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Preface

The “9th Workshop on Descriptor Systems” took place on March 17-20, 2019 in
Paderborn, Germany. Following the tradition of the preceding workshops organized
by Prof. Peter C. Miiller between 1992-2005 and 2013, the workshop brought
together more than 40 mathematicians and engineers from various fields, such as
numerical and functional analysis, control theory, mechanics and electromagnetic
field theory. The participants focused on the theoretical and numerical treatment of
“descriptor” systems, i.e., differential-algebraic equations (DAEs).

This book contains the proceedings of this workshop. It discusses the wide range
of current research topics in descriptor systems, including mathematical modeling,
index analysis, stability, stabilization, well-posedness of problems, stiffness and
different timescales, co-simulation and splitting methods, and convergence analysis.
In addition, it also presents applications from the automotive and circuit industries
that show that descriptor systems are challenging problems from the point of view
of theory and practice.

This book is organized into three parts with the first part covering analysis.
It features a contribution by Diana Estévez Schwarz and René Lamour that
discusses orthogonal transformations for decoupling of DAEs with a higher index.
Different types of the so-called higher-index components with regard to the explicit
and hidden constraints are characterized. This also results into a straightforward
possibility for linear DAEs to determine an orthogonally projected explicit ODE.
The second chapter consists of an article by Michael Hanke and Roswitha Mirz
on an operator-theoretic view to linear DAEs with constant and non-constant
coefficients. Conditions concerning basic characteristics such as normal solvability
(closed range), Fredholmness, etc. are presented. In particular, it is proven that
actually the operators having tractability index zero and one constitute the class
of normally solvable differential-algebraic operators.

The second part of this book covers numerical analysis and model order
reduction. It consists of five contributions: The article by Andreas Bartel and
Michael Giinther contains a complete convergence theory for inter/extrapolation-
based multirate schemes for both ODEs and DAEs of index one, along with
a convergence analysis based on linking these schemes to multirate dynamic
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iteration. The second contribution in this part by Michael Hanke and Roswitha Mérz
is on overdetermined polynomial least-squares collocation for two-point boundary
value problems for higher-index DAEs. Basic properties, such as convergence
properties, of this method for initial value problems by a windowing technique
are proven. The article by Robert Altmann and Christoph Zimmer is devoted to
the construction of exponential integrators of the first and second order for the
time discretization of constrained parabolic partial-differential-algebraic systems.
Exponential integrators for unconstrained systems are combined with the solution
of certain saddle point problems in order to meet the constraints throughout the
integration process, along with a convergence analysis. The succeeding contribution
by Gerd Steinebach is about an improvement of the known Rosenbrock—Wanner
method rodasp, which results in a less distinctive drop of the convergence
order. The contribution by Thanos Antoulas, Ion Victor Gosea, and Matthias
Heinkenschloss treats the computation of reduced-order models for a class of semi-
explicit DAEs, which includes the semi-discretized linearized Navier—Stokes and
Oseen equations, by a data-driven Loewner framework.

The third part is devoted to control aspects of DAEs. The article by Thomas
Berger, L& Huy Hoang, and Timo Reis treats adaptive control for a large class
of multiple-input multiple-output DAEs by a novel funnel controller. To this end,
a generalization of the concept of vector relative degree is presented. The second
contribution in this part by Thomas Berger and Lukas Lanza is about state estimation
for nonlinear DAE systems with inputs and outputs. The presented observer unifies
earlier approaches and extends the standard Luenberger type observer design. The
succeeding contribution by Matthias Gerdts and Bjorn Martens covers implicit
Euler discretization for linear-quadratic optimal control problems with index two
DAEs. The discretized problem is reformulated such that an approximation of an
index reduced problem with suitable necessary conditions is obtained. Under some
additional circumstances, it is shown that the controls converge with an order of ;
in the Li-norm. These error estimates are further improved with slightly stronger
smoothness conditions of the problem data and switching function, which results
into a convergence order of one.

The fourth part contains four articles on applications of DAEs. The article
by Sarah-Alexa Hauschild, Nicole Marheineke, Volker Mehrmann, Jan Mohring,
Arbi Moses Badlyan, Markus Rein, and Martin Schmidt is about modeling of
district heating network in the port-Hamiltonian framework. By introducing a
model hierarchy of flow equations on the network, a thermodynamically con-
sistent port-Hamiltonian embedding of the resulting partial differential-algebraic
systems is presented. It is further shown that a spatially discretized network model
describing the advection of the internal energy density with respect to an under-
lying incompressible stationary Euler-type hydrodynamics can be considered as
a parameter-dependent finite-dimensional port-Hamiltonian system. Moreover, an
infinite-dimensional port-Hamiltonian formulation for a compressible instationary
thermodynamic fluid flow in a pipe is presented. The subject of the article by
Steffen Plunder and Bernd Simeon is a coupled system composed of a linear
DAE and a linear large-scale system of ODEs, where the latter stands for the
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dynamics of numerous identical particles. Such systems, for instance, arise in
mathematical models for muscle tissue where the macroscopic behavior is governed
by the equations of continuum mechanics. Replacing the discrete particles by a
kinetic equation for a particle density, the mean-field limit results into a new
class of partially kinetic systems. The influence of constraints on those systems
is investigated. As a main result, Dobrushin’s stability estimate for systems of this
type is presented. The estimate implies convergence of the mean-field limit and
provides a rigorous link between the particle dynamics and their kinetic description.
In the article by Idoia Cortes Garcia, Sebastian Schops, Christian Strohm, and Caren
Tischendorf, a definition of generalized circuit elements which may, for example,
contain additional internal degrees of freedom, such that those elements still behave
structurally like resistances, inductances, and capacitances, is presented. Several
complex examples demonstrate the relevance of those definitions. Finally, the article
by Diana Estévez Schwarz, René Lamour, and Roswitha Mérz focuses on a classical
benchmark problem for higher-index DAEs, namely a robotic arm resulting from a
tracking problem in mechanical engineering. The difficulty of this problem is the
appearance of certain singularities, whose thorough analysis is the subject of this
article. To this end, different methodologies are elaborated, such as the projector-
based analysis of the derivative array and the direct projector-based DAE analysis
associated with the tractability index. As a result, with both approaches, the same
kinds of singularities are identified. Some of them are obvious, but others are
unexpected.

We would like to take the opportunity to thank all the individuals who contributed
to the workshop and to this volume. Special gratitude goes to Prof. Dr. Peter
C. Miiller from BU Wuppertal for encouraging us to pursue his traditional and
distinguished workshop series. We hope to see you at many of the future workshops
on descriptor systems!

Hamburg, Germany Timo Reis
Magdeburg, Germany Sara Grundel
Darmstadt, Germany Sebastian Schops

May 2020
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A Projector Based Decoupling of DAEs )
Obtained from the Derivative Array s

Diana Estévez Schwarz and René Lamour

Abstract The solution vector of a differential-algebraic equation contains different
types of components, that can be analyzed with regard to various properties.
In this paper, we particularly present an orthogonal decoupling that, for higher-
index DAESs, describes in which context these orthogonal components appear in
the derivative array. In this sense, we characterize different types of so-called
“higher-index” components with regard to the explicit and hidden constraints.
As a consequence, for linear DAEs we obtain a straightforward possibility to
determine an orthogonally projected explicit ODE and compare it with the so-called
inherent regular ODE related to the projector-based decoupling associated with the
tractability matrix sequence. By several examples we illustrate the differences of
these two projector-based approaches and discuss their relationship.

Keywords DAE - Differential-algebraic equation - Index - Derivative array -
Projector based analysis - Constraints - Orthogonal decoupling - Tractability -
MNA
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4 D. Estévez Schwarz and R. Lamour
1 Introduction

Higher-index differential-algebraic equations (DAEs) present explicit and hidden
constraints that restrict the choice of consistent initial values. In fact, the dynamics
can be characterized by lower-dimensional ODEs that might be not unique.

Example 1.1 Let us consider a well-understood higher-index example from [21, 22,
24]:

10000 —a2=1000 a
00100 0 1000 o
00010|x+] 0 0100]|x=]g0
00001 0 0010 0.3
00000 0 0001 G4

The explicit constraint reads

X5 =24
and the hidden constraints result to be
/
X4 =423 — 4 4,

3 =q22— (23— q24)
x2=q21— (22— (23— 92.4)").
Therefore, the degree of freedom d results to be one. To characterize the one-

dimensional dynamics, there are different possibilities. On the one hand, the explicit
scalar ODE

Xy —axi =q1+q1— 90+ 953 — a5 4 (1.1)

that depends on derivatives of the right-hand side ¢, could be considered. On the
other hand, for

Ueg := X1 + Xx3 —axq + a2x5
the explicit scalar ODE
U, — oy = q1+ qa.1 — g2+ qa3 — @ qaa, (1.2)
that does not depend on derivatives of ¢, could be considered. For the initialization,

this means that if we consider (1.1), then an initial value is prescribed for x(#p). In
contrast, if (1.2) is considered, then an initial value is prescribed for u,.(#p). In both
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cases, x2(fp), . . ., x5(fp) are determined by the explicit and hidden constraints and
cannot be prescribed.

In terms of the projectors that we will introduce in forthcoming sections, we will
decouple x in different orthogonal components, essentially

where

— the left-hand side component, which corresponds to x1, appears, together with its
derivative xi, in the original DAE and in the ODE (1.1),

— the component in the middle corresponds to x3, x3, x4 which are determined by
constraints, although the derivatives x7, x5, x; appear in the original DAE,

— the right-hand side component, i.e. x5, is determined by constraints while the
derivative x§ does not appear in the original DAE.

While a general projector based characterization of ODEs associated to a DAE
that does not involve derivatives (like (1.2)) can be found in [21] and the related
work, such a general projector based description has not been developed so far for
ODEs associated to a DAE with orthogonality properties like (1.1). Such ODEs will
depend, in general, on derivatives of parts of the original DAE, i.e., parts of the
so-called derivative array.

In this setting, our starting point is a projector based decoupling of the solution
vector x into the derivative and the non-derivative part. Our goal is to provide the
framework of a projector based analysis of DAEs for approaches that are based on
the consideration of the derivative array, where the associated ODE may depend on
derivatives of the right-hand side, like (1.1). Further, all considered projectors will
be orthogonal.

In a first step into this direction, a new approach to compute consistent initial
values for higher-index DAEs using the derivative array and a projector based
approach was recently developed in [10, 12]. Starting from these results, in this
paper we address an orthogonal decoupling of the solution vector and a correspond-
ing decoupling of the equations of the DAE. In order to facilitate the readability, we
start defining the basic concepts briefly again.

We consider DAEs of the form

f&'(0), x(1),1) =0, (1.3)
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for f: G — R", Gy C R" x R" x R, where the partial Jacobian f;, (z1, zo, ) is
singular. We assume that

ker fZl(Zlv ZO? t)

does not depend on (z1,zo) and that a continuously differentiable orthogonal
projector Q = Q(r) ontoker f;, exists. On the basis of the complementary projector
P = P(t) := I — Q(¢) we can then reformulate the DAE as

f&x x, )= f(Px',x,t) = f((Px)) — P'x,x,t) =0, (1.4)

as already introduced in [18], where we drop the argument ¢ for the sake of
simplicity. In this sense, we will use the notation:

— Px for the differentiated component,
— Qux for the undifferentiated component,

since, for the decoupling x’ = (Px)" + (Qx)’, there is a function ¢; such that
(Px) = @1(x, 1) is implicitly given, cf. [10, 12] and Sect. 2. In [10] we presented
an orthogonal decoupling of Qx with regard to the explicit and hidden constraints.

In this article, we complete this approach by decoupling Px analogously, thus
obtaining an orthogonal decoupling of the complete vector x = Px + Qx. The
paper is organized as follows.

In Sect.2 we summarize some definitions and the notations introduced in [10,
12]. Based on that, the orthogonal projectors used for the decoupling of x are defined
in Sect. 3. In particular, the projector I7 is defined, which is analyzed in more detail
in Sect. 4.

Section 5 presents an extensive discussion of linear DAEs. For linear DAEs,
IT turns out to deliver a description of an associated explicit ODE. We show
and illustrate with examples the differences between the introduced orthogonal
decoupling and the projector based decoupling associated with the tractability
matrix sequence. In particular, we extensively analyze two illustrative classes of
linear DAEs with constant coefficients

The computation of the projectors for the Modified Nodal Analysis (MNA) is
briefly presented in Sect. 6 in order to show that the new orthogonal decoupling is a
direct generalization of a result presented already in [5].

In the Appendix, we provide some required results from linear algebra.

2 Reinterpretation of the Differentiation Index

The conventional definition of the differentiation index is targeted on a representa-
tion of the so-called completion ODE or underlying ODE (see Sect.5.1).
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Definition 2.1 ([2]) The differentiation index is the smallest integer v such that
f&' x, 1) =0,

d
dtf(x/,x,t)=0,

Y

d
g J & x0 =0,

uniquely determines x” as a continuous function of (x, 7).

In order to allow for the differentiations, we consider
; . d’/
Fj('x(]+1)a-x(])a'-'7-x/axat) = dtjf(x/’xat)a

and definefork e Nk > 1,z e R",i =0, ...k,

f(z1,20, 1)
K F1(z2, 21, 20, 1)
8" (20,21, -5 2k 1) = . , 2.D
Fr1(zk, ..., 20, 1)

which corresponds to the derivative array [2]. Let us further denote by

k
GY oz .t e RO

the Jacobian matrix of g[k] (zo, 215 - - - » 2k, t) with respect to (z1, - . ., Zk)-

In practice, the index v from Definition 2.1 at (z3, z7, ..., 2, Zz+1’ t*) can be
determined by a rank check, verifying for k = 1, ... whether the matrix

Al . gkt

n(k-+1) xn(k+1)
(Z15eeesZk s Zh41) R

* % % *
(Z(),Zly---,Zk,Z]H_l»t ) €

fulfills

ker A+ ¢ (“) cs1€RY, 51 =0, s; e R* L (2.2)
52

This means that the matrix A%+ is 1-full, with respect to the first n columns, cf.
[4, 12, 20]. Therefore, at (zjj, 2}, - - ., Zf> th+1’ t*) the index is v, if v is the smallest
integer for which A[V*11 is 1-full in a neighborhood of (@gs - - s Zz+1’ ).
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With the decoupling x = Px 4+ Qx in mind, we will use the following definition
of the differentiation index, which was introduced in [10, 12] focusing on the
computation of consistent initial values and the characterization of singularities.
Roughly speaking, if we formulate this index characterization in an analogous
manner to Definition 2.1, it reads:

Definition 2.2 The differentiation index is the smallest integer p such that
f&' x, 1) =0,

d
dtf(X’,x,t)=0,

n—1

g1 S @20 =0,

uniquely determines Qx as a function of (Px, 1), provided that the rank conditions!
introduced in Definition 2 of [10] are given.

Due to (1.4), we assume that there exists a function ¢ such that, locally,
(Px) = ¢1(x, 1)
holds. If, according to Definition 2.2, there exists another function ¢, such that
Ox = p2(Px, 1),
and sufficient smoothness is given, then one further differentiation provides
(0x) = @3((Px)', Px,1) = @3(x, 1).
Consequently, if p is the differentiation index according to Definition 2.2 and

sufficient smoothness is given, then the conventional differentiation index v results
to be w as well.

To compute the index w in this context, for z; € R",i =0, ..., k, we denote by
k
GI(Z(]))(ZOv Z1s..., 2k 1) € R7kxn

IThese rank conditions correspond to the assumption that the projectors we introduce later on
in Sect. 3 to characterize the different types of components have all constant rank in a so-called
regularity region, cf. [10].
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the Jacobian matrix of g[k](zo, 21, ..., 2k, 1) with respect to zp, and consider at
(25,275 - - - 2 ) the matrix
P(t*) 0
Bk =
G[kl (Z* z* z* t*) G[kl (Z* z* * t*)
(zo) 0> <12 =70 Sk (Z15-0s2k) V02 210 7000 Lo

According to [12], we check if the matrices BIKl € R**+Dxntk+1) gre 1-full with
respect to the first n columns for k = 1, 2, .. ., i.e., whether

ker B! ¢ (s()) csoeR", so=0, s e R%F L (2.3)
s1

We conclude that at (zj,z],...,2;,t") the index is p, if the constant rank
assumptions are given in a neighborhood of (2, z}, . .., zj, t*) and w is the smallest
integer for which B s 1-full. We emphasize that g[“] consists of f, Fi, ..., Fy_1,
such that no u-th differentiation is needed.

Recall further that the rank conditions from Definition 2 of [10] were introduced
for linear DAEs. For nonlinear DAEs we consider the linearization, following the
reasoning that the nonlinear DAE has index w iff the linearized DAE has it, cf. [21].

3 Defining Projectors with the Derivative Array

In order to characterize the different components, for
k k
G =G @ e
k] ._ ~lk]
Gr =Gr @520 gt
we have a closer look onto the matrix
[k] ._ [k] ~[k]
Gl := (61 6. (3.1)
where L and R stand for left- and right-hand side, respectively. For the sake of

simplicity, in the following we also drop the argument ¢* for the projectors and Q
and P.
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— To decouple the undifferentiated component Qx for k = 1, ..., u, we consider
an orthogonal basis? B%C] with the property ker B%C] = im G%C] and define the
projector Tj as the orthogonal projector onto

P
ker =:im T.

Consequently, T;x corresponds to the part of the undifferentiated component Qx
that, after k-1 differentiations, cannot yet be represented as a function of (Px, t).
Note that, by definition, T} # 0 for k < p and T, = 0, cf. [10].

— To characterize the different parts of the differentiated component Px, we further
decouple G'¥ in each step k into G%{]P and Gyc] Q and consider

0 0 0
G Glo G{')

With this decoupling from [11] in mind, we consider an orthogonal basis’
BY}_p with

ker By x=im (6o G¥)

and finally define the orthogonal projector Vi onto

0 .
ker (k] k] | =:1im Vj.
(BLQRGL

Then Vix represents the part of the differentiated components Px that is not
determined by the constraints resulting after k-1 differentiations. By construc-
tion, the degree of freedom d is rank V),. In accordance with our previous work
we define

I :=V,.

2Instead of a basis, any matrix W}ek] with ker WllekJ = im G%(J could be used in this context,
especially a projector. According to our implementation in InitDAE [8, 13] , we consider a basis
here.

3Again, instead of a basis, any matrix W£%7 g With ker W£%7 g = im G%JQ7 g could be used in

this context, analogously as for Bgek].
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Note that, also by construction, we have QV; = 0 for all k and, hence, Z; =
P — Vj results to be a projector:

Zy Zy=P—-V)(P—V)=P—-2-PVpy+ V=P —Vy = Z.

Consequently, Z;x describes the differentiated components that are determined
by constraints resulting after k-1 differentiation and, in particular, (P — I1)x =
Z,x corresponds to the differentiated components that are determined by
constraints after u-1 differentiations.

According to Theorem 1 in [10], it holds

T = QoTk = Tk Qo = T 1Tk = Ty Ti—1, (3.2)
and it can be proved analogously that

Vike = PoVik = VikPo = Vi1 Vie = Vi Vi1 (3.3)

Therefore, for Z = P — Vi, Uy := Q — Ty, x = Px + Qx we can consider the
decoupling
Px =PZix+ViZyx +VoZsx+...+V, 2Z, 1x + Ix, (3.4)
Ox = QoUix + TUpx + oUsx + ...+ T, 2Uy1x + Ty x. 3.5
Example 3.1 Let us consider the DAE resulting from the exothermic reactor model
(cf. [25]), also described in [2]:
C'=Ki(Co—C) —R,
T'=K((To—T)+ K2R — K3(T — T¢),
Ky
0=R—Kze TC,
0=C—u,
where K1, K7, K3, K4 are constants, Cy and Tj are the feed reactant concentration
and feed temperature (assumed to be known functions). The variables C and T are
the corresponding quantities in the product, u(¢) is an input function prescribing
C, R is the reaction rate per unit volume, and 7¢ is the temperature of the cooling
medium. The corresponding projectors can be found in Table 1. The index is three

and since [T = 0, the degree of freedom is zero and no initial values can be
prescribed in this case.

Note that although for this nonlinear example all the projectors from Table 1 are
constant, in general they may depend on (z§, 27, . . ., 2}, ).
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Table: 1 Prqjectors o x=(C,T,R,Tc)
associated with the derivative
array analysis for the 0000 1000
exothermic reactor model
(Example 3.1) A 0= 0000 , P= 0100
0010 0000
0001 0000
0000 0000
G T = 0000,\/1: 0100
0000 0000
0001 0000
0000 0000
G2 Ty = 0000,\/2: 0000
0000 0000
0001 0000
0000 0000
Gl g [0000f , _Joooof .
0000 0000
0000 0000
4 Properties of the Orthogonal Projector IT
To simplify the notation, we introduce matrices N and W fulfilling
N =BG kerw =im NOQ, .1

where W can be an arbitrary matrix (e.g. an orthogonal basis or projector).
Consequently, the orthogonal projector I7 fulfills

ker 0 =ker Q Nker WN = im I1.
WN

According to the index definition, it further holds

P I
ker (N) = ker (N) = {0}.
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Consequently, Lemma A.1 from the Appendix implies that there exists a function
¢4 such that

(I — IMx = ea(Ix, 1). 4.2)

In [11, 12] we have shown that, under suitable assumptions, the constrained
optimization problem

min H P(z0 — ) ||2 (4.3)
subjectto  g""(z0, 21, ..., Zu,10) =0, (4.4)
turns out to compute consistent initial values fulfilling
I1(zo —a) =0.
In this sense, the consistent initialization computed by (4.3)—(4.4) corresponds to
z0 =Ia + es(l1, tp).

In the following, we pursue this idea for linear DAEs in order to obtain an associated
ODE explicitly.

5 Linear DAEs

In this section we consider linear DAEs with constant or time-dependent coefficient
matrices of the form

A@)x' + Bi)x = q(1), 5.1

which are regular on an open finite interval Z according to the definition introduced
in [10]. This implies that all the projectors introduced in the above sections have
constant rank on Z and can be interpreted as projector functions in dependence of
t. Recall further that therefore this regularity assumption also excludes so-called
harmless critical points like the one described in Example 2.71 from [21]. With the
notation from (4.1), the explicit and hidden constraints can then be described in
terms of

q(1)

N()x = s(t) := B @) 1 .(t) . (5.2)

q(“_l)(t)



14 D. Estévez Schwarz and R. Lamour

Recall further that for linear DAEs
W@N(@)x = WEN@)P(t)x = W(t)s(t)

represents the constraints that restrict P(#)x. For simplicity, we will drop the
argument ¢ in the following.
For our purposes, we basically consider the orthogonal splittings

P=PIH+PU—-I=HO+P—1I), I=I+U—-1I)

and assume that the coefficients A and B of (5.1) are as smooth as needed for the
pseudo-inverses used below. For a detailed discussion on the properties of time-
dependent pseudo-inverses in an analogous context we refer to [21, Proposition
A 17], [23].

Note that there are some relations between IT and the projector IT,_; from
Chapter 2.4.2 in [21]. In fact, by definition, for index-2 DAEs I — IT results to be the
orthogonal projector along im [1; = ker (I —I1y), i.e.,ker (I —IT) = ker (I —I1y).

In the case that the index is greater than two, the relationship between IT and
IT,, 1 seems to be more complex. For a better appraisal, we start comparing the
definitions of explicit ODE:s related to a DAE that result from the different concepts.

5.1 On Explicit ODEs Associated with a DAE

In the literature, there are several explicit ODEs that are associated with DAEs, in
particular:

— The completion ODE, or underlying ODE, is an explicit ODE for the complete
vector x that is associated with the differential index concept. It can be extracted
from the derivative array (cf., e.g., [2, 19] and the references therein) and depends
on the derivatives of g up to the order u:

-x/ = (pC(-xa C], q/a '-'aq('u))a

for a suitable function ¢,.

— The inherent explicit regular ODE (IERODE) is closely related to the tractability
index concept. It is formulated for u; := I1,_1x € R", where IT,_ is a suitably
defined projector fulfilling rank I7,,_1 = d. It lives in R", n > d and is unique
in the scope of fine decoupling (see [21, 24] and the references therein). The
projector I1,,_1 is precisely chosen such that the IERODE does not depend on
derivatives of ¢, i.e.,

(T 1x) = @il —1x,q), or, u;=@i(ui,q)),

for u; : Z — R" and a suitable function g;.
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— An essential underlying ODEs (EUODESs) has minimal size d (cf. [1, 24] and
the references therein). There may be several EUODEs living in a transformed
space with dimension d. EUODE:s are also free of derivatives of ¢ and can be
considered a condensed IERODE, cf. [24]. We will represent EUODE:s in terms
of

u/e = @e(lle, q)

foru, : 7 — R and a suitable function e
In this section, we consider a closely related definition of explicit ODEs:

— An orthogonally projected explicit ODE (OPE-ODE) obtained from the deriva-
tive array of a DAE is the explicit ODE formulated for u, := IIx € R"
for the orthogonal projector [T discussed in Sect. 4. An OPE-ODE lives in R”,
n > rank IT = d and may depend on derivatives of g up to the order u:

(Ix) = ¢p(I1x,q.4q, ..., q(“)),

or

u;, =¢p(Up.q,q,.. g™,

foru, : Z — R" and a suitable function ¢,,.

— Essential orthogonally projected explicit ODEs (EOPE-ODEs) are corresponding
condensed OPE-ODEs with minimal size rank I71. They can also depend on
derivatives of ¢ in general. We will represent EOPE-ODE:s in terms of

u/gp = wep(uepa C], q/a M q('u))

for ue, : T — R for d = rank IT and a suitable function ..

The following Lemma generalizes Lemma 2.27 from [21], that is formulated
there for IERODEs i.e. for [T, = I1,,_1, in a more general manner, such that we can
apply it also for OPE-ODEs, i.e. for [T, = IT:

Lemma 5.1 Let I1, be a projector with I1, € CYZ, R”™) and u € CH(T,R") be
a solution of an ODE of the form

w — MMyu + I, C(0u = Mpye(t) (5.3)

for suitable C(t), c(t), t € I. Then the subspace im I, is an invariant subspace for
the ODE (5.3), i.e., the following assertion is valid for the solutions u € C'(Z, R") :

u(ty) € im I1,(ty), with a certainty, € T & u(t) € im I1,(¢) forallt € 1.
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Proof This proof follows the steps of Lemma 2.27 in [21], which traces back to
[18]. Let iz € C!(Z, R") denote the unique solution of
i — H;,(t)ﬁ +,OCHu = Iyt)c(t), 5.4
u(ty) = Hp(t)a (5.5)
for an arbitrary o € R". If we multiply (5.4) and (5.5) by ({ — I1,(t)) and (I —
I, (1)), respectively, then we obtain
(I = My)i' — (I — )T, (1)i =0,
(I — I, (t)u(ty) = 0.

For the function © := (I — [1,)ii € C'(Z, R") with
vV =U-Mp)a+ -y,
then

0=~ ~Mpi~I~M)Iyia=79~I~1,) I~

7(17np),np

and, therefore, v — (I — IT,)'v = 0 and v(z;) = 0 hold. Consequently, v vanishes
identically, implying u = ITpu(t). O

In the following, we focus in OPE-ODEs since they are specially relevant
for the analysis of the Taylor series method discussed in [13]. Since automatic
differentiation is used there, the higher order derivatives can perfectly be handled
for sufficiently smooth DAEs. This is a fundamental difference to other integration
schemes, which require a special treatment of these derivatives in general.

5.2 A Closer Look at the Constraints

With the results from the Appendix, the constraints (5.2) can be split into different
parts with regard to P(¢) and I1(¢). Again, we assume that all pseudo-inverses are
as smooth as needed and drop the argument ¢ for the sake of simplicity.

— On the one hand, we consider the constraints for Px

WNx = Ws, (5.6)
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which leads to
(P—Ix =(WN)T(WN)x = (WN)TWs, (5.7

where (...)T denotes the Moore-Penrose inverse.
— On the other hand, we reformulate (5.2), obtaining

N —II)x =s — NIlx.

According to Corollary A.5 from the Appendix, the multiplication by (N(I —
IT))™ provides the representation

(I—Mx= (NI —1D)" (s — NIx). (5.8)
Note that this particularly yields
Ox = Q(NU — )" (s — NMx).

Therefore, if ITx is known, then (I — IT)x can be computed accordingly. On that
account, we deduce a projected explicit ODE for [Tx in the following.

5.3 Obtaining an Orthogonally Projected Explicit ODE for
u=IIx

Now we show how to obtain a orthogonally projected explicit ODE (OPE-ODE) for
ITx in four steps.

(i) Reformulation of the derivative with the projector P
For this step, we suppose that there exists a matrix-valued function A(t) such
that A(t)A(t) = P(¢). To construct such a matrix different approaches can
may be possible:

— If A is constant, for r = rank A and the SVD
A = Udiag (01, ...,0,,0,...,00VT,

the nonsingular matrix A can be defined by

R 1 1 .
A=vVdiag( ..., ,1,....hUT,
o1 o

7

since then the property AA=Pis given by construction. If A(¢) is a time-
dependent matrix with constant rank whose elements are analytic functions
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of ¢, then A(r) may be constructed analogously as above using the analytic
SVD, cf. [3].

— In case that

A(t) = P(t)C(t)P(2)
holds for a positive definite matrix C(¢), then also the nonsingular matrix

A@t) == (POCHPE) + Q@)

can be considered.

— In general, a singular matrix A(t) can be defined by

ATAD + o) AT (1),
since

P(1) = (AT()A@) + Q1)) ' (ATAQ) + Q@) P(1)
= ATOAD + o) ATMA®).
By definition, the multiplication of (5.1) by A(t) leads to
(Px)" 4+ Biyx = qq) (5.9)
for
By = AB + P, qi) = AC],
where we dropped again the arguments for readability, and drop them also in
the next steps. .
Note that for a nonsingular matrix A, (5.9) is a DAE and that for a singular

matrix A it is only the part of a DAE which is required for our forthcoming
considerations.

(i) Reformulation of the derivative with the projector I1

If we use Eq. (5.7) and the splitting
(Px)" = (ITx)' + (P — IMx)’,
then Eq. (5.9) leads to

(ITx) + Buyx = qi) (5.10)
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for
qii = q6) — (WN)TWs)',

provided that ((WN)* Ws) is differentiable.
(iii) Formulation of an ODE in terms of Il1x
With Eq. (5.8), in Eq. (5.10) we consider the splitting

Byx = Boy(Ix + (N(I — 1)) " (s — NITx)).

=(I—IT)x

Consequently, for
Biiy = B (I — (NUI — )" N)IT,
qiiy = qin — By (N(I — 1'1))Jr s,

we obtain the ODE
(ITx) + Biny(ITx) = qqiii)- (5.11)

(iv) Formulation of an invariant ODE for u = I1x
If we finally multiply (5.11) by I1(¢), suppose that [T is differentiable and use
(IIx) = (III1x) = IT'(I1x) + [ (I1x)’, the orthogonally projected explicit
ODE (OPE-ODE)

(IIx) — I'(ITx) + IC(t)(ITx) = ITc(t) (5.12)
results for

C(1) = Bgiiy = (AB+ P')(I — (NI — )t N)IT (5.13)
c(t) = quin = Ag — (WN)*Ws) — (AB+ PY(N(I — IT))Ts (5.14)

in the invariant subspace im I7, cf. Lemma 5.1.
Summarizing, we have proved the following result:

Theorem 5.2 Let the DAE (5.1) be regular with index | such that the constraints
can be described by (5.2). Let us further assume that the coefficients A and B of
(5.1) are as smooth as needed for the used pseudo-inverses, leading to sufficiently
smooth expressions, in particular to differentiable (WN)TWs), and smoothly
differentiable P and Il. Then a solution x = I1x + (I — II)x of the DAE can
be determined

— considering an initial value problem for the ODE (5.12) in the invariant subspace
im IT in order to obtain I1x, and
— computing (I — I1)x afterwards according to (5.8).
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Remark 5.1 In general we allow for (5.6) that
WNx =Ws =¢(q,...,q" D)
and, therefore,
c(t)=¢t.q.q',....q"),
such that ¢, and ¢., may depend on derivatives of g up to order . However, for the

classes of DAESs inspected rigorously in [9, 10] we obtain V,, = V,,_1, consequently
Z,, = Z,,1, and therefore

WNx = Ws = ¢(q,...,q* )
and
ct) =8t q.q....q" D).
This holds particularly for properly stated linear DAEs of index u < 2 and linear

DAESs with constant coefficient matrices with an arbitrary index. Consequently, for
these classes of DAESs, ¢, and ¢., depend on derivatives of g up to order u-1.

5.4 Illustrative Examples

Example 5.1 We start illustrating our approach with a small index-2 example,
which is slightly more general than the one discussed in [10].

