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Preface

The “9th Workshop on Descriptor Systems” took place on March 17–20, 2019 in
Paderborn, Germany. Following the tradition of the preceding workshops organized
by Prof. Peter C. Müller between 1992–2005 and 2013, the workshop brought
together more than 40 mathematicians and engineers from various fields, such as
numerical and functional analysis, control theory, mechanics and electromagnetic
field theory. The participants focused on the theoretical and numerical treatment of
“descriptor” systems, i.e., differential-algebraic equations (DAEs).

This book contains the proceedings of this workshop. It discusses the wide range
of current research topics in descriptor systems, including mathematical modeling,
index analysis, stability, stabilization, well-posedness of problems, stiffness and
different timescales, co-simulation and splitting methods, and convergence analysis.
In addition, it also presents applications from the automotive and circuit industries
that show that descriptor systems are challenging problems from the point of view
of theory and practice.

This book is organized into three parts with the first part covering analysis.
It features a contribution by Diana Estévez Schwarz and René Lamour that
discusses orthogonal transformations for decoupling of DAEs with a higher index.
Different types of the so-called higher-index components with regard to the explicit
and hidden constraints are characterized. This also results into a straightforward
possibility for linear DAEs to determine an orthogonally projected explicit ODE.
The second chapter consists of an article by Michael Hanke and Roswitha März
on an operator-theoretic view to linear DAEs with constant and non-constant
coefficients. Conditions concerning basic characteristics such as normal solvability
(closed range), Fredholmness, etc. are presented. In particular, it is proven that
actually the operators having tractability index zero and one constitute the class
of normally solvable differential-algebraic operators.

The second part of this book covers numerical analysis and model order
reduction. It consists of five contributions: The article by Andreas Bartel and
Michael Günther contains a complete convergence theory for inter/extrapolation-
based multirate schemes for both ODEs and DAEs of index one, along with
a convergence analysis based on linking these schemes to multirate dynamic

v
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iteration. The second contribution in this part by Michael Hanke and Roswitha März
is on overdetermined polynomial least-squares collocation for two-point boundary
value problems for higher-index DAEs. Basic properties, such as convergence
properties, of this method for initial value problems by a windowing technique
are proven. The article by Robert Altmann and Christoph Zimmer is devoted to
the construction of exponential integrators of the first and second order for the
time discretization of constrained parabolic partial-differential-algebraic systems.
Exponential integrators for unconstrained systems are combined with the solution
of certain saddle point problems in order to meet the constraints throughout the
integration process, along with a convergence analysis. The succeeding contribution
by Gerd Steinebach is about an improvement of the known Rosenbrock–Wanner
method rodasp, which results in a less distinctive drop of the convergence
order. The contribution by Thanos Antoulas, Ion Victor Gosea, and Matthias
Heinkenschloss treats the computation of reduced-order models for a class of semi-
explicit DAEs, which includes the semi-discretized linearized Navier–Stokes and
Oseen equations, by a data-driven Loewner framework.

The third part is devoted to control aspects of DAEs. The article by Thomas
Berger, Lê Huy Hoàng, and Timo Reis treats adaptive control for a large class
of multiple-input multiple-output DAEs by a novel funnel controller. To this end,
a generalization of the concept of vector relative degree is presented. The second
contribution in this part by Thomas Berger and Lukas Lanza is about state estimation
for nonlinear DAE systems with inputs and outputs. The presented observer unifies
earlier approaches and extends the standard Luenberger type observer design. The
succeeding contribution by Matthias Gerdts and Björn Martens covers implicit
Euler discretization for linear-quadratic optimal control problems with index two
DAEs. The discretized problem is reformulated such that an approximation of an
index reduced problem with suitable necessary conditions is obtained. Under some
additional circumstances, it is shown that the controls converge with an order of 1

2
in the L1-norm. These error estimates are further improved with slightly stronger
smoothness conditions of the problem data and switching function, which results
into a convergence order of one.

The fourth part contains four articles on applications of DAEs. The article
by Sarah-Alexa Hauschild, Nicole Marheineke, Volker Mehrmann, Jan Mohring,
Arbi Moses Badlyan, Markus Rein, and Martin Schmidt is about modeling of
district heating network in the port-Hamiltonian framework. By introducing a
model hierarchy of flow equations on the network, a thermodynamically con-
sistent port-Hamiltonian embedding of the resulting partial differential-algebraic
systems is presented. It is further shown that a spatially discretized network model
describing the advection of the internal energy density with respect to an under-
lying incompressible stationary Euler-type hydrodynamics can be considered as
a parameter-dependent finite-dimensional port-Hamiltonian system. Moreover, an
infinite-dimensional port-Hamiltonian formulation for a compressible instationary
thermodynamic fluid flow in a pipe is presented. The subject of the article by
Steffen Plunder and Bernd Simeon is a coupled system composed of a linear
DAE and a linear large-scale system of ODEs, where the latter stands for the
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dynamics of numerous identical particles. Such systems, for instance, arise in
mathematical models for muscle tissue where the macroscopic behavior is governed
by the equations of continuum mechanics. Replacing the discrete particles by a
kinetic equation for a particle density, the mean-field limit results into a new
class of partially kinetic systems. The influence of constraints on those systems
is investigated. As a main result, Dobrushin’s stability estimate for systems of this
type is presented. The estimate implies convergence of the mean-field limit and
provides a rigorous link between the particle dynamics and their kinetic description.
In the article by Idoia Cortes Garcia, Sebastian Schöps, Christian Strohm, and Caren
Tischendorf, a definition of generalized circuit elements which may, for example,
contain additional internal degrees of freedom, such that those elements still behave
structurally like resistances, inductances, and capacitances, is presented. Several
complex examples demonstrate the relevance of those definitions. Finally, the article
by Diana Estévez Schwarz, René Lamour, and Roswitha März focuses on a classical
benchmark problem for higher-index DAEs, namely a robotic arm resulting from a
tracking problem in mechanical engineering. The difficulty of this problem is the
appearance of certain singularities, whose thorough analysis is the subject of this
article. To this end, different methodologies are elaborated, such as the projector-
based analysis of the derivative array and the direct projector-based DAE analysis
associated with the tractability index. As a result, with both approaches, the same
kinds of singularities are identified. Some of them are obvious, but others are
unexpected.

We would like to take the opportunity to thank all the individuals who contributed
to the workshop and to this volume. Special gratitude goes to Prof. Dr. Peter
C. Müller from BU Wuppertal for encouraging us to pursue his traditional and
distinguished workshop series. We hope to see you at many of the future workshops
on descriptor systems!

Hamburg, Germany Timo Reis
Magdeburg, Germany Sara Grundel
Darmstadt, Germany Sebastian Schöps
May 2020
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A Projector Based Decoupling of DAEs
Obtained from the Derivative Array

Diana Estévez Schwarz and René Lamour

Abstract The solution vector of a differential-algebraic equation contains different
types of components, that can be analyzed with regard to various properties.
In this paper, we particularly present an orthogonal decoupling that, for higher-
index DAEs, describes in which context these orthogonal components appear in
the derivative array. In this sense, we characterize different types of so-called
“higher-index” components with regard to the explicit and hidden constraints.
As a consequence, for linear DAEs we obtain a straightforward possibility to
determine an orthogonally projected explicit ODE and compare it with the so-called
inherent regular ODE related to the projector-based decoupling associated with the
tractability matrix sequence. By several examples we illustrate the differences of
these two projector-based approaches and discuss their relationship.

Keywords DAE · Differential-algebraic equation · Index · Derivative array ·
Projector based analysis · Constraints · Orthogonal decoupling · Tractability ·
MNA
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4 D. Estévez Schwarz and R. Lamour

1 Introduction

Higher-index differential-algebraic equations (DAEs) present explicit and hidden
constraints that restrict the choice of consistent initial values. In fact, the dynamics
can be characterized by lower-dimensional ODEs that might be not unique.

Example 1.1 Let us consider a well-understood higher-index example from [21, 22,
24]:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

x ′ +

⎛
⎜⎜⎜⎜⎜⎝

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

x =

⎛
⎜⎜⎜⎜⎜⎝

q1

q2,1

q2,2

q2,3

q2,4

⎞
⎟⎟⎟⎟⎟⎠

.

The explicit constraint reads

x5 = q2,4

and the hidden constraints result to be

x4 = q2,3 − q ′2,4,

x3 = q2,2 − (q2,3 − q ′2,4)′,

x2 = q2,1 − (q2,2 − (q2,3 − q ′2,4)′)′.

Therefore, the degree of freedom d results to be one. To characterize the one-
dimensional dynamics, there are different possibilities. On the one hand, the explicit
scalar ODE

x ′1 − αx1 = q1 + q2,1 − q ′2,2 + q ′′2,3 − q ′′′2,4, (1.1)

that depends on derivatives of the right-hand side q , could be considered. On the
other hand, for

ue := x1 + x3 − αx4 + α2x5

the explicit scalar ODE

u′e − αue = q1 + q2,1 − αq2,2 + α2q2,3 − α3q2,4, (1.2)

that does not depend on derivatives of q , could be considered. For the initialization,
this means that if we consider (1.1), then an initial value is prescribed for x1(t0). In
contrast, if (1.2) is considered, then an initial value is prescribed for ue(t0). In both
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cases, x2(t0), . . . , x5(t0) are determined by the explicit and hidden constraints and
cannot be prescribed.

In terms of the projectors that we will introduce in forthcoming sections, we will
decouple x in different orthogonal components, essentially

⎛
⎜⎜⎜⎜⎜⎝

1
0

0
0

0

⎞
⎟⎟⎟⎟⎟⎠

x,

⎛
⎜⎜⎜⎜⎜⎝

0
1

1
1

0

⎞
⎟⎟⎟⎟⎟⎠

x,

⎛
⎜⎜⎜⎜⎜⎝

0
0

0
0

1

⎞
⎟⎟⎟⎟⎟⎠

x,

where

– the left-hand side component, which corresponds to x1, appears, together with its
derivative x ′1, in the original DAE and in the ODE (1.1),

– the component in the middle corresponds to x2, x3, x4 which are determined by
constraints, although the derivatives x ′2, x ′3, x ′4 appear in the original DAE,

– the right-hand side component, i.e. x5, is determined by constraints while the
derivative x ′5 does not appear in the original DAE.

While a general projector based characterization of ODEs associated to a DAE
that does not involve derivatives (like (1.2)) can be found in [21] and the related
work, such a general projector based description has not been developed so far for
ODEs associated to a DAE with orthogonality properties like (1.1). Such ODEs will
depend, in general, on derivatives of parts of the original DAE, i.e., parts of the
so-called derivative array.

In this setting, our starting point is a projector based decoupling of the solution
vector x into the derivative and the non-derivative part. Our goal is to provide the
framework of a projector based analysis of DAEs for approaches that are based on
the consideration of the derivative array, where the associated ODE may depend on
derivatives of the right-hand side, like (1.1). Further, all considered projectors will
be orthogonal.

In a first step into this direction, a new approach to compute consistent initial
values for higher-index DAEs using the derivative array and a projector based
approach was recently developed in [10, 12]. Starting from these results, in this
paper we address an orthogonal decoupling of the solution vector and a correspond-
ing decoupling of the equations of the DAE. In order to facilitate the readability, we
start defining the basic concepts briefly again.

We consider DAEs of the form

f (x ′(t), x(t), t) = 0, (1.3)
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for f : Gf → R
n, Gf ⊂ R

n × R
n × R, where the partial Jacobian fz1(z1, z0, t) is

singular. We assume that

ker fz1(z1, z0, t)

does not depend on (z1, z0) and that a continuously differentiable orthogonal
projectorQ = Q(t) onto ker fz1 exists. On the basis of the complementary projector
P = P(t) := I −Q(t) we can then reformulate the DAE as

f (x ′, x, t) = f (Px ′, x, t) = f ((Px)′ − P ′x, x, t) = 0, (1.4)

as already introduced in [18], where we drop the argument t for the sake of
simplicity. In this sense, we will use the notation:

– Px for the differentiated component,
– Qx for the undifferentiated component,

since, for the decoupling x ′ = (Px)′ + (Qx)′, there is a function ϕ1 such that
(Px)′ = ϕ1(x, t) is implicitly given, cf. [10, 12] and Sect. 2. In [10] we presented
an orthogonal decoupling of Qx with regard to the explicit and hidden constraints.

In this article, we complete this approach by decoupling Px analogously, thus
obtaining an orthogonal decoupling of the complete vector x = Px + Qx. The
paper is organized as follows.

In Sect. 2 we summarize some definitions and the notations introduced in [10,
12]. Based on that, the orthogonal projectors used for the decoupling of x are defined
in Sect. 3. In particular, the projector Π is defined, which is analyzed in more detail
in Sect. 4.

Section 5 presents an extensive discussion of linear DAEs. For linear DAEs,
Π turns out to deliver a description of an associated explicit ODE. We show
and illustrate with examples the differences between the introduced orthogonal
decoupling and the projector based decoupling associated with the tractability
matrix sequence. In particular, we extensively analyze two illustrative classes of
linear DAEs with constant coefficients

The computation of the projectors for the Modified Nodal Analysis (MNA) is
briefly presented in Sect. 6 in order to show that the new orthogonal decoupling is a
direct generalization of a result presented already in [5].

In the Appendix, we provide some required results from linear algebra.

2 Reinterpretation of the Differentiation Index

The conventional definition of the differentiation index is targeted on a representa-
tion of the so-called completion ODE or underlying ODE (see Sect. 5.1).
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Definition 2.1 ([2]) The differentiation index is the smallest integer ν such that

f (x ′, x, t) = 0,

d

dt
f (x ′, x, t) = 0,

...

dν

dtν
f (x ′, x, t) = 0,

uniquely determines x ′ as a continuous function of (x, t).

In order to allow for the differentiations, we consider

Fj (x
(j+1), x(j), . . . , x ′, x, t) := dj

dtj
f (x ′, x, t),

and define for k ∈ N, k ≥ 1, zi ∈ R
n, i = 0, . . . , k,

g[k](z0, z1, . . . , zk, t) :=

⎛
⎜⎜⎜⎜⎝

f (z1, z0, t)

F1(z2, z1, z0, t)
...

Fk−1(zk, . . . , z0, t)

⎞
⎟⎟⎟⎟⎠

, (2.1)

which corresponds to the derivative array [2]. Let us further denote by

G
[k]
(z1,...,zk)

(z0, z1, . . . , zk, t) ∈ R
nk×nk

the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to (z1, . . . , zk).
In practice, the index ν from Definition 2.1 at (z∗0, z∗1, . . . , z∗k , z∗k+1, t

∗) can be
determined by a rank check, verifying for k = 1, . . . whether the matrix

A[k+1] := G
[k+1]
(z1,...,zk,zk+1)

(z∗0, z∗1, . . . , z∗k , z∗k+1, t
∗) ∈ R

n(k+1)×n(k+1)

fulfills

ker A[k+1] ⊆
⎧⎨
⎩

(
s1

s2

)
: s1 ∈ R

n, s1 = 0, s2 ∈ R
nk

⎫⎬
⎭ . (2.2)

This means that the matrix A[k+1] is 1-full, with respect to the first n columns, cf.
[4, 12, 20]. Therefore, at (z∗0, z∗1, . . . , z∗k , z∗k+1, t

∗) the index is ν, if ν is the smallest
integer for which A[ν+1] is 1-full in a neighborhood of (z∗0, . . . , z∗k+1, t

∗).



8 D. Estévez Schwarz and R. Lamour

With the decoupling x = Px +Qx in mind, we will use the following definition
of the differentiation index, which was introduced in [10, 12] focusing on the
computation of consistent initial values and the characterization of singularities.
Roughly speaking, if we formulate this index characterization in an analogous
manner to Definition 2.1, it reads:

Definition 2.2 The differentiation index is the smallest integer μ such that

f (x ′, x, t) = 0,

d

dt
f (x ′, x, t) = 0,

...

dμ−1

dtμ−1 f (x ′, x, t) = 0,

uniquely determines Qx as a function of (Px, t), provided that the rank conditions1

introduced in Definition 2 of [10] are given.

Due to (1.4), we assume that there exists a function ϕ1 such that, locally,

(Px)′ = ϕ1(x, t)

holds. If, according to Definition 2.2, there exists another function ϕ2 such that

Qx = ϕ2(Px, t),

and sufficient smoothness is given, then one further differentiation provides

(Qx)′ = ϕ3((Px)′, Px, t) = ϕ̃3(x, t).

Consequently, if μ is the differentiation index according to Definition 2.2 and
sufficient smoothness is given, then the conventional differentiation index ν results
to be μ as well.

To compute the index μ in this context, for zi ∈ R
n, i = 0, . . . , k, we denote by

G
[k]
(z0)

(z0, z1, . . . , zk, t) ∈ R
nk×n

1These rank conditions correspond to the assumption that the projectors we introduce later on
in Sect. 3 to characterize the different types of components have all constant rank in a so-called
regularity region, cf. [10].
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the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to z0, and consider at
(z∗0, z∗1, . . . , z∗k , t∗) the matrix

B[k] :=
⎛
⎜⎝

P(t∗) 0

G
[k]
(z0)

(z∗0, z∗1, . . . , z∗k , t∗) G
[k]
(z1,...,zk)

(z∗0, z∗1, . . . , z∗k , t∗)

⎞
⎟⎠ .

According to [12], we check if the matrices B[k] ∈ R
n(k+1)×n(k+1) are 1-full with

respect to the first n columns for k = 1, 2, . . ., i.e., whether

ker B[k] ⊆
⎧⎨
⎩

(
s0

s1

)
: s0 ∈ R

n, s0 = 0, s1 ∈ R
nk

⎫⎬
⎭ . (2.3)

We conclude that at (z∗0, z∗1, . . . , z∗k , t∗) the index is μ, if the constant rank
assumptions are given in a neighborhood of (z∗0, z∗1, . . . , z∗k , t∗) and μ is the smallest
integer for which B[μ] is 1-full. We emphasize that g[μ] consists of f, F1, . . . , Fμ−1,
such that no μ-th differentiation is needed.

Recall further that the rank conditions from Definition 2 of [10] were introduced
for linear DAEs. For nonlinear DAEs we consider the linearization, following the
reasoning that the nonlinear DAE has index μ iff the linearized DAE has it, cf. [21].

3 Defining Projectors with the Derivative Array

In order to characterize the different components, for

G
[k]
L := G

[k]
(z0)

(z∗0, z∗1, . . . , z∗k , t∗)

G
[k]
R := G

[k]
(z1,...,zk)

(z∗0, z∗1, . . . , z∗k , t∗)

we have a closer look onto the matrix

G[k] :=
(
G
[k]
L G

[k]
R

)
, (3.1)

where L and R stand for left- and right-hand side, respectively. For the sake of
simplicity, in the following we also drop the argument t∗ for the projectors and Q

and P .
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– To decouple the undifferentiated component Qx for k = 1, . . . , μ, we consider
an orthogonal basis2 B

[k]
R with the property ker B

[k]
R = im G

[k]
R and define the

projector Tk as the orthogonal projector onto

ker

(
P

B
[k]
R G

[k]
L

)
=: im Tk.

Consequently, Tkx corresponds to the part of the undifferentiated component Qx

that, after k-1 differentiations, cannot yet be represented as a function of (Px, t).
Note that, by definition, Tk 	= 0 for k < μ and Tμ = 0, cf. [10].

– To characterize the different parts of the differentiated component Px, we further
decouple G[k] in each step k into G

[k]
L P and G

[k]
L Q and consider

(
Q 0 0

G
[k]
L P G

[k]
L Q G

[k]
R

)
.

With this decoupling from [11] in mind, we consider an orthogonal basis3

B
[k]
LQ−R with

ker B
[k]
LQ−R = im

(
G
[k]
L Q G

[k]
R

)

and finally define the orthogonal projector Vk onto

ker

(
Q

B
[k]
LQ−RG

[k]
L

)
=: im Vk.

Then Vkx represents the part of the differentiated components Px that is not
determined by the constraints resulting after k-1 differentiations. By construc-
tion, the degree of freedom d is rank Vμ. In accordance with our previous work
we define

Π := Vμ.

2Instead of a basis, any matrix W
[k]
R with ker W

[k]
R = im G

[k]
R could be used in this context,

especially a projector. According to our implementation in InitDAE [8, 13] , we consider a basis
here.
3Again, instead of a basis, any matrix W

[k]
LQ−R with ker W

[k]
LQ−R = im G

[k]
LQ−R could be used in

this context, analogously as for B[k]R .
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Note that, also by construction, we have QVk = 0 for all k and, hence, Zk =
P − Vk results to be a projector:

Zk · Zk = (P − Vk)(P − Vk) = P − 2 · PVk + Vk = P − Vk = Zk.

Consequently, Zkx describes the differentiated components that are determined
by constraints resulting after k-1 differentiation and, in particular, (P −Π)x =
Zμx corresponds to the differentiated components that are determined by
constraints after μ-1 differentiations.

According to Theorem 1 in [10], it holds

Tk = Q0Tk = TkQ0 = Tk−1Tk = TkTk−1, (3.2)

and it can be proved analogously that

Vk = P0Vk = VkP0 = Vk−1Vk = VkVk−1. (3.3)

Therefore, for Zk = P − Vk, Uk := Q − Tk , x = Px + Qx we can consider the
decoupling

Px = PZ1x + V1Z2x + V2Z3x + . . .+ Vμ−2Zμ−1x +Πx, (3.4)

Qx = Q0U1x + T1U2x + T2U3x + . . .+ Tμ−2Uμ−1x + Tμ−1x. (3.5)

Example 3.1 Let us consider the DAE resulting from the exothermic reactor model
(cf. [25]), also described in [2]:

C′ = K1(C0 − C)− R,

T ′ = K1(T0 − T )+K2R −K3(T − TC),

0 = R −K3e−
K4
T C,

0 = C − u,

where K1, K2, K3, K4 are constants, C0 and T0 are the feed reactant concentration
and feed temperature (assumed to be known functions). The variables C and T are
the corresponding quantities in the product, u(t) is an input function prescribing
C, R is the reaction rate per unit volume, and TC is the temperature of the cooling
medium. The corresponding projectors can be found in Table 1. The index is three
and since Π = 0, the degree of freedom is zero and no initial values can be
prescribed in this case.

Note that although for this nonlinear example all the projectors from Table 1 are
constant, in general they may depend on (z∗0, z∗1, . . . , z∗k , t∗).
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Table 1 Projectors
associated with the derivative
array analysis for the
exothermic reactor model
(Example 3.1)

x = (C, T ,R, TC)

A Q =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

G[1] T1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

, V1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

G[2] T2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

, V2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

G[3] T3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

, V3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠
=: Π

4 Properties of the Orthogonal Projector Π

To simplify the notation, we introduce matrices N and W fulfilling

N := B
[μ]
R G

[μ]
L , ker W = im NQ, (4.1)

where W can be an arbitrary matrix (e.g. an orthogonal basis or projector).
Consequently, the orthogonal projector Π fulfills

ker

(
Q

WN

)
= ker Q ∩ ker WN = im Π.

According to the index definition, it further holds

ker

(
P

N

)
= ker

(
Π

N

)
= {0} .
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Consequently, Lemma A.1 from the Appendix implies that there exists a function
ϕ4 such that

(I −Π)x = ϕ4(Πx, t). (4.2)

In [11, 12] we have shown that, under suitable assumptions, the constrained
optimization problem

min
∥∥P(z0 − α)

∥∥
2 (4.3)

subject to g[μ](z0, z1, . . . , zμ, t0) = 0, (4.4)

turns out to compute consistent initial values fulfilling

Π(z0 − α) = 0.

In this sense, the consistent initialization computed by (4.3)–(4.4) corresponds to

z0 = Πα + ϕ4(Πα, t0).

In the following, we pursue this idea for linear DAEs in order to obtain an associated
ODE explicitly.

5 Linear DAEs

In this section we consider linear DAEs with constant or time-dependent coefficient
matrices of the form

A(t)x ′ + B(t)x = q(t), (5.1)

which are regular on an open finite interval I according to the definition introduced
in [10]. This implies that all the projectors introduced in the above sections have
constant rank on I and can be interpreted as projector functions in dependence of
t . Recall further that therefore this regularity assumption also excludes so-called
harmless critical points like the one described in Example 2.71 from [21]. With the
notation from (4.1), the explicit and hidden constraints can then be described in
terms of

N(t)x = s(t) := B
[μ]
R (t)

⎛
⎜⎜⎜⎜⎝

q(t)

q ′(t)
...

q(μ−1)(t)

⎞
⎟⎟⎟⎟⎠

. (5.2)
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Recall further that for linear DAEs

W(t)N(t)x = W(t)N(t)P (t)x = W(t)s(t)

represents the constraints that restrict P(t)x. For simplicity, we will drop the
argument t in the following.

For our purposes, we basically consider the orthogonal splittings

P = PΠ + P(I −Π) = Π + (P −Π), I = Π + (I −Π)

and assume that the coefficients A and B of (5.1) are as smooth as needed for the
pseudo-inverses used below. For a detailed discussion on the properties of time-
dependent pseudo-inverses in an analogous context we refer to [21, Proposition
A.17], [23].

Note that there are some relations between Π and the projector Πμ−1 from
Chapter 2.4.2 in [21]. In fact, by definition, for index-2 DAEs I−Π results to be the
orthogonal projector along im Π1 = ker (I−Π1), i.e., ker (I−Π) = ker (I−Π1).

In the case that the index is greater than two, the relationship between Π and
Πμ−1 seems to be more complex. For a better appraisal, we start comparing the
definitions of explicit ODEs related to a DAE that result from the different concepts.

5.1 On Explicit ODEs Associated with a DAE

In the literature, there are several explicit ODEs that are associated with DAEs, in
particular:

– The completion ODE, or underlying ODE, is an explicit ODE for the complete
vector x that is associated with the differential index concept. It can be extracted
from the derivative array (cf., e.g., [2, 19] and the references therein) and depends
on the derivatives of q up to the order μ:

x ′ = ϕc(x, q, q
′, . . . , q(μ)),

for a suitable function ϕc.
– The inherent explicit regular ODE (IERODE) is closely related to the tractability

index concept. It is formulated for ui := Πμ−1x ∈ R
n, where Πμ−1 is a suitably

defined projector fulfilling rank Πμ−1 = d . It lives in R
n, n ≥ d and is unique

in the scope of fine decoupling (see [21, 24] and the references therein). The
projector Πμ−1 is precisely chosen such that the IERODE does not depend on
derivatives of q , i.e.,

(Πμ−1x)
′ = ϕi(Πμ−1x, q), or, u′i = ϕi(ui, q),

for ui : I → R
n and a suitable function ϕi .
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– An essential underlying ODEs (EUODEs) has minimal size d (cf. [1, 24] and
the references therein). There may be several EUODEs living in a transformed
space with dimension d . EUODEs are also free of derivatives of q and can be
considered a condensed IERODE, cf. [24]. We will represent EUODEs in terms
of

u′e = ϕe(ue, q)

for ue : I → R
d and a suitable function ϕe.

In this section, we consider a closely related definition of explicit ODEs:

– An orthogonally projected explicit ODE (OPE-ODE) obtained from the deriva-
tive array of a DAE is the explicit ODE formulated for up := Πx ∈ R

n

for the orthogonal projector Π discussed in Sect. 4. An OPE-ODE lives in R
n,

n ≥ rank Π = d and may depend on derivatives of q up to the order μ:

(Πx)′ = ϕp(Πx, q, q ′, . . . , q(μ)),

or

u′p = ϕp(up, q, q
′, . . . , q(μ)),

for up : I → R
n and a suitable function ϕp.

– Essential orthogonally projected explicit ODEs (EOPE-ODEs) are corresponding
condensed OPE-ODEs with minimal size rank Π . They can also depend on
derivatives of q in general. We will represent EOPE-ODEs in terms of

u′ep = ϕep(uep, q, q
′, . . . , q(μ))

for uep : I → R
d for d = rank Π and a suitable function ϕep.

The following Lemma generalizes Lemma 2.27 from [21], that is formulated
there for IERODEs i.e. for Πp = Πμ−1, in a more general manner, such that we can
apply it also for OPE-ODEs, i.e. for Πp = Π :

Lemma 5.1 Let Πp be a projector with Πp ∈ C1(I,Rn×n) and u ∈ C1(I,Rn) be
a solution of an ODE of the form

u′ −Π ′pu+ΠpC(t)u = Πpc(t) (5.3)

for suitable C(t), c(t), t ∈ I. Then the subspace im Πp is an invariant subspace for
the ODE (5.3), i.e., the following assertion is valid for the solutions u ∈ C1(I,Rn) :

u(t∗) ∈ im Πp(t∗), with a certain t∗ ∈ I ⇔ u(t) ∈ im Πp(t) for all t ∈ I.
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Proof This proof follows the steps of Lemma 2.27 in [21], which traces back to
[18]. Let ū ∈ C1(I,Rn) denote the unique solution of

ū′ −Π ′p(t)ū+Πp(t)C(t)ū = Πp(t)c(t), (5.4)

ū(t∗) = Πp(t∗)α (5.5)

for an arbitrary α ∈ R
n. If we multiply (5.4) and (5.5) by (I − Πp(t)) and (I −

Πp(t∗)), respectively, then we obtain

(I −Πp(t))ū
′ − (I −Πp(t))Π

′
p(t)ū = 0,

(I −Πp(t∗))ū(t∗) = 0.

For the function v̄ := (I −Πp)ū ∈ C1(I,Rn) with

v̄′ = (I −Πp)
′ū+ (I −Πp)Π

′
pū
′

then

0 = v̄′ − (I −Πp)
′ū− (I −Πp)Π

′
p︸ ︷︷ ︸

−(I−Πp)′Πp

ū = v̄′ − (I −Πp)
′(I −Πp)ū

and, therefore, v̄′ − (I −Πp)
′v̄ = 0 and v̄(t∗) = 0 hold. Consequently, v̄ vanishes

identically, implying ū = Πpu(t). �

In the following, we focus in OPE-ODEs since they are specially relevant

for the analysis of the Taylor series method discussed in [13]. Since automatic
differentiation is used there, the higher order derivatives can perfectly be handled
for sufficiently smooth DAEs. This is a fundamental difference to other integration
schemes, which require a special treatment of these derivatives in general.

5.2 A Closer Look at the Constraints

With the results from the Appendix, the constraints (5.2) can be split into different
parts with regard to P(t) and Π(t). Again, we assume that all pseudo-inverses are
as smooth as needed and drop the argument t for the sake of simplicity.

– On the one hand, we consider the constraints for Px

WNx = Ws, (5.6)
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which leads to

(P −Π)x = (WN)+(WN)x = (WN)+Ws, (5.7)

where (. . .)+ denotes the Moore-Penrose inverse.
– On the other hand, we reformulate (5.2), obtaining

N(I −Π)x = s −NΠx.

According to Corollary A.5 from the Appendix, the multiplication by (N(I −
Π))+ provides the representation

(I −Π)x = (N(I −Π)
)+

(s −NΠx). (5.8)

Note that this particularly yields

Qx = Q
(
N(I −Π)

)+
(s −NΠx).

Therefore, if Πx is known, then (I −Π)x can be computed accordingly. On that
account, we deduce a projected explicit ODE for Πx in the following.

5.3 Obtaining an Orthogonally Projected Explicit ODE for
u = Πx

Now we show how to obtain a orthogonally projected explicit ODE (OPE-ODE) for
Πx in four steps.

(i) Reformulation of the derivative with the projector P

For this step, we suppose that there exists a matrix-valued function Â(t) such
that Â(t)A(t) = P(t). To construct such a matrix different approaches can
may be possible:

– If A is constant, for r = rank A and the SVD

A = Udiag (σ1, . . . , σr , 0, . . . , 0)V T ,

the nonsingular matrix Â can be defined by

Â = V diag (
1

σ1
, . . . ,

1

σr

, 1, . . . , 1)UT ,

since then the property ÂA = P is given by construction. If A(t) is a time-
dependent matrix with constant rank whose elements are analytic functions
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of t , then Â(t) may be constructed analogously as above using the analytic
SVD, cf. [3].

– In case that

A(t) = P(t)C(t)P (t)

holds for a positive definite matrix C(t), then also the nonsingular matrix

Â(t) := (P(t)C(t)P (t) +Q(t)
)−1

can be considered.
– In general, a singular matrix Â(t) can be defined by

(AT (t)A(t)+Q(t))−1AT (t),

since

P(t) = (AT (t)A(t)+Q(t))−1(AT (t)A(t)+Q(t))P (t)

= (AT (t)A(t)+Q(t))−1AT (t)A(t).

By definition, the multiplication of (5.1) by Â(t) leads to

(Px)′ + B(i)x = q(i) (5.9)

for

B(i) := ÂB + P ′, q(i) := Âq,

where we dropped again the arguments for readability, and drop them also in
the next steps.

Note that for a nonsingular matrix Â, (5.9) is a DAE and that for a singular
matrix Â it is only the part of a DAE which is required for our forthcoming
considerations.

(ii) Reformulation of the derivative with the projector Π

If we use Eq. (5.7) and the splitting

(Px)′ = (Πx)′ + ((P −Π)x)′,

then Eq. (5.9) leads to

(Πx)′ + B(i)x = q(ii) (5.10)
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for

q(ii) = q(i) − ((WN)+Ws)′,

provided that ((WN)+Ws) is differentiable.
(iii) Formulation of an ODE in terms of Πx

With Eq. (5.8), in Eq. (5.10) we consider the splitting

B(i)x = B(i)(Πx + (N(I −Π)
)+

(s − NΠx)︸ ︷︷ ︸
=(I−Π)x

).

Consequently, for

B(iii) := B(i)(I −
(
N(I −Π)

)+
N)Π,

q(iii) := q(ii) − B(i)

(
N(I −Π)

)+
s,

we obtain the ODE

(Πx)′ + B(iii)(Πx) = q(iii). (5.11)

(iv) Formulation of an invariant ODE for u = Πx

If we finally multiply (5.11) by Π(t), suppose that Π is differentiable and use
(Πx)′ = (ΠΠx)′ = Π ′(Πx) +Π(Πx)′, the orthogonally projected explicit
ODE (OPE-ODE)

(Πx)′ −Π ′(Πx)+ΠC(t)(Πx) = Πc(t) (5.12)

results for

C(t) = B(iii) = (ÂB + P ′)(I − (N(I −Π))+N)Π (5.13)

c(t) = q(iii) = Âq − ((WN)+Ws)′ − (ÂB + P ′)(N(I −Π))+s (5.14)

in the invariant subspace im Π , cf. Lemma 5.1.

Summarizing, we have proved the following result:

Theorem 5.2 Let the DAE (5.1) be regular with index μ such that the constraints
can be described by (5.2). Let us further assume that the coefficients A and B of
(5.1) are as smooth as needed for the used pseudo-inverses, leading to sufficiently
smooth expressions, in particular to differentiable ((WN)+Ws), and smoothly
differentiable P and Π . Then a solution x = Πx + (I − Π)x of the DAE can
be determined

– considering an initial value problem for the ODE (5.12) in the invariant subspace
im Π in order to obtain Πx, and

– computing (I −Π)x afterwards according to (5.8).
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Remark 5.1 In general we allow for (5.6) that

WNx = Ws = φ(q, . . . , q(μ−1))

and, therefore,

c(t) = ĉ(t, q, q ′, . . . , q(μ)),

such that ϕp and ϕep may depend on derivatives of q up to order μ. However, for the
classes of DAEs inspected rigorously in [9, 10] we obtain Vμ = Vμ−1, consequently
Zμ = Zμ−1, and therefore

WNx = Ws = φ(q, . . . , q(μ−2))

and

c(t) = ĉ(t, q, q ′, . . . , q(μ−1)).

This holds particularly for properly stated linear DAEs of index μ ≤ 2 and linear
DAEs with constant coefficient matrices with an arbitrary index. Consequently, for
these classes of DAEs, ϕp and ϕep depend on derivatives of q up to order μ-1.

5.4 Illustrative Examples

Example 5.1 We start illustrating our approach with a small index-2 example,
which is slightly more general than the one discussed in [10].

⎛
⎜⎝

1 1 0
1 2 0
0 0 0

⎞
⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎝
x1

x2

x3

⎞
⎟⎠
′

+
⎛
⎜⎝

1 0 a

1 1 1
1 2 0

⎞
⎟⎠

︸ ︷︷ ︸
B

⎛
⎜⎝
x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝
q1

q2

q3

⎞
⎟⎠ (5.15)

for functions q1(t), q2(t), q3(t) and a parameter a. According to the analysis shown
in Table 2, the differentiation index is 2 and the constraints can be described by

(
1 2 0
1 1 1

)

︸ ︷︷ ︸
=:N

⎛
⎜⎝
x1

x2

x3

⎞
⎟⎠ =

(
q3

q2 − q ′3

)

︸ ︷︷ ︸
=:s

.
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Table 2 Projectors
associated with the derivative
array analysis for
Example 5.1

x = (x1, x2, x3)

A Q =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎠, P =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎟⎠

G[1] T1 =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎠, V1 = 1

5

⎛
⎜⎜⎝

4 −2 0

−2 1 0

0 0 0

⎞
⎟⎟⎠

G[2] T2 =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ , V2 = 1

5

⎛
⎜⎜⎝

4 −2 0

−2 1 0

0 0 0

⎞
⎟⎟⎠ =: Π

Consequently,

NQ =
(

0 0 0
0 0 1

)
, W =

(
1 0
)
, WN = WNP =

(
1 2 0

)
,

(WN)+WN = 1

5

⎛
⎜⎝

1
2
0

⎞
⎟⎠
(

1 2 0
)
= 1

5

⎛
⎜⎝

1 2 0
2 4 0
0 0 0

⎞
⎟⎠ = (P −Π),

N(I −Π) =
(

1 2 0
3
5

6
5 1

)
, (N(I −Π))+ =

⎛
⎜⎜⎜⎝

1
5 0
2
5 0

− 3
5 1

⎞
⎟⎟⎟⎠ ,

(N(I −Π))+N(I −Π) =

⎛
⎜⎜⎜⎝

1
5

2
5 0

2
5

4
5 0

0 0 1

⎞
⎟⎟⎟⎠ = (I −Π),

(I − (N(I −Π))+N) = 1

5

⎛
⎜⎝

4 −2 0
−2 1 0
−2 1 0

⎞
⎟⎠ .

With

Â =
⎛
⎜⎝

2 −1 0
−1 1 0
0 0 1

⎞
⎟⎠ , ÂB =

⎛
⎜⎝

1 −1 2 a − 1
0 1 1− a

1 2 0

⎞
⎟⎠
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the OPE-ODE described by Eq. (5.12) reads

⎛
⎜⎜⎝

1

5

⎛
⎜⎝

4 −2 0
−2 1 0
0 0 0

⎞
⎟⎠ x

⎞
⎟⎟⎠

′

+ (2− a)
1

5

⎛
⎜⎝

4 −2 0
−2 1 0
0 0 0

⎞
⎟⎠ x =

⎛
⎜⎝
r1

r2

r3

⎞
⎟⎠

for

⎛
⎜⎝
r1

r2

r3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

2q1 − 2aq2 − 2
5 (1− 3a) q3

−q1 + aq2 + 1
5 (1− 3a) q3

0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

(2a − 6
5 )

−( 3
5 − a)

0

⎞
⎟⎟⎟⎠ q ′3.

Hence, an EOPE-ODE can be formulated for uep := 2x1 − x2:

u′ep + (2− a)uep = −5r2. (5.16)

Once this ODE is solved, the solution of the original DAE can be computed using

(I −Π)x = 1

5

⎛
⎜⎝

x1 + 2 x2

2 x1 + 4 x2

5x3

⎞
⎟⎠ = 1

5

⎛
⎜⎝

q3

2q3

q2 − q ′3 − 3q3 − (2x1 − x2)

⎞
⎟⎠ = ϕ4(Πx, t).

For this example, the matrices defined in [21], page 23 ff., which are part of the
tractability matrix sequence, read:

G2 =
⎛
⎜⎝

2 a 4 a − 1 a

a + 1 2 a + 2 1
1 2 0

⎞
⎟⎠ , G−1

2 =
⎛
⎜⎝

2 −2 a 2 a2 − 2 a + 1
−1 a a − a2

0 1 −a − 1

⎞
⎟⎠ ,

Π1 =
⎛
⎜⎝

2− 2 a 2− 4 a 0
a − 1 2 a − 1 0

0 0 0

⎞
⎟⎠ .

Consequently, for ui = Π1x the IERODE reads:

u′i +
⎛
⎜⎝

2 a2 − 6 a + 4 4 a2 − 10 a + 4 0
−a2 + 3 a − 2 −2 a2 + 5 a − 2 0

0 0 0

⎞
⎟⎠ui =

⎛
⎜⎝

2 −2 a 2 a2 − 2 a + 4
5

−1 a −a2 + a − 2
5

0 0 0

⎞
⎟⎠

⎛
⎜⎝
q1

q2

q3

⎞
⎟⎠
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Since it holds for ue = (a − 1)x1 + (2a − 1)x2 that

Π1x = ui =
⎛
⎜⎝
−2ue

ue

0

⎞
⎟⎠ ,

it suffices to consider the EUODE

u′e+(−a2+3 a−2)(−2ue)+(−2 a2+5 a−2)ue = −q1+aq2+(−a2+a− 2

5
)q3,

i.e.,

u′e + (2− a)ue = −q1 + aq2 + (−a2 + a − 2

5
)q3.

Note that in contrast to (5.16), this ODE does not depend on derivatives of the right-
hand side.

Example 5.2 Let us consider again Example 1.1. Since T3 	= 0 and T4 = 0, the
index is 4 and we obtain Π = V4, cf. Table 3. Consequently, the associated EOPE-
ODE we obtain coincides with the one discussed in [22, 24]:

x ′1 − αx1 = q1 + q2,1 − (q2,2 − (q2,4 − q ′2,4)′)′.

In contrast, according to [22, 24], with

G4 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 α −α2 α3

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

, Π3 :=

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 −α α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

the EUODE (without derivatives of q) results to be

u′e − αue = q1 + q2,1 − αq2,2 + α2q2,3 − α3q2,4

for

ue = x1 + x3 − αx4 + α2x5.

Remark 5.2 Observe that, as expected, in Examples 5.1 and 5.2 the spectra of the
EUODE and the EOPE-ODE coincide. This has to be given due to stability reasons.
Indeed, for q1 ≡ q2 ≡ q3 ≡ q4 ≡ q5 ≡ 0 we obtain x2 ≡ x3 ≡ x4 ≡ x5 ≡ 0 and
therefore ue(t) = x1(t) for all t .

A more general class of linear DAEs with constant coefficients that includes
Example 5.2 is discussed in the next Sect. 5.5, see Example 5.3.
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Table 3 Projectors
associated with the derivative
array analysis for
Example 5.2

x = (x1, x2, x3, x4, x5)

A Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

G[1] T1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

G[2] T2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

G[3] T3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

G[4] T4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
=: Π

5.5 Examples for Linear DAEs

To facilitate the understanding of our approach, we show the differences between

– the introduced orthogonal decoupling, leading to an OEPE-ODE that involves
derivatives of the right-hand side, and

– a decoupling leading to an IERODE that precisely does not involve any deriva-
tives of the right-hand side

for the Kronecker Canonical Form and a slightly more general class of DAEs, which
particularly includes Examples 1.1 and 5.2.
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5.5.1 Kronecker Canonical Form (KCF)

A linear differential-algebraic equation with constant coefficients and regular matrix
pair can be transformed by a premultiplication of a nonsingular matrix and a linear
coordinate change into a DAE in Kronecker canonical form (KCF), i.e., a DAE of
the form

(
In1 0
0 N

)
x ′ +

(
W 0
0 In2

)
x = q(t) (5.17)

for x(t) ∈ R
n, an arbitrary W ∈ R

n1×n1 , a nilpotent matrix N ∈ R
n2×n2 with

nilpotency-index μ, i.e., Nμ−1 	= 0, Nμ = 0, n = n1 + n2, and identity matrices
In1 ∈ R

n1×n1 and In2 ∈ R
n2×n2 , cf. [17]. Rewriting the equations as

x ′1 +Wx1 = q1(t), (5.18)

Nx ′2 + x2 = q2(t), (5.19)

for x1(t) ∈ R
n1 , x2(t) ∈ R

n2 , Eq. (5.18) corresponds to the inherent ODE and, by a
recursive approach, the so-called pure DAE corresponding to Eq. (5.19) leads to the
constraints

x2 = q2(t)−Nx ′2 = q2(t)−N (q ′2(t)−Nx ′2) = · · · =
μ−1∑
j=0

(−1)jN j q
(j)

2 (t).

5.5.2 Π for DAEs in KCF

We consider QN := I −N+N , PN = I −QN and obtain the projectors

Q =
(

0
QN

)
, P =

(
I

PN

)
.

The Jacobian matrix (3.1) of the derivative array reads

G[k] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W I

I N
W I

I N
. . .

. . .

W I

I N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
G
[k]
L G

[k]
R

)
.
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For index μ DAEs, i.e., Nμ = 0, a basis B
[μ]
R with ker B

[μ]
R = im G

[μ]
R is given by

B
[μ]
R =

(
0 I 0 −N 0 N 2 0 −N 3 · · · (−1)μ−1Nμ−1

)
.

Therefore, according to (4.1), N := B
[μ]
R G

[μ]
L =

(
0 I

)
and

Π =
(
I

0

)
, B(I − (N(I −Π))+N)Π = BΠ =

(
W

0

)
,

as expected. The corresponding projectors for the tractability index concept can be
found in Section 1.2.6 from [21]. In this particular case, Π and Πμ−1 coincide and
the OPE-ODE for Πx is the IERODE as well.

5.5.3 ODEs for Slightly More General DAEs

Consider the DAE
(
In1 0
0 N

)
x ′ +

(
W1 W2

0 In2

)
x = q(t). (5.20)

Analogously as above, we obtain

x2 =
μ−1∑
j=0

(−1)jN j q
(j)

2 (t).

Obtaining the OPE-ODE for Πx corresponds to substituting this into the first block
of equations, i.e.,

x ′1 +W1x1 = −W2

μ−1∑
j=0

(−1)jN j q
(j)
2 (t)+ q.

In fact, it holds

G[k] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1 W2 I

I N
W1 W2 I

I N
. . .

. . .

W1 W2 I

I N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
G
[k]
L G

[k]
R

)
.
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Therefore, for the index μ DAEs, a basis B
[μ]
R with ker B

[μ]
R = im G

[μ]
R is given

again by

B
[μ]
R =

(
0 I 0 −N 0 N 2 0 −N 3 · · · (−1)μ−1Nμ−1

)
.

Consequently, N , Π and BΠ are the same as above for DAEs in KCF, as expected.
However, the projectors related to the tractability index concept, are different, since
the OPE-ODE for Πx is not an IERODE.

For illustrative reasons, we show how the IERODE can be obtained for this
particular class of DAEs without the tractability index sequence. We start noticing
that we can substitute

x2 = −Nx ′2 + q2

into the first block of equations, which leads to

(
In1 −W2N
0 N

)
x ′ +

(
W1 0
0 In2

)
x =

(
q1 −W2q2

q2

)
.

This corresponds to a multiplication from the left-hand side by

(
In1 −W2

0 In2

)
.

If we now define x1p as follows

x =
(
I W2N
0 I

)(
I −W2N
0 I

)
x

︸ ︷︷ ︸
=:xp1

=
(
I W2N
0 I

)
xp1,

then we obtain
(
In1 −W2N
0 N

)
x ′ =

(
In1 0
0 N

)
(xp1)

′

and thus
(
In1 0
0 N

)
(xp1)

′ +
(
W1 W1W2N
0 In2

)
x1p =

(
q1 −W2q2

q2

)
.
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This procedure can be repeated if we multiply from the left-hand side by

(
In1 −W1W2N
0 In2

)

to obtain
(
In1 −W1W2N 2

0 N

)
(x1p)

′ +
(
W1 0
0 In2

)
x1p =

(
q1 −W2q2 −W1W2Nq2

q2

)
.

If we repeat this analogously until the nilpotency index is reached, then we obtain

(
In1 0
0 N

)
(xp(μ−1))

′ +
(
W1 0
0 In2

)
xp(μ−1) =

(
q1 −∑μ−1

j=0 (W1)
jW2N j q2

q2

)

for

xp(μ−1) =
μ−1∏
j=1

(
In1 Wj−1

1 W2N j

0 In2

)
x =

(
In1

∑μ−1
j=1 Wj−1

1 W2N j

0 In2

)
x.

Example 5.3 For the Examples 1.1 and 5.2 this means

W1 = (−α), W2 =
(
−1 0 0 0

)
, N =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ ,

(
q1

q2

)
=

⎛
⎜⎜⎜⎜⎜⎝

q1

q2,1

q2,2

q2,3

q2,4

⎞
⎟⎟⎟⎟⎟⎠

,

and therefore it holds
(

1
μ−1∑
j=1

Wj−1
1 W2N j

)
x =

(
1 0 1 −α α2

)
x = x1 + x3 − αx4 + α2x5,

−
μ−1∑
j=0

(W1)
jW2N j q2 =

(
1 −α α2 −α3

)
q2 = q2,1 − αq2,2 + α2q2,3 − α3q2,4.

Consequently, we obtain the IERODE and EUODE that are not a OPE-ODE or
EOPE-ODE for Πx, respectively.
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6 Modified Nodal Analysis (MNA)

For the equations resulting in circuit simulation with the conventional MNA,
Lemma A.6 permits an easy interpretation of the representation of Π described
already in [5] and the projector PQ1 given in [16].

Using the same notation as in [5, 16], the conventional MNA for circuits without
controlled sources leads to equations of the form

ACC(AT
Ce, t)ACe

′ + ARr(A
T
Re, t)+ ALjL + AV jV + AI i(t) = 0,

L(jL, t)j
′
L − AT

Le = 0,

AT
V − v(t) = 0,

for incidence matrices AC,AR,AV ,AL,AI , suitable given functions C,L, r, v, i,
and the unknown functions (e, jL, jV ). If we suppose that C(AT

Ce, t), L(jL, t) and

G(u, t) := ∂r(u,t)
∂u

are positive definite, in [5] it was shown that the projector Π is
constant and depends only on the topological properties of the network.

For the description, we merely require projectors with

im QC = ker AT
C, im QCRV = ker (ACARAV )T , im Q̄V−C = im AT

VQC.

Analogously to [6] we define

Q :=
⎛
⎜⎝
QC 0 0
0 0 0
0 0 I

⎞
⎟⎠ , T = T1 :=

⎛
⎜⎝
QCRV 0 0

0 0 0
0 0 Q̄V−C

⎞
⎟⎠ ,

but assume now that these projectors are orthogonal. Let us focus on the index-2
case, i.e. T1 	= 0, see Table 4. Due to the symmetry of the equations we can further
define

H̄1 :=
⎛
⎜⎝
ACAT

C 0 0
0 I 0
0 0 0

⎞
⎟⎠+Q

H1(A
T
Ce, jL, t) :=

⎛
⎜⎝
ACC(AT

Ce, t)A
T
C 0 0

0 L(jL, t) 0
0 0 0

⎞
⎟⎠+Q

WN :=
⎛
⎜⎝

0 QT
CRV AL 0

0 0 0
Q̄T

V−CAT
V 0 0

⎞
⎟⎠ ,

H̄2 := (WN)(WN)T + (I − T )
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Table 4 Projectors associated with the derivative array analysis for the conventional MNA
equations

x = (e, jL, jV )

Index 1

A Q =

⎛
⎜⎜⎝
QC 0 0

0 0 0

0 0 I

⎞
⎟⎟⎠, P =

⎛
⎜⎜⎝
PC 0 0

0 I 0

0 0 0

⎞
⎟⎟⎠

G[1] T1 =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠, V1 = P =

⎛
⎜⎜⎝
PC 0 0

0 I 0

0 0 0

⎞
⎟⎟⎠ =: Π

Index 2

A Q =

⎛
⎜⎜⎝
QC 0 0

0 0 0

0 0 I

⎞
⎟⎟⎠, P =

⎛
⎜⎜⎝
PC 0 0

0 I 0

0 0 0

⎞
⎟⎟⎠

G[1] T1 =

⎛
⎜⎜⎝
QCRV 0 0

0 0 0

0 0 Q̄V−C

⎞
⎟⎟⎠, V1 = P − (WN)T H̄2

−1
(WN)

G[2] T2 =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠, V2 = P − (WN)T H̄2

−1
(WN) =: Π

Recall that the index is 1, iff T1 = 0, i.e. QCRV = 0 (if there is no cut-set consisting of inductances
and/or current sources only) and Q̄V−C = 0 (there is no loop consisting of capacitances and
voltage sources). Oterwise, the index is 2, cf. [16]

=
⎛
⎜⎝
QT

CRV ALA
T
LQCRV + PCRV 0 0

0 I 0
0 0 Q̄T

V−CAT
V AV Q̄V−C + P̄V−C

⎞
⎟⎠

=:
⎛
⎜⎝
(H̄2)(1,1) 0 0

0 I 0
0 0 (H̄2)(3,3)

⎞
⎟⎠ ,

H2(A
T
Ce, jL, t) := (WN)H−1

1 (AT
Ce, jL, t)(WN)T + (I − T ).
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By construction, these matrices are nonsingular and H̄2 is symmetric such that the
projector Π described already in [5] results to be the orthogonal projector Π , since

Z2 = Z1 = (WN)+(WN) = (WN)T H̄2
−1

(WN)

=

⎛
⎜⎜⎜⎝

AV Q̄V−C
(
(H̄2)(3,3)

)−1
Q̄V−CAT

V 0 0

0 AT
LQCRV

(
(H̄2)(1,1)

)−1
QT

CRVAL 0

0 0 0

⎞
⎟⎟⎟⎠ ,

and therefore the orthogonal projector

Π = P − (WN)T H̄2
−1

(WN)

=

⎛
⎜⎜⎜⎜⎝

PC − AV Q̄V−C
(
(H̄2)(3,3)

)−1
Q̄V−CAT

V 0 0

0 I − AT
LQCRV

(
(H̄2)(1,1)

)−1
QT

CRV AL 0

0 0 0

⎞
⎟⎟⎟⎟⎠

results to be constant. In contrast, in [16] it was shown that

Π1(A
T
Ce, jL, t) = P −

(
H1(A

T
Ce, jL, t)

)−1
(WN)T

(
H2(A

T
Ce, jL, t)

)−1
(WN).

This projector is neither orthogonal nor constant in general. However, by construc-
tion it holds that ker Π = ker Π1, cf. Lemma A.6.

7 Summary

In the present paper, we developed a new decoupling of DAEs that was obtained
with orthogonal projectors and the derivative array.

The discussed projectors characterize the dependence of the different com-
ponents on derivatives of the right-hand side. Moreover, they turned out to be
constant for several examples from applications. Consequently, the components can
be described easily and the verification of beneficial structural properties in the
equations becomes simple. In fact, often higher-index components Tkx appear only
linearly, cf. [6], or in a restricted nonlinear form [7].

The presented decoupling of linear DAEs provides an orthogonally projected
explicit ODE (OPE-ODE) that is described in terms of a specific orthogonal projec-
tor. The consideration of this particular OPE-ODE permits a better understanding
of projected integration methods, in particular the Taylor series method described in
[13] and [14].
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The approach was applied to several examples, in particular to the equations
from the exothermic reactor model discussed in [25], the MNA equations and DAEs
in Kronecker canonical form. An application to the well-known index-5 DAE of
the robotic arm can be found in [15] in this volume. Altogether, we illustrated
that the introduced decoupling presents a valuable tool to analyze the structure of
DAEs from various fields of applications. The algorithms for the computation were
implemented in Python and are available online, cf. [8, 13].

Appendix: Linear Algebra Toolbox

In this appendix, we summarize some results concerning the relationship of
(orthogonal) projectors and constraints.

Lemma A.1 ([10]) Consider a pair of projectors P,Q ∈ R
n×n, P = I −Q.

1. For a matrix N ∈ R
m×n and a vector b ∈ im N , the linear system of equations

Nz = b

uniquely determines Qz as a linear function of Pz and b iff

ker

(
P

N

)
= {0}. (A.1)

2. For GL ∈ R
mG×n, GR ∈ R

mG×p, a projector WR along im GR , and for b ∈
im (GL GR), the linear system of equations

(
GL GR

)(
z1

z2

)
= b, z1 ∈ R

n, z2 ∈ R
p

uniquely determines Qz1 as a linear function of Pz1 and b iff, for N := WRGL,

ker

(
P

N

)
= {0}. (A.2)

A proof can be found in [10] (Lemma 1).

Theorem A.2 ([11]) Suppose that an arbitrary matrix N ∈ R
m×n and complemen-

tary projectors Q, P := I −Q ∈ R
n×n fulfilling

ker

(
P

N

)
= {0}
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are given, and that W is an arbitrary matrix with the property ker W = im NQ

such that WN = WNP . Then all projectors Π onto

ker

(
Q

WN

)
= ker Q ∩ ker WN

fulfill

ker

(
Π

N

)
= {0} .

A proof that is based on the SVD can be found in [11], cf. Theorem 3.

Lemma A.3 Consider an arbitrary matrix N ∈ R
m×n and a pair of complementary

orthogonal projectors Q, P := I −Q ∈ R
n×n. Then it holds

(
P

NQ

)+
=
(
P (NQ)+

)
.

Proof For r := rank (NQ), the singular value decomposition NQ = UΣV T leads
to

NQ = NQ ·Q = UΣV T ·Q = UΣ

(
Ir 0
0 0

)
V T Q = UΣ

(
Ir 0
0 0

)
V T .

Hence,

(
Ir 0
0 0

)
V T =

(
Ir 0
0 0

)
V T Q and V

(
Ir 0
0 0

)
= QV

(
Ir 0
0 0

)

and

(NQ)+ = VΣ+UT = Q · VΣ+UT = Q(NQ)+,

such that

P · (NQ)+ = 0,
(
(NQ)+

)T · P = 0. (A.3)

With the properties (A.3), the four Moore-Penrose conditions for

A :=
(

P

NQ

)
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can be verified easily:

1.

AA+A =
(

P

NQ(NQ)+NQ

)
= A.

2.

A+AA+ =
(
P (NQ)+NQ(NQ)+

)
= A+.

3.

AA+ =
(
P 0
0 (NQ)(NQ)+

)
= (AA+)T .

4.

A+A = P + (NQ)+(NQ) = PT + ((NQ)+(NQ))T = (A+A)T . �


Corollary A.4 If, additionally to the assumptions of Lemma A.3, the property

ker

(
P

N

)
= {0}

is given, then

(NQ)+NQ = Q

holds.

Proof From

{0} = ker

(
P

N

)
= ker

(
P

NQ

)

it follows that, in the proof of Lemma A.3, we have

I = A+A = P + (NQ)+(NQ)

such that (NQ)+(NQ) = Q must hold. �

Corollary A.5 If the assumptions of Corollary A.4 are given and we consider an
arbitrary matrix Wwith the property ker W = im NQ, then, for the orthogonal
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projector Π fulfilling

ker

(
Q

WN

)
= ker Q ∩ ker WN = im Π,

we have

I −Π = (N(I −Π))+N(I −Π) = (I −Π)(N(I −Π))+N(I −Π) (A.4)

and

I −Π = Q+ (WN)+(WN), (A.5)

where the latter representation implies

P −Π = (WN)+(WN).

Proof Since

ker

(
P

N

)
= ker

(
Π

N

)
= ker

(
Π

N(I −Π)

)
= {0} ,

property (A.4) follows directly from Corollary A.4. Moreover, by the definition of
Π , Lemma A.4 implies

I −Π =
(

Q

WN

)+ (
Q

WN

)
= Q+ (WN)+(WN). �


Let us now focus on some relationships used in Sect. 6.

Lemma A.6

1. If A is an arbitrary matrix, Q is the orthogonal projector onto ker A, then, for
any positive definite matrix C, the matrix

H1 := ATCA+Q

is nonsingular and positive definite.
2. We assume further that N is a matrix fulfilling

ker

(
P

N

)
= {0} ,
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W is a matrix with ker W = im NQ, and

P −Π = (WN)+(WN).

Let further Q̃ be an orthogonal projector onto ker (WN)T . Then the matrix

H2 = (WN)H−1
1 (WN)T + Q̃

is nonsingular and positive definite.
3. Under these assumptions, the matrix

Ψ := H−1
1 (WN)T H−1

2 (WN)

is a projector fulfilling Ψ = Ψ · P and

Ψ · (P −Π) = Ψ, (P −Π) · Ψ = (P −Π),

i.e., ker Ψ = ker (P −Π) and therefore Ψ +Ψ = (P −Π).
4. Finally, the above equations lead to

Q+ Ψ+Ψ = I −Π

and

(WN)Ψ = WN.

Proof

1. A slightly weaker form of this lemma was proved in [16] for a specific
application. For completeness, we give a general proof here. Let z be an element
of ker H . Then we have

(AT CA+Q)z = 0.

If we multiply this equation by Q, it results that Qz = 0. Hence,

ATCAz = 0

holds. From the positive definiteness of C it follows that Az = 0, and therefore
Pz = 0. Finally, the positive definiteness of H1 follows from

H1 =
(
AT Q

) (
C 0
0 I

)

︸ ︷︷ ︸
positive definite

(
A

Q

)
and ker

(
A

Q

)
= ker A ∩ ker Q = {0} .
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2. The second assertion results directly for A = (WN)T , C = H−1
1 .

3. We focus now on the properties of Ψ :

(a) Let us first show that Ψ is a projector using P̃ := I − Q̃

Ψ · Ψ = H−1
1 (WN)T H−1

2 (WN) ·H−1
1 (WN)T︸ ︷︷ ︸

P̃H2=H2P̃

H−1
2 (WN)

= H−1
1 (WN)T H−1

2 (WN) = Ψ.

(b) We finally show

Ψ · (P −Π) = H−1
1 (WN)T H−1

2 (WN) · (WN)+(WN)

= H−1
1 (WN)T H−1

2 (WN) = Ψ,

(P −Π) · Ψ = (WN)+ (WN) ·H−1
1 (WN)T︸ ︷︷ ︸

=P̃H2

H−1
2 (WN)

= (WN)+(WN) = (P −Π).

4. The last assertions follow directly form the above representation. �

With the notation of Lemma A.6 and

ΠΨ := P − Ψ

we obtain the relations

ΠΨΠ = Π, Π ΠΨ = ΠΨ .

Note that in Sect. 6 we have shown that, for the considered index-2 DAEs,
the projector Π1 of the tractability index results to be a projector ΠΨ with these
properties.

References

1. Ascher, U.M., Petzold, L.R.: Projected implicit Runge-Kutta methods for differential-algebraic
equations. SIAM J. Numer. Anal. 28(4), 1097–1120 (1991)

2. Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. Unabridged,
Corrected Republication. SIAM, Society for Industrial and Applied Mathematics, Philadelphia
(1996)

3. Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N.K.: Numerical computation of an
analytic singular value decomposition of a matrix valued function. Numer. Math. 60(1), 1–39
(1991)



38 D. Estévez Schwarz and R. Lamour

4. Campbell, S.L.: The numerical solution of higher index linear time varying singular systems
of differential equations. SIAM J. Sci. Stat. Comput. 6, 334–348 (1985)

5. Estévez Schwarz, D.: Topological analysis for consistent initialization in cicuit simulation.
Technical Report 3, Institut für Mathematik, Humboldt-Universität zu Berlin (1999)

6. Estévez Schwarz, D.: Consistent initialization for index-2 differential algebraic equations
and its application to circuit simulation. Ph.D. Thesis, Humboldt-University, Mathematisch-
Naturwissenschaftliche Fakultät II, Berlin (2000). http://edoc.hu-berlin.de/docviews/abstract.
php?id=10218

7. Estévez Schwarz, D.: Consistent initialization for DAEs in Hessenberg form. Numer. Algo-
rithms 52(4), 629–648 (2009). https://doi.org/10.1007/s11075-009-9304-1

8. Estévez Schwarz, D., Lamour, R.: InitDAE’s documentation. https://www.mathematik.hu-
berlin.de/~lamour/software/python/InitDAE/html/

9. Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated DAEs using
automatic differentiation. Numer. Algorithms 70(4), 777–805 (2015)

10. Estévez Schwarz, D., Lamour, R.: A new projector based decoupling of linear DAEs for
monitoring singularities. Numer. Algorithms 73(2), 535–565 (2016)

11. Estévez Schwarz, D., Lamour, R.: Consistent initialization for higher-index DAEs using a
projector based minimum-norm specification. Technical Report 1, Institut für Mathematik,
Humboldt-Universität zu Berlin (2016)

12. Estévez Schwarz, D., Lamour, R.: A new approach for computing consistent initial values
and Taylor coefficients for DAEs using projector-based constrained optimization. Numer.
Algorithms 78(2), 355–377 (2018)

13. Estévez Schwarz, D., Lamour, R.: InitDAE: Computation of consistent values, index deter-
mination and diagnosis of singularities of DAEs using automatic differentiation in Python. J.
Comput. Appl. Math. (2019). https://doi.org/10.1016/j.cam.2019.112486

14. Estévez Schwarz, D., Lamour, R.: Projected explicit and implicit Taylor series methods for
DAEs. Technical Report, Institut für Mathematik, Humboldt-Universität zu Berlin (2019)

15. Estévez Schwarz, D., Lamour, R., März, R.: Singularities of the Robotic Arm DAE. In:
Progress in Differential-Algebraic Equations II. Differential-Algebraic Equations Forum
(DAE-F). Springer, Berlin (2020)

16. Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences
for the MNA. Int. J. Circuit Theory Appl. 28(2), 131–162 (2000)

17. Gantmacher, F.: The Theory of Matrices. Chelsea House, Philadelphia (1960)
18. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment.

Teubner-Texte zur Mathematik, vol. 88. B.G. Teubner Verlagsgesellschaft, Leipzig (1986)
19. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)
20. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations - Analysis and Numerical Solu-

tion. EMS Publishing House, Zürich (2006)
21. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based

Analysis. Differential-Algebraic Equations Forum, no. 1. Springer, Berlin (2013)
22. Linh, V.H., März, R.: Adjoint pairs of differential-algebraic equations and their Lyapunov

exponents. J. Dyn. Differ. Eq. 29(2), 655–684 (2017)
23. März, R.: Differential-algebraic equations from a functional-analytic viewpoint: a survey. In:

Surveys in Differential-Algebraic Equations II, pp. 163–285. Springer, Cham (2015)
24. März, R.: New answers to an old question in the theory of differential-algebraic equations:

essential underlying ODE versus inherent ODE. J. Comput. Appl. Math. 316, 271–286 (2017)
25. Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat.

Comput. 9(2), 213–231 (1988)

http://edoc.hu-berlin.de/docviews/abstract.php?id=10218
http://edoc.hu-berlin.de/docviews/abstract.php?id=10218
https://doi.org/10.1007/s11075-009-9304-1
https://www.mathematik.hu-berlin.de/~lamour/software/python/InitDAE/html/
https://www.mathematik.hu-berlin.de/~lamour/software/python/InitDAE/html/
https://doi.org/10.1016/j.cam.2019.112486


Basic Characteristics of
Differential-Algebraic Operators

Michael Hanke and Roswitha März

Abstract We investgate differential-algebraic operators, first with constant and
then with variable coefficients, which act in Lebesgue spaces. We provide con-
ditions concerning basic characteristics such as normal solvability (closed range),
Fredholmness et cetera. In particular, we prove that actually the operators having
tractability index zero and one constitute the class of normally solvable differential-
algebraic operators.
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This paper addresses differential-algebraic operators (DA operators) associated with
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with sufficiently smooth coefficient functions E,F : [a, b] → R
k×m. In particular,

we provide basic properties of DA operators,

T : domT ⊂ L2((a, b),Rm)→ L2((a, b),Rk), (1.2)

domT = {x ∈ L2((a, b),Rm)|Ex ∈ H 1((a, b),Rk), (Ex)(a) = 0}, (1.3)

T x = (Ex)′ − (F + E′)x, x ∈ domT . (1.4)

and their adjoint counterparts T ∗. Specifically, we ask for closedness of the
operators, describe their ranges and nullspaces, provide closed range conditions and
conditions for them to be Fredholm. Having in mind, that the Moore-Penrose inverse
T + is bounded, if and only if im T is closed, our main interest is directed to the
closed range property, or equivalently, the normal solvability of T .1

We refer to the early papers [7, 17] for first findings concerning closedness and
normal solvability of DA operators acting in spaces of integrable functions. Further
contributions to DA operators acting in various function spaces are surveyed in [12].
Quite recently, a capacious analysis of operators T with constant matrix-coefficients
E and F has been elaborated in [13, 14] by applying the Quasi–Kronecker form for
matrix pencils, which decouples the matrix pencil into an underdetermined part, a
regular part and an overdetermined part, [3]. We revisit some questions in this regard
in Sect. 2.

Note that in [13, 14] operators acting in Lebesgue spaces Lp, 1 ≤ p < ∞, are
considered. Nevertheless, the corresponding criteria result as conditions in terms of
the given matrices E and F . That is why we here confine the presentation to the
Hilbert space L2 only.

The condition

imF(t) ⊆ imE(t)+ F(t) ker E(t), t ∈ [a, b], (A)

plays its role in several issues, e.g., [2, 12, 13]. It characterizes the class of
strangeness free DAEs, see [12, Pages 192–193] and one could readily consider this
condition as necessary and sufficient for normal solvability. Actually, Condition (A)
is sufficient for normal solvability, but not necessary, [12, Theorem 3.2, Example
3.8], see also Example 1.2 below.

Several sufficient conditions for normal solvability are provided in [12], each of
which characterizes a special class of DAEs with tractability index zero and one in
the sense of [10, Definition 10.2]. It is conjectured, [12, Remark 3.2], that all DAEs

1We emphasize that we are interested in coefficient functions being as smooth as necessary but,
on the other hand, as nonsmooth as possible. If E and F are real-analytic, and T acts from
C∞([a, b],Rm) to C∞([a, b],Rk ), then the range of T is simply always closed and each regular
DA operator is surjective and has a finite-dimensional nullspace, and hence, it is Fredholm, see [5,
Section 3.6], also [12, Section 2.4].
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with tractability index zero and one yield normally solvable operators. In Sect. 3 we
will verify this conjecture.

The paper is organized as follows. In Sect. 2, we discuss different index notions
for matrix pencils in view of operator properties and provide then with Theorem 2.3
a new version of the results from [13, 14] in terms of matrix sequences originally
given in terms of the Quasi-Kronecker form. At the same time, the matrix sequences
serve as an easy introduction to deal with matrix function sequences later on. On
this background, the new statements in Sect. 3 concerning time-varying coefficients
become much more perspicuous. Section 3 provides basic properties of the corre-
sponding DA operators, in particular, Theorem 3.4 on normal solvability. We add
some ideas concerning modifications and generalizations in Sect. 4. For an easier
reading we collect some material from [10] concerning the projector based analysis
and the tractability index of general possibly nonregular DAEs in the appendix.

To gain a first insight, we finish this section by considering operators associated
with simplest singular constant coefficient DAEs.

Example 1.1 For the operator T associated with the flat pencil sE−F of size 2×3
given by

E =
[

1 0 0
0 1 0

]
, F =

[
0 1 0
0 0 1

]
, T x = (Ex)′ − Fx =

[
x′1 − x2

x′2 − x3

]
, x ∈ dom T ,

dom T = {x ∈ L2((a, b),R3)| x1, x2 ∈ H 1((a, b),R), x1(a) = 0, x2(a) = 0},

the leading matrix E has full row-rank such that Condition (A) is trivially valid.
Writing T x = q as

[
x ′1
x ′2

]
=
[

0 1
0 0

][
x1

x2

]
+
[

q1

q2 + x3

]
, x1(a) = 0, x2(a) = 0,

we immediately conclude that T is surjective, im T = L2((a, b),R2), and

kerT = {x ∈ domT |x ′1 = x2, x
′
2 = x3}

= {x ∈ domT |x2 =
∫
a

x3(s)ds, x1 =
∫
a

∫ s

a

x3(τ )dτds}.

Since kerT is infinite-dimensional, even though the DA operator T is normally
solvable it fails to be Fredholm. �

Example 1.2 For the operator associated with a steep pencil of size 3× 2 given by

T x = (

⎡
⎢⎢⎣

1 0

0 1

0 0

⎤
⎥⎥⎦ x)′ −

⎡
⎢⎢⎣

0 0

1 0

0 1

⎤
⎥⎥⎦ x =

⎡
⎢⎢⎣

x ′1
x ′2 − x1

−x2

⎤
⎥⎥⎦ , domT = {x ∈ H 1((a, b),R2)|x(a) = 0},
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the leading matrix E has full column-rank and Condition (A) is not valid. Observe
that T is injective, that is, kerT = {0}.

Writing T x = q as

x ′1 = q1,

x ′2 − x1 = q2, x1(a) = 0,

−x2 = q3, x2(a) = 0,

we see that

imT = {q ∈L2((a, b),R3)|q3 ∈ H 1((a, b),R), q3(a) = 0,

q ′3 + q2 ∈ H 1((a, b),R), (q ′3 + q2)(a) = 0, q1 = −(q2 + q ′3)′}.

By straightforward computation we show that im T is closed. For that, let q∗ ∈
L2((a, b),R3) be given as well as a sequence qn ∈ im T , n ∈ N, tending to q∗
in L2. Denote wn = q ′n,3 + qn,2 such that wn ∈ H 1((a, b),R), wn(a) = 0, and
further w′n = −qn,1, wn = −

∫
a qn,1(s)ds. It follows that wn→ w∗ :=

∫
a q∗,1(s)ds

in H 1((a, b),R) and w∗(a) = 0. Next we observe that qn,3 → q∗,3, q ′n,3 = wn −
qn,2 → w∗ − q∗,2 in L2. This yields q∗,3 ∈ H 1((a, b),R), q ′∗,3 = w∗ − q∗,2 and
0 = w′n + qn,1 → w′∗ + q∗,1, thus q∗,1 + (q ′∗,3 + q∗,2)′ = 0. Finally, owing to the

continuous embedding H 1 ↪→ C we obtain |q∗,3(a)| = |q∗,3(a) − qn,3(a)| → 0,
thus |q∗,3(a)| = 0 which completes the proof that q∗ belongs to imT , thus im T is
closed.2 �

Example 1.3 For the operator S associated with the singular pair (−ET , FT ), with
E,F from Example 1.1,

Sy = −(ET y)′ − FT y = −(
⎡
⎢⎣

1 0
0 1
0 0

⎤
⎥⎦ y)′ −

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦ y =

⎡
⎢⎣
−y ′1

−y ′2 − y1

−y2

⎤
⎥⎦ ,

domS = {y ∈ H 1((a, b),R2)|y(b) = 0},

2Since Condition (A) is not valid here, it fails to be a necessary condition of normal solvability,
and we are confronted with a counterexample to [13, Theorem 1(iii)] claiming that T is normally
solvable if and only if Condition (A) is valid. It should be noted that [13, Theorem 1] has already
been corrected by the authors in [14].
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the leading matrix has full column-rank and Condition (A) is not valid again. S is
injective. Writing Sy = p as

−y ′1 = p1,

−y ′2 − y1 = p2, y1(b) = 0,

−y2 = p3, y2(b) = 0,

we see that

imS = {p ∈L2((a, b),R3)|p3 ∈ H 1((a, b),R), p3(b) = 0,

p′3 − p2 ∈ H 1((a, b),R), p′3(b)− p2(b) = 0, p1 + (p′3 − p2)
′ = 0},

which is closed by analogous arguments as used in Example 1.2. Moreover, with
the flat operator T from Example 1.1, regarding ET = ET EE+ and the boundary
conditions, we have3

(T x, y) = ((Ex)′ − Fx, y) = (EE+(Ex)′ − Fx, y) = ((Ex)′, EE+y)− (x, F T y)

= −(Ex, (EE+y)′)− (x, F T y) = −(x, ET (EE+y)′)− (x, F T y)

= −(x, (ET y)′)− (x, F T y) = (x, Sy), x ∈ dom T, y ∈ dom S.

Both operators, T and S are densely defined and closed, and they form an adjoint
pair, i.e., S = T ∗. As an adjoint pair of such operators, T and S = T ∗ have
simultaneously a closed image or not. We know from Example 1.1 that T is
surjective and, hence, im S is also closed. Therefore, Condition (A) is not necessary
for the normal solvability of S, too. It is also easy to directly check the now expected
relations

im T = (kerS)⊥, kerT = (im S)⊥. �


2 Constant-Coefficient DA Operators, Matrix Pencils
and Different Index Notions

For any given matrices E,F ∈ R
k×m, E singular but nontrivial, the ordered pair

(E, F ) stands for the pencil sE − F, s ∈ R. If k = m and the polynomial in
s, det(sE − F), does not vanish identically, then the pencil is called regular, and
otherwise singular.

3Here and in the following, (·, ·) denotes the scalar product in L2((a, b),Rn) for any n.
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There exist nonsingular matrices L ∈ R
k×k and K ∈ R

m×m transforming the
pencil (E, F ) into Quasi-Kronecker form, e.g., [2, 3], such that for all s,

sLEK −L FK = L (sE − F)K = diag(sEreg − Freg, sEsing − Fsing),

(2.1)

in which sEreg − Freg = diag( sI −W, sN − I ), with nilpotent N , is a regular
pencil and sEsing − Fsing is a singular pencil of the special form

sEsing − Fsing = diag( sKε1 − Lε1 , . . . , sKερ − Lερ , sKT
γ1
− LT

γ1
, . . . , sKT

γσ
− LT

γσ
),

(2.2)

Lκ =

⎡
⎢⎢⎣

0 1
. . .

. . .

0 1

⎤
⎥⎥⎦ ∈ R

κ×(κ+1), Kκ =

⎡
⎢⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎥⎦ ∈ R

κ×(κ+1), (2.3)

with nonnegative integers

ε1 ≥ · · · ≥ ερ ≥ 0, 0 ≤ γ1 ≤ · · · ≤ γσ ,

which are called right and left Kronecker indices , also column minimal indices and
row minimal indices. Here, we share the convention to allow blocks of sizes 0 × 1
and 1× 0 and declare the 1× 1 blocks diag(sK0 − L0, sK

T
0 − LT

0 ) to stand for the
1× 1 blocks s0− 0.4

There are different index notions concerning the index of the general matrix
pencil (E, F ). In [15, 16] the index of the pencil (E, F ) is defined as the index
of the regular part, that is,

μ = ind(E, F ) = ind(Ereg, Freg) = ind(N), ind(Esing, Fsing) = 0. (2.4)

It is argued for this notion in [16] that the index of the matrix pencil is the maximum
length of [. . . ] a chain of differentiators. The blocks of the singular part correspond
to undetermined and overdetermined ODEs, respectively.

In contrast, [2, Definition 3.2] involves the maximal left Kronecker index γρ into
a further index notion stating

μBR = indBR(E, F ) = max{ind(Ereg , Freg), max
κ=1,...,ρ

γκ }, indBR(Esing, Fsing) = max
κ=1,...,ρ

γκ .

4We refer to [3, 16] for details and further references. Here we note only that all involved matrices
have solely real entries. In contrast, the Kronecker normal form is not necessarily real.
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For regular pencils one has μBR = μ. As observed in [2, Page 19], one has μBR ≤ 1
if and only if Condition (A) is given. By Examples (1.1)–(1.3) we already know this
index notion to be unsuitable for the characterization of normal solvability of the
operator T .

On the other hand, the tractability index introduced in [10, Chapter 10] for
possibly nonregular DAEs, is fully consistent with the notion from [16]. The
tractability index μtrac of the matrix pencil (E, F ) is defined by means of an
admissible matrix sequence,

G0 = E, G1 = G0 − FQ0, Gi = Gi−1 − FΠi−2Qi−1, i = 2, . . . , r + 2,

in which r = rankE, the matrix Qi ∈ R
m×m represents an admissible projector of

R
m onto kerGi , and further Π0 = I − Q0,Πi = Πi−1(I − Qi). One possibility

for Q0 is the orthoprojector I − E+E. Regarding that imE + F kerE = im E −
F kerE = imG1 we can express Condition (A) as im F ⊆ imG1.

By construction, cf. [10, Chapter 10], it holds that Gr+1 = Gr+2 and kerΠr =
kerΠr+1, and further

im G0 ⊆ im G1 ⊆ · · · ⊆ imGr+1 = imGr+2 ⊆ im[E F ], (2.5)

kerΠ0 ⊆ kerΠ1 ⊆ · · · ⊆ kerΠr = kerΠr+1 ⊆ R
m. (2.6)

The tractability index of the matrix pencil (E, F )5 is defined to be μtrac= κ , where
κ ≤ r + 1 is the smallest integer indicating the maximal possible range in the
sequence (2.5) such that imGκ = im Gr+1, that is,

im Gκ−1 ⊂ imGκ = · · · = imGr+1 = imGr+2 ⊆ im[E F ],

if κ ≥ 1, and, as the case may be, with κ = 0,

imG0 = imG1 = · · · = im Gr+1 = im Gr+2 ⊆ im[E F ].

Aside from that, there is an additional index in this context, which we designate by
μad = ν, where ν ≤ r is the smallest integer such that kerΠν = kerΠr in the
sequence (2.6). Later on it will become clear that the subscript ad actually stands
for adjoint-differentiation.

For regular matrix pencils, the tractability index equals the Kronecker index, that
is, μtrac(Ereg, Freg) = ind(Ereg, Freg) = μ, e.g., [10, Chapter 1]. Then, one has
m = k and the matrix Gμ is nonsingular, imGμ = im[E, F ] = R

m.
We return to DA operators T associated with possibly singular pencils (E, F ),

and assign the different indices of the pencil to the operator. We consider some
examples of singular pencils and the corresponding DA operators.

5This is a special case of Definition 3.1 below.
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Example 2.1 Consider the operator T generated by the singular matrix pencil
(E, F )

E = 1

2

[
1 −1
−1 1

]
, F = 1

2

[
−1 −1
1 1

]
.

It is shown to be closed and normally solvable in [17] by a quite involved reasoning
via singular perturbations. Obviously, it holds that r = 1 here. An admissible matrix
sequence reads

G0 = E, Q0 = 1

2

[
1 1
1 1

]
, Π0 = E, G1 =

[
1 0
−1 0

]
, Q1 =

[
0 0
−1 1

]
, Π1 = 0,

G1 = G2 = G3,

such that μtrac = 0 and μad = 1. Observe that here im[E F ] ⊂ R
2 is merely a

one-dimensional subspace. �

Example 2.2 We provide an admissible matrix sequence for the operator T in
Example 1.1. We begin with

G0 = E =
[

1 0 0
0 1 0

]
, F =

[
0 1 0
0 0 1

]
,Q0 =

⎡
⎢⎣

0 0 0
0 0 0
0 0 1

⎤
⎥⎦ , Π0 =

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦ ,

and derive

G1 =
[

1 0 0

0 1 −1

]
, Q1 =

⎡
⎢⎢⎣

0 0 0

0 1 0

0 1 0

⎤
⎥⎥⎦ , Π1 =

⎡
⎢⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ ,

G2 =
[

1 −1 0

0 1 −1

]
, Q2 =

⎡
⎢⎢⎣

1 0 0

1 0 0

1 0 0

⎤
⎥⎥⎦ , Π2 = 0, G3 = G2,Q3 = Q2,Π3 = Π2,G4 = G3.

All matrices Gi have rank 2, so that μtrac = 0 results. Here, obviously, regarding
that E has already full row-rank would allow immediately to conclude μtrac = 0
without recurring to the sequence. We observe further μad = 2. Regarding that the
operator S in Example 1.3 is the adjoint of T and looking at im S given there, we
know that, although im S is closed, the second derivative of a component of p is
involved. We emphasize that μad = 2 here. �
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Example 2.3 We provide an admissible matrix sequence for the operator S in
Example 1.3 which is the adjoint to the operator T in Example 1.1. We begin with

G0 = −ET = −
⎡
⎢⎣

1 0
0 1
0 0

⎤
⎥⎦ , F T =

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦ ,Q0 = 0, Π0 = I,

and obtain

G0 = G1 = G2 = G3 = G4, Π0 = Π1 = Π2 = Π3,

and therefore μtrac = 0, and μad = 0 result. Here, obviously, regarding that ET has
already full column-rank allows immediately to conclude μtrac = 0 and also μad =
0. The adjoint operator T to S, see Example 1.1, is surjective so that no derivatives
of q are involved. In this context we like to point out that we have μad = 0. �

Lemma 2.1 If κ ≥ 0 and the matrices Lκ,Kκ ∈ R

κ×(κ+1) are given by (2.3), then
the following holds:

(1) The flat singular pencil sKκ − Lκ has the indices6

μ = 0, μtrac = 0, μad = κ, μBR = 0, μstrangeness = 0.

(2) The steep singular pencils sKT
κ − LT

κ and −sKT
κ − LT

κ have the indices

μ = 0, μtrac = 0, μad = 0, μBR = κ, μstrangeness = κ.

(3) The operators T and S = T ∗ associated to the pencils sKκ−Lκ and
−sKT

κ −LT
κ are normally solvable. T is surjective and S is injective. kerT

and (im S)⊥ are infinite-dimensional. The pencils inducing T and S share the
indices μ = μtrac.

Proof The statements can be verified in a straightforward manner as it is done above
for the special case κ = 2, see Examples 1.1, 2.2, 1.2, 1.3, 2.3.

Proposition 2.2 For each matrix pencil sE − F , E,F ∈ R
k×m, it holds that μ =

μtrac

Proof The tractability index and its constituent parts are invariant with respect to
transformations, so that we may turn to the Quasi-Kronecker form (2.1). For regular
matrix pencils, μ is the Kronecker index, and the identity μ = μtrac is known, e.g.,
[10, Chapter 1]. By Lemma 2.1, for each singular part one has μ = μtrac = 0.
Constructing an admissible matrix sequence blockwise according to structure of the
Quasi-Kronecker form will complete the proof. �


6For the strangeness index we refer to [9].
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We now reformulate statements given in [13, 14] in terms of the matrix pencil and
its Quasi-Kronecker form by means of matrix sequences.

Theorem 2.3 Let the DA operator T : domT ⊂ L2((a, b),Rm)→ L2((a, b),Rk)

be associated to the matrix pencil sE − F , E,F ∈ R
k×m,

domT = {x ∈ L2((a, b),Rm)|Ex ∈ H 1((a, b),Rm), (Ex)(a) = 0}. Let μ be
the index of the matrix pencil, r = rankE and G0,G1, . . . ,Gr+2 be an admissible
matrix sequence. Then the following statements hold true:

(1) T and its adjoint S = T ∗ share their index μ.
(2) T is normally solvable, if and only if imG1 is maximal in (2.5), that is, μ ≤ 1
(3) T is surjective, if and only if im G1 = R

k .
(4) T is injective, if and only if kerGμ = {0}.
(5) T is regular, if and only if imGμ = R

k , kerGμ = {0}, m = k.
(6) T is Fredholm, if and only if T is regular with μ ≤ 1.
(7) im T is dense, if and only if imGμ = R

k.

Proof It suffices to verify the statements for a pencil in Quasi-Kronecker form.
Namely, the transformation

LEK = Ẽ, LFK = F̃ ,

is associated with [10, Section 2.3]

LGiK = G̃i, K −1QiK = Q̃i , K −1ΠiK = Π̃i , , i ≥ 0.

For the structured pencil in Quasi-Kronecker form, the matrix sequence can be
formulated to meet the same structure.

(1) This statement is well-known for regular pencils, by definition also for arbitrary
pencils.

(2) Since the singular part has index zero, see Lemma 2.1, the question reduces to
the regular part. For the regular part the statement is well-known.

(3) T is surjective if and only if each of its structural parts is surjective. This is
the case, if and only if the regular part has index μ ≤ 1, equivalently, Greg, 1
is nonsingular, and additionally, the singular part has a full-row-rank matrix
Gsing , which congruously excludes steep and zero blocks.

(4) By definition, the matrix Greg,μ is nonsingular and the corresponding Treg is
injective. Concerning the singular part, there must be a full-column-rank matrix
Gsing,0 to exclude the flat and zero blocks. It holds that Gsing,0 = . . . =
Gsing, μ owing to the steep blocks so that diag(Greg,μ,Gsing,0) is injective.

(5) A matrix pencil is regular if and only if the admissible matrix sequences
feature a nonsingular matrix Greg, μ. Singular matrix pencils are characterized
by admissible matrix sequences of singular matrices [10, Theorems 1.31 and
13.4].
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(6) Regularity excludes an infinite-dimensional nullspace and an infinite codimen-
sion. The condition μ ≤ 1 is necessary and sufficient for normal solvability
according to statement (2).

(7) im Treg is dense. For densely solvability, the steep and zero singular blocks must
be excluded. We have im Gsing,0 = . . . = imGsing, μ for the flat blocks, they
have full row-rank so that also diag(Greg,μ,Gsing,μ) is surjective. �


3 DA Operators with Time-Varying Coefficients

3.1 Preliminaries

We study in this section DA operators being closures and adjoints of the DA operator
T̊ : dom T̊ ⊂ L2((a, b),Rm)→ L2((a, b),Rk), given by

T̊ x = Ex ′ − Fx, x ∈ dom T̊ = {w ∈ H 1((a, b),Rm)|(Ew)(a) = 0},

with at least continuous coefficient functions E,F : [a, b] → R
k×m. The leading

coefficient function E has constant rank r > 0 and its nullspace kerE is a
C1-subspace in R

m. Such an operator is associated with the possibly nonregular
standard form DAE

E(t)x ′(t)− F(t)x(t) = q(t), t ∈ [a, b].

In this section we apply several routine notations and tools used in the projector
based analysis of DAEs. We refer to the appendix for a short roundup and to [10, 12]
for more details.

The basic tool of the projector based analysis consists in the construction of
admissible matrix function sequences G0, . . . ,Gr+2 : [a, b] → R

k×m, emanating
from the coefficients E,F , with G0 = E. By construction, the inclusions

imG0 ⊆ imG1 ⊆ . . . ⊆ imGr+1 = imGr+2 (3.1)

are valid pointwise. There are several special projector functions incorporated in an
admissible matrix function sequence, among them admissible projectors Qi onto
kerGi and Πi = Πi−1(I −Qi), Π0 = (I −Q0), yielding the further inclusions

kerΠ0 ⊆ kerΠ1 ⊆ . . . ⊆ kerΠr = kerΠr+1. (3.2)

Each of the time-varying subspaces in (3.1) and (3.2) has constant dimension, which
is ensured by several rank conditions. Denote ri = rankGi(t), t ∈ [a, b].
Remark 3.1 We emphasize that the admissible matrix function sequence constitutes
an immediate generalization of the admissible matrix sequence applied in Sect. 2. In
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particular, (3.1) and (3.2) are consistent with (2.5) and (2.6), respectively. Now the
time-dependencies are incorporated into the matrix function sequence. For instance,
we may express

G1 = E − FQ0 + EQ′0.

The subspaces involved in (3.1) and (3.2) are proved to be invariant with respect to
special possible choices within the construction procedure and also with respect to
the factorization of E = AD in Proposition 3.1 below.

In Sect. 2 different index notions have been discussed. We have seen that solely
the tractability index μtrac coincides in the constant coefficient case with μ defined
by (2.4) to be the Kronecker index of the regular part. This enables us to use the
simpler symbol μ for the tractability index.

Definition 3.1 Let the coefficient function pair (E, F ) have an admissible matrix
function sequence G0,G1, . . . ,Gr+2, r = rankE, ρ = r + 1.

The tractability index of (E, F ) is defined to be μ = κ , where κ ≤ ρ is the
smallest integer indicating the maximal possible range in the sequence (3.1), that is
imGκ = im Gρ . The integers 0 < r0 ≤ r1 ≤ · · · ≤ rρ = rρ+1 with ri = rankGi

are called characteristic values of (E, F ).
The additional index is defined to be μad = ν, where ν ≤ r is the smallest

integer indicating the maximal possible nullspace in the sequence (3.2), such that
kerΠν = kerΠr .

The pair (E, F ) is regular, if m = k and rμ = m and otherwise nonregular.

In regular cases and μ ≥ 1, it holds that μad = μ− 1, which is why, so far, no extra
notion μad has been used in the context of the projector based analysis of regular
DAEs.7

Definition 3.2 The tractability index μ, the characteristic values, and the additional
index μad of the DA operator T̊ and its closure T are defined as the corresponding
quantities of their coefficient pair (E, F ).

Remark 3.2 We mention that, except for the case m = k, G1 being nonsingular,
the so-called local pencils (E(t̄), F (t̄)), with frozen t̄ ∈ [a, b], are improper for
the characterization of time-varying pairs (E, F ). This well-known fact will be
underlined below by Examples 3.1 and 3.3 which are traditional textbook-examples
picked up from the monographs [4, 6, 9]. In particular, Example 3.1 shows a
nonregular pair (E, F ) with μ = 0 and local pencils being regular with Kronecker
index two. In contrast, Example 3.3 shows a regular pair (E, F ) with μ = 2 and
singular local pencils.

7Moreover, supposed the coefficients E and F are sufficiently smooth so that both, the regular
tractability index and the regular strangeness index are well defined, then it holds μ − 1 =
μstrangeness, [10, Section 2.10]. Consequently, μad = μstrangeness for regular pairs (E, F ) and
associated DAEs. In contrast, the situation is completely different in the nonregular case as
Lemma 2.1 confirmes.
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3.2 Closed DA Operators and Adjoint Pairs

We start with the DA operator T̊ : dom T̊ ⊂ L2((a, b),Rm)→ L2((a, b),Rk),

T̊ x = Ex ′ − Fx, x ∈ dom T̊ = {w ∈ H 1((a, b),Rm)|(Ew)(a) = 0}.

T̊ is unbounded and nonclosed, but densely defined. T̊ is closable since it has a
closed extension provided by Proposition 3.1 below. We look for its minimal closed
extension, the closure.

Proposition 3.1 Let E,F : [a, b] → R
k×m be continuous, kerE be a C1-

subspace, and E has constant rank r > 0. Let E = AD, with continuous
A : [a, b] → R

k×n and continuously differentiable D : [a, b] → R
n×m, be any

proper factorization of E (cf. Sect. 4.3), furthermore B := −(F + AD′).
Then the operator T : L2((a, b),Rm)→ L2((a, b),Rk) given by

T x = A(Dx)′ + Bx, x ∈ domT ,

domT = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(a) = 0},

is densely defined and represents the closure of T̊ .

Proof Let R be the continuously differentiable border projector according to (A.2)
and let A(t)− denote the pointwise generalized inverse such that A(t)−A(t) = R(t).
Regarding D(a) = A(a)−E(a) the inclusion dom T̊ ⊂ domT is evident, thus T is
an extension of T̊ and densely defined. We show that T is closed.

Consider a sequence {xi} ⊂ domT , x∗ ∈ L2((a, b),Rm), and

y∗ ∈ L2((a, b),Rk), such that xi
L2−→ x∗, T xi

L2−→ y∗.
From T xi = A(Dxi)

′ + Bxi we derive (I − AA−)(T xi − Bxi) = 0 yielding
(I − AA−)(y∗ − Bx∗) = 0 on the one hand, and, on the other hand,

(Dxi)
′ = A−T xi + R′Dxi − A−Bxi

L2−→ A−y∗ + R′Dx∗ − A−Bx∗ =: v∗.

Owing to Dxi
L2−→ Dx∗, (Dxi)

′ L2−→ v∗, it follows that Dx∗ ∈ H 1((a, b),Rn) and

(Dx∗)′ = v∗. Since now Dxi
H 1−→ Dx∗ and (Dxi)(a)=0 it results that (Dx∗)(a)=0,

and hence x∗ ∈ domT .
Considering the relations (I−AA−)(y∗−Bx∗) = 0 and (Dx∗)′ = v∗ = A−y∗+

R′Dx∗ − A−Bx∗ we obtain

A(Dx∗)′ = AA−y∗ − AA−Bx∗ = y∗ − Bx∗,

which means y∗ = T x∗ and proves the closedness of T .
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Finally, we check if T is actually the closure of T̊ . We have to show that for

each arbitrary x∗ ∈ domT there is a sequence {xi} ⊂ dom T̊ such that xi
L2−→ x∗,

T̊ xi
L2−→ T x∗.

Denote by D+ the pointwise Moore-Penrose inverse of D. Let x∗ ∈ domT . We
introduce u∗ = Dx∗ ∈ H 1((a, b),Rn), w∗ = (I − D+D)x∗ ∈ L2((a, b),Rm).
Since H 1((a, b),Rm) is dense in L2((a, b),Rm) there is a sequence {wi} ⊂
H 1((a, b),Rm) such that wi

L2−→ w∗.
Set xi := D+u∗ + (I −D+D)wi so that xi ∈ H 1((a, b),Rm) and E(a)xi(a) =

E(a)D(a)+u∗(a) = 0, thus xi ∈ dom T̊ . Moreover, we have

xi
L2−→ D+u∗ + (I −D+D)w∗ = D+Dx∗ + (I −D+D)x∗ = x∗,

T̊ xi = A(Dx∗)′ + BD+Dx∗ + B(I −D+D)wi

L2−→ A(Dx∗)′ + BD+Dx∗ + B(I −D+D)w∗ = T x∗,

which completes the proof. �

Proposition 3.2 Let E,F : [a, b] → R

k×m be continuous, kerE be a C1-
subspace, and E has constant rank r > 0. Let E = AD, with continuous
A : [a, b] → R

k×n and continuously differentiable D : [a, b] → R
n×m, be any

proper factorization of E, further B := −(F + AD′).
Then the operator S : L2((a, b),Rk)→ L2((a, b),Rm) given by

Sy = −DT (AT y)′ + BT y, y ∈ domS,

dom S = {y ∈ L2((a, b),Rk)|AT y ∈ H 1((a, b),Rn), (AT y)(b) = 0},

is densely defined, closed, and represents the adjoint of the operator T from
Proposition 3.1.

Proof The coefficient AT is continuous and im AT = (kerA)⊥ = (kerR)⊥ is
a C1-subspace in R

n, and hence, S is densely defined owing to Lemma 4.1. Its
closedness can be verified analogously to Proposition 4.2 below. We compute for
each x ∈ domT and each y ∈ domS (let 〈·, ·〉 denote the Euclidean inner product
in R

l for l = k,m, n)

(T x, y) =
∫ b

a

〈A(t)(Dx)′(t)+ B(t)x(t), y(t)〉dt

=
∫ b

a

{〈(Dx)′(t), A(t)T y(t)〉 + 〈x(t), B(t)T y(t)〉}dt
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=
∫ b

a

{−〈(Dx)(t), (AT y)′(t)〉 + 〈x(t), B(t)T y(t)〉}dt

=
∫ b

a

〈x(t),−D(t)T (AT y)′(t)+ B(t)T y(t)〉}dt = (x, Sy),

and hence, S ⊂ T ∗. The equality can be established by following the lines of proof
for simple differential operators in [8, Chapter III, Examples 2.7 and 5.31]. �

If, in addition to the assumptions in Propositions 3.1 and 3.2, the coefficient E

itself is continuously differentiable, then we can choose a proper factorization
E = AD with both A and D being continuously differentiable. Then regarding
that E = AD,D = A−E and ET = DT AT ,AT = D−T ET we find the further
representations

domT = {x ∈ L2((a, b),Rm)|Ex ∈ H 1((a, b),Rm), (Ex)(a) = 0},
domS = {y ∈ L2((a, b),Rk)|ET y ∈ H 1((a, b),Rk), (ET y)(b) = 0},

which are in line with the constant coefficient case, and

T x = A(Dx)′ + Bx = (ADx)′ − A′Dx − (F + AD′)x

= (Ex)′ − (F + E′)x, x ∈ domT , (3.3)

Sy = −DT (AT y)′ + BT y = −(DT AT y)′ +DT ′AT y − (F +D′T AT )y

= −(ET y)′ − FT y, y ∈ domS. (3.4)

Observe that, in contrast to the representations of T and S via proper factorizations
of E, the formulas (3.3) and (3.4) display no symmetry, cf. also Sect. 4.1 in this
context.

Furthermore, if E is continuously differentable, then S represents the closure of
the additional DA operator S̊ : L2([a, b],Rk)→ L2([a, b],Rm),

S̊y = −ET y ′ − (F + E′)T y, y ∈ dom S̊,

dom S̊ = {y ∈ H 1([a, b],Rk)|(ET y)(b) = 0}.

The densely defined operators T̊ and S̊ are adjoint to each other, since

(T̊ x, y) = (x, S̊y), x ∈ dom T̊ , y ∈ dom S̊.

Also T̊ and S from Proposition 3.2 are obviously adjoint to each other. S is the
unique maximal operator adjoint to T̊ , that means, the adjoint operator of T̊ , and S̊

is a restriction of S.
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Remark 3.3 The representation of the closed DA operators T and their adjoints via
properly factorized leading matrix coefficients is closely related to the concept of
DAEs with properly involved derivatives which has one origin in the desire for a
certain symmetry of the formulation of adjoint pairs of DAEs. In this context, the
notion of factorization-adjoint DAEs is introduced in [11, Definition 1].

Proposition 3.3 If the DA operator T is regular with index μ and characteristic
values 0 < r0 ≤ · · · ≤ rμ−1 = rμ = m, then its adjoint S = T ∗ is likewise so.

Proof This statement is an immediate consequence of [11, Theorem 3] concerning
the common structure of factorization-adjoint pairs of DAEs. �


We further elucidate the matter by examples. We pick up two textbook-examples
discussed, e.g., in the monographs [4, 6, 9] and consider the associated DA operators
and their adjoints.

Example 3.1 ([6, page 91],[4, page 23],[9, page 56]) The local matrix pencils of
the pair

E(t) =
[
−t t2

−1 t

]
, F (t) = −I, t ∈ [a, b],

are everywhere regular, det(sE(t) − F(t)) ≡ 1. The homogeneous DAE has an
infinite-dimensional solution space and the DAE is no longer solvable for all smooth
inhomogeneities. Using the factorization

E(t) =
[
−t
−1

] [
1 −t

]
=: A(t)D(t), B(t) := −F(t)− A(t)D′(t) =

[
1 −t
0 0

]

we turn to the closed operator

T x = A(Dx)′ + Bx, (T x)(t) =
[
−t (x1(t)− tx2(t))

′ + x1(t)− tx2(t)

−(x1(t)− tx2(t))
′

]
,

domT = {x ∈ L2([a, b],R2)|Dx ∈ H 1([a, b],R), (Dx)(a) = 0}.

The DAE has strangeness μstrangeness = 1, see [9, page 70].8 On the other hand,
its tractability index is μ = 0, since the admissible matrix function sequences are

8As already mentioned in [10, Sections 2.10 and 10.2], though, for regular DAEs, it holds that
μstrangeness = μ − 1, if μ ≥ 1, the strangeness and the tractability index are quite different for
nonregular DAEs.



Basic Characteristics of Differential-Algebraic Operators 55

stationary beginning with G0, e.g.,

G0 = E = AD, Q0(t) =
[

0 t

0 1

]
, BQ0 = 0, G0 = G1 = G2 = G3.

The characteristic values are r0 = r1 = r2 = r3 = 1, further μad = 0. The nullspace
of T reads

kerT = {x ∈ domT |x1(t) = tx2(t), t ∈ [a, b]}.
Regarding that q = T x implies Dx = q1 + t (Dx)′ = q1 − tq2, q2 = −(q1 − tq2)

′,
we find

im T = {q ∈ L2([a, b],R2)|q1 − tq2 ∈ H 1([a, b],R), (q1 − tq2)(a) = 0, q2 = −(q1 − tq2)
′}

which is a closed subspace in L2([a, b],R2). Therefore, T is normally solvable, and
this is consistent with the expectation that μ = 0 implies a closed range. �

Example 3.2 The local matrix pencil of the pair

E(t) =
[

t 1
−t2 −t

]
, F (t) =

[
−2 0
2t 0

]
, t ∈ [a, b],

is everywhere singular, det(sE(t) − F(t)) ≡ 0, but, as in Example 3.1, the
homogeneous DAE has an infinite-dimensional solution space and the DAE is no
longer solvable for all smooth inhomogeneities. Using the factorization

E(t) =
[

1
−t

] [
t 1
]
=: A(t)D(t), B(t) := −F(t)− A(t)D′(t) =

[
1 0
−t 0

]

we turn to the closed operator

Sy = A(Dy)′ + By, (Sy)(t) =
[

(ty1(t)+ y2(t))
′ + y1(t)

−t (ty1(t)+ y2(t))
′ − ty1(t)

]
,

dom S = {y ∈ L2([a, b],R2)|Dy ∈ H 1([a, b],R), (Dy)(b) = 0}.

The DAE has tractability index is μ = 0, which is documented by the admissible
matrix function sequence

G0 = E = AD, Q0(t) =
[

1 0
−t 0

]
, Π0(t) =

[
0 0
t 1

]
, G1(t) =

[
t + 1 1
−t (t + 1) −t

]
,

Q1(t) =
[
−t −1

t (t + 1) t + 1

]
, Π1 = 0, G1 = G2 = G3.
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The characteristic values are r0 = r1 = r2 = r3 = 1, and μad = 1. The nullspace
and range of S are

ker S = {y ∈ dom S| y1 = −(Dy)′}, im S = {p ∈ L2([a, b],R2)| tp1 + p2 = 0},

which are closed subspaces in L2([a, b],R2). Therefore, S is normally solvable, and
this is consistent with the expectation that μ = 0 implies a closed range. Regarding
also the operator T from Example 3.1, the relations

im T = (kerS)⊥, im S = (kerT )⊥,

can be easily checked. Taking a closer look at the operators, we find that S is the
adjoint to T , S = T ∗. This property gives rise to the expectation that also adjoint
pairs of DA operators associated with nonregular DAEs share their characteristic
values and tractability index.

Observe that T in Example 3.1 features μad = 0 and q ∈ imT is involved
together with a first derivative, whereas the operator S in the present example
shows μad = 1 and p ∈ im S is involved with no derivative. This property further
substantiates the idea mentioned above, that μad indicates derivatives involved in
the range of the adjoint operator. �

Example 3.3 ([6, page 91],[4, page. 23],[9, page 56]) The local matrix pencils of
the pair

E(t) =
[

0 0
1 −t

]
, F (t) =

[
−1 t

0 0

]
,

are singular, det(sE(t)−F(t)) ≡ 0. The homogeneous DAE has the trivial solution
only and the DAE is solvable for all sufficiently smooth inhomogeneities. The DAE
has strangeness index μstrangeness = 1, [9, page 70]. Using the factorization

E(t) =
[

0
1

][
1 −t

]
=: A(t)D(t), B(t) := −F(t)− A(t)D′(t) =

[
1 −t
0 1

]

we turn to the closed operator

T x = A(Dx)′ + Bx, (T x)(t) =
[

x1(t)− tx2(t)

(x1(t)− tx2(t))
′ + x2(t)

]
,

domT = {x ∈ L2([a, b],R2)|Dx ∈ H 1([a, b],R), (Dx)(a) = 0}.
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The DAE is regular with tractability index μ = 2, which is recognizable by the
admissible matrix function sequence

G0 = E = AD, Q0(t) =
[

0 t

0 1

]
, Π0(t) =

[
1 −t
0 0

]
,

G1(t) =
[

0 0
1 1− t

]
, Q1(t) =

[
1− t −t (1− t)

−1 t

]
, Π1 = 0,

G2(t) =
[

1 −t
1 1− t

]
,

such that r0 = r1 = 1, r2 = 2, and μad = 1. T is injective and its range is

im T = {q ∈ L2([a, b],R2)|q1 ∈ H 1([a, b],R), q1(a) = 0},

which is a nonclosed subspace in L2([a, b],R2). Therefore, T is densely solvable
and fails to be normally solvable. �

Example 3.4 The local matrix pencils of the pair

E(t) =
[

0 −1
0 t

]
, F (t) =

[
−1 0
t −1

]
,

are singular, det(sE(t)−F(t)) ≡ 0. The homogeneous DAE has the trivial solution
only and the DAE is solvable for all sufficiently smooth inhomogeneities. Using the
factorization

E(t) =
[
−1
t

] [
0 1
]
=: A(t)D(t), B(t) := −F(t)− A(t)D′(t) =

[
1 0
−t 1

]

we turn to the closed operator

Sy = A(Dy)′ + By, (Sy)(t) =
[

−y ′2(t)+ y1(t)

ty ′2(t)− ty1(t)+ y2(t)

]
,

dom S = {y ∈ L2([a, b],R2)|Dy ∈ H 1([a, b],R), (Dy)(b) = 0}.

The DAE is regular with tractability index μ = 2, which is recognizable by the
admissible matrix function sequence

G0 = E = AD, Q0(t) =
[

1 0
0 0

]
, Π0(t) =

[
0 0
0 1

]
,
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G1(t) =
[

1 −1
−t t

]
, Q1(t) =

[
0 1
0 1

]
, Π1 = 0,

G2(t) =
[

1 −1
−t t + 1

]
,

such that r0 = r1 = 1 and r2 = 2. S is injective and has the range

im S = {p ∈ L2([a, b],R2)|tp1 + p2 ∈ H 1([a, b],R), (tp1 + p2)(a) = 0},

which is a nonclosed dense subspace in L2([a, b],R2). Therefore, S is densely
solvable and fails to be normally solvable. Note that S is the adjoint operator of
T from Example 3.3. We observe that T and S = T ∗ share their tractability index
μ = 2 and the characteristic values r0 = r1 = 2, r2 = 2 as well, further we have
the additional index μad = 1, the differentiation index μD = 2 and the strangeness
index μstrangeness = 1. �


3.3 Normal Solvability and Beyond

We continue to investigate the closed DA operators T : domT ⊂ L2((a, b),Rm)→
L2((a, b),Rk) associated with the DAE

E(t)x ′(t)− F(t)x(t) = q(t), t ∈ [a, b],

with time-varying coefficients, as described by Propositions 3.1. We suppose that
an admissible matrix function sequence is given and we are looking for criteria of
normal solvability. Recall Condition (A), that is, im F ⊆ imG1, to be a sufficient
condition of normal solvability, e.g.,[12, Theorem 3.2]. At the same time, this
condition ensures tractability index μ ≤ 1. Moreover, by [12, Theorem 3.4], the
condition kerG1 ⊆ kerE is a sufficient condition of normal solvability, too. This
condition indicates index μ = 1. In what follows, we generalize these results further,
in particular [12, Proposition 3.7], and verify the conjecture stating that each closed
DA operator T which has tractability index μ ≤ 1 is normally solvable.

Theorem 3.4 Let E,F : [a, b] → R
k×m be sufficiently smooth, at least continuous

matrix valued functions, kerE be a C1-subspaces in R
m, r = rankE, ρ = r + 1. If

the pair (E, F ) has tractability index μ ≤ 1, then the following holds:

(1) The associated closed DA operator T is normally solvable and its range can be
represented in terms of an admissible matrix function sequence by

im T = {q ∈ L2((a, b),Rk)| W1q = −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ (I −W1)q)(s)ds },
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in which κ = μad + 1, W1 = I − G1G
+
1 is the orthoprojector function along

im G1, U ∈ C1([a, b],Rn×n) is given by

U ′ − (DΠκD
−)′U +DΠκ−1G

−
κ BκD

−U = 0, U(a) = I, (3.5)

and G−κ is the pointwise generalized inverse of Gκ determined by

G−κ GκG
−
κ = G−κ , GκG

−
κ Gκ = Gκ, G−κ Gκ = I −Qκ, GκG

−
κ = I −W1.

(2) If Condition (A) is valid, that is, im F(t) ⊆ im G1(t), t ∈ [a, b], then

imT = {q ∈ L2((a, b),Rk)| W1q = 0 }

(3) If imG1(t) ≡ R
k , then T is surjective.

Proof (1) We choose a proper factorization such that we can make use of the
representation

domT ={x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(a) = 0},
T x =A(Dx)′ + Bx, x ∈ domT ,

set ρ = r + 1, and form a corresponding matrix function sequence Gi ,
i = 0, . . . , ρ + 1. The operator T has index μ ≤ 1 and characteristic values
r0 ≤ r1 = · · · = rρ = rρ+1. For i ≥ 1 we introduce the orthoprojector functions
Wi = W1 and the pointwise generalized inverses G−i such that

G−i GiG
−
i = G−i , GiG

−
i Gi = Gi, G−i Gi = I −Qi, GiG

−
i = I −Wi.

Observe that, in particular, G−κ = G−κ GκG
−
κ = G−κ (I −W1) and W1Gκ = 0. By

definition we have also kerΠκ−1 = kerΠκ , thus Πκ−1 = Πκ−1Πκ .
Next, we consider an arbitrary x̂ ∈ domT and q̂ = T x̂. Owing to [10,

Proposition 10.3] we can represent

q̂ = GκD
−(DΠκx̂)

′ + Bκx̂ (3.6)

+Gκ

κ−1∑
l=0

{Qlx̂ − (I −Πl)Ql+1D
−(DΠlQl+1x̂)

′ + VlDΠl x̂ +Ul(DΠl x̂)
′}︸ ︷︷ ︸

∈ker Πκ

,

in which

Ul = −(I −Πl{Ql +Ql+1(I −Πl)Ql+1Pi}ΠlD
−,

Vl = (I −Πl{(Pl +Ql+1Ql)D
−(DΠlD

−)′ −Ql+1D
−(DΠl+1D

−)′}DΠlD
−.
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Regarding the properties W1Bκ = W1BΠκ−1 = −W1FΠκ−1 and Bκ =
BκΠκ−1 = BκΠκ−1Πκ = BκΠκ , we obtain

W1q̂ = W1Bκ x̂ = W1BκΠκ x̂ = W1BΠκx̂ = W1BD−DΠκx̂ = −W1FD−DΠκx̂.

(3.7)

Additionally, multiplication of (3.6) by DΠκ−1G
−
κ and regarding Πκ−1G

−
κ Gκ =

Πκ leads to

DΠκD
−(DΠκ x̂)

′ +DΠκ−1G
−
κ Bκ x̂ = DΠκ−1G

−
κ q̂,

thus

(DΠκ x̂)
′ − (DΠκD

−)′DΠκx̂ +DΠκ−1G
−
κ BκD

−DΠκx̂ = DΠκ−1G
−
κ q̂,

Since (Dx̂)(a) = 0 implies (DΠκ x̂)(a) = (DΠκD
−)(a)(Dx̂)(a) = 0, the function

û := DΠκx̂ satisfies the initial value problem

u′ − (DΠκD
−)′u+DΠκ−1G

−
κ BκD

−u = DΠκ−1G
−
κ q̂, u(a) = 0. (3.8)

Note that this IVP is uniquely solvable and its solution features the property u =
DΠκD

−u. We apply the fundamental solution matrix U given by (3.5) to represent

û = U

∫
a

(U−1DΠκ−1G
−
κ q̂)(s)ds.

Inserting this expression into (3.7) yields

W1q̂ = −W1FD−DΠκx̂ = −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ q̂)(s)ds

= −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ (I −W1)q̂)(s)ds. (3.9)

It results that q̂ belongs to the set A,

A = {q ∈ L2((a, b),Rk)| W1q = −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ (I −W1)q)(s)ds},

and hence im T ⊆ A.
Next we consider an arbitrary q̂ ∈ A and look for an x̂ ∈ domT such that

T x̂ = q̂ and eventually A = im T .
Given q̂ ∈ A, there is a unique solution ũ ∈ H 1((a, b),Rn) of the IVP

u′ − R′u+DG−1 BD−u = DG−1 q̂, u(a) = 0.
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It holds that ũ = Rũ. Next we introduce x̃ = (I −Q0G
−
1 B)D−ũ+Q0G

−
1 q̂ which

belongs to domT , since Dx̃ = Rũ = ũ ∈ H 1((a, b),Rn), (Dx̃)(a) = ũ(a) = 0.
Introducing also

q̃ = T x̃ = G1(D
−(Dx̃)′ +Q0x̃)+ BD−Dx̃,

we derive

q̃ = G1(D
−ũ′ +Q0x̃)+ BD−ũ

= G1(D
−{R′ũ−DG−1 BD−ũ+DG−1 q̂} −Q0G

−
1 BD−ũ+Q0G

−
1 q̂)+ BD−ũ

= G1(−P0G
−
1 BD−ũ+ P0G

−
1 q̂ −Q0G

−
1 BD−ũ+Q0G

−
1 q̂)+ BD−ũ

= G1(−G−1 BD−ũ+G−1 q̂)+ BD−ũ

= G1(−G−1 BD−ũ+G−1 q̂)+G1G
−
1 BD−ũ+W1BD−ũ

= G1G
−
1 q̂ +W1BD−ũ.

