ , t̄ + H),Rm}, H 1

sub = H 1((t̄ , t̄ + H),Rk),

H 1
D,sub = {x ∈ L2

sub|Dx ∈ H 1
sub}, Ysub = L2

sub × R
l , Ŷsub = L2

sub × R
k,

equipped with natural norms, in particular,

‖x‖H 1
D,sub

= (‖x‖2
L2

sub

+ ‖(Dx)′‖2
L2

sub

)1/2, x ∈ H 1
D,sub.

Note that we indicate quantities associated to the subinterval by the extra subscript
sub only if necessary and otherwise misunderstandings could arise.

Now we assume that the grid π is related to the subinterval only,

π : t̄ = t0 < · · · < tn = t̄ + H,

where tj = t̄ + jh and h = H/n. The ansatz space reads now

Xπ = {p ∈ Cπ([t̄ , t̄ + H ],Rm)| Dp ∈ C([t̄ , t̄ + H ],Rk),

pκ |(tj−1,tj ) ∈ PN, κ = 1, . . . ,k, pκ |(tj−1,tj ) ∈ PN−1, κ = k + 1, . . . , n,

j = 1, . . . , n}.

With 0 < τ1 < · · · < τM < 1, the set of collocation points

Sπ,M = {tj i = tj−1 + τih| j = 1, . . . , n, i = 1, . . . ,M} (3.1)
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belongs to the subinterval [t̄ , t̄ + H ]. Correspondingly, the interpolation operator
Rπ,M acts on Cπ([t̄ , t̄ +H ],Rm). We introduce the operator Tsub : H 1

D,sub → L2
sub,

(Tsubx)(t) = A(t)(Dx)′(t) + B(t)x(t), a.e. t ∈ (t̄ , t̄ + H), x ∈ H 1
D,sub,

and the composed operators Tsub : H 1
D,sub → Ysub and T̂sub : H 1

D,sub → Ŷsub,

Tsubx =
[

Tsubx

G(t̄)x(t̄)

]
, T̂subx =

[
Tsubx

Dx(t̄)

]
, x ∈ H 1

D,sub.

Occasionally, we also use the operators TIC,sub : H 1
D,sub → R

l and TICD,sub :
H 1

D,sub → R
k given by

TIC,subx = G(t̄)x(t̄), TICD,subx = Dx(t̄), x ∈ H 1
D,sub,

which are associated with the initial condition posed at t̄ . Here, aiming for injective
composed operators, we suppose a function G : [a, b] → R

l such that

ker G(t) = ker Πcan(t), im G(t) = R
l , |G(t)| ≤ cG, t ∈ [a, b]. (3.2)

Since Tsub inherits the tractability index, the characteristic values of T , and also the
canonical projector (restricted to the subinterval, see [13, Section 2.6]), the local
initial condition at t̄ , G(t̄)x(t̄) = r , is accurately stated. Then imTsub = im Tsub ×
R

l and kerTsub = {0}, so that the overdetermined least-squares collocation on
[t̄ , t̄ + H ] works analogously to the global one described in Sect. 2.

The composed interpolation operators Rπ,M and R̂π,M act now on Cπ([t̄ , t̄ +
H ],Rm) × R

l and Cπ([t̄ , t̄ + H ],Rm) × R
k ,

Rπ,M

[
w

r

]
=
[

Rπ,M 0
0 Il

][
w

r

]
, R̂π,M

[
w

r̂

]
=
[

Rπ,M 0
0 Ik

][
w

r̂

]
.

Let Uπ,sub : H 1
D,sub → H 1

D,sub be the orthogonal projector of H 1
D,sub onto Xπ ⊂

H 1
D,sub.

Accordingly, we define απ,sub and, furthermore, βπ,sub, γπ,sub, β̃π,sub, γ̃π,sub,

associated with the operator Tsub and, similarly, β̂π,sub, γ̂π,sub,
˜̂
βπ,sub, ˜̂γπ,sub

associated with T̂sub.
The following lemma provides conditions for the existence of a function G :

[a, b] → R having the properties (3.2). The latter is a necessary prerequisite for the
transition condition (1.4).
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Lemma 3.1 Let the operator T be fine with tractability index μ ≥ 2, characteristic
values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m−∑μ−1

i=0 (m− ri), and the canonical
projector function Πcan.
Then there are continuously differentiable functions G : [a, b] → R

l×m and K :
[a, b] → R

k×k such that

im G(t) = R
l , ker G(t) = ker Πcan(t), [Il 0]K(t)D = G(t), t ∈ [a, b],

K(t) remains nonsingular on [a, b], and, with κ = (maxa≤t≤b|K(t)|)−1,

|Dz| = |K(t)−1K(t)Dz| ≥ κ|K(t)Dz| ≥ κ|G(t)z|, z ∈ R
k, t ∈ [a, b].

Proof We choose an admissible matrix function sequence with admissible projector
functions Q0, . . . ,Qμ−1, see [13, Section 2.2]. Denote Pi = I − Qi,Πi =
P0 · · · Pi . Then, Πμ−1 and DΠμ−1D

+ are also projector functions, both with con-
stant rank l. Since DΠμ−1D

+ is continuously differentiable, we find a continuously
differentiable matrix function Γdyn : [a, b] → R

l×k so that

im Γdyn(t) = R
l , ker Γdyn(t) = ker(DΠμ−1D

+)(t), t ∈ [a, b].

Furthermore, there is a pointwise reflexive generalized inverse Γ −
dyn : [a, b] →

R
k×l , also continuously differentiable, such that ΓdynΓ

−
dyn = I and Γ −

dynΓdyn =
DΠμ−1D

+. Similarly, we find constant-rank continuously differentiable matrix
functions Γnil,i : [a, b] → R

(m−ri )×k and pointwise generalized inverses Γ −
nil,i :

[a, b] → R
k×(m−ri ) such that

Γnil,iΓ
−
nil,i = I, Γ −

nil,iΓnil,i = DΠi−1QiD
+, i = 1, . . . , μ − 1.

The resulting k × k matrix function

K =

⎡
⎢⎢⎢⎢⎣

Γdyn

Γnil,1
...

Γnil,μ−1

⎤
⎥⎥⎥⎥⎦

=
[
Γdyn

Γnil

]

remains nonsingular on [a, b] owing to the decomposition Ik = DD+ =
DΠ0Q1D

+ + · · · + DΠμ−2Qμ−1D
+ + DΠμ−1D

+.
Set G = ΓdynD = [Il 0]KD. This implies ker G(t) = ker Πμ−1. Taking into

account the fact that ker Πμ−1 = ker Πcan, see [13, Theorem 2.8], one has actually
ker G(t) = ker Πcan.



102 M. Hanke and R. März

Finally, we derive for z ∈ R
k, t ∈ [a, b],

|Dz|2 = |K(t)−1K(t)Dz|2 ≥ κ2|K(t)Dz|2 = κ2(|G(t)z|2 + |Γnil(t)Dz|2)
≥ κ2|G(t)z|2,

which completes the proof. ��
Lemma 3.2 For t̄ ∈ [a, b], 0 < H ≤ b − t̄ , and

CH =
(

max

(
2

H
, 2H

))1/2

it holds that

|Dx(t)| ≤ CH ‖Dx‖H 1
sub

≤ CH ‖x‖H 1
D,sub, t ∈ [t̄ , t̄ + H ], x ∈ H 1

D,sub.

Proof By definition, x ∈ H 1
D,sub implies u = Dx ∈ H 1

sub. Since H 1
sub is

continuously embedded in Csub, it follows that

u(t) = u(s) +
∫ t

s

u′(τ )dτ, t, s ∈ [t̄ , t̄ + H ],

which gives

|u(t)|2 ≤ 2|u(s)|2 + 2

(∫ t

s

|u′(τ )|dτ

)2

≤ 2|u(s)|2 + 2H

∫ t̄+H

t̄

|u′(τ )|2dτ.

Integrating this inequality with respect to s leads to

H |u(t)|2 ≤ 2
∫ t̄+H

t̄

|u(s)|2ds + 2H 2
∫ t̄+H

t̄

|u′(τ )|2dτ.

Finally, with CH as defined in the assertion, it holds that

‖u‖2
Csub

≤ C2
H ‖u‖2

H 1
sub

≤ C2
H ‖x‖2

H 1
D,sub

and the assertion follows. ��
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Lemma 3.3 Let the function G fulfilling (3.2) with the bound cG be given, and
denote cT = (2 max{‖A‖2∞, ‖B‖2∞})1/2.

(1) Then, for each subinterval, the inequalities

‖Tsubx‖L2
sub

≤ cT ‖x‖H 1
D,sub

, x ∈ H 1
D,sub,

|TIC,subx| ≤ cGCH ‖x‖H 1
D,sub

, |TICD,subx| ≤ CH ‖x‖H 1
D,sub

, x ∈ H 1
D,sub,

(3.3)

are valid.
(2) If M ≥ N +1 and A, B are of class CM , then there are constants CAB1, CAB2,

both independent of the size H of the subinterval, such that

‖Rπ,MTsubUπx‖L2
sub

≤ CAB1‖x‖H 1
D,sub

, x ∈ H 1
D,sub,

‖Rπ,MTsubUπx − TsubUπx‖L2
sub

≤ CAB1h
M−N−1/2‖x‖H 1

D,sub
, x ∈ H 1

D,sub.