/

110 X1 10a X1 q1

120 x| +]111 x|l=1q9 (5.15)
000 X3 120 X3 q3

" B

for functions g1 (¢), g2(t), g3(¢) and a parameter a. According to the analysis shown
in Table 2, the differentiation index is 2 and the constraints can be described by

120\ (" P
1) (] T\ -q4)
X3 3

~ - ~ - -

=:N =5

=
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Table 2 Projectors

. : o x = (x1,x2, X3)
associated with the derivative

array analysis for 000 100
Example 5.1 A o=]oool,P=]010
001 000
000 4 =20
GW T =loool.vi=i]l-210
001 0 00
000 4 =20
G? n=ooo|l.va=1l-210
000 0 00
Consequently,

21

NQ=(OOO>, W=(10), WN=WNP=(120),

001
1 120
. 1
Wy = |2 (120) = [240[ =@ -m,
0 000
1
120 ;0
N(I—17)=(36 ) (NI —m)* =] 3 0],
551 3
_51
12
550
(NI-I)*NI-m=|2%0|=U-m,
001
4 =20
(I—(NI—-M)"™N)y=_]-210
-210
With
2 —-10 1-12a-1
A=|-110]|., AB=|01 l—-a
0 12 0
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the OPE-ODE described by Eq. (5.12) reads

/

4 =20 L[ 4 20 rl
2 10|x]+C-a). | —210]|x=|nrn
0 00 0 00 r3
for
2q1 —2aq> — 2 (1 —3a) g3 Qa -9
r 5 5
nl=|-a+tan+id-3ag|+|-C-a|a
"3 0 0

Hence, an EOPE-ODE can be formulated for u,, := 2x1 — x2:
u/ep + (2 — a)uep = —5r. (5.16)

Once this ODE is solved, the solution of the original DAE can be computed using

X1 +2x 1 q3
(I—-1Ix = 2x1+4x | = 2q3 = q@s(I1x,1).
5 5 ,
5x3 g2 —q3 — 3q3 — (2x1 — x2)

For this example, the matrices defined in [21], page 23 ff., which are part of the
tractability matrix sequence, read:

2a 4a—1a 2 —2a2a*—2a+1
Gr=|a+12a+21]|, G'=]|-1 a a—a* :
1 2 0 0 1 —a—1

2—2a2—-4a0
IIh=| a—12a—-10
0 0o 0

Consequently, for u; = IT;x the IERODE reads:

2a> —6a+4 4a>—10a+4 0 2 —2a2d>-2a+1)\ (¢
uy+ | —a>+3a—-2-2a>+5a-20|ui=| -1 a —a2+a—§ q2
0 0 0 0 0 0 a3
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Since it holds for u, = (a — 1)x1 + (2a — 1)x; that

—2u,
Nx=ui=1| u. |,

0
it suffices to consider the EUODE
2
u/e—i— (—a2+3 a—2)(—2u,)+ (-2 a’+5a —Due = —q1+aqr+ (—a2+a —s )q3,

ie.,

2
uo+ Q2 —a)ue = —q1 + aqy + (—a* +a — a3,

Note that in contrast to (5.16), this ODE does not depend on derivatives of the right-
hand side.

Example 5.2 Let us consider again Example 1.1. Since 73 # 0 and 74 = O, the
index is 4 and we obtain IT = V4, cf. Table 3. Consequently, the associated EOPE-
ODE we obtain coincides with the one discussed in [22, 24]:

xy—axi =q1+q21 — (22— (24— 934)") .

In contrast, according to [22, 24], with

[ 101 —a o
011 0 O 000 0 O
Gsy=]1001 1 0]}, IIz:=]10000 O
000 1 1 000 0 O
000 O0 1 000 0 O

the EUODE (without derivatives of ¢) results to be
u, — e = q1+ q2.1 — 022+ qa3 — @ qo4
for
Ue = X1 + X3 — X4 + oczxs.

Remark 5.2 Observe that, as expected, in Examples 5.1 and 5.2 the spectra of the
EUODE and the EOPE-ODE coincide. This has to be given due to stability reasons.
Indeed, for g1 = g2 = q3 = g4 = g5 = 0 we obtain xp = x3 = x4 = x5 = 0 and
therefore u,(t) = x1(¢) for all .

A more general class of linear DAEs with constant coefficients that includes
Example 5.2 is discussed in the next Sect. 5.5, see Example 5.3.
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Table 3 Projectors
associated with the derivative
array analysis for

Example 5.2

5.5 Examples for Linear DAEs

Gl!

G2l

Gl

G4

D. Estévez Schwarz and R. Lamour

x = (x1, X2, X3, X4, X5)

00000 10000
01000 00000
0=100000|,P=]00100
00000 00010
00000 00001
00000 10000
01000 00000
1=100000],Vi=]00100
00000 00010
00000 00000
00000 10000
01000 00000
,=100000],V2=]00100
00000 00000
00000 00000
00000 10000
01000 00000
3=100000],V3=]00000
00000 00000
00000 00000
00000 10000
00000 00000
Ty=100000], Va=|00000]| =11
00000 00000
00000 00000

To facilitate the understanding of our approach, we show the differences between

— the introduced orthogonal decoupling, leading to an OEPE-ODE that involves

derivatives of the right-hand side, and

— a decoupling leading to an IERODE that precisely does not involve any deriva-

tives of the right-hand side

for the Kronecker Canonical Form and a slightly more general class of DAEs, which
particularly includes Examples 1.1 and 5.2.
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5.5.1 Kronecker Canonical Form (KCF)
A linear differential-algebraic equation with constant coefficients and regular matrix

pair can be transformed by a premultiplication of a nonsingular matrix and a linear
coordinate change into a DAE in Kronecker canonical form (KCF), i.e., a DAE of

the form
L, 0\ , w0 _
( 0 N)x + (0 Inz)x =q(t) 5.17)

for x(t) € R", an arbitrary W € R" "1 a nilpotent matrix N' € R™>*"2 with
nilpotency-index u, i.e., N*~! # 0, N* = 0, n = n| + ny, and identity matrices
I, e R">*™ and I,,, € R"2*"2 cf. [17]. Rewriting the equations as

x|+ Wxi = q1(), (5.18)
Nxy+x2 = q2(0), (5.19)
for x1(t) € R™, xa(t) € R, Eq. (5.18) corresponds to the inherent ODE and, by a

recursive approach, the so-called pure DAE corresponding to Eq. (5.19) leads to the
constraints

pu—1 )
2= qa(t) = Nxj = ga(t) = N'(gh () = Nxy) = -+ = Y (=1)/ N g ().

J=0

5.5.2 II for DAEs in KCF

We consider Qa7 := I — NTN, Pyr = I — O and obtain the projectors

Cu) )

The Jacobian matrix (3.1) of the derivative array reads

Gkl — I N = (G%‘] G%”).
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For index u DAEs, i.e., N* = 0, a basis B%‘] with ker B%‘] = im Gl]é” is given by
B = (010 -NON20-N o (—Dr Iyt

Therefore, according to (4.1), N := B%‘ ]G[L“ = (0 1 ) and

= (1 o) , B — (N —I)"N)IT=BIT = (W 0) ,

as expected. The corresponding projectors for the tractability index concept can be
found in Section 1.2.6 from [21]. In this particular case, IT and [1,_; coincide and
the OPE-ODE for ITx is the IERODE as well.

5.5.3 ODE:s for Slightly More General DAEs

Consider the DAE
I, 0 , Wi Wh
=q(1). 5.20
(o ) ()= -
Analogously as above, we obtain
pu—1 )
X =Y (=DINIg ).
j=0

Obtaining the OPE-ODE for ITx corresponds to substituting this into the first block
of equations, i.e.,

n—1

XA+ Wixt = =W Y (=1)IN g (1) +q.
j=0

In fact, it holds
Wi W, I
1 N
Wi W, 1
[kl _ _ [k] ~I[k]
G = N = (¥ Gli).
Wi Wh 1
I N
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Therefore, for the index u DAEs, a basis B%‘ I with ker B%‘ I'— im Gl]é” is given
again by

B = (010 -NON20-N - (—Dr Iyt
Consequently, N, IT and BIT are the same as above for DAEs in KCF, as expected.
However, the projectors related to the tractability index concept, are different, since
the OPE-ODE for I7x is not an IERODE.

For illustrative reasons, we show how the IERODE can be obtained for this
particular class of DAEs without the tractability index sequence. We start noticing
that we can substitute

x2=-Nx)+q

into the first block of equations, which leads to

Ly =WaNY\ , (W1 0 (g1 =W

This corresponds to a multiplication from the left-hand side by

Inl _W2
0 In, |’
If we now define x1, as follows
I WOHNY [T —WLN I WhN
x = x = Xpl,
0 I 0 1 0 I

then we obtain

I
{

and thus



28 D. Estévez Schwarz and R. Lamour
This procedure can be repeated if we multiply from the left-hand side by

Iy, = WIWLN
0 In,

to obtain

L, —WIWHN? , (W 0 a1 = Waga — WL N g2
(0 N )(’””) +<0 Inz)x”’_( @ ‘

If we repeat this analogously until the nilpotency index is reached, then we obtain
-1 . .
I, 0 , (W0 g1 — Yo WD WhN gy
Xp(u—1)" + Xp(u—1) = J=
( 0 N) plpn 0 Inz plp @

for

n—1 j—l . u—1 j*l /
Xp(u—1) = l—[ (Inl Wl WZN]>X _ (Inl Zj:l Wl sz\/ )x.

i\ I, 0 I,

Example 5.3 For the Examples 1.1 and 5.2 this means

0100 q‘“

2,1

o B _loo10 a) _|#
Wi = (—a), Wz—(—lOOO), N=i001l: o) = 22|

0000 q2.3

q2.4

and therefore it holds
pn—l i1 . )
1 Y WY x:(lOl—aaz)x=x1+X3—aX4+aX5,
j=1

n—1
=Y M) WaNigy = (1 —a o? —a3) a2 =qr1 —aqra+a’q3 — g
=0

Consequently, we obtain the IERODE and EUODE that are not a OPE-ODE or
EOPE-ODE for ITx, respectively.
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6 Modified Nodal Analysis (MNA)

For the equations resulting in circuit simulation with the conventional MNA,
Lemma A.6 permits an easy interpretation of the representation of IT described
already in [5] and the projector P Q1 given in [16].

Using the same notation as in [5, 16], the conventional MNA for circuits without
controlled sources leads to equations of the form

AcC(ALe,t)Ace' + Agr(Ake, t) + Apji + Avjv + Aji(t) = 0,
L(jL,t)j; —Afe =0,
Al — (@) =0,

for incidence matrices Ac, AR, Av, AL, Ay, suitable given functions C, L, r, v, i,
and the unknown functions (e, jr, jv). If we suppose that C(Age, t), L(jr,t) and
G(u,t) := ar‘g:;,t) are positive definite, in [5] it was shown that the projector I7 is
constant and depends only on the topological properties of the network.

For the description, we merely require projectors with

im Qc =ker AL, im Qcgry =ker (AcAgAy)’, im Qy_c =im A} Qc.

Analogously to [6] we define

Q0c00 Ocrv 0 O
Q=1 000}, T=T := 0O 0 0 ,
001 0 0Q0v—c

but assume now that these projectors are orthogonal. Let us focus on the index-2
case, i.e. 71 # 0, see Table 4. Due to the symmetry of the equations we can further
define

AcAL 00
Hl = 0 10]+ Q
0 00
AcC(ALe,nAL 0 0
Hi(Ale, ji, 1) == 0 LGr,nHo|l+0
0 0 0

0 OLyALO
WN := 0 0o of,
T T

or AT 0 0

WNYWNT +UT =T

T
i
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Table 4 Projectors associated with the derivative array analysis for the conventional MNA

equations

Index 1

Gl

Index 2

Gl

G2

x = (e, jL, jv)
Qc00 Pc 0O
o=|o0o00|.P=]010
0 01 000
000 Pc 0O
Th=1000|, Vi=P=]|010]|=101
000 000
QCOO PcoO
=10 00|,P=]010
0 01 000
Ocrv 0 O L
= 0 0 0 |,vi=P—(WNTH,  (WN)
0 0Qv—c
000
B=|ooo|, a=P—-WNTEH 'WN) =1
000

Recall that the index is 1, iff 71 = 0, i.e. Qcgyv = 0 (if there is no cut-set consisting of inductances
and/or current sources only) and Qy_c = 0 (there is no loop consisting of capacitances and
voltage sources). Oterwise, the index is 2, cf. [16]

OL ey ALAT Qcry + Pcry 0 0
0 1 0
0 007 ~ATAYQv_c+ Py_c

(H)a10 0
0 1 0 ,
0 0(H)g3

Hy(ALe, ji,0) := (WNYH Y (ALe, jo, ) ( WN)T + (1 —T).
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By construction, these matrices are nonsingular and H, is symmetric such that the
projector IT described already in [5] results to be the orthogonal projector I7, since

7y = Z1 = (WN)Y(WN) = WN)T B, " (WN)

_ _ -1 _
AyQv_c ((Hz)(3,3)) Qv_cAl 0 0
— - -1
= 0 AL Qcrv ((Han)  OFeyAL 0
0 0 0

and therefore the orthogonal projector

n=pP—WNTH ' (WN)
_ - -1 T
Pc—AyQv_c ((H2)<3.3)> Qv-cAy 0 0
- } -1
= 0 1 — Al Qcgy ((Hz)(1,1)> QCgyAL 0
0 0 0

results to be constant. In contrast, in [16] it was shown that

-1 -1
MiALe, ju.n =P = (Hi(Ale, ju.0)  (WN)T (Ha(Ae, ji.0)  (WN).

This projector is neither orthogonal nor constant in general. However, by construc-
tion it holds that ker IT = ker I1;, cf. Lemma A.6.

7 Summary

In the present paper, we developed a new decoupling of DAEs that was obtained
with orthogonal projectors and the derivative array.

The discussed projectors characterize the dependence of the different com-
ponents on derivatives of the right-hand side. Moreover, they turned out to be
constant for several examples from applications. Consequently, the components can
be described easily and the verification of beneficial structural properties in the
equations becomes simple. In fact, often higher-index components 7;x appear only
linearly, cf. [6], or in a restricted nonlinear form [7].

The presented decoupling of linear DAEs provides an orthogonally projected
explicit ODE (OPE-ODE) that is described in terms of a specific orthogonal projec-
tor. The consideration of this particular OPE-ODE permits a better understanding
of projected integration methods, in particular the Taylor series method described in
[13] and [14].
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The approach was applied to several examples, in particular to the equations
from the exothermic reactor model discussed in [25], the MNA equations and DAEs
in Kronecker canonical form. An application to the well-known index-5 DAE of
the robotic arm can be found in [15] in this volume. Altogether, we illustrated
that the introduced decoupling presents a valuable tool to analyze the structure of
DAEs from various fields of applications. The algorithms for the computation were
implemented in Python and are available online, cf. [8, 13].

Appendix: Linear Algebra Toolbox

In this appendix, we summarize some results concerning the relationship of
(orthogonal) projectors and constraints.

Lemma A.1 ([10]) Consider a pair of projectors P, Q € R"™*", P =1 — Q.

1. For a matrix N € R™*" and a vector b € im N, the linear system of equations
Nz=b

uniquely determines Qz as a linear function of Pz and b iff

ker (;) = {0}. (A.1)

2. For Gy € R"6>*" Ggr € R"6*P qa projector Wg along im G, and for b €
im (G GR), the linear system of equations

(GL GR) (2) =b, z1eR", R’

uniquely determines Qz1 as a linear function of Pz1 and b iff, for N .= WrG1,

ker (;) = {0}. (A.2)

A proof can be found in [10] (Lemma 1).

Theorem A.2 ([11]) Suppose that an arbitrary matrix N € R™*" and complemen-
tary projectors Q, P :=1 — Q € R™ " fulfilling

ker (;) = {0}
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are given, and that W is an arbitrary matrix with the property ker W = im N Q
such that WN = WN P. Then all projectors II onto

WN

ker (Z) = {0}.

A proof that is based on the SVD can be found in [11], cf. Theorem 3.

ker ( Q ):kerQﬂkerWN

fulfill

Lemma A.3 Consider an arbitrary matrix N € R™*" and a pair of complementary
orthogonal projectors Q, P :=1 — Q € R"™". Then it holds

() o)

Proof For r := rank (N Q), the singular value decomposition NQ = UX VT leads
to

NQ:NQ'Q=UEVT-Q=U2(I’O)VTQ=U2<“0)VT.

00 00
Hence,
(60) 7= (55)r7e = (o) e (i)
and
NQ)t=vEtul =0.vZtUul =oNO)",
such that
P-(NO)" =0, ((NQ)+)T P =0. (A3)

With the properties (A.3), the four Moore-Penrose conditions for

(2
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can be verified easily:

1.

P
AATA = =A.
(NQ(NQ)+NQ>

2.
ATAAT = (P (NQ)+NQ(NQ)+) — At
3.
P 0
AAT = = (AADT.
(0 (NQ)(NQ)+) @
4.

ATA=P+(NO)T(NQ) =PT +(NOTWNO) =TT, o

Corollary A.4 If, additionally to the assumptions of Lemma A.3, the property
P
k = {0
er (N) {0}

(NO)'NQO =0

is given, then

holds.
Proof From

P P
{0} = ker (N) = ker (NQ)

it follows that, in the proof of Lemma A.3, we have
I=ATA=P+(NOT(NQ)

such that (N Q)T (N Q) = QO must hold. O

Corollary A.5 If the assumptions of Corollary A.4 are given and we consider an
arbitrary matrix Wwith the property ker W = im N Q, then, for the orthogonal
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projector I1 fulfilling

ker (WQN> = ker Q Nker WN = im I,
we have
I—-MI=NU-ID)™NU-IH=U—-IHNUI-IO)TNUI-I) (A4
and
I—I=Q+ (WN)T(WN), (A.5)

where the latter representation implies

P —1IT=(WN)T(WN).

ker (P) = ker (17) = ker ( n ) = {0},
N N N —II)

property (A.4) follows directly from Corollary A.4. Moreover, by the definition of
I1, Lemma A.4 implies

JF
1—17:(Q) <Q>=Q+(WN)+(WN). 0

Proof Since

WN WN

Let us now focus on some relationships used in Sect. 6.
Lemma A.6

1. If A is an arbitrary matrix, Q is the orthogonal projector onto ker A, then, for
any positive definite matrix C, the matrix

H =ATCA+Q

is nonsingular and positive definite.
2. We assume further that N is a matrix fulfilling

ker (;) = {0},
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W is a matrix with ker W = im N Q, and
P—I1=(WN)T(WN).
Let further Q be an orthogonal projector onto ker (WN)T . Then the matrix
Hy=(WN)H'WN)T + 0

is nonsingular and positive definite.
3. Under these assumptions, the matrix

v = H'WNTH\(WN)
is a projector fulfilling ¥ = W - P and
. (P—I)=w, (P—I)-¥=(P—I),

i.e., ker W = ker (P — I) and therefore ¥ TW = (P — II).
4. Finally, the above equations lead to

O+vtw =1-11
and
(WN)¥ = WN.

Proof

1. A slightly weaker form of this lemma was proved in [16] for a specific
application. For completeness, we give a general proof here. Let z be an element
of ker H. Then we have

(ATCA+ 0)z =0.
If we multiply this equation by Q, it results that Oz = 0. Hence,

ATcAz=0

holds. From the positive definiteness of C it follows that Az = 0, and therefore
Pz = 0. Finally, the positive definiteness of H; follows from

H = (AT Q) (g ?) (g) and ker (g) =ker A Nker Q = {0}.

~ -
positive definite
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2. The second assertion results directly for A = (WN)T, C = H I
3. We focus now on the properties of ¥':

(a) Let us first show that ¥ is a projector using P := I — Q

v.w=H'WNTH " (WN)-H'WN)T H'(WN)

=H 'WN)TH ' (WN) = w.
(b) We finally show

W (P—1I)=H '"(WN) H;\(WN) - (WN)T(WN)
=H'WN) H ' (WN) = v,
(P—1)-w =WN)"(WN)-H'WN)T Hy ' (WN)

-

=PH,

= (WN)Y(WN) = (P — I).

4. The last assertions follow directly form the above representation. O

With the notation of Lemma A.6 and
Iy =P —-w
we obtain the relations
Hyll =11, IIIly =Ily.

Note that in Sect.6 we have shown that, for the considered index-2 DAEs,
the projector I7; of the tractability index results to be a projector [Ty with these
properties.
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Abstract We investgate differential-algebraic operators, first with constant and
then with variable coefficients, which act in Lebesgue spaces. We provide con-
ditions concerning basic characteristics such as normal solvability (closed range),
Fredholmness et cetera. In particular, we prove that actually the operators having
tractability index zero and one constitute the class of normally solvable differential-
algebraic operators.

Keywords Differential-algebraic operator - Closed operator - Closed range -
Normal solvability - Tractability index - Fredholmness

Mathematics Subject Classification (2010) 34A09, 341.99, 47A05, 47TE05

1 Introduction

This paper addresses differential-algebraic operators (DA operators) associated with
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with sufficiently smooth coefficient functions E, F : [a, b] — Rkxm 1p particular,
we provide basic properties of DA operators,

T :domT C L*((a,b),R™) — L*((a, b), R, (1.2)
domT = {x € L*>((a, b), R™)|Ex € H'((a, b), RY), (Ex)(a) = 0}, (1.3)
Tx = (Ex) —(F+E)x, xedomT. (1.4)

and their adjoint counterparts 7*. Specifically, we ask for closedness of the
operators, describe their ranges and nullspaces, provide closed range conditions and
conditions for them to be Fredholm. Having in mind, that the Moore-Penrose inverse
T+ is bounded, if and only if im 7T is closed, our main interest is directed to the
closed range property, or equivalently, the normal solvability of T.!

We refer to the early papers [7, 17] for first findings concerning closedness and
normal solvability of DA operators acting in spaces of integrable functions. Further
contributions to DA operators acting in various function spaces are surveyed in [12].
Quite recently, a capacious analysis of operators T with constant matrix-coefficients
E and F has been elaborated in [13, 14] by applying the Quasi—Kronecker form for
matrix pencils, which decouples the matrix pencil into an underdetermined part, a
regular part and an overdetermined part, [3]. We revisit some questions in this regard
in Sect. 2.

Note that in [13, 14] operators acting in Lebesgue spaces L”, 1 < p < oo, are
considered. Nevertheless, the corresponding criteria result as conditions in terms of
the given matrices £ and F. That is why we here confine the presentation to the
Hilbert space L? only.

The condition

imF(t) CimE®t) + F()ker E(t), ¢ € [a,b], (A)

plays its role in several issues, e.g., [2, 12, 13]. It characterizes the class of
strangeness free DAEs, see [12, Pages 192—193] and one could readily consider this
condition as necessary and sufficient for normal solvability. Actually, Condition (A)
is sufficient for normal solvability, but not necessary, [12, Theorem 3.2, Example
3.8], see also Example 1.2 below.

Several sufficient conditions for normal solvability are provided in [12], each of
which characterizes a special class of DAEs with tractability index zero and one in
the sense of [10, Definition 10.2]. It is conjectured, [12, Remark 3.2], that all DAEs

'We emphasize that we are interested in coefficient functions being as smooth as necessary but,
on the other hand, as nonsmooth as possible. If £ and F are real-analytic, and 7' acts from
C®([a, b], R™) to C*([a, b], R¥), then the range of T is simply always closed and each regular
DA operator is surjective and has a finite-dimensional nullspace, and hence, it is Fredholm, see [5,
Section 3.6], also [12, Section 2.4].
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with tractability index zero and one yield normally solvable operators. In Sect. 3 we
will verify this conjecture.

The paper is organized as follows. In Sect. 2, we discuss different index notions
for matrix pencils in view of operator properties and provide then with Theorem 2.3
a new version of the results from [13, 14] in terms of matrix sequences originally
given in terms of the Quasi-Kronecker form. At the same time, the matrix sequences
serve as an easy introduction to deal with matrix function sequences later on. On
this background, the new statements in Sect. 3 concerning time-varying coefficients
become much more perspicuous. Section 3 provides basic properties of the corre-
sponding DA operators, in particular, Theorem 3.4 on normal solvability. We add
some ideas concerning modifications and generalizations in Sect. 4. For an easier
reading we collect some material from [10] concerning the projector based analysis
and the tractability index of general possibly nonregular DAEs in the appendix.

To gain a first insight, we finish this section by considering operators associated
with simplest singular constant coefficient DAEs.

Example 1.1 For the operator T associated with the flat pencil s E — F of size 2 x 3
given by

/_
E=|100 , F= 010 . Tx=(Ex) —Fx=|"1""2| xedomT,
010 001 X = X3

domT = {x € L*((a, b), R¥)| x1, x2 € H'((a, b), R), x1(a) = 0, x2(a) = O},

the leading matrix E has full row-rank such that Condition (A) is trivially valid.
Writing Tx = g as

x| _|101][x q1 _ _
CRE [

we immediately conclude that 7 is surjective, im T = L?((a, b), R?), and
kerT = {x € domT|x] = x2, xj) = x3}

={xedomT|x; = /m(s)ds,xl = / / x3(t)drds}.

Since ker T is infinite-dimensional, even though the DA operator T is normally
solvable it fails to be Fredholm. O

Example 1.2 For the operator associated with a steep pencil of size 3 x 2 given by

10 00 x;
Tx=(01|x)=|10|x=|xj—x;|. domT ={x € H'((a, b),R?|x(a) =0},
00 01 —x2
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the leading matrix E has full column-rank and Condition (A) is not valid. Observe
that T is injective, that is, ker T = {0}.
Writing Tx = q as

/ [r—
X1 =41,
xy—x1=¢q2, xi(a)=0,

—x2=gq3, x2(a)=0,
we see that

imT = {g eL*((a, b), R})|q3 € H'((a, b), R), g3(a) = 0,
¢4 +q2 € H' ((a,b),R), (g5 + q2)(@) = 0, g1 = —(q2 + ¢5)'}.

By straightforward computation we show that im 7" is closed. For that, let g, €
LZ((a, b), R3) be given as well as a sequence ¢, € imT, n € N, tending to g
in L2. Denote w, = 4,3 + qn2 such that w, € H'((a,b),R), w,(a) = 0, and
further w), = —gn,1, wp = — [, qn,1(s)ds. It follows that w, — wy = [, g« 1(s)ds
in Hl((a, b), R) and w,(a) = 0. Next we observe that g, 3 — ¢«.3, qr’l’3 = w, —
Gn2 — Wi — g2 in L2, This yields g« 3 € H'((a,b),R), g}, 3 = wx — g2 and
0 = wy, + gn1 = W +gx,1, thus gs 1 + (g} 3 + g«,2)" = 0. Finally, owing to the

continuous embedding H' < C we obtain lg«.3(a)| = |g+3(a) — qn3(a)] — O,
thus |g+.3(a)| = 0 which completes the proof that g, belongs to im 7', thus im 7 is
closed.? O

Example 1.3 For the operator S associated with the singular pair (—E”, FT), with
E, F from Example 1.1,

10 00 —y!
Sy=—ETy —Fly=—(o1|y—|10]|y=|-—»n |
00 01 Zy,

dom S = {y € H'((a, b), R?)|y(b) = 0},

2Since Condition (A) is not valid here, it fails to be a necessary condition of normal solvability,
and we are confronted with a counterexample to [13, Theorem 1(iii)] claiming that 7 is normally
solvable if and only if Condition (A) is valid. It should be noted that [13, Theorem 1] has already
been corrected by the authors in [14].
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the leading matrix has full column-rank and Condition (A) is not valid again. S is
injective. Writing Sy = p as
/
-3 —=y1=p2, yi(b) =0,
-2 =p3 »nb)=0,

we see that

imS = {p €L*((a, b), R*)|p3 € H'((a, b), R), p3(b) =0,

ps—p2 € H'((a,b),R), pib) — p2(b) =0, p1+ (ps— p2) =0},

which is closed by analogous arguments as used in Example 1.2. Moreover, with
the flat operator T from Example 1.1, regarding ET = ET EE™ and the boundary
conditions, we have>

(Tx,y) = (Ex) — Fx,y) = (EE*(Ex) — Fx,y) = (Ex)/, EEYy) — (x, FTy)
= —(Ex,(EETY)) — (x, FTy) = —(x, ET(EE"y)) — (x, FTy)

=—(x, (ETy)Y) = (x, FTy) = (x,Sy), xedomT, y € domS.

Both operators, T and S are densely defined and closed, and they form an adjoint
pair, i.e., S = T*. As an adjoint pair of such operators, T and S = T* have
simultaneously a closed image or not. We know from Example 1.1 that T is
surjective and, hence, im S is also closed. Therefore, Condition (A) is not necessary
for the normal solvability of S, too. It is also easy to directly check the now expected
relations

im7T = (kerS)*, kerT = (imS)*. O

2 Constant-Coefficient DA Operators, Matrix Pencils
and Different Index Notions

For any given matrices E, F € R, E singular but nontrivial, the ordered pair
(E, F) stands for the pencil sE — F, s € R. If k = m and the polynomial in
s, det(sE — F), does not vanish identically, then the pencil is called regular, and
otherwise singular.

3Here and in the following, (-, -) denotes the scalar product in L?((a, b), R™) for any n.
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There exist nonsingular matrices . € R¥** and .# € R”*™ transforming the
pencil (E, F) into Quasi-Kronecker form, e.g., [2, 3], such that for all s,

SLEN — LFAH = L(SE — F)H = diag(sEreg — Freg, $Esing — Fring),

2.1
in which sE;.g — Freg = diag( sI — W, sN — I ), with nilpotent N, is a regular
pencil and s Eing — Fiing is a singular pencil of the special form

SEsing — Fsing = diag( SI(E1 - le yevey SKsp - Lew SK;I - L;Ia cees SK}Z:, - LZ,:, ),

2.2)

01 10
L, = —_— c RKX(K-H)’ K, = . c RKX(K-H)’ (2.3)
01 10

with nonnegative integers
€1=-->2€>0, 0<y1=- <o,

which are called right and left Kronecker indices , also column minimal indices and
row minimal indices. Here, we share the convention to allow blocks of sizes 0 x 1
and 1 x 0 and declare the 1 x 1 blocks diag(s Ko — Lo, sKOT — Lg) to stand for the
1 x 1 blocks s0 — 0.*

There are different index notions concerning the index of the general matrix
pencil (E, F). In [15, 16] the index of the pencil (E, F) is defined as the index
of the regular part, that is,

uw=ind(E, F) = ind(Eregv Freg) = ind(N), ind(Esings Fsing) =0. (2.4)

It is argued for this notion in [16] that the index of the matrix pencil is the maximum
length of [. .. ] a chain of differentiators. The blocks of the singular part correspond
to undetermined and overdetermined ODEs, respectively.

In contrast, [2, Definition 3.2] involves the maximal left Kronecker index y,, into
a further index notion stating

..........

4We refer to [3, 16] for details and further references. Here we note only that all involved matrices
have solely real entries. In contrast, the Kronecker normal form is not necessarily real.
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For regular pencils one has pupr = . As observedin [2, Page 19], one has upr < 1
if and only if Condition (A) is given. By Examples (1.1)—(1.3) we already know this
index notion to be unsuitable for the characterization of normal solvability of the
operator 7.

On the other hand, the fractability index introduced in [10, Chapter 10] for
possibly nonregular DAEs, is fully consistent with the notion from [16]. The
tractability index pgac of the matrix pencil (E, F) is defined by means of an
admissible matrix sequence,

Go=E, G =Go—FQo, Gi=Gi1—FII; 201, i=2,...,r+2,

in which r = rank E, the matrix Q; € R”*™ represents an admissible projector of
R™ onto ker G;, and further [Ty = I — Qo, I[1; = I1;_1(I — Q;). One possibility
for Qy is the orthoprojector I — ETE. Regarding that imE + FkerE = imE —
F ker E = im G we can express Condition (A) as im F € im G.

By construction, cf. [10, Chapter 10], it holds that G,+; = G,y and ker [T, =
ker I1, 41, and further

imGo CimG, C --- CimGry1 = im Grio C im(E F], 2.5)
kerITy C ker 1y C --- C ker [T, = ker IT,y; C R™. (2.6)

The tractability index of the matrix pencil (E, F )5 is defined to be piyac =k, Where
k < r + 1 is the smallest integer indicating the maximal possible range in the
sequence (2.5) such that im G, = im G,41, that is,

imGe_1 CimGy =--- =1mGry] =im Gr42 Cim[E F],
if « > 1, and, as the case may be, with x = 0,
imGo=imG| =---=imG,4] =imG,42 Cim[E F].

Aside from that, there is an additional index in this context, which we designate by
Had = Vv, where v < r is the smallest integer such that ker I7, = ker I, in the
sequence (2.6). Later on it will become clear that the subscript ad actually stands
for adjoint-differentiation.

For regular matrix pencils, the tractability index equals the Kronecker index, that
is, tirac(Ereg, Freg) = ind(Eyeq, Freg) = W, €.g., [10, Chapter 1]. Then, one has
m = k and the matrix G, is nonsingular,im G, = im[E, F] = R"™.

We return to DA operators T associated with possibly singular pencils (E, F),
and assign the different indices of the pencil to the operator. We consider some
examples of singular pencils and the corresponding DA operators.

SThis is a special case of Definition 3.1 below.