It follows that

G1G
−
1 q̃ = G1G

−
1 q̂, (3.10)

W1q̃ = W1BD−Dx̃ = W1BΠκD
−Dx̃ = W1BD−DΠκx̃ = −W1FD−DΠκx̃.

(3.11)

Owing to [10, Proposition 10.3], now applied to q̃ = T x̃, we obtain the representa-
tions

DΠκx̃ = U

∫
a

(U−1DΠκ−1G
−
κ q̃)(s)ds,

W1q̃ = −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ (I −W1)q̃)(s)ds.

Since (3.10) corresponds to (I −W1)q̃ = (I −W1)q̂ , we arrive at

W1q̃ = −W1FD−U
∫
a

(U−1DΠκ−1G
−
κ (I −W1)q̂)(s)ds = W1q̂,

and hence, q̂ = q̃ ∈ im T . This proves A = im T .
It remains to show that A is closed in L2((a, b),Rk). Consider a sequence

{ql} ⊂ A and a q∗ ∈ L2((a, b),Rk) so that ql
L2−→ q∗. We have

W1ql = −W1FD− U

∫
a

(U−1DΠκ−1G
−
κ (I −W1)ql)(s)ds

︸ ︷︷ ︸
=:ul

,
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with ul ∈ H 1((a, b),Rn), ul(a) = 0, and

u′l − (DΠκD
−)′ul +DΠκ−1G

−
κ BκD

−ul = DΠκ−1G
−
κ ql.

Set

u∗ = U

∫
a

(U−1DΠκ−1G
−
κ (I −W1)q∗)(s)ds

such that u∗ ∈ H 1((a, b),Rn), u∗(a) = 0, and ul
H 1−→ u∗. From

0 = W1ql +W1FD−ul
L2−→ W1q∗ +W1FD−u∗

it follows that W1q∗ = −W1FD−u∗, thus q∗ ∈ A, which completes the proof of
Statement (1). Statement (2) is a simple consequence of (1), since Condition (A) is
equivalent to W1F = 0. Statement (3) is then evident. �

Note that the condition W1F(I − Q0) = 0 is applied in [12, Theorem 3.2], which
is equivalent to W1F = 0, and also to Condition (A). In [12, Theorem 3.4] the
condition ker(E−FQ0+EQ′0) ⊆ kerE is assumed, eqivalently, kerG1 ⊆ kerE. In
both cases, the DA operator has evidently index μ ≤ 1. In contrast, [12, Proposition
3.7] uses the condition W1FQ1 = 0 together with the somewhat nontransparent
condition [12, (3.31) on page 198]. These conditions can now be verified under the
assumptions of Theorem 3.4.

Theorem 3.5 : Let E,F : [a, b] → R
k×m be sufficiently smooth, at least

continuous matrix valued functions, kerE be a C1-subspaces in R
m, r = rankE,

ρ = r + 1. If the pair (E, F ) has tractability index μ ≤ 1, then the following
holds:

(1) The associated closed DA operator T is normally solvable and its nullspace
can be represented in terms of an admissible matrix function sequence by

kerT = {x ∈ domT | x = (I −Q0G
−
1 B)D−V

∫
a

(V −1Dω)(s)ds+Q0ω,

ω ∈ L2((a, b),Rk), G1ω = 0},

in which V ∈ C1([a, b],Rn×n) is given by

V ′ − R′U +DG−1 BD−V = 0, V (a) = I, (3.12)

and G−1 is the pointwise generalized inverse of G1 determined by

G−1 G1G
−
1 = G−1 , G1G

−
1 G1 = G1, G−1 G1 = I −Q1, G1G

−
1 = I −W1.
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(2) If kerG1 = {0}, then T is injective.

Proof (1) T is normally solvable owing to Theorem 3.4. Consider x ∈ kerT . T x=0
yields G1{D−(Dx)′ +Q0x} + BD−Dx = 0, thus

G1{D−(Dx)′ +Q0x +G−1 BD−Dx} = 0, (3.13)

W1BD−Dx = 0. (3.14)

We derive from (3.13) that

D−(Dx)′ +Q0x +G−1 BD−Dx = ω ∈ L2((a, b),Rk), G1ω = 0,

and further

(Dx)′ − R′Dx +DG−1 BD−Dx = Dω, Q0x +Q0G
−
1 BD−Dx = Q0ω,

leading to the representation

x = D−Dx +Q0x = (I −Q0G
−
1 B)D−V

∫
a

(V −1Dω)(s)ds+Q0ω.

On the other hand, for each arbitrary ω ∈ L2((a, b),Rk), with G1ω = 0, the IVP

v′ − R′ +DG−1 BD−v = Dω, v(a) = 0

has a unique solution v∈H 1((a, b),Rn) and v=Rv. Set x=(I−Q0G
−
1 B)D−v+Q0ω

such that Dx = DD−v = Rv = v ∈ H 1((a, b),Rn) and (Dx)(a) = 0, thus
x ∈ domT . Next we compute

T x = G1{D−v′ +Q0x +G−1 BD−v} +W1BD−v = G1ω +W1BD−v

= W1BD−v = q̃.

It follows that q̃ belongs to im T . Owing to the representation of imT in Theo-
rem 3.4, and regarding that (I −W1)q̃ = 0 we arrive at q̃ = 0, and hence T x = 0.
This completes the proof of the first statement. The second statement is then a direct
consequence. �


Corollary 3.6 Under the assumptions of Theorems 3.4 and 3.5, T is a Fredholm
operator if T is regular and μ ≤ 1.

Remark 3.4 We have shown that the index condition μ ≤ 1 is sufficient for normal
solvability. This condition is supposably also necessary. This is shown for time-
varying regular pairs (E, F ) and for arbitrary constant pairs (E, F ). A proof of the
general case would be very technical and voluminous.
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Remark 3.5 We conjecture that the statements of Theorem 2.3 are valid in the same
way also for DA operators with time-varying coefficients.

4 Generalizations, Modifications, and Further Comments

4.1 Continuous A and D, with Continuously Differentiable
Border Projector Function

It has been proposed in [1] to compose the leading term of a DAE at the very
beginning by means of a well-matched pair of continuous matrix functions A and D

featuring C1-subspaces kerA and imD which satisfy the transversality condition
(A.1). This pursues and generalizes the approach of [6] and means, instead of
applying the standard form Ex ′ − Fx = q one should start at once from a DAE
with properly stated leading term, A(Dx)′ + Bx = q , see also [10, 11]. We quote
from [1, Page 785]: the new form brings more symmetry, transparency and beauty
into the theory.

The results concerning the DA operators T and S of the present paper can be
immediately modified to be valid for given forms with properly stated leading terms
owing to the following lemma and proposition.

Lemma 4.1 Let D : [a, b] → R
n×m be continuous and let imD be a C1-subspace

in R
n. Then each of the sets

M = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn)},
Ma = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(a) = 0},
Mb = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(b) = 0},

Ma,b = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(a) = 0, (Dx)(b) = 0},

is dense in L2((a, b),Rm).

Proof Denote by R̃ : [a, b] → R
n×n the orthoprojector function such that

R̃(t)2 = R̃(t) = R̃(t)T and im R̃(t) = im D(t), t ∈ [a, b]. Then R̃ is continuously
differentiable and inherits the constant rank r from D. We may represent R̃ = DD+,
where D+ is the pointwise Moore–Penrose inverse of D. Note that D+ : [a, b] →
R

m×n itself is continuous and the projector function Q = I − D+D : [a, b] →
R

m×m onto the nullspace of D is also continuous. Denote P = I −Q.
For any x∗ ∈ L2((a, b),Rm), we have Qx∗ ∈ L2((a, b),Rm), Px∗ ∈

L2((a, b),Rm), Dx∗ ∈ L2((a, b),Rn), and the decomposition x∗ = Px∗ +Qx∗ =
D+Dx∗ + Qx∗ as well. Since H 1

0 := {u ∈ H 1((a, b),Rn)|u(a) = 0, u(b) = 0}
is dense in L2((a, b),Rn), there is a sequence {ul} ⊂ H 1

0 , ul
L2−→ Dx∗. Now
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xl := D+ul + Qx∗ belongs to M ,Ma , Mb and Ma,b, since Dxl = DD+ul =
R̃ul ∈ H 1((a, b),Rn). Finally, xl

L2−→ D+Dx∗ + Qx∗ = x∗, which completes the
proof. �

Proposition 4.2 Let A : [a, b] → R

k×n, D : [a, b] → R
n×m, B : [a, b] →

R
k×m be continuous, let kerA and im D be C1-subspaces in R

n, and let the
transversality condition (A.1) be valid. Then the DA operator T : L2((a, b),Rm)→
L2((a, b),Rk) given by

T x = A(Dx)′ + Bx, x ∈ domT ,

domT = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn), (Dx)(a) = 0},
is densely defined and closed.

Proof T is densely defined owing to Lemma 4.1. We show that T is closed. The
following reasoning follows closely the lines of the proof of Proposition 3.1.

Let R be the continuously differentiable border projector according to (A.1) and
let A− denote a continuous pointwise generalized inverse such that A(t)−A(t) =
R(t), t ∈ [a, b]. Consider a sequence {xi} ⊂ domT , x∗ ∈ L2((a, b),Rm), and

y∗ ∈ L2((a, b),Rk), such that xi
L2−→ x∗, T xi

L2−→ y∗.
From T xi = A(Dxi)

′ + Bxi we derive (I − AA−)(T xi − Bxi) = 0 yielding
(I − AA−)(y∗ − Bx∗) = 0 on the one hand, and, on the other hand,

(Dxi)
′ = A−T xi + R′Dxi − A−Bxi

L2−→ A−y∗ + R′Dx∗ − A−Bx∗ =: v∗.

Owing to Dxi
L2−→ Dx∗, (Dxi)

′ L2−→ v∗, it follows that Dx∗ ∈ H 1((a, b),Rn)

and (Dx∗)′ = v∗. Since now Dxi
H 1−→ Dx∗ and (Dxi)(a) = 0 it results that

(Dx∗)(a)=0, and hence x∗ ∈ domT .
Considering the relations (I−AA−)(y∗−Bx∗) = 0 and (Dx∗)′ = v∗ = A−y∗+

R′Dx∗ − A−Bx∗ we obtain

A(Dx∗)′ = AA−y∗ − AA−Bx∗ = y∗ − Bx∗,

which means y∗ = T x∗ and proves the closedness of T . �


4.2 Different Assignment of Boundary Conditions

One might be interested in the operator T̃ : L2((a, b),Rm)→ L2([a, b],Rk),

T̃ x = A(Dx)′ + Bx, x ∈ dom T̃ ,

dom T̃ = {x ∈ L2((a, b),Rm)|Dx ∈ H 1((a, b),Rn)},
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which is an extension of the previous DA operator T . T̃ is densely defined and
closed owing to Lemma 4.1 and Proposition 3.1. Here, we are led to the adjoint
S̃ : L2((a, b),Rk)→ L2((a, b),Rm),

S̃x = −AT (DT y)′ + BT y, y ∈ dom S̃,

dom S̃ = {y ∈ L2((a, b),Rk)|AT y ∈ H 1((a, b),Rn), (AT y)(a) = 0, (AT y)(b) = 0},

which is a restriction of the previous S and, by Lemma 4.1 and Proposition 3.1, a
closed densely defined DA operator.

We assign to T̃ the same tractability index as to T . If T has regular index μ ≤ 1,
(that is, k = m, rμ = m), then T is bijective, thus Fredholm. Then T̃ inherits the
surjectivity, but not the injectivity and ker T̃ has then dimension d = r0 = r .

If T has regular index μ > 1, then it is injective and densely solvable, and T̃ is
also densely solvable and ker T̃ has finite dimension d = m−∑μ−1

i=0 (m− ri ) < r .

4.3 Integrable Coefficients

In an earlier paper [7], integrable coefficients have been considered in the case
k = m. More precisely, in the notation of the present paper, the assumptions

E ∈ W 1,∞((a, b),Rm×m), F ∈ L∞((a, b),Rm×m),

Q ∈ W 1,∞((a, b),Rm×m)
(4.1)

for the pointwise projector Q(t) onto the nullspace kerE(t) almost everywhere are
used. Then, E is factorized into E = AD with E = A and D = P = I −Q. This
becomes a proper factorization for integrable coefficients.

Under these conditions, the operator T̊ : dom T̊ ⊂ L2((a, b),Rm) →
L2((a, b),Rm) given by

T̊ x = Ex ′ − Fx, dom T̊ = H 1((a, b),Rm)

is well-defined. In [7] it is shown that T̊ is closable, and for the closure T = T̊ it
holds

T x = E(Px)′ − (F +EP ′)x, domT = {x ∈ L2((a, b),Rm)|Px ∈ H 1((a, b),Rm)}.

It turns out that H 1
P (a, b) := domT is a Hilbert space with the scalar product

(x, x̄)H 1
P
= (x, x̄)L2 + ((Px)′, (P x̄)′)L2, x, x̄ ∈ domT .
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Appropriate boundary conditions are considered as being (finitely many) continuous
linear functionals {l1, . . . , ls} on H 1

P (a, b) thus determining a closed subspace V ⊆
H 1

P (a, b) by V = {x ∈ H 1
P (a, b)|li(x) = 0, i = 1, . . . , s}. The main result of [7]

can be summarized as follows.

Proposition 4.3 Let (4.1) be fulfilled. Moreover, let R ∈ W 1,∞((a, b),Rm×m)

be such that R(t) is a pointwise projector onto im A(t) almost everywhere.9 Set
S = I − R and B = −(F + AP ′). If H := A + SBQ is bijective for almost
every t ∈ (a, b) and H−1 ∈ L∞((a, b),Rm×m), then T |V is normally solvable and
dim kerT |V <∞ for every closed subspace V ⊆ H 1

P (a, b).

Remark 4.1

(1) A(t)+ S(t)B(t)Q(t) is bijective if and only if the matrix pencil (A(t), B(t)) is
regular and has index 1.

(2) Let the assumptions of Proposition 4.3 hold. If V is determined by finitely many
boundary conditions, then T |V is Fredholm.

Appendix

Proper Factorization and Properly Stated DAEs

We say that N is a C1- subspace in R
n, if N(t) ⊆ R

n is a time-varying subspace,
t ∈ [a, b], and the projector-valued function Q : [a, b] → R

n×n, with Q(t) =
Q(t)2 = Q(t)T , imQ(t) = N(t), t ∈ [a, b], is continuously differentiable. Note
that any C1- subspace in R

n has constant dimension.
Each continuous matrix function E : [a, b] → R

k×m with constant rank r and a
nullspace which is a C1-subspace in R

m can be factorized into E = AD so that A
is continuous, D is continuously differentiable, kerA and im D are a C1-subspace
in R

n, and

E(t) = A(t)D(t), A(t) ∈ R
k×n, D(t) ∈ R

n×m,

kerA(t)⊕ imD(t) = R
n, t ∈ [a, b]. (A.1)

A possible choice is n = m, A = E, D = E+E. If E itself is continuously
differentiable, then also the factor A can be chosen to be continuously differentiable,
for instance A = EE+, D = E. Owing to the condition (A.1) this factorization
is called proper factorization. Note that then the function R : [a, b] → R

n×n,
projecting pointwise onto im D along kerA is also continuously differentiable and

9For example, R(t) = A(t)A(t)+.
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one has

imE = im A, kerE = kerD, A = AR, D = RD. (A.2)

R is then called border-projector function.
Using any proper factorization of the leading coefficient E, the standard form

DAE

Ex ′ − Fx = q

can be rewritten with B = −(F + AD′) as DAE with properly stated leading term
or DAE with properly involved derivative,

A(Dx)′ + Bx = q.

Admissible Matrix Function Sequences

Given are at least continuous matrix functions E,F : [a, b] → R
k×m, E has a C1-

nullspace and constant rank r . We use a proper factorization E = AD, A : [a, b] →
R

k×n, D : [a, b] → R
n×m, and B = −(F +AD′). R : [a, b] :→ R

n×n denotes the
continuously differentiable projector-valued function such that im D = im R and
kerA = kerR.

Let Q0 : [a, b] → R
n×n denote any continuously differentiable projector-valued

function such that imQ0 = kerD, for instance, Q0 = I −D+D with the pointwise
Moore-Penrose inverse D+. Set P0 = I − Q0 and let D− denote the pointwise
generalized inverse of D determined by

D−DD− = D−, DD−D = D, DD− = R, D−D = P0.

Set G0 = AD, B0 = B, Π0 = P0. For a given level κ ∈ N, the sequence
G0, . . . ,Gκ is called an admissible matrix function sequence associated to the pair
(E, F ) and triple (A,D,B), respectively, e.g.,[10, Definition 2.6], if it is built by
the rule

Gi =Gi−1 + Bi−1Qi−1,

Bi = Bi−1Pi−1 −GiD
−(DΠiD

−)′DΠi−1,

Ni = kerGi, N̂i := (N0 + · · · +Ni−1) ∩ Ni, N0 + · · · + Ni−1 =: N̂i ⊕Xi,

choose Qi such that Qi = Q2
i , imQi = Ni, Xi ⊆ kerQi,

Pi = I −Qi, Πi = Πi−1Pi,

i = 1, . . . , κ,



Basic Characteristics of Differential-Algebraic Operators 69

and, additionally,

(a) Gi has constant rank ri , i = 0, . . . , κ ,
(b) N̂i has constant dimension ui , i = 1, . . . , κ ,
(c) Πi is continuous and DΠiD

− is continuously differentiable, i = 0, . . . , κ .

The admissible matrix functions Gi are continuous. The construction is supported
by constant-rank conditions.

We mention that, for time-invariant E and F , the matter simplifies to

Gi = G0 + B0(Q0 + . . .+Πi−1Qi) = G0 + B0(I −Πi) = E − F(I −Πi).

Set ρ = r + 1. If G0, . . . ,Gρ+1 is an admissible matrix function sequence, then

im G0 ⊆ imG1 ⊆ · · · ⊆ im Gρ = imGρ+1,

and

kerΠ0 ⊆ kerΠ1 ⊆ · · · ⊆ kerΠρ−1 = kerΠρ,

that is, the related subspace sequences become stationary at least at level ρ = r + 1
and ρ, respectively, [10, Section 10.2]. Note that the there are actually regular DAEs
featuring im Gρ−1 ⊂ imGρ = im Gρ+1, see [10, Example 2.11].

A series of useful properties is incorporated into admissible matrix function
sequences, e.g., [10, Propositions 2.5 and 2.7]. In particular, the products Πi ,
Πi−1Qi , DΠiD

− are projectors, too, and

kerΠi = N0 + · · · +Ni,

Bi+1 = Bi+1Πi.

The subspaces imGi , kerΠi = N0 + · · · + Ni , and the numbers ri , ui are
independent of the special choice of the projector functions Qj , [10, Theorem 2.8],
and also invariant under so-called refactorization AD = ĀD̄, [10, Theorem 2.21].
Moreover, the numbers ri, ui persist under transformations, which allow to call them
characteristic values of the given pair (E, F ) and triple (A,D,B), respectively.

Finally we quote further useful tools to deal with admissible matrix function
sequences. Choose continuous projector-valued functions Wi : [a, b] → R

k×k such
that kerWi = imGi and then pointwise generalized inverses G−i of Gi determined
by

G−i GiG
−
i = G−i , GiG

−
i Gi = Gi, I −GiG

−
i = Wi, G−i Gi = Pi, i ≥ 0.
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Owing to [10, Proposition 2.5] one has then

WiBi = WiB,

im Gi = im(Gi−1 +Wi−1BQi−1) = imGi−1 ⊕ im Wi−1BQi−1.
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Inter/Extrapolation-Based Multirate
Schemes: A Dynamic-Iteration
Perspective

Andreas Bartel and Michael Günther

Abstract Multirate behavior of ordinary differential equations (ODEs) and
differential-algebraic equations (DAEs) is characterized by widely separated time
constants in different components of the solution or different additive terms of
the right-hand side. Here, classical multirate schemes are dedicated solvers, which
apply (e.g.) micro and macro steps to resolve fast and slow changes in a transient
simulation accordingly. The use of extrapolation and interpolation procedures is a
genuine way for coupling the different parts, which are defined on different time
grids.

This paper contains for the first time, to the best knowledge of the authors, a
complete convergence theory for inter/extrapolation-based multirate schemes for
both ODEs and DAEs of index one, which are based on the fully-decoupled
approach, the slowest-first and the fastest-first approach. The convergence theory
is based on linking these schemes to multirate dynamic iteration schemes, i.e.,
dynamic iteration schemes without further iterations. This link defines naturally
stability conditions for the DAE case.
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1 Introduction

In practice, technical applications are often modeled as coupled systems of ordinary
differential equations (ODEs) or differential algebraic equations (DAEs). Further-
more, it is a very common aspect of technical applications that the transient behavior
is characterized by different time constants. At a given instance of time, certain
parts of a dynamical system are slowly evolving, while others have a fast dynamics
in the direct comparison. Here, this is referred to as multirate behavior. To name
but a few applications: multibody systems [1, 10], electric circuits [11, 17], climate
models [21] and, of course, multiphysical systems, e.g. field/circuit coupling [20].
Now, to have an efficient numerical treatment of systems with multirate behavior,
special integration schemes are developed, so-called multirate schemes. To the best
knowledge of the authors, the multirate history goes back to Rice [22] in 1960,
where step sizes for time integration are adapted to the activity level of subsystems.
Many works followed, and we give only a partial list here: based on BDF-
methods [13], based on ROW methods [14], based on extrapolation methods [12]
partitioned RK and compound step [16], mixed multirate with ROW [4], based
on a refinement strategy [23], for conservation laws [8], compound-fast [24],
infinitesimal step [25], implicit-explicit [9], based on GARK-methods [15].

The fundamental idea of a multirate scheme is the following: an efficient algo-
rithm should (if there are no stability issues) sample a certain component/subsystem
according to the activity level. The more active a component is, the shorter are the
time scales and the higher the sampling rate should be chosen to achieve a given
level of accuracy. In other words, there is not a global time step, but a local one,
which should reflect the inherent time scale of an unknown or some subsystem.
For simplicity, we work here with only two time scales. That is, we allow for a
fast subsystem (of higher dynamics), which employs a small step of size h (micro
step) and a slow subsystem, which employs a larger step size H (macro step).
Furthermore, we assume for simplicity the relation H = mh with m ∈ N. In fact,
the main feature of a certain multirate scheme is to define the coupling variables in
an appropriate way. Here we focus on inter- and extrapolation strategies for coupling
both subsystems, since we aim at highlighting the connection to dynamic iteration
schemes.

The work is structured as follows: In Sect. 2, the formulation of multirate
initial value problems is given on the basis of ordinary differential equations
(ODEs). Furthermore, various known versions of extra- and interpolation coupling
are explained. Following this, the consistency of multirate one-step methods are
discussed for ODEs (Sect. 3). Then, in Sect. 4, the ODE results are generalized to
the DAE case. Conclusions complete the presentation.
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2 Notation for Coupled Systems and Multirate
Extra/Interpolation

We start from an initial value problem (IVP) based on a model of ordinary
differential equations (ODEs):

ẇ = h(t,w), w(t0) = w0, t ∈ (t0, tend], (2.1)

where h is continuous and Lipschitz continuous in w, w0 ∈ Rn is given. Moreover,
let h or w, resp., be comprised of some slower changing parts (in time domain),
whereas the remaining parts are faster changing. This is referred to as multirate
behavior. Now, there are two equivalent ways of partitioning:

(a) The component-wise partitioning splits the unknown into slow yS(t) ∈ Rm and
fast components yF (t) ∈ Rn−m, such that w� = (y�S , y�F ) and

ẏS = fS (t, yS, yF ), yS(t0) = yS, 0,

ẏF = fF (t, yS, yF ), yF (t0) = yF, 0,
(2.2)

with corresponding splitting of the right-hand side.
(b) The right-hand side partitioning is an additive splitting of h into slow and fast

summands:

ẇ = hs(t, w)+ hf (t, w), w(t0) = w0, (2.3)

such that w = ws +wf with ẇs = hs(t, ws +wf ) and ẇf = hf (t, ws +wf ).
Of course, the initial data needs to be split in a suitable way. If the dynamics are
solely determined by hs and hf , the splitting is arbitrary to some extent.

Since both ways of partitioning are equivalent, i.e., a component-wise partitioning
can be written as a right-hand side partitioning and vice-versa [15], we choose for
the work at hand the formulation (2.2), without loss of generality. Moreover, the
partitioning (2.2) can be generalized to the case of differential algebraic equations
(DAEs) with certain index-1 assumptions. This DAE setting is treated in Sect. 4.

In this work, we study multirate methods, which belong to the framework of
one-step-methods (and multi-step schemes, too, see Remark 3.3 below) and which
are based on extrapolation and interpolation for the coupling variables. To describe
these methods, let us assume that the computation of the coupled system (2.2) has
reached time t = t with

ẏS = fS (t, yS, yF ), yS(t) = yS, t ,

ẏF = fF (t, yS, yF ), yF (t) = yF, t .
(2.4)

Now, the multirate integration of the whole coupled system is defined for one
macro step, i.e., on [t, t + H ] ⊆ [t0, tend]. It comprises a single step of macro
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step size H for the subsystem yS and m ∈ N steps of (micro step) size h for
yF . To this end, the respective coupling variables need to be evaluated. Here,
our presentation is restricted to extrapolation and interpolation for the coupling
variables, although there are several other techniques such as, just to name a few,
compound-step [16], Multirate GARK [15] or extrapolation based [12] schemes.
Depending on the sequence of computation of the unknowns yS and yF , one
distinguishes the following three versions of extra-/and interpolation techniques:

(i) fully-decoupled approach [7]: fast and slow variables are integrated in parallel
using in both cases extrapolated waveforms based on information from the
initial data of the current macro step at t ;

(ii) slowest-first approach [13]: in a first step, the slow variables are integrated,
using an extrapolated waveform of yF based on information available at t for
evaluating the coupling variable yF in the current macro step. In a second step,
m micro steps are performed to integrate the fast variables yF from t to t +H ,
using an interpolated waveform of yS based on information from the current
macro step size [t, t +H ] for evaluating the coupling variable yF .

(iii) fastest-first approach [13]: in a first step, m micro steps are performed to
integrate the fast variables, using an extrapolated waveform of yS based on
information available at t for evaluating the coupling variable yS in the current
macro step. In a second step, one macro step is performed to integrate the slow
variables yS from t to t + H , using an interpolated waveform of yF based
on information from the current macro step size [t, t + H ] for evaluating the
coupling variable yF .

Remark 2.1 The restriction that the extrapolation can only be based on the infor-
mation at t can be relaxed to the data of the preceding macro step [t−H, t]. In fact,
one can encode such an information e.g. as a spline model, which is also updated
and transported from macro step to macro step.

3 The ODE Case

The details presented in this section are based on a result first presented in [7].
Starting from this result, we use the underlying strategy to extend it to our case
of the three multirate versions named in the previous section. Basically, for ODE
systems, all variants of extrapolation/interpolation-based multirate schemes have
convergence order p (in the final asymptotic phase) provided that it holds:

(i) the basic integration scheme (i.e., the scheme for both the slow and the fast
subsystems with given coupling data) has order p and

(ii) the extrapolation/interpolation schemes are of approximation order p − 1.
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For the fully decoupled approach, this is a consequence of the following result,
which is a generalization of Theorem 1 in [3] for constant extrapolation:

Theorem 3.1 (Consistency of Fully-Decoupled Multirate Schemes) Given the
coupled ODE-IVP (2.2), where fS and fF are Lipschitz w.r.t. the sought solution.
Furthermore, we apply two basic integration schemes of order p: one for yS with
macro step size H , a second for yF with fixed multirate factor m(∈ N) steps of size
h. If these integration schemes are combined with two extrapolation procedures for
the coupling variables of order p−1, the resulting fully decoupled multirate scheme
has order p.

Proof We consider the case that we have computed the IVP system (2.2) until time
t with initial data yS(t) = yS, t , yF (t) = yF, t , i.e., we have the setting given in
system (2.4). Moreover, the unique solution of (2.4) is referred to as

(yS(t; yS, t, yF, t )
�, yF (t; yS, t, yF, t )

�) or (yS(t)
�, yF (t)�) as short-hand.

Next, we provide extrapolated, known quantities ỹS and ỹF for the coupling
variables of order p − 1: (for constants respective LS, LF > 0)

yS(t)− ỹS(t) = LS ·Hp +O(Hp+1) for any t ∈ [t, t +H ], and
yF (t)− ỹF (t) = LF ·Hp +O(Hp+1) for any t ∈ [t, t +H ].

(3.1)

Replacing the coupling variables in (2.4) by ỹS and ỹF , we obtain the following
modified system

ẏS = fS (t, yS, ỹF ) =: f̃S(t, yS), yS(t) = yS, t ,

ẏF = fF (t, ỹS, yF ) =: f̃F (t, yF ), yF (t) = yF, t ,
(3.2)

which is fully decoupled (for t ∈ [t, t +H ]). Its unique solution is referred to as

(ŷS(t; yS, t , yF, t )
�, ŷF (t; yS, t , yF, t )

�).

Now, we apply the two basic integration schemes of order p in multirate fashion
to the decoupled model (3.2) and we refer to the numerical solution at t∗ = t +H

as

(yS,H (t∗), yF,H (t∗))�.

Then, the distance between multirate and exact solution can be estimated as follows:

(
‖yS,H (t∗)− yS(t

∗)‖
‖yF,H (t∗)− yF (t∗)‖

)
≤
(
‖yS,H (t∗)− ŷS(t

∗)‖
‖yF,H (t∗)− ŷF (t

∗)‖

)
+
(
‖ŷS(t∗)− yS(t

∗)‖
‖ŷF (t∗)− yF (t∗)‖

)
.

(3.3)
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The fully decoupled multirate scheme gives for the first term on the right-hand side:

(
‖yS,H (t∗)− ŷS(t

∗)‖
‖yF,H (t∗)− ŷF (t

∗)‖

)
≤
(
cSH

p+1 +O(Hp+2)

cFHp+1 +O(Hp+2)

)
(3.4)

employing constants cS, cF > 0 (for leading errors). Using Lipschitz continuity of
fS , fF for the second summand on the right-hand side of (3.3), we find

(
‖ŷS(t∗)− yS(t

∗)‖
‖ŷF (t∗)− yF (t∗)‖

)
≤
∫ t∗

t

(
‖fS

(
τ, ŷS(τ), ỹF (τ)

)− fS

(
τ, yS(τ), yF (τ)

)‖
‖fF

(
τ, ỹS(τ), ŷF (τ)

)− fF

(
τ, yS(τ), yF (τ)

)‖

)
dτ

≤
∫ t∗

t

(
LS,S‖ŷS(τ) − yS(τ)‖ + LS,F ‖ỹF (τ) − yF (τ)‖
LF,S‖ỹS(τ) − yS(τ)‖ + LF,F ‖ŷF (τ) − yF (τ)‖

)
dτ

(3.5)

with respective Lipschitz constants Li,j (for system i and dependent variables j ).
We remark that this estimate is decoupled. Inserting the extrapolation estimates
(3.1), we deduce further

⎛
⎜⎜⎜⎝

‖ŷS(t∗)− yS(t
∗)‖

‖ŷF (t∗)− yF (t∗)‖

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

LS,F · LF ·Hp+1 + LS,S

t∗∫

t

‖ŷS(τ )− yS(τ )‖dτ +O(Hp+2)

LF,S · LS ·Hp+1 + LF,F

t∗∫

t

‖ŷF (τ )− yF (τ )‖dτ + O(Hp+2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Via Gronwall’s lemma, we deduce:

(
‖ŷS(t∗)− yS(t

∗)‖
‖ŷF (t∗)− yF (t∗)‖

)
≤
(
LS,FLF eLS,S(t

∗−t ) Hp+1 +O(Hp+2)

LF,SLS eLF,F (t∗−t ) Hp+1 +O(Hp+2)

)
. (3.6)

In combination with the integration estimate (3.4), the error (3.3) of the fully-
decoupled multirate scheme has consistency order p on the macro scale level, which
is the claim. �


The proof can be slightly adapted to verify the convergence result for both
remaining variants as well:

Corollary 3.2 (Consistency of Slowest-First Multirate Schemes) The conver-
gence result of Theorem 3.1 remains valid if the fully-decoupled approach is
replaced by the slowest-first approach, i.e., the coupling variables yS (during the
integration of yF ) are evaluated using interpolation of the already computed slow
data in the current macro step.
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Proof We just give the changes of the above proof. For the slowest-first variant, the
modified equation on the current macro step [t, t +H ] reads

ẏS = fS (t, yS, ỹF ) =: f̃S(t, yS), yS(t) = yS, t ,

ẏF = fF (t, y int
S , yF ) =: f̃F (t, yF ), yF (t) = yF, t

(3.7)

with extrapolated values ỹF as in the fully-decoupled approach and interpolated
values y int

S of order p − 1 based on the numerical approximations yS,H (tk) with
tk ∈ [t, t +H ] such that it holds:

ŷS(t)− y int
S (t) = L̃S ·Hp + O(Hp+1) for any t ∈ [t, t +H ]. (3.8)

Again, the hat-notation is employed for the exact solution of system (3.7). The
computation of the slow part still employs extrapolated coupling variables. This
decouples the slow part from the fast part as before and hence the error estimates of
yS are unchanged. In fact, we can use the estimates (3.41) and (3.61): for any time
τ ∈ (t, t +H ].

Now, for the fast part, the corresponding estimate to (3.52) reads (with using
y int
S (t)− yS(t) = y int

S (t)− ŷS(t)+ ŷS(t)− yS(t))

‖ŷF (t∗)− yF (t∗)‖ ≤
∫ t∗

t

LF,S

(
‖ŷS(τ )− y int

S (τ )‖ + ‖ŷS(τ )− yS(τ )‖
)

+LF,F ‖ŷF (τ )− yF (τ )‖ dτ.

Using (3.61) (with τ instead of t�) and using (3.8), we find

‖ŷF (t∗)− yF (t∗)‖

≤
∫ t∗

t

(
LF,SL̃SH

p +O(Hp+1)+ LF,SLS,FLF eLS,S(τ−t) Hp+1 +O(Hp+2)

+ LF,F ‖ŷF (τ )− yF (τ )‖
)
dτ

≤ LF,SL̃SH
p+1 + LF,F

∫ t∗

t

‖ŷF (τ )− yF (τ )‖dτ +O(Hp+2).

Now, the application of Gronwall’s lemma leads to

‖ŷF (t∗)− yF (t∗)‖ ≤ LF,SL̃Se
LF,FHHp+1 + O(Hp+2).
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Finally, we need to form the total error in the fast components, the equivalent to
(3.32). Since the numerical scheme for the fast component is of order p, we can still
employ (3.42), and we get the estimate

‖yF,H (t∗)− yF (t∗)‖ ≤
(
cF + LF,SL̃Se

LF,FH
)
Hp+1 +O(Hp+2). (3.9)

�


Remark 3.1 If one uses interpolation schemes of order p instead of p − 1, one has
to replace the term L̃SH

p by L̃SH
p+1, which yields the estimate

‖yF,H (t∗)− yF (t∗)‖ ≤ cFHp+1 + O(Hp+2), (3.10)

that is, the extra-/interpolation error is dominated by the error of the numerical
integration scheme.

Corollary 3.3 (Consistency of Fastest-First Multirate Schemes) The conver-
gence result of Theorem 3.1 remains valid if the fully-decoupled approach is
replaced by the fastest-first one, i.e., the coupling variables yF (during the
integration of yS) are evaluated using interpolation instead of extrapolation.

Proof For the fastest-first variant, the modified equation (3.2) reads on [t , t +H ]

ẏS = fS (t, yS, y int
F ) =: f̃S(t, yS), yS(t) = yS, t ,

ẏF = fF (t, ỹS, yF ) =: f̃F (t, yF ), yF (t) = yF, t ,
(3.11)

with extrapolated values ỹS as in the fully-decoupled approach and interpolated
values y int

F of order p − 1 based on the numerical approximations yF,H (tk) with
tk ∈ [t, t +H ]:

ŷF (t)− y int
F (t) = L̃F ·Hp + O(Hp+1) for any t ∈ [t , t +H ]. (3.12)

The second equation of (3.11) for yF is unchanged with respect to Theorem 3.1,
since the extrapolation of yS is still used. Hence, we still have all respective
estimates for the fast part, in particular (3.42) and (3.62). For the slow part, the
corresponding estimate to (3.51) now reads (with using y int

F (t) − yF (t) = y int
F (t) −

ŷF (t)+ ŷF (t)− yF (t))

‖ŷS(t∗)− yS(t
∗)‖ ≤

∫ t∗

t

(
LS,F

(
‖ŷF (τ )− yint

F (τ )‖ + ‖ŷF (τ )− yF (τ )‖
)

+LS,S‖ŷS(τ )− yS(τ )‖
)
dτ.
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Using 3.62 (with τ replaced by t�) and using (3.12), we find

‖ŷS(t∗)−yS(t
∗)‖ ≤

∫ t∗

t

(
LS,F L̃FHp + O(Hp+1)+ LS,FLF,SLS eLF,F (τ−t ) Hp+1

+ O(Hp+2)+ LS,S‖ŷS(τ )− yS(τ )‖
)
dτ

≤ LS,F L̃FHp+1 +
∫ t∗

t

LS,S‖ŷF (τ )− yF (τ)‖dτ + O(Hp+2).

Applying now Gronwall’s lemma leads to

‖ŷS(t∗)− yS(t
∗)‖ ≤ LS,F L̃F eLS,SHHp+1 + O(Hp+2).

Finally, we use both the above deduced error and the numerical error (3.41) in the
general error sum (3.31) and we find for the slow part

‖yS,H (t∗)− yS(t
∗)‖ ≤

(
cS + LS,F L̃F eLS,SH

)
Hp+1 +O(Hp+2). (3.13)

i.e., the numerical integration error is dominated by the extrapolation/interpolation
error. �


Remark 3.2 If one uses interpolation schemes of order p instead of p − 1, one has
to replace the term L̃FHp by L̃FHp+1, which yields the estimate

‖yS,H (t∗)− yS(t
∗)‖ ≤ cSH

p+1 + O(Hp+2), (3.14)

that is, the extra-/interpolation error is dominated by the error of the numerical
integration scheme.

Remark 3.3 For the basic integration schemes employed in Theorem 3.1, Corollar-
ies 3.2 and 3.3 we can use either

(a) one-step integration schemes, or
(b) multistep schemes, where both schemes are 0-stable.

Remark 3.4 (Schemes) Extrapolation of order 0 and 1 can be easily obtained from
the initial data at t = t and a derivative information, which is provided by the ODE.
This allows directly the construction of multirate methods of order 2.

Remark 3.5 Notice that for a working multirate scheme, we still have to specify the
extrapolation/interpolation formulas. In fact, arbitrary high orders of the extra-/inter-
polation are only possible if information of previous time steps is used. Generally,
this may turn a one-step scheme into a multi-step scheme, and raise questions
concerning stability. However, if the extrapolation is computed sequentially in a
spline-oriented fashion (see Remark 2.1), the modified functions f̃S and f̃F are
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the same for all time intervals inside [t0, tend], and the extrapolation/interpolation
based multirate scheme can still be considered as a one-step scheme applied to the
modified ODE equations.

4 The DAE Case

The component-wise partitioning (2.2) (as well as the right-hand side partition-
ing (2.3)) can be generalized to the case of differential algebraic equations (DAEs).
Let us assume that the slow and the fast subsystem can be written as semi-explicit

system of index-1, each for given corresponding coupling terms as time functions.
This reads:

ẏS = fS(t, yS, yF , zS, zF ), yS(t0) = yS,0, ẏF = fF (t, yS, yF , zS, zF ), yF (t0) = yF,0,

0 = gS(t, yS, yF , zS, zF ), 0 = gF (t, yS, yF , zS, zF ). (4.1)

Moreover, the overall system is assumed to be index-1 as well. All index-1
conditions lead to the assumption that the following Jacobians

∂gS

∂zS
,

∂gF

∂zF
and

⎛
⎝

∂gS
∂zS

∂gS
∂zF

∂gF
∂zS

∂gF
∂zF

⎞
⎠ are regular (4.2)

in a neighborhood of the solution. For later use, we introduce Lipschitz constants
with respect to the algebraic variables:

||gS(t, yS, yF , zS, zF )− gS(t, yS, yF , ẑS, ẑF )|| ≤ L
gS
S ||zS − ẑS || + L

gS
F ||zF − ẑF ||

(4.3)

and analogously L
gF
S , L

gF
F and L

fλ
ρ with λ, ρ ∈ {F, S}. Furthermore, for the

Lipschitz constants with respect to the differential variables, we use the symbol
M

j
λ (with j ∈ {fS, fF }), e.g.,

||fS(t, yS, yF , zS, zF )− fS(t, ŷS, ŷF , zS, zF )|| ≤ M
fS
S ||yS − ŷS || + M

fS
F ||yF − ŷF ||.

(4.4)

To analyze inter-/extrapolation based multirate schemes for these general index-
1 DAEs, we consider dynamic iteration schemes with old, known iterates y

(i)
λ , z

(i)
λ
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and to be computed, new iterates y
(i+1)
λ , z

(i+1)
λ defined by the following dynamic

system

ẏ
(i+1)
S = FS(t, y

(i+1)
S , y

(i+1)
F , z

(i+1)
S , z

(i+1)
F , y

(i)
S , y

(i)
F , z

(i)
S , z

(i)
F ),

0 = GS(t, y
(i+1)
S , y

(i+1)
F , z

(i+1)
S , z

(i+1)
F , y

(i)
S , y

(i)
F , z

(i)
S , z

(i)
F ),

ẏ
(i+1)
F = FF (t, y

(i+1)
S , y

(i+1)
F , z

(i+1)
S , z

(i+1)
F , y

(i)
S , y

(i)
F , z

(i)
S , z

(i)
F ),

0 = GF(t, y
(i+1)
S , y

(i+1)
F , z

(i+1)
S , z

(i+1)
F , y

(i)
S , y

(i)
F , z

(i)
S , z

(i)
F )

(4.5)

based on splitting functions FS,GS, FF and GF . To have a simpler notation, we
introduce the abbreviations

x := (yS, yF , zS, zF ). xS := (yS, zS), xF := (yF , zF ).

The above splitting functions have to be consistent, this reads,

Fλ(t, x, x) = fλ(t, x), Gλ(t, x, x) = gλ(t, x), for λ ∈ {F, S}.

For the different multirate approaches, we have the following splitting functions:

(i) Fully-decoupled approach:

FS(t, x(i+1), x(i)) = fS(t, x
(i+1)
S , x

(i)
F ), FF (t, x(i+1), x(i)) = fF (t, x

(i)
S , x

(i+1)
F ),

GS(t, x(i+1), x(i)) = gS(t, x
(i+1)
S , x

(i)
F ), GF (t, x(i+1), x(i)) = gF (t, x

(i)
S , x

(i+1)
F ).

(ii) Slowest-first approach:

FS(t, x(i+1), x(i)) = fS(t, x
(i+1)
S , x

(i)
F ), FF (t, x(i+1), x(i)) = fF (t, x

(i+1)
S , x

(i+1)
F ),

GS(t, x(i+1), x(i)) = gS(t, x
(i+1)
S , x

(i)
F ), GF (t, x(i+1), x(i)) = gF (t, x

(i+1)
S , x

(i+1)
F ).

(iii) Fastest-first approach:

FS(t, x(i+1), x(i)) = fS(t, x
(i+1)
S , x

(i+1)
F ), FF (t, x(i+1), x(i)) = fF (t, x

(i)
S , x

(i+1)
F ),

GS(t, x(i+1), x(i)) = gS(t, x
(i+1)
S , x

(i+1)
F ), GF (t, x(i+1), x(i)) = gF (t, x

(i)
S , x

(i+1)
F ).

It has been shown that convergence of a dynamic iteration scheme for DAEs can
no longer be guaranteed by choosing a window step size H small enough, see e.g.
[2, 19]. An additional contractivity condition has to hold to guarantee convergence
of the dynamic iteration scheme with respect to the number of iterations for
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fixed window step size H . We have to distinguish the following two aspects for
contraction:

(a) Convergence within one window [t, t +H ]: In this case, it is sufficient to have
(see [6] as a generalization of [19]):

max
t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥∥

⎛
⎜⎝

∂GS

∂z
(i+1)
S

∂GS

∂z
(i+1)
F

∂GF

∂z
(i+1)
S

∂GF

∂z
(i+1)
F

⎞
⎟⎠
−1

·
⎛
⎜⎝

∂GS

∂z
(i)
S

∂GS

∂z
(i)
F

∂GF

∂z
(i)
S

∂GF

∂z
(i)
F

⎞
⎟⎠

∣∣∣∣∣∣∣∣ (τ, x(τ ), x(τ )
)

∥∥∥∥∥∥∥∥∥
≤ α < 1

using the L∞-norm and evaluation at the analytic solution x. The quantity α ∈
R+ is referred to as contraction number. For the type of norm employed on the
above left-hand side, we use later the following short-hand

∥∥∥∥∥∥∥

⎛
⎝ ∂Gρ

∂x
(i+1)
λ

⎞
⎠
−1

∂Gλ

∂x
(i)
τ

∥∥∥∥∥∥∥
:= max

t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥∥

⎛
⎝ ∂Gρ

∂x
(i+1)
λ

⎞
⎠
−1

· ∂Gλ

∂x
(i)
τ

∣∣∣∣∣∣∣ (
τ, x(τ), x(τ)

)

∥∥∥∥∥∥∥∥∥

(for ρ, λ, τ ∈ {F, S}, x ∈ {y, z}).
(b) Stable error propagation from window to window: Let us assume that k

iterations are performed on the current time window. Then a sufficient condition
for a stable error propagation from window to window is given by [2]

LΦαk < 1

with Lipschitz constant LΦ for the extrapolation operator. Note that for k = 1 a
stable error propagation implies convergence within one window, as LΦα < 1
implies α < 1 for LΦ ≥ 1.

Remark 4.1

(i) Notice that for the stable error propagation in b) it might be necessary that more
than one iteration is performed, although the error reduction (i.e., α < 1) holds.

(ii) If one employs a dynamic iteration with only one iteration (one solve of the
DAEs), then a multirate scheme is obtained. These schemes are referred to as
multirate co-simulation, see [5].

As we did for the ODE case, interpolation/extrapolation based multirate schemes
of convergence order p for coupled index-1 DAEs can now be obtained by replacing
the exact solution of the DAE system with splitting functions

(i) by a numerical integration of convergence order p,
(ii) with stopping after the first iteration (i.e., k = 1), plus
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(iii) employing extrapolation/interpolation schemes of order p − 1 and
(iv) having satisfied the contractivity condition LΦα < 1.

For the different coupling strategies, this condition reads

(i) fully-decoupled approach:

LΦ max
t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥

⎛
⎜⎝

∂GS

∂z
(i+1)
S

0

0 ∂GF

∂z
(i+1)
F

⎞
⎟⎠
−1

·
⎛
⎜⎝

0 ∂GS

∂z
(i)
F

∂GF

∂z
(i)
S

0

⎞
⎟⎠

∥∥∥∥∥∥∥∥
< 1

⇔ max
t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

(
∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i)
F

0

0

(
∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i)
S

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
<

1

LΦ

.

Sufficient conditions for this are
∥∥∥∥∥∥∥

⎛
⎝ ∂GS

∂z
(i+1)
S

⎞
⎠
−1

∂GS

∂z
(i)
F

∥∥∥∥∥∥∥
<

1

LΦ

and

∥∥∥∥∥∥∥

⎛
⎝ ∂GF

∂z
(i+1)
F

⎞
⎠
−1

∂GF

∂z
(i)
S

∥∥∥∥∥∥∥
<

1

LΦ

.

Introducing the ratios of Lipschitz-constants:

αS := L
gS
F

L
gS
S

, αF := L
gF
S

L
gF
F

for gS and gF (see (4.3)), the last conditions can be reformulated as:

αS < 1
LΦ

and αF < 1
LΦ

. (4.6)

(ii) slowest-first approach:

max
t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥

⎛
⎜⎝

∂GS

∂z
(i+1)
S

0

∂GF

∂z
(i+1)
S

∂GF

∂z
(i+1)
F

⎞
⎟⎠
−1

·
⎛
⎝0 ∂GS

∂z
(i)
F

0 0

⎞
⎠

∥∥∥∥∥∥∥∥
< 1

⇔ max
t ≤ τ ≤ t+H

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

0

(
∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i)
F

0

(
∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i+1)
S

(
∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i)
F

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
<

1

LΦ

.
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For this, sufficient conditions are

∥∥∥∥∥
(

∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i)
F

∥∥∥∥∥ < 1
LΦ

and

∥∥∥∥∥
(

∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i+1)
S

(
∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i)
F

∥∥∥∥∥ < 1
LΦ

.

Formulated with ratios of Lipschitz-constants, we have

αS < 1
LΦ

and αFαS < 1
LΦ

, (4.7)

which is equivalent to

αS < 1
LΦ

and αF < 1. (4.8)

(iii) fastest-first approach: we obtain analogously to (ii)

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

(
∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i+1)
F

(
∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i)
S

0
(

∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i)
S

0

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
<

1

LΦ

.

For this, sufficient conditions for this are

∥∥∥∥∥
(

∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i)
S

∥∥∥∥∥ < 1
LΦ

and

∥∥∥∥∥
(

∂GS

∂z
(i+1)
S

)−1
∂GS

∂z
(i+1)
F

(
∂GF

∂z
(i+1)
F

)−1
∂GF

∂z
(i)
S

∥∥∥∥∥ < 1
LΦ

.

In ratios of Lipschitz-constants, this reads

αF < 1
LΦ

and αSαF < 1
LΦ

, (4.9)

which is equivalent to

αF < 1
LΦ

and αS < 1. (4.10)

In all cases, convergence is given for problems that are coupled weakly enough, i.e.,
the respective above estimates for LΦα < 1 hold. If not, additional iteration of the
multirate scheme will be necessary. This will, in fact, destroy the multirate benefit.

Remark 4.2 One shall notice that the stability criteria are relaxed if the multirate
scheme is not fully decoupled: a larger fast ratio αF is allowed in the case of slowest-
first approach, and a larger slow ratio αS is in the case of fastest-first approach.
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These stability conditions, together with appropriate numerical time integration,
are sufficient to obtain convergent multirate schemes based on dynamic iteration
schemes, as shown in

Theorem 4.1 Given the split DAE problem (4.1) with the index-1 conditions for the
overall system and the subsystems (4.2). The above variants of multirate methods
based on dynamic iteration (with sufficiently small window size H ) are convergent
on the macro step level of order p if

(a) the respective basic integration schemes are of order p,
(b) the applied inter-/extrapolation procedure are of order p − 1, and
(c) the respective stability restriction

(i) fully-decoupled: (4.6), (ii) slowest-first: (4.8), (iii) fastest-first: (4.10),

are satisfied. The latter conditions guarantee stability.

Remark 4.3 This theorem combines the stability and convergence results of [2, 6]
for dynamic iteration in the case of only one sweep k = 1 with multirate time
integration for different coupling strategies: Jacobi iteration (fully decoupled) and
Gauss-Seidel iteration (slowest-first and fastest-first strategy, depending on the order
of the subsystems).

Proof (Sketch) We first inspect the time integration within one window [tn, tn+1]
(n = 0, . . . , N) in the case, where we solve the time interval of interest [t0, T ] with
N = (T − t0)/H windows. The overall error within this window is the difference
between the exact solution of the split system (4.1) and the approximation given
by the numerical time integration of the dynamic iteration system (4.5) (superscript
‘dyn.it,h’):

⎛
⎜⎜⎜⎜⎝

yS(tn+1)− y
dyn.it,h
S (tn+1)

yF (tn+1)− y
dyn.it,h
F (tn+1)

zS(tn+1)− z
dyn.it,h
S (tn+1)

zF (tn+1)− z
dyn.it,h
F (tn+1)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

yS(tn+1)− y
dyn.it
S (tn+1)

yF (tn+1)− y
dyn.it
F (tn+1)

zS(tn+1)− z
dyn.it
S (tn+1)

zF (tn+1)− z
dyn.it
F (tn+1)

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

y
dyn.it
S (tn+1)− y

dyn.it,h
S (tn+1)

y
dyn.it
F (tn+1)− y

dyn.it,h
F (tn+1)

z
dyn.it
S (tn+1)− z

dyn.it,h
S (tn+1)

z
dyn.it
F (tn+1)− z

dyn.it,h
F (tn+1)

⎞
⎟⎟⎟⎟⎠

,

which can be split into two contributions employing the exact solution of dynamic
iteration system (4.5) (superscript ‘dyn.it’), i.e., into the splitting error of the
dynamic iteration without time discretization errors and the error due to discrete
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time stepping. Consequently, the overall error can be estimated by the sum of both
differences.

We discuss now both error contributions.

(a) For the special coupling structure investigated in [2] the splitting error (not
including time discretization) has been shown to be of order O(Hp) provided
that the stability restrictions apply and extra-/interpolation procedures of order
p − 1 are used. This result can be generalized straightforward to the general
case of system (4.1).

(b) For the multirate variant, the dynamic iteration consists of only one sweep, i.e.,
system (4.5) defines a non-autonomous DAE system of index one. Employing
an order p scheme with step size h as assumed, we obtain a global error of size
O(hp), which is bounded by O(Hp).

Consequently for the whole time interval of interest [t0, T ], the error recursion from
window to window is the nearly the same as the one based on exact time integration:
only the coefficient of the iteration matrix are perturbed by an additional term of
orderO(Hp). Thus the convergence analysis of the dynamic iteration scheme yields
convergence order p provided that α + O(Hp) is bounded by one above, which is
always feasible by using H small enough. �

Remark 4.4 In the special case of DAE-ODE coupling, GS and GF do not depend
on old iterates of the algebraic variables; hence α = 0, and convergence can always
be guaranteed for H small enough. For the case, where the fast system is an ODE,
and implicit Euler approaches are used, explicit conditions for convergence are
given in [18] and read in our notation:

H <
1

M
fS

S + L
fS

S M
gS
S

, h <
1

M
fF

S + L
fF

S M
gS
F

We note that these conditions are quite strong assumptions in the case of stiff
equations.

Remark 4.5 (Schemes) Compared with the ODE case, the first order extrapolation
needs Jacobian information for the G-parts. In fact, this is needed for an implicit
integration scheme anyways.

5 Conclusion and Outlook

The presented work contains a full convergence theory for the quite straightforward
approach of inter/extrapolation-based multirate schemes for both the ODE and
index-1 DAE case. We linked our theory to the concept of multirate dynamic
iteration schemes. Thereby, sufficient conditions for the convergence of the dynamic
iteration of DAE are transferred to the multirate setting.
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As these conditions can be restrictive for stiff differential equations [18],
one-sided Lipschitz-conditions might yield more realistic results. This will be
investigated in future work.
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Least-Squares Collocation for
Higher-Index DAEs: Global Approach
and Attempts Toward a Time-Stepping
Version

Michael Hanke and Roswitha März

Abstract Overdetermined polynomial least-squares collocation for two-point
boundary value problems for higher index differential-algebraic equations shows
excellent convergence properties while at the same time being only slightly
more expensive than the widely used collocation method for ordinary differential
equations by piecewise polynomials. In the present paper, basic properties of this
method when applied to initial value problems by a windowing technique are
proven. Some examples are provided in order to show the potential of time-stepping
approach.

Keywords Differential-algebraic equation · Higher index · Initial-value
problem · Essentially ill-posed problem · Least-squares problem · Polynomial
collocation
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1 Introduction

In a number of recent papers [7–10] convergence results for an overdetermined
polynomial least-squares collocation for two-point boundary value problems for
higher index differential-algebraic equations (DAEs) have been established. This
method is comparable in computational efficiency with the widely used collocation
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method for ordinary differential equations using piecewise polynomials. For initial
value problems (IVPs), a considerable increase in numerical efficiency of the
overdetermined polynomial least-squares collocation method is expected if one can
construct time-stepping or windowing techniques. Below, we consider some key
issues in this respect. Our ultimate goal is that overdetermined collocation is used
on succeeding individual time-windows, though we emphasize that the present note
deals with the very first attempts in this context only.

We are interested in general initial-value problems (IVPs),

f ((Dx)′(t), x(t), t) = 0, t ∈ [a, b], Gax(a) = r. (1.1)

x : [a, b] → R
m is the unknown vector-valued function defined on the finite interval

[a, b] ⊂ R. We assume an explicit partitioning of the unknowns into differentiated
and nondifferentiated (also called algebraic) components by selecting

D ∈ R
k×m, D = [Ik 0]

with the identity matrix Ik ∈ R
k×k . The function f : Rk × R

m × R → R
m is

assumed to be sufficiently smooth, at least continuous and with continuous partial
derivatives with respect to the first and second arguments.

The initial values deserve some special attention. For a solution to exist they must
be consistent. We will ensure this by requiring special properties on the matrix Ga .
It is reasonable to assume that at most the differentiated components x1, . . . , xk are
fixed by initial conditions, which leads to the requirement

Ga ∈ R
l×m, kerGa ⊇ kerD,

such that Gax(a) = GaD
+Dx(a). Moreover, we will assume that the initial

conditions are independent of each other, that is rankGa = l, where l denotes
the actual dynamical degree of freedom. Later on, more detailed requirements,
depending on the DAE will be posed.

Let the interval [a, b] be decomposed into L subintervals,

a = w0 < w1 < · · · < wL = b,

with lengths Hλ = wλ − wλ−1, λ = 1, . . . , L. First, for λ = 1, we provide
an approximating segment x̃[1] : [w0, w1] → R

m by applying overdetermined
collocation to the IVP

f ((Dx̃[1])′(t), x̃[1](t), t) = 0, t ∈ [w0, w1], Gax̃
[1](a) = r. (1.2)

For λ > 1, having already the segment x̃[λ−1] : [wλ−2, wλ−1] → R
m, we intend to

determine the next segment x̃[λ] : [wλ−1, wλ] → R
m by solving the DAE

f ((Dx̃[λ])′(t), x̃[λ](t), t) = 0, t ∈ [wλ−1, wλ]. (1.3)
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In order to obtain an appropriate approximation to the solution of (1.1), we need
to compensate the now unavailable initial conditions by certain transfer conditions
using x̃[λ−1]. Below we investigate two different approaches, namely,

G(wλ−1)x̃
[λ](wλ−1) = G(wλ−1)x̃

[λ−1](wλ−1), (1.4)

with a suitably prescribed matrix function G : [a, b] → R
l×m, and

Dx̃[λ](wλ−1) = Dx̃[λ−1](wλ−1). (1.5)

The construction of appropriate transfer conditions is crucial for the success of the
method.1

In the present note we merely deal with the linear version of the IVP,

A(t)(Dx)′(t)+ B(t)x(t) − q(t) = 0, t ∈ [a, b], (1.6)

Gax(a) = r, (1.7)

in which the right-hand side q : [a, b] → R
m and the matrix coefficients A :

[a, b] → R
m×k and B : [a, b] → R

m×m are assumed to be sufficiently smooth,
however at least continuous, thus uniformly bounded.

As it is well-known,2 conventional time-stepping methods such as the BDF in
the famous DAE solver DASSL work well only when applied to index-1 DAEs and
special form index-2 DAEs. The so far available time-stepping solvers for more
general higher-index DAEs are definitely bound to the construction and evaluation
of so-called derivative array systems,3 e.g., [3, 4, 12, 16, 17], which accounts for
a serious limitation in view of applications. The recently discussed ansatz of
overdetermined least-squares collocation [7–10] fully avoids the use of derivative
arrays and no reduction procedures are incorporated, which is highly beneficial.
However, this is a global ansatz over the entire interval, not a time-stepping method
and large ill-conditioned discrete systems may arise. For this reason, eventually, a
time-stepping version would be much more advantageous. Recall that we come up
with very first related ideas here.

The paper is organized as follows: We describe the global overdetermined
collocation procedure in Sect. 2 and collect there the relevant convergence results. In
Sect. 3 we derive basic error estimates for overdetermined collocation on arbitrary
individual subintervals corresponding to both procedures (1.2)–(1.3) and (1.4). A
corresponding result for the approach (1.2)–(1.3) and (1.5) is provided in Sect. 4.
We study the simpler time-stepping version with uniform window-size H and the

1It should be noted that also an appropriate continuous functional of x̃[λ−1] can be considered as a
suitable candidate for defining a transfer condition.
2We refer to [1, 6] for an early discussion and to [2, 13] for a topical one.
3Also called prolongation. The necessary differentiations have to be provided analytically or via
automatic differentiation.
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same uniform stepsize on all subintervals in Sect. 5. Convergence of the method
using the transfer condition (1.4) is shown in Sect. 5.1. However, our estimates in
Sect. 4 are not sufficient to show convergence for the case (1.3), (1.5). Therefore,
an investigation of a very special system in Sect. 5.3 provides some hints on what
could be expected in that case. In order to demonstrate the behavior of the method,
we provide a more complex example in Sect. 6 using both approaches, (1.4) as well
as (1.5).

2 Global Overdetermined Collocation

2.1 The Global Procedure

Let us consider first the case of global overdetermined collocation, that is L = 1
and H = b − a. Let, for a given n ∈ N, a grid π on the interval [a, b] be defined:

π : a = t0 < · · · < tn = b,

where tj = a + jh and h = (b − a)/n.4

In order to be able to introduce collocation conditions we will need a space of
piecewise continuous functions. Let Cπ([a, b],Rm) denote the space of all functions
x : [a, b] → R

m which are continuous on each subinterval (tj−1, tj ) and feature
continuous extensions onto [tj−1, tj ], j = 1, . . . , n. Furthermore, let PN denote
the set of polynomials of degree less than or equal to N , N ≥ 1. We define the
ansatz space

Xπ = {p ∈ Cπ([a, b],Rm)|Dp ∈ C([a, b],Rk),

pκ |(tj−1,tj ) ∈PN, κ = 1, . . . , k,

pκ |(tj−1,tj ) ∈PN−1, κ = k + 1, . . . ,m,

j = 1, . . . , n}.

Let now M points τi be given such that 0 < τ1 < · · · < τM < 1. The set of
collocation points is given by

Sπ,M = {tj i = tj−1 + τih| j = 1, . . . , n, i = 1, . . . ,M}. (2.1)

4A generalization to quasi-uniform grids is easily possible.
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Using this set Sπ,M , an interpolation operator Rπ,M : Cπ([a, b],Rm) →
Cπ([a, b],Rm) is given by assigning, to each w ∈ Cπ([a, b],Rm), the piecewise
polynomial Rπ,Mw with

Rπ,Mw|(tj−1,tj ) ∈PM−1, j = 1, . . . , n, Rπ,Mw(t) = w(t), t ∈ Sπ,M.

The functional

Φπ,M(x) = ‖Rπ,M(f ((Dx)′(·), x(·), ·))‖2
L2 + |Gax(a)− r|2, x ∈ Xπ,

can be represented as (cf. [10, Subsection 2.3], also [8, 9])

Φπ,M(x) = WTLW + |Gax(a)− r|2, x ∈ Xπ,

with the vector W ∈ R
mMn,

W =

⎡
⎢⎢⎣
W1
...

Wn

⎤
⎥⎥⎦ ∈ R

mMn, Wj =
(

h

M

)1/2

⎡
⎢⎢⎣

f ((Dx)′(tj1), x(tj1), tj1))
...

f ((Dx)′(tjM), x(tjM), tjM))

⎤
⎥⎥⎦ ∈ R

mM,

with the matrix L being positive definite, symmetric and independent5 of h.
Moreover there are constants κl, κu > 0 such that

κl |V |2 ≤ V TL V ≤ κu |V |2, V ∈ R
mMn. (2.2)

If the DAE in (1.1) is regular with index one, l = k, and M = N , then there is
an element x̃π ∈ Xπ such that Φπ,M(x̃π) = 0, which corresponds to the classical
collocation method resulting in a system of nMm + l equations for nNm + k =
nMm + l unknowns. Though classical collocation works well for regular index-1
DAEs (e.g., [14]), it is known to be useless for higher-index DAEs.

Reasonably, one applies l initial conditions in compliance with the dynamical
degree of freedom of the DAE. In the case of higher-index DAEs, the dynamical
degree of freedom is always less than k. For 0 ≤ l ≤ k and M ≥ N + 1, necessarily
an overdetermined collocation system results since nMm + l > nNm + k.
Overdetermined least-squares collocation consists of choosing M ≥ N + 1 and
then determining an element x̃π ∈ Xπ which minimizes the functional Φπ,M , i.e.,

x̃π ∈ argmin{Φπ,M(x)|x ∈ Xπ }.

This runs astonishingly well [9, 10], see also Sect. 6.

5The entries of L are fully determined by the corresponding M Lagrangian basis polynomials,
thus, by M and τ1, . . . , τM .
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2.2 Convergence Results for the Global Overdetermined
Collocation Applied to Linear IVPs

We now specify results obtained for boundary value problems in [8–10] for a
customized application to IVPs. Even though we always assume a sufficiently
smooth classical solution x∗ : [a, b] → R

m of the IVP (1.6), (1.7) to exist, for
the following, an operator setting in Hilbert spaces will be convenient. The spaces
to be used are:

L2 = L2((a, b),Rm}, H 1
D = {x ∈ L2|Dx ∈ H 1((a, b),Rk}, Y = L2 × R

l .

The operator T : H 1
D → L2 given by

(T x)(t) = A(t)(Dx)′(t)+ B(t)x(t), a.e. t ∈ (a, b), x ∈ H 1
D,

is bounded. Since, for x ∈ H 1
D, the values Dx(a) and thus Gax(a) = GaD

+Dx(a)

are well-defined, the composed operator T : X→ Y given by

T x =
[

T x

Gax(a)

]
, x ∈ H 1

D,

is well-defined and also bounded.
Let Uπ : H 1

D → H 1
D denote the orthogonal projector of the Hilbert space H 1

D

onto Xπ .
For a more concise notation later on, we introduce the composed interpolation

operator Rπ,M : Cπ([a, b],Rm)×R
l → Y ,

Rπ,M

[
w

r

]
=
[
Rπ,M 0

0 I

][
w

r

]
.

With these settings, overdetermined least-squares collocation reduces to the mini-
mization of

Φπ,M(x) = ‖Rπ,M(T x − q)‖2
L2 + |Gax(a)− r|2 = ‖Rπ,M(T x − y)‖2

Y , x ∈ Xπ,

that is, to find

x̃π ∈ argmin{Φπ,M(x)|x ∈ Xπ }.

Later on, we will provide conditions which ensure that kerRπ,MT Uπ = X⊥π such
that x̃π is uniquely defined. Therefore,

x̃π = (Rπ,MT Uπ)
+Rπ,M y.
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We consider also the related functional

Φ(x) = ‖T x − q‖2
L2 + |Gax(a)− r|2 = ‖T x − y‖2

Y , x ∈ H 1
D,

and the corresponding method for approximating the solution x∗ by determining

xπ ∈ argmin{Φ(x)|x ∈ Xπ }.

As before, the conditions assumed below will guarantee that the minimizer xπ is
unique such that

xπ = (T Uπ)
+y.

Below, the operator T is ensured to be injective. Since T is associated with
a higher-index DAE, the inverse T −1 is unbounded and the IVP is essentially ill-
posed in the sense of Tikhonov. Following ideas to treat ill-posed problems, e.g.,
[11], the proofs in [8–10] are based on estimates of the type

‖xπ − x∗‖H 1
D
≤ βπ

γπ
+ απ,

‖x̃π − x∗‖H 1
D
≤ β̃π

γ̃π
+ απ,

in which

απ = ‖(I − Uπ)x∗‖H 1
D
,

βπ = ‖T (I − Uπ)x∗)‖Y ,
β̃π = ‖Rπ,MT (I − Uπ)x∗‖Y ,

γπ = inf
p∈Xπ ,p 	=0

‖T p‖Y
‖p‖H 1

D

= inf
p∈Xπ ,p 	=0

⎛
⎝‖Tp‖

2
L2 + |Gap(a)|2
‖p‖H 1

D

⎞
⎠

1/2

,

γ̃π = inf
p∈Xπ ,p 	=0

‖Rπ,MT p‖Y
‖p‖H 1

D

= inf
p∈Xπ ,p 	=0

⎛
⎝‖Rπ,MTp‖2

L2 + |Gap(a)|2
‖p‖H 1

D

⎞
⎠

1/2

.

The most challenging task in this context is to provide suitable positive lower bounds
of the instability thresholds γπ and γ̃π , [8–10] and, what is the same, upper bounds
for the Moore-Penrose inverses

‖(T Uπ)
+‖ = 1

γπ
, ‖(Rπ,MT Uπ)

+‖ = 1

γ̃π
.
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It should be noted that T and Rπ,MT are of very different nature: While T
is bounded, Rπ,MT is unbounded owing to the fact that Rπ,M is an unbounded
operator in L2, see [8].

We now briefly summarize the relevant estimations resulting from [8, 9] for IVPs.
For details we refer to [8, 9].

The general assumptions with respect to the DAE and the initial conditions are:6

1. The operator T is fine with tractability index μ ≥ 2 and characteristic values
0 < r0 ≤ · · · ≤ rμ−1 < rμ = m.

2. The initial conditions are accurately stated such that l = m −∑μ−1
i=0 (m − ri )

and Ga = GaΠcan(a), with the canonical projector Πcan. This implies imT =
im T × R

l , see [14, Theorem 2.1].
3. The coefficients A, B, the right-hand side q ∈ im T , and the solution x∗ are

sufficiently smooth.

Result (a), see [9]: Assume M ≥ N+1. Then there are positive constants cα, cβ ,
cγ and c such that, for all sufficiently small stepsizes h > 0,

γπ ≥ cγ h
μ−1, απ ≤ cαh

N, βπ ≤ cβh
N,

and eventually

‖xπ − x∗‖H 1
D
≤ c hN−μ+1.

Result (b), see [8]: Assume M ≥ N+μ. Then there are positive constants cα, c̃β ,
c̃γ , and c̃ such that, for all sufficiently small stepsizes h > 0,

γ̃π ≥ c̃γ h
μ−1, απ ≤ cαh

N, β̃π ≤ c̃βh
N ,

and eventually

‖x̃π − x∗‖H 1
D
≤ c̃ hN−μ+1.

By [8], one can do with c̃γ = cγ /2. We refer to [9, 10] for a series of tests which
confirm these estimations or perform even better. Recall that so far, IVPs for higher-
index DAEs are integrated by techniques which evaluate derivative arrays, e.g., [5].
Comparing with those methods even the global overdetermined collocation method
features beneficial properties. However, a time-stepping version could be much
more advantageous.

6The following results are also valid for index-1 DAEs. However, we do not recommend this
approach for μ = 1 since standard collocation methods work well, see [14].
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3 Overdetermined Collocation on an Arbitrary Subinterval
[t̄ , t̄ + H ] ⊂ [a, b]

3.1 Preliminaries

We continue to consider the IVP (1.6), (1.7) as described above, but instead of
the global approach immediately capturing the entire interval [a, b] we now aim at
stepping forward by means of consecutive time-windows applying overdetermined
least-squares collocation on each window. As special cases, we have in mind the
two windowing procedures outlined by (1.2), (1.3), and (1.4), and by (1.2), (1.3),
and (1.5). At the outset we ask how overdetermined collocation works on an
arbitrary subinterval,

[t̄ , t̄ +H ] ⊆ [a, b].

It will become important to relate global quantities (valid for overdetermined least-
squares collocation on [a, b]) to their local counterparts (appropriate on subintervals
of length H ). We introduce the function spaces related to this subinterval,

L2
sub = L2((t̄ , t̄ +H),Rm}, H 1

sub = H 1((t̄, t̄ +H),Rk),

H 1
D,sub = {x ∈ L2

sub|Dx ∈ H 1
sub}, Ysub = L2

sub ×R
l , Ŷsub = L2

sub ×R
k,

equipped with natural norms, in particular,

‖x‖H 1
D,sub

= (‖x‖2
L2

sub

+ ‖(Dx)′‖2
L2

sub

)1/2, x ∈ H 1
D,sub.

Note that we indicate quantities associated to the subinterval by the extra subscript
sub only if necessary and otherwise misunderstandings could arise.

Now we assume that the grid π is related to the subinterval only,

π : t̄ = t0 < · · · < tn = t̄ +H,

where tj = t̄ + jh and h = H/n. The ansatz space reads now

Xπ = {p ∈ Cπ([t̄ , t̄ +H ],Rm)| Dp ∈ C([t̄ , t̄ +H ],Rk),

pκ |(tj−1,tj ) ∈PN, κ = 1, . . . ,k, pκ |(tj−1,tj ) ∈PN−1, κ = k + 1, . . . , n,

j = 1, . . . , n}.

With 0 < τ1 < · · · < τM < 1, the set of collocation points

Sπ,M = {tj i = tj−1 + τih| j = 1, . . . , n, i = 1, . . . ,M} (3.1)
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belongs to the subinterval [t̄ , t̄ + H ]. Correspondingly, the interpolation operator
Rπ,M acts on Cπ([t̄ , t̄+H ],Rm). We introduce the operator Tsub : H 1

D,sub → L2
sub,

(Tsubx)(t) = A(t)(Dx)′(t)+ B(t)x(t), a.e. t ∈ (t̄, t̄ +H), x ∈ H 1
D,sub,

and the composed operators Tsub : H 1
D,sub → Ysub and T̂sub : H 1

D,sub→ Ŷsub,

Tsubx =
[

Tsubx

G(t̄)x(t̄)

]
, T̂subx =

[
Tsubx

Dx(t̄)

]
, x ∈ H 1

D,sub.

Occasionally, we also use the operators TIC,sub : H 1
D,sub → R

l and TICD,sub :
H 1

D,sub→ R
k given by

TIC,subx = G(t̄)x(t̄), TICD,subx = Dx(t̄), x ∈ H 1
D,sub,

which are associated with the initial condition posed at t̄ . Here, aiming for injective
composed operators, we suppose a function G : [a, b] → R

l such that

kerG(t) = kerΠcan(t), imG(t) = R
l , |G(t)| ≤ cG, t ∈ [a, b]. (3.2)

Since Tsub inherits the tractability index, the characteristic values of T , and also the
canonical projector (restricted to the subinterval, see [13, Section 2.6]), the local
initial condition at t̄ , G(t̄)x(t̄) = r , is accurately stated. Then imTsub = im Tsub ×
R

l and kerTsub = {0}, so that the overdetermined least-squares collocation on
[t̄ , t̄ +H ] works analogously to the global one described in Sect. 2.

The composed interpolation operators Rπ,M and R̂π,M act now on Cπ([t̄ , t̄ +
H ],Rm)×R

l and Cπ([t̄ , t̄ +H ],Rm)× R
k,

Rπ,M

[
w

r

]
=
[
Rπ,M 0

0 Il

][
w

r

]
, R̂π,M

[
w

r̂

]
=
[
Rπ,M 0

0 Ik

][
w

r̂

]
.

Let Uπ,sub : H 1
D,sub → H 1

D,sub be the orthogonal projector of H 1
D,sub onto Xπ ⊂

H 1
D,sub.

Accordingly, we define απ,sub and, furthermore, βπ,sub, γπ,sub, β̃π,sub, γ̃π,sub,

associated with the operator Tsub and, similarly, β̂π,sub, γ̂π,sub,
˜̂
βπ,sub, ˜̂γπ,sub

associated with T̂sub.
The following lemma provides conditions for the existence of a function G :

[a, b] → R having the properties (3.2). The latter is a necessary prerequisite for the
transition condition (1.4).
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Lemma 3.1 Let the operator T be fine with tractability index μ ≥ 2, characteristic
values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m−∑μ−1

i=0 (m− ri), and the canonical
projector function Πcan.
Then there are continuously differentiable functions G : [a, b] → R

l×m and K :
[a, b] → R

k×k such that

imG(t) = R
l , kerG(t) = kerΠcan(t), [Il 0]K(t)D = G(t), t ∈ [a, b],

K(t) remains nonsingular on [a, b], and, with κ = (maxa≤t≤b|K(t)|)−1,

|Dz| = |K(t)−1K(t)Dz| ≥ κ |K(t)Dz| ≥ κ |G(t)z|, z ∈ R
k, t ∈ [a, b].

Proof We choose an admissible matrix function sequence with admissible projector
functions Q0, . . . ,Qμ−1, see [13, Section 2.2]. Denote Pi = I − Qi,Πi =
P0 · · ·Pi . Then, Πμ−1 and DΠμ−1D

+ are also projector functions, both with con-
stant rank l. Since DΠμ−1D

+ is continuously differentiable, we find a continuously
differentiable matrix function Γdyn : [a, b] → R

l×k so that

im Γdyn(t) = R
l , kerΓdyn(t) = ker(DΠμ−1D

+)(t), t ∈ [a, b].

Furthermore, there is a pointwise reflexive generalized inverse Γ −dyn : [a, b] →
R

k×l , also continuously differentiable, such that ΓdynΓ
−
dyn = I and Γ −dynΓdyn =

DΠμ−1D
+. Similarly, we find constant-rank continuously differentiable matrix

functions Γnil,i : [a, b] → R
(m−ri )×k and pointwise generalized inverses Γ −nil,i :

[a, b] → R
k×(m−ri ) such that

Γnil,iΓ
−
nil,i = I, Γ −nil,iΓnil,i = DΠi−1QiD

+, i = 1, . . . , μ− 1.

The resulting k × k matrix function

K =

⎡
⎢⎢⎢⎢⎣

Γdyn

Γnil,1
...

Γnil,μ−1

⎤
⎥⎥⎥⎥⎦
=
[
Γdyn

Γnil

]

remains nonsingular on [a, b] owing to the decomposition Ik = DD+ =
DΠ0Q1D

+ + · · · +DΠμ−2Qμ−1D
+ +DΠμ−1D

+.
Set G = ΓdynD = [Il 0]KD. This implies kerG(t) = kerΠμ−1. Taking into

account the fact that kerΠμ−1 = kerΠcan, see [13, Theorem 2.8], one has actually
kerG(t) = kerΠcan.
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Finally, we derive for z ∈ R
k, t ∈ [a, b],

|Dz|2 = |K(t)−1K(t)Dz|2 ≥ κ2|K(t)Dz|2 = κ2(|G(t)z|2 + |Γnil(t)Dz|2)
≥ κ2|G(t)z|2,

which completes the proof. �

Lemma 3.2 For t̄ ∈ [a, b], 0 < H ≤ b − t̄ , and

CH =
(

max

(
2

H
, 2H

))1/2

it holds that

|Dx(t)| ≤ CH ‖Dx‖H 1
sub
≤ CH‖x‖H 1

D,sub, t ∈ [t̄ , t̄ +H ], x ∈ H 1
D,sub.

Proof By definition, x ∈ H 1
D,sub implies u = Dx ∈ H 1

sub. Since H 1
sub is

continuously embedded in Csub, it follows that

u(t) = u(s)+
∫ t

s

u′(τ )dτ, t, s ∈ [t̄ , t̄ +H ],

which gives

|u(t)|2 ≤ 2|u(s)|2 + 2

(∫ t

s

|u′(τ )|dτ
)2

≤ 2|u(s)|2 + 2H
∫ t̄+H

t̄

|u′(τ )|2dτ.

Integrating this inequality with respect to s leads to

H |u(t)|2 ≤ 2
∫ t̄+H

t̄

|u(s)|2ds + 2H 2
∫ t̄+H

t̄

|u′(τ )|2dτ.

Finally, with CH as defined in the assertion, it holds that

‖u‖2
Csub
≤ C2

H ‖u‖2
H 1

sub

≤ C2
H ‖x‖2

H 1
D,sub

and the assertion follows. �
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Lemma 3.3 Let the function G fulfilling (3.2) with the bound cG be given, and
denote cT = (2 max{‖A‖2∞, ‖B‖2∞})1/2.

(1) Then, for each subinterval, the inequalities

‖Tsubx‖L2
sub
≤ cT ‖x‖H 1

D,sub
, x ∈ H 1

D,sub,

|TIC,subx| ≤ cGCH ‖x‖H 1
D,sub

, |TICD,subx| ≤ CH‖x‖H 1
D,sub

, x ∈ H 1
D,sub,

(3.3)

are valid.
(2) If M ≥ N +1 and A, B are of class CM , then there are constants CAB1, CAB2,

both independent of the size H of the subinterval, such that

‖Rπ,MTsubUπx‖L2
sub
≤ CAB1‖x‖H 1

D,sub
, x ∈ H 1

D,sub,

‖Rπ,MTsubUπx − TsubUπx‖L2
sub
≤ CAB1h

M−N−1/2‖x‖H 1
D,sub

, x ∈ H 1
D,sub.

Proof

(1) Regarding that A,B are given on [a, b], by straightforward computation we
obtain

‖Tsubx‖2
L2

sub

≤ 2 max{‖A‖2∞,sub, ‖B‖2∞,sub}‖x‖2
H 1

D,sub

≤ cT ‖x‖2
H 1

D,sub

.

Applying Lemma 3.2 we find the inequalities (3.3).
(2) These inequalities can be verified analogously to the first two items of [8,

Proposition 4.2]. �

We are now prepared to estimate the values απ,sub, βπ,sub, β̃π,sub, β̂π,sub, and
˜̂
βπ,sub.

Theorem 3.4 Let the operator T described in Sect. 2 be fine with tractability index
μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m −∑μ−1

i=0 (m− ri ). Let the coefficients A, B, as well as the solution x∗ of the IVP (1.6),
(1.7) be sufficiently smooth. Let the function G with (3.2) be given and [t̄ , t̄ +H ] ⊂
[a, b].
Then there are positive constants απ,sub, Cβ, C̃β , Ĉβ ,

˜̂
Cβ such that

απ,sub ≤ CαH
1/2hN,

βπ,sub ≤ Cβh
N, β̃π,sub ≤ C̃βh

N,

β̂π,sub ≤ Ĉβh
N,
˜̂
βπ,sub ≤ ˜̂Cβh

N .

uniformly for all individual subintervals [t̄ , t̄ +H ] and all sufficient fine grids Xπ .
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Proof First we choose N nodes 0 < τ∗,1 < · · · < τ∗,N < 1 and construct the
interpolating function p∗,int ∈ Xπ so that

Dp∗,int (t̄) = Dx∗(t̄), p∗,int (tj + τ∗,ih) = x∗(tj + τ∗,ih), i = 1, . . . , N, j = 1, . . . , n,

yielding

‖x∗ − p∗,int‖∞,sub + ‖(Dx∗)′ − (Dp∗,int )′‖∞,sub ≤ C∗hN,

with a uniform constant C∗ for all subintervals. C∗ is determined by x∗ and its
derivatives given on [a, b]. Now we have also

‖x∗ − p∗,int‖H 1
D,sub

≤ C∗
√

2HhN,

and therefore, with Cα = C∗
√

2,

απ,sub = ‖(I − Uπ,sub)x∗‖H 1
D,sub

= ‖(I − Uπ,sub)(x∗ − p∗,int )‖H 1
D,sub

≤ Cα

√
HhN.

Set CD =
√

2 max{1, b − a}Cα such that CH

√
HCα ≤ CD for all H . Using

Lemma 3.2 we derive

|D((I − Uπ,sub)x∗)(t̄)| ≤ CHαπ,sub ≤ CDhN.

We derive further

β2
π,sub = ‖Tsub(I − Uπ,sub)x∗‖2

Ysub

= ‖Tsub(I − Uπ,sub)x∗‖2
L2

sub

+ |G(t̄)D+D((I − Uπ,sub)x∗)(t̄ )|2

≤ ‖Tsub‖2α2
π,sub + c2

GC2
Dh2N ≤ (c2

T C
2
α(b − a)+ c2

GC2
D)h2N = C2

βh
2N,

β̂2
π,sub = ‖T̂sub(I − Uπ,sub)x∗‖2

Ysub

= ‖Tsub(I − Uπ,sub)x∗‖2
L2

sub

+ |D((I − Uπ,sub)x∗)(t̄)|2

≤ ‖Tsub‖2α2
π,sub + c2

GC2
Dh2N ≤ (c2

T C
2
α(b − a)+ C2

D)h2N = Ĉ2
βh

2N .

Following [8, Section 2.3], we investigate also w∗ = Tsub(x∗ −p∗,int ) ∈ Cπ([t̄ , t̄ +
H ],Rm) and use the estimate (cf. [8, Section 2.3])

H−1/2‖Rπ,Mw∗‖L2,sub ≤ ‖Rπ,Mw∗‖∞,sub ≤ CL‖w∗‖∞,sub ≤ max{‖A‖∞, ‖B‖∞}CLh
N .
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Here, CL denotes a constant that depends only on the choice of the interpolation
nodes τ∗,1, . . . , τ∗,N . Then we derive

‖Rπ,MTsub(I − Uπ,sub)x∗‖L2,sub ≤ ‖Rπ,MTsub(I − Uπ,sub)(x∗ − p∗,int )‖L2,sub

≤ ‖Rπ,MTsub(x∗ − p∗,int )‖L2,sub

+ ‖Rπ,MTsubUπ,sub(x∗ − p∗,int )‖L2,sub

≤ ‖Rπ,Mw∗‖L2,sub + CAB1‖x∗ − p∗,int‖H 1
D,sub

≤ CRT

√
HhN,

where CRT = CL max{‖A‖∞, ‖B‖∞} +
√

2C∗CAB1. Therefore,

β̃2
π,sub = ‖Rπ,mTsub(I − Uπ,sub)x∗‖2

Ŷsub

= ‖Rπ,MTsub(I − Uπ,sub)x∗‖2
L2

sub

+ |G(t̄)D+D((I − Uπ,sub)x∗)(t̄ )|2

≤ C2
RT Hh2N + c2

GC2
Dh2N ≤ C2

RT (b − a)h2N + c2
GC2

Dh2N = C̃2
βh

2N,

˜̂
β2
π,sub = ‖Rπ,mT̂sub(I − Uπ,sub)x∗‖2

Ŷsub

= ‖Rπ,MTsub(I − Uπ,sub)x∗‖2
L2

sub

+ |D((I − Uπ,sub)x∗)(t̄ )|2

≤ C2
RT Hh2N + C2

Dh2N ≤ C2
RT (b − a)h2N + C2

Dh2N = ˜̂C2
βh

2N. �


3.2 Overdetermined Collocation on [t̄ , t̄ + H ] ⊂ [a, b],
with Accurately Stated Initial Condition at t̄

We ask if there are positive constants cγ and c̃γ serving as lower bounds for all
the individual constants characterizing the instability thresholds associated to each
arbitrary subinterval [t̄ , t̄ +H ] ⊂ [a, b].
Theorem 3.5 Let the operator T described in Sect. 2 be fine with tractability index
μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m −∑μ−1

i=0 (m − ri). Let the coefficients A, B, the right-hand side q ∈ im T , as well
as the solution x∗ of the IVP (1.6), (1.7) be sufficiently smooth. Let qsub denote the
restriction of q onto the subinterval [t̄ , t̄ +H ] ⊂ [a, b].
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Let a function G with (3.2) be given.

(1) Then, for each arbitrary r ∈ R
l , there is exactly one solution x[r] of the equation

Tsubx = (qsub, r) and

‖x[r] − x∗‖H 1
D,sub

≤ csub |r −G(t̄)x∗(t̄ )|.

x[r] coincides on the subinterval with x∗, if and only if r = G(t̄)x∗(t̄ ).
Furthermore, there is a bound Cp such that csub ≤ Cp is valid for all
subintervals.

(2) If M ≥ N + 1, there is a constant Cγ > 0 such that,

γπ,sub ≥ Cγ h
μ−1, ‖(TsubUπ,sub)

+‖Ysub→H 1
D,sub

= 1

γπ,sub
≤ 1

Cγ hμ−1

uniformly for all subintervals and sufficiently small stepsizes h > 0.
(3) If M ≥ N + μ, there is a positive constant C̃γ = Cγ

2 such that

‖(Rπ,MTsubUπ,sub)
+‖Ysub→H 1

D,sub
= 1

γ̃π,sub
≤ 1

C̃γ hμ−1

uniformly for all subintervals and sufficiently small stepsizes h > 0.

Proof

(1) This is a consequence of Proposition A.1 in the Appendix.
(2) The constant Cγ can be obtained by a careful inspection and adequate modifi-

cation of the proof of [9, Theorem 4.1] on the basis of Proposition A.1 below
instead of [9, Proposition 4.3]. Similarly to [9, Lemma 4.4], we provide the
inequality

‖q‖2
Zsub
≤ ‖q‖2

π := ‖q‖2
L2

sub

+
μ−1∑
i=1

μ−i∑
s=0

di,s‖(DLμ−i q)(s)‖2
L2

sub

, q ∈ Zπ,

with Zπ = {q ∈ L2
sub|DLμ−iq ∈ C

μ−i
π ([t̄ , t̄ +H ],Rk), i = 1, . . . , μ− 1} ⊂

TsubXπ , with coefficients di,s being independent of the subinterval.
(3) This statement proves by a slight modification of [8, Proposition 4.2]. �

Theorem 3.5 allows to apply homogeneous error estimations on all subintervals.
Note that the involved constants Cα etc. may depend on N and M . For providing the
function G with (3.2), the canonical nullspace Ncan = kerΠcan must be available,
not necessarily the canonical projector itself. Owing to [13, Theorem 2.8], it holds
that Ncan = kerΠμ−1 for any admissible matrix function sequence, which makes
Ncan easier accessible. Nevertheless, though the function G is very useful in theory
it is hardly available in practice.
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For problems with dynamical degree l = 0 the canonical projector Πcan vanishes
identically, that is, the initial condition is absent, and Tsub itself is injective. This
happens, for example, for Jordan systems, see also Sect. 5.3. In those cases, with no
initial conditions and no transfer the window-wise forward stepping works well.

Let x̃π,old be already computed as approximation of the solution x∗ on an
certain old subinterval of length Hold straight preceding the current one [t̄ , t̄ +H ].
Motivated by Theorems 3.4 and 3.5 assume

‖x̃π,old − x∗‖H 1
sub,old

≤ Ch
N−μ+1
old

for sufficiently small stepsize hold . Applying Lemma 3.2 we obtain

|Dx̃π,old(t̄)−Dx∗(t̄ )| ≤ CHold Ch
N−μ+1
old .

Next we apply overdetermined least-squares collocation on the current subinterval
[t̄ , t̄ + H ]. We use the transfer condition r = G(t̄)x̃π,old(t̄ ) to state the initial
condition for the current subinterval. The overdetermined collocation generates the
new segment x̃π ,

x̃π = argmin{‖Rπ,M(Tsubx − q)‖2
H 1

D,sub

+ |G(t̄)x(t̄)−G(t̄)x̃π,old(t̄ )|2|x ∈ Xπ },

which is actually an approximation of x[r] being neighboring to x∗, such that

‖x̃π − x[r]‖H 1
D,sub

≤ c̃hN−μ+1.

Owing to Theorem 3.5 we have also

‖x[r] − x∗‖H 1
D,sub

≤ csub|r −G(t̄)x∗(t̄)| = csub|G(t̄)x̃π,old(t̄)−G(t̄)x∗(t̄)|

≤ csubcGCHold Ch
N−μ+1
old .

If h = hold , it follows that

‖x̃π − x∗‖H 1
D,sub

≤ Csubh
N−μ+1

with Csub = csubcGCHold C + c̃. This is the background which ensures the
windowing procedure (1.2), (1.3), (1.4) to work.
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4 Overdetermined Collocation on a Subinterval
[t̄ , t̄ + H ] ⊂ [a, b], with Initial Conditions Related
to Dx(t̄)

Here we proceed as in the previous section, but now we use the initial condition
Dx(t̄) = r̂ instead of G(t̄)x(t̄) = r , to avoid the use of the function G. Obviously,
this formulation is easier to use in practice since D is given. However, in contrast to
the situation in Theorem 3.5, the equation T̂subx = (qsub, r̂) is no longer solvable
for arbitrary r̂ ∈ R

k . For solvability, r̂ must be consistent.

Theorem 4.1 Let the operator T described in Sect. 2.2 be fine with tractability
index μ ≥ 2 and characteristic values 0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l =
m−∑μ−1

i=0 (m− ri). Let the coefficients A, B, the right-hand side q ∈ im T , as well
as the solution x∗ of the IVP (1.6),(1.7) be sufficiently smooth. Then the following
holds:

(1) T̂sub is injective.
(2) If M ≥ N + 1, there is a constant Ĉγ uniformly for all possible subintervals

and sufficiently small stepsizes h > 0 such that

γ̂π,sub ≥ Ĉγ h
μ−1.

and hence

‖(T̂subUπ,sub)
+‖

Ŷsub
= 1

γ̂π,sub
≤ 1

Ĉγ hμ−1
.

(3) If M ≥ N + μ, there is a constants ˜̂Cγ > 0 uniformly for all possible
subintervals and sufficiently small stepsizes h > 0, such that

‖(R̂π,MT̂subUπ,sub)
+‖

Ŷsub
= 1
˜̂γπ,sub

≤ 1
˜̂
Cγ hμ−1

.

Proof The assertions are straightforward consequences of Theorem 3.5 and
Lemma 3.1.

T̂ x = 0 means T x = 0 and Dx(t̄) = 0, thus also G(t̄)x(t̄) =
[Il 0]K(t̄)Dx(t̄) = 0, finally T x = 0. Since T is injective it follows that x = 0.
For p ∈ Xπ ,

‖T̂subp‖2
Ŷsub
= ‖Tsubp‖2

L2
sub

+ |Dp(t̄)|2 ≥ ‖Tsubp‖2
L2

sub

+ κ2|G(t̄)p(t̄)|2

≥ min{1, κ2}‖Tsubp‖2
Ysub
≥ min{1, κ2}

(
Cγ h

μ−1‖p‖H 1
D,sub

)2

,
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and

‖R̂π,MT̂subp‖2
Ŷsub
= ‖Rπ,MTsubp‖2

L2
sub

+ |Dp(t̄)|2 ≥ ‖Rπ,MTsubp‖2
L2

sub

+ κ2|G(t̄)p(t̄)|2

≥ min{1, κ2}‖Rπ,MTsubp‖2
Ysub
≥ min{1, κ2}

(
C̃γ h

μ−1‖p‖H 1
D,sub

)2

. �


In contrast to the situation in Sect. 3.2 the equation T̂subx = (qsub, r̂) is no
longer solvable for all r̂ ∈ R

k . Recall that qsub is the restriction of q = T x∗ so that
qsub ∈ imTsub. Denote

ŷ =
[

qsub

Dx∗(t̄)

]
, ŷ[δ] =

[
qsub

r̂

]
, δ = ‖ŷ − ŷ[δ]‖ = |Dx∗(t̄ )− r̂|,

and, following [11], we take ŷ[δ] as noisy data and compute

˜̂x[δ]π = argmin{‖R̂π,M(T̂subx − y[δ])‖2
L2

sub×Rk |x ∈ Xπ }

= argmin{‖Rπ,M(Tsubx − qsub)‖2
L2

sub

+ |Dx(t̄)− r̂|2|x ∈ Xπ }

and similarly,

x̂[δ]π = argmin{‖T̂subx − y[δ]‖2
L2

sub×Rk |x ∈ Xπ }

= argmin{‖Tsubx − qsub‖2
L2

sub

+ |Dx(t̄)− r̂|2|x ∈ Xπ }.

Applying the error representation [11, Equation (2.9)] we arrive at

ˆ̃x[δ]π − x∗ = (R̂π,MT̂ Uπ)
+(ŷ[δ] − ŷ)

+ (R̂π,MT̂ Uπ)
+R̂π,MT̂sub(I − Uπ)x∗ − (I − Uπ)x∗

and, correspondingly,

x̂[δ]π − x∗ = (T̂ Uπ)
+(ŷ[δ] − ŷ)+ (T̂ Uπ)

+T̂sub(I − Uπ)x∗ − (I − Uπ)x∗.

Thus,

‖x̂[δ]π − x∗‖H 1
D,sub

≤ 1

C̃γ hμ−1
{‖ŷ[δ] − ŷ‖ + β̂π,sub} + απ = 1

C̃γ hμ−1
{δ + β̂π,sub} + απ,

‖ ˜̂x[δ]π − x∗‖H 1
D,sub

≤ 1
˜̂
Cγ hμ−1

{‖ŷ[δ] − ŷ‖ + ˜̂βπ,sub} + απ = 1
˜̂
Cγ hμ−1

{δ + ˜̂βπ,sub} + απ .
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All these estimations can be put together in order to arrive at a recursive error
estimation for the application of (1.3), (1.5). Unfortunately, this estimate is not
sufficient for proving convergence of the windowing technique in contrast to the
approach using accurately stated initial conditions of Sect. 3.2!

5 Time-Stepping with b − a = LH and H = nh

We set now H = (b − a)/L, wλ = a + λH, λ = 0, . . . , L, and h = H/n, and
study the somehow uniform time-stepping procedures.

5.1 Time-Stepping with Accurate Transfer Conditions

In the time-stepping approach corresponding to (1.3)–(1.4), the transfer conditions
are given so that G is chosen according to (3.2). Let x̃[λ] be the approximation
provided by the overdetermined least-squares collocation for the subinterval [a +
(λ− 1)H, a + λH ] corresponding to the initial and transfer conditions

Gax̃
[1]
π (a) = r,

G(wλ)x̃
[λ]
π (a + (λ− 1)H) = G(wλ)x̃

λ−1
π (a + (λ− 1)H), λ > 1.

Then we obtain from Theorem 3.5 and Lemma 3.2, for λ = 1,

‖x̃[1]π − x∗‖H 1
D,sub

≤ C̃hN−μ+1 =: d1.

For λ > 1, let r = Gλx̃
[λ−1]
π (a + (λ− 1)H). Then it holds

‖x̃[λ]π − x∗‖H 1
D,sub

≤ ‖x̃[λ]π − x[r]‖H 1
D,sub
+ ‖x[r] − x∗‖H 1

D,sub

≤ C̃hN−μ+1 + Cp|r −Gλx∗(a + (λ− 1)H)|
≤ C̃hN−μ+1 + CpcGCH ‖x̃[λ−1]

π − x∗‖H 1
D,sub

≤ C̄(hN−μ+1 + CH ‖x̃[λ−1]
π − x∗‖H 1

D,sub
) =: dλ

where C̄ = max{CpcG, C̃}. Hence,

d1 ≤ C̄hN−μ+1, dλ ≤ C̄(CHdλ−1 + hN−μ+1).
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A solution of this recursion provides us with

dλ ≤
λ−1∑
ι=0

C̄(C̄CH )ιhN−μ+1 = C̄
1− (C̄CH )λ

1− C̄CH

hN−μ+1.

A similar estimation can be derived for the least-squares approximations using the
operator (TsubUπ,sub)

+.

Example 5.1 The index-2 DAE with k = 2, m = 3, l = 1,

⎡
⎢⎣

1 0
0 1
0 0

⎤
⎥⎦ (

[
1 0 0
0 1 0

]
x)′(t)+

⎡
⎢⎣

θ −1 −1
ηt (1− ηt)− η θ −ηt

1− ηt 1 0

⎤
⎥⎦ x(t) = q(t), (5.1)

is taken from [10, Example 1.1]. One has Ncan(t) = {z ∈ R
3| ηtz1 − z2 = 0} so

that

G(t) =
[
ηt −1 0

]

will do. We consider the DAE on the interval (0,1). The right-hand side q is chosen
in such a way that

x1(t) = e−t sin t,

x2(t) = e−2t sin t,

x3(t) = e−t cos t

is a solution. This solution becomes unique if an appropriate initial condition is
added. With Ga = G(0), the initial condition becomes

Gax(0) = Ga

[
0 0 1

]T = 0.

In the following experiments, η = −25 and θ = −1 have been chosen. This allows
for a comparison with the experiments in [10].

This problem is solved on equidistant grids using, for each polynomial degree
N , M = N + 1 Gaussian collocation points scaled to (0, 1). The tables show the
errors of the approximate solutions in H 1

D(0, 1). The columns labeled order contain
an estimation kest of the order

kest = log(‖xπ − x∗‖H 1
D(0,1)/‖xπ ′ − x∗‖H 1

D(0,1))/ log 2.

Here, π ′ is obtained from π by stepsize halving. It should be noted that the norm
is taken for the complete interval (0, 1) even in the windowing approach. In order
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Table 1 Errors and estimation of the convergence order for (5.1) and t̄ = 0, H = 1 using M =
N + 1

N = 1 N = 2 N = 3 N = 4 N = 5

n Error Order Error Order Error Order Error Order Error Order

10 1.21e+0 1.65e−1 2.84e−3 7.55e−6 2.82e−7

20 1.12e+0 0.1 3.74e−2 2.1 5.04e−4 2.5 9.66e−7 3.0 1.51e−8 4.2

40 1.29e−0 −0.2 1.55e−2 1.3 9.59e−5 2.4 1.25e−7 2.9 7.74e−10 4.3

80 1.16e−0 0.2 6.65e−3 1.2 1.83e−5 2.4 1.31e−8 3.3 1.32e−10 2.6

160 9.80e−1 0.2 3.21e−3 1.0 3.05e−6 2.6 1.31e−9 3.3 1.75e−10 −0.4

320 8.63e−1 0.2 1.60e−3 1.0 4.94e−7 2.6 2.00e−10 2.7 3.62e−10 −1.1

Table 2 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 3.76e+0 2.19e−1 2.82e−3 9.34e−6 2.84e−7

20 2.67e+0 0.5 7.62e−2 1.5 5.06e−4 2.5 1.29e−6 2.9 1.53e−8 4.2

40 1.77e+0 0.6 3.30e−2 1.2 9.72e−5 2.4 1.92e−7 2.7 7.90e−10 4.3

80 1.62e+0 0.1 1.39e−2 1.2 1.89e−5 2.4 2.38e−8 3.0 4.67e−11 4.1

160 1.65e+0 −0.0 5.06e−3 1.5 3.20e−6 2.6 2.26e−9 3.4 1.13e−10 −1.3

320 1.66e+0 −0.0 1.91e−3 1.4 5.26e−7 2.6 2.21e−10 3.4 1.46e−10 −0.4

to enable a comparison, we provide the results for solving the problem without
windowing in Table 1. This corresponds to t̄ = 0 and H = 1.

In the next experiment, the time-stepping approach using accurately stated
transfer conditions has been tested with n = 1. The results are shown in Table 2. �


A more complex example is presented in Sect. 6.

5.2 Time-Stepping with Transfer Conditions Based on D

In our experiments in fact, the situation is much better than indicated by the
estimates in Sect. 4. The latter are not sufficient to show convergence of the present
time-stepping approach when the transfer conditions are based on D, see (1.5).

Example 5.2 (Continuation of Example 5.1) We apply the time-stepping procedure
under the same conditions as in Example 5.1, however, this time the transfer
conditions are chosen as

x̃
[λ]
i (t̄) = x̃

[λ−1]
i (t̄ ), i = 1, 2.

The results are presented in Table 3. The errors are slightly worse than those of
Table 2 where accurately stated transfer conditions are used. However, the observed
orders of convergence are similar, at least for N ≥ 2 = μ− 1. The values for n = 2
and n = 3 have also been checked. The orders are identical to those of Table 3
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Table 3 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 1.80e+0 1.46e−1 3.27e−3 9.85e−6 3.16e−7

20 2.36e+0 −0.4 4.65e−2 1.6 5.84e−4 2.5 1.35e−6 2.9 1.71e−8 4.2

40 2.77e+1 −3.5 1.66e−2 1.5 1.09e−4 2.4 1.75e−7 2.9 8.78e−10 4.3

80 5.07e+2 −4.2 6.64e−3 1.3 2.03e−5 2.4 1.76e−8 3.3 6.65e−11 3.7

160 1.11e+3 −1.1 3.19e−3 1.1 3.51e−6 2.5 1.60e−9 3.5 1.50e−10 −1.2

320 7.46e+2 0.6 1.59e−3 1.0 6.44e−7 2.4 1.85e−10 3.1 3.07e−10 −1.0

even if the errors are smaller due to the smaller stepsize h. For N = 1, divergent
approximations are obtained. However, this is beyond the scope of our theoretical
results even in the case of accurate transfer conditions. �


5.3 Studying the Damping of Inconsistent Transition Values

The results of the previous sections show that the windowing method converges if
the transfer conditions used refer to the dynamic components, only. The latter are,
in general, not easily available unless a detailed analysis of the DAE is available.
However, so far we do not know any conditions for convergence if the practically
accessible values of the differentiated components Dx are used in the transfer
conditions.7 Example 5.2 indicates, however, that the use of (1.5) may be possible.
In order to gain some more insight into what could be expected in the setting of
Sect. 5.2, we will consider a simple special case in this section.

The model problem in question here is a simple system featuring only one Jordan
block,

J (Dx)′ + x = 0,

Dx(t̄) = r.

Here, J ∈ R
μ×(μ−1), D ∈ R

(μ−1)×μ where

J =

⎡
⎢⎢⎢⎢⎣

0
1 0
. . .

. . .

1

⎤
⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎥⎦ .

7In the index-1 case, Dx describes just the dynamic components such that convergence is
assured for using all differentiated components. However, for index-1 DAEs, much more efficient
collocation methods are available.
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This system has index μ and no dynamic components, l = 0. The system is solvable
for r = 0, only, leading to the unique solution x∗(t) ≡ 0. When trying to solve the
system using the proposed windowing technique, the only information transferred
from the subinterval [t̄ , t̄+H ] to the next one is the value of the approximate solution
xπ at the end of the interval, Dxπ(t̄+H). The latter is an approximation to the exact
solution Dx∗(t̄ +H) ≡ 0 that cannot be guaranteed to be consistent with the DAE.
Therefore, we ask the question of how Dxπ(t̄ +H) depends on r .

Let

x[r],π = argmin{‖T̂subx‖2
L2

sub×Rk |x ∈ Xπ }

= argmin{‖Tsubx‖2
L2

sub

+ |Dx(t̄)− r|2
Rk |x ∈ Xπ }

where T x = J (Dx)′ + x. Obviously, Dx[r],π (t̄ +H) depends linearly on r . There
exists a matrix S = S(N,H, n) such that Dx[r],π (t̄ + H) = Sr which we will
denote as the transfer matrix. For convergence of the method, it is necessary that the
spectral radius ρ(S) of the transfer matrix is bounded by 1.

The analytical computation of S is rather tedious. After some lengthy calcula-
tions, we found that, for μ = 2, it holds, with η = (N + 1)−1,

ρ(S(N,H, n) = ηn

∣∣∣∣∣∣∣
2(

−1+√1− η2
)n +

(
−1−√1− η2

)n

∣∣∣∣∣∣∣
≈ ηn21−n.

In particular, ρ(S) is independent of H and n can be chosen arbitrarily. Moreover,
the damping of the inconsistent value r is the better the larger n is. This result can be
compared to the experiments in Example 5.2 (an index-2 problem) where we cannot
identify any influence of an inaccuracy due to inconsistent transfer conditions.

For larger values of μ, we determined ρ(S) by numerical means. Results are
shown in Tables 4, 5 and 6. We observe that, for an index μ > 2, n must be chosen

Table 4 Spectral radius of the transfer matrix S(N,H, n) for n = 1 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 3.3e−1 2.1e+0 1.3e+0 1.1e+0

3 2.5e−1 1.8e+0 5.9e+0 2.9e+0

4 2.0e−1 1.5e+0 7.1e+0 1.4e+1

5 1.7e−1 1.3e+0 7.0e+0 2.3e+1

6 1.5e−1 1.1e+0 6.5e+0 2.7e+1

7 1.2e−1 9.7e−1 6.1e+0 2.9e+1

8 1.1e−1 8.7e−1 5.6e+0 2.9e+1

N 2 3 4 5

2 3.3e−1 2.1e+0 1.1e+0 1.0e+0

3 2.5e−1 1.8e+0 5.9e+0 1.5e+0

4 2.0e−1 1.5e+0 7.1e+0 1.4e+1

5 1.7e−1 1.3e+0 7.0e+0 2.3e+1

6 1.5e−1 1.1e+0 6.6e+0 2.8e+1

7 1.2e−1 9.7e−1 6.1e+0 2.9e+1

8 1.1e−1 8.7e−1 5.6e+0 2.9e+1
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Table 5 Spectral radius of the transfer matrix S(N,H, n) for n = 2 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 5.9e−2 1.4e+0 1.5e+0 1.2e+0

3 3.2e−2 6.4e−1 8.0e+0 9.9e+0

4 2.0e−2 3.7e−1 5.0e+0 2.0e+1

5 1.4e−2 2.5e−1 3.1e+0 3.0e+1

6 1.0e−2 1.8e−1 2.1e+0 2.2e+1

7 7.9e−3 1.3e−1 1.5e+0 1.6e+1

8 6.2e−3 1.0e−1 1.2e+0 1.2e+1

N 2 3 4 5

2 5.9e−2 1.4e+0 1.2e+0 1.0e+0

3 3.2e−2 6.4e−1 8.2e+0 2.5e+0

4 2.0e−2 3.7e−1 5.0e+0 3.6e+2

5 1.4e−2 2.5e−1 3.1e+0 3.2e+2

6 1.0e−2 1.8e−1 2.1e+0 8.1e−1

7 7.9e−3 1.3e−1 1.5e+0 2.1e+0

8 6.2e−3 1.0e−1 1.2e+0 1.2e+1

Table 6 Spectral radius of the transfer matrix S(N,H, n) for n = 3 and H = 0.1 (left panel) and
H = 0.01 (right panel). The column headings show the index μ

N 2 3 4 5

2 1.0e−2 6.8e−1 1.8e+0 1.4e+0

3 4.1e−3 1.8e−2 6.1e+0 2.5e+0

4 2.1e−3 8.1e−2 2.1e+0 1.7e+1

5 1.2e−3 4.3e−2 9.2e−1 1.8e+1

6 7.4e−4 2.6e−2 5.1e−1 8.5e+0

7 4.9e−4 1.7e−2 3.1e−1 4.8e+0

8 3.5e−4 1.2e−2 2.1e−1 3.0e+0

N 2 3 4 5

2 1.0e−2 6.8e−1 1.3e+0 1.0e+0

3 4.1e−3 1.8e−1 6.3e+0 5.5e+0

4 2.1e−3 8.1e−2 2.1e+0 4.2e+1

5 1.2e−3 4.3e−2 9.2e−1 7.8e−1

6 7.4e−4 2.6e−2 5.1e−1 7.5e−1

7 4.9e−4 1.7e−2 3.1e−1 2.8e−1

8 3.5e−4 1.2e−2 2.1e−1 2.3e−1

larger than 1 in order to ensure ρ(S) < 1. Moreover, ρ(S) depends on H only
marginally for the investigated cases.

Details of the derivations are collected in the appendix.

6 A More Complex Example

In order to show the merits of the windowing technique, we will continue to use the
example considered in [9]. This example is the linearized version of a test example
from [5]. We consider an initial value problem for the DAE

A(Dx)′(t)+ B(t)x(t) = y(t), t ∈ [0, 5] (6.1)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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the smooth matrix coefficient

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 sin t 0 1 − cos t −2ρ cos2 t

0 0 − cos t −1 0 − sin t −2ρ sin t cos t
0 0 1 0 0 0 2ρ sin t

2ρ cos2 t 2ρ sin t cos t −2ρ sin t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 5.

This DAE is obtained if the test example from [5] is linearized in the solution
x∗(t) considered there.8 It has tractability index μ = 3 and dynamical degree of
freedom l = 4. In order to use the windowing technique with accurately stated initial
conditions, we will need a function G : [0, 5] → R

4×7 fulfilling the assumptions of
Theorem 3.5. The nullspace of the projector Π2 has the representation

kerΠ2 = ker

⎡
⎢⎣

I −Ω 0 0
Ω ′Ω I −Ω 0

0 0 0

⎤
⎥⎦ , Ω = b(t)b(t)T , b(t) =

⎡
⎢⎣
− cos2 t

− cos t sin t

sin t

⎤
⎥⎦ .

Based on this representation, we can use

G(t) =

⎡
⎢⎢⎢⎣

sin t − cos t 0 0 0 0 0
0 1 cos t 0 0 0 0

− cos3 t − sin t cos2 t sin t cos t sin t − cos t 0 0
−(sin t cos t)2 − sin3 t cos t sin3 t 0 1 cos t 0

⎤
⎥⎥⎥⎦ . (6.2)

In the following numerical experiments we choose the exact solution

x1 = sin t, x4 = cos t,

x2 = cos t, x5 = − sin t,

x3 = 2 cos2 t, x6 = −2 sin 2t,

x7 = −ρ−1 sin t,

8Compare also [9, Sections 6.3 and 6.4].
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Table 7 Errors and estimation of the convergence order for (6.1) and t̄ = 0, H = 5 using M =
N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

n Error Order Error Order Error Order Error Order Error Order

10 2.64e+0 5.24e−1 6.29e−2 6.33e−3 5.73e−4

20 1.54e+0 0.8 1.99e−1 1.4 1.77e−2 1.8 9.39e−4 2.8 6.12e−5 3.2

40 8.79e−1 0.8 9.36e−2 1.1 6.44e−3 1.5 1.66e−4 2.5 7.31e−6 3.1

80 4.69e−1 0.9 4.63e−2 1.0 2.84e−3 1.2 3.42e−5 2.3 9.02e−7 3.0

160 3.00e−1 0.6 2.33e−2 1.0 1.37e−3 1.1 7.69e−6 2.2 1.12e−7 3.0

320 2.30e−1 0.4 1.18e−2 1.0 6.75e−4 1.0 1.82e−6 2.1 1.40e−8 3.0

which is also the one used in [9]. Setting Ga = G(0), this provides us with the
initial condition9

Gax(0) =

⎡
⎢⎢⎢⎣

−1
3
0
0

⎤
⎥⎥⎥⎦ .

The problem is solved on equidistant grids using, for each polynomial degree N ,
M = N+3 Gaussian collocation points scaled to (0, 1). This number of collocation
points has been chosen such that the assumptions of Theorem 3.5(3) are fulfilled.
The tables show the errors of the approximate solutions in H 1

D(0, 5). Similarly as in
previous examples, the columns labeled order contain an estimation kest of the order

kest = log(‖xπ − x∗‖H 1
D(0,5)/‖xπ ′ − x∗‖H 1

D(0,5))/ log 2.

Here, π ′ is obtained from π by stepsize halving.
In order to enable a comparison, we provide the results for solving the problem

without windowing in Table 7. This corresponds to t̄ = 0 and H = 5. Note that
the results are almost identical to those obtained in [9] using a slightly different
formulation of the initial condition and a different number of collocation points.

In Tables 8, 9 and 10 the results using the windowing technique with transfer
conditions (1.5) for different numbers of subdivisions n of the individual windows
[t̄ , t̄+H ] are shown. Since the transfer condition is based on all of the differentiated
components Dx, they are expected to be inconsistent away from the initial point
t = 0. For n = 1 and N ≤ 3, the method delivers exponentially divergent
approximations.