Proof

(1) Regarding that A,B are given on [a, b], by straightforward computation we
obtain

‖Tsubx‖2
L2

sub

≤ 2 max{‖A‖2∞,sub, ‖B‖2∞,sub}‖x‖2
H 1

D,sub

≤ cT ‖x‖2
H 1

D,sub

.

Applying Lemma 3.2 we find the inequalities (3.3).
(2) These inequalities can be verified analogously to the first two items of [8,

Proposition 4.2]. ��
We are now prepared to estimate the values απ,sub, βπ,sub, β̃π,sub, β̂π,sub, and

˜̂
βπ,sub.

Theorem 3.4 Let the operator T described in Sect. 2 be fine with tractability index
μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m −∑μ−1

i=0 (m − ri). Let the coefficients A, B, as well as the solution x∗ of the IVP (1.6),
(1.7) be sufficiently smooth. Let the function G with (3.2) be given and [t̄ , t̄ + H ] ⊂
[a, b].
Then there are positive constants απ,sub, Cβ, C̃β, Ĉβ,

˜̂
Cβ such that

απ,sub ≤ CαH 1/2hN,

βπ,sub ≤ CβhN, β̃π,sub ≤ C̃βhN,

β̂π,sub ≤ ĈβhN,
˜̂
βπ,sub ≤ ˜̂

CβhN.

uniformly for all individual subintervals [t̄ , t̄ + H ] and all sufficient fine grids Xπ .
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Proof First we choose N nodes 0 < τ∗,1 < · · · < τ∗,N < 1 and construct the
interpolating function p∗,int ∈ Xπ so that

Dp∗,int (t̄) = Dx∗(t̄), p∗,int (tj + τ∗,ih) = x∗(tj + τ∗,ih), i = 1, . . . , N, j = 1, . . . , n,

yielding

‖x∗ − p∗,int‖∞,sub + ‖(Dx∗)′ − (Dp∗,int )
′‖∞,sub ≤ C∗hN,

with a uniform constant C∗ for all subintervals. C∗ is determined by x∗ and its
derivatives given on [a, b]. Now we have also

‖x∗ − p∗,int‖H 1
D,sub

≤ C∗
√

2HhN,

and therefore, with Cα = C∗
√

2,

απ,sub = ‖(I − Uπ,sub)x∗‖H 1
D,sub

= ‖(I − Uπ,sub)(x∗ − p∗,int )‖H 1
D,sub

≤ Cα

√
HhN.

Set CD = √
2 max{1, b − a}Cα such that CH

√
HCα ≤ CD for all H . Using

Lemma 3.2 we derive

|D((I − Uπ,sub)x∗)(t̄)| ≤ CH απ,sub ≤ CDhN.

We derive further

β2
π,sub = ‖Tsub(I − Uπ,sub)x∗‖2

Ysub

= ‖Tsub(I − Uπ,sub)x∗‖2
L2

sub

+ |G(t̄)D+D((I − Uπ,sub)x∗)(t̄)|2

≤ ‖Tsub‖2α2
π,sub + c2

GC2
Dh2N ≤ (c2

T C2
α(b − a) + c2

GC2
D)h2N = C2

βh2N,

β̂2
π,sub = ‖T̂sub(I − Uπ,sub)x∗‖2

Ysub

= ‖Tsub(I − Uπ,sub)x∗‖2
L2

sub

+ |D((I − Uπ,sub)x∗)(t̄)|2

≤ ‖Tsub‖2α2
π,sub + c2

GC2
Dh2N ≤ (c2

T C2
α(b − a) + C2

D)h2N = Ĉ2
βh2N.

Following [8, Section 2.3], we investigate also w∗ = Tsub(x∗ −p∗,int ) ∈ Cπ([t̄ , t̄ +
H ],Rm) and use the estimate (cf. [8, Section 2.3])

H−1/2‖Rπ,Mw∗‖L2,sub ≤ ‖Rπ,Mw∗‖∞,sub ≤ CL‖w∗‖∞,sub ≤ max{‖A‖∞, ‖B‖∞}CLhN .
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Here, CL denotes a constant that depends only on the choice of the interpolation
nodes τ∗,1, . . . , τ∗,N . Then we derive

‖Rπ,MTsub(I − Uπ,sub)x∗‖L2,sub ≤ ‖Rπ,MTsub(I − Uπ,sub)(x∗ − p∗,int )‖L2,sub

≤ ‖Rπ,MTsub(x∗ − p∗,int )‖L2,sub

+ ‖Rπ,MTsubUπ,sub(x∗ − p∗,int )‖L2,sub

≤ ‖Rπ,Mw∗‖L2,sub + CAB1‖x∗ − p∗,int‖H 1
D,sub

≤ CRT

√
HhN,

where CRT = CL max{‖A‖∞, ‖B‖∞} + √
2C∗CAB1. Therefore,

β̃2
π,sub = ‖Rπ,mTsub(I − Uπ,sub)x∗‖2

Ŷsub

= ‖Rπ,MTsub(I − Uπ,sub)x∗‖2
L2

sub

+ |G(t̄)D+D((I − Uπ,sub)x∗)(t̄)|2

≤ C2
RT Hh2N + c2

GC2
Dh2N ≤ C2

RT (b − a)h2N + c2
GC2

Dh2N = C̃2
βh2N,

˜̂
β2

π,sub = ‖Rπ,mT̂sub(I − Uπ,sub)x∗‖2
Ŷsub

= ‖Rπ,MTsub(I − Uπ,sub)x∗‖2
L2

sub

+ |D((I − Uπ,sub)x∗)(t̄)|2

≤ C2
RT Hh2N + C2

Dh2N ≤ C2
RT (b − a)h2N + C2

Dh2N = ˜̂
C2

βh2N. ��

3.2 Overdetermined Collocation on [t̄ , t̄ + H ] ⊂ [a, b],
with Accurately Stated Initial Condition at t̄

We ask if there are positive constants cγ and c̃γ serving as lower bounds for all
the individual constants characterizing the instability thresholds associated to each
arbitrary subinterval [t̄ , t̄ + H ] ⊂ [a, b].
Theorem 3.5 Let the operator T described in Sect. 2 be fine with tractability index
μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m −∑μ−1

i=0 (m − ri). Let the coefficients A, B, the right-hand side q ∈ im T , as well
as the solution x∗ of the IVP (1.6), (1.7) be sufficiently smooth. Let qsub denote the
restriction of q onto the subinterval [t̄ , t̄ + H ] ⊂ [a, b].
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Let a function G with (3.2) be given.

(1) Then, for each arbitrary r ∈ R
l , there is exactly one solution x[r] of the equation

Tsubx = (qsub, r) and

‖x[r] − x∗‖H 1
D,sub

≤ csub |r − G(t̄)x∗(t̄)|.

x[r] coincides on the subinterval with x∗, if and only if r = G(t̄)x∗(t̄).
Furthermore, there is a bound Cp such that csub ≤ Cp is valid for all
subintervals.

(2) If M ≥ N + 1, there is a constant Cγ > 0 such that,

γπ,sub ≥ Cγ hμ−1, ‖(TsubUπ,sub)
+‖Ysub→H 1

D,sub
= 1

γπ,sub

≤ 1

Cγ hμ−1

uniformly for all subintervals and sufficiently small stepsizes h > 0.
(3) If M ≥ N + μ, there is a positive constant C̃γ = Cγ

2 such that

‖(Rπ,MTsubUπ,sub)
+‖Ysub→H 1

D,sub
= 1

γ̃π,sub

≤ 1

C̃γ hμ−1

uniformly for all subintervals and sufficiently small stepsizes h > 0.

Proof

(1) This is a consequence of Proposition A.1 in the Appendix.
(2) The constant Cγ can be obtained by a careful inspection and adequate modifi-

cation of the proof of [9, Theorem 4.1] on the basis of Proposition A.1 below
instead of [9, Proposition 4.3]. Similarly to [9, Lemma 4.4], we provide the
inequality

‖q‖2
Zsub

≤ ‖q‖2
π := ‖q‖2

L2
sub

+
μ−1∑
i=1

μ−i∑
s=0

di,s‖(DLμ−iq)(s)‖2
L2

sub

, q ∈ Zπ,

with Zπ = {q ∈ L2
sub|DLμ−iq ∈ C

μ−i
π ([t̄ , t̄ + H ],Rk), i = 1, . . . , μ − 1} ⊂

TsubXπ , with coefficients di,s being independent of the subinterval.
(3) This statement proves by a slight modification of [8, Proposition 4.2]. ��
Theorem 3.5 allows to apply homogeneous error estimations on all subintervals.
Note that the involved constants Cα etc. may depend on N and M . For providing the
function G with (3.2), the canonical nullspace Ncan = ker Πcan must be available,
not necessarily the canonical projector itself. Owing to [13, Theorem 2.8], it holds
that Ncan = ker Πμ−1 for any admissible matrix function sequence, which makes
Ncan easier accessible. Nevertheless, though the function G is very useful in theory
it is hardly available in practice.
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For problems with dynamical degree l = 0 the canonical projector Πcan vanishes
identically, that is, the initial condition is absent, and Tsub itself is injective. This
happens, for example, for Jordan systems, see also Sect. 5.3. In those cases, with no
initial conditions and no transfer the window-wise forward stepping works well.