46 M. Hanke and R. Mirz

Example 2.1 Consider the operator T generated by the singular matrix pencil

(E, F)
1|1 =1 1|—1-1
E‘z[—1 1]’ F‘z[l 1]

It is shown to be closed and normally solvable in [17] by a quite involved reasoning
via singular perturbations. Obviously, it holds that r = 1 here. An admissible matrix
sequence reads

111 10 00
Go , Qo ) |:1 1], I , Gi |:_1 0:|, 01 |:_1 1], I =0,

G1 = Gy = G3,
such that pyae = 0 and waq = 1. Observe that here im[E F] C R2? is merely a
one-dimensional subspace. O

Example 2.2 We provide an admissible matrix sequence for the operator 7' in
Example 1.1. We begin with

000 100
1 1
G0=E=|:O(1)g:|,F=|:80(l):|,Qo= 000, IMp=]010],
001 000
and derive
-100 000 100
G| = i|,Q1= 010(, i =({000],
01 -1
L 010 000
-1_1 0 100
Gy = 01 _1i|, O=[100]|, 12 =0, G3 =G2, Q03 = 02,13 =I5, G4 = G3.
L 100

All matrices G; have rank 2, so that py,c = O results. Here, obviously, regarding
that E has already full row-rank would allow immediately to conclude (i = O
without recurring to the sequence. We observe further p1,g = 2. Regarding that the
operator S in Example 1.3 is the adjoint of 7 and looking at im S given there, we
know that, although im § is closed, the second derivative of a component of p is
involved. We emphasize that aq = 2 here. O



Basic Characteristics of Differential-Algebraic Operators 47

Example 2.3 We provide an admissible matrix sequence for the operator S in
Example 1.3 which is the adjoint to the operator T in Example 1.1. We begin with

10 00
Go=—ET=—|01|, FT=|10].00=0, My =1,
00 01

and obtain
Go=G1=G2=G3=Gy4, Iy=1II =1, =13,

and therefore e = 0, and paq = O result. Here, obviously, regarding that £ T has
already full column-rank allows immediately to conclude ptiac = 0 and also waq =
0. The adjoint operator 7 to S, see Example 1.1, is surjective so that no derivatives
of g are involved. In this context we like to point out that we have (g = 0. O

Lemma 2.1 If« > 0 and the matrices L, K, € ReXWH+D) g given by (2.3), then
the following holds:

(1) The flat singular pencil sK, — L has the indices®
=0, pgac=0, pad=«, upr=0, Mstrangeness = 0.
(2) The steep singular pencils sKI — LT and —sK! — LT have the indices

=0, frac=0, paa=0, upr=cx, Mstrangeness = K.

(3) The operators T and S = T* associated to the pencils sK,—L, and
—sKKT—LZ are normally solvable. T is surjective and S is injective. ker T
and (im S)* are infinite-dimensional. The pencils inducing T and S share the
indices W = [Arac-

Proof The statements can be verified in a straightforward manner as it is done above
for the special case k = 2, see Examples 1.1,2.2, 1.2, 1.3, 2.3.

Proposition 2.2 For each matrix pencil sSE — F, E, F € REXm it holds that w =
Mtrac

Proof The tractability index and its constituent parts are invariant with respect to
transformations, so that we may turn to the Quasi-Kronecker form (2.1). For regular
matrix pencils, u is the Kronecker index, and the identity i = piirac 1 known, e.g.,
[10, Chapter 1]. By Lemma 2.1, for each singular part one has u = pygac = O.
Constructing an admissible matrix sequence blockwise according to structure of the
Quasi-Kronecker form will complete the proof. O

%For the strangeness index we refer to [9].
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We now reformulate statements given in [13, 14] in terms of the matrix pencil and
its Quasi-Kronecker form by means of matrix sequences.

Theorem 2.3 Let the DA operator T : domT C L*((a, b), R™) — L?*((a, b), R¥)
be associated to the matrix pencil sE — F, E, F € Rkxm,
dom7 = {x € L*((a,b),R™)|Ex € H'((a,b),R™), (Ex)(a) = 0}. Let u be
the index of the matrix pencil, r = rank E and Gg, G1, . .., Gr42 be an admissible
matrix sequence. Then the following statements hold true:

(1) T and its adjoint S = T* share their index L.

(2) T is normally solvable, if and only if im G| is maximal in (2.5), that is, © < 1
(3) T is surjective, if and only if im G = R¥.

(4) T is injective, if and only if ker G, = {0}.

(5) T is regular, if and only if im G, = R¥, ker G,={0}, m=k.

(6) T is Fredholm, if and only if T is regular with u < 1.

(7) im T is dense, if and only ifim G, = R,

Proof 1t suffices to verify the statements for a pencil in Quasi-Kronecker form.
Namely, the transformation

YEX =E, LFX =F,
is associated with [10, Section 2.3]
LGH =G, H QA =01, HT'IA =T, ,i=0.

For the structured pencil in Quasi-Kronecker form, the matrix sequence can be
formulated to meet the same structure.

(1) This statement is well-known for regular pencils, by definition also for arbitrary
pencils.

(2) Since the singular part has index zero, see Lemma 2.1, the question reduces to
the regular part. For the regular part the statement is well-known.

(3) T is surjective if and only if each of its structural parts is surjective. This is
the case, if and only if the regular part has index u < 1, equivalently, G, 1
is nonsingular, and additionally, the singular part has a full-row-rank matrix
Gying, which congruously excludes steep and zero blocks.

(4) By definition, the matrix G,q . is nonsingular and the corresponding 7}, is
injective. Concerning the singular part, there must be a full-column-rank matrix
Gying,0 to exclude the flat and zero blocks. It holds that Gyingo = ... =
Gying, . oWing to the steep blocks so that diag(Geg, i, Gsing,0) 1S injective.

(5) A matrix pencil is regular if and only if the admissible matrix sequences
feature a nonsingular matrix G, . Singular matrix pencils are characterized
by admissible matrix sequences of singular matrices [10, Theorems 1.31 and
13.4].
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(6) Regularity excludes an infinite-dimensional nullspace and an infinite codimen-
sion. The condition & < 1 is necessary and sufficient for normal solvability
according to statement (2).

(7) im T, is dense. For densely solvability, the steep and zero singular blocks must
be excluded. We have im Gying 0 = ... = im Gyjpg, ;, for the flat blocks, they
have full row-rank so that also diag(Gyeg, i, Gsing, ) 18 surjective. O

3 DA Operators with Time-Varying Coefficients

3.1 Preliminaries

We study in this section DA operators being closures and adjoints of the DA operator
T :domT C L*((a, b), R™) — L?((a, b), R¥), given by

Tx = Ex' — Fx, xedomT = {w e H'((a, b),R™|(Ew)(a) = 0},

with at least continuous coefficient functions E, F : [a, b] — R¥*™_ The leading
coefficient function E has constant rank » > 0 and its nullspace ker E is a
C!-subspace in R™. Such an operator is associated with the possibly nonregular
standard form DAE

E(x'(t) — F()x(t) = q(t), t€la,b]

In this section we apply several routine notations and tools used in the projector
based analysis of DAEs. We refer to the appendix for a short roundup and to [10, 12]
for more details.

The basic tool of the projector based analysis consists in the construction of
admissible matrix function sequences Gy, ..., Gr42 : [a,b] — Rkxm emanating
from the coefficients E, F, with Gy = E. By construction, the inclusions

imGo CimG; C...CimG,y] =imGyrqn 3.1

are valid pointwise. There are several special projector functions incorporated in an
admissible matrix function sequence, among them admissible projectors Q; onto
kerG;and IT; = IT;_1(I — Q;), I[Ip = (I — Qp), yielding the further inclusions

ker 1y CkerIl; € ... C kerIl, = ker 1, 41. (3.2)

Each of the time-varying subspaces in (3.1) and (3.2) has constant dimension, which
is ensured by several rank conditions. Denote r; = rank G;(¢), t € [a, b].

Remark 3.1 We emphasize that the admissible matrix function sequence constitutes
an immediate generalization of the admissible matrix sequence applied in Sect. 2. In
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particular, (3.1) and (3.2) are consistent with (2.5) and (2.6), respectively. Now the
time-dependencies are incorporated into the matrix function sequence. For instance,
we may express

G1=E—FQy+EQ).

The subspaces involved in (3.1) and (3.2) are proved to be invariant with respect to
special possible choices within the construction procedure and also with respect to
the factorization of E = A D in Proposition 3.1 below.

In Sect. 2 different index notions have been discussed. We have seen that solely
the tractability index ptac coincides in the constant coefficient case with u defined
by (2.4) to be the Kronecker index of the regular part. This enables us to use the
simpler symbol p for the tractability index.

Definition 3.1 Let the coefficient function pair (E, F) have an admissible matrix
function sequence Go, G1, ..., Gry2,r =rank E, p =1 + 1.

The tractability index of (E, F) is defined to be © = k, where k < p is the
smallest integer indicating the maximal possible range in the sequence (3.1), that is
imG, =imG,. Theintegers 0 < ro <ry < --- <r, = rpq1 Withr; = rank G;
are called characteristic values of (E, F).

The additional index is defined to be p,g = v, where v < r is the smallest
integer indicating the maximal possible nullspace in the sequence (3.2), such that
ker [T, = ker I1,.

The pair (E, F) is regular, if m = k and r;, = m and otherwise nonregular.

In regular cases and n > 1, it holds that pt,g = @ — 1, which is why, so far, no extra
notion g has been used in the context of the projector based analysis of regular
DAEs.’

Definition 3.2 The tractability index u, the characteristic values, and the additional
index paq of the DA operator T and its closure T are defined as the corresponding
quantities of their coefficient pair (E, F).

Remark 3.2 'We mention that, except for the case m = k, G being nonsingular,
the so-called local pencils (E(t), F(t)), with frozen ¢ € [a, b], are improper for
the characterization of time-varying pairs (E, F). This well-known fact will be
underlined below by Examples 3.1 and 3.3 which are traditional textbook-examples
picked up from the monographs [4, 6, 9]. In particular, Example 3.1 shows a
nonregular pair (E, F)) with ¢ = 0 and local pencils being regular with Kronecker
index two. In contrast, Example 3.3 shows a regular pair (E, F) with u = 2 and
singular local pencils.

"Moreover, supposed the coefficients E and F are sufficiently smooth so that both, the regular
tractability index and the regular strangeness index are well defined, then it holds u — 1 =
Mstrangeness» [10, Section 2.10]. Consequently, ftag = [strangeness for regular pairs (E, F') and
associated DAEs. In contrast, the situation is completely different in the nonregular case as
Lemma 2.1 confirmes.
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3.2 Closed DA Operators and Adjoint Pairs

We start with the DA operator 7 : dom T C L%((a, b), R™) — L%((a, b), R¥),
Tx = Ex' — Fx, xedomT = {we H'((a,b),R™)|(Ew)(a) = 0}.

T is unbounded and nonclosed, but densely defined. T is closable since it has a
closed extension provided by Proposition 3.1 below. We look for its minimal closed
extension, the closure.

Proposition 3.1 Let E,F : [a,b] — RKX™ pe continuous, ker E be a Cl-
subspace, and E has constant rank r > 0. Let E = AD, with continuous
A : [a,b] — R¥" and continuously differentiable D : [a, b] — R™™ be any
proper factorization of E (cf. Sect. 4.3), furthermore B := —(F + AD").

Then the operator T : L*((a, b), R™) — L%((a, b), R¥) given by

Tx = A(Dx) + Bx, x edomT,
domT = {x € L*((a,b),R™)|Dx € H'((a, b),R"), (Dx)(a) = 0},

is densely defined and represents the closure of T.

Proof Let R be the continuously differentiable border projector according to (A.2)
and let A(#)~ denote the pointwise generalized inverse such that A(t)~ A(t) = R(¢).
Regarding D(a) = A(a)™ E(a) the inclusion dom T C dom T is evident, thus T is
an extension of 7" and densely defined. We show that T is closed.

Consider a sequence {x;} C domT7, x, € L?*((a, b),R™), and
ys € L?((a, b), RX), such that x; L X, Txi L Vs

From Tx; = A(Dx;) + Bx; we derive (I — AA™)(Tx; — Bx;) = 0 yielding
(I — AA7)(y+« — Bxy) = 0 on the one hand, and, on the other hand,

2
(Dx;) = A"Tx; + R'Dxi — A" Bx; => Ay, + R'Dxs — A~ Bx, = v,.

2 2
Owing to Dx; —> Dxy, (Dx;) =5 v, it follows that Dx, € H'((a, b), R") and

1
(Dx4)" = vy. Since now Dx; N Dx, and (Dx;)(a)=0 it results that (Dx,)(a)=0,
and hence x, € domT.
Considering the relations (I —AA™)(y«— Bx,) = 0and (Dxy) = vy = A"y, +
R'Dx, — A~ Bx, we obtain

A(Dx,) = AA”y, — AA” Bx, = y« — Bxy,

which means y, = Tx, and proves the closedness of T'.
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Finally, we check if T is actually the closure of T. We have to show that for

R 2
each arbitrary x, € dom 7T there is a sequence {x;} C dom T such that x; £—> Xse,
. 2
Tx; L T x.

Denote by DT the pointwise Moore-Penrose inverse of D. Let x, € dom T. We
introduce u, = Dx, € H'((a,b),R"), wy = (I — DY D)x, € L?*((a, b), R™).
Since H'((a, b),R™) is dense in L?>((a, b), R™) there is a sequence {w;} C

2
H'((a, b), R™) such that w; —> w,.
Set x; := Dtuy, + (I — DY D)w; sothatx; € H'((a, b), R™) and E(a)x;(a) =
E(a)D(a)*uy(a) = 0, thus x; € dom T. Moreover, we have

2
xi &> DYuy 4+ (I — DT Dyw, = DT Dxy + (I — D D)x, = x4,

Tx; = A(Dxy) + BDTDx, + B(I — D" D)w;

2
L, A(Dx,) + BD* Dxy + B(I — D™ D)w, = Tx,,

which completes the proof. O
Proposition3.2 Let E,F : [a,b] — RFX™ pe continuous, ker E be a Cl-
subspace, and E has constant rank r > 0. Let E = AD, with continuous

A : [a,b] — R¥" and continuously differentiable D : [a, b] — R™™ be any
proper factorization of E, further B := —(F + AD’).
Then the operator S : L*>((a, b), R¥) — L*((a, b), R™) given by

Sy =-DT(ATy) + BTy, yedoms§,
dom S = {y € L*((a, b), R)|ATy € H'((a, b), R"), (ATy)(b) = 0},

is densely defined, closed, and represents the adjoint of the operator T from
Proposition 3.1.

Proof The coefficient AT is continuous and im A7 = (ker A)* = (ker R)* is
a C'-subspace in R”, and hence, S is densely defined owing to Lemma 4.1. Its
closedness can be verified analogously to Proposition 4.2 below. We compute for
each x € dom7T and each y € dom S (let (-, -) denote the Euclidean inner product
inR! forl =k, m, n)

b
(Tx,y)=/ (A@D(Dx)' (1) + B()x(1), y(1))dt

b
= / {Dx) (1), AT y(@)) + (x (1), B@)" y(1))}dt
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b
=/ {(={(Dx)(0), (AT y) (1)) + (x(0), B®) y(1))}dt

b
= / (x @), =D (ATy) (1) + B)T y(1))}dt = (x, Sy),

and hence, S C T*. The equality can be established by following the lines of proof
for simple differential operators in [8, Chapter III, Examples 2.7 and 5.31]. O

If, in addition to the assumptions in Propositions 3.1 and 3.2, the coefficient E
itself is continuously differentiable, then we can choose a proper factorization
E = AD with both A and D being continuously differentiable. Then regarding
that E = AD,D = A"E and ET = DT AT, AT = DT ET we find the further
representations

domT = {x € L*((a, b),R™)|Ex € H'((a, b), R™), (Ex)(a) = 0},
dom$ = {y € L*((a, ), R)|E"y € H'((a, b),RY), (ET y)(b) = 0},
which are in line with the constant coefficient case, and
Tx = A(Dx) 4+ Bx = (ADx) — A'Dx — (F + AD')x
=(Ex) — (F+ Ex, xedomT, (3.3)
Sy =—D"(ATy) + BTy = —(D"ATy) + D" ATy — (F + D' AT)y
=—(ETyY —FTy, yedoms. (3.4)

Observe that, in contrast to the representations of 7" and S via proper factorizations
of E, the formulas (3.3) and (3.4) display no symmetry, cf. also Sect.4.1 in this
context.

Furthermore, if E is continuously differentable, then S represents the closure of
the additional DA operator S: Lz([a, b], Rk) — L2([a, b], R™),

Sy=—ET'y —(F+E)"y, yedoms,
dom S = {y € H'([a, b], R)|(ET y)(b) = 0}.
The densely defined operators T and S are adjoint to each other, since
(Io‘x, y) = (x, .So’y), X € domYo’, y € dom S.
Also T and S from Proposition 3.2 are obviously adjoint to each other. § is the

unique maximal operator adjoint to T, that means, the adjoint operator of T,and S
is a restriction of S.
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Remark 3.3 The representation of the closed DA operators 7 and their adjoints via
properly factorized leading matrix coefficients is closely related to the concept of
DAEs with properly involved derivatives which has one origin in the desire for a
certain symmetry of the formulation of adjoint pairs of DAEs. In this context, the
notion of factorization-adjoint DAEs is introduced in [11, Definition 1].

Proposition 3.3 If the DA operator T is regular with index | and characteristic
values 0 < rg < --- <ry—1 =ry, = m, then its adjoint S = T* is likewise so.

Proof This statement is an immediate consequence of [11, Theorem 3] concerning
the common structure of factorization-adjoint pairs of DAEs. O

We further elucidate the matter by examples. We pick up two textbook-examples
discussed, e.g., in the monographs [4, 6, 9] and consider the associated DA operators
and their adjoints.

Example 3.1 ([6, page 91],[4, page 23],[9, page 56]) The local matrix pencils of
the pair

—t 12
E(t)=|:_1 t:|’ F(@)=—-1, te€la,b],

are everywhere regular, det(sE(¢) — F(¢)) = 1. The homogeneous DAE has an
infinite-dimensional solution space and the DAE is no longer solvable for all smooth
inhomogeneities. Using the factorization

EU):[:ﬂ[1—4=MMUDUL BO%=—F““‘A®D“”:[é51

we turn to the closed operator

v = A(DY) + B, G”m={4mm—mmW+mm—mmﬂ,

—(x1(t) — tx2(1))
domT = {x € L*([a, b], R®)|Dx € H'([a, b], R), (Dx)(a) = 0}.

The DAE has strangeness fisirangeness = 1, see [9, page 70].8 On the other hand,
its tractability index is u = 0, since the admissible matrix function sequences are

8As already mentioned in [10, Sections 2.10 and 10.2], though, for regular DAEs, it holds that
Mstrangeness = M — 1, if w > 1, the strangeness and the tractability index are quite different for
nonregular DAEs.
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stationary beginning with Go, e.g.,

0t

Go=E=AD, Qo) = |:01

], BQy =0, Go =G| =G =Gs.
The characteristic values are ro = r; = ro = r3 = 1, further paq = 0. The nullspace
of T reads

kerT = {x € domT|x1(t) = tx2(?), t € [a, b]}.

Regarding that ¢ = Tx implies Dx = g1 +t(Dx) = q1 — tq2, o = —(q1 — tq2)’,
we find

im7T = {q € L*([a, b], R})|q1 — tq> € H'([a, b1, R), (g1 — tq2)(@) =0, q2 = —(q1 — 1¢2)'}

which is a closed subspace in L2%([a, b], R?). Therefore, T is normally solvable, and
this is consistent with the expectation that u© = 0 implies a closed range. O

Example 3.2 The local matrix pencil of the pair

E(t) = [_ttz _lt} . F() = [;tz g}, t € [a, bl,

is everywhere singular, det(sE(t) — F(¢t)) = 0, but, as in Example 3.1, the
homogeneous DAE has an infinite-dimensional solution space and the DAE is no
longer solvable for all smooth inhomogeneities. Using the factorization

E@) = [_ﬂ] 1] = a0D0. BO) = —F@) -~ AD' () = [—lr 8]

we turn to the closed operator

_ / | @@+ @) +y1(0)
Sy =AY+ By, - (500 = [—t(m(t) ) - m(t)] ’

dom S = {y € L*([a, b], R*)|Dy € H'([a, b], R), (Dy)(b) = 0}.

The DAE has tractability index is 4 = 0, which is documented by the admissible
matrix function sequence

Go=E = AD. Qu(r) = [ft g}  Mo(o) = [? ﬂ LG = [_Z(LI b _lt] ,

—t -1

Q1) = |:t(t~|—1)t—|—1

i|, I, =0, G; = G, =Gs.
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The characteristic values are ro = r;y = rp = r3 = 1, and paq = 1. The nullspace
and range of S are

ker S = {y e dom S| y; = —(Dy)’}, imS = {p € L*([a, b],R?)| tp1 + p» = 0},

which are closed subspaces in L2([a, b], Rz). Therefore, S is normally solvable, and
this is consistent with the expectation that © = 0 implies a closed range. Regarding
also the operator 7 from Example 3.1, the relations

im7T = (kerS)*, imS = (kerT)*,

can be easily checked. Taking a closer look at the operators, we find that S is the
adjoint to T, S = T*. This property gives rise to the expectation that also adjoint
pairs of DA operators associated with nonregular DAEs share their characteristic
values and tractability index.

Observe that 7 in Example 3.1 features pog = 0 and ¢ € im T is involved
together with a first derivative, whereas the operator S in the present example
shows pag = 1 and p € im S is involved with no derivative. This property further
substantiates the idea mentioned above, that w,q indicates derivatives involved in
the range of the adjoint operator. O

Example 3.3 ([6, page 91],[4, page. 23],[9, page 56]) The local matrix pencils of

the pair
00 -1t
E() = [1 _t], F(r)=[0 O]

are singular, det(s E(¢) — F'(t)) = 0. The homogeneous DAE has the trivial solution
only and the DAE is solvable for all sufficiently smooth inhomogeneities. The DAE
has strangeness index (strangeness = 1, [9, page 70]. Using the factorization

E() = m [1 =] = a0D0).  BO) = ~F@®) - A0)D' (1) = [(1) ﬂ

we turn to the closed operator

Tx = A(Dx) + Bx, (Tx)(t) = |: x1(t) — txa(t) :| 7

(x1 (1) — tx2(1))" + x2(1)

domT = {x € L*([a, b], R?)|Dx € H'([a, b], R), (Dx)(a) = 0O}.
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The DAE is regular with tractability index u = 2, which is recognizable by the
admissible matrix function sequence

Go=E = AD, Qo(t) = [8 ;] o) = [(1) ‘Ot} ,

Gi(t) = [(1) 1 ft} 010 = [I_T - ”] .y =0,

Ga(t) = [1 1‘_2} ,

suchthatrg =r; = 1,0 = 2,and uaq = 1. T is injective and its range is
imT = {g € L*([a, b].R*)|q1 € H'([a, b]. R), q1(a) = 0},

which is a nonclosed subspace in Lz([a, b], Rz). Therefore, T is densely solvable
and fails to be normally solvable. O

Example 3.4 The local matrix pencils of the pair

E() = [8 :1} P = [‘tl _01} ,

are singular, det(s E(¢) — F'(t)) = 0. The homogeneous DAE has the trivial solution
only and the DAE is solvable for all sufficiently smooth inhomogeneities. Using the
factorization

E@) = [_rl] [01]=A0D0)., BO:=-F©) - A0D () = [—lf ﬂ

we turn to the closed operator

=5 (@) + y1(0) ]

Sy = A(Dy) + By, (Sy)(t) = |:tyé(t) —ty1(t) + y2(t)

dom § = {y € L?*([a, b], R*)|Dy € H'([a, b], R), (Dy)(b) = 0}.

The DAE is regular with tractability index © = 2, which is recognizable by the
admissible matrix function sequence

Go=E = AD, Qo(t) = [é g} | o) = [g ﬂ ,
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1 —1 01
= = n =
G1(1) [_t t ] 01(1) [O 1] =0,

G2() = |:—1t t:rll:| ’

such that rp = r; = 1 and r, = 2. S is injective and has the range
im S = {p € L*([a, b}, R?)|tp1 + p2 € H'(la, b]. R), (tp1 + p2)(a) = O},

which is a nonclosed dense subspace in L2([a, b], Rz). Therefore, S is densely
solvable and fails to be normally solvable. Note that S is the adjoint operator of
T from Example 3.3. We observe that 7 and S = T* share their tractability index
i = 2 and the characteristic values ro = r; = 2, r; = 2 as well, further we have
the additional index p,q = 1, the differentiation index ;p = 2 and the strangeness
index Mstrangeness = 1. a

3.3 Normal Solvability and Beyond

We continue to investigate the closed DA operators 7 : dom 7T C L%((a,b),R™) —
L%((a, b), Rk) associated with the DAE

E(nx'(t) — F()x(t) = q(1), 1t €la,b],

with time-varying coefficients, as described by Propositions 3.1. We suppose that
an admissible matrix function sequence is given and we are looking for criteria of
normal solvability. Recall Condition (A), that is, im ' C im G1, to be a sufficient
condition of normal solvability, e.g.,[12, Theorem 3.2]. At the same time, this
condition ensures tractability index 1 < 1. Moreover, by [12, Theorem 3.4], the
condition ker G; C ker E is a sufficient condition of normal solvability, too. This
condition indicates index u = 1. In what follows, we generalize these results further,
in particular [12, Proposition 3.7], and verify the conjecture stating that each closed
DA operator T which has tractability index p < 1 is normally solvable.

Theorem 3.4 LetE, F :[a,b] — Rkxm pe sufficiently smooth, at least continuous
matrix valued functions, ker E be a C'-subspaces in R", r = rank E, p = r + 1. If
the pair (E, F) has tractability index u < 1, then the following holds:

(1) The associated closed DA operator T is normally solvable and its range can be
represented in terms of an admissible matrix function sequence by

imT = {q € L*((a, b), RY)| Wig = —WlFD*U/(U*IDnK_IG;u — Wi)g)(s)ds },
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in whichk = ftag + 1, W1 =1 — Gle is the orthoprojector function along
imGy, U € C'([a, b], R"™") is given by

U' —(DND7)'U+ DM 1G B,D U =0, Ua)=1, (3.5)
and G is the pointwise generalized inverse of G determined by
G, GG, =G, GG, G =Gy, G G =1—-0Q, GG, =1—-W.
(2) If Condition (A) is valid, that is, im F (t) € im G1(¢), t € [a, b], then
imT = {g € L*((a,b), R)| Wig =0

(3) IfimG1(t) = R*, then T is surjective.

Proof (1) We choose a proper factorization such that we can make use of the
representation

domT ={x € L*((a, b), R™)|Dx € H'((a, b),R"), (Dx)(a) = 0},
Tx =A(Dx) + Bx, x edomT,

set p = r + 1, and form a corresponding matrix function sequence Gj,
i = 0,...,p + 1. The operator T has index u© < 1 and characteristic values
ro <rg =--- =71y, =rpq1. Fori > 1 we introduce the orthoprojector functions

W; = W and the pointwise generalized inverses G; such that
G, GG, =G;, GiG;G; =G, G;G;=1-0;, GiG; =1—-W,.

Observe that, in particular, G, = G, GG, = G (I — Wy) and W1G, = 0. By
definition we have also ker [T, _; = ker I'l,, thus IT, | = I1,,_1I1.

Next, we consider an arbitrary * € dom7 and § = Tx. Owing to [10,
Proposition 10.3] we can represent

G =GeD (DX + Bk (3.6)
k—1
+Ge ) _{Qif = (I = 1) Qi1 D™ (DI Qi1 %) + ¥ DI + %(DIT3) '},
=0 ek;;-HK
in which

U =—I—-I{Q; + Q111 — ) Qi P}, D™,
Y =U—I{(P+ Qi+10)D~ (DI;D™) — Q141 D~ (D141 D7) }DIT; D™ .
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Regarding the properties W1B, = W;BIl,_1 = —W;FIl,_; and B, =
B I, = B Il,_I1, = B, Il,, we obtain

Wi§ = Wi B = Wi BTk = Wi BIT.% = Wi BD~ DIT.% = —W, FD~ DIT,%.
(3.7)

Additionally, multiplication of (3.6) by DII,_1 G, and regarding [T, _1G, G, =
IT, leads to

DI, D™ (DI %) + DI—1G; Bex = DI,—1G, g,
thus
(DI %) — (DI, D™) DI, % 4+ DIl,1G; B,D~ DIl % = DIl,_1G_§,

Since (Dx)(a) = Oimplies (DII.x)(a) = (DII, D™ )(a)(Dx)(a) = 0, the function
u := DII, x satisfies the initial value problem

u' — (DD )u+ DITy_1G, B¢D u= DIM,_1G_§, u(a)=0. (3.8)

Note that this IVP is uniquely solvable and its solution features the property u =
DIT, D™ u. We apply the fundamental solution matrix U given by (3.5) to represent

a= U/(U—IDHK_IG;Q)(s)ds.
a
Inserting this expression into (3.7) yields
Wig=-W\FD™DIl,x = —-W FD™U /(U‘lDH,(,lG;c})(s)ds
a
= —W1FD’U/(U’1DHK,1G,:(I — W1q)(s)ds. (3.9)
a
It results that g belongs to the set 2,
A= (g € L*((a,b),R)| Wig = =W FD™U f(U*anK_lG;u — Wg)(s)ds},
a

and hence im T C 2.

Next we consider an arbitrary § € 2 and look for an X € domT such that
Tx = g and eventually 2 = im T.

Given g € 2, there is a unique solution it € H '((a, b), R") of the IVP

u'—R'u+DGyBD u= DG4, u(a)=0.
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It holds that it = Rii. Next we introduce X = (I — QoG B)D~ii + QoG ¢ which
belongs to dom T', since DX = Rii = it € H'((a, b), R"), (D%)(a) = ii(a) = 0.
Introducing also

G =Tx =G1(D™ (D) + QoX) + BD™Dx,
we derive
g =G (D" i+ Qox)+ BD " i
=G (D" {R'i — DGy BD it + DG g} — QoG BD i + QoG §) + BDii
= G(—PyG{BD i + PoG|§ — QoGy BD it + QoG §) + BD i
=Gi(-G{BD i+ G{§) +BD i
=Gi(—-G{BD i+ G{§)+GiG{BD i+ W BD ii
=G1G{§+ WiBDii.
It follows that
G1G{§ = G1G{4§, (3.10)

WiG = Wy BD™ D% = W\ BI1, D~ Di = WiBD~ DI i = —W,FD™ DI X.
@3.11)

Owing to [10, Proposition 10.3], now applied to ¢ = T'X, we obtain the representa-
tions

DI =U /(U’lDH,(,lG;c})(s)ds,
a
Wig = —-WiFD"U /(U’lDHK_lG;(I — W1§)(s)ds.
a
Since (3.10) corresponds to (I — W1)g = (I — W1)q, we arrive at
Wig = ~WiFDU [ DI G (L = Wi (s)ds = Wid.
a

and hence, § = ¢ € im T. This proves 2l =im T.
It remains to show that 2 is closed in L%((a, b), R¥). Consider a sequence

2
{q1} c Aand a g, € L?((a, b), R¥) so that g; LN g«. We have

Wigr = -WiFD~ U/(U_IDHKAGK_(I — Wi)qn)(s)ds,
a

~ -
=y
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with u; € H'((a, b), R"), u;(a) = 0, and
u) — (DI D™ u; + DI—1G, B¢ D u; = DI 1 G q;.

Set

w = U [ DG = W) )3

1
such that i, € H'((a, b), R"), ux(a) = 0, and u; = u. From

2
0= Wig + WiFD u; <> Wigy + W FD u,

it follows that Wiq, = —W|F D™ u,, thus g, € 2, which completes the proof of
Statement (1). Statement (2) is a simple consequence of (1), since Condition (A) is
equivalent to W1 F = 0. Statement (3) is then evident. |

Note that the condition W1 F(I — Q) = 0 is applied in [12, Theorem 3.2], which
is equivalent to Wi F = 0, and also to Condition (A). In [12, Theorem 3.4] the
conditionker(E—FQo+E Q6) C ker E is assumed, eqivalently, ker G; C ker E. In
both cases, the DA operator has evidently index i < 1. In contrast, [12, Proposition
3.7] uses the condition Wi FQ; = 0 together with the somewhat nontransparent
condition [12, (3.31) on page 198]. These conditions can now be verified under the
assumptions of Theorem 3.4.

Theorem 3.5 : Let E,F : [a,b] — Rkxm pe sufficiently smooth, at least
continuous matrix valued functions, ker E be a C 1-subspaces inR™, r = rank E,
p = r + 1. If the pair (E, F) has tractability index u < 1, then the following
holds:

(1) The associated closed DA operator T is normally solvable and its nullspace
can be represented in terms of an admissible matrix function sequence by

kerT ={x edomT|x =({ — QonB)DfV/(Vlea))(s)ds + Qow,
a
w e L*((a,b),RY), Gio =0},
in which V e C'([a, b], R"*") is given by
V'—RU+ DG BD"V =0, V()=I, (3.12)
and G| is the pointwise generalized inverse of G| determined by

Gl_GlGl_ = Gl_’ GlGl_Gl =G, G1_G1 =1-20, GlGl_ =1—-W.
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2) Ifker G| = {0}, then T is injective.