9This initial condition is slightly different from the one used in [9]. However, both conditions are
equivalent.
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Table 8 Errors and
estimation of the convergence
order for (6.1) and n = 1,
H = 5/L using M = N + 3

N = 4 N = 5

L Error Order Error Order

10 1.21e−2 7.18e−4

20 2.28e−3 2.4 7.65e−5 3.2

40 5.16e−4 2.1 9.36e−6 3.0

80 1.25e−4 2.0 1.18e−6 3.0

160 3.10e−5 2.0 1.48e−7 3.0

320 7.74e−6 2.0 1.93e−8 2.9

Table 9 Errors and estimation of the convergence order for (6.1) and n = 2, H = 5/L using
M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 2.30e+0 2.66e−1 2.99e−2 1.99e−3 7.64e−5

20 1.64e+0 0.5 2.98e−1 −0.2 1.25e−2 1.3 4.89e−4 2.0 9.24e−6 3.0

40 1.49e+0 0.1 2.41e+1 −6.3 5.99e−3 1.1 1.22e−4 2.0 1.16e−6 3.0

80 1.45e+0 0.0 4.16e+5 −14.1 3.03e−3 1.0 3.06e−5 2.0 1.46e−7 3.0

160 1.44e+0 0.0 1.15e+14 −28.0 1.54e−3 1.0 7.65e−6 2.0 1.84e−8 3.0

320 1.44e+0 0.0 1.48e+31 −56.8 7.77e−4 1.0 1.91e−6 2.0 1.09e−8 0.8

Table 10 Errors and estimation of the convergence order for (6.1) and n = 3, H = 5/L using
M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 1.74e+0 1.38e−1 1.38e−2 7.31e−4 2.05e−5

20 1.64e+0 0.0 6.92e−2 1.0 6.20e−3 1.2 1.83e−4 2.0 2.53e−6 3.0

40 1.66e+0 0.0 3.95e−2 0.8 3.07e−3 1.0 4.61e−5 2.0 3.18e−7 3.0

80 1.67e+0 0.0 2.75e−2 0.5 1.55e−3 1.0 1.15e−5 2.0 3.99e−8 3.0

160 1.68e+0 0.0 2.35e−2 0.2 7.81e−4 1.0 2.89e−6 2.0 6.43e−9 2.6

320 1.68e+0 0.0 2.23e−2 0.1 3.93e−4 1.0 7.22e−7 2.0 2.41e−8 −1.9

Finally, we consider the case of using accurately stated initial conditions as
transfer conditions. So they correspond to choosing G(t̄) according to (6.2). The
results are collected in Table 11. The latter can be compared to the behavior of the
global method as shown in Table 7. The results are rather close to each other.
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Table 11 Errors and estimation of the convergence order for (6.1) and accurately posed transfer
conditions with n = 1, H = 5/L and M = N + 3

N = 1 N = 2 N = 3 N = 4 N = 5

L Error Order Error Order Error Order Error Order Error Order

10 5.32e+0 5.12e−1 8.46e−2 1.20e−2 1.03e−3

20 2.56e+0 1.1 2.67e−1 0.9 2.64e−2 1.7 2.47e−3 2.3 8.85e−5 3.5

40 2.20e+0 0.2 2.03e−1 0.4 1.09e−2 1.3 5.85e−4 2.1 9.51e−6 3.2

80 2.17e+0 0.0 1.88e−1 0.1 5.14e−3 1.1 1.44e−4 2.0 1.14e−6 3.1

160 2.17e+0 0.0 1.84e−1 0.0 2.53e−3 1.0 3.59e−5 2.0 1.40e−7 3.0

320 2.17e+0 0.0 1.83e−1 0.0 1.26e−3 1.0 8.97e−6 2.0 1.76e−8 3.0

7 Conclusions

We continued the investigation of overdetermined least-squares collocation using
piecewise polynomial ansatz functions. This method is known to efficiently produce
accurate numerical approximations of solutions for two-point boundary value
problems for higher-index DAEs including IVPs as a special case. Since a further
increase in computational efficiency is expected if modified for a customized
application to IVPs, we considered time-stepping techniques for IVPs in this
paper. It turned out that the success of such techniques depends strongly on
the transfer conditions used. In the case that the intrinsic structure is available,
meaning in particular that the dynamic solution components are known, the time-
stepping method has convergence properties similar to the boundary value approach.
However, if only the information about the differentiated components of the DAE is
used, so far our estimates do not secure convergence of the time-stepping approach.
Investigations of a model problem indicate that even in this case convergence can
be obtained provided that the method parameters are chosen appropriately.

The overdetermined least-squares collocation method shows impressive con-
vergence results in our experiments. On one hand, the accuracy is impressive,
on the other hand, the computational efficiency is comparable to widely used
collocation methods for ordinary differential equations. Opposed to that, there are
severe difficulties to theoretically justify these methods. The underlying reason is
the ill-posedness of higher-index DAEs. To the best of our knowledge, available
convergence results are rather sparse and important questions of practical relevance
for constructing efficient algorithms are completely open, e.g., a-posteriori error
estimations, the choice of grids, polynomial orders, collocation points etc. However,
the results so far are encouraging.



120 M. Hanke and R. März

A Proof of Theorem 3.5

The Proposition A.1 below plays its role when verifying the statements of Theo-
rem 3.5. We collect the necessary ingredients of the projector based DAE analysis
to prove Proposition A.1. We refer to [13, 15] for more details. Let the DAE (1.6)
be fine with tractability index μ ≥ 2 and characteristic values

0 < r0 ≤ · · · ≤ rμ−1 < rμ = m, l = m−
μ−1∑
i=0

(m− ri). (A.1)

Recall that this property is determined by the given coefficients A : [a, b] → R
m×k ,

D = [I 0] ∈ R
k×m, and B : [a, b] → R

m×m. A and B are sufficiently smooth, at
least continuous. Then there are an admissible sequence of matrix valued functions
starting from G0 := AD and ending up with a nonsingular Gμ, see [13, Definition
2.6], as well as associated projector valued functions

P0 := D+D and P1, . . . , Pμ−1 ∈ C([a, b],Rm×m)

which provide a fine decoupling of the DAE. We have then the further projector
valued functions

Qi = I − Pi, i = 0, . . . , μ− 1,

Π0 := P0, Πi := Πi−1Pi ∈ C([a, b],Rm×m), i = 1, . . . , μ− 1,

DΠiD
+ ∈ C1([a, b],Rk×k), i = 1, . . . , μ− 1.

By means of the projector functions we decompose the unknown x and decouple
the DAE itself into their characteristic parts, see [13, Section 2.4].

The component u = DΠμ−1x = DΠμ−1D
+Dx satisfies the explicit regular

ODE residing in R
k ,

u′ − (DΠμ−1D
+)′u+DΠμ−1G

−1
μ BΠμ−1D

+u = DΠμ−1G
−1
μ q. (A.2)
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The components vi = Πi−1Qix = Πi−1QiD
+Dx, i = 1, . . . , μ − 1, satisfy the

triangular subsystem involving several differentiations,
⎡
⎢⎢⎢⎢⎢⎣

0 N12 · · · N1,μ−1

0
. . .

...

. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(Dv1)
′

...

(Dvμ−1)
′

⎤
⎥⎥⎥⎥⎦

(A.3)

+

⎡
⎢⎢⎢⎢⎢⎣

I M12 · · · M1,μ−1

I
. . .

...

. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

...

vμ−1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

L1

...

Lμ−1

⎤
⎥⎥⎥⎥⎦

q.

The coefficients Ni,j , Mi j , and Li are subsequently given. Finally, one has for
v0 = Q0x the representation

v0 = L0y −H0D
+u−

μ−1∑
j=1

M0 j vj −
μ−1∑
j=1

N0 j (Dvj )
′. (A.4)

The subspace imDΠμ−1 is an invariant subspace for the ODE (A.2). The com-
ponents v0, v1, . . . , vμ−1 remain within their subspaces im Q0, imΠμ−2Q1, . . . ,

imΠ0Qμ−1, respectively. The structural decoupling is associated with the decom-
position

x = D+u+ v0 + v1 + · · · + vμ−1.

All coefficients in (A.2)–(A.4) are continuous on [a, b] and explicitly given in terms
of the used admissible matrix function sequence as

N01 := −Q0Q1D
+

N0j := −Q0P1 · · ·Pj−1QjD
+, j = 2, . . . , μ − 1,

Ni,i+1 := −Πi−1QiQi+1D
+, i = 1, . . . , μ − 2,

Nij := −Πi−1QiPi+1 · · ·Pj−1QjD
+, j = i + 2, . . . , μ − 1, i = 1, . . . , μ − 2,

M0j := Q0P1 · · ·Pμ−1MjDΠj−1Qj, j = 1, . . . , μ − 1,

Mij := Πi−1QiPi+1 · · ·Pμ−1MjDΠj−1Qj, j = i + 1, . . . , μ − 1, i = 1, . . . , μ − 2,

L0 := Q0P1 · · ·Pμ−1G
−1
μ ,

Li := Πi−1QiPi+1 · · ·Pμ−1G
−1
μ , i = 1, . . . , μ − 2,

Lμ−1 := Πμ−2Qμ−1G
−1
μ ,

H0 := Q0P1 · · ·Pμ−1K Πμ−1,
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in which

K := (I −Πμ−1)G
−1
μ Bμ−1Πμ−1 +

μ−1∑
λ=1

(I −Πλ−1)(Pλ −Qλ)(DΠλD
+)′DΠμ−1,

Mj :=
j−1∑
k=0

(I −Πk){PkD
+(DΠkD

+)′ −Qk+1D
+(DΠk+1D

+)′}DΠj−1QlD
+,

j = 1, . . . , μ− 1.

Consider an arbitrary subinterval [t̄ , t̄ +H ] ⊆ [a, b] and use the function spaces

L2
sub = L2((t̄ , t̄ +H),Rm), H 1

sub = H 1((t̄ , t̄ +H),Rk), H 1
D,sub = {x ∈ L2

sub|Dx∈H 1
sub},

equipped with their natural norms. Additionally, we introduce the function space
(cf., [9, 15])

Zsub :=
{
q ∈ L2

sub : vμ−1 := Lμ−1q, Dvμ−1 ∈ H 1
sub,

vμ−j := Lμ−j q −
j−1∑
i=1

Nμ−j,μ−j+i (Dvμ−j+i )′ −
j−1∑
i=1

Mμ−j,μ−j+ivμ−j+i ,

Dvμ−j ∈ H 1
sub, for j = 2, . . . , μ− 1

}

and its norm

‖q‖Zsub :=
⎛
⎝‖q‖2

L2
sub

+
μ−1∑
i=1

‖(Dvi )
′‖2

L2
sub

⎞
⎠

1/2

, q ∈ Zsub.

The latter function space is very special, it strongly depends on the decoupling
coefficients which in turn are determined by the given data A,D,B.

We also assume a function G : [a, b] → R
l with G(t) = G(t)D+D for all

t ∈ [a, b] to be given, and introduce the operator related to the subinterval Tsub :
H 1

D,sub→ L2
sub and the composed operator Tsub : H 1

D,sub→ L2
sub ×R

l , by

Tsubx = A(Dx)′ + Bx, Tsubx =
[

Tsubx

G(t̄)x(t̄)

]
, x ∈ H 1

D,sub.
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Here, trivially, the restrictions of A and B to the subinterval are meant. The operators
Tsub and Tsub are well-defined and bounded. Regarding

‖Tsubx‖2
L2

sub

=
∫ t̄+H

t̄

|A(t)(Dx)′(t)+ B(t)x(t)|2dt

≤ 2 max{ max
t∈[t̄ ,t̄+H ]

|A(t)|2, max
t∈[t̄ ,t̄+H ]

|B(t)|2}‖x‖2
H 1

D,sub

≤ 2 max{ max
t∈[a,b]|A(t)|2, max

t∈[a,b]|B(t)|2}‖x‖2
H 1

D,sub

we see that there is an upper bound on the operator norm of Tsub uniformly for
all subintervals. Similarly, supposing G to be bounded on [a, b], there is a uniform
upper bound for the norm of Tsub, too.

Proposition A.1 Let the DAE be fine on [a, b] with characteristic values (A.1) and
index μ ≥ 2.

Let the function G : [a, b] → R
l be such that

kerG(t) = kerΠμ−1(t), |G(t)| ≤ cG, |G(t)−| ≤ cG−, t ∈ [a, b],

in which cG and cG− denote constants and G(t)− is a reflexive generalized inverse
of G(t). Then it holds:

(1) im Tsub = Zsub, imTsub = Zsub ×R
l , kerTsub = {0}.

(2) The function space Zsub equipped with the norm ‖·‖Zsub is complete.
(3) There is a constant cZ, uniformly for all subintervals [t̄ , t̄ + H ] ⊆ [a, b], such

that

‖x‖H 1
D,sub

≤ cZ (‖q‖2
Zsub
+ |r|2)1/2 for all q ∈ Zsub, r ∈ R

l, x = T −1
sub (q, r).

Note that such a functions G exists always. For instance, applying Lemma 3.1 one
can set G(t) = [Il 0]K(t)D and supplement it by G(t)− = D+K(t)−1[Il 0]+.

Proof

(1) The first assertions can be verified by means of the above decoupling formulas,
which are given on [a, b], and which are valid in the same way on each arbitrary
subinterval, too. In particular, examining the equation Tsubx = 0, we know
from (A.3) that q ∈ L2

sub, q = 0 implies vj = 0 on the subinterval successively
for j = μ − 1, . . . , 1. On the other hand, G(t̄)x(t̄) = 0 leads to u(t̄) =
DΠμ−1(t̄ )x(t̄) = DΠμ−1(t̄ )G(t̄)−G(t̄)x(t̄) = 0. Since u ∈ H 1

sub solves
the homogeneous ODE (A.2) on the subinterval, u vanishes there identically.
Finally, from (A.4) it follows that v0 = 0, and hence, x = 0.

(2) Let qn ∈ Zsub be a fundamental sequence with respect to the ‖·‖Zsub-norm,
and vn,i ∈ H 1

D,sub, i = 1, . . . , μ−1, correspondingly defined by (A.3), further

wn,i = (Dvn,i )
′, i = 1, . . . , μ − 1. Then there exists an elements q∗ ∈ L2

sub



124 M. Hanke and R. März

such that qn
L2−→ q∗ and there are further elements w∗,i ∈ L2((t̄, t̄ + H),Rk)

so that wn,i
L2−→ w∗,i , i = 1, . . . , μ − 1. The first line of the associated

relations (A.3) leads to vn,μ−1 = Lμ−1qn
L2−→ Lμ−1q∗ =: v∗,μ−1, Dvn,μ−1 =

DLμ−1qn
L2−→ Dv∗,μ−1, thus Dv∗,μ−1 ∈ H 1

sub, (Dv∗,μ−1)
′ = w∗,μ−1. The

next lines of (A.3) successively for j = 2, . . . , μ− 1 provide

vn,μ−j = Lμ−j qn −
j−1∑
i=1

Nμ−j,μ−j+i (Dvn,μ−j+i )′ −
j−1∑
i=1

Mμ−j,μ−j+i vn,μ−j+i

L2−→ Lμ−j q∗ −
j−1∑
i=1

Nμ−j,μ−j+i (Dv∗,μ−j+i )′ −
j−1∑
i=1

Mμ−j,μ−j+i v∗,μ−j+i =: v∗,μ−j ,

Dv∗,μ−j ∈ H 1
sub, (Dv∗,μ−j )′ = w∗,μ−j ,

and eventually we arrive at q∗ ∈ Zsub.
(3) The operator Tsub is bounded also with respect to the new image space Zsub

equipped with the norm ‖·‖Zsub . Namely, for each x ∈ H 1
D,sub owing to the

decoupling it holds that

Dvi = DΠi−1Qix = DΠi−1QiD
+Dx,

(Dvi)
′ = (DΠi−1QiD

+)′Dx +DΠi−1QiD
+(Dx)′, i = 1, . . . , μ− 1.

This leads to ‖Tsubx‖Zsub ≤ cZTsub
‖x‖H 1

D,sub
, with a uniform constant cZTsub

for

all subintervals. In the new setting, the associated operator Tsub : H 1
D,sub →

Zsub × R
l is a homeomorphism, and hence, its inverse is bounded. It remains

to verify the existence of a uniform upper bound cZ of the norm of T −1
sub . �


Let an arbitrary pair (q, r) ∈ Zsub ×R
l be given and the solution x ∈ H 1

D,sub of
Tsubx = (q, r), i.e., Tsubx = q , G(t̄)x(t̄) = r . We apply again the decomposition
of the solution x = D+u + v0 + v1 + · · · + vμ−1 and the decoupling (A.2),
(A.3), (A.4). Owing to the properties of the function G it holds that u(t̄) =
DΠμ−1(t̄)x(t̄) = DΠμ−1(t̄ )G(t̄)−G(t̄)x(t̄) = DΠμ−1(t̄)G(t̄)−r and thus

|u(t̄)| ≤ k1|r|,

with a constant k1 being independent of the subinterval. Below, all the further
constants ki are also uniform ones for all subintervals.

Let U(t, t̄ ) denote the fundamental solution matrix normalized at t̄ of the
ODE (A.2). U is defined on the original interval [a, b], there continuously differen-
tiable and nonsingular. U(t, t̄) and U(t, t̄)−1 = U(t̄, t) are uniformly bounded on
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[a, b]. Turning back to the subinterval we apply the standard solution representation

u(t) = U(t, t̄ )u(t̄)+
∫ t

t̄
U(t, s)DΠμ−1(s)G

−1
μ (s)q(s)ds

= U(t, t̄ )DΠμ−1(t̄)G(t̄)−r +
∫ t

t̄
U(t, s)DΠμ−1(s)G

−1
μ (s)q(s)ds, t ∈ [t̄ , t̄ +H ].

Taking into account that the involved coefficients are defined on [a, b] and continu-
ous there we may derive an inequality

‖u‖2
H 1

sub

≤ k2|r|2 + k3‖q‖2
sub.

Next we rearrange system (A.3) to

⎡
⎢⎢⎢⎢⎣

v1

...

vμ−1

⎤
⎥⎥⎥⎥⎦
=M−1

⎡
⎢⎢⎢⎢⎣

L1

...

Lμ−1

⎤
⎥⎥⎥⎥⎦

q −M−1

⎡
⎢⎢⎢⎢⎢⎣

0 N12 · · · N1,μ−1

0
. . .

...

. . . Nμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(Dv1)
′

...

(Dvμ−1)
′

⎤
⎥⎥⎥⎥⎦

,

in which the inverse of the matrix function

M =

⎡
⎢⎢⎢⎢⎢⎣

I M12 · · · M1,μ−1

I
. . .

...

. . . Mμ−2,μ−1

I

⎤
⎥⎥⎥⎥⎥⎦

is again continuous on [a, b] and upper triangular. This allows to derive the
inequalities

‖vj‖2
L2

sub

≤ k4‖q‖2
L2

sub

+ k5

μ−1∑
i=1

‖(Dvi )
′‖2

L2
sub

, j = 1, . . . , μ− 1.

Considering also (A.4) we obtain

‖x‖2
L2

sub

≤ k6‖q‖2
L2

sub

+ k7

μ−1∑
i=1

‖(Dvi )
′‖2

L2
sub

+ k8|r|2.
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Since (Dx)′ = u′ +∑μ−1
i=1 (Dvi)

′ we have further

‖x‖2
H 1

D,sub

≤ k9

⎧⎨
⎩‖q‖

2
L2

sub

+
μ−1∑
i=1

‖(Dvi )
′‖2

L2
sub

+ |r|2
⎫⎬
⎭ = k9(‖q‖2

Zsub
+ |r|2).

B On the Derivation of the Transfer Matrix S(N,H,n)

Consider an interval (0, h). For the representation of polynomials we will use the
Legendre polynomials Pk [18]. They have the properties

1.
∫ 1
−1 Pk(t)Pl(t)dt = 2

2k+1δkl , k, l = 0, 1, . . ..
2. Pk(1) = 1, Pk(−1) = (−1)k, k = 0, 1, . . ..
3. P ′k+1 − P ′k−1 = (2k + 1)Pk , k = 1, 2, . . ..

Let

pk(t) = akPk(1− 2

h
t), ak =

(
2k + 1

h

)1/2

.

Then it holds

∫ h

0
pk(t)pl(t)dt = δkl, pk(0) = ak, pk(h) = (−1)kak.

From the representation for the derivatives, we obtain

h

2
(ckp

′
k−1 − dkp

′
k+1) = (2k + 1)pk

where

ck = ak

ak−1
=
(

2k + 1

2k − 1

)1/2

, dk = ak

ak+1
=
(

2k + 1

2k + 3

)1/2

.

Since p0(t) ≡ a0 and p′1(t) = −2a1/h, we have the representation

h

2
Γ̄

⎡
⎢⎢⎣

p′1
...

p′N

⎤
⎥⎥⎦ = D−

⎡
⎢⎢⎣

p0
...

pN−1

⎤
⎥⎥⎦ ,
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with

Γ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−d0

0 −d1

c2 0 −d2
. . .

. . .
. . .

cN−1 0 −dN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, D− =

⎡
⎢⎢⎢⎢⎣

1
3
. . .

2N − 1

⎤
⎥⎥⎥⎥⎦

.

This provides

⎡
⎢⎢⎣

p′0
...

p′N

⎤
⎥⎥⎦ =

2

h
Γ

⎡
⎢⎢⎣

p0
...

pN

⎤
⎥⎥⎦ , Γ =

[
0 0

Γ̄ −1D− 0

]
.

A representation of Γ being more suitable for the subsequent derivations can be
obtained by observing that

Γ̄ = D
1/2
−

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

D
−1/2
+ , D+ =

⎡
⎢⎢⎢⎢⎣

3
5
. . .

2N + 1

⎤
⎥⎥⎥⎥⎦

.

Let Z denote the tridiagonal matrix in this decomposition. Then it holds

(Z−1)ij =
⎧⎨
⎩
−1, i ≥ j, i − j even,

0, else.

Hence,

Γ =
[

0

D
1/2
+ Z−1D

1/2
− 0

]
= D1/2YD1/2
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where

D =

⎡
⎢⎢⎢⎢⎣

1
3
. . .

2N + 1

⎤
⎥⎥⎥⎥⎦

, Y = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0
0 1 0
1 0 1 0
0 1 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1 0
...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Assume now

xi =
N∑

k=0

αikpk, a = (a0, . . . , aN)T .

Then

xi(0) =
N∑

n=0

αinpn(0) =
N∑

n=0

αinan = aT αi i = 1, . . . , μ− 1.

We collect the coefficients α = (α1, . . . , αμ−1)
T and set

A =

⎡
⎢⎢⎢⎢⎣

I
2
h
Γ T I

. . .
. . .

2
h
Γ T I

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎣

aT

. . .

aT

⎤
⎥⎥⎦ .

Let now H > 0 be fixed and h = H/n for a given positive integer n. The
functional to be minimized is

Φsub(x) = 1

2
‖x1‖2

L2
sub

+
μ∑

i=2

1

2
‖x ′i−1 − xi‖2

L2
sub

, x = (x1, . . . , xμ)
T

on Xπ under the condition xi = ri , i = 1, . . . , μ − 1. The term for i = μ in this
sum can be omitted since, for given xμ−1 ∈PN , xμ ∈PN−1 can always be set to
x ′μ−1 such that the last term amounts to 0.
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For a shorthand notation, define xν
i = xi |((ν−1)h,νh). Assuming the representa-

tion

xν
i =

N∑
k=0

αν
ikp

ν
k

on ((ν−1)h, νh) with pν
k being the polynomialspk transformed onto ((ν−1)h, νh),

we obtain

Φsub(x) =
n∑

ν=1

⎛
⎝1

2

∣∣αν
1

∣∣2 + 1

2

μ−1∑
i=2

∣∣∣∣
2

h
Γ T αν

i−1 + αν
i

∣∣∣∣
2
⎞
⎠

where αν
i = (αν

i0, . . . , α
ν
iN )T . Furthermore,

xν−1
i (νh) =

N∑
k=0

αν−1
ik pk(h) =

N∑
k=0

αν−1
ik ak(−1)k

for i = 1, . . . , μ− 1. Define b = (a0, . . . , (−1)NaN)T .
All these equations can be conveniently written down in a matrix fashion. The

initial condition becomes

Cα1 = r

while the transfer conditions read

Bαν−1 = Cαν, ν = 2, . . . , n

with

B =

⎡
⎢⎢⎣

bT

. . .

bT

⎤
⎥⎥⎦ .

Let α = (α1, . . . , αn)T and

A =

⎡
⎢⎢⎢⎢⎣

A

A

.. .

A

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎣

C

−B C

.. .
. . .

−B C

⎤
⎥⎥⎥⎥⎦

.
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Note that A is nonsingular since A is so. Similarly, C has full row rank since C has
the same property.

Finally, we obtain

Φsub(x) = Φsub(α) = 1

2
|A α|2 → min such that Cα = (r, 0, . . . , 0)T .

The transfer matrix is then given by

S(N,H, n)r = Bαn(r) for all r ∈ R
μ−1.

In the case μ = 2, a simple analytical solution is feasible.

B.1 The Case μ = 2

In order to simplify the notation, the index i will be omitted. The transfer matrix
reduces to a scalar

ρn =
∣∣∣∣
xn(H)

r

∣∣∣∣ .

The Lagrange functional belonging to the present optimization problem reads

ϕ(α, λ) =
n∑

ν=1

N∑
k=0

(α1
k )

2 + λ1

⎛
⎝

N∑
k=0

akα
1
k − r

⎞
⎠

+
n∑

ν=2

λν

⎛
⎝

N∑
k=0

akα
ν
k −

N∑
k=0

(−1)kakα
ν−1
k

⎞
⎠ .

In the following, we will use the notations

a =
N∑

k=0

a2
k =

1

h
(N + 1)2, b =

N∑
k=0

(−1)ka2
k =

(−1)N

h
(N + 1), c =

∣∣∣∣
b

a

∣∣∣∣ .
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The derivatives of the Lagrange functional are

∂ϕ

∂λ1
=

N∑
k=0

akα
1
k − r,

∂ϕ

∂λν

=
N∑

k=0

akα
ν
k −

N∑
k=0

ak(−1)kαν−1
k , ν = 2, . . . , n

∂ϕ

∂αn
k

= αn
k + λnak,

∂ϕ

∂αν
k

= αν
n + λνak − λν+1ak(−1)k, ν = 1, . . . , n− 1.

Hence, for ν = 1,

r =
N∑

k=0

akα
1
k =

N∑
k=0

ak

(
λ2ak(−1)k − λ1ak

)

= bλ2 − aλ1.

Similarly, for ν = n,

0 =
N∑

k=0

akα
n
k −

N∑
k=0

ak(−1)kαν−1
k

= −
N∑

k=0

a2
kλn +

N∑
k=0

ak(−1)k
(
λn−1ak − λnak(−1)k

)

= bλn−1 − 2aλn.

And finally, for 1 < ν < n,

0 =
N∑

k=0

akα
ν
k −

N∑
k=0

ak(−1)kαν−1
k

=
N∑

k=0

ak

(
λν+1ak(−1)k − λνak

)
−

N∑
k=0

ak(−1)k
(
λνak(−1)k − λν−1ak

)

= bλν+1 − 2aλν + bλν−1.
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This provides us with the linear system of equations

⎡
⎢⎢⎢⎢⎢⎢⎣

−a b

b −2a b

. . .
. . .

. . .

b −2a b

b −2a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

λ2
...

λn−1

λn

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

r

0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since xn(H) =∑N
k=0 ak(−1)kαn

k = −
∑N

k=0 ak(−1)kλnak = −bλn it is sufficient
to compute the last component λn of the solution to this system. Let An denote the
system matrix and Ãn the matrix obtained from An by replacing the last column of
An by the right-hand side. According to Cramer’s rule it holds

λn = detAn

det Ãn

.

Let un = detAn and vn = det Ãn. Then we obtain the recursion

v1 = r,

vν = −bvν−1.

Its solution is given by

vν = (−b)ν−1r.

Analogously, we have

u1 = −a,
u2 = 2a2 − b2,

uν = −2auν−1 − b2uν−2.

This recursion is a simple difference equation with the general solution

uν = c1z
ν
1 + c2z

ν
2,

where

z1,2 = a
(
−1±

√
1− c2

)
.
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Application of the initial condition leads to c1 = c2 = 1/2. Inserting these
expressions we obtain

ρn =
∣∣∣∣
xn(H)

r

∣∣∣∣

=
∣∣∣∣
−bλn

r

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

2bn

an

[(
−1+√1− c2

)n +
(
−1−√1− c2

)n]

∣∣∣∣∣∣∣∣∣

= cn

∣∣∣∣∣∣∣
2(

−1+√1− c2
)n +

(
−1−√1− c2

)n

∣∣∣∣∣∣∣
.

From the definition of c we obtain c = (N + 1)−1. Hence,
√

1− c2 ≈ 1 such that

ρL ≈ cL21−L.

B.2 An Approach for μ > 2

In the case μ > 2, the steps taken in the case μ = 2 can be repeated. The Lagrangian
system for the constraint optimization problem reads

[
A TA C T

C 0

][
α

λ

]
=
[

0
r

]

where

r = (r, 0, . . . , 0)T .

The computation steps are then

(i) α = −(A TA )−1C T λ

(ii) λ = −[C (A TA )−1C T ]−1r
(iii) α = (A TA )−1C T [C (A TA )−1C T ]−1r
(iv) x(H) = Bα = B(A TA )−1C T [C (A TA )−1C T ]−1r.
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In the end, this yields

S(N,H, n) = B(A TA )−1C T [C (A TA )−1C T ]−1.

This representation can easily be evaluated using symbolic computations. It should
be mentioned that most terms in S(N,H, n) lead to simple rational expressions in
N . However, the results presented in Sect. 5.3 have been computed numerically.
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Exponential Integrators for Semi-linear
Parabolic Problems with Linear
Constraints

Robert Altmann and Christoph Zimmer

Abstract This paper is devoted to the construction of exponential integrators of
first and second order for the time discretization of constrained parabolic systems.
For this extend, we combine well-known exponential integrators for unconstrained
systems with the solution of certain saddle point problems in order to meet
the constraints throughout the integration process. The result is a novel class of
semi-explicit time integration schemes. We prove the expected convergence rates
and illustrate the performance on two numerical examples including a parabolic
equation with nonlinear dynamic boundary conditions.

Keywords PDAE · Exponential integrator · Parabolic equations ·
Time discretization

Mathematics Subject Classification (2010) 65M12, 65J15, 65L80

1 Introduction

Exponential integrators provide a powerful tool for the time integration of stiff
ordinary differential equations as well as parabolic partial differential equations
(PDE), cf. [8, 19, 24]. Such integrators are based on the possibility to solve the linear
part – which is responsible for the stiffness of the system – in an exact manner.
As a result, large time steps are possible which makes the method well-suited
for time stepping, especially for parabolic systems where CFL conditions may be
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very restrictive. For semi-linear ODEs and parabolic PDEs exponential integrators
are well-studied in the literature. This includes explicit and implicit exponential
Runge-Kutta methods [11, 17, 18], exponential Runge-Kutta methods of high
order [26], exponential Rosenbrock-type methods [21], and multistep exponential
integrators [10].

In this paper, we construct and analyze exponential integrators for parabolic
PDEs which underlie an additional (linear) constraint. This means that we aim to
approximate the solution to

u̇(t)+A u(t) = f (t, u)

which at the same time satisfies a constraint of the formBu(t) = g(t). Such systems
can be considered as differential-algebraic equations (DAEs) in Banach spaces, also
called partial differential-algebraic equations (PDAEs), cf. [1, 13, 25]. PDAEs of
parabolic type include the transient Stokes problem (where B equals the divergence
operator) as well as problems with nontrivial boundary conditions (with B being the
trace operator). On the other hand, PDAEs of hyperbolic type appear in the modeling
of gas and water networks [5, 14, 22] and in elastic multibody modeling [33].

Besides for the special application of the incompressible Navier-Stokes equa-
tions [23, 28], exponential integrators have not been considered for PDAEs so far. In
the finite-dimensional case, however, exponential integrators have been analyzed for
DAEs of (differential) index 1 [20]. We emphasize that the parabolic PDAEs within
this paper generalize index-2 DAEs in the sense that a standard spatial discretization
by finite elements leads to DAEs of index 2. Known time stepping methods for the
here considered parabolic PDAEs include splitting methods [3], algebraically stable
Runge-Kutta methods [4], and discontinuous Galerkin methods [37].

In the first part of the paper we discuss the existence and uniqueness of solutions
for semi-linear PDAEs of parabolic type with linear constraints. Afterwards, we
propose two exponential integrators of first and second order for such systems.
The construction of this novel class of time integration schemes benefits from the
interplay of well-known time integration schemes for unconstrained systems and
stationary saddle point problems in order to meet the constraints. Since the latter is
done in an implicit manner, the combination with explicit schemes for the dynamical
part of the system leads to so-called semi-explicit time integration schemes. As
exponential integrators are based on the exact evaluation of semigroups, we need
to extend this to the constrained case. The proper equivalent is the solution of a
homogeneous but transient saddle point problem, which is a linear PDAE.

The resulting exponential Euler scheme requires the solution of three stationary
and a single transient saddle point problem in each time step. All these systems
are linear, require in total only one evaluation of the nonlinear function, and do
not call for another linearization step. Further, the transient system is homogeneous
such that it can be solved without an additional regularization (or index reduction
in the finite-dimensional case). The corresponding second-order scheme requires
the solution of additional saddle point problems. Nevertheless, all these systems
are linear and easy to solve. In a similar manner – but under additional regularity
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assumptions – one may translate more general exponential Runge-Kutta schemes to
the constrained case. Here, however, we restrict ourselves to schemes of first and
second order.

The paper is organized as follows. In Sect. 2 we recall the most important
properties of exponential integrators for parabolic problems in the unconstrained
case. Further, we introduce the here considered parabolic PDAEs, summarize all
needed assumptions, and analyze the existence of solutions. The exponential Euler
method is then subject of Sect. 3. Here we discuss two approaches to tackle
the occurrence of constraints and prove first-order convergence. An exponential
integrator of second order is then introduced and analyzed in Sect. 4. Depending on
the nonlinearity, this scheme converges with order 2 or reduced order 3/2. Comments
on the efficient computation and numerical experiments for semi-linear parabolic
systems illustrating the obtained convergence results are presented in Sect. 5.

2 Preliminaries

In this preliminary section we recall basic properties of exponential integrators when
applied to PDEs of parabolic type. For this (and the later analysis) we consider
the well-known ϕ functions. Further, we introduce the precise setting for the here
considered parabolic systems with constraints and discuss their solvability.

2.1 Exponential Integrators for Parabolic Problems

As exponential integrators are based on the exact solution of linear homogeneous
problems, we consider the recursively defined ϕ-functions, see, e.g. [35, Ch. 11.1],

ϕ0(z) := e z, ϕk+1(z) := ϕk(z)− ϕk(0)

z
. (2.1)

For z = 0 the values are given by ϕk(0) = 1/k!. The importance of the ϕ-functions
comes from the fact that they can be equivalently written as integrals of certain
exponentials. More precisely, we have for k ≥ 1 that

ϕk(z) =
∫ 1

0
e(1−s)z sk−1

(k − 1)! ds. (2.2)

We will consider these functions in combination with differential operators. For a
bounded and invertible operator A : X → X, where e tA := exp(tA ) is well-
defined, we can directly use the formula in (2.1) using the notion 1

A = A −1.
More generally, we can apply (2.2) to define ϕk with non-invertible or unbounded
differential operators as arguments. Moreover, the exact solution of a linear abstract
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ODE with a bounded operator and a polynomial right-hand side can be expressed in
terms of the ϕ-functions. More precisely, the solution of

u̇(t)+A u(t) =
n∑

k=1

fk

(k − 1)! t
k−1 ∈ X (2.3)

with initial condition u(0) = u0 and coefficients fk ∈ X is given by

u(t) = ϕ0(−tA ) u0 +
n∑

k=1

ϕk(−tA ) fk t
k. (2.4)

If −A : D(A ) ⊂ X→ X is an unbounded differential operator which generates a
strongly continuous semigroup, then we obtain the following major property for the
corresponding ϕ-functions.

Theorem 2.1 (cf. [19, Lem. 2.4]) Assume that the linear operator −A is the
infinitesimal generator of a strongly continuous semigroup e−tA . Then, the oper-
ators ϕk(−τA ) are linear and bounded in X

With the interpretation of the exponential as the corresponding semigroup, the
solution formula for bounded operators (2.4) directly translates to linear parabolic
PDEs of the form (2.3) with an unbounded differential operator A , cf. [19].

The construction of exponential integrators for u̇(t) + A u(t) = f (t, u) is now
based on the replacement of the nonlinearity f by a polynomial and (2.4). Consider-
ing the interpolation polynomial of degree 0, i.e., evaluating the nonlinearity only in
the starting value of u, we obtain the exponential Euler scheme. The corresponding
scheme for constrained systems is discussed in Sect. 3 and a second-order scheme
in Sect. 4.

2.2 Parabolic Problems with Constraints

In this subsection, we introduce the constrained parabolic systems of interest
and gather assumptions on the involved operators. Throughout this paper we
consider semi-explicit and semi-linear systems meaning that the constraints are
linear and that the nonlinearity only appears in the low-order terms of the dynamic
equation. Thus, we consider the following parabolic PDAE: find u : [0, T ] → V
and λ : [0, T ] → Q such that

u̇(t) + A u(t) +B∗λ(t) = f (t, u) in V ∗, (2.5a)

Bu(t) = g(t) in Q∗. (2.5b)



Exponential Integrators for Semi-linear Parabolic PDAEs 141

Therein, V and Q denote Hilbert spaces with respective duals V ∗ and Q∗. The
space V is part of a Gelfand triple V ,H ,V ∗, cf. [38, Ch. 23.4]. This means
that V is continuously (and densely) embedded in the pivot space H which
implies H ∗ ↪→ V ∗, i.e., the continuous embedding of the corresponding dual
spaces. In this setting, the Hilbert space H is the natural space for the initial data.
Note, however, that the initial condition may underlie a consistency condition due to
the constraint (2.5b), cf. [13]. For the here considered analysis we assume slightly
more regularity, namely u(0) = u0 ∈ V , and consistency of the form Bu0 = g(0).

The assumptions on the operators A ∈ L (V ,V ∗) and B ∈ L (V ,Q∗) are
summarized in the following.

Assumption 2.1 (Constraint Operator B) The operator B : V → Q∗ is linear,
continuous, and satisfies an inf-sup condition, i.e., there exists a constant β > 0
such that

inf
q∈Q\{0}

sup
v∈V \{0}

〈Bv, q〉
‖v‖V ‖q‖Q ≥ β.

Assumption 2.2 (Differential Operator A ) The operator A : V → V ∗ is linear,
continuous, and has the form A = A1 + A2 with A1 ∈ L (V ,V ∗) being self-
adjoint and A2 ∈ L (V ,H ). Further, we assume that A is elliptic on Vker :=
kerB, i.e., on the kernel of the constraint operator.

Without loss of generality, we may assume under Assumption 2.2 that A1 is elliptic
on Vker. This can be seen as follows: With μA denoting the ellipticity constant of
A and cA2 the continuity constant of A2, we set

A1 ← A1 +
c2
A2

2μA
idH and A2 ← A2 −

c2
A2

2μA
idH .

This then implies

〈A1vker, vker〉 ≥ μA ‖vker‖2
V − cA2‖vker‖V ‖vker‖H +

c2
A2

2μA
‖vker‖2

H ≥ μA

2
‖vker‖2

V

for all vker ∈ Vker. Hence, we assume throughout this paper that, given Assump-
tion 2.2, A1 is elliptic on Vker. As a result, A1 induces a norm which is equivalent
to the V -norm on Vker, i.e.,

μ ‖vker‖2
V ≤ ‖vker‖2

A1
≤ C ‖vker‖2

V . (2.6)

Remark 2.1 The results of this paper can be extended to the case where A only
satisfies a Gårding inequality on Vker. In this case, we add to A the term κ idH
such that A +κ idH is elliptic on Vker and add it accordingly to the nonlinearity f .
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Assumption 2.1 implies that B is onto such that there exists a right-inverse denoted
by B− : Q∗ → V . This in turn motivates the decomposition

V = Vker ⊕ Vc with Vker = kerB, Vc = imB−.

We emphasize that the choice of the right-inverse (and respectivelyVc) is, in general,
not unique and allows a certain freedom in the modeling process. Within this paper,
we define the complementary space Vc as in [4] in terms of the annihilator of Vker,
i.e.,

Vc := {v ∈ V |A v ∈ V 0
ker} = {v ∈ V | 〈A v,w〉 = 0 for all w ∈ Vker}.

The analysis of constrained systems such as (2.5) is heavily based on the
mentioned decomposition of V . Furthermore, we need the restriction of the
differential operator to the kernel of B, i.e.,

Aker := A |Vker : Vker → V ∗ker := (Vker)
∗.

Note that we use here the fact that functionals in V ∗ define functionals in V ∗ker
simply through the restriction to Vker. The closure of Vker in the H -norm is denoted

by Hker := Vker
H

. Assumption 2.2 now states that Aker is an elliptic operator. This
in turn implies that −Aker generates an analytic semigroup on Hker, see [30, Ch. 7,
Th. 2.7].

Finally, we need assumptions on the nonlinearity f . Here, we require certain
smoothness properties such as local Lipschitz continuity in the second component.
The precise assumptions will be given in the respective theorems.

Example 2.1 The (weak) formulation of semi-linear parabolic equations with
dynamical (or Wentzell) boundary conditions [34] fit into the given framework. For
this, the system needs to be formulated as a coupled system which leads to the
PDAE structure (2.5), cf. [2]. We emphasize that also the boundary condition may
include nonlinear reaction terms. We will consider this example in the numerical
experiments of Sect. 5.

2.3 Existence of Solutions

In this section we discuss the existence of solutions to (2.5), where we use the notion
of Sobolev-Bochner spaces L2(0, T ;X) and H 1(0, T ;X) for a Banach space X,
cf. [38, Ch. 23]. For the case that f is independent of u, the existence of solutions
is well-studied, see [1, 13, 36]. We recall the corresponding result in the special of
A being self-adjoint, which is needed in later proofs.
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Lemma 2.2 Let A ∈ L (V ,V ∗) be self-adjoint and elliptic on Vker and let B
satisfy Assumption 2.1. Further, assume f ∈ L2(0, T ;H ), g ∈ H 1(0, T ;Q∗),
and u0 ∈ V with Bu0 = g(0). Then, the PDAE (2.5) with right-hand sides f , g –
independent of u – and initial value u0 has a unique solution

u ∈ C([0, T ];V ) ∩H 1(0, T ;H ), λ ∈ L2(0, T ;Q)

with u(0) = u0. The solution depends continuously on the data and satisfies

‖u(t)−B−g(t)‖2
A ≤ ‖u0−B−g(0)‖2

A +
∫ t

0
‖f (s)−B−ġ(s)‖2

H ds. (2.7)

Proof A sketch of the proof can be found in [36, Lem. 21.1]. For more details we
refer to [40, Ch. 3.1.2.2]. �

In order to transfer the results of Lemma 2.2 to the semi-linear PDAE (2.5) we need
to reinterpret the nonlinearity f : [0, T ] × V → H as a function which maps an
abstract measurable function u : [0, T ] → V to f ( · , u( · )) : [0, T ] →H . For this,
we assume the classical Carathéodory condition, see [15, Rem. 1], i.e.,

i.) v �→ f (t, v) is a continuous function for almost all t ∈ [0, T ],
ii.) t �→ f (t, v) is a measurable function for all v ∈ V .

Furthermore, we need a boundedness condition such that the Nemytskii map
induced by f maps C([0, T ];V ) to L2(0, T ;H ). We will assume in the following
that there exists a function k ∈ L2(0, T ) such that

‖f (t, v)‖H ≤ k(t)(1 + ‖v‖V ) (2.8)

for all v ∈ V and almost all t ∈ [0, T ]. We emphasize that condition (2.8) is
sufficient but not necessary for f to induce a Nemytskii map, cf. [15, Th. 1(ii)]. We
will use this condition to prove the existence and uniqueness of a global solution
to (2.5).

Theorem 2.3 Assume that A and B satisfy Assumptions 2.1 and 2.2. Further,
let g ∈ H 1(0, T ;Q∗) and suppose that f : [0, T ] × V → H satisfies the
Carathéodory conditions as well as the uniform bound (2.8). Assume that for every
v ∈ V there exists an open ball Br(v) ⊆ V with radius r = r(v) > 0 and a
constant L = L(v) ≥ 0, such that for almost every t ∈ [0, T ] it holds that

‖f (t, v1)− f (t, v2)‖H ≤ L ‖v1 − v2‖V (2.9)

for all v1, v2 ∈ Br(v). Then, for a consistent initial value u0 ∈ V , i.e., Bu0 = g(0),
the semi-linear PDAE (2.5) has a unique solution

u ∈ C([0, T ];V ) ∩H 1(0, T ;H ), λ ∈ L2(0, T ;Q)

with u(0) = u0.
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Proof Without loss of generality, we assume that A = A1. For this, we redefine
f (t, v) ← f (t, v) − A2v, leading to an update of the involved constants L ←
L+ cA2 and k← k + cA2 but leaving the radius r unchanged.

To prove the statement we follow the steps of [30, Ch. 6.3]. Let t ′ ∈ (0, T ]
be arbitrary but fixed. With (2.8) we notice that the Nemyskii map induced by f

maps C([0, t ′];V ) into L2(0, t ′;H ), cf. [15, Th. 1]. Therefore, the solution map
St ′ : C([0, t ′];V )→ C([0, t ′];V ), which maps y ∈ C([0, t ′];V ) to the solution of

u̇(t) + A u(t) +B∗λ(t) = f (t, y(t)) in V ∗, (2.10a)

Bu(t) = g(t) in Q∗ (2.10b)

with initial value u0, is well-defined, cf. Lemma 2.2. To find a solution to (2.5) we
have to look for a unique fixed point of St ′ and show that t ′ can be extended to T .

Let ũ ∈ C([0, T ];V ) be the solution of the PDAE (2.5) for f ≡ 0 and initial
value u0. With r = r(u0) and L = L(u0) we now choose t1 ∈ (0, T ] such that

‖ũ(t)− u0‖V ≤ r

2
, (a)

∫ t

0
|k|2 ds ≤ μr2

4 (1+ r + ‖u0‖V )2
, (b)

L2t1 < μ, (c)
∫ t

0

3
μ
|k|2(1+ ‖ũ‖2

V ) ds ≤ r2

4
· exp

(− 3
μ

∫ t

0
|k|2 ds

)
(d)

for all t ∈ [0, t1]. This is well-defined, since ũ − u0 and the integrals in (b) and (d)
are continuous functions in t , which vanish for t = 0. We define

D := {y ∈ C([0, t1];V ) | ‖y − ũ‖C([0,t1],V ) ≤ r/2
}

and consider y1, y2 ∈ D. By (a) we have ‖yi − u0‖C([0,t1],V ) ≤ r . Using that ũ and
St1yi satisfy the constraint (2.10b), we obtain the estimate

μ ‖(St1yi − ũ)(t)‖2
V

(2.7)≤
∫ t

0
‖f (s, yi(s))‖2

H ds

(2.8)≤
∫ t

0
|k(s)|2(1+ ‖yi(s)− u0‖V + ‖u0‖V

)2 ds

≤ (
1+ r + ‖u0‖V

)2 ∫ t

0
|k(s)|2 ds
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which implies with (b) that St1 maps D into itself. Further, we have

μ ‖(St1y1 − St1y2)(t)‖2
V

(2.7)≤
∫ t

0
‖f (s, y1(s))− f (s, y2(s))‖2

H ds

(2.9)≤ L2t1‖y1 − y2‖2
C(0,t1;V )

for all t ≤ t1, i = 1, 2. Together with the previous estimate and (c), this shows
that St1 is a contraction on D. Hence, there exists a unique fixed point u ∈ D ⊂
C([0, t1];V ) of St1 by the Banach fixed point theorem [39, Th. 1.A]. On the other
hand, for every fixed point u� = St1u

� in C([0, t1];V ), we have the estimate

μ ‖(u� − ũ)(t)‖2
V = μ ‖(St1u

� − ũ)(t)‖2
V

≤
∫ t

0
|k(s)|2(1+ ‖(u� − ũ)(s)‖V + ‖ũ(s)‖V

)2 ds.

Using (a + b + c)2 ≤ 3 (a2 + b2 + c2) and Gronwall’s inequality it follows that

‖(u�− ũ)(t)‖2
V ≤

∫ t

0

3
μ
|k(s)|2(1+‖ũ(s)‖2

V

)
ds ·exp

(
3
μ

∫ t

0
|k(s)|2 ds

)
(2.11)

for every t ≤ t1. Because of (d), this shows that u� is an element of D and thus,
u� = u.

By considering problem (2.5) iteratively from [ti−1, T ], t0 := 0, to [ti , T ] with
consistent initial value u0 = u(ti ), we can extend u uniquely on an interval I with
u ∈ C(I;V ) and u = St ′u for every t ′ ∈ I. Note that either I = [0, T ] or I = [0, T ′)
with T ′ ≤ T . The second case is only possible if ‖u(t)‖V → ∞ for t → T ′,
otherwise we can extend u by starting at T ′. But, since the estimate (2.11) also holds
for u = u� and t < T ′, we have in limit that ‖u(T ′)‖V ≤ ‖u(T ′) − ũ(T ′)‖V +
‖ũ(T ′)‖V is bounded. Therefore, u = ST u ∈ C([0, T ];V ). Finally, the stated
spaces for u and λ follow by Lemma 2.2 with right-hand side f = f ( · , u( · )). �

Remark 2.2 Under the given assumptions on f from Theorem 2.3, one finds a
radius ru > 0 and a Lipschitz constant Lu ∈ [0,∞), both based on the solution u,
such that (2.9) holds for all v1, v2 ∈ Bru(u(s)) with L = Lu and arbitrary s ∈ [0, T ].
With these uniform constants one can show that the mapping of the data u0 ∈ V
and g ∈ H 1(0, T ;Q) with Bu0 = g(0) to the solution (u, λ) is continuous.

Remark 2.3 It is possible to weaken the assumption (2.8) of Theorem 2.3 for an
arbitrary p > 1 to ‖f (t, v)‖H ≤ k(t)(1 + ‖v‖pV ). Under this assumption one can
show the existence of a unique solution of (2.5), which may only exists locally.
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Remark 2.4 The assumptions considered in [30, Ch. 6.3] are stronger then the one
in Theorem 2.3. If these additional assumptions are satisfied, then the existence
and uniqueness of a solution to (2.5) follows directly by Lemma 2.2, [30, Ch. 6,
Th. 3.1 & 3.3], and the fact that every self-adjoint, elliptic operatorA ∈ L (V ,V ∗)
has a unique invertible square root A 1/2 ∈ L (V ,H ) with 〈A v1, v2〉 =
(A 1/2v1,A

1/2v2) for all v1, v2 ∈ V . This can be proven by interpreting A as an
(unbounded) operator A : D(A) ⊂ H → H with domain D(A) := A −1H ⊂
V ↪→H and the results of [6, Ch. 6, Th. 4 & Ch. 10, Th. 1] and [30, Th. 6.8].

2.4 A Solution Formula for the Linear Case

In the linear case, the solution of (2.5) can be expressed by the variation-of-constants
formula (Duhamel’s principle), cf. [13]. In the semi-linear case, we consider the
term f (t, u) as a right-hand side which leads to an implicit formula only. This,
however, is still of value for the numerical analysis of time integration schemes.

The solution formula is based on the decomposition u = uker + uc
with uker : [0, T ] → Vker and uc : [0, T ] → Vc. The latter is fully determined
by the constraint (2.5b), namely uc(t) = B−g(t) ∈ Vc. For uker we consider the
restriction of (2.5a) to the test space Vker. Since the Lagrange multiplier disappears
in this case, we obtain

u̇ker +Akeruker = u̇ker +A uker = f (t, uker + uc)− u̇c in V ∗ker. (2.12)

Note that the right-hand side is well-defined as functional in V ∗ker using the trivial
restriction of V ∗ to V ∗ker. Further, the term A uc disappears under test functions
in Vker due to the definition of Vc. If this orthogonality is not respected within the
implementation, then this term needs to be reconsidered.

The solution to (2.12) can be obtained by an application of the variation-of-
constants formula. Since the semigroup can only be applied to functions in Hker,
we introduce the operator

ι0 : H ≡H ∗ →H ∗
ker ≡Hker.

This operator is again based on a simple restriction of test functions and leads to the
solution formula

u(t) = uc(t) + uker(t)

= B−g(t)+ e−tAkeruker(0) +
∫ t

0
e−(t−s)Aker ι0

[
f (s, uker(s)+ uc(s))− u̇c(s)

]
ds.
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Assuming a partition of the time interval [0, T ] by 0 = t0 < t1 < · · · < tN = T ,
we can write the solution formula in the form

u(tn+1)−B−gn+1 (2.13)

= e−(tn+1−tn)Aker
[
u(tn)−B−gn

]+
∫ tn+1

tn

e−(tn+1−s)Aker ι0
[
f (s, u(s))− u̇c(s)

]
ds.

Note that we use here the abbreviation gn := g(tn). In the following two sections
we construct exponential integrators for constrained semi-linear systems of the
form (2.5). Starting point is a first-order scheme based on the exponential Euler
method applied to equation (2.12).

3 The Exponential Euler Scheme

The idea of exponential integrators is to approximate the integral term in (2.13)
by an appropriate quadrature rule. Following the construction for PDEs [19], we
consider in this section the function evaluation at the beginning of the interval. This
then leads to the scheme

un+1 −B−gn+1 = e−τAker
[
un −B−gn

]+
∫ τ

0
e−(τ−s)Akerι0

[
f (tn, un)− u̇c(tn)

]
ds

= ϕ0(−τAker)
(
un −B−gn

)+ τϕ1(−τAker)
(
ι0
[
f (tn, un)−B−ġn

])
.

(3.1)

As usual, un denotes the approximation of u(tn). Further, we restrict ourselves
to a uniform partition of [0, T ] with step size τ for simplicity. Assuming that
the resulting approximation satisfies the constraint in every step, we have un −
B−gn ∈ Vker ↪→ Hker such that the semigroup e−τAker is applicable. The derived
formula (3.1) is beneficial for the numerical analysis but lacks the practical access
which we tackle in the following.

3.1 The Practical Method

Since the evaluation of the ϕ-functions with the operatorAker is not straightforward,
we reformulate the method by a number of saddle point problems. Furthermore, we
need evaluations of B− applied to the right-hand side g (or its time derivative). Also
this is replaced by the solution of a saddle point problem.
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Consider x := B−gn = B−g(tn) ∈ Vc ⊆ V . Then, x can be written as the
solution of the stationary auxiliary problem

A x +B∗ν = 0 in V ∗, (3.2a)

Bx = gn in Q∗. (3.2b)

Note that equation (3.2b) enforces the connection of x to the right-hand side g

whereas the first equation of the system guarantees the desired A -orthogonality.
The Lagrange multiplier ν is not of particular interest and simply serves as a dummy
variable. The unique solvability of system (3.2) is discussed in the following lemma.

Lemma 3.1 Let the operators A and B satisfy Assumptions 2.1 and 2.2. Then, for
every gn ∈ Q∗ there exists a unique solution (x, ν) ∈ Vc ×Q to system (3.2).

Proof Under the given assumptions on the operators A and B there exists a unique
solution (x, ν) ∈ V ×Q to (3.2), even in the case with an inhomogeneity in the first
equation, see [7, Ch. II, Prop. 1.3]. It remains to show that x is an element of Vc. For
this, note that x satisfies 〈A x,w〉 = 0 for all w ∈ Vker, since the B∗-term vanishes
for these test functions. This, however, is exactly the definition of the complement
space Vc. �

Being able to compute B−gn, we are now interested in the solution of problems
involving the operator Aker. This will be helpful for the reformulation of the
exponential Euler method (3.1). We introduce the auxiliary variable wn ∈ Vker as
the solution of

Akerwn = f (tn, un)− u̇c(tn) = f (tn, un)−B−ġn in V ∗ker.

This is again equivalent to a stationary saddle point problem, namely

A wn +B∗νn = f (tn, un)−B−ġn in V ∗, (3.3a)

Bwn = 0 in Q∗. (3.3b)

As above, the Lagrange multiplier is only introduced for a proper formulation and
not of particular interest in the following. The unique solvability of system (3.3)
follows again by Lemma 3.1, since the right-hand side of the first equation is an
element of V ∗. In order to rewrite (3.1), we further note that the recursion formula
for ϕ1 implies

τϕ1(−τAker)h = −
[
ϕ0(−τAker)− id

]
A −1

ker h

for all h ∈Hker. Recall that Aker is indeed invertible due to Assumption 2.2. Thus,
the exponential Euler scheme can be rewritten as

un+1 = B−gn+1 + ϕ0(−τAker)
(
un −B−gn − wn

)+wn.
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Finally, we need a way to compute the action of ϕ0(−τAker). For this, we consider
the corresponding PDAE formulation. The resulting method then reads un+1 =
B−gn+1+ z(tn+1)+wn, where z is the solution of the linear homogeneous PDAE

ż(t) + A z(t) +B∗μ(t) = 0 in V ∗, (3.4a)

Bz(t) = 0 in Q∗ (3.4b)

with initial condition z(tn) = un − B−gn − wn. Thus, the exponential Euler
scheme given in (3.1) can be computed by a number of saddle point problems. We
summarize the necessary steps in Algorithm 1.

Algorithm 1 Exponential Euler scheme
1: Input: step size τ , consistent initial data u0 ∈ V , right-hand sides f , g

2: for n = 0 to N − 1 do
3: compute B−gn, B−gn+1, and B−ġn = B−ġ(tn) by (3.2)
4: compute wn by (3.3)
5: compute z as solution of (3.4) on [tn, tn+1] with initial data un −B−gn − wn

6: set un+1 = B−gn+1 + z(tn+1)+ wn

7: end for

Remark 3.1 One step of the exponential Euler scheme consists of the solution of
four (from the second step on only three) stationary and a single transient saddle
point problem, including only one evaluation of the nonlinear function f . We
emphasize that all these systems are linear such that no Newton iteration is necessary
in the solution process. Furthermore, the time-dependent system is homogeneous
such that it can be solved without the need of a regularization.

3.2 Convergence Analysis

In this section we analyze the convergence order of the exponential Euler method
for constrained PDEs of parabolic type. For the unconstrained case it is well-known
that the convergence order is one. Since our approach is based on the unconstrained
PDE (2.12) of the dynamical part in Vker, we expect the same order for the solution
of Algorithm 1. For the associated proof we will assume that the approximation un

lies within a strip of radius r around u, where f is locally Lipschitz continuous with
constant L > 0. Note that by Remark 2.2 there exists such a uniform radius and
local Lipschitz constant. Furthermore, a sufficiently small step size τ guarantees
that un stays within this strip around u, since the solution z of (3.4) and B−g are
continuous.
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Theorem 3.2 (Exponential Euler) Consider the assumptions of Theorem 2.3
including Assumptions 2.1 and 2.2. Further, let the step size τ be sufficiently small
such that the derived approximation un lies within a strip along u in which f is
locally Lipschitz continuous with a uniform constant L > 0. For the right-hand
side of the constraint we assume g ∈ H 2(0, T ;Q∗). If the exact solution of (2.5)
satisfies d

dt f (·, u(·)) ∈ L2(0, T ;H ), then the approximation un obtained by the
exponential Euler scheme of Algorithm 1 satisfies

‖un − u(tn)‖2
V � τ 2

∫ tn

0
‖ d

dt f (t, u(t))‖2
H + ‖B−g̈(t)‖2

H dt .

Note that the involved constant only depends on tn, L, and the operator A .

Proof With wn and z from (3.3) and (3.4), respectively, we define U(t) := z(t) +
wn +B−g(t) for t ∈ [tn, tn+1], n = 0, . . . , N − 1. This function satisfies

U(tn) = z(tn)+wn+B−gn = un and U(tn+1) = z(tn+1)+wn+B−gn+1 = un+1.

Furthermore, since U̇(t) = ż(t)+B−ġ(t), the function U solves the PDAE

U̇(t) + A U(t) +B∗Λ(t) = f (tn, un)+B−(ġ(t)− ġn) in V ∗,

BU(t) = g(t) in Q∗

on [tn, tn+1], n = 0, . . . , N − 1 with initial value U(t0) = u0. To shorten notation
we define �u := u− U and �λ := λ−Λ, which satisfy

d
dt�u + A1�u + B∗�λ = f (·, u(·)) − f (tn, un)−A2�u−B−

(
ġ − ġn

)
in V ∗,

B�u = 0 in Q∗

on each interval [tn, tn+1] with initial value �u(t0) = 0 if n = 0 and �u(tn) =
u(tn) − un otherwise. In the following, we derive estimates of �u on all sub-
intervals. Starting with n = 0, we have by Lemma 2.2 that

‖�u(t)‖2
A1

(2.7)≤
∫ t

0
‖f (s, u(s)) − f (0, u0)−A2�u(s)−B−

(
ġ(s)− ġ0

)‖2
H ds

≤ 2
∫ t

0

∥∥∥
∫ s

0

d
dηf (η, u(η))−B−g̈(η) dη

∥∥∥2

H
+ c2

A2
μ
‖�u(s)‖2

A1
ds.
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By Gronwall’s lemma and t = t1 = τ we obtain with c := 2c2
A2

μ−1 the bound

‖u(t1)− u1‖2
A1
≤ 2 e cτ

∫ τ

0

∥∥∥
∫ s

0

d
dηf (η, u(η))−B−g̈(η) dη

∥∥∥2

H
ds

≤ 2 e cτ

∫ τ

0
s

∫ s

0
‖ d

dηf (η, u(η))−B−g̈(η)‖2
H dη ds

≤ 2 e cτ τ 2
∫ τ

0
‖ d

ds f (s, u(s))‖2
H + ‖B−g̈(s)‖2

H ds
︸ ︷︷ ︸

=:I ( d
dt f, g̈, 0, t1)

.

(3.5)

With the uniform Lipschitz constant L we have for n ≥ 1 that

∫ tn+1

tn

‖f (s,u(s))− f (tn, un)‖2
H ds

≤ 2
∫ tn+1

tn

‖f (tn, u(tn))− f (tn, un)‖2
H + ‖f (s, u(s))− f (tn, u(tn))‖2

H ds

≤ 2 τ L2

μ
‖u(tn)− un‖2

A1
+ 2

∫ tn+1

tn

(s − tn)

∫ s

tn

‖ d
dηf (η, u(η))‖2

H dη ds.

With this, we obtain similarly as in (3.5) and with Young’s inequality,

‖u(tn+1)− un+1‖2
A1
≤ e cτ

[(
1+ 3 τ L2

μ

)‖u(tn)− un‖2
A1
+ 3 τ 2 I

( d
dt f, g̈, tn, tn+1

)]
.

(3.6)

Therefore, with (1 + x) ≤ e x , estimate (3.5), and an iterative application of the
estimate (3.6) we get

‖u(tn+1)− un+1‖2
A1
≤ τ 2 3

n∑
k=0

exp(cτ )n+1−k(1+ 3 τ L2

μ

)n−k
I
( d

dt f, g̈, tk, tk+1
)

≤ τ 2 3 exp(c tn+1) exp
(
3L2

μ
tn
)
I
( d

dt f, g̈, 0, tn+1
)

for all n = 0, . . . , N − 1. The stated estimate finally follows by the equivalence
of ‖ · ‖V and ‖ · ‖A on Vker, see (2.6). �

Remark 3.2 The assumption on the step size τ only depends on the nonlinearity f

and not on the operator A . Thus, this condition does not depend on the stiffness of
the system and still allows large time steps.

Remark 3.3 In the case of a self-adjoint operator A , i.e., A2 = 0, the convergence
result can also be proven by the restriction to test functions in Vker and the appli-
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cation of corresponding results for the unconstrained case, namely [19, Th. 2.14].
This requires similar assumptions but with d

dt f (·, u(·)) ∈ L∞(0, T ;H ).
We like to emphasize that this procedure is also applicable if A2 	= 0 by

moving A2 into the nonlinearity f . This, however, slightly changes the proposed
scheme, since then only A2un enters the approximation instead of A2u(t). In
practical applications this would also require an additional effort in order to find
the symmetric part of the differential operator A which is still elliptic on Vker.

3.3 An Alternative Approach

A second approach to construct an exponential Euler scheme which is applicable to
constrained systems is to formally apply the method to the corresponding singularly
perturbed PDE. This approach was also considered in [20] for DAEs of index 1. In
the present case, we add a small term ελ̇ into the second equation of (2.5). Thus, we
consider the system

u̇(t) + A u(t) +B∗λ(t) = f (t, u) in V ∗, (3.7a)

ελ̇(t) + Bu(t) = g(t) in Q∗, (3.7b)

which can be written in operator matrix form as

[
u̇

λ̇

]
=
[

id
1
ε

id

]{
−
[
A B∗
B

][
u

λ

]
+
[
f (t, u)

g(t)

]}
.

For this, an application of the exponential Euler method yields the scheme

[
un+1

λn+1

]
= ϕ0

(
− τ

[
A B∗
1
ε
B

])[
un

λn

]
+ τϕ1

(
− τ

[
A B∗
1
ε
B

])[
f (tn, un)

1
ε
gn

]
.

We introduce the auxiliary variables (w̄n, ν̄n) ∈ V × Q as the unique solution to
the stationary saddle point problem

A w̄n +B∗ν̄n = f (tn, un) in V ∗,

Bw̄n = θgn + (1− θ)gn+1 in Q∗.

The included parameter θ ∈ [0, 1] controls the consistency as outlined below. Then,
the exponential Euler method can be rewritten as

[
un+1

λn+1

]
= ϕ0

(
− τ

[
A B∗
1
ε
B

])[
un − w̄n

λn − μ̄n

]
+
[
w̄n

μ̄n

]
,
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which allows an interpretation as the solution of a linear (homogeneous) PDE.
Finally, we set ε = 0, which leads to the following time integration scheme:
Given w̄n, solve on [tn, tn+1] the linear system

ż(t) + A z(t) +B∗μ(t) = 0 in V ∗,

Bz(t) = 0 in Q∗

with initial condition z(tn) = un−w̄n. The approximation of u(tn+1) is then defined
through un+1 := z(tn+1)+ w̄n.

We emphasize that the initial value of z may be inconsistent. In this case, the
initial value needs to be projected to Hker, cf. Sect. 2.4. If the previous iterate
satisfies Bun = gn, then the choice θ = 1 yields Bz(tn) = 0 and thus, consistency.
This, however, does not imply Bun+1 = gn+1. On the other hand, θ = 0 causes an
inconsistency for z in the sense that Bz(tn) 	= 0 but guarantees Bun+1 = gn+1. We
now turn to an exponential integrator of higher order.

4 Exponential Integrators of Second Order

This section is devoted to the construction of an exponential integrator of order two
for constrained parabolic systems of the form (2.5). In particular, we aim to transfer
the method given in [35, Exp. 11.2.2], described by the Butcher tableau

0
1 ϕ1

ϕ1 − ϕ2 ϕ2

(4.1)

to the PDAE case. In the unconstrained case, i.e., for v̇ + Akerv = f̃ (t, v) in V ∗ker,
one step of this method is defined through

vEul
n+1 := ϕ0(−τAker)vn + τϕ1(−τAker)f̃ (tn, vn), (4.2a)

vn+1 := vEul
n+1 + τϕ2(−τAker)

[
f̃ (tn+1, v

Eul
n+1)− f̃ (tn, vn)

]
. (4.2b)

Similarly as for the exponential Euler method, we will define a number of auxiliary
problems in order to obtain an applicable method for parabolic systems with
constraints.
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4.1 The Practical Method

We translate the numerical scheme (4.2) to the constrained case. Let un denote
the given approximation of u(tn). Then, the first step is to perform one step of the
exponential Euler method, cf. Algorithm 1, leading to uEul

n+1. Second, we computew′n
as the solution of the stationary problem

A w′n +B∗ν′n = f (tn+1, u
Eul
n+1)−B−ġn+1 − f (tn, un)+B−ġn in V ∗, (4.3a)

Bw′n = 0 in Q∗ (4.3b)

and w′′n as the solution of

A w′′n +B∗ν′′n = 1
τ
w′n in V ∗, (4.4a)

Bw′′n = 0 in Q∗. (4.4b)

Note that, due to the recursion formula (2.1), w′n and w′′n satisfy the identity

τϕ2(−τAker) ι0
[
f (tn+1, u

Eul
n+1)−B−ġn+1−f (tn, un)+B−ġn

]

= −ϕ1(−τAker)w
′
n +w′n

= ϕ0(−τAker)w
′′
n −w′′n +w′n.

It remains to compute ϕ0(−τAker)w
′′
n and thus, to solve a linear dynamical system

with starting value w′′n . More precisely, we consider the homogeneous system (3.4)
on the time interval [tn, tn+1]with initial value z(tn) = w′′n . The solution at time tn+1
then defines the new approximation by

un+1 := uEul
n+1 + z(tn+1)− w′′n +w′n.

Note that the consistency is already guaranteed by the exponential Euler step
which yields Bun+1 = BuEul

n+1 = gn+1. The resulting exponential integrator is
summarized in Algorithm 2.

Algorithm 2 A second-order exponential integrator
1: Input: step size τ , consistent initial data u0 ∈ V , right-hand sides f , g

2: for n = 0 to N − 1 do
3: compute one step of the exponential Euler method for un leading to uEul

n+1
4: compute B−ġn and B−ġn+1 by (3.2)
5: compute w′n by (4.3)
6: compute w′′n by (4.4)
7: compute z as solution of (3.4) on [tn, tn+1] with initial condition z(tn) = w′′n
8: set un+1 = uEul

n+1 + z(tn+1)−w′′n + w′n
9: end for
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4.2 Convergence Analysis

In this subsection we aim to prove the second-order convergence of Algorithm 2
when applied to parabolic PDAEs of the form (2.5). For this, we examine
two cases. First, we consider a nonlinearity with values in V , i.e., we
assume f (·, u(·)) : [0, T ] → V . Further, we assume A to be self-adjoint, meaning
that A2 = 0. Note that this may be extended to general A as mentioned in
Remark 3.3. In this case, the convergence analysis is based on the corresponding
results for unconstrained systems. Second, we consider the more general case with
nonlinearities f : [0, T ] × V →H . Here, it can be observed that the convergence
order drops to 3/2. Note, however, that this already happens in the pure PDE case.

Theorem 4.1 (Second-Order Scheme) In the setting of Sect. 2.2, including
Assumptions 2.1 and 2.2, we assume that A is self-adjoint and that for the exact
solution u the map t �→ f (t, u(t)) is two times differentiable with values in V .
Further we assume that the right-hand side g and u are sufficiently smooth, the
latter with derivatives in V . Then, the approximation obtained by Algorithm 2 is
second-order accurate, i.e.,

‖un − u(tn)‖V � τ 2.

Proof We reduce the procedure performed in Algorithm 2 to the unconstrained
case. For this, assume that un = uker,n+B−gn ∈ V is given with uker,n ∈ Vker and
that uEul

n+1 denotes the outcome of a single Euler step, cf. Algorithm 1. By uEul
ker,n+1

we denote the outcome of a Euler step for the unconstrained system

u̇ker(t)+Akeruker(t) = f̃ (t, uker(t)) in V ∗ker

with f̃ defined by f̃ (t, uker) := ι0 [f (t, uker + B−g(t)) − B−ġ(t)] and initial
data uker,n. For this, we know that uEul

n+1 = uEul
ker,n+1 + B−gn+1. By the given

assumptions, it follows from [17, Th. 4.3] that

uker,n+1 := uEul
ker,n+1 + τϕ2(−τAker)

[
f̃ (tn+1, u

Eul
ker,n+1)− f̃ (tn, uker,n)

]

defines a second-order approximation of uker(tn+1). This in turn implies that

un+1 := uker,n+1 +B−gn+1

= uEul
n+1 + τϕ2(−τAker)

[
f̃ (tn+1, u

Eul
ker,n+1)− f̃ (tn, uker,n)

]

= uEul
n+1 + τϕ2(−τAker) ι0

[
f (tn+1, u

Eul
n+1)−B−ġn+1 − f (tn, un)+B−ġn

]
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satisfies the error estimate

‖un+1 − u(tn+1)‖V = ‖uker,n+1 − uker(tn+1)‖V � τ 2.

It remains to show that un+1 is indeed the outcome of Algorithm 2. Following the
construction in Sect. 4.1, we conclude that

un+1 = uEul
n+1 + ϕ0(−τAker)w

′′
n −w′′n + w′n

with w′n and w′′n denoting the solutions of (4.3) and (4.4), respectively. Finally, note
that ϕ0(−τAker)w

′′
n is computed in line 7 of Algorithm 2. �


Up to now we have assumed that f (·, u(·)) maps to V , leading to the desired
second-order convergence. In the following, we reconsider the more general case
in which f (·, u(·)) only maps to H . For PDEs it is well-known that the exponential
integrator given by the Butcher tableau (4.1) has, in general, a reduced convergence
order if d

dt f (·, u(·)) ∈ L∞(0, T ;H ), cf. [17, Th. 4.3]. This carries over to the
PDAE case.

Theorem 4.2 (Convergence Under Weaker Assumptions on f ) Consider the
assumptions from Theorem 2.3 and let the step size τ be sufficiently small such
that the discrete solution un lies in a strip along u, where f is locally Lipschitz
continuous with a uniform constant L > 0. Further assume that g ∈ H 3(0, T ;Q∗).
If the exact solution of (2.5) satisfies f ( · , u( · )) ∈ H 2(0, T ;H ), then the
approximation un obtained by Algorithm 2 satisfies the error bound

‖un − u(tn)‖2
V � τ 3

∫ tn

0
‖ d

dt f (t, u(t))‖2
H + ‖B−g̈(t)‖2

H dt

+ τ 4
∫ tn

0
‖ d2

dt2 f (t, u(t))‖2
H + ‖B−

...
g(t)‖2

H dt .

Note that the involved constant only depends on tn, L, and the operator A .

Proof Let UEul be the function constructed in the proof of Theorem 3.2 which
satisfies UEul(tn) = un and UEul(tn+1) = uEul

n+1 and set U(t) := UEul(t) + z(t) −
w′′n + t−tn

τ
w′n. This function satisfies

U(tn) = UEul(tn) = un, U(tn+1) = UEul(tn+1)+ z(tn+1)−w′′n +w′n = un+1.

Note that the estimates (3.5) and (3.6) are still valid if one replaces un+1 by
UEul(tn+1) on the left-hand side of these estimates. As in the proof of Theorem 3.2,
we can interpret U as the solution of a PDAE on [tn, tn+1]. The corresponding right-
hand sides are then given by

f (tn, un)+ t−tn
τ

(
f (tn+1, U

Eul(tn+1))−f (tn, un)
)+B−(ġ(t)−ġn− t−tn

τ
(ġn+1−ġn)

)
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for the dynamic equation and g(t) for the constraint. Then, by Young’s inequality,
Gronwall’s lemma, and error bounds for the Taylor expansion we get

‖u(tn+1)− un+1‖2
A1
≤ e cτ

[(
1+ 4τ L2

μ

) ‖u(tn)− un‖2
A1
+ 4 τ L2

μ
‖(u− UEul)(tn+1)‖2

A1

+ τ4
∫ tn+1

tn

2
15 ‖ d2

dt2 f (t, u(t))‖2
H + 2

45 ‖B−
...
g (t)‖2

H dt
]

with c = 2c2
A2

μ−1. The stated error bound then follows by an iterative application
of the previous estimate together with the estimates (3.5), (3.6) and the norm
equivalence of ‖ · ‖V and ‖ · ‖A1 . �

We like to emphasize that the previous result is sharp in the sense that there exist
examples leading to a convergence order of 1.5. The performance of the proposed
scheme is presented in the numerical experiments of Sect. 5. We close this section
with remarks on alternative second-order schemes.

4.3 A Class of Second-Order Schemes

The analyzed scheme (4.1) is a special case of a one-parameter family of exponential
Runge-Kutta methods described by the tableau

0
c2 c2ϕ1,2

ϕ1 − 1
c2
ϕ2

1
c2
ϕ2

with positive parameter c2 > 0, cf. [19]. Therein, ϕ1 stands for ϕ1(−τAker),
whereas ϕ1,2 is defined by ϕ1(−c2τAker). Obviously, we regain (4.1) for c2 = 1.

For c2 	= 1, the resulting scheme for constrained systems calls for two additional
saddle point problems in order to compute B−g(tn + c2τ ) and B−ġ(tn + c2τ ).
This then leads to an exponential integrator summarized in Algorithm 3 with the
abbreviations

gn,2 := g(tn + c2τ ), ġn,2 := ġ(tn + c2τ ), tn,2 := tn + c2τ.

We emphasize that all convergence results of Theorems 4.1 and 4.2 transfer to
this family of second-order integrators. In a similar manner, Runge-Kutta schemes
of higher order may be translated to the here considered constrained case.



158 R. Altmann and C. Zimmer

Algorithm 3 A class of second-order exponential integrators
1: Input: step size τ , consistent initial data u0 ∈ V , right-hand sides f , g

2: for n = 0 to N − 1 do
3: compute B−gn, B−gn,2, B−gn+1, B−ġn, B−ġn,2, and B−ġn+1 by (3.2)
4: compute wn by (3.3)
5: solve (3.4) on [tn, tn,2] with initial condition z(tn) = un −B−gn − wn

6: set un,2 = z(tn,2)+ wn +B−gn,2
7: compute w′n by (4.3) with right-hand side

1
c2

(
f (tn,2, un,2)− f (tn, un)−B−ġn,2 +B−ġn

)

8: compute w′′n by (4.4)
9: solve (3.4) on [tn, tn+1] with initial condition z(tn) = un −B−gn − wn +w′′n

10: set un+1 = z(tn+1)+wn + w′n − w′′n +B−gn+1.

11: end for

5 Numerical Examples

In this final section we illustrate the performance of the introduced time integration
schemes for two numerical examples. The first example is a heat equation with
nonlinear dynamic boundary conditions. In the second experiment, we consider the
case of a non-symmetric differential operator for which the theory is not applicable.

Since exponential integrators for PDAEs are based on the exact solution of
homogeneous systems of the form (3.4), we first discuss the efficient solution of
such systems.

5.1 Efficient Solution of Homogeneous DAEs with Saddle
Point Structure

This subsection is devoted to the approximation of z(t), which is needed in line 5
of Algorithm 1 and in line 7 of Algorithm 2. Given a spatial discretization, e.g., by
a finite element method, the PDAE (3.4) turns into a DAE of index 2, namely

Mẋ(t) + Ax(t) + BT λ(t) = 0, (5.1a)

Bx(t) = 0 (5.1b)

with consistent initial value x(0) = x0, Bx0 = 0. The matrices satisfy M,A ∈ R
n×n

and B ∈ R
m×n with m ≤ n. Here, the mass matrix M is symmetric, positive definite

and B has full rank. The goal is to find an efficient method to calculate the solution x

at a specific time point t ∈ [0, T ].
Let us first recall the corresponding ODE case. There exist various methods to

approximate the solution x(t) = e−Atx0 of the linear ODE ẋ(t) + Ax(t) = 0 with
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initial condition x(0) = x0, A ∈ R
n×n, for an overview see [27]. This includes

Krylov subspace methods to approximate the action of the matrix exponential e−At

to a vector, see [12, 16, 32], but also methods based on an interpolation of e−Atx0
by Newton polynomials [9]. The first approach is based on the fact that the solution
e−Atx0 =∑∞k=0

1
k! (−At)kx0 is an element of the Krylov subspace

Kn := Kn(−A, x0) := span{x0,−Ax0, . . . , (−A)n−1x0}.

Now, we approximate e−Atx0 by an element of Kr with r relatively small compared
to n. For this, we generate an orthogonal basis of Kr using the Arnoldi algorithm
with v1 = x0/‖x0‖ as initial vector. This yields −V T

r AVr = Hr with an isometric
matrix Vr ∈ R

n×r and an upper Hessenberg matrix Hr ∈ R
r×r . Since the columns

of Vr are orthonormal and span Kr , Hr is the orthogonal projection of−A onto Kr .
Therefore, it is reasonable to use the approximation

e−Atx0 ≈ ‖x0‖Vr e
Hr t e1

with unit basis vector e1 ∈ R
r , cf. [16]. We like to emphasize that the Arnoldi

algorithm does not use the explicit representation of A but only its action onto a
vector.

We return to the DAE case (5.1). By [13, Th. 2.2] there exists a matrix X ∈
R

n×n such that the solution x of (5.1) with arbitrary consistent initial value x0 ∈
kerB is given by x(t) = eXtx0. Furthermore, there exists a function Λ ∈
C∞([0,∞);Rm×n) with λ(t) = Λ(t)x0. To calculate the action of X we note that
by (5.1b) also Bẋ = 0 holds. We define y := Xx0 and μ := Λ(0)x0. Then with
equation (5.1a), Bẋ = 0, and t → 0+ we get

My + BT μ = −Ax0, (5.2a)

By = 0. (5.2b)

Since the solution of (5.2) is unique, its solution y describes the action of X applied
to x0. As a result, we can approximate the solution of the DAE (5.1) in an efficient
manner by using x(t) = eXtx0, the saddle point problem (5.2), and Krylov subspace
methods. For the numerical experiments we have adapted the code provided in [29].

Remark 5.1 Given an approximation xt ≈ x(t), the solution μ of (5.2) with right-
hand side −Axt provides an approximation of the Lagrange multiplier λ(t).

Remark 5.2 Since the saddle point problem (5.2) has to be solved several times
in every time step, the numerical solution x̃ of (5.1) may not satisfy the con-
straint (5.1b) due to round-off errors. To prevent a drift-off, one can project x̃ onto
the kernel of B – by solving an additional saddle point problem.
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5.2 Nonlinear Dynamic Boundary Conditions

In this first example we revisit Example 2.1 and consider the linear heat equation
with nonlinear dynamic boundary conditions, cf. [34]. More precisely, we consider
the system

u̇− κ Δu = 0 in Ω := (0, 1)2, (5.3a)

u̇+ ∂nu+ α u = fΓ (t, u) on Γdyn := (0, 1)× {0} (5.3b)

u = 0 on ΓD := ∂Ω \ Γdyn (5.3c)

with α = 1, κ = 0.02, and the nonlinearity fΓ (t, u)(x) = 3 cos(2πt)− sin(2πx)−
u3(x). As initial condition we set u(0) = u0 = sin(πx) cos(5πy/2). Following [2],
we can write this in form of a PDAE, namely as

[
u̇

ṗ

]
+
[
K

α

][
u

p

]
+B∗λ =

[
0

fΓ (t, p)

]
in V ∗, (5.4a)

B

[
u

p

]
= 0 in Q∗ (5.4b)

with spaces V = H 1
ΓD

(Ω) × H
1/2
00 (Γdyn), H = L2(Ω) × L2(Γdyn), Q =

[H 1/2
00 (Γdyn)]∗ and constraint operator B(u, p) = u|Γdyn − p. Here, p denotes a

dummy variable modeling the dynamics on the boundary Γdyn. The constraint (5.4b)
couples the two variables u and p. This example fits into the framework of this paper
with g ≡ 0. Further, the nonlinearity satisfies the assumptions of the convergence
results in Theorems 3.2 and 4.2 due to well-known Sobolev embeddings, see [31,
p. 17f].

For the simulation we consider a spatial discretization by bilinear finite elements
on a uniform mesh with mesh size h = 1/128. The initial value of p is chosen
in a consistent manner, i.e., by u0|Γdyn . An illustration of the dynamics is given
in Fig. 1. The convergence results of the exponential Euler scheme of Sect. 3 and
the exponential integrator introduced in Sect. 4 are displayed in Fig. 2 and show
first and second-order convergence, respectively. Note that the smoothness of the

solution implies di

dt i
f (t, u(t)) ∈ V , i = 0, 1, 2, which yields the full convergence

order.
Finally, we note that the computations remain stable for very coarse step sizes τ ,

since we do not rely on a CFL condition here.
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Fig. 1 Illustration of the solution (u, p). The left figure shows u at time t = 0.7, whereas the right
figure includes several snapshots of p in the time interval [0, 0.7]. The dashed line shows the initial
value of p. Both results are obtained for mesh size h = 1/128 and step size τ = 1/100
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Fig. 2 Convergence history for the error in x = [u;p], measured in the (discrete) A -norm. The
dashed lines show first and second-order rates

5.3 A Non-symmetric Example

In this final example we consider a case for which Assumption 2.2 is not satisfied.
More precisely, we consider the coupled system

u̇− ∂xxu− ∂xxv = −u3 in (0, 1),

v̇ + u− ∂xxv = −v3 in (0, 1)

with initial value

u0(x) = v0(x) =
∞∑
k=1

sin(kπx)

k1.55

and the constraint u(t, 1)−v(t, 1) = g(t) = e2t−1. At the other boundary point x =
0 we prescribe homogeneous Dirichlet boundary conditions. In this example, the
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Fig. 3 Convergence history for the error in x = [u; v], measured in the (discrete) H 1(0, 1)-norm,
including Dirichlet boundary conditions in x = 0. The graphs show the results of the exponential
Euler scheme (triangle) and the second order scheme (circle) for different values of h, displayed
by its color. The dashed lines illustrate the orders 1 and 3/2, respectively

operator A has the form −[∂xx, ∂xx; − id, ∂xx]. Thus, the non-symmetric part A2
includes a second-order differential operator which contradicts Assumption 2.2. As
a consequence, non of the convergence results in this paper apply.

The numerical results are shown in Fig. 3, using a finite element discretization
with varying mesh sizes h. One can observe that the exponential Euler scheme still
converges with order 1, whereas the second-order scheme introduced in Sect. 4
clearly converges with a reduced rate. Moreover, the rate decreases as the mesh
size h gets smaller. By linear regression one can approximate the convergence rate as
a value between 1.40 (coarsest mesh, h = 1/32) and 1.34 (finest mesh, h = 1/256).
Thus, the convergence rate is strictly below 3/2. A deeper analysis with fractional
powers of A may predict the exact convergence rate, cf. [17, Th. 4.2 & Th. 4.3].
However, this is a task for future work.

6 Conclusion

In this paper, we have introduced a novel class of time integration schemes
for semi-linear parabolic equations restricted by a linear constraint. For this, we
have combined exponential integrators for the dynamical part of the system with
(stationary) saddle point problems for the ‘algebraic part’ of the solution. This
results in exponential integrators for constrained systems of parabolic type for which
we have proven convergence of first and second order, respectively. The theory is
verified by numerical experiments.
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Abstract Rosenbrock-Wanner methods for solving index-one DAEs usually suffer
from order reduction to order p = 1 when the Jacobian matrix is not exactly com-
puted in every time step. This may even happen when the Jacobian matrix is updated
in every step, but numerically evaluated by finite differences. Recently, Jax (A
rooted-tree based derivation of ROW-type methods with arbitrary jacobian entries
for solving index-one DAEs, Dissertation, University Wuppertal (to appear)) could
derive new order conditions for the avoidance of such order reduction phenomena.
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rodasp (Steinebach, Order-reduction of ROW-methods for DAEs and method
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1 Introduction

Rosenbrock-Wanner (ROW) methods for solving initial value problems of stiff
ordinary differential equations (ODEs) are well known since the late seventies.
Recently, Jens Lang [4] gave an excellent survey on the development of these
methods.

Beside the simple implementation a major advantage of linear implicit ROW
methods is the avoidance of solving nonlinear systems of equations. Instead, s linear
systems must be solved per time step, where s describes the stage number of the
method. A disadvantage in contrast to e.g. implicit Runge-Kutta methods is, that the
Jacobian matrix must be recalculated at each time step. In order to save Jacobian
evaluations W methods were introduced in [17]. In principle they can cope with any
approximation of the Jacobian. In practice and due to stability issues the Jacobian
is held constant for some time steps. In many technical applications the Jacobian
matrix is not exactly known, but is approximated by finite differences. Here, W
methods can also be advantageous, even if the Jacobian matrix is recalculated in
each step.

However, the number of order conditions to be fulfilled is much higher for W
methods than for ROW methods. For example, fourth-order ROW methods must
satisfy 8 conditions, but W methods 21, see reference [1]. Therefore, W methods
usually require a higher number of stages.

When applying ROW schemes to differential algebraic problems (DAEs), addi-
tional order conditions must be met. Roche [13] was able to derive these conditions
using the Butcher tree theory for index-1 problems. Based on these results, a number
of methods were constructed for DAEs. One of the best known methods is rodas
by Hairer and Wanner [1]. It is a stiffly accurate method of order p = 4 with stage
number s = 6.

Ostermann and Roche [8] were able to show that Rosenbrock schemes undergo
order reduction for some problem classes. This occurs e.g. for semidiscretized
parabolic problems and depends on the boundary conditions of the partial differ-
ential equations (PDEs). To avoid this order reduction, additional conditions have
to be fulfilled. These agree with the conditions of Scholz, which he derived for the
Prothero-Robinson model [15].

In [18] the coefficient set of rodas could be modified such that the conditions
of Scholz were fulfilled. The corresponding procedure was called rodasp, where
P stands for the suitability of the methods for semidiscretized PDEs.

Beside rodas and rodasp many other efficient ROW methods exist. Here
only some well known methods are mentioned, that are related to rodas. The
third order method ros3pl [5] with four stages is also stiffly accurate, but fulfills
additional conditions of a W method for ODEs with O(h)-approximations to the
Jacobian. In order to avoid order reduction for the Prothero-Robinson model, Rang
[10] enhanced this method to ros3prl2. Another modification leads to the method
ros34prw [10] fulfilling more order conditions of W methods for ODEs. A more
detailed review on ROW methods is given in reference [4].
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In reference [3] W methods for DAEs were considered. At first only approxi-
mations to the Jacobian matrix for the differential part of the DAEs were allowed.
Recently, Jax [2] could extend these results. DAE systems of the following form are
considered:

y ′ = f (y, z) ; y(t0) = y0 , (1.1)

0 = g(y, z) ; z(t0) = z0 . (1.2)

Consistent initial values with 0 = g(y0, z0) are assumed and the index-1 condition
guarantees a regular matrix gz in the neighbourhood of the solution, where gz

denotes the Jacobian of function g of partial derivatives with respect to z. The ROW
scheme with stage-number s considered by Roche for equations (1.1,1.2) is defined
as follows:

y1 = y0 +
s∑

i=1

biki, z1 = z0 +
s∑

i=1

bik
alg
i , i = 1, . . . , s (1.3)

(
ki

0

)
= h

(
f (vi , wi)

g(vi , wi)

)
+ h

[
(fy)0 (fz)0

(gy)0 (gz)0

]
i∑

j=1

γij

(
kj

k
alg
j

)
, (1.4)

vi = y0 +
i−1∑
j=1

αij kj , wi = z0 +
i−1∑
j=1

αij k
alg
j . (1.5)

Here, y1, z1 denote approximations to the solution of equations (1.1,1.2) at time
t = t0 + h. The coefficients of the method are αij , γij with γii = γ and weights are
bi . The Jacobian matrices are evaluated at time t = t0, e.g. (fy)0 = ∂f

∂y
(y0, z0).

Jax [2] now replaces fy, fz, gy with arbitrary matrices Ay,Az, By , only gz

remains exact. With the Butcher tree theory (see references [1, 13]) transferred
to this case, he can derive new additional order conditions. The total number of
conditions is e.g. n = 26 for such a new method of order p = 3 compared to
n = 13 for a ROW method given by equations (1.3,1.4,1.5).

It is well known that rodas and rodasp suffer from an order reduction to
p = 1 when implemented as a W method with inexact Jacobian. Even with an
implementation as a ROW method with updated Jacobian matrix at every time step,
problems may occur if the Jacobian matrix is calculated using finite differences and
is therefore not exact. The aim of this paper is to improve the fourth order ROW
method rodasp in such a way, that the order p = 2 is still maintained by using
arbitrary approximations Ay,Az, By to the Jacobian matrix. The free parameters
are chosen such that the new conditions of Jax are fulfilled. In [20] the coefficient
set of rodasp is given, but the preprint [18], where the construction of the method
is described, has never been published in a journal. Therefore the construction of
rodasp together with the optimized coefficients is outlined again in this paper.
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Section 2 first summarises all the necessary conditions. In Sect. 3 the new
method rodasp2 is constructed. Since many integrators are implemented and
tested in a MATLAB version, these aspects are treated in Sect. 4. For the efficient
implementation the computation of the Jacobian plays a key role. Strategies
for taking linear components into account and for vectorization are discussed.
Subsequently, numerical tests are carried out and analysed in Sect. 5. The numerical
tests cover problems from network simulation, because ROW methods are proven
to be very well suited for such problems, especially in the context of fluid flow
networks, see reference [19].

2 Order Conditions

We want to construct an L-stable ROW method of order p = 4 for index-1 DAE
systems of type (1.1,1.2). According to [13] the order conditions 1 to 13 stated in
Table 1 have to be fulfilled. The following abbreviations are used:

βij = αij + γij , with βij = 0 for i < j and βii = γii = γ , (2.1)

βi =
i∑

j=1

βij , αi =
i−1∑
j=1

αij , B = (βij )
s
i,j=1 , W = B−1 = (wij )

s
i,j=1 .

(2.2)
The missing quantities in conditions 17 and 18 are explained below in the text.

In order to avoid order reduction to p = 1 when dealing with inexact Jacobians,
we want to fulfill at least the conditions up to order p = 2 in this case. These are the
conditions 14–16 in Table 1 which have been derived in [2]. Note, that nevertheless
the Jacobian gz must be exact.

Finally, we want to avoid severe order reduction when applying the method to
the Prothero-Robinson model [9]

y ′ = λ(y − g)+ g′ , y(0) = g(0), g(t) smooth and Reλ < 0 (2.3)

with the exact solution y(t) = g(t). For y(0) 	= g(0) and large stiffness Reλ  0
the solution y(t) attains g(t) very quickly asymptotically. First, Scholz [15] studied
ROW methods applied to this problem and derived additional order conditions for
the stiff case. The Prothero-Robinson model is an important test problem in the
context of parabolic partial differential equations, too. By semi-discretization of
certain problems in space and diagonalization of the resulting matrix it can be
shown, that a system of equations of type (2.3) will arise, see [18]. Ostermann and
Roche [7, 8] investigated order reduction of Runge-Kutta and ROW methods when
applied to semi-discretized parabolic problems. They could show that the conditions
of Scholz also appear as additional requirements. Rang [10, 11] examined further the
convergence of ROW methods for problem (2.3). He derived new order conditions

which guarantee a global error of size O( h
k

zl
) with z = λh and different exponents



Improvement of Rosenbrock-Wanner Method RODASP 169

Table 1 Order conditions to
be fulfilled for the new
method

No Order Tree Condition

1 1
∑

bi = 1

2 2
∑

biβi = 1/2

3 3
∑

biα
2
i = 1/3

4
∑

biβijβj = 1/6

5
∑

biwijα
2
j = 1

6 4
∑

biα
3
i = 1/4

7
∑

biαiαij βj = 1/8

8
∑

biβijα
2
j = 1/12

9
∑

biβijβjkβk = 1/24

10
∑

biαiαijwjkα
2
k = 1/4

11
∑

biwijα
3
j = 1

12
∑

biwijαjαjkβk = 1/2

13
∑

biwijαjαjkwklα
2
l = 1

14 2
∑

biγij = 0

15
∑

biαijwjkαk = 1/2

16
∑

biwijαj = 1

17 3 C2(H) =∑s
i=0 AiH

i = 0

18 4 C3(H) =∑s−1
i=0 BiH

i = 0

k and l. In the stiff case large values of |z| are assumed even in the limit case h→ 0.
Since the conditions of Scholz are included in those of Rang and rodasp has been
derived with the Scholz conditions, we stick to these conditions.

In his paper [15] Scholz could show, that for strong A-stable methods fulfilling
some conditions C1(H) ≡ . . . ≡ Cp−1(H) ≡ 0 with H = z

1−γ z
the global error is

bounded by C · hp. This theorem is valid for small step sizes h and large stiffness
parameter |λ| such that Re(z) ≤ λ0 < 0. Note, that condition C1(H) ≡ 0 holds
for every consistent ROW method. According to conditions 17 and 18 in Table 1 we
want to have order p = 4. It should be mentioned that the estimation of the error
constant C of the global error in the paper of Scholz is not sharp. It depends on H

and behaves even like C = 1
z
C1 for L-stable methods, see [10]. Therefore, for fixed

h asymptotically exact results are obtained for |λ| → ∞, but for fixed large stiffness
|λ| only order p − 1 must be visible in the numerical results.

The coefficients of polynomials C2(H) = ∑s
i=0 AiH

i , C3(H) = ∑s−1
i=0 BiH

i

are defined by, see [15]:

A0 = −N(2)(−1)+ γM(−1)+M(0) (2.4)

Ai = −N(2)(i − 1)+ 2γM(i − 1)+ γ 2M(i − 2)+M(i) (2.5)

for 0 < i < s
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As = γ 2M(s − 2) (2.6)

B0 = −N(3)(−1)+N(2)(0) (2.7)

Bi = −N(3)(i − 1)+ γN(2)(i − 1)+N(2)(i) (2.8)

for 0 < i < s − 1

Bs−1 = −N(3)(s − 2)+ γN(2)(s − 2) (2.9)

M(ν) =
s∑

i=1

biMi(ν), N(σ)(ν) =
s∑

i=1

biN
(σ)
i (ν) for σ ≥ 2 (2.10)

with

Mi(ν) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ν < 0
β ′i if ν = 0∑

βij1βj1j2 . . . βjν−1jν β
′
jν

if ν = 1, . . . , i − 2

0 if ν ≥ i − 1

(2.11)

σ !N(σ)
i (ν) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ν < 0
ασ
i if ν = 0∑
βij1βj1j2 . . . βjν−1jν α

σ
jν

if ν = 1, . . . , i − 2

0 if ν ≥ i − 1

(2.12)

and β ′i =
∑i−1

j=1 βij . The summation in (2.11), (2.12) is over jν < · · · < j1 < i.
In order to fulfill conditions 17 and 18 in Table 1, all coefficients Ai and Bi must

be zero.
An L-stable method is obtained, when |R(z)| < 1 for Re(z) < 0 and R(∞) = 0

holds. The stability function is given by

R(z) = 1+ zbT (I − zB)−1e, bT = (b1, . . . , bs), e = (1, . . . , 1)T . (2.13)

R(z) can also be expressed in terms of M(ν) defined in (2.10):

R(z) =
s∑

i=0

M(i − 2)H i. (2.14)

3 Construction of Coefficient Set

The aim is to construct an L-stable method that fulfills all conditions from Table 1.
The construction is very close to that of rodas [1], and rodasp [18]. The first
method meets conditions 1–13 and rodasp in addition conditions 17 and 18. Both
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are stiffly accurate methods with s = 6 stages. Stiffly accurate ROW-methods are
characterized by

bi = βsi for i = 1, . . . , s − 1, bs = γ, αs = 1 . (3.1)

The embedded method of order p̂ = 3 with stage number ŝ = 5 is stiffly accurate
too:

b̂i = βs−1,i for i = 1, . . . , s − 2, b̂s−1 = γ, αs−1 = 1 . (3.2)

Moreover

αsi = βs−1,i for i = 1, . . . , s − 1 (3.3)

is required with the consequence that the computation of the two last stages
represent Newton-iteration steps, see [1].

If we choose in addition

β ′2 = 0 (3.4)
∑

αs−1,iβ
′
i = 1/2− γ (3.5)

∑
αs−1,iwij α

2
j = 1 (3.6)

and since stiffly accurate ROW-methods lead to

s∑
i=1

biwij =
{

1 if j = s

0 otherwise ,
(3.7)

the order conditions are simplified significantly. From (3.1,3.2,3.5) and condition
No.1 from Table 1 we get:

α5 = α6 = 1 , b̂5 = b6 = γ , β ′2 = 0 , β ′5 = β ′6 = 1− γ .

Conditions No.5, 11, 12, 13, 16 from Table 1 are fulfilled. Moreover, for the
embedded method conditions No.1, 5 are met. The remaining conditions are shown
in Table 2. For the Scholz conditions we require A3 = A4 = A5 = 0 and
B2 = B3 = B4 = B5 = 0, since A0 = A1 = A2 = A6 = B0 = B1 = 0 is
already true. The conditions for the embedded method are marked with a hat .̂

Thus, we have to solve 23 equations for the 22 unknowns γ , α21, α31, α32, α41,
α42, α43, α52, α53, α54, β31, β32, β41, β42, β43, β52, β53, β54, β62, β63, β64, β65. This
is only possible, when some conditions are redundant. We even can show, that the
embedded method fulfills the Scholz conditions, too.
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Table 2 Equations to be fulfilled for the new method

No Previous No Equation

1 1 b1 + b2 + b3 + b4 + b5 = 1− γ

2 2 b3β
′
3 + b4β

′
4 + b5(1− γ ) = γ 2 − 2γ + 1

2

3 3 b2α
2
2 + b3α

2
3 + b4α

2
4 + b5 = 1

3 − γ

4 4 b4β43β
′
3 + b5(

1
2 − 2γ + γ 2) = −γ 3 + 3γ 2 − 3

2γ + 1
6

5 6 b2α
3
2 + b3α

3
3 + b4α

3
4 + b5 = 1

4 − γ

6 7 b4α4α43β3 + b5(
1
2 − γ ) = γ 2 − 5

6γ + 1
8

7 8 b3β32α
2
2 + b4β42α

2
2 + b4β43α

2
3 + b5(

1
3 − γ ) = γ 2 − 2

3γ + 1
12

8 9 b5(
1
6 − 3

2γ + 3γ 2 − γ 3) = γ 4 − 4γ 3 + 3γ 2 − 2
3γ + 1

24

9 10 b3α3α32w22α
2
2 + b4α4(α42w22α

2
2 + α43w32α

2
2 + α43w33α

2
3)+ b5 = 1

4 − γ

10 2̂ β53β3 + β54β4 = 1
2 − 2γ + γ 2

11 3̂ β52α
2
2 + β53α

2
3 + β54α

2
4 = 1

3 − γ

12 4̂ β54β43β3 = 1
6 − 3

2γ + 3γ 2 − γ 3

13 (3.5) α53β3 + α54β4 = 1
2 − γ

14 (3.6) (α52w22 + α53w32 + α54w42)α
2
2 + (α53w33 + α54w43)α

2
3 + α54w44α

2
4 = 1

15 17, A3 N(2)(2) = 2γM(2) + γ 2M(1)+M(3)

16 17, A4 N(2)(3) = 2γM(3) + γ 2M(2)

17 17, A5 N(2)(4) = γ 2M(3)

18 18, B2 N(3)(1) = γN(2)(1) + N(2)(2)

19 18, B3 N(3)(2) = γN(2)(2) + N(2)(3)

20 18, B4 N(3)(3) = γN(2)(3) + N(2)(4)

21 18, B5 N(3)(4) = γN(2)(4)

22 14 b2α2 + b3α3 + b4α4 + b5 = 1
2 − γ

23 15
∑

biαijwjkαk = 1/2

The construction of the new method is according to rodasp, [18]. First, we
choose γ = 1/4 according to rodas and α3, α4, β ′4 as free parameters, see [1].
Then:

(a) b5 is determined by No.8.
(b) No.21 is equivalent to

1

6
b6β65β54β43β32α

3
2 =

γ

2
b6β65β54β43β32α

2
2

and yields α2 = 3γ .
(c) No.17 is equivalent to

1

2
b6β65β54β43β32α

2
2 = γ 2b6β65β54β43β

′
3 ,
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it follows

1

2
β32α

2
2 = γ 2β ′3 . (3.8)

(d) Putting No.16 and No.17 into No.20 yields N(3)(3) = 3γ 2M(3)+ γ 3M(2).
M(2) =∑ biβij βjkβ

′
k = −γ 3+ 3

2γ
2− γ

2 + 1
24 is the order condition according

to No.8.
M(3) is defined by

M(3) = γ 5 − 4γ 4 + 3γ 3 − 2

3
γ 2 + γ

24
. (3.9)

This can be seen by writing M(3) as

∑
biβij βjkβklβ

′
l =

5∑
i=1

∑
j,k,l

biβij βjkβklβ
′
l + γ

5∑
i=1

∑
j,k

βij βjkβ
′
k .

The term on the left side is zero. The right term can be successively computed
by conditions No.8, No.4, No.2, No.1 resulting from Butcher trees without
branches. No.20 is then equivalent to

1

6
(b5β54β43β32 + γ b5β54β42 + γ b5β53β32 + γ b4β43β32)α

3
2

+1

6
γ b5β54β43α

3
3 = γ 3(

1

6
− 5

2
γ + 21

2
γ 2 − 13γ 3 + 3γ 4) (3.10)

and No.16 is equivalent to

1

2
(b5β54β43β32 + γ b5β54β42 + γ b5β53β32 + γ b4β43β32)α

2
2 =

−1

2
γ b5β54β43α

2
3 + 2γ 2b5β54β43β

′
3 + γ 2(

1

24
− 1

2
γ + 3

2
γ 2 − γ 3) (3.11)

Putting No.16 multiplied by α2, b5 from No.8 and β54β43β
′
3 from No.12

into (3.10) yields

β54β43(−γ 2

2
α2

3 +
γ

6
α3

3) = γ 3(
1

6
− 3

2
γ + 3γ 2 − γ 3) .

By comparing this equation with No.12 the following expression for β ′3 is
obtained

β ′3 =
α2

3

γ 2
(−γ

2
+ α3

6
) . (3.12)

β32 is then defined by (3.8).
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(e) Expressions for b4β43β
′
3 and β54β43β

′
3 can be obtained from No.4 and No.12.

Division of both terms yields an expression for β54 in linear dependence on b4:

β54 = β54β43β
′
3

b4β43β
′
3
b4 . (3.13)

With the help of (3.13), equations No.2, No.3, No.5, No.7 and No.10 define a
linear system for the unknowns b2, b3, b4, b4β42 and β53.
Thereby β42 is also defined, and β43 is defined by No.4, β54 by No.12, b1 by
No.1, α43 by No.6 and β52 by No.13.

(f) Coefficients α52, α53 and α54 have to be computed from No.13 and No.14. The
additional degree of freedom is used to fulfill

∑
α5iwij = 1. By this condition

the error of the numerical solution is bounded by O(h2δ) in case of inconsistent
initial conditions (y0, z0) for DAEs of type (1.1,1.2) with ||(g−1

z g)(y0, z0)|| ≤
δ, see [1].

(g) The remaining condition No.9 has to be considered for the computation of α32
and α42. The additional degree of freedom is exploited to satisfy the extra order-
condition

∑
biα

2
i αij α

2
j = 1

18 for methods of order 6.

By this construction all conditions except No.22, 23 are fulfilled. Therefore, we
use the free parameters α3, α4, β ′4 to iterate this process by a nonlinear least-square
method in order to satisfy these conditions. The extra degree of freedom is used to
get a small truncation error. The computed coefficients of the new method named
rodasp2 are given in Table 3.

Table 3 Coefficients for new method rodasp2

γ =0.25 α21 = 7.500000000000000e−01 β21 = 0

α31 = 3.688749816109670e−01 β31 = −9.184372116108780e−02
b1 = β61 α32 = −4.742684759792117e−02 β32 = −2.624106318888223e−02
b2 = β62 α41 = 4.596170083041160e−01 β41 = −5.817702768270960e−02
b3 = β63 α42 = 2.724432453018110e−01 β42 = −1.382129630513952e−01
b4 = β64 α43 = −2.123145213282008e−01 β43 = 5.517478318046004e−01
b5 = β65 α51 = 2.719770298548111e+00 β51 = −6.315720511779359e−01
b6 = γ α52 = 1.358873794835473e+00 β52 = −3.326966988718489e−01

α53 = −2.838824065018641e+00 β53 = 1.154688683864917e+00

b̂1 = β51 α54 = −2.398200283649438e−01 β54 = 5.595800661848674e−01
b̂2 = β52 α61 = −6.315720511779362e−01 β61 = 1.464968119068509e−01
b̂3 = β53 α62 = −3.326966988718489e−01 β62 = 8.896159691002870e−02
b̂4 = β54 α63 = 1.154688683864918e+00 β63 = 1.648843942975147e−01
b̂5 = γ α64 = 5.595800661848674e−01 β64 = 4.568000540284631e−01

α65 = 2.500000000000000e−01 β65 = −1.071428571428573e−01
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For the stability function we get

R(z) = −4(7z4 + 8z3 − 96z2 − 192z+ 768)

3(z− 4)5 .

It can be shown that thereby the method is A-stable an hence L-stable.

4 Implementation Issues

In contrast to implicit Runge-Kutta or BDF schemes, ROW methods must recom-
pute the Jacobian matrix J in every time step. Therefore, it is essential to do this
computation as efficient as possible. Usually, the user is not willing or even not
able to supply an analytical Jacobian and the integrator must compute a numerical
approximation by finite differences. When nothing is known about the structure
of J , this computation requires n evaluations of the right-hand side of the DAE-
system (1.1,1.2). This system is usually summarized into its linear implicit form

My ′ = f (t, y) , y(t0) = y0 (4.1)

with singular n × n matrix M and right-hand side f consisting of both functions
f and g from equations (1.1,1.2). The application of a ROW scheme to non-
autonomous systems like (4.1) is given in [1]. A common way to compute J is
given below in MATLAB notation.

f0 = f(t,y);
for i=1:n

y1 = y; y1(i) = y1(i) + del;
J(:,i) = ( f(t,y1) - f0 )/del;

end

The first function evaluation of f is required for the integrator as well, independent
of J . By each of the subsequent evaluations a whole column of J is computed and
del is an appropriate increment for the finite difference approximation. For problems
with large dimension n of equations it is therefore important to provide the integrator
with the pattern of non zeros of J , which is often sparse. By this knowledge several
components of y can be altered at once and large reduction of function evaluations
may be possible. E.g. for a tridiagonal matrix J only three function evaluations are
necessary regardless of dimension n.

Further reductions are possible when at least parts of J are constant, i.e. function
f (t, y) has linear components with respect to some components of y. Then the
corresponding entries of J must be calculated only once in the first time step. In
order to supply the integrator with such information, beside the JPATTERN option,
the user can specify columns and/or rows of J which are constant.
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Finally, in MATLAB vectorization can be applied. In this case, the function
which evaluates f (t, y) must be modified, such that a whole matrix y instead of
a vector can be given as input parameter and the resulting output value of function
f (t, y) is a matrix as well. By this option only one function call to f is required in
order to compute the whole Jacobian J .

5 Numerical Tests

This section discusses numerical results obtained with the new method rodasp2.
The results of rodas and rodasp are used for comparison. Also ode15s, the
standard BDF integrator for DAEs in MATLAB [16] is used.

In the first example, the order of the methods is determined numerically. It is the
DAE problem

y ′ = z (5.1)

0 = y2 + z2 − 1 (5.2)

with initial conditions y(0) = 0, z(0) = 1 and analytical solution y(t) = sin(t),
z(t) = cos(t). In Table 4 the numerical results are summarized. The problem was
solved in the time interval t ∈ [0, 1]with constant time steps h = 0.1

2n , n = 0, . . . , 6.
For the three methods rodas, rodasp, rodasp2 and its embedded methods
the absolute error err = max(|y(1)− sin(1)|, |y(2) − cos(1)|) and the numerical
obtained order p of convergence is shown. The problem was solved with the exact

Jacobian J =
(

0 1
2y 2z

)
and with the inexact Jacobian Jinexact =

(
0 0
0 2z

)
. All

results are in agreement with the theoretical expectations. For the exact Jacobian all
methods reach the order p = 4 and p̂ = 3 for their embedded formulas. When using
the inexact Jacobian, rodasp2 suffers an order reduction to p = 2, while the other
methods show a reduction to p = 1.

The second example treats the Prothero-Robinson equation (2.3) with function
g(t) = 10 − (10 + t)e−t and stiffness λ = −1 and λ = −105 in time interval
t ∈ [0, 2], see [15]. The calculations were carried out with the exact Jacobian matrix.
The results are presented in the same manner as in Table 4. Again, the theoretical
expectations are confirmed. rodas shows an order reduction to p = 1 in case of
high stiffness, whereas the order reduction of rodasp and rodasp2 is only to
p = 3. Additionally to Table 5 it can be shown, that due to their stiffly accuracy
all methods show asymptotic convergence with 1

|λ| regarding high stiffness for fixed
step size h.
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Table 4 Numerical results for DAE problem (5.1, 5.2)

J exact rodasp2 rodasp rodas

h err p err p err p

1.00e−01 7.94e−06 2.91e−05 8.93e−06

5.00e−02 3.93e−07 4.34 1.51e−06 4.27 4.46e−07 4.32

2.50e−02 1.70e−08 4.53 6.69e−08 4.49 1.88e−08 4.57

1.25e−02 7.24e−10 4.56 2.88e−09 4.54 7.47e−10 4.65

6.25e−03 3.25e−11 4.48 1.30e−10 4.47 3.05e−11 4.61

3.13e−03 1.60e−12 4.35 6.44e−12 4.34 1.35e−12 4.49

1.56e−03 8.84e−14 4.18 3.46e−13 4.22 6.58e−14 4.36

Embedded methods

1.00e−01 6.43e−05 2.41e−04 8.00e−05

5.00e−02 6.56e−06 3.29 2.53e−05 3.25 8.64e−06 3.21

2.50e−02 6.39e−07 3.36 2.50e−06 3.34 8.84e−07 3.29

1.25e−02 6.46e−08 3.31 2.54e−07 3.30 9.30e−08 3.25

6.25e−03 6.98e−09 3.21 2.75e−08 3.21 1.03e−08 3.17

3.13e−03 7.98e−10 3.13 3.15e−09 3.13 1.20e−09 3.10

1.56e−03 9.50e−11 3.07 3.75e−10 3.07 1.45e−10 3.06

J inexact rodasp2 rodasp rodas

h err p err p err p

1.00e−01 6.35e−03 7.53e−03 7.32e−03

5.00e−02 1.77e−03 1.84 3.86e−03 0.96 2.12e−03 1.79

2.50e−02 4.69e−04 1.92 2.14e−03 0.85 1.53e−03 0.46

1.25e−02 1.20e−04 1.96 1.07e−03 0.99 1.03e−03 0.57

6.25e−03 3.05e−05 1.98 5.31e−04 1.02 6.02e−04 0.77

3.13e−03 7.69e−06 1.99 2.63e−04 1.01 3.26e−04 0.88

1.56e−03 1.93e−06 1.99 1.31e−04 1.01 1.69e−04 0.94

Embedded methods

1.00e−01 1.69e−02 3.90e−02 2.36e−01

5.00e−02 1.10e−02 0.62 9.60e−03 2.02e 2.94e−02 3.01

2.50e−02 6.14e−03 0.83 1.86e−03 2.37e 1.15e−02 1.35

1.25e−02 3.24e−03 0.92 3.27e−04 2.51e 5.85e−03 0.98

6.25e−03 1.66e−03 0.96 2.02e−04 0.69e 3.15e−03 0.89

3.13e−03 8.41e−04 0.98 1.33e−04 0.60e 1.63e−03 0.95

1.56e−03 4.23e−04 0.99 8.05e−05 0.72e 8.27e−04 0.97

The third and fourth examples are PDE problems. First, the parabolic problem

∂u

∂t
= ∂2u

∂x2
− (x + 1

2 )(
3
2 − x)

(1+ t)2
+ 2

1+ t
, t ∈ [0, 0.1] , x ∈ [0, 1] (5.3)
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Table 5 Numerical results for Prothero-Robinson problem (2.3) for different stiffness parame-
ters λ

λ = −1 rodasp2 rodasp rodas

h err p err p err p

1.00e−01 1.25e−07 1.19e−07 6.77e−07

5.00e−02 7.90e−09 3.98 7.65e−09 3.96 3.20e−08 4.40

2.50e−02 4.97e−10 3.99 4.85e−10 3.98 1.48e−09 4.43

1.25e−02 3.11e−11 4.00 3.05e−11 3.99 7.16e−11 4.37

6.25e−03 1.94e−12 4.00 1.91e−12 4.00 3.73e−12 4.26

Embedded methods

1.00e−01 1.12e−07 9.85e−08 5.08e−05

5.00e−02 3.43e−08 1.71 3.33e−08 1.57 7.12e−06 2.83

2.50e−02 5.69e−09 2.59 5.63e−09 2.56 9.54e−07 2.90

1.25e−02 8.06e−10 2.82 8.01e−10 2.81 1.24e−07 2.95

6.25e−03 1.07e−10 2.91 1.07e−10 2.91 1.58e−08 2.97

λ = −105 rodasp2 rodasp rodas

h err p err p err p

1.00e−01 7.46e−11 2.61e−11 1.76e−08

5.00e−02 9.22e−12 3.02 3.33e−12 2.97 1.14e−08 0.626

2.50e−02 1.15e−12 3.01 4.19e−13 2.99 6.30e−09 0.856

1.25e−02 1.43e−13 3.00 5.11e−14 3.04 3.28e−09 0.942

6.25e−03 1.91e−14 2.91 4.88e−15 3.39 1.66e−09 0.985

Embedded methods

1.00e−01 2.26e−10 2.10e−10 1.63e−07

5.00e−02 2.76e−11 3.03 2.57e−11 3.03 7.55e−08 1.11

2.50e−02 3.41e−12 3.01 3.18e−12 3.02 3.62e−08 1.06

1.25e−02 4.24e−13 3.01 3.96e−13 3.01 1.77e−08 1.03

6.25e−03 5.46e−14 2.96 5.11e−14 2.95 8.72e−09 1.02

is considered, see [18]. Initial values and inhomogeneous boundary conditions are
taken from the analytical solution

u(x, t) = (x + 1
2 )(

3
2 − x)

1+ t
.