Let x̃π,old be already computed as approximation of the solution x∗ on an
certain old subinterval of length Hold straight preceding the current one [t̄ , t̄ + H ].
Motivated by Theorems 3.4 and 3.5 assume

‖x̃π,old − x∗‖H 1
sub,old

≤ Ch
N−μ+1
old

for sufficiently small stepsize hold . Applying Lemma 3.2 we obtain

|Dx̃π,old (t̄) − Dx∗(t̄)| ≤ CHold
Ch

N−μ+1
old .

Next we apply overdetermined least-squares collocation on the current subinterval
[t̄ , t̄ + H ]. We use the transfer condition r = G(t̄)x̃π,old (t̄) to state the initial
condition for the current subinterval. The overdetermined collocation generates the
new segment x̃π ,

x̃π = argmin{‖Rπ,M(Tsubx − q)‖2
H 1

D,sub

+ |G(t̄)x(t̄) − G(t̄)x̃π,old (t̄)|2|x ∈ Xπ },

which is actually an approximation of x[r] being neighboring to x∗, such that

‖x̃π − x[r]‖H 1
D,sub

≤ c̃hN−μ+1.

Owing to Theorem 3.5 we have also

‖x[r] − x∗‖H 1
D,sub

≤ csub|r − G(t̄)x∗(t̄)| = csub|G(t̄)x̃π,old (t̄) − G(t̄)x∗(t̄)|

≤ csubcGCHold
Ch

N−μ+1
old .

If h = hold , it follows that

‖x̃π − x∗‖H 1
D,sub

≤ Csubh
N−μ+1

with Csub = csubcGCHold
C + c̃. This is the background which ensures the

windowing procedure (1.2), (1.3), (1.4) to work.
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4 Overdetermined Collocation on a Subinterval
[t̄ , t̄ + H ] ⊂ [a, b], with Initial Conditions Related
to Dx(t̄)

Here we proceed as in the previous section, but now we use the initial condition
Dx(t̄) = r̂ instead of G(t̄)x(t̄) = r , to avoid the use of the function G. Obviously,
this formulation is easier to use in practice since D is given. However, in contrast to
the situation in Theorem 3.5, the equation T̂subx = (qsub, r̂) is no longer solvable
for arbitrary r̂ ∈ R

k . For solvability, r̂ must be consistent.

Theorem 4.1 Let the operator T described in Sect. 2.2 be fine with tractability
index μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l =
m −∑μ−1

i=0 (m − ri). Let the coefficients A, B, the right-hand side q ∈ im T , as well
as the solution x∗ of the IVP (1.6),(1.7) be sufficiently smooth. Then the following
holds:

(1) T̂sub is injective.
(2) If M ≥ N + 1, there is a constant Ĉγ uniformly for all possible subintervals

and sufficiently small stepsizes h > 0 such that

γ̂π,sub ≥ Ĉγ hμ−1.

and hence

‖(T̂subUπ,sub)
+‖

Ŷsub
= 1

γ̂π,sub

≤ 1

Ĉγ hμ−1
.

(3) If M ≥ N + μ, there is a constants ˜̂
Cγ > 0 uniformly for all possible

subintervals and sufficiently small stepsizes h > 0, such that

‖(R̂π,MT̂subUπ,sub)
+‖

Ŷsub
= 1

˜̂γπ,sub

≤ 1
˜̂
Cγ hμ−1

.

Proof The assertions are straightforward consequences of Theorem 3.5 and
Lemma 3.1.

T̂ x = 0 means T x = 0 and Dx(t̄) = 0, thus also G(t̄)x(t̄) =
[Il 0]K(t̄)Dx(t̄) = 0, finally T x = 0. Since T is injective it follows that x = 0.
For p ∈ Xπ ,

‖T̂subp‖2
Ŷsub

= ‖Tsubp‖2
L2

sub

+ |Dp(t̄)|2 ≥ ‖Tsubp‖2
L2

sub

+ κ2|G(t̄)p(t̄)|2

≥ min{1, κ2}‖Tsubp‖2
Ysub

≥ min{1, κ2}
(

Cγ hμ−1‖p‖H 1
D,sub

)2

,
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and

‖R̂π,M T̂subp‖2
Ŷsub

= ‖Rπ,MTsubp‖2
L2

sub

+ |Dp(t̄)|2 ≥ ‖Rπ,MTsubp‖2
L2

sub

+ κ2|G(t̄)p(t̄)|2

≥ min{1, κ2}‖Rπ,MTsubp‖2
Ysub

≥ min{1, κ2}
(

C̃γ hμ−1‖p‖H 1
D,sub

)2

. ��

In contrast to the situation in Sect. 3.2 the equation T̂subx = (qsub, r̂) is no
longer solvable for all r̂ ∈ R

k . Recall that qsub is the restriction of q = T x∗ so that
qsub ∈ im Tsub. Denote

ŷ =
[

qsub

Dx∗(t̄)

]
, ŷ[δ] =

[
qsub

r̂

]
, δ = ‖ŷ − ŷ[δ]‖ = |Dx∗(t̄) − r̂|,

and, following [11], we take ŷ[δ] as noisy data and compute

˜̂x[δ]
π = argmin{‖R̂π,M(T̂subx − y[δ])‖2

L2
sub×Rk |x ∈ Xπ }

= argmin{‖Rπ,M(Tsubx − qsub)‖2
L2

sub

+ |Dx(t̄) − r̂|2|x ∈ Xπ }

and similarly,

x̂[δ]
π = argmin{‖T̂subx − y[δ]‖2

L2
sub×Rk |x ∈ Xπ }

= argmin{‖Tsubx − qsub‖2
L2

sub

+ |Dx(t̄) − r̂|2|x ∈ Xπ }.

Applying the error representation [11, Equation (2.9)] we arrive at

ˆ̃x[δ]
π − x∗ = (R̂π,MT̂ Uπ)+(ŷ[δ] − ŷ)

+ (R̂π,MT̂ Uπ)+R̂π,MT̂sub(I − Uπ)x∗ − (I − Uπ)x∗

and, correspondingly,

x̂[δ]
π − x∗ = (T̂ Uπ)+(ŷ[δ] − ŷ) + (T̂ Uπ)+T̂sub(I − Uπ)x∗ − (I − Uπ)x∗.

Thus,

‖x̂[δ]
π − x∗‖H 1

D,sub
≤ 1

C̃γ hμ−1
{‖ŷ[δ] − ŷ‖ + β̂π,sub} + απ = 1

C̃γ hμ−1
{δ + β̂π,sub} + απ ,

‖ ˜̂x[δ]
π − x∗‖H 1

D,sub
≤ 1

˜̂
Cγ hμ−1

{‖ŷ[δ] − ŷ‖ + ˜̂
βπ,sub} + απ = 1

˜̂
Cγ hμ−1

{δ + ˜̂
βπ,sub} + απ .
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All these estimations can be put together in order to arrive at a recursive error
estimation for the application of (1.3), (1.5). Unfortunately, this estimate is not
sufficient for proving convergence of the windowing technique in contrast to the
approach using accurately stated initial conditions of Sect. 3.2!

5 Time-Stepping with b − a = LH and H = nh

We set now H = (b − a)/L, wλ = a + λH, λ = 0, . . . , L, and h = H/n, and
study the somehow uniform time-stepping procedures.

5.1 Time-Stepping with Accurate Transfer Conditions

In the time-stepping approach corresponding to (1.3)–(1.4), the transfer conditions
are given so that G is chosen according to (3.2). Let x̃[λ] be the approximation
provided by the overdetermined least-squares collocation for the subinterval [a +
(λ − 1)H, a + λH ] corresponding to the initial and transfer conditions

Gax̃
[1]
π (a) = r,

G(wλ)x̃
[λ]
π (a + (λ − 1)H) = G(wλ)x̃

λ−1
π (a + (λ − 1)H), λ > 1.

Then we obtain from Theorem 3.5 and Lemma 3.2, for λ = 1,

‖x̃[1]
π − x∗‖H 1

D,sub
≤ C̃hN−μ+1 =: d1.

For λ > 1, let r = Gλx̃
[λ−1]
π (a + (λ − 1)H). Then it holds

‖x̃[λ]
π − x∗‖H 1

D,sub
≤ ‖x̃[λ]

π − x[r]‖H 1
D,sub

+ ‖x[r] − x∗‖H 1
D,sub

≤ C̃hN−μ+1 + Cp|r − Gλx∗(a + (λ − 1)H)|
≤ C̃hN−μ+1 + CpcGCH ‖x̃[λ−1]

π − x∗‖H 1
D,sub

≤ C̄(hN−μ+1 + CH ‖x̃[λ−1]
π − x∗‖H 1

D,sub
) =: dλ

where C̄ = max{CpcG, C̃}. Hence,

d1 ≤ C̄hN−μ+1, dλ ≤ C̄(CH dλ−1 + hN−μ+1).
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A solution of this recursion provides us with

dλ ≤
λ−1∑
ι=0

C̄(C̄CH )ιhN−μ+1 = C̄
1 − (C̄CH )λ

1 − C̄CH

hN−μ+1.

A similar estimation can be derived for the least-squares approximations using the
operator (TsubUπ,sub)

+.