Proof (1) T is normally solvable owing to Theorem 3.4. Consider x € ker T. Tx=0
yields G1{D~(Dx)’ + Qox} + BD~ Dx = 0, thus

Gi{D™(Dx)'+ Qox + G BD™ Dx} =0, (3.13)
WiBD™ Dx =0. (3.14)
We derive from (3.13) that
D™ (Dx) + Qox + G BD™Dx = w € L*((a,b), R*), Giw=0,
and further
(Dx) = R'Dx + DGy BD™ Dx = Dw, Qox + Q0G| BD™ Dx = Qow,

leading to the representation
x=D Dx+ Qox = — QonB)D_V/(V_lDa))(s)ds + Qow.
a

On the other hand, for each arbitrary w € Lz((a, b), ]Rk), with Giw = 0, the IVP
V' —R'+ DG BD v=Dw, v@) =0

has a unique solution veH!'((a, b), R") and v=Rv. Set x=(I— Q0G| B)D" v+ Qow
such that Dx = DD"v = Rv = v € H'((a,b),R") and (Dx)(a) = 0, thus
x € dom T'. Next we compute

Tx=G{D Vv + Qox+ G BD v}+ W BD v=Giw+ W BD v
=WiBD v=gq.

It follows that g belongs to im 7. Owing to the representation of im 7' in Theo-
rem 3.4, and regarding that (/ — W1)g = 0 we arrive at ¢ = 0, and hence Tx = 0.
This completes the proof of the first statement. The second statement is then a direct
consequence. ]

Corollary 3.6 Under the assumptions of Theorems 3.4 and 3.5, T is a Fredholm
operator if T is regular and u < 1.

Remark 3.4 We have shown that the index condition ;& < 1 is sufficient for normal
solvability. This condition is supposably also necessary. This is shown for time-
varying regular pairs (E, F') and for arbitrary constant pairs (E, F). A proof of the
general case would be very technical and voluminous.
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Remark 3.5 We conjecture that the statements of Theorem 2.3 are valid in the same
way also for DA operators with time-varying coefficients.

4 Generalizations, Modifications, and Further Comments

4.1 Continuous A and D, with Continuously Differentiable
Border Projector Function

It has been proposed in [1] to compose the leading term of a DAE at the very
beginning by means of a well-matched pair of continuous matrix functions A and D
featuring C'-subspaces ker A and im D which satisfy the transversality condition
(A.1). This pursues and generalizes the approach of [6] and means, instead of
applying the standard form Ex’ — Fx = ¢ one should start at once from a DAE
with properly stated leading term, A(Dx)" + Bx = g, see also [10, 11]. We quote
from [1, Page 785]: the new form brings more symmetry, transparency and beauty
into the theory.

The results concerning the DA operators T and S of the present paper can be
immediately modified to be valid for given forms with properly stated leading terms
owing to the following lemma and proposition.

Lemma 4.1 Let D : [a, b] — R ™ be continuous and let im D be a C'-subspace
in R™. Then each of the sets

M = {x € L*((a, b),R™)|Dx € H'((a, b), R")},
My = {x € L*((a, b),R™)|Dx € H'((a, b),R"), (Dx)(a) = 0},
My = {x € L*((a, b),R™)|Dx € H'((a, b), R"), (Dx)(b) = 0},
My = {x € L*((a,b), R™)|Dx € H'((a, b), R"), (Dx)(a) = 0, (Dx)(b) = 0},

is dense in L>((a, b), R™).

Proof Denote by R : [a,b] — R™ the orthoprojector function such that
R(®)? = R(r) = R(1)" and im R(t) = im D(r), t € [a, b]. Then R is continuously
differentiable and inherits the constant rank » from D. We may represent R = DD,
where D is the pointwise Moore—Penrose inverse of D. Note that D™ : [a, b] —
R™*" jtself is continuous and the projector function Q = I — D™D : [a, b] —
R™>™ onto the nullspace of D is also continuous. Denote P = I — Q.

For any x, € L*((a,b),R™), we have Qx, € L%((a,b),R™), Px, €
L*((a,b),R™), Dx, € L*>((a, b), R"), and the decomposition x, = Pxy + Qxy =
DT Dx, + Qx, as well. Since Hj = {u € H'((a, b), R")|u(a) = 0,u(b) = 0}

2
is dense in L%((a, b), R"), there is a sequence {u;} C Hl, u; L Dx,. Now
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x; := D%u; + Qx, belongs to .4, #,, Mp and .#, p, since Dx; = DD u; =

~ 2
Ru; € H'((a, b), R"). Finally, x; L pt Dx, + Qx, = x,, which completes the
proof. O

Proposition4.2 Let A : [a,b] — R*** D : [a,b] — R™™ B : [a,b] —
RK¥M pe continuous, let ker A and im D be Cl-subspaces in R", and let the
transversality condition (A.1) be valid. Then the DA operator T : L*((a, b), R™) —
L%((a, b), R¥) given by
Tx = A(Dx) + Bx, x edomT,
domT = {x € L*((a,b),R™)|Dx € H'((a,b),R"), (Dx)(a) = 0},

is densely defined and closed.

Proof T is densely defined owing to Lemma 4.1. We show that 7 is closed. The
following reasoning follows closely the lines of the proof of Proposition 3.1.

Let R be the continuously differentiable border projector according to (A.1) and
let A~ denote a continuous pointwise generalized inverse such that A(r)”A(f) =
R(t), t € [a,b]. Consider a sequence {x;} C domT, x, € L%((a, b), R™), and

2 2
ve € L2((a, b), RY), such that x; =5 x,, Tx; <> y.
From Tx; = A(Dx;) + Bx; we derive (I — AA™)(Tx; — Bx;) = 0 yielding
(I — AA7)(y+« — Bxy) = 0 on the one hand, and, on the other hand,

2
(Dx;) = A™Tx; + R'Dx; — A~ Bx; L, A" yy + R'Dxy — A7 Bx, =: vs.

2 2
Owing to Dx; = Dxs, (Dx;) 2> wv,, it follows that Dx, € H'((a,b), R")

and (Dxy) = wvs. Since now Dx; il> Dx, and (Dx;)(a) = O it results that
(Dx4)(a)=0, and hence x, € domT.

Considering the relations (I —AA™)(y«— Bx,) = 0and (Dx,) = v, = A"y, +
R'Dx, — A~ Bx, we obtain

A(Dx,) = AA”y, — AA” Bx, = yx — Bxy,

which means y, = Tx, and proves the closedness of T'. m]

4.2 Different Assignment of Boundary Conditions

One might be interested in the operator T : L%>((a,b),R™) — L%([a, b], R),

Tx = A(Dx) + Bx, x edomT,
domT = {x € L*((a, b), R™)|Dx € H'((a, b), R")},
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which is an extension of the previous DA operator T. T is densely defined and
closed owing to Lemma 4.1 and Proposition 3.1. Here, we are led to the adjoint
§:L%((a, b),R*) - L*((a, b), R™),

Sx =—-AT(DTy) + BTy, yedoms§,

dom § = {y € L*((a, b), R)|ATy € H' ((a, b), R"), (AT y)(@) = 0, (AT y)(b) = 0},

which is a restriction of the previous S and, by Lemma 4.1 and Proposition 3.1, a
closed densely defined DA operator.

We assign to 7' the same tractability index as to T If T has regular index p < 1,
(thatis, k = m,r, = m), then T is bijective, thus Fredholm. Then T inherits the
surjectivity, but not the injectivity and ker 7 has then dimension d = ro = r.

If T has regular index y > 1, then it is injective and densely solvable, and T is

also densely solvable and ker 7" has finite dimension d = m — Zf:ol (m—ri)<r.

4.3 Integrable Coefficients

In an earlier paper [7], integrable coefficients have been considered in the case
k = m. More precisely, in the notation of the present paper, the assumptions

E € Wh®((a, b), R™™), F € L®((a, b), R™™),
4.1)
Q e WI,OO((a,b),RmXWL)

for the pointwise projector Q(¢) onto the nullspace ker E (¢) almost everywhere are
used. Then, E is factorized into E = AD with E = Aand D = P = [ — Q. This
becomes a proper factorization for integrable coefficients.
Under these conditions, the operator T : domT C L%*((a,b),R™) —
L%((a, b), R™) given by
Tx = Ex' — Fx, domT = H'((a, b),R™)

is well-defined. In [7] it is shown that T is closable, and for the closure T = T it
holds

Tx = E(Px) — (F+EP')x, domT = {x € L*((a, b),R™)|Px € H'((a, b), R™)}.
It turns out that H }1, (a, b) :=domT is a Hilbert space with the scalar product

(. Dyt = (0, B2 + (Px), (PD))p2,  x,% €domT.
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Appropriate boundary conditions are considered as being (finitely many) continuous
linear functionals {/{, ..., s} on H }, (a, b) thus determining a closed subspace V C
Hi(a,b)by V = {x € H}(a,b)|l;(x) = 0,i = 1,...,s}. The main result of [7]
can be summarized as follows.

Proposition 4.3 Let (4.1) be fulfilled. Moreover, let R € W'*((a,b), R™*™)
be such that R(t) is a pointwise projector onto im A(t) almost everywhere.® Set
S=I1—-Rand B = —(F + AP). If H :== A + SBQ is bijective for almost
everyt € (a,b) and H=' € L®((a, b), R"™*™), then Ty is normally solvable and
dimker T'|y < oo for every closed subspace V C H}, (a, b).

Remark 4.1

(1) A(®)+ S(@)B(t)Q(¢) is bijective if and only if the matrix pencil (A(?), B(t)) is
regular and has index 1.

(2) Letthe assumptions of Proposition 4.3 hold. If V is determined by finitely many
boundary conditions, then T'|y is Fredholm.

Appendix
Proper Factorization and Properly Stated DAEs

We say that N is a C'- subspace in R", if N(t) € R" is a time-varying subspace,
t € [a,b], and the projector-valued function Q : [a,b] — R™ " with Q(t) =
Q(z‘)2 = Q(t)T, im Q(t) = N(t),t € [a, b], is continuously differentiable. Note
that any C!- subspace in R” has constant dimension.

Each continuous matrix function E : [a, b] — Rk*™ with constant rank r and a
nullspace which is a C!-subspace in R can be factorized into E = AD so that A
is continuous, D is continuously differentiable, ker A and im D are a C!-subspace
in R”, and

E(t)=A0)D{), A@) e Rk, D(t) e RV,
kerA(t) ®imD@) =R", 1€ [a,b]. (A.1)
A possible choiceisn = m, A = E, D = ETE. If E itself is continuously
differentiable, then also the factor A can be chosen to be continuously differentiable,
for instance A = EE*, D = E. Owing to the condition (A.1) this factorization

is called proper factorization. Note that then the function R : [a, b] — R™ ",
projecting pointwise onto im D along ker A is also continuously differentiable and

9For example, R(1) = A(H)A(1)*.
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one has
imE =imA, kerE =kerD, A=AR, D=RD. (A.2)

R is then called border-projector function.
Using any proper factorization of the leading coefficient E, the standard form
DAE

Ex' —Fx=gq

can be rewritten with B = —(F + AD’) as DAE with properly stated leading term
or DAE with properly involved derivative,

A(Dx) 4+ Bx =q.

Admissible Matrix Function Sequences

Given are at least continuous matrix functions E, F : [a, b] — RK*m F hasa Cl-
nullspace and constant rank . We use a proper factorization E = AD, A : [a, b] —
R D i [a,b] > R™™ and B = —(F + AD'). R : [a, b] :— R"™*" denotes the
continuously differentiable projector-valued function such that im D = im R and
ker A = ker R.

Let Qo : [a, b] — R™*" denote any continuously differentiable projector-valued
function such that im Qg = ker D, for instance, Qo = I — D™ D with the pointwise
Moore-Penrose inverse D. Set Py = I — Qg and let D~ denote the pointwise
generalized inverse of D determined by

D DD =D, DD D=D, DD =R, D D=F.

Set Go = AD, By = B, IIp = Py. For a given level x € N, the sequence
Go, ..., G is called an admissible matrix function sequence associated to the pair
(E, F) and triple (A, D, B), respectively, e.g.,[10, Definition 2.6], if it is built by
the rule

G =G;i_1+B;i_10;1,
B; = Bi_P,_1 — G;D™(DIT;D”) DIT;_,,
Ni=kerG;, Ni:=@No+---+Ni—)NNi, No+---+Ni_j = N, & X;,
choose Q; such that Q; = Ql-z, imQ; = N;, X; C ker Q;,

Pi=1-Q;, II; =II; 1 P,
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and, additionally,

(a) G; hasconstantrankr;, i =0,...,«,
(b) N; has constant dimensionu;, i =1,...,«,
(c) II; is continuous and DIT; D™ is continuously differentiable, i =0, ..., k.

The admissible matrix functions G; are continuous. The construction is supported
by constant-rank conditions.
We mention that, for time-invariant E and F, the matter simplifies to

Gi=Go+Bo(Qo+...+1I;_10;)) =Go+ Bo({ — I1;) = E — F(I — IT;).
Set p =r + 1.1f Gy, ..., Gp41 is an admissible matrix function sequence, then
imGyo CimG; C---CimG, =imGpqq,
and
kerIly C kerITy € --- Ckerll,_1 =ker[l,,

that is, the related subspace sequences become stationary at least atlevel p = r + 1
and p, respectively, [10, Section 10.2]. Note that the there are actually regular DAEs
featuringimG,_1 CimG, = im G, 1, see [10, Example 2.11].

A series of useful properties is incorporated into admissible matrix function
sequences, e.g., [10, Propositions 2.5 and 2.7]. In particular, the products I7;,
I1;_1Q;, DII; D™ are projectors, too, and

kerIT; = No+---+ N;,
Biy1 = Bi+111;.

The subspaces im G;, kerIl; = Ny + --- + N;, and the numbers r;, u; are
independent of the special choice of the projector functions Q;, [10, Theorem 2.8],
and also invariant under so-called refactorization AD = AD, [10, Theorem 2.21].
Moreover, the numbers r;, u; persist under transformations, which allow to call them
characteristic values of the given pair (E, F) and triple (A, D, B), respectively.

Finally we quote further useful tools to deal with admissible matrix function
sequences. Choose continuous projector-valued functions W; : [a, b] — R¥*¥ such
that ker W; = im G; and then pointwise generalized inverses G;” of G; determined
by

GGG =G;

i

GG, Gi=G;, I-GG;, =W, G, G =PF, i> 0.

1
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Owing to [10, Proposition 2.5] one has then

WiB; = W;B,
imG; =im(G;j—1 + W;—1BQ;—1) =imG;—y ®im W;_1BQ;_1.
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Abstract Multirate behavior of ordinary differential equations (ODEs) and
differential-algebraic equations (DAEs) is characterized by widely separated time
constants in different components of the solution or different additive terms of
the right-hand side. Here, classical multirate schemes are dedicated solvers, which
apply (e.g.) micro and macro steps to resolve fast and slow changes in a transient
simulation accordingly. The use of extrapolation and interpolation procedures is a
genuine way for coupling the different parts, which are defined on different time
grids.

This paper contains for the first time, to the best knowledge of the authors, a
complete convergence theory for inter/extrapolation-based multirate schemes for
both ODEs and DAEs of index one, which are based on the fully-decoupled
approach, the slowest-first and the fastest-first approach. The convergence theory
is based on linking these schemes to multirate dynamic iteration schemes, i.e.,
dynamic iteration schemes without further iterations. This link defines naturally
stability conditions for the DAE case.
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1 Introduction

In practice, technical applications are often modeled as coupled systems of ordinary
differential equations (ODEs) or differential algebraic equations (DAEs). Further-
more, it is a very common aspect of technical applications that the transient behavior
is characterized by different time constants. At a given instance of time, certain
parts of a dynamical system are slowly evolving, while others have a fast dynamics
in the direct comparison. Here, this is referred to as multirate behavior. To name
but a few applications: multibody systems [1, 10], electric circuits [11, 17], climate
models [21] and, of course, multiphysical systems, e.g. field/circuit coupling [20].
Now, to have an efficient numerical treatment of systems with multirate behavior,
special integration schemes are developed, so-called multirate schemes. To the best
knowledge of the authors, the multirate history goes back to Rice [22] in 1960,
where step sizes for time integration are adapted to the activity level of subsystems.
Many works followed, and we give only a partial list here: based on BDF-
methods [13], based on ROW methods [14], based on extrapolation methods [12]
partitioned RK and compound step [16], mixed multirate with ROW [4], based
on a refinement strategy [23], for conservation laws [8], compound-fast [24],
infinitesimal step [25], implicit-explicit [9], based on GARK-methods [15].

The fundamental idea of a multirate scheme is the following: an efficient algo-
rithm should (if there are no stability issues) sample a certain component/subsystem
according to the activity level. The more active a component is, the shorter are the
time scales and the higher the sampling rate should be chosen to achieve a given
level of accuracy. In other words, there is not a global time step, but a local one,
which should reflect the inherent time scale of an unknown or some subsystem.
For simplicity, we work here with only two time scales. That is, we allow for a
fast subsystem (of higher dynamics), which employs a small step of size i (micro
step) and a slow subsystem, which employs a larger step size H (macro step).
Furthermore, we assume for simplicity the relation H = mh with m € N. In fact,
the main feature of a certain multirate scheme is to define the coupling variables in
an appropriate way. Here we focus on inter- and extrapolation strategies for coupling
both subsystems, since we aim at highlighting the connection to dynamic iteration
schemes.

The work is structured as follows: In Sect.2, the formulation of multirate
initial value problems is given on the basis of ordinary differential equations
(ODESs). Furthermore, various known versions of extra- and interpolation coupling
are explained. Following this, the consistency of multirate one-step methods are
discussed for ODEs (Sect. 3). Then, in Sect.4, the ODE results are generalized to
the DAE case. Conclusions complete the presentation.
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2 Notation for Coupled Systems and Multirate
Extra/Interpolation

We start from an initial value problem (IVP) based on a model of ordinary
differential equations (ODEs):

'l,b = h(ts U)), u)(t()) = wOv re (t07 tend]v (21)

where & is continuous and Lipschitz continuous in w, wy € R" is given. Moreover,
let & or w, resp., be comprised of some slower changing parts (in time domain),
whereas the remaining parts are faster changing. This is referred to as multirate
behavior. Now, there are two equivalent ways of partitioning:

(a) The component-wise partitioning splits the unknown into slow ys(¢) € R"™ and
fast components yr () € R"™, such that w ' = (y;—, y;,r) and

vs = fs(t, ys, yr), ys(to) = ys,o0, 2.2)
yE = fr(t, ys, yr), YF(to) = YF,o0,

with corresponding splitting of the right-hand side.
(b) The right-hand side partitioning is an additive splitting of % into slow and fast
summands:

w = hs(t, w)+hp(t, w), w(ty) = wo, 2.3)

such that w = w; + wy with wy = hs(f, wy+wy) and wy = hr(t, ws+wy).
Of course, the initial data needs to be split in a suitable way. If the dynamics are
solely determined by &, and & ¢, the splitting is arbitrary to some extent.

Since both ways of partitioning are equivalent, i.e., a component-wise partitioning
can be written as a right-hand side partitioning and vice-versa [15], we choose for
the work at hand the formulation (2.2), without loss of generality. Moreover, the
partitioning (2.2) can be generalized to the case of differential algebraic equations
(DAEs) with certain index-1 assumptions. This DAE setting is treated in Sect. 4.

In this work, we study multirate methods, which belong to the framework of
one-step-methods (and multi-step schemes, too, see Remark 3.3 below) and which
are based on extrapolation and interpolation for the coupling variables. To describe
these methods, let us assume that the computation of the coupled system (2.2) has
reached time ¢t = ¢ with

ys = fs(t, ys, YF), ys(t) = ys. 1, 2.4)
yF = fr(t, ys, YF), YE() = YF ;-

Now, the multirate integration of the whole coupled system is defined for one
macro step, i.e., on [t, t + H] C [tg, tenq]. It comprises a single step of macro
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step size H for the subsystem ys and m € IN steps of (micro step) size i for
yr. To this end, the respective coupling variables need to be evaluated. Here,
our presentation is restricted to extrapolation and interpolation for the coupling
variables, although there are several other techniques such as, just to name a few,
compound-step [16], Multirate GARK [15] or extrapolation based [12] schemes.
Depending on the sequence of computation of the unknowns ys and yfr, one
distinguishes the following three versions of extra-/and interpolation techniques:

(i) fully-decoupled approach [7]: fast and slow variables are integrated in parallel
using in both cases extrapolated waveforms based on information from the
initial data of the current macro step at ¢;

(i) slowest-first approach [13]: in a first step, the slow variables are integrated,
using an extrapolated waveform of yr based on information available at ¢ for
evaluating the coupling variable yF in the current macro step. In a second step,
m micro steps are performed to integrate the fast variables yr fromt tor 4+ H,
using an interpolated waveform of yg based on information from the current
macro step size [, t + H] for evaluating the coupling variable yr.

(iii) fastest-first approach [13]: in a first step, m micro steps are performed to
integrate the fast variables, using an extrapolated waveform of yg based on
information available at ¢ for evaluating the coupling variable yg in the current
macro step. In a second step, one macro step is performed to integrate the slow
variables yg from ¢ to ¢t + H, using an interpolated waveform of yr based
on information from the current macro step size [, t + H] for evaluating the
coupling variable yr.

Remark 2.1 The restriction that the extrapolation can only be based on the infor-
mation at ¢ can be relaxed to the data of the preceding macro step [t — H, ¢]. In fact,
one can encode such an information e.g. as a spline model, which is also updated
and transported from macro step to macro step.

3 The ODE Case

The details presented in this section are based on a result first presented in [7].
Starting from this result, we use the underlying strategy to extend it to our case
of the three multirate versions named in the previous section. Basically, for ODE
systems, all variants of extrapolation/interpolation-based multirate schemes have
convergence order p (in the final asymptotic phase) provided that it holds:

(1) the basic integration scheme (i.e., the scheme for both the slow and the fast
subsystems with given coupling data) has order p and
(ii) the extrapolation/interpolation schemes are of approximation order p — 1.
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For the fully decoupled approach, this is a consequence of the following result,
which is a generalization of Theorem 1 in [3] for constant extrapolation:

Theorem 3.1 (Consistency of Fully-Decoupled Multirate Schemes) Given the
coupled ODE-IVP (2.2), where fs and fr are Lipschitz w.r.t. the sought solution.
Furthermore, we apply two basic integration schemes of order p: one for ys with
macro step size H, a second for yr with fixed multirate factor m(€ N) steps of size
h. If these integration schemes are combined with two extrapolation procedures for
the coupling variables of order p — 1, the resulting fully decoupled multirate scheme
has order p.

Proof We consider the case that we have computed the IVP system (2.2) until time
t with initial data ys(t) = yg 4, yr(t) = yp,,, i.c., we have the setting given in
system (2.4). Moreover, the unique solution of (2.4) is referred to as

Os(t; ys.oo Ve, YE(W Y50 ye ') or (v, yp(®)") as short-hand.

Next, we provide extrapolated, known quantities ys and yp for the coupling
variables of order p — 1: (for constants respective Lg, Lr > 0)

ys(t) — ¥s(t) = Ls - HP + O(HP*) forany t € [t, t + H], and
yr(t) —5p(t) = Lp - HP + O(HPT) forany r € [t, t + H].
(3.1

Replacing the coupling variables in (2.4) by ys and Y, we obtain the following
modified system

Vs = fs(t, ys, ¥r) = fs(t, ys), ys() = s, 1, 3.2)
yF = fr(t, ¥s, yF) =: fr(t, yF), yr(t) = YF '

which is fully decoupled (for ¢ € [t, t + H]). Its unique solution is referred to as
Gs(t: ys, Yr.)s Fr@ Y00 yE D).
Now, we apply the two basic integration schemes of order p in multirate fashion

to the decoupled model (3.2) and we refer to the numerical solution at t* =t + H
as

s, H(t*), yr, u @)

Then, the distance between multirate and exact solution can be estimated as follows:

Iys. m @) = ys@OIY _ [lys, a@™) =ys@) n 1¥s(*) — ys()|l
lyr, g™ —yr@)I) = \llyr, u@™) = Yr*)|l IVe(t™) — yr @I ]

(3.3)
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The fully decoupled multirate scheme gives for the first term on the right-hand side:

lys. 1 (t*) = Is)I | _ (esHP T+ OHP*2) 3.4)
lyr, u(t*) = Yr@)I ) — \cpHPT + O(HPT?) '

employing constants cg, cr > 0 (for leading errors). Using Lipschitz continuity of
fs. fr for the second summand on the right-hand side of (3.3), we find

95 @) = ys@I) _ /I* I fs(z. Is(x), Yr(0)) — fs(r. ys(x), yr()ll o
1Ve@*) — yr@I ) = Jr \Ife(z. 3s(0), Jr(D) — fr(z, ys(@), yr(D)I

- / LssI¥s(@) = ysI + Ls.plFr (@) = yr@Il
“Ji \Lrsllys(@) —ys@l + Lrpllyr() — yr @l
(3.5)

with respective Lipschitz constants L; ; (for system i and dependent variables j).
We remark that this estimate is decoupled. Inserting the extrapolation estimates
(3.1), we deduce further

*

I3
195 %) = ys )| Lsr-Lr-H" '+ Lss / I95(2) = ys(0)lldz + O(HP )
< t
— t*
I9r*) = yr@)I ) |Lps-Ls- H'*' + Ly p / 195 (x) = yr (D) ldT + O(HPH?)

t

Via Gronwall’s lemma, we deduce:

15" — ysEH)|I _ (Ls.FLF eLss@ =0 gr+l L g(HP+2) (3.6)
IVF(t*) — yr)II ) = \Lp sLs e rr@ =D gpl 4 g(HP+2) | '

In combination with the integration estimate (3.4), the error (3.3) of the fully-
decoupled multirate scheme has consistency order p on the macro scale level, which
is the claim. O

The proof can be slightly adapted to verify the convergence result for both
remaining variants as well:

Corollary 3.2 (Consistency of Slowest-First Multirate Schemes) The conver-
gence result of Theorem 3.1 remains valid if the fully-decoupled approach is
replaced by the slowest-first approach, i.e., the coupling variables ys (during the
integration of yr) are evaluated using interpolation of the already computed slow
data in the current macro step.
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Proof We just give the changes of the above proof. For the slowest-first variant, the
modified equation on the current macro step [#, ¢ + H] reads

Vs = fs(t, ys, §r) = fs(t, ys), ys() = ys.1s

| @)
yr = frt, y§', yr) =: fr(t, yF), YE@) = YF

with extrapolated values Yr as in the fully-decoupled approach and interpolated
values y¢' of order p — 1 based on the numerical approximations ys, g (#) with

tx € [t,t + H] such that it holds:

Vs(t) — y™(1) =Ls- H? + O(HP*Y)  forany 1 € [1, t + H]. (3.8)
Again, the hat-notation is employed for the exact solution of system (3.7). The
computation of the slow part still employs extrapolated coupling variables. This
decouples the slow part from the fast part as before and hence the error estimates of
ys are unchanged. In fact, we can use the estimates (3.41) and (3.61): for any time
te(,t+ H].

~ Now, for the fast part, the corresponding estimate to (3.52) reads (with using
s (1) — ys(t) = yg' (1) = ys(1) + Is(6) — ys(®))

t* )

V(™) — yr ()|l < / LF,S(II?S(T) =y Ol + 1ys (o) — ys(f)ll)
t
+ Lr pllyr(t) — yr(D)ll dT.

Using (3.61) (with 7 instead of t*) and using (3.8), we find
IVP(*) — yr)l
t*
< / (LF,SLSHP + OHPY) + L sLs pLr "5~ HPH 4+ 0(HPH?)
t
+ Lrrl3r (@) = yr(@) ) dr
~ t*
<LpsLsHP™ + LF,F/ 197 (x) — yr(D)lldT + O(HPT?).
t

Now, the application of Gronwall’s lemma leads to

I5r*) — ye()I < L sLse 7 HHPT 4 o(HPY?).
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Finally, we need to form the total error in the fast components, the equivalent to
(3.32). Since the numerical scheme for the fast component is of order p, we can still
employ (3.42), and we get the estimate

Ivr, 1) = yr@I = (cr + LrsLse 1) 74 4 0P, (39)
O

Remark 3.1 1If one uses interpolation schemes of order p instead of p — 1, one has
to replace the term LsH? by LgHP*+!, which yields the estimate

lyr m(t*) — yr(t*)|| < cpHP T + O(HPT), (3.10)

that is, the extra-/interpolation error is dominated by the error of the numerical
integration scheme.

Corollary 3.3 (Consistency of Fastest-First Multirate Schemes) The conver-
gence result of Theorem 3.1 remains valid if the fully-decoupled approach is
replaced by the fastest-first one, i.e., the coupling variables yr (during the
integration of ys) are evaluated using interpolation instead of extrapolation.

Proof For the fastest-first variant, the modified equation (3.2) reads on [¢, t + H]

Vs = fs(t, ys, ) = fs@oys) ys(0) = s, 31D
yr = fr(t, Vs, yr) =: fr(t, yF), YE() = YF t»

with extrapolated values Vs as in the fully-decoupled approach and interpolated
values y}“ of order p — 1 based on the numerical approximations yr g (#;) with

th €t,t+ H]:
Vi) — y;‘l‘(t) = ZF CH? + ﬁ(HP“) forany ¢t € [¢, t + H]. (3.12)

The second equation of (3.11) for yr is unchanged with respect to Theorem 3.1,
since the extrapolation of yg is still used. Hence, we still have all respective
estimates for the fast part, in particular (3.4;) and (3.62). For the slow part, the
corresponding estimate to (3.51) now reads (with using y}“(t) —yr(@) = y}“(t) —
Yr(t) +Yr(t) — yr(1))

r* )
195(6%) = sl = [ (Ls,p(||?F<r>—y%”(r)||+||§F(r)—yF(r)||)

t

+ Ls sl[ys(z) — ys(v)])) dr.
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Using 3.6, (with t replaced by #*) and using (3.12), we find

t*
IFs @) =ys ) < / (LS,FLFHP +OHP*) + Ls pLpsLs e ") P
t
+ OHP) + Ly s][35(0) — ys(0)]l)d
~ t*
< LsrLpHP*' + / Ls sI9r(2) = yr(n)lldT + O(HP ).
t

Applying now Gronwall’s lemma leads to
I9s5(*) = ys(*)| < Ls,rLre"ssTHPT 4 0(HP).

Finally, we use both the above deduced error and the numerical error (3.41) in the
general error sum (3.31) and we find for the slow part

s, 1@*) = 35| < (s + LsrLpess# ) HP+ 4 o(HP). (3.13)

i.e., the numerical integration error is dominated by the extrapolation/interpolation
error. ]

Remark 3.2 If one uses interpolation schemes of order p instead of p — 1, one has
to replace the term Lz H? by Ly HP+!, which yields the estimate

lys, m(t*) — ys(t)| < csHP ™ + 0(HPT?), (3.14)

that is, the extra-/interpolation error is dominated by the error of the numerical
integration scheme.

Remark 3.3 For the basic integration schemes employed in Theorem 3.1, Corollar-
ies 3.2 and 3.3 we can use either

(a) one-step integration schemes, or
(b) multistep schemes, where both schemes are O-stable.

Remark 3.4 (Schemes) Extrapolation of order 0 and 1 can be easily obtained from
the initial data at ¢+ = ¢ and a derivative information, which is provided by the ODE.
This allows directly the construction of multirate methods of order 2.

Remark 3.5 Notice that for a working multirate scheme, we still have to specify the
extrapolation/interpolation formulas. In fact, arbitrary high orders of the extra-/inter-
polation are only possible if information of previous time steps is used. Generally,
this may turn a one-step scheme into a multi-step scheme, and raise questions
concerning stability. However, if the extrapolation is computed sequentially in a
spline-oriented fashion (see Remark 2.1), the modified functions f:g and fp are
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the same for all time intervals inside [#g, fena], and the extrapolation/interpolation
based multirate scheme can still be considered as a one-step scheme applied to the
modified ODE equations.

4 The DAE Case

The component-wise partitioning (2.2) (as well as the right-hand side partition-
ing (2.3)) can be generalized to the case of differential algebraic equations (DAEs).
Let us assume that the slow and the fast subsystem can be written as semi-explicit
system of index-1, each for given corresponding coupling terms as time functions.
This reads:

vs = fs(t, ys, yr, zs, 2r), Ys(to) =ys0, Yr = fr(t, ¥s, YF, zs, 2F), Yr(to) = yF,0,

0=gs(t, ys, Yr, 25, ZF), 0=2gr(, ys, YF, 25, 2F)- 4.1

Moreover, the overall system is assumed to be index-1 as well. All index-1
conditions lead to the assumption that the following Jacobians

dgs 9gs
ags 0gF . .
& , g and dzs 0zp are regular 4.2)
9 9 dgr 0gr
<8 iF dzs 0zf

in a neighborhood of the solution. For later use, we introduce Lipschitz constants
with respect to the algebraic variables:

l1gs(t, vs. yr. 25, 2F) — 8s(t, ys. yF. 25, 2RI < L |lzs —Zsll + L llzr —ZF |l
“4.3)

and analogously L§F , L‘%F and Lg* with A, p € {F, S}. Furthermore, for the
Lipschitz constants with respect to the differential variables, we use the symbol

M (with j € {fs, fr}), e

s, ys, yF 25, 28) — fs(t, 35, T 25, 2o)ll < MPllys — Fsll + ME|lyr — Frll.
“4.4)

To analyze inter-/extrapolation based multirate schemes for these general index-

1 DAEs, we consider dynamic iteration schemes with old, known iterates yii), zy)
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(i+1)

and to be computed, new iterates y, ', zyﬂ) defined by the following dynamic

system

VY = Fy@, y§0, yUrD 0D 0Dy 0y 020y,

0 - GS(t y(l+1)7 yg‘.-'_l)a Zg+1)a Zg‘—’_l)a )’g)’ yl(il')a Zg)a Zg‘))a
(4.5)

FUHD g, 0D D D D O 6O )y

0= Gr(r, y{HD, YUth G40 D O O 0 )

based on splitting functions Fg, Gs, Fr and Gfr. To have a simpler notation, we
introduce the abbreviations

x = (ys, YF, 2§, ZF). Xs:=(ys, zs), XF = (VF, 2F).
The above splitting functions have to be consistent, this reads,
P, x, x) = [, x), Gi(t, x, x) = g.(t, x), for A e{F, S}.