Since u(x, t) is quadratic with respect to x, the space discretization of (5.3)
by standard finite differences does not introduce a numerical error. In Table 6
the numerical results are given. The problem was solved by using nx = 1000
discretization points xi in space with time steps h = 0.1

2n , n = 0, . . . , 7. The error at
time tend = 0.1 is measured by

err =
√√√√ 1

nx

nx∑
i=1

(u(xi, tend )− yi)2
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Table 6 Numerical results for parabolic problem (5.3)

rodasp2 rodasp rodas

h err p err p err p

1.00e−01 1.01e−06 9.71e−07 3.49e−06

5.00e−02 6.48e−08 3.97 6.24e−08 3.96 2.53e−07 3.79

2.50e−02 4.11e−09 3.98 3.99e−09 3.97 3.19e−08 2.99

1.25e−02 2.61e−10 3.98 2.54e−10 3.97 9.87e−09 1.69

6.25e−03 1.65e−11 3.98 1.61e−11 3.98 2.50e−09 1.98

3.13e−03 1.04e−12 3.98 1.02e−12 3.98 5.70e−10 2.13

1.56e−03 6.66e−14 3.97 6.55e−14 3.97 1.25e−10 2.19

7.81e−04 5.78e−15 3.53 5.72e−15 3.52 2.67e−11 2.22

Embedded methods

1.00e−01 1.73e−06 1.66e−06 5.69e−05

5.00e−02 3.36e−07 2.37 3.31e−07 2.33 9.21e−06 2.63

2.50e−02 5.08e−08 2.73 5.05e−08 2.71 1.57e−06 2.55

1.25e−02 6.96e−09 2.87 6.94e−09 2.86 2.86e−07 2.46

6.25e−03 9.10e−10 2.94 9.09e−10 2.93 5.47e−08 2.39

3.13e−03 1.16e−10 2.97 1.16e−10 2.97 1.09e−08 2.33

1.56e−03 1.47e−11 2.98 1.47e−11 2.98 2.21e−09 2.30

7.81e−04 1.85e−12 2.99 1.85e−12 2.99 4.57e−10 2.28

where yi denotes the numerical solution in space point xi at time tend . Methods
rodasp and rodasp2 do not suffer from order reduction, whereas the order of
rodas is reduced to approximately p = 2.25. This is in agreement to the theory of
Ostermann and Roche [8] for parabolic problems.

Similar observations can even be made for the hyperbolic problem, [14]:

∂u

∂t
= −∂u

∂x
+ t − x

(1+ t)2 , t ∈ [0, 1] , x ∈ [0, 1] (5.4)

Again, initial values and left boundary condition are taken from the analytical
solution

u(x, t) = 1+ x

1+ t
.

Discretization in space is made by using the first order upwind finite difference
and nx = 1000 space points and the error is measured in the same way as in the
parabolic problem. Here, time steps h = 1

10·2n , n = 0, . . . , 7 are applied. Method
rodas shows an order reduction to approximately p = 3.25, all other methods
including the embedded formulas show no order reduction.

In practical applications, all methods are used with variable time step control.
Therefore, the numerical results obtained with step size control for the parabolic
and hyperbolic problem are shown in Fig. 1. For different tolerances atol = rtol =
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Fig. 1 Numerical results (runtime versus accuracy) for parabolic problem (5.3) and hyperbolic
problem (5.4)

10−(4+m
4 ), m = 0, . . . ,mmax the achieved accuracy and the CPU runtime is plotted.

For the parabolic problem (5.3) mmax = 24 and for the hyperbolic problem (5.4)
mmax = 26 is used. The accuracy is measured as the mixed error significant digits
value (mescd):

mescd = − log10

(
rtol ·max

i

|ytrue
i − ynum

i |
atol + rtol · |ytrue

i |

)

t=tend
,

where ytrue
i denotes the analytical solution u(xi, tend ) and ynum

i the corresponding
numerical solution. The mescd value should reflect the value q of the tolerance
rtol = 10−q , see [6].

Due to the order reduction of rodas the differences between the standard and
embedded method are small, which leads to difficulties in the step size control. This
results in the increased computing times of rodas compared to the other methods
shown in Fig. 1. Although the results of rodasp and rodasp2 are very similar in
Tables 6 and 7, the new method rodasp2 is slightly more efficient.

With ROW methods good results could be achieved in the network simulation,
see [19]. Therefore the next numerical tests refer to such problems. First, the water
tube system described in [6] is considered. It is a an index-2 system of 49 non-linear
DAEs of type (4.1). In Fig. 2, the effects of the optimized implementation described
in Sect. 4 are first considered. The results of the MATLAB standard integrator
ode15s are compared with those of rodasp with and without optimizations. The
optimizations refers to the vectorization of the right side f (t, y) of the DAE System.
In addition, 13 columns of the Jacobian matrix of function f (t, y) are linear and
need to be evaluated only once. It can be shown that these optimization measures
lead to a significant increase in performance. The comparison between the different
rodas methods in Fig. 2 shows no significant differences here.

Next, an electrical circuit is considered. The two transistor amplifier was
originally treated in [12] and is also part of the test set [6]. It is a system of
eight stiff DAEs of index-one of type (4.1). Consistent initial values must be
carefully determined. In addition, large nonlinearities occur due to the modelling
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Table 7 Numerical results for hyperbolic problem (5.4)

rodasp2 rodasp rodas

h err p err p err p

1.00e−01 8.16e−07 8.25e−07 1.45e−06

5.00e−02 5.03e−08 4.02 5.05e−08 4.03 7.04e−08 4.37

2.50e−02 3.12e−09 4.01 3.12e−09 4.02 5.59e−09 3.65

1.25e−02 1.94e−10 4.01 1.94e−10 4.01 6.43e−10 3.12

6.25e−03 1.21e−11 4.00 1.21e−11 4.00 7.45e−11 3.11

3.13e−03 7.57e−13 4.00 7.57e−13 4.00 8.11e−12 3.20

1.56e−03 4.74e−14 4.00 4.72e−14 4.00 8.65e−13 3.23

7.81e−04 2.82e−15 4.07 2.81e−15 4.07 8.76e−14 3.30

Embedded methods

1.00e−01 8.27e−06 8.27e−06 2.22e−05

5.00e−02 1.11e−06 2.90 1.11e−06 2.90 2.83e−06 2.97

2.50e−02 1.44e−07 2.94 1.44e−07 2.94 3.63e−07 2.97

1.25e−02 1.84e−08 2.97 1.84e−08 2.97 4.68e−08 2.95

6.25e−03 2.33e−09 2.98 2.33e−09 2.98 6.10e−09 2.94

3.13e−03 2.92e−10 2.99 2.92e−10 2.99 8.02e−10 2.93

1.56e−03 3.67e−11 3.00 3.67e−11 3.00 1.06e−10 2.92

7.81e−04 4.59e−12 3.00 4.59e−12 3.00 1.40e−11 2.92

Fig. 2 Numerical results (runtime versus accuracy) for water tube system described in [6].
Left: Comparison of ode15s and rodasp with or without optimized implementation. Right:
Comparison of the different rodas methods

of the transistors. The results in Fig. 3 show that rodasp2 performs better than
rodas and rodasp. Using the analytical Jacobian matrix, the accuracy of rodas
is slightly higher compared to rodasp2. However, if the numerically calculated
Jacobian matrix is used, this accuracy advantage disappears.
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Fig. 3 Numerical results (runtime versus accuracy) for two transistor amplifier described in [6,
12]. Left: Analytical Jacobian matrix. Right: Numerically computed Jacobian matrix

Table 8 Numerical efforts for convection diffusion problem (5.5). NSUCC = number of success-
ful time steps, NFAIL = number of failed steps, NFCN = number of function evaluations, CPU =
CPU time

NSUCC NFAIL NFCN CPU

ode15s 1672 18 3279 1.7

rodasp2 413 10 2941 1.7

Finally, the new method rodasp2 is compared again with ode15s. A convec-
tion diffusion problem is considered:

∂c

∂t
= −u(t) ∂c

∂x
+D

∂2c

∂x2
(5.5)

with t ∈ (0, 10800], x ∈ [0, 105], initial value c(x, 0) = exp(−10−6(x − 10000)2)

and boundary conditions c(0, t) = 0, c(105, t) = 0. Diffusion coefficient and
velocity are given by D = 100, u(t) = 15 for t < 5400 and u(t) = −15 for
t ≥ 5400. The space interval is discretized by n = 1000 space points and the
second order derivative is approximated by standard second order central finite
differences. The convection term was discretized with a WENO scheme of fifth
order. The ODE system resulting from the semidiscretization in space was solved
with the standard tolerances rtol = atol = 10−4. In Table 8 the numerical efforts
for both methods ode15s and rodasp2 are given. It turns out that both methods
are similarly efficient in terms of computing times. However, if one compares the
quality of the solution in Fig. 4, rodasp2 gives better results.
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Fig. 4 Numerical results for convection diffusion problem. Above: Solution at different times.
Below: Zoom into solutions obtained at t = 10800, left with ode15s, right with rodasp2

6 Conclusion

A disadvantage of Rosenbrock-Wanner methods for solving index-one DAEs is that
the Jacobian matrix has to be re-evaluated in every time step. Jax [2] was able to
derive new order conditions for Rosenbrock-Wanner methods with the help of the
Butcher tree theory, so that this disadvantage is mostly eliminated. Only the part
(gz)0 in equation (1.4) has to be updated.

In this paper, the rodasp method could be modified on the basis of Jax’s new
conditions. If the exact Jacobian matrix is used in each time step, the new method
rodasp2 is still a 4th-order scheme with all the properties of rodasp. In the
case of the inexact Jacobian matrix, the order reduction could be limited to p = 2
instead of p = 1. Various numerical tests have shown that the new method is
efficient. By specific additional measures for the efficient evaluation of the Jacobian
matrix, further computing time reductions can be achieved. These measures are
e.g. vectorization or the avoidance of repeated evaluation of linear components.
Thus, the new rodasp2 method can be an alternative to the MATLAB standard
integrators.
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Example programs and the new method rodasp2 are given as supplementary
material or can be requested from the author.
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Data-Driven Model Reduction for a Class
of Semi-Explicit DAEs Using the
Loewner Framework
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Abstract This paper introduces a modified version of the recently proposed data-
driven Loewner framework to compute reduced order models (ROMs) for a class
of semi-explicit differential algebraic equation (DAE) systems, which include the
semi-discretized linearized Navier–Stokes/Oseen equations. The modified version
estimates the polynomial part of the original transfer function from data and incor-
porates this estimate into the Loewner ROM construction. Without this proposed
modification the transfer function of the Loewner ROM is strictly proper, i.e., goes
to zero as the magnitude of the frequency goes to infinity, and therefore may have
a different behavior for large frequencies than the transfer function of the original
system. The modification leads to a Loewner ROM with a transfer function that has
a strictly proper and a polynomial part, just as the original model. This leads to
better approximations for transfer function components in which the coefficients in
the polynomial part are not too small. The construction of the improved Loewner
ROM is described and the improvement is demonstrated on a large-scale system
governed by the semi-discretized Oseen equations.
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1 Introduction

This paper introduces a modified version of the data-driven Loewner framework
to compute reduced order models (ROMs) for a class of semi-explicit differential
algebraic equation (DAE) systems, which includes systems arising from semi-
discretized linearized Navier–Stokes/Oseen equations . The improvement is in the
estimation of the polynomial part of the transfer function from measurements and
in the incorporation of this estimate into the Loewner ROM construction, which in
many cases leads to ROMs with better approximation properties.

Most ROM approaches first compute subspaces that contain the important
dynamics of the system and then generate a ROM by applying a Galerkin or Petrov–
Galerkin projection of the original full order model (FOM) onto these subspaces.
These projection based ROM approaches include balanced truncation, interpolation
based methods, proper orthogonal decomposition, reduced basis methods, and
others. See, e.g., the books [1, 3, 5, 9, 12]. All of these ROM approaches require
explicit access to the system matrices to apply the projection and generate the ROM.
In contrast, the Loewner framework computes a ROM directly from measurements
of the transfer function and does not require explicit knowledge of the system
matrices. Thus, the Loewner framework can be applied even if the mathematical
model of the system is not available, e.g., because proprietary software is used
or measurements are generated directly from the physical system. The Loewner
framework is described, e.g., in the book [3, Chapter 4] and in the recent survey [2].

The Loewner framework computes a ROM directly from transfer function mea-
surements in such a way that the ROM transfer function approximately interpolates
the transfer function of the original FOM at the measurements. However, the
Loewner ROM generated with the original approach has a strictly proper transfer
function. In particular, the ROM transfer function goes to zero as the magnitude of
the frequency goes to infinity. In contrast, the transfer function of the original model
may have a polynomial part which is bounded away from zero, or is even unbounded
as the magnitude of the frequency goes to infinity. In this case, this substantially
different behavior of transfer functions generates substantial differences away from
the measurements, which means that the ROM may not capture important features
of the original problem. As mentioned before, this paper shows how to estimate
the polynomial part from transfer function measurements and how to incorporate
these estimates into the Loewner ROM construction to generate better ROMs. In
principle, there is no difference between the computation of a Loewner ROM for an
ordinary differential equation (ODE) system and for a DAE system. However, for
ODE systems the structure of the ODE system allows one to directly identify the
polynomial part, especially assessing whether it is non-zero. Unfortunately, this is
more involved for DAE systems. For theoretical purposes we derive the analytical
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forms of the strictly proper and polynomial parts of the transfer function for our class
of semi-explicit DAE systems. If available, the analytical form of the polynomial
part of the transfer function could be used. However this requires access to the
system matrices. As an alternative, we propose to estimate the polynomial part of
the transfer function from measurements. We then show how to incorporate this
estimate into the Loewner ROM construction to generate better ROMs. This paper
specifically focuses on the structure of semi-explicit DAE systems arising, e.g., from
semi-discretized Oseen equations and complements [7].

The class of semi-explicit DAE systems is given by

E11
d

dt
v(t) = A11v(t)+ A12p(t)+ B1,0g(t)+ B1,1

d

dt
g(t), t ∈ (0, T ),

(1.1a)

0 = AT
12v(t)+ B2,0g(t), t ∈ (0, T ),

(1.1b)

v(0) = 0, (1.1c)

y(t) = C1v(t)+ C2p(t)+ D0g(t)+ D1
d

dt
g(t) t ∈ (0, T ).

(1.1d)

Here v, p are the states (velocities and pressures in the Oseen system), g are the
inputs, and y are the outputs. The matrix E11 ∈ R

nv×nv is symmetric positive
definite, A11 ∈ R

nv×nv , AT
12 ∈ R

np×nv , np < nv , is a matrix with rank np,
B1,0,B1,1 ∈ R

nv×ng , B2,0 ∈ R
np×ng , C1 ∈ R

ny×nv , C2 ∈ R
ny×np , and D0,D1 ∈

R
ny×ng . See, e.g., the books [6, 10]. Derivatives d

dt
g of the inputs appear in the semi-

discretized equations, e.g., when inputs on the partial differential equation (PDE)
level are given as Dirichlet conditions on the velocities (e.g., the input corresponds
to suction/blowing actuation on the boundary).

Often it will be convenient to define n = nv + np,

x(t) =
(

v(t)
p(t)

)
, E =

(
E11 0
0 0

)
, A =

(
A11 A12

AT
12 0

)
, (1.2a)

B0 =
(

B1,0

B2,0

)
, B1 =

(
B1,1

0

)
, C =

(
C1 C2

)
, (1.2b)

and write (1.1) in the compact notation

E
d

dt
x(t) = Ax(t)+ B0g(t)+ B1

d

dt
g(t), t ∈ (0, T ), (1.3a)

Ex(0) = 0, (1.3b)

y(t) = Cx(t)+ D0g(t)+ D1
d

dt
g(t), t ∈ (0, T ). (1.3c)
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This paper is organized as follows. In the next Sect. 2 we derive the analytical
representations of the strictly proper and polynomial parts of the transfer function.
Section 3 reviews the Loewner approach. Our approach for estimating the polyno-
mial part of the transfer function from data is introduced in Sect. 4. Section 5 applies
the Loewner approach with identification of the polynomial part of the transfer
function to the Oseen equation.

2 Transfer Function

As mentioned before, the Loewner framework constructs a ROM such that its
transfer function approximates the transfer function of the FOM. The transfer
function H(s) of the FOM additively splits into a so-called strictly proper part
Hspr(s), which is a rational function in s with ‖Hspr(s)‖ → 0 as |s| → ∞,
and a polynomial part Hpoly(s). Depending on the transfer function measurements
available it can be difficult to obtain a good approximation of the combined transfer
function

H(s) = C
(
s E− A

)−1
(B0 + s B1)+ D0 + s D1 (2.1)

associated with (1.3), and in these cases a separate approximation of the strictly
proper and of the polynomial part can yield much better results. This section
computes Hspr(s) and Hpoly(s).

2.1 Transfer Function of an ODE System

First consider (1.3) with an invertible matrix E, i.e., consider an ODE system. Since

(
s E− A

)−1
(B0 + s B1) =

(
s E− A

)−1
(B0 + AE−1B1 + (s E− A)E−1B1)

= (s E− A
)−1

(B0 + AE−1B1)+ E−1B1,

the transfer function (2.1) can be written as

H(s) = C
(
s E− A

)−1
(B0 + AE−1B1)︸ ︷︷ ︸

=Hspr(s)

+CE−1B1 + D0 + s D1︸ ︷︷ ︸
Hpoly(s)

.



Model Reduction of Semi-Explicit DAEs Using the Loewner Framework 189

If E is invertible, the strictly proper part and the polynomial part of the transfer
function can be determined directly from the matrices in (1.3). Specifically, the
polynomial part is at most linear,

Hpoly(s) = P0 + s P1 with P0 = CE−1B1 + D0, P1 = D1,

and the polynomial part is zero if B1, D0, D1 are zero.

2.2 Transfer Function of the Semi-Explicit DAE System

Now consider (1.1). Because the corresponding E in (1.2) is singular, the represen-
tation (2.1) does not directly expose the strictly proper part and the polynomial part
of the transfer function. We proceed as in [8] and transform (1.1) into an ODE
system.

We write

v(t) = v0(t)+ vg(t), (2.2)

where

vg(t) = −E−1
11 A12(AT

12E−1
11 A12)

−1B2,0g(t) (2.3)

is a particular solution of (1.1b) and v0(t) satisfies 0 = AT
12v0(t). Furthermore, we

define the projection

Π = I− A12(AT
12E−1

11 A12)
−1AT

12E−1
11 .

It can be verified that Π2 = Π, ΠE11 = E11Π
T , null(Π) = range(A12) and

range(Π) = null(AT
12E−1

11 ), i.e., Π is an E11-orthogonal projection. For (1.1)
derived from a finite element discretization, Π is a discrete version of the Leray
projector [4]. The properties of Π imply that

AT
12v0(t) = 0 if and only if ΠT v0(t) = v0(t). (2.4)

Inserting (2.2), (2.3) into (1.1) gives

E11
d

dt
v0(t) =A11v0(t)+ A12p(t)+ B3g(t)

+
(

B1,1 + A12(AT
12E−1

11 A12)
−1B2,0

) d

dt
g(t) (2.5a)

0 =AT
12v0(t), (2.5b)
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v0(0) =− vg(0), (2.5c)

y(t) =C1v0(t)+ C2p(t)+
(

D0 − C1E−1
11 A12(AT

12E−1
11 A12)

−1B2,0

)
g(t)

+ D1
d

dt
g(t), (2.5d)

where

B3 := B1,0 − A11E−1
11 A12(AT

12E−1
11 A12)

−1B2,0. (2.6)

Next we express p in terms of v0 and project onto the constraint (2.5b).
Specifically, we multiply (2.5a) by AT

12E−1
11 , then use (2.5b) and finally solve the

resulting equation for p to get

p(t) =− (AT
12E−1

11 A12)
−1AT

12E−1
11 A11v0(t)

− (AT
12E−1

11 A12)
−1AT

12E−1
11 B3 g(t)

− (AT
12E−1

11 A12)
−1
(

AT
12E−1

11 B1,1 + B2,0

) d

dt
g(t). (2.7)

Now we insert (2.7) into (2.5d), apply (2.4), and use ΠA12(AT
12E−1

11 A12)
−1 = 0 to

write (2.5) as

ΠE11Π
T d

dt
v0(t) =ΠA11Π

T v0(t)+ΠB3g(t)+ΠB1,1
d

dt
g(t), t ∈ (0, T ),

(2.8a)

ΠT v0(0) =−ΠT vg(0), (2.8b)

y(t) =C3Π
T v0(t)+ P̃0 g(t)+ P1

d

dt
g(t), t ∈ (0, T ),

(2.8c)

where B3 is given by (2.6) and

C3 :=C1 − C2(AT
12E−1

11 A12)
−1AT

12E−1
11 A11, (2.9a)

P̃0 :=D0 − C1E−1
11 A12(AT

12E−1
11 A12)

−1B2,0

− C2(AT
12E−1

11 A12)
−1AT

12E−1
11 B3, (2.9b)

P1 :=D1 − C2(AT
12E−1

11 A12)
−1(AT

12E−1
11 B1,1 + B2,0

)
. (2.9c)
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The system (2.8) is a dynamical system in the nv − np dimensional subspace
null(Π) and (2.8a,b) has to be solved for ΠT v = v. This can be made more explicit
by decomposing

Π = Θ lΘ
T
r (2.10a)

with Θ l ,Θ r ∈ R
nv×(nv−np) satisfying

ΘT
l Θr = I. (2.10b)

Substituting this decomposition into (2.8) shows that ṽ0 = ΘT
l v0 ∈ R

nv−np must
satisfy

ΘT
r E11Θr

d

dt
ṽ0(t) =ΘT

r A11Θr ṽ0(t)

+ΘT
r B3g(t)+ΘT

r B1,1
d

dt
g(t), t ∈ (0, T ), (2.11a)

ṽ0(0) =−ΘT
l vg(0), (2.11b)

y(t) =C3Θr ṽ0(t)+ P̃0 g(t)+ P1
d

dt
g(t), t ∈ (0, T ). (2.11c)

The systems (1.1) and (2.11) are equivalent. Again we refer to [8] for details.
Specifically, the transfer function of (1.1) is identical to the transfer function of
(2.11). Since the (nv − np) × (nv − np) matrix ΘT

r E11Θ r has full rank, we can
proceed as in Sect. 2.1 to read off the strictly proper part and the polynomial part of
the transfer function from the system representation (2.11),

H(s) = Hspr(s)+Hpoly(s), (2.12a)

where

Hspr(s) =C3Θr

(
s ΘT

r E11Θr −ΘT
r A11Θr

)−1

×
(
ΘT

r B3 +ΘT
r A11Θ r

(
ΘT

r E11Θr

)−1
ΘT

r B1,1

)
, (2.12b)

Hpoly(s) =C3Θr

(
ΘT

r E11Θ r

)−1
ΘT

r B1,1 + P̃0︸ ︷︷ ︸
=P0

+s P1. (2.12c)

Thus the polynomial part of the transfer function of (1.1) is again at most linear, but
the matrices P0 and P1 are more involved.

If the system matrices E11, . . . in (1.1) are available then the matrices in (2.6) and
(2.9) and the matrices P0 and P1 in (2.12c) can be computed using results already
applied in [8]. We summarize these results next. However, if one does not have
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access to the system matrices E11, . . . one needs to estimate the polynomial parts
P0 and P1 from transfer function measurements, as we will describe in Sect. 4.

2.3 Computational Details

If
(

E11 A12

AT
12 0

)(
X1

Z1

)
=
(

0
B2,0

)
,

(
E11 A12

AT
12 0

)(
X2

Z2

)
=
(

0
C2

)
, (2.13)

then XT
1 = BT

2,0(A
T
12E−1

11 A12)
−1AT

12E−1
11 , ZT

1 = −B2,0(AT
12E−1

11 A12)
−1, and

XT
2 = CT

2 (AT
12E−1

11 A12)
−1AT

12E−1
11 , ZT

2 = −C2(AT
12E−1

11 A12)
−1. Hence, the

matrices in (2.6) and (2.9) can be written as

B3 = B1,0 − A11X1, C3 = C1 − XT
2 A11,

and

P̃0 = D0 − C1X1 − XT
2 B3, P1 = D1 − XT

2 B1,1 + ZT
2 B2,0.

If
(

E11 A12

AT
12 0

)(
X3

Z3

)
=
(

B1,1

0

)
, (2.14)

then P0 in (2.12c) can be written as

P0 = P̃0 + C3X3.

In fact, AT
12X3 = 0 implies X3 = ΠT X3 = ΘrΘ

T
l X3 by (2.4) and (2.10a). Hence,

with X̃3 = ΘT
l X3 the first block in (2.14) reads E11Θr X̃3 + A12Z3 = B1,1.

Since null(ΘT
r ) = null(Π) = range(A12), ΘT

r E11ΘrX̃3 = ΘT
r B1,1. This gives

C3Θ r

(
ΘT

r E11Θr

)−1
ΘT

r B1,1 = C3Θr X̃3 = C3X3.

3 Loewner Framework Applied to the Oseen Equations

We review the Loewner framework applied to (1.3). The presentation is standard
and follows the recent tutorial paper [2] and book [3, Chapter 4]. In the next Sect. 4
we modify it to better account for the presence of a polynomial part in the transfer
function (2.12).
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The Loewner framework (LF) is a data-driven model identification and reduction
technique that was originally introduced in [11] and was continuously developed,
improved and extended to different problems and system classes during the last
decade. It is an interpolation-based method that produces ROMs that (approxi-
mately) interpolate the transfer function corresponding to the underlying FOM at
the given interpolation frequencies. Unlike other interpolation-based methods the
LF computes the ROM from measurements of the transfer function rather than by
projection of the original system.

Let m = ng be the number of inputs and p = ny be the number of outputs, so
that H(s) ∈ C

p×m. We assume that given frequencies

μj , λj ∈ C, j = 1, . . . , N, (3.1a)

left tangential directions

�j ∈ C
p, j = 1, . . . , N, (3.1b)

and right tangential directions

rj ∈ C
m j = 1, . . . , N, (3.1c)

we have transfer function measurements

v∗j := �∗jH(μj ) ∈ C
1×m, wj := H(λj )rj ∈ C

p×1, j = 1, . . . , N.

(3.1d)

We seek a ROM of the form1

Ê
d

dt
x̂(t) = Â̂x(t)+ B̂0g(t)+ B̂1

d

dt
g(t), t ∈ (0, T ), (3.2a)

Ê̂x(0) = 0, (3.2b)

ŷ(t) = Ĉ̂x(t)+ P̂0g(t)+ P̂1
d

dt
g(t), t ∈ (0, T ), (3.2c)

where Ê and Â are of size r × r with small r , B̂0, B̂0 have r rows, and Ĉ has
r columns, such that the corresponding transfer function ̂H is an approximate
tangential interpolant to the original transfer function H, i.e., such that

�∗j ̂H (μj ) ≈ �∗jH(μj ) = v∗j for j = 1, . . . , N,

̂H (λj )rj ≈ H(λj )rj = wj for j = 1, . . . , N.
(3.3)

1The matrices Ê and Â do not have the block 2× 2 structure of E and A in (1.2).
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Because of the left and right tangential interpolation conditions {μj }Nj=1 ⊂ C are

called the left interpolation points, {vj }Nj=1 ⊂ C
m are called the left sample values,

{�j }Nj=1 ⊂ C
p are called the left tangential directions and {λj }Nj=1 ⊂ C are called

the right interpolation points, {wj }Nj=1 ⊂ C
p are called the right sample values,

{rj }Nj=1 ⊂ C
m are called the right tangential directions.

We assume that the left interpolation points and the right interpolation points are
distinct, i.e. that

{μj }Nj=1 ∩ {λj }Nj=1 = ∅.

The measured data are arranged into matrix format as follows2

M = diag(μ1, μ2, . . . , μN) ∈ C
N×N , Λ = diag(λ1, λ2, . . . , λN) ∈ C

N×N ,

L∗ =
[
�1 �2 · · · �N

]
∈ C

p×N, R =
[
r1 r2 · · · rN

]
∈ C

m×N, (3.4)

V∗ =
[
v1 v2 · · · vN

]
∈ C

m×N , W =
[
w1 w2 · · · wN

]
∈ C

p×N .

The Loewner matrix is given by

L =

⎡
⎢⎢⎢⎣

v∗1r1−�∗1w1
μ1−λ1

· · · v∗1rN−�∗1wN

μ1−λN

...
. . .

...
v∗N r1−�∗Nw1

μN−λ1
· · · v∗N rN−�∗N wN

μN−λN

⎤
⎥⎥⎥⎦ ∈ C

N×N . (3.5)

Using (3.4) it can be verified that the Loewner matrix (3.5) solves the Sylvester
equation

ML− LΛ = VR− LW.

The shifted Loewner matrix is given by

Ls =

⎡
⎢⎢⎢⎣

vT
1 r1μ1−�∗1w1λ1

μ1−λ1
· · · v∗1rNμ1−�∗1wNλN

μ1−λN

...
. . .

...
v∗N r1μN−�∗Nw1λ1

μN−λ1
· · · v∗N rNμN−�∗N wNλN

μN−λN

⎤
⎥⎥⎥⎦ ∈ C

N×N . (3.6)

2Note that the matrices V∗ ∈ C
m×N and W ∈ C

p×N contain transfer function measurements (3.1)
and are not projection matrices.
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Using (3.4) it can be verified that the shifted Loewner matrix (3.6) solves the
Sylvester equation

MLs − LsΛ =MVR− LWΛ.

If the ‘right’ amount of data is given,3 then the ROM computed with the
(classical) Loewner method is (3.2) with

Ê = −L, Â = −Ls, B̂0 = V, B̂1 = 0, Ĉ =W, P̂0 = P̂1 = 0. (3.7)

The ROM (3.2) with (3.7) is in general complex. However, if the data (3.1) contain
also the conjugate complex data ({μj }Nj=1 = {μj }Nj=1, {λj }Nj=1 = {λj }Nj=1, etc.),
then the complex ROM (3.7) can be transformed into a real ROM with the same
transfer function, as shown in [2, p. 360]. The transfer function ̂H corresponding
to (3.7) satisfies the interpolation conditions (3.3) with equality. However, while
it satisfies the interpolation conditions (3.3), the transfer function ̂H by design is
strictly proper, ̂H poly = 0, and therefore the error H − ̂H is large, especially for
large frequency. We will address this deficiency in Sect. 4.

Often more data than necessary are provided and the pencil (Ls ,L) is singular.
In this case we use the singular value decomposition (SVD) to extract the important
information. Specifically, we compute the (short) SVDs of the augmented Loewner
matrices as

[
L Ls

] = Y1S1X∗1,
[
L

Ls

]
= Y2S2X∗2, (3.8)

where S1 = diag(σ (1)
1 , . . . , σ

(1)
N ) ∈ R

N×N and S2 = diag(σ (2)
1 , . . . , σ

(2)
N ) ∈ R

N×N
are the matrices with singular values on the diagonal, and Y1, X2 ∈ C

N×N , Y2, X1
∈ C

2N×N are the matrices of singular vectors.
The size r of the ROM can be chosen as follows. Given a tolerance τ > 0 the

truncation order r is the smallest integer such that the normalized singular values
satisfy σ

(1)
j /σ

(1)
1 < τ , σ (2)

j /σ
(2)
1 < τ , j = r + 1, . . . , N .

The matrices Y,X ∈ C
N×r are obtained by selecting the first r columns of the

matrices Y1 and X2. The reduced Loewner system is constructed by multiplying the
matrices L,Ls ,V,W with Y∗ and X to the left and respectively, to the right, as

L̂ = Y∗LX, L̂s = Y∗LsX, V̂ = Y∗V, Ŵ =WX. (3.9)

3What the ‘right’ amount of data is depends on the transfer function. Since we typically have more
data, the case we describe below, we omit specification of the ‘right’ amount of data.
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The ROM computed with the (classical) Loewner method is (3.2) with

Ê = −L̂, Â = −L̂s , B̂0 = V̂, B̂1 = 0, Ĉ = Ŵ, P̂0 = P̂1 = 0. (3.10)

As before, if the data {μj }Nj=1, {λi}Ni=1, {vj }Nj=1, {wj }Ni=1 contain also the conjugate
complex data, then the complex ROM (3.2) with (3.10) can be transformed into a
real ROM with the same transfer function, as shown in [2, p. 360].

The transfer function ̂H corresponding to (3.10) satisfies the approximate
interpolation conditions (3.3). However, by design, the transfer function ̂H is strictly
proper, ̂H poly = 0, and therefore the error H − ̂H is large, especially for large
frequency. We will address this deficiency next.

4 Accounting for the Polynomial Part of the Transfer
Function

As we have seen in Sect. 2.2, the transfer function is composed of a strictly proper
part and a polynomial part. The exact structure of these parts is shown in (2.12). We
write H(s) = Hspr(s)+Hpoly(s) with

Hpoly(s) = P0 + sP1.

Especially for the DAE system (1.1), the exact form (2.12) of P0,P1 ∈ R
p×m is

complicated. Here, as in Sect. 3, m = ng is the number of inputs and p = ny

is the number of outputs, so that H(s) ∈ C
p×m. Even if all system matrices

in (1.1) were available, the computation of P0,P1 ∈ R
p×m from (2.12) is tedious.

More importantly, if only transfer function H(s) measurements are available, it is
impossible to compute P0,P1 ∈ R

p×m from (2.12). In this section we explain
how we can estimate Hpoly and account for it in the Loewner framework. The
key assumption is that information about the transfer function is known at high
frequency bands. More precisely, we assume that H(ı ω) is known for large
positive real numbers ω. Here, denote the imaginary unit with ı = √−1. Since
lim|ω|→∞ |Hspr(ıω)| = 0, the contribution of the strictly proper part Hspr(s) to the
transfer function H(s) becomes negligible for high frequency ranges.

4.1 Estimation from One and Two Data Points

Assume that the transfer function H(s) is known at one point ı η located on the
imaginary axis where η ∈ R and η # 1. Since limη→∞ |Hspr(ı η)| = 0,

H(ı η) = Hspr(ı η)+ P0 + ı ηP1 ≈ P0 + ı ηP1.
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This gives the estimates

P̂0 = Re
(
H(ı η)

)
, P̂1 = η−1 Im

(
H(ı η)

)
. (4.1)

Next, assume that the transfer function H(s) is known for two points ı η and ı θ

on the imaginary axis with η, θ ∈ R and θ > η # 1. We have

H(ı θ)−H(ı η) =
(

Hspr(ı θ)+ P0 + ı θP1

)
−
(

Hspr(ı η)+ P0 + ı ηP1

)

= Hspr(ı θ)−Hspr(ı η)+ (ı θ − ı η)P1 ≈ (ı θ − ı η)P1. (4.2)

Hence, we can estimate P1 in terms of a divided difference value that appears in
the Loewner matrix with λ = ı η and μ = ı θ (that is approximating the derivative
when θ → η), as follows

P̂1 = Re
(H(ı θ)−H(ı η)

ı θ − ı η

)
. (4.3a)

We also have

ı θH(ı θ)− ı ηH(ı η)

=
(
ı θHspr(iθ)+ ı θP0 − θ2P1

)
−
(
ı ηHspr(ı η)+ ı ηP0 − η2P1

)

= ı θHspr(ı θ)− ı ηHspr(ı η)+ (ı θ − ı η)P0 + (η2 − θ2)P1,

which implies

ı θH(ı θ)− ı ηH(ı η)

ı θ − ı η
= ı θHspr(ı θ)− ı ηHspr(ı η)

ı θ − ı η
+ P0 + ı(η+ θ)P1

≈ P0 + ı(η + θ)P1.

The previous approximation gives the following estimate for P0,

P̂0 = Re
( ı θH(ı θ)− ı ηH(ı η)

ı θ − ı η

)
. (4.3b)
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Example 4.1 Consider the order n = 3 DAE system

[
1 0
0 1

]

︸ ︷︷ ︸
E11

d

dt
v(t) =

[
1 0
0 2

]

︸ ︷︷ ︸
A11

v(t)+
[

1
0

]

︸︷︷︸
A12

p(t)+
[

1 −1
1 1

]

︸ ︷︷ ︸
B1,0

g(t),

0 =
[

1 0
]

︸ ︷︷ ︸
AT

12

v(t)+
[

1 2
]

︸ ︷︷ ︸
B2,0

g(t),

y(t) =
[

2 1
0 1

]

︸ ︷︷ ︸
C1

v(t)+
[

3
1

]

︸︷︷︸
C2

p(t),

which is of the form (1.1), with B1,1 = D0 = D1 = 02×2. For this small example
we can compute the transfer function explicitly, e.g., using the symbolic toolbox in
Matlab applied to (2.1), to get

Hspr(s) = 1

s − 2

[
1 1
1 1

]
, Hpoly(s) =

[
−2 5

0 3

]

︸ ︷︷ ︸
=P0

+s
[
−3 −6
−1 −2

]

︸ ︷︷ ︸
=P1

. (4.5)

First, we estimate P0 and P1 in (4.5) from one measurement pair (ı η,H(ı η))

using (4.1). In this simple example, these errors can be computed analytically
from (4.5) and happen to be nearly identical,

P0 − P̂0 = P0 − Re
(
H(ı η)

) = 2

η2 + 4

[
1 1
1 1

]
= O(η−2),

P1 − P̂1 = P1 − η−1 Im
(
H(ı η)

) = 1

η2 + 4

[
1 1
1 1

]
= O(η−2).

The errors for different η are depicted by the black curves with crosses in Fig. 1.
Next, we estimate the values of P0 and P1 in (4.5) from two measurement pairs

(ı η,H(ı η)) and (ı θ,H(ı θ)) using the estimates (4.3). Specifically, we use the
second frequency θ = 10 η or θ = 100 η. The errors ‖P0 − P̂0‖2 are shown in
the left plot in Fig. 1, while the errors ‖P1 − P̂1‖2 are shown in the right plot. The
red curves with circles correspond to the estimates (4.3) with θ = 10 η and green
curves with diamonds correspond to the estimates (4.3) with θ = 100 η. Again, the
errors behave like O(η−2). Adding a second frequency θ = 10kη, k = 1, 2, reduces
the error approximately by 10−k.
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Fig. 1 Errors ‖P0 − P̂0‖2 (left plot) and ‖P1 − P̂1‖2 (right plot) for P̂0, P̂1 estimated from (4.1)
and (4.3). The black curves with crosses show the error for the estimates obtained from (4.1) for
η ∈ [100, 106]. The red curves with circles and green curves with diamonds show the error for
the estimates obtained from (4.3) for η ∈ [100, 106] and θ = 10 η (red curves with circles) or
θ = 100 η (green curves with diamonds). The errors behave like O(η−2) and adding a second
frequency θ = 10kη, k = 1, 2, reduces the error by approximately by 10−k

4.2 Estimation from 2L Data Points—The General Case

Now assume that we have 2L measurements available with sampling points located
in high frequency bands, i.e., on the imaginary axis with high absolute value. We
will extend the formulas in (4.3) to the general case L ≥ 1 using the definitions of
the Loewner matrices in (3.5) and (3.6).

The set-up is as in Sect. 3. The left interpolation points {ı θi}Li=1 and right
interpolation points {ı ηj }Lj=1 are chosen on the imaginary axis ı R with
min{θi},min{ηj } # 1. The goal is to estimate the coefficient matrices P0,P1
taking into account all 2L measurements, and not only two of them as in (4.3).

We begin by extending (4.3a) for the estimation of P1. We write the (i, j) entry
of the Loewner matrix L (3.5) with λ = ı η and μ = ı θ . Instead of the generic
notation L for the Loewner matrix, we now use the notation L

hi to indicate that this
Loewner matrix is computed with data located in high frequency bands, and to later
differentiate it from the Loewner matrix L

lo obtained from the remaining data in
low frequency band.

Using the equalities (3.3) and (4.2), it follows that the (i, j) entry of the Loewner
matrix L

hi (3.5) with λ = ı η and μ = ı θ has the expression

L
hi
(i,j) =

v∗i rj − �∗i wj

ı θi − ı ηj

= �∗i H(ı θi)rj − �∗i H(ı ηj )rj
ı θi − ı ηj

= �∗i
(H(ı θi)−H(ı ηj )

ı θi − ı ηj

)
rj

= �∗i
(Hspr(ı θi)−Hspr(ı ηj )+ (ı θi − ı ηj )P1

ı θi − ı ηj

)
rj

= �∗i
(Hspr(ı θi)−Hspr(ı ηj )

ı θi − ı ηj

)
rj

︸ ︷︷ ︸
:=Lhi,spr

(i,j)

+�∗i P1rj = L
hi,spr
(i,j) + �∗i P1rj . (4.6)
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As in (3.4), the directional vectors �i and rj are collected into matrices

(
Lhi)∗ =

[
�1 �2 · · · �L

]
∈ C

p×L, Rhi =
[
r1 r2 · · · rL

]
∈ C

m×L. (4.7)

Combining (4.6) and (4.7) gives the approximation formula

L
hi = L

hi,spr + LhiP1Rhi ≈ LhiP1Rhi, (4.8)

again obtained by neglecting the contribution of the strictly proper part of the
transfer function at high frequencies.

Provided that L ≥ max{p,m} (recall that here m is the number of inputs and p

is the number of outputs), one can write the estimated linear polynomial coefficient
matrix as follows

P̂1 = Re
((

Lhi)†
L

hi(Rhi)†), (4.9a)

where X† ∈ C
v×u is the Moore-Penrose pseudo-inverse of X ∈ C

u×v .
Similarly to the procedure used for estimating P1, one can extend the formula

in (4.3b) for estimating P0 from the shifted Loewner matrix L
hi
s computed from L

sampling points located in high frequency bands as follows

P̂0 = Re
((

Lhi)†
L

hi
s

(
Rhi)†). (4.9b)

4.3 The Proposed Procedure

Assume that we have samples of the transfer function evaluated at high frequencies
(to capture the polynomial part) as well as at low frequencies (to capture the strictly
proper part). Algorithm 1 below adapts the Loewner framework for DAE systems by
preserving the polynomial structure of the underlying transfer function. The ROM
constructed with Algorithm 1 has the form

Ê
d

dt
x̂(t) = Â x̂(t)+ B̂0 g(t), t ∈ (0, T ), (4.10a)

Ê̂x(0) = 0, (4.10b)

ŷ(t) = Ĉ x̂(t)+ P̂0 g(t)+ P̂1
d

dt
g(t), t ∈ (0, T ). (4.10c)

The derivative d
dt

g(t) is not an explicit input into the dynamics (4.10a), i.e., B̂1 = 0,
but its influence on the output is modeled by the feed-through term P̂1

d
dt

g(t) in
the output equation (4.10c). While some structural details of the ROM (4.10) are
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different from the original FOM (1.3), the transfer function

Ĥ(s) = Ĥspr(s)+ Ĥpoly(s) (4.11a)

of the ROM (4.10), now has a strictly proper part and a polynomial part,

Ĥspr(s) = Ĉ
(
s Ê− Â

)−1B̂0, Ĥpoly(s) = P̂0 + s P̂1. (4.11b)

Numerical experiments indicate that each of these match the ones of the FOM (2.12)
well, provided enough transfer measurements are available.

Instead of the generic λj , μj ∈ C used in Sect. 3 we now specify λj = ı ηj and
μj = ı θj in Algorithm 1 with ηj , θj ∈ R.

Algorithm 1 Modified Loewner method with identification of polynomial terms in
transfer function

Input: A data set composed of 2(N + L) sample points, 2(N + L) tangential directions, and
2(N + L) measured values of the transfer function as introduced in (3.1).

Output: Loewner ROM specified by Ê, Â, B̂, Ĉ, P̂0, P̂1.
1: Split the data into 2N data corresponding to the low frequency range and into 2L data

corresponding to the high frequency range.
2: Use the 2L data corresponding to the high frequency range to estimate P̂0, P̂1 using (4.9).
3: Adjust the 2N transfer function measurements corresponding to the low frequency range, by

subtracting the estimated polynomial part Ĥpoly(ω) = P̂0 + ı ω P̂1 for ω ∈ {θi | 1 ≤ i ≤
N} ∪ {ηj | 1 ≤ j ≤ N} from the original measurement values, i.e., compute

left : (
ı θj , �j , vi − Ĥpoly(ı θj )

∗�j
)
, j = 1, . . . , N,

right : (ı ηj , rj ,wj − Ĥpoly(ı ηj )rj
)
, j = 1, . . . , N.

(4.39)

4: Use the 2N data (4.39) to construct data matrices Vlo ∈ C
N×m, Wlo ∈ C

p×N as in (3.4), and
Loewner matrices Llo,Ls

lo ∈ C
N×N as in (3.5) and (3.6).

5: Compute the SVD of the augmented Loewner matrices obtained with L
lo,Ls

lo and project as

in (3.9) to construct Ê = −L̂lo = −Y∗LloX, Â = −L̂lo
s = −Y∗Llo

s X, B̂0 = V̂
lo =

Y∗Vlo, Ĉ = Ŵ
lo =WloX.

5 Numerical Example—Oseen Equations

In this section we apply the Loewner framework to the Oseen equations. The
example specifications are from [8].
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Fig. 2 The channel geometry and coarse grid

5.1 Problem Specification

For completeness we first review the main problem specifications. Let Ω ⊂ R
2 be

the backward facing step geometry shown in Fig. 2. The boundary is decomposed
into segments Γn, Γd, Γg, where Γn = {8} × (0, 1) is the outflow boundary, inputs
are applied on Γg = {0}× (1/2, 1)∪{1}× (0, 1/2), and the velocities are set to zero
on Γd = ∂Ω \ (Γg ∪ Γn).

We consider the Oseen equations

∂

∂t
v(x, t) + (a(x)·∇)v(x, t) − νΔv(x, t) + ∇p(x, t) = 0 in Ω × (0, T ),

∇·v(x, t) = 0 in Ω × (0, T ),

(−p(x, t)I + ν∇v(x, t))n(x) = 0 on Γn × (0, T ),

v(x, t) = 0 on Γd × (0, T ),

v(x, t) = gΓ (x, t) on Γg × (0, T ),

v(x, 0) = 0 in Ω,

where ν = 1/50 is the dynamic viscosity and where n(x) is the unit outward normal
to Ω at x. Here v, p are the velocity and pressure of the fluid respectively, and gΓ

denotes the boundary input. The advection field a is computed as in [8, Sec. 7.2]
by solving the steady-state Stokes equation with velocity 8(x2 − 1/2)(1 − x2) on
the inflow boundary segment Γin = {0} × (1/2, 1) and and zero velocity boundary
conditions on ∂Ω \ (Γn ∪ Γin).

Our boundary inputs are given as in [8] by

gΓ (x, t) =
ng∑
k=1

gk(t)γ k(x) (5.1)
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with ng = 6 boundary control functions γ j : R2 → R
2 given as follows. The first

three functions are defined on the inflow boundary segment {0} × (1/2, 1) and are
given by

γ k(x) =
(

sin(2jπ(x2 − 1/2))
0

)
, k = 1, 2, 3;

the remaining three are defined on the backstep boundary segment {1} × (0, 1/2)
and are of the form

γ 3+k(x) =
(

sin(2jπx2)

0

)
, k = 1, 2, 3.

We use a P1 − P2 Taylor-Hood discretization to arrive at the semi-discrete
equations (1.1a–c). (Note that the B1,1 term has accidentally been dropped in [8,
Sec. 7.2].) We use a mesh that is obtained from a uniform refinement of the coarse
mesh shown in Fig. 2.

We consider the second output from [8, Sec. 7.2], which is the integral of the
stress force on the boundary segment Γobs = (1, 8)× {0},

y(t) =
∫
Γobs

(− p(x, t)I + ν∇v(x, t))n(x)ds, (5.2)

approximated using the weak form (see [8] for details). This leads to (1.1d) with
C1 ∈ R

2×nv , C2 ∈ R
2×np , D0 ∈ R

2×ng , and D1 = 0. Note that the output matrices
represent derivatives of the finite element approximations of velocity v and pressure
p and therefore scale with the mesh size h; the finite element approximation of the
output y(t) itself does not.

In summary, the semi-discretized DAE model is of dimension n = nv + np with
m = ng = 6 inputs and p = ny = 2 outputs.

5.2 Numerical Experiments

We report numerical experiments for a discretization with nv = 12,504 velocity
degrees of freedom and np = 1,669 pressure degrees of freedom. Other discretiza-
tion sizes gave similar results.
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The polynomial coefficient matrices are explicitly computed using the approach
in Sect. 2.3 and given by (four digits are shown)

P0 =
[
−7.088 −1.124·10−4 −2.363 −7.731 −4.172·10−1 −2.724

4.845·101 −2.940·10−4 1.615·101 4.927·101 8.727·10−3 1.656·101

]
,

P1 =
[
−5.484·10−17 −2.242·10−22 −1.828·10−17

7.814 1.997·10−5 2.605

−5.576·10−17 −4.468·10−19 −1.866·10−17

7.889 3.275·10−2 2.632

]
.

Next we compute the Loewner ROM using the classical Loewner approach (3.7)
and the modified Loewner approach. For the modified Loewner approach we first
modify the transfer function measurements using the true polynomial part P̂0 = P0,
P̂1 = P1 computed using the approach in Sect. 2.3. Thus the modified Loewner uses
Algorithm 1, with Steps 1 and 2 replaced by the computation of P̂0 = P0, P̂1 = P1
using the approach in Sect. 2.3. We assume that we have 2N = 200 measurements
logarithmically spaced in the low frequency range [10−2, 101] ı. The left �j and
right rj tangential vectors are chosen randomly.

The singular value decay of the Loewner matrices (3.8) computed using mea-
surements in the low frequency range is shown in Fig. 3. The ROM size r is
chosen as the largest integer such that σr/σ1 > τ = 10−10 and is r = 24 for
the classical Loewner ROM. In the modified Loewner approach we compute the
Loewner matrices from the shifted transfer function measurements (Steps 3+4 in
Algorithm 1). The singular value decay of these Loewner matrices is similar the one
shown in Fig. 3 and are not plotted. The ROM size r is again chosen as the largest
integer such that σr/σ1 > τ = 10−10 and is r = 23 for the modified Loewner

20 40 60 80 100 120 140 160 180 200

10-15

10-10

10-5

100

Fig. 3 Singular value decay of the Loewner matrices (3.8) computed using measurements in the
low frequency range and tolerance τ = 10−10 used to determine the ROM size. The normalized
singular values for the two Loewner matrices (3.8) are visually identical
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Fig. 4 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of the reduced system computed with the modified Loewner approach with true P̂0 = P0, P̂1 = P1
(red solid line) for various components of the 2 × 6 transfer function. Loewner ROMs computed
using 2N = 200 measurements logarithmically spaced in the low frequency range [10−2, 101] ı.
Right plots: corresponding relative errors

ROM. The left plots in Fig. 4 show the absolute values of frequency responses of
the original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of the reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2×6 transfer function at 300 logarithmically spaced frequenciesω ı in [10−2, 106] ı.
The right plots in Fig. 4 show the corresponding relative errors. We have picked
three transfer function components which well represent the overall behavior of the
Loewner approach.

The modified Loewner approach generally leads to ROMs with transfer functions
that better approximate the true transfer function. The approximation of the
transfer function for large frequencies ω is always substantially better when the
modified Loewner approach is used. For the transfer function component H(iω)12
corresponding to input 2 and output 1 the modified Loewner approach leads to a
slightly larger error for frequencies roughly between 101 and 102. This is due to the
fact that we only use measurements in [10−2, 101] ı. If instead we use 2N = 200
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Input 2, Output 1
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Fig. 5 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of reduced system computed with the modified Loewner approach with true P̂0 = P0, P̂1 = P1
(red solid line) for the (1, 2) component of the transfer function. Loewner ROMs computed using
2N = 200 measurements logarithmically spaced in the low frequency range [10−2, 102] ı. Right
plots: corresponding relative errors

Table 1 Estimation error for
P̂0, P̂1 computed using (4.9a)
and (4.9b) with 2L = 20
measurements
logarithmically spaced in the
high frequency range
[10f , 10f+2] ı for
f = 3, . . . , 7

Freq. range ‖P0 − P̂0‖2 ‖P1 − P̂1‖2[
103, 105

]
6.0161·10−2 2.7859·10−4

[
104, 106

]
2.5535·10−4 1.1163·10−6

[
105, 107

]
3.0575·10−6 1.3111·10−8

[
106, 108

]
2.8019·10−8 1.2303·10−10

[
107, 109

]
5.8920·10−10 2.6729·10−12

The observed estimation error for P̂0 and for
P̂1 behaves like O(10−2f ) and in this example
the P1 estimation error is two orders of magni-
tude smaller than the P0 estimation error

measurements logarithmically spaced in the low frequency range [10−2, 102] ı,
we get the frequency response in Fig. 5. Approximations for the other transfer
function components are also improved when the modified Loewner approach is
used, but not plotted because of space limitations. However, note that the classical
and modified Loewer ROMs computed using these data are of larger sizes r = 31
and r = 33. (The ROM size r is again chosen as the largest integer such that
σr/σ1 > τ = 10−10.)

Next we estimate the polynomial part using (4.9a) and (4.9b). Assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[10f , 10f+2] ı. The left �j and right rj tangential vectors are chosen randomly.
Table 1 shows the estimation error for varying frequency ranges. The observed
estimation error for both P̂0, P̂1 behaves like O(10−2f ).

In our last experiments we compute the Loewner ROM using the classical
Loewner approach (3.7) and the modified Loewner approach, Algorithm 1. Thus, in
contrast to the experiments shown in Figs. 4 and 5 we now estimate the polynomial
part. Again we assume that we have 2N = 200 measurements logarithmically
spaced in the low frequency range [10−2, 101] ı. In addition we assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range
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Fig. 6 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated P̂0, P̂1
(red solid line) for various components of the 2 × 6 transfer function. Right plots: corresponding
relative errors

[104, 106] ı to compute estimates P̂0 and P̂1. In all cases the left �j and right rj
tangential vectors are chosen randomly.

The left plots in Fig. 6 show the absolute values of frequency responses of the
original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2×6 transfer function at 300 logarithmically spaced frequenciesω ı in [10−2, 106] ı.
The right plots in Fig. 6 show the corresponding relative errors.

In most cases the modified Loewner approach improves the approximation
properties of the ROM transfer function. For large frequencies ω # 1, the
estimation error ω |(̂P1)jk − (P1)jk| starts to dominate the overall error in transfer
function approximation. The beginning of this can be seen in Fig. 6 for Input 3 and
Output 1, where the error between FOM transfer function and modified Loewner
ROM transfer function begins to grow linearly in ω for ω > 105. As indicted
by Table 1 the errors ‖P0 − P̂0‖2, ‖P1 − P̂1‖2 when 2L measurements at higher
frequencies are available to compute P̂0, P̂1. Thus while a linear growth in error
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between FOM and ROM transfer function is unavoidable when P1 is present, the
impact can be delayed by using measurements at higher frequencies.

The behavior of modified Loewner ROM for the transfer function component
corresponding to Input 2 and Output 1 is worse than that of the classical Loewner
ROM. Note that this component of the transfer function is substantially smaller
than all other components. Moreover, this component of the transfer function has a
constant polynomial part, i.e.,

H(ı ω)1,2 = Hspr(ı ω)1,2 + (P0)1,2, (P0)1,2 ≈ 10−4, (P1)1,2 = 0,

but is estimated by Ĥ(ı ω)1,2 = Ĥspr(ı ω)1,2 + (̂P0)1,2 + ı ω (̂P1)1,2. The errors in
the transfer functions for the modified Loewner and the classical Loewner are nearly
identical in the range [10−2, 101] ı where measurements were taken, but both ROM
transfer functions have the wrong asymptotics for large frequencies. The difficulty
for the modified Loewner approach is that both (P0)1,2 and (P1)1,2 are small (in fact
(P1)1,2 = 0).

The modified Loewner ROM can be improved somewhat by thresholding. If
there is an error estimate τ0 and τ1 available such that |(P0)j,k − (̂P0)j,k| ≤ τ0 and
|(P1)j,k− (̂P1)j,k| ≤ τ1, then for small polynomials components with |(̂P0)j,k| ≤ τ0

or |(̂P1)j,k | ≤ τ1, respectively, the estimation error may be as large as the estimated
quantity itself. Hence for components with |(̂P0)j,k| ≤ τ0 we set (̂P0)j,k = 0,
and for components with |(̂P1)j,k| ≤ τ1 we set (̂P1)j,k = 0. Unfortunately,
currently there is no rigorous error estimate τ0 and τ1 available. Motivated by
Table 1 we set τ0 = τ1 = 10−f when the polynomial part is estimated from
measurements in the high frequency range [10f , 10f+2] ı. Specifically, since we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[104, 106] ı to compute estimates P̂0 and P̂1 we set τ0 = τ1 = 10−4. With
this thresholding (̂P1)1,k = 0, k = 1, . . .6, and (̂P1)2,2 = 0. The absolute
values of frequency responses for the (1,2) component of the transfer function and
corresponding relative errors are shown in Fig. 7. The error in transfer function
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10-2 100 102 104 106
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10-4

10-2
Original model
Loewner - r = 24
Loewner new - r = 23

10-2 100 102 104 106
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10-4

10-2

100
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Loewner new

Fig. 7 Left plots: Absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated P̂0, P̂1
and thresholding (red solid line) for the (1,2) component of the transfer function. Right plots:
corresponding relative errors
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for the modified Loewner and the classical Loewner are again nearly identical in
the range [10−2, 101] ı where measurements were taken. For large frequencies the
observed relative error in the transfer function for the modified Loewner approach
is approximately |(P0)1,2 − (̂P0)1,2|/|(P0)1,2|, whereas the relative error in the
transfer function for the classical Loewner is always asymptotically equal to one.
The fundamental issue is that small polynomial components |(P0)j,k|  1 and
especially |(P1)j,k |  1 need to be estimated with even smaller absolute errors.
This is difficult and requires more measurements at higher frequencies.

6 Conclusions

This paper has provided a detailed description of the analytical form of the
transfer function for a class of semi-explicit DAE systems, which includes the
semi-discretized Oseen equations, and it has introduced a modified version of
the data-driven Loewner framework to compute reduced order models (ROMs)
for these DAE systems The algorithmic improvement is in the estimation of the
polynomial part of the transfer function from measurements and in the incorporation
of this estimate into the Loewner ROM construction, which in many cases lead
to ROMs with better approximation properties. The modified Loewner approach
uses measurements of the transfer function at high frequencies to estimate the
polynomial part, and then applies the standard Loewner approach to measurement
contributions from the strictly proper part of the transfer function. In particular, the
split of the transfer function into a strictly proper and a polynomial part is explicit in
the construction of the Loewner ROM to ensure that the resulting ROM transfer
function has the same structure. Numerical experiments on the semi-discretized
Oseen equations indicate that the modified Loewner approach generates ROMs that
better approximate the transfer function if a linear polynomial part is present. In
cases, where the polynomial part is linear with a small linear term, the modified
Loewner approach can introduce a spurious polynomial part, which then leads to
large errors for large frequencies. This can be somewhat avoided by thresholding,
but the estimation of small components in the polynomial parts, especially in
the linear part remains a difficulty. For the modified Loewner approach precise
theoretical error estimates and improvement bounds are not yet available, and are
part of future work.
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Abstract We consider tracking control for multi-input multi-output differential-
algebraic systems. First, the concept of vector relative degree is generalized for
linear systems and we arrive at the novel concept of “truncated vector relative
degree”, and we derive a new normal form. Thereafter, we consider a class of
nonlinear functional differential-algebraic systems which comprises linear systems
with truncated vector relative degree. For this class we introduce a feedback
controller which achieves that, for a given sufficiently smooth reference signal, the
tracking error evolves within a pre-specified performance funnel.
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1 Introduction

Funnel control has been introduced in [23] almost two decades ago. Meanwhile,
plenty of articles have been published in which funnel control from both a theoreti-
cal and an applied perspective are considered, see e.g. [3–5, 9, 10, 16, 17, 20, 26, 29]
to mention only a few.

A typical assumption in funnel control is that the system has a strict relative
degree, which means that the input-output behavior can be described by a differ-
ential equation which has the same order for all outputs. However, multi-input,
multi-output systems that appear in real-world applications do not always have
a strict relative degree. Instead, the input-output behavior is described by a collection
of differential equations of different order for each output, which is referred to as
vector relative degree.

The subject of this article is twofold: First we consider linear (not necessarily
regular) systems described by differential-algebraic equations (DAEs). We general-
ize the notion of vector relative degree as given in [1, Def. 5.3.4] for regular DAEs,
see [24, 27] for systems of ordinary differential equations (ODEs). Furthermore,
we develop a normal form for linear DAE systems which allows to read off this
new truncated vector relative degree as well as the zero dynamics. Thereafter, we
consider a class of nonlinear functional DAE systems which encompasses linear
systems in this normal form, and we introduce a new funnel controller for this
system class.

Our results generalize, on the one hand, the results of [9], where systems with
strict relative degree are considered. On the other hand, concerning funnel control,
the results in this article generalize those of [3, 8] for linear and nonlinear DAEs,
where the truncated vector relative degree (although this notion does not appear in
these articles) is restricted to be component-wise less or equal to one. Note that [3]
already encompasses the results found in [7] for linear DAE systems with properly
invertible transfer function. DAEs with higher relative degree have been considered
in [6], and even this article is comprised by the present results. Therefore, the present
article can be seen as a unification of the funnel control results presented in the
previous works [3, 6–9] to a fairly general class of nonlinear DAE systems. Parts of
our results have been published in the doctoral thesis [25] by one of the authors.

1.1 Nomenclature

Thoughout this article, R≥0 = [0,∞) and ‖x‖ is the Euclidean norm of x ∈ R
n.

The symbols N denotes the set of natural numbers and N0 = N ∪ {0}. The ring of
real polynomials is denoted by R[s], and R(s) is its quotient field. In other words,
R(s) is the field of real rational functions. Further, Gln(R) stands for the group of
invertible matrices in R

n×n.
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The restriction of a function f : V → R
n to W ⊆ V is denoted by f

∣∣
W

,
V ⊆ W . For p ∈ [1,∞], Lp(I → R

n) (Lp
loc(I → R

n)) stands for the space of
measurable and (locally) p-th power integrable functions f : I → R

n, I ⊆ R

an interval. Likewise L∞(I → R
n) (L∞loc(I → R

n)) is the space of measurable
and (locally) essentially bounded functions f : I → R

n, and ‖f ‖∞ stands for the
essential supremum of f . Note that functions which agree almost everywhere are
identified. Further, for p ∈ [1,∞] and k ∈ N0, Wk,p(I → R

n) is the Sobolev
space of elements of Lp(I → R

n) (Lp
loc(I → R

n)) with the property that the
first k weak derivatives exist and are elements of Lp(I → R

n) (Lp
loc(I → R

n)).
Moreover, Ck(V → R

n) is the set of k-times continuously differentiable functions
f : V → R

n, V ⊆ R
m, and we set C(V → R

n) := C0(V → R
n).

2 Linear Systems and the Truncated Vector Relative Degree

In this section, we consider linear constant coefficient DAE systems

d
dt Ex(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),
(2.1)

where E,A ∈ R
l×n, B ∈ R

l×m, C ∈ R
p×n. We denote the class of these systems

by Σl,n,m,p and write [E,A,B,C] ∈ Σl,n,m,p. We stress that these systems are not
required to be regular, which would mean that l = n and det(sE−A) ∈ R[s] \ {0}.
The functions u : R → R

m, x : R → R
n, and y : R → R

p are called input,
(generalized) state variable, and output of the system, respectively. We introduce
the behavior of system (2.1) as

B[E,A,B,C] :=
{
(x, u, y) ∈ L1

loc(R→ R
n ×R

m × R
p)

∣∣∣∣

Ex ∈ W
1,1
loc (R→ R

l ) ∧ d
dt Ex = Ax + Bu ∧ y = Cx +Du

}
.

Note that the equalities in the above definition are to be understood as equalities
of functions in L1

loc. For a regular system [E,A,B,C] ∈ Σn,n,m,p, the transfer
function is defined by

G(s) = C(sE − A)−1B ∈ R(s)p×m.
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2.1 Zero Dynamics and Right-Invertibility

To specify the class that we consider, we introduce the zero dynamics which are the
set of solutions resulting in a trivial output. For more details on the concept of zero
dynamics and a literature survey we refer to [1].

Definition 2.1 The zero dynamics of [E,A,B,C] ∈ Σl,n,m,p are the set

ZD[E,A,B,C] :=
{
(x, u, y) ∈ B[E,A,B,C]

∣∣ y = 0
}
.

We call ZD[E,A,B,C] autonomous, if

∀ω ∈ ZD[E,A,B,C] ∀ I ⊆ R open interval: ω|I = 0 ⇒ ω = 0,

and asymptotically stable, if

∀ (x, u, y) ∈ ZD[E,A,B,C] : lim
t→∞

∥∥∥ (x, u)∣∣[t,∞)

∥∥∥∞ = 0.

Remark 2.1 Let [E,A,B,C] ∈ Σl,n,m,p.

(a) It has been shown in [3, Prop. 3.5] that

ZD[E,A,B,C] are autonomous ⇐⇒ kerR(s)

[
−sE+A B

C 0

]
= {0}.

In particular,
[
−sE+A B

C 0

]
is left invertible over R(s) if, and only if,

ZD[E,A,B,C] are autonomous. If [E,A,B,C] is regular, then its transfer
function G(s) satisfies

[
−sE + A B

C 0

][
In (sE − A)−1B

0 Im

]
=
[
−sE + A 0

C G(s)

]
, (2.2)

hence autonomy of the zero dynamics is equivalent to G(s) having full column
rank over R(s), cf. [3, Prop. 4.8].

(b) It has been shown in [3, Lem. 3.11] that

ZD[E,A,B,C] are asymptotically stable

⇐⇒ kerC
[
−λE+A B

C 0

]
= {0} for all λ ∈ C+with Re(λ) ≥ 0.

We will consider systems with autonomous zero dynamics throughout this article.
We will furthermore assume that the system is right-invertible, which is defined in
the following.
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Definition 2.2 The system [E,A,B,C] ∈ Σl,n,m,p is called right-invertible, if

∀ y ∈ C∞(R→ R
p) ∃ (x, u) ∈ L1

loc(R→ R
n × R

m) : (x, u, y) ∈ B[E,A,B,C].

The notion of right-invertibility has been used in [30, Sec. 8.2] for systems governed
by ordinary differential equations and in [2, 3] for the differential-algebraic case.
The concept is indeed motivated by tracking control: Namely, right-invertibility
means that any smooth signal can be tracked by the output on a right-invertible
system.

Remark 2.2 Consider a regular system [E,A,B,C] ∈ Σn,n,m,p with transfer
function G(s). It has been shown in [3, Prop. 4.8] that

[E,A,B,C] is right-invertible ⇐⇒ imR(s) G(s) = R(s)p,

whence, by (2.2),

[E,A,B,C] is right-invertible ⇐⇒ imR(s)

[
−sE+A B

C 0

]
= R(s)n+p,

Combining this with Remark 2.1 (a), we can infer from the dimension formula
that for regular square systems [E,A,B,C] ∈ Σn,n,m,m (i.e., the dimensions of
input and output coincide) with transfer function G(s) ∈ R(s)m×m, the following
statements are equivalent:

(i) ZD[E,A,B,C] are autonomous,
(ii) [E,A,B,C] is right-invertible,

(iii) G(s) ∈ R(s)m×m is invertible over R(s),

(iv)
[
−sE+A B

C 0

]
is invertible over R(s).

For general right-invertible systems with autonomous zero dynamics, we can
derive a certain normal form under state space transformation. The following result
is a straightforward combination of [3, Lem. 4.2 & Thm. 4.3 & Prop. 4.6].

Theorem 2.1 Let a right-invertible system [E,A,B,C] ∈ Σl,n,m,p with
autonomous zero dynamics be given. Then there exist W ∈ Gll (R), T ∈ Gln(R)

such that

W(sE − A)T =

⎡
⎢⎢⎢⎣

sIn1 −Q −A12 0
−A21 sE22 − A22 sE23

0 sE32 sN − In3

0 0 −sE43

⎤
⎥⎥⎥⎦ , WB =

⎡
⎢⎢⎢⎣

0
Im

0
0

⎤
⎥⎥⎥⎦ ,

CT =
[
0 Ip 0

]
,

(2.3)
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where n1, n3, n4 ∈ N0, N ∈ R
n3×n3 is nilpotent and

Q ∈ R
n1×n1 , A12 ∈Rn1×p, A21 ∈Rm×n1 ,

E22, A22 ∈Rm×p, E23 ∈Rm×n3 ,

E32 ∈Rn3×p, E43 ∈Rn4×n3

are such that E43N
jE32 = 0 for all j ∈ N0.

Remark 2.3 Let [E,A,B,C] ∈ Σl,n,m,p be right-invertible and have autonomous
zero dynamics. Using the form (2.3), we see that (x, u, y) ∈ B[E,A,B,C] if, and only
if,

T x = (η�, y�, x�3 )� ∈ L1
loc(R→ R

n1+p+n3)

satisfies

[
E22

E32

]
y ∈ W

1,1
loc (R→ R

m+n3),

⎡
⎢⎣
E23

N

E43

⎤
⎥⎦ x3 ∈ W

1,1
loc (R→ R

m+n3+n4)

(2.4)

and the equations

η̇ = Qη + A12y, (2.5a)

0 = −
n3−1∑
i=0

E23N
iE32y

(i+2) − E22ẏ + A22y + A21η + u, (2.5b)

x3 =
n3−1∑
i=0

NiE32y
(i+1) (2.5c)

hold in the distributional sense. In particular, the zero dynamics of [E,A,B,C] are
asymptotically stable if, and only if, any eigenvalue of Q has negative real part.
Further note that η ∈ L1

loc(R → R
n1), y ∈ L1

loc(R → R
p) together with (2.5a)

imply that η ∈ W
1,1
loc (R→ R

n1).

2.2 Truncated Vector Relative Degree

Our aim in this section is to present a suitable generalization of the concept of vector
relative degree to differential-algebraic systems which are not necessarily regular.
For regular systems a definition of this concept is given in [3, Def. B.1].
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Definition 2.3 Let a regular system [E,A,B,C] ∈ Σn,n,m,p with transfer function
G(s) ∈ R(s)p×m be given. We say that [E,A,B,C] has vector relative degree
(r1, . . . , rp) ∈ Z

1×p, if there exists a matrix Γ ∈ R
p×m with rkΓ = p and

lim
λ→∞ diag(λr1, . . . , λrp )G(λ) = Γ.

If the above holds with r1 = . . . = rp =: r , then we say that [E,A,B,C] has strict
relative degree r .

Since this definition involves the transfer function, it is only applicable to regular
systems. To avoid this limitation, we introduce a novel concept. Let us start by
introducing the notion of column degree of a rational matrix. This generalizes the
concept of column degree for polynomial matrices in [15, Sec. 2.4].

Definition 2.4 For a rational function r(s) = p(s)
q(s)
∈ R(s) we define

deg r(s) := degp(s)− deg q(s).

Further, for r(s) = (r1(s), r2(s), . . . , rp(s))
� ∈ R(s)p we define

deg r(s) = max
1≤i≤p deg ri (s).

Note that the degree of a rational function r(s) = p(s)
q(s)

is independent of the
choice of p(s) and q(s), i.e., they do not need to be coprime.

If [E,A,B,C] ∈ Σl,n,m,p has autonomous zero dynamics, then we can conclude

from Remark 2.1 that
[
−sE+A B

C 0

]
∈ R(s)(l+p)×(n+m) possesses a left inverse

L(s) ∈ R(s)(n+m)×(l+p). Then we set

H(s) := −
[
0 Im

]
L(s)

[
0
Ip

]
∈ R(s)m×p. (2.6)

Remark 2.4

(a) Assume that [E,A,B,C] ∈ Σl,n,m,p has autonomous zero dynamics and is
right-invertible. Then it has been shown in [3, Lem. A.1] that the rational matrix
H(s) ∈ R(s)m×p is uniquely determined by [E,A,B,C]. Moreover, with the
notation from Theorem 2.1, we have

H(s) = sE22−A22−A21(sIn1−Q)−1A12−s2E23(sN−In3)
−1E32. (2.7)

We stress that the above representation is independent of the transformation
matrices W and T in (2.3).
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(b) If [E,A,B,C] ∈ Σn,n,m,m has autonomous zero dynamics and is regular with
transfer function G(s) ∈ R(s)m×m, then, invoking (2.2) and Remark 2.2, it can
be shown that H(s) = G(s)−1, see also [3, Rem. A.4].

In view of Remark 2.4, we see that for any regular system [E,A,B,C] ∈
Σn,n,m,m with transfer function G(s) and vector relative degree (r1, . . . , rm), we
have

lim
λ→∞ diag(λr1, . . . , λrm)G(λ) = Γ ∈ Glm(R)

⇐⇒ lim
λ→∞H(λ) diag(λ−r1 , . . . , λ−rm) = Γ −1 ∈ Glm(R),

(2.8)

with H(s) as in (2.6). This motivates to use H(s) instead of the transfer function
G(s) to define a generalization of the vector relative degree to DAE systems which
are not necessarily regular.

Definition 2.5 Assume that [E,A,B,C] ∈ Σl,n,m,p is right-invertible and has
autonomous zero dynamics. Let H(s) ∈ R(s)m×p be defined as in (2.6) (which
is well-defined by Remark 2.4 (a), hi(s) = H(s)ei ∈ R(s)m for i = 1, . . . , p and
set ri = max{deghi(s), 0}. Let q be the number of nonzero entries of (r1, . . . , rp),

Γ̂ := lim
λ→∞H(λ) diag(λ−r1 , . . . , λ−rp ) ∈ R

m×p, (2.9)

and Γ̂q ∈ R
m×q be the matrix which is obtained from Γ̂ by deleting all the columns

corresponding to ri = 0. Then we call r = (r1, . . . , rp) ∈ N
1×p
0 the truncated

vector relative degree of the system [E,A,B,C], if rk Γ̂q = q .
A truncated vector relative degree (r1, . . . , rp) is called ordered, if r1 ≥ . . . ≥ rp .

Remark 2.5 Let the system [E,A,B,C] ∈ Σl,n,m,p be right invertible and have
autonomous zero dynamics.

(a) Assume that [E,A,B,C] has ordered truncated vector relative degree
(r1, . . . , rq , 0, . . . , 0) with rq > 0. Then the matrices Γ̂ and Γ̂q in Definition 2.5
are related by

Γ̂q = Γ̂

[
Iq

0

]
.

(b) Assume that [E,A,B,C] has truncated vector relative degree (r1, . . . , rp) ∈
N

1×p
0 . Consider a permutation matrix Pσ ∈ R

p×p induced by the permutation
σ : {1, . . . , p} → {1, . . . , p}. A straightforward calculation shows that Hσ(s)

as in (2.6) corresponding to [E,A,B,PσC] satisfies Hσ (s) = H(s)Pσ , thus the
system [E,A,B,PσC] has truncated vector relative degree (rσ(1), . . . , rσ (p)).
In particular, there exists a permutation σ such that the output-permuted system
[E,A,B,PσC] has ordered truncated vector relative degree.
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(c) Assume that [E,A,B,C] has ordered truncated vector relative degree
(r1, . . . , rp) ∈ N

1×p
0 . Using the notation from Theorem 2.1 and (2.7), we

obtain that

Γ̂ = lim
λ→∞H(λ) diag(λ−r1, . . . , λ−rp )

= lim
λ→∞

[
(λE22 − A22)− A21(λI −Q)−1A12 − λ2E23(λN − In3)

−1E32
]·

· diag(λ−r1 , . . . , λ−rp )

= lim
λ→∞

⎡
⎣λE22 − A22 +

n3−1∑
k=0

λk+2E23N
kE32

⎤
⎦ diag(λ−r1 , . . . , λ−rp ).

(d) Consider a regular system [E,A,B,C] ∈ Σn,n,m,p . If m > p, then, in view of
Remark 2.1 (a), the zero dynamics of [E,A,B,C] are not autonomous, because[
−sE+A B

C 0

]
has a non-trivial kernel over R(s). Therefore, such a system does

not have a truncated vector relative degree, but a vector relative degree may
exist. As an example consider the system [E,A,B,C] ∈ Σ1,1,2,1 with E =
C = [1], A = [0] and B = [1, 1], for which a truncated relative degree does not
exist. However, the transfer function is given by G(s) = s−1[1, 1] and hence
the system even has strict relative degree r = 1.
If m ≤ p and [E,A,B,C] has a vector relative degree, then also a truncated
vector relative degree exists. This can be seen as follows: First observe that,
as a consequence of Definition 2.3, p ≤ m and hence we have p = m.
Therefore, the matrix Γ ∈ R

m×m in Definition 2.3 is invertible. Let F(s) :=
diag(λr1, . . . , λrm)G(s), then F(s) = Γ + Gsp(s) for some strictly proper
Gsp(s) ∈ R(s)m×m, i.e., limλ→∞Gsp(λ) = 0. Then G̃(s) := −Γ −1Gsp(s)

is strictly proper as well. Let p(s) ∈ R(s)m be such that F(s)p(s) = 0, then
p(s) = G̃(s)p(s). A component-wise comparison of the degrees yields that

∀ i = 1, . . . ,m : degpi(s) = deg
m∑

j=1

G̃ij (s)pj (s) ≤ max
j=1,...,m

(
degpj (s)− 1

)
,

because deg G̃ij (s) ≤ −1 for all i, j = 1, . . . ,m. Therefore,

max
i=1,...,m

degpi(s) ≤ max
j=1,...,m

(
degpj (s)− 1

) =
(

max
j=1,...,m

degpj (s)

)
− 1,

a contradiction. This shows that F(s) is invertible over R(s) and hence G(s)

is invertible over R(s). Then Remark 2.2 yields that [E,A,B,C] is right-
invertible and has autonomous zero dynamics. Moreover, Remark 2.4 (b) gives
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that H(s) = −G(s)−1 and hence it follows that a truncated vector relative
degree exists with Γ̂ = −Γ −1 as in (2.9).

(e) If [E,A,B,C] ∈ Σn,n,m,m is regular and has autonomous zero dynamics,
then [E,A,B,C] has truncated vector relative degree (0, . . . , 0) if, any only
if, the transfer function G(s) ∈ R(s)m×m of [E,A,B,C] is proper, i.e.,
limλ→∞G(λ) ∈ R

m×m exists. This is an immediate consequence of the fact
that, by Remark 2.4 (b), the matrix H(s) in (2.6) satisfies G(s)−1.

(f) A motivation for the definition of the truncated vector relative degree, even
when only regular systems are considered, is given by output feedback control:
Whilst the regular system [E,A,B,C] ∈ Σ2,2,1,1 with

E =
[

0 1
0 0

]
, A =

[
1 0
0 1

]
, B =

[
0
1

]
, C =

[
1 0
]

has transfer function G(s) = −s and thus vector relative degree (r1) = (−1),
application of the static output feedback u(t) = Ky(t)+ v(t) with new input v
leads to the system [E,A+BKC,B,C] with transfer function GK(s) = −s

1+Ks
.

We may infer that the vector relative degree of [E,A + BKC,B,C] is zero
unless K = 0, thus the vector relative degree is not invariant under output
feedback in general.

In the following we show that the truncated vector relative degree is however
invariant under static output feedback.

Proposition 2.2 Let [E,A,B,C] ∈ Σl,n,m,p and K ∈ R
m×p be given. Then the

following statements hold:

(a) ZD[E,A,B,C] are autonomous if, and only if, ZD[E,A+BKC,B,C] are
autonomous.

(b) [E,A,B,C] is right-invertible if, and only if, [E,A + BKC,B,C] is right-
invertible.

(c) [E,A,B,C] has a truncated vector relative degree if, and only if, [E,A +
BKC,B,C] has a truncated vector relative degree. In this case, the truncated
vector relative degrees of [E,A,B,C] and [E,A+ BKC,B,C] coincide.

Proof

(a) This follows from Remark 2.1 (a) together with

[
−sE + A+ BKC B

C 0

]
=
[
Il BK

0 Ip

][
−sE + A B

C 0

]
. (2.10)

(b) Since [E,A+ BKC,B,C] is obtained from [E,A,B,C] by output feedback
u(t) = Ky(t) + v(t) with new input v ∈ L1

loc(R → R
m), we obtain that

(x, u, y) ∈ B[E,A,B,C] if, and only if, (x, u − Ky, y) ∈ B[E,A+BKC,B,C]. In
particular, the set of generated outputs of [E,A,B,C] and [E,A+BKC,B,C]
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are the same, whence [E,A,B,C] is right-invertible if, and only if, [E,A +
BKC,B,C] is right-invertible.

(c) Since [E,A,B,C] is obtained from [E,A + BKC,B,C] by applying the
feedback−K , it suffices to prove one implication. In view of Remark 2.5 (b), it
is no loss of generality to assume that [E,A,B,C] has ordered truncated vector
relative degree (r1, . . . , rq , 0 . . . , 0) ∈ N

1×p
0 with rq > 0. Let L(s), LK(s) ∈

R(s)(n+m)×(l+p) be left inverses of

[
−sE + A B

C 0

]
and

[
−sE + A+ BKC B

C 0

]
, resp.,

and partition

L(s) =
[
L11(s) L12(s)

L21(s) H(s)

]
.

From (2.10) it follows that L(s)
[
Il −BK
0 Ip

]
is a left inverse of

[
−sE+A+BKC B

C 0

]
.

Since HK(s) = [0, Im]LK(s)
[

0
Ip

]
is independent of the choice of the left

inverse LK(s) by Remark 2.4 (a), we may infer that

HK(s) =
[
0 Im

]
L(s)

[
In −BK

0 Im

][
0
Ip

]

=
[
0 Im

] [
L11(s) L12(s)

L21(s) H(s)

][
−BK

Ip

]

= H(s)− L21(s)BK.

The relation L(s)
[
−sE+A B

C 0

]
= In+m leads to L21(s)B = Im. Therefore,

HK(s) = H(s)−K and we find

Γ̂K = lim
λ→∞HK(λ) diag(λ−r1, . . . , λ−rq , 1, . . . , 1)

= Γ̂ − lim
λ→∞K diag(λ−r1 , . . . , λ−rq , 1, . . . , 1).

This implies that Γ̂K

[
Iq
0

]
= Γ̂q , and thus

rk Γ̂K

[
Iq
0

]
= rk Γ̂q = q.
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Therefore, the truncated vector relative degree of the feedback system [E,A+
BKC,B,C] is (r1, . . . , rq, 0 . . . , 0), i.e., that of [E,A,B,C]. �


Remark 2.6

(a) The truncated vector relative degree of a right-invertible system with
autonomous zero dynamics does not necessarily exist: For instance, consider
[E,A,B,C] ∈ Σ4,4,2,2 with

E =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

−1 0 0 0
0 1 −1 0
0 1 2 0
0 0 0 1

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎦ , C =

[
0 1 0 0
0 0 1 0

]
.

For this system, we have

H(s) =
[
s − 1 s + 1
s − 1 s − 2

]
.

Moreover,

Γ̂ = lim
λ→∞H(λ) diag(λ−1, λ−1) =

[
1 1
1 1

]
= Γ̂q .

Since rk Γ̂q = 1 < 2, which is the number of columns of H(s) with positive
degree. Hence, this system does not have a truncated vector relative degree.

(b) There exist right-invertible regular systems with autonomous zero dynamics
with the property that the truncated vector relative degree exists, but the vector
relative degree according to Definition 2.3 does not exist. For instance, consider
[E,A,B,C] ∈ Σ5,5,2,2 with

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 1 0
0 −1 0 0 0
0 0 0 0 1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 −2 0 0
3 5 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =
[

0 1 0 0 0
0 0 1 0 0

]
.

(2.11)

Then

G(s) = C(sE − A)−1B =
[

0 − 1
s

s+1
6

s4+s3+s2−4s−8
6s

]
.
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We have

Γ := lim
λ→∞ diag(λ, λ−3)G(λ) =

[
0 −1
0 1

6

]
, and rkΓ = 1 < 2.

This implies that the system does not have vector relative degree in the sense of
Definition 2.3. Invoking Remark 2.4 (b), we obtain

H(s) = G(s)−1 =
[

s4+s3+s2−4s−8
s+1

6
s+1

−s 0

]
,

and

Γ̂ := lim
λ→∞H(λ) diag(λ−3, 1) =

[
1 0
0 0

]
and Γ̂q =

[
1
0

]
.

Then rk Γ̂q = 1 = q , and consequently this system has truncated vector relative
degree (3, 0).

2.3 A Representation for Systems with Truncated Vector
Relative Degree

For ODE systems, Byrnes and Isidori have introduced a normal form under state
space transformation which allows to read off the relative degree and internal
dynamics [11, 24]. This normal form plays an important role in designing local
and global stabilizing feedback controllers for nonlinear systems [12–14], adaptive
observers [28], and adaptive controllers [19, 22]. A normal form for linear ODE
systems with vector relative degree has been developed in [27]. Further, a normal
form for regular linear DAE systems with strict relative degree has been derived
in [6], whereas a normal form for regular linear differential-algebraic systems
with proper inverse transfer function in [7]. The latter has been extended to (not
necessarily regular) DAE systems with truncated vector relative degree pointwise
less or equal to one in [3], although this notion was not used there. Note that
the concept of truncated vector relative degree encompasses systems governed by
ODEs with strict or vector relative degree as well as regular DAE systems with
strict relative degree (up to some extent, cf. Remark 2.5 (d)) or proper inverse
transfer function, and we introduce a novel representation which comprises all the
aforementioned results.

Assume that [E,A,B,C] ∈ Σl,n,m,p is right-invertible, has autonomous zero

dynamics and possesses a truncated vector relative degree (r1, . . . , rp) ∈ N
1×p
0 . By

Remark 2.5 (b), it is further no loss of generality to assume that the latter is ordered,
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i.e., r1 ≥ . . . ≥ rq > 0 = rq+1 = . . . = rp. Introduce the polynomial matrix

F(s) := sE22 − A22 +
n3−1∑
k=0

sk+2E23N
kE32 ∈ R(s)m×p.

By Remark 2.5 (c) we have

Γ̂ = lim
λ→∞H(λ) diag(λ−r1 , . . . , λ−rq , 1, . . . , 1) = lim

λ→∞F(λ) diag(λ−r1 , . . . , λ−rq , 1, . . . , 1)

=
[
Γ̂11 Γ̂12

Γ̂21 Γ̂22

]
∈ R

m×p,

where the latter partition is with Γ̂11 ∈ R
q×q , Γ̂12 ∈ R

q×(p−q), Γ̂21 ∈ R
(m−q)×q

and Γ̂22 ∈ R
(m−q)×(p−q). Then Definition 2.5 yields

rk

[
Γ̂11

Γ̂21

]
= rk Γ̂

[
Iq

0

]
= q.

Let h ∈ N be such that rh > 1 and rh+1 = 1. Denote the j th column of a matrix M

by M(j). Then

Γ̂ = lim
λ→∞F(λ) diag(λ−r1, . . . , λ−rq , 1, . . . , 1)

=
[
E23N

r1−2E
(1)
32 . . . E23N

rh−2E
(h)
32 E

(h+1)
22 . . . E

(q)
22 −A(q+1)

22 . . . −A(p)
22

]
,

and thus

Γ̂q =
[
Γ̂11

Γ̂21

]
=
[
E23N

r1−2E
(1)
32 . . . E23N

rh−2E
(h)
32 E

(h+1)
22 . . . E

(q)
22

]
∈ R

m×q .

(2.12)

Since rk Γ̂q = q , by reordering the inputs and—accordingly—reording the rows of
A21, E22, A22 and E23, it is no loss of generality to assume that the first q rows of
Γ̂q are linearly independent, thus Γ̂11 ∈ Glq(R). Consider the matrix

Γ :=
[
Γ11 0
Γ21 Im−q

]
∈ Glm(R), (2.13)

where Γ11 = Γ̂ −1
11 ∈ Glq(R), Γ21 = −Γ̂21Γ̂

−1
11 ∈ R

(m−q)×q , then

Γ Γ̂q =
[
Iq

0

]
. (2.14)



Vector Relative Degree and Funnel Control 227

On the other hand, using the notation from Theorem 2.1 and invoking Remark 2.3,
we have that (x, u, y) ∈ B[E,A,B,C] if, and only if, T x = (η�, y�, x�3 )� ∈
L1

loc(R → R
n1+p+n3) solves (2.5) in the distributional sense, and the components

satisfy (2.4). Since (2.5b) can be written as F( d
dt )y = A21η+ u, by construction of

Γ̂q and (2.12) we may rewrite this as

Γ̂q

⎛
⎜⎜⎜⎝

y
(r1)
1
...

y
(rq )
q

⎞
⎟⎟⎟⎠ =M1

⎛
⎜⎜⎝

y1
...

y
(r1−1)
1

⎞
⎟⎟⎠+ . . .+Mq

⎛
⎜⎜⎝

yq
...

y
(rq−1)
q

⎞
⎟⎟⎠+M

⎛
⎜⎜⎝
yq+1
...

ym

⎞
⎟⎟⎠+ A21η+ u

(2.15)

for some M1 ∈ R
m×r1 , . . . ,Mq ∈ R

m×rq , M ∈ R
m×(p−q) which can be constructed

from the columns of E23N
iE32, E22 and A22, i = 0, . . . , r1. Define Rj,1 ∈ R

q×rj ,
Rj,2 ∈ R

(m−q)×rj for j = 1, . . . , q and S1 ∈ R
q×(p−q), S2 ∈ R

(m−q)×(p−q),
P1 ∈ R

q×n1 , P2 ∈ R
(m−q)×n1 by

[
Rj,1

Rj,2

]
:= ΓMj , j = 1, . . . , q,

[
S1

S2

]
:= ΓM,

[
P1

P2

]
:= ΓA21.

(2.16)

By a multiplication of (2.15) from the left with Γ ∈ Glm(R), we obtain that, also
invoking (2.5a) and (2.5c),

η̇ = Qη + A12y,

⎛
⎜⎜⎜⎝

y
(r1)
1
...

y
(rq )
q

⎞
⎟⎟⎟⎠ = R1,1

⎛
⎜⎜⎜⎝

y1
.
..

y
(r1−1)
1

⎞
⎟⎟⎟⎠+ . . .+ Rq,1

⎛
⎜⎜⎜⎝

yq
...

y
(rq−1)
q

⎞
⎟⎟⎟⎠+ S1

⎛
⎜⎜⎜⎝

yq+1
..
.

ym

⎞
⎟⎟⎟⎠+ P1η + Γ11

⎛
⎜⎜⎜⎝

u1
..
.

uq

⎞
⎟⎟⎟⎠ ,

0 = R1,2

⎛
⎜⎜⎜⎝

y1
...

y
(r1−1)
1

⎞
⎟⎟⎟⎠+ . . .+ Rq,2

⎛
⎜⎜⎜⎝

yq
...

y
(rq−1)
q

⎞
⎟⎟⎟⎠+ S2

⎛
⎜⎜⎜⎝

yq+1
...

ym

⎞
⎟⎟⎟⎠

+ P2η + Γ21

⎛
⎜⎜⎜⎝

u1
.
..

uq

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

uq+1
.
..

um

⎞
⎟⎟⎟⎠ ,

x3 =
n3−1∑
i=0

NiE32y
(i+1).

(2.17)
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We have thus derived a representation for systems with truncated vector relative
degree and summarize the findings in the following result.

Theorem 2.3 Let a right-invertible system [E,A,B,C] ∈ Σl,n,m,p with
autonomous zero dynamics be given. Assume that [E,A,B,C] has ordered
truncated vector relative degree (r1, . . . , rq , 0, . . . , 0) with rq > 0. Use the notation
from Theorem 2.1, (2.13) and (2.16). Then (x, u, y) ∈ B[E,A,B,C], if, and only if,
after a reordering of the inputs so that Γ̂11 in (2.12) is invertible,

T x = (η�, y�, x�3 )� ∈ L1
loc(R→ R

n1+p+n3)

satisfies the smoothness conditions in (2.4) and solves (2.17) in the distributional
sense.

Remark 2.7 Consider a regular and right-invertible system [E,A,B,C] ∈
Σn,n,m,m with autonomous zero dynamics and ordered truncated vector relative

degree (r1, . . . , rq , 0, . . . , 0) ∈ N
1×p
0 such that rq > 0.

(a) If [E,A,B,C] has strict relative degree r > 0, then q = m and r1 = . . . =
rm = r . In this case, the representation (2.17) simplifies to

η̇ = Qη + A12y,

y(r) = R1,1

⎛
⎜⎜⎝

y1
...

y
(r−1)
1

⎞
⎟⎟⎠+ . . .+ Rm,1

⎛
⎜⎜⎝

ym
...

y
(r−1)
m

⎞
⎟⎟⎠+ P1η + Γ11u,

x3 =
n3−1∑
i=0

NiE32y
(i+1).

Since the second equation can be rewritten as

y(r) = Qr−1y
(r−1) + . . .+Q0y + P1η + Γ11u

for matrices Q0, . . . ,Qr−1, this is exactly the form which has been developed
in [6].

(b) If the transfer function G(s) ∈ R(s)m×m of [E,A,B,C] has a proper inverse,
then we have that H(s) = G(s)−1 (see Remark 2.4 (b)) is proper, hence
q = 0 and the truncated vector relative degree is (0, . . . , 0). In this case, the
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representation (2.17) simplifies to

η̇ = Qη + A12y,

0 = S2y + P2η + u,

x3 =
n3−1∑
i=0

NiE32y
(i+1),

which is exactly the form developed in [7].
(c) If the system is an ODE, that is E = In, then its transfer function G(s) is strictly

proper, i.e., limλ→∞G(λ) = 0. We can further infer from Remark 2.2 that the
transfer function G(s) ∈ R(s)m×m is invertible. Then (2.8) implies q = m, i.e.,
the truncated vector relative degree (which coincides with the vector relative
degree by Remark 2.5 (d)) is (r1, . . . , rm) ∈ N

1×m. In this case, (2.17) simplifies
to

η̇ = Qη + A12y,
⎛
⎜⎜⎝

y
(r1)
1
...

y
(rm)
m

⎞
⎟⎟⎠ = R1,1

⎛
⎜⎜⎝

y1
...

y
(r1−1)
1

⎞
⎟⎟⎠+ . . .+ Rm,1

⎛
⎜⎜⎝

ym
...

y
(rm−1)
m

⎞
⎟⎟⎠+ P1η + Γ11u,

x3 =
n3−1∑
i=0

NiE32y
(i+1).

This form comprises the one presented in [27], where, additionally,

x3 = (ẏ1, . . . , y
(r1−1)
1 , . . . , ẏm, . . . , y(rm−1)

m )� ∈ R
n3 ,

N = diag(N1, . . . , Nm) ∈ R
n3×n3 with Ni =

[
0
1

1 0

]
∈ R

(ri−1)×(ri−1),

E32 = diag(e[r1−1]
1 , . . . , e

[r1−1]
1 ) ∈ R

n3×m,

where e
[k]
1 ∈ R

k is the first canonical unit vector. We note that the above
nilpotent matrix N has index ν = max

1≤i≤m(ri − 1).

3 Nonlinear Systems with Truncated Vector Relative Degree

In this section, we consider a class of nonlinear DAE systems which comprises
the class of linear DAE systems which have a truncated vector relative degree
and the same number of inputs and outputs. More precisely, we consider nonlinear
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functional differential-algebraic systems of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

y
(r1)
1 (t)

y
(r2)
2 (t)

.

.

.

y
(rq )
q (t)

⎞
⎟⎟⎟⎟⎟⎟⎠
= f1

(
d1(t), T1

(
y1, . . . , y

(r1−1)
1 , . . . , y

(rq−1)
q , yq+1, . . . , ym

)
(t)
)

+ ΓI

(
d2(t), T1

(
y1, . . . , y

(r1−1)
1 , . . . , y

(rq−1)
q , yq+1, . . . , ym

)
(t)
)
uI (t),

0 = f2

(
y1(t), . . . , y

(r1−1)
1 (t), . . . , y

(rq−1)
q (t), yq+1(t), . . . , ym(t)

)

+ f3

(
d3(t), (T2y)(t)

)
+ΓII

(
d4(t), (T2y)(t)

)
uI (t)+f4

(
d5(t), (T2y)(t)

)
uII (t),

y|[−h,0] = y0

(3.1)

with initial data

y0 = (y0
1 , y

0
2 , . . . , y

0
m)�, y0

i ∈ Cri−1([−h, 0] → R), i = 1, . . . , q,

y0
i ∈ C([−h, 0] → R), i = q + 1, . . . ,m,

(3.2)

where f1, . . . , f4, ΓI , ΓII , d1, . . . , d5 are functions and T1, T2 are operators with
properties being specified in the sequel. The output is y = (y1, . . . , ym)� and the
input of the system is u = (u1, . . . , um)�, for which we set

uI = (u1, . . . , uq)
�, uII = (uq+1, . . . , um)�,

i.e., u = (u�I , u�II )�. The functions d1, . . . , d5 : R≥0 → R
s play the roles of

disturbances. We denote r = r1+ . . .+rp and call—in virtue of Sect. 2.3—the tuple
(r1, . . . , rp, 0, . . . , 0) ∈ N

1×m
0 with ri > 0 for i = 1, . . . , q the truncated vector

relative degree of (3.1). We will later show that linear DAE systems which have a
truncated vector relative degree belong to this class. Similar to [8], we introduce the
following classes of operators.

Definition 3.1 For m, k ∈ N and h ≥ 0 the set Tm,k,h denotes the class of operators
T : C([−h,∞)→ R

m)→ L∞loc(R≥0 → R
k) with the following properties:

(i) T is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈ C([−h,∞)→ R
m),

ζ |[−h,t) = ξ |[−h,t) ,⇒ T (ζ )|[0,t ) = T (ξ)|[0,t ).

(ii) T is locally Lipschitz continuous in the following sense: for all t ≥ 0 and
all ξ ∈ C([−h, t] → R

m) there exist τ, δ, c > 0 such that, for all ζ1, ζ2 ∈
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C ([−h,∞) → R
m) with ζi |[−h,t ] = ξ and ‖ζi(s) − ξ(t)‖ < δ for all s ∈

[t, t + τ ] and i = 1, 2, we have

∥∥∥(T (ζ1)− T (ζ2)
) |[t,t+τ ]

∥∥∥∞ ≤ c
∥∥(ζ1 − ζ2)|[t,t+τ ]

∥∥∞ .

(iii) T maps bounded trajectories to bounded trajectories, i.e, for all c1 > 0, there
exists c2 > 0 such that for all ζ ∈ C ([−h,∞)→ R

m)

‖ζ |[−h,∞)‖∞ ≤ c1 ,⇒ ‖T (ζ )|[0,∞)‖∞ ≤ c2.

Furthermore, the set TDAE
m,k,h denotes the subclass of operators

T : C([−h,∞)→ R
m)→ C1(R≥0 → R

k)

such that T ∈ Tm,k,h and, additionally,

(iv) there exist z ∈ C(Rm ×R
k → R

k) and T̃ ∈ Tm,k,h such that

∀ ζ ∈ C([−h,∞)→ R
m) ∀ t ≥ 0 : d

dt (T ζ )(t) = z
(
ζ(t), (T̃ ζ )(t)

)
.

Assumption 3.1 We assume that the functional differential-algebraic system (3.1)
has the following properties:

(i) the gain ΓI ∈ C(Rs ×R
k → R

q×q ) satisfies ΓI (d, η)+ΓI (d, η)
� > 0 for all

(d, η) ∈ R
s × R

k , and ΓII ∈ C1(Rs ×R
k → R

(m−q)×q).
(ii) the disturbances satisfy d1, d2 ∈ L∞(R≥0 → R

s ) and d3, d4, d5 ∈
W 1,∞(R≥0 → R

s ).
(iii) f1 ∈ C(Rs × R

k → R
q), f2 ∈ C1(Rr+m−q → R

m−q ), f3 ∈ C1(Rs × R
k →

R
m−q ), and f ′2

[
0

Im−q

]
is bounded.

(iv) f4 ∈ C1(Rs × R
k → R) and there exists α > 0 such that f4(d, v) ≥ α for all

(d, v) ∈ R
s × R

k.
(v) T1 ∈ Tr+m−q,k,h and T2 ∈ T

DAE
m,k,h.

In the remainder of this section we show that any right-invertible system
[E,A,B,C] ∈ Σl,n,m,m with truncated vector relative degree (r1, . . . , rq, 0, . . . , 0),
where r1, . . . , rq ∈ N, belongs to the class of systems (3.1) which satisfy
Assumption 3.1 as long as [E,A,B,C] has asymptotically stable zero dynamics
and the matrix Γ11 in (2.17) satisfies Γ11 + Γ �11 > 0. We have seen in Remark 2.3
that asymptotic stability of the zero dynamics is equivalent to the matrix Q in (2.17)
having only eigenvalues with negative real part.
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Consider the three first equations in (2.17) and the operator

T2 : C([0,∞)→ R
m)→ C1(R≥0 → R

n3 )

y �→
⎛
⎜⎝t �→ (T2y)(t) := η(t) = eQtη0 +

t∫

0

eQ(t−τ )A12y(τ)dτ

⎞
⎟⎠ ,

which is parameterized by the initial value η0 ∈ R
n1 . This operator is clearly causal,

locally Lipschitz, and, since all eigenvalues of Q have negative real part, T satisfies
property (iii) in Definition 3.1. The derivative is given by

d
dt (T2y)(t) = QeQtη0 + A12y(t)+Q

t∫

0

eQ(t−τ )A12y(τ)dτ =: (T̃ y)(t), t ≥ 0,

and it is straightforward to check that T̃ ∈ Tm,n3,0. Therefore, we obtain that T2 ∈
T

DAE
m,n3,0

. Further consider the operator T1 : C([0,∞)→ R
r+m−q )→ L∞loc(R≥0 →

R
q) defined by

T1(ζ1,1, . . . , ζ1,r1 , . . . , ζq,rq , ζq+1,1, . . . , ζm,1)

= R1,1

⎛
⎜⎜⎝

ζ1,1
...

ζ1,r1

⎞
⎟⎟⎠+ . . .+ Rq,1

⎛
⎜⎜⎝

ζq,1
...

ζq,rq

⎞
⎟⎟⎠+ S1

⎛
⎜⎜⎝
ζq+1,1

...

ζm,1

⎞
⎟⎟⎠+ P1T2(ζ1,1, ζ2,1, . . . , ζm,1),

then, likewise, we obtain that T1 ∈ Tr+m−q,q,0. The remaining functions are given
by

f1(d, η) = η, ΓI

(
d, η

) = Γ11, f3
(
d, η

) = P2η, ΓII

(
d, η

) = Γ21, f4
(
d, η

) = 1

and

f2(ζ1,1, . . . , ζ1,r1, . . . , ζq,rq , ζq+1,1, . . . , ζm,1)

= R1,2

⎛
⎜⎜⎝

ζ1,1
...

ζ1,r1

⎞
⎟⎟⎠+ . . .+ Rq,2

⎛
⎜⎜⎝

ζq,1
...

ζq,rq

⎞
⎟⎟⎠+ S2

⎛
⎜⎜⎝
ζq+1,1

...

ζm,1

⎞
⎟⎟⎠ .

The function f2 satisfies condition (iii) in Assumption 3.1 since

f ′2

[
0

Im−q

]
= S2 ∈ R

(m−q)×(m−q).
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Note that system (2.17) does not entirely belong to the class (3.1) since the fourth
equation in (2.17) is not included. However, the control objective formulated in the
following section can also be achieved for (2.17), see also Remark 4.1 (e).

4 Funnel Control

4.1 Control Objective

Let a reference signal yref = (yref,1, . . . , yref,m)� with yref,i ∈ Wri,∞(R≥0 → R)

for i = 1, . . . , q and yref,i ∈ W 1,∞(R≥0 → R) for i = q + 1, . . . ,m be given,
and let e = y − yref be the tracking error. The objective is to design an output error
feedback of the form

u(t) = F

(
t, e1(t), . . . , e

(r1−1)
1 (t), . . . , e

(rq−1)
q (t), eq+1(t), . . . , em(t)

)
,

such that in the closed-loop system the tracking error evolves within a prescribed
performance funnel

Fm
ϕ :=

{
(t, e) ∈ R≥0 × R

m
∣∣ ϕ(t)‖e‖ < 1

}
, (4.1)

which is determined by a function ϕ belonging to

Φk :=
⎧⎨
⎩ ϕ ∈ Ck(R≥0 → R)

∣∣∣∣∣
ϕ, ϕ̇, . . . , ϕ(k) are bounded,
ϕ(τ) > 0 for all τ > 0, and lim inf

τ→∞ ϕ(τ) > 0

⎫⎬
⎭ .

(4.2)

A further objective is that all signals u, e1, . . . , e
(r1−1)
1 , . . . , e

(rq−1)
q , eq+1, . . . , em :

R≥0 → R
m should remain bounded.

The funnel boundary is given by the reciprocal of ϕ, see Fig. 1. It is explicitly
allowed that ϕ(0) = 0, meaning that no restriction on the initial value is imposed
since ϕ(0)‖e(0)‖ < 1; the funnel boundary 1/ϕ has a pole at t = 0 in this
case. Since every ϕ ∈ Φk is bounded, the boundary of the associated performance
funnel Fm

ϕ is bounded away from zero, which means that there exists λ > 0 with
1/ϕ(t) ≥ λ for all t > 0. Further note that the funnel boundary is not necessarily
monotonically decreasing, but it might be beneficial to choose a wider funnel over
some later time interval, for instance in the presence of periodic disturbance or when
the reference signal varies strongly. Various different funnel boundaries are possible,
see e.g. [18, Sec. 3.2].
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t

•
(0,e(0)) (t)−1

Fig. 1 Error evolution in a funnel F 1
ϕ with boundary ϕ(t)−1 for t > 0

4.2 Controller Design

The funnel controller for systems of the form (3.1) satisfying Assumption 3.1 is of
the following form:

For i = 1, . . . , q :
ei0(t) = ei(t) = yi(t)− yref,i(t),

ei1(t) = ėi0(t)+ ki0(t)ei0(t),

ei2(t) = ėi1(t)+ ki1(t)ei1(t),
...

ei,ri−1(t) = ėi,ri−2(t)+ ki,ri−2(t)ei,ri−2(t),

kij (t) = 1
1−ϕ2

ij (t )|eij (t)|2
, j = 0, . . . , ri − 2.

For i = q + 1, . . . ,m : ei(t) = yi(t)− yref,i (t),

eI (t) =(e1,r1−1(t), . . . , eq,rq−1(t))
�, eII (t) =(eq+1(t), . . . , em(t))�,

kI (t) = 1
1−ϕI (t)2‖eI (t)‖2 , kII (t) = k̂

1−ϕII (t)2‖eII (t)‖2 ,

u(t) =
(

uI (t)

uII (t)

)
=
(
−kI (t)eI (t)
−kII (t)eII (t)

)
,

(4.3)
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where we impose the following conditions on the reference signal and funnel
functions:

yref = (yref,1, . . . , yref,m)�, yref,i ∈ Wri,∞(R≥0 → R), i = 1, . . . , q

yref,i ∈ W 1,∞(R≥0 → R), i = q + 1, . . . ,m

ϕI , ϕII ∈ Φ1, ϕij ∈ Φri−j , i = 1, . . . , q, j = 0, . . . , ri − 2.

(4.4)
We further assume that k̂ satisfies

k̂ > α−1 sup
Y∈Rr+m−q

∥∥∥∥∥∥
f ′2(Y )

[
0

Im−q

]∥∥∥∥∥∥
. (4.5)

Remark 4.1

(a) By a solution of the closed-loop system (3.1) and (4.3) on [−h,ω), ω ∈ (0,∞],
with initial data y0 as in (3.2) we mean a function y = (y1, . . . , ym)� such
that y|[−h,0] = y0, yi ∈ Cri−1([−h,ω) → R) and y

(ri−1)
i |[0,ω) is weakly

differentiable for i = 1, . . . , q , yi ∈ C([−h,ω] → R) and yi|[0,ω) is weakly
differentiable for i = q + 1, . . . ,m, and y satisfies the differential-algebraic
equation in (3.1) with u defined in (4.3) in the weak sense. The solution y is
called maximal, if it has no right extension that is also a solution, and global, if
ω = ∞.

(b) Assumption 3.1 (iii) together with condition (4.5) are essential for the solv-
ability of the closed-loop system (3.1) and (4.3), since they guarantee the

invertibility of αk̂Im−q − f ′3(Y )
[

0
Im−q

]
. This property is crucial for the explicit

solution of the algebraic constraint in the closed-loop system (3.1) and (4.3).
(c) If the system (3.1) has strict relative degree, i.e., q = m and r1 = . . . = rm =:

r > 0, then it satisfies the assumptions of [9, Thm. 3.1]. In this case, the funnel
controller (4.3) simplifies to

For i = 1, . . . ,m,

ei0(t) = ei(t) = yi(t)− yref,i(t),

ei1(t) = ėi0(t)+ ki0(t)ei0(t),

ei2(t) = ėi1(t)+ ki1(t)ei1(t),
...

ei,r−1(t) = ėi,r−2(t)+ ki,r−2(t)ei,r−2(t),

kij (t) = 1
1−ϕ2

ij (t )|eij (t)|2
, j = 0, . . . , r − 2,

er−1(t) = (e1,r−1(t), . . . , em,r−1(t))
�

kr−1(t) = 1
1−ϕr−1(t)

2‖er−1(t)‖2 ,
u(t) = −kr−1(t)er−1(t).
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This controller slightly differs from the one presented in [9] for systems with
strict relative degree (even when we choose ϕij = ϕ1j for all i = 1, . . . ,m),
which reads

e0(t) = e(t) = y(t)− yref(t),

e1(t) = ė0(t)+ k0(t)e0(t),

e2(t) = ė1(t)+ k1(t)e1(t),
...

er−1(t) = ėr−2(t)kr−2(t)er−2(t),

ki(t) = 1
1−ϕi (t)2‖ei(t)‖2 , i = 0, . . . , r − 1,

u(t) = −kr−1(t)er−1(t).

(4.6)

(d) If the system (3.1) satisfies q = 0, then the funnel controller (4.3) simplifies to

e(t) = y(t)− yref(t), k(t) = k̂
1−ϕ(t)2‖e(t)‖2 ,

u(t) = −k(t)e(t),

and feasibility follows from the results in [8] where funnel control for this type
has been considered.

(e) Let us stress again that a linear system of the form (2.17) does not completely
belong to the class (3.1) as the fourth equation in (2.17) is not included.
However, we like to emphasize that in

x3(t) =
n3−1∑
i=0

NiE32y
(i+1)(t),

the output y is required smooth enough for x3 to be well defined. Nevertheless,
the funnel controller (4.3) can also be applied to systems of the form (2.17).
To see this, assume that there exists a solution to (4.3) applied to (2.17)
except for the fourth equation. If the funnel functions ϕI , ϕII and ϕij , i =
1, . . . , q , j = 0, . . . , ri − 2 are additionally in Cn3+1(R≥0 → R) and yref
is additionally in Wn3+2,∞(R≥0 → R

m), then the solution y|[0,∞) will be
at least in Cn3+1(R≥0 → R

m), so that x3 is well defined and continuously
differentiable. The proof of this statement is similar to Step 2 of the proof
of [3, Thm. 5.3]. Furthermore, using yref ∈ Wn3+2,∞(R≥0 → R

m) also yields
boundedness of x3, cf. Step 4 of the proof of [3, Thm. 5.3].

Remark 4.2 Consider a system (3.1) which satisfies Assumption 3.1 and let the
reference signal and funnel functions be as in (4.4). Since the second equation
in (3.1) is an algebraic equation we need to guarantee that it is initially satisfied
for a solution to exist. Since T2 ∈ T

DAE
m,k,h is causal it “localizes”, in a natural way,
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to an operator T̂2 : C([−h,ω] → R
n) → C1([0, ω] → R

k), cf. [21, Rem. 2.2].
With some abuse of notation, we will henceforth not distinguish between T2 and its
“localization” T̂2. Note that for ω = 0 we have that T̂2 : C([−h, 0] → R

n)→ R
k .

Hence, an initial value y0 as in (3.2) is called consistent for the closed loop
system (3.1), (4.3), if

f2

(
y0

1(0), . . . ,
( d

dt

)r1−1
(y0

1)(0), . . . ,
( d

dt

)rq−1
(y0

q )(0), y
0
q+1(0), . . . , y

0
m(0)

)

+ f3
(
d3(0), T2(y

0)
)+ ΓII

(
d4(0), T2(y

0)
)
uI (0)+ f4

(
d5(0), T2(y

0)
)
uII (0) = 0,

(4.7)

where uI (0), uII (0) are defined by (4.3).

4.3 Feasibility of Funnel Control

We show feasibility of the funnel controller (4.3) for systems of the form (3.1)
satisfying Assumption 3.1. The following theorem unifies and extends the funnel
control results from [3, 6–9], which are all special cases of it.