Example 5.1 The index-2 DAE with k = 2, m = 3, l = 1,

⎡
⎢⎣

1 0
0 1
0 0

⎤
⎥⎦ (

[
1 0 0
0 1 0

]
x)′(t) +

⎡
⎢⎣

θ −1 −1
ηt (1 − ηt) − η θ −ηt

1 − ηt 1 0

⎤
⎥⎦ x(t) = q(t), (5.1)

is taken from [10, Example 1.1]. One has Ncan(t) = {z ∈ R
3| ηtz1 − z2 = 0} so

that

G(t) =
[
ηt −1 0

]

will do. We consider the DAE on the interval (0,1). The right-hand side q is chosen
in such a way that

x1(t) = e−t sin t,

x2(t) = e−2t sin t,

x3(t) = e−t cos t

is a solution. This solution becomes unique if an appropriate initial condition is
added. With Ga = G(0), the initial condition becomes

Gax(0) = Ga

[
0 0 1

]T = 0.

In the following experiments, η = −25 and θ = −1 have been chosen. This allows
for a comparison with the experiments in [10].

This problem is solved on equidistant grids using, for each polynomial degree
N , M = N + 1 Gaussian collocation points scaled to (0, 1). The tables show the
errors of the approximate solutions in H 1

D(0, 1). The columns labeled order contain
an estimation kest of the order

kest = log(‖xπ − x∗‖H 1
D(0,1)/‖xπ ′ − x∗‖H 1

D(0,1))/ log 2.

Here, π ′ is obtained from π by stepsize halving. It should be noted that the norm
is taken for the complete interval (0, 1) even in the windowing approach. In order
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Table 1 Errors and estimation of the convergence order for (5.1) and t̄ = 0, H = 1 using M =
N + 1

N = 1 N = 2 N = 3 N = 4 N = 5

n Error Order Error Order Error Order Error Order Error Order

10 1.21e+0 1.65e−1 2.84e−3 7.55e−6 2.82e−7

20 1.12e+0 0.1 3.74e−2 2.1 5.04e−4 2.5 9.66e−7 3.0 1.51e−8 4.2

40 1.29e−0 −0.2 1.55e−2 1.3 9.59e−5 2.4 1.25e−7 2.9 7.74e−10 4.3

80 1.16e−0 0.2 6.65e−3 1.2 1.83e−5 2.4 1.31e−8 3.3 1.32e−10 2.6

160 9.80e−1 0.2 3.21e−3 1.0 3.05e−6 2.6 1.31e−9 3.3 1.75e−10 −0.4

320 8.63e−1 0.2 1.60e−3 1.0 4.94e−7 2.6 2.00e−10 2.7 3.62e−10 −1.1

Table 2 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 3.76e+0 2.19e−1 2.82e−3 9.34e−6 2.84e−7

20 2.67e+0 0.5 7.62e−2 1.5 5.06e−4 2.5 1.29e−6 2.9 1.53e−8 4.2

40 1.77e+0 0.6 3.30e−2 1.2 9.72e−5 2.4 1.92e−7 2.7 7.90e−10 4.3

80 1.62e+0 0.1 1.39e−2 1.2 1.89e−5 2.4 2.38e−8 3.0 4.67e−11 4.1

160 1.65e+0 −0.0 5.06e−3 1.5 3.20e−6 2.6 2.26e−9 3.4 1.13e−10 −1.3

320 1.66e+0 −0.0 1.91e−3 1.4 5.26e−7 2.6 2.21e−10 3.4 1.46e−10 −0.4

to enable a comparison, we provide the results for solving the problem without
windowing in Table 1. This corresponds to t̄ = 0 and H = 1.

In the next experiment, the time-stepping approach using accurately stated
transfer conditions has been tested with n = 1. The results are shown in Table 2. ��

A more complex example is presented in Sect. 6.

5.2 Time-Stepping with Transfer Conditions Based on D

In our experiments in fact, the situation is much better than indicated by the
estimates in Sect. 4. The latter are not sufficient to show convergence of the present
time-stepping approach when the transfer conditions are based on D, see (1.5).

Example 5.2 (Continuation of Example 5.1) We apply the time-stepping procedure
under the same conditions as in Example 5.1, however, this time the transfer
conditions are chosen as

x̃
[λ]
i (t̄ ) = x̃

[λ−1]
i (t̄ ), i = 1, 2.

The results are presented in Table 3. The errors are slightly worse than those of
Table 2 where accurately stated transfer conditions are used. However, the observed
orders of convergence are similar, at least for N ≥ 2 = μ − 1. The values for n = 2
and n = 3 have also been checked. The orders are identical to those of Table 3
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Table 3 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 1.80e+0 1.46e−1 3.27e−3 9.85e−6 3.16e−7

20 2.36e+0 −0.4 4.65e−2 1.6 5.84e−4 2.5 1.35e−6 2.9 1.71e−8 4.2

40 2.77e+1 −3.5 1.66e−2 1.5 1.09e−4 2.4 1.75e−7 2.9 8.78e−10 4.3

80 5.07e+2 −4.2 6.64e−3 1.3 2.03e−5 2.4 1.76e−8 3.3 6.65e−11 3.7

160 1.11e+3 −1.1 3.19e−3 1.1 3.51e−6 2.5 1.60e−9 3.5 1.50e−10 −1.2

320 7.46e+2 0.6 1.59e−3 1.0 6.44e−7 2.4 1.85e−10 3.1 3.07e−10 −1.0

even if the errors are smaller due to the smaller stepsize h. For N = 1, divergent
approximations are obtained. However, this is beyond the scope of our theoretical
results even in the case of accurate transfer conditions. ��

5.3 Studying the Damping of Inconsistent Transition Values

The results of the previous sections show that the windowing method converges if
the transfer conditions used refer to the dynamic components, only. The latter are,
in general, not easily available unless a detailed analysis of the DAE is available.
However, so far we do not know any conditions for convergence if the practically
accessible values of the differentiated components Dx are used in the transfer
conditions.7 Example 5.2 indicates, however, that the use of (1.5) may be possible.
In order to gain some more insight into what could be expected in the setting of
Sect. 5.2, we will consider a simple special case in this section.

The model problem in question here is a simple system featuring only one Jordan
block,

J (Dx)′ + x = 0,

Dx(t̄) = r.

Here, J ∈ R
μ×(μ−1), D ∈ R

(μ−1)×μ where

J =

⎡
⎢⎢⎢⎢⎣

0
1 0

. . .
. . .

1

⎤
⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎥⎦ .

7In the index-1 case, Dx describes just the dynamic components such that convergence is
assured for using all differentiated components. However, for index-1 DAEs, much more efficient
collocation methods are available.



114 M. Hanke and R. März

This system has index μ and no dynamic components, l = 0. The system is solvable
for r = 0, only, leading to the unique solution x∗(t) ≡ 0. When trying to solve the
system using the proposed windowing technique, the only information transferred
from the subinterval [t̄ , t̄+H ] to the next one is the value of the approximate solution
xπ at the end of the interval, Dxπ(t̄ +H). The latter is an approximation to the exact
solution Dx∗(t̄ + H) ≡ 0 that cannot be guaranteed to be consistent with the DAE.
Therefore, we ask the question of how Dxπ(t̄ + H) depends on r .

Let

x[r],π = argmin{‖T̂subx‖2
L2

sub×Rk |x ∈ Xπ }

= argmin{‖Tsubx‖2
L2

sub

+ |Dx(t̄) − r|2
Rk |x ∈ Xπ }

where T x = J (Dx)′ + x. Obviously, Dx[r],π (t̄ + H) depends linearly on r . There
exists a matrix S = S(N,H, n) such that Dx[r],π (t̄ + H) = Sr which we will
denote as the transfer matrix. For convergence of the method, it is necessary that the
spectral radius ρ(S) of the transfer matrix is bounded by 1.

The analytical computation of S is rather tedious. After some lengthy calcula-
tions, we found that, for μ = 2, it holds, with η = (N + 1)−1,

ρ(S(N,H, n) = ηn

∣∣∣∣∣∣∣
2(

−1 +√1 − η2
)n +

(
−1 −√1 − η2

)n

∣∣∣∣∣∣∣
≈ ηn21−n.

In particular, ρ(S) is independent of H and n can be chosen arbitrarily. Moreover,
the damping of the inconsistent value r is the better the larger n is. This result can be
compared to the experiments in Example 5.2 (an index-2 problem) where we cannot
identify any influence of an inaccuracy due to inconsistent transfer conditions.