For the different multirate approaches, we have the following splitting functions:

(i) Fully-decoupled approach:

Fs(t, x0, xO) = fo, x{™0, ), Fr, x0T, x0) = e, 1, (1Y),

Gs(t, x0T, x0) = oo, x{™V ), Grl, 2D, 20y = g, 2, 2.

(i1) Slowest-first approach:

. 1 . ) 1 i1

FS(tv x(l 1) (1)) fS(l x(l )7 (Fl))v 1 F (17 x(l 1) (l)) = fF(l X(l )7 (Fl ))7
. 1 . ) ) i1

Gs(t, x(’ 1) (1)) — gS(t x("" ) (l))7 G (f, (1+1) (l)) ( (l+ )7 i+ ))

(iii) Fastest-first approach:

Fs(t, 0, xO) = fs, xg™ ™) Fra <O, 20) = g, 2, 67D,
Gy, x0, x0) = g, 20 X, Gre T, x) = gpr, 1), D).

It has been shown that convergence of a dynamic iteration scheme for DAEs can
no longer be guaranteed by choosing a window step size H small enough, see e.g.
[2, 19]. An additional contractivity condition has to hold to guarantee convergence
of the dynamic iteration scheme with respect to the number of iterations for
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fixed window step size H. We have to distinguish the following two aspects for
contraction:

(a) Convergence within one window [t, t + H]: In this case, it is sufficient to have
(see [6] as a generalization of [19]):

1

aGs 09Gs \ 3Gs 3Gy
A (D) o G+ 0 D) o ()
azg 0z 0z 0z
max 3Gr  0Gr | acr o <a<l
t<t=<it+H 970+D 5 G+D PO
s F s0 % ) (n x (1), x(0))

using the L°°-norm and evaluation at the analytic solution x. The quantity « €
R is referred to as contraction number. For the type of norm employed on the
above left-hand side, we use later the following short-hand

_1 -1
8Gp 8GA ) 8Gp 8GA
x0+D x| s s n || gx D oxy"

(r, x(), x(1))

(for p, A, T € {F, S}, x € {y, z}).

(b) Stable error propagation from window to window: Let us assume that k
iterations are performed on the current time window. Then a sufficient condition
for a stable error propagation from window to window is given by [2]

Lq)(xk <1

with Lipschitz constant L¢ for the extrapolation operator. Note that fork = 1 a
stable error propagation implies convergence within one window, as Lo < 1
implieso < 1 for Ly > 1.

Remark 4.1

(1) Notice that for the stable error propagation in b) it might be necessary that more
than one iteration is performed, although the error reduction (i.e., @ < 1) holds.

(ii) If one employs a dynamic iteration with only one iteration (one solve of the
DAEs), then a multirate scheme is obtained. These schemes are referred to as
multirate co-simulation, see [5].

As we did for the ODE case, interpolation/extrapolation based multirate schemes
of convergence order p for coupled index-1 DAEs can now be obtained by replacing
the exact solution of the DAE system with splitting functions

(i) by a numerical integration of convergence order p,
(i) with stopping after the first iteration (i.e., k = 1), plus
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(iii)) employing extrapolation/interpolation schemes of order p — 1 and
(iv) having satisfied the contractivity condition Lo < 1.

For the different coupling strategies, this condition reads

(i) fully-decoupled approach:

dGgs 0Gs
az(i+l) O O az(i)
Ly max $ 9G o P r <1
t<t <t+H 0 ‘ (i+F1) (iF) 0
0z 0z
-1
3Gs 3Gs 0
PRGN PO 1
& max § ‘F 1 < .
(<t <t+H 0 9Gr 9Gr Lo
o) 0
Sufficient conditions for this are
-1 —1
0Gs aGg 1 d dGF 0GF 1
) T < an ) o< .
+1 +1
9zt | 9z Lo azith | 8z Lo
Introducing the ratios of Lipschitz-constants:
8s gF
ag = Ly aF = Lg
T 8s T r8rF
Ly L%
for g5 and g (see (4.3)), the last conditions can be reformulated as:
os < qu) and of < qu) . 4.6)
(ii) slowest-first approach:
3Gs . :
D050 0 s
max BSGF 9Gr . Iz <1
t<t<t+H ; i
az(SzH) azgﬂ) 0 0
—1
0 o) |
9 i+ 9z i
& max ‘s °r <

_ 1 .
S | P aTer 06y ( 9Gs | 0Gs Lo
BZngl) azg+l) azg+l) HZ;{)
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For this, sufficient conditions are

—1 —1 —1
aGg aGg 1 G F G aGg aGg 1
X S < and ’ X - 2 < .
(aZ(SzH)) 9z Lo (azjé“) 020+ gzt | 5,0 Lo

Formulated with ratios of Lipschitz-constants, we have

L 4.7

O‘S<L1¢ and orog < o

which is equivalent to
og < L1¢ and of < 1. 4.8)

(iii) fastest-first approach: we obtain analogously to (ii)

—1 —1
aGg dGgs oG oG 0
azg+1) BZ(FH»I) alg+l) azg) - 1

< 9Gr ) 0G 0 Lo
For this, sufficient conditions for this are
_1 - _1 -
(o) o) < o | (on) o (on ) 2% < L

In ratios of Lipschitz-constants, this reads

1

1
aF < o and osap < Lo “4.9)

which is equivalent to

ap <, and as <l (4.10)

In all cases, convergence is given for problems that are coupled weakly enough, i.e.,
the respective above estimates for Ly < 1 hold. If not, additional iteration of the
multirate scheme will be necessary. This will, in fact, destroy the multirate benefit.

Remark 4.2 One shall notice that the stability criteria are relaxed if the multirate
scheme is not fully decoupled: a larger fast ratio o is allowed in the case of slowest-
first approach, and a larger slow ratio «g is in the case of fastest-first approach.



Inter/Extrapolation-Based Multirate Schemes: A Dynamic-Iteration Perspective 87

These stability conditions, together with appropriate numerical time integration,
are sufficient to obtain convergent multirate schemes based on dynamic iteration
schemes, as shown in

Theorem 4.1 Given the split DAE problem (4.1) with the index-1 conditions for the
overall system and the subsystems (4.2). The above variants of multirate methods
based on dynamic iteration (with sufficiently small window size H) are convergent
on the macro step level of order p if

(a) the respective basic integration schemes are of order p,
(b) the applied inter-/extrapolation procedure are of order p — 1, and
(c) the respective stability restriction

(i) fully-decoupled: (4.6), (ii) slowest-first: (4.8), (iii) fastest-first: (4.10),

are satisfied. The latter conditions guarantee stability.

Remark 4.3 This theorem combines the stability and convergence results of [2, 6]
for dynamic iteration in the case of only one sweep k = 1 with multirate time
integration for different coupling strategies: Jacobi iteration (fully decoupled) and
Gauss-Seidel iteration (slowest-first and fastest-first strategy, depending on the order
of the subsystems).

Proof (Sketch) We first inspect the time integration within one window [, ,,11]
(n =0,..., N)in the case, where we solve the time interval of interest [y, T'] with
N = (T — t9)/H windows. The overall error within this window is the difference
between the exact solution of the split system (4.1) and the approximation given
by the numerical time integration of the dynamic iteration system (4.5) (superscript
‘dyn.it,h’):

Ysltag) = y&" " (t41)
VEns1) — Y™ )
25(tt1) — z“y“ O (1)
2r (tg1) — zdy“ (1)
s (tnrt) = ¥§" tng1) Y 1) — Y& )
] yEs) = ) dy‘“‘(m ) — dy““hanm
| astur) — 2™ ) jy““(rn+> "Y“‘th(rn+1) ’
ynlt

dyn.it n.it,h
ZF (tny1) —ZF (tn+1) (tnv1) _Z (tn+1)
which can be split into two contributions employing the exact solution of dynamic
iteration system (4.5) (superscript ‘dyn.it’), i.e., into the splitting error of the
dynamic iteration without time discretization errors and the error due to discrete



88 A. Bartel and M. Giinther

time stepping. Consequently, the overall error can be estimated by the sum of both
differences.
We discuss now both error contributions.

(a) For the special coupling structure investigated in [2] the splitting error (not
including time discretization) has been shown to be of order &'(H?) provided
that the stability restrictions apply and extra-/interpolation procedures of order
p — 1 are used. This result can be generalized straightforward to the general
case of system (4.1).

(b) For the multirate variant, the dynamic iteration consists of only one sweep, i.e.,
system (4.5) defines a non-autonomous DAE system of index one. Employing
an order p scheme with step size & as assumed, we obtain a global error of size
O'(h?), which is bounded by & (H?).

Consequently for the whole time interval of interest [y, T'], the error recursion from
window to window is the nearly the same as the one based on exact time integration:
only the coefficient of the iteration matrix are perturbed by an additional term of
order O'(H?). Thus the convergence analysis of the dynamic iteration scheme yields
convergence order p provided that @ + &'(H?) is bounded by one above, which is
always feasible by using H small enough. O

Remark 4.4 In the special case of DAE-ODE coupling, Gs and G ¢ do not depend
on old iterates of the algebraic variables; hence @ = 0, and convergence can always
be guaranteed for H small enough. For the case, where the fast system is an ODE,
and implicit Euler approaches are used, explicit conditions for convergence are
given in [18] and read in our notation:

1 1
< h <
f fs pg8s° f IF pg8
MSS + LSS MSS MSF + LSF MFS

We note that these conditions are quite strong assumptions in the case of stiff
equations.

Remark 4.5 (Schemes) Compared with the ODE case, the first order extrapolation
needs Jacobian information for the G-parts. In fact, this is needed for an implicit
integration scheme anyways.

5 Conclusion and Outlook

The presented work contains a full convergence theory for the quite straightforward
approach of inter/extrapolation-based multirate schemes for both the ODE and
index-1 DAE case. We linked our theory to the concept of multirate dynamic
iteration schemes. Thereby, sufficient conditions for the convergence of the dynamic
iteration of DAE are transferred to the multirate setting.
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As these conditions can be restrictive for stiff differential equations [18],

one-sided Lipschitz-conditions might yield more realistic results. This will be
investigated in future work.
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Abstract Overdetermined polynomial least-squares collocation for two-point
boundary value problems for higher index differential-algebraic equations shows
excellent convergence properties while at the same time being only slightly
more expensive than the widely used collocation method for ordinary differential
equations by piecewise polynomials. In the present paper, basic properties of this
method when applied to initial value problems by a windowing technique are
proven. Some examples are provided in order to show the potential of time-stepping
approach.
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1 Introduction

In a number of recent papers [7—10] convergence results for an overdetermined
polynomial least-squares collocation for two-point boundary value problems for
higher index differential-algebraic equations (DAEs) have been established. This
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method for ordinary differential equations using piecewise polynomials. For initial
value problems (IVPs), a considerable increase in numerical efficiency of the
overdetermined polynomial least-squares collocation method is expected if one can
construct time-stepping or windowing techniques. Below, we consider some key
issues in this respect. Our ultimate goal is that overdetermined collocation is used
on succeeding individual time-windows, though we emphasize that the present note
deals with the very first attempts in this context only.
We are interested in general initial-value problems (IVPs),

fUDx)(t),x(t),t) =0, tela,bl, Ggx(a)=r. (1.1

x : [a, b] — R™ is the unknown vector-valued function defined on the finite interval
[a, b] C R. We assume an explicit partitioning of the unknowns into differentiated
and nondifferentiated (also called algebraic) components by selecting

D eRF*™ D =11 0]

with the identity matrix I; € R¥**. The function f : R¥ x R” x R — R™ is
assumed to be sufficiently smooth, at least continuous and with continuous partial
derivatives with respect to the first and second arguments.

The initial values deserve some special attention. For a solution to exist they must
be consistent. We will ensure this by requiring special properties on the matrix G,,.
It is reasonable to assume that at most the differentiated components x1, . . ., xj are
fixed by initial conditions, which leads to the requirement

G, e R™™  kerG, D ker D,

such that G,x(a) = G,DT Dx(a). Moreover, we will assume that the initial
conditions are independent of each other, that is rank G, = [, where / denotes
the actual dynamical degree of freedom. Later on, more detailed requirements,
depending on the DAE will be posed.

Let the interval [a, b] be decomposed into L subintervals,

a=wy<w) <---<wp=>o,
with lengths H, = w) — w;—1, * = 1,..., L. First, for A = 1, we provide

an approximating segment %!! : [wo, w;] — R” by applying overdetermined
collocation to the IVP

FDFMY (), M@0, 1) =0, 1 ewy, wil, GoiM(a)=r. (1.2)

For A > 1, having already the segment g1l [w)—2, wy_1] — R™, we intend to

determine the next segment M [wa—1, wr] = R™ by solving the DAE

FUDEMY 1), #M 1), 1) =0, 1 € [wiy, wil. (1.3)
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In order to obtain an appropriate approximation to the solution of (1.1), we need
to compensate the now unavailable initial conditions by certain transfer conditions
using #(*~11. Below we investigate two different approaches, namely,

Gwr-DFM wi-1) = G- Nw-n), (1.4)
with a suitably prescribed matrix function G : [a, b] — R, and
DM (w;—1) = DI N(w; ). (1.5)

The construction of appropriate transfer conditions is crucial for the success of the
method.!
In the present note we merely deal with the linear version of the IVP,

A@)(Dx) (t) + Bt)x(t) —q(t) =0, t€[a,bl, (1.6)
Gax(a) =r, (1.7)

in which the right-hand side ¢ : [a,b] — R™ and the matrix coefficients A :
la,b] — R™* and B : [a, b] — R™ ™ are assumed to be sufficiently smooth,
however at least continuous, thus uniformly bounded.

As it is well-known,? conventional time-stepping methods such as the BDF in
the famous DAE solver DASSL work well only when applied to index-1 DAEs and
special form index-2 DAEs. The so far available time-stepping solvers for more
general higher-index DAEs are definitely bound to the construction and evaluation
of so-called derivative array systems,3 e.g., [3, 4, 12, 16, 17], which accounts for
a serious limitation in view of applications. The recently discussed ansatz of
overdetermined least-squares collocation [7-10] fully avoids the use of derivative
arrays and no reduction procedures are incorporated, which is highly beneficial.
However, this is a global ansatz over the entire interval, not a time-stepping method
and large ill-conditioned discrete systems may arise. For this reason, eventually, a
time-stepping version would be much more advantageous. Recall that we come up
with very first related ideas here.

The paper is organized as follows: We describe the global overdetermined
collocation procedure in Sect. 2 and collect there the relevant convergence results. In
Sect. 3 we derive basic error estimates for overdetermined collocation on arbitrary
individual subintervals corresponding to both procedures (1.2)—(1.3) and (1.4). A
corresponding result for the approach (1.2)—(1.3) and (1.5) is provided in Sect. 4.
We study the simpler time-stepping version with uniform window-size H and the

11t should be noted that also an appropriate continuous functional of ¥~ can be considered as a
suitable candidate for defining a transfer condition.

2We refer to [1, 6] for an early discussion and to [2, 13] for a topical one.

3 Also called prolongation. The necessary differentiations have to be provided analytically or via
automatic differentiation.
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same uniform stepsize on all subintervals in Sect. 5. Convergence of the method
using the transfer condition (1.4) is shown in Sect. 5.1. However, our estimates in
Sect. 4 are not sufficient to show convergence for the case (1.3), (1.5). Therefore,
an investigation of a very special system in Sect. 5.3 provides some hints on what
could be expected in that case. In order to demonstrate the behavior of the method,
we provide a more complex example in Sect. 6 using both approaches, (1.4) as well
as (1.5).

2 Global Overdetermined Collocation

2.1 The Global Procedure

Let us consider first the case of global overdetermined collocation, that is L = 1
and H = b —a. Let, for a givenn € N, a grid  on the interval [a, b] be defined:

T a=th<---<t,=b,

wheret; =a+ jhand h = (b — a)/n?

In order to be able to introduce collocation conditions we will need a space of
piecewise continuous functions. Let C ([a, b], R™) denote the space of all functions
x : [a,b] — R™ which are continuous on each subinterval (¢;_1, 7;) and feature
continuous extensions onto [¢#;_1,¢;], j = 1,...,n. Furthermore, let &y denote
the set of polynomials of degree less than or equal to N, N > 1. We define the
ansatz space

Xz = {p € Cx(la, b], R™)|Dp € C([a, b], R),
Pl € Pk =1,...k,

Pelj 1) € N1, k =k+1,....m,

j=1,...,n}.
Let now M points 7; be given such that 0 < 71 < --- < 1t < 1. The set of
collocation points is given by
S M ={tj,' =tj71+‘1,'ih| j=1,...,n,i=1,...,M}. 2.1

4A generalization to quasi-uniform grids is easily possible.
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Using this set Sy ., an interpolation operator Ry y : Cr(la,b],R") —
Cr([a, b], R™) is given by assigning, to each w € Cy([a, b], R™), the piecewise
polynomial R, pw with

Rn,Mw|(tj71,,j) € Py-1, j=1,....n, Rymw@)=w(),t € Sru.
The functional
Bt (%) = [ Rema (f ((Dx) (), x(), D72 + [Gax(@) —r?,  x € X,
can be represented as (cf. [10, Subsection 2.3], also [8, 9])
Prm(x) = W LW+ |Gax(a) — |, x € Xy,
with the vector W e R"mMn

Wi 12 FU(Dx) (tj1), x(tj1), tj1))
h

W = . c RmMn, Wj — . (S RmM,
. M

W, FUDxY (tjm), x(tjm), tim))

with the matrix . being positive definite, symmetric and independent® of A.
Moreover there are constants «;, k, > 0 such that

ki VP < VT2V <k, V2, VeR"™", (2.2)

If the DAE in (1.1) is regular with index one, / = k, and M = N, then there is
an element x; € X such that @, p(X7) = 0, which corresponds to the classical
collocation method resulting in a system of nMm + [ equations for nNm + k =
nMm + [ unknowns. Though classical collocation works well for regular index-1
DAEs (e.g., [14]), it is known to be useless for higher-index DAE:s.

Reasonably, one applies / initial conditions in compliance with the dynamical
degree of freedom of the DAE. In the case of higher-index DAEs, the dynamical
degree of freedom is always less than k. For 0 </ < k and M > N + 1, necessarily
an overdetermined collocation system results since nMm + 1 > nNm + k.
Overdetermined least-squares collocation consists of choosing M > N + 1 and
then determining an element X, € X, which minimizes the functional @, y, i.e.,

Xz € argmin{®@; p(x)|x € X5 }.
This runs astonishingly well [9, 10], see also Sect. 6.

5The entries of . are fully determined by the corresponding M Lagrangian basis polynomials,
thus, by M and 79, ..., ™.
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2.2 Convergence Results for the Global Overdetermined
Collocation Applied to Linear IVPs

We now specify results obtained for boundary value problems in [§-10] for a
customized application to IVPs. Even though we always assume a sufficiently
smooth classical solution x, : [a, b] — R™ of the IVP (1.6), (1.7) to exist, for
the following, an operator setting in Hilbert spaces will be convenient. The spaces
to be used are:

L?>=L%*(a,b),R™), H)={xeL*Dx e H'((a,b),RF}, Y =L>xR.
The operator T : H 5 — L? given by
(Tx)(t) = A(t)(Dx)' () + B()x(1), a.e.t€ (a,b), x¢€ H)},

is bounded. Since, for x € Hll), the values Dx (a) and thus G,x(a) = G,DV Dx(a)
are well-defined, the composed operator 7 : X — Y given by

_ Tx 1
Tx = |:Gax(a)]’ x € Hp,

is well-defined and also bounded.

LetU; : H 5 — H [1) denote the orthogonal projector of the Hilbert space H [1)
onto X .

For a more concise notation later on, we introduce the composed interpolation
operator Zr m : Cx([a, b], R™) x R > v,

)

With these settings, overdetermined least-squares collocation reduces to the mini-
mization of

D7 (x) = [Remt (Tx = @22 + 1Gax(@) — 1> = | Rt (Tx = VI, x € X,
that is, to find
Xz € argmin{®@; py(x)|x € Xr}.

Later on, we will provide conditions which ensure that ker Z .7 Uy = X # such
that X is uniquely defined. Therefore,

Xp = (%n,MyUn)—i_%n,M y.
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We consider also the related functional
— 2 2 _ 2 1
D(x)=Tx —ql;» +|Gax(@) —r|"=[Tx — yly, x € Hp,
and the corresponding method for approximating the solution x, by determining
Xy € argmin{®@ (x)|x € X}.

As before, the conditions assumed below will guarantee that the minimizer x, is
unique such that

Xz = (TUx)"y.

Below, the operator 7 is ensured to be injective. Since .7 is associated with
a higher-index DAE, the inverse .7 ! is unbounded and the IVP is essentially ill-
posed in the sense of Tikhonov. Following ideas to treat ill-posed problems, e.g.,
[11], the proofs in [8—10] are based on estimates of the type

Br
llx7 _x*”]-[ll) = Vi + o,
i B
[l % _x*”H}) = T + oz,
in which
oar = (I - UH)X*HH[I),
Br = ”y(l —U)x)lly,
Br = 1% T (I = Un)xslly,
17 plly . ITpI%, +1Gap(@)?
Yr = = m )
T peXn,p0 ”p”H}) peXx,p#0 ”p“H})
i 1 BamTply IRz M TP, +1Gap@]?
T peXn.p#0 773 PEXz, p#0 1Pl gy

The most challenging task in this context is to provide suitable positive lower bounds
of the instability thresholds y; and yr, [8—10] and, what is the same, upper bounds
for the Moore-Penrose inverses

1 1
TUD =, I ZeuTUD = _ .

T T
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It should be noted that .7 and %, y.7 are of very different nature: While .7
is bounded, Z »7 is unbounded owing to the fact that Ry p is an unbounded
operator in L2, see [8].

We now briefly summarize the relevant estimations resulting from [8, 9] for IVPs.

For details we refer to [8, 9].

The general assumptions with respect to the DAE and the initial conditions are:®

1. The operator T is fine with tractability index p > 2 and characteristic values
O<rp<- Zry—1 <ry=m.

2. The initial conditions are accurately stated such thatl = m — Zf‘:_ol (m —ry)
and G, = G, 4, (a), with the canonical projector I1.4y,. This implies im .7 =
imT x R/, see [14, Theorem 2.1].

3. The coefficients A, B, the right-hand side ¢ € im T, and the solution x, are
sufficiently smooth.

Result (a), see [9]:  Assume M > N + 1. Then there are positive constants ¢y, cg,
¢y and ¢ such that, for all sufficiently small stepsizes i > 0,

Vn Z C)/h'u711 a?‘[ S CO[th ﬁﬂ S Cﬂth
and eventually

N—p+1
Xg — X <ch"7HT,
[l >k||1-111) =

Result (b), see [8]: Assume M > N+ . Then there are positive constants ¢y, Cg,
Cy, and ¢ such that, for all sufficiently small stepsizes i > 0,

P = Eh* T an <cah™,  Br < Egh,
and eventually
~ ~ 1 N—u+l1
Xg — X 1 <ch .
1 — xall <

By [8], one can do with ¢, = ¢, /2. We refer to [9, 10] for a series of tests which
confirm these estimations or perform even better. Recall that so far, [VPs for higher-
index DAEs are integrated by techniques which evaluate derivative arrays, e.g., [5].
Comparing with those methods even the global overdetermined collocation method
features beneficial properties. However, a time-stepping version could be much
more advantageous.

6The following results are also valid for index-1 DAEs. However, we do not recommend this
approach for u = 1 since standard collocation methods work well, see [14].
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3 Overdetermined Collocation on an Arbitrary Subinterval
[t,t + H] C [a, b]

3.1 Preliminaries

We continue to consider the IVP (1.6), (1.7) as described above, but instead of
the global approach immediately capturing the entire interval [a, b] we now aim at
stepping forward by means of consecutive time-windows applying overdetermined
least-squares collocation on each window. As special cases, we have in mind the
two windowing procedures outlined by (1.2), (1.3), and (1.4), and by (1.2), (1.3),
and (1.5). At the outset we ask how overdetermined collocation works on an
arbitrary subinterval,

[7,f+ H] C [a, b].

It will become important to relate global quantities (valid for overdetermined least-
squares collocation on [a, b]) to their local counterparts (appropriate on subintervals
of length H). We introduce the function spaces related to this subinterval,

L}, =L* (@, i+ H),R"), H,=H"(G7+H),R",
Hé,sub = {x € Lsz‘ub|Dx € Hslub}’ Ysub = LAz'ub X Rl’ ?Wh = Lsz‘ub X Rk’

equipped with natural norms, in particular,

2
X = (||X
iy, = 2

sub

+ DY 172 ) x € Hp

Note that we indicate quantities associated to the subinterval by the extra subscript
sub only if necessary and otherwise misunderstandings could arise.

Now we assume that the grid = is related to the subinterval only,

T t=th<---<t,=t+H,

where t; =t + jh and h = H/n. The ansatz space reads now

Xz ={p € Cx(If.i + HI.R™)| Dp € C(I7.7 + H].RY),

pl(l(tjfl,tj) € L@Ns K= 17 . '-1k7 pl(l(tjfl,tj) € L@1\7717 K = k+ 17 R (%
j=1,...,n}.

With0 < 11 < --- < )y < 1, the set of collocation points

SH’MZ{tjiztjfl—i-‘CiMj:1,...,1’1, i=1,...,M} 3.1
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belongs to the subinterval [z, 7 + H]. Correspondingly, the interpolation operator
Ry actson Cr ([Z, £+ H], R™). We introduce the operator Ty, : H$ sub = L2

sub’
(Toupx) (1) = A@)(Dx) (1) + B()x(1), a.e.t € (.7 + H), x € H}, ..

and the composed operators Ty, : Hbmh — Youp and F5up Hll)“mb — Youb,

Tsupx 5 Tsupx 1
— | Toubx - . HY ..
TsubXx |:G(t)x(t):| » Tsubx |:Dx(t):| » X € Hpgup

Occasionally, we also use the operators T7c sub : Hb b R’ and Ticp,sub :
1 k o
Hp, o, — R given by

Ticsuwx = GOx(@), Ticpsuwx = Dx(@), x € Hjy .

which are associated with the initial condition posed at 7. Here, aiming for injective
composed operators, we suppose a function G : [a, b] — R’ such that

ker G(t) = ker Han (1), imG (1) = R!, |G(1)| < cg, t € [a, b]. (3.2)

Since T, inherits the tractability index, the characteristic values of T, and also the
canonical projector (restricted to the subinterval, see [13, Section 2.6]), the local
initial condition at 7, G(¢)x(f) = r, is accurately stated. Then im J,;, = im Ty, ¥
R! and ker Ty, = {0}, so that the overdetermined least-squares collocation on
[7, 7 + H] works analogously to the global one described in Sect. 2.

The composed interpolation operators % y and %A’m m act now on Cr ([7,7 +
H1,R™) x Rl and C, ([7, 7 + H], R™) x RF,

w| |[Rym O w A w| |Rem O w

Let Uz sub : Hll)“mb — Hzl),sub be the orthogonal projector of Hzl),sub onto X; C

fzé,sub'

Accordingly, we define oy 5,5 and, furthermore, B sub, V. sub- ﬁmmh, Vr.subs
associated with the operator 75,;, and, similarly, ﬁmmh, Vit subs ,én,suha ;5,,,“4,,
associated with 9;,,;,.

The following lemma provides conditions for the existence of a function G :
[a, b] — R having the properties (3.2). The latter is a necessary prerequisite for the
transition condition (1.4).
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Lemma 3.1 Let the operator T be fine with tractability index u > 2, characteristic
valuesO <rg < - - <ry_1 <ry=m, | =m— Zf‘;l(m —r;), and the canonical
projector function I 4.
Then there are continuously differentiable functions G : [a,b] — R and K -
[a, b] = Rk such that

imG(t) = R/, ker G(t) = ker I1;4,(¢), [I; 0]K()D = G(t), t € la,b],
K (t) remains nonsingular on [a, b], and, with k = (maan,Sth(z‘)l)fl,
|Dz| = |K ()" K (t)Dz| = k|K(1)Dz| > k|G()z]. z €R¥, t €[a,b].

Proof We choose an admissible matrix function sequence with admissible projector
functions Qo, ..., Qu—1, see [13, Section 2.2]. Denote P; = [ — Q;,II; =
Py---P;. Then, I1;,_1 and DI, _; D™ are also projector functions, both with con-
stant rank /. Since D1, D™ is continuously differentiable, we find a continuously
differentiable matrix function I'yy, : [a, b] — R!*k 50 that

im Iy, (1) =R, ker Fyyu (1) = ker(DIT,_1 DY) (1), € [a,b].

Furthermore, there is a pointwise reflexive generalized inverse Fd;n : la,b] —
Rle, also continuously differentiable, such that I dynrd_yn =TIand I d_ynF dyn =
DI, D*. Similarly, we find constant-rank continuously differentiable matrix
functions I, : [a, b] — RUm—ri)xk and pointwise generalized inverses I,

nil,i -
[a, b] — RK*m=ri) guch that
Lwiril, =1, Lo .Twui=DIi_1Q;D", i=1,...,u—1.

nil,i nil,i

The resulting k x k matrix function

den
‘- an'l,l _ | Tayn
: Fnil
Lait, -1
remains nonsingular on [a, b] owing to the decomposition Iy = DDT =

DMyQ D" +---+ DI, »Q,1D" + DIT,_1D™.

Set G = I'4y,D = [I; 01K D. This implies ker G(t) = ker I1,_;. Taking into
account the fact that ker I7,, | = ker I1.4,, see [13, Theorem 2.8], one has actually
ker G(t) = ker I1.4,.
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Finally, we derive for z € Rk 1 e [a, b],

|Dz|* = |K ()" 'K (1) Dz|* > k*|K (1) Dz|* = k*(IG ()z]* + | it (1) Dz|%)

> K*|G()z ),

which completes the proof. O

Lemma 3.2 Fort e la,b],0 < H <b—1t, and

) 1/2
Cy = ,2H
H (max <H >)

P 1
IDx(®)] = CHllDxllyg1 < Cullxllyy et €FT+HL x € Hp

it holds that

Proof By definition, x € HL]‘) sup implies u = Dx € Hslub. Since Hslub is
continuously embedded in Cy,, it follows that

t
u(t) = u(s) ~|—/ u'(t)ydr, t,selt,t+ H],

which gives

t 2 +H
lu()|* < 2lu(s)|* +2 (f |u’(r)|dr> < 2lu(s)|* + 2H[ |u' (7)|*dr.
K t

Integrating this inequality with respect to s leads to

i+H t+H
lu(s)|>ds + 2H2f lu’ ()| d.
t

t
r

Hlu()|? < 2[

Finally, with Cy as defined in the assertion, it holds that

2
H!

su

2 2 2 2
iz, < Chllulyy < Chlll,

D,sub

and the assertion follows. O
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Lemma 3.3 Let the function G fulfilling (3.2) with the bound cg be given, and
denote cr = (2max{|| A%, | BI3 D>

(1) Then, for each subinterval, the inequalities
1
<
”Tsubx”L%ub = CT||x”H[1>,xub’ X € HD’suba

1
ITrc subx| < CGCHIIXIIH;)M, |Trep,subx| < CHIIXIIH;)M, x € Hp qups
3.3)

are valid.
) If M > N+1and A, B are of class CM | then there are constants Capi1, CAp2,
both independent of the size H of the subinterval, such that

1
”Rn,MTsubUnx”qub < CAB1IIXIIHIIJM, x € Hp ups

M—-N—-1/2 1
1Rx b TeubUnx = TeupUzxll 2 < Cagih Plxlyy o x € Hp e

Proof

(1) Regarding that A, B are given on [a, b], by straightforward computation we
obtain

2 2 2 2 2
ITsupx 7> = 2max{l| A5 sups 1Bl suptllx 7 =< crllxlly
L ’ ’ HD,xub HD,xu

sub

Applying Lemma 3.2 we find the inequalities (3.3).
(2) These inequalities can be verified analogously to the first two items of [8,
Proposition 4.2]. O

We are now prepared to estimate the values &z sub, Br subs ﬁmub, Br.sub, and
,Bn,suh-

Theorem 3.4 Let the operator T described in Sect. 2 be fine with tractability index
u > 2 and characteristic values 0 < rg < --- < ry_1 <ry =m 1l =m—

Z;Z()I (m —r;). Let the coefficients A, B, as well as the solution x, of the IVP (1.6),
(1.7) be sufficiently smooth. Let the function G with (3.2) be given and [t,f + H] C
[a, b].