Theorem 4.1 Consider a system (3.1) satisfying Assumption 3.1. Let yref and
ϕI , ϕII , ϕij , i = 1, . . . , q , j = 0, . . . , ri−2 be as in (4.4) and k̂ > 0 such that (4.5)
holds. Then for any consistent initial value y0 as in (3.2) (i.e., y0 satisfies (4.7))
such that eI , eII , eij , i = 1, . . . , q , j = 0, . . . , ri − 2 defined in (4.3) satisfy

ϕI (0)‖eI (0)‖ < 1, ϕII (0)‖eII (0)‖ < 1,

ϕij (0)|eij (0)| < 1, i = 1, . . . , q, j = 0, . . . , ri − 2,
(4.8)

the application of the funnel controller (4.3) to (3.1) yields a closed-loop initial
value problem that has a solution and every solution can be extended to a global
solution. Furthermore, for every global solution y(·),
(i) the input u : R≥0 → R

m and the gain functions kI , kII , kij : R≥0 → R,
i = 1, . . . , q , j = 0, . . . , ri − 2 are bounded;

(ii) the functions eI : R≥0 → R
q , eII : R≥0 → R

m−q and eij : R≥0 → R,
i = 1, . . . , q , j = 0, . . . , ri − 2 evolve in their respective performance funnels,
i.e., for all i = 1, . . . , q , j = 0, . . . , ri − 2 and t ≥ 0 we have

(t, eI (t)) ∈ F q
ϕI
, (t, eII (t)) ∈ Fm−q

ϕII
, (t, eij (t)) ∈ F 1

ϕij
.
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Furthermore, the signals eI (·), eII (·), eij (·) are uniformly bounded away from
the funnel boundaries in the following sense:

∃ εI > 0 ∀ t > 0 : ‖eI (t)‖ ≤ ϕI (t)
−1 − εI ,

∃ εII > 0 ∀ t > 0 : ‖eII (t)‖ ≤ ϕII (t)
−1 − εII ,

∀ i = 1, . . . , q, j = 0, . . . , ri − 2 ∃ εij > 0 ∀ t > 0 : |eij (t)| ≤ ϕij (t)
−1 − εij .

(4.9)

In particular, each error component ei(t) = yi − yref,i(t) evolves in the funnel
F 1

ϕi0
, for i = 1, . . . , q , or F 1

ϕII
, for i = q+1, . . . ,m, resp., and stays uniformly

away from its boundary.

The proof of this theorem is similar to the one of [9, Thm. 3.1], where the
feasibility of the funnel controller (4.6) for ODE systems with strict relative degree
has been treated. However, one of the additional difficulties in proving this theorem
is that the closed-loop system (3.1) and (4.3) is now a DAE because of the second
equation in (3.1).

Proof We proceed in several steps.

Step 1 We show that a maximal solution y : [−h,ω) → R
m, ω ∈ (0,∞], of the

closed-loop system (3.1) and (4.3) exists. To this end, we seek to reformulate (3.1)
and (4.3) as an initial value problem of the form

ẊI (t) = FI

⎛
⎝t,

(
XI (t)

XII (t)

)
, T1

(
XI

XII

)
(t)

⎞
⎠ ,

0 = FII

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠

(4.10)

with

XI |[−h,0] =
(
y0

1 , . . . ,
( d

dt

)r1−1
y0

1 , . . . ,
( d

dt

)rq−1
y0
q

)�
,

XII |[−h,0] =
(
y0
q+1, . . . , y

0
m

)�
.

(4.11)

Step 1a Define, for i = 1, . . . , q , and j = 0, . . . , ri − 2, the sets

Dij :=
{

(t, ei0, . . . , eij ) ∈ R≥0 ×R× · · · × R

∣∣∣ (t, ei") ∈ F 1
ϕi"

, " = 0, . . . , j

}
,



Vector Relative Degree and Funnel Control 239

where F 1
ϕi"

is as in (4.1), and the functions Kij : Dij → R recursively by

Ki0(t, ei0) := ei0
1−ϕ2

i0(t)|ei0|2
,

Kij (t, ei0, . . . , eij ) := eij

1−ϕ2
ij (t )|eij |2

+ ∂Ki,j−1
∂t

(t, ei0, . . . , ei,j−1)

+
j−1∑
"=0

∂Ki,j−1
∂e"j

(t, ei0, . . . , ei,j−1)

(
ei,"+1 − ei"

1−ϕ2
i"(t )|ei"|2

)
.

Now recall that r = r1 + . . .+ rq and set

DI :=
{
(t, e10, . . . , e1,r1−1, . . . , eq,rq−1) ∈ R≥0 × R

r
∣∣∣

∀ i = 1, . . . , q : (t, ei0, . . . , ei,ri−2
) ∈ Di,ri−2 ∧ (t, e1,r1−1, . . . , eq,rq−1) ∈ F q

ϕI

}
,

DII := Fm−q
ϕII

,

D :=
{

(t, eI , eII ) ∈ R≥0 × R
r × R

m−q
∣∣∣ (t, eI ) ∈ DI ∧ (t, eII ) ∈ DII

}
.

Choose some interval I ⊆ R≥0 with 0 ∈ I and let

(e10, . . . , e1,r1−1, . . . , eq,rq−1) : I → R
r

be sufficiently smooth such that for all t ∈ I we have

(
t, e10(t), . . . , e1,r1−1(t), . . . , eq,rq−1(t)

) ∈ DI ,

(t, eq+1(t), . . . , em(t)) ∈ DII

and (ei0, . . . , ei,ri−1), i = 1, . . . , q , satisfies the relations in (4.3). Then ei = ei0
satisfies, on the interval I ,

e
(j)

i = eij −
j−1∑
"=0

(
d
dt

)j−1−"
ki"ei", i = 1, . . . , q, j = 1, . . . , ri − 1. (4.12)

Step 1b We show by induction that for all i = 1, . . . , q , and j = 0, . . . , ri − 2 we
have

∀ t ∈ I :
j∑

"=0

(
d
dt

)j−" (
ki"(t)ei"(t)

)
= Kij

(
t, ei0(t), . . . , eij (t)

)
. (4.13)
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Fix t ∈ I . Equation (4.13) is obviously true for j = 0. Assume that j ∈ {1, . . . , ri−
2} and the statement holds for j − 1. Then

j∑
"=0

(
d
dt

)j−" (
ki"(t)ei"(t)

)
= kij (t)eij (t)+ d

dt

⎛
⎝

j−1∑
"=0

(
d
dt

)j−"−1 (
ki"(t)ei"(t)

)⎞⎠

= kij (t)eij (t)+ d
dt Ki,j−1

(
t, ei0(t), . . . , ei,j−1(t)

)

= Kij

(
t, ei0(t), . . . , eij (t)

)
.

Therefore, (4.13) is shown and, invoking (4.12), we have for all i = 1, . . . , q and
t ∈ I that

e
(j)
i (t) = eij (t)−Ki,j−1

(
t, ei0(t), . . . , ei,j−1(t)

)
, j = 1, . . . , ri − 1. (4.14)

Step 1c Define, for i = 1, . . . , q ,

K̃i0 : R≥0 × R→ R, (t, yi0) �→ yi0 − yref,i (t)

and the set

D̃i0 :=
{

(t, yi) ∈ R≥0 × R

∣∣∣ (t, K̃i0(t, yi)
) ∈ Di0

}
.

Furthermore, recursively define the maps

K̃ij : D̃i,j−1 ×R→ R,

(t, yi0, . . . , yij ) �→ yij − y
(j)

ref,i (t)+Ki,j−1
(
t, K̃i0(t, yi0), . . . , K̃i,j−1(t, yi0, . . . , yi,j−1)

)
,

for j = 1, . . . , ri − 1 and the sets

D̃ij :=
{

(t, yi0, . . . , yij ) ∈ D̃i,j−1 × R

∣∣∣ (t, K̃i0(t, yi0), . . . , K̃ij (t, yi0, . . . , yij )
) ∈ Dij

}

for j = 1, . . . , ri − 2. Then it follows from (4.14) and a simple induction that for
all t ∈ I , i = 1, . . . , q , and j = 0, . . . , ri − 1 we have

eij (t) = K̃ij

(
t, yi(t), . . . , y

(j)
i (t)

)
.
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Now, define

D̃I :=
{
(t, y10, . . . , y1,r1−1, . . . , yq,rq−1) ∈ R≥0 × R

r
∣∣∣

∀ i = 1, . . . , q : (t, yi0, . . . , yi,ri−1) ∈ D̃i,ri−2 × R

∧ (t, K̃1,r1−1(t, y10, . . . , y1,r1−1), . . . , K̃q,rq−1(t, yq0, . . . , yq,rq−1)
) ∈ F q

ϕI

}
,

D̃II :=
{

(t, yq+1, . . . , ym) ∈ R≥0 × R
m−q

∣∣∣ (t, yq+1 − yref,q+1(t), . . . , ym − yref,m(t)) ∈ DII

}
,

and the map

K̃I : D̃I → R
q , (t, y10, . . . , y1,r1−1, . . . , yq,rq−1)

�→
(
K̃1,r1−1(t, y10, . . . , y1,r1−1), . . . , K̃q,rq−1(t, yq0, . . . , yq,rq−1)

)�
,

then we find that, for all t ∈ I ,

eI (t) :=
(
e1,r1−1(t), . . . , eq,rq−1(t)

)� = K̃I

(
t, y1(t), . . . , y

(r1−1)
1 (t), . . . , y

(rq−1)
q (t)

)
.

Further denote, for t ∈ I ,

XI (t) =
(
y1(t), . . . , y

(r1−1)
1 (t) . . . , y

(rq−1)
q (t)

)�
, XII (t) = (yq+1(t), . . . , ym(t))�,

Xref,I I (t) = (yref,q+1(t), . . . , yref,m(t))�,

then

eI (t) = K̃I (t,XI (t)),

eII (t) := (yq+1(t)− yref,q+1(t), . . . , ym(t)− yref,m(t))� = XII (t)−Xref,I I (t)

and the feedback u in (4.3) reads

u(t) =

⎛
⎜⎜⎝

−K̃I (t,XI (t))

1−ϕI (t)
2‖K̃I (t,XI (t))‖2

−k̂(XII (t)−Xref,I I (t))

1−ϕII (t)2‖XII (t)−Xref,I I (t)‖2

⎞
⎟⎟⎠ .
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Step 1d Now, we set

H = diag
(
(e
[r1]
1 )�, . . . , (e[rq ]1 )�

)
∈ R

q×r ,

S =
[
H 0
0 Im−q

]
∈ R

m×(r+m−q),
(4.15)

where e
[k]
1 ∈ R

k is the first canonical unit vector. This construction yields

∀ t ∈ I : S

(
XI (t)

XII (t)

)
= y(t).

We define an operator T̂2 : C([−h,∞)→ R
r+m−q)→ C1(R≥0 → R

k) such that
for ζ1 ∈ C([−h,∞)→ R

r ), ζ2 ∈ C([−h,∞)→ R
m−q) we have

T̂2

(
ζ1

ζ2

)
(t) := T2

⎛
⎝S

(
ζ1

ζ2

)⎞
⎠ (t), t ≥ 0.

Since T2 ∈ T
DAE
m,k,h we obtain that T̂2 ∈ T

DAE
r+m−q,k,h. Set

D̃ :=
{

(t,XI ,XII ) ∈ R≥0 × R
r × R

m−q
∣∣∣ (t,XI ) ∈ D̃I and (t,XII ) ∈ D̃II

}
.

We rewrite f1, and ΓI from system (3.1) in vector form

f1 =

⎛
⎜⎜⎝
f 1

1
...

f
q

1

⎞
⎟⎟⎠ , ΓI =

⎛
⎜⎜⎝
Γ 1
I
...

Γ
q

I

⎞
⎟⎟⎠

with components f i
1 ∈ C(Rs × R

k → R) and Γ i
I ∈ C(Rs × R

k → R
1×q ) for

i = 1, . . . , q . We now define functions FI : D̃×R
k → R

r , FII : D̃×R
k → R

m−q
with

FI : (t, y10, . . . , y1,r1−1, . . . , yq,rq−1︸ ︷︷ ︸
=XI

, yq+1, . . . , ym︸ ︷︷ ︸
=XII

, η) �→

(
y11, . . . , y1,r1−1, f

1
1 (d1(t), η)− Γ 1

I (d2(t), η)K̃I (t,XI )

1− ϕI (t)2‖K̃I (t,XI )‖2
,
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. . . , yq,rq−1, f
q
1 (d1(t), η)− Γ

q
I (d2(t), η)K̃I (t,XI )

1− ϕI (t)2‖K̃I (t,XI )‖2

)
,

FII : (t, y10, . . . , y1,r1−1, . . . , yq,rq−1︸ ︷︷ ︸
=XI

, yq+1, . . . , ym︸ ︷︷ ︸
=XII

, η) �→

(
f2(XI ,XII )+ f3(d3(t), η)− ΓII (d4(t), η)K̃I (t,XI )

1− ϕI (t)2‖K̃I (t,XI )‖2

− f4(d5(t), η)
k̂ (XII −Xref,I I (t))

1 − ϕII (t)2‖XII −Xref,I I (t)‖2

)
.

Then the closed-loop system (3.1) and (4.3) is equivalent to (4.10).

Step 1e In order to show that (4.10) has a solution we take the derivative of the
second equation and rewrite it appropriately. First observe that since T2 ∈ T

DAE
m,k,h

there exist z ∈ C(Rm × R
k → R

k) and T̃2 ∈ Tm,k,h such that

∀ ζ ∈ C([−h,∞)→ R
m) ∀ t ≥ 0 : d

dt (T2ζ )(t) = z
(
ζ(t), (T̃2ζ )(t)).

Now define the operator T̂3 : C([−h,∞) → R
r+m−q ) → C(R≥0 → R

k) by the
property that for ζ1 ∈ C([−h,∞)→ R

r ), ζ2 ∈ C([−h,∞)→ R
m−q ) we have

T̂3

(
ζ1

ζ2

)
(t) := T̃2

⎛
⎝S

(
ζ1

ζ2

)⎞
⎠ (t), t ≥ 0,

then T̂3 ∈ Tr+m−q,k,h. A differentiation of the second equation in (4.10) yields

0 = ∂FII

∂t

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠+ ∂FII

∂XI

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ ẊI (t)

+ ∂FII

∂XII

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ ẊII (t)

+ ∂FII

∂η

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ d

dt

⎛
⎝T̂2

(
XI

XII

)⎞
⎠ (t),
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by which, using the first equation in (4.10) and

d

dt

⎛
⎝T̂2

(
XI

XII

)⎞
⎠ (t) = z

⎛
⎝S

(
XI (t)

XII (t)

)
, T̂3

(
XI

XII

)
(t)

⎞
⎠ ,

we obtain

∂FII

∂XII

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ ẊII (t)

= F̂II

⎛
⎝t,

(
XI (t)

XII (t)

)
, T1

(
XI

XII

)
(t), T̂2

(
XI

XII

)
(t), T̂3

(
XI

XII

)
(t)

⎞
⎠

for some F̂II : D̃ × R
3k → R

m−q . We show that the matrix

∂FII

∂XII

(t,XI ,XII , η) = ∂f2(XI ,XII )
∂XII

− k̂f4(d5(t),η)
1−ϕII (t)2‖XII−Xref,I I (t)‖2 ·

·
(
Im−q + 2ϕII (t)

2(XII−Xref,I I (t))(XII−Xref,I I (t))
�

1−ϕII (t)2‖XII−Xref,I I (t)‖2
)

(4.16)

is invertible for all (t,XI ,XII , η) ∈ D̃ × R
k: The symmetry and positive semi-

definiteness of

G (t,XII ) := 2ϕII (t)
2(XII−Xref,I I (t))(XII−Xref,I I (t))

�
1−ϕII (t)2‖XII−Xref,I I (t)‖2

implies positive definiteness (and hence invertibility) of Im−q + G (t,XII ) for all
(t,XII ) ∈ D̃II , and by Berger et al. [8, Lem. 3.3] we further have

∥∥∥(Im−q + G (t,XII )
)−1
∥∥∥ ≤ 1.

Therefore, according to (4.5) and Assumption 3.1 (iv), we have for all
(t,XI ,XII , η) ∈ D̃ ×R

k that

∥∥∥∥
(
1− ϕII (t)

2‖XII −Xref,I I (t)‖2)k̂−1
[
f4
(
d5(t), η

) ]−1
(Im−q+G (t,XII ))

−1 ∂f2(XI ,XII )
∂XII

∥∥∥∥

≤ k̂−1α−1
∥∥∥ ∂f2(XI ,XII )

∂XII

∥∥∥(4.5)
< 1.
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This implies invertibility of ∂FII

∂XII
(t, XI ,XII , η) for all (t,XI ,XII , η) ∈ D̃ × R

k .

With F̃II : D̃ ×R
3k → R

m−q defined by

F̃II (t, XI ,XII , η1, η2, η3) :=
(

∂FII

∂XII

(t, XI , XII , η2)

)−1

F̂II (t, XI , XII , η1, η2, η3)

and the first equation in (4.10) we obtain the ODE

ẊI (t) = FI

⎛
⎝t,

(
XI (t)

XII (t)

)
, T1

(
XI

XII

)
(t)

⎞
⎠ ,

ẊII (t) = F̃II

⎛
⎝t,

(
XI (t)

XII (t)

)
, T1

(
XI

XII

)
(t), T̂2

(
XI

XII

)
(t), T̂3

(
XI

XII

)
(t)

⎞
⎠ ,

(4.17)

with initial conditions (4.11).

Step 1f Consider the initial value problem (4.17), (4.11), then we have
(0,XI (0),XII (0)) ∈ D̃ , FI is measurable in t , continuous in (XI ,XII , η),
and locally essentially bounded, and F̃II is measurable in t , continuous in
(XI ,XII , η1, η2, η3), and locally essentially bounded. Therefore, by [21, Theorem
B.1]1 we obtain existence of solutions to (4.17), and every solution can be extended
to a maximal solution. Furthermore, for a maximal solution (XI ,XII ) : [−h,ω)→
R

r+m−q , ω ∈ (0,∞], of (4.17), (4.11) the closure of the graph of this solution is
not a compact subset of D̃ .

We show that (XI ,XII ) is also a maximal solution of (4.10). Since (XI ,XII ) is
particular satisfies, by construction,

∀ t ∈ [0, ω) : 0 = d

dt
FII

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ ,

there exists c ∈ R
m−q such that

∀ t ∈ [0, ω) : c = FII

⎛
⎝t,

(
XI (t)

XII (t)

)
, T̂2

(
XI

XII

)
(t)

⎞
⎠ .

Invoking (4.11), the definition of FII and T̂2, and the consistency condition (4.7)
we may infer that c = 0. Therefore, (XI ,XII ) is a solution of (4.10). Furthermore,

1In [21] a domain D ⊆ R≥0 × R is considered, but the generalization to the higher dimensional
case is straightforward.
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(XI ,XII ) is also a maximal solution of (4.10), since any right extension would be
a solution of (4.17) following the procedure in Step 1e, a contradiction.

Recall XI (t) =
(
y1(t), . . . , y

(r1−1)
1 (t) . . . , y

(rq−1)
q (t)

)�
, XII (t) = (yq+1(t),

. . . , ym(t))� and define

(e10, . . . , e1,r1−1, . . . , eq,rq−1, eq+1, . . . , em) : [0, ω)→ R
r+m−q (4.18)

by

eij (t) = K̃ij (t, yi(t), . . . , y
(j)

i (t)), for i = 1, . . . , q and j = 0, . . . , ri − 1,

ei (t) = yi(t)− yref,i(t), for i = q + 1, . . . ,m,

then the closure of the graph of the function in (4.18) is not a compact subset of D .

Step 2 We show boundedness of the gain functions kI (·), kII (·) and kij (·) as in (4.3)
on [0, ω). This also proves (4.9).

Step 2a The proof of boundedness of kij (·) for i = 1, . . . , q , j = 0, . . . , ri − 2 on
[0, ω) is analogous to Step 2a of the proof of [9, Thm. 3.1] and hence omitted.

Step 2b We prove by induction that there exist constants M"
ij ,N

"
ij ,K

"
ij > 0 such

that, for all t ∈ [0, ω),

∣∣∣∣
(

d
dt

)" [
kij (t)eij (t)

]∣∣∣∣ ≤ M"
ij ,

∣∣∣∣
(

d
dt

)"
eij (t)

∣∣∣∣ ≤ N"
ij ,

∣∣∣∣
(

d
dt

)"
kij (t)

∣∣∣∣ ≤ K"
ij ,

(4.19)

for i = 1, . . . , q , j = 0, . . . , ri − 2, and " = 0, . . . , ri − 1− j .
First, we may infer from Step 2a that kij (·), for i = 1, . . . , q , j = 0, . . . , ri −

2, are bounded. Furthermore, eij are bounded since they evolve in the respective
performance funnels. Therefore, for each i = 1, . . . , q and j = 0, . . . , ri−2, (4.19)
is true whenever " = 0. Fix i ∈ {1, . . . , q}. We prove (4.19) for j = ri − 2 and
" = 1:

ėi,ri−2(t) = ei,ri−1(t)− ki,ri−2(t)ei,ri−2(t),

k̇i,ri−2(t) = 2k2
i,ri−2(t)

(
ϕ2
i,ri−2(t)ei,ri−2(t)ėi,ri−2(t)

+ ϕi,ri−2(t)ϕ̇i,ri−2(t)|ei,ri−2(t)|2
)
,

d
dt

[
ki,ri−2(t)ei,ri−2(t)

] = k̇i,ri−2(t)ei,ri−2(t)+ ki,ri−2(t)ėi,ri−2(t).

Boundedness of ki,ri−2, ϕi,ri−2, ϕ̇i,ri−2, ei,ri−2 together with the above equations
implies that ėi,ri−2(t), k̇i,ri−2(t) and d

dt

[
ki,ri−2(t)ei,ri−2(t)

]
are bounded. Now

consider indices s ∈ {0, . . . , ri−3} and l ∈ {0, . . . , ri−1−s} and assume that (4.19)
is true for all j = s + 1, . . . , ri − 2 and all " = 0, . . . , ri − 1 − j as well as for
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j = s and all " = 0, . . . , l − 1. We show that it is true for j = s and " = l:

(
d
dt

)l
eis (t) =

(
d
dt

)l−1 [
ei,s+1(t)− kis(t)eis (t)

]

=
(

d
dt

)l−1
ei,s+1(t)−

(
d
dt

)l−1 [
kis(t)eis (t)

]
,

(
d
dt

)l
kis(t) =

(
d
dt

)l−1(
2k2

is(t)
(
ϕ2
is(t)eis (t)ėis (t)+ϕis(t)ϕ̇is (t)|eis(t)|2

))
,

(
d
dt

)l [
kis(t)eis (t)

] =
(

d
dt

)l−1 (
k̇is (t)eis (t)+ kis(t)ėis (t)

)
.

Then, successive application of the product rule and using the induction hypothesis
as wells as the fact that ϕis, ϕ̇is , . . . , ϕ

(ri−s)
is are bounded, yields that the above terms

are bounded. Therefore, the proof of (4.19) is complete.
It follows from (4.19) and (4.12) that, for all i = 1, . . . , q and j = 0, . . . , ri − 1,

e
(j)

i is bounded on [0, ω).

Step 2c We show that kI (·) as in (4.3) is bounded. It follows from (4.12) that, for
i = 1, . . . , q ,

e
(ri)
i (t) = ėi,ri−1(t)−

ri−2∑
j=0

(
d
dt

)ri−1−j [
kij (t)eij (t)

]
.

Then we find that by (4.10)

ėI (t) = f1

(
d1(t), T1

(
y1, . . . , y

(r1−1)
1 , . . . , y

(rq−1)
q , yq+1, . . . , ym

)
(t)
)

− ΓI

(
d1(t), T1

(
y1, . . . , y

(r1−1)
1 , . . . , y

(rq−1)
q , yq+1, . . . , ym

)
(t)
)
kI (t)eI (t)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1−2∑
j=0

(
d
dt

)r1−1−j
k1j (t)e1j (t)

r2−2∑
j=0

(
d
dt

)r2−1−j
k2j (t)e2j (t)

...
rq−2∑
j=0

(
d
dt

)rq−1−j
kqj (t)eqj (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

y
(r1)
ref,1(t)

...

y
(rq)

ref,q(t)

⎞
⎟⎟⎟⎠ .

(4.20)
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Again we use XI (t) =
(
y1(t), . . . , y

(r1−1)
1 (t) . . . , y

(rq−1)
q (t)

)�
, XII (t) =

(yq+1(t), . . . , ym(t))� and we set, for t ∈ [0, ω),

F̂I (t) := f1

(
d1(t), T1

(
XI ,XII

)
(t)
)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1−2∑
j=0

(
d
dt

)r1−1−j
k1j (t)e1j (t)

r2−2∑
j=0

(
d
dt

)r2−1−j
k2j (t)e2j (t)

...
rq−2∑
j=0

(
d
dt

)rq−1−j
kqj (t)eqj (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

y
(r1)
ref,1(t)

...

y
(rq)

ref,q(t)

⎞
⎟⎟⎟⎠ .

(4.21)

We obtain from (4.19) and (4.12) that e(j)i is bounded on the interval [0, ω) for i =
1, . . . , q and j = 0, . . . , ri − 2. Furthermore, eI evolves in the performance funnel
F

q
ϕI

, thus |ei,ri−1(t)|2 ≤ ‖eI (t)‖2 < ϕI (t)
−1 for all t ∈ [0, ω), so ei,ri−1 is bounded

on [0, ω) for i = 1, . . . , q . Invoking boundedness of y
(j)
ref,i yields boundedness of

y
(j)
i for i = 1, . . . , q , j = 0, . . . , ri − 1. Then the bounded-input, bounded-output

property of T1 in Definition 3.1 (iii) implies that T1
(
XI ,XII

)
is bounded by

MT1 := ‖T1
(
XI ,XII

)|[0,ω)‖∞.

This property together with (4.19), continuity of f1 and boundedness of d1 yields
that F̂I (·) is bounded on [0, ω). In other words, there exists some M

F̂I
> 0 such

that ‖F̂I |[0,ω)‖∞ ≤ M
F̂I

. Now define the compact set

Ω =
{
(δ, η, eI ) ∈ R

s ×R
k ×R

q
∣∣∣‖δ‖ ≤ ‖d2|[0,ω)‖∞, ‖η‖ ≤ MT1, ‖eI‖ = 1

}
,

then, since ΓI + Γ �I is pointwise positive definite by Assumption 3.1 (i) and the
map

Ω - (δ, η, eI ) �→ e�I
(
ΓI (δ, η)+ ΓI (δ, η)

�)eI ∈ R>0

is continuous, it follows that there exists γ > 0 such that

∀ (δ, η, eI ) ∈ Ω : e�I
(
ΓI (δ, η)+ ΓI (δ, η)

�)eI ≥ γ.
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Therefore, we have for all t ∈ [0, ω) that

eI (t)
�(ΓI

(
d1(t), T1

(
XI ,XII

)
(t)
)
+ ΓI

(
d1(t), T1

(
XI ,XII

)
(t)
)�)

eI (t) ≥ γ ‖eI (t)‖2.

Now, set ψI (t) := ϕI (t)
−1 for t ∈ (0, ω), let TI ∈ (0, ω) be arbitrary but fixed and

set λI := inft∈(0,ω) ψI (t). Since ϕ̇I is bounded and lim inft→∞ ϕI (t) > 0 we find
that d

dt ψI |[0,ω) is bounded and hence ψI |[0,ω) is Lipschitz continuous with Lipschitz
bound LI > 0. Choose εI > 0 small enough such that

εI ≤ min

{
λI

2
, inf
t∈(0,TI ]

(ψI (t)− ‖eI (t)‖)
}

and LI ≤ λ2
I

8εI
γ −M

F̂I
, (4.22)

We show that

∀ t ∈ (0, ω) : ψI (t)− ‖eI (t)‖ ≥ εI . (4.23)

By definition of εI this holds on (0, TI ]. Seeking a contradiction suppose that

∃ tI,1 ∈ [TI , ω) : ψI (tI,1)− ‖eI (tI,1)‖ < εI .

Set tI,0 = max{t ∈ [TI , tI,1) | ψI (t) − ‖eI (t)‖ = εI }. Then, for all t ∈ [tI,0, tI,1],
we have

ψI (t)− ‖eI (t)‖ ≤ εI ,

‖eI (t)‖ ≥ ψI (t)− εI ≥ λI

2
,

kI (t) = 1

1− ϕ2
I (t)‖eI (t)‖2

≥ λI

2εI
.

Then it follows from (4.20) and (4.21) that for all t ∈ [tI,0, tI,1],
1

2

d

dt
‖eI (t)‖2 = 1

2

(
e�I (t)ėI (t)+ ė�I (t)eI (t)

)

= e�I (t)

(
F̂I (t)− 1

2

(
ΓI

(
d1(t), T1

(
XI ,XII

)
(t)
)
+ ΓI

(
d1(t), T1

(
XI ,XII

)
(t)
)�)

kI (t)eI (t)

)

≤
(
M

F̂I
− λ2

I

8εI
γ

)
‖eI (t)‖

(4.22)≤ −LI ‖eI (t)‖.
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Then, using ‖eI (t)‖ ≥ λI

2 > 0 for all t ∈ [tI,0, tI,1],

‖eI (tI,1)‖ − ‖eI (tI,0)‖ =
tI,1∫

tI,0

1

2
‖eI (t)‖−1 d

dt ‖eI (t)‖2 dt

≤ −LI (tI,1 − tI,0) ≤ −|ψI (tI,1)− ψI (tI,0)| ≤ ψI (tI,1)− ψI (tI,0),

and thus we obtain εI = ψI (tI,0) − ‖eI (tI,0)‖ ≤ ψI (tI,1) − ‖eI (tI,1)‖ < εI , a
contradiction.

Step 2d We show that kII (·) as in (4.3) is bounded. Seeking a contradiction, we
assume that kII (t)→∞ for t → ω. Set, for t ∈ [0, ω),

F̌II (t) := f2
(
XI (t), XII (t)

)+ f3
(
d3(t), (T2y)(t)

)− ΓII

(
d4(t), (T2y)(t)

)
kI (t)eI (t).

(4.24)

Since kI is bounded on [0ω) by Step 2c, it follows from Step 2b, boundedness of
T2(y), d3 and d4 and continuity of f2, f3 and ΓII that F̌II (·) is bounded on [0, ω).
By (4.10) we have

0 = F̌II (t)− f4
(
d5(t), (T2y)(t)

)
kII (t)eII (t). (4.25)

We show that eII (t) → 0 for t → ω. Seeking a contradiction, assume that there
exist κ > 0 and a sequence (tn) ⊂ R≥0 with tn ↗ ω such that ‖eII (tn)‖ ≥ κ for all
n ∈ N. Then, from (4.25) we obtain, for all t ∈ [0, ω),

‖F̌II (t)‖ = ‖f4
(
d5(t), (T2y)(t)

)
kII (t)eII (t)‖ = |f4

(
d5(t), (T2y)(t)

)|·|kII (t)|·‖eII (t)‖.

Since kII (t) → ∞ for t → ω, ‖eII (tn)‖ ≥ κ and f4
(
d5(tn), (T2y)(tn)

) ≥ α, we
find that

‖F̌II (tn)‖ ≥ α κ kII (tn)→∞ for n→∞,

which contradicts boundedness of F̌II (·).
Hence, we have eII (t)→ 0 for t → ω, by which limt→∞ ϕII (t)

2‖eII (t)‖2 = 0
because ϕII (·) is bounded. This leads to the contradiction limt→∞ kII (t) = k̂, thus
kII (·) is bounded.

Step 3 We show that ω = ∞. Seeking a contradiction, we assume that ω < ∞.
Then, since eI , eII , kI , kII and eij , kij are bounded for i = 1, . . . , q , j =
0, . . . , ri − 2 by Step 2, it follows that the closure of the graph of the function
in (4.18) is a compact subset of D , which is a contradiction. This finishes the proof
of the theorem. �
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5 Simulations

In this section we illustrate the application of the funnel controller (4.3) by
considering the following academic example:

ÿ1(t) =− sin y1(t)+ y1(t)ẏ1(t)+ y2(t)
2

+ ẏ1(t)
2T (y1, y2)(t)+ (y1(t)

2 + y2(t)
4 + 1)uI (t),

0 = y1(t)
3 + y1(t)ẏ1(t)

3 + y2(t)+ T (y1, y2)(t)+
+ T (y1, y2)(t)uI (t)+ uII (t),

(5.1)

where T : C(R≥0 → R
m)→ C1(R≥0 → R) is given by

T (y1, y2)(t) := e−2tη0 +
t∫

0

e−2(t−s)(2y1(s)− y2(s)
)
ds, t ≥ 0,

for any fix η0 ∈ R. Similar as we have calculated for the operator T2 on page 232,
we may calculate that T ∈ T

DAE
2,1,0. Define

T1(y1, y
d
1 , y2)(t) :=

⎛
⎜⎜⎜⎝

y1(t)

yd
1 (t)

y2(t)

T (y1, y2)(t)

⎞
⎟⎟⎟⎠ , t ≥ 0,

then T1 ∈ T2,3,0, and set T2 := T . Furthermore, define the functions

f1 : R4 → R, (η1, η2, η3, η4) �→ − sin η1 + η3η2 + η2
3 + η2

2η4,

ΓI : R4 → R, (η1, η2, η3, η4) �→ η2
1 + η4

3 + 1,

f2 : R4 → R, (y1, y
d
1 , y2) �→ y3

1 + y1(y
d
1 )

3 + y2,

f3 : R→ R, η �→ η,

ΓII : R→ R, η �→ η,

f4 : R→ R, η �→ 1.
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Then system (5.1) is of the form (3.1) with m = 2, q = 1 and r1 = 2. It is
straightforward to check that Assumption 3.1 is satisfied. In particular, condition (iii)
is satisfied, because

f ′2(y1, y
d
1 , y2)

[
0

Im−q

]
= ∂f2

∂y2
(y1, y

d
1 , y2) = 1

is bounded. Furthermore, f4(η) ≥ 1 =: α for all η ∈ R, and hence we may choose
k̂ = 2, with which condition (4.5) is satisfied.

For the simulation we choose the reference signal yref(t) = (cos 2t, sin t)�, and
initial values

y1(0) = ẏ1(0) = y2(0) = 0 and η0 = 0.

For the controller (4.3) we choose the funnel functions ϕ10 = ϕI = ϕII = ϕ with

ϕ : R≥0 → R≥0, t �→ 1
2 te
−t + 2 arctan t .

It is straightforward to check that ϕ̇ and ϕ̈ are bounded, thus ϕ ∈ Φ2. Moreover,
since ϕ(0) = 0, no restriction is put on the initial error and we find that (4.8) is
satisfied and k10(0) = kI (0) = 1 and kII (0) = 2. Furthermore,

eI (0) = e1,1(0) = ė10(0)+ k10(0)e10(0)

= ẏ1(0)− ẏref,1(0)+ k10(0)
(
y1(0)− yref,1(0)

) = −1,

eII (0) = y2(0)− yref,2(0) = 0,

and hence we obtain

uI (0) = −kI (0)eI (0) = 1, uII (0) = −kII (0)eII (0) = 0.

Since h = 0, we find that in view of Remark 4.2 the localization of T2 satisfies
T2(0, 0) = 0. With this finally find that the initial value is indeed consistent, i.e.,
condition (4.7) is satisfied. We have now verified all assumptions of Theorem 4.1,
by which funnel control via (4.3) is feasible for the system (5.1).

The simulation of the controller (4.3) applied to (5.1) has been performed in
MATLAB (solver: ode15s, rel. tol.: 10−14, abs. tol.: 10−10) over the time interval
[0,10] and is depicted in Fig. 2.

Figure 2a shows the tracking error components, which stay uniformly within the
funnel boundaries. The components of the generated input functions are shown in
Fig. 2b, which exhibit an acceptable performance.
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Fig. 2 Simulation of the controller (4.3) for the system (5.1). (a) Funnel and tracking errors. (b)
Input functions
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Abstract We study state estimation for nonlinear differential-algebraic systems,
where the nonlinearity satisfies a Lipschitz condition or a generalized monotonicity
condition or a combination of these. The presented observer design unifies earlier
approaches and extends the standard Luenberger type observer design. The design
parameters of the observer can be obtained from the solution of a linear matrix
inequality restricted to a subspace determined by the Wong sequences. Some
illustrative examples and a comparative discussion are given.

Keywords Differential-algebraic system · Nonlinear system · Observer · Wong
sequence · Linear matrix inequality

Mathematics Subject Classification (2010) 34A09, 93B07, 93C05

1 Introduction

The description of dynamical systems using differential-algebraic equations
(DAEs), which are a combination of differential equations with algebraic
constraints, arises in various relevant applications, where the dynamics are
algebraically constrained, for instance by tracks, Kirchhoff laws, or conservation
laws. To name but a few, DAEs appear naturally in mechanical multibody
dynamics [16], electrical networks [36] and chemical engineering [23], but also
in non-natural scientific contexts such as economics [33] or demography [13].
The aforementioned problems often cannot be modeled by ordinary differential
equations (ODEs) and hence it is of practical interest to investigate the properties
of DAEs. Due to their power in applications, nowadays DAEs are an established
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field in applied mathematics and subject of various monographs and textbooks, see
e.g. [12, 24, 25].

In the present paper we study state estimation for a class of nonlinear differential-
algebraic systems. Nonlinear DAE systems seem to have been first considered by
Luenberger [32]; cf. also the textbooks [24, 25] and the recent works [3, 4]. Since it
is often not possible to directly measure the state of a system, but only the external
signals (input and output) and an internal model are available, it is of interest to
construct an “observing system” which approximates the original system’s state.
Applications for observers are for instance error detection and fault diagnosis,
disturbance (or unknown input) estimation and feedback control, see e.g. [14, 42].

Several results on observer design for nonlinear DAEs are available in the
literature. Lu and Ho [29] developed a Luenberger type observer for square systems
with Lipschitz continuous nonlinearities, utilising solutions of a certain linear matrix
inequality (LMI) to construct the observer. This is more general than the results
obtained in [19], where the regularity of the linear part was assumed. Extensions of
the work from [29] are discussed in [15], where non-square systems are treated, and
in [43, 45], inter alia considering nonlinearities in the output equation. We stress
that the approach in [11] and [22], where ODE systems with unknown inputs are
considered, is similar to the aforementioned since these systems may be treated as
DAEs as well. Further but different approaches are taken in [1], where completely
nonlinear DAEs which are semi-explicit and index-1 are investigated, in [41], where
a nonlinear generalized PI observer design is used, and in [44], where the Lipschitz
condition is avoided by regularizing the system via an injection of the output
derivatives.

Recently, Gupta et al. [20] presented a reduced-order observer design which is
applicable to non-square DAEs with generalized monotone nonlinearities. Systems
with nonlinearities which satisfy a more general monotonicity condition are consid-
ered in [40], but the results found there are applicable to square systems only.

A novel observer design using so called innovations has been developed in [34,
37] and considered for linear DAEs in [6] and for DAEs with Lipschitz continuous
nonlinearities in [5]. Roughly speaking, the innovations are “[. . . ] a measure for the
correctness of the overall internal model at time t” [6]. This approach extends the
classical Luenberger type observer design and allows for non-square systems.

It is our aim to present an observer design framework which unifies the above
mentioned approaches. To this end, we use the approach from [6] for linear DAEs
(which can be non-square) and extend it to incorporate both nonlinearities which
are Lipschitz continuous as in [5, 29] and nonlinearities which are generalized
monotone as in [20, 40], or combinations thereof. We show that if a certain LMI
restricted to a subspace determined by the Wong sequences is solvable, then there
exists a state estimator (or observer) for the original system, where the gain matrices
corresponding to the innovations in the observer are constructed out of the solution
of the LMI. We will distinguish between an (asymptotic) observer and a state
estimator, cf. Sect. 2. To this end, we speak of an observer candidate before such a
system is found to be an observer or a state estimator. We stress that such an observer
candidate is a DAE system in general; for the investigation of the existence of ODE
observers see e.g. [5, 7, 15, 20].
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This paper is organised as follows: We briefly state the basic definitions and some
preliminaries on matrix pencils in Sect. 2. The unified framework for the observer
design is presented in Sect. 3. In Sects. 4 and 5 we state and prove the main results
of this paper. Subsequent to the proofs we give some instructive examples for the
theorems in Sect. 6. A discussion as well as a comparison to the relevant literature
is provided in Sect. 7 and computational aspects are discussed in Sect. 8.

1.1 Nomenclature

A ∈ R
n×m The matrix A is in the set of real n×m matrices;

rkA, imA, kerA The rank, image and kernel of A ∈ R
n×m, resp.;

C k(X→ Y ) The set of k−times continuously differentiable functions
f : X→ Y , k ∈ N0;

dom(f ) The domain of the function f ;
A >V 0 : ⇐⇒ ∀ x ∈ V \ {0} : x�Ax > 0, V ⊆ R

n a subspace;
R[s] The ring of polynomials with coefficients in R.

2 Preliminaries

We consider nonlinear DAE systems of the form

d
dt Ex(t) = f (x(t), u(t), y(t))

y(t) = h(x(t), u(t)),
(2.1)

with E ∈ R
l×n, f ∈ C (X ×U × Y → R

l ) and h ∈ C (X ×U → R
p), where

X ⊆ R
n, U ⊆ R

m and Y ⊆ R
p are open. The functions x : I → R

n, u : I → R
m

and y : I → R
p are called the state, input and output of (2.1), resp. Since solutions

not necessarily exist globally we consider local solutions of (2.1), which leads to the
following solution concept, cf. [5].

Definition 2.1 Let I ⊆ R be an open interval. A trajectory (x, u, y) ∈ C (I →
X × U × Y ) is called solution of (2.1), if x ∈ C 1(I → X ) and (2.1) holds for
all t ∈ I . The set

B(2.1) :=
{
(x, u, y) ∈ C (I→X ×U ×Y )

∣∣ I ⊆ R open intvl., (x, u, y) is a solution of (2.1)
}

of all possible solution trajectories is called the behavior of system (2.1).

We stress that the interval of definition I of a solution of (2.1) does not need to be
maximal and, moreover, it depends on the choice of the input u. Next we introduce
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E ẋ(t) = f x(t),u(t),y(t)
)

y(t) = h x(t),u(t)
)

Eo ẋo(t) = fo xo(t),u(t),y(t)
)

z(t) = ho xo(t),u(t),y(t)
)

u(t) y(t)

z(t)

Fig. 1 Interconnection with an acceptor

the concepts of an acceptor, an (asymptotic) observer and a state estimator. These
definitions follow in essence the definitions given in [5].

Definition 2.2 Consider a system (2.1). The system

d
dt Eoxo(t) = fo(xo(t), u(t), y(t)),

z(t) = ho(xo(t), u(t), y(t)),
(2.2)

where Eo ∈ R
lo×no , fo ∈ C (Xo×U ×Y → R

lo ), ho ∈ C (Xo×U ×Y → R
po),

Xo ⊆ R
no open, is called acceptor for (2.1) , if for all (x, u, y) ∈ B(2.1) with

I = dom(x), there exist xo ∈ C 1(I → Xo), z ∈ C (I → R
po) such that

(
xo,
(
u
y

)
, z
)
∈ B(2.2).

The definition of an acceptor shows that the original system influences, or
may influence, the acceptor but not vice-versa, i.e., there is a directed signal flow
from (2.1) to (2.2), see Fig. 1.

Definition 2.3 Consider a system (2.1). Then a system (2.2) with po = n is
called

(a) an observer for (2.1), if it is an acceptor for (2.1), and

∀ I ⊆ R open interval ∀ t0 ∈ I ∀ (x, u, y, xo, z) ∈ C (I →X ×U × Y ×Xo × R
n) :

(
(x, u, y) ∈ B(2.1) ∧ (xo,

( u
y

)
, z) ∈ B(2.2) ∧ Ez(t0) = Ex(t0)

)
,⇒ z = x;

(2.3)
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(b) a state estimator for (2.1), if it is an acceptor for (2.1), and

∀ t0 ∈ R ∀ (x, u, y, xo, z) ∈ C ([t0,∞)→X ×U × Y ×Xo ×R
n) :

(
(x, u, y) ∈ B(2.1) ∧ (xo,

(
u
y

)
, z) ∈ B(2.2)

)
,⇒ lim

t→∞ z(t)− x(t) = 0;
(2.4)

(c) an asymptotic observer for (2.1), if it is an observer and a state estimator
for (2.1).

The property of being a state estimator is much weaker than being an asymptotic
observer. Since there is no requirement such as (2.3) it might even happen that
the state estimator’s state matches the original system’s state for some time, but
eventually evolves in a different direction.

Concluding this section we recall some important concepts for matrix pencils.
First, a matrix pencil sE − A ∈ R[s]l×n is called regular, if l = n and det(sE −
A) 	= 0 ∈ R[s]. An important geometric tool are the Wong sequences, named after
Wong [39], who was the first to use both sequences for the analysis of matrix pencils.
The Wong sequences are investigated and utilized for the decomposition of matrix
pencils in [8–10].

Definition 2.4 Consider a matrix pencil sE − A ∈ R[s]l×n. The Wong sequences
are sequences of subspaces, defined by

V 0[E,A] := R
n, V i+1

[E,A] := A−1(EV i[E,A]) ⊆ R
n, V ∗[E,A] :=

⋂
i∈N0

V i[E,A],

W 0[E,A] := {0}, W i+1
[E,A] := E−1(AW i

[E,A]) ⊆ R
n, W ∗[E,A] :=

⋃
i∈N0

W i
[E,A],

where A−1(S) = {x ∈ R
n | Ax ∈ S} is the preimage of S ⊆ R

l under A. The
subspaces V ∗[E,A] and W ∗[E,A] are called the Wong limits.

As shown in [8] the Wong sequences terminate, are nested and satisfy

∃ k∗ ∈ N ∀j ∈ N : V 0[E,A] � V 1[E,A] � · · · � V k∗[E,A] = V k∗+j
[E,A] = V ∗[E,A] ⊇ ker(A),

∃ l∗ ∈ N ∀j ∈ N : W 0[E,A] ⊆ ker(E) = W 1[E,A] � · · · � W l∗[E,A] = W l∗+j
[E,A] = W ∗[E,A].

Remark 2.1 Let sE − A ∈ R[s]l×n and consider the associated DAE d
dt Ex(t) =

Ax(t). In view of Definition 2.1 we may associate with the previous equation the
behavior

B[E,A] =
{

x ∈ C 1(I → R
n)

∣∣∣ Eẋ = Ax, I ⊆ R open interval

}
.
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We have that all trajectories in B[E,A] evolve in V ∗[E,A], that is

∀ x ∈ B[E,A] ∀ t ∈ dom(x) : x(t) ∈ V ∗[E,A]. (2.5)

This can be seen as follows: For x ∈ B[E,A] we have that x(t) ∈ R
n = V 0[E,A]

for all t ∈ dom(x). Since the linear spaces V i[E,A] are closed they are invariant

under differentiation and hence ẋ(t) ∈ V 0[E,A]. Due to the fact that x ∈ B[E,A] it

follows for all t ∈ dom(x) that x(t) ∈ A−1(EV 0[E,A]) = V 1[E,A]. Now assume that

x(t) ∈ V i
[E,A] for some i ∈ N0 and all t ∈ dom(x). By the previous arguments we

find that x(t) ∈ A−1(EV i[E,A]) = V i+1
[E,A].

An important concept in the context of DAEs is the index of a matrix pencil,
which is based on the (quasi-)Weierstraß form (QWF), cf. [10, 18, 24, 25].

Definition 2.5 Consider a regular matrix pencil sE − A ∈ R[s]n×n and let S, T ∈
R

n×n be invertible such that

S(sE − A)T = s

[
Ir 0
0 N

]
−
[
J 0
0 In−r

]

for some J ∈ R
r×r and nilpotent N ∈ R

(n−r)×(n−r). Then

ν :=

⎧⎪⎨
⎪⎩

0, if r = n,

min

{
k ∈ N

∣∣∣ Nk = 0

}
, if r < n

is called the index of sE − A.

The index is independent of the choice of S, T and can be computed via the
Wong sequences as shown in [10].

3 System, Observer Candidate and Error Dynamics

In this section we present the observer design used in this paper, which invokes
so called innovations and was developed in [34, 37] for linear behavioral systems.
It is an extension of the classical approach to observer design which goes back to
Luenberger, see [30, 31].

We consider nonlinear DAE systems of the form

d
dt Ex(t) = Ax(t)+ BLfL(x(t), u(t), y(t))+ BMfM(Jx(t), u(t), y(t)),

y(t) = Cx(t)+ h(u(t)),

(3.1)
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where E,A ∈ R
l×n with 0 ≤ r = rk(E) ≤ n, BL ∈ R

l×qL , BM ∈ R
l×qM ,

J ∈ R
qM×n with rk J = qM , C ∈ R

p×n and h ∈ C (U → R
p) with U ⊆ R

m

open. Furthermore, for some open sets X ⊆ R
n,Y ⊆ R

p and X̂ := JX ⊆ R
qM ,

the nonlinear function fL : X ×U × Y → R
qL satisfies a Lipschitz condition in

the first variable

∀ x, z ∈X ∀ u ∈ U ∀ y ∈ Y : ‖fL(z, u, y)− fL(x, u, y)‖ ≤ ‖F(z − x)‖
(3.2)

with F ∈ R
j×n, j ∈ N; and fM : X̂ × U × Y → R

qM satisfies a generalized
monotonicity condition in the first variable

∀ x, z ∈ X̂ ∀u ∈ U ∀ y ∈ Y : (z− x)�Θ
(
fM(z, u, y)− fM(x, u, y)

) ≥ 1

2
μ‖z − x‖2

(3.3)

for some Θ ∈ R
qM×qM and μ ∈ R. We stress that μ < 0 is explicitly allowed and Θ

can be singular, i.e., in particular Θ does not necessarily satisfy any definiteness
conditions as in [40]. We set B := [BL,BM ] ∈ R

l×(qL+qM) and

f :X ×U × Y → R
qL × R

qM , (x, u, y) �→
(

fL(x, u, y)

fM(Jx, u, y)

)
.

Let us consider a system (3.1) and assume that n = l. Then another system driven
by the external variables u and y of (3.1) of the form

d
dt Ez(t) = Az(t)+ Bf (z(t), u(t), y(t)) + L(y(t)− ŷ(t))

= Az(t)+ Bf (z(t), u(t), y(t)) + L(Cx(t)− Cz(t))

= (A− LC)z(t)+ Bf (z(t), u(t), y(t)) + L Cx(t)︸ ︷︷ ︸
=y(t)−h(u(t))

with ŷ(t) = Cz(t)+ h(u(t))

(3.4)

is a Luenberger type observer, where L ∈ R
n×p is the observer gain. The dynamics

for the error state e(t) = z(t)− x(t) read

d
dt Ee(t) = (A− LC)e(t)+ B

(
f (x(t), u(t), y(t)) − f (z(t), u(t), y(t))

)
.

The observer (3.4) incorporates a copy of the original system, and in addition the
outputs’ difference ŷ(t)−y(t), the influence of which is weighted with the observer
gain L.

In this paper we consider a generalization of the design (3.4) which incorporates
an extra variable d that takes the role of the innovations. The innovations are used
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to describe “the difference between what we actually observe and what we had
expected to observe” [34], and hence they generalize the effect of the observer
gain L in (3.4). We consider the following observer candidate, which is an additive
composition of an internal model of the system (3.1) and a further term which
involves the innovations:

d
dt Ez(t) = Az(t)+ Bf (z(t), u(t), y(t))+ L1d(t)

0 = Cz(t)− y(t)+ h(u(t))+ L2d(t),
(3.5)

where xo(t) =
(

z(t)
d(t)

)
is the observer state and L1 ∈ R

l×k , L2 ∈ R
p×k , Xo =

X × R
k . From the second line in (3.5) we see that the innovations term balances

the difference between the system’s and the observer’s output. In a sense, the smaller
the variable d , the better the approximate state z in (3.5) matches the state x of the
original system (3.1).

We stress that n 	= l is possible in general, and if L2 is invertible, then the
observer candidate reduces to

d
dt Ez(t) = Az(t)+ Bf (z(t), u(t), y(t)) + L1L

−1
2 (y(t)− Cz(t)− h(u(t)))

= (A− L1L
−1
2 C)z(t)+ Bf (z(t), u(t), y(t)) + L1L

−1
2 (y(t)− h(u(t))︸ ︷︷ ︸

=Cx(t)

),

(3.6)
which is a Luenberger type observer of the form (3.4) with gain L = L1L

−1
2 . Hence

the Luenberger type observer is a special case of the observer design (3.5). Being
square is a necessary condition for invertibility of L2, i.e., k = p.

For later use we consider the dynamics of the error state e(t) := z(t) − x(t)

between systems (3.1) and (3.5),

d
dt Ee(t) = Ae(t)+ Bφ(t) + L1d(t)

0 = Ce(t)+ L2d(t),
(3.7)

where

φ(t) := f (z(t), u(t), y(t))− f (x(t), u(t), y(t)) =
(

fL(z(t),u(t),y(t))−fL(x(t),u(t),y(t))
fM(Jz(t),u(t),y(t))−fM(Jx(t),u(t),y(t))

)
,

and rewrite (3.7) as

d
dt E

(
e(t)
d(t)

)
= A

(
e(t)
d(t)

)
+Bφ(t), (3.8)
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where

E =
[
E 0
0 0

]
∈ R

(l+p)×(n+k), A =
[
A L1

C L2

]
∈ R

(l+p)×(n+k)

and B =
[
B

0

]
∈ R

(l+p)×(qL+qM).

The following lemma is a consequence of (2.5).

Lemma 3.1 Consider a system (3.1) and the observer candidate (3.5). Then (3.5)
is an acceptor for (3.1). Furthermore, for all open intervals I ⊆ R, all (x, u, y) ∈
B(3.1) and all

((
z
d

)
,
(
u
y

)
, z
)
∈ B(3.5) with dom(x) = dom

(
z
d

) = I we have:

∀ t ∈ I :
⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ ∈ V ∗[[E ,0],[A ,B]]. (3.9)

Proof Let I ⊆ R be an open interval and (x, u, y) ∈ B(3.1). For any (x, u, y) ∈
B(3.1) it holds

((
x
0

)
,
(
u
y

)
, x
)
∈ B(3.5), hence (3.5) is an acceptor for (3.1).

Now let (x, u, y) ∈ B(3.1) and
((

z
d

)
,
(
u
y

)
, z
)
∈ B(3.5), with I = dom(x) = dom

(
z
d

)
and rewrite (3.8) as

d
dt [E , 0]

⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ = [A ,B]

⎛
⎜⎝

e(t)

d(t)

φ(t)

⎞
⎟⎠ .

Then (3.9) is immediate from Remark 2.1. �

In the following lemma we show that for a state estimator to exist, it is necessary

that the system (3.1) does not contain free state variables, i.e., solutions (if they
exist) are unique.

Lemma 3.2 Consider a system (3.1) and the observer candidate (3.5). If (3.5) is a
state estimator for (3.1), then either

(
∀ (x, u, y) ∈ B(3.1) ∃ t0 ∈ R : dom(x) ∩ [t0,∞) = ∅

)

∨
(
∀ ( ( z

d

)
,
(
u
y

)
, z
) ∈ B(3.5) ∃ t0 ∈ R : dom(z, d) ∩ [t0,∞) = ∅

)
,

(3.10)

or we have rkR(s)

[
sE−A

C

]
= n.
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Proof Let (3.5) be a state estimator for (3.1) and assume that (3.10) is not true. Set
E′ := [E0

]
, A′ := [ AC

]
and let (x, u, y) ∈ B(3.1) with [t0,∞) ⊆ dom(x) for some

t0 ∈ R. Then we have that, for all t ≥ t0,

d
dt E

′x(t) =
[
A

C

]
x(t)+

[
B L1

0 L2

](
f (x(t), u(t), y(t))

d(t)

)
=: A′x(t)+ g(x(t), u(t), y(t), d(t))

(3.11)

with d(t) ≡ 0. Using [8, Thm. 2.6] we find matrices S ∈ Gll+p(R), T ∈ Gln(R)

such that

S
(
sE′ − A′

)
T = s

⎡
⎢⎣
EP 0 0
0 ER 0
0 0 EQ

⎤
⎥⎦−

⎡
⎢⎣
AP 0 0
0 AR 0
0 0 AQ

⎤
⎥⎦ , (3.12)

where

(i) EP ,AP ∈ R
mP×nP ,mP < nP , are such that rkC(λEP − AP ) = mP for all

λ ∈ C ∪ {∞},
(ii) ER,AR ∈ R

mR×nR ,mR = nR , with sER − AR regular,
(iii) EQ,AQ ∈ R

mQ×nQ,mQ > nQ, are such that rkC(λEQ − AQ) = nQ for all
λ ∈ C ∪ {∞}.

We consider the underdetermined pencil sEP −AP in (3.12) and the corresponding
DAE. If nP = 0, then [8, Lem. 3.1] implies that rkR(s) sEQ − AQ = nQ and
invoking rkR(s) sER − AR = nR gives that rkR(s) sE

′ − A′ = n. So assume that
np > 0 in the following and set

⎛
⎜⎝

xp

xR

xQ

⎞
⎟⎠ := T −1x,

⎛
⎜⎝

gp

gR

gQ

⎞
⎟⎠ := Sg.

If mp = 0, then xP can be chosen arbitrarily. Otherwise, we have

d
dt EP xP (t) = APxP (t)+ gP

(
T

(
xP (t)
xR(t)
xQ(t)

)
, u(t), y(t), d(t)

)
. (3.13)

As a consequence of [8, Lem. 4.12] we may w.l.o.g. assume that sEP − AP =
s[Imp , 0] − [N,R] with R ∈ R

mP×(nP−mP ) and nilpotent N ∈ R
mP×mP . Partition

xP =
(

x1
P

x2
P

)
, then (3.13) is equivalent to

ẋ1
P (t) = Nx1

P (t)+ Rx2
P (t)+ gP

(
T (x1

P (t)�, x2
P (t)�, xR(t)�, xQ(t)�)�, u(t), y(t), d(t)

)
(3.14)
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for all t ≥ t0, and hence x2
P ∈ C ([t0,∞)→ R

nP−mP ) can be chosen arbitrarily and
every choice preserves [t0,∞) ⊆ dom(x). Similarly, if

( (
z
d

)
,
(
u
y

)
, z
) ∈ B(3.5)

with [t0,∞) ⊆ dom(z)—w.l.o.g. the same t0 can be chosen—then (3.11) is
satisfied for x = z and, proceeding in an analogous way, z2

P can be chosen
arbitrarily, in particular such that limt→∞ z2

P (t) 	= limt→∞ x2
P (t). Therefore,

limt→∞ z(t) − x(t) = limt→∞ e(t) 	= 0, which contradicts that (3.5) is a state
estimator for (3.1). Thus nP = 0 and rkR(s) sE

′ − A′ = n follows. �

As a consequence of Lemma 3.2, a necessary condition for (3.5) to be a state

estimator for (3.1) is that n ≤ l + p. This will serve as a standing assumption in the
subsequent sections.

4 Sufficient Conditions for State Estimators

In this section we show that if certain matrix inequalities are satisfied, then there
exists a state estimator for system (3.1) which is of the form (3.5). The design
parameters of the latter can be obtained from a solution of the matrix inequalities.
The proofs of the subsequent theorems are inspired by the work of Lu and Ho [29]
and by [5], where LMIs are considered on the Wong limits only.

Theorem 4.1 Consider a system (3.1) with n ≤ l + p which satisfies
conditions (3.2) and (3.3). Let k ∈ N0 and denote with V ∗[[E ,0],[A ,B]] the

Wong limit of the pencil s[E , 0] − [A ,B] ∈ R[s](l+p)×(n+k+qL+qM), and
V
∗
[[E ,0],[A ,B]] := [

In+k, 0
]
V ∗[[E ,0],[A ,B]]. Further let Â = [

A 0
C 0

]
,

H =
[

0n×n 0
0 Ik

]
= H�, F = [F, 0] ∈ R

j×(n+k), j ∈ N,

Θ̂ =
[

0 J�Θ
0 0

]
∈ R

(n+k)×(qL+qM), J =
[
J�J 0

0 0

]
∈ R

(n+k)×(n+k)

and ΛqL :=
[
IqL 0
0 0

]
∈ R

(qL+qM)×(qL+qM).

If there exist δ > 0, P ∈ R
(l+p)×(n+k) and K ∈ R

(n+k)×(n+k) such that

Q :=
[
Â�P +P�Â+H�K � +K H + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

]
<V ∗[[E ,0],[A ,B]]

0

(4.1)

and

P�E = E �P >
V
∗
[[E ,0],[A ,B]]

0, (4.2)
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then for all L1 ∈ R
l×k , L2 ∈ R

p×k such that P�
[

0 L1
0 L2

]
= K H the system (3.5)

is a state estimator for (3.1).
Furthermore, there exists at least one such pair L1, L2 if, and only if, imK H ⊆

imP�.

Proof Using Lemma 3.1, we have that (3.5) is an acceptor for (3.1). To show
that (3.5) satisfies condition (2.4) let t0 ∈ R and (x, u, y, xo, z) ∈ C ([t0,∞) →
X × U × Y ×Xo × R

n) such that (x, u, y) ∈ B(3.1) and (xo,
(
u
y

)
, z) ∈ B(3.5),

with xo(t) =
(
z(t)
d(t)

)
and Xo =X × R

k .

The last statement of the theorem is clear. Let L̂ = [0(l+p)×n, ∗] be a solution

of P�L̂ = K H and A = Â + L̂, further set η(t) :=
(

e(t)
d(t)

)
, where

e(t) = z(t) − x(t). Recall that

φ(t) = f (z(t), u(t), y(t)) − f (x(t), u(t), y(t))

=
(

fL(z(t), u(t), y(t))− fL(x(t), u(t), y(t))

fM(J z(t), u(t), y(t))− fM(Jx(t), u(t), y(t))

)
=:
(
φL(t)

φM(t)

)
.

In view of condition (3.2) we have for all t ≥ t0 that

δ(η�(t)F�Fη(t)− φ�L (t)φL(t)) ≥ 0 (4.3)

and by (3.3)

([J, 0]η(t))�ΘφM(t)+ φ�M(t)Θ�[J, 0]η(t)− μ([J, 0]η(t))�([J, 0]η(t)) ≥ 0.
(4.4)

Now assume that (4.1) and (4.2) hold. Consider a Lyapunov function candidate

Ṽ : Rn+k → R, η �→ η�E �Pη

and calculate the derivative along solutions for t ≥ t0:

d
dt Ṽ (η(t)) = η̇�(t)E�Pη(t)+ η�(t)P�E η̇(t)

= (A η(t)+Bφ(t)
)�

Pη(t)+ η�(t)P� (A η(t)+Bφ(t)
)

= η�(t)A �Pη(t)+ η�(t)P�A η(t)+ φ�(t)B�Pη(t)+ η�(t)P�Bφ(t)

= η�(t)Â�Pη(t)+ η�(t)L̂�Pη(t)+ η�(t)P�Âη(t)+ η�(t)P�L̂η(t)

+ φ�(t)B�Pη(t)+ η�(t)P�Bφ(t)

(4.3),(4.4)≤ η�(t)
(
Â�P +P�Â+K H +H�K �) η(t)
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+ φ�(t)B�Pη(t)+ η�(t)P�Bφ(t)+ δ(η�(t)F�Fη(t)− φ�L (t)φL(t))

+ ([J, 0]η(t))�ΘφM(t)+ φ�M(t)Θ�[J, 0]η(t)− μ([J, 0]η(t))�([J, 0]η(t))

= η�(t)
(
Â�P +P�Â+K H +H�K � + δF�F − μJ

)
η(t)

+ φ�(t)B�Pη(t)+ η�(t)P�Bφ(t)

+ η�(t)Θ̂φ(t)+ φ�(t)Θ̂�η(t)− δφ�(t)ΛqLφ(t)

=
(
η(t)

φ(t)

)�[
Â�P +P�Â+H�K � +K H + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

]

︸ ︷︷ ︸
=Q

(
η(t)

φ(t)

)
.

(4.5)

Let S ∈ R
(n+k+qL+qM)×nV with orthonormal columns be such that im S =

V ∗[[E ,0],[A ,B]] and rk(S) = nV . Then inequality (4.1) reads Q̂ := S�QS < 0.

Denote with λ−
Q̂

the smallest eigenvalue of −Q̂, then λ−
Q̂

> 0. Since S has

orthonormal columns we have ‖Sv‖ = ‖v‖ for all v ∈ R
nV .

By Lemma 3.1 we have
(

η(t)
φ(t)

)
∈ V ∗[[E ,0],[A ,B]] for all t ≥ t0, hence

(
η(t)
φ(t)

)
=

Sv(t) for some v : [t0,∞)→ R
nV . Then (4.5) becomes

∀ t ≥ t0 : d
dt Ṽ (η(t)) ≤

(
η(t)

φ(t)

)�
Q

(
η(t)

φ(t)

)
= v�(t)Q̂v(t)

≤ −λ−
Q̂
‖v(t)‖2 = −λ−

Q̂

∥∥∥∥∥∥

(
η(t)

φ(t)

)∥∥∥∥∥∥

2

.

(4.6)

Let S ∈ R
(n+k)×nV with orthonormal columns be such that im S =

V
∗
[[E ,0],[A ,B]] and rk(S) = nV . Then condition (4.2) is equivalent to S

�
E �PS >

0. Since
(

η(t)
φ(t)

)
∈ V ∗[[E ,0],[A ,B]] for all t ≥ t0 it is clear that η(t) ∈ V

∗
[[E ,0],[A ,B]]

for all t ≥ t0. If V
∗
[[E ,0],[A ,B]] = {0} (which also holds when V ∗[[E ,0],[A ,B]] = {0}),

then this implies η(t) = 0, thus e(t) = 0 for all t ≥ t0, which completes the proof.
Otherwise, nV > 0 and we set η(t) = Sη̄(t) for some η̄ : [t0,∞) → R

nV and

denote with λ+, λ− the largest and smallest eigenvalue of S
�
E �PS, resp., where

λ− > 0 is a consequence of (4.2). Then we have

Ṽ (η(t)) = η�(t)E �Pη(t) = η̄�(t)S�E �PSη̄(t) ≤ λ+‖η̄(t)‖2 = λ+‖η(t)‖2

(4.7)
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and, analogously,

∀ t ≥ t0 : λ−‖η(t)‖2 ≤ η̄�(t)S�E �PSη̄(t) = Ṽ (η(t)) ≤ λ+‖η(t)‖2. (4.8)

Therefore,

∀ t ≥ t0 : d
dt Ṽ (η(t))

(4.6)≤ −λ−
Q̂

∥∥∥∥∥∥

(
η(t)

φ(t)

)∥∥∥∥∥∥

2

≤ −λ−
Q̂
‖η(t)‖2 (4.7)≤ −

λ−
Q̂

λ+
Ṽ (η(t)).

Now, abbreviate β := λ−
Q̂
λ+ and use Gronwall’s Lemma to infer

∀ t ≥ t0 : Ṽ (η(t)) ≤ Ṽ (η(0))e−βt . (4.9)

Then we obtain

∀ t ≥ t0 : ‖η(t)‖2 (4.8)≤ 1

λ−
Ṽ (η(t))

(4.9)≤ Ṽ (η(0))

λ−
e−βt ,

and hence limt→∞ e(t) = 0, which completes the proof. �

Remark 4.1

(i) Note that A = Â+ L̂, where L̂ = [0(l+p)×n, ∗] is a solution of P�L̂ =K H

and hence the space V ∗[[E ,0],[A ,B]] on which (4.1) is considered depends on

the sought solutions P and K as well; using P�A = P�Â +K H , this
dependence is still linear. Furthermore, note that K only appears in union with

the matrix H =
[

0 0
0 Ik

]
, thus only the last k columns of K are of interest. In

order to reduce the computational effort it is reasonable to fix the other entries
beforehand, e.g. by setting them to zero.

(ii) We stress that the parameters in the description (3.1) of the system are not
entirely fixed, especially regarding the linear parts. More precisely, an equation
of the form d

dt Ex(t) = Ax(t) + f (x(t), u(t)), where f satisfies (3.2) can
equivalently be written as d

dt Ex(t) = fL(x(t), u(t)), where fL(x, u) =
Ax + f (x, u) also satisfies (3.2), but with a different matrix F . However, this
alternative (with A = 0) may not satisfy the necessary condition provided in
Lemma 3.2, which hence should be checked in advance. Therefore, the system
class (3.1) allows for a certain flexibility and different choices of the parameters
may or may not satisfy the assumptions of Theorem 4.1.

(iii) In the special case E = 0, i.e., purely algebraic systems of the form
0 = Ax(t) + Bf (x(t), u(t), y(t)), Theorem 4.1 may still be applicable.
More precisely, condition (4.2) is satisfied in this case if, and only if,



Observers for Differential-Algebraic Systems with Lipschitz or Monotone. . . 271

V
∗
[[E ,0],[A ,B]] = {0}. This can be true, if for instance B = 0 and A has

full column rank, because then V
∗
[[E ,0],[A ,B]] = [In+k, 0] ker[A , 0] = {0}.

In the following theorem condition (4.2) is weakened to positive semi-
definiteness. As a consequence, the system’s matrices have to satisfy additional
conditions, which are not present in Theorem 4.1. In particular, we require that E
and A are square, which means that k = l + p − n. Furthermore, we require that
JGM is invertible for a certain matrix GM and that the norms corresponding to F

and J are compatible if both kinds of nonlinearities are present.

Theorem 4.2 Use the notation from Theorem 4.1 and set k = l+p−n. In addition,
denote with V ∗[E ,A ],W

∗
[E ,A ] ⊆ R

n+k the Wong limits of the pencil sE − A ∈
R[s](l+p)×(n+k) and let V ∈ R

(n+k)×nV and W ∈ R
(n+k)×nW be basis matrices

of V ∗[E ,A ] and W ∗
[E ,A ], resp., where nV = dim(V ∗[E ,A ]) and nW = dim(W ∗

[E ,A ]).
Furthermore, denote with λmax(M) the largest eigenvalue of a matrix M .

If there exist δ > 0, P ∈ R
(l+p)×(n+k) invertible and K ∈ R

(n+k)×(n+k) such
that (4.1) holds and

(a) E �P =P�E ≥
V
∗
[[E ,0],[A ,B]]

0,

(b) the pencil sE −A ∈ R[s](l+p)×(n+k) is regular and its index is at most one,

(c) F is such that ‖FGL‖ < 1, where GL := −[In, 0]W [0, In+k−r ][EV,A W ]−1
[
BL
0

]
,

(d) JGM is invertible and μ > λmax(Γ ), where Γ := Θ̃ + Θ̃�, Θ̃ := Θ(JGM)−1,

GM := −[In, 0]W [0, In+k−r ][EV,A W ]−1
[
BM

0

]
,

(e) there exists α > 0 such that ‖Fx‖ ≤ α‖Jx‖ for all x ∈ R
n and, for

S := Θ̃�(Γ − μIqM )−1Θ̃ we have

α‖JGL‖
1− ‖FGL‖

⎛
⎝
√

max{0, λmax(S)}
μ− λmax(Γ )

+ ‖(Γ − μIqM )−1(Θ̃� − μIqM )‖
⎞
⎠ < 1,

(4.10)

then with L1 ∈ R
l×k , L2 ∈ R

p×k such that
[

0 L1
0 L2

]
= P−�K H the system (3.5)

is a state estimator for (3.1).

Proof Assume (4.1) and (4.10) (a)–(e) hold. Up to Eq. (4.9) the proof remains the
same as for Theorem 4.1. By (4.10) (b) we may infer from [10, Thm. 2.6] that there

exist invertible M =
[
M�1 ,M�2

]� ∈ R
(n+k)×(l+p) with M1 ∈ R

r×(l+p), M2 ∈
R

(n+k−r)×(l+p) and invertible N = [N1, N2
] ∈ R

(n+k)×(l+p) with N1 ∈ R
(n+k)×r ,
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N2 ∈ R
(n+k)×(l+p−r) such that

M (E −A )N =
[
Ir − Ar 0

0 −In+k−r

]
, (4.11)

where r = rk(E ) and Ar ∈ R
r×r , and that

N = [V,W ], M = [EV,A W ]−1. (4.12)

Let

P =M�
[
P1 P2

P3 P4

]
N −1 (4.13)

with P1 ∈ R
nV ×nV , P4 ∈ R

nW ×nW and P2, P
�
3 ∈ R

nV ×nW . Then condi-
tion (4.10) (a) implies P1 > 0 as follows. First, calculate

E �P = N −T
[
Ir 0
0 0

]
M−TM T

[
P1 P2

P3 P4

]
N −1 = N −T

[
P1 P2

0 0

]
N −1

(4.14)

which gives P2 = 0 as P�E = E �P . Note that therefore P1 and P4 in (4.13) are
invertible since P is invertible by assumption. By (4.14) we have

E �P = N −T
[
P1 0
0 0

]
N −1 = [V,W ]−T

[
P1 0
0 0

]
[V,W ]−1. (4.15)

It remains to show P1 ≥ 0. Next, we prove the inclusion

V ∗[E ,A ] ⊆ V
∗
[[E ,0],[A ,B]] = [In+k, 0]V ∗[[E ,0],[A ,B]]. (4.16)

To this end, we show V i
[E ,A ] ⊆ [In+k,0]V i

[[E ,0],[A ,B]] for all i ∈ N0. For i = 0 this

is clear. Now assume it is true for some i ∈ N0. Then

[In+k, 0]V i+1
[[E ,0],[A ,B]] = [In+k, 0][A ,B]−1([E , 0]V i

[[E ,0],[A ,B]])

= [In+k, 0]
⎧⎨
⎩

(
η(t)

φ(t)

)
∈ R

n+k+q

∣∣∣∣∣ A η

+ Bφ ∈ E
(
[In+k, 0]V i

[[E ,0],[A ,B]]
)
⎫⎬
⎭



Observers for Differential-Algebraic Systems with Lipschitz or Monotone. . . 273

=
{

η ∈ R
n+k

∣∣∣ ∃φ ∈ R
q : A η+Bφ ∈ EV

i

[[E ,0],[A ,B]]
}

φ=0⊇
{

η ∈ R
n+k

∣∣∣ A η ∈ E V
i

[[E ,0],[A ,B]]
}

= A −1
(
E V

i

[[E ,0],[A ,B]]
)

⊇ A −1
(
E V i
[E ,A ]

)
= V i+1

[E ,A ],

which is the statement. Therefore it is clear that im V ⊆ V
∗
[[E ,0],[A ,B]] =

imV , with V ∈ R
(n+k)×nV a basis matrix of V

∗
[[E ,0],[A ,B]] and nV =

dim(V
∗
[[E ,0],[A ,B]]). Thus there exists R ∈ R

nV ×nV such that V = VR. Now the

inequality V
�
P�E V ≥ 0 holds by condition (4.10) (a) and implies

0 ≤ R�V �P�EVR = V �P�EV =
⎛
⎝[V,W ]

[
InV

0

]⎞
⎠
�

P�E

⎛
⎝[V,W ]

[
InV

0

]⎞
⎠

(4.15)= [InV , 0]
[
P1 0

0 0

][
InV

0

]
= P1.

Now, let N −1η(t) =
(

η1(t)
η2(t)

)
, with η1(t) ∈ R

r and η2(t) ∈ R
n+k−r and consider

the Lyapunov function Ṽ (η(t)) = η�(t)E �Pη(t) in new coordinates:

∀ t ≥ t0 : Ṽ (η(t)) = η�(t)E �Pη(t)
(4.14)=

(
η1(t)

η2(t)

)� [
P1 0
0 0

](
η1(t)

η2(t)

)

= η�1 (t)P1η1(t) ≥ λ−P1
‖η1(t)‖2,

(4.17)

where λ−P1
> 0 denotes the smallest eigenvalue of P1. Thus (4.17) implies

∀ t ≥ t0 : ‖η1(t)‖2 ≤ 1

λ−P1

η�(t)E �Pη(t) = 1

λ−P1

Ṽ (η(t))
(4.9)≤ Ṽ (η(0))

λ−P1

e−βt −→
t→∞ 0.

(4.18)

Note that, if V ∗[E ,A ] = {0}, then r = 0 and N −1η(t) = η2(t), thus the
above estimate (4.18) is superfluous (and, in fact, not feasible) in this case; it
is straightforward to modify the remaining proof to this case. With the aid of
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transformation (4.11) we have:

M d
dt E η(t) =MA η(t)+MBφ(t)

⇐⇒ MEN d
dt

(
η1(t)

η2(t)

)
=MAN

(
η1(t)

η2(t)

)
+MBφ(t)

⇐⇒
[
Ir 0
0 0

]
d
dt

(
η1(t)

η2(t)

)
=
[
Ar 0
0 In+k−r

](
η1(t)

η2(t)

)
+
[
M1

M2

]
Bφ(t),

(4.19)

from which it is clear that η2(t) = −M2Bφ(t). Observe

e(t) = [In, 0]η(t) = [In, 0]N
(
η1(t)

η2(t)

)
= [In, 0]V η1(t)+ [In, 0]Wη2(t) =: e1(t)+ e2(t),

where limt→∞ e1(t) = 0 by (4.18). We show e2(t) = − [In, 0]WM2Bφ(t) → 0
for t → ∞. Set

eL2 (t) := GLφL(t), eM2 (t) := GMφM(t)

so that e2(t) = eL2 (t)+ eM2 (t). Next, we inspect the Lipschitz condition (3.2):

‖φL(t)‖ ≤ ‖Fe(t)‖ ≤ ‖Fe1(t)‖ + ‖FeL2 (t)‖ + ‖FeM2 (t)‖
≤ ‖Fe1(t)‖ + ‖FGL‖‖φL(t)‖ + ‖FeM2 (t)‖,

which gives, invoking (4.10) (c),

‖φL(t)‖ ≤
(
1− ‖FGL‖

)−1(‖Fe1(t)‖ + ‖FeM2 (t)‖). (4.20)

Set ê(t) := e1(t) + eL2 (t) = e1(t) + GLφL(t) and κ := α‖JGL‖
1−‖FGL‖ and observe

that (4.20) together with (4.10) (e) implies

‖J ê(t)‖ ≤ ‖J e1(t)‖ + ‖JGL‖‖φL(t)‖
(4.20)≤ (1+ κ)‖J e1(t)‖ + κ‖J eM2 (t)‖.

(4.21)

Since JGM is invertible by (4.10) (d) we find that

φM(t) = (JGM)−1J eM2 (t), (4.22)
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and hence the monotonicity condition (3.3) yields, for all t ≥ t0,

μ
∥∥J e(t)

∥∥2 ≤ (J e(t))�ΘφM(t)+ φ�M(t)Θ�J e(t)

= (J ê(t)+ J eM2 (t))�Θ̃J eM2 (t)+ (J eM2 (t))�Θ̃�(J ê(t)+ J eM2 (t))

= 2(J ê(t))�Θ̃J eM2 (t)+ (J eM2 (t))�
(
Θ̃ + Θ̃�︸ ︷︷ ︸
=Γ

)
J eM2 (t)

and on the left-hand side

μ
∥∥J e(t)

∥∥2 = μ

(∥∥J ê(t)
∥∥2 +

∥∥∥J eM2 (t)

∥∥∥2 + 2(J ê(t))�(J eM2 (t))

)
.

Therefore, we find that

0 ≤ −μ
∥∥∥J eM2 (t)

∥∥∥
2 − μ

∥∥J ê(t)
∥∥2 − 2μ(J ê(t))�(J eM2 (t))

+ 2(J ê(t))�Θ̃(J eM2 (t))+ (J eM2 (t))�Γ (J eM2 (t))

=
(

J ê(t)

J eM2 (t)

)� [ −μIqM Θ̃ − μIqM
Θ̃� − μIqM Γ − μIqM

](
J ê(t)

J eM2 (t)

)
.

Since Γ − μIqM is invertible by (4.10) (d) we may set Ξ := Θ̃� − μIqM and
ẽM2 (t) := (Γ − μIqM )−1ΞJ ê(t)+ J eM2 (t). Then

0 ≤
(

J ê(t)

J eM2 (t)

)� [ −μIqM Θ̃ − μIqM
Θ̃� − μIqM Γ − μIqM

](
J ê(t)

J eM2 (t)

)

=
(
J ê(t)

ẽM2 (t)

)� [−μIqM −Ξ�(Γ − μIqM )−1Ξ 0
0 Γ − μIqM

](
J ê(t)

ẽM2 (t)

)
.

Therefore, using μ− λmax(Γ ) > 0 by (4.10) (d) and computing

−μIqM −Ξ�(Γ − μIqM )−1Ξ = Θ̃�(Θ̃ + Θ̃� − μIqM )−1Θ̃ = S,

we obtain

0 ≤ max{0, λmax(S)}‖J ê(t)‖2 − (μ− λmax(Γ ))‖ẽM2 (t)‖2,
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which gives

‖J eM2 (t)‖ ≤ ‖(Γ − μIrM )−1Ξ‖‖J ê(t)‖ + ‖ẽM2 (t)‖

≤
⎛
⎝
√

max{0, λmax(S)}
μ− λmax(Γ )

+ ‖(Γ − μIrM )−1Ξ‖
⎞
⎠ ‖J ê(t)‖

(4.21)≤
⎛
⎝
√

max{0, λmax(S)}
μ− λmax(Γ )

+ ‖(Γ − μIrM )−1Ξ‖
⎞
⎠((1+ κ)‖J e1(t)‖ + κ‖J eM2 (t)‖).

It then follows from (4.10) (e) that limt→∞ J eM2 (t) = 0, and additionally
invoking (4.20) and (4.22) gives limt→∞ φL(t) = 0 and limt→∞ φM(t) = 0, thus∥∥e2(t)

∥∥ ≤ ∥∥GLφL(t)
∥∥+ ∥∥GMφM(t)

∥∥ −→
t→∞ 0, and finally limt→∞ e(t) = 0. �


Remark 4.2

(i) If the nonlinearity f in (3.1) consists only of fL satisfying the Lipschitz
condition, then the conditions (4.10) (d) and (e) are not present. If it consists
only of the monotone part fM , then the conditions (4.10) (c) and (e) are not
present. In fact, condition (4.10) (e) is a “mixed condition” in a certain sense
which states additional requirements on the combination of both (classes of)
nonlinearities.

(ii) The following observation is of practical interest. Whenever fL satisfies (3.2)
with a certain matrix F , it is obvious that fL will satisfy (3.2) with any other F̃

such that ‖F‖ ≤
∥∥∥F̃
∥∥∥. However, condition (4.10) (c) states an upper bound

on the possible choices of F . Similarly, if fM satisfies (3.3) with certain Θ

and μ, then fM satisfies (3.3) with any μ̃ ≤ μ, for a fixed Θ . On the other
hand, condition (4.10) (d) states lower bounds for μ (involving Θ as well).
Additional bounds are provided by (4.1) and condition (4.10) (e). Analogous
thoughts hold for the other parameters. Hence F , δ, J , Θ and μ can be utilized
in solving the conditions of Theorems 4.1 and 4.2.

(iii) The condition ‖Fx‖ ≤ α‖Jx‖ from (4.10) (e) is quite restrictive since it
connects the Lipschitz estimation of fL with the domain of fM . This relation
is far from natural and relaxing it is a topic of future research. The inequality
would always be satisfied for J = In by taking α = ‖F‖, however in view
of the monotonicity condition (3.3), the inequality (4.1) and conditions (4.10)
this would be even more restrictive.

(iv) In the case E = 0 the assumptions of Theorem 4.2 simplify a lot. In fact, we
may calculate that in this case we have V ∗[[E ,0],[A ,B]] = ker[A ,B] and hence
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the inequality (4.1) becomes

Q =
⎡
⎣A �P +P�A + δF�F − μJ P�B + Θ̂

B�P + Θ̂� −δΛqL

⎤
⎦ <ker[A ,B] 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] :

(
η
φ

)�
Q
(

η
φ

)
< 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] : η�

(
A �P +P�A + δF�F − μJ

)
η − δ

∥∥ΛqLφ
∥∥2

+ φ�
(
B�P + Θ̂

)
η + η�

(
P�B + Θ̂�

)
φ < 0

⇐⇒ ∀
(

η
φ

)
∈ ker[A ,B] : (η�A � + φ�(t)B�︸ ︷︷ ︸

=0

)Pη + η�P�(A η +Bφ︸ ︷︷ ︸
=0

)

+ δ
( ∥∥Fη

∥∥2 − ∥∥ΛqLφ
∥∥2 )+ η�Θ̂φ + φ�Θ̂�η − μη�J η < 0.

Now, A is invertible by (4.10) (b) and hence η = −A −1Bφ. Therefore, the
inequality (4.1) is equivalent to

δ
(
(FA −1B)�(FA −1B)−ΛqL

)
− (A −1B)�Θ̂ − Θ̂�A −1B

− μ(A −1B)�J (A −1B) < 0,

which is of a much simper shape.
(v) The conditions presented in Theorems 4.1 and 4.2 are sufficient conditions

only. The following example does not satisfy the conditions in the theorems but
a state estimator exists for it. Consider ẋ(t) = −x(t), y(t) = 0, then the system
ż(t) = −z(t) , 0 = d1(t)− d2(t) of the form (3.5) with L1 = [0, 0] and L2 =
[1,−1] is obviously a state estimator, since the first equation is independent of
the innovations d1, d2 and solutions satisfy limt→∞ z(t)− x(t) = 0. However,
we have n + k = 3 > 2 = l + p and therefore Theorem 4.2 is not applicable.
Furthermore, the assumptions of Theorem 4.1 are not satisfied since

V
∗
[[E ,0],[A ,B]] = V ∗[E ,A ] = im

⎡
⎢⎣

1 0
0 1
0 1

⎤
⎥⎦ and E V =

[
1 0
0 0

]
,

by which kerE V 	= {0} and hence (4.2) cannot be true. We also like to stress
that therefore, in virtue of Lemma 3.2, n ≤ l + p is a necessary condition for
the existence of a state estimator of the form (3.5), but n+ k ≤ l + p is not.
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5 Sufficient Conditions for Asymptotic Observers

In the following theorem some additional conditions are asked to be satisfied in
order to guarantee that the resulting observer candidate is in fact an asymptotic
observer, i.e., it is a state estimator and additionally satisfies (2.3). To this end, we
utilize an implicit function theorem from [21].

Theorem 5.1 Use the notation from Theorem 4.2 and assume that X = R
n, U =

R
m and Y = R

p. Additionally, let M , N ∈ R
(n+k)×(l+p) be as in (4.12), set

¯N := [In, 0]N and

[
B̂1

B̂2

]
:= M

[
BL BM 0
0 0 Ip

]
, where B̂1 ∈ R

r×(qL+qM+p), B̂2 ∈
R

(n+k−r)×(qL+qM+p). Let

G : Rr × R
n+k−r ×R

m ×R
p → R

n+k−r , (x1, x2, u, y) �→ x2 + B̂2

⎛
⎜⎜⎝

fL

( ¯N (
x1
x2

)
, u, y

)

fM

(
J ¯N (

x1
x2

)
, u, y

)

h(u)− y

⎞
⎟⎟⎠

and Z0 :=
{

(x1, x2, u, y) ∈ R
r × R

n+k−r ×R
m × R

p
∣∣∣ G(x1, x2, u, y) = 0

}
.

If there exist δ > 0, P ∈ R
(l+p)×(n+k) invertible and K ∈ R

(l+p)×(n+k) such
that (4.1) and (4.10) hold and in addition

(a) ∂
∂x2

G(x1, x2, u, y) is invertible for all (x1, x2, u, y) ∈ Z0,

(b) there exists ω ∈ C ([0,∞)→ (0,∞)) nondecreasing with
∫ ∞

0

dt

ω(t)
= ∞ such that

∀ (x1, x2, u, y) ∈ Z0 :
∥∥∥∥
(

∂
∂x2

G(x1, x2, u, y)
)−1

∥∥∥∥
∥∥∥ ∂

∂(x1,u,y)
G(x1, x2, u, y)

∥∥∥ ≤ ω(‖x2‖),

(c) Z0 is connected,

(d) fM is locally Lipschitz continuous in the first variable,

(5.1)

then with L1 ∈ R
l×k , L2 ∈ R

p×k such that
[

0 L1
0 L2

]
= P−�K H the system (3.5)

is an asymptotic observer for (3.1).

Proof Since (3.5) is a state estimator for (3.1) by Theorem 4.2, it remains
to show that (2.3) is satisfied. To this end, let I ⊆ R be an open interval,
t0 ∈ I , and (x, u, y, z, d) ∈ C (I → R

n × R
m × R

p × R
n × R

k) such that

(x, u, y) ∈ B(3.1) and
((

z
d

)
,
(
u
y

)
, z
)
∈ B(3.5). Recall that B = [BL,BM ] and
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f (x, u, y) =
(

fL(x,u,y)
fM(Jx,u,y)

)
. Now assume Ex(t0) = Ez(t0) and recall the equations

d
dt Ex(t) = Ax(t) + Bf (x(t), u(t), y(t)),

y(t) = Cx(t) + h(u(t)),

d
dt Ez(t) = Az(t)+ Bf (z(t), u(t), y(t))+ L1d(t),

0 = Cz(t)− y(t)+ h(u(t))+ L2d(t).

This is equivalent to

d
dt E

(
x(t)

0

)
= A

(
x(t)

0

)
+
[
B 0
0 Ip

](
f (x(t), u(t), y(t))

h(u(t))− y(t)

)
(5.2)

and

d
dt E

(
z(t)

d(t)

)
= A

(
z(t)

d(t)

)
+
[
B 0
0 Ip

](
f (x(t), u(t), y(t))

h(u(t))− y(t)

)
.

Let
(

x1(t)
x2(t)

)
= N −1

(
x(t)

0

)
and

(
z1(t)
z2(t)

)
= N −1

(
z(t)
d(t)

)
. Application of transfor-

mations (4.11) to (5.2) gives

[
Ir 0
0 0

](
ẋ1(t)

ẋ2(t)

)
=
[
Ar 0
0 In+k−r

](
x1(t)

x2(t)

)
+
[
B̂1

B̂2

](
f ( ¯N (

x1(t)
x2(t)

)
, u(t), y(t))

h(u(t))− y(t)

)

or, equivalently,

ẋ1(t) = Arx1(t)+ B̂1

(
f ( ¯N (

x1(t)
x2(t)

)
, u(t), y(t))

h(u(t))− y(t)

)

0 = x2(t)+ B̂2

(
f ( ¯N (

x1(t)
x2(t)

)
, u(t), y(t))

h(u(t))− y(t)

)

︸ ︷︷ ︸
=G(x1(t),x2(t),u(t),y(t))

with ¯N := [In, 0]N and M
[
B 0
0 Ip

]
=
[

B̂1

B̂2

]
.

Since (5.1) (a)–(c) hold, the global implicit function theorem in [21, Cor. 5.3]
ensures the existence of a unique continuous map g : Rr × R

m × R
p → R

n+k−r
such that G(x1, g(x1, u, y), u, y) = 0 for all (x1, u, y) ∈ R

r×R
m×R

p, and hence
x2(t) = g(x1(t), u(t), y(t)) for all t ∈ I . Thus x1 solves the ordinary differential
equation

ẋ1(t) = Arx1(t)+ B̂1

(
f ( ¯N (

x1(t)
g(x1(t),u(t),y(t))

)
, u(t), y(t))

h(u(t))− y(t)

)
(5.3)
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with initial value x1(t0) for all t ∈ I ; and z1(t) solves the same ODE with same
initial value z1(t0) = x1(t0). This can be seen as follows: Ex(t0) = Ez(t0) implies

E
(

x(t0)
0

)
= E

(
z(t0)
d(t0)

)
, and the transformation (4.11) gives

E

(
x(t0)

0

)
=M−1

[
Ir 0

0 0

]
N −1

(
x(t0)

0

)
=M−1

[
Ir 0

0 0

](
x1(t0)

x2(t0)

)
=M−1

(
x1(t0)

0

)
,

E

(
z(t0)

d(t0)

)
=M−1

[
Ir 0

0 0

]
N −1

(
z(t0)

d(t0)

)
=M−1

[
Ir 0

0 0

](
z1(t0)

z2(t0)

)
=M−1

(
z1(t0)

0

)
,

which implies x1(t0) = z1(t0).
Furthermore, g(x1, u, y) is differentiable, which follows from the properties of

G: Let v = (x1, u, y) and write G(x1, g(v), u, y) = G̃(v, g(v)), then taking the
derivative yields

d

dv
G̃(v, g(v)) = ∂

∂v
G̃(v, g(v)) + ∂

∂g
G̃(v, g(v))g′(v) = 0

⇒ g′(v) = −
(
∂G̃(v, g(v))

∂g

)−1 (
∂G̃(v, g(v))

∂v

)
,

which is well defined by assumption. Hence g(x1, u, y) is in particular locally
Lipschitz. Since fL is globally Lipschitz in the first variable by (3.2) and fM

is locally Lipschitz in the first variable by assumption (5.1) (d), (x1, u, y) �→
f
( ¯N (

x1(t)
g(x1(t),u(t),y(t))

)
, u(t), y(t)

)
is locally Lipschitz in the first variable and

therefore the solution of (5.3) is unique by the Picard–Lindelöf theorem, see e.g. [28,
Thm. 4.17]; this implies z1(t) = x1(t) for all t ∈ I . Furthermore,

x2(t) = g(x1(t), u(t), y(t)) = g(z1(t), u(t), y(t)) = z2(t)

for all t ∈ I , and hence (3.5) is an observer for (3.1). Combining this with the fact
that (3.5) is already a state estimator, (3.5) is an asymptotic observer for (3.1). �


6 Examples

We present some instructive examples to illustrate Theorems 4.1, 4.2 and 5.1. Note
that the inequality (4.1) does not have unique solutions P and K and hence the
resulting state estimator is just one possible choice. The first example illustrates
Theorem 4.1.
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Example 6.1 Consider the DAE

d
dt

⎡
⎢⎢⎢⎣

1 0
1 1
0 0
0 1

⎤
⎥⎥⎥⎦

(
x1(t)

x2(t)

)
=

⎡
⎢⎢⎢⎣

0 −3
−2 0

1 −2
0 0

⎤
⎥⎥⎥⎦

(
x1(t)

x2(t)

)
+

⎡
⎢⎢⎢⎣

0 2
1 −1
0 1
1 0

⎤
⎥⎥⎥⎦

(
sin(x1(t)− x2(t))

x2(t)+ exp(x2(t))

)
,

y(t) =
[
1 −1

](
x1(t)

x2(t)

)
.

(6.1)

Choosing F = [1,−1] the Lipschitz condition (3.2) is satisfied as
∥∥fL(x)− fL(x̂)

∥∥ = ‖ sin(x1 − x2)− sin(x̂1 − x̂2)‖

≤ ∥∥(x1 − x2)− (x̂1 − x̂2)
∥∥ =

∥∥∥∥∥∥
[
1 −1

](
x1 − x̂1

x2 − x̂2

)∥∥∥∥∥∥

for all x, x̂ ∈ X = R
2. The monotonicity condition (3.3) is satisfied with Θ =

IqM = 1, μ = 2 and J = [0, 1] since for all x, z ∈ X̂ = JX = R we have

(z− x)
(
fM(z)− fM(x)

) = (z− x)
(
z+ exp(z)− x − exp(x)

)

= (z− x)2 + (z− x)
(
exp(z)− exp(x)

)
︸ ︷︷ ︸

≥0

≥ μ

2
(z− x)2.

To satisfy the conditions of Theorem 4.1 we choose k = 2. A straightforward
computation yields that conditions (4.1) and (4.2) are satisfied with the following
matrices P ∈ R

(4+1)×(2+2), K ∈ R
(2+2)×(2+2), L1 ∈ R

4×2 and L2 ∈ R
1×2 on

the subspace V ∗[[E ,0],[A ,B]] with δ = 1:

P = 1
10

⎡
⎢⎢⎢⎢⎢⎣

2 −2 0 0
0 0 0 0
0 0 0 0
−2 3 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, K = 1
5

⎡
⎢⎢⎢⎣

∗ ∗ 4 10
∗ ∗ −4 −10
∗ ∗ 0 0
∗ ∗ 0 0

⎤
⎥⎥⎥⎦ ,

[
L1

L2

]
=

⎡
⎢⎢⎢⎢⎢⎣

4 10
1 9
9 4
0 0
2 1

⎤
⎥⎥⎥⎥⎥⎦

, V ∗[[E ,0],[A ,B]] = im

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
5 −4 0
−11 9 0

0 0 1
−2 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then Theorem 4.1 implies that a state estimator for (6.1) is given by

d
dt

⎡
⎢⎢⎢⎢⎢⎣

1 0

1 1

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝z1(t)

z2(t)

⎞
⎠ =

⎡
⎢⎢⎢⎢⎢⎣

0 −3

−2 0

1 −2

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝z1(t)

z2(t)

⎞
⎠+

⎡
⎢⎢⎢⎢⎢⎣

0 2

1 −1

0 1

1 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝ sin(z1(t)− z2(t))

z2(t)+ exp(z2(t))

⎞
⎠+

⎡
⎢⎢⎢⎢⎢⎣

4 10

1 9

9 4

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎝d1(t)

d2(t)

⎞
⎠

0 =
[
1 −1

]⎛⎝z1(t)

z2(t)

⎞
⎠− y(t) +

[
2 1
]⎛⎝d1(t)

d2(t)

⎞
⎠

(6.2)

Note, that L2 is not invertible and thus the state estimator cannot be reformulated
as a Luenberger type observer. Further, n + k < l + p and therefore the pencil
sE − A is not square and hence in particular not regular; thus (4.10) (b) cannot
be satisfied. In addition, for F and J in the present example, condition (4.10) (e)
does not hold (and is independent of k), thus Theorem 4.2 is not applicable here.
A closer investigation reveals that for k = l + p − n inequality (4.2) cannot be
satisfied. We like to emphasize that Q <V ∗[[E ,0],[A ,B]]

0 but Q < 0 does not hold

on R
n+k+qL+qM = R

6.

The next example illustrates Theorem 4.2.

Example 6.2 We consider the DAE

d
dt

[
1 −1

0 0

](
x1(t)

x2(t)

)
=
[
−1 0

0 1

](
x1(t)

x2(t)

)
+
[

2 −1

−1 1

](
sin
(
x1(t)+ x2(t)

)

x1(t)+ x2(t)+ exp(x1(t)+ x2(t))

)
,

y(t) =
[
1 1
](x1(t)

x2(t)

)
.

(6.3)

Similar to Example 6.1 it can be shown that the monotonicity condition (3.3) is
satisfied for fM(x) = x + exp(x) with J = [1, 1], Θ = 1 and μ = 2; the Lipschitz
condition (3.2) is satisfied for fL(x1, x2) = sin(x1 + x2) with F = [1, 1].
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Choosing k= 1 a straightforward computation yields that conditions (4.1) and
(4.10) (a) are satisfied with δ = 1.5, the following matrices P,K ∈ R

(2+1)×(2+1),
L1 ∈ R

2×1 and L2 ∈ R
1×1 = R and subspaces V ∗[[E ,0],[A ,B]],V ∗[E ,A ] and W ∗

[E ,A ]:

P = 1
10

⎡
⎢⎣

1 −1 0
1 17 0
0 0 17

⎤
⎥⎦ , K = 1

10

⎡
⎢⎣
∗ ∗ 8
∗ ∗ −134
∗ ∗ 17

⎤
⎥⎦ ,

[
L1

L2

]
=
⎡
⎢⎣

15
−7
1

⎤
⎥⎦ ,

V ∗[[E ,0],[A ,B]] = im

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
−1 −1 0
0 0 1
−7 −8 1

⎤
⎥⎥⎥⎥⎥⎦

, V ∗[E ,A ] = im

⎡
⎢⎣

8
−7
−1

⎤
⎥⎦ , W ∗

[E ,A ] = im

⎡
⎢⎣

1 0
1 0
0 1

⎤
⎥⎦ .

Conditions (4.10) (b)–(e) are satisfied as follows:

(b) det(sE−A ) 	= 0 and, using [2, Prop. 2.2.9], the index of sE−A is ν = k∗ = 1,
where k∗ is from Def. 2.4;

(c) this holds since GL = [1/15, 1/15]� and thus ‖FGL‖ < 1;
(d) JGM is invertible since GM = −[1/15, 1/15]� and λmax(Γ ) = −15 < 2 =

μ;
(e) this condition is satisfied with e.g. α = 1 since F = J , and

α‖JGL‖
1− ‖FGL‖

⎛
⎝
√

max{0, λmax(S)}
μ− λmax(Γ )

+ ‖(Γ − μIqM )−1(Θ̃� − μIqM )‖
⎞
⎠ = 19

221
< 1.

Then Theorem 4.2 implies that a state estimator for system (6.3) is given by

d
dt

[
1 −1

0 0

](
z1(t)

z2(t)

)
=
[
−1 0

0 1

](
z1(t)

z2(t)

)
+
[

2 −1

−1 1

](
sin
(
z1(t)+ z2(t)

)

z1(t)+ z2(t)+ exp(z1(t)+ z2(t))

)

+
[

15

−7

]
d(t),

0 =
[
1 1
](

z1(t)

z2(t)

)
− y(t)+ d(t).

(6.4)

Straightforward calculations show that conditions (4.10) (a)–(e) are satisfied, but
condition (4.2) is violated; thus, Theorem 4.1 is not applicable for k = l+p−n = 1.
The matrix L2 is invertible and hence the state estimator (6.4) can be transformed
as a standard Luenberger type observer. We emphasize that Q < 0 does not hold on
R

5, i.e., the matrix inequality (4.1) on the subspace V ∗[[E ,0],[A ,B]] ⊆ R
5 is a weaker

condition.
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−
+

R

L

+−
q= g(v)

Fig. 2 Nonlinear RLC circuit

The last example is an electric circuit where monotone nonlinearities occur,
which is taken from [35].

Example 6.3 Consider the electric circuit depicted in Fig. 2, where a DC source
with voltage ρ is connected in series to a linear resistor with resistance R, a
linear inductor with inductance L and a nonlinear capacitor with the nonlinear
characteristic

q = g(v) = (v − v0)
3 − (v − v0)+ q0, (6.5)

where q is the electric charge and v is the voltage over the capacitor.
Using the magnetic flux φ in the inductor, the circuit admits the charge-flux

description

q̇(t) = 1

L
φ(t),

φ̇(t) = −R

L
φ(t)− v(t)+ ρ(t).

(6.6)

We scale the variables q =C q̃, φ =Vs φ̃, v =V ṽ (where s, V and C denote the SI
units for seconds, Volt and Coulomb, resp.) in order to make them dimensionless.
For simulation purposes we set ρ = ρ0 = 2 V (i.e. ρ trivially satisfies
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condition (3.2)), R = 1 Ω and L = 0.5 H, q̃0 = ṽ0 = 1. Then with (x1, x2, x3)
� =(

q̃ − q̃0, φ̃, ṽ − ṽ0

)�
the circuit equations (6.5) and (6.6) can be written as the DAE

d
dt

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦

⎛
⎜⎝
x1(t)

x2(t)

x3(t)

⎞
⎟⎠ =

⎡
⎢⎣

0 2 0
0 −2 −1
−1 0 −1

⎤
⎥⎦

⎛
⎜⎝
x1(t)

x2(t)

x3(t)

⎞
⎟⎠+

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦
(

1
x3(t)

3

)

y(t) =
[
1 0 −1

]
⎛
⎜⎝
x1(t)

x2(t)

x3(t)

⎞
⎟⎠ ,

(6.7)

where the output is taken as the difference q(t)− v(t). Now, similar to the previous
examples, a straightforward computation shows that Theorem 4.2 is applicable and
yields parameters for a state estimator for (6.7), which has the form

d
dt

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦

⎛
⎜⎝
z1(t)

z2(t)

z3(t)

⎞
⎟⎠ =

⎡
⎢⎣

0 2 0
0 −2 −1
−1 0 −1

⎤
⎥⎦

⎛
⎜⎝
z1(t)

z2(t)

z3(t)

⎞
⎟⎠+

⎡
⎢⎣

0 0
1 0
0 1

⎤
⎥⎦
(

1
z3

3(t)

)
+
⎡
⎢⎣
−1
5
5

⎤
⎥⎦ d(t)

0 =
[
1 0 −1

]
⎛
⎜⎝
z1(t)

z2(t)

z3(t)

⎞
⎟⎠− y(t)+ 4d(t).

(6.8)

Note that since L2 = 4 is invertible, the given state estimator can be reformulated
as an observer of Luenberger type with gain matrix L = L1L

−1
2 . As before we

emphasize that Q < 0 is not satisfied on R
6.

Note that this example also satisfies the assumptions of Theorem 4.1 with k = 0,
i.e., the system copy itself serves as a state estimator (no innovation terms d are
present).

7 Comparison with the Literature

We compare the results found in [5, 15, 20, 29, 44] to the results in the present
paper. In [29, Thm. 2.1] a way to construct an asymptotic observer of Luenberger
type is presented. In the works [15, 20] reduced-order observer designs for non-
square nonlinear DAEs are presented. An essential difference to Theorems 4.1, 4.2
and 5.1 is the space on which the LMIs are considered. While in [15, 20, 29] the
LMI has to hold on the whole space R

n̄ for some n̄ ∈ N, the inequalities stated in
the present paper as well as the inequalities stated in [5, Thm. III.1] only have to
be satisfied on a certain subspace where the solutions evolve in. While solving the
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LMIs stated in [15, 20, 29] on the entire space R
n̄ is a much stronger condition, an

advantage of this is that it can be solved numerically with little effort.
The LMI stated in [15] is similar to (4.1) and has to hold on R

a+qL , where a ≤ n

is the observer’s order (a = n corresponds to a full-order observer comparable to
the state estimator in the present work), and qL is as in the present paper. Hence, the
dimension of the space where the LMI has to be satisfied scales with the observer’s
order and the range of the Lipschitz nonlinearity. Similarly, the matrix inequal-
ity (4.1) in the present paper (in the case qM = 0) is asked to hold on a subspace
of Rn+k+qL with dimension at most n + k + qL − rk[C,L2]. Therefore, the more
independent information from the output is available, the smaller the dimension of
the subspace V ∗[[E ,0],[A ,B]] is. We stress that the detectability condition as identified
in [15, Prop. 2] is implicitly encoded in the LMI (4.1) when qL = 0 and qM = 0, cf.
also [5, Lem. III.2]. More precisely, a certain (behavioral) detectability of the linear
part is a necessary condition for (4.1) to hold, since it is stated independent of the
specific nonlinearities, which only need to satisfy (3.2) and (3.3), resp.

Another difference to [5, 15, 29] is that the nonlinearity has to satisfy a Lipschitz
condition of the form (3.2), and the nonlinearity f ∈ C 1(Rr → R

r ) in [20] has to
satisfy the generalized monotonicity condition f ′(s)+f ′(s)� ≥ μIr for all s ∈ R

r ,
which is less general than condition (3.3), cf. [26]. In the present paper we allow
the function f = (fL

fM

)
to be a combination of a function fL satisfying (3.2) and a

function fM satisfying (3.3). Therefore the presented theorems cover a larger class
of systems. In the work [44], the Lipschitz condition on the nonlinearity is avoided.
However, the results of this paper are restricted to a class of DAE systems, for
which a certain transformation is feasible, that regularizes the system by introducing
the derivative of the output in the differential equation for the state. Then classical
Luenberger observer theory is applied to the resulting ODE system.

The work [29] considers square systems only, while in Theorems 4.1, 4.2 and 5.1
we allow for any rectangular systems with n 	= l. Therefore, the observer design
presented in the present paper is a considerable generalization of the work [29].

Compared to [5, Thm. III.1], we may observe that in this work the invertibility
of a matrix consisting of system parameters and the gain matrices L2 and L3 is
required. This condition as well as the rank condition is comparable to the regularity
condition (4.10) (b) in the present paper. However, in the present paper we do
not state explicit conditions on the gains, which are unknown beforehand and
constructed out of the solution of (4.1). Hence only the solution matrices P and K
are required to meet certain conditions.

8 Computational Aspects

The sufficient conditions for the existence of a state estimator/asymptotic observer
stated in Theorems 4.1, 4.2 and 5.1 need to be satisfied at the same time, in each
of them. Hence it might be difficult to develop a computational procedure for
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the construction of a state estimator based on these results, in particular since the
subspaces V ∗[[E ,0][A ,B]], V ∗[E ,A ] and W ∗

[E ,A ] depend on the solutions P and K

of (4.1). The state estimators for the examples given in Sect. 6 are constructed using
“trial and error” rather than a systematic numerical procedure. The development of
such a numerical method will be the topic of future research.

Nevertheless, the theorems are helpful tools in examining if an alleged observer
candidate is a state estimator for a given system. To this end, we may set K H =
P�L̂ with given L̂. Then A = Â+ L̂ and the subspace to which (4.1) is restricted
is independent of its solutions and hence (4.1) can be rewritten as a LMI on the
space R

n∗ , where n∗ = dimV ∗[[E ,0],[A ,B]]. This LMI can be solved numerically
stable by standard MATLAB toolboxes like YALMIP [27] and PENLAB [17]. For
other algorithmic approaches see e.g. the tutorial paper [38].
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References

1. Åslund, J., Frisk, E.: An observer for non-linear differential-algebraic systems. Automatica
42(6), 959–965 (2006)

2. Berger, T.: On differential-algebraic control systems. Ph.D. Thesis, Institut für Mathematik,
Technische Universität Ilmenau, Universitätsverlag Ilmenau (2014)

3. Berger, T.: Controlled invariance for nonlinear differential-algebraic systems. Automatica 64,
226–233 (2016)

4. Berger, T.: The zero dynamics form for nonlinear differential-algebraic systems. IEEE Trans.
Autom. Control 62(8), 4131–4137 (2017)

5. Berger, T.: On observers for nonlinear differential-algebraic systems. IEEE Trans. Autom.
Control 64(5), 2150–2157 (2019)

6. Berger, T., Reis, T.: Observers and dynamic controllers for linear differential-algebraic systems.
SIAM J. Control Optim. 55(6), 3564–3591 (2017)

7. Berger, T., Reis, T.: ODE observers for DAE systems. IMA J. Math. Control Inf. 36, 1375–1393
(2019)

8. Berger, T., Trenn, S.: The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal.
Appl. 33(2), 336–368 (2012)

9. Berger, T., Trenn, S.: Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J.
Matrix Anal. Appl. 34(1), 94–101 (2013)

10. Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils.
Linear Algebra Appl. 436(10), 4052–4069 (2012)

11. Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized state-space observers for chaotic
synchronization and secure communication. IEEE Trans. Circuits Syst. I: Fundam. Theory
Appl. 49(3), 345–349 (2002)

12. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. North-Holland, Amsterdam (1989)

13. Campbell, S.L.: Singular Systems of Differential Equations II. Pitman, New York (1982)
14. Corradini, M.L., Cristofaro, A., Pettinari, S.: Design of robust fault detection filters for linear

descriptor systems using sliding-mode observers. IFAC Proc. Vol. 45(13), 778–783 (2012)
15. Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE

Trans. Autom. Control 53(11), 2627–2633 (2008)



288 T. Berger and L. Lanza

16. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart
(1998)
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Abstract We investigate the implicit Euler discretization for linear-quadratic opti-
mal control problems with index two DAEs. There is a discrepancy between the
necessary conditions of problems with higher index DAEs and their discretizations,
since the necessary conditions of the continuous problem coincide with the neces-
sary conditions of the index reduced problem. This implicit index reduction does not
occur for the discretized problem. Thus, the respective switching functions cannot
be related. The discrepancy is overcome by reformulating the discretized problem,
which yields an approximation of the index reduced problem with suitable necessary
conditions. If the switching function has a certain structure, such that the optimal
control is of bang–bang type, we can show that the controls converge with an order
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1 Introduction

We consider the optimal control problem

(OCP-DAE) Minimize

subject to

f
(
x, y, u

)

ẋ(t) = A(t) x(t) + B(t) y(t)+ C(t) u(t), a.e. in
[
0, 1

]
,

0 = D(t) x(t), in
[
0, 1

]
,

Ξ x(0) = a,

u(t) ∈ U, a.e. in
[
0, 1

]
,

with the objective function

f
(
x, y, u

) := 1

2
x(1)�Qx(1)+ q� x(1)

+
1∫

0

1

2
x(t)� P(t) x(t)+ p(t)� x(t)+ r(t)� y(t)+ g(t)� u(t) dt,

and the set of admissible controls U := {
u ∈ R

nu | bl ≤ u ≤ bu
}
. Using the

techniques developed in [7, 8] and [22, 24] we aim to derive error estimates for
the implicit Euler discretization of (OCP-DAE).

Convergence of approximations for non-linear problems has been analyzed in
[9, 11–13, 17, 18, 20, 21, 23, 24, 29]. Herein, [17, 21] apply the Euler discretization
for problems with mixed control-state constraints. Malanowski et al. [21] obtain
convergence of order one for Lipschitz continuous optimal controls in the L∞-
norm, whereas [17] achieve convergence rate of 1

p
in the Lp-norm for optimal

controls of bounded variation. In [9, 11, 12], problems with pure state constraints
of order one are discussed. Linear convergence in the L2-norm and convergence
of order 2

3 in the L∞-norm is obtained in [11, 12]. In [9], linear convergence in
the L∞-norm is achieved. [13, 18, 29] analyze Runge–Kutta methods for problems
with set constraints on the control. A second order Runge–Kutta approximation
is used in [13, 29] in order to prove convergence of order two. Convergence of
arbitrary order is obtained in [18] with a Runge–Kutta scheme of appropriate
order and a sufficiently smooth optimal control. In [20], convergence for the
value of the objective function is achieved through a control parametrization
enhancing technique. Convergence of approximations for optimal control problems
with differential-algebraic equations (DAEs) has been studied in [22–24]. Linear
convergence for problems with index one DAEs was proven in [23], using the
general convergence theory provided in [28]. In [22, 24], problems with index two
DAEs and mixed control-state constraints are considered, and linear convergence is
achieved.

Optimal control problems with discontinuous controls have been considered in
[3, 4, 6–8, 26, 27, 30]. Herein, [8, 26, 30] study linear problems. Convergence of
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order one in the L1-norm, and of order 1
2 in the L2-norm for optimal controls of

bang–bang type is proven in [8]. A controllability assumption is exploited in [26, 30]
in order to obtain convergence of an order depending on the controllability index.
In [3, 4, 7, 27], linear quadratic systems are analyzed. Herein, [7] achieve results
similar to [8], whereas [4] augment a L1 control cost depending on a parameter in
order to obtain linear convergence for an optimal control of bang-zero-bang type.
In [5, 6], discretizations for nonlinear problems with linearly appearing control and
bang–bang solutions are examined.

The dynamic behavior of systems in process engineering, electric circuits,
and mechanical multi-body systems is often modeled by DAEs, see [10, 16,
Example 1.1.20], and the references therein. Moreover, DAEs can be generated by
discretizing a 2D Stokes equation (cf. [16, Example 1.1.12, 3.1.14]). Linear systems
can be obtained by linearizing a non-linear system around a reference solution.

Throughout the paper we use the following notation: By R
n we denote the n-

dimensional Euclidean space with the norm |·|. We equip the space of n×m-matrices

A with the spectral norm ‖A‖ and denote the unit matrix by E. Ln
p

([
0, 1

])
is the

Banach space of measurable vector functions v : [0, 1
]→ R

n with

‖v‖p =
⎛
⎜⎝

1∫

0

∣∣v(t)∣∣p dt

⎞
⎟⎠

1
p

<∞

for 1 ≤ p < ∞, and Ln∞
([

0, 1
])

is the Banach space of measurable, essentially

bounded vector functions v : [0, 1
]→ R

n with

‖v‖∞ = max
1≤j≤n ess sup

t∈[0,1]

∣∣vj (t)
∣∣ <∞.

By Wn
1,p

([
0, 1

]) =
{
z ∈ Ln

p

([
0, 1

]) | ż ∈ Ln
p

([
0, 1

])}
we denote the Sobolev

spaces of absolutely continuous functions z : [0, 1
]→ R

n equipped with the norm

‖z‖1,p =
(
‖z‖pp + ‖ż‖pp

) 1
p

for 1 ≤ p <∞, ‖z‖1,∞ = max
{‖z‖∞ , ‖ż‖∞

}
.