For larger values of μ, we determined ρ(S) by numerical means. Results are
shown in Tables 4, 5 and 6. We observe that, for an index μ > 2, n must be chosen

Table 4 Spectral radius of the transfer matrix S(N,H, n) for n = 1 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 3.3e−1 2.1e+0 1.3e+0 1.1e+0

3 2.5e−1 1.8e+0 5.9e+0 2.9e+0

4 2.0e−1 1.5e+0 7.1e+0 1.4e+1

5 1.7e−1 1.3e+0 7.0e+0 2.3e+1

6 1.5e−1 1.1e+0 6.5e+0 2.7e+1

7 1.2e−1 9.7e−1 6.1e+0 2.9e+1

8 1.1e−1 8.7e−1 5.6e+0 2.9e+1

N 2 3 4 5

2 3.3e−1 2.1e+0 1.1e+0 1.0e+0

3 2.5e−1 1.8e+0 5.9e+0 1.5e+0

4 2.0e−1 1.5e+0 7.1e+0 1.4e+1

5 1.7e−1 1.3e+0 7.0e+0 2.3e+1

6 1.5e−1 1.1e+0 6.6e+0 2.8e+1

7 1.2e−1 9.7e−1 6.1e+0 2.9e+1

8 1.1e−1 8.7e−1 5.6e+0 2.9e+1
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Table 5 Spectral radius of the transfer matrix S(N,H, n) for n = 2 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 5.9e−2 1.4e+0 1.5e+0 1.2e+0

3 3.2e−2 6.4e−1 8.0e+0 9.9e+0

4 2.0e−2 3.7e−1 5.0e+0 2.0e+1

5 1.4e−2 2.5e−1 3.1e+0 3.0e+1

6 1.0e−2 1.8e−1 2.1e+0 2.2e+1

7 7.9e−3 1.3e−1 1.5e+0 1.6e+1

8 6.2e−3 1.0e−1 1.2e+0 1.2e+1

N 2 3 4 5

2 5.9e−2 1.4e+0 1.2e+0 1.0e+0

3 3.2e−2 6.4e−1 8.2e+0 2.5e+0

4 2.0e−2 3.7e−1 5.0e+0 3.6e+2

5 1.4e−2 2.5e−1 3.1e+0 3.2e+2

6 1.0e−2 1.8e−1 2.1e+0 8.1e−1

7 7.9e−3 1.3e−1 1.5e+0 2.1e+0

8 6.2e−3 1.0e−1 1.2e+0 1.2e+1

Table 6 Spectral radius of the transfer matrix S(N,H, n) for n = 3 and H = 0.1 (left panel) and
H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 1.0e−2 6.8e−1 1.8e+0 1.4e+0

3 4.1e−3 1.8e−2 6.1e+0 2.5e+0

4 2.1e−3 8.1e−2 2.1e+0 1.7e+1

5 1.2e−3 4.3e−2 9.2e−1 1.8e+1

6 7.4e−4 2.6e−2 5.1e−1 8.5e+0

7 4.9e−4 1.7e−2 3.1e−1 4.8e+0

8 3.5e−4 1.2e−2 2.1e−1 3.0e+0

N 2 3 4 5

2 1.0e−2 6.8e−1 1.3e+0 1.0e+0

3 4.1e−3 1.8e−1 6.3e+0 5.5e+0

4 2.1e−3 8.1e−2 2.1e+0 4.2e+1

5 1.2e−3 4.3e−2 9.2e−1 7.8e−1

6 7.4e−4 2.6e−2 5.1e−1 7.5e−1

7 4.9e−4 1.7e−2 3.1e−1 2.8e−1

8 3.5e−4 1.2e−2 2.1e−1 2.3e−1

larger than 1 in order to ensure ρ(S) < 1. Moreover, ρ(S) depends on H only
marginally for the investigated cases.

Details of the derivations are collected in the appendix.

6 A More Complex Example

In order to show the merits of the windowing technique, we will continue to use the
example considered in [9]. This example is the linearized version of a test example
from [5]. We consider an initial value problem for the DAE

A(Dx)′(t) + B(t)x(t) = y(t), t ∈ [0, 5] (6.1)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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the smooth matrix coefficient

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 sin t 0 1 − cos t −2ρ cos2 t

0 0 − cos t −1 0 − sin t −2ρ sin t cos t

0 0 1 0 0 0 2ρ sin t

2ρ cos2 t 2ρ sin t cos t −2ρ sin t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 5.

This DAE is obtained if the test example from [5] is linearized in the solution
x∗(t) considered there.8 It has tractability index μ = 3 and dynamical degree of
freedom l = 4. In order to use the windowing technique with accurately stated initial
conditions, we will need a function G : [0, 5] → R

4×7 fulfilling the assumptions of
Theorem 3.5. The nullspace of the projector Π2 has the representation

ker Π2 = ker

⎡
⎢⎣

I − Ω 0 0
Ω ′Ω I − Ω 0

0 0 0

⎤
⎥⎦ , Ω = b(t)b(t)T , b(t) =

⎡
⎢⎣

− cos2 t

− cos t sin t

sin t

⎤
⎥⎦ .

Based on this representation, we can use

G(t) =

⎡
⎢⎢⎢⎣

sin t − cos t 0 0 0 0 0
0 1 cos t 0 0 0 0

− cos3 t − sin t cos2 t sin t cos t sin t − cos t 0 0
−(sin t cos t)2 − sin3 t cos t sin3 t 0 1 cos t 0

⎤
⎥⎥⎥⎦ . (6.2)

In the following numerical experiments we choose the exact solution

x1 = sin t, x4 = cos t,

x2 = cos t, x5 = − sin t,

x3 = 2 cos2 t, x6 = −2 sin 2t,

x7 = −ρ−1 sin t,

8Compare also [9, Sections 6.3 and 6.4].
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Table 7 Errors and estimation of the convergence order for (6.1) and t̄ = 0, H = 5 using M =
N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

n Error Order Error Order Error Order Error Order Error Order

10 2.64e+0 5.24e−1 6.29e−2 6.33e−3 5.73e−4

20 1.54e+0 0.8 1.99e−1 1.4 1.77e−2 1.8 9.39e−4 2.8 6.12e−5 3.2

40 8.79e−1 0.8 9.36e−2 1.1 6.44e−3 1.5 1.66e−4 2.5 7.31e−6 3.1

80 4.69e−1 0.9 4.63e−2 1.0 2.84e−3 1.2 3.42e−5 2.3 9.02e−7 3.0

160 3.00e−1 0.6 2.33e−2 1.0 1.37e−3 1.1 7.69e−6 2.2 1.12e−7 3.0

320 2.30e−1 0.4 1.18e−2 1.0 6.75e−4 1.0 1.82e−6 2.1 1.40e−8 3.0

which is also the one used in [9]. Setting Ga = G(0), this provides us with the
initial condition9

Gax(0) =

⎡
⎢⎢⎢⎣

−1
3
0
0

⎤
⎥⎥⎥⎦ .

The problem is solved on equidistant grids using, for each polynomial degree N ,
M = N +3 Gaussian collocation points scaled to (0, 1). This number of collocation
points has been chosen such that the assumptions of Theorem 3.5(3) are fulfilled.
The tables show the errors of the approximate solutions in H 1

D(0, 5). Similarly as in
previous examples, the columns labeled order contain an estimation kest of the order

kest = log(‖xπ − x∗‖H 1
D(0,5)/‖xπ ′ − x∗‖H 1

D(0,5))/ log 2.

Here, π ′ is obtained from π by stepsize halving.
In order to enable a comparison, we provide the results for solving the problem

without windowing in Table 7. This corresponds to t̄ = 0 and H = 5. Note that
the results are almost identical to those obtained in [9] using a slightly different
formulation of the initial condition and a different number of collocation points.

In Tables 8, 9 and 10 the results using the windowing technique with transfer
conditions (1.5) for different numbers of subdivisions n of the individual windows
[t̄ , t̄ +H ] are shown. Since the transfer condition is based on all of the differentiated
components Dx, they are expected to be inconsistent away from the initial point
t = 0. For n = 1 and N ≤ 3, the method delivers exponentially divergent
approximations.

9This initial condition is slightly different from the one used in [9]. However, both conditions are
equivalent.
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Table 8 Errors and
estimation of the convergence
order for (6.1) and n = 1,
H = 5/L using M = N + 3

N = 4 N = 5

L Error Order Error Order

10 1.21e−2 7.18e−4

20 2.28e−3 2.4 7.65e−5 3.2

40 5.16e−4 2.1 9.36e−6 3.0

80 1.25e−4 2.0 1.18e−6 3.0

160 3.10e−5 2.0 1.48e−7 3.0

320 7.74e−6 2.0 1.93e−8 2.9

Table 9 Errors and estimation of the convergence order for (6.1) and n = 2, H = 5/L using
M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 2.30e+0 2.66e−1 2.99e−2 1.99e−3 7.64e−5

20 1.64e+0 0.5 2.98e−1 −0.2 1.25e−2 1.3 4.89e−4 2.0 9.24e−6 3.0

40 1.49e+0 0.1 2.41e+1 −6.3 5.99e−3 1.1 1.22e−4 2.0 1.16e−6 3.0

80 1.45e+0 0.0 4.16e+5 −14.1 3.03e−3 1.0 3.06e−5 2.0 1.46e−7 3.0

160 1.44e+0 0.0 1.15e+14 −28.0 1.54e−3 1.0 7.65e−6 2.0 1.84e−8 3.0

320 1.44e+0 0.0 1.48e+31 −56.8 7.77e−4 1.0 1.91e−6 2.0 1.09e−8 0.8

Table 10 Errors and estimation of the convergence order for (6.1) and n = 3, H = 5/L using
M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 1.74e+0 1.38e−1 1.38e−2 7.31e−4 2.05e−5