Then there are positive constants oz sup, Cg, é,g, é’,g, é,g such that

O sub = CozHl/th,
,Bn,sub =< Cﬁth Bn,sub =< éﬁhNy
Bn,sub =< éﬁth ,én,sub < éﬁhN-

uniformly for all individual subintervals [t, t + H] and all sufficient fine grids X .
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Proof First we choose N nodes 0 < 7,1 < -+ < Ty,y < 1 and construct the
interpolating function py ;s € X7 so that

Dpsint (1) = Dxx(8),  Paint(tj + T jh) = x4 (tj + 14 h), i =1,...,N, j=1,...,n,
yielding
I = Pint loc,sub + (D) — (Dpsint) lloo,sub < Cih™,

with a uniform constant C for all subintervals. Cy is determined by x, and its
derivatives given on [a, b]. Now we have also

Xe = D < CwV2HRY,
e = prinillgy < Cud/

and therefore, with C, = C, v/ 2,

O sub = (7 — UTL’,SMb)x*”Hll) b = - Un,sub)(x* - p*,int)”Hll) b =< Cut\/HhN~

Set Cp = \/Zmax{l, b — a}C, such that CH\/HCO[ < Cp for all H. Using
Lemma 3.2 we derive

ID((I = Ur sub)X2) )] < Crpotz.sup < Cph™.
We derive further

2 2
:Bn,sub = ”f%ub(l - Un,sub)x*”Ysub

= IToup( = Unsun)¥ellz> +1GODT DU = Unsun)x:) DI

< 1 Tou Pz g + cGCHA™N < (7 Co(b — a) + cGCHRYN = Can?Y,

a2 5 2
ﬁn’sub = ”%ub(l - Uﬂ,sub)x*”YS”b

= I Tsup(I = Unsup)¥ull + DU = U su)x) DI

< 1 Toup ez + cGCHRN < (cFCo(b —a) + CHRN = C3h*".

Following [8, Section 2.3], we investigate also wy = Ty,p(Xs — pu.int) € Cr([f, T+
H1], R™) and use the estimate (cf. [8, Section 2.3])

—1/2 N
H 2 R will 12 50 < | R i lloosub < CLllwilloo,sub < max{[|Alloo. [l Blloo}CrLh™ .
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Here, C1 denotes a constant that depends only on the choice of the interpolation
nodes 741, ..., Tx,N. Then we derive
”Rﬂ,M Toup (I — Un,sub)x*”[},sub =< ”Rn,M Toup (I — Un,sub)(x* - P*,int)”[},sub
S WRz, M Tyup (x4 — p*,int)llLZ,sub
+ IRz, M Tsup U sup (X5 — p*,im)”LZ,sub

< 1Rr sl 2 sup + Caprllxe = puinllygy

< CrrvVHRY,
where Cgr = Cr max{||A|lso, || Blloo} + v/2C+Cag1. Therefore,

~ )
IBn,guh = ”f@n,mzubu - Un,sub)x*”? ,
su

= 1Rz, Tsur(I — Uz sup) X522+ GO DT DU = Ur sup)x:) (D]
L b

su

< CprHN + g CHR*N < Chp (b — a)h® + g CHn*N = Ch?Y,

22 5 2
ﬂn,sub = ”L@n,m%ub(l - Uﬂ,sub)x*”y b
su.

= 1R Tour(I = Unsup)Xsll 72+ DU = Unsup) x) D)

< ChrHRN + Chn™Y < Chr(b— a)h® + CHn®N = C3n*N. o

3.2 Overdetermined Collocation on [t, t + H] C [a, b],
with Accurately Stated Initial Condition at t

We ask if there are positive constants ¢, and ¢, serving as lower bounds for all
the individual constants characterizing the instability thresholds associated to each
arbitrary subinterval [, 7 + H] C [a, b].

Theorem 3.5 Let the operator T described in Sect. 2 be fine with tractability index
u > 2 and characteristic values 0 < rg < - < ry_1 <ry =m, 1l =m—
Zf:ol (m — r;). Let the coefficients A, B, the right-hand side q € im T, as well
as the solution x, of the IVP (1.6), (1.7) be sufficiently smooth. Let qg,p denote the
restriction of q onto the subinterval [t,t + H) C [a, b].
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Let a function G with (3.2) be given.

(1) Then, for each arbitraryr € R., there is exactly one solution X[r] of the equation
TsubX = (qsup, 1) and

Iy = xall g1 < Csub Ir = GO)xx ()]

X[r] coincides on the subinterval with x,, if and only if r = G(@)x.(f).
Furthermore, there is a bound C, such that cgypy < C,p is valid for all
subintervals.

(2) If M = N + 1, there is a constant C, > 0 such that,

1 1
n—1 + —
Vr,sub = Cyh s ” (%uhUn,suh) ”YSMbHHzl).sub = Vasub < C},h”‘_l
uniformly for all subintervals and sufficiently small stepsizes h > 0.
3) If M > N + u, there is a positive constant C’y = Cz” such that

1 1
Rr.mt TsupU + = < .
”( w,M </sub n,suh) ”YﬂlbﬁHll).sub fn,sub = Cyh”fl

uniformly for all subintervals and sufficiently small stepsizes h > 0.
Proof

(1) This is a consequence of Proposition A.1 in the Appendix.

(2) The constant C), can be obtained by a careful inspection and adequate modifi-
cation of the proof of [9, Theorem 4.1] on the basis of Proposition A.1 below
instead of [9, Proposition 4.3]. Similarly to [9, Lemma 4.4], we provide the

inequality
n—1 pu—i
113, < g1z :=llghfz + 3> dishPLui)l7s . g € Zx.
su. l=1 S:O su

with Z, = {g € L2 ,|D.Ly—iq € Co ' (IT,i + HL,RY),i=1,....u— 1} C
Tsub X7, with coefficients d; ¢ being independent of the subinterval.
(3) This statement proves by a slight modification of [8, Proposition 4.2]. O

Theorem 3.5 allows to apply homogeneous error estimations on all subintervals.
Note that the involved constants Cy, etc. may depend on N and M. For providing the
function G with (3.2), the canonical nullspace N.,, = ker I1.,, must be available,
not necessarily the canonical projector itself. Owing to [13, Theorem 2.8], it holds
that Ney, = ker Il for any admissible matrix function sequence, which makes
Ncan €asier accessible. Nevertheless, though the function G is very useful in theory
it is hardly available in practice.
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For problems with dynamical degree [ = 0 the canonical projector I1.,, vanishes
identically, that is, the initial condition is absent, and Ty, itself is injective. This
happens, for example, for Jordan systems, see also Sect. 5.3. In those cases, with no
initial conditions and no transfer the window-wise forward stepping works well.

Let Xz,014 be already computed as approximation of the solution x, on an
certain old subinterval of length H,;, straight preceding the current one [, 7 + H].
Motivated by Theorems 3.4 and 3.5 assume

~ N—p+1
— < Ch
1%, 01d x*”Hvlub,nld =<C old

for sufficiently small stepsize h,;4. Applying Lemma 3.2 we obtain
D 1) — DDl < Crty Chly" .

Next we apply overdetermined least-squares collocation on the current subinterval
[, + H]. We use the transfer condition r = G(f)Xz,014(f) to state the initial
condition for the current subinterval. The overdetermined collocation generates the
new segment X,

%z = argmin{|| Ry, m (Tsupx — q)ui,}) GO - G(D)ir,o1a@)*|x € Xz},

which is actually an approximation of x[,] being neighboring to x,, such that

Fx—x < eV
” b4 [r]“HLI)Mb =

Owing to Theorem 3.5 we have also

A

5ty = 2allgs = Couplr — GOxD = x| G D ara @) — D5 D)
N—p+1
= CsubCG CHUM Chold " :

If h = h,y4, it follows that

g < CyuphN 11
[l *“Hll),xub = Csub

with Csup = coubc6Ch,,C + ¢. This is the background which ensures the
windowing procedure (1.2), (1.3), (1.4) to work.
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4 Qve_rdetermined Collocation on a Subinterval
[¢,t+ H] C [a, b], with Initial Conditions Related
to Dx(¢)

Here we proceed as in the previous section, but now we use the initial condition
Dx(t) = 7 instead of G(f)x(f) = r, to avoid the use of the function G. Obviously,
this formulation is easier to use in practice since D is given. However, in contrast to
the situation in Theorem 3.5, the equation jmbx = (gsup, ') is no longer solvable
for arbitrary # € R*. For solvability, # must be consistent.

Theorem 4.1 Let the operator T described in Sect. 2.2 be fine with tractability
index w > 2 and characteristic values 0 < rg < --- < ry 1 <ry, =m, 1l =
m— Zfzol (m —r;). Let the coefficients A, B, the right-hand side g € im T, as well
as the solution x, of the IVP (1.6),(1.7) be sufficiently smooth. Then the following
holds:

(1) jmh is injective. .
(2) If M > N + 1, there is a constant Cy, uniformly for all possible subintervals
and sufficiently small stepsizes h > 0 such that

~ A -1
Y, sub > Cyh'u .

and hence

A 1 1
”(%uhUn,suh)-’_”f/ PR < . .
" Y sub C},h”‘_l

B) If M > N + u, there is a constants éy > 0 uniformly for all possible
subintervals and sufficiently small stepsizes h > 0, such that

A Fay 1 1
|t FsuUnsa) Vg, = = <

b X - = :
YV, sub C},h“_l

Proof The assertions are straightforward consequences of Theorem 3.5 and
Lemma 3.1.

Ix = 0 means Tx = 0 and Dx(f) = O, thus also G()x(#) =
[; 01K (£)Dx(t) = 0, finally Zx = 0. Since 7 is injective it follows that x = 0.
For p € X,

1% ply | = 1Tswnpllz +1Dp@F = 1 Tanpllz + €GO @)

2
= min{1, *}| Zuppll3,, = min{l, «?) (CthIHPHH[I) ) ,
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and
|Zxm TPl = 1 Re TPl 2+ 1DpOF = 1R mTounp 72+ 621G D pDI

2
= min{1, k| % vt b PIIF,,, = min{l. k%) (cyh“*‘ 121, b) O

In contrast to the situation in Sect. 3.2 the equation jmbx = (Gsup, ) is O
longer solvable for all 7 € R, Recall that qsupb 1S the restriction of ¢ = T'x, so that
gsub € im Tgyp. Denote

o _ | 4sub 5l81 _ | 9sub 5= 15— 311 — (Dro(F) —
Y |:Dx*(t'):|’y [,] 19 — 3N = |Dxu(®) — 7l

and, following [11], we take $!°! as noisy data and compute
) — areminf 1% v (S — v |12 X
X argmin{|| % m (Tsubx — y )”Lz bXRk|x € Xr}
= argmin{|| Re, v (Toup = Gsun) I+ 1Dx (D) = F*|x € X}
and similarly,
A[8 : 5 8112
F! = argmin{l| Zyupx — YU pulx € Xr)
= argmin{| Toupx = qouplly> +1Dx (D) = FI|x € Xz ).
Applying the error representation [11, Equation (2.9)] we arrive at
ilral — Xy = (Qn,MjUn)Jr(&w] -3
+ B T Un) R Fsun( = Uz — (I = Un)x

and, correspondingly,

0~ x, = (TUDTOW - $) + (T U Toun(I — Un)xi — (I = Uz)xs.

Thus,
1 — < U5 = 50+ ) 4o = - (54 Brous) +
T * HD.sub — éth71 T,su T éyh/"71 T,SU T

X 1 R R z 1 z
IR =l <o I Sl Brswsd b = (5 Brsus) +

C]/h/‘*1 Cyhufl
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All these estimations can be put together in order to arrive at a recursive error
estimation for the application of (1.3), (1.5). Unfortunately, this estimate is not
sufficient for proving convergence of the windowing technique in contrast to the
approach using accurately stated initial conditions of Sect. 3.2!

S Time-Stepping withb —a = LH and H = nh

Wesetnow H = (b —a)/L, wy =a+AH, A=0,...,L, and h = H/n, and
study the somehow uniform time-stepping procedures.

5.1 Time-Stepping with Accurate Transfer Conditions

In the time-stepping approach corresponding to (1.3)—(1.4), the transfer conditions
are given so that G is chosen according to (3.2). Let ¥* be the approximation
provided by the overdetermined least-squares collocation for the subinterval [a +
(A — 1)H, a + LH] corresponding to the initial and transfer conditions

Goillla) =,
Gw)iM@a+ - DH) = Gw it 'a+ - DH), r>1.
Then we obtain from Theorem 3.5 and Lemma 3.2, for A =1,

~[1] Sy N—p+1 _ .
X —x <Ch =:di.
l T *”Hll),xub <C dy

For A > 1,letr = G, 2 (@ + (A — 1)H). Then it holds

~[A z A
I =gy < RS =l e = el

IA

ChN =M 4 Cplr — Gaxi(a+ (L — DH)

IA

ChN M4 4 CpegCrllFE ™ = xally

< CN R —xillyy ) =ds

where C = max{Ccg, C’}. Hence,

di < CRN=#H1 4y < C(Chds—y + WV HFD),
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A solution of this recursion provides us with

A—1 = A
o _1-(CC
dy <) C(CCp)h" ! =C (CCH" N-pr1,
~ 1—CcCy

A similar estimation can be derived for the least-squares approximations using the
operator (Zsub Uz, sub) -

Example 5.1 The index-2 DAEwithk =2, m =3, [ =1,

1O Moo o -1 -1
01 ([010}“)/“)+ nt(L—nt)—n 6 —nt | x(0) =q(0), (5.1)
00 1—nt 1 0

is taken from [10, Example 1.1]. One has N¢g, (1) = {z € R3| ntz1 — z2 = 0} so
that

G(t) = [m 1 0]

will do. We consider the DAE on the interval (0,1). The right-hand side g is chosen
in such a way that

x1(t) = e 'sint,
x2(t) = e *sint,

x3(t) = e 'cost

is a solution. This solution becomes unique if an appropriate initial condition is
added. With G, = G(0), the initial condition becomes

Gux(0) = G, [00 1]T —0.

In the following experiments, n = —25 and & = —1 have been chosen. This allows
for a comparison with the experiments in [10].

This problem is solved on equidistant grids using, for each polynomial degree
N, M = N + 1 Gaussian collocation points scaled to (0, 1). The tables show the
errors of the approximate solutions in H 11) (0, 1). The columns labeled order contain
an estimation keg of the order

kest = log(|lxz — x*”H})(O,l)/”x?T’ - x*”H})(O,l))/ log2.

Here, 7’ is obtained from 7 by stepsize halving. It should be noted that the norm
is taken for the complete interval (0, 1) even in the windowing approach. In order
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Table 1 Errors and estimation of the convergence order for (5.1) and 7 = 0, H = 1 using M =

N +1
N=1 N=2 N=3 N =4 N=35
n Error Order Error Order Error Order Error Order Error Order
10 1.21e+0 1.65e—1 2.84e—3 7.55e—6 2.82e—7

20 1.12e+0 0.1 3.74e—2 2.1 5.04e—4 2.5 9.66e—7 3.0 1.51e—8 4.2
40 1.29¢e—0 —-0.2 1.55¢-2 13  9.59%—-5 24 1.25e=7 29  7.74e—10 43
80 1.16e—0 0.2 6.65¢e—3 1.2 1.83e—5 2.4 1.31e—-8 3.3 1.32e—10 2.6
160 9.80e—1 0.2 321e-3 1.0 3.05e—6 2.6 1.31e-9 3.3 1.75e—10 —0.4
320 8.63e—1 0.2 1.60e—3 1.0 494e—7 2.6  2.00e—10 2.7 3.62e—10 —1.1

Table 2 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N=1 N=2 N=3 N =4 N=5
L Error Order Error Order Error Order Error Order Error Order
10 3.76e+0 2.19e—1 2.82e—3 9.34e—6 2.84e—7

20 2.67e+0 0.5 7.62e—2 1.5 5.06e—4 2.5 1.29¢e—6 2.9 1.53e—8 4.2
40 1.77e+0 0.6 3.30e—2 1.2  9.72¢e—5 2.4 1.92e—~7 27  790e—10 4.3
80 1.62e+0 0.1 1.39e—-2 1.2 1.89e—5 2.4  238e—8 3.0 4.67e—11 4.1
160 1.65e+0 —0.0 5.06e—3 1.5 3.20e—6 2.6  2.26e—9 34 1.13e—10 —1.3
320 1.66e+0 —0.0 191e—3 14  526e—7 2.6  2.2le—10 3.4 1.46e—10 —0.4

to enable a comparison, we provide the results for solving the problem without
windowing in Table 1. This correspondsto7 = 0 and H = 1.

In the next experiment, the time-stepping approach using accurately stated
transfer conditions has been tested with n = 1. The results are shown in Table 2. O

A more complex example is presented in Sect. 6.

5.2 Time-Stepping with Transfer Conditions Based on D

In our experiments in fact, the situation is much better than indicated by the
estimates in Sect. 4. The latter are not sufficient to show convergence of the present
time-stepping approach when the transfer conditions are based on D, see (1.5).

Example 5.2 (Continuation of Example 5.1) We apply the time-stepping procedure
under the same conditions as in Example 5.1, however, this time the transfer
conditions are chosen as

Mo =i, =12

The results are presented in Table 3. The errors are slightly worse than those of
Table 2 where accurately stated transfer conditions are used. However, the observed
orders of convergence are similar, at least for N > 2 = pu — 1. The values forn = 2
and n = 3 have also been checked. The orders are identical to those of Table 3
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Table 3 Errors and estimation of the convergence order for (5.1) and n = 1 using H = 1/L

N=1 N=2 N=3 N=4 N=5
L Error Order Error Order Error Order Error Order Error Order
10 1.80e+0 1.46e—1 3.27e-3 9.85e—6 3.16e—7

20 2.36e+0 —0.4 4.65¢e—2 1.6  5.84e—4 2.5 1.35e—6 2.9 1.71e—8 4.2
40 2.77e+1 —3.5 1.66e—2 1.5 1.09e—4 2.4 1.75e=7 2.9 8.78¢—10 4.3
80 5.07e+2 —4.2 6.64e—3 1.3 2.03e-5 24 1.76e—8 3.3 6.65e—11 3.7
160 1.11e+3 —1.1 3.19e—3 1.1 3.5le—6 2.5 1.60e—9 3.5 1.50e—10 —1.2
320 7.46e+2 0.6 1.5%—-3 1.0 6.44e—7 24 1.85e—10 3.1 3.07e—10 —1.0

even if the errors are smaller due to the smaller stepsize h. For N = 1, divergent
approximations are obtained. However, this is beyond the scope of our theoretical
results even in the case of accurate transfer conditions. O

5.3 Studying the Damping of Inconsistent Transition Values

The results of the previous sections show that the windowing method converges if
the transfer conditions used refer to the dynamic components, only. The latter are,
in general, not easily available unless a detailed analysis of the DAE is available.
However, so far we do not know any conditions for convergence if the practically
accessible values of the differentiated components Dx are used in the transfer
conditions.” Example 5.2 indicates, however, that the use of (1.5) may be possible.
In order to gain some more insight into what could be expected in the setting of
Sect. 5.2, we will consider a simple special case in this section.

The model problem in question here is a simple system featuring only one Jordan
block,

J(Dx) +x =0,
Dx(@) =r.

Here, J € RXW=D D e RU—Dx1 where

10

7In the index-1 case, Dx describes just the dynamic components such that convergence is
assured for using all differentiated components. However, for index-1 DAEs, much more efficient
collocation methods are available.
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This system has index u and no dynamic components,/ = 0. The system is solvable
for r = 0, only, leading to the unique solution x.(¢#) = 0. When trying to solve the
system using the proposed windowing technique, the only information transferred
from the subinterval [7, 7+ H ] to the next one is the value of the approximate solution
Xy at the end of the interval, Dx, (r 4+ H). The latter is an approximation to the exact
solution Dx,(f + H) = 0 that cannot be guaranteed to be consistent with the DAE.
Therefore, we ask the question of how Dx (f + H) depends on r.
Let

. Fal 2
Xprr = argmin{[| Fupx 72 el € X}
su

= argmin{|| Tupx |l +1Dx(D) = rljlx € Xx}
where Tx = J(Dx) + x. Obviously, Dx[  (f + H) depends linearly on r. There
exists a matrix § = S(N, H, n) such that Dx[ . (f + H) = Sr which we will
denote as the transfer matrix. For convergence of the method, it is necessary that the
spectral radius p(S) of the transfer matrix is bounded by 1.
The analytical computation of § is rather tedious. After some lengthy calcula-
tions, we found that, for © = 2, it holds, with n = (N + 1)_1,

2
(-1+vi=m) +(-1=vi-p)

~ nnzl—n.

p(S(N, H,n) =n"

In particular, p(S) is independent of H and n can be chosen arbitrarily. Moreover,
the damping of the inconsistent value r is the better the larger » is. This result can be
compared to the experiments in Example 5.2 (an index-2 problem) where we cannot
identify any influence of an inaccuracy due to inconsistent transfer conditions.

For larger values of u, we determined p(S) by numerical means. Results are
shown in Tables 4, 5 and 6. We observe that, for an index ;& > 2, n must be chosen

Table 4 Spectral radius of the transfer matrix S(N, H,n) forn = 1 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index p

N 2 3 4 5 N 2 3 4 5

2 33e—1 2.1e+0 1.3e+0 1.1e+0 2 33e—1 2.1le+0 1.le+O 1.0e+0
3 25e—1 1.8e+0 59e+0 2.9e+0 3 25e—1 1.8e+0 59e+0 1.5e+0
4 2.0e—1 1.5e+0 7.le+0 l.4e+l 4  2.0e—1 1.5e+0 7.le+0 l.de+l
5 1.7e—1 13e+0 7.0e+0 2.3e+l 5 17e—1 13e+0 7.0e+0 2.3e+l
6 15e—1 1.le+0 6.5e+0 2.7e+1 6 1.5e—1 1l.le+O0 6.6e+0 2.8e+l
7 12e—1 9.7e—1 6.1le+0 2.9e+1 7 12e—1 97e—1 6.1le+0 2.9e+l
8 l.le—1 87e—1 5.6e+0 2.9e+l 8 l.le—1 87e—1 5.6e+0 2.9e+l
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Table 5 Spectral radius of the transfer matrix S(N, H,n) forn = 2 and H = 0.1 (left panel)
and H = 0.01 (right panel). The column headings show the index 1

N 2

2 59e-2
3 32e-2
4 2.0e—2
5 14e-2
6 1.0e—2
7  7.9e-3
8 6.2¢-3

3

1.4e+0
6.4e—1
3.7e—1
2.5e—1
1.8e—1
1.3e—1
1.0e—1

4

1.5e+0
8.0e+0
5.0e+0
3.1e+0
2.1e+0
1.5e+0
1.2e+0

5

1.2e+0
9.9¢e+0
2.0e+1
3.0e+1
2.2e+1
1.6e+1
1.2e+1

N 2 3

2 59e—2 1.4e+0
3 32e—2 6.4e—1
4 2.0e—2 3.7e—1
5 lde—2 25e—1
6 1.0e—2 1.8e—1
7 79e—3 1.3e—1
8 6.2e—3 1.0e—1

4

1.2e+0
8.2e+0
5.0e+0
3.1e+0
2.1e+0
1.5e+0
1.2e+0

5

1.0e+0
2.5e+0
3.6e+2
3.2e+2
8.1e—1
2.1e+0
1.2e+1

Table 6 Spectral radius of the transfer matrix S(N, H, n) for n = 3 and H = 0.1 (left panel) and
H = 0.01 (right panel). The column headings show the index p

N 2

2 1.0e—-2
3 4.1e-3
4  2.1e-3
5 1.2e-3
6 T.4e—4
7  49e—4
8 3.5e—4

3

6.8e—1
1.8e—2
8.le—2
4.3e-2
2.6e—2
1.7e—2
1.2e—2

4

1.8e+0
6.1e+0
2.1e+0
9.2e—1
5.1le—1
3.le—1
2.1e—1

5

1.4e+0
2.5e+0
1.7e+1
1.8e+1
8.5e+0
4.8e+0
3.0e+0

N 2 3

2 1.0e—2 6.8e—1
3 4l1e-3 1.8e—1
4 2.1e-3 8.le—2
5 1.2e—3 43e-2
6 T7de—4 2.6e—2
7 49e—4 1.7e-2
8 3.5e—4 1.2e-2

4

1.3e+0
6.3e+0
2.1e+0
9.2e—1
5.1e—1
3.1e—1
2.1e—1

5

1.0e+0
5.5e+0
4.2e+1
7.8e—1
7.5e—1
2.8e—1
2.3e—1

larger than 1 in order to ensure p(S) < 1. Moreover, p(S) depends on H only
marginally for the investigated cases.
Details of the derivations are collected in the appendix.

6 A More Complex Example

In order to show the merits of the windowing technique, we will continue to use the
example considered in [9]. This example is the linearized version of a test example
from [5]. We consider an initial value problem for the DAE

with

A(Dx)'(t) + B()x (1) = y(1),

100000

010000
001000
000100
000010
000001
000000

(1000000

0000010

t €[0,5]

0100000
0010000
0001000
0000100

6.1
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the smooth matrix coefficient

0 0 0 -1 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 -1 0
B(t) = 0 0 sint 0 1 —cost —2pcos?t , p=>5.
0 0 —cost —1 0 —sint —2psintcost
0 0 1 0 0 0 2psint
2pcos?t 2psintcost —2psint 0 0 0 0

This DAE is obtained if the test example from [5] is linearized in the solution
x4(t) considered there.® It has tractability index u = 3 and dynamical degree of
freedom/ = 4. In order to use the windowing technique with accurately stated initial
conditions, we will need a function G : [0, 5] — R**7 fulfilling the assumptions of
Theorem 3.5. The nullspace of the projector I1, has the representation

I-2 0 0 —cos’t
kerllh =ker| 22 1-20|, £2=b@O)b)’, b@t)=| —costsint
0 0 O sint

Based on this representation, we can use

sin ¢ —cost 0 0 0 0 0
0 1 cost 0 0 0 0
G(t) = 6.2
@) —cos®sr  —sinfcos?t sinfcost sint —cost 0 0 6.2)
—(sintcos?)® —sin’rcost sin¢ 0 1 costO

In the following numerical experiments we choose the exact solution

X1 = sint, X4 = COSt,

X2 = COSt, X5 = —sint,

X3 = 2 cos? t, x¢= —2sin2t,
_ g

X7 =—p " sint,

8Compare also [9, Sections 6.3 and 6.4].



Least-Squares Collocation for Higher-Index DAEs 117

Table 7 Errors and estimation of the convergence order for (6.1) and f = 0, H = 5 using M =

N+3
N=1 N=2 N=3 N =4 N=5
n Error Order Error Order Error Order Error Order Error Order
10 2.64e+0 5.24e—1 6.29e—2 6.33e—3 5.73e—4

20 1.54e+0 0.8 1.99e—1 1.4 1.77e-2 1.8 9.39e—4 2.8 6.12e—5 3.2
40 8.79e—1 0.8 9.36e—-2 1.1 6.44e—3 1.5 1.66e—4 2.5 731le—6 3.1
80 4.69e—1 0.9 4.63e—2 1.0 2.84e—-3 1.2 3.42e-5 2.3 9.02e—7 3.0
160 3.00e—1 0.6 2.33e-2 1.0 1.37e-3 1.1 7.69e—6 2.2 1.12e-7 3.0
320 2.30e—1 0.4 1.18e—-2 1.0 6.75e—4 1.0 1.82e—6 2.1 1.40e—-8 3.0

which is also the one used in [9]. Setting G, = G(0), this provides us with the
initial condition®
-1
G.x(0) =

S O W

The problem is solved on equidistant grids using, for each polynomial degree N,
M = N + 3 Gaussian collocation points scaled to (0, 1). This number of collocation
points has been chosen such that the assumptions of Theorem 3.5(3) are fulfilled.
The tables show the errors of the approximate solutions in H [1) (0, 5). Similarly as in
previous examples, the columns labeled order contain an estimation keg; of the order

kest = log(|lxr — x*”H[l)(O,s)/”xn’ - x*||H[1)(O’5))/10g 2.

Here, 7’ is obtained from 7 by stepsize halving.

In order to enable a comparison, we provide the results for solving the problem
without windowing in Table 7. This corresponds to 7 = 0 and H = 5. Note that
the results are almost identical to those obtained in [9] using a slightly different
formulation of the initial condition and a different number of collocation points.

In Tables 8, 9 and 10 the results using the windowing technique with transfer
conditions (1.5) for different numbers of subdivisions n of the individual windows
[£, £+ H] are shown. Since the transfer condition is based on all of the differentiated
components Dx, they are expected to be inconsistent away from the initial point
t = 0.Forn = 1and N < 3, the method delivers exponentially divergent
approximations.

9This initial condition is slightly different from the one used in [9]. However, both conditions are
equivalent.
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Table 8 Errors and N =4 N=5

estimation of the convergence
order for (6.1) and n = 1, L Error Order Error Order

H=5/LusingM =N +3 10 1.2le-2 7.18e—4
20 2.28e—3 24 7.65e—5 3.2
40 5.16e—4 2.1 9.36e—6 3.0
80 1.25¢e—4 2.0 1.18e—6 3.0
160  3.10e—5 2.0 1.48e—7 3.0
320 7.74e—6 2.0 1.93e—8 2.9

Table 9 Errors and estimation of the convergence order for (6.1) and n = 2, H = 5/L using

M=N+3
N=1 N=2 N=3 N =4 N=5
L Error Order Error Order Error Order Error Order Error Order
10 2.30e+0 2.66e—1 2.99¢e—2 1.99¢—3 7.64e—5

20 1.64e+0 0.5 298e—1 —0.2 1.25¢-2 1.3  4.8%—4 20 9.24e—6 3.0
40 1.49e+0 0.1 2.41e+1 —6.3 59%-3 1.1 1.22e—4 2.0 1.16e—6 3.0
80 1.45e+0 0.0 4.16e+5 —14.1 3.03e—3 1.0  3.06e—5 2.0 1.46e—7 3.0
160 1.44e+0 0.0 1.15e+14 —28.0 1.54e—3 1.0  7.65e—6 2.0 1.84e—8 3.0
320 1.44e+0 0.0 1.48e+31 —56.8 7.77e—4 1.0 1.91e—6 2.0 1.09e—8 0.8

Table 10 Errors and estimation of the convergence order for (6.1) and n = 3, H = 5/L using

M=N+3
N=1 N=2 N=3 N=4 N=5
L Error Order Error Order Error Order Error Order Error Order
10 1.74e+0 1.38e—1 1.38e—2 7.31e—4 2.05e—5

20 1.64e+0 0.0 6.92e-2 1.0 6.20e—3 1.2 1.83e—4 2.0 2.53e—-6 3.0
40 1.66e+0 0.0 3.95e—-2 0.8 3.07e-3 1.0 4.6le—5 2.0 3.18¢e—7 3.0
80 1.67e+0 0.0 2.75e—=2 0.5 1.55e-3 1.0 1.15e—=5 2.0 3.9%-8 3.0
160 1.68e+0 0.0 2.35e-2 0.2 7.8le—4 1.0 2.8%e—6 2.0 6.43e—9 2.6
320 1.68e+0 0.0 223e-2 0.1 3.93e—4 1.0 7.22e—-7 2.0 241e-8 -1.9

Finally, we consider the case of using accurately stated initial conditions as
transfer conditions. So they correspond to choosing G(7) according to (6.2). The
results are collected in Table 11. The latter can be compared to the behavior of the
global method as shown in Table 7. The results are rather close to each other.
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Table 11 Errors and estimation of the convergence order for (6.1) and accurately posed transfer
conditions withn =1, H =5/Land M = N +3

N=1 N=2 N=3 N =4 N=5
L Error Order Error Order Error Order Error Order Error Order
10 5.32e+0 5.12e—1 8.46e—2 1.20e—2 1.03e—3

20 2.56e+0 1.1 2.67e—1 0.9 2.64e—-2 1.7 247e-3 2.3 8.85e—5 3.5
40 2.20e+0 0.2 2.03e—1 04 1.09e—2 1.3 5.85e—4 2.1 9.5le—6 3.2
80 2.17e+0 0.0 1.88e—1 0.1 5.14e-3 1.1 1.44e—4 2.0 1.14e—6 3.1
160 2.17e+0 0.0 1.84e—1 0.0 2.53e-3 1.0 3.59e-5 2.0 1.40e—7 3.0
320 2.17e+0 0.0 1.83e—1 0.0 1.26e—3 1.0 8.97e—6 2.0 1.76e—8 3.0

7 Conclusions

We continued the investigation of overdetermined least-squares collocation using
piecewise polynomial ansatz functions. This method is known to efficiently produce
accurate numerical approximations of solutions for two-point boundary value
problems for higher-index DAEs including IVPs as a special case. Since a further
increase in computational efficiency is expected if modified for a customized
application to IVPs, we considered time-stepping techniques for IVPs in this
paper. It turned out that the success of such techniques depends strongly on
the transfer conditions used. In the case that the intrinsic structure is available,
meaning in particular that the dynamic solution components are known, the time-
stepping method has convergence properties similar to the boundary value approach.
However, if only the information about the differentiated components of the DAE is
used, so far our estimates do not secure convergence of the time-stepping approach.
Investigations of a model problem indicate that even in this case convergence can
be obtained provided that the method parameters are chosen appropriately.