We denote by BV n
([

0, 1
])

the space of vector functions v : [0, 1
] → R

n of

bounded variation and by
τ2∨
τ1

v the total variation of v on [τ1, τ2] ⊆ [
0, 1

]
for

τ1 < τ2.
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Definition 1.1 A feasible trajectory
(
x̂, ŷ, û

)
is called minimizer for (OCP-DAE),

if

f
(
x̂, ŷ, û

) ≤ f
(
x, y, u

)

for all admissible
(
x, y, u

)
.

For N ∈ N we consider the equidistant mesh GN := {0 = t0 < t1 < . . . < tN = 1}
of the interval

[
0, 1

]
with mesh size h := 1

N
and ti := i h for i = 0, 1, . . . , N .

Using the backwards difference approximation

x ′h(ti) :=
xh(ti)− xh(ti−1)

h
(1.1)

we obtain the implicit Euler discretization of (OCP-DAE)

(DOCP-DAE)

Minimize

subject to

fh
(
xh, yh, uh

)
x′h(ti) = A(ti) xh(ti)+ B(ti) yh(ti)+ C(ti) uh(ti), i = 1, . . . , N,

0 = D(ti) xh(ti), i = 0, 1, . . . , N,

Ξ xh(t0) = a,

uh(ti) ∈ U, i = 1, . . . , N,

with the discrete objective function

fh

(
xh, yh, uh

) := 1

2
xh(tN )�Qxh(tN )+ q� xh(tN )

+ h

N∑
i=1

1

2
xh(ti )

� P (ti) xh(ti)+ p(ti )
� xh(ti )+ r(ti )

� yh(ti )+ g(ti )
� uh(ti ).

We denote by Ln
p,h

([
0, 1

]) ⊂ Ln
p

([
0, 1

])
the space of piecewise constant

functions
vh :

[
0, 1

]→ R
n with

vh ∈ Ln
p

([
0, 1

])
, vh(t) = vh(ti ), t ∈ (ti−1, ti

]
, i = 1, . . . , N

equipped with the norm ‖·‖p. Wn
1,p,h

([
0, 1

]) ⊂ Wn
1,p

([
0, 1

])
equipped with the

norm ‖·‖1,p is the space of continuous, piecewise linear functions zh :
[
0, 1

]→ R
n

with

zh ∈ Wn
1,p

([
0, 1

])
, zh(t) = z′h(ti)

(
t − ti−1

)+ zh(ti−1), t ∈ (ti−1, ti
]
, i = 1, . . . ,N.
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If (OCP-DAE) has a solution
(
x̂, ŷ, û

) ∈ W
nx

1,∞
([

0, 1
]) × L

ny∞
([

0, 1
]) ×

L
nu∞
([

0, 1
])

and certain smoothness and regularity assumptions hold (compare

(A1’) below), then there exist multipliers λ ∈ W
nx

1,∞
([

0, 1
])

, μ ∈ L
ny∞
([

0, 1
])

satisfying the necessary conditions

λ̇(t) = −A(t)� λ(t)−
(
Ḋ(t)+D(t)A(t)

)�
μ(t)− P (t) x̂(t)− p(t) a.e. in

[
0, 1

]

0 = r(t)+ B(t)� λ(t)+ (D(t) B(t)
)�

μ(t) a.e. in
[
0, 1

]

λ(1) = Qx̂(1)+ q

0 ≤
[
g(t)� + λ(t)� C(t)+ μ(t)�D(t) C(t)

] (
u− û(t)

)
, for all u ∈ U, a.e. in

[
0, 1

]
.

Furthermore, if there exists a solution
(
x̂h, ŷh, ûh

) ∈ W
nx

1,∞,h

([
0, 1

]) ×
L

ny

∞,h

([
0, 1

]) × L
nu

∞,h

([
0, 1

])
of (DOCP-DAE), then the discrete necessary

conditions read as

λ̃′h(ti ) = −A(ti )
� λ̃h(ti−1)−D(ti)

� μ̃h(ti−1)− P (ti) x̂h(ti )− p(ti ) i = 1, . . . , N

0 = r(ti )+ B(ti)
� λ̃h(ti−1) i = 1, . . . , N

λ̃h(tN ) = Q x̂h(tN )+ q

0 ≤
[
g(ti )

� + λ̃h(ti−1)
� C(ti)

] (
u− ûh(ti )

)
, for all u ∈ U i = 1, . . . , N

for λ̃h ∈ W
nx

1,∞,h

([
0, 1

])
, μ̃h ∈ L

ny

∞,h

([
0, 1

])
. Note that the continuous necessary

conditions have the switching function

g(t)� + λ(t)� C(t)+ μ(t)�D(t) C(t), t ∈ [0, 1
]
, (1.2)

whereas the discrete necessary conditions have the switching function

g(ti )
� + λ̃h(ti−1)

� C(ti), i = 1, . . . , N. (1.3)

The switching functions are essential in our analysis, since they determine the struc-
ture of the optimal controls. However, we are not able to relate the continuous (1.2)
and the discrete (1.3) switching functions, since there exists a discrepancy between
the respective necessary conditions (cf. [22, 24]).

This paper is organized as follows: In Sect. 2, we consider an optimal con-
trol problem subject to an explicit differential equation and a general implicit
approximation of that problem. We derive error estimates for optimal values of
these problems (Theorem 3.1) in Sect. 3. In Sect. 4, we derive error estimates for
optimal controls of bounded variation (Theorem 4.1) and in Sect. 5 we improve
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these estimates by assuming a structural stability property for the switching function
(Theorem 5.1). In Sect. 6, we obtain the main result of this paper by reducing the
index of the DAE in problem (OCP-DAE), which yields an optimal control problem
subject to an explicit differential equation. Similarly, we transform the discretized
problem and get an approximation of the reduced optimal control problem, which
belongs to the general discrete problem class in Sect. 2. For the reduced problems we
then obtain error estimates by applying the results of Sects. 4 and 5 (Theorem 6.1).
An example is provided in Sect. 7.

2 Optimal Control Problem and Approximation

Throughout Sects. 2–5, we consider the optimal control problem

(OCP) Minimize
subject to

f (x, u)

ẋ(t) = A(t) x(t)+ B(t) u(t), a.e. in
[
0, 1

]
,

x(0) = a,

u(t) ∈ U, a.e. in
[
0, 1

]
,

with the linear-quadratic cost functional

f (x, u) := 1

2
x(1)�Qx(1)+ q� x(1)+

1∫

0

1

2
x(t)� P(t) x(t)+ p(t)� x(t)+ r(t)� u(t) dt,

and the bounded set U := {
u ∈ R

nu | bl ≤ u ≤ bu
}
. As an (implicit) approxima-

tion of (OCP) we consider

(DOCP) Minimize
subject to

fh (xh, uh)

x ′h(ti) = Ah(ti) xh(ti)+ Bh(ti ) uh(ti), i = 1, . . . , N,

xh(t0) = a,

uh(ti) ∈ U, i = 1, . . . , N,

with the backwards difference approximation (1.1), and the objective function

fh (xh, uh) := 1

2
xh(tN )�Qh xh(tN )+ q�h xh(tN )

+ h

N∑
i=1

1

2
xh(ti)

� Ph(ti) xh(ti)+ ph(ti )
� xh(ti)+ rh(ti )

� uh(ti ).
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Implicit discretization schemes have been investigated in, e.g., [3, 5]. We assume
the following smoothness and approximation conditions:

(A1) Let q ∈ R
nx , let the matrix valued functions A : [0, 1

] → R
nx×nx , B :[

0, 1
] → R

nx×nu , P : [0, 1
] → R

nx×nx and the vector valued functions p :[
0, 1

]→ R
nx , r : [0, 1

] → R
nu be Lipschitz continuous, and let Q,P(t) ∈

R
nx×nx , t ∈ [0, 1

]
, be symmetric and positive semidefinite.

(A2) Let qh ∈ R
nx , Ah ∈ W

nx×nx

1,∞,h

([
0, 1

])
, Bh ∈ W

nx×nu

1,∞,h

([
0, 1

])
, Ph ∈

W
nx×nx

1,∞,h

([
0, 1

])
, ph ∈ W

nx

1,∞,h

([
0, 1

])
, rh ∈ W

nu

1,∞,h

([
0, 1

])
, and

Qh,Ph(ti) ∈ R
nx×nx , i = 1, . . . , N , be symmetric positive semidefinite.

Furthermore, let the following approximation conditions hold

‖A− Ah‖∞ ≤ LA h, ‖B − Bh‖∞ ≤ LB h, ‖P − Ph‖∞ ≤ LP h, ‖Q−Qh‖ ≤ LQ h,

∣∣q − qh
∣∣ ≤ Lq h,

∥∥p − ph

∥∥∞ ≤ Lp h, ‖r − rh‖∞ ≤ Lr h,

where the constants LA,LB,LP ,LQ,Lq,Lp,Lr ≥ 0 are independent of h.

We denote the set of admissible controls for (OCP) and (DOCP) by

U :=
{
u ∈ Lnu∞

([
0, 1

]) | u(t) ∈ U a.e. in
[
0, 1

]}
,

Uh :=
{
u ∈ L

nu

∞,h

([
0, 1

]) | u(ti) ∈ U, i = 1, . . . , N

}
,

and the feasible set of (OCP) and (DOCP) by

F :=

⎧⎪⎪⎨
⎪⎪⎩
(x, u) ∈ X

∣∣∣∣∣∣∣

ẋ(t) = A(t) x(t)+ B(t) u(t), a.e. in
[
0, 1

]
,

x(0) = a,

u ∈ U

⎫⎪⎪⎬
⎪⎪⎭

,

Fh :=

⎧⎪⎪⎨
⎪⎪⎩
(xh, uh) ∈ Xh

∣∣∣∣∣∣∣

x ′h(ti) = Ah(ti) xh(ti)+ Bh(ti ) uh(ti), i = 1, . . . , N,

xh(t0) = a,

uh ∈ Uh

⎫⎪⎪⎬
⎪⎪⎭

,

where X := W
nx

1,∞
([

0, 1
]) × L

nu∞
([

0, 1
])

and Xh := W
nx

1,∞,h

([
0, 1

]) ×
L

nu

∞,h

([
0, 1

])
. The set F is closed, convex, nonempty, and bounded, and the cost

functional f is continuous and convex. Thus, there exists a minimizer
(
x̂, û

) ∈
W

nx

1,2

([
0, 1

]) × L
nu

2

([
0, 1

])
of (OCP), according to [14, Chapter II, Proposition

1.2]. Moreover, since U is bounded, it holds
(
x̂, û

) ∈ X. In addition, the
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compactness of Fh and the convexity and continuity of fh imply that there exists
a local minimizer

(
x̂h, ûh

) ∈ Xh for (DOCP).
Now, we show that feasible trajectories and the objective functions of (OCP)

and (DOCP) satisfy uniform Lipschitz conditions. To this end, let (x, u) ∈ F and
(xh, uh) ∈ Fh be arbitrary. Since U and Uh are bounded, there exists a constant
cu ≥ 0 such that ‖u‖∞ ≤ cu, ‖uh‖∞ ≤ cu. Additionally, using

x(t) = ΦA(t)

⎛
⎜⎝a +

t∫

0

ΦA(τ)
−1 B(τ) u(τ ) dτ

⎞
⎟⎠ , t ∈ [0, 1

]
,

(2.1)

xh(ti) = ΨAh(ti )

⎛
⎝a + h

i∑
k=1

ΨAh(tk−1)
−1 Bh(tk) uh(tk)

⎞
⎠ , i = 1, . . . , N,

(2.2)

where ΦA (·) and ΨAh (·) denote the solutions of

Φ̇(t) = A(t)Φ(t), a.e. in
[
0, 1

]
, Φ(0) = E, (2.3)

Ψ ′(ti ) = Ah(ti) Ψ (ti), i = 1, . . . , N, Ψ (t0) = E, (2.4)

and xh(t) = x ′h(ti )
(
t − ti−1

)+xh(ti−1) =
(
Ah(ti) xh(ti)+ Bh(ti) uh(ti )

) (
t − ti−1

)
+ xh(ti−1) for t ∈ (ti−1, ti

]
, i = 1, . . . , N , we obtain a constant cx ≥ 0 such that

‖x‖∞ ≤ cx , ‖xh‖∞ ≤ cx . Thus, exploiting the differential and difference equation
yields a constant Lx ≥ 0 with ‖ẋ‖∞ ≤ Lx ,

∥∥x ′h
∥∥∞ ≤ Lx . Summarizing, we have

‖u‖∞ ≤ cu, ‖x‖∞ ≤ cx, ‖ẋ‖∞ ≤ Lx, for all (x, u) ∈ F,

‖uh‖∞ ≤ cu, ‖xh‖∞ ≤ cx,
∥∥x ′h

∥∥∞ ≤ Lx, for all (xh, uh) ∈ Fh,
(2.5)

where cu, cx, Lx are independent of (x, u), (xh, uh), and h. Hence, the admissible
trajectories for F and Fh are uniformly Lipschitz continuous with Lipschitz modulus
Lx . Next, we derive Lipschitz conditions for the cost functionals f and fh. To this
end, let (x, u) , (z, v) ∈ F ∪ Fh be arbitrary. Then,

∣∣f (x, u) − f (z, v)
∣∣ ≤

∣∣∣∣
1

2
x(1)�Qx(1)− 1

2
z(1)�Qz(1)

∣∣∣∣+
∣∣∣q� (x(1)− z(1)

)∣∣∣

+
1∫

0

∣∣∣∣
1

2
x(t)� P(t) x(t)− 1

2
z(t)� P(t) z(t)

∣∣∣∣
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+
∣∣∣p(t)� (x(t)− z(t)

)∣∣∣+
∣∣∣r(t)� (u(t)− v(t)

)∣∣∣ dt

≤
(
cx ‖Q‖ +

∣∣q∣∣+ cx ‖P‖∞ +
∥∥p∥∥∞

)
‖x − z‖∞ + ‖r‖∞ ‖u− v‖1 .

In the same way, we find a bound for fh, hence we obtain

∣∣f (x, u)− f (z, v)
∣∣ ≤ Lf

(‖x − z‖∞ + ‖u− v‖1
)
, (2.6)

∣∣fh (x, u)− fh (z, v)
∣∣ ≤ Lf

(‖x − z‖∞ + ‖u− v‖1
)
,

where Lf ≥ 0 is independent of h.

Let
(
x̂, û

) ∈ W
nx

1,∞
([

0, 1
]) × L

nu∞
([

0, 1
])

and
(
x̂h, ûh

) ∈ W
nx

1,∞,h

([
0, 1

]) ×
L

nu

∞,h

([
0, 1

])
be minimizers of (OCP) and (DOCP), respectively. Then, there

exists a multipliers λ ∈ W
nx

1,∞
([

0, 1
])

and λh ∈ W
nx

1,∞,h

([
0, 1

])
such that the

following necessary conditions hold:

λ̇(t) = −A(t)� λ(t)− P(t) x̂(t)− p(t) in
[
0, 1

]

λ(1) = Qx̂(1)+ q

0 ≤
[
r(t)� + λ(t)� B(t)

] (
u− û(t)

)
for all u ∈ U, a.e. in

[
0, 1

]

and

λh(ti )
′ = −Ah(ti )

� λh(ti−1)− Ph(ti ) x̂h(ti )− ph(ti ) i = 1, . . . , N

λh(tN ) = Qh x̂h(tN )+ qh

0 ≤
[
rh(ti )

� + λh(ti−1)
� Bh(ti )

] (
u− ûh(ti )

)
, for all u ∈ U, i = 1, . . . , N.

We denote the respective switching functions by

σ(t) := r(t)+ B(t)� λ(t), t ∈ [0, 1
]
, (2.7)

σh(ti ) := rh(ti)+ Bh(ti )
� λh(ti−1), i = 1, . . . , N. (2.8)

Since r, rh, B,Bh, λ, λh are Lipschitz continuous, the switching functions σ and σh

are also Lipschitz continuous. In addition, using the local minimum principles

0 ≤
[
r(t)� + λ(t)� B(t)

] (
u− û(t)

)
, a.e. in

[
0, 1

]
(2.9)

0 ≤
[
rh(ti)

� + λh(ti−1)
� Bh(ti )

] (
u− ûh(t)

)
, i = 1, . . . , N (2.10)
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for all u ∈ U , we obtain the well known structure of the optimal controls

ûj (t) =

⎧⎪⎪⎨
⎪⎪⎩

bl,j , if σj (t) > 0

bu,j , if σj (t) < 0

undetermined, if σj (t) = 0

, ûh,j (ti ) =

⎧⎪⎪⎨
⎪⎪⎩

bl,j , if σh,j (ti ) > 0

bu,j , if σh,j (ti ) < 0

undetermined, if σh,j (ti ) = 0

.

(2.11)

3 Error Analysis for Optimal Values

In this section, we aim to derive error estimates of order one for optimal values.
To this end, we assume the control u to have bounded variation, and obtain the
following:

Theorem 3.1 Let (A1), (A2) be satisfied and let
(
x̂, û

) ∈ F be a minimizer of

(OCP) with û ∈ BV nu

([
0, 1

])
. Then, for all solutions

(
x̂h, ûh

) ∈ Fh of (DOCP) it

holds
∣∣∣fh

(
x̂h, ûh

)− f (x̂, û)

∣∣∣ ≤ c h,

where c ≥ 0 is independent of h and the choice of
(
x̂h, ûh

) ∈ Fh.

In order to prove Theorem 3.1, we require some intermediary results. First, we show

the following estimation result for feasible (x, u) ∈ F with u ∈ BV nu

([
0, 1

])
:

Lemma 3.2 Let (A1), (A2) be satisfied and let (x, u) ∈ F with u ∈ BV nu

([
0, 1

])
.

Then, there exists (xh, uh) ∈ Fh such that

‖u− uh‖1 ≤ h

1∨
0

u, ‖u− uh‖2 ≤
√
h

1∨
0

u, ‖x − xh‖∞ ≤ c h,

where c ≥ 0 is independent of h.

Proof For arbitrary (x, u) ∈ F, where u ∈ BV nu

([
0, 1

])
, let the piecewise

constant function uh be defined by uh(t) := u(ti) for t ∈ (
ti−1, ti

]
and i =

1, . . . , N . This implies uh ∈ Uh. For i = 1, . . . , N and t ∈ (
ti−1, ti

]
it holds∣∣u(t)− u(ti)

∣∣ ≤ ∣∣u(t)− u(ti−1)
∣∣+ ∣∣u(ti)− u(ti−1)

∣∣ ≤∨ti
ti−1

u. Thus, we have

‖u− uh‖1 =
N∑
i=1

ti∫

ti−1

∣∣u(t)− u(ti)
∣∣ dt ≤

N∑
i=1

ti∫

ti−1

ti∨
ti−1

u dt ≤ h

1∨
0

u,
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and for the L2-norm we obtain

‖u− uh‖2
2 =

N∑
i=1

ti∫

ti−1

∣∣u(t)− u(ti)
∣∣2 dt ≤

N∑
i=1

ti∫

ti−1

⎛
⎝

ti∨
ti−1

u

⎞
⎠

2

dt ≤ h

⎛
⎝

1∨
0

u

⎞
⎠

2

.

For the chosen uh, let xh satisfy the difference equation

x ′h(ti) = Ah(ti) xh(ti)+ Bh(ti) uh(ti ), i = 1, . . . , N, xh(t0) = a,

hence (xh, uh) ∈ Fh. Furthermore, let ΦA : [0, 1
] → R

nx×nx and ΨAh :[
0, 1

] → R
nx×nx solve (2.3) and (2.4), respectively. According to [22, Lemma

2.4.7], assumption (A2) implies

∥∥ΦA − ΨAh

∥∥∞ ≤ LΦ h

for some LΦ ≥ 0 independent of h. Moreover, (2.1) and (2.2) hold, and therefore
for t ∈ (ti−1, ti

]
, i = 1, . . . , N

∣∣x(t)− xh(t)
∣∣ ≤ ∣∣x(t)− xh(ti)

∣∣+ ∣∣xh(ti)− xh(t)
∣∣ ≤

⎛
⎝LΦ |a| + c1 + c2

1∨
0

u+ Lx

⎞
⎠ h,

which proves the assertion. �

Note that in many applications the optimal control û is piecewise Lipschitz

continuous, which implies û ∈ BV nu

([
0, 1

])
.

Lemma 3.3 Let (A1), (A2) be satisfied and let (xh, uh) ∈ Fh. Then, there exists a
function z such that (z, uh) ∈ F and

‖z− xh‖∞ ≤ c h,

where c ≥ 0 is independent of h and the choice of (xh, uh) ∈ Fh.

Proof Since (xh, uh) ∈ Fh, we have uh ∈ Uh ⊂ U. Let z satisfy the initial value
problem

ż(t) = A(t) z(t)+ B(t) uh(t), a.e. in
[
0, 1

]
, z(0) = a,

where uh is piecewise constant. Thus, (z, uh) ∈ F and furthermore, xh solves the
perturbed differential equation

ẋh(t) = A(t) xh(t)+ B(t) uh(t)+ ω(t), a.e. in
[
0, 1

]
, xh(0) = a,
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with perturbation ω(t) := Ah(ti ) xh(ti ) − A(t) xh(t) +
(
Bh(ti)− B(t)

)
uh(t) for

t ∈ (ti−1, ti ] and i = 1, . . . , N . Since xh is uniformly Lipschitz continuous, uh is
uniformly bounded, and (A2) is satisfied, there exists c1 ≥ 0 independent of h and
(xh, uh) such that

∣∣ω(t)
∣∣ ≤ c1 h for almost every t ∈ [0, 1

]
. Hence, using (2.1) we

find a constant c2 ≥ 0 such that

‖z − xh‖∞ ≤ c2 ‖ω‖∞ ≤ c1 c2 h,

which completes the proof. �

Next, we show that the functions f and fh satisfy a linear error estimate for all
(xh, uh) ∈ Fh.

Lemma 3.4 Let (A1), (A2) be satisfied and let (xh, uh) ∈ Fh. Then, we have

∣∣f (xh, uh)− fh(xh, uh)
∣∣ ≤ c h,

where c ≥ 0 is independent of h and the choice of (xh, uh) ∈ Fh.

Proof We recall (compare (2.5)) there exist constants cx, cu, Lx ≥ 0 independent
of h such that ‖xh‖∞ ≤ cx , ‖uh‖∞ ≤ cu, and ‖ẋh‖∞ ≤ Lx for all (xh, uh) ∈ Fh.
Moreover, it holds

f
(
xh, uh

)− fh(xh, uh) = 1

2
xh(tN )�

(
Q−Qh

)
xh(tN )+ (q − qh

)�
xh(tN )

+
N∑
i=1

ti∫

ti−1

1

2
xh(t)

� P(t) xh(t)− 1

2
xh(ti)

� Ph(ti) xh(ti )

+ p(t)� xh(t)− p(ti )
� xh(ti)+

(
r(t)− rh(ti )

)�
uh(ti) dt.

Since we have

ξ(t) := xh(t)
� P(t) xh(t)− xh(ti )

� Ph(ti ) xh(ti ) =
(
xh(t)+ xh(ti )

)�
P(t)

(
xh(t)− xh(ti )

)

+ xh(ti )
� (P(t)− Ph(ti )

)
xh(ti ),

using (2.5) and (A2) we obtain
∣∣ξ(t)∣∣ ≤ 2 cx ‖P‖∞ Lx h + c2

x LP h. Similarly we
find bounds for the remaining terms, which proves the assertion. �

Now, using the results of Lemma 3.2, 3.3, and 3.4, we are able to prove Theorem 3.1:

Proof of Theorem 3.1 By Lemma 3.2, there exists (xh, uh) ∈ Fh such that∥∥xh − x̂
∥∥∞ ≤ c1 h,

∥∥uh − û
∥∥

1 ≤ c2 h, where c1, c2 ≥ 0 are independent of h.
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Then, for an arbitrary solution
(
x̂h, ûh

) ∈ Fh of (DOCP) it holds fh

(
x̂h, ûh

) ≤
fh (xh, uh). This implies

0 ≤ fh (xh, uh)− fh

(
x̂h, ûh

) = fh (xh, uh)− f
(
x̂, û

)+ f
(
x̂, û

)− fh

(
x̂h, ûh

)
,

and thus

fh

(
x̂h, ûh

)− f
(
x̂, û

) ≤ fh (xh, uh)− f
(
x̂, û

)

= fh (xh, uh)− f (xh, uh)+ f (xh, uh)− f
(
x̂, û

)
.

By Lemma 3.4 and (2.6) this yields fh

(
x̂h, ûh

) − f
(
x̂, û

) ≤ c3 h + Lf c4 h.

Furthermore, Lemma 3.3 implies the existence of ẑ such that
(
ẑ, ûh

) ∈ F and∥∥ẑ− x̂h
∥∥∞ ≤ c5 h. Additionally, we have f

(
x̂, û

) ≤ f
(
ẑ, ûh

)
, and therefore

0 ≤ f
(
ẑ, ûh

)− f
(
x̂, û

) = f
(
ẑ, ûh

)− fh

(
x̂h, ûh

)+ fh

(
x̂h, ûh

)− f
(
x̂, û

)
.

This gives us

f
(
x̂, û

)− fh

(
x̂h, ûh

) ≤ f
(
ẑ, ûh

)− fh

(
x̂h, ûh

)

= f
(
ẑ, ûh

)− f
(
x̂h, ûh

)+ f
(
x̂h, ûh

)− fh

(
x̂h, ûh

)
.

Using (2.6) and Lemma 3.4 we obtain f
(
x̂, û

) − fh

(
x̂h, ûh

) ≤ Lf c5 h + c3 h.

Hence,

∣∣∣f (x̂, û)− fh

(
x̂h, ûh

)∣∣∣ ≤ (Lf (c4 + c5)+ c3
)
h,

which completes the proof. �

Note that the constant c in Theorem 3.1 is independent of h, but depends on the

total variation of û (compare Lemma 3.2).

4 Error Analysis for Problems with Bang–Bang Solutions

In the sequel, we introduce conditions which guarantee that the optimal control is
of bang–bang type (cf. [7, 8]). The control u is of bang–bang type, if its values
are on the boundary of the control set U for almost every t ∈ [

0, 1
]
, that is,

uj (t) ∈
{
bl,j , bu,j

}
for all j = 1, . . . , nu and almost every t ∈ [0, 1

]
. The isolated

time points where some component of u switches from the upper bound to the
lower bound or vice versa are called switching times. The structure of the optimal
control is determined by the switching function (compare (2.11)). Additionally, the
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following conditions imply that an optimality condition is satisfied for (OCP) (see
Theorem 4.2).

(A3) There exists a solution
(
x̂, û

) ∈ F of (OCP) such that the set Σ of zeros of
the components σj , j = 1, . . . , nu, of the switching function is finite and
0, 1 /∈ Σ , i.e., we have Σ = {s1, . . . , s"} with 0 < s1 < . . . < s" < 1.

Note that, if 0, 1 /∈ Σ holds, for sufficiently small h we have t2 < s1 and s" <

tN−1. Let J (si) :=
{
1 ≤ j ≤ nu | σj (si ) = 0

}
denote the set of active indices of the

switching function. In order to obtain a bang–bang type optimal control, we require
the switching function to satisfy a certain stability condition around its zeros:

(A4) There exist ς > 0, ' > 0 such that
∣∣σj (τ )

∣∣ ≥ ς |τ − si | for all i = 1, . . . , ",
j ∈ J (si), and every τ ∈ [si − ', si + '

]
, and σj changes sign in si , i.e.,

σj (si − ') σj (si + ') < 0.

With these assumptions we are able to obtain the following error estimates:

Theorem 4.1 Let
(
x̂, û

)
be a minimizer for (OCP) and let (A1)–(A4) be satisfied.

Then, for sufficiently small h, any solution
(
x̂h, ûh

) ∈ Fh of (DOCP), the associated
multiplier, and the switching function can be estimated by

∥∥ûh − û
∥∥

1 ≤ c
√
h,

∥∥x̂h − x̂
∥∥∞ ≤ c

√
h,

‖λh − λ‖∞ ≤ c
√
h, max

t∈[t1,tN ]

∣∣σh(t)− σ(t)
∣∣ ≤ c

√
h,

(4.1)

where c ≥ 0 is independent of h. Moreover, there exists a constant κ independent of
h such that for sufficiently small h any discrete optimal control ûh coincides with û

except on a set of measure smaller than κ
√
h.

The rest of Sect. 4 is dedicated to the proof of this result. To this end, we first
introduce the following optimality result for solutions of (OCP). In [7, Theorem
4.2]) it was shown, that assumptions (A3) and (A4) are sufficient for a quadratic
minorant for optimal values of (OCP) in a sufficiently small L1-neighborhood of
the optimal control. Additionally, for trajectories outside that neighborhood a linear
minorant is satisfied:

Theorem 4.2 ([7, Theorem 4.2]) Let
(
x̂, û

)
be a minimizer for (OCP). If (A1),

(A3), and (A4) are satisfied, then there exist constants α, β, ε̃ > 0 such that for
every (x, u) ∈ F it holds,

f (x, u)− f
(
x̂, û

) ≥ α
(∥∥u− û

∥∥2
1 +

∥∥x − x̂
∥∥2

1,1

)
≥ α

∥∥u− û
∥∥2

1 if
∥∥u− û

∥∥
1 ≤ 2β ε̃,

f (x, u)− f
(
x̂, û

) ≥ α
(∥∥u− û

∥∥
1 +

∥∥x − x̂
∥∥

1,1

)
≥ α

∥∥u− û
∥∥

1 if
∥∥u− û

∥∥
1 > 2β ε̃.
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Theorem 4.2 implies uniqueness of
(
x̂, û

)
for (OCP) (cf. [15, Theorem 2.2]), since

for any solution (x, u) ∈ F we have f (x, u) = f
(
x̂, û

)
. Hence, 0 = ∥∥u− û

∥∥
1 +∥∥x − x̂

∥∥
1,1, which implies (x, u) = (x̂, û).

Next, we prove that, if the switching function satisfies an error estimate of order
hν for a constant 0 < ν ≤ 1, then the optimal controls coincide (are of bang–bang
type) except on a set of measure of order hν . If the error estimate is satisfied for
ν > 1, then the set has measure of order h (cf. [7, Theorem 4.5]). To that end, for
0 < ε ≤ ' we define

I (ε) :=
⋃

1≤i≤"
[si − ε, si + ε] .

For j = 1, . . . , nu we denote the set of zeros of the component σj by Σj :={
τ1, . . . , τ"j

}
⊂ Σ with 0 < τ1 < . . . < τ"j < 1, and

I−j (ε) :=
⋃

i=1,...,"j

[τi − ε, τi + ε] , I+j (ε) := [0, 1
] \ I−j (ε) (4.2)

Since σj is Lipschitz continuous, (A4) implies

0 < σj,min = min
t∈I+j (')

∣∣σj (t)
∣∣ , (4.3)

where I+j (') denotes the closure of I+j (').

Theorem 4.3 Let assumptions (A1)–(A4) be satisfied. Suppose for sufficiently
small h it holds

max
t∈[t1,tN ]

∣∣σh(t)− σ(t)
∣∣ ≤ cσ hν (4.4)

with constant cσ ≥ 0 independent of h and ν > 0. Then, there exists a constant
κ ≥ 0 independent of h such that for sufficiently small h any discrete optimal control
ûh coincides with û except on a set of measure smaller than κ hν for 0 < ν ≤ 1 and
κ h for ν > 1.

Proof Let j ∈ {1, . . . , nu} be arbitrary, and let σj,min be defined by (4.3). Then, for
sufficiently small h, (4.4) implies

∣∣σh,j (t)
∣∣ ≥ ∣∣σj (t)

∣∣− cσ hν ≥ σj,min − cσ hν ≥ 1

2
σj,min > 0 for all t ∈ I+j (').
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Moreover, for i = 1, . . . , "j , τi ∈ Σj , and τ ∈ [τi − ', τi + '
]
, according to (A4)

and (4.4), it holds

∣∣σh,j (τ )
∣∣ ≥ ∣∣σj (τ )

∣∣− cσ hν ≥ ς |τ − τi | − cσ hν. (4.5)

Hence, we have σh,j (τ ) 	= 0, if |τ − τi | > cσ
ς

hν. For each zero τi ∈ Σj we aim to

construct natural numbers k−i , k+i ∈ {1, . . . , N} , k−i < k+i such that

τi ∈
[
tk−

i
, tk+

i

]
⊂ [τi − ', τi + '

]
, |τ − τi | > cσ

ς
hν for all τ ∈

[
τi − ', tk−

i

]
∪
[
tk+

i
, τi + '

]
.

To this end, for sufficiently small h we choose numbers ι ∈ {2, . . . , N − 2} and
k ∈ N such that ι− k, ι+ k + 1 ∈ {1, . . . , N}, τi ∈

[
tι, tι+1

]
, and

cσ

ς
hν−1 < k ≤ cσ

ς
hν−1 + 1. (4.6)

We denote k−i := ι− k, k+i := ι+ k + 1. Then, it holds

tk+i
− tk−i

= (2 k + 1) h ≤
(

2

(
cσ

ς
hν−1 + 1

)
+ 1

)
h =

(
2
cσ

ς
hν−1 + 3

)
h.

(4.7)

For 0 < ν ≤ 1 we conclude

(
2
cσ

ς
hν−1 + 3

)
h =

(
2
cσ

ς
+ 3 h1−ν

)
hν ≤

(
2
cσ

ς
+ 3

)
hν,

and for ν > 1
(

2
cσ

ς
hν−1 + 3

)
h ≤

(
2
cσ

ς
+ 3

)
h.

For sufficiently small h this implies τi ∈
[
tk−i

, tk+i

]
⊂ [τi − ', τi + '

]
. In addition,

with (4.6) we obtain

tk+i
− τi = tι+k+1 − τi ≥ tι+k+1 − tι+1 = k h >

cσ

ς
hν−1 h = cσ

ς
hν,

τi − tk−i
= τi − tι−k ≥ tι − tι−k = k h >

cσ

ς
hν−1 h = cσ

ς
hν.
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Thus, |τ − τi | > cσ
ς

hν for all τ ∈
[
τi − ', tk−i

]
∪
[
tk+i

, τi + '
]
. Using this and (4.5)

we conclude
∣∣σh,j (t)

∣∣ > 0 on
[
τi − ', tk−i

]
∪
[
tk+i

, τi + '
]
. We denote

I−j :=
⋃

i=1,...,"j

[
tk−i

, tk+i

]
⊂ I−j ('), I+j :=

[
0, 1

] \ I−j ⊃ I+j ('). (4.8)

We have shown that

∣∣σh,j (t)
∣∣ > 0 on I+j ⊃ I+j ('), (4.9)

which implies ûh,j (t) = ûj (t) for all t ∈ I+j for any discrete optimal control ûh.

Hence, the components of the optimal controls coincide except on I−j , which has

measure smaller than "j

(
2 cσ

ς
+ 3

)
hν for 0 < ν ≤ 1 and "j

(
2 cσ

ς
+ 3

)
h for

ν > 1. This proves the assertion for κ :=
nu∑
j=1

"j

(
2 cσ

ς
+ 3

)
. �


Now, we are able to prove the main result of this section:

Proof of Theorem 4.1 First, we derive Hölder type estimates for the optimal
controls using the minorants in Theorem 4.2 (cf. [1, 25]). Let

(
x̂, û

)
be a solution of

(OCP) and let
(
x̂h, ûh

)
be a solution of (DOCP). According to Lemma 3.3, there

exists ẑ with
(
ẑ, ûh

) ∈ F and

∥∥ẑ− x̂h
∥∥∞ ≤ c1 h (4.10)

for c1 ≥ 0 independent of h. Then, by Theorem 4.2, for α > 0 independent of h we
have,

f
(
ẑ, ûh

)− f
(
x̂, û

) ≥ α
(∥∥ûh − û

∥∥2
1 +

∥∥ẑ− x̂
∥∥2

1,1

)
if
∥∥ûh − û

∥∥
1 ≤ 2 β ε̃,

(4.11)

f
(
ẑ, ûh

)− f
(
x̂, û

) ≥ α
(∥∥ûh − û

∥∥
1 +

∥∥ẑ− x̂
∥∥

1,1

)
if
∥∥ûh − û

∥∥
1 > 2 β ε̃.

(4.12)

Using (2.6), Lemma 3.4, and Theorem 3.1 we obtain

f
(
ẑ, ûh

)− f
(
x̂, û

) = f
(
ẑ, ûh

)− f
(
x̂h, ûh

)+ f
(
x̂h, ûh

)

− fh

(
x̂h, ûh

)+ fh

(
x̂h, ûh

)− f
(
x̂, û

)

≤ Lf

∥∥ẑ− x̂h
∥∥∞ + c2 h+ c3 h ≤ c4 h.
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Then, (4.11) and (4.12) imply

∥∥ûh − û
∥∥

1 ≤ c5 max
{
h,
√
h
}
, (4.13)

and using the Sobolev inequality ‖v‖∞ ≤ c6 ‖v‖1,1 for all v ∈ Wn
1,1

([
0, 1

])
we

obtain

∥∥ẑ− x̂
∥∥∞ ≤ c6

∥∥ẑ− x̂
∥∥

1,1 ≤ c7 max
{
h,
√
h
}
. (4.14)

Thus, for sufficiently small h, it holds
∥∥ûh − û

∥∥
1 ≤ 2 β ε̃. Moreover, (4.10)

and (4.14) yield

∥∥x̂h − x̂
∥∥∞ ≤

∥∥x̂h − ẑ
∥∥∞ +

∥∥ẑ− x̂
∥∥∞ ≤ c1 h+ c7

√
h ≤ c8

√
h (4.15)

for sufficiently small h. In conclusion, by (4.13) and (4.15), we obtain the following
error estimates

∥∥ûh − û
∥∥

1 ≤ c1
√
h,

∥∥x̂h − x̂
∥∥∞ ≤ c2

√
h (4.16)

for sufficiently small h. Next, we show the bound for the multipliers. To that end,
we consider the adjoint equations

λ̇(t) = −A(t)� λ(t)− b(t), in
[
0, 1

]
λ(1) = χ,

λ′h(ti) = −Ah(ti)
� λh(ti−1)− bh(ti), i = 1, . . . , N λh(tN ) = χh,

where

b(t) = P(t) x̂(t)+ p(t), t ∈ [0, 1
]

χ = Qx̂(1)+ q,

bh(ti ) = Ph(ti ) x̂h(ti )+ ph(ti), i = 1, . . . , N χh = Qh x̂h(tN )+ qh.

These equations have the solutions

λ(t) =
(
ΦA(t)

�)−1

⎛
⎜⎝ΦA(1)

� χ +
1∫

t

ΦA(τ)
� b(τ) dτ

⎞
⎟⎠ , t ∈ [0, 1

]
,

λh(ti ) =
(
ΨAh(ti )

�)−1

⎛
⎝ΨAh(tN )� χh + h

N∑
k=i+1

ΨAh(tk)
� bh(tk)

⎞
⎠ , i = 1, . . . , N.
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Then, using [22, Lemma 2.4.7], (A2), and (4.16) we find a constant c3 ≥ 0
independent of h such that

‖λh − λ‖∞ ≤ c3
√
h.

This and (A2) immediately imply

max
t∈[t1,tN ]

∣∣σh(t)− σ(t)
∣∣ ≤ c

√
h

for the switching functions defined in (2.7), (2.8) (cf. [8, Theorem 2.3]). Finally,
applying Theorem 4.3 for ν = 1

2 proves the assertion. �


5 Improved Error Estimates

According to (4.9), for j = 1, . . . , nu the component σh,j has no zero in I+j
(see (4.2) and (4.8)), and by (4.4), at least one zero in each interval

[
tk−i

, tk+i

]
. By

slightly strengthening the condition (A4), we can show that the zero in
[
tk−i

, tk+i

]
is

unique. Thus, the optimal controls û and ûh have the same structure.

(A5) Let B, r be differentiable, Ḃ, ṙ be Lipschitz continuous, and for sufficiently
small h let

∥∥∥Ḃ(ti)− B ′h(ti )
∥∥∥ ≤ LB̃ h,

∣∣ṙ(ti)− r ′h(ti)
∣∣ ≤ Lr̃ h

be satisfied for i = 2, . . . , N . Furthermore, there exists ς > 0 such that

min
1≤i≤" min

j∈J (si)

{∣∣σ̇j (si )
∣∣} ≥ 2 ς.

Assumption (A5) allows us to improve the error estimates in Theorem 4.1 to linear
order. In addition, the switching functions have the same structure and the zeros
satisfy a linear error estimate.

Theorem 5.1 Let
(
x̂, û

)
be a minimizer for (OCP) and let (A1)–(A3), (A5) be

satisfied. Then, for sufficiently small h, any solution
(
x̂h, ûh

) ∈ Fh of (DOCP),
the associated multiplier, and the switching function can be estimated by

∥∥ûh − û
∥∥

1 ≤ c h,
∥∥x̂h − x̂

∥∥∞ ≤ c h, ‖λh − λ‖∞ ≤ c h, ‖σh − σ‖∞ ≤ c h,

(5.1)

where c ≥ 0 is independent of h. Moreover, there exist constants κ, ϑ ≥ 0
independent of h such that for sufficiently small h any discrete optimal control ûh
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coincides with û except on a set of measure smaller than κ h, and the switching
functions σ and σh have the same structure, i.e., the components of σh have " zeros
0 < sh,1 < . . . < sh," < 1, which satisfy the estimate

∣∣si − sh,i
∣∣ ≤ ϑ h, i = 1, . . . , ".

Before we prove Theorem 5.1, we first show some results for the switching
functions, which follow from condition (A5).

The derivative λ̇ is Lipschitz continuous, since λ satisfies the adjoint equation

λ̇(t) = −A(t)� λ(t)− P(t) x̂(t)− p(t) in
[
0, 1

]
.

Therefore, (A5) and (2.7) imply that σ̇ is also Lipschitz continuous. Thus, there
exists ' > 0 such that for all i = 1, . . . , " and j ∈ J (si) it holds

∣∣σ̇j (t)
∣∣ ≥ ς on

[
si − ', si + '

]
. (5.2)

Moreover, using the mean value theorem we obtain for all τ ∈ [si − ', si + '
]

∣∣σj (τ )
∣∣ = ∣∣σj (τ )− σj (si )

∣∣ = ∣∣σ̇j (θ)(τ − si )
∣∣ ≥ ς |τ − si | ,

where θ ∈ (τ, si ), if τ ≤ si and θ ∈ (si, τ ), if τ ≥ si . Hence, (A5) implies condition
(A4). Additionally, since it holds σj (si − ') σj (si + ') < 0, i.e., σj changes sign in
si , according to Theorem 4.1, for sufficiently small h it holds σh,j (si − ') σh,j (si +
') < 0. The discrete switching function σh in (2.8) is differentiable on each interval(
ti−1, ti

]
for i = 2, . . . , N with the derivative σ̇h(t) := σh(ti)−σh(ti−1)

h
. In addition,

if (A1)–(A3), and (A5) are satisfied, for sufficiently small h we have the following
error estimate (cf. [8, Theorem 2.6]):

max
t∈[t1,tN ]

∣∣σ̇h(t)− σ̇ (t)
∣∣ ≤ c

√
h, (5.3)

where c ≥ 0 is independent of h. Then, by (5.2) and (5.3), for arbitrary i = 1, . . . , ",
j ∈ J (si), and sufficiently small h it holds

∣∣σ̇h,j (τ )
∣∣ ≥ 1

2
ς on

[
si − ', si + '

]
. (5.4)

Therefore, σh,j is strictly decreasing or increasing on
[
si − ', si + '

]
. Furthermore,

since σh,j (si − ') σh,j (si + ') < 0, we conclude that σh,j has exactly one zero

sh,i in
[
si − ', si + '

]
. Additionally, (4.9) implies sh,i ∈

[
tk−i

, tk+i

]
and by (4.7) for

ν = 1
2 we have

∣∣si − sh,i
∣∣ ≤ ϑ

√
h, j = 1, . . . , " (5.5)
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for a constant ϑ ≥ 0 independent of h. Thus, the discrete switching function σh has
the same structure as σ . This allows us to prove Theorem 5.1.

Proof of Theorem 5.1 Since assumptions (A1)–(A3), and (A5) hold, the discrete
switching function σh has the same structure as σ . Suppose

(
x̂, û

)
is the optimal

solution for (OCP) and
(
x̂h, ûh

)
is the optimal solution for (DOCP). For 0 < ε ≤ '

we denote

Ih(ε) :=
⋃

1≤i≤"

[
sh,i − ε, sh,i + ε

]
,

and for j = 1, . . . , nu we define the set of zeros of σh,j by Σh,j :={
τh,1, . . . , τh,"j

}
with 0 < τh,1 < . . . < τh,"j < 1 and

I−h,j (ε) :=
⋃

i=1,...,"j

[
τh,i − ε, τh,i + ε

]
, I+h,j (ε) :=

[
0, 1

] \ I−h,j (ε)

Since σh,j is Lipschitz continuous, (A5) implies

0 < σh,j,min = min
t∈I+h,j (')

∣∣σh,j (t)
∣∣ , (5.6)

where I+h,j (') denotes the closure of I+h,j ('). Using (4.3) and Theorem 4.1 for
sufficiently small h we obtain

∣∣σh,j (t)
∣∣ ≥ σh,j,min ≥ 1

2
σj,min > 0 on t ∈ I+h,j (').

Additionally, exploiting (5.4) and (5.5) yields

∣∣σ̇h,j (τ )
∣∣ ≥ 1

4
ς on

[
sh,i − ', sh,i + '

]
(5.7)

for sufficiently small h. Thus, for 0 < ε ≤ ' we get

∣∣σh,j (t)
∣∣ ≥ 1

4
ς ε > 0 on

[
sh,i − ', sh,i + '

] \ [sh,i − ε, sh,i + ε
]
.

Choose 0 < ε̄ ≤ ' such that

ε̄ ς ≤ min
1≤j≤nu

σj,min.
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Then, for all j = 1, . . . , nu and every 0 < ε ≤ ε̄ we conclude

1

4
ς ε ≤ ∣∣σh,j (t)

∣∣ on
[
0, 1

] \ Ih(ε). (5.8)

For τh,i ∈ Σh,j we denote

k−h,i(ε) := max
{
ι ∈ N | tι ≤ τh,i − ε

}
, k+h,i(ε) := min

{
ι ∈ N | tι ≥ τh,i + ε

}
,

and define the sets

Υh,j (ε) :=
⋃

1≤i≤"j

{
0 ≤ ι ≤ N | k−h,i(ε) ≤ ι ≤ k+h,i(ε)

}
, Δh,j (ε) :=

⋃
1≤i≤"j

[
tk−h,i (ε)

, tk+h,i (ε)

]
.

Then, it holds tk+h,i (ε)
− tk−h,i (ε)

≤ 2 (ε + h) and the measure of the set Δh,j (ε) is

bounded by 2 "j (ε + h). Moreover, since

[
tk−h,i (ε)

, tk+h,i (ε)

]
⊃ [

sh,i − ε, sh,i + ε
]
,

for every 0 < ε ≤ ε̄ we obtain

1

4
ς ε ≤ ∣∣σh,j (t)

∣∣ on
[
0, 1

] \Δh,j (ε).

Let (xh, uh) ∈ Fh be arbitrary. Then, for all j = 1, . . . , nu and i = 1, . . . , N the
signs of σh,j (ti ) and uh,j (ti)− ûh,j (ti ) coincide, according to the discrete minimum
principle (2.10). Hence, σh,j (ti)

(
uh,j (ti )− ûh,j (ti)

) ≥ 0 and therefore by (5.8) it
holds

Ωh,j := h

N∑
i=1

σh,j (ti )
(
uh,j (ti )− ûh,j (ti )

) ≥ h
∑

i /∈Υh,j (ε)

σh,j (ti )
(
uh,j (ti )− ûh,j (ti )

)

≥ 1

4
ς ε h

∑
i /∈Υh,j (ε)

∣∣uh,j (ti )− ûh,j (ti )
∣∣ .

Furthermore, we have

h
∑

i∈Υh,j

∣∣uh,j (ti)− ûh,j (ti)
∣∣ ≤ max

1≤j≤nu

(
bu,j − bl,j

) ∑
i∈Υh,j

h

≤ max
1≤j≤nu

(
bu,j − bl,j

)
meas

(
Δh,j (ε)

) ≤ γj (ε + h) ,
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where γj := 2 "j max
1≤j≤nu

(
bu,j − bl,j

)
and meas

(
Δh,j (ε)

)
is the measure of

Δh,j (ε). Thus, it holds

Ωh,j ≥ 1

4
ς ε h

N∑
i=1

∣∣uh,j (ti )− ûh,j (ti)
∣∣− 1

4
ς ε γj (ε + h) , j = 1, . . . , nu,

Ωh :=
nu∑
j=1

Ωh,j = h

nu∑
j=1

N∑
i=1

σh,j (ti )
(
uh,j (ti)− ûh,j (ti)

)

≥ 1

4
ς ε h

nu∑
j=1

N∑
i=1

∣∣uh,j (ti)− ûh,j (ti)
∣∣− 1

4
ς ε

nu∑
j=1

γj (ε + h) .

For γ :=
nu∑
j=1

γj we obtain the lower bound Ωh ≥ 1
4 ς ε

(∥∥uh−ûh

∥∥
1 − γ (ε + h)

)
.

Now, we choose uh = vh, where vh(t) := û(ti ) for t ∈ (ti−1, ti
]
, i = 1, . . . , N .

Hence, vh ∈ U and by Lemma 3.2 it holds
∥∥û− vh

∥∥
1 ≤ h

1∨
0

û. According to

Theorem 4.1, this implies

∥∥ûh − vh
∥∥

1 ≤
∥∥ûh − û

∥∥
1 +

∥∥û− vh
∥∥

1 ≤ c
√
h+ h

1∨
0

û ≤ 2 γ ε̄

for sufficiently small h. For ε := 1
2 γ

∥∥ûh − vh
∥∥

1 ≤ ε̄ we get

Ωh ≥ 1

4
ς ε

(∥∥vh − ûh

∥∥
1 − γ (ε + h)

)

= 1

4
ς

1

2 γ

∥∥vh − ûh

∥∥
1

(∥∥vh − ûh

∥∥
1 − γ

(
1

2 γ

∥∥vh − ûh

∥∥
1 + h

))

= ς

16 γ

∥∥vh − ûh

∥∥
1

(∥∥vh − ûh

∥∥
1 − 2 γ h

)
.

Consider the two cases: If
∥∥vh − ûh

∥∥
1 ≤ 4 γ h, then we have a discrete error

estimate of order one. Otherwise, it holds 1
2

∥∥vh − ûh

∥∥
1 > 2 γ h. Thus, we get

Ωh ≥ ς

32 γ

∥∥vh − ûh

∥∥2
1 .

We aim to derive an upper bound for Ωh (cf. [2, 19]) of the form

Ωh ≤ cΩ h
∥∥vh − ûh

∥∥
1 ,
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where the constant cΩ ≥ 0 is independent of h. This would imply

ς

32 γ

∥∥vh − ûh

∥∥2
1 ≤ Ωh ≤ cΩ h

∥∥vh − ûh

∥∥
1 ,

and therefore
∥∥vh − ûh

∥∥
1 ≤ c h for a constant c ≥ 0 independent of h. Hence, we

would also have a discrete error estimate of order one.
We exploit the continuous minimum principle (2.9) for u = ûh to obtain

σ(ti )
� (ûh(ti )− û(ti )

) = σ(ti )
� (ûh(ti )− vh(ti)

) ≥ 0, i = 1, . . . , N.

This yields

Ωh = h

N∑
i=1

σh(ti)
� (vh(ti)− ûh(ti)

)

≤ h

N∑
i=1

σh(ti)
� (vh(ti)− ûh(ti)

)+ h

N∑
i=1

σ(ti)
� (ûh(ti)− vh(ti)

)

= h

N∑
i=1

(
rh(ti)+ Bh(ti)

� λh(ti−1)− r(ti)− B(ti)
� λ(ti )

)� (
vh(ti)− ûh(ti)

)

≤ (Lr + LB ‖λ‖∞
)
h
∥∥vh − ûh

∥∥
1 + h

N∑
i=1

(
λh(ti−1)− λ(ti )

)�
Bh(ti)

(
vh(ti)− ûh(ti)

)

= (Lr + LB ‖λ‖∞
)
h
∥∥vh − ûh

∥∥
1 + h

N∑
i=1

(
λ(ti−1)− λ(ti)

)�
Bh(ti)

(
vh(ti)− ûh(ti)

)

+ h

N∑
i=1

(
λh(ti−1)− λ(ti−1)

)�
Bh(ti)

(
vh(ti)− ûh(ti)

)

≤ (Lr + LB ‖λ‖∞ + Lλ ‖Bh‖∞
)
h
∥∥vh − ûh

∥∥
1 + Ω̃h,

where

Ω̃h := h

N∑
i=1

(
λh(ti−1)− λ(ti−1)

)�
Bh(ti )

(
vh(ti)− ûh(ti)

)
.

It remains to find an upper bound for Ω̃h. Let zh be such that (zh, vh) ∈ Fh, and let
ηh be the associated multiplier, i.e.,

z′h(ti) = Ah(ti) zh(ti )+ Bh(ti ) vh(ti ), i = 1, . . . , N,

zh(t0) = a,
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η′h(ti) = −Ah(ti)
� ηh(ti−1)− Ph(ti ) zh(ti)− ph(ti ), i = 1, . . . , N,

ηh(tN ) = Qh zh(tN )+ qh.

We write Ω̃h = Ω̃1,h + Ω̃2,h with

Ω̃1,h := h

N∑
i=1

(
λh(ti−1)− ηh(ti−1)

)�
Bh(ti)

(
vh(ti )− ûh(ti )

)
,

Ω̃2,h := h

N∑
i=1

(
ηh(ti−1)− λ(ti−1)

)�
Bh(ti)

(
vh(ti)− ûh(ti)

)
.

Analog to the proof of Theorem 4.1, we find a constant c ≥ 0 independent of h

such that
∥∥ηh − λ

∥∥∞ ≤ c h. Hence, we obtain Ω̃2,h ≤ c h ‖Bh‖∞
∥∥vh − ûh

∥∥
1 .

Furthermore, the difference equations and the adjoint equations yield for i =
1, . . . , N

hBh(ti)
(
vh(ti )− ûh(ti )

) = (zh(ti)− zh(ti−1)
)− (x̂h(ti)− x̂h(ti−1)

)

− hAh(ti)
(
zh(ti)− x̂h(ti)

)
,

−hAh(ti)
� (λh(ti−1)− ηh(ti−1)

) = (λh(ti )− λh(ti−1)
)− (ηh(ti )− ηh(ti−1)

)

− hPh(ti)
(
zh(ti)− x̂h(ti )

)
.

This allows us to write Ω̃1,h as

Ω̃1,h = h

N∑
i=1

(
λh(ti−1)− ηh(ti−1)

)�
Bh(ti )

(
vh(ti )− ûh(ti )

)
,

=
N∑
i=1

(
λh(ti−1)− ηh(ti−1)

)� [(
zh(ti )− zh(ti−1)

) − (x̂h(ti )− x̂h(ti−1)
)]

− h

N∑
i=1

(
λh(ti−1)− ηh(ti−1)

)�
Ah(ti )

(
zh(ti )− x̂h(ti )

)

=
N∑
i=1

(
λh(ti−1)− ηh(ti−1)

)� [(
zh(ti )− zh(ti−1)

) − (x̂h(ti )− x̂h(ti−1)
)]

+
N∑
i=1

[(
λh(ti )− λh(ti−1)

)− (ηh(ti )− ηh(ti−1)
)]� (

zh(ti )− x̂h(ti )
)

− h

N∑
i=1

(
zh(ti )− x̂h(ti )

)�
Ph(ti )

(
zh(ti )− x̂h(ti )

)
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= − (λh(t0)− ηh(t0)
)� (

zh(t0)− x̂h(t0)
)+ (λh(tN )− ηh(tN )

)� (
zh(tN )− x̂h(tN )

)

− h

N∑
i=1

(
zh(ti )− x̂h(ti )

)�
Ph(ti )

(
zh(ti )− x̂h(ti )

)

= − (zh(tN )− x̂h(tN )
)�

Qh

(
zh(tN )− x̂h(tN )

)

− h

N∑
i=1

(
zh(ti )− x̂h(ti )

)�
Ph(ti )

(
zh(ti )− x̂h(ti )

)
.

Exploiting the positive definiteness of Qh and Ph(ti) for i = 1, . . . , N gives us
Ω̃1,h ≤ 0. Thus, we obtain

Ω̃h = Ω̃1,h + Ω̃2,h ≤ Ω̃2,h ≤ c h ‖Bh‖∞
∥∥vh − ûh

∥∥
1 .

Finally, we have Ωh ≤ cΩ h
∥∥vh − ûh

∥∥
1 with cΩ ≥ 0 independent of h. This

implies

ς

32 γ

∥∥vh − ûh

∥∥2
1 ≤ Ωh ≤ cΩ h

∥∥vh − ûh

∥∥
1 ,

and therefore dividing by ς
32 γ

∥∥vh − ûh

∥∥
1 yields

∥∥vh − ûh

∥∥
1 ≤ 32 γ cΩ

ς
h. Hence,

we have a linear error estimate for ûh. Analog to the proof of Theorem 4.1, we also
obtain improved error estimates of linear order for x̂h and the associated multiplier
λh. Then, (A5) immediately yields a linear error estimate for the switching function
σh. Finally, by (4.7) for ν = 1, we obtain

∣∣si − sh,i
∣∣ ≤ ϑ h, j = 1, . . . , ",

which completes the proof. �


6 Index Reduction and Error Analysis

In this section, we consider the DAE optimal control problem

(OCP-DAE) Minimize

subject to

f
(
x, y, u

)
ẋ(t ) = A(t) x(t)+ B(t) y(t)+ C(t) u(t), a.e. in

[
0, 1

]
,

0 = D(t) x(t), in
[
0, 1

]
Ξ x(0) = a,

u(t) ∈ U, a.e. in
[
0, 1

]
.
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with the objective function

f
(
x, y, u

) := 1

2
x(1)�Qx(1)+ q� x(1)

+
1∫

0

1

2
x(t)� P(t) x(t)+ p(t)� x(t)+ r(t)� y(t)+ g(t)� u(t) dt,

and the set of admissible controls U := {u ∈ R
nu | bl ≤ u ≤ bu

}
, and assume the

following smoothness and regularity properties:

(A1’) Let q ∈ R
nx , Ξ ∈ R

ny×nx , let the functions A : [0, 1
] → R

nx×nx , B :[
0, 1

]→ R
nx×ny , C : [0, 1

]→ R
nx×nu , P : [0, 1

]→ R
nx×nx , p : [0, 1

]→
R

nx , r : [0, 1
] → R

ny , g : [0, 1
] → R

nu be Lipschitz continuous, and
D : [0, 1

]→ R
ny×nx be differentiable with Lipschitz continuous derivative

Ḋ : [0, 1
] → R

ny×nx , and let the matrices Q,P(t) ∈ R
nx×nx , t ∈ [0, 1

]
,

be symmetric and positive semidefinite. Additionally, let D(t) B(t) be non-
singular for all t ∈ [0, 1

]
with continuous and uniformly bounded inverse,

and let

(
D(0)
Ξ

)
be non-singular.

The admissible set of (OCP-DAE) is closed, convex, nonempty, and bounded,
and the cost functional f is continuous and convex. Thus, by [14, Chapter II,

Proposition 1.2], there exists a minimizer
(
x̂, ŷ, û

) ∈ W
nx

1,2

([
0, 1

])×L
ny

2

([
0, 1

])×
L

nu

2

([
0, 1

])
of (OCP-DAE). Moreover, since U is bounded, it holds

(
x̂, ŷ, û

) ∈
W

nx

1,∞
([

0, 1
])× L

ny∞
([

0, 1
])× L

nu∞
([

0, 1
])

.

With assumption (A1’) we are able to reduce the index of the algebraic equation,
since it holds

0 = D(t) x(t) in
[
0, 1

] ⇔ 0 = d

dt

(
D(t) x(t)

)
a.e. in

[
0, 1

]
, 0 = D(0) x(0)

Thus, we obtain the reduced DAE

ẋ(t) = A(t) x(t) + B(t) y(t)+ C(t) u(t), a.e. in
[
0, 1

]
,

0 =
(
Ḋ(t)+D(t)A(t)

)
x(t)+D(t)B(t) y(t) +D(t)C(t) u(t), a.e. in

[
0, 1

]

D(0) x(0) = 0, Ξ x(0) = a.
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and the associated necessary (and sufficient) conditions

λ̇(t) = −P (t) x̂(t)− p(t)−A(t)� λ(t)−
(
Ḋ(t)+D(t) A(t)

)�
μ(t) in

[
0, 1

]

0 = r(t)+ B(t)� λ(t)+ (D(t) B(t)
)�

μ(t) in
[
0, 1

]

λ(1) = Q x̂(1)+ q

0 ≤
[
g(t)� + λ(t)� C(t)+ μ(t)�D(t) C(t)

] (
u− û(t)

)
, for all u ∈ U, a.e. in

[
0, 1

]
,

which are the same as for (OCP-DAE). Now, we consider the discretized problem

(DOCP-DAE)
Minimize
subject to

fh

(
xh, yh, uh

)
x ′h(ti) = A(ti) xh(ti )+ B(ti) yh(ti )+ C(ti) uh(ti), i = 1, . . . , N,

0 = D(ti) xh(ti ), i = 0, 1, . . . , N,

Ξ xh(t0) = a,

uh(ti) ∈ U, i = 1, . . . , N,

with the discrete objective function

fh

(
xh, yh, uh

) := 1

2
xh(tN )�Qxh(tN )+ q� xh(tN )

+ h

N∑
i=1

1

2
xh(ti )

� P (ti) xh(ti)+ p(ti )
� xh(ti )+ r(ti )

� yh(ti )+ g(ti )
� uh(ti ).

Similarly to the continuous case we are able to reduce the index of the discretized
DAE (cf. [22, 24]), since it holds

0 = D(ti) xh(ti) i = 0, 1, . . . , N

⇔ 0 = D(ti) xh(ti)−D(ti−1) xh(ti−1)

h
i = 1, . . . , N, 0 = D(t0) xh(t0).

Using the difference equation we obtain

xh(ti−1) = xh(ti )−h
(
A(ti) xh(ti )+ B(ti ) yh(ti )+ C(ti) uh(ti)

)
, i = 1, . . . , N,

and therefore for i = 1, . . . , N

0 =
(
D(ti)−D(ti−1)

h
+D(ti−1) A(ti)

)
xh(ti)+D(ti−1) B(ti) yh(ti)+D(ti−1) C(ti ) uh(ti).
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This gives us the reduced system

x ′h(ti ) = A(ti) xh(ti)+ B(ti) yh(ti)+ C(ti) uh(ti), i = 1, . . . , N,

0 =
(

D(ti)−D(ti−1)
h

+D(ti−1) A(ti)
)

xh(ti)

+D(ti−1) B(ti ) yh(ti)+D(ti−1) C(ti) uh(ti ), i = 1, . . . , N,

D(t0) xh(t0) = 0, Ξ xh(t0) = a,

and the associated necessary conditions for i = 1, . . . , N

λ′h(ti ) = −P(ti ) x̂h(ti )− p(ti )− A(ti )
� λh(ti−1)

−
(
D(ti)−D(ti−1)

h
+D(ti−1) A(ti)

)�
μh(ti−1),

0 = r(ti )+ B(ti )
� λh(ti−1)+

(
D(ti−1) B(ti )

)�
μh(ti−1),

λh(tN ) = Q x̂h(tN )+ q,

0 ≤
[
g(ti )

� + λh(ti−1)
� C(ti )+ μh(ti−1)

�D(ti−1) C(ti )
] (

uh − ûh(ti )
)
, for all uh ∈ U.

The continuous and discrete local minimum principles yield the consistent switching
functions (compare (1.2) and (1.3))

σ(t)� := g(t)� + λ(t)� C(t) + μ(t)�D(t) C(t), t ∈ [0, 1
]

(6.1)

σh(ti)
� := g(ti )

� + λh(ti−1)
� C(ti)+ μh(ti−1)

�D(ti−1) C(ti ), i = 1, . . . , N.

In order to apply the above theorems, we require additional assumptions regarding
the continuous switching function in (6.1):

(A3’) There exists a solution
(
x̂, ŷ, û

)
of (OCP-DAE) such that the set Σ of zeros

of the components σj , j = 1, . . . , nu of the switching function is finite and
0, 1 /∈ Σ , i.e., we have Σ = {s1, . . . , s"} with 0 < s1 < . . . < s" < 1.

(A4’) Let J (si) :=
{
1 ≤ j ≤ nu | σj (si ) = 0

}
denote the set of active indices. Let

there exist constants ς > 0, ' > 0 such that
∣∣σj (τ )

∣∣ ≥ ς |τ − si | for all
i = 1, . . . , ", j ∈ J (si), and every τ ∈ [si − ', si + '

]
, and σj changes sign

in si , i.e., σj (si − ') σj (si + ') < 0.
(A5’) Let the derivatives Ḃ : [0, 1

]→ R
nx×ny , Ċ : [0, 1

]→ R
nx×nu , ṙ : [0, 1

]→
R

ny , ġ : [0, 1
]→ R

nu be Lipschitz continuous. Furthermore, let there exist
ς > 0 such that

min
1≤i≤" min

j∈J (si)

{∣∣σ̇j (si )
∣∣} ≥ 2 ς.



320 B. Martens and M. Gerdts

With these assumptions we obtain the main results of this paper

Theorem 6.1 Let
(
x̂, ŷ, û

)
be a minimizer for (OCP-DAE) and let (A1’), (A3’)

hold. If (A4’) is satisfied, then for sufficiently small h, any solution
(
x̂h, ŷh, ûh

)
of (DOCP-DAE), the associated multipliers, and the switching function can be
estimated by

∥∥x̂h − x̂
∥∥∞ ≤ c

√
h,

∥∥ŷh − ŷ
∥∥

1 ≤ c
√
h,

∥∥ûh − û
∥∥

1 ≤ c
√
h,

‖λh − λ‖∞ ≤ c
√
h,

∥∥μh − μ
∥∥∞ ≤ c

√
h, ‖σh − σ‖∞ ≤ c

√
h,

where c ≥ 0 is independent of h. Moreover, there exists a constant κ independent of
h such that for sufficiently small h any discrete optimal control ûh coincides with û

except on a set of measure smaller than κ
√
h.

If (A5’) is satisfied, then for sufficiently small h, any solution
(
x̂h, ŷh, ûh

)
of (DOCP-DAE), the associated multipliers, and the switching function can be
estimated by

∥∥x̂h − x̂
∥∥∞ ≤ c h,

∥∥ŷh − ŷ
∥∥

1 ≤ c h,
∥∥ûh − û

∥∥
1 ≤ c h,

‖λh − λ‖∞ ≤ c h,
∥∥μh − μ

∥∥∞ ≤ c h, ‖σh − σ‖∞ ≤ c h,

where c ≥ 0 is independent of h. Moreover, there exist constants κ, ϑ ≥ 0
independent of h such that for sufficiently small h any discrete optimal control ûh

coincides with û except on a set of measure smaller than κ h, and the switching
functions σ and σh have the same structure, i.e., the components of σh have " zeros
0 < sh,1 < . . . < sh," < 1, which satisfy the estimate

∣∣si − sh,i
∣∣ ≤ ϑ h, i = 1, . . . , ".

Proof In order to apply Theorem 4.1 and 5.1, we need to verify the conditions
(A1)–(A5) using the above assumptions (A1’), (A3’), (A4’), and (A5’).

Clearly, (A1’) implies (A1). Next, we transform (OCP-DAE) and (DOCP-DAE)
such that they are contained in the problem classes (OCP) and (DOCP) in Sect. 2.

Since D(t) B(t) is non-singular for all t ∈ [
0, 1

]
, we are able to solve the

respective algebraic equations for y and μ in order to get

y(·) = − (D(·) B(·))−1
[(

Ḋ(·)+D(·) A(·)
)

x(·)+D(·) C(·) u(·)
]
, (6.2)

μ(·) = −
((

D(·) B(·))−1
)� [

r(·)+ B(·)� λ(·)
]
.
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Note that since B,D, r, λ are Lipschitz continuous, μ is also Lipschitz continuous.
Inserting (6.2) into the differential equation, adjoint equation, and local minimum
principles yields

ẋ(t) = Ã(t) x(t)+ B̃(t) u(t), a.e. in
[
0, 1

]
,

x(0) = ã,

λ̇(t) = −P(t) x̂(t)− p̃(t)− Ã(t)� λ(t), in
[
0, 1

]
,

λ(1) = Qx̂(1)+ q

0 ≤
[
r̃(t)� + λ(t)� B̃(t)

] (
u− û(t)

)
, for all u ∈ U, a.e. in

[
0, 1

]
,

with

Ã(t) :=
(
I − B(t)

(
D(t) B(t)

)−1
D(t)

)
A(t)− B(t)

(
D(t) B(t)

)−1
Ḋ(t)

B̃(t) :=
(
I − B(t)

(
D(t) B(t)

)−1
D(t)

)
C(t)

ã :=
(
D(0)
Ξ

)−1 (
0
a

)

p̃(t)� := p(t)� − r(t)�
(
D(t) B(t)

)−1
(
Ḋ(t)+D(t)A(t)

)
,

r̃(t)� := g(t)� − r(t)�
(
D(t) B(t)

)−1
D(t) C(t).

In addition, we obtain the new objective function

f̃ (x, u) := 1

2
x(1)�Qx(1)+ q� x(1)+

1∫

0

1

2
x(t)� P (t) x(t)+ p̃(t)� x(t)+ r̃(t )� u(t) dt.

Since
(
D(·) B(·))−1

is uniformly bounded, there exists β > 0 such that for all
t ∈ [0, 1

]
we have

∥∥D(t) B(t) d
∥∥ ≥ β ‖d‖ for all d ∈ R

ny . Then, it holds for all
d ∈ R

ny and i = 1, . . . , N

∥∥D(ti−1) B(ti) d
∥∥ ≥ ∥∥D(ti) B(ti ) d

∥∥−
∥∥∥(D(ti) B(ti)−D(ti−1) B(ti )

)
d

∥∥∥ ≥ β

2
‖d‖ ,

if 0 < h ≤ β
2 LD ‖B‖ . Hence, for sufficiently small h the inverse

(
D(ti−1) B(ti )

)−1

exists for i = 1, . . . , N . This allows us to solve the respective algebraic equations



322 B. Martens and M. Gerdts

for yh and μh

yh(ti) = −
(
D(ti−1) B(ti )

)−1
(
D(ti)−D(ti−1)

h
+D(ti−1) A(ti)

)
xh(ti )

− (D(ti−1) B(ti )
)−1

D(ti−1) C(ti) uh(ti ), (6.3)

μh(ti−1) = −
((

D(ti−1) B(ti )
)−1
)� [

r(ti)+ B(ti)
� λh(ti−1)

]

for i = 1, . . . , N , in order to obtain

x ′h(ti ) = Ãh(ti ) xh(ti )+ B̃h(ti ) uh(ti ), i = 1, . . . , N,

xh(t0) = ã,

λ′h(ti ) = −P(ti) x̂h(ti )− p̃h(ti)− Ãh(ti )
� λh(ti−1), i = 1, . . . , N

λh(tN) = Qx̂h(tN )+ q

0 ≤
[
r̃h(ti )

� + λh(ti−1)
� B̃h(ti )

] (
uh − ûh(ti)

)
, for all uh ∈ U, i = 1, . . . , N

with

Ãh(ti ) :=
(
I − B(ti )

(
D(ti−1) B(ti )

)−1
D(ti−1)

)
A(ti)

− B(ti)
(
D(ti−1) B(ti )

)−1 D(ti )−D(ti−1)

h
,

B̃h(ti ) :=
(
I − B(ti )

(
D(ti−1) B(ti )

)−1
D(ti−1)

)
C(ti ),

p̃h(ti )
� := p(ti )

� − r(ti)
� (D(ti−1) B(ti )

)−1
(
D(ti )−D(ti−1)

h
+D(ti−1)A(ti)

)
,

r̃h(ti )
� := g(ti )

� − r(ti)
� (D(ti−1) B(ti )

)−1
D(ti−1) C(ti )

for i = 1, . . . , N , and the discrete objective function

f̃h (xh, uh) := 1

2
xh(tN )�Qxh(tN )+ q� xh(tN )

+ h

N∑
i=1

1

2
xh(ti )

� P(ti ) xh(ti)+ p̃h(ti)
� xh(ti )+ r̃h(ti)

� uh(ti).

Summarizing, we have the reduced optimal control problem
(ROCP)

Minimize
subject to

f̃ (x, u)

ẋ(t) = Ã(t) x(t)+ B̃(t) u(t), a.e. in
[
0, 1

]
,

x(0) = ã,

u(t) ∈ U, a.e. in
[
0, 1

]
,
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and the reduced approximation
(RDOCP)

Minimize
subject to

f̃h (xh, uh)

x ′h(ti ) = Ãh(ti ) xh(ti )+ B̃h(ti) uh(ti), i = 1, . . . , N,

xh(t0) = ã,

uh(ti ) ∈ U, i = 1, . . . , N,

which are contained in the problem classes (OCP) and (DOCP), respectively
(compare Sect. 2). Moreover, these problems have the switching functions

σ̃ (t)� := r̃(t)� + λ(t)� B̃(t), σ̃h(ti)
� := r̃h(ti)

� + λh(ti−1)
� B̃h(ti ).

Note that by (6.1), (6.2), and (6.3) we have σ̃ = σ and σ̃h = σh. Hence, (A3’)–(A5’)
imply the conditions for the switching function in (A3)–(A5).

It remains to verify the smoothness and approximation conditions in (A2) and
(A5) for the system functions in (ROCP) and (RDOCP). Since D and Ḋ are
Lipschitz continuous by (A1’), there exists a constant LD ≥ 0 such that

∥∥D(ti)−D(ti−1)
∥∥ ≤ LD h,

∥∥∥∥Ḋ(ti )− D(ti)−D(ti−1)

h

∥∥∥∥ ≤ LD h, i = 1, . . . , N.

Furthermore, by [22, Lemma A.2],
(
D(·) B(·))−1 and

(
D(ti−1) B(ti )

)−1 are Lips-
chitz continuous. Thus, there exist LÃ,LB̃, Lp̃, Lr̃ ≥ 0 independent of h such that

∥∥∥Ã− Ãh

∥∥∥∞ ≤ L
Ã
h,

∥∥∥B̃ − B̃h

∥∥∥∞ ≤ L
B̃
h,

∥∥p̃ − p̃h

∥∥∞ ≤ Lp̃ h,
∥∥r̃ − r̃h

∥∥∞ ≤ Lr̃ h,

which verifies (A2). For the conditions in (A5), we first verify that the time

derivative of B̃(t) =
(
I − B(t)

(
D(t) B(t)

)−1
D(t)

)
C(t) exists and is Lipschitz

continuous, if (A1’) and (A5’) hold. It remains to show that d
dt

((
D(t) B(t)

)−1
)

exists and is Lipschitz continuous. To this end, we consider for t, t + ε ∈ [0, 1
]
,

ε 	= 0

0 = (D(t + ε) B(t + ε)
) (

D(t + ε) B(t + ε)
)−1 − (D(t) B(t)

) (
D(t) B(t)

)−1

=
[(

D(t + ε) B(t + ε)
)− (D(t) B(t)

)] (
D(t + ε) B(t + ε)

)−1

+ (D(t) B(t)
) [(

D(t + ε) B(t + ε)
)−1 − (D(t) B(t)

)−1
]
,
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which yields

1

ε

[(
D(t + ε) B(t + ε)

)−1 − (D(t) B(t)
)−1
]

(6.4)

= − (D(t) B(t)
)−1 1

ε

[(
D(t + ε) B(t + ε)

)− (D(t) B(t)
)] (

D(t + ε) B(t + ε)
)−1

= − (D(t) B(t)
)−1

1∫

0

d

dt

(
D(t + θ ε)B(t + θ ε)

)
dθ
(
D(t + ε) B(t + ε)

)−1

Since Ḃ, Ḋ exist and are Lipschitz continuous, and
(
D(·) B(·))−1

is Lipschitz
continuous, the limit for ε → 0 on the right hand side exists. Therefore,
d
dt

((
D(t) B(t)

)−1
)

exists and is Lipschitz continuous. Thus, ˙̃B exists and is

Lipschitz continuous, and analog we conclude that ˙̃r exists and is Lipschitz
continuous. Next, according to (6.4), for i ∈ {2, . . . , N} we get

1

h

[(
D(ti−1) B(ti )

)−1 − (D(ti−2) B(ti−1)
)−1
]

= − (D(ti−2) B(ti−1)
)−1 1

h

[(
D(ti−1) B(ti )

)− (D(ti−2) B(ti−1)
)] (

D(ti−1)B(ti )
)−1

.

Hence, for i = 2, . . . , N it holds

∥∥∥∥
d

dt

((
D(ti) B(ti )

)−1
)
− 1

h

[(
D(ti−1) B(ti )

)−1 − (D(ti−2) B(ti−1)
)−1
]∥∥∥∥ ≤ c h

for a constant c ≥ 0 independent of h. Moreover, we have

˙̃
B(t) = Ċ(t)− Ḃ(t)

(
D(t) B(t)

)−1
D(t) C(t)− B(t)

d

dt

((
D(t) B(t)

)−1
)

D(t) C(t)

− B(t)
(
D(t) B(t)

)−1
Ḋ(t) C(t)− B(t)

(
D(t) B(t)

)−1
D(t) Ċ(t)

and

B̃ ′h(ti ) = C′(ti )− 1

h

[
B(ti )

(
D(ti−1) B(ti )

)−1
D(ti−1) C(ti )

−B(ti−1)
(
D(ti−2) B(ti−1)

)−1
D(ti−2) C(ti−1)

]

= C′(ti )− B ′(ti )
(
D(ti−1) B(ti )

)−1
D(ti−1) C(ti )

− B(ti−1)
1

h

[(
D(ti−1) B(ti )

)−1
D(ti−1) C(ti )−

(
D(ti−2) B(ti−1)

)−1
D(ti−2) C(ti−1)

]

= C′(ti )− B ′(ti )
(
D(ti−1) B(ti )

)−1
D(ti−1) C(ti )
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− B(ti−1)
1

h

[(
D(ti−1) B(ti )

)−1 − (D(ti−2) B(ti−1)
)−1
]
D(ti−1) C(ti )

− B(ti−1)
(
D(ti−2) B(ti−1)

)−1
D′(ti−1) C(ti )

− B(ti−1)
(
D(ti−2) B(ti−1)

)−1
D(ti−2) C

′(ti−1).

Thus, we conclude there exists L
B̃
≥ 0 independent of h such that∥∥∥ ˙̃B(ti)− B̃ ′(ti)

∥∥∥ ≤ LB̃ h for i = 2, . . . , N . Analog we find Lr̃ ≥ 0 independent of

h such that
∥∥∥ ˙̃r(ti)− r̃ ′(ti)

∥∥∥ ≤ Lr̃ h for i = 2, . . . , N. Hence, the smoothness and

approximation conditions in (A5) are verified.
Applying Theorem 4.1 and 5.1, respectively, yields error estimates for xh, uh, λh.

According to the relations (6.1), (6.2), and (6.3) we automatically get error estimates
for yh, μh, and for the switching function σh and its zeros. This completes the proof.

�


7 Numerical Example

We consider the optimal control problem

Minimize

subject to

α
2

(
x1(T )− 1

)2 + 1
2

T∫
0

x2(t)
2 dt

ẋ1(t) = u(t), a.e. in
[
0, T

]
,

ẋ2(t) = y(t), a.e. in
[
0, T

]
,

0 = x1(t)− x2(t), in
[
0, T

]
x1(0) = 1,
u(t) ∈ [−1, 1

]
, a.e. in

[
0, T

]
.

with final time T > 0 and parameter α > 0. Differentiating the algebraic constraint
with respect to t yields 0 = u(t)− y(t), for almost every t ∈ [0, T ], which we can
(explicitly) solve for y. Thus, the DAE has index two. The KKT-conditions of the
problem read as

λ̇1(t) = 0, in
[
0, T

]
,

λ̇2(t) = −x̂2(t), in
[
0, T

]
,

0 = λ2(t)− μ(t), in
[
0, T

]
,

λ1(T ) = α
(
x̂1(T )− 1

)
,

λ2(T ) = 0,

0 ≤ (λ1(t)+ μ(t)
) (

u− û(t)
)
, for all u ∈ [−1, 1

]
, a.e. in

[
0, T

]
.
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By solving the algebraic equation for μ we obtain μ(t) = λ2(t) for t ∈ [0, 1
]
, and

therefore we get the switching function

σ(t) := λ1(t)+ λ2(t), t ∈ [0, 1
]
.

Depending on the final time T and the parameter α, the cost functional implies that
the optimal control has a bang–bang or a bang-singular-bang switching structure.
The structure changes with the critical final time

Tcrit (α) = 1− α +
√
α2 + 2 α,

which satisfies lim
α→∞ Tcrit (α) = 2. For final time T > Tcrit (α) the switching

function has the zeros 1 and s(α, T ) = T + α − √α2 + 2 α = T − Tcrit (α) + 1,
and we obtain the solution

y(t) = u(t) =

⎧⎪⎪⎨
⎪⎪⎩

−1, t ∈ [0, 1)

0, t ∈ [1, s(α, T )
)

1, t ∈ [s(α, T ), T
] , x1(t) = x2(t) =

⎧⎪⎪⎨
⎪⎪⎩

1− t, t ∈ [0, 1)

0, t ∈ [1, s(α, T )
)

t − s(α, T ), t ∈ [s(α, T ), T
] ,

λ1(t) = α
(
T − s(α, T )− 1

)
,

λ2(t) = μ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
T − s(α, T )

)2 + 1
2 (1− t)2 , t ∈ [0, 1)

1
2

(
T − s(α, T )

)2
, t ∈ [1, s(α, T )

)
1
2

(
T − s(α, T )

)2 − 1
2

(
t − s(α, T )

)2
, t ∈ [s(α, T ), T

] .

Note that the switching function is zero on the interval
[
1, s(α, T )

)
. Hence, the

conditions (A3’)–(A5’) are not satisfied and Theorem 6.1 cannot be applied.
For final time T ≤ Tcrit (α) the switching function has one zero at

s(α, T ) = 1

3

(
2 α + 2 T + 1−

√
(2 α + 1)2 + 2 (α − 1) T + T 2

)
,

which satisfies s(α, T ) < 1, lim
α→∞ s(α, T ) = T

2 for T < Tcrit (α) and

s(α, Tcrit (α)) = 1. This yields the solution and switching function

y(t) = u(t) =
⎧⎨
⎩
−1, t ∈ [0, s(α, T )

)

1, t ∈ [s(α, T ), T
] , x1(t) = x2(t) =

⎧⎨
⎩

1− t, t ∈ [0, s(α, T )
)

t + 1− 2 s(α, T ), t ∈ [s(α, T ), T
] ,

λ1(t) = α
(
T − 2 s(α, T )

)
,

λ2(t) = μ(t) =
⎧⎨
⎩

1
2

(
T + 1− 2 s(α, T )

)2 − (1− s(α, T )
)2 + 1

2 (1− t)2 , t ∈ [0, s(α, T )
)

1
2

(
T + 1− 2 s(α, T )

)2 − 1
2

(
t + 1− 2 s(α, T )

)2
, t ∈ [s(α, T ), T

] ,
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σ(t) =
⎧⎨
⎩
− 1

2

(
1− s(α, T )

)2 + 1
2 (1− t)2 , t ∈ [0, s(α, T )

)
1
2

(
1− s(α, T )

)2 − 1
2

(
t + 1− 2 s(α, T )

)2
, t ∈ [s(α, T ), T

] ,

which satisfies σ̇ (s(α, T )) = 1−s(α, T ). Thus, for T < Tcrit (α) there exists ς > 0
such that

∣∣σ̇ (s(α, T ))
∣∣ = ∣∣1− s(α, T )

∣∣ ≥ ς > 0,

i.e., condition (A5’) holds. For T = Tcrit (α) we have the switching function

σ(t) =
{

1
2 (1− t)2 , t ∈ [0, 1)
− 1

2 (t − 1)2 , t ∈ [1, Tcrit (α)
]
,

which satisfies neither condition (A5’) nor (A4’).
For α = 1000 we have Tcrit (1000) = 1.9995004993759267 and for final times

T = 1.5 and T = 2.0 we get the zeros

s(1000, 1.5) = 0.7502343000000000, s(1000, 2.0) = 1.0002497502965753.

For final time T = 1.5 the discrete optimal control and the zero of the discrete
switching function converge with order one (compare Table 1). For final time
T = 2.0 ≈ Tcrit (1000) conditions (A4’) and (A5’) are not satisfied, but the
discrete optimal control and the zero of the discrete switching function still have
linear convergence order (compare Table 2). Cases like this and problems, where
the switching function remains zero for a finite length of time, will be studied in the
future. In Figs. 1 and 2, we see the optimal control and the switching function for
T = 1.5 and T = 2.0, respectively.

Table 1 Implicit Euler discretization for α = 1000, T = 1.5

N
∥∥ûh − û

∥∥
1 Convergence order |s − sh| Convergence order

10 0.1984000288809703 1.011406920082053 0.15023430 0.9977517775392430

20 0.0984187648297279 1.023088031191810 0.07523430 0.9955140382199442

40 0.0484281328011752 1.047314992770759 0.03773430 0.9910697073672796

80 0.0234328167871758 1.099556217643134 0.01898430 0.9823035590362839

160 0.0109351587820418 1.222443783190412 0.00960930 0.9652453057076787

320 0.0046863297783591 1.585142270993060 0.00492180 0.9329057899039909

640 0.0015619152880134 – 0.00257806 –
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Table 2 Implicit Euler discretization for α = 1000, T = 2.0

N
∥∥ûh − û

∥∥
1 Convergence order |s − sh| Convergence order

10 0.1983875509228102 1.011407638673553 0.20024975 0.9982018025970495

20 0.0984125259674461 1.023089503364656 0.10024975 0.9964103151109476

40 0.0484250134797348 1.047318084448415 0.05024975 0.9928473149729322

80 0.0234312572348496 1.099563063645673 0.02524975 0.9858001452851699

160 0.0109343791144259 1.222460900264533 0.01274975 0.9720128245428712

320 0.0046859400496147 1.585203576451960 0.00649975 0.9456035968731975

640 0.0015617190299793 – 0.00337475 –
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Fig. 1 Optimal control and switching function for α = 1000, T = 1.5

8 Conclusion

For the implicit Euler discretization of optimal control problems with DAEs and
bang–bang optimal controls we derived error estimates (Theorem 6.1). This was
achieved by reducing the discretized algebraic constraints (cf. [22, 24]) such
that the resulting discrete switching function could be related to the continuous
switching function. We therefore extended the results of [7, 8] by including algebraic
constraints. A byproduct of our analysis are error estimates for a general class of
implicit approximations of linear quadratic optimal control problems (Theorem 4.1
and 5.1).
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Abstract This paper provides a first contribution to port-Hamiltonian modeling of
district heating networks. By introducing a model hierarchy of flow equations on
the network, this work aims at a thermodynamically consistent port-Hamiltonian
embedding of the partial differential-algebraic systems. We show that a spatially
discretized network model describing the advection of the internal energy density
with respect to an underlying incompressible stationary Euler-type hydrodynamics
can be considered as a parameter-dependent finite-dimensional port-Hamiltonian
system. Moreover, we present an infinite-dimensional port-Hamiltonian formulation
for a compressible instationary thermodynamic fluid flow in a pipe. Based on these
first promising results, we raise open questions and point out research perspectives
concerning structure-preserving discretization, model reduction, and optimization.
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1 Introduction

A very important part of a successful energy transition is an increasing supply of
renewable energies. However, the power supply through such energies is highly
volatile. That is why a balancing of this volatility and more energy efficiency is
needed. An important player in this context are district heating networks. They
show a high potential to balance the fluctuating supply of renewable energies due
to their ability to absorb more or less excess power while keeping the heat supply
unchanged. A long-term objective is to strongly increase energy efficiency through
the intelligent control of district heating networks. The basis for achieving this goal
is the dynamic modeling of the district heating network itself, which is not available
in the optimization tools currently used in industry. Such a dynamic modeling
would allow for optimization of the fluctuating operating resources, e.g., waste
incineration, electric power, or gas. However, as power and heating networks act
on different time scales and since their descriptions lead to mathematical problems
of high spatial dimension, their coupling for a dynamic simulation that is efficiently
realizable involves various mathematical challenges. One possible remedy is a port-
Hamiltonian modeling framework: Such an energy-based formulation brings the
different scales on a single level, the port-Hamiltonian character is inherited during
the coupling of individual systems, and in a port-Hamiltonian system the physical
principles (stability, passivity, conservation of energy and momentum) are ideally
encoded in the algebraic and geometric structures of the model. Deriving model
hierarchies by using adequate Galerkin projection-based techniques for structure-
preserving discretization as well as model reduction, and combining them with
efficient adaptive optimization strategies opens up a new promising approach to
complex application issues.

Against the background of this vision, this paper provides a first contribution to
port-Hamiltonian modeling of district heating networks, illustrating the potential for
optimization in a case study, and raising open research questions and challenges.
Port-Hamiltonian (pH) systems have been elaborately studied in literature lately;
see, e.g., [3, 23, 40, 43] and the references therein. The standard form of the finite-
dimensional dissipative pH-system appears as

dz

dt
= (J − R)∇zH (z)+ (B − P)u, y = (B + P)T∇zH (z)+ (S +N)u

(1.1a)

with

W = WT ≥ 0, W =
[

R P

PT S

]
, (1.1b)

cf., e.g., [40]. The Hamiltonian H is an energy storage function, J = −J T is the
structure matrix describing energy flux among energy storage elements, R = RT
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is the dissipation matrix, B ± P are port matrices for energy in- and output, and
S = ST , N = −NT are matrices associated with the direct feed-through from input
u to output y. The system satisfies a dissipation inequality, which is an immediate
consequence of the positive (semi-)definiteness of the passivity matrix W . This also
holds even when the coefficient matrices depend on the state z, [8], or explicitly on
time t , [24], or when they are defined as linear operators on infinite-dimensional
spaces [16, 20, 41]. Including time-varying state constraints yields a pH-descriptor
system of differential-algebraic equations [3, 23, 39]. Port-Hamiltonian systems on
graphs have been studied in [42]. Port-Hamiltonian partial differential equations
on networks (port-Hamiltonian PDAE) are topic in, e.g., [10] for linear damped
wave equations or in [22] for nonlinear isothermal Euler equations. The adequate
handling of thermal effects is a novelty of this work. Thermodynamical aspects have
been investigated in the port-Hamiltonian formalism on top of infinite-dimensional
pH-models with entropy balance in different fields (such as thermo-magneto-
hydrodynamics of plasmas; anisotropic heterogeneous heat equation), see, e.g.,
[31, 35, 44–46]. In non-equilibrium thermodynamics the GENERIC-framework
(GENERIC—General Equation for Non-Equilibrium Reversible-Irreversible Cou-
pling) handles systems with both reversible and irreversible dynamics generated by
energy and entropy, respectively, [14, 29, 30]. This framework has been brought
together with the port-Hamiltonian formalism in [26, 27]. In this paper we extend
the work of [26, 27]. We make use of a thermodynamically consistent generalization
of the port-Hamiltonian framework in which the Hamiltonian is combined with
an entropy function. The resulting dynamic system consists of a (reversible)
Hamiltonian system and a generalized (dissipative) gradient system. Degeneracy
conditions ensure that the flows of the two parts do not overlap. Respective pH-
models in operator form can be found, e.g., for the Vlasov–Maxwell system in
plasma physics in [18, 19], for the Navier–Stokes equations for reactive flows in
[1] or for finite strain thermoelastodynamics in [4].

The paper is structured as follows. Starting with the description of a district
heating network as a connected and directed graph in Sect. 2, we present models
associated to the arcs for the pipelines, consumers, and the depot of the network
operator that are coupled with respect to conservation of mass and energy as
well as continuity of pressure at the network’s nodes. We especially introduce
a hierarchy of pipe models ranging from the compressible instationary Navier–
Stokes equations for a thermodynamic fluid flow to an advection equation for the
internal energy density coupled with incompressible stationary Euler-like equations
for the hydrodynamics. Focusing on the latter, we show that the associated spatially
discretized network model can be embedded into a family of parameter-dependent
standard port-Hamiltonian systems in Sect. 3 and numerically explore the network’s
behavior in Sect. 4. In a study on operating the heating network with respect to
the avoidance of power peaks in the feed-in, we particularly reveal the potential
for optimization. In view of the other pipe models, a generalization of the port-
Hamiltonian framework to cover the dissipative thermal effects is necessary. In
Sect. 5 we develop an infinite-dimensional thermodynamically consistent port-
Hamiltonian formulation for the one-dimensional partial differential equations of
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a compressible instationary turbulent pipe flow. From this, we raise open research
questions and perspectives concerning structure-preserving discretization, model
reduction, and optimization in Sect. 6.

2 Network Modeling

The district heating network is modeled by a connected and directed graph G =
(N,A) with node set N and arc set A. This graph consists of (1) a foreflow part,
which provides the consumers with hot water; (2) consumers, that obtain power via
heat exchangers; (3) a backflow part, which transports the cooled water back to the
depot; and (4) the depot, where the heating of the cooled water takes place; see
Fig. 1 for a schematic illustration. The nodes N = Nff ∪ Nbf are the disjoint union
of nodes Nff of the foreflow part and nodes Nbf of the backflow part of the network.
The arcs A = Aff∪Abf∪Ac∪{ad} are divided into foreflow arcs Aff, backflow arcs
Abf, consumer arcs Ac, and the depot arc ad of the district heating network operator.
The set of pipelines is thus given by Ap = Aff ∪ Abf.

In the following we introduce a model hierarchy for the flow in a single pipe
(cf. Fig. 2) and afterward discuss the nodal coupling conditions for the network.
Models for consumers (households) and the depot yield the closure conditions for
the modeling of the network.

2.1 Model Hierarchy for Pipe Flow

Let a ∈ Ap be a pipe. Starting point for the modeling of the flow in a pipe are
the cross-sectionally averaged one-dimensional instationary compressible Navier–
Stokes equations for a thermodynamic fluid flow [34]. We assume that the pipe is
cylindrically shaped, that it has constant circular cross-sections, and that the flow
quantities are only varying along the cylinder axis. Consider (x, t) ∈ (0, ") ×
(t0, tend] ⊆ R

2 with pipe length " as well as start and end time t0, tend > 0. Mass
density, velocity, and internal energy density, i.e., ρ, v, e : (0, ") × (t0, tend] → R,

Fig. 1 A schematic district
heating network: foreflow
arcs are plotted in solid black,
backflow arcs in dashed
black, consumers
(households) in dotted blue,
and the depot in dash-dotted
red
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compressible instationary thermodynamic turbulent flow (2)

incompressible instationary thermodynamic turbulent flow (3)

energy advection with outer cooling
w.r.t. incompressible stationary hydrodynamic equations (4)

energy advection without outer cooling
w.r.t. incompressible stationary hydrodynamic equations (8)

xv= 0

t v= 0, 2d |v|v2 small

4kW
d (T − ) = 0

Fig. 2 Hierarchy of pipe flow models

are then described by the balance equations

0 = ∂tρ + ∂x(ρv),

0 = ∂t (ρv)+ ∂x(ρv
2)+ ∂xp + λ

2d
ρ|v|v + ρg∂xh,

0 = ∂te + ∂x(ev)+ p∂xv − λ

2d
ρ|v|v2 + 4kw

d
(T − ϑ).

(2.1)

Pressure and temperature, i.e., p, T : (0, ") × (t0, tend] → R, are determined
by respective state equations. In the momentum balance the frictional forces with
friction factor λ and pipe diameter d come from the three-dimensional surface
conditions on the pipe walls, the outer forces arise from gravity with gravitational
acceleration g and pipe level h (with constant pipe slope ∂xh). The energy exchange
with the outer surrounding is modeled by Newton’s cooling law in terms of
the pipe’s heat transmission coefficient kw and the outer ground temperature ϑ .
System (2.1) are (Euler-like) non-linear hyperbolic partial differential equations of
first order for a turbulent pipe flow.

The hot water in the pipe is under such a high pressure that it does not turn into
steam. Thus, the transition to the incompressible limit of (2.1) makes sense, yielding
the following partial differential-algebraic system for velocity v and internal energy
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density e, where the pressure p acts as a Lagrange multiplier to the incompressibility
constraint:

0 = ∂xv,

0 = ∂tv + 1

ρ
∂xp + λ

2d
|v|v + g∂xh,

0 = ∂te + v∂xe − λ

2d
ρ|v|v2 + 4kw

d
(T − ϑ).

(2.2)

The system is supplemented with state equations for density ρ and temperature T .
Note that the energy term due to friction is negligibly small in this case and can be
omitted.

Since the hydrodynamic and thermal effects act on different time scales, Sys-
tem (2.2) may be simplified even further by setting ∂tv = 0. This can be understood
as a balancing of the frictional and gravitational forces by the pressure term, while
the acceleration is negligibly small, i.e.,

0 = ∂xv,

0 = ∂xp + λ

2d
ρ|v|v + ρg∂xh,

0 = ∂t e + v∂xe + 4kw

d
(T − ϑ),

(2.3)

again supplemented with state equations for ρ, T . System (2.3) describes the heat
transport in the pipe where flow velocity and pressure act as Lagrange multipliers
to the stationary hydrodynamic equations. However, the flow field is not stationary
at all because of the time-dependent closure (boundary) conditions (at households
and the depot). In the presented model hierarchy one might even go a step further
and ignore the term concerning the heat transition with the outer surrounding of the
pipe, i.e., 4kw(T − ϑ)/d = 0, when studying the overall network behavior caused
by different operation of the depot; see Sects. 3 and 4.

State Equations and Material Models In the pressure and temperature regime
being relevant for operating district heating networks, we model the material
properties of water by polynomials depending exclusively on the internal energy
density, and not on the pressure. The relations for temperature T , mass density ρ,
and kinematic viscosity ν̄ summarized in Table 1 are based on a fitting of data taken
from the NIST Chemistry WebBook [28]. The relative error of the approximation
is of order O(10−3), which is slightly higher than the error O(5× 10−4) we
observe due to neglecting the pressure dependence. The quadratic state equation
for the temperature allows a simple conversion between e and T , which is necessary
since closure conditions (households, depot) are usually stated in terms of T ; cf.
Sect. 2.3. Obviously, e�(T�) = 0.5 T −1

2 (−T1 + (T 2
1 − 4T2(T0 − T�))

1/2) holds
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for T�(e�) = ∑2
i=0 Tie

i
�, e� ≥ 0, where the subscript � indicates the associated

dimensionless quantities.

Remark 2.1 Alternatively to the specific data-driven approach, the state equations
can be certainly also deduced more rigorously from thermodynamic laws. A
thermodynamic fluid flow described by (2.1) satisfies the entropy balance for
s : (0, ")× (t0, tend] → R, i.e.,

0 = ∂t s + ∂x(sv)− λ

2d

1

T
ρ|v|v2 + 4kw

d

1

T
(T − ϑ).

Considering the entropy as a function of mass density and internal energy density,
s = s(ρ, e), yields the Gibbs identities which can be used as state equations for
pressure p and temperature T , i.e.,

∂ρs = −(ρT )−1(e + p − T s), ∂es = T −1.

Pipe-Related Models The pipe flow is mainly driven in a turbulent regime, i.e.,
with Reynolds number Re > 103. Thus, the pipe friction factor λ can be described
by the Colebrook–White equation in terms of the Reynolds number Re and the ratio
of pipe roughness and diameter kr/d ,

1√
λ
(v, e) = −2 log10

(
2.52

Re(v, e)
√
λ(v, e)

+ 1

3.71

kr

d

)
, Re(v, e) = |v| d

ν̄(e)
.

The model is used for technically rough pipes. Its limit behavior corresponds to
the relation by Prandtl and Karman for a hydraulically smooth pipe, i.e., 1/

√
λ =

2 log10(Re
√
λ) − 0.8 for kr/d → 0, and to the relation by Prandtl, Karman, and

Nikuradse for a completely rough pipe, i.e., 1/
√
λ = 1.14−2 log10(kr/d) for Re→

∞, [38]. The underlying root finding problem for λ can be solved using the Lambert
W-function; see [7]. However, in view of the computational effort it can also be
reasonable to consider a fixed constant Reynolds number for the pipe as further
simplification.

The pipe quantities—length ", diameter d , slope ∂xh, roughness kr, and heat
transmission coefficient kw—are assumed to be constant in the pipe model. More-
over, note that in this work we also consider the outer ground temperature ϑ as
constant, which will play a role for our port-Hamiltonian formulation of (2.1) in
Sect. 5.
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2.2 Nodal Coupling Conditions

For the network modeling it is convenient to use the following standard notation.
Quantities related to an arc a = (m, n) ∈ A, m,n ∈ N , are marked with the
subscript a, quantities associated to a node n ∈ N with the subscript n. For a node
n ∈ N , let δin

n , δout
n be the sets of all topological ingoing and outgoing arcs, i.e.,

δin
n = {a ∈ A : ∃m with a = (m, n)}, δout

n = {a ∈ A : ∃m with a = (n,m)},

and let In(t), On(t), t ∈ [t0, tend], be the sets of all flow-specific ingoing and
outgoing arcs,

In(t) = {a ∈ δin
n : qa("a, t) ≥ 0} ∪ {a ∈ δout

n : qa(0, t) ≤ 0},
On(t) = {a ∈ δin

n : qa("a, t) < 0} ∪ {a ∈ δout
n : qa(0, t) > 0};

see, e.g., [12, 13, 15] where a similar notation is used in the context of gas networks.
Note that In(t) ∪ On(t) = δin

n ∪ δout
n holds for all t and that the sets In(t), On(t)

depend on the flow qa , a ∈ A, in the network, which is not known a priori.
The coupling conditions we require for the network ensure the conservation of

mass and energy as well as the continuity of pressure at every node n ∈ N and for
all time t ∈ [t0, tend], i.e.,

∑

a∈δin
n

qa("a, t) =
∑
a∈δout

n

qa(0, t), (2.4a)

∑

a∈δin
n

q̂a("a, t)ea("a, t) =
∑
a∈δout

n

q̂a(0, t)ea(0, t), ea(0, t) = en(t), a ∈ On(t),

(2.4b)

pa("a, t) = pn(t), a ∈ δin
n , pa(0, t) = pn(t), a ∈ δout

n .

(2.4c)

Here, qa and q̂a denote the mass flow and the volumetric flow in pipe a, respectively.
They scale with the mass density, i.e., qa = ρavaςa and q̂a = qa/ρa , where
ςa = d2

aπ/4 is the cross-sectional area of the pipe. In case of incompressibility,
it holds that q̂a(x, t) = q̂a(t) is constant along the pipe. The functions en and pn are
auxiliary variables describing internal energy density and pressure at node n. Note
that the second condition in (2.4b), namely that the out-flowing energy densities are
identical in all (flow-specific outgoing) pipes, rests upon the assumption of instant
mixing of the in-flowing energy densities.
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2.3 Households, Depot, and Operational Constraints

The network modeling is closed by models for the consumers (households) and
the depot of the network operator. Quantities associated to the arc a at node n are
indicated by the subscript a : n.

For the consumer at a = (m, n) ∈ Ac, where the nodes m and n belong to the
foreflow and backflow part of the network, respectively (cf. Fig. 1), the following
conditions are posed for t ∈ [t0, tend],

Pa(t) = q̂a(t)Δea(t), va(t) ≥ 0, Δea(t) = ea:m(t)− ea:n(t),
(2.5a)

Ta:n(t) = T bf, Ta:m(t) ∈ [T ff− , T ff+], Ta:m(t)− Ta:n(t) ≤ ΔT c, (2.5b)

pa:n(t) ∈ [pbf− , pbf+], pa:m(t) ∈ [pff−, pff+], pa:m(t)− pa:n(t) ∈ [Δpc−, Δpc+].
(2.5c)

The prescribed power consumption Pa of the household is realized by the product of
the energy density difference at the arc and the volumetric flow in (2.5a). Moreover,
the underlying flow velocity has a pre-specified direction. The consumer’s outflow
temperature is set to be equal to the contractually agreed temperature T bf. Moreover,
the operational constraints ensure a certain temperature range at each consumption
point and define a maximal temperature difference between foreflow and backflow
part of the consumers. In addition, minimal and maximal values for the pressure
level at both backflow and foreflow part of the consumer arcs are prescribed. Finally,
the pressure difference between foreflow and backflow part is bounded.

The depot ad = (m, n) for operating the district heating network is modeled by
the following conditions for t ∈ [t0, tend]:

ead:n(t) = ue(t), Tad:n(t) ≤ T net, vad(t) ≥ 0, (2.6a)

pad:m(t) = up(t), pad:n(t) = pad:m(t)+ uΔp(t). (2.6b)

Here, up prescribes the so-called stagnation pressure of the network and uΔp is the
realized pressure increase at the depot. The energy density injected at the depot
to the foreflow part of the network is denoted by ue. The resulting temperature is
bounded above by T net, which also acts as temperature limit for all network nodes.

In addition to the operational constraints in (2.5) and (2.6), the pressure in all
network nodes is bounded, i.e., pn(t) ≤ pnet for n ∈ N and t ∈ [t0, tend].
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3 Port-Hamiltonian Formulation of a Semi-Discrete Network
Model

In this section we present a spatially semi-discrete model variant for the district
heating network and discuss its formulation in the port-Hamiltonian context.
Making use of the different hydrodynamic and thermal time scales, a finite volume
upwind discretization yields a port-Hamiltonian descriptor system for the internal
energy density, in which the solenoidal flow field acts as a time-varying parameter.

We describe the network by means of the following partial differential-algebraic
system for t ∈ [t0, tend],

∂t ea = −va∂xea, a ∈ Ap, (3.1a)

ea(0, t) = en(t), a ∈ On(t),
∑

a∈δin
n

q̂aea("a, t) =
∑
a∈δout

n

q̂aea(0, t), n ∈ N,

(3.1b)

ea:n(t) = ebf, a ∈ Ac, (3.1c)

ea:n(t) = ue(t), a = ad, (3.1d)

g(e, v, p) = 0. (3.1e)

This system results from the incompressible pipe model in (2.3) and neglecting
the cooling term in the energy balance (i.e., kw = 0). Here, the condition on the
backflow temperature for the consumers is expressed in terms of the internal energy
density, cf., ebf = e(T bf) in (3.1c). In the formulation we use the separation of
thermal and hydrodynamic effects and state the temporal advection of the internal
energy density with respect to the algebraic equations covering the hydrodynamics.
So, g(e, v, p) = 0 in (3.1e) contains the hydrodynamic pipe equations, the
pressure continuity at the nodes (2.4c), the condition on the households’ power
consumption (2.5a), the pressure conditions at the depot (2.6b), and the conservation
of volume

∑

b∈δin
n

q̂b(t) =
∑
a∈δout

n

q̂a(t), n ∈ N. (3.2)

Considering the volume balance (3.2) instead of the mass balance (2.4a) is very
convenient in the incompressible setting, since the velocity field and hence the
induced volumetric flow are constant along a pipe. Moreover, this description
naturally fits the numerical method of finite volumes.
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For the spatial discretization of the hyperbolic-like system (3.1) we apply a
classical finite volume upwind scheme [21]. Let α ∈ Ap, α ∈ On(t0), n ∈ N ,
and consider an equidistant mesh of cell size Δxα, then

d

dt
eα,β = − vα

Δxα
(eα,β − eα,β−1), β ∈ Vα,

eα,0 = en, en =
∑

b∈In
q̂b eb,|Vb|∑

a∈On
q̂a

,

where eα,β denotes the internal energy density with respect to the finite volume
cell β of pipe α with cell index set Vα. For the first cell (β = 1) we make use
of the quantity at the node that results from (3.1b). We summarize the unknown
energy densities in a vector e = (e1, . . . , eκ )

T , ef (α,β) = eα,β by ordering pipe-
and cell-wise according to the mapping f (α, β) = β +∑α−1

k=1 |Vk|, α ∈ Ap, β ∈
Vα, in particular κ = ∑

α∈Ap
|Vα|. Then, a semi-discrete version of the network

model (3.1) is given by the following descriptor system

d

dt
e = A(v) e + B(v) u, y = Ce, (3.3)

subject to v = G(e).

The system matrices A(w) ∈ R
κ×κ and B(w) ∈ R

κ×2 can be interpreted as
parameter-dependent quantities, where the (vector-valued) parameter w represents
a spatially discretized solenoidal volume-preserving velocity field. So,

Af (α,β),f (μ,σ )(w) = ∂
d

dt
eα,β(w)/∂eμ,σ

holds. The special velocity field belonging to the hydrodynamic network equa-
tions (3.1e) is formally stated as v = G(e). We assume a setting in which v is
time-continuous. In (3.3) the input u consists of the energy densities ue injected
at the depot into the foreflow part and ebf returning from the consumers into the
backflow part of the network, u = (ue, ebf)T ∈ R

2. The output y typically refers to
energy densities in pipes supplying the consumers, implying C ∈ R

c×κ .

Theorem 3.1 Let w be a (spatially discretized) solenoidal volume-preserving time-
continuous velocity field. Then, the semi-discrete network model (3.3) can be
embedded into a family of parameter-dependent port-Hamiltonian systems

d

dt
e = (J (w)− R(w))Qe + B̃(w)ũ, ỹ = B̃T (w)Qe, (3.4)

with ũ = (uT , 0, . . . , 0)T ∈ R
2+c which contains the original outputs as subset.
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Remark 3.1 Theorem 3.1 implies that there exists an energy matrix Q such that

QA(w)+ AT (w)Q ≤ 0 (3.5)

for all solenoidal volume-preserving velocity fields w. Thus, the Hamiltonian
H (e) = eT Qe is a Lyapunov function for the parameter-dependent system [2]. The
energy matrix Q can be particularly constructed as a diagonal matrix with positive
entries, i.e., Qf(α,β),f (α,β) = ςα Δxα for α ∈ Ap, β ∈ Vα, where ςα Δxα is the
volume of each discretization cell in pipe α.

Note that a change of the flow direction, which might occur in case of cycles,
yields a structural modification of the system matrix A(w), but does not affect the
stability of the system. However, it might cause a discontinuity in the velocity field
such that (3.3), or (3.4) respectively, only allows for a weak solution.

Proof of Theorem 3.1 Let the positive definite diagonal matrix Q ∈ R
κ×κ with

Qf(α,β),f (α,β) = ςα Δxα > 0 be given. Then, we define the matrices J and R by

J (w) = 1

2
(A(w)Q−1−(A(w)Q−1)T ), R(w) = −1

2
(A(w)Q−1+(A(w)Q−1)T ).

Obviously, A(w) = (J (w)−R(w))Q holds. The properties J = −J T and R = RT

of port-Hamiltonian system matrices are satisfied by construction for any parameter
w. The positive semi-definiteness of R follows from the Lyapunov inequality (3.5).
Considering

L(w) = QA(w)+AT (w)Q, Lf (α,β),f (α,β)(w) = −2Qf(α,β),f (α,β)

wα

Δxα
= −2q̂α ≤ 0,

the volume-preservation of w ensures that the symmetric matrix L(w) is weakly
diagonal dominant. Hence, L(w) is negative semi-definite, yielding

xT R(w)x = −1

2
(Q−1x)T L(w) (Q−1x) ≥ 0 for all x ∈ R

κ .

Here, R(w) acts as the passivity matrix since the system has no feed-through term.
The port matrix B̃(w) ∈ R

κ×2+c defined by

B̃(w) = [B(w), (CQ−1)T ]

ensures that the outputs of the network model are contained in the output set of the
port-Hamiltonian system, i.e., B̃T (w)Q = [BT (w)Q, C]T . Finally note that the
parameter-dependent port-Hamiltonian system matrices J (w), R(w), and B̃(w) are
continuous in time due to the given time-regularity of the parameter w.
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Remark 3.2 We point out that applying the stated framework to the other pipe
models presented in Sect. 2.1 is non-trivial. Already the consideration of the cooling
term in the energy balance, cf. pipe model (2.3), which acts dissipative requires
a generalization of the port-Hamiltonian description. We refer to Sect. 5 for an
infinite-dimensional port-Hamiltonian formulation of the compressible thermody-
namic pipe flow (2.1).

4 Numerical Study on Network Operation

In this section we demonstrate the potential for optimization of district heating
networks. Operating the network according to certain exogenously given temporal
profiles for the internal energy densities injected at the depot may lead to high
amplitudes in the feed-in power. The avoidance of such power peaks in the feed-
in prevents that using additional energy sources, such as gas storages, is required
for covering the heating demand of the consumers. This is environmental friendly,
while saving resources and operational costs.

In the numerical case study we employ a real-world district heating network
supplying different streets by means of the port-Hamiltonian semi-discrete network
model (3.3). The model describes the advection-driven internal energy density with
respect to an underlying incompressible flow field with negligible acceleration.
Thermal losses/outer cooling effects are neglected. For the time integration we use
an implicit midpoint rule with constant time step Δt . The topology of the network
and the data of the pipelines come from the Technische Werke Ludwigshafen AG;
see Fig. 3 and Table 2. Mass density and friction factor are taken as constant in time
for every pipeline. For the presented simulation, a time horizon of 50 h is studied.
The consumption behavior of the households is modeled by standardized profiles
used in the operation of district heating networks [5] for a mean environmental
temperature of 3 ◦C. The total consumption of all households is 108 kW on temporal
average and rises up to a maximum of 160 kW. Given the internal energy density ue

injected at the depot as input, the feed-in power can be considered as the response
of the network system, i.e.,

Pin = (ue − ead:m)
∑
a∈Ac

q̂a.

Note that due to the neglect of cooling in (3.1), ead:m = e(T bf) holds, where the
backflow temperature at the consumers is fixed here to T bf = 60 ◦C.