20 1.64e+0 0.0 6.92e−2 1.0 6.20e−3 1.2 1.83e−4 2.0 2.53e−6 3.0

40 1.66e+0 0.0 3.95e−2 0.8 3.07e−3 1.0 4.61e−5 2.0 3.18e−7 3.0

80 1.67e+0 0.0 2.75e−2 0.5 1.55e−3 1.0 1.15e−5 2.0 3.99e−8 3.0

160 1.68e+0 0.0 2.35e−2 0.2 7.81e−4 1.0 2.89e−6 2.0 6.43e−9 2.6

320 1.68e+0 0.0 2.23e−2 0.1 3.93e−4 1.0 7.22e−7 2.0 2.41e−8 −1.9

Finally, we consider the case of using accurately stated initial conditions as
transfer conditions. So they correspond to choosing G(t̄) according to (6.2). The
results are collected in Table 11. The latter can be compared to the behavior of the
global method as shown in Table 7. The results are rather close to each other.
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Table 11 Errors and estimation of the convergence order for (6.1) and accurately posed transfer
conditions with n = 1, H = 5/L and M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 5.32e+0 5.12e−1 8.46e−2 1.20e−2 1.03e−3

20 2.56e+0 1.1 2.67e−1 0.9 2.64e−2 1.7 2.47e−3 2.3 8.85e−5 3.5

40 2.20e+0 0.2 2.03e−1 0.4 1.09e−2 1.3 5.85e−4 2.1 9.51e−6 3.2

80 2.17e+0 0.0 1.88e−1 0.1 5.14e−3 1.1 1.44e−4 2.0 1.14e−6 3.1

160 2.17e+0 0.0 1.84e−1 0.0 2.53e−3 1.0 3.59e−5 2.0 1.40e−7 3.0

320 2.17e+0 0.0 1.83e−1 0.0 1.26e−3 1.0 8.97e−6 2.0 1.76e−8 3.0

7 Conclusions

We continued the investigation of overdetermined least-squares collocation using
piecewise polynomial ansatz functions. This method is known to efficiently produce
accurate numerical approximations of solutions for two-point boundary value
problems for higher-index DAEs including IVPs as a special case. Since a further
increase in computational efficiency is expected if modified for a customized
application to IVPs, we considered time-stepping techniques for IVPs in this
paper. It turned out that the success of such techniques depends strongly on
the transfer conditions used. In the case that the intrinsic structure is available,
meaning in particular that the dynamic solution components are known, the time-
stepping method has convergence properties similar to the boundary value approach.
However, if only the information about the differentiated components of the DAE is
used, so far our estimates do not secure convergence of the time-stepping approach.
Investigations of a model problem indicate that even in this case convergence can
be obtained provided that the method parameters are chosen appropriately.

The overdetermined least-squares collocation method shows impressive con-
vergence results in our experiments. On one hand, the accuracy is impressive,
on the other hand, the computational efficiency is comparable to widely used
collocation methods for ordinary differential equations. Opposed to that, there are
severe difficulties to theoretically justify these methods. The underlying reason is
the ill-posedness of higher-index DAEs. To the best of our knowledge, available
convergence results are rather sparse and important questions of practical relevance
for constructing efficient algorithms are completely open, e.g., a-posteriori error
estimations, the choice of grids, polynomial orders, collocation points etc. However,
the results so far are encouraging.
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A Proof of Theorem 3.5

The Proposition A.1 below plays its role when verifying the statements of Theo-
rem 3.5. We collect the necessary ingredients of the projector based DAE analysis
to prove Proposition A.1. We refer to [13, 15] for more details. Let the DAE (1.6)
be fine with tractability index μ ≥ 2 and characteristic values

0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m −
μ−1∑
i=0

(m − ri). (A.1)

Recall that this property is determined by the given coefficients A : [a, b] → R
m×k ,

D = [I 0] ∈ R
k×m, and B : [a, b] → R

m×m. A and B are sufficiently smooth, at
least continuous. Then there are an admissible sequence of matrix valued functions
starting from G0 := AD and ending up with a nonsingular Gμ, see [13, Definition
2.6], as well as associated projector valued functions

P0 := D+D and P1, . . . , Pμ−1 ∈ C([a, b],Rm×m)

which provide a fine decoupling of the DAE. We have then the further projector
valued functions

Qi = I − Pi, i = 0, . . . , μ − 1,

Π0 := P0, Πi := Πi−1Pi ∈ C([a, b],Rm×m), i = 1, . . . , μ − 1,

DΠiD
+ ∈ C1([a, b],Rk×k), i = 1, . . . , μ − 1.

By means of the projector functions we decompose the unknown x and decouple
the DAE itself into their characteristic parts, see [13, Section 2.4].

The component u = DΠμ−1x = DΠμ−1D
+Dx satisfies the explicit regular

ODE residing in R
k ,

u′ − (DΠμ−1D
+)′u + DΠμ−1G

−1
μ BΠμ−1D

+u = DΠμ−1G
−1
μ q. (A.2)
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The components vi = Πi−1Qix = Πi−1QiD
+Dx, i = 1, . . . , μ − 1, satisfy the

triangular subsystem involving several differentiations,
⎡
⎢⎢⎢⎢⎢⎣

0 N12 · · · N1,μ−1

0
. . .

...

. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(Dv1)
′

...

(Dvμ−1)
′

⎤
⎥⎥⎥⎥⎦

(A.3)

+

⎡
⎢⎢⎢⎢⎢⎣

I M12 · · · M1,μ−1

I
. . .

...

. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

...

vμ−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

L1

...

Lμ−1

⎤
⎥⎥⎥⎥⎦

q.

The coefficients Ni,j , Mi j , and Li are subsequently given. Finally, one has for
v0 = Q0x the representation

v0 = L0y − H0D
+u −

μ−1∑
j=1

M0 j vj −
μ−1∑
j=1

N0 j (Dvj )
′. (A.4)

The subspace im DΠμ−1 is an invariant subspace for the ODE (A.2). The com-
ponents v0, v1, . . . , vμ−1 remain within their subspaces im Q0, im Πμ−2Q1, . . . ,

im Π0Qμ−1, respectively. The structural decoupling is associated with the decom-
position

x = D+u + v0 + v1 + · · · + vμ−1.

All coefficients in (A.2)–(A.4) are continuous on [a, b] and explicitly given in terms
of the used admissible matrix function sequence as

N01 := −Q0Q1D
+

N0j := −Q0P1 · · · Pj−1QjD
+, j = 2, . . . , μ − 1,

Ni,i+1 := −Πi−1QiQi+1D
+, i = 1, . . . , μ − 2,

Nij := −Πi−1QiPi+1 · · · Pj−1QjD
+, j = i + 2, . . . , μ − 1, i = 1, . . . , μ − 2,

M0j := Q0P1 · · · Pμ−1MjDΠj−1Qj , j = 1, . . . , μ − 1,

Mij := Πi−1QiPi+1 · · · Pμ−1MjDΠj−1Qj , j = i + 1, . . . , μ − 1, i = 1, . . . , μ − 2,

L0 := Q0P1 · · · Pμ−1G
−1
μ ,

Li := Πi−1QiPi+1 · · · Pμ−1G
−1
μ , i = 1, . . . , μ − 2,

Lμ−1 := Πμ−2Qμ−1G
−1
μ ,

H0 := Q0P1 · · · Pμ−1K Πμ−1,
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in which

K := (I − Πμ−1)G
−1
μ Bμ−1Πμ−1 +

μ−1∑
λ=1

(I − Πλ−1)(Pλ − Qλ)(DΠλD
+)′DΠμ−1,

Mj :=
j−1∑
k=0

(I − Πk){PkD
+(DΠkD

+)′ − Qk+1D
+(DΠk+1D

+)′}DΠj−1QlD
+,

j = 1, . . . , μ − 1.

Consider an arbitrary subinterval [t̄ , t̄ + H ] ⊆ [a, b] and use the function spaces

L2
sub = L2((t̄ , t̄ + H),Rm), H 1

sub = H 1((t̄ , t̄ + H),Rk), H 1
D,sub = {x ∈ L2

sub|Dx∈H 1
sub},

equipped with their natural norms. Additionally, we introduce the function space
(cf., [9, 15])

Zsub := {q ∈ L2
sub : vμ−1 := Lμ−1q, Dvμ−1 ∈ H 1

sub,

vμ−j := Lμ−j q −
j−1∑
i=1

Nμ−j,μ−j+i (Dvμ−j+i )
′ −

j−1∑
i=1

Mμ−j,μ−j+ivμ−j+i ,

Dvμ−j ∈ H 1
sub, for j = 2, . . . , μ − 1

}

and its norm

‖q‖Zsub
:=
⎛
⎝‖q‖2

L2
sub

+
μ−1∑
i=1

‖(Dvi)
′‖2

L2
sub

⎞
⎠

1/2

, q ∈ Zsub.

The latter function space is very special, it strongly depends on the decoupling
coefficients which in turn are determined by the given data A,D,B.

We also assume a function G : [a, b] → R
l with G(t) = G(t)D+D for all

t ∈ [a, b] to be given, and introduce the operator related to the subinterval Tsub :
H 1

D,sub → L2
sub and the composed operator Tsub : H 1

D,sub → L2
sub × R

l , by

Tsubx = A(Dx)′ + Bx, Tsubx =
[

Tsubx

G(t̄)x(t̄)

]
, x ∈ H 1

D,sub.
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Here, trivially, the restrictions of A and B to the subinterval are meant. The operators
Tsub and Tsub are well-defined and bounded. Regarding

‖Tsubx‖2
L2

sub

=
∫ t̄+H

t̄

|A(t)(Dx)′(t) + B(t)x(t)|2dt

≤ 2 max{ max
t∈[t̄ ,t̄+H ]

|A(t)|2, max
t∈[t̄ ,t̄+H ]

|B(t)|2}‖x‖2
H 1

D,sub

≤ 2 max{ max
t∈[a,b]|A(t)|2, max

t∈[a,b]|B(t)|2}‖x‖2
H 1

D,sub

we see that there is an upper bound on the operator norm of Tsub uniformly for
all subintervals. Similarly, supposing G to be bounded on [a, b], there is a uniform
upper bound for the norm of Tsub, too.