The overdetermined least-squares collocation method shows impressive con-
vergence results in our experiments. On one hand, the accuracy is impressive,
on the other hand, the computational efficiency is comparable to widely used
collocation methods for ordinary differential equations. Opposed to that, there are
severe difficulties to theoretically justify these methods. The underlying reason is
the ill-posedness of higher-index DAEs. To the best of our knowledge, available
convergence results are rather sparse and important questions of practical relevance
for constructing efficient algorithms are completely open, e.g., a-posteriori error
estimations, the choice of grids, polynomial orders, collocation points etc. However,
the results so far are encouraging.
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A Proof of Theorem 3.5

The Proposition A.1 below plays its role when verifying the statements of Theo-
rem 3.5. We collect the necessary ingredients of the projector based DAE analysis
to prove Proposition A.1. We refer to [13, 15] for more details. Let the DAE (1.6)
be fine with tractability index ;& > 2 and characteristic values

n—1
O<ro<- - <rpa<r=m l=m=>Y (m—r). (A.D)
i=0

Recall that this property is determined by the given coefficients A : [a, b] — R"*k,
D = 1[I 0] € R and B : [a, b] - R™ ™. A and B are sufficiently smooth, at
least continuous. Then there are an admissible sequence of matrix valued functions
starting from G := AD and ending up with a nonsingular G, see [13, Definition
2.6], as well as associated projector valued functions

Py:=D'D and Pi,..., P,y € C(la,b], R"*™)

which provide a fine decoupling of the DAE. We have then the further projector
valued functions

QIZI_Pla i=07-"’l’L_1a
Iy := Py, IT; :=T1;_1P; € C([a, b], R™™), i=1,...,u—1,
DIT;DY € C'([a,b],RF%), i=1,..., u—1.

By means of the projector functions we decompose the unknown x and decouple
the DAE itself into their characteristic parts, see [13, Section 2.4].

The component u = DIT,_jx = DI, D" Dx satisfies the explicit regular
ODE residing in Rk,

' — (DI, D")'u+ DI, 1G,'BIT,_\D*u = DIT,_1G,'q. (A.2)
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The components v; = IT;_1Q;x = I1;_1Q; D™ Dx, i =1,..., u — 1, satisfy the
triangular subsystem involving several differentiations,

0 </1/12 “es </1/1,p,—1 (Dvl)/
0 (A.3)
Mo :
0 (Dvp—1)" |
I M- M v | A
;o )
+ = q
T %M—Z,;L—l :
I Va1 | [ Zum

The coefficients .4} ;, .#; j, and .£; are subsequently given. Finally, one has for
vg = Qox the representation

n—1

n—1

vy = f()y —%DJFM - Z.//()jvj - Z%j(va)/.

j=1

j=1

(A4)

The subspace im DI1,,_; is an invariant subspace for the ODE (A.2). The com-
ponents v, v1, ..., V,—1 remain within their subspaces im Qqp, im /1,201, ...,
im I1p Q. —1, respectively. The structural decoupling is associated with the decom-
position

x=DV u+vo+vi+-+v,u_i.

All coefficients in (A.2)—(A.4) are continuous on [a, b] and explicitly given in terms
of the used admissible matrix function sequence as

Mot == —0001 D

Myj=—QoP1--Pj_1Q;D", i=2...,u—1
Niiy1 = —I;_1Q; Qi11 D7, i=1,....,n—2,

Nj = —I;—1Q;Piy1---Pj—1Q,;DT, j=i4+2,. ., u—1,i=1,...,u—2,
Myj = QP+ Pu_1.4;DIT;_1 0, j=1...,u—1,

Miji=Ti—1QiPiy1 -+ Pu1MjDIT;_1Qj, j=i+1,...,p—1,i=1,...,0—2,

£ = QP ~~~PM_1G_1,
= i—lQiPi+1"'PM—1G71’ i=1,...
L1 = ,szuﬂG,:l,

Sy = QoP1--- Py 1My,
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in which
n—1
H = (I =M )G, By Iy + Y (I — ) (P, — Q)(DIL, DY) DIT,
r=1
j—1
Mj =Y (I = TPDT(DIDTY = Qps1 DY (DMt DYYDITj -1 Q1D
k=0

j=1,...,u—1.
Consider an arbitrary subinterval (7, 7 + H] C [a, b] and use the function spaces
L%uh = LZ(G’ ;+ H)’ Rm)’ Hs‘lub = Hl(G’ ;+ H)7 Rk)’ Hll),mh = {x <€ L%uh‘Dervluh}’

equipped with their natural norms. Additionally, we introduce the function space
(cf., [9, 15])

. 2 . . 1
Zoup = {q € Ly i vyt = ZLu1q,  Duvp_y € Hyy,

i1 j—1

R — . p— . . . . . / — . . . . .
Vpu—j = ZLu—jq Z N j+i (DVy—jyi) Z My j = j+iVu—jtis
i=1 i=1

Dv,_jeH,), for j=2,..,u—1}

and its norm
1/2

n—1
. 2 2
Igllzy = [ 132+ > 1D 113, . 4 € Zsup.
sub im1 sub

The latter function space is very special, it strongly depends on the decoupling
coefficients which in turn are determined by the given data A, D, B.

We also assume a function G : [a, b] — R! with G(t) = G(@)DT D for all
t € [a, b] to be given, and introduce the operator related to the subinterval Ty, :
Hé’sub — L?ub and the composed operator Jy,, : Hﬁsub — L?ub x R, by

Ts bX 1
Tsub.x = A(D)C)/ + B)C, 2141;)(: = [G(%;x(f)] . X € HD,sub'
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Here, trivially, the restrictions of A and B to the subinterval are meant. The operators
Tsup and Fy,,p, are well-defined and bounded. Regarding

+H
Tty = [ 1AO@0 0 + BOx0Pa
su t

<2max{ max |AD], max [BOP}x]3,
telt,t+H] telt,t+H] D,sub

< 2max{ max |A(¢ 2, max |B(t)|?}||x ||
< {te[a,h]l ()] te[a,h}l O} IIHLIW

we see that there is an upper bound on the operator norm of 7y, uniformly for
all subintervals. Similarly, supposing G to be bounded on [a, b], there is a uniform
upper bound for the norm of ., too.

Proposition A.1 Let the DAE be fine on [a, b] with characteristic values (A.1) and
index > 2.
Let the function G : [a, b] — R! be such that

kerG(r) =ker I, 1(1), |GW)| <cG, |G()"| =cG-, t€la,b],

in which cg and cg- denote constants and G(t)~ is a reflexive generalized inverse

of G(t). Then it holds:

(1) im Tyup = Zsup, im Tsup = Zgup X Rly ker F5up = {0}.

(2) The function space Zgy,p, equipped with the norm |-|| z,,,, is complete.

(3) There is a constant cz, uniformly for all subintervals [t,t + H] C [a, b], such
that

Ixllr  <cz (gly,  +1rDY? forall g € Zap,r e Ry x = T (g, ).
D,sub sub

Note that such a functions G exists always. For instance, applying Lemma 3.1 one
can set G(t) = [I; 01K () D and supplement it by G(r)~ = DY K (1)~ [1; 01T

Proof

(1) The first assertions can be verified by means of the above decoupling formulas,
which are given on [a, b], and which are valid in the same way on each arbitrary
subinterval, too. In particular, examining the equation Z5,,x = 0, we know
from (A.3) thatg € L?u »» 9 = 0 implies v; = 0 on the subinterval successively
for j = w —1,...,1. On the other hand, G(¢)x(t) = O leads to u(t) =
DIT,_1(1)x(t) = DI, 1(1)G()~G{@)x(@) = 0. Since u € Hslub solves
the homogeneous ODE (A.2) on the subinterval, # vanishes there identically.
Finally, from (A.4) it follows that vy = 0, and hence, x = 0.

(2) Let g, € Zgup be a fundamental sequence with respect to the ||-|| Zg,p-norm,
and v, ; € Hé’sub, i=1,...,u—1,correspondingly defined by (A.3), further

wp; = (Dvy;), i = 1,..., u — 1. Then there exists an elements g, € qub
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L? _ -

such that g, — ¢+ and there are further elements w,.; € LZ((t, t+ H), Rk)
L? . .

so that w,; — ws;,i = 1,...,u — 1. The first line of the associated

. L?
relations (A.3) leads to vy, —1 = Lyu—1qn — Lu—19% =: Vs, u—1, Dy -1 =
L2
DZ,—1qn — Duvs 1, thus Dvy 1 € Hslub’ (Dvy,u—1) = wy p—1. The
next lines of (A.3) successively for j =2, ..., u — 1 provide

Jj—1 Jj—1
’
Vn,u—j = Lu—jqn — Z%—jyu—j-%—i(Dvn,u—j-H) - Z//[u—j.u—j+ivn.u—j+i
i=1 i=1
j—1 j—1
L? 3 ;o .
> L j@u = Y A jum i (DVs i) = Y My j i Vs i =5 Ve

i=1 i=1

1 r_ .
Duyy—j € Hgypy, (DU p—j) = Wip—j,

and eventually we arrive at g, € Zgyp.

(3) The operator Ty, is bounded also with respect to the new image space Zg,p
equipped with the norm ||-||z,,,. Namely, for each x € H Il)’mh owing to the
decoupling it holds that

Dv; = DII;_1Qix = DHi_1Q5D+Dx,
(Dv;) = (DI;—1Q; DY) Dx + DIT;_1 ;D" (Dx), i=1,....,u—1.

This leads to || Tsupx ||z, < T ||x||H11)Mb, with a uniform constant T for

all subintervals. In the new setting, the associated operator s, : H 11) b

Zsub X Rlisa homeomorphism, and hence, its inverse is bounded. It remains
to verify the existence of a uniform upper bound cz of the norm of 9&; O

Let an arbitrary pair (g, r) € Zsup X R! be given and the solution x € H 5 sub OF
Taupx = (q,71),1.e., Tgpx = q, G(E)x(f) = r. We apply again the decomposition
of the solution x = DTu 4+ vg + v1 + --- + vy—1 and the decoupling (A.2),
(A.3), (A.4). Owing to the properties of the function G it holds that u(f) =
DI1,_1(t)x(t) = DIT,,_1(1)G (1)~ G(7)x(t) = DIT,,_ (f)G(t) " r and thus

lu(®| < kilrl,

with a constant k; being independent of the subinterval. Below, all the further
constants k; are also uniform ones for all subintervals.

Let U(t,t) denote the fundamental solution matrix normalized at f of the
ODE (A.2). U is defined on the original interval [a, b], there continuously differen-
tiable and nonsingular. U (¢, 7) and U(t, )" = U(Z, 1) are uniformly bounded on
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[a, b]. Turning back to the subinterval we apply the standard solution representation

t
u(t) = U, Hu(t) +/ U(t,s)DHﬂ_l(s)Glzl(s)q(s)ds

r

t
= U@, DI, (G r +/ U(t,5)DIT,—1(5)G;; ()q(s)ds, t € [T.7 + H].
t

Taking into account that the involved coefficients are defined on [a, b] and continu-
ous there we may derive an inequality

2 2 2
ettty = kalr 1™+ ksl l15up-
Next we rearrange system (A.3) to

vy 7 0 Mz M (Dvy)’
: : ) :
Vp—1 Zp,—l 0 (Dvu—l)/

in which the inverse of the matrix function

I Mo - M

m=| !
e '//;/.72,qu
1

is again continuous on [a, b] and upper triangular. This allows to derive the
inequalities

n—1
lojl2 < kallgls ks D NDWY I o j=1,....n=1.
i=1
Considering also (A.4) we obtain
n—1

2 2 2 2
X <k + k Dv; + kg|r|”.
532 <kellglys +kr Y WD) I3+ ksir|

i=1
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Since (Dx) =u’ + Zf;ll (Dv;)" we have further

n—1
2 2 2 2 2
% <ko lglZs + S MDY IR, +IrlP | = ko(lgl
D,sub sub im1 sub

+ 1.

sub

B On the Derivation of the Transfer Matrix S(N, H, n)

Consider an interval (0, /). For the representation of polynomials we will use the
Legendre polynomials Py [18]. They have the properties

L [ P Pydr = 2 0.k 1 =0, 1, ...
2. () =1, P(=1) = (=Dk, k=0,1,....

3.P =P =@k+DP.k=12,...

Let

2k+1)1/2

2
N =a,Pr(1— 1), =
Pr() = ag P ( h) ag ( u

Then it holds
h
/ p@pidt =8, pr©) =ar, peth) = (=D¥a.
0
From the representation for the derivatives, we obtain

h
2 (CkPk—1 — diPiy)) = 2k + 1) pi

where
ax 2k +1\'/? G 2k +1\'?
Clr = = , = = .
k ax—1 2k — 1 k ag+1 2k +3

Since po(t) = ap and p’1 (t) = —2a1/ h, we have the representation

. P Po

r| : =D_ ,
2 ;
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with
—dy
0 —d; 13
f‘ = 2 0 _d2 s D_ =
2N —1
cn—1 0 —dnq
This provides
P , | P 0 0
N = I N s [ = _ .
/ h : |:F1D o]
PN PN

A representation of I" being more suitable for the subsequent derivations can be
obtained by observing that

F=pY| 1 0 -l D' D=
o 2N +1
10 -1 *

Let Z denote the tridiagonal matrix in this decomposition. Then it holds

1, i>j.i—jeven
(Zﬁl)ijz P= e
0, else.

Hence,

0 12v 11/2
r= = D'2ypl/
[Di/zle”zo]
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where
_0 _
10
| 01 0
3 10 1 0
D= s Y =— 01 0 1
. 101 010
2N +1 01 01 0 10
0101 010

Assume now

N
xi= ) aipr. a=(ao.....an)".

T
k=0
Then
N N
x;i (0) = Zampn(O) = Zaman = aTai i=1,...,u—1.

n=0 n=0

We collect the coefficients o = (aq, ..., au_l)T and set

1 T

2pT g 2
A = . C =
al

2 pT
2t

Let now H > 0 be fixed and » = H/n for a given positive integer n. The
functional to be minimized is

1 |
2 / 2 T
Dyup(x) = _lx1ll7, + lx;_qy —xill5o » x=(x1,..., %)
2 Liup 2 L
su su.
=

on X, under the condition x; = r;,i = 1,...,u — 1. The term for i = w in this
sum can be omitted since, for given x,,_1 € Py, x, € Py_1 can always be set to

xl’L _ such that the last term amounts to 0.
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For a shorthand notation, define x;' = x;|((y—1)n,vn)- Assuming the representa-
tion

N

_ v v

i = Zaikpk
k=0

on ((v—1)h, vh) with p; being the polynomials py transformed onto ((v— 1)k, vh),
we obtain

n -1 2
T,
¢sub(x)=Z |051| Z F ; 1+(X
v=I1 =2
where o’ = (o), . .., a!y)T. Furthermore,

N N
7Nom =3 el ey = Y el ar (=1

fori=1,...,u— 1.Defineb = (agp, ..., (—D)Van)T.
All these equations can be conveniently written down in a matrix fashion. The
initial condition becomes

Ca' =r
while the transfer conditions read
Ba''=Ca", v=2,...,n
with
bT
B = )
bT
Leta = (a!, ..., o™ and
A C
A —B C
M = , ‘5 =
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Note that .27 is nonsingular since A is so. Similarly, € has full row rank since C has
the same property.
Finally, we obtain

1
Pgup(X) = Pyup(a) = 2|V<zm|2 — min such that & = (1,0, ...,0)".
The transfer matrix is then given by
S(N, H,n)r = Ba" (r) forall r € R,

In the case u = 2, a simple analytical solution is feasible.

B.1 The Case p =2

In order to simplify the notation, the index i will be omitted. The transfer matrix
reduces to a scalar

n

x"(H) ‘
The Lagrange functional belonging to the present optimization problem reads

(e, 2) = Zz«kam Zakoek—r

v=1 k=0
n N
+Z)‘” Zakak Z( 1)kakak
v=2 k=0 k=0

In the following, we will use the notations

Y 2 1 2 k _I)N b
=Zak=h(N—|—1), b—Z( Dka? = N+D, e=| |

k=0 h
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The derivatives of the Lagrange functional are

3)\1 Zakak—r

a(p N k v 1

a :Zakak Zak( D, ", v=2,...,n
V' k=0

dp

= o} + Ayay,
aa;: k+ ndk
d
wvza;—i—)wak—)wﬂak(—l)k, v=1,...,n—1.
day,

Hence, forv =1,

N N

Z /1 = Zak (Azak(—l)k - Mak)
k=0

=bly —ak.

Similarly, for v = n,

N
0= Zakak Zak( 1)k v=1
k=0
N N
==Y afha + D ar(=DF Rk = inax (= DF)
k=0 k=0

=bli_1 — 2ak,.

And finally, for 1 < v < n,

N N
0= Zaka,‘; — Zak(—l)ka}; !
k=0 k=0

i (=D = rvar) - S a1t (R (=D = 21ar)
k=l

k=0

=bly+1 —2akr, + bA,_1.

131
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This provides us with the linear system of equations

—a b A r
b —2a b A2 0
b —2a b A1 0
b —2a An 0
Since x"(H) = Y 1o ax(—D¥a = — 3 ax(— 1) Anar = —ba, it is sufficient

to compute the last component A, of the solution to this system. Let A, denote the
system matrix and A, the matrix obtained from A, by replacing the last column of
A, by the right-hand side. According to Cramer’s rule it holds

_ det A,
" detAn'

Let u,, = det A, and v,, = det A~,,. Then we obtain the recursion

v =,
vy = —bvy,_1.
Its solution is given by
_ v—1
vy =(=b) "1
Analogously, we have
up = —a,

Uy = 2a% — bz,
- 2
U, = —2au,_1 — bu,_».
This recursion is a simple difference equation with the general solution
uy = c1z] + 223,

where

zu:a(—li/l—cZ).
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Application of the initial condition leads to ¢; = ¢
expressions we obtain

x"(H)‘
Pn =
r

—bi,

r

2b"

2

PN /]

133

= 1/2. Inserting these

ar [(—1 +1 —c2)" +(-1-v1 —CZ)"}

(—1 + V1 —CZ)" n (—1 V1 —c2)" '

From the definition of ¢ we obtain ¢ = (N + 1)~!. Hence, V1 — ¢2 ~ 1 such that

o ~ clal-L,

B.2 An Approach for p > 2

In the case i > 2, the steps taken in the case u = 2 can be repeated. The Lagrangian

system for the constraint optimization problem reads
AT €T ||| |0
€ 0 Al |

r=,0,...,07.

where

The computation steps are then
() o =—(IT) 16T
() A =—-[C(FT) €T Ir
(iii) o = (FT ) ECTC (AT )1 €T Iy

(iv) x(H) = Ba = B(ZT ) '¢T € (AT /) ' 6T 'r.
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In the end, this yields

S(N,H,n) = BT o) '¢T 16T ) ' 1.
This representation can easily be evaluated using symbolic computations. It should

be mentioned that most terms in S(N, H, n) lead to simple rational expressions in
N. However, the results presented in Sect. 5.3 have been computed numerically.
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Exponential Integrators for Semi-linear )
Parabolic Problems with Linear s
Constraints

Robert Altmann and Christoph Zimmer

Abstract This paper is devoted to the construction of exponential integrators of
first and second order for the time discretization of constrained parabolic systems.
For this extend, we combine well-known exponential integrators for unconstrained
systems with the solution of certain saddle point problems in order to meet
the constraints throughout the integration process. The result is a novel class of
semi-explicit time integration schemes. We prove the expected convergence rates
and illustrate the performance on two numerical examples including a parabolic
equation with nonlinear dynamic boundary conditions.

Keywords PDAE - Exponential integrator - Parabolic equations -
Time discretization
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1 Introduction

Exponential integrators provide a powerful tool for the time integration of stiff
ordinary differential equations as well as parabolic partial differential equations
(PDE), cf. [8, 19, 24]. Such integrators are based on the possibility to solve the linear
part — which is responsible for the stiffness of the system — in an exact manner.
As a result, large time steps are possible which makes the method well-suited
for time stepping, especially for parabolic systems where CFL conditions may be
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very restrictive. For semi-linear ODEs and parabolic PDEs exponential integrators
are well-studied in the literature. This includes explicit and implicit exponential
Runge-Kutta methods [11, 17, 18], exponential Runge-Kutta methods of high
order [26], exponential Rosenbrock-type methods [21], and multistep exponential
integrators [10].

In this paper, we construct and analyze exponential integrators for parabolic
PDEs which underlie an additional (linear) constraint. This means that we aim to
approximate the solution to

w(t) + Ju) = f(t,u)

which at the same time satisfies a constraint of the form ZAu(t) = g(¢). Such systems
can be considered as differential-algebraic equations (DAEs) in Banach spaces, also
called partial differential-algebraic equations (PDAEs), cf. [1, 13, 25]. PDAEs of
parabolic type include the transient Stokes problem (where % equals the divergence
operator) as well as problems with nontrivial boundary conditions (with % being the
trace operator). On the other hand, PDAEs of hyperbolic type appear in the modeling
of gas and water networks [5, 14, 22] and in elastic multibody modeling [33].

Besides for the special application of the incompressible Navier-Stokes equa-
tions [23, 28], exponential integrators have not been considered for PDAEs so far. In
the finite-dimensional case, however, exponential integrators have been analyzed for
DAE:s of (differential) index 1 [20]. We emphasize that the parabolic PDAEs within
this paper generalize index-2 DAEs in the sense that a standard spatial discretization
by finite elements leads to DAEs of index 2. Known time stepping methods for the
here considered parabolic PDAEs include splitting methods [3], algebraically stable
Runge-Kutta methods [4], and discontinuous Galerkin methods [37].

In the first part of the paper we discuss the existence and uniqueness of solutions
for semi-linear PDAEs of parabolic type with linear constraints. Afterwards, we
propose two exponential integrators of first and second order for such systems.
The construction of this novel class of time integration schemes benefits from the
interplay of well-known time integration schemes for unconstrained systems and
stationary saddle point problems in order to meet the constraints. Since the latter is
done in an implicit manner, the combination with explicit schemes for the dynamical
part of the system leads to so-called semi-explicit time integration schemes. As
exponential integrators are based on the exact evaluation of semigroups, we need
to extend this to the constrained case. The proper equivalent is the solution of a
homogeneous but transient saddle point problem, which is a linear PDAE.

The resulting exponential Euler scheme requires the solution of three stationary
and a single transient saddle point problem in each time step. All these systems
are linear, require in total only one evaluation of the nonlinear function, and do
not call for another linearization step. Further, the transient system is homogeneous
such that it can be solved without an additional regularization (or index reduction
in the finite-dimensional case). The corresponding second-order scheme requires
the solution of additional saddle point problems. Nevertheless, all these systems
are linear and easy to solve. In a similar manner — but under additional regularity
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assumptions — one may translate more general exponential Runge-Kutta schemes to
the constrained case. Here, however, we restrict ourselves to schemes of first and
second order.

The paper is organized as follows. In Sect. 2 we recall the most important
properties of exponential integrators for parabolic problems in the unconstrained
case. Further, we introduce the here considered parabolic PDAEs, summarize all
needed assumptions, and analyze the existence of solutions. The exponential Euler
method is then subject of Sect. 3. Here we discuss two approaches to tackle
the occurrence of constraints and prove first-order convergence. An exponential
integrator of second order is then introduced and analyzed in Sect. 4. Depending on
the nonlinearity, this scheme converges with order 2 or reduced order 3/2. Comments
on the efficient computation and numerical experiments for semi-linear parabolic
systems illustrating the obtained convergence results are presented in Sect. 5.

2 Preliminaries

In this preliminary section we recall basic properties of exponential integrators when
applied to PDEs of parabolic type. For this (and the later analysis) we consider
the well-known ¢ functions. Further, we introduce the precise setting for the here
considered parabolic systems with constraints and discuss their solvability.

2.1 Exponential Integrators for Parabolic Problems

As exponential integrators are based on the exact solution of linear homogeneous
problems, we consider the recursively defined ¢-functions, see, e.g. [35, Ch. 11.1],

@ (2) — ¢r(0)
@o(z) == e®, Orer1(2) = . ) 2.1
For z = 0 the values are given by ¢ (0) = 1/k!. The importance of the p-functions
comes from the fact that they can be equivalently written as integrals of certain
exponentials. More precisely, we have for k > 1 that

! -5)z S
(/)k(Z)I/O e )(k—l)!ds' 2.2)

We will consider these functions in combination with differential operators. For a
bounded and invertible operator «7: X — X, where ¢’ := exp(t.#/) is well-
defined, we can directly use the formula in (2.1) using the notion ;/ a1

More generally, we can apply (2.2) to define ¢ with non-invertible or unbounded
differential operators as arguments. Moreover, the exact solution of a linear abstract
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ODE with a bounded operator and a polynomial right-hand side can be expressed in
terms of the ¢-functions. More precisely, the solution of

n
. Je o x
u(t)+m¢(t)=z(k_1)!t eX (2.3)
k=1
with initial condition u(0) = u( and coefficients f; € X is given by

u(t) = ot uo+ Y _ pr(—t.) fi 1. 2.4)
k=1

If —o/: D(&/) C X — X is an unbounded differential operator which generates a
strongly continuous semigroup, then we obtain the following major property for the
corresponding ¢-functions.

Theorem 2.1 (cf. [19, Lem. 2.4]) Assume that the linear operator —< is the
infinitesimal generator of a strongly continuous semigroup e ' Then, the oper-
ators g (—1.2/) are linear and bounded in X

With the interpretation of the exponential as the corresponding semigroup, the
solution formula for bounded operators (2.4) directly translates to linear parabolic
PDEs of the form (2.3) with an unbounded differential operator <7, cf. [19].

The construction of exponential integrators for i (¢) + </u(t) = f(t, u) is now
based on the replacement of the nonlinearity f by a polynomial and (2.4). Consider-
ing the interpolation polynomial of degree 0, i.e., evaluating the nonlinearity only in
the starting value of u, we obtain the exponential Euler scheme. The corresponding
scheme for constrained systems is discussed in Sect. 3 and a second-order scheme
in Sect. 4.

2.2 Parabolic Problems with Constraints

In this subsection, we introduce the constrained parabolic systems of interest
and gather assumptions on the involved operators. Throughout this paper we
consider semi-explicit and semi-linear systems meaning that the constraints are
linear and that the nonlinearity only appears in the low-order terms of the dynamic
equation. Thus, we consider the following parabolic PDAE: find u: [0, T] — ¥
and A: [0, T] — 2 such that

u(t) + u(t) + B\(t) = f(t,u) in V¥, (2.5a)
Bu(t) =g(1) in 2% (2.5b)
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Therein, ¥ and 2 denote Hilbert spaces with respective duals »* and 2*. The
space ¥ is part of a Gelfand triple ¥, 22, ¥*, cf. [38, Ch. 23.4]. This means
that 7 is continuously (and densely) embedded in the pivot space .7 which
implies JZ* — 7™, i.e., the continuous embedding of the corresponding dual
spaces. In this setting, the Hilbert space ¢ is the natural space for the initial data.
Note, however, that the initial condition may underlie a consistency condition due to
the constraint (2.5b), cf. [13]. For the here considered analysis we assume slightly
more regularity, namely u(0) = ug € ¥/, and consistency of the form Bug = g(0).

The assumptions on the operators .« € Z (¥, ?*) and B € L (¥, 2*) are
summarized in the following.

Assumption 2.1 (Constraint Operator %) The operator B: V — 2% is linear,
continuous, and satisfies an inf-sup condition, i.e., there exists a constant f > 0
such that

. (P, q)
inf sup >
ge\0ver\joy IVl llgll 2

Assumption 2.2 (Differential Operator /) The operator o : V' — ¥* is linear,
continuous, and has the form of = o\ + o with | € LV, V™) being self-
adjoint and oh € LV, H). Further, we assume that <f is elliptic on Vier ‘=
ker A, i.e., on the kernel of the constraint operator.

Without loss of generality, we may assume under Assumption 2.2 that .o is elliptic
on %er. This can be seen as follows: With u, denoting the ellipticity constant of
&/ and cy, the continuity constant of o7, we set

cl <
<~ + T idyy and gh < gh— 7 idye.
2oy 2oy

This then implies

2
C
2 a5 2 Mot 2
(A1 Vker» Vker) = M&zf”vker”"j/ - C&zﬁ”vker”"f/”l)ker”.ﬁf + 2/12 ”vker”jf = ) ”Uker”"j/

for all vker € 7%er- Hence, we assume throughout this paper that, given Assump-
tion 2.2, .o7] is elliptic on Y4er. As a result, 7] induces a norm which is equivalent
to the ¥’ -norm on e, i.€.,

w lvkerlly < Nokerll?, < C llverll - (2.6)
Remark 2.1 The results of this paper can be extended to the case where .« only

satisfies a Géarding inequality on ¥ier. In this case, we add to o7 the term « id
such that &7 4« id y is elliptic on Y4e; and add it accordingly to the nonlinearity f.
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Assumption 2.1 implies that 4 is onto such that there exists a right-inverse denoted
by %~ : 2* — ¥. This in turn motivates the decomposition

YV = Vier ® Y with Yier =ker B, V.=imAB .

We emphasize that the choice of the right-inverse (and respectively 7¢) is, in general,
not unique and allows a certain freedom in the modeling process. Within this paper,
we define the complementary space ¥; as in [4] in terms of the annihilator of Y,
ie.,

“I/C:={ve"//lﬁfve“f/k(ér}z{ve“f/l(ﬁfv,w)=0f0ra11we“f/ker}.

The analysis of constrained systems such as (2.5) is heavily based on the
mentioned decomposition of ¥'. Furthermore, we need the restriction of the
differential operator to the kernel of 4, i.e.,

Ger = VQ{H/ke,: Per = 7/1;; = (Ye)™

Note that we use here the fact that functionals in #* define functionals in 7%

simply through the restriction to #er. The closure of Y4y in the .77-norm is denoted
by Her := "//ker%). Assumption 2.2 now states that <%, is an elliptic operator. This
in turn implies that —.c#; generates an analytic semigroup on %, see [30, Ch. 7,
Th. 2.7].

Finally, we need assumptions on the nonlinearity f. Here, we require certain
smoothness properties such as local Lipschitz continuity in the second component.
The precise assumptions will be given in the respective theorems.

Example 2.1 The (weak) formulation of semi-linear parabolic equations with
dynamical (or Wentzell) boundary conditions [34] fit into the given framework. For
this, the system needs to be formulated as a coupled system which leads to the
PDAE structure (2.5), cf. [2]. We emphasize that also the boundary condition may
include nonlinear reaction terms. We will consider this example in the numerical
experiments of Sect. 5.

2.3 Existence of Solutions

In this section we discuss the existence of solutions to (2.5), where we use the notion
of Sobolev-Bochner spaces L2(0, T; X) and HI(O, T; X) for a Banach space X,
cf. [38, Ch. 23]. For the case that f is independent of u, the existence of solutions
is well-studied, see [1, 13, 36]. We recall the corresponding result in the special of
o/ being self-adjoint, which is needed in later proofs.
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Lemma 2.2 Let o € LV, V™) be self-adjoint and elliptic on Yker and let B
satisfy Assumption 2.1. Further, assume f € L*(0,T; 5¢), g € HY(0,T; 2%,
and ug € ¥ with Buy = g(0). Then, the PDAE (2.5) with right-hand sides f, g —
independent of u — and initial value uo has a unique solution

ueCq0,T; ¥)NHY 0, T; #), re L*0,T; 2)

with u(0) = ug. The solution depends continuously on the data and satisfies

t
lu(t) — B~ g%, < luo— 2B g%, + /0 If(s)— B §)%pds. (2.7

Proof A sketch of the proof can be found in [36, Lem. 21.1]. For more details we
refer to [40, Ch. 3.1.2.2]. O

In order to transfer the results of Lemma 2.2 to the semi-linear PDAE (2.5) we need
to reinterpret the nonlinearity f: [0, T] x ¥ — ¢ as a function which maps an
abstract measurable functionu: [0, T] — ¥ to f(-,u(-)): [0, T] — . For this,
we assume the classical Carathéodory condition, see [15, Rem. 1], i.e.,

i.) v f(¢,v) is a continuous function for almost all ¢ € [0, T],
ii.) ¢t — f(¢, v) is a measurable function for all v € 7.

Furthermore, we need a boundedness condition such that the Nemytskii map
induced by f maps C([0, T]; ¥) to L?(0, T; #). We will assume in the following
that there exists a function k € L2(0, T) such that

If @ 0)lle < k(@)1 +[vly) (2.8)

for all v € 7 and almost all ¢+ € [0, T]. We emphasize that condition (2.8) is
sufficient but not necessary for f to induce a Nemytskii map, cf. [15, Th. 1(ii)]. We
will use this condition to prove the existence and uniqueness of a global solution
to (2.5).

Theorem 2.3 Assume that o/ and AB satisfy Assumptions 2.1 and 2.2. Further,
let g € HY(0,T; 2% and suppose that f:[0,T] x ¥ — I satisfies the
Carathéodory conditions as well as the uniform bound (2.8). Assume that for every
v € V¥ there exists an open ball B,(v) C ¥ with radius r = r(v) > 0 and a
constant L = L(v) > 0, such that for almost every t € [0, T] it holds that

I f(t,v1) — f(t, v)llr < Llvi — vy (2.9)

forall vy, vy € B (v). Then, for a consistent initial value ug € v, i.e., Bug = g(0),
the semi-linear PDAE (2.5) has a unique solution

ueCq0,T;¥)NHY 0, T; #), re L*0,T; 2)

with u(0) = uy.
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Proof Without loss of generality, we assume that .o/ = .&7. For this, we redefine
f(t,v) < f(t,v) — ghv, leading to an update of the involved constants L <«
L + ¢z and k < k + ¢y, but leaving the radius r unchanged.