The traveling time of the heated water from the depot to the consumers
(households) allows to choose from different injection profiles, when covering the
aggregated heating demand in the network. Figure 4 shows the injected temperature
T (ue) and the corresponding feed-in power for two different input profiles. Supply-
ing an almost constant energy density ue over time yields pronounced power peaks
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50 m

50 m

59.3 67.5 75.8 84.0
Temp./◦C

Fig. 3 Real-world heating network supplying several streets. The network consists of the foreflow
part (top) and the backflow part (bottom), where the households are indicated by circles. The
topology has been provided by Technische Werke Ludwigshafen AG, Germany. The color plot
visualizes a simulated temperature distribution for a certain time t�, where T (ue(t�)) = 84 ◦C.
The backflow temperature is constant at T bf = 60 ◦C due to the use of the network model (3.1)
where cooling effects are neglected

Table 2 Graph-associated outline data for the street network in Fig. 3

Pipes |Ap| Consumers |Ac| Depot Arcs |A| Nodes |N | Loops

162 32 1 195 162 2

The total pipe length of the foreflow part is 835.5 m and of the backflow part 837.0 m

(dashed-dotted red curves). These undesired peaks can be avoided when using an
input that is varying in time with respect to the expected consumer demands. The
improved input conducts a preheating strategy. By anticipating typical maxima in
demand patterns, the injected input energy density is increased in times of small
power demands. If the dynamically changing transport time from the power plant
to the households is reflected correctly, the additionally injected thermal energy is
then available to the consumers in times of high consumption. This strategy allows
to successfully bound the feed-in power, here, as illustrated, by P̄in = 134 kW
(dashed green curves). This promising result asks for a rigorous optimal control
of the network in further studies.
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Fig. 4 Flow temperature at depot T (ue) (top) and corresponding feed-in power (bottom) over time
for two different injection profiles marked in dashed-dotted red and dashed green, Δt = 5 min. The
upper solid, black line indicates the power threshold P̄ , the lower one the mean feed-in power over
time

5 Port-Hamiltonian Formulation of Compressible
Thermodynamic Pipe Flow

The adequate handling of thermal effects requires the generalization of the port-
Hamiltonian framework by combining the Hamiltonian with an entropy function.
In this section we embed the partial differential model (2.1) for a compressible
thermodynamic turbulent pipe flow into the GENERIC-formalism, which has
lately been studied in [26, 27], and present an infinite-dimensional thermodynam-
ically consistent port-Hamiltonian description. The following state space model
encodes (2.1) in a weak form. Assuming the existence of a smooth solution and
nicely behaving boundary terms, the partial differential model can be obtained
through integration by parts as shown for a simplified example in [27].
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The thermodynamic pipe flow model (2.1) can be reformulated as a generalized
(non-linear) port-Hamiltonian system in operator form for z = (ρ,M, e)T , M =
(ρv),

dz

dt
= (J (z)−R(z)

) δE (z)

δz
+B(z)u(z) in D∗z ,

y(z) = B∗(z)δE (z)

δz
in D∗u ,

(5.1)

where Z = {z ∈ Dz | ρ ≥ δ with δ > 0 almost everywhere} ⊂ Dz denotes the
state space with the Sobolev space Dz = W 1,3((0, ");R3) being a reflexive Banach
space. For z ∈ Z the operators J (z)[·], R(z)[·] : Dz → D∗z are linear and
continuous, moreover J (z) is skew-adjoint and R(z) is self-adjoint semi-elliptic,
i.e., 〈ϕ,J (z)ψ〉 = −〈ψ,J (z)ϕ〉 and 〈ϕ,R(z)ψ〉 = 〈ψ,R(z)ϕ〉 ≥ 0 for all
ϕ,ψ ∈ Dz. The system theoretic input is given by u(z) ∈ Du = Lq({0, "}) with
linear continuous operator B(z)[·] : Du → D∗z and dual space D∗u = Lp({0, "}),
1/q + 1/p = 1. The system theoretic output is denoted by y(z). The form of
the energy functional E and the port-Hamiltonian operators J (z)[·], R(z)[·] and
B(z)[·] are derived as follows.

Remark 5.1 We assume that all relevant mathematical statements hold for an
arbitrary but fixed time parameter t ∈ (t0, tend]. The function spaces Dz and Du

associated with the spatial evolution are chosen in an ad-hoc manner, i.e., we assume
that the considered fields and functions satisfy certain regularity requirements. A
mathematically rigorous justification requires an analytical consideration of the
generalized port-Hamiltonian system. The corresponding functional analytical and
structural questions are the focus of ongoing work.

Accounting for the thermodynamic behavior of the pipe flow, (5.1) is composed
of a Hamiltonian and a generalized gradient system. This is reflected in the energy
functional that is an exergy-like functional consisting of a Hamiltonian and an
entropy part, i.e.,

E (z) =H (z)− ϑS (z), H (z) =
∫ "

0

(
|M|2
2ρ
+ e + ρgh

)
dx, S (z) =

∫ "

0
s(ρ, e) dx.

where the outer ground temperature ϑ is assumed to be constant. Introducing the
ballistic free energy H(ρ, e) = e−ϑs(ρ, e) [11], the functionalE and its variational
derivatives become

E (z) =
∫ "

0

(
|M|2
2ρ
+H(ρ, e)+ ρgh

)
dx

δE (z)

δz
=
(
δE (z)

δρ
,
δE (z)

δM
,
δE (z)

δe

)T

=
⎛
⎝
(
−|M|

2

2ρ2 +
∂H

∂ρ
+ gh

)
,
M

ρ
,
∂H

∂e

⎞
⎠

T

.
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The port-Hamiltonian operators in (5.1) are assembled with respect to the (block-)
structure of the state z. Let ϕ,ψ ∈ Dz be two block-structured test functions, i.e.,
ϕ = (ϕρ, ϕM, ϕe)

T . Then the skew-adjoint operator J (z) is given by

J (z) =
⎡
⎢⎣

0 Jρ,M(z) 0
JM,ρ(z) JM,M(z) JM,e(z)

0 Je,M(z) 0

⎤
⎥⎦ , (5.2a)

associated with the bilinear form

〈ϕ,J (z)ψ〉 = 〈ϕρ,Jρ,M(z)ψM 〉 + 〈ϕM,JM,ρ(z)ψρ〉 + 〈ϕM,JM,M(z)ψM 〉
+ 〈ϕM,JM,e(z)ψe〉 + 〈ϕe,Je,M(z)ψM〉.

Its entries are particularly defined by the following relations,

〈ϕρ,Jρ,M(z)ψM 〉 = −〈ψM,JM,ρ(z)ϕρ〉 =
∫ "

0
ρ(ψM∂x)ϕρ dx, (5.2b)

〈ϕM,JM,M(z)ψM 〉 = −〈ψM,JM,M(z)ϕM 〉 =
∫ "

0
M((ψM∂x)ϕM − (ϕM∂x)ψM) dx,

(5.2c)

〈ϕe,Je,M(z)ψM 〉 = −〈ψM,JM,e(z)ϕe〉 =
∫ "

0
e(ψM∂x)ϕe + (ψM∂x)(ϕep) dx

(5.2d)

that result from the partial derivatives in (2.1). The self-adjoint semi-elliptic operator
R(z) is composed of two operators that correspond to the friction in the pipe Rλ(z)

and the temperature loss through the pipe walls Rkw(z). It is given by

R(z) = Rλ(z)+Rkw(z) =
⎡
⎢⎣

0 0 0
0 Rλ

M,M(z) Rλ
M,e(z)

0 Rλ
e,M(z) Rλ

e,e(z)+Rkw
e,e(z)

⎤
⎥⎦ , (5.3a)

associated with the bilinear form,

〈ϕ,R(z)ψ〉 = 〈ϕM,Rλ
M,M(z)ψM〉 + 〈ϕM,Rλ

M,e(z)ψe〉 + 〈ϕe,R
λ
e,M(z)ψM〉

+ 〈ϕe, (R
λ
e,e(z)+Rkw

e,e(z))ψe〉.
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Its entries are

〈ϕM,Rλ
M,M(z)ψM〉 =

∫ "

0
ϕM

(
λ

2d

T

ϑ
ρ|v|

)
ψM dx, (5.3b)

〈ϕM,Rλ
M,e(z)ψe〉 = 〈ψe,R

λ
e,M(z)ϕM〉 =

∫ "

0
−ϕM

(
λ

2d

T

ϑ
ρ|v|v

)
ψe dx,

(5.3c)

〈ϕe, (R
λ
e,e(z)+Rkw

e,e(z))ψe〉 =
∫ "

0
ϕe

(
λ

2d

T

ϑ
ρ|v|v2 + 4kw

d
T

)
ψe dx.

(5.3d)

Note that the state dependencies of pressure p = p(ρ, e) and temperature T =
T (ρ, e) occurring in (5.2d) and (5.3b)–(5.3d) are prescribed by the state equations,
cf. Remark 2.1. Moreover, v = M/ρ and λ = λ(v, e) hold for the velocity and the
friction factor, respectively. Assuming consistent state equations, e.g., ideal gas law,
cf. Remark 5.2, the operators in (5.2) and (5.3) fulfill the non-interacting conditions

J (z)
δS (z)

δz
= 0, Rλ(z)

δH (z)

δz
= 0,

which arise in the GENERIC context [26, 27] and ensure that the flows of the
Hamiltonian and the gradient system do not overlap. Finally, concerning the system
theoretic input and output, the state dependent input is given as u(z) ∈ Du by
u(z) = [M/ρ]|"0. Then, the port operator B(z)[·] : Du → D�

z is specified through
the pairing

〈ϕ,B(z)u(z)〉 = − [(ϕρρ + ϕMM + ϕe(e + p)) u(z)
]∣∣∣

"

0
,

which originates from the boundary terms, when applying partial integration to parts
of (2.1). With the adjoint operator B∗(z)[·] : Dz → D∗u , i.e., 〈ϕ,B(z)u(z)〉 =
〈B∗(z)ϕ, u(z)〉, the system theoretic output reads

y(z) =B∗(z)δE (z)

∂z
= −

[
|M|2
2ρ
+ p +H(ρ, e)+ ρgh

]∣∣∣∣∣∣

"

0

.

Remark 5.2 In the port-Hamiltonian framework the choice of the state variables
in the interplay with the energy functional is crucial for encoding the physical
properties in the system operators. Hence, asymptotic simplifications as, e.g., the
limit to incompressibility in the hydrodynamics (2.2), are not straightforward, since
they change the underlying equation structure. However, system (5.1) is well suited
when, e.g., dealing with gas networks. Then, it can be closed by using, e.g., the ideal
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gas law, implying

s(ρ, e) = R

2
ρ ln

(
cp

e3

ρ5

)
, T (ρ, e) = 2

3R

e

ρ
, p(ρ, e) = 2

3
e,

with specific gas constant R and heat capacity cp.

6 Research Perspectives

An energy-based port-Hamiltonian framework is very suitable for optimization
and control when dealing with subsystems coming from various different physical
domains, such as hydraulic, electrical, or mechanical ones, as it occurs when
coupling a district heating network with a power grid, a waste incineration plant,
or a gas turbine. The formulation is advantageous as it brings different scales on
a single level, the port-Hamiltonian character is inherited by the coupling, and the
physical properties are directly encoded in the structure of the equations. However,
to come up with efficient adaptive optimization strategies based on port-Hamiltonian
model hierarchies for complex application issues on district heating networks, there
are still many mathematical challenges to be handled.

In this paper we contributed with an infinite-dimensional and thermodynamically
consistent formulation for a compressible turbulent pipe flow, which required to set
up a (reversible) Hamiltonian system and a generalized (dissipative) gradient system
with suitable degeneracy conditions. In particular, the choice of an appropriate
energy function was demanding. The asymptotic transition to an incompressible
pipe flow is non-trivial in this framework, since it changes the differential-algebraic
structure of the equations and hence requires the reconsideration of the variables and
the modification of the energy function. In view of structure-preserving discretiza-
tion and model reduction the use of Galerkin projection-based techniques seems
to be promising. Lately, partitioned finite element methods for structure-preserving
discretization have been developed in [36, 37]. However, the choice of the variables
and the formulation of the system matrices crucially determine the complexity
of the numerics as, e.g., the works [6, 9, 22] show. Especially, the handling of
the nonlinearities requires adequate complexity-reduction strategies. Interesting to
explore are certainly also structure-preserving time-integration schemes, see, e.g.,
[17, 24]. The port-Hamiltonian formulation of the complete network is topic of
current research.

In the special case of the presented semi-discrete district heating network model
that makes use of the different hydrodynamic and thermal time scales and a suitable
finite volume upwind discretization we came up with a finite-dimensional port-
Hamiltonian system for the internal energy density where the solenoidal flow
field acts a time-varying parameter. This system is employed for model reduction
(moment matching) in [32] and for optimal control in [33].
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The application of the port-Hamiltonian modeling framework for coupled sys-
tems leads to many promising ideas for the optimization of these systems. Due to
the complexity and size of the respective optimization models, a subsystem-specific
port-Hamiltonian modeling together with suitable model reduction techniques
allows for setting up a coupled model hierarchy for optimization, which paves
the way for highly efficient adaptive optimization methods; cf., e.g., [25], where
a related approach has shown to be useful for the related field of gas network
optimization.
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Abstract We consider a coupled system composed of a linear differential-algebraic
equation (DAE) and a linear large-scale system of ordinary differential equations
where the latter stands for the dynamics of numerous identical particles. Replacing
the discrete particles by a kinetic equation for a particle density, we obtain in the
mean-field limit the new class of partially kinetic systems.

We investigate the influence of constraints on the kinetic theory of those systems
and present necessary adjustments. We adapt the mean-field limit to the DAE model
and show that index reduction and the mean-field limit commute. As a main result,
we prove Dobrushin’s stability estimate for linear systems. The estimate implies
convergence of the mean-field limit and provides a rigorous link between the particle
dynamics and their kinetic description.

Our research is inspired by mathematical models for muscle tissue where the
macroscopic behaviour is governed by the equations of continuum mechanics, often
discretised by the finite element method, and the microscopic muscle contraction
process is described by Huxley’s sliding filament theory. The latter represents a
kinetic equation that characterises the state of the actin-myosin bindings in the
muscle filaments. Linear partially kinetic systems are a simplified version of such
models, with focus on the constraints.
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1 Introduction

Differential-algebraic equations (DAEs) and kinetic equations are usually consid-
ered as separate and quite independent topics. While DAEs stem from models that
are in some sense constrained, kinetic theory deals with identical particles such
as atoms or molecules and their mutual interaction. In this work, we introduce a
problem class that combines these two mathematical structures. More precisely, we
demonstrate how to couple a macroscopic component with a kinetic system using
algebraic constraints.

For given microscopic laws, the kinetic description of a particle system is
obtained by the mean-field limit which replaces the discrete particle states by
a particle distribution. Application of the mean-field limit comes with a loss
of information: Individual particle positions are lost and only their statistical
distribution is available. This gives rise to a challenge in the coupling process since
we cannot impose an algebraic constraint on the individual particle positions of a
kinetic system. However, if we know the microscopic laws governing the particles
of a kinetic system, we can impose the algebraic-constraint on the microscopic level
for each particle and then apply the mean-field limit to obtain new kinetic equations
for the particles. We refer to the resulting system as the partially kinetic system.

To the best of our knowledge, there is no kinetic theory for systems where DAEs
describe the microscopic law. In order to provide a rigorous theory for partially
kinetic systems, we extend ideas from classical kinetic theory [5, 17, 26, 27]. To
streamline the presentation, we restrict ourself to linear systems.

Important examples for partially kinetic system are mathematical models for
muscle contraction. Muscle tissue, with all its supporting tissue (macroscopic
component), contracts due to the accumulated force of numerous actin-myosin
cross-bridges (particles). In this specific case, the kinetic theory of cross-bridges
without the coupling is already well-studied and led to the famous Huxley model
[15, 18, 30]. On the other hand, models from continuum mechanics are today in
use to simulate the muscle contraction at the macro-scale in combination with the
finite element method. For the coupling of both scales, simplifications and ad-hoc
procedures are used so far [1, 2, 10, 11] that call for a theoretical foundation.

This article is organized as follows: Sect. 2 presents a strongly simplified DAE
model for muscle cells with attached actin-myosin cross-bridges and derives an
equivalent ODE formulation for the DAE model. Next, Sect. 3 derives formally
partially kinetic equations for the DAE model. Basics of kinetic theory are outlined
during the application of the mean-field limit onto the ODE formulation. For the
DAE formulation, the mean-field limit requires modification. To justify the formal
computations rigorously, Sect. 4 adapts and proves Dobrushin’s stability estimate
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for linear partially kinetic systems. With regard to the application fields, Sect. 5
sketches possible generalisations of linear partially kinetic systems, while Sect. 6
provides details about the numerical implementation of the simulations presented in
this article. The numerical challenge of partially kinetic systems is demonstrated by
an example in which energy conservation is violated by the discretisation.

2 A Differential-Algebraic Model for Muscle Cells
with Attached Cross-Bridges

The emergence of macroscopic effects from microscopic properties is a central
theme in kinetic theory. In laymen terms, emergence describes how the big picture
arises from the laws that govern the model at a smaller scale. Understanding
this transition is essential in many biological applications [24]. Muscle tissue
consists of millions of small contractible molecules called actin-myosin cross-
bridges. Kinetic theory allows the up-scaling of these microscopic units to the
organ level and provides a means to derive macroscopic models for muscle tissue.
Most macroscopic models focus on the emergence of a contraction force as the
result of the synchronization between muscle cells [12, 18, 21]. However, there are
applications where more than just the macroscopic contraction force is of interest.

One example is vibrational medicine, in particular, the medical therapy concept
called Matrix-Rhythm-Therapy [23] that treats diseased muscle tissue by vibrational
stimulation in a specific frequency range. In order to understand this therapy
approach, it is crucial to study how the mechanical stimulation influences the
physiological health of cells. In laymen terms: How does the big picture influence
the small scale? A first mathematical model for the interplay between mechanics
and the physiology of muscle cells was proposed in [25].

We extend this work in the direction of more detailed physiological models for
muscle cells that are based on the sliding filament theory for cross-bridges. In
mathematical terms, this requires an understanding of muscles at both, the micro
and the macro scale. To study the influence of mechanics on the physiology of
muscle cells, the coupling between mechanical properties and physiological models
is essential. In the following, we will study a prototype of a system which couples
a physiological model for cross-bridges with a prototypical mechanical system.
We have to mention that Ma and Zahalak [21, 31] already studied cross-bridge
dynamics with kinetic and thermodynamic methods and also extended their cross-
bridge models for refined coupling with continuum models. In contrast, we study a
simpler model and focus on mathematical details of the coupling. In Sect. 5.3, we
relate our mathematical analysis to established models.
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Fig. 1 Sketch of the parallel actin filaments (purple, outside) and myosin filaments (orange,
central). The myosin heads (red) can attach to binding sides at the actin filament, which forms
a so-called cross-bridge. Skeletal muscle fibers are a large array of parallel actin-myosin filaments

2.1 Sliding Filament Theory for Cross-Bridges

Compared to many other biological phenomena, the contraction of muscles cells is a
relatively well-studied field [12, 14, 18]. For a mathematical introduction to muscle
models, we refer to [14, 18]. Sliding filament theory [12, 15] is the mainstream
theory to explain muscle contraction.

In its simplest form, sliding filament theory suggests that muscle cells consist of
parallel myosin and actin filaments, as visualised in Fig. 1. On each actin filament,
small binding sides allow myosin heads to attach and to form a bridge between both
filaments, a so-called cross-bridge. Due to the molecular configuration of newly
attached cross-bridges, they pull the two filaments such that they slide alongside
each other, which causes a shortening of the muscle cell. This pulling step is called a
power stroke. After each power stroke, the myosin head can unbind from the binding
side, release the ADP (adenosine diphosphate) molecule and obtain new free energy
by hydrolyzing another ATP (adenosine triphosphate) molecule.

The cycling of binding, power stroke, unbinding and resetting of myosin heads
is called the cross-bridge cycle. Since numerous muscle cells contract due to this
mechanism, the whole muscle tissue contracts on the macroscopic scale. The rate
at which the cross-bridge cycling takes place controls the contraction strength.
The contraction process varies for different muscle types. However, blocking and
unblocking the binding sides at the actin filaments is always part of the control
mechanism. In skeletal muscle tissue, the periodic release of calcium ions unblocks
the binding sides. A higher frequency of calcium ion bursts leads to a stronger
contraction.

From the variety of available mathematical models, we extract the common core,
which is given by the sliding filament theory with cross-bridges modelled as springs
[12, 15, 18, 30]. To obtain a linear model, we assume that the springs are linear,
which is valid for some models [15, 30], but not the case for more detailed models
[16], [18, Section 15.6]. We also simplify the model radically by considering only
the attached cross-bridges. Hence, the actual cross-bridge cycling does not take
place in the system we present. However, Sect. 5.3 outlines possible extensions,
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Fig. 2 Model for the coupling between a macroscopic linear spring (blue) and microscopic myosin
filaments (orange) with their corresponding pair of actin filaments (purple)

which we neglect for most of the exposition to avoid distraction from the main
mathematical ideas.

2.2 A Differential-Algebraic Model for Attached Cross-Bridges

Without further ado, we present the mathematical model for attached cross-bridges
in the presence of constraints. Our goal is to model a muscle cell which is coupled
to a macroscopic linear spring, as displayed in Fig. 2. It is sufficient to model only
one half of the actin-myosin filaments from Fig. 2, since their arrangement is mirror-
symmetrical.

We define the dimensions nr := 1, nq := 1, where nr denotes the dimension of
the macroscopic spring and nq denotes the degrees of freedom of a single cross-
bridge. However, throughout this article, we will continue to distinguish between R,
R

nr and R
nq to indicate real numbers and position variables in the according spaces.

The reader is welcome to read this section with nq, nr ≥ 1 in mind. While the
coupled cross-bridge model leads to the one-dimensional case, we simultaneously
include an abstract model where the macroscopic system has nr degrees of freedom
and each particle has nq degrees of freedom.

To model the macroscopic spring, we use r ∈ R
nr as the extension of a linear

spring with mass Mr and force Fr(r) = −γrr .
For the microscopic model, we label the attached cross-bridges with j =

1, . . . , N , where N is the total number of cross-bridges. The extension of a single
cross-bridge is denoted by Qj ∈ R

nq and each cross-bridge is a linear spring with
mass Mq and force Fq(Qj ) = −γqQj . Because a single cross-bridge is very light
compared to the macroscopic spring, the dynamics of cross-bridges are typically
fast compared to the macroscopic spring. The small individual mass is compensated
by the large number of cross-bridges N , which is a crucial parameter of the system.
The situation is sketched in Fig. 3.

For the abstract model nr , nq ≥ 1, we define the function

g(r,Qj ) := Qj +Grr,
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Fig. 3 Simplified model for attached cross-bridges (red) between parallelly sliding actin and
myosin filaments coupled with a macroscopic linear spring (blue)

where Gr ∈ R
nq×nr is an arbitrary, possibly singular matrix. In the cross-bridge

model, the macroscopic spring and the actin filament are considered to be fixed to
the walls at both sides, as displayed in Fig. 3. Therefore, we require the total length
to remain constant and pick Gr := −1 in the one-dimensional case nr = nq = 1.
For each cross-bridge, we define the linear constraint as

g(r,Qj ) = g(r in,Qin
j ) for j = 1, . . . , N,

where r in ∈ R
nr and Qin

j ∈ R
nq denote the initial states of the macroscopic system

and the cross-bridges. The corresponding Lagrangian multipliers are denoted by
λ1, . . . , λN ∈ R

nq . Overall, we arrive at the following linear differential-algebraic
system that models a linear spring coupled to a sliding actin-myosin filament pair
with N cross-bridges

Mrr̈ = −γrr −
N∑
i=1

GT
r λi, (2.1)

MqQ̈j = −γqQj − λj for j = 1, . . . , N, (2.2)

Qj +Grr = Qin
j +Grr

in for j = 1, . . . , N (2.3)

with initial conditions

r(0) = r in ∈ R
nr , ṙ(0) = s in ∈ R

nr and Qj(0) = Qin
j ∈ R

nq for j = 1, . . . , N.

In the following, we will refer to (2.1)–(2.3) as the DAE formulation. There is no
initial condition for the velocities Q̇j , since the constraint implies the compatibility
condition

Q̇j (0) = −Grs
in for j = 1, . . . , N.

We require the mass matrices Mr ∈ R
nr×nr ,Mq ∈ R

nq×nq to be positive
definite. We remark that ∂g

∂Qj
(r,Qj ) = 1 ∈ R

nq×nq , which implies the full-rank
condition required for local existence and uniqueness of solutions [6, Section VII.I,
Eq. (1.16)].
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2.3 Derivation of an Effective Balance Law via Index
Reduction and Elimination of Multipliers

The system (2.1)–(2.3) has differential index 3 [2], [6, Section VII.I]. Due to the
particular structure, it is possible to eliminate the Lagrange multipliers and derive
an ODE formulation. Differentiating (2.3) with respect to time yields

Q̇j = −Gr ṙ (2.4)

and

Q̈j = −Grr̈. (2.5)

Using (2.5), we solve (2.2) for λj and insert the result into (2.1), which leads to

Mrr̈ = −γrr −
N∑
i=1

GT
r

(
−γqQi −MqQ̈i

)

= −γrr −
N∑
i=1

GT
r

(−γqQi +MqGr r̈
)
.

After collecting the acceleration terms on the left-hand side, one obtains

⎛
⎝Mr +

N∑
i=1

GT
r MqGr

⎞
⎠

︸ ︷︷ ︸
=:Meff

(N)

r̈ = −γrr +
N∑
i=1

GT
r γqQi

︸ ︷︷ ︸
=:Feff

(N)(r,Q1,...,QN)

. (2.6)

This system of ordinary differential equations describes the effective balance of
forces after elimination of the constraint equation, and thus we use the subscript
()eff.

In Eq. (2.6), the Lagrangian multipliers are eliminated, but the equation is not
closed since Qi is needed to compute Feff

(N). We employ (2.4) to generate a first
order differential equation for all Qj , i.e.

Q̇j = −Grṙ for j = 1, . . . , N. (2.7)

Now, the Eqs. (2.6) and (2.7) form a closed linear ordinary differential equation
(ODE) which we will call the ODE formulation. There are other ODE formulations,
but we prefer (2.6) and (2.7) since this form leads to a direct derivation of the mean-
field PDE in Sect. 3.3.

A numerical simulation of (2.6) and (2.7) is presented in Fig. 4. For the
simulation, the initial conditions of the cross-bridge extensions Qi are samples
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Fig. 4 The trajectory of the macroscopic system (left) and the cross-bridge extensions (right)

of a normal distribution. The cross-bridges influence the effective mass and the
effective force of the macroscopic system. This influence leads to a shift of the
macroscopic system’s equilibrium to r0 ≈ 1.5 instead of r0 = 0. Since the constraint
is r −Qj = r in −Qin

j , the trajectories of the cross-bridge extensions just differ by
constant shifts. For details on the numerical method and the used parameters, we
refer to Sect. 6.

2.4 Explicit Solutions

The linear constraint (2.3) can be solved for Qi , which yields

Qi = −Grr +Grr
in +Qin

i .

With this formula, we can reformulate (2.6) as

Meff
(N)r̈ = −γ (N)

eff (r − r
(N)
0 ) (2.8)

with the effective stiffness

γ
(N)
eff := γr + NGT

r γq

and the new equilibrium

r
(N)
0 = GT

r γq

N∑
i=1

(Grr
in +Qin

i ).

Equation (2.8) has well-known explicit solutions. The system (2.1)–(2.3) is there-
fore a benchmark case for partially kinetic systems.
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In the setting of more realistic muscle models, explicit solutions are not available
any more, since attachment and detachment of cross-bridges lead to a switched
system where the number of cross-bridges N changes over time, as outlined in
Sect. 5.3. Moreover, if the constraint function g(r,Qj ) is nonlinear with respect to
Qj , then explicit solutions are not known in general. These extensions are discussed
in Sect. 5.

Despite the existence of explicit solutions, we will continue without using (2.3)
to solve for Qj , since this benchmark-setting is convenient to demonstrate the
influence of constraints on kinetic theory. The calculations in Sects. 3 and 4
generalise well to relevant extensions as sketched in Sect. 5. Only in proofs of this
article, we will use (2.3) explicitly.

3 Partially Kinetic Model for Muscle Cells with Attached
Cross-Bridges

The kinetic theory for cross-bridges was investigated already in the early eighties
[15]. The first approaches suggested to model attached cross-bridges as linear
springs, while many refinements have been introduced later on and are still today
subject of current research [13]. To compute the contraction force, all models known
to us [1, 10–12, 18] assume implicitly that the kinetic equations remain valid without
modification in the presence of constraints, cf. [12]. Moreover, the masses of the
cross-bridges are assumed to add no kinetic energy to the macroscopic system.
These two assumptions are very reasonable and lead to successful models. In the
following, we want to compute explicitly how the kinetic equations look like in
the presence of constraints and give a mathematical quantification for common
modelling assumptions.

We remark that Sect. 3.1 comprises a short outline of the fundamentals of kinetic
theory. For this purpose, it is preferable to use the ODE formulation (2.6) and (2.7)
instead of the DAE formulation (2.1)–(2.3). Afterwards, in Sect. 3.4, similar steps
are applied to the DAE formulation.

3.1 Partially Kinetic Equations for the ODE Formulation

This section outlines the derivation of the partially kinetic equations for the ODE
formulation (2.6) and (2.7). We obtain the kinetic equations by the formal mean-field
limit. In Sect. 4, this approach is justified by a rigorous estimate which proves that
the solutions of the ODE formulation convergence under the scaling assumptions
of the mean-field limit to the solutions of the partially kinetic equations. There are
different techniques to compute the mean-field limit for ODE models. The dual
pairing between measures and smooth test functions is a powerful formalism to
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derive the mean-field PDE in its weak formulation [17]. However, we will motivate
the mean-field limit as a generalisation of the strong law of large numbers, which is
a less abstract approach. The derivation follows these steps:

Step 1: Introduction of a scaling factor,
Step 2: Introduction of a measure μt to describe the statistical distribution of the

cross-bridge extensions,
Step 3: Derivation of the mean-field characteristic flow equations, which govern

the evolution of the cross-bridge distribution μt ,
Step 4: Derivation of a kinetic balance law for the macroscopic system.

Step 1 As the number of cross-bridges is large, we want to study the limit of
infinitely many cross-bridges N → ∞. A naive limit N → ∞ leads to a system
with infinitely many identical linear springs. Such a system is either in equilibrium
or entails an infinite force. The force term in (2.6)

Feff
(N)(r,Q1, . . . ,QN) = −γrr −GT

r

N∑
j=1

γqQj

will either be divergent or the cross-bridge extensions form a zero sequence.
Therefore, the naive limit is mathematically and physically unreasonable since it
describes either states close to equilibrium or states with infinite energy.

The scaling assumption of the mean-field limit is that the force
∑N

j=1 Fq(Qj )

is replaced by the mean-field force 1
N

∑N
j=1 Fq(Qj ). Therefore, while increasing

the number of cross-bridges, we scale the mass and force of each cross-bridge,
such that the total energy remains constant. To maintain the right ratio between
the macroscopic system and the cross-bridges, we add another factor Nreal, which
denotes the realistic numbers of cross-bridges. Hence, we apply the following
scaling to the ODE formulation (2.6) and (2.7)

M̃q := Nreal

N
Mq and F̃q(Qj ) := Nreal

N
Fq(Qj ) = −Nreal

N
γqQj . (3.1)

After this modification, (2.6) and (2.7) take the form

(
Mr +

=:M(N)
mean︷ ︸︸ ︷

Nreal

N

N∑
i=1

GT
r MqGr

)
r̈ = −γrr +

=:F (N)
mean(r,Q1,...,QN)︷ ︸︸ ︷

Nreal

N

N∑
i=1

GT
r γqQi, (3.2)

Q̇j = −Gr ṙ. (3.3)

For the mathematical discussion, we might assume without loss of generality
Nreal = 1, which is a typical simplification in kinetic theory [5, 17]. However,
for partially kinetic systems, the correct ratio between masses and forces of both
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systems is relevant. Therefore, in contrast to the classical case, different values of
Nreal change the properties of the kinetic equations.

Step 2 A key observation in Eq. (3.2) is that only the mean value of the cross-bridge
masses M

(N)
mean and the mean value of the cross-bridge forces F

(N)
mean are relevant.

In other words, we are just interested in the statistics of (Q1, . . . ,QN) but not in
particular states of single cross-bridges. This observation motivates the use of a
probability measure to quantify the distribution of the cross-bridges.

We will use the following notations from measure theory with notation as in [5]:
The Borel σ -algebra on R

nq is denoted by B(Rnq ) and the corresponding space of
probability measures on R

nq is P(Rnq ). The space of probability measures μ ∈
P(Rnq ) with finite first moments

∫
R

nq

∥∥q∥∥ dμ(q) <∞ is denoted by P1(Rnq ).
We assume that for each fixed time t , there is a probability measure μt ∈

P1(Rnq ), such that the cross-bridge extensions Qj(t) are independent and iden-
tically distributed random variables with probability law μt . We use the notation

Qj(t) ∼ μt :⇔ P(Qj (t) ∈ A) = μt(A), for all A ∈ B(Rnq ).

We call μt the cross-bridge distribution.1

Step 3 To characterise the evolution of μt , we will now define the characteristic
flow. We assume that just the initial cross-bridge distribution μin ∈ P1(Rnq ) is
known, i.e.

Qin
j ∼ μin, for all j = 1, 2, . . . .

We interpret the velocity constraint Q̇j = −Grṙ (2.7) as a first order differential
equation and denote its flow by Q(t, q in). Hence, Q(t, q in) satisfies for all q in ∈ R

nq

Q̇(t, q in) = −Grṙ(t), (3.4)

Q(0, q in) = q in. (3.5)

In the setting of (3.2) and (3.3), the discrete cross-bridge states satisfy

Qj(t) = Q(t,Qin
j ). (3.6)

Since the cross-bridge extensions follow the characteristic flow of Q(t, ·), the
distribution of cross-bridges is also determined by the characteristic flow. More
precisely, the cross-bridge distribution μt is the transformation of the initial cross-
bridge distribution μin under the flow Q(t, ·) : Rnq → R

nq . This transformation

1It is not trivial to argue why all cross-bridges Qj are well described by one common probability
measure μt . This property is related to the concept of propagation of chaos [17]. The mean-field
limit, which generalises the strong law of large numbers, is one possibility to overcome this issue.
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Fig. 5 The flow of the
particles does also induce a
transformation of the initial
particle measure μin

is visualized in Fig. 5. To measure how many cross-bridges have extensions in
A ∈ B(Rnq ), we can count how many cross-bridges have an initial extension in(
Q(t, ·))−1

(A), i.e.

Qj(t) ∈ A ⇔ Qin
j ∈

(
Q(t, ·))−1

(A).

This relation characterises the pushforward of a measure [5, 17]. For a map ϕ :
R

nq → R
nq , the pushforward of μin under ϕ is defined as

ϕ#μin(A) := μin(ϕ−1(A)), for all A ∈ B(Rnq ).

Applied to our situation, with ϕ = Q(t, ·), the cross-bridge distribution at time t is
the pushforward of μin under Q(t, ·). Therefore, the evolution of μt is characterised
by

μt := Q(t, ·)#μin. (3.7)

Step 4 Our goal is to approximate the limit N → ∞ of (3.2) by an expression
depending on μt . Consequently, we continue with computing M

(N)
mean and F

(N)
mean (3.2)

in the limit N → ∞. Now, we make use of the assumption that all cross-bridges
are independent and identically distributed with law Qj(t) ∼ μt . Application of the
strong law of large numbers [19, Section 5.3] yields

lim
N→∞F (N)

mean(t) = Nreal lim
N→∞GT

r γq
1

N

N∑
i=1

Qi(t)

= NrealG
T
r γqE

[
Q1(t)

]
almost surely. (3.8)

The sum converges almost surely (a.s.), i.e. with probability 1 the last equality holds.
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Using E[Q1(t)] =
∫
R

nq q dμt(q), we define the mean-field force as

fmean(μ
t ) := NrealG

T
r γq

∫
R

nq

q dμt (q). (3.9)

Due to (3.8), the mean-field force satisfies

fmean(μ
t ) = lim

N→∞F (N)
mean(t) a.s.

Similarly, the mean-field mass is

mmean(μ
t ) := Nreal

∫
R

nq

GT
r MqGr dμt (q) (3.10)

= NrealG
T
r MqGr

∫
R

nq

dμt(q) = NrealG
T
r MqGr.

In the setting of our model, the mean-field mass is constant, since we only
consider linear constraints. We remark that for nonlinear constraints, the term Gr

would depend on q in general, which calls for a more profound analysis.
With (3.9) and (3.10), we obtain the kinetic formulation of the effective balance

law (3.2) as

(
Mr +NrealG

T
r MqGr

)
︸ ︷︷ ︸

=:meff

r̈ = −γrr + NrealG
T
r γq

∫
R

nq

q dμt (q)

︸ ︷︷ ︸
=:feff(r,μt )

. (3.11)

Finally, the kinetic description of the ODE formulation (2.5) and (2.6) is given
by the effective balance law (3.11), the characteristic flow equations (3.4) and the
pushforward relation (3.7).

The partially kinetic model for muscle cells with attached cross-bridges is given
by (3.4), (3.5), (3.7), (3.11), summarised as

(
Mr + Nreal

∫
R

nq

GT
r MqGr dμt(q)

)
r̈ = −γrr +NrealG

T
r γq

∫
R

nq

q dμt(q),

(3.12)

Q̇(·, q in) = −Gr ṙ, for all q in ∈ R
nq , (3.13)

μt := Q(t, ·)#μin (3.14)

with initial conditions

r(0) = r in ∈ R
nr , ṙ(0) = sin ∈ R

nr and Q(0, q in) = q in
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and initial cross-bridge distribution μin ∈ P1(Rnq ). In kinetic theory, systems of
the form (3.13) and (3.14) are called the mean-field characteristic flow equations [5,
Section 1.3] since Q(t, ·) describes the flow of the cross-bridge distribution in the
presence of the mean-field forces. For that reason, we call the model (3.12)–(3.14)
partially kinetic, since it combines an effective balance law for the macroscopic
system (3.12) and the mean-field characteristic flow equations (3.13) and (3.14).

3.2 Consistency Between the ODE Formulation
and the Partially Kinetic Equations

The cross-bridge distribution μt is usually modelled as a continuous measure.
However, inserting an empirical measure for the initial state μin yields a consistency
check of (3.12)–(3.14). We define the empirical measure as

μ
(emp)
Q1,...,QN

:= 1

N

N∑
j=1

δQj ∈P1(Rnq ),

where δQj denotes the Dirac measure which assigns unit mass to the position Qj ∈
R

nq . This measure allows us to treat the discrete system (2.6) and (2.7) as a special
case of (3.12)–(3.14).

Lemma 3.1 (Consistency with the ODE Formulation) For a solution (r(t),

Q1(t), . . . ,QN(t)) of (2.6) and (2.7), we define

μt = μ
(emp)

Q1(t),...,QN(t).

Then (r(t), μt ) is a solution of (3.12)–(3.14) with Nreal := N and initial conditions
r(0) = r in, ṙ(0) = sin and μin = μ

(emp)

Qin
1 ,...,Qin

N

.

Proof Let (r(t),Q1(t), . . . ,QN(t)) be a solution of (2.6) and (2.7) with the
corresponding initial conditions r(0) = r in, ṙ(0) = sin and Qj(0) = q in

j for all
j = 1, . . . , N .

1. We define the characteristic flow as

Q(t, q in) := −Gr(r(t)− r in)+ q in,

which is the integral of (3.13) and hence a solution of (3.13) for all q in ∈ R
nq .

2. Since Q1(t), . . . ,QN(t) satisfy (2.3)

Qj(t) = −Gr(r(t)− r in)+Qin
j ,
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we obtain Q(t,Qin
j ) = Qj(t), which yields

Q(t, ·)#μin = Q(t, ·)#μ(emp)

Qin
1 ,...,Qin

N

= μ
(emp)

Q(t,Qin
1 ),...,Q(t,Qin

N)

= μ
(emp)

Q1(t),...,QN(t) = μt .

As a result, μt satisfies (3.14).
3. Finally, we insert μt := μ

(emp)

Q1(t),...,QN(t) into (3.12) and compute

(
Mr + Nreal

∫
R

nq

GT
r MqGr dμ

(emp)

Q1(t),...,QN (t)
(q)

)
r̈ (t) = −γr r(t)

+ NrealG
T
r γq

∫
R

nq

q dμ
(emp)

Q1(t),...,QN (t)
(q)

⇔
⎛
⎝Mr + Nreal

1

N

N∑
j=1

GT
r MqGr

⎞
⎠ r̈ (t) = −γr r(t) +Nreal

1

N

N∑
j=1

GT
r γqQj (t)

⇔
(
Mr + NrealG

T
r MqGr

)
r̈ (t) = −γr r(t) + Nreal

N

N∑
j=1

GT
r γqQj(t).

(3.15)

For Nreal := N , the last line (3.15) is exactly (2.6). Therefore, (r(t), μt )

solve (3.12), which concludes the proof. �

Lemma 3.1 shows that the ODE formulation (2.5) and (2.6) is a special case of

the partially kinetic system (3.12)–(3.14) with an empirical initial measure μin =
μ

(emp)

Qin
1 ,...,Qin

N

. The consistency check from Lemma 3.1 does not prove anything for the

limit N →∞, but it relates the limit N →∞ to the stability of the partially kinetic
system with respect to initial data. We will prove the stability of linear partially
kinetic systems with respect to perturbation in the initial data in Sect. 4.

3.3 Partially Kinetic Mean-Field PDE

The mean-field characteristic flow equations (3.13) and (3.14) are too complex for
direct numerical simulation, as they contain an infinite family of differential equa-
tions. The method of characteristics allows us to relate the family of ODEs (3.13)
and (3.14) to a first order partial differential equation (PDE). The resulting PDE is
called the mean-field PDE.
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To derive the mean-field PDE, we assume that μin has a probability density, i.e.
there exists a function u(t, q) such that

u(t, q ′) d q ′ = d μt(q ′) for all t ∈ [0,∞), q ′ ∈ R
nq

where d q ′ denotes the Lebesgue measure on R
nq with variable q ′. Then, the

pushforward relation (3.14) implies that u(t, q ′) is constant along the characteristic
curves

t �→ Q(t, q in).

Using this invariance, we can compute

0 = d u(t,Q(t, q in))

d t
= ∂u

∂t
+ ∂u

∂q
Q̇

⇔ 0 = ∂u

∂t
− ∂u

∂q
Gr ṙ. (3.16)

The transport equation (3.16) is the mean-field PDE for the ODE formulation (2.6)
and (2.7) and the Eqs. (3.12) and (3.16) are another kinetic description for attached
cross-bridges. The possibility to derive a mean-field PDE is the main advantage of
the ODE formulation. In the literature [14, 18], the foundational model for cross-
bridge dynamics is the transport equation as in (3.16) with additional source terms.
In Sect. 5.3, the relation between the simplified model of attached cross-bridges and
more realistic models is outlined.

A numerical simulation of (3.12) and (3.16) is presented in Fig. 6.
In contrast to the ODE/DAE simulation, the computational complexity of the

transport equation does not increase in complexity for different values of Nreal. For
more details on the used numerical methods, we refer to Sect. 6. The simulation
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Fig. 6 Evolution of the macroscopic system (left) and the cross-bridge distribution (right). The
colour intensity represents the cross-bridge density u(t, q)



Linear Partially Kinetic Equations 373

0 20 40 60
t

1.0

1.2

1.4

1.6

1.8

2.0

r
Macroscopic System

kinetic
discrete

0 10 20 30 40 50 60
t

−4

−2

0

2

4

6

q

Cross-Bridges

Fig. 7 Comparison of the discrete simulation Fig. 4 and the corresponding kinetic trajectory from
Fig. 6. The trajectory of the macroscopic system with 250 cross-bridges is well approximated by
the corresponding mean-field equation

results are not surprising, and the results fit well to the simulation of the ODE/DAE
formulation, as visualised in Fig. 7.

However, Fig. 7 can be misleading: If we denote the solution of the par-
tially kinetic system as rkin(t;μin) and the solution of the DAE formulation as
rDAE(t;Qin

1 , . . . ,Qin
N), then the relation is given by

lim
N→∞E[rDAE(t;Qin

1 , . . . ,Qin
N)] = rkin(t;μin), (3.17)

where Qin
j ∼ μin are independent and identically distributed random variables.

Hence, instead of comparing single trajectories rDAE(t) and rkin(t), we need to
compare the mean-trajectory E[rDAE(t)] with rkin(t). Section 4.1 gives a numerical
validation of (3.17) and presents numerical evidence for the mean-field limit in
Figs. 9 and 10.

3.4 Partially Kinetic Equations for the DAE Formulation

To analyse the influence of index reduction, we demonstrate how the mean-field
limit applies directly to the DAE (2.1)–(2.3) without prior index reduction. Here, we
need to generalise the Lagrangian multipliers to fit into the kinetic framework. The
resulting characteristic flow has to satisfy the algebraic constraint (2.3), which leads
to the new concept of constrained characteristic flows. Since the constraint (2.3)
is uniform for all j ∈ {1, . . . , N}, the notation of a differentiability index [2, 7]
carries over to constrained characteristic flows. After two index reduction steps
and elimination of multipliers, as in Sect. 2.3, the constrained characteristic flow
equations transform into the (unconstrained) characteristic flow equations (3.13).
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Fig. 8 Different paths to derive the mean-field characteristic flow equations for (2.1)–(2.3)

In abstract terms, the index reduction and the mean-field limit commute, as
summarised in Fig. 8.

In order to formally derive the kinetic equations for the system of DAEs (2.1)–
(2.3), we follow similar steps as in Sect. 3.1.

Step 1: Introduction of a scaling factor,
Step 2: Introduction of a measure μt to describe the statistical distribution of the

cross-bridge extensions,
Step 3: Derivation of the constrained mean-field characteristic flow equations,

which govern the evolution of the cross-bridge distribution μt ,
Step 4: Derivation of a kinetic balance law for the macroscopic system.

Step 1 Exactly as in (3.1), we scale the mass and force of each cross-bridge via

M̃q := Nreal

N
Mq and F̃q(Qj ) := Nreal

N
Fq(Qj ) = −Nreal

N
γqQj , (3.18)

where Nreal is the fixed number of cross-bridges that a realistic system would have,
and N is the number of cross-bridges of the systems for the limit process N →∞.
After this rescaling, the system of DAEs (2.1)–(2.3) is

Mrr̈ = −γrr −
N∑
i=1

GT
r λ̃i, (3.19)

Nreal

N
MqQ̈j = −Nreal

N
γqQj − λ̃j for j = 1, . . . , N, (3.20)

Qj +Grr = Qin
j +Grr

in for j = 1, . . . , N (3.21)

where λ̃i ∈ R
nq are the Lagrangian multipliers of the scaled system (3.19)–(3.21).
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Step 2 Precisely as in Sect. 3.1, we assume that the cross-bridge distribution μt ∈
P1(Rnq ) exists. In the following, we want to derive a law for the evolution of μt .
The initial cross-bridge distribution is given by μin ∈P1(Rnq ).

Step 3 In contrast to the effective balance law (2.6), the balance law of the
macroscopic system (3.19) contains Lagrangian multipliers. The value of the
multiplier λ̃j in (3.20) represents a force acting on the j th cross-bridge. In a
statistical description, there are no individually labelled cross-bridges any more.
Instead, the characteristic flow Q(t, q in) tracks the dynamics of cross-bridges with
initial condition q in ∈ R

nq . Hence, instead of one multiplier λ̃j (t) per cross-bridge,
the kinetic description requires a multiplier such as λ̃(t,Q(t, q in)) for each initial
state.

The characteristic flow Q(t, q in) and the generalised Lagrangian multipliers
λ̃(t, q) are solutions of the following family of DAEs

Nreal

N
MqQ̈(t, q in) = −Nreal

N
γqQ(t, q in)− λ̃(t,Q(t, q in)) for all q in ∈ R

nq ,

(3.22)

Q(t, q in)+Grr = q in +Grr
in for all q in ∈ R

nq .

(3.23)

However, this formulation is not satisfying since we can formally compute

λ̃(t,Q(t, q in)) = −Nreal

N

(
MqQ̈(t, q in)− Nreal

N
γqQ(t, q in)

)
(3.24)

→ 0 (formally) for N →∞. (3.25)

As a result, the quantities of interest in the mean-field limit are not the Lagrangian
multipliers λ̃(t,Q(t, q in)) but the mean-field Lagrangian multipliers

λmf(t,Q(t, q in)) := N

Nreal
λ̃(t,Q(t, q in)) for all q in ∈ R

nq .

With this definition, the system (3.22) and (3.23) reads

MqQ̈(t, q in) = −γqQ(t, q in)− λmf(t,Q(t, q in)) for all q in ∈ R
nq ,

(3.26)

Q(t, q in)+Grr = q in +Grr
in for all q in ∈ R

nq .

(3.27)

We refer to (3.26) and (3.27) as the constrained mean-field characteristic flow
equations. For the same arguments as in Sect. 3.1 and Fig. 5, the evolution of
the cross-bridge distribution μt is the pushforward of μin under the constrained
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characteristic flow

μt := Q(t, ·)#μin. (3.28)

Step 4 To replace (3.19) by its kinetic counterpart, we apply the scaling λj =
N

Nreal
λ̃j , to obtain formally

Mrr̈ = −γrr −
N∑
i=1

GT
r λ̃i

= −γrr − Nreal

N

N∑
i=1

GT
r λi

= −γrr − Nreal

⎛
⎝ 1

N

N∑
i=1

GT
r λmf(t,Q(t,Qin

i ))

⎞
⎠

→−γrr −Nreal

∫
R

nq

GT
r λmf(t,Q(t, q in))μin (formally) for N →∞

(3.29)

= −γrr − Nreal

∫
R

nq

GT
r λmf(t, q)μ

t

This formal argument yields the kinetic balance law

Mrr̈ = −γrr − Nreal

∫
R

nq

GT
r λmf(t, q) dμt (q), (3.30)

We remark that, in contrast to the derivation in Sect. 3.1, the strong law of large
numbers is not applicable in (3.29).

Finally, we arrive at the partially kinetic index-3 formulation of (2.1)–(2.3) which
is given by Eqs. (3.26)–(3.28) and (3.30). We summarise these equations

Mrr̈ = −γrr −Nreal

∫
R

nq

GT
r λmf(t, q) dμt(q), (3.31)

MqQ̈(t, q in) = −γqQ(t, q in)− λmf(t,Q(t, q in)) for all q in ∈ R
nq ,

(3.32)

Q(t, q in)+Grr = q in +Grr
in for all q in ∈ R

nq ,

(3.33)

μt := Q(t, ·)#μin (3.34)
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with initial conditions

r(0) = r in ∈ R
nr , ṙ(0) = sin ∈ R

nr and Q(0, q in) = q in for all q in ∈ R
nq .

(3.35)

Since the derivation is formal, regularity aspects are not considered. Indeed, the
integral in (3.31) might not exist for μin ∈ P1(Rnq ). It could be, that higher
regularity of the initial data is necessary to ensure the existence of solutions of the
partially kinetic index-3 formulation. Hence, we do not claim that the system has
solutions.

3.5 Index Reduction and Elimination of the Multipliers for
Partially Kinetic Systems

In Sect. 2.3, for every cross-bridge index j ∈ {1, . . . , N}, the same algebraic
transformations recast the DAE formulation into the index-1 formulation. Despite
(3.32) and (3.33) being infinite-dimensional, the index reduction is possible with the
same algebraic transformations as in Sect. 2.3 but applied for each q in ∈ R

nq . The
key assumption here is the uniformity of the constraints, since for each q in ∈ R

nq

the algebraic constraint in (3.33) just differs by a shift.
The first two time derivatives of (3.33) are

Q̇(t, q in) = −Grṙ(t), (3.36)

Q̈(t, q in) = −Grr̈(t). (3.37)

Now, we solve (3.32) for the mean-field Lagrangian multipliers

λmf(t,Q(t, q in)) = −γqQ(t, q in)−MqQ̈(t, q in),

and with (3.37) we obtain

λmf(t,Q(t, q in)) = −γqQ(t, q in)+MqGrr̈(t). (3.38)

Finally, we substitute (3.38) into the kinetic balance law (3.31)

Mrr̈ = −γrr −Nreal

∫
R

nq

GT
r λmf(t, q) dμt (q)

= −γrr −Nreal

∫
R

nq

GT
r (−γqq +MqGrr̈(t)) dμt(q)

= −γrr +Nreal

∫
R

nq

GT
r γqq dμt (q)−

(∫
R

nq

NrealG
T
r MqGr dμt (q)

)
r̈(t).

(3.39)
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The resulting equation (3.39) is exactly the previously derived effective kinetic
balance law for the macroscopic system in (3.12). The equations (3.34), (3.36)
and (3.39) are exactly the previously derived partially kinetic equations (3.12)–
(3.14). This concludes the claim from the beginning of Sect. 3.4: The formal
mean-field limit and index-reduction commute for the DAE formulation (2.1)–(2.3).

4 The Mean-Field Limit for Partially Kinetic Systems

Until now, all derivations of partially kinetic equations in this article have been
formal. In this section, we will give a rigorous link between the discrete cross-
bridge dynamics and their kinetic description. In Eq. (3.8), the strong law of large
numbers motivates the use of a mean-field force. Nevertheless, the strong law
of large numbers is not sufficient to show that the kinetic description is a good
approximation for systems with many cross-bridges. The law requires all cross-
bridges to be stochastically independent, which is not easy to prove in general.
Moreover, the argument in (3.8) only applies for a fixed time t . The mean-field
limit is a generalization of the strong law of large numbers and yields the required
convergence result.

Section 4.1 motivates the mean-field limit with a numerical evidence. Section 4.2
shows that the mean-field limit follows from Dobrushin’s stability estimate for
partially kinetic systems. Thereafter, Sect. 4.3 proofs the stability estimate.

4.1 Numerical Evidence of the Mean-Field Convergence

A consequence of the mean-field limit is that the mean-trajectories of the macro-
scopic system in the discrete formulation tend towards the solution of the partially
kinetic description, as explained in Sect. 3.3. We will now perform a numerical test
for this claim.

In Fig. 9, we perform numerical simulations of the ODE formulation (2.6)
and (2.7) with fixed initial conditions r in = 1 and sin = 0. The statistics of the
initial cross-bridge extensions are given by a normal distribution

dμin(q) = 1√
2πσ 2

exp

(
− (q −m)2

2σ

)
d q,

with mean m = −2 and variance σ 2 = 1. As initial data for the ODE formulation,
we sample nsamples = 100 many initial cross-bridge extensions Qin

i,k, . . . ,Q
in
N,m ∈

R
nq , with law

Qin
i,k ∼ μin for i ∈ {1, . . . , N}, k ∈ {1, . . . , nsamples}.
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Fig. 9 Samples of trajectories r(t) of the macroscopic system for different numbers of cross-
bridges N ∈ {4, 128, 2048} (top and bottom left). For an increasing number of particles n, the
estimated variance of r(t) decreases as 1

n
. (bottom right)

The sampling yields nsamples different initial conditions and therefore, nsamples
trajectories of the macroscopic system and the cross-bridges. The trajectories of
the macroscopic system are plotted in Fig. 9.

To quantify the distance of single trajectories from the mean-trajectory, we
estimate the variance of r(t) with respect to the randomly sampled initial conditions.
It turns out that the variance reduces asymptotically as fast as 1

N
, which is displayed

in Fig. 9. Therefore, even single trajectories are close to the mean-trajectory.
The mean-trajectories in Fig. 9 indeed converge towards the trajectory of the

partially kinetic systems, as visualised in Fig. 10. We remark that this convergence
also depends on the number of samples nsamples. Increasing the number of samples
leads to faster convergence in Fig. 10. In a nonlinear setting, this convergence
behaviour might change radically.
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Fig. 10 The left plot compares the trajectory of the kinetic system and mean-trajectories of the
discrete dynamics. This visual convergence is quantified in the right figure, which shows that the
maximum distance between the mean-trajectories and the kinetic trajectory converges numerically

4.2 The Mean-Field Limit and Dobrushin’s Stability Estimate
for Linear Kinetic Systems

In this section, we will state an adapted version of Dobrushiun’s stability estimate
and define mean-field convergence for linear partially kinetic systems. The proof
of the stability estimate is given in Sect. 4.3. The classical version of Dobrushin’s
stability estimate for the Vlasov equation can be found in [5, theorem 1.4.3].

The numerical experiments in Sect. 4.1 indicate that the mean-trajectories of
the macroscopic systems converge to the mean-field trajectory. Now, to compare
the distance between the discrete cross-bridge extensions (Q1(t), . . . ,QN(t)) and
the kinetic cross-bridge distribution μt , we need to choose a metric. The empirical
measure μ

(emp)

Q1(t),...,QN(t) ∈ P1(Rnq ) is a possibility to represent the discrete cross-
bridge extensions in the space of probability measures, which leads to the new
goal of finding a metric for the space P1(Rnq ). Moreover, such a metric should
be compatible with the discrete distance between cross-bridge states. Therefore, we
require

dist

(
μ

(emp)
Q1,...,QN

, μ
(emp)

Q̃1,...,Q̃N

)
≈ 1

N

N∑
i=1

∥∥∥Qi − Q̃i

∥∥∥ . (4.1)

If Qi ≈ Q̃i holds, then the Monge-Kantorovich distance (also called Wasserstein
distance) satisfies the geometric requirement (4.1). For a detailed study of the
Monge-Kantorovich distance, we refer to [29, Chapter 6]. For our purpose, the
duality formula for the Monge-Kantorovich distance with exponent 1 is most useful
and hence serves as the definition here.
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Definition 4.1 (Monge-Kantorovich Distance [5, Proposition 1.4.2])
The Monge-Kantorovich distance with exponent 1 is given by the formula

W1(ν, μ) = sup
φ∈Lip(Rnq )

Lip(φ)≤1

∣∣∣∣
∫
R

nq

φ(q) dν(q)−
∫
R

nq

φ(q) dμ(q)

∣∣∣∣ , (4.2)

with the notation

Lip(φ) := sup
x,y∈Rnq

x 	=y

∣∣φ(x)− φ(y)
∣∣

∥∥x − y
∥∥

and

Lip(Rnq ) := {φ : Rnq → R | Lip(φ) <∞}.

The Monge-Kantorovich distance is a complete metric on P1(Rnq ) [29, Lemma
6.14].

For the attached cross-bridge model with nq = 1, the duality formula (4.2) with
φ(q) = q is directly applicable to estimate the difference of the mean-field forces

∥∥fmean(ν)− fmean(μ)
∥∥ ≤

∥∥∥GT
r γq

∥∥∥
∥∥∥∥
∫
R

nq

q dν(q)−
∫
R

nq

q dμ(q)

∥∥∥∥ (4.3)

≤
∥∥∥GT

r γq

∥∥∥W1(ν, μ). (4.4)

This estimate is at the core of the relation between partially kinetic systems and the
Monge-Kantorovich distance. Together with a classical stability estimate for ODEs,
this yields the following theorem.

Theorem 4.1 (Dobrushin’s Stability Estimate for Linear Partially Kinetic Sys-
tems) Suppose that for i ∈ {1, 2} the tuples (ri (t), μi(t)) ∈ R

nr ×P1(Rnq ) are
solutions of (3.12)–(3.14) with initial conditions

ri (0) = r in
i , ṙi(0) = sin

i and μi(0) = μin
i .

Then

∥∥r1(t)− r2(t)
∥∥ + ∥∥ṙ1(t)− ṙ2(t)

∥∥+W1(μ1(t), μ2(t))

≤ CeLt

(∥∥∥r in
1 − r in

2

∥∥∥+
∥∥∥s in

1 − s in
2

∥∥∥+W1(μ
in
1 , μin

2 )

)
,

(4.5)

for some constants L,C > 0 which are independent of the initial conditions.
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The Proof of Theorem 4.1 is content of Sect. 4.3.
Dobrushin’s stability estimate for linear partially kinetic systems (4.5) provides a

concrete answer to the approximation quality of the kinetic description. Lemma 3.1
shows that solutions (r(t),Q1(t), . . . ,QN(t)) of the discrete system (2.5) and (2.6)
yield a solution of the kinetic formulation with initial data μin = μ

(emp)

Qin
1 ,...,Qin

N

. If we

increase the number of cross-bridges such that the empirical measures converge to
a probability distribution μin ∈P1(Rnq ), i.e.

W1(μ
(emp)

Qin
1 ,...,Qin

N

, μin)→ 0, for N →∞,

then (4.5) provides a bound for the approximation error

∥∥rN (t)− r(t)
∥∥+ ∥∥sN (t)− s(t)

∥∥+W1(μ
(emp)

Q1(t),...,QN(t), μ
t) ≤ CetLW1(μ

(emp)

Qin
1 ,...,Qin

N

, μin)

→ 0, for N →∞.

(4.6)

This estimate provides a rigorous argument for the use of kinetic models. Moreover,
if the initial distribution of N cross-bridges (Qj )j=1,...,N is very close to a
continuous distribution μin, then approximation error of the kinetic description is
bounded.

Using tools from probability theory and functional analysis, the topology for the
convergence in (4.6) can be refined to the topology of weak convergence of measures
(also called convergence in distribution for probability measures) [5, Lemma 1.4.6],
[29, theorem 6.9]. This leads to the precise definition of mean-field convergence
[17]. We omit these details here as they are out of scope for the present paper.

4.3 Proof of Dobrushin’s Stability Estimate for Linear
Partially Kinetic Systems

This section provides a proof of Theorem 4.1. Compared to classical proofs
of Dobrushin’s stability estimate for the Vlasov equation [5, 17], the particular
structure of linear partially kinetic system allows for a more elementary proof, which
essentially reuses the stability estimate for ODEs with respect to initial conditions
and parameters, as stated in Theorem 4.3.

In contrast to many other metrics for probability measures, the Monge-
Kantorovich distance is motivated by geometry. In particular, shifting two measures
increases their distance at most by the length of the shift, see Lemma 4.2. Due
to this property, the proof of Theorem 4.1 boils down to the ODE estimate from
Theorem 4.3.
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Lemma 4.2 (Shift of the Monge-Kantorovich Distance) Let μ, ν ∈ P1(Rnq )

be two probability measures with finite first moment. For w ∈ R
nq we define the

shift mapping as Tw : Rnq → R
nq : q �→ q +w. Then for w1, w2 ∈ R

nq it holds

W1(Tw1#μ, Tw2 #ν) ≤ W1(μ, ν)+ ‖w2 −w1‖ .

Lemma 4.2 is usually a special case of more general theorems on the relation
between geodesic flows and the Monge-Kantorovich metric [29, Chapter 8]. For
completeness, we give an elementary proof.

Proof The Monge-Kantorovich distance is invariant with respect to shifts
W1(Tw#ν, Tw#μ) = W1(ν, μ), hence we can assume w1 = 0. For an arbitrary
vector w ∈ R

nq , we use the duality formula (4.2) and compute

W1(ν, Tw#μ) = sup
Lip(φ)≤1

∣∣∣∣
∫
R

nq

φ(q) dν(q)−
∫
R

nq

φ(q) d(Tw#μ)(q)

∣∣∣∣

= sup
Lip(φ)≤1

∣∣∣∣
∫
R

nq

φ(q) dν(q)−
∫
R

nq

φ(Tw(q)) dμ(q)

∣∣∣∣

= sup
Lip(φ)≤1

∣∣∣∣
∫
R

nq

φ(q) dν(q)−
∫
R

nq

φ(q) dμ(q)+
∫
R

nq

φ(q)− φ(q +w) dμ(q)

∣∣∣∣

≤ W1(ν, μ)+ sup
Lip(φ)≤1

∣∣∣∣
∫
R

nq

φ(q)− φ(q + w) dμ(q)

∣∣∣∣ (4.7)

where we have applied the transformation formula to the integral of the pushforward
operator. Next, we employ Lip(φ) ≤ 1 to obtain the upper bound

∣∣∣∣
∫
R

nq

φ(q)− φ(q +w) dμ(q)

∣∣∣∣ ≤
∫
R

nq

∣∣φ(q)− φ(q +w)
∣∣ dμ(q)

≤
∫
R

nq

‖w‖ dμ(q) = ‖w‖ .

We conclude

W1(ν, Tw#μ) ≤ W1(ν, μ)+ ‖w‖ . (4.8)

�

Theorem 4.3 (The “Fundamental Lemma”, [9, theorem 10.2]) Suppose that for
i ∈ {1, 2} the functions xi(t) solve

ẋi(t) = fi(xi(t)), (4.9)

xi(0) = x in
i . (4.10)
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If for some constants ', ε, L > 0 the following bounds hold

(i)
∥∥∥x in

1 − x in
2

∥∥∥ ≤ ',

(ii)
∥∥f1(x)− f2(x)

∥∥ ≤ ε for all x ∈ R
n,

(iii)
∥∥f1(a)− f1(b)

∥∥ ≤ L ‖a − b‖ for all a, b ∈ R
n,

then

∥∥x1(t)− x2(t)
∥∥ ≤ 'eLt + ε

L

(
eLt − 1

)
. (4.11)

Theorem 4.1 can be considered as a generalisation of Theorem 4.3.

Proof of Theorem 4.1 First, we will reformulate the ODE formulation (3.12)–
(3.14) such that Theorem 4.3 is applicable. The characteristic flow is explicitly given
by

Q(t, q in) := −Gr(r(t)− r in)+ q in, (4.12)

which is the unique solution of (3.13) and the initial condition. With (4.12), we can
compute the first moment of μt as

∫
R

nq

q dμt(q) =
∫
R

nq

Q(t, q ′) dμin(q ′)

= Gr(r(t)− r in)+
∫
R

nq

q ′ dμin(q ′). (4.13)

As a result, the effective force can be written as

feff(r(t), μ
t ) = −γrr(t)+NrealG

T
r γq

∫
R

nq

q dμt (q)

= −γrr(t)+NrealG
T
r γq

(
Gr(r(t)− r in)+

∫
R

nq

q dμin(q)

)

=: f̃eff(r(t);μin).

Now, we consider two different initial conditions (r in
1 , sin

1 , μin
1 ) ∈ R

nr × R
nr ×

P1(Rnq ) and (r in
2 , sin

2 , μin
2 ) ∈ R

nr × R
nr ×P1(Rnq ). To prepare the application

of Theorem 4.3, we transform meffr̈i = feff (3.12) into a first order ODE, with
xi(t) = (ri (t), ṙi (t))

T ∈ R
2nr and

ẋi(t) =
(

ṙi (t)

meff
−1f̃eff(r(t);μin

i )

)
=: fi(xi(t)) for i ∈ {1, 2}, (4.14)

xi(0) = (r in
i , sin

i )T for i ∈ {1, 2}.
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We remark that meff = Mr + NrealG
T
r MqGr is invertible, since Mr and Mq are

defined to be positive definite, see Sect. 2.
The difference between the right-hand sides fi at a fixed state x = (r, s) ∈ R

2nr

is

∥∥f1(r)− f2(r)
∥∥ =

∥∥∥meff
−1
(
f̃eff(r;μin

1 )− f̃eff(r;μin
2 )
)∥∥∥

=
∥∥∥∥meff

−1NrealG
T
r γq

(
Gr(r

in
1 − r in

2 )+
∫
R

nq

q dμin
1 (q)−

∫
R

nq

q dμin
2 (q)

)∥∥∥∥

=: ε. (4.15)

Next, we compute the Lipschitz constant of f1. The partial derivatives are

∂f1

∂ṙ1
= 1 and

∂f1

∂r1
= meff

−1(γr +NrealG
T
r γqGr),

which implies that

L :=
∥∥∥meff

−1
∥∥∥
(∥∥γr

∥∥+ Nreal

∥∥∥GT
r γqGr

∥∥∥
)
+ 1

is a Lipschitz constant for f1.
Then Theorem 4.3 yields

√∥∥r1(t)− r2(t)
∥∥2 + ∥∥s1(t)− s2(t)

∥∥2 ≤ 'eLt + ε

L

(
eLt − 1

)
(4.16)

with

' := ∥∥x1(0)− x2(0)
∥∥ =

√∥∥∥r in
1 − r in

2

∥∥∥2 +
∥∥∥sin

1 − sin
2

∥∥∥2
. (4.17)

Next, we apply the duality formula for the Monge-Kantorovich distance (4.2) to
each component of q ∈ R

nq . Hence, we use φ(q) := ql ∈ R in (4.2), which yields

∥∥∥∥
∫
R

nq

q d μin
1 (q)−

∫
R

nq

q dμin
2 (q)

∥∥∥∥

≤
nq∑
l=1

∣∣∣∣
∫
R

nq

ql d μin
1 (q)−

∫
R

nq

ql dμin
2 (q)

∣∣∣∣

≤ nqW1(μ
in
1 , μin

2 ). (4.18)



386 S. Plunder and B. Simeon

The estimate (4.18) provides the upper bound

ε ≤
∥∥∥meff

−1NrealG
T
r γq

∥∥∥
(
‖Gr‖

∥∥∥r in
1 − r in

2

∥∥∥+
∥∥∥∥
∫
R

nq

q d μin
1 (q)−

∫
R

nq

q d μin
2 (q)

∥∥∥∥
)

≤ C1(' +W1(μ
in
1 , μin

2 ))

with C1 := ‖meff
−1NrealG

T
r γq‖ (‖Gr‖ + nq).

Now, we use 1
2 (|a| +|b|) ≤

√
a2 + b2 to transform (4.16) into

∥∥r1(t)− r2(t)
∥∥+ ∥∥s1(t)− s2(t)

∥∥ ≤ 2
√∥∥r1(t)− r2(t)

∥∥2 + ∥∥s1(t)− s2(t)
∥∥2

≤ 2ρeLt + 2
C1(ρ +W1(μ

in
1 , μin

2 ))

L
(eLt − 1)

≤ 2(1+ C1

L
)ρeLt + 2

C1

L
W1(μ

in
1 , μin

2 ))eLt

and we bound ' with
√
a2 + b2 ≤|a| +|b| to obtain

∥∥r1(t)− r2(t)
∥∥+ ∥∥s1(t)− s2(t)

∥∥

≤ C2

(∥∥∥r in
1 − r in

2

∥∥∥+
∥∥∥sin

1 − sin
2

∥∥∥+W1(μ
in
1 , μin

2 )

)
eLt

(4.19)

with the constant C2 := 2(1+ C1
L
).

The estimate (4.19) already looks similar to the claim. It only misses an estimate
for the difference of the cross-bridge distributions μ1(t) and μ2(t). We notice that

μi(t) = Qi(t, ·)#μin
i = Twiμ

in
i

with

wi(t) = −Gr(ri(t)− r in
i ).

Therefore, Lemma 4.2 gives

W1(μ1(t), μ2(t)) = W1(Tw1(t)μ
in
1 , Tw2(t)μ

in
2 )

= W1(μ1(t), Tw2(t)−w1(t)μ2(t))

≤ W1(μ
in
1 , μin

2 )+ ∥∥w2(t)−w1(t)
∥∥



Linear Partially Kinetic Equations 387

≤ W1(μ
in
1 , μin

2 )+ ‖Gr‖
(∥∥r1(t)− r2(t)

∥∥+
∥∥∥r in

1 − r in
2

∥∥∥
)
.

≤ C2(‖Gr‖ + 1)

(∥∥∥r in
1 − r in

2

∥∥∥+
∥∥∥sin

1 − sin
2

∥∥∥+W1(μ
in
1 , μin

2 )

)
eLt (4.20)

where we use eLt ≥ 1 and (4.19) in the last equation.
Combining (4.19) and (4.20), we obtain (4.5) with the constants

C := C2(2+ ‖Gr‖), L :=
∥∥∥meff

−1
∥∥∥
(∥∥γr

∥∥+Nreal

∥∥∥GT
r γqGr

∥∥∥
)
+ 1.

�


5 Generalisations and Relations to Established Models

The model for attached cross-bridges demands for extensions in two directions: For
applications in biology, the cross-bridge model should incorporate more biological
effects, for example, cross-bridge cycling. For further mathematical investigations,
partially kinetic systems can be studied in more generality, most notably with
nonlinear constraints or stochastic jumps. In this section, we give a brief outlook
on these extensions.

5.1 An Abstract Class of Nonlinear Partially Kinetic Systems

The underlying system (2.1)–(2.3) is a prototype for linear partially kinetic sys-
tems. A possible extension would be to consider systems with nonlinear forces
Fr(r), Fq(Qj ) and with uniform but nonlinear constraints g(r,Qj ) = g(r in,Qin

j ),
for example

Mrr̈ = Fr(r)−
N∑
i=1

∂gT

∂r
λi, (5.1)

MqQ̈j = Fq(Qj )− ∂gT

∂Qj

λj for j = 1, . . . , N, (5.2)

g(r,Qj ) = g(r in,Qin
j ) for j = 1, . . . , N. (5.3)

Despite the nonlinear terms, the formal derivation of kinetic equations for (5.1)–
(5.3) follows similar algebraic steps as in Sects. 3.1 and 3.4.
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Remark 5.1 We conjecture that Theorem 4.1 generalises to nonlinear partially
kinetic systems (5.1)–(5.3), if certain Lipschitz conditions and technical bounds are
satisfied. In contrast to the linear case, the effective mass matrix meff depends on the
cross-bridge distribution μt . Therefore, it is more challenging to obtain the Lipschitz
constant L and the defect ε as in (4.15). Moreover, the mean-field characteristic flow
Q(t, ·) will be nonlinear and there is no explicit formula as in (4.12). Therefore
Lemma 4.2 is not applicable in the nonlinear case.

5.2 Coupling with Nonlinear Elasticity

The muscle model in Sect. 2 allows only linear constraints and linear forces. This
is not sufficient for realistic multi-scale models. On a large scale, muscles can be
modelled as nonlinear, quasi-incompressible, hyperelastic solids [25].

Using the framework of partially kinetic systems, a nonlinear constraint can link
a hyperelastic model at the large scale for the muscle tissue and the cross-bridge
model at the physiological scale. The resulting constraint is linear with respect to
the extension of cross-bridges but nonlinear with respect to the deformation of the
tissue. In this sense, the situation is similar to Sect. 5.1 Additional complexity arises
since the macroscopic system in this setting is described by the PDEs of elasticity,
which results in an infinite-dimensional system already in the discrete case. We
can assume that most material points of the muscle are occupied parallel actin and
myosin filaments. This assumption leads mathematically to an infinite family of
cross-bridge models, one at each spatial point of the muscle. A formal derivation is
possible and not very different from the theory presented in this article. Analytical
results, however, are far more challenging in this setting. Even more, the cross-
bridges of sarcomeres at neighbouring spacial points can be in very different states.
Therefore, a rigorous mathematical approach requires a justification for spatial
averaging over the cross-bridge states.

5.3 Comparison with Established Cross-Bridge Models

The model for attached cross-bridges neglects a fundamental part of cross-bridge
dynamics: Cross-bridges can attach and detach dynamically. The repeated attach-
ment and detachment is called cross-bridge cycling. Only with this mechanism,
muscle cells can contract far beyond the working range of a single cross-bridge.
Non-kinetic models, like the popular Hill model fail to capture some phenomena
which depend on cross-bridge cycling [18, Section 15.3.1]. This motivates the use
of kinetic models in muscle simulations.

The most common models for cross-bridge cycling are probabilistic. One
example is the two-state model [30]. The two-state model is usually only formulated
on the kinetic level as a source term in the transport equation (3.16). A function
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h+(t, q, u) determines the creation rate of new cross-bridges with extension q ∈
R

nq at time t . The counterpart is a function h−(t, q, u), which gives the annihilation
rate of cross-bridges with extension q ∈ R

nq . The two-state model leads to a kinetic
transport equation with source terms

∂u

∂t
(t, q)+ veff

∂u

∂q
(t, q) = h+(t, q, u(t, q))− h−(t, q, u(t, q)). (5.4)

Here, the transport velocity veff is the contraction speed of the muscle. In the setting
of Sect. 3.3, contraction speed of the muscle is the velocity of the macroscopic
system, hence veff = −Grṙ(t). The rate functions h± allow controlling the
contraction speed in the muscle model. For a contracting muscle, they are such
that many cross-bridges with large positive extension are created, and cross-bridges
with negative extension are annihilated. A discussion of the two-state model is not
subject of this publication. Instead, we refer to [12, 14, 18]. Models with more than
just two-states are also studied and applied, for example in [10, 11, 13].

All these models for cross-bridge cycling have in common, that their underlying
discrete microscopic model for cross-bridge cycling is, to the best of our knowledge,
not specified. Instead, these models are built directly from the kinetic perspective,
to avoid unnecessary complexity. The rate functions h+ and h− are heuristic and
usually fitted to experimental data [30]. We are not aware of a derivation for the
rates h+ and h− using kinetic theory. As far as we know, the most rigorous approach
to derive the rate functions is based on thermodynamics principles [21].

Nonetheless, a rigorous connection between the microscopic world and macro-
scopic simulations requires a microscopic law for cross-bridge cycling. One possi-
bility could be to model the microscopic law as a pieces-wise deterministic Markov
process [4] where a Markov process models the creation and annihilation of cross-
bridges, and the deterministic model for attached cross-bridges (2.2), (2.3) and (2.6)
governs the system at all other times. The corresponding mean-field limit is formally
similar to the mean-field limit for chemical reactions, as outlined in [3, Section 3.3].

Finally, we want to point out a detail which differs between established models
and the kinetic model developed in this article. Since we developed a kinetic theory
which includes the constraints from the beginning, the influence of the cross-bridges
onto the macroscopic system is exactly represented. The effective balance law which
governs the macroscopic system is (3.12)

meffr̈ = feff,

where feff includes the influence of the cross-bridges onto the macroscopic system,
i.e. the muscle tissue. Moreover, meff integrates the inertia of the cross-bridges to
the effective balance law (3.12). In contrast, established muscle models [1, 11, 21]
just compute the force feff and use

Mrr̈ = feff.
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For applications, this approximation is very reasonable, since the momentum of
cross-bridgesMq is considered to be very small, compared to the mass of the muscle
tissue, i.e. the underlying assumption is Nreal

∥∥Mq

∥∥  ‖Mr‖, which implies Mr ≈
meff.

6 Numerical Simulation of Partially Kinetic Systems

Partially kinetic systems are mixed systems involving Newton’s equations of motion
for the macroscopic components (3.12) and a non-linear transport equation for the
particle density (3.16). Therefore, a perfect numerical scheme for such a system
should not only nearly conserve energy and momentum, but also the mass of the
particle density. It is an open issue if such a scheme exists.

In the literature on sliding filament theory, a popular method is the distributed
moment method (DM method) [30]. By assuming a specific shape for the cross-
bridge distribution μt , it is possible to derive a closed set of differential equations for
the first moments of μt and thus approximate the solution of the transport equation
for cross-bridges (5.4) by a three-dimensional ODE. If the particle measure is close
to a Gaussian distribution, then the DM method works best. The DM method is
successful and has been used in many multi-scale simulations [1, 11]. However,
the state of cross-bridges is often very different from a normal distribution. In
these cases, the DM method does not yield a numerically convergent discretisation
of (3.12) and (3.16). This drawback is acceptable for most applications, but precise
information about the physical state of the cross-bridges is lost.

6.1 Implementation Details

The numerical simulations in this article are performed straightforwardly. More
advanced and adapted methods are out of scope for this article.

For numerical time integration, we used the RADAU [6, Section IV.8.] and the
LSODA [22] methods from the python package scipy.integrate [28], both
with numerical parameters atol = 10−8, rtol = 10−8 for the adaptive time-stepping
scheme. For all examples in this article, the time integration was successful without
any indicators for numerical instabilities.

For space discretisation of the transport equation (3.16), the standard upwind dis-
cretisation was used [20, Section 10.4]. For simplicity, we assumed zero boundary
conditions for the numerical spatial domain. The grid was chosen sufficiently large
such that the boundary conditions do not influence the simulation results. In detail,
we solved the transport equation (3.16) restricted onto the spacial domain [−5, 7]



Linear Partially Kinetic Equations 391

Table 1 All simulations in the article are for these parameters

Model parameters

Description Symbol Value

Degrees of freedom (macroscopic system) nr 1

Degrees of freedom (single cross-bridge) nq 1

Number of cross-bridges Nreal 250

Actually simulated cross-bridges N 250

Mass (macroscopic system) Mr 20

Mass (single cross-bridge) Mq
10

Nreal
= 0.04

Stiffness (macroscopic system) γr 1

Stiffness (single cross-bridge) γq
1

Nreal
= 0.004

Initial position (macroscopic system) r in 1

Initial velocity (macroscopic system) sin 0

Initial extensions (cross-bridges) Qj ∼ N (μ = 2, σ 2 = 1)

Initial distribution (cross-bridges) uin(q) = 1√
2π

exp(− (q−2)2

2 )

Time interval [0, 60].
The parameters are chosen to demonstrate the mathematical structure, not to represent a realistic
biological setting

on an equidistant grid with 101 grid-points, with

u̇(t, yi) =
⎧⎨
⎩
veff(t)

1
Δx

(u(t, xi)− u(t, xi−1)) veff(t) ≥ 0,

veff(t)
1

Δx
(u(t, xi+1)− u(t, xi)) veff(t) < 0,

where veff(t) = −Grṙ(t) denotes the velocity according to (3.16), and Δx = 12
100 is

the space between two grid-points yi = −5+ iΔx.
For all simulations in this article, we used the model parameters from Table 1.

The parameters are not related to real cross-bridges; the numerical simulations
should merely demonstrate the mathematical model, not its application to reality.

For systems with linear constraints, the use of the upwind method might appear
exaggerated. Instead, it would be sufficient to approximate the shift between μt and
the initial measure μin, which is given by w = Gr(r(t) − r in). Since the transport
equation (3.16) has no source terms, such a numerical scheme is fast and stable. In
the presence of source terms, as in (5.4), the resulting numerical scheme contains
stiff differential equations. Since source terms are essential for realistic muscle
models, we neglect this specialised method to focus on the upwind discretisation
instead.
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Fig. 11 Energies of the discrete system (left) and the kinetic system (right). The kinetic energy is
denoted by Tr for the macroscopic system and Tq for the particles, the potential energy is denoted
by Ur and Uq respectively. The total energy Etotal is well preserved in the discrete case, but not in
the mesoscopic simulation

6.2 Loss of Numerical Energy Conservation in the Partially
Kinetic Description

In Fig. 11, we compare the energies of the ODE formulation and the partially
kinetic formulation with the same initial data as in Sect. 4.1. The results demonstrate
an essential drawback of the numerical scheme for the kinetic description. There
are numerical methods for DAE formulation (2.1), (2.2) and (2.5) and the ODE
formulation (2.5) and (2.6) which conserve the energy asymptotically [8]. In this
particular linear example, the numerical conservation of energy is not very difficult
even for stiff integrators. However, numerical diffusion in the upwind scheme leads
to an increase in the total energy, as shown in Fig. 11.

To explain the energy increase, we recall that the potential energy of the cross-
bridges is

E
pot
Q1,...,QN

= γq

2

N∑
i=1

Q2
i (6.1)

which becomes

E
pot
μt = Nreal

γq

2

∫
R

nq

q2 dμt (q) (6.2)

in the kinetic setting. The upwind scheme increases the potential energy artificially
since numerical diffusion leads to a more widespread cross-bridge distribution, as
demonstrated in Fig. 12. We are not aware of a method which conserves the total
energy numerically and at the same time works in the presence of source terms.
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Fig. 12 Numerical diffusion
of the upwind scheme leads
to a diffusion of the
cross-bridge distribution. As
a result, the potential energy
of the cross-bridges increases
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7 Conclusion

In this article, we have presented the new framework of linear partially kinetic
systems. We have motivated this abstract class as a kinetic model for cross-bridge
dynamics in skeletal muscles, in a manner which allows us to add constraints. The
linear setting represents a toy example, for which ideas from kinetic theory are
applicable. It can be argued that the analysis so far is restricted to a rather simple
model scenario. Thus, there is a need to generalise these results to a wider class
of models, which then would yield a rigorous link between existing physiological
models at different scales.

Finally, the numerics of partially kinetic systems is still in its infancy. The
investigation of the stability estimate was motivated by the lack of numerical
analysis for linear partially kinetic systems. We have presented an example in which
the conservation of energy is violated, which already indicates the limitations of a
naive discretisation.

Acknowledgments We thank Claudia Totzeck and Sara Merino-Aceituno for the fruitful discus-
sions and hints regarding the mean-field limit. The work is motivated by the aim to develop a
mathematical foundation for muscle tissue with a two-way coupling between cells and tissue. We
thank Ulrich Randoll for his advice and numerous discussion on the physiology of skeletal muscle
tissue. This research is supported by the German Federal Ministry of Education and Research
(BMBF) under grant no. 05M16UKD (project DYMARA).

References

1. Böl, M., Reese, S.: Micromechanical modelling of skeletal muscles based on the finite element
method. Comput. Method Biomec. Biomed. Eng. 11(5), 489–504 (2008). https://doi.org/10.
1080/10255840701771750

2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerical Solution of Initial Value Problems
in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia (1996)

https://doi.org/10.1080/10255840701771750
https://doi.org/10.1080/10255840701771750


394 S. Plunder and B. Simeon

3. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Probab.
Surv. 5, 37–79 (2008). https://doi.org/10.1214/07-PS121

4. Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion
Stochastic models. J. R. Stat. Soc. Ser. B (Methodol.) 46(3), 353–376 (1984). https://doi.org/
10.1111/j.2517-6161.1984.tb01308.x

5. Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Muntean,
A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse
Graining, Mean Field Limits and Ergodicity. Lecture Notes in Applied Mathematics and
Mechanics, pp. 1–144. Springer International Publishing, Cham (2016). https://doi.org/10.
1007/978-3-319-26883-5_1

6. Hairer, E., Wanner, G.: Stiff and Differential-Algebraic Problems. Solving Ordinary Differ-
ential Equations, 2nd rev. edn., Corrected printing, 1. softcover printing edn. Springer, Berlin
(2010). OCLC: 837885597

7. Hairer, E., Roche, M., Lubich, C.: The Numerical Solution of Differential-Algebraic Systems
by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989).
https://doi.org/10.1007/BFb0093947

8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathemat-
ics, no. 31, 2nd edn. Springer, Berlin (2006). OCLC: ocm69223213

9. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer Series in Computational Mathematics, No. 8, 2nd rev. edn. Springer,
Heidelberg (2009). OCLC: ocn620251790

10. Heidlauf, T., Klotz, T., Rode, C., Altan, E., Bleiler, C., Siebert, T., Röhrle, O.: A multi-
scale continuum model of skeletal muscle mechanics predicting force enhancement based on
actin–titin interaction. Biomech. Model. Mechanobiol. 15(6), 1423–1437 (2016). https://doi.
org/10.1007/s10237-016-0772-7

11. Heidlauf, T., Klotz, T., Rode, C., Siebert, T., Röhrle, O.: A continuum-mechanical skeletal
muscle model including actin-titin interaction predicts stable contractions on the descending
limb of the force-length relation. PLoS Comput. Biol. 13(10), e1005773 (2017). https://doi.
org/10.1371/journal.pcbi.1005773

12. Herzog, W.: Skeletal Muscle Mechanics: From Mechanisms to Function. Wiley, Hoboken
(2000)

13. Herzog, W.: Skeletal muscle mechanics: questions, problems and possible solutions. J.
NeuroEng. Rehabil. 14(1), 98 (2017). https://doi.org/10.1186/s12984-017-0310-6

14. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton, nachdr. edn. Sinauer,
Sunderland (2001). OCLC: 247917499

15. Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7,
255–318 (1957)

16. Huxley, A.F., Simmons, R.M.: Proposed mechanism of force generation in striated muscle.
Nature 233(5321), 533–538 (1971). https://doi.org/10.1038/233533a0

17. Jabin, P.E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7(4),
661–711 (2014). https://doi.org/10.3934/krm.2014.7.661

18. Keener, J.P., Sneyd, J.: Mathematical Physiology. Interdisciplinary Applied Mathematics,
no. 8, 2nd edn. Springer, New York (2009). OCLC: ocn298595247

19. Klenke, A.: Probability Theory: A Comprehensive Course. Universitext. Springer, London
(2008)

20. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations.
Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics,
Philadelphia (2007). https://doi.org/10.1137/1.9780898717839

21. Ma, S.P., Zahalak, G.I.: A distribution-moment model of energetics in skeletal muscle. J.
Biomech. 24(1), 21–35 (1991)

22. Petzold, L.: Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations. SIAM J. Sci. Stat. Comput. 4(1), 136–148 (1983). https://
doi.org/10.1137/0904010

https://doi.org/10.1214/07-PS121
https://doi.org/10.1111/j.2517-6161.1984.tb01308.x
https://doi.org/10.1111/j.2517-6161.1984.tb01308.x
https://doi.org/10.1007/978-3-319-26883-5_1
https://doi.org/10.1007/978-3-319-26883-5_1
https://doi.org/10.1007/BFb0093947
https://doi.org/10.1007/s10237-016-0772-7
https://doi.org/10.1007/s10237-016-0772-7
https://doi.org/10.1371/journal.pcbi.1005773
https://doi.org/10.1371/journal.pcbi.1005773
https://doi.org/10.1186/s12984-017-0310-6
https://doi.org/10.1038/233533a0
https://doi.org/10.3934/krm.2014.7.661
https://doi.org/10.1137/1.9780898717839
https://doi.org/10.1137/0904010
https://doi.org/10.1137/0904010


Linear Partially Kinetic Equations 395

23. Randoll, U.: Matrix-rhythm-therapy of dynamic illnesses. In: Heine, H., Rimpler M. (eds.)
Extracellular Matrix and Groundregulation System in Health and Disease, pp. 57–70. G.
Fischer (1997)

24. Resat, H., Petzold, L., Pettigrew, M.F.: Kinetic Modeling of biological systems. Method
Mol.Biol. 541, 311–335 (2009). https://doi.org/10.1007/978-1-59745-243-4_14

25. Simeon, B., Serban, R., Petzold, L.R.: A model of macroscale deformation and microvibration
in skeletal muscle tissue. ESAIM Math. Modell. Numer. Anal. 43(4), 805–823 (2009). https://
doi.org/10.1051/m2an/2009030

26. Spohn, H.: Kinetic equations from hamiltonian dynamics: Markovian limits. Rev. Modern
Phys. 52(3), 569 (1980)

27. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer Science & Business Media,
Berlin (2012)

28. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient
numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/
MCSE.2011.37

29. Villani, C.: Optimal Transport: Old and New. Springer Science & Business Media, Berlin
(2008)

30. Zahalak, G.I.: A distribution-moment approximation for kinetic theories of muscular contrac-
tion. Math. Biosci. 55(1–2), 89–114 (1981). https://doi.org/10.1016/0025-5564(81)90014-6

31. Zahalak, G.I.: Non-axial muscle stress and stiffness. J. Theor. Biol. 182(1), 59–84 (1996).
https://doi.org/10.1006/jtbi.1996.0143

https://doi.org/10.1007/978-1-59745-243-4_14
https://doi.org/10.1051/m2an/2009030
https://doi.org/10.1051/m2an/2009030
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/0025-5564(81)90014-6
https://doi.org/10.1006/jtbi.1996.0143


Generalized Elements for a Structural
Analysis of Circuits

Idoia Cortes Garcia, Sebastian Schöps, Christian Strohm,
and Caren Tischendorf

Abstract The structural analysis, i.e., the investigation of the differential-algebraic
nature, of circuits containing simple elements, i.e., resistances, inductances and
capacitances is well established. However, nowadays circuits contain all sorts of
elements, e.g. behavioral models or partial differential equations stemming from
refined device modelling. This paper proposes the definition of generalized circuit
elements which may for example contain additional internal degrees of freedom,
such that those elements still behave structurally like resistances, inductances
and capacitances. Hereby, a classification of more evolved circuit elements is
enabled. The structural analysis of circuits is expanded to systems containing such
generalized elements. Several complex examples demonstrate the relevance of those
definitions.
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analysis · Maxwell’s equations
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1 Introduction

Circuits or electric networks are a common modeling technique to describe the
electrotechnical behavior of large systems. Their structural analysis, i.e., the
investigation of the properties of the underlying differential-algebraic equations
(DAEs), has a long tradition. For example Bill Gear studied in 1971 ‘the mixed
differential and algebraic equations of the type that commonly occur in the transient
analysis of large networks’ in [21]. At that time several competing formulations
were used in the circuit simulation community, for example the sparse tableau
analysis (STA) was popular. This changed with the introduction of the modified
nodal analysis (MNA) by Ho et. al in [26] and the subsequent development of
the code SPICE [33]. Nowadays all major circuit simulation tools are using some
dialect of MNA, e.g. the traditional formulation or the flux/charge oriented one [20].
The mathematical structure has been very well understood in the case of simple
elements, i.e., resistances, inductances and capacitances as well as sources [19, 25].

However, the complexity of element models has increased quickly. For example,
the semiconductor community develops various phenomenological and physical
models, which are standardized e.g. in the BSIM (Berkeley Short-channel IGFET
Model) family, [40]. The development of mixed-mode device simulation has become
popular, which is mathematically speaking the coupling of DAEs with partial
differential equations (PDEs), e.g. [22, 24, 30, 36]. Even earlier, low frequency
engineers have established field-circuit-coupling, i.e., the interconnection of finite
element machine models with circuits, first based on loop analysis, later (modified)
nodal analysis e.g. [16, 35].

Until now, the structural DAE analysis of circuits which are based on complex
(‘refined’) elements has mainly been carried out on a case by case basis, e.g.
for elliptic semiconductor models in [1], parabolic-elliptic models of electrical
machines in [2, 13, 42] and hyperbolic models stemming from the full set of
Maxwell’s equations in [4]. Based on the analysis made in [13], this contribution
aims for a more systematic analysis: we consider each element as an arbitrary
(smooth) function of voltages, currents, internal variables and their derivatives.
Then, we formulate sets of assumptions (‘generalized elements’) on these functions,
e.g. which quantity is derived or which DAE-index does the function have. Based
on these assumptions we proof a DAE index result that generalizes [19]. Not
surprisingly, it turns out that our generalized elements are natural generalizations
of the classical elements, i.e., resistances, inductances and capacitances. The
classification of complex circuit elements as well as the generalized index result
eases the index analysis of the obtained DAE, as, analogously to the case of
circuits with classic elements (see [19]), it depends on topological properties of the
underlying circuit. All results are formulated in the context of electrical engineering
but the presented approach is also of interest for the analysis and simulation of other
networks such as gas transport networks [5, 23, 28] or power networks [31].
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The paper is structured as follows: we start with a few basic mathematical
definitions and results in Sect. 2, then we give the definitions of our generalized
elements and some simple examples in Sect. 3. In Sect. 4 we discuss the mathemat-
ical modeling of circuits by modified nodal analysis. Finally, Sect. 5 proves the new
DAE index results which are then applied to several very complex refined models
in Sect. 6.

2 Mathematical Preliminaries

Let us collect some basic notations and definitions. The following preliminaries
collect standard results from functional analysis, e.g. [45].

Definition 2.1 A function f : Rm → R
m is called strongly monotone if and only

if there is a constant c > 0 such that

∀ x, x̄ ∈ R
m : 〈f (x)− f (x̄), x − x̄〉 ≥ c‖x − x̄‖2.

Lemma 2.1 Let M ∈ R
m×m be a matrix. Then, the linear function f (x) := Mx is

strongly monotone if and only if M is positive definite.

Proof If f (x) := Mx is strongly monotone we find a constant c > 0 such that for
all x ∈ R

m with x 	= 0

〈Mx, x〉 = 〈f (x)− f (0), x − 0〉 ≥ c‖x − 0‖ > 0,

that means M is positive definite. Next, we show the opposite direction. Let M be
positive definite. We split M into its symmetric and non-symmetric part

M =Ms +Mn, Ms = 1

2
(M +M�), Mn = 1

2
(M −M�).

Consequently, for all x ∈ R
m with x 	= 0,

〈Msx, x〉 = 〈Mx, x〉 > 0.

Since Ms is symmetric, we find a unitary matrix T and a diagonal matrix D such
that Ms = T −1DT . We get that

0 < 〈Msx, x〉 = 〈T −1DT x, x〉 = 〈DT x, T x〉 =
m∑

j=1

djj y
2
j with y := T x.
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Choosing the unit vectors y := ei , we find that dii > 0 for all i = 1, . . . ,m.
Defining c := mini=1,...,m dii , we see that for all x ∈ R

m

〈Mx, x〉 = 〈Msx, x〉 ≥
m∑

j=1

cy2
j = c‖T x‖2 = c‖x‖2.

Finally, we obtain, for any x, x̄ ∈ R
m

〈f (x)− f (x̄), x − x̄〉 = 〈M(x − x̄), x − x̄〉 ≥ c‖x − x̄‖2. �


Definition 2.2 A function f : Rm × R
n → R

m is called strongly monotone with
respect to x if and only if there is a constant c > 0 such that

∀ y ∈ R
n ∀ x, x̄ ∈ R

m : 〈f (x, y)− f (x̄, y), x − x̄〉 ≥ c‖x − x̄‖2.

Remark 2.1 In case of variable matrix functions M(y), the function f (x, y) :=
M(y)x might be not strongly monotone with respect to x even if M(y) is positive
definite for each y. For strong monotony, one has to ensure that the eigenvalues
of the symmetric part of M(y) can be bounded from below by a constant c > 0
independent of y.

In the following we present a specific variant of the Theorem of Browder–Minty,
see e.g. [34, 45].

Lemma 2.2 Let f = f (x, y) : Rm×R
n → R

m be strongly monotone with respect
to x and continuous. Then, there is a uniquely defined continuous function g : Rn→
R

m such that f (g(y), y) = 0 for all y ∈ R
n.

Proof For fixed y ∈ R
n we define Fy : Rm→ R

m by

Fy(x) := f (x, y) ∀ x ∈ R
m.

Since f is strongly monotone with respect to x, the function Fy is strongly
monotone. The Theorem of Browder–Minty, e.g. [45] and [34], provides a unique
zy ∈ R

m such that Fy(zy) = 0 and, hence, f (zy, y) = 0. We define g : Rn → R
m

by

g(y) := zy.

Obviously, f (g(y), y) = 0 for all y ∈ R
n. It remains to show that g is continuous.

Let (yk) be a convergent series in R
n with yk → y∗ ∈ R

n for k → ∞. Since f is
strongly monotone with respect to x, there is a constant c > 0 such that

‖g(yk)− g(y∗)‖2 ≤ 1

c
〈f (g(yk), yk)− f (g(y∗), yk), g(yk)− g(y∗)〉

≤ 1

c
‖f (g(yk), yk)− f (g(y∗), yk)‖ ‖g(yk)− g(y∗)‖
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= 1

c
‖f (g(y∗), yk)‖ ‖g(yk)− g(y∗)‖

= 1

c
‖f (g(y∗), yk)− f (g(y∗), y∗)‖ ‖g(yk)− g(y∗)‖.

Since f is continuous, we may conclude that g(yk)→ g(y∗) for k→∞. �

The next Lemma is new. It bases on the solvability statements of the previous

Lemma but also provides structural properties of the solution for equations with a
particular structure that is relevant for circuit equations.

Lemma 2.3 Let M ∈ R
m×k be a matrix and P ∈ R

k×k be a projector along ker M .
Additionally, let f = f (x, y) : Rm ×R

n→ R
m be strongly monotone with respect

to x and continuous as well as r : Rn → R
m be a continuous function. Then, there

is a continuous function g : Rn→ R
k such that

M�f (Mz, y)+ P�r(y) = 0 if and only if Pz = g(y). (2.1)

Proof In the degenerated case that M = 0 we have P = 0 and the zero function
g(y) ≡ 0 fulfills obviously the equivalence (2.1). Let be M 	= 0 for the further
considerations. We chose a basis B of im P . For r := rankP , we form the full-
column rank matrix P̃ ∈ R

k×r as a matrix whose columns consist of all basis vectors
of B. By construction, kerMP̃ = {0} and, hence, the matrix (MP̃ )�MP̃ is non-
singular. Next, we introduce a function F : Rr × R

n→ R
r by

F(u, y) := (MP̃ )�f (MP̃u, y)+ P̃�P�r(y).

Since f is continuous, also F is continuous. From the strong monotony of f with
respect to x we can also conclude the strong monotony of F with respect to u since
there is a constant c > 0 such that, for all y ∈ R

n and for all u, ū ∈ R
r ,

〈F(u, y)− F(ū, y), u− ū〉 = 〈(MP̃ )�f (MP̃u, y)− (MP̃ )�f (MP̃ ū, y), u− ū〉
= 〈f (MP̃u, y)− f (MP̃ ū, y),MP̃u−MP̃ ū〉
≥ c‖MP̃u−MP̃ ū‖2

and

‖u− ū‖ = ‖((MP̃ )�MP̃ )−1(MP̃ )�MP̃(u− ū)‖
≤ ‖((MP̃ )�MP̃ )−1(MP̃ )�‖ ‖MP̃ (u− ū)‖

which implies

〈F(u, y)− F(ū, y), u− ū〉 ≥ c

c1
‖u− ū‖2
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for c1 := ‖((MP̃ )�MP̃)−1(MP̃ )�‖2 > 0 since M is a non-zero matrix. From
Lemma 2.2 we know that there is a unique continuous function G : Rn → R

r such
that

F(G(y), y) = 0 ∀ y ∈ R
n.

It means that F(u, y) = 0 if and only if u = G(y). Next, we show that the function
g : Rn → R

k defined by

g(y) := P̃G(y)

satisfies the equivalence (2.1). First, we see that

P̃�M�f (Mg(y), y)+ P̃�P�r(y) = F(G(y), y) = 0.

By construction of P̃ , we know that ker P̃� = ker P� and, therefore,

P�M�f (Mg(y), y)+ P�P�r(y) = 0.

Since P is a projector along ker M , we see that M = MP and, hence,

M�f (Mg(y), y)+ P�r(y) = 0.

From here, we can directly conclude the following direction of the equivalence (2.1).
If Pz = g(y) then M�f (Mz, y) + P�r(y) = 0. Finally, we show the opposite
direction. If M�f (Mz, y)+ P�r(y) = 0 then we again exploit the monotony of f
in order to obtain

0 = 〈M�f (Mz, y)+ P�r(y)−M�f (Mg(y), y)− P�r(y), z− g(y)〉
= 〈f (Mz, y)− f (Mg(y), y),Mz−Mg(y)〉 ≥ c‖Mz−Mg(y)‖,

that means M(z − g(y)) = 0. By assumption we have ker M = ker P and, hence,
P(z − g(y)) = 0. It follows Pz = Pg(y) = PP̃G(y) = P̃G(y) = g(y). �

Corollary 2.4 Let M ∈ R

k×m be a matrix and P ∈ R
k×k be a projector along

ker M . Additionally, let r : Rn → R
m be continuous. Then, there is a continuous

function g : Rn → R
k such that

M�Mz+ P�r(y) = 0 if and only if Pz = g(y). (2.2)

Proof It follows directly from Lemma 2.3 using the function F : Rm × R
n → R

m

defined by

F(x, y) := x. �
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Following [8] we call a function x(t) the solution of a general nonlinear DAE

f (x ′, x, t) = 0 (2.3)

on an interval I ⊂ R, if x is continuously differentiable on I and satisfies (2.3) for
all t ∈ I.

Assumption 2.1 We assume solvability of (2.3), see e.g. [8, Definition 2.2.1], and
that all functions involved are sufficiently smooth.

Definition 2.3 ([8]) The minimum number of times that all or part of (2.3) must be
differentiated with respect to t in order to determine x ′ as a continuous function of
x, t , is the index of the DAE.

3 Generalized Circuit Elements

In this section we define new classes of generalized circuit elements motivated
by the classical ones, i.e., resistances, inductances and capacitances. The first
inductance-like element is based on the definition in [13]. The original version was
designed to represent a specific class of models but also to be minimally invasive in
the sense that the proofs in [19] could still be used. The following definition is more
general and a new proof of the corresponding index results is given in Sect. 5.

Before presenting the definitions, we introduce the quantities that are required to
describe the generalized circuit elements. We consider the functions

f� : Rnm,� ×R
nx,� × R

ni,� ×R
nv,� × R −→ R

nf,� and

m� : Rnx,� × R
ni,� ×R

nv,� × R −→ R
nm,�

and the time dependent vectors

x� : R −→ R
nx,� , i� : R −→ R

ni,� and v� : R −→ R
nv,� ,

for � ∈ {L, C, R}. Here, f� represents the constitutive law, x� the internal degrees
of freedom, i� the vector of branch currents across the element and v� the vector of
branch voltages through the element.

Definition 3.1 We define an inductance-like element as one element described by

fL

(
d

dt
mL(xL, iL, vL, t), xL, iL, vL, t

)
= 0
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where there is at most one differentiation d
dt needed to obtain a model description

of the form

d

dt
xL = χL(

d

dt
vL, xL, iL, vL, t) (3.1)

d

dt
iL = gL(xL, iL, vL, t) (3.2)

We call it a strongly inductance-like element if, additionally, the function

FL(v
′
L, xL, iL, vL, t) := ∂xLgL(xL, iL, vL, t)χL(v

′
L, xL, iL, vL, t)

+ ∂vLgL(xL, iL, vL, t)v
′
L (3.3)

is continuous and strongly monotone with respect to v′L.

Proposition 3.1 Linear inductances defined as

vL − L
d

dt
iL = 0 ,

with L being positive definite, are strongly inductance-like elements.

Proof By inverting L we obtain without the need of any differentiation a model
description as required in (3.2). Furthermore, FL(vL

′) = L−1v′L is strongly monotone
with respect to v′L due to L−1 being positive definite and by using Lemma 2.1 in
Definition 2.2. �

Proposition 3.2 Flux formulated inductances defined as

vL = d

dt
ΦL ,

ΦL = φ(iL, t) ,

with ∂iLφ(iL, t) being positive definite, are strongly inductance-like elements.

Proof we chose xL = ΦL. Then, one time differentiation of the second equation
yields d

dt xL = ∂iLφ(iL, t)
d
dt iL+ ∂tφ(iL, t) and exploiting the positive definiteness we

write d
dt iL as in (3.2), for

gL(iL, vL, t) := ∂iLφ(iL, t)
−1 d

dt
xL − ∂tφ(iL, t) = ∂iLφ(iL, t)

−1vL − ∂tφ(iL, t) .

Consequently, FL(vL
′, iL, t) = ∂iLφ(iL, t)

−1v′L and FL(vL
′, iL, t) is strongly monotone

with respect to v′L. The latter follows again from ∂iLφ(iL, t)
−1 being positive definite

and by using Lemma 2.1 in Definition 2.2. �
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Remark 3.1 Please note that the flux formulated inductances in Proposition 3.2 can
be vector-valued such as for example in the case of a mutual inductance

(
v1

v2

)
= d

dt

(
Φ1

Φ2

)
,

(
Φ1

Φ2

)
=
(
L11 L12

L12 L22

)(
i1

i2

)
,

with xL = (φ1 φ2)
�. In this specific example,

gL =
(
L11 L12

L12 L22

)−1 (
v1

v2

)
, χL =

(
v1

v2

)

and thus

FL =
(
L11 L12

L12 L22

)−1 (
v1

v2

)′
,

which is strongly monotone for a positive definite mutual inductance matrix L.

A more complex application of an electromagnetic element complying with this
definition can be found in Sect. 6.1.

Definition 3.2 We define a capacitance-like element as one element described by

fC

(
d

dt
mC(xC, iC, vC, t), xC, iC, vC, t

)
= 0

where there is at most one differentiation d
dt needed to obtain a model description

of the form

d

dt
xC = χC(

d

dt
iC, xC, iC, vC, t) (3.4)

d

dt
vC = gC(xC, iC, vC, t) (3.5)

We call it a strongly capacitance-like element if, additionally, the function

FC(i
′
C, xC, iC, vC, t) := ∂xCgC(xC, iC, vC, t)χC(i

′
C, xC, iC, vC, t)

+ ∂iCgC(xC, iC, vC, t)i
′
C (3.6)

is continuous and strongly monotone with respect to i ′C.
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Proposition 3.3 Linear capacitances defined as

C
d

dt
vC − iC = 0 ,

with C being positive definite, are strongly capacitance-like elements.

Proof Analogous to the proof in Proposition 3.1, we exploit the fact that C is
positive definite and here, FC(iC

′) = C−1i ′C is shown to be strongly monote with
respect to i ′C by using by using Lemma 2.1 and Definition 2.2. �

Proposition 3.4 Charge formulated capacitances defined as

iC = d

dt
qC ,

qC = q(vC, t) ,

with ∂vCq(vC, t) being positive definite, are strongly capacitance-like elements.

Proof There proof is analogous to the one of Proposition 3.2 by setting xC = qC and
FC(i

′
C, vC, t) = ∂tq(vC, t)

−1i ′C. �

Definition 3.3 We define a resistance-like element as one element described by

fR

(
d

dt
mR(xR, iR, vR, t), xR, iR, vR, t

)
= 0

where there is at most one differentiation d
dt needed to obtain a model description

of the form

d

dt
xR = χR(xR, iR, vR, t) (3.7)

d

dt
iR = gR(

d

dt
vR, xR, iR, vR, t) (3.8)

We call it a strongly resistance-like element if, additionally, the function

gR(v
′
R, xR, iR, vR, t) (3.9)

is continuous and strongly monotone with respect to v′R.

Proposition 3.5 Linear resistances defined as

vR − RiR = 0 ,

with R being positive definite, are strongly resistance-like elements.
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Proof Here, the equation is differentiated once to obtain

d

dt
vR − R

d

dt
iR = 0.

Now, analogously to the proof in 3.1, we exploit the positive definiteness of R to
invert it and obtain a function gR(v

′
R) = R−1v′R, which is strongly monote with

respect to v′R. �

Remark 3.2 Definitions 3.1–3.3 are made for one-port elements or multi-port
elements which are structurally identically for each port and do not change their
structure, e.g. depending on state, time (or frequency). However, in practice an
inductance-like device may turn into a capacitance-like device depending on its
working point. Also, a two-port element may simply consist of an inductance and a
capacitance. Those examples are not covered by our generalizations.

4 Circuit Structures and Circuit Graph Describing Matrices

In this section we provide common ingredients for the analysis of circuits, see e.g.
[19, 37]. Note that the classical elements are replaced by their corresponding newly
introduced generalization, see the following assumption.

Assumption 4.1 Let a connected circuit be given whose elements belong to the set
of capacitance-like devices (C), inductance-like devices (I), resistance-like devices
(R), voltage sources (V) and current sources (I).

We consider the element related incidence matrices AC, AL, AR, AV and AI whose
entries aij are defined by

aij =

⎧⎪⎪⎨
⎪⎪⎩

+1 if branch j directs from node i

−1 if branch j directs to node i

0 else

where the index i refers to a node (except the mass node) and the index j refers to
branches of capacitance-like devices (AC), inductance-like devices (AL), resistance-
like devices (AR), voltage sources (AV) and current sources (AI).

Remark 4.1 If Assumption 4.1 is fulfilled then the incidence matrix A of the circuit
is given by A = [AC AL AR AV AI] and has full row rank (see [9]).
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Lemma 4.1 (c.f. [19]) Let a connected circuit be given and AX be the incidence
matrix of all branches of type X. All other branches shall be collected in the
incidence matrix AY such that the incidence matrix of the circuit is given by
A = [AX AY]. Then,

1. the circuit contains no loops of only X-type branches if and only if AX has full
column rank,

2. the circuit contains no cutsets of only X-type branches if and only if AY has full
row rank.

Proof The incidence matrix of a subset S of branches of a circuit is non-singular if
and only if S forms a spanning tree [9]. From this we can conclude the following
statements.

1. The circuit contains no loops of only X-type branches if and only if there is a
spanning tree containing all X-type branches. The latter condition is equivalent
to the condition that AX has full column rank.

2. The circuit contains no cutsets of only X-type branches if and only if there is a
spanning tree containing only Y-type branches. The latter condition is equivalent
to the condition that AY has full row rank. �


Corollary 4.2 ([19]) Let Assumption 4.1 be fulfilled. Then,

1. the circuit contains no loops of only voltage sources if and only if AV has full
column rank,

2. the circuit contains no cutsets of only current sources if and only if [AC AL AR AV]
has full row rank.

Since loops of only voltage sources and cutsets of only current sources are
electrically forbidden, we suppose the following assumption to be fulfilled.

Assumption 4.2 ([19]) The matrix AV has full column rank and the matrix
[AC AL AR AV] has full row rank.

Definition 4.1 We call a loop of branches of a circuit a CV-loop if it contains
only capacitance-like devices and voltage sources. We call a cutset of branches of a
circuit an LI-cutset if it contains only inductance-like devices and current sources.

Corollary 4.3 ([19]) Let Assumption 4.1 be fulfilled. Then,

1. the circuit contains no CV-loops if and only if [AC AV] has full column rank,
2. the circuit contains no LI-cutsets if and only if [AC AR AV] has full row rank.

5 DAE Index for Circuits with Generalized Lumped Models

Let Assumptions 4.1 and 4.2 be fulfilled. Following the idea of the modified nodal
analysis for circuits, we introduce the nodal potentials e, with which we can express
the generalized elements’ branch voltages as v� = A�� e, for � ∈ {L,C,R}, and
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form the circuit equations as

ACiC + ARiR + AViV + ALiL + AIiS = 0, (5.1a)

A�Ve = vS, (5.1b)

fL

(
d

dt
mL(xL, iL, A

�
L e, t), xL, iL, A

�
L e, t

)
= 0, (5.1c)

fC

(
d

dt
mC(xC, iC, A

�
C e, t), xC, iC, A

�
C e, t

)
= 0, (5.1d)

fR

(
d

dt
mR(xR, iR, A

�
R e, t), xR, iR, A

�
R e, t

)
= 0 (5.1e)

with given source functions iS(t) for current sources and vS(t) for voltage sources.

Remark 5.1 Please note that the currents iC and iR are variables of the system (5.1).
This is in contrast to the traditional modified nodal analysis which is only based on
simple lumped elements such that these variables can be eliminated by explicitly
solving (5.1e) and (5.1d) for the currents iC and iR , respectively.

Theorem 5.1 Let Assumption 4.1 be fulfilled. Furthermore, let all resistance-like
devices be strongly resistance-like devices. If the circuit has no CV-loops and no
LI-cutsets then the differentiation index of the system (5.1) is at most index 1.

Proof Let QCV be a projector onto ker [AC AV]� and PCV := I −QCV. It allows us to
split

e = PCVe +QCVe.

For the capacitance-like devices and the voltage sources we find after at most one
differentiation of the device equations (5.1d) and (5.1b) that

A�C
d

dt
e = gC(xC, iC, A

�
C e, t) and A�V

d

dt
e = d

dt
vS. (5.2)

It implies

[AC AV]
⎛
⎝
[
A�C
A�V

]
d

dt
e −

[
gC(xC, iC, A

�
C e, t)

d
dt vS

]⎞
⎠ = 0.

Applying Corollary 2.4 for M := [AC AV]�, P := PCV,

z := d

dt
e, y := (xC, iC, e, t), r(y) := −[AC AV]

[
gC(xC, iC, A

�
C e, t)

d
dt vS(t)

]
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we find a continuous function f1 such that

PCV

d

dt
e = f1(xC, iC, e, t). (5.3)

Next we exploit the nodal equations (5.1a). Multiplication by Q�CV and one differen-
tiation yields

Q�CV(AR

d

dt
iR + AL

d

dt
iL + AI

d

dt
iS) = 0. (5.4)

For the resistance-like and inductance-like devices we get after at most one
differentiation of the device equations (5.1e) and (5.1c) that

d

dt
iR = gR(

d

dt
A�R e, xR, iR, A

�
R e, t) = gR(A

�
RQCV

d

dt
e + A�R PCV

d

dt
e, xR, iR, A

�
R e, t)

(5.5)

and

d

dt
iL = gL(xL, iL, A

�
L e, t). (5.6)

Together with (5.3) and (5.4) we obtain

Q�CV

(
ARgR(A

�
RQCV

d

dt
e + A�R f1(xC, iC, e, t), xR, iR, A

�
R e, t)

+ALgL(xL, iL, A
�
L e, t)+ AI

d

dt
iS

)
= 0. (5.7)

We choose a projector PR− CV along ker A�RQCV. Then, multiplication of (5.7) by
P�R− CV yields

Q�CVARgR

(
A�RQCV

d

dt
e + A�R f1(xC, iC, e, t), xR, iR, A

�
R e, t

)

+P�R− CVQ
�
CV

(
ALgL(xL, iL, A

�
L e, t)+ AI

d

dt
iS

)
= 0. (5.8)

It allows us to apply Lemma 2.3 for

M := A�R QCV, P := PR− CV, z := d

dt
e, y := (xC, iC, xR, iR, xL, iL, e, t),
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and

f (x, y) := gR(x + A�Rf1(xC, iC, e, t), xR, iR, A
�
R e, t),

r(y) := Q�CV(ALgL(xL, iL, A
�
L e, t)+ AI

d

dt
iS).