Proposition A.1 Let the DAE be fine on [a, b] with characteristic values (A.1) and
index μ ≥ 2.

Let the function G : [a, b] → R
l be such that

ker G(t) = ker Πμ−1(t), |G(t)| ≤ cG, |G(t)−| ≤ cG− , t ∈ [a, b],

in which cG and cG− denote constants and G(t)− is a reflexive generalized inverse
of G(t). Then it holds:

(1) im Tsub = Zsub, imTsub = Zsub × R
l , kerTsub = {0}.

(2) The function space Zsub equipped with the norm ‖·‖Zsub
is complete.

(3) There is a constant cZ , uniformly for all subintervals [t̄ , t̄ + H ] ⊆ [a, b], such
that

‖x‖H 1
D,sub

≤ cZ (‖q‖2
Zsub

+ |r|2)1/2 for all q ∈ Zsub, r ∈ R
l , x = T −1

sub (q, r).

Note that such a functions G exists always. For instance, applying Lemma 3.1 one
can set G(t) = [Il 0]K(t)D and supplement it by G(t)− = D+K(t)−1[Il 0]+.

Proof

(1) The first assertions can be verified by means of the above decoupling formulas,
which are given on [a, b], and which are valid in the same way on each arbitrary
subinterval, too. In particular, examining the equation Tsubx = 0, we know
from (A.3) that q ∈ L2

sub, q = 0 implies vj = 0 on the subinterval successively
for j = μ − 1, . . . , 1. On the other hand, G(t̄)x(t̄) = 0 leads to u(t̄) =
DΠμ−1(t̄)x(t̄) = DΠμ−1(t̄)G(t̄)−G(t̄)x(t̄) = 0. Since u ∈ H 1

sub solves
the homogeneous ODE (A.2) on the subinterval, u vanishes there identically.
Finally, from (A.4) it follows that v0 = 0, and hence, x = 0.

(2) Let qn ∈ Zsub be a fundamental sequence with respect to the ‖·‖Zsub-norm,
and vn,i ∈ H 1

D,sub, i = 1, . . . , μ−1, correspondingly defined by (A.3), further

wn,i = (Dvn,i)
′, i = 1, . . . , μ − 1. Then there exists an elements q∗ ∈ L2

sub
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such that qn
L2−→ q∗ and there are further elements w∗,i ∈ L2((t̄ , t̄ + H),Rk)

so that wn,i
L2−→ w∗,i , i = 1, . . . , μ − 1. The first line of the associated

relations (A.3) leads to vn,μ−1 = Lμ−1qn
L2−→ Lμ−1q∗ =: v∗,μ−1, Dvn,μ−1 =

DLμ−1qn
L2−→ Dv∗,μ−1, thus Dv∗,μ−1 ∈ H 1

sub, (Dv∗,μ−1)
′ = w∗,μ−1. The

next lines of (A.3) successively for j = 2, . . . , μ − 1 provide

vn,μ−j = Lμ−j qn −
j−1∑
i=1

Nμ−j,μ−j+i (Dvn,μ−j+i )
′ −

j−1∑
i=1

Mμ−j,μ−j+ivn,μ−j+i

L2−→ Lμ−j q∗ −
j−1∑
i=1

Nμ−j,μ−j+i (Dv∗,μ−j+i )
′ −

j−1∑
i=1

Mμ−j,μ−j+iv∗,μ−j+i =: v∗,μ−j ,

Dv∗,μ−j ∈ H 1
sub, (Dv∗,μ−j )

′ = w∗,μ−j ,

and eventually we arrive at q∗ ∈ Zsub.
(3) The operator Tsub is bounded also with respect to the new image space Zsub

equipped with the norm ‖·‖Zsub
. Namely, for each x ∈ H 1

D,sub owing to the
decoupling it holds that

Dvi = DΠi−1Qix = DΠi−1QiD
+Dx,

(Dvi)
′ = (DΠi−1QiD

+)′Dx + DΠi−1QiD
+(Dx)′, i = 1, . . . , μ − 1.

This leads to ‖Tsubx‖Zsub
≤ cZ

Tsub
‖x‖H 1

D,sub
, with a uniform constant cZ

Tsub
for

all subintervals. In the new setting, the associated operator Tsub : H 1
D,sub →

Zsub × R
l is a homeomorphism, and hence, its inverse is bounded. It remains

to verify the existence of a uniform upper bound cZ of the norm of T −1
sub . ��

Let an arbitrary pair (q, r) ∈ Zsub × R
l be given and the solution x ∈ H 1

D,sub of
Tsubx = (q, r), i.e., Tsubx = q, G(t̄)x(t̄) = r . We apply again the decomposition
of the solution x = D+u + v0 + v1 + · · · + vμ−1 and the decoupling (A.2),
(A.3), (A.4). Owing to the properties of the function G it holds that u(t̄) =
DΠμ−1(t̄)x(t̄) = DΠμ−1(t̄)G(t̄)−G(t̄)x(t̄) = DΠμ−1(t̄)G(t̄)−r and thus

|u(t̄)| ≤ k1|r|,

with a constant k1 being independent of the subinterval. Below, all the further
constants ki are also uniform ones for all subintervals.

Let U(t, t̄) denote the fundamental solution matrix normalized at t̄ of the
ODE (A.2). U is defined on the original interval [a, b], there continuously differen-
tiable and nonsingular. U(t, t̄) and U(t, t̄)−1 = U(t̄, t) are uniformly bounded on
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[a, b]. Turning back to the subinterval we apply the standard solution representation

u(t) = U(t, t̄)u(t̄) +
∫ t

t̄
U(t, s)DΠμ−1(s)G−1

μ (s)q(s)ds

= U(t, t̄)DΠμ−1(t̄)G(t̄)−r +
∫ t

t̄
U(t, s)DΠμ−1(s)G−1

μ (s)q(s)ds, t ∈ [t̄ , t̄ + H ].

Taking into account that the involved coefficients are defined on [a, b] and continu-
ous there we may derive an inequality

‖u‖2
H 1

sub

≤ k2|r|2 + k3‖q‖2
sub.

Next we rearrange system (A.3) to

⎡
⎢⎢⎢⎢⎣

v1

...

vμ−1

⎤
⎥⎥⎥⎥⎦

= M−1

⎡
⎢⎢⎢⎢⎣

L1

...

Lμ−1

⎤
⎥⎥⎥⎥⎦

q − M−1

⎡
⎢⎢⎢⎢⎢⎣

0 N12 · · · N1,μ−1

0
. . .

...

. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(Dv1)
′

...

(Dvμ−1)
′

⎤
⎥⎥⎥⎥⎦

,

in which the inverse of the matrix function

M =

⎡
⎢⎢⎢⎢⎢⎣

I M12 · · · M1,μ−1

I
. . .

...

. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎥⎦

is again continuous on [a, b] and upper triangular. This allows to derive the
inequalities

‖vj‖2
L2

sub

≤ k4‖q‖2
L2

sub

+ k5

μ−1∑
i=1

‖(Dvi)
′‖2

L2
sub

, j = 1, . . . , μ − 1.

Considering also (A.4) we obtain

‖x‖2
L2

sub

≤ k6‖q‖2
L2

sub

+ k7

μ−1∑
i=1

‖(Dvi)
′‖2

L2
sub

+ k8|r|2.
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Since (Dx)′ = u′ +∑μ−1
i=1 (Dvi)

′ we have further

‖x‖2
H 1

D,sub

≤ k9

⎧⎨
⎩‖q‖2

L2
sub

+
μ−1∑
i=1

‖(Dvi)
′‖2

L2
sub

+ |r|2
⎫⎬
⎭ = k9(‖q‖2

Zsub
+ |r|2).

B On the Derivation of the Transfer Matrix S(N,H,n)

Consider an interval (0, h). For the representation of polynomials we will use the
Legendre polynomials Pk [18]. They have the properties

1.
∫ 1
−1 Pk(t)Pl(t)dt = 2

2k+1δkl , k, l = 0, 1, . . ..
2. Pk(1) = 1, Pk(−1) = (−1)k , k = 0, 1, . . ..
3. P ′

k+1 − P ′
k−1 = (2k + 1)Pk , k = 1, 2, . . ..

Let

pk(t) = akPk(1 − 2

h
t), ak =

(
2k + 1

h

)1/2

.

Then it holds

∫ h

0
pk(t)pl(t)dt = δkl, pk(0) = ak, pk(h) = (−1)kak.

From the representation for the derivatives, we obtain

h

2
(ckp

′
k−1 − dkp

′
k+1) = (2k + 1)pk

where

ck = ak

ak−1
=
(

2k + 1

2k − 1

)1/2

, dk = ak

ak+1
=
(

2k + 1

2k + 3

)1/2

.