Thus, we find a continuous function f2 such that

PR− CV

d

dt
e = f2(xC, iC, xR, iR, xL, iL, e, t). (5.9)

Since the circuit does not contain LI-cutsets, the matrix [AC AR AV]� has full column
rank (see Corollary 4.3). It implies for QR− CV := I − PR− CV that

ker QCV = ker A�RQCV = ker PR− CV = imQR − CV

and, therefore, QCV = QCVPR− CV. Consequently,

QCV

d

dt
e = QCVf2(xC, iC, xR, iR, xL, iL, e, t). (5.10)

Regarding (5.3), (5.10), and (5.5), we find continuous functions f3 and f4 such that

d

dt
e = f3(xC, iC, xR, iR, xL, iL, e, t) and

d

dt
iR = f4(xC, iC, xR, iR, xL, iL, e, t).

(5.11)

Using again (5.1a), we get

[AC AV]
[

d
dt iC

d
dt iV

]
+ AR

d

dt
iR + AL

d

dt
iL + AI

d

dt
iS = 0.

Together with (5.11) and (5.6) we have

[AC AV]
⎡
⎣

d
dt iC

d
dt iV

⎤
⎦+ ARf4(xC, iC, xR, iR, xL, iL, e, t)+ ALgL(xL, iL, A

�
L e, t)+ AI

d

dt
iS = 0.

(5.12)

Since the circuit does not contain CV-loops, the matrix [AC AV] has full column rank
and, hence, ker [AC AV] = 0. Multiplying (5.12) by [AC AV]� allows us to apply
Corollary 2.4 for

M := [AC AV], P := I, z :=
[

d
dt iC

d
dt iV

]
, y := (xC, iC, xR, iR, xL, iL, e, t)
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and

f (y) := ARf4(xC, iC, xR, iR, xL, iL, e, t)+ ALgL(xL, iL, A
�
L e, t)+ AI

d

dt
iS(t).

Consequently, we find a continuous function f5 such that

[
d
dt iC

d
dt iV

]
= f5(xC, iC, xR, iR, xL, iL, e, t). (5.13)

Finally, we obtain from (3.1) and (5.11) that

d

dt
xL = χL(A

�
L f3(xC, iC, xR, iR, xL, iL, e, t), xL, iL, AL

�e, t) (5.14)

and from (3.4) and (5.13) that

d

dt
xC = χC([I 0]f5(xC, iC, xR, iR, xL, iL, e, t), xC, iC, AC

�e, t). (5.15)

Consequently, Eqs. (5.11), (5.6), (5.13), and (5.14), (5.15), (3.7) represent an explicit
ordinary differential equation system. That means the differentiation index of the
circuit system (5.1) is at most 1. �

Theorem 5.2 Let Assumption 4.1 and Assumption 4.2 be fulfilled. Furthermore, let
all resistance-like devices be strongly resistance-like devices. Additionally, let all
inductance-like devices belonging to LI-cutsets be strongly inductance-like devices
and all capacitance-like devices belonging to CV-loops be strongly capacitance-like
devices. Then, the differentiation index of the system (5.1) is at most index 2.

Proof First, we follow the proof of Theorem 5.1 and derive equations (5.2)–(5.9).
Secondly, we perform the following splitting

d

dt
e = PCV

d

dt
e +QCVPR − CV

d

dt
e +QCVQR− CV

d

dt
e, (5.16)

[
d
dt iC

d
dt iV

]
= PCV− loop

[
d
dt iC

d
dt iV

]
+QCV− loop

[
d
dt iC

d
dt iV

]
, (5.17)

with projector PCV− loop along ker [AC AV] and QCV− loop = I − PCV− loop.
Due to (5.3) and (5.9), the explicit ordinary differential equations for PCV

d
dt e and

QCVPR− CV
d
dt e are already obtained with the need of at most one time differentiation

of the original system. Now we derive the expression for QCVQR− CV
d
dt e. Multiplica-

tion of (5.7) by Q�R− CV := I − P�R− CV yields

Q�R− CVQ
�
CV(ALgL(xL, iL, A

�
L e, t)+ AI

d

dt
iS) = 0. (5.18)
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Differentiating (5.18) once again, we obtain

Q�R− CVQ
�
CV

(
AL∂xLgL(xL, iL, A

�
L e, t)

d

dt
xL + AL∂iLgL(xL, iL, A

�
L e, t)

d

dt
iL

+AL∂vLgL(xL, iL, A
�
L e, t)

d

dt
A�L e + AL∂tgL(xL, iL, A

�
L e, t) +AI

d2

dt2 iS

)
= 0.

Next, we plug in (3.1) and (5.6). Hence,

Q�R− CVQ
�
CV

(
AL∂xLgL(xL, iL, A

�
L e, t)χL(

d

dt
A�L e, xL, iL, vL, t)+ AL∂vLgL(xL, iL, A

�
L e, t)

d

dt
A�L e

+AL∂iLgL(xL, iL, A
�
L e, t)gL(xL, iL, A

�
L e, t)+ AL∂t gL(xL, iL, A

�
L e, t) +AI

d2

dt2 iS

)
= 0.

Using (3.3), we see that

Q�R− CVQ
�
CV

(
ALFL(

d

dt
A�L e, xL, iL, A

�
L e, t)+ AL∂tgL(xL, iL, A

�
L e, t)

+AL∂iLgL(xL, iL, A
�
L e, t)gL(xL, iL, A

�
L e, t) +AI

d2

dt2
iS

)
= 0. (5.19)

Regarding (5.9) and (5.3), we can split

d

dt
A�L e = A�L QCVQR− CV

d

dt
e + A�L QCVPR− CV

d

dt
e + A�L PCV

d

dt
e

= A�L QCVQR− CV

d

dt
e + A�L QCVf2(xC, iC, xR, iR, xL, iL, e, t)+ A�L f1(xC, iC, e, t).

We choose a projector PLI− cut along kerA�L QCVQR − CV. Since the circuit does not con-
tain I-cutsets, the matrix [AC AR AV AL]� has full column rank (see Corollary 4.2).
It implies, for QLI− cut := I − PLI− cut, that

ker QCVQR− CV = ker A�L QCVQR− CV = ker PLI− cut = imQLI− cut

and, therefore, QCVQR − CV = QCVQR − CVPLI− cut as well as Q�R− CVQ
�
CV =

P�LI− cutQ
�
R− CVQ

�
CV. Consequently, we can apply Lemma 2.3 onto (5.19) with

M := A�L QCVQR − CV, P := PLI− cut, z := d

dt
e, y := (xC, iC, xR, iR, xL, iL, e, t),
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and

f (x, y) := FL(x + A�L QCVf2(xC, iC, xR, iR, xL, iL, e, t)+ A�L f1(xC, iC, e, t), xL, iL, A
�
L e, t),

r(y) := Q�R− CVQ
�
CVAL∂iLgL(xL, iL, A

�
L e, t)gL(xL, iL,A

�
L e, t)

+Q�R− CVQ
�
CV

(
AL∂tgL(xL, iL, A

�
L e, t)+AI

d2

dt2 iS(t)

)
.

Thus, we find a continuous function f6 such that

PLI− cut

d

dt
e = f6(xC, iC, xR, iR, xL, iL, e, t). (5.20)

implying

QCVQR− CV

d

dt
e = QCVQR − CVf6(xC, iC, xR, iR, xL, iL, e, t). (5.21)

Please note that two time differentiations were required to obtain this expression
and, due to (5.19), it depends on the second time derivative of the current source

function, i.e. d2

dt2 iS.
Regarding (5.9) and (5.3) again, we obtain

d

dt
e = f7(xC, iC, xR, iR, xL, iL, e, t) (5.22)

for

f7(xC, iC, xR, iR, xL, iL, e, t) := QCVQR− CVf6(xC, iC, xR, iR, xL, iL, e, t)

+QCVf2(xC, iC, xR, iR, xL, iL, e, t)+ f1(xC, iC, e, t).

Regarding (5.5), (5.9), and (5.3) we get a continuous function f8 such that

d

dt
iR = f8(xC, iC, xR, iR, xL, iL, e, t), (5.23)

without requiring a second time derivative of the original system.
So far the ordinary differential system equations for d

dt e, d
dt iR and d

dt iL have
been obtained. In the following we derive the expressions for d

dt iC and d
dt iV. Using

again (5.1a), we get

[AC AV]
[

d
dt iC

d
dt iV

]
+ AR

d

dt
iR + AL

d

dt
iL + AI

d

dt
iS = 0.
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Together with (5.23) and (5.6) we have

[AC AV]
⎡
⎣

d
dt iC

d
dt iV

⎤
⎦+ ARf8(xC, iC, xR, iR, xL, iL, e, t)+ ALgL(xL, iL, A

�
L e, t)+ AI

d

dt
iS = 0.

(5.24)

Multiplying (5.24) by [AC AV]� allows us to apply Corollary 2.4 for

M := [AC AV], P := PCV− loop, z :=
[

d
dt iC

d
dt iV

]
, y := (xC, iC, xR, iR, xL, iL, e, t)

and

r(y) := [AC AV]�
(
ARf7(xC, iC, xR, iR, xL, iL, e, t)+ ALgL(xL, iL, A

�
L e, t)+ AI

d

dt
iS(t)

)
.

Consequently, we find a continuous function f9 such that

PCV− loop

[
d
dt iC

d
dt iV

]
= f9(xC, iC, xR, iR, xL, iL, e, t). (5.25)

Rewriting (5.2) as equation system in column form and multiplication by Q�CV− loop

yields

Q�CV− loop

[
gC(xC, iC, A

�
C e, t)

d
dt vS

]
= 0.

Differentiating this equation and regarding (3.4) and (5.22) as well as (3.6), we
obtain

Q�CV− loop

[
d
dt gC(xC, iC, A

�
C e, t)

d2

dt2 vS

]
= 0 (5.26)

with

d

dt
gC(xC, iC, A

�
C e, t)

= ∂xCgC(xC, iC, A
�
C e, t)χC(

d

dt
iC, xC, iC, A

�
C e, t)+ ∂iCgC(xC, iC, A

�
C e, t)

d

dt
iC

+ ∂vCgC(xC, iC, A
�
C e, t)A

�
Cf7(xC, iC, xR, iR, xL, iL, e, t)+ ∂tgC(xC, iC, A

�
C e, t)

= FC(
d

dt
iC, xC, iC, A

�
C e, t)
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+ ∂vCgC(xC, iC, A
�
C e, t)A

�
Cf7(xC, iC, xR, iR, xL, iL, e, t)+ ∂tgC(xC, iC, A

�
C e, t).

Using (5.25), we can split

d

dt
iC =

[
I 0
][ d

dt iC

d
dt iV

]
=
[
I 0
]
QCV− loop

[
d
dt iC

d
dt iV

]
+
[
I 0
]
PCV− loop

[
d
dt iC

d
dt iV

]

=
[
I 0
]
QCV − loop

[
d
dt iC

d
dt iV

]
+
[
I 0
]
f8(xC, iC, xR, iR, xL, iL, e, t).

Since the circuit has no V-loop, the matrix AV has full column rank, see Corol-
lary 4.2. It implies

ker
[
I 0
]
QCV − loop = ker

[
I 0
AC AV

]
QCV− loop = kerQCV− loop.

Rewriting (5.26) as

Q�CV− loop

[
I

0

]
d

dt
gC(xC, iC, A

�
C e, t)+Q�CV− loop

[
0
I

]
d2

dt2
vS = 0

allows us to apply Lemma 2.3 with

M :=
[
I 0
]
QCV− loop, P := QCV− loop, z :=

[
d
dt iC

d
dt iV

]
, y := (xC, iC, xR, iR, xL, iL, e, t)

and

f (x, y) := FC(x +
[
I 0
]
f8(xC, iC, xR, iR, xL, iL, e, t), xC, iC, A

�
C e, t)

+ ∂vCgC(xC, iC, A
�
C e, t)A

�
Cf7(xC, iC, xR, iR, xL, iL, e, t)+ ∂tgC(xC, iC, A

�
C e, t),

r(y) :=
[

0
I

]
d2

dt2 vS(t).

It means that we find a continuous function f9 such that

QCV− loop

[
d
dt iC

d
dt iV

]
= f9(xC, iC, xR, iR, xL, iL, e, t).
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Please note that two time differentations of the original system were required

to obtain this expression and due to (5.26) depends on d2

dt2 vS(t). Combining it
with (5.25) we get

[
d
dt iC

d
dt iV

]
= f8(xC, iC, xR, iR, xL, iL, e, t)+ f9(xC, iC, xR, iR, xL, iL, e, t). (5.27)

Finally, we obtain from (3.1) and (5.22) that

d

dt
xL = χL(A

�
L f7(xC, iC, xR, iR, xL, iL, e, t), xL, iL, vL, t) (5.28)

and from (3.4) and (5.27) that

d

dt
xC = χC([I 0](f8 + f9)(xC, iC, xR, iR, xL, iL, e, t), xC, iC, vC, t). (5.29)

Consequently, Eqs. (5.22), (5.6), (5.27) and (5.28), (5.29), (3.7) represent an explicit
ordinary differential equation system. That means the differentiation index of the
circuit system (5.1) is at most 2. �

Remark 5.2 Note that, for simplicty, the analysed system (5.1) only contains time
dependent sources. However, the authors see no reason that the results cannot be
generalized to include controlled sources as in [19].

Theorems 5.1 and 5.2 contain the results of [19] in the case of circuits that
only contain simple lumped elements in either traditional, i.e., Propositions 3.1, 3.5
and 3.3, or flux/charge formulation, i.e. Propositions. 3.2 and 3.4. Some minor
differences arise due to Remark 5.1, e.g., loops of capacitances lead to index-2
systems since the corresponding current iC is not eliminated from the system (5.1).
Similarly, results for many refined models, for example when considering [2, 13, 42]
as inductance-like elements, are included in Theorems 5.1 and 5.2. The next section
discusses a few challenging examples.

6 Refined Models

We present examples for refined models based on PDEs describing electromagnetic
fields, that are coupled to the circuit system of DAEs and can be categorized with
the generalized elements of Sect. 3.



418 I. Cortes Garcia et al.

All models appearing in this section arise from Maxwell’s equations [27, 29].
Those can be written in differential form for a system at rest as

∇ × 4E = −∂t 4B , (6.1a)

∇ × 4H = ∂t 4D + 4J , (6.1b)

∇ · 4D = ρ , (6.1c)

∇ · 4B = 0 , (6.1d)

where 4E is the electric field strength, 4B the magnetic flux density, 4H the magnetic
field strength, 4D the electric flux density and 4J the electric current density. All these
quantities are vector fields Ω × I → R

3 defined in a domain Ω ⊂ R
3 and time

interval I ⊂ R. The electric charge density ρ is a scalar field Ω × I → R.
The field quantities are related to each other through the material equations

4D = ε 4E , 4Jc = σ 4E , 4H = μ 4B , (6.2)

where ε is the electric permittivity, σ the electric conductivity and μ the magnetic
permeability. They are rank-2 tensor fields Ω → R

3×3. The current density in (6.1b)
can be divided into the conduction current density 4Jc of (6.2) and the source current
density 4Js

4J = 4Jc + 4Js . (6.3)

The inverse of the material relations in (6.2) is defined through the electric resistivity
ρ : Ω → R

3×3 and the magnetic reluctivity ν : Ω → R
3×3 such that

4E = ρ 4Jc , 4B = ν 4H . (6.4)

Assumption 6.1 ([15]) We divide the space domain Ω into three disjoint subdo-
mains Ωc (the conducting domain), Ωs (the source domain) and Ω0 (the excitation-
free domain) such that

– the material tensors ε, μ and ν are positive definite on the whole subdomain Ω .
– the material tensors ρ and σ are positive definite in Ωc and zero everywhere else.
– the source current density is only nonzero in Ωs.

In order to simulate Maxwell’s equations and its approximations, often potentials
are defined, that allow to rewrite the equations as systems of PDEs that can be
resolved. For the examples that are presented next, the magnetic vector potential
4A : Ω × I → R

3 and the electric scalar potential φ : Ω × I → R are relevant.
They are defined such that

4B = ∇ × 4A and 4E = −∂t 4A−∇φ . (6.5)
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Following the finite integration technique (FIT), originally introduced in 1977
by Thomas Weiland [44], the discrete version of (6.1) is obtained as Maxwell’s grid
equations [39]

Ce = − d

dt
b C̃h = d

dt
d + j S̃d = q Sb = 0 , (6.6)

here C, C̃ = C�(see [39]) and S, S̃ are the discrete curl, dual curl, divergence and
dual divergence operators, respectively. The discrete field vectors e, b, h, d , j and
q are integrated quantities over points, edges, facets and volumes of two dual grids.
Also, the material relations (6.2) and (6.4) can be formulated through the material
matrices M� as

d = Mεe jc = Mσe h = Mμb e = Mρjc b = Mνh . (6.7)

Analogous to the continuous case, discrete potentials can be defined, which lead to
the relation

b = Ca e = − d

dt
a −GΦ̄ , (6.8)

where a and Φ̄ are the discrete magnetic vector potential and electric scalar
potential, respectively and G = −S̃� (see [39]) is the discrete gradient operator.

Assumption 6.2 The boundary of the domain Γ = ∂Ω is divided into three disjoint
sets Γneu,0, Γdir,0 and Γs, with

Γ = Γneu,0 ∪ Γdir,0 ∪ Γs .

Here, Γneu,0 and Γdir,0 are the parts where homogeneous Neumann and Dirichlet
boundary conditions are imposed and Γs where the field equation is excited.

In case of a device described by Maxwell’s equations and coupled to a circuit
through boundary conditions, Γs represents the area where the device is connected
to the surrounding network.

Assumption 6.3 ([3, 15]) We assume that at least the homogeneous Dirichlet
boundary conditions of Γdir,0 are already incorporated into the discrete operator
matrices, such that the gradient operator matrix G = −S̃� has full column rank.

This is a standard assumption and has already been shown and used e.g. in [3, 15].

Remark 6.1 Both material as well as operator matrices with similar properties are
also obtained with a finite element (FE) discretization of the partial differential
equations obtained from Maxwell’s equations, whenever appropriate basis and test
functions are used, that fulfil the discrete de Rham sequence [7, 13]. Therefore, the
subsequent analysis of the discretized systems is also valid for FE discretizations.
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6.1 Inductance-Like Element

In the following we give an example of an electromagnetic (EM) device, with its
formulation taken from [4], based upon full wave Maxwell’s equation, that fits the
form of a strong inductance-like element.

In the absence of source terms and Neumann boundary conditions, i.e.,
Ωs, Γneu,0 = ∅, one possibility to rewrite Maxwell’s equations in terms of potentials
is given by the following second order PDE system (see [3])

ε∇∂tφ + ζ∇
[
ξ∇ ·

(
ζ 4A
)]
= 0 in Ω , (6.9a)

∇ × (ν∇ × 4A)+ ∂t

[
ε
(
∇φ + ∂t 4A

)]
+ σ

(
∇φ + ∂t 4A

)
= 0 in Ω , (6.9b)

where ζ and ξ are artificial material tensors whose choice is discussed for example
in [12] and [10]. We refer to system (6.9) as the 4A−φ formulation which makes use
of a grad-type Lorenz gauge condition in order to avoid ambiguity of the potentials,
see [3, 12]. Let vL and iL be the time-dependent branch voltages and currents of
the element, respectively. With Assumption 6.2 given, we complete (6.9) with the
boundary conditions

∇ × 4A = 0 in Γdir,0 , (6.10a)

φ = 0 in Γdir,0 , (6.10b)

φ = vL in Γs . (6.10c)

The branch currents iL shall comply with the model
∫
Γs

∇ ×
(
ν∇ × 4A

)
· d4S = iL . (6.11)

In order to apply the method of lines, we spatially discretize the system (6.9)
using e.g. the finite integration technique. Since most of the required matrices and
quantities were already introduced in this section’s preliminaries, we proceed with
the circuit coupling which is archived via the boundaries only (Ωs = ∅).

Given Assumption 6.3, the homogeneous Dirichlet boundaries (6.10a)
and (6.10b) are already incorporated into the discrete operator matrices, e.g. G

or C̃. To incorporate the inhomogeneous Dirichlet boundary conditions, we split Φ̄
into Φs and Φ, belonging to the degrees of freedom in Γs and the rest, as follows

Φ̄ = QsΦ + PsΦs , (6.12)
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with basis matrices Qs and Ps of full column rank. The boundary voltage excita-
tion (6.10c) is then obtained by setting Φs = ΛsvL with the element’s terminal to
Γ (j)

s ’s degrees of freedom mapping

(Λs)ij =
⎧⎨
⎩

1, if (Φs)i belongs to the j -th terminal Γ (j)
s

0, otherwise.

Here, Γs = Γ (1)
s ∪ . . . ∪ Γ (k)

s , for a k-port device, where

Γ i
s ∩ Γ j

s = ∅, for i 	= j .

With the junction Ys = PsΛs the discrete gradient in (6.8) reads:

GΦ̄ = GQsΦ +GYsvL .

Remark 6.2 Note that, as the different terminals Γ (j)
s are disjoint, per construction,

Λs, and therefore also Ys, have full column rank.

The spatially discretized version of (6.9) with incorporated boundary condi-
tions (6.10) is then given by

Q�s S̃MεGQs

d

dt
Φ +Q�s S̃MζGMξ S̃Mζa = 0 ,

(6.13)

C̃MνCa + d

dt

[
Mε (GQsΦ +GYsvL + π)

]+Mσ

(
GQsΦ +GYsvL + d

dt
a

)
= 0 ,

(6.14)

d

dt
a − π = 0 ,

(6.15)

where π is a discrete quasi-canonical momentum introduced in order to avoid
second order derivatives. The discretized current coupling model of (6.11) reads

iL =Y�s S̃C̃MνCa . (6.16)

For xL = (Φ, a, π), we define the system matrices

M :=
⎡
⎢⎣
Q�s S̃MεGQs 0 0

MεGQs Mσ Mε

0 I 0

⎤
⎥⎦ , A :=

⎡
⎢⎣

0 Q�s S̃MζGMξ S̃Mζ 0
MσGQs C̃MνC 0

0 0 −I

⎤
⎥⎦ ,
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N :=
⎡
⎢⎣

0
MεGYs

0

⎤
⎥⎦ , B :=

⎡
⎢⎣

0
MσGYs

0

⎤
⎥⎦ ,

F :=
[
0 Y�s S̃C̃MνC 0

]

from which we conclude the EM device’s element description

fL

(
d

dt
mL(xL, iL, vL, t), xL, iL, vL, t

)
:=
(
M d

dt xL + AxL + BvL +N d
dt vL

iL − FxL

)
= 0 .

(6.17)

Proposition 6.1 Provided Assumptions 6.1, 6.2 and 6.3 are fulfilled and the
absence of inner sources and Neumann boundary conditions, the EM device, whose
model is given by the element description (6.17), is a strongly inductance-like
element.

Proof The discrete gradient operator G and basis matrix Qs have full column rank
by Assumption 6.3 and construction (6.12). Further it is G = −S̃� and together
with Mε being positive definite, as of Assumption 6.1, we deduce that the Laplace-
operator LQ := Q�s S̃MεGQs is non-singular. Hence, we find

M−1 =
⎡
⎢⎣

L−1
Q 0 0
0 0 I

−GQsL
−1
Q M−1

ε −M−1
ε Mσ

⎤
⎥⎦ .

Therefore, we can define the following matrices

Ã := M−1A =
⎡
⎢⎣

0 L−1
Q H 0

0 0 −I
M−1

ε MσGQs −GQsL
−1H +M−1

ε C̃MνC M−1
ε Mσ

⎤
⎥⎦ ,

B̃ := M−1B =
⎡
⎢⎣

0
0

M−1
ε MσGYs

⎤
⎥⎦ , Ñ := M−1N =

⎡
⎢⎣

0
0

GYs

⎤
⎥⎦

with H := Q�s S̃MζGMξ S̃Mζ and deduce from (6.17) a description for d
dt xL of the

form (3.1)

d

dt
xL = −ÃxL − B̃vL − Ñ

d

dt
vL =: χL(

d

dt
vL, xL, iL, vL, t) . (6.18)
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Next, we differentiate (6.17) once, in particular the second part, and insert the
expression for d

dt xL from (6.18) yielding

d

dt
iL = F(−ÃxL − B̃vL − Ñ

d

dt
vL) = −FÃxL − FB̃vL =: gL(xL, iL, vL, t).

Thus, we found an expression of d
dt iL fitting (3.2). Finally, we observe that

FL(v
′
L, xL, iL, vL, t) := ∂xLgL(xL, iL, vL, t)χL(v

′
L, xL, iL, vL, t)

+ ∂vLgL(xL, iL, vL, t)v
′
L

= FÃÃxL + FÃB̃vL + FÃÑv′L − FB̃︸︷︷︸
=0

v′L

is continuous and strongly monotone with respect to v′L, see Lemma 2.1 using
that FÃÑ = −Y�s S̃C̃MνCGYs = Y�s G�C�MνCGYs is positive definite by
construction. We conclude that this model for an EM device fulfills the strongly
inductance-like property. �

Remark 6.3 The fact that FM−1N vanishes, as obtained by elemental matrix
operations, plays a key role in the EM device’s model fitting the inductance-like
element description.

For two different field approximations of Maxwell’s equations that result in
strongly inductance-like elements, see [13]. In contrast to our example, there the
strongly inductance-like element is given by the term ∂vLgL(xL, iL, vL, t)v

′
L in (3.3),

like in the case of classical and flux-formulated inductances.

6.2 Capacitance-Like Element

We consider the electroquasistatic field approximation of Maxwell’s equations [11,
15]. As in this approximation, the electric field 4E is rotation free, we can write it in
terms of only the electric scalar potential φ [15].

Given a time-dependent excitation vC, we can write the following boundary value
problem to describe an electroquasistatic field

∇ · σ∇φ + d

dt
∇ · ε∇φ = 0 in Ω , (6.19a)

φ = 0 in Γdir,0 , (6.19b)

∂4nφ = 0 in Γneu,0 , (6.19c)

φ = vC in Γs , (6.19d)
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with 4n being the outer normal vector to Γneu,0. To couple the electroquasistatic
system (6.19) to a circuit, the extraction of a current is necessary, so as to obtain an
implicit voltage-to-current relation. For that we integrate the current density (6.19a)
over the boundary, where the connections to the circuit are located (Γs), i.e.

∫
Γs

(
∇ · σ∇φ + d

dt
∇ · ε∇φ

)
· d4S = iC . (6.20)

We assume first a spatial discretization of the PDEs (6.19a) and (6.20) has been
applied, with only the boundary conditions

φ = 0 in Γdir,0 and ∂4nφ = 0 in Γneu,0 . (6.21)

Analogously to the previous examples and given the homogeneous boundary
conditions of (6.21) are incorporated in the operator matrices, i.e., Assumption 6.3
holds, the spatially discretized electroquasitatic field equation with circuit coupling
equation is obtained as [15]

Q�s LσQsΦ +Q�s LεQs

d

dt
Φ +Q�s LσYsvC +Q�s LεYs

d

dt
vC = 0 , (6.22a)

Y�s LσQsΦ + Y�s LεQs

d

dt
Φ + Y�s LσYsvC + Y�s LεYs

d

dt
vC = iC , (6.22b)

where Lσ = S̃Mσ S̃
� and Lε = S̃MεS̃

� are two Laplace matrices.

Proposition 6.2 For Qs and Ys, we have that

Qsx1 	= Ysx2, for x1, x2 	= 0 .

Proof This property follows directly from the definition of both matrices. We have
Ysx2 = Psy2 and, by construction, the image of Ps are the discrete elements living
in Γs, while the image of Qs are the rest. Also, by construction, both matrices have
full column rank and thus a trivial kernel. �

Proposition 6.3 Provided Assumptions 6.1, 6.2 and 6.3 are fulfilled, then the
semidiscrete eletroquasistatic system of equations with circuit coupling equa-
tion (6.22) is a strongly capacitance-like element.

Proof Due to Assumptions 6.1 and 6.3, and the fact that Qs has full column rank,
we start by rewriting (6.22a) as

d

dt
Φ = − (Q�s LεQs)

−1Q�s LσQsΦ

− (Q�s LεQs)
−1
(
Q�s LεYs

d

dt
vC +Q�s LσYsvC

)
. (6.23)
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Inserting this into (6.22b) yields

iC = Y�s
(
I − LεQs(Q

�
s LεQs)

−1Q�s
)
LσQsΦ

+ Y�s
(
I − LεQs(Q

�
s LεQs)

−1Q�s
)
LσYsvC

+ Y�s
(
Lε − LεQs(Q

�
s LεQs)

−1Q�s Lε

)
Ys

d

dt
vC . (6.24)

Now we want to see that C = Y�s
(
Lε − LεQs(Q

�
s LεQs)

−1Q�s Lε

)
Ys is positive

definite. For that, using again that Lε is symmetric positive definite (Assump-
tions 6.1 and 6.3) and thus its square root exists and is also symmetric positive
definite, we rewrite

C = Y�s L
1
2
ε

(
I − L

1
2
ε Qs(Q

�
s LεQs)

−1Q�s L
1
2
ε

)
L

1
2
ε Ys.

It can easily be seen that

(
I − L

1
2
ε Qs(Q

�
s LεQs)

−1Q�s L
1
2
ε

)
is a symmetric projector

and thus positive semidefinite. Therefore we have that C is positive semidefinite.
Let’s assume that there exists a vector x such that x�Cx = 0, then,

(
I − L

1
2
ε Qs(Q

�
s LεQs)

−1Q�s L
1
2
ε

)
L

1
2
ε Ysx = 0.

However, this implies that

L
1
2
ε Ysx = L

1
2
ε Qs(Q

�
s LεQs)

−1Q�s LεYsx

and multiplying this by L
− 1

2
ε would yield Ysx = Qsy, with y = (Q�s LεQs)

−1Q�s
LεYsx. Due to Proposition 6.2 this, however, is only possible if Ysx = 0 and, as Ys

has full column rank (see Remark 6.2), x = 0. Therefore C has full rank and is
positive definite.

According to Definition 3.2, we need to show that d
dt Φ can be written, with

at most one differentiation, as a function depending only on d
dt iC, Φ, vC, iC and t

(see (3.4)). For that we invert C in (6.24) to obtain

d

dt
vC = gC(Φ, iC, vC) . (6.25)

This can now be inserted into (6.23) to obtain a function

d

dt
Φ = χC(Φ, iC, vC) , (6.26)

without having required any differentiation of the original system.
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Due to (6.25), we have already shown that we obtain a capacitance-like element.
Furthermore, as ∂iCgC(Φ, iC, vC) = C, is positive definite, using Lemma 2.1 and
Definition 2.2, the system is shown to be strongly capacitance-like. �


6.3 Resistance-Like Element

The last refined model we study is the eddy current equation for the simulation
of magnets with superconducting coils. For that we consider a magnetoquasistatic
approximation of Maxwell’s equations [27] in terms of the 4A∗ formulation [18].
Here, the gauging freedom of the magnetoquasistatic setting allows to choose a
special magnetic vector potential 4A, such that the electric scalar potential φ vanishes
from the PDE. The governing equation reads

∇ × ντeq∇ × d

dt
4A−∇ × ν∇ × 4A = 4Js .

The non-standard expression ∇ × ντeq∇ × d
dt
4A is an homogenization model

accounting for the cable magnetization, that represents the eddy current effects of
the superconducting coils [17]. It contains the cable time constant τeq, which depends
on certain properties of the cable [43]. This formulation is coupled to a circuit in
order to simulate the superconducting magnet’s protection system of the LHC at
CERN [6, 14]. For the boundary value problem we also set the boundary conditions

4n× 4A = 0, on Γdir,0 and 4n× (ν∇ × 4A) = 0, on Γneu,0 , (6.27)

where 4n is again the outer normal vector to the boundary Γ . Please note that here,
no boundary conditions where set on Γs, as for this example Γs = ∅.

In this case, as Γs = ∅, the circuit coupling is not performed through the boundary
but by a characteristic function (winding density function) [38], that discributes the
zero dimensional current iR on the two or three dimensional domain of the PDE. For
the excitation of the coil’s cross-section we define a χ s : Ω → R

3, such that

4Js = χ siR .

This also allows to extract the voltage across the coil as

vR = −
∫
Ω

χ s · 4E dV .
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Assumption 6.4 As the magnet is excited through the superconducting coils,
we assume that the domain, where the source current density is nonzero also
corresponds to the domain, where the cable time constant is positive, that is

sup τeq = sup χ s = Ωs .

After spatial discretisation of the eddy current PDE with coupling equation, we
obtain the DAE

C�Mν,τeqC
d

dt
a + C�MνCa = XiR (6.28a)

X� d

dt
a = vR , (6.28b)

where X is a vector, containing the discretisation of the winding density function.
We define the orthogonal projector Qτ onto kerC�Mν,τeqC and its complementary
Pτ = I −Qτ .

Assumption 6.5 We assume that

– the curl matrix C and the discrete magnetic vector potential a are gauged and
contain homogeneous Dirichlet boundary conditions, such that C has full column
rank.

– there is no excitation outside of the coils, i.e., Q�τ X = 0.

The first part of the assumption is necessary, such that the DAE system (6.28) is
uniquely solvable. This is possible by for example using a tree-cotree gauge [32],
where the degrees of freedom of a belonging to a gradient field are eliminated. The
second part of the assumption is motivated by the fact that the source current density
has to be divergence-free, together with Assumption 6.4.

Proposition 6.4 Provided Assumptions 6.1, 6.4–6.5 are fulfilled, then the semidis-
crete homogenized eddy current system of equations with circuit coupling equa-
tion (6.28) is a strongly resistance-like element.

Proof We start by multiplying equation (6.28a) by Q�τ and P�τ and obtain

C�Mν,τeqC
d

dt
a + P�τ C�MνCa = P�τ XiR (6.29a)

Q�τ C�MνCa = Q�τ XiR (6.29b)

From (6.29a) we obtain without the need of any differentiation

Pτ

d

dt
a = (C�Mν,τeqC +Q�τ Qτ )

−1(P�τ XiR − P�τ C�MνCa) . (6.30)
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Differentiating (6.29b) once and using Assumption 6.5 we have

Qτ
d

dt
a = −(Q�τ C�MνCQτ + P�τ Pτ )

−1Q�τ C�MνCPτ
d

dt
a (6.31)

Inserting (6.30) into (6.31) we obtain an ODE with the structure

d

dt
xR = χR(xR, iR) ,

where xR = Pτa + Qτa. Now we use Assumption 6.5 and insert (6.30) into the
circuit coupling equation to obtain

vR = X� d

dt
(Pτ a +Qτa) = X� d

dt
Pτ a

= X�Pτ (C
�Mν,τeqC +Q�τ Qτ )

−1(P�τ XiR − P�τ C�MνCa) .

To obtain this expression no differentiation was needed, thus if we differentiate it
once, according to Definition 3.3 and using Lemma 2.1 and Definition 2.2, we now
only need to show that G = ∂vR

′gR(vR
′, xR, iR, vR, t), with

G−1 = X�Pτ (C
�Mν,τeqC +Q�τ Qτ )

−1P�τ X ,

is positive definite to obtain that (6.28) is a strongly resistance-like element. This
follows immediately by the fact that Mν,τeq is positive semidefinite (Assump-
tions 6.1 and 6.4) and X has full column rank, as it is only a vector. �


7 Conclusions

This paper has demonstrated that even very complicated refined models with inter-
nal degrees of freedom can be characterized by generalizations of the basic circuit
elements, i.e., resistance, inductance and capacitance. This knowledge significantly
simplifies the structural analysis of future networks consisting of refined models.
Structural properties of the network, e.g. the differential algebraic index, can easily
be deduced if all elements are identified in terms of the proposed generalized
elements.

Already known index results of different approximations of Maxwell’s equations
coupled to circuits could be confirmed within this framework. This includes the
results of circuits containing elements described with the classic eddy current
equation in [2] as well as the 4A − φ formulation of full Maxwell’s equations with
Lorenz gauge in [3]. In addition, new index results for other field approximations
have been obtained. For instance, the structural analysis of circuits containing
elements described with an electroquasistatic setting or the eddy current effects
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on superconducting coils is achieved. In an analogous manner, the classification of
further refined models or complicated circuit elements can be performed in future
works to further unify the analysis of such coupled systems, see e. g. [41].
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Abstract One of the benchmarks for higher-index DAEs is the so-called robotic
arm, which results from a tracking problem in robotics. Testing this benchmark,
we became aware of the singularities that appear and started to analyze them
thoroughly. To our knowledge, there is no comprehensive description of the
singularities appearing in this example in the DAE literature so far. For our
analysis, we use different methodologies, which are elaborated in this article.
This detailed inspection results from two different index concepts, namely the
projector based analysis of the derivative array and the direct projector based DAE
analysis associated with the tractability index. As a result, with both approaches we
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1 Introduction

The diagnosis of singularities of differential-algebraic equations (DAEs) is neces-
sary to evaluate the reliability of numerical results. Nevertheless, this aspect has not
been considered sufficiently in practice up to now. Therefore, in the last couple of
years we developed some tools that provided indications for numerical difficulties,
in particular the code InitDAE, [6, 10]. The Taylor-coefficients computed with
InitDAE can be used for an integration method described in [11]. Altogether, in
this way we obtain detailed information while integrating DAEs.

Looking for an ambitious higher-index test example, we recalled the path control
of a two-link, flexible joint, planar Robotic Arm from Campbell [2] and Campbell
and Griepentrog [3], which based on a more general model by de Luca and Isidori
[14] and De Luca [5].

To our surprise, first tests suggested the existence of various singularities. In
particular, we wondered that integrating over the interval [0, 2], InitDAE finds a
singularity at ∼1.5 and the integration stops (see Fig. 1), where in [17] a successful
integration up to 1.7 is reported. This motivated a deeper theoretical analysis of this
particular higher-index DAE.

We aim at a comprehensive description of this famous test example and analyze
the DAE in great detail from different points of view. The equations of the DAE are
presented in Sect. 2, where also a difference between two particular versions of the
Robotic Arm DAE is discussed. This difference seems to result from a sign error
and is discussed in Remark 7.1 (Sect. 7). In Sect. 3 we investigate the properties of
the DAE by direct consideration of the model equations. This direct analysis shows
also a way to represent the solution of the Robotic Arm equations and permits a first
characterization of the singularities.

Fig. 1 Numerical solution of Robotic Arm problem using Eqs. (2.1)–(2.2) with (2.3), obtained
with the Taylor methods described in [11]
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From a more general point of view, we use two approaches to analyze the DAE:

– In Sect. 4 we apply the algorithm used in InitDAE, which is based on a projector
based analysis of the derivative array.

– An admissible matrix function sequence and associated admissible projector
functions in the context of the direct projector based DAE-analysis are developed
in Sect. 5.

Both concepts are supported by certain constant-rank conditions and, following
[18, p. 137], “. . . singular points of DAEs will be locally defined as those for
which the assumptions supporting an index notion fail.” In both cases, the same
singularities are indicated by corresponding rank drops. Note that singularities in the
DAE context are more multifarious than those of a vector field given on manifolds.
We refer to [18, Chapter 4] for a careful analysis of the state of the art and further
discussions concerning singularities in the DAE context—including impasse points,
bifurcations, singularity-crossing phenomena, harmless critical points and others.
In [18] it is pointed out that, for instance, impasse points arise in the last reduction
step of the so-called geometric index reduction in problems with positive dynamical
degree. In contrast, the problem to be considered here has the dynamical degree of
freedom zero.

Our numerical results are reported in Sect. 6. The paper closes with an investiga-
tion of a more general formulation for the Robotic Arm problem, in dependence of
several parameters. The critical constellations for these parameters are described in
Sect. 7.

2 Equations of the Robotic Arm

The problem we will consider is a semi-explicit DAE of dimension 8 with two
constraints, which is constructed to model a Robotic Arm, see Fig. 2. The variables
(x1, x2, x3) are angular coordinates that describe the robot’s configuration and

Fig. 2 Drawing of the
Robotic Arm problem.
(Modification of a graphic
from [5])
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Fig. 3 Path prescribed by (2.2) for the endpoint of the outer arm. In both images, the Robotic Arm
is represented at different positions for sin x3 > 0 (left) and sin x3 < 0 (right), the black colored
joint is fixed at the origin and the elastic joint corresponds to the blue marker

(x4, x5, x6) are their derivatives. Finally, the variables u1 and u2 are rotational
torques and (p1(t), p2(t)) is the prescribed endpoint of the outer arm in Cartesian
coordinates.

The structure of the Robotic Arm model we consider is illustrated in Fig. 2. It
describes a two-link Robotic Arm with an elastic joint moving on a horizontal plane.
In fact, x1 corresponds to the rotation of the first link with respect to the base frame,
x2 to the rotation of the motor at the second joint and x3 to the rotation of the
second link with respect to the first link. Analogously to the well known simple
model for the inverse kinematics in a two-joint robotic arm, there is usually more
than one solution, cf. Fig. 3. The additional challenge of this example results from
the model of the elastic joint. For more details we refer to [5, 14]. The description
of the more general DAE in dependence of all parameters can be found in [4] and
will be discussed in Sect. 7.

2.1 The Equations from the DAE-Literature

First, in Sects. 2–6, we will analyze the equations

x ′1 − x4 = 0,

x ′2 − x5 = 0,

x ′3 − x6 = 0,

x ′4 − 2c(x3)(x4 + x6)
2 − x2

4d(x3)− (2x3 − x2)(a(x3)+ 2b(x3))

−a(x3)(u1 − u2) = 0,
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x ′5 + 2c(x3)(x4 + x6)
2 + x2

4d(x3)− (2x3 − x2)(1− 3a(x3)− 2b(x3))

+a(x3)(u1 − u2)− u2 = 0,
(2.1)

x ′6 + 2c(x3)(x4 + x6)
2 + x2

4d(x3)− (2x3 − x2)e(x3)

+(a(x3)+ b(x3))(u1 − u2)+ d(x3)(x4 + x6)
2 + 2x2

4c(x3) = 0,

cos x1 + cos(x1 + x3)− p1(t) = 0,

sin x1 + sin(x1 + x3)− p2(t) = 0,

with given

p1(t) = cos(et − 1)+ cos(t − 1), p2(t) = sin(1− et )+ sin(1− t), (2.2)

and

a(z) = 2

2− cos2 z
, b(z) = cos z

2− cos2 z
,

c(z) = sin z

2− cos2 z
, d(z) = cos z sin z

2− cos2 z
.

For

e(x3) = eCa88(x3) = a(x3)− 9b(x3) (2.3)

the resulting DAE (2.1) coincides with that introduced by Campbell in [2] (but better
available, e.g., in [3]), frequently been used to illustrate DAE procedures (e.g., [1–
3, 9, 10, 17]). However, writing this article, we noticed that (2.3) does not correspond
to the more general model described by Campbell and Kunkel in [4] 2019, since we
could not fit the parameters described there and in de Luca and Isidori [14] and De
Luca [5] to obtain eCa88.

Assuming that all masses and lengths are one and the remaining parameters are
chosen in the general model as described in Remark 7.1 in Sect. 7, we obtain the
DAE (2.1)–(2.2) for

e(x3) = eDeLu87(x3) = −3a(x3)+ 5b(x3). (2.4)

Therefore, we think that the equations with (2.3) do not correspond, in fact, to the
model. A possible source for the discrepancy between (2.3) and (2.4) is a sign error
described also in Remark 7.1 in Sect. 7.

For the intention of this article, this mistake complicates the setting. On the
one hand, the equations with eCa88 were discussed in several publications over
the last decades, such that we want to compare our results with those discussed
there. On the other hand, we should stop the circle of citing equations that do not
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correspond to the model, such that considering eDeLu87 is mandatory. Although this
complicates slightly the overall exposition, we therefore discuss below all properties
in dependence of a general function e and distinguish between eCa88 and eDeLu87
whenever it becomes reasonable.

As will be confirmed below, both DAEs have analogous mathematical properties.
In particular, their index is 5, the degree of freedom is zero. However, there are
several singular points that do not coincide.

2.2 Structural Properties

In order to present a more intelligible representation of some structural properties,
we reformulate the equations with new variables x7 := u1−u2, x8 = u2, as already
done in [1], and discuss the corresponding DAE, which will be considered in the
form

⎛
⎝
(
I6

02

)
x

⎞
⎠
′
+ b(x, t) = 0. (2.5)

For this notation, we have then

b1(x, t) = −x4,

b2(x, t) = −x5,

b3(x, t) = −x6,

b4(x, t) = −2c(x3)(x4 + x6)
2 − x2

4d(x3)− (2x3 − x2)(a(x3)+ 2b(x3))− a(x3)x7,

b5(x, t) = +2c(x3)(x4 + x6)
2 + x2

4d(x3)− (2x3 − x2)(1− 3a(x3)− 2b(x3))

+ a(x3)x7 − x8,

b6(x, t) = +2c(x3)(x4 + x6)
2 + x2

4d(x3)− (2x3 − x2)e(x3)

+ (a(x3)+ b(x3))x7 + d(x3)(x4 + x6)
2 + 2x2

4c(x3),

b7(x, t) = cos x1 + cos(x1 + x3)− p1(t),

b8(x, t) = sin x1 + sin(x1 + x3)− p2(t),
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resulting in x ∈ R
8. The function b : R8 × R→ R

8 is continuously differentiable
and the partial Jacobian matrix bx(x, t) reads

bx(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 b42 b43 b44 0 b46 b47 0
0 b52 b53 b54 0 b56 b57 −1
0 b62 b63 b64 0 b66 b67 0
b71 0 b73 0 0 0 0 0
b81 0 b83 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for entries bik = ∂bi
∂xk

that are again smooth functions of x. In particular,
b42, b47, b57, b62, b67 depend only on x3, and b71, b73, b81, b83 depend only on
x1, x3. We drop the arguments in the majority of cases.

Since the particular form of several coefficients bik does not matter, we present
only those coefficients which will actually play a role later on:

b42 = a(x3)+ 2b(x3) = 2+ 2 cos x3

2− cos2 x3
,

b47 = −a(x3) = − 2

2− cos2 x3
,

b62 = e(x3),

b67 = a(x3)+ b(x3) = 2+ cos x3

2− cos2 x3
,

b71 = − sin x1 − sin(x1 + x3),

b73 = − sin(x1 + x3),

b81 = cos x1 + cos(x1 + x3),

b83 = cos(x1 + x3).

We also want to emphasize some special relations.

Lemma 2.1

(a) The function b67 is smooth and has no zeros. It depends on x3 only.
(b) The functions

p := b47

b67
and r := 1

b67

are smooth and depend on x3 only. They have no zeros.
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(c) The matrix function

M(x3) :=
(
b42 b47

b62 b67

)
=
(
a(x3)+ 2b(x3) −a(x3)

e(x3) a(x3)+ b(x3)

)
(2.6)

has smooth entries depending on x3 only. M(x3) is nonsingular precisely if

b42(x3)− p(x3)b62(x3) 	= 0.

(d) – If e(x3) = eCa88(x3) = a(x3)− 9b(x3) according to (2.3), for z� = 3 −√5
it holds that cos x3 = z� implies b42(x3)−p(x3)b62(x3) = 0 and vice versa.

– If e(x3) = eDeLu87(x3) = −3a(x3) + 5b(x3) according to (2.4), for z� =
2
√

5 − 4 it holds that cos x3 = z� implies b42(x3) − p(x3)b62(x3) = 0 and
vice versa.

(e) The function

S(x3) = 1

b42(x3)− p(x3)b62(x3)
, x3 ∈ domS = {τ ∈ R : cos τ 	= z�},

is smooth on its definition domain, and so is

M−1 =
(

S −pS
−rb62S r + rpb62S

)
.

(f) The matrix function

N (x1, x3) =
(
b71 b73

b81 b83

)
=
(
− sin x1 − sin(x1 + x3) − sin(x1 + x3)

cos x1 + cos(x1 + x3) cos(x1 + x3)

)

(2.7)

depends only on x1 and x3. N (x1, x3) is nonsingular precisely if
detN (x1, x3) = sin x3 	= 0.

Proof Assertion (d):

– By definition, for e = eCa88 = a − 9b one has

b42(x3)− p(x3)b62(x3) = 2

2− cos2 x3

4+ cos2 x3 − 6 cos x3

2+ cos x3
.

This expression becomes zero exactly if 4 + cos2 x3 − 6 cos x3 = 0. Next, z� =
3−√5 is the only zero of the polynomial z2− 6z+ 4 that belongs to the interval
[−1, 1]. This proves the assertion for (2.3).
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– Analogously, for e = eDeLu87 = −3a + 5b according to (2.4), b42(x3) −
p(x3)b62(x3) becomes zero iff −4 + cos2 x3 + 8 cos x3 = 0. In this case,
z� = 2

√
5 − 4 is the only zero of the polynomial z2 + 8z − 4 that belongs

to the interval [−1, 1].
The other assertions are now evident. �

A corresponding generalization can be found in Lemma 7.1 from Sect. 7.

Consider the function h : R2 → R
2, given by

h1(x1, x3) = cos x1 + cos(x1 + x3),

h2(x1, x3) = sin x1 + sin(x1 + x3), x1, x3 ∈ R,

which is closely related to the derivative-free equations in (2.5), (h1 = b7+p1, h2 =
b8 +p2), and N from Lemma 2.1, which is at the same time the Jacobian matrix of
h. Recall that detN (x1, x3) = sin x3.

Using addition theorems we represent

h1(x1, x3) = cos x1(1+ cos x3)− sin x1 sin x3,

h2(x1, x3) = sin x1(1+ cos x3)+ cos x1 sin x3, x1, x3 ∈ R.

For arbitrary x1, x3 ∈ R and corresponding y1 = h1(x1, x3), y2 = h2(x1, x3), it
holds that

(1+ cos x3)
2 + sin2 x3 = 2(1+ cos x3) = y2

1 + y2
2 ,

and therefore y2
1 + y2

2 ≤ 4.
Denote Cr = {y ∈ R

2 : y2
1 + y2

2 = r2}, Br = {y ∈ R
2 : y2

1 + y2
2 ≤

r2}, r ≥ 0. The function h maps R
2 to the closed ball B2. The points outside B2

are out of reach. Since cos 2πk = 1, cos(2πk + π) = −1, k ∈ Z, h maps the

lines

⎧⎨
⎩

(
x1

2πk

)
∈ R

2 : x1 ∈ R

⎫⎬
⎭ and

⎧⎨
⎩

(
x1

2πk + π

)
∈ R

2 : x1 ∈ R

⎫⎬
⎭ to C2 and C0,

respectively. Note that the Jacobian matrix N is singular on these lines. Each point
on C2 can be reached so that imh = B2. Therefore, a consistent tracking path has
always to remain within B2. The border points of B2, i.e., the points on C2, are
reachable but impervious.

3 Inspection by Hand Method

In this section, we explain how the properties characterized in general terms in
the following sections can be determined by an intuitive analysis for this particular
DAE. However, we want to emphasize that, in general, such a direct manual analysis
can only be conducted if structural information is given a priori.
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One result of this analysis is that the dynamical degree of freedom is zero. This
means that we cannot prescribe any initial values. In terms of the two approaches
considered below, this means that the projectors commonly used to describe the
inherent dynamics consist of zeros only.

The other result is that we can characterize the singular points using Lemma 2.1.
Rearranging the equations (similar as in [3]) we obtain

(
x ′1
x ′3

)
−
(
x4

x6

)
= 0,

(3.1)

(
x ′4
x ′6

)
+
⎛
⎜⎝
−2c(x3)(x4 + x6)

2 − x2
4d(x3)− 2x3(a(x3)+ 2b(x3))

2c(x3)(x4 + x6)
2 + x2

4d(x3)− 2x3(e(x3) . . .

+d(x3)(x4 + x6)
2 + 2x2

4c(x3))

⎞
⎟⎠

+
(
a(x3)+ 2b(x3) −a(x3)

e(x3) a(x3)+ b(x3)

)

︸ ︷︷ ︸
M(x3)

(
x2

x7

)
= 0,

(3.2)

x ′2 − x5 = 0,
(3.3)

x ′5 + 2c(x3)(x4 + x6)
2 + x2

4d(x3)− (2x3 − x2)(1− 3a(x3)

−2b(x3))+ a(x3)x7 − x8 = 0,
(3.4)

cos x1 + cos(x1 + x3)− p1(t) = 0,
(3.5)

sin x1 + sin(x1 + x3)− p2(t) = 0.
(3.6)

In this rearranged form, we can recognize the following:

1. x1 and x3 are uniquely determined by Eqs. (3.5)–(3.6) whenever the Jacobian
matrix with respect to x1 and x3, i.e., the matrix N from Lemma 2.1, is
nonsingular. Therefore, if detN = sin x3 	= 0, Eqs. (3.5) and (3.6) provide
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Fig. 4 Different solutions x1 and x3 for k = −2, . . . , 2

expressions for x1, x3. For the particular choice of p1, p2, cf. (2.2), we obtain
the solutions
(
x1(t)

x3(t)

)
=
(

1− et + 2πk1

et − t + 2πk2

)
or

(
x1(t)

x3(t)

)
=
(

1− t + 2πk3

−(et − t)+ 2πk4

)
, (3.7)

for k1, k2, k3, k4 ∈ Z, which may intersect, see Fig. 4.
At points t� with x3(t�) = kπ, k ∈ Z, singularities are indicated.

2. By differentiation of Eq. (3.7) according to Eq. (3.1) we further obtain

(
x ′1(t)
x ′3(t)

)
=
(
x4(t)

x6(t)

)
=
(
−et

et − 1

)
or

(
x ′1(t)
x ′3(t)

)
=
(
x4(t)

x6(t)

)
=
(
−1

−et + 1

)
.

3. Differentiating one of this latter expression and inserting it into Eq. (3.2) provide
expressions for (x2, x7) everywhere where the matrix M is nonsingular, cf.
Lemma 2.1. At points t� with cos x3(t�) = z� singularities are indicated, too.

4. Differentiating the expressions obtained for x2, Eq. (3.3) provides expressions for
x5.

5. A final differentiation of x5 provides, with (3.4), an expression for x8.

The number of differentiations indicates that the classical differentiation index is
5.

We call a point x� ∈ R
8 regular if both matrices M and N are nonsingular,

which means that sin x�,3 	= 0 and cos x�,3 	= z� and, otherwise, x� is said to be a
singular point.

At regular points there are explicit representations of the solutions of (2.1). One
of these solutions was also described in [1], but without mentioning the possible
singularities.

Using Mathematica, we succeeded in computing explicit formulas for these
explicit representations, although they turned out to be rather extensive. In fact, we
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Table 1 Critical timepoints t� at which singularities appear for x1 = 1 − et , x3 = et − t in the
interval

[
0, 2.3

]
in dependence of eCa88 and eDeLu87

e = eCa88 e = eDeLu87

t� Type t� Type

0.372999460773573 cos x3(t�) = 2
√

5− 4

1.544626000035211 sin x3(t�) = 0 1.544626000035211 sin x3(t�) = 0

1.970554820677743 cos x3(t�) = 2
√

5− 4

2.029650268169820 cos x3(t�) = 3−√5

2.129773196104886 sin x3(t�) = 0 2.129773196104886 sin x3(t�) = 0

2.219666830742805 cos x3(t�) = 3−√5

2.264553226360753 cos x3(t�) = 2
√

5− 4

Fig. 5 Graph of sin x3(t)

fixed x1 = 1−et , x3 = et− t and computed the remaining components accordingly.
For this solution, we listed the timepoints t� at which singularities appear in Table 1,
that can also be appreciated in Figs. 5 and 6.

A Python code to evaluate the solutions using these formulas for e = eCa88
and e = eDeLu87 is available online in [12]. The obtained results are represented in
Figs. 7 and 8. The singularities of type sin x3 = 0 are not really visible, e.g., in Fig. 7
(right), because they do not lead to a pole in any component. This explains why the
integration was successful up to 1.7 in [17]. But these singularities influence the
numerical computation because of the large condition number as observed in Fig. 1.
This will be explained in more detail in Sect. 6.

Now, it is easy to see that sin x3 = 0 may lead to two kinds of singularities:

– x3 = 2πk, k ∈ Z, which corresponds to the completely extended arm with the tip
at a point of C2. In this case, cos x3 = 1 and, hence, also x1 is locally determined.
However, in Fig. 4 we can guess that different solutions for x1 and x3 intersect.
This means that, if no sufficient smoothness is assumed for the solution, it can
switch from a solution with sin x3 > 0 to a solution with sin x3 < 0 or vice versa,
cf. Fig. 3.

– x3 = π + 2πk, k ∈ Z, which corresponds to the completely folded arm with the
tip at the origin, i.e., at C0. In this case, cos x3 = −1 and x1 is not determined
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Fig. 6 Graphs of cos x3(t)− z� for z� = 3−√5 (top) and z� = 2
√

5−4 (bottom), cf. Lemma 2.1

Fig. 7 Solution obtained by Estévez Schwarz and Lamour [12] for e = eCa88 with x1 = 1 − et ,
x3 = et − t

by the constraints. Indeed, the first column from the matrix N from Lemma 2.1
consists of zeros only. Moreover, in this case we cannot jump from a solution
with sin x3 < 0 to a solution with sin x3 > 0 or vice versa in practice, because
this would imply a discontinuity in x1, cf. Fig. 4.

We emphasize that the singularities sin x3 = 0 arise from the constraints equation
of the model.
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Fig. 8 Solution obtained by Estévez Schwarz and Lamour [12] for e = eDeLu87 with x1 = 1− et ,
x3 = et − t

Having said that the singularities cos x3 = z� result from the considered model
of the elastic joint, they correspond to a tip at the circle Cr� for r� = √2(1+ z�).
Although x1, x3, x4, x6 are locally well defined at such points, the change of sign
of the determinant of the matrix M from Lemma 2.1 implies a pole with change of
sign for x2, u1, u2, cf. Figs. 7 and 8.

In the following, C0, Cr� ,C2 denote the singularity circles of the Robotic Arm.
Obviously, a singularity appears if the trajectory intersects or touches one of the
singularity circles.

Due to the singularities arising from the elastic joint, the inner workspace limit is
further restricted to the disk inside Cr� . Moreover, a trajectory towards the proximity
of Cr� requires a very high rotation of the motor x2 such that it may be unachievable
in practice. From a more pragmatical point of view, we may conclude that reaching
Cr� damages the elastic joint.

Now we can better explain the differences between the solutions in Figs. 7
and 8:

– For e = eCa88, we obtain r� =
√

2(1+ 3−√5) = 1.8783 and, there-
fore, the prescribed path does not cross the singularity circle Cr� until t� =
2.029650268169820.

– For e = eDeLu87, we obtain r� =
√

2(1+ 2
√

5− 4) = 1.7159 and, there-
fore, the prescribed path crosses the singularity circle Cr� already at t� =
0.3729994607735725.

The existence of the singularities of the type cosx3 = z� was probably not
noticed earlier because of this difference, since, for e = eCa88, the numerical
behavior near Cr� could easily be confounded with the proximity to C2 at first glance
(Fig. 9). We focus now on the mathematical tools and concepts we used to discover
these singularities.
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Fig. 9 Path prescribed by (2.2) and singularity circles for e = eCa88 (left) and e = eDeLu87 (right).
Since the radius of Cr� is smaller for e = eDeLu87, singularities appear earlier along the solution,
cf. Table 1 and Figs. 7 and 8

4 Projector Based Derivative Array Procedures

In this section, we show how the steps from Sect. 3 are described in terms of the
approach presented in [7] and [8].

The Robotic Arm problem is a semi-explicit DAE

f (x ′, x, t) := f ((Px)′, x, t) = (Px)′ + b(x(t), t) = 0,

with the constant projectors P and, for later use, Q := I − P

P =
(
I6

02

)
, Q =

(
06

I2

)
.

This means that x1, . . . , x6 (the Px-component) is the differentiated component,
while x7 and x8 (or, in the original formulation, u1 and u2) (the Qx-component) is
the undifferentiated component.
For vectors zj ∈ R

8, j = 0, . . . , k, we define

Fj (x
(j+1), x(j), . . . , ẋ, x, t) := dj

dtj
f (ẋ, x, t)
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and

g[k](z0, z1, . . . , zk, t) :=

⎛
⎜⎜⎜⎜⎝

F0(z1, z0, t)

F1(z2, z1, z0, t)
...

Fk−1(zk, . . . , z0, t)

⎞
⎟⎟⎟⎟⎠

.

Furthermore, by

G[k](z0, z1, . . . , zk, t) ∈ R
8k×8(k+1)

we denote the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to
(z0, z1, . . . , zk) and split it into

G[k] =
(
G
[k]
L G

[k]
R

)
,

G
[k]
L ∈ R

8·k×8, G
[k]
R ∈ R

8·k×8·k (note that L and R stand for left-hand side and
right-hand side, respectively).

Let us now consider the matrices

B[k] :=
(

P 0
G
[k]
L G

[k]
R

)
∈ R

8(k+1)×8(k+1). (4.1)

According to [7], to determine the index we check whether the matrices B[k] are
1-full with respect to the first 8 columns for k = 1, 2, . . ., i.e., whether

kerB[k] ⊆
⎧⎨
⎩

(
s0

s1

)
: s0 ∈ R

8, s0 = 0, s1 ∈ R
8k

⎫⎬
⎭ . (4.2)

If k = μ is the smallest integer for which B[k] is 1-full , then the index is μ.
For the Robotic Arm equations, k = 1, 2, 3, 4 do not lead to the required 1-

fullness. We illustrate the 1-fullness of B[5] by the patterns of a transformation into a
block diagonal form, see Fig. 10. The orange dots represent 1, the blue dots−1, and
the brown ones other nonzero elements. For the transformation we use rows with
one nonzero entry only. The used rows are marked by small ellipses and arrows.
In this procedure we have to exclude the singularities of the Jacobian matrix N
from (2.7) first and later the singularities of the Jacobian matrix M from (2.6), too.

In order to characterize the different components of the solution we further
analyze the matrices G[k] for k = 1, 2, 3, 4, 5.
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Fig. 10 Illustration of the 1-fullness of (4.1) for Eqs. (2.5) and k = 5. Therefore, the index results
to be 5

– To decouple the undifferentiated component Q, for each k we consider a basis
W
[k]
R along im G

[k]
R and define Tk as the orthogonal projector onto

ker

(
P

W
[k]
R G

[k]
L

)
=: im Tk.

Consequently, Tkx corresponds to the part of the undifferentiated component Qx

that cannot be represented as a function of (Px, t) after k-1 differentiations. Note
that, by definition, Tμ = 0, cf. [7].

If we define further Uk := Q − Tk , then we obtain the following decoupling
for the Q-component:

Qx = QU1x + T1U2x + · · · Tμ−2Uμ−1x + Tμ−1x.
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– To characterize the different parts of the differentiated component Px, in each
step k we consider a basis W

[k]
LQ−R along

im
(
G
[k]
L Q G

[k]
R

)

and define the orthogonal projector Vk onto

ker

(
Q

W
[k]
LQ−RG

[k]
L

)
=: imVk.

then Vkx represents the part of the differentiated components Px not determined
by the constraints that result after k−1 differentiations. By definition, the degree
of freedom is rankVμ−1.

Defining Zk := P − Vk , we also obtain a decoupling for the P -component:

Px = PZ1x + V1Z2x + · · ·Vμ−2Zμ−1x + Vμ−1x.

We summarize the results obtained for the considered Robotic Arm DAE for x3 	=
kπ , cos x3 	= z� (cf. Lemma 2.1) in Tables 2 and 3:

– Table 2 corresponds to the reformulated equations with (x1, . . . , x6, x7, x8).
Here, all projectors have diagonal form with only ones or zeros in the diagonal.
Therefore, the different components correspond to particular rows of the vector
x. The obtained splitting corresponds to the representations deduced in Sect. 3.

– In Table 3 we present the structural properties of the original formulation
with (x1, . . . , x6, u1, u2). For the first steps, we obtain identical results as for
the reformulated equations. Hence, in Table 3, we present only the projectors
obtained for k = 3, 4. There we can recognize that T3 and T4 do not have diagonal
form, since we cannot assign this higher-index-property to a particular row, i.e.,
to either u1 nor u2. Indeed, the description of u1 + u2 by the corresponding
projector results to be adequate.

Since the diagnosis procedures of InitDAE are conceived for general DAEs,
consistent initial values and the corresponding projectors can be computed for both
formulations at regular points. We further observe that, for singular timepoints
InitDAE cannot solve the minimization problem, i.e., no consistent values can be
computed. Summarizing, the computed differentiation index and the detection of
singularities correlates,1 independent of the chosen variables. This is a crucial
difference to the structural index, where the introduction of the variable x7 = u1−u2
is essential for the correct index determination, cf. [17].

1Recall that the definition of a singularity in [7] precisely bases on the successful computation of
consistent initial values.
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Table 2 Projectors
associated with the derivative
array analysis for the
reformulated Eqs. (2.5)

(x1, x2, x3, x4, x5, x6, x7, x8)

A P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G[1] V1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

1

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G[2] V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G[3] V3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 2 (continued) (x1, x2, x3, x4, x5, x6, x7, x8)

G[4] V4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G[5] V5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 3 Projectors associated with the derivative array analysis: differences to Table 2 when
using the original formulation (2.1) independent of the term e

(x1, x2, x3, x4, x5, x6, u1, u2)

G[3] V3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0.5 0.5

0.5 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G[4] V4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0.5 0.5

0.5 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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5 Direct Projector Based DAE Analysis and Tractability
Index

Here we provide an admissible sequence of matrix functions and describe the
regularity regions with their characteristic values, including the tractability index
(cf. [13]). For this purpose, we rewrite the DAE in the proper form

A(Dx)′(t)+ b(x(t), t) = 0, (5.1)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D− = A.

Following the projector based approach (e.g., [13]) we construct an admissible
matrix function sequence to analyze the DAE. The matrix function sequence to be
built pointwise for x, t comes from the given matrix functions

G0 = AD, B0 = bx, P0 = D−D, Q0 = I − P0, Π0 = P0.

First we obtain the matrix function

G1 = G0 + B0Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 b47 0
0 0 0 0 1 0 b57 −1
0 0 0 0 0 1 b67 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and its nullspace

N1 = {z ∈ R
8 : z1 = 0, z2 = 0, z3 = 0, z4 + b47z7 = 0, z5 + b57z7z8 = 0,

z6 + b67z7 = 0}.

Furthermore, the intersection N1∩kerΠ0 is trivial, thus there is a projector function
Q1 onto N1 such that kerΠ0 ⊆ kerQ1. It is evident that

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 p 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −r 0 0
0 0 0 0 1 −rb57 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is such a projector function. We also derive

Π0Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 p 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π1 = Π0 −Π0Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 −p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

B1 = B0Π0 −G1D
−(DΠ1D

−)′D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 b42 b43 b44 0 b46 + p′ 0 0
0 b52 b53 b54 0 b56 0 0
0 b62 b63 b64 0 b66 0 0
b71 0 b73 0 0 0 0 0
b81 0 b83 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the sign prime indicates the total derivative in jet variables. In particular, p′
stands for the function p′(x3, x

1
3 ) = p′(x3)x

1
3 of x3 ∈ R and the jet variable x1

3 ∈ R,
see e.g., [13, Section 3.2].
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Next we compute the matrix function

G2 = G1 + B1Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −p 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 b44p + b46 + p′ b47 0
0 0 0 0 1 b54p + b56 b57 −1
0 0 0 0 0 1+ b64p + b66 b67 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

its nullspace

N2 = {z ∈ R
8 :z1 − pz6 = 0, z2 − z5 = 0, z3 − z6 = 0,

z4 + (b44p + b46 + p′)z6 + b47z7 = 0,

z5 + (b54p + b56)z6 + b57z7 − z8 = 0,

(1+ b64p + b66)z6 + b67z7 = 0},

and the intersection

N2 ∩ kerΠ1 = N2 ∩ {z ∈ R
8 : z1 = 0, z2 = 0, z3 = 0, z4 − pz6 = 0} = {0}.

With

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 p 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 p +A 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −r(1+ pb64 + b66) 0 0 0 0 0
0 1 pb54 + b56 − rb57(1+ pb64 + b66) 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A = p2b64 + p(b66 − b44)− b46 − p′,
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we find an admissible projector function onto N2 such that kerΠ1 ⊆ kerQ2. Then
it results that

Π1Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 p 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 A 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π2 = Π1 −Π1Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −p 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −A 1 0 −p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

as well as

B2 = B1Π1 −G2D
−(DΠ2D

−)′DΠ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 +p′ −1 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 b42 b43 +A′ b44 0 −pb44 0 0
0 b52 b53 b54 0 −pb54 0 0
0 b62 b63 b64 0 −pb64 0 0
b71 0 b73 0 0 0 0 0
b81 0 b83 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B2Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 p′ −A 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 b42 b43 +A′ + b44A 0 0 0 0 0
0 b52 b53 + b54A 0 0 0 0 0
0 b62 b63 + b64A 0 0 0 0 0
0 0 b73 + pb71 0 0 0 0 0
0 0 b83 + pb81 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G3 = G2 + B2Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 p′ −A 0 0 −p 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 b42 b43 +A′ + b44A 1 0 b44p + b46 + p′ b47 0
0 b52 b53 + b54A 0 1 b54p + b56 b57 −1
0 b62 b63 + b64A 0 0 1+ b64p + b66 b67 0
0 0 b73 + pb71 0 0 0 0 0
0 0 b83 + pb81 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Therefore, the nullspace of G3 is

N3 = {z ∈ R
8 :z3 = 0, z2 − z5 = 0, z6 = 0, z1 = 0, b42z2 + z4 + b47z7 = 0,

b52z2 + z5 + b57z7 − z8 = 0, b62z2 + b67z7 = 0}
= {z ∈ R

8 :z1 = 0, z3 = 0, z6 = 0, z5 = z2, z7 = −rb62z2,

z4 = (−b42 + pb62)z2, z8 = (b52 + 1− b57rb62)z2 }.

The intersection

N3 ∩ kerΠ2 = N3 ∩ {z ∈ R
8 : z1 − pz3 = 0, −Az3 + z4 − pz6 = 0}

= {z ∈ R
8 : z3 = 0, z6 = 0, z1 = 0, z4 = 0, z5 = z2,

z8 = (1+ b52)z2 + b57z7, b42z2 + b47z7 = 0, b62z2 + b67z7 = 0}

is trivial, precisely where the matrix M (see Lemma 2.1) is nonsingular, that means,

N3(x) ∩ kerΠ2(x) = {0} ⇔ cos x3 	= z�.

The hyperplanes in R
8 described by cos x3 = z� indicate critical points of the DAE.

Denote the set of critical points arising at this level (cf. [13, Definition 2.75], also
[18, Def. 42] for linear DAEs) by

S3−B
crit = {x ∈ R

8 : cos x3 = z�}. (5.2)

The function S (see Lemma 2.1) will play its role when constructing the next
projector function Q3 onto N3 such that kerΠ2 ⊆ kerQ3 for arguments outside
the critical point set. We observe that there

N3 = im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

−b42 + pb62

1
0

−rb62

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−S
0
1
−S
0

Srb62

−SB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B = 1+ b52 − rb57b62,
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leading to

Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
S 1

p
A 0 0 −S 0 pS 0 0

0 0 0 0 0 0 0 0
− 1

p
A 0 0 1 0 −p 0 0

S 1
p
A 0 0 −S 0 pS 0 0

0 0 0 0 0 0 0 0
−rb62S 1

p
A 0 0 rb62S 0 −rb62pS 0 0

S 1
p
AB 0 0 −SB 0 pSB 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Π2Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
− 1

p
A 0 0 1 0 −p 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Π3 = Π2 −Π2Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −p 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
p
A 0 −A 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

B3 = B2Π2 −G3D
−(DΠ3D

−)′DΠ2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 A −1 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −b44A b44 0 −pb44 0 0
0 0 −b54A b54 0 −pb54 0 0
0 0 −b64A b64 0 −pb64 0 0
b71 0 −pb71 0 0 0 0 0
b81 0 −pb81 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

( 1
p
A)′ 0 −p( 1

p
A)′ 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 A −1 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−( 1
p
A)′ 0 −b44A+ p( 1

p
A)′ b44 0 −pb44 0 0

0 0 −b54A b54 0 −pb54 0 0
0 0 −b64A b64 0 −pb64 0 0
b71 0 −pb71 0 0 0 0 0
b81 0 −pb81 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next we obtain

B3Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
p
A 0 0 −1 0 p 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−b44
1
p
A 0 0 b44 0 −pb44 0 0

−b54
1
p
A 0 0 b54 0 −pb54 0 0

−b64
1
p
A 0 0 b64 0 −pb64 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

G4 = G3 + B3Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ 1
p
A 0 p′ −A −1 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 1 0 0 −1 0 0

−b44
1
p
A b42 b43 +A′ + b44A 1+ b44 0 b46 + p′ b47 0

−b54
1
p
A b52 b53 + b54A b54 1 b56 b57 −1

−b64
1
p
A b62 b63 + b64A b64 0 1+ b66 b67 0

0 0 b73 + pb71 0 0 0 0 0

0 0 b83 + pb81 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

as well as the nullspace

N4 = {z ∈ R
8 :z3 = 0, z6 = 0, (1+ A

p
)z1 − z4 = 0, z2 − z5 = 0,

− b44
A
p
z1 + b42z2 + (1+ b44)z4 + b47z7 = 0,

− b54
A
p
z1 + b52z2 + b54z4 + z5 + b57z7 − z8 = 0,

− b64
A
p
z1 + b62z2 + b64z4 + b67z7 = 0}.
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The intersection

N4 ∩ kerΠ3 = {z ∈ R
8 : z1 = 0, z3 = 0, z6 = 0, z4 = 0, z2 = z5,

b42z2 + b47z7 = 0, b62z2 + b67z7 = 0, (b52 + 1)z2 + b57z7 − z8 = 0}

becomes trivial exactly where the matrix M (see Lemma 2.1) is nonsingular. Thus,
rankG4 = 7 and N4 ∩ kerΠ3 = {0} on {x ∈ R

8 : x /∈ S3−B
crit }, and we find a

projector matrix Q4 onto N4 such that kerΠ3 ⊆ kerQ4.
For z ∈ N4, it holds, in particular, that z4 = (1+ A

p
)z1 and

b42z2 + b47z7 = b44
A
p
z1 − (1+ b44)(1+ A

p
)z1,

b62z2 + b67z7 = b64
A
p
z1 − b64(1+ A

p
)z1.

Since here the coefficient matrix M is nonsingular, we obtain the expressions2

z2 = g z1, z7 = h z1,

with functions g and h being continuous outside of S3−B
crit . Denoting further

f = b54 + (1+ b52)g + b57h,

we arrive at

N4 = im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
g

0
1+ A

p

g

0
h

f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2In detail g = −S(1+ 1
p
A+ b44)+ pSb64 and h = rb62S(1+ 1

p
A+ b44)− (r + rb62pS)b64.
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Regarding that kerΠ3 = {z ∈ R
8 : z1 − pz3 = 0}, we choose

Q4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −p 0 0 0 0 0
g 0 −pg 0 0 0 0 0
0 0 0 0 0 0 0 0

1+ A
p

0 −p −A 0 0 0 0 0

g 0 −pg 0 0 0 0 0
0 0 0 0 0 0 0 0
h 0 −ph 0 0 0 0 0
f 0 −pf 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This yields

Π3Q4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −p 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
p
A 0 −A 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π4 = Π3 −Π3Q4 = 0,

and

B4 = B3Π3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
p
A 0 A 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

b44
1
p
A− ( 1

p
A)′ 0 −Ab44 + p( 1

p
A)′ 0 0 0 0 0

b54
1
p
A 0 −Ab54 0 0 0 0 0

b64
1
p
A 0 −Ab64 0 0 0 0 0

b71 0 −pb73 0 0 0 0 0
b81 0 −pb83 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B4Q4 = B3Π3Q4 = B3Π3,
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G5 = G4 + B4Q4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 p′ −1 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 1 0 0 −1 0 0

−( 1
p
A)′ b42 b43 +A′ + p( 1

p
A)′ 1+ b44 0 b46 + p′ b47 0

0 b52 b53 b54 1 b56 b57 −1

0 b62 b63 b64 0 1+ b66 b67 0

b71 0 b73 0 0 0 0 0

b81 0 b83 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It remains to check if G5 is nonsingular. z ∈ N5 = kerG5 implies

z5 = z2,

z6 = z3,

z4 = z1 + p′z3,

⎛
⎝b42 b47

b62 b67

⎞
⎠
⎛
⎝z2

z7

⎞
⎠ = −

⎛
⎝1+ b44 − ( 1

p
A)′ b43 +A′ + p( 1

p
A)′ + (1+ b44)p

′ + b46 + p′

b64 1+ b66 + b64p
′

⎞
⎠
⎛
⎝z1

z3

⎞
⎠ ,

z8 =
(
b52 + 1 b57

)⎛⎝z2

z7

⎞
⎠+

(
b54 b53 + b54p

′ + b56

)⎛⎝z1

z3

⎞
⎠ ,

and
(
b71 b73

b81 b83

)(
z1

z3

)
= 0.

This shows that G5 becomes nonsingular precisely if the matrix functions M and
N are nonsingular (see Lemma 2.1). The matrix function N depends only on x1 and
x3. However, since detN (x1, x3) = sin x3, the DAE features also critical points of
type 5-A, (cf. [13, Definition 2.75])

S5−A
crit = {x ∈ R

8 : sin x3 = 0}.

We summarize the results as a proposition:

Proposition 5.1 The definition domain R
8 × R of the data of the given DAE (5.1)

decomposes into an infinite number of regularity regions G, each of which is an
open connected set determined by

G = {(x, t) ∈ R
8 × R : cos x3 	= z�, sin x3 	= 0},
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whereas z� fulfills the condition described in Lemma 2.1. On all these regularity
regions the DAE has the tractability index 5 and the characteristic values r0 =
6, r1 = 6, r2 = 6, r3 = 7, r4 = 7, r5 = 8.
The regularity regions are separated by hyperplanes corresponding to the sets of
critical points S3−B

crit and S5−A
crit , respectively.

The given DAE (5.1) has no dynamics owing to the fact that Π4 = 0. Note that this
is confirmed already by the observations in Sect. 3. The solution x∗(·) decomposes
according to I = Q0 +Π0Q1 +Π1Q2 +Π2Q3 +Π3Q4,

Q0x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

x∗ 7

x∗ 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π0Q1x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

px∗ 6

x∗ 5

x∗ 6

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π1Q2x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px∗3
x∗ 2

x∗ 3

Ax∗ 3

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Π2Q3x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

x∗ 4 − 1
p
Ax∗ 1 − px∗ 6

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π3Q4x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∗ 1 − px∗3
0
0

1
p
Ax∗ 1 −Ax∗ 3

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

It is worth noting that the projector functions Π0, Π1, Π2 are continuous, but
Π3, Π4 have continuous extensions through the critical points. Therefore, also the
matrix functions Gi,Bi are continuous or have continuous extensions. This fact is
closely related to the approach in [16] and seems to be helpful for further critical
point studies.

We want to emphasize that, according to [13, Theorem 3.39], the characteristic
values r0, . . . , r5 are invariant under regular transformations. Therefore, analogous
results are obtained if the original equation (2.1) is used instead of (2.5).



464 D. Estévez Schwarz et al.

6 Types of Singularities and Numerical Experiments

The different ways of investigation of the Robotic Arm problem in Sects. 3–5
discover the same two types of singularities. This underlines that the singularities
belong to the problem and are not owed to the used technical procedure.

– In [15, 16, 18] a classification of singularities is introduced. Using the cor-
responding nomenclature, we concluded in Sect. 5 that two singularity sets
appear:

1. S3−B
crit = {x ∈ R

8 : cos x3 = z�}
2. S5−A

crit = {x ∈ R
8 : sin x3 = 0}.

– In terms of the nomenclature used in Sect. 4, we observed that

1. the projector V1 can only be obtained if x3 is not in the set of critical points
{x ∈ R

8 : sin x3 = 0}.
2. the projectors V3 and T3 can only be obtained if, furthermore, x3 is not in the

set of critical points {x ∈ R
8 : cos x3 = z�}.

According to the concept of regularity regions developed in [13, Section 3.3], the
original definition domain of the DAE decomposes into several maximal regularity
regions whose borders consist of critical points. It may well happen that the
characteristic values including the index on different regions are different. Related
to Proposition 5.1, the Robotic Arm DAE has the same characteristics on all
regularity regions. Different kinds of problems may happen if a solution of the DAE
approaches or crosses such a critical point set. For the Robotic Arm, singularities
arise if the component x3(t) touches or crosses a singularity set. This happens if the
prescribed path (p1, p2) touches or crosses a singularity circle.

According to [7], the condition number of B[5] is an indicator for singularities of
DAEs, whereas a more detailed analysis can be obtained observing the ranks of the
associated projectors.

We monitored the condition number of solutions obtained in [12] (see also
Figs. 7 and 8). This numerical experiment perfectly showed the position of the
singularities, see Figs. 11 and 12. Therefore, the theoretical analysis presented in
Sect. 3–5 confirmed, indeed, the existence of the singularities noticed monitoring
this condition number. Moreover, the results we obtained numerically can now
perfectly be explained:

– For Eqs. (2.1)–(2.2) with (2.3), i.e., using e = eCa88, we have both types of
singularities in the interval [−6, 2.21967], as shown in Fig. 11. In particular, we
now understand why the integration stopped at t ≈ 1.5, as illustrated in Fig. 1.
The reason is sin(x3) ≈ 0.

– For Eqs. (2.1)–(2.2) with (2.4), i.e., using e = eDeLu87, we also have both types
of singularities in the interval [−6, 2.21967], as shown in Fig. 12. Now, the
integration stops already at ≈ 0.3730, because then cos x3 ≈ 0.4721, cf. Fig. 13.
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Fig. 11 The singularities in [−6, 2.21967] (top) and the condition number of B[5] (bottom) for
e = eCa88

– For Eqs. (2.1)–(2.2) with (2.4), i.e. using e = eDeLu87, we furthermore computed
successfully the numerical solution piecewise for the part of the trajectory inside
the circle Cr� , see Figs. 14 and 15. At the singularities, InitDAE stopped the
integration as expected, according to the high condition number.

Since (2.1)–(2.2) with (2.3) (i.e., e = eCa88) has no physical background, in the
following we focus on Eqs. (2.1)–(2.2) with (2.4) only (i.e., e = eDeLu87).
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Fig. 12 The singularities in [−6, 2.21967] (top) and the condition number of B[5] (bottom) for
e = eDeLu87

If we choose a trajectory p̄1, p̄2 that does not touch or cross a singularity circle
from Sect. 3, then the resulting solution component x3 never crosses a singularity
hyperplane and we obtain a singularity-free solution. We illustrate that by choosing
the path

p̄1(t) = cos(1− t)+ cos(3+ sin t
2 − t),

p̄2(t) = sin(1− t)+ sin(3+ sin t
2 − t),

(6.1)
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Fig. 13 Numerical solution of the Robotic Arm problem using Eqs. (2.1)–(2.2) with e = eDeLu87,
obtained with the Taylor methods described in [11]. These numerical results coincide with those
obtained with Mathematica in Sect. 3 up to an absolute error of 1e − 10

Fig. 14 Piecewise computed numerical solution of the Robotic Arm problem using Eqs. (2.1)–
(2.2) with e = eDeLu87, obtained with the Taylor methods described in [11] for t ∈[
0.4500, 1.5262

]
and t ∈ [1.5700, 1.8991

]
. These numerical results coincide with those obtained

with Mathematica in Sect. 3 up to an absolute error of 1e − 8

Fig. 15 Piecewise computed path and condition for the Robotic Arm problem using the equations
according to Fig. 14
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cf. Fig. 16, which leads to

(
x1(t)

x3(t)

)
=
(

1− t + 2πk1

2+ sin t
2 + 2πk2

)
or

(
x1(t)

x3(t)

)
=
(

3+ sin t
2 − t + 2πk3

−(2+ sin t
2 )+ 2πk4

)
,

(6.2)

for k1, k2, k3, k4 ∈ Z, which do not intersect, see Fig. 17.
With this modification, we can integrate the Robotic Arm problem over the

interval [0, 10], see Fig. 18. The computed condition number, see Fig. 19, varies
uncritically, i.e., no singularities appear.

Fig. 16 Path prescribed by (6.1) for the endpoint of the outer arm. Due to the particular choice of
the path, cos x3 < z� and sin x3 	= 0 are given for all t

Fig. 17 Different solutions x1 and x3 for k = −2, . . . , 2 for the trajectory (p̄1, p̄2) from (6.1)
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Fig. 18 Singularity free solution of modified Robotic Arm problem using Eqs. (2.1) and (6.1) with
e = eDeLu87, obtained with the Taylor methods described in [11]

Fig. 19 Condition number of the modified Robotic Arm using Eqs. (2.1)with (6.1) and e =
eDeLu87, obtained with the Taylor methods described in [11]. In this case, no singularities are
detected, as expected
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7 Singularities of a More General Formulation

Only recently, the Robotic Arm was described in more general terms as a test for
tracking problems, [4]. Therefore, for completeness, we describe the two types
of singularities that were detected above in these general terms. Recall that, for
simplicity, the centers of masses are assumed to be located at the joints (the motors)
and at the tip (a load), cf. [5]. The unknowns are (Fig. 20)

– x1: rotation of the first link w.r.t. the base frame,
– x2: rotation of the motor at the second joint,
– x3: rotation of the second link w.r.t. the first link.
– (x4, x5, x6) = (x ′1, x ′2, x ′3),
– u1 and u2: rotational torques caused by the drive motors.

The general form of the equations reads

x ′1 = x4,

x ′2 = x5,

x ′3 = x6,

x ′4 = f4(x2, x3, x4, x6)+ g41(x3)u1 − g41(x3)u2,

x ′5 = f5(x2, x3, x4, x6)− g41(x3)u1 + g52(x3)u2, (7.1)

x ′6 = f6(x2, x3, x4, x6)+ g61(x3)u1 − g61(x3)u2,

0 = l1 cos x1 + l2 cos(x1 + x3)− p1(t),

0 = l1 sin x1 + l2 sin(x1 + x3)− p2(t),

Fig. 20 Two-link planar
Robot Arm with the second
joint elastic. (Modification of
a graphic from [5])
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where (p1(t), p2(t)) is again the endpoint of the outer arm in Cartesian coordinates,
cf. (2.2), l1, l2 are possibly different lengths of the two links and fi , gij are suitable
functions resulting from the dynamic model of the Robotic Arm, and read

g41(x3) = A2

A3(A4 − A3 cos2 x3)

g52(x3) = g41(x3)+ 1

JR1

g61(x3) = −g41(x3)− cos x3

A4 − A3 cos2 x3

f4(x2, x3, x4, x6) = A2 sin x3(x4 + x6)
2 + A3x

2
4 sin x3 cos x3

A4 − A3 cos2 x3

+
K
(
x3 − x2

NT

)(
A2
A3

(
NT−1
NT

)
+ cos x3

)

A4 − A3 cos2 x3

f5(x2, x3, x4, x6) = −f4(x2, x3, x4, x6)+ K

NT

(
x3 − x2

NT

)(
1

JR1
− 2g41(x3)

)
,

f6(x2, x3, x4, x6) = −f4(x2, x3, x4, x6)−
K
(
x3 − x2

NT

)(
A5
A3
−
(

3NT+1
NT

)
cos x3

)

A4 − A3 cos2 x3

−A5x
2
4 sin x3 + A3 sin x3 cos x3(x4 + x6)

2

A4 − A3 cos2 x3
,

where

– K is the coefficient of elasticity of the second joint,
– NT is the transmission ratio at the second joint,
– mp is the mass of the object being held,
– m0 and m1 are the masses of the motors and arms viewed as concentrated at the

corresponding joints,
– JR1 and JRp are corresponding rotor inertias, and
– the constants are defined by

A2 = JRp +mpl
2
2 ,

A3 = mpl1l2,

A4 = (m1 +mp)l1l2,

A5 = (m1 +mp)l
2
1 ,

whereas A4 > A3 ≥ A3 cos x3 is always given by definition.
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Remark 7.1 We noticed that there is something wrong in Eqs. (2.1)–(2.2) for e =
eCa88 from (2.3), since we could not fit parameters to obtain that specific equation.
We highly appreciate that it was confirmed by the author of [2] that there is an error
in one sign. In fact, comparing Eqs. (2.1)–(2.2) with the general equation (7.1), it
is easy to deduce that in (2.1)–(2.2) m1 = 1, mp = 1, l1 = 1, l2 = 1, JRp = 1
have to be given. Under this assumption, comparing the fourth and fifth equations
of both DAEs, we obtain NT = 2 and K = 4. However, inserting these values
leads to eDeLu87 in the sixth equation of (2.1). In contrast, eCa88 is obtained in the
sixth equation if, in (7.1), the corresponding function f6 is computed considering a
different sign for the second summand, i.e.,

f6(x2, x3, x4, x6) = −f4(x2, x3, x4, x6) + K . . .

A4 − A3 cos2 x3
− . . . .

Therefore, it seems likely that eCa88 has its origin in this sign error.

Analogously to the results from the previous sections, in [4], x3 	= kπ is
identified to be a necessary condition for reasonable rank properties in (7.1). The
second type of singularities that we described in the previous sections depends, in
general, on several parameters.

In terms of the notation used before, for the general equations we obtain

b42 = − ∂f4

∂x2
=

K
(

cos x3 + A2 (NT−1)
A3 NT

)

NT
(
A4 − A3 cos2 x3

) ,

b47 = −g41 = − A2

A3
(
A4 − A3 cos2 x3

) ,

b62 = − ∂f6

∂x2
= K (A2 + A3 cos x3 − A2 NT − A5 NT + 2 A3 NT cos x3)

A3 NT 2
(
A4 − A3 cos2 x3

) ,

b67 = −g61 = A2 + A3 cos x3

A3
(
A4 − A3 cos2 x3

) ,

b71 = −l1 sin x1 − l2 sin(x1 + x3),

b73 = −l2 sin(x1 + x3),

b81 = l1 cos x1 + l2 cos(x1 + x3),

b83 = l2 cos(x1 + x3),

such that analogous structural properties result directly.
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Lemma 7.1

(a) The function g61(x3) = −b67 is smooth and has no zeros. It depends on x3 only.
(b) The functions

p := g41(x3)

g61(x3)
= b47

b67
and r := − 1

g61(x3)
= 1

b67

are smooth and depend on x3 only. They have no zeros.
(c) The matrix function

M(x3) := −
⎛
⎝

∂f4
∂x2

(x3) g41(x3)

∂f6
∂x2

(x3) g61(x3)

⎞
⎠ =

(
b42 b47

b62 b67

)

= −

⎛
⎜⎜⎜⎝

−K
(

cos x3+ A2 (NT−1)
A3 NT

)

NT
(
A4−A3 cos2 x3

) A2
A3
(
A4−A3 cos2 x3

)

−K (A2+A3 cos x3−A2 NT−A5 NT+2A3 NT cos x3)

A3 NT 2
(
A4−A3 cos2 x3

) − A2+A3 cos x3
A3
(
A4−A3 cos2 x3

)

⎞
⎟⎟⎟⎠ ,

has smooth entries depending on x3 only. M(x3) is nonsingular precisely if

b42(x3)− p(x3)b62(x3) = ∂f4

∂x2
(x3)− g41(x3)

g61(x3)

∂f6

∂x2
(x3) 	= 0.

(d) For

(
z1

z2

)
=
⎛
⎝−

2 A2+√A2 (4 A2+A5)
A3

− 2 A2−√A2 (4 A2+A5)
A3

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝
−

2 JRp+2 l2
2 mp+

√(
mp l2

2+JRp

) (
4 JRp+l12 m1+l12 mp+4 l2

2 mp

)

l1 l2 mp

−
2 JRp+2 l2

2 mp−
√(

mp l2
2+JRp

) (
4 JRp+l12 m1+l12 mp+4 l2

2 mp

)

l1 l2 mp

⎞
⎟⎟⎟⎟⎠

.

it holds that cos x3 = z1 or cos x3 = z2 imply b42(x3)− p(x3)b62(x3) = 0 and
vice versa.

(e) The function

S(x3) = 1

b42(x3)− p(x3)b62(x3)
, x3 ∈ domS = {τ ∈ R : cos τ 	= z1,2},
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is smooth on its definition domain, and so is

M−1 =
(

S −pS
−rb62S r + rpb62S

)
.

(f) The matrix function

N =
(
b71 b73

b81 b83

)
=
(
−l1 sin x1 − l2 sin(x1 + x3) −l2 sin(x1 + x3)

l1 cos x1 + l2 cos(x1 + x3) l2 cos(x1 + x3)

)
(7.2)

depends only on x1 and x3. N (x1, x3) is nonsingular precisely if
detN (x1, x3) = l1l2 sin x3 	= 0.

Proof Assertion (d): Since

A4 − A3 cos2 x3 = m1l1l2 +mpl1l2(1− cos2 x3),

we can assume that all denominators are nonzero and, analogously to Lemma 2.1,
focus on the singularities of the matrix H(x3) := −(A4 − A3 cos2 x3)M, i.e.,

H(x3) =
⎛
⎜⎝ −K

(
cosx3+A2 (NT−1)

A3NT

)

NT
A2
A3

−K (A2+A3 cos x3−A2 NT−A5 NT+2 A3 NT cos x3)

A3 NT 2 −A2+A3 cos x3
A3

⎞
⎟⎠ ,

with the determinant

det(H(x3)) = (A3
2 cos2 x3 + 4 A2 A3 cos x3 − A2 A5)K/(A2

3NT )︸ ︷︷ ︸
	=0

.

For the substitution z = cos x3 we obtain A3
2 z2+4 A2 A3 z−A2 A5 with the roots

(
z1

z2

)
=
⎛
⎝−

2 A2+√A2 (4 A2+A5)
A3

− 2 A2−√A2 (4 A2+A5)
A3

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝
−

2 JRp+2 l2
2 mp+

√(
mp l2

2+JRp

) (
4 JRp+l12 m1+l12 mp+4 l2

2 mp

)

l1 l2 mp

−
2 JRp+2 l2

2 mp−
√(

mp l2
2+JRp

) (
4 JRp+l12 m1+l12 mp+4 l2

2 mp

)

l1 l2 mp

⎞
⎟⎟⎟⎟⎠

.

This proves the assertion. All further assertions follow straightforward. �
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At regular points, these structural properties imply that all the results from the
previous sections can also be applied to the general equations. In particular, the
shape of all the described projectors is analogous.

Let us now discuss the two types of singularities. For the general case, using
addition theorems we obtain

p1 = ł1 cos x1 + l2 cos x1 cos x3 − l2 sin x1 sin x3

= cos x1 (l1 + l2 cos x3)− l2 sin x1 sin x3,

p2 = l1 sin x1 + l2 sin x1 cos x3 + l2 cos x1 sin x3

= sin x1(l1 + l2 cos x3)+ l2 cos x1 sin x3,

and

p2
1 + p2

2 = (l1 cos x1 + l2 cos(x1 + x3))
2 + (l1 sin x1 + l2 sin(x1 + x3))

2

= l21 + l22 + 2l1l2 cos x1 cos(x1 + x3)+ 2l1l2 sin x1 sin(x1 + x3)

= l21 + l22 + 2l1l2 cos x3.

For l1 ≥ l2, the circles of singularity are therefore

Cl1−l2, Cr�, Cl1+l2

for r� =
√
l21 + l22 + 2l1l2z�.

Again, for sin x3 = 0 the corresponding Jacobian matrix N is singular for
sin x3 = 0. Also in this case, this is given if the arm is fully extended or completely
folded.

The singularities of the type cosx3 = z� are considerably more difficult to
understand. If z1 or z2 belongs to the interval [−1, 1], then the corresponding
singularities appear, defining a corresponding singularity circle Cr� . In Table 4
we present some critical z� in dependence of some values for the parameters.
This means that, in general, there actually appear singularities in configurations,
depending on the particular values for JRp, mp, m1, l1, l2.

On the one hand, if such a value z� is given, singularities can only be avoided
restricting the allowed values for x3. This means that p1, p2 have to be chosen
correspondingly, see e.g. (6.1).

On the other hand, also a condition on the parameters can be formulated to
characterize the existence of these singularities for arbitrary x3. For this purpose,
we realize that, in terms of the introduced constants, these singularities appear iff

A2 · (A5 − 4 A3 cos x3) = A3
2 cos2 x3. (7.3)
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Table 4 For the specified parameters, cos x3 = z� leads to a singularity

Parameters Critical values

m1 = 1, mp = 1 l1 = 1, l2 = 1 JRp = 1 z� = 2
√

5− 4 = 0.4721

m1 = 1, mp = 10 l1 = 1, l2 = 1 JRp = 1 z� = 11
√

5
10 − 11

5 = 0.2597

m1 = 10, mp = 10 l1 = 1, l2 = 1 JRp = 1 z� = 4
√

11
5 − 11

5 = 0.4533

m1 = 10, mp = 1 l1 = 1, l2 = 1 JRp = 1 −
m1 = 10, mp = 1 l1 = 1, l2 = 1 JRp = 0.5 −
m1 = 10, mp = 3 l1 = 1, l2 = 1 JRp = 0.5 z� =

√
42
2 − 7

3 = 0.4346

m1 = 1, mp = 1 l1 = 1, l2 = 2 JRp = 1 z� =
√

110
2 − 5 = 0.2440

m1 = 1, mp = 1 l1 = 1, l2 = 0.5 JRp = 1 z� =
√

35− 5 = 0.9161

m1 = 1, mp = 1 l1 = 1, l2 = 0.3 JRp = 1 −
m1 = 1, mp = 1 l1 = 1, l2 = 1 JRp = 0.9 z� = 2

√
114
5 − 19

5 = 0.4708

m1 = 1, mp = 1 l1 = 1, l2 = 1 JRp = 1.1 z� =
√

546
5 − 21

5 = 0.4733

Therefore, we consider the following cases:

– If we suppose that A5 − 4 A3 cos x3 = 0, i.e.,

cos x3 = A5

4A3
= (m1 +mp)l

2
2

4mpl1l2
= 1

4

(
m1

mp

− 1

)
l1

l2
,

we obtain

A3
2 cos2 x3 =

(
A5

4

)2

> 0

such that (7.3) cannot be given.
– For A5 − 4 A3 cos x3 	= 0, the condition (7.3) can be represented as

A2 = A3
2 cos2 x3

A5 − 4 A3 cos x3
.

Therefore, singularities appear iff

JRp + l2
2 mp = l1

2 l2
2 mp

2 cos2 x3

l1
2
(
m1 +mp

)− 4 l1 l2 mp cos x3
.

Focusing on the denominator of the latter two expressions, we consider now the
following cases:

– If A5 ≤ 4 A3, i.e., l12
(
m1 +mp

) ≤ 4 l1 l2 mp , or, equivalently

m1

mp

+ 1 ≤ 4
l2

l1
,
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there are singularities for all values of JRp.
– In case A5 − 4 A3 = l1

2
(
m1 +mp

)− 4 l1 l2 mp > 0, i.e.,

m1

mp

+ 1 > 4
l2

l1
(7.4)

is given, then it holds for all x3 that

∣∣∣∣∣
l1

2 l2
2 mp

2 cos2 x3

l21
2 (m1 +mp

)− 4 l1 l2 mp cos x3

∣∣∣∣∣ ≤
l1

2 l2
2 mp

2

l1
2 (m1 +mp

)− 4 l1 l2 mp

,

and we can conclude that, at least for

JRp + l2
2 mp >

l1
2 l2

2 mp
2

l1
2 (m1 +mp

)− 4 l1 l2 mp

, (7.5)

no singularities may appear. To obtain a rule of thumb applicable for all values
of JRp, we use JRp + l2

2 mp > l2
2 mp, and, hence, that it suffices to assume

1 >
l1

2 mp

l1
2
(
m1 +mp

)− 4 l1 l2 mp

= 1(
m1
mp
+ 1

)
− 4 l2

l1

,

i.e.,

l2 mp <
1

4
l1 m1.

We summarize the results as a corollary:

Corollary 7.2 With respect to the singularities arising from cos x3 = z� for the
DAE (7.1) it holds that:

– If

m1

mp

+ 1 ≤ 4
l2

l1
,

there are critical values z� and therefore singularities for all values of JRp.
– If

m1

mp

+ 1 > 4
l2

l1
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at least for

JRp >
l1

2 l2
2 mp

2

l1
2 (m1 +mp

)− 4 l1 l2 mp

− l2
2 mp,

no critical values z� exist and, hence, no singularities may appear.
– If

l2 mp <
1

4
l1 m1,

then no critical values z� exist and, therefore, no singularities may appear,
independent of the value of JRp.

Let us finally have a closer look at the case if there exists a singularity of this
type. If we are at the singularity at a time-point t�, we can assume that there is a
value

A6 = ±
√
A2 (4 A2 + A5)

such that

cos x3 = −2A2 + A6

A3
= z�.

In that case, we obtain for the matrix M from Lemma 7.1 that

M = −

⎛
⎜⎜⎜⎜⎝

K

A3NT 2 (A2 + NTA6 + A2 NT) A2
A3

−
K

(
A4− (2A2+A6)

2

A3

)
(A2+A6+2 NTA6+5 A2 NT+A5 NT)

NT2
(

8 A2
2+4 A2 A6+A2 A5−A3 A4

) −

(
A4− (2A2+A6)

2

A3

)
(A2+A6)

8 A2
2+4 A2 A6+A2 A5−A3 A4

⎞
⎟⎟⎟⎟⎠

and, therefore,

kerM = im

(
−A2

K

NT 2 (A2 + NTA6 + A2 NT)

)
.

For a better understanding of the type of singularity we are dealing with, we
emphasize that the setting is analogous to the singularity of nonlinear systems of
equations for unknown functions (y1(t), y2(t), y3(t)) of the form

(
M(y3)

1

)⎛
⎜⎝
y1

y2

y3

⎞
⎟⎠ =

⎛
⎜⎝
r1(t)

r2(t)

r3(t)

⎞
⎟⎠ ,
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which are considered for all values t from a given interval. If, at value t�, the
right-hand side r3(t�) leads to a value for y3 at which M(y3) is singular, then
no unique solvability is given at t�. For the Robotic Arm, we deal with (x2, x7)

instead of (y1, y2), or, more precisely, with (x2, u1 − u2) if the original unknowns
are considered.

Finally, we notice that, according to Lemma 7.1, also the singularity circle Cr�
corresponds to poles for x2, u1, u2 in the general case.

8 Conclusions

In this article, we applied two different methodologies to characterize singular
points of higher-index DAEs considering the Robotic Arm equations, the well-
known benchmark from literature.

The two methodologies, which are related to the projector based differentiation
index and the tractability index, are based on rank consideration of matrices that are
constructed in accordance to each of the two index concepts. For the differentiation
index, the 1-fullness of the expanded derivative array is considered. For the
tractability index, the corresponding matrix sequence has to deliver a nonsingular
matrix.

Although the matrices considered in both approaches are constructed in very
different ways, both give us, in the end, hints to the same two types of singular
points. The existence of these singularities depends on the particular values of the
variable x3, which describes the angular coordinate of the outer arm.

The detected singularity for cos x3 = z� means that, for the Robotic Arm,
there are singular configurations that, to our knowledge, have not been described
so far in the DAE literature. These particular values are influenced by several model
parameters.

Now that we finally understand these very illustrative singularities, in future work
they can be analyzed in more detail following different mathematical concepts of
the theory of DAEs. For instance, the interpretation of Cl1−l2 for l2 → l1, Cr� for
r� → l1 − l2 or r� → l1 + l2 in dependence of the masses and/or the combination
with other equations with dynamical degree greater than zero can be considered.
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Symbols
A-φ formulation, 420
1-full, 7, 9, 448
ϕ−function, 139

A
Acceptor, 260, 268
Adaptive

controller, 225
observer, 225
tracking control, 230

Adjoint equation, 308, 310
Admissible

controls, 297, 317
matrix function sequence, 49, 68, 453

Algebraic constraints, 235
linear, 362

Annihilator, 142
Arnoldi algorithm, 159
A-stable, 175
Asymptotic observer, 278

B
Behavior, 259

multirate, 75
Border-projector function, 68
Boundary conditions

dynamic, 142, 160
Butcher tableau, 153

C
Canonical form

Kronecker, 25
Capacitance, 406

-like, 405
Carathéodory condition, 143
Characteristic flow, 367

constrained mean-field, 373
mean-field, 370

Characteristic values, 453, 463
Charge, 406
Circuit, 407

elements, 403
generalized, 403

Closed-loop, 235
Collocation

least-squares, 91, 95
overdetermined, 91, 95

Completion ODE, 6, 14
Component

differentiated, 6, 10, 11, 447
undifferentiated, 6, 10, 447

Condition
boundary, 142, 160
Carathéodory, 143
contractivity, 85, 86

fastest-first approach, 86
fully-decoupled approach, 85
slowest-first approach, 85

Lipschitz, 263
Moore-Penrose, 33
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number, 464
order, 168

accurate, 110
inconsistent, 112
transfer, 93

rank, 435
stability, 304

Conservation energy, 392
Consistency, 77
Constraint, 4

algebraic, 235
linear, 362

control, 292
operator, 141
optimization problem, 13

Contraction, 84
Contractivity condition

fastest-first approach, 86
fully-decoupled approach, 85
slowest-first approach, 85

Control
admissible, 297, 317
bang–bang, 293, 303, 326
constraint, 292
optimal, 292, 296

Controller
adaptive, 225

Convection diffusion problem, 182
Convergence, 292, 320

interpolation/extrapolation based multirate
schemes for index-one DAE
systems, 87
mean-field, 382
weak, 382

Critical point, 457, 462
Cross-bridges, 358, 360

attached, 361, 369
cycling, 360, 388
distribution, 367
two-state model, 388

Cutset, 408
LI-, 408

CV-loop, 408

D
DAE, see Differential-algebraic equation

(DAE)
DA operator, see Differential-algebraic (DA)

operator
Decoupling, 6, 11
Degree of freedom, 4, 10, 11

Derivative array, 5, 7, 9, 14, 25, 31, 435, 447,
450

Diagnosis of singularities, 434
Differential-algebraic equation (DAE)

higher-index, 433, 434
index one, 82, 167
index two, 180
linear implicit, 175
proper form, 453
properly stated, 20
reduced, 317
regular, 13
semi-explicit, 82, 185, 189

Differential-algebraic (DA) operator, 39
adjoint, 52
closed, 48
with constant coefficients, 43
with continuous coefficients, 49
Fredholm, 48, 63
injective, 48
with integrable coefficients, 66
normally solvable, 48, 58, 62
surjective, 48

Differentiation index, 3, 6–8, 14, 22, 26, 27,
37, 403, 443, 450

Discretisation, 294
upwind, 390

Distance
Monge-Kantorovich, 380, 381

Distributed moment method, 390
District heating network, 333–336, 338, 343,

346, 352
Disturbance, 231
Dobrushin’s stability estimate, 381
Dynamic

boundary conditions, 142, 160
internal, 225
iteration schemes, 82

E
Elasticity, 388
Elastic joint, 436
Electrical circuit, 180
Electroquasistatic system, 424
Empirical measure, 370, 382
Energy-based formulation, 334
EOPE-ODE, see Essential orthogonally

projected explicit ODE (EOPE-
ODE)

Equation
adjoint, 308, 310
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Euler-like, 335, 337
Navier-Stokes, 185
heat, 160
Maxwell’s, 418

grid, 419
Oseen, 185
Prothero-Robinson, 168, 176

Error estimate, 300, 304, 309
Essential

orthogonally projected explicit ODE, 15,
22–24, 28

underlying ODEs, 15, 23, 28
Estimator, 261, 268, 271
EUODE, see Essential underlying ODE

(EUODE)
Euler-like equation, 335, 337
Euler scheme

implicit, 294
Exothermic reactor model, 11
Exponential

Euler scheme, 147
integrator, 137

of second order, 153
Extrapolation techniques, 76

fastest-first approach, 76
fully-decoupled approach, 76
slowest-first approach, 76

F
Feasible set, 297
Feedback

output error, 233
Finite element method, 158
Formulation

A-φ, 420
energy-based, 334

Function
ϕ -, 139
absolutely continuous, 293
border-projector, 68
bounded variation, 293
essentially bounded, 293
Lyapunov, 268
objective, 292, 317

discrete, 294, 296, 318
piecewise

constant, 294
linear, 294

splitting, 83
consistent, 83

switching, 295, 299, 319, 323, 327
transfer, 188, 215

Funnel
boundary, 233
controller, 234

G
Gain matrix, 231
Galerkin projection, 186
Gårding inequality, 141
Gelfand triple, 141
Generalized

circuit elements, 403
monotonicity, 263

H
Heat equation, 160
Huxley model, see Sliding filament theory
Hyperbolic problem, 179

I
IERODE, see Inherent explicit regular ODE

(IERODE)
Index, 262

differentiation, 3, 6–8, 14, 22, 26, 27, 37,
403, 443, 450

tractability, 3, 6, 14, 22, 26, 27, 37, 45, 50,
453, 463

for constant coefficients, 45
for continuous coefficients, 50

Incidence matrix, 407
Inconsistent values

damping of, 113
Inductance, 404

-like, 403
mutual, 405

Inherent explicit regular ODE (IERODE), 14,
15, 22, 24, 26–28

InitDAE, 434, 435, 450
Initial value, 237

consistent, 237
inconsistent, 113
problem, 19

Innovations, 263
Input, 215, 230

renumbering, 226
Internal dynamics, 225
Interpolation techniques, 76

fastest-first approach, 76
fully-decoupled approach, 76
slowest-first approach, 76
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Invariance
shift, 383

Invariant subspace, 15, 19

J
Jacobian matrix, 175
Joint

elastic, 436

K
KCF, see Kronecker canonical form (KCF)
Kinetic theory, 359

constrained, 365
Kronecker canonical form (KCF), 25
Krylov subspace

methods, 159

L
Lagrange multiplier, 146, 159, 362, 373

mean field, 375
Large-scale system, 185
Least-squares collocation, 91, 95
Lipschitz

condition, 263
continuous, 230, 381

LI-cutset, 408
Loewner method

classical, 195, 196
modified, 201

Loop, 408
-CV, 408

Lorenz gauge, 420
L-stable, 170, 175
Luenberger type observer, 263
Lyapunov function, 268

M
Magnetic flux, 404
Markov process, 389
Material relations, 418
MATLAB, 176
Matrix

function sequence, 49, 68, 453
gain, 231
incidence, 407
inequality, 267
Jacobian matrix, 175
nilpotent, 218

Matrix-rhythm-therapy, 359

Maxwell’s
equations, 418
grid equations, 419

Mean field limit, 358, 374, 378, 382
partial differential equation, 187, 371

Measure
empirical, 370, 382
pushforward, 368

Mescd value, 180
Method

of characteristics, 371
finite element, 158
Krylov subspace, 159
Loewner

classical, 195, 196
modified, 201

moment
distributed, 390

Rosenbrock-Wanner, 166
ROW, 166, 167
W, 166

MNA, see Modified nodal analysis (MNA)
Model reduction, 185
Modified nodal analysis (MNA), 29, 408
Moment method

distributed, 390
Monge-Kantorovich distance, 380, 381
Moore-Penrose conditions, 33
Multirate

behavior, 75
fully-decoupled, 77
schemes

interpolation/extrapolation based, 84
fastest-first, 80
slowest-first, 78

Mutual inductance, 405

N
Navier-Stokes equations, 185
Nemytskii map, 143
Network simulation, 180

O
Objective function, 292, 317

discrete, 294, 296, 318
Observer, 260

adaptive, 225
asymptotic, 278
Luenberger type, 263

ODE, see Ordinary differential equation (ODE)
ODE15s, 176, 180
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OPE-ODE, see Orthogonally projected explicit
ODE (OPE-ODE)

Operator, 230
causal, 230
closure, 51
differential-algebraic, 39
Fredholm, 48, 63
locally Lipschitz continuous, 230

Optimal control problem
differential-algebraic, 316
discrete, 294, 318
discretization, 294, 296
linear-quadratic, 292, 296, 316
reduced, 322

Order
conditions, 168
reduction, 168, 176

Ordinary differential equation (ODE), 186
completion, 6, 14
inherent explicit regular, 14–15, 22, 24,

26–28
orthogonally projected explicit, 15–17, 19,

22, 26–28, 31
underlying, 6, 14

Orthogonally projected explicit ODE (OPE-
ODE), 15–17, 19, 22, 26–28,
31

Orthogonal splitting, 14
Oseen equations, 185
Output, 215, 230

error feedback, 233
feedback, 222

static, 222
Overdetermined collocation, 91, 95

P
Parabolic problem, 166, 177
Partial differential-algebraic equation, 138

linear, 142
parabolic, 140
semi-linear, 140

Partial differential equation, 371
mean-field, 371

limit, 187, 371
on networks, 335
transport, 372, 389, 390

Partially kinetic systems, 358, 365
in DAE form, 376
in ODE form, 369

Partitioning, 75
component-wise, 75
right-hand side, 75

PDAE, see Partial differential-algebraic
equation (PDAE)

PDE, see Partial differential equation (PDE)
Performance funnel, 233
Permutation, 220

ordered, 220
Point

critical, 457, 462
Port-Hamiltonian system, 333–335, 344, 345,

349, 352
Positive definite, 29, 35, 36
Problem

optimal control, 292
constraint optimization, 13
convection diffusion, 182
hyperbolic, 179
initial value, 19
parabolic, 166, 177
saddle point, 147
tracking, 470

Projector based analysis, 435, 453
Properly stated, 20
Prothero-Robinson equation, 168, 176
Pseudo-inverse, 14, 19
Pushforward

measure, 368

R
Rank condition, 435
Reactor model

exothermic, 11
Reference signal, 233
Regularity region, 453, 463
Relative degree

strict, 219
vector, 219

ordered, 220
truncated, 220, 230

Resistance, 406
-like, 406

Right-invertible, 217
Robotic arm, 434, 436, 464, 470
Rodas, 166
Rodasp, 166, 180
Rodasp2, 174
Rosenbrock-Wanner method, 166
ROW method, 166, 167

S
Saddle point problem, 147

stationary, 148, 152, 159
transient, 149, 158
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Scaling
mean-field, 366, 374

Scheme
Euler

implicit, 294
multirate, 84

Set
feasible, 297

Signal
reference, 233

Singularity, 464
circle, 446

Sliding filament theory, 360, 388
Solution, 259

formula, 146
global, 235
maximal, 235

Split system, 82
Splitting function, 83

consistent, 83
fastest-first approach, 83
fully-decoupled approach, 83
slowest-first approach, 83

Stable, 371, 381, 382
A-, 175
asymptotically, 216
Dobrushin’s estimate, 381
L-, 170, 175
ordinary differential equation, 383

Stability
condition, 304
estimate

Dobrushin’s, 381
State estimator, 261, 268, 271
Stiffly accurate, 171
Strict relative degree, 219
Strong law of large numbers, 368, 378
Strongly monotone, 399
Subspace

invariant, 15, 19
Krylov, 159

Switching function, 295, 299, 319, 323, 327
System

closed-loop, 235
differential-algebraic, 215
electroquasistatic, 424
functional differential-algebraic, 230
governed by ordinary differential equations,

186
governed by partial differential equations,

187
large-scale, 185

linear, 186, 215
nonlinear, 230
partially kinetic, 358, 365
port-Hamiltonian, 333–335, 344, 345, 349,

352
regular, 215
right-invertible, 217
split, 82
square, 217
water tube, 180

T
Thermodynamic fluid flow, 333, 335, 336, 340
Tracking

control, 230
adaptive, 230

problem, 470
Tractability index, 3, 6, 14, 22, 26, 27, 37, 45,

50, 453, 463
Transfer function, 188, 215

polynomial, 188
proper, 222
properly invertible, 228
strictly proper, 221, 229

U
Underlying ordinary differential equation,

6, 14

V
Vector relative degree, 219

ordered, 220
truncated, 220, 230

W
Wasserstein metric, see Monge-Kantorovich

distance
Water tube system, 180
W method, 166
Wong

limit, 261, 267
sequence, 261

Z
Zero dynamics, 216

asymptotically stable, 216
autonomous, 216
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