Since p0(t) ≡ a0 and p′
1(t) = −2a1/h, we have the representation

h

2
Γ̄

⎡
⎢⎢⎣

p′
1
...

p′
N

⎤
⎥⎥⎦ = D−

⎡
⎢⎢⎣

p0
...

pN−1

⎤
⎥⎥⎦ ,
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with

Γ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−d0

0 −d1

c2 0 −d2
. . .

. . .
. . .

cN−1 0 −dN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, D− =

⎡
⎢⎢⎢⎢⎣

1
3

. . .

2N − 1

⎤
⎥⎥⎥⎥⎦

.

This provides

⎡
⎢⎢⎣

p′
0
...

p′
N

⎤
⎥⎥⎦ = 2

h
Γ

⎡
⎢⎢⎣

p0
...

pN

⎤
⎥⎥⎦ , Γ =

[
0 0

Γ̄ −1D− 0

]
.

A representation of Γ being more suitable for the subsequent derivations can be
obtained by observing that

Γ̄ = D
1/2
−

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

D
−1/2
+ , D+ =

⎡
⎢⎢⎢⎢⎣

3
5

. . .

2N + 1

⎤
⎥⎥⎥⎥⎦

.

Let Z denote the tridiagonal matrix in this decomposition. Then it holds

(Z−1)ij =
⎧⎨
⎩

−1, i ≥ j, i − j even,

0, else.

Hence,

Γ =
[

0

D
1/2
+ Z−1D

1/2
− 0

]
= D1/2YD1/2



128 M. Hanke and R. März

where

D =

⎡
⎢⎢⎢⎢⎣

1
3

. . .

2N + 1

⎤
⎥⎥⎥⎥⎦

, Y = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0
0 1 0
1 0 1 0
0 1 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

· · · 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Assume now

xi =
N∑

k=0

αikpk, a = (a0, . . . , aN)T .

Then

xi(0) =
N∑

n=0

αinpn(0) =
N∑

n=0

αinan = aT αi i = 1, . . . , μ − 1.

We collect the coefficients α = (α1, . . . , αμ−1)
T and set

A =

⎡
⎢⎢⎢⎢⎣

I
2
h
Γ T I

. . .
. . .

2
h
Γ T I

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎣

aT

. . .

aT

⎤
⎥⎥⎦ .

Let now H > 0 be fixed and h = H/n for a given positive integer n. The
functional to be minimized is

Φsub(x) = 1

2
‖x1‖2

L2
sub

+
μ∑

i=2

1

2
‖x′

i−1 − xi‖2
L2

sub

, x = (x1, . . . , xμ)T

on Xπ under the condition xi = ri , i = 1, . . . , μ − 1. The term for i = μ in this
sum can be omitted since, for given xμ−1 ∈ PN , xμ ∈ PN−1 can always be set to
x′
μ−1 such that the last term amounts to 0.
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For a shorthand notation, define xν
i = xi |((ν−1)h,νh). Assuming the representa-

tion

xν
i =

N∑
k=0

αν
ikp

ν
k

on ((ν−1)h, νh) with pν
k being the polynomials pk transformed onto ((ν−1)h, νh),

we obtain

Φsub(x) =
n∑

ν=1

⎛
⎝1

2

∣∣αν
1

∣∣2 + 1

2

μ−1∑
i=2

∣∣∣∣
2

h
Γ T αν

i−1 + αν
i

∣∣∣∣
2
⎞
⎠

where αν
i = (αν

i0, . . . , α
ν
iN )T . Furthermore,

xν−1
i (νh) =

N∑
k=0

αν−1
ik pk(h) =

N∑
k=0

αν−1
ik ak(−1)k

for i = 1, . . . , μ − 1. Define b = (a0, . . . , (−1)NaN)T .
All these equations can be conveniently written down in a matrix fashion. The

initial condition becomes

Cα1 = r

while the transfer conditions read

Bαν−1 = Cαν, ν = 2, . . . , n

with

B =

⎡
⎢⎢⎣

bT

. . .

bT

⎤
⎥⎥⎦ .

Let α = (α1, . . . , αn)T and

A =

⎡
⎢⎢⎢⎢⎣

A

A

.. .

A

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎣

C

−B C

.. .
. . .

−B C

⎤
⎥⎥⎥⎥⎦

.
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Note that A is nonsingular since A is so. Similarly, C has full row rank since C has
the same property.

Finally, we obtain

Φsub(x) = Φsub(α) = 1

2
|A α|2 → min such that Cα = (r, 0, . . . , 0)T .

The transfer matrix is then given by

S(N,H, n)r = Bαn(r) for all r ∈ R
μ−1.

In the case μ = 2, a simple analytical solution is feasible.

B.1 The Case μ = 2

In order to simplify the notation, the index i will be omitted. The transfer matrix
reduces to a scalar

ρn =
∣∣∣∣
xn(H)

r

∣∣∣∣ .

The Lagrange functional belonging to the present optimization problem reads

ϕ(α, λ) =
n∑

ν=1

N∑
k=0

(α1
k )

2 + λ1

⎛
⎝

N∑
k=0

akα
1
k − r

⎞
⎠

+
n∑

ν=2

λν

⎛
⎝

N∑
k=0

akα
ν
k −

N∑
k=0

(−1)kakα
ν−1
k

⎞
⎠ .

In the following, we will use the notations

a =
N∑

k=0

a2
k = 1

h
(N + 1)2, b =

N∑
k=0

(−1)ka2
k = (−1)N

h
(N + 1), c =

∣∣∣∣
b

a

∣∣∣∣ .
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The derivatives of the Lagrange functional are

∂ϕ

∂λ1
=

N∑
k=0

akα
1
k − r,

∂ϕ

∂λν

=
N∑

k=0

akα
ν
k −

N∑
k=0

ak(−1)kαν−1
k , ν = 2, . . . , n

∂ϕ

∂αn
k

= αn
k + λnak,

∂ϕ

∂αν
k

= αν
n + λνak − λν+1ak(−1)k, ν = 1, . . . , n − 1.

Hence, for ν = 1,

r =
N∑

k=0

akα
1
k =

N∑
k=0

ak

(
λ2ak(−1)k − λ1ak

)

= bλ2 − aλ1.

Similarly, for ν = n,

0 =
N∑

k=0

akα
n
k −

N∑
k=0

ak(−1)kαν−1
k

= −
N∑

k=0

a2
kλn +

N∑
k=0

ak(−1)k
(
λn−1ak − λnak(−1)k

)

= bλn−1 − 2aλn.

And finally, for 1 < ν < n,

0 =
N∑

k=0

akα
ν
k −

N∑
k=0

ak(−1)kαν−1
k

=
N∑

k=0

ak

(
λν+1ak(−1)k − λνak

)
−

N∑
k=0

ak(−1)k
(
λνak(−1)k − λν−1ak

)

= bλν+1 − 2aλν + bλν−1.
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This provides us with the linear system of equations

⎡
⎢⎢⎢⎢⎢⎢⎣

−a b

b −2a b

. . .
. . .

. . .

b −2a b

b −2a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

λ2
...

λn−1

λn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r

0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since xn(H) = ∑N
k=0 ak(−1)kαn

k = −∑N
k=0 ak(−1)kλnak = −bλn it is sufficient

to compute the last component λn of the solution to this system. Let An denote the
system matrix and Ãn the matrix obtained from An by replacing the last column of
An by the right-hand side. According to Cramer’s rule it holds

λn = det An

det Ãn

.

Let un = det An and vn = det Ãn. Then we obtain the recursion

v1 = r,

vν = −bvν−1.

Its solution is given by

vν = (−b)ν−1r.

Analogously, we have

u1 = −a,

u2 = 2a2 − b2,

uν = −2auν−1 − b2uν−2.

This recursion is a simple difference equation with the general solution

uν = c1z
ν
1 + c2z

ν
2,

where

z1,2 = a
(
−1 ±

√
1 − c2

)
.
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Application of the initial condition leads to c1 = c2 = 1/2. Inserting these
expressions we obtain

ρn =
∣∣∣∣
xn(H)

r

∣∣∣∣

=
∣∣∣∣
−bλn

r

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

2bn

an

[(
−1 + √

1 − c2
)n +

(
−1 − √

1 − c2
)n
]

∣∣∣∣∣∣∣∣∣

= cn

∣∣∣∣∣∣∣
2(

−1 + √
1 − c2

)n +
(
−1 − √

1 − c2
)n

∣∣∣∣∣∣∣
.

From the definition of c we obtain c = (N + 1)−1. Hence,
√

1 − c2 ≈ 1 such that

ρL ≈ cL21−L.

B.2 An Approach for μ > 2

In the case μ > 2, the steps taken in the case μ = 2 can be repeated. The Lagrangian
system for the constraint optimization problem reads

[
A T A C T

C 0

][
α

λ

]
=
[

0
r

]

where

r = (r, 0, . . . , 0)T .

The computation steps are then

(i) α = −(A T A )−1C T λ

(ii) λ = −[C (A T A )−1C T ]−1r
(iii) α = (A T A )−1C T [C (A T A )−1C T ]−1r
(iv) x(H) = Bα = B(A T A )−1C T [C (A T A )−1C T ]−1r.
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In the end, this yields

S(N,H, n) = B(A T A )−1C T [C (A T A )−1C T ]−1.

This representation can easily be evaluated using symbolic computations. It should
be mentioned that most terms in S(N,H, n) lead to simple rational expressions in
N . However, the results presented in Sect. 5.3 have been computed numerically.
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