To prove the statement we follow the steps of [30, Ch. 6.3]. Let ¢’ € (0, T]
be arbitrary but fixed. With (2.8) we notice that the Nemyskii map induced by f
maps C([0, ']; #) into L>(0,t'; #), cf. [15, Th. 1]. Therefore, the solution map
Sy C([0,1']; ¥) — C([0,1']; ¥), which maps y € C([0, ¢']; ¥) to the solution of

w(t) + Au(t) + A1) = ft,y(0)  inV7, (2.10a)

PBu(t) =g(t) in 2* (2.10b)

with initial value ug, is well-defined, cf. Lemma 2.2. To find a solution to (2.5) we
have to look for a unique fixed point of S;» and show that ¢’ can be extended to T'.

Letu € C([0, T]; ¥) be the solution of the PDAE (2.5) for f = 0 and initial
value ug. With r = r(ug) and L = L(up) we now choose #; € (0, T] such that

~ r
la@) —uolly < . (@)
2
/ kP ds < e ®)
4(1+r + lluolly)
l‘1 < W, (©)
t
/3|k|2(1+||ﬁ||21/)d5 <, exp( /|k| ds) (d)
0

for all t € [0, #1]. This is well-defined, since i — ug and the integrals in (b) and (d)
are continuous functions in ¢, which vanish for t+ = 0. We define

D:={yeCq0,nl; ") |lly —illcqon,» <r/2}

and consider y1, y2 € D. By (a) we have ||y; — uollc(0,,1,%) < r. Using that & and
Sy, yi satisfy the constraint (2.10b), we obtain the estimate

~ Qn (!
WISy — DO 2 /0 1G5, 31 ()12 ds
2.8) (! 2
2 /0 k()P (1 + 131 (5) — uolly + luolly’) ds

t
2
< (L+7+luolly) fo lk(s)|* ds
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which implies with (b) that S;, maps D into itself. Further, we have

Qn [t
1St y1 = Sy y2) I3, < /O £ (s, y1(5)) — £ (s, y2()II3, ds

2.9)
< L2t1||)’1 - y2||%‘(0,t1;”ﬂ)

for all t+ < #1,i = 1,2. Together with the previous estimate and (c), this shows
that S;, is a contraction on D. Hence, there exists a unique fixed pointu € D C
C([0,11]; ) of S;, by the Banach fixed point theorem [39, Th. 1.A]. On the other
hand, for every fixed point u* = S;,u* in C([0, #1]; '), we have the estimate

wll@* =15 = wll(Syu* — D013

t
.~ - 2
< /0 k()I*(1+ [ = @) (&) ly + i (s)]l)" ds.
Using (a + b + ¢)? < 3 (a® + b? + ¢?) and Gronwall’s inequality it follows that

t t
@ =@l < /0 3 @R+ a)I) ds-exp (3 /0 k®)Pds)  @11)

for every t < t1. Because of (d), this shows that u* is an element of D and thus,
u* =u.

By considering problem (2.5) iteratively from [#;,_1, T'], o := 0, to [#;, T] with
consistent initial value ugp = u(#;), we can extend u uniquely on an interval I with
ue C; ¥)andu = Syu forevery ' € I. Note that either I = [0, T]or I = [0, T')
with T/ < T. The second case is only possible if ||u(t)||y — oo forr — T’,
otherwise we can extend u by starting at 7’. But, since the estimate (2.11) also holds
foru = u* and t < T’, we have in limit that ||u(T") ||y < |u(T") — a(T")|v +
l@(T") ||y is bounded. Therefore, u = Sru € C([0, T1; ¥). Finally, the stated
spaces for u# and A follow by Lemma 2.2 with right-hand side f = f(-,u(-)). O

Remark 2.2 Under the given assumptions on f from Theorem 2.3, one finds a
radius r, > 0 and a Lipschitz constant L, € [0, 0o), both based on the solution u,
such that (2.9) holds for all vy, v2 € By, (u(s)) with L = L, and arbitrary s € [0, T'].
With these uniform constants one can show that the mapping of the data ug € ¥
and g € HY(0, T; 2) with Bug = g(0) to the solution (u, A) is continuous.

Remark 2.3 Tt is possible to weaken the assumption (2.8) of Theorem 2.3 for an
arbitrary p > 1 to || f(t, v)|lr < k(t)(1 + ||v||,1;/). Under this assumption one can
show the existence of a unique solution of (2.5), which may only exists locally.
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Remark 2.4 The assumptions considered in [30, Ch. 6.3] are stronger then the one
in Theorem 2.3. If these additional assumptions are satisfied, then the existence
and uniqueness of a solution to (2.5) follows directly by Lemma 2.2, [30, Ch. 6,
Th. 3.1 & 3.3], and the fact that every self-adjoint, elliptic operator o7 € .Z (¥, ¥*)
has a unique invertible square root «/'> € ZL(¥, ) with (i, 1) =
(a/'?vy, @/'*vy) for all vy, v € . This can be proven by interpreting .27 as an
(unbounded) operator A: D(A) C J# — 4 with domain D(A) = &/~ ' 7 C
¥ —  and the results of [6, Ch. 6, Th. 4 & Ch. 10, Th. 1] and [30, Th. 6.8].

2.4 A Solution Formula for the Linear Case

In the linear case, the solution of (2.5) can be expressed by the variation-of-constants
formula (Duhamel’s principle), cf. [13]. In the semi-linear case, we consider the
term f (¢, u) as a right-hand side which leads to an implicit formula only. This,
however, is still of value for the numerical analysis of time integration schemes.

The solution formula is based on the decomposition u = uger + Uc
with uger: [0, T] — Pker and uc: [0, T] — V. The latter is fully determined
by the constraint (2.5b), namely u.(t) = B~ g(t) € Y. For uyer we consider the
restriction of (2.5a) to the test space %ier. Since the Lagrange multiplier disappears
in this case, we obtain

liker + Gherlker = Uker + & Uker = f(t, Uker + Uc) — e in 7/1;;- (2.12)

Note that the right-hand side is well-defined as functional in 7} using the trivial
restriction of 7* to #% . Further, the term .«7u. disappears under test functions
in Yer due to the definition of ;. If this orthogonality is not respected within the
implementation, then this term needs to be reconsidered.

The solution to (2.12) can be obtained by an application of the variation-of-
constants formula. Since the semigroup can only be applied to functions in ey,
we introduce the operator

w: H =" — I = Her.
This operator is again based on a simple restriction of test functions and leads to the
solution formula

u(t) = uc(t) + uker(t)

t
=B g(1) + ¢ e (0) + / e U e o[ £ (s, Uker(s) + te(s)) — tic(s)] ds.
0
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Assuming a partition of the time interval [0, T]by 0 =1 <t < --- <ty =T,
we can write the solution formula in the form

U(tpy1) — B gny1 (2.13)

In+

1
= e = [y (1) — B g, ] +/ e 1= hery o[ £(s, u(s)) — tic(s)] ds.

In

Note that we use here the abbreviation g, := g(#,). In the following two sections
we construct exponential integrators for constrained semi-linear systems of the
form (2.5). Starting point is a first-order scheme based on the exponential Euler
method applied to equation (2.12).

3 The Exponential Euler Scheme

The idea of exponential integrators is to approximate the integral term in (2.13)
by an appropriate quadrature rule. Following the construction for PDEs [19], we
consider in this section the function evaluation at the beginning of the interval. This
then leads to the scheme

T
Upyl — B gny1 = ef”sze‘[u,, — B g +/ ef(rfs)dkefto[f(tn, Un) — tic(ty)] ds
0
= (pO(_TJZ{ker)(”n - {937gn) + 191 (_TJZ{ker)(LO[f(tna Up) — %7gn])
3.1

As usual, u, denotes the approximation of u(#,). Further, we restrict ourselves
to a uniform partition of [0, 7] with step size t for simplicity. Assuming that
the resulting approximation satisfies the constraint in every step, we have u, —
B~ gn € Yker = Her such that the semigroup e T%er g applicable. The derived
formula (3.1) is beneficial for the numerical analysis but lacks the practical access
which we tackle in the following.

3.1 The Practical Method

Since the evaluation of the ¢-functions with the operator .2, is not straightforward,
we reformulate the method by a number of saddle point problems. Furthermore, we
need evaluations of ™ applied to the right-hand side g (or its time derivative). Also
this is replaced by the solution of a saddle point problem.
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Consider x := B g, = B g(ty) € Y¢ C V. Then, x can be written as the
solution of the stationary auxiliary problem

dx+Bv=0 in v*, (3.2a)
Bx =gy in 2%, (3.2b)

Note that equation (3.2b) enforces the connection of x to the right-hand side g
whereas the first equation of the system guarantees the desired .<7-orthogonality.
The Lagrange multiplier v is not of particular interest and simply serves as a dummy
variable. The unique solvability of system (3.2) is discussed in the following lemma.

Lemma 3.1 Let the operators &/ and P satisfy Assumptions 2.1 and 2.2. Then, for
every g, € 2* there exists a unique solution (x,v) € V. x 2 to system (3.2).

Proof Under the given assumptions on the operators <7 and 4 there exists a unique
solution (x, v) € ¥ x 2 to (3.2), even in the case with an inhomogeneity in the first
equation, see [7, Ch. II, Prop. 1.3]. It remains to show that x is an element of #¢. For
this, note that x satisfies (7 x, w) = 0 for all w € Y, since the Z*-term vanishes
for these test functions. This, however, is exactly the definition of the complement
space 7¢. |

Being able to compute %~ g,, we are now interested in the solution of problems
involving the operator e, This will be helpful for the reformulation of the
exponential Euler method (3.1). We introduce the auxiliary variable w,, € ¥er as
the solution of

herWy = Stn, un) — tc(ty) = Stn, un) — gg_g.n in 4//1;;.
This is again equivalent to a stationary saddle point problem, namely

A wy + BFvy = fty, uy) — B &n in V", (3.3a)
B, =0 in 2%, (3.3b)

As above, the Lagrange multiplier is only introduced for a proper formulation and
not of particular interest in the following. The unique solvability of system (3.3)
follows again by Lemma 3.1, since the right-hand side of the first equation is an
element of ¥*. In order to rewrite (3.1), we further note that the recursion formula
for ¢ implies

@1 (—theh = —[po(~T Fher) — id | A D

for all h € ;. Recall that @, is indeed invertible due to Assumption 2.2. Thus,
the exponential Euler scheme can be rewritten as

Untl = B gny1 + (PO(_TVkaer)(un — B gn— wn) + wy.
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Finally, we need a way to compute the action of ¢o(—7.2%er). For this, we consider
the corresponding PDAE formulation. The resulting method then reads u,+; =
B~ gn+1 + 2(tyt1) + wy, where z is the solution of the linear homogeneous PDAE

z2(t) + A z(t) + B @) =0 in V™, (3.4a)
Bz(t) =0 in 2* (3.4b)
with initial condition z(f,) = u, — % g» — wy,. Thus, the exponential Euler

scheme given in (3.1) can be computed by a number of saddle point problems. We
summarize the necessary steps in Algorithm 1.

Algorithm 1 Exponential Euler scheme
1: Input: step size t, consistent initial data uo € ¥, right-hand sides f, g
2: forn =0to N — 1 do
3:  compute B~ gy, B gnt1, and B~ g, = B~ £(t,) by (3.2)
4 compute w,, by (3.3)
5 compute z as solution of (3.4) on [t,, t,,41] with initial data u, — B~ g, — w,
6: setupy1 = B gnt1 + 2(tnt1) + Wy
7: end for

Remark 3.1 One step of the exponential Euler scheme consists of the solution of
four (from the second step on only three) stationary and a single transient saddle
point problem, including only one evaluation of the nonlinear function f. We
emphasize that all these systems are linear such that no Newton iteration is necessary
in the solution process. Furthermore, the time-dependent system is homogeneous
such that it can be solved without the need of a regularization.

3.2 Convergence Analysis

In this section we analyze the convergence order of the exponential Euler method
for constrained PDEs of parabolic type. For the unconstrained case it is well-known
that the convergence order is one. Since our approach is based on the unconstrained
PDE (2.12) of the dynamical part in ¥4.r, we expect the same order for the solution
of Algorithm 1. For the associated proof we will assume that the approximation u,,
lies within a strip of radius r around u, where f is locally Lipschitz continuous with
constant L > (. Note that by Remark 2.2 there exists such a uniform radius and
local Lipschitz constant. Furthermore, a sufficiently small step size T guarantees
that u,, stays within this strip around u, since the solution z of (3.4) and &~ g are
continuous.
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Theorem 3.2 (Exponential Euler) Consider the assumptions of Theorem 2.3
including Assumptions 2.1 and 2.2. Further, let the step size T be sufficiently small
such that the derived approximation u, lies within a strip along u in which f is
locally Lipschitz continuous with a uniform constant L > 0. For the right-hand
side of the constraint we assume g € H>(0, T; 2%). If the exact solution of (2.5)
satisfies (?tf(', u(-)) € L*(0, T; ), then the approximation u, obtained by the
exponential Euler scheme of Algorithm 1 satisfies

In
lun —u@)l3 S ©° /O I& f @ w3, + 18§01, dt.

Note that the involved constant only depends on t,, L, and the operator < .

Proof With w,, and z from (3.3) and (3.4), respectively, we define U (r) := z(z) +
wy + B g(t) fort € [ty, ty+1],n =0, ..., N — 1. This function satisfies

Uty = z2(ty)+wy+B gn =up and  U(tyq1) = 2(tay ) FWp+B gny1 = Uny1.
Furthermore, since U (1) = (1) + %~ §(t), the function U solves the PDAE

Ut) + FU®1) + BEAW) = ftw,un) + B~ (1) — ) in V™,
BU (1) =g() in 2*

on [t,, th+1]l,n =0, ..., N — 1 with initial value U (#y) = ug. To shorten notation
we define Au :=u — U and AA := L — A, which satisfy

SAu+ Alu+ B DL = fCul)) = fltnun) — bAu— B (§ — &) in ¥,
BAu =0 in 2*
on each interval [#,, t,+1] with initial value Au(ty) = 0if n = 0 and Au(t,) =

u(t,) — u, otherwise. In the following, we derive estimates of Au on all sub-
intervals. Starting with n = 0, we have by Lemma 2.2 that

@7 !
IIAu(t)IIi,‘/l =< /0 I f (s, u(s)) — f(O,u0) — @hAu(s) — B (g(s) — go)llﬁf ds

t
<2
0

N d 2 Ci{ 2
oo — g+ R s, ds
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By Gronwall’s lemma and ¢ = #; = T we obtain with ¢ := 203272 w~! the bound

- T N . 2
ey =y <2 [C] [ 8 ponuom =z gnan| as

et [T [ a , — B i), dnd
<2e [ s [C18 sonutm) - #5001 anas s

T
sze”ﬁ/o I Flsou)Zy + 187815, ds .

~ -

_—
=3 £ §0.1)

With the uniform Lipschitz constant L we have for n > 1 that
Iny1 )
[ st = ftnun P as
In
Int1 ) 2
52/ N f s utn)) — f @ns und e + 1 (s u(s)) — f (@n, u(@))|| e ds
tn

2 2 et Y 2
=277 lNu(t) —unlley + 2/ (s — tn)/ I 4y £ (1, (M)l dn ds.
tn tn
With this, we obtain similarly as in (3.5) and with Young’s inequality,

. 2 .
lueCtre) = il < e[ (14375 ) utt) = unly +372 (8 £ 8 1o ts1) -
(3.6)

Therefore, with (1 + x) < e*, estimate (3.5), and an iterative application of the
estimate (3.6) we get

n
— 2\n—k .
l(tas1) = wnsilZy, <723 explet)™ (1437 5)" (G £ 8tk trar)
k=0

2 ..
< 12 3 exp(ctyq1) EXp (3]; t,,) f((ftf, g,0, t,,+1)
foralln = 0,..., N — 1. The stated estimate finally follows by the equivalence
of || - [l and || - [ o on Yer, see (2.6). O

Remark 3.2 The assumption on the step size T only depends on the nonlinearity f
and not on the operator .o Thus, this condition does not depend on the stiffness of
the system and still allows large time steps.

Remark 3.3 1In the case of a self-adjoint operator <7, i.e., o/ = 0, the convergence
result can also be proven by the restriction to test functions in %y and the appli-
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cation of corresponding results for the unconstrained case, namely [19, Th. 2.14].
This requires similar assumptions but with (ft f(G,u(:)) € L*0,T; 70).

We like to emphasize that this procedure is also applicable if 2% # 0 by
moving % into the nonlinearity f. This, however, slightly changes the proposed
scheme, since then only @hu, enters the approximation instead of .Hu(t). In
practical applications this would also require an additional effort in order to find
the symmetric part of the differential operator .« which is still elliptic on Yjer.

3.3 An Alternative Approach

A second approach to construct an exponential Euler scheme which is applicable to
constrained systems is to formally apply the method to the corresponding singularly
perturbed PDE. This approach was also considered in [20] for DAEs of index 1. In
the present case, we add a small term &4 into the second equation of (2.5). Thus, we
consider the system

u(t) + Au(t) + B*\1) = f(t,u) in V¥, (3.7a)
eh(t) + Bu(t) =g(1) in 2%, (3.7b)

which can be written in operator matrix form as

=L B L)

For this, an application of the exponential Euler method yields the scheme

e [ D D]

We introduce the auxiliary variables (w,, v,) € ¥ x 2 as the unique solution to
the stationary saddle point problem

A Dy + B0y = ftn, n) in 7*,
By =0g, + (1 —0)gnr1  in 2*.

The included parameter 6 € [0, 1] controls the consistency as outlined below. Then,
the exponential Euler method can be rewritten as

wnt | (N 2\ [un—a | | [
|:)\n+1:| _¢0< T[i% :|) |:)¥n_/1nj|+|:/1n:|’
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which allows an interpretation as the solution of a linear (homogeneous) PDE.
Finally, we set ¢ = 0, which leads to the following time integration scheme:
Given wy, solve on [#,, #,+1] the linear system

2(t) + A z(t) + B @) =0 in V¥,
RBz(t) =0 in 2%

with initial condition z(#,) = u, —wy,. The approximation of u(#,+1) is then defined
through u,+1 := z(th+1) + wy.

We emphasize that the initial value of z may be inconsistent. In this case, the
initial value needs to be projected to e, cf. Sect. 2.4. If the previous iterate
satisfies Bu, = g, then the choice 8 = 1 yields Az(t,) = 0 and thus, consistency.
This, however, does not imply Pu, 11 = gu+1. On the other hand, 6 = 0 causes an
inconsistency for z in the sense that #z(t,) # 0 but guarantees Bu,+1 = gn+1. We
now turn to an exponential integrator of higher order.

4 Exponential Integrators of Second Order

This section is devoted to the construction of an exponential integrator of order two
for constrained parabolic systems of the form (2.5). In particular, we aim to transfer
the method given in [35, Exp. 11.2.2], described by the Butcher tableau

0
1 ¢ “.n
Y1 — 92 ¢2

to the PDAE case. In the unconstrained case, i.e., for v + eV = f(t, v) in K%L,
one step of this method is defined through

VB = Qo (— T her) Un + TO1 (—T Gheer) f (tn, V0, (4.2a)
Vit = Ve + 102 (=T her) [ f (tr1, VEU) — F (s va) - (4.2b)

Similarly as for the exponential Euler method, we will define a number of auxiliary
problems in order to obtain an applicable method for parabolic systems with
constraints.
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4.1 The Practical Method

We translate the numerical scheme (4.2) to the constrained case. Let u, denote
the given approximation of u(#,). Then, the first step is to perform one step of the
exponential Euler method, cf. Algorithm 1, leading to ufill . Second, we compute w/,
as the solution of the stationary problem

JZ{w;, + %*V,/l = f(tn—i-la Mgill) - 93_g.n+1 - f(tna up) + gg_g.n in 4//*’ (4.3a)
Bw, -0 in 2* (4.3b)

and w), as the solution of

dwy + B =tw,  inv* (4.4a)
Bw ) in 2*. (4.4b)

Note that, due to the recursion formula (2.1), w;, and w), satisfy the identity

792 (—T Fier) [O[f(trH»ls ufih) — B gnr1— [ (tn, un) + 337gn]
= _(ﬂl(_TVkaer)w; + w;

" 4 /
= @o(—T Gher)w, — W, + w,.

It remains to compute @o(—T Her) w,’l’ and thus, to solve a linear dynamical system
with starting value w/. More precisely, we consider the homogeneous system (3.4)
on the time interval [#,, #,41] with initial value z(¢,) = w,’l’ . The solution at time #,, 41
then defines the new approximation by

. Eul " /
Unt1 = Uy + 2(tng1) — Wy + Wy,

Note that the consistency is already guaranteed by the exponential Euler step
which yields Bun+1 = %u%}fl = gn+1. The resulting exponential integrator is
summarized in Algorithm 2.

Algorithm 2 A second-order exponential integrator
1: Input: step size t, consistent initial data ug € ¥, right-hand sides f, g
2: forn=0to N —1do
3:  compute one step of the exponential Euler method for u,, leading to u
4 compute B~ ¢, and B~ g,+1 by (3.2)
5:  compute w, by (4.3)
6:  compute w) by (4.4)
7.
8
9:

Eul
n+1

compute z as solution of (3.4) on [1,, t,,41] with initial condition z(¢,) = wj,
: set U1 = ME}E] + z2(tyt1) — W) + w),
end for
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4.2 Convergence Analysis

In this subsection we aim to prove the second-order convergence of Algorithm 2
when applied to parabolic PDAEs of the form (2.5). For this, we examine
two cases. First, we consider a nonlinearity with values in 7, ie., we
assume f (-, u(-)): [0, T] — 7. Further, we assume %7 to be self-adjoint, meaning
that @ = 0. Note that this may be extended to general .o/ as mentioned in
Remark 3.3. In this case, the convergence analysis is based on the corresponding
results for unconstrained systems. Second, we consider the more general case with
nonlinearities f: [0, T] x ¥ — 4. Here, it can be observed that the convergence
order drops to 3/2. Note, however, that this already happens in the pure PDE case.

Theorem 4.1 (Second-Order Scheme) In the setting of Sect. 2.2, including
Assumptions 2.1 and 2.2, we assume that </ is self-adjoint and that for the exact
solution u the map t — f(t,u(t)) is two times differentiable with values in V.
Further we assume that the right-hand side g and u are sufficiently smooth, the
latter with derivatives in V. Then, the approximation obtained by Algorithm 2 is
second-order accurate, i.e.,
— y < 72

lup —u(t)lly S 7
Proof We reduce the procedure performed in Algorithm 2 to the unconstrained
case. For this, assume that u, = uer,n + %~ gn € ¥ is given with uern € Yer and
that ufﬂ‘rll denotes the outcome of a single Euler step, cf. Algorithm 1. By ufgrl il
we denote the outcome of a Euler step for the unconstrained system

liker (1) + Fherttker(t) = f(t, wer())  in 7,
with f defined by f(r, uxer) = to [f(t, tiker + B~ g(t)) — B~ §(t)] and initial

data uger . For this, we know that ufﬂrll = ufgrl’nﬂ + A~ gu+1. By the given
assumptions, it follows from [17, Th. 4.3] that

. Eul 3 Eul 3
Uker,n+1 = ukélr,n+1 + 7:(/)2(_Tv‘2{1<er)[f(tn+ls ukélr’nJrl) = f(tn, ”ker,n)]
defines a second-order approximation of uyer(#,,+1). This in turn implies that

Upt1 ‘= Uker,n+1 T 93_8n+1
Eul 3 Eul 3
unil + T(PZ(_TJZ{ker)[f(tn+l, ’/lkélr,n.H) — ftn, ’/lker,n)]

= ul + T2 (— T Sher) W[ f tns1, uE)) — B gns1 — ftn, un) + B~ 4]
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satisfies the error estimate

2
ltn+1 — u(Eu+Dlly = lluker,n+1 — Uker(bn+1) |1y 5 T

It remains to show that u, is indeed the outcome of Algorithm 2. Following the
construction in Sect. 4.1, we conclude that

Eul " " 1
Unt1 = Upyy + @0(—TGhker)w,, — w, + w,

with w;, and w], denoting the solutions of (4.3) and (4.4), respectively. Finally, note
that @o(—T Zker) w;l’ is computed in line 7 of Algorithm 2. O

Up to now we have assumed that f(-,u(-)) maps to ¥, leading to the desired
second-order convergence. In the following, we reconsider the more general case
in which f(-, u(-)) only maps to 7. For PDEs it is well-known that the exponential
integrator given by the Butcher tableau (4.1) has, in general, a reduced convergence
order if gtf(-, u(-)) € L0, T; ), cf. [17, Th. 4.3]. This carries over to the
PDAE case.

Theorem 4.2 (Convergence Under Weaker Assumptions on f) Consider the
assumptions from Theorem 2.3 and let the step size T be sufficiently small such
that the discrete solution u, lies in a strip along u, where f is locally Lipschitz
continuous with a uniform constant L > 0. Further assume that g € H3(0, T; 2%).
If the exact solution of (2.5) satisfies f(-,u(-)) € H?*,T; ), then the
approximation u, obtained by Algorithm 2 satisfies the error bound

t}l
ln — w3 < r3/0 I @ u)3, + 18§05, dt

In 2 e
+r4/0 185 £ u@)Py + 11878 (0%, dr.

Note that the involved constant only depends on t,, L, and the operator <7 .

Proof Let UF" be the function constructed in the proof of Theorem 3.2 which
satisfies UR!(t,) = u, and UF(t,41) = uEY| and set U (1) := UP(1) + 2(1) —
wy + '~ w/ . This function satisfies

Uty) = UBNt) = uny  Ultas1) = UBNtg1) + 2(tns1) — wli + wl) = 1.

Note that the estimates (3.5) and (3.6) are still valid if one replaces u,; by
UEY(#,41) on the left-hand side of these estimates. As in the proof of Theorem 3.2,
we can interpret U as the solution of a PDAE on [#,, #,,+1]. The corresponding right-
hand sides are then given by

F s un)+" 7" (f gt U ) = f (g )+ B () —8n—"7" (gnr1—8n))
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for the dynamic equation and g(¢) for the constraint. Then, by Young’s inequality,
Gronwall’s lemma, and error bounds for the Taylor expansion we get

2 2
lu(tns1) — unsl, < e [(1 4T D) Juln) —unllZy, +475 1= UP @)1,

Tnt1 2 s
+ 14/ B u) + & 127 E 012
Iy

with ¢ = 2c$2?/2/f1. The stated error bound then follows by an iterative application
of the previous estimate together with the estimates (3.5), (3.6) and the norm
equivalence of || - [l and || - || o - |

We like to emphasize that the previous result is sharp in the sense that there exist
examples leading to a convergence order of 1.5. The performance of the proposed
scheme is presented in the numerical experiments of Sect. 5. We close this section
with remarks on alternative second-order schemes.

4.3 A Class of Second-Order Schemes

The analyzed scheme (4.1) is a special case of a one-parameter family of exponential
Runge-Kutta methods described by the tableau

0
2 2912
1 1
P11 = 92 P2

with positive parameter ¢ > 0, cf. [19]. Therein, ¢; stands for ¢|(—7 %er),
whereas ¢ 5 is defined by ¢1(—c27 %er). Obviously, we regain (4.1) for c; = 1.

For ¢y # 1, the resulting scheme for constrained systems calls for two additional
saddle point problems in order to compute B~ g(t, + c2t) and B~ ¢(t, + 7).
This then leads to an exponential integrator summarized in Algorithm 3 with the
abbreviations

8n,2 = gty + c27), 8n2 = &ty + c27), o= lp + 2T
We emphasize that all convergence results of Theorems 4.1 and 4.2 transfer to

this family of second-order integrators. In a similar manner, Runge-Kutta schemes
of higher order may be translated to the here considered constrained case.
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Algorithm 3 A class of second-order exponential integrators
1: Input: step size t, consistent initial data uo € ¥/, right-hand sides f, g

2: forn =0to N —1do

3: COInpute '%7gn7 =@7gn,27 =%7gn+la ,@7(@,1, =@7gn,21 and =%7gn+1 by (32)
compute w, by (3.3)

solve (3.4) on [t,, t, 2] with initial condition z(t,) = u, — B~ gn — Wy
setuy 2 = Z(tn,Z) +w, + B gn2

compute w), by (4.3) with right-hand side

A

L-lz (f(tn,Zv un,Z) - f(tilv Up) — f@_gn,Z + f@_gn)

8:  compute w) by (4.4)

9: solve (3.4) on [ty, t,41] with initial condition z(1,) = u, — B~ g, — w, + w,
10:  setups1 = z(typy1) + Wy + W), — W) + B~ gnt1.

11: end for

S Numerical Examples

In this final section we illustrate the performance of the introduced time integration
schemes for two numerical examples. The first example is a heat equation with
nonlinear dynamic boundary conditions. In the second experiment, we consider the
case of a non-symmetric differential operator for which the theory is not applicable.

Since exponential integrators for PDAEs are based on the exact solution of
homogeneous systems of the form (3.4), we first discuss the efficient solution of
such systems.

5.1 Efficient Solution of Homogeneous DAEs with Saddle
Point Structure

This subsection is devoted to the approximation of z(¢), which is needed in line 5
of Algorithm 1 and in line 7 of Algorithm 2. Given a spatial discretization, e.g., by
a finite element method, the PDAE (3.4) turns into a DAE of index 2, namely

Mx(t) + Ax(t) + BT A(t) =0, (5.1a)
Bx(1) =0 (5.1b)

with consistent initial value x (0) = xo, Bxg = 0. The matrices satisfy M, A € R"*"
and B € R™*" with m < n. Here, the mass matrix M is symmetric, positive definite
and B has full rank. The goal is to find an efficient method to calculate the solution x
at a specific time point ¢ € [0, T].

Let us first recall the corresponding ODE case. There exist various methods to
approximate the solution x(¢) = e A’ xq of the linear ODE X (¢) + Ax (1) = 0 with
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initial condition x(0) = xg, A € R"*", for an overview see [27]. This includes
Krylov subspace methods to approximate the action of the matrix exponential e =4’
to a vector, see [12, 16, 32], but also methods based on an interpolation of e Axo
by Newton polynomials [9]. The first approach is based on the fact that the solution
e Axg =310, kl! (—A1)¥xg is an element of the Krylov subspace

iy = Hn(—A, x0) := span{xo, —Axo, ..., (—A)" 'xo}.

Now, we approximate e ~4xo by an element of .%; with r relatively small compared
to n. For this, we generate an orthogonal basis of .%; using the Arnoldi algorithm
with v1 = x¢/||xo|l as initial vector. This yields —V,TAVr = H, with an isometric
matrix V, € R"*" and an upper Hessenberg matrix H, € R"*". Since the columns
of V;. are orthonormal and span %, H, is the orthogonal projection of —A onto ;..
Therefore, it is reasonable to use the approximation

e Mxg & ||xoll Vi el

with unit basis vector ey € R”, cf. [16]. We like to emphasize that the Arnoldi
algorithm does not use the explicit representation of A but only its action onto a
vector.

We return to the DAE case (5.1). By [13, Th. 2.2] there exists a matrix X €
R " such that the solution x of (5.1) with arbitrary consistent initial value xg €
ker B is given by x(f) = eX'xq. Furthermore, there exists a function A €
C°°([0, 00); R™*™) with A(t) = A(t)xo. To calculate the action of X we note that
by (5.1b) also Bx = 0 holds. We define y := Xxg and u := A(0)xg. Then with
equation (5.1a), Bx = 0, and t — 07 we get

My + BT = —Axo, (5.2a)
By =0. (5.2b)

Since the solution of (5.2) is unique, its solution y describes the action of X applied
to xp. As a result, we can approximate the solution of the DAE (5.1) in an efficient
manner by using x (¢) = X’ xq, the saddle point problem (5.2), and Krylov subspace
methods. For the numerical experiments we have adapted the code provided in [29].

Remark 5.1 Given an approximation x; ~ x(t), the solution p of (5.2) with right-
hand side —Ax; provides an approximation of the Lagrange multiplier A (7).

Remark 5.2 Since the saddle point problem (5.2) has to be solved several times
in every time step, the numerical solution x of (5.1) may not satisfy the con-
straint (5.1b) due to round-off errors. To prevent a drift-off, one can project X onto
the kernel of B — by solving an additional saddle point problem.
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5.2 Nonlinear Dynamic Boundary Conditions

In this first example we revisit Example 2.1 and consider the linear heat equation
with nonlinear dynamic boundary conditions, cf. [34]. More precisely, we consider
the system

W—kAu=0 in 2 := (0, 1)?, (5.3a)
i+ du+au= fr(t,u) on Iy :=(0,1) x {0} (5.3b)
u=20 onI'p := 082 \ I'iyn (5.3¢)

with @ = 1, k = 0.02, and the nonlinearity fr (¢, u)(x) = 3 cos(2nt) —sin(2wx) —
u3(x). As initial condition we set u(0) = ug = sin(;rx) cos(57y/2). Following [2],
we can write this in form of a PDAE, namely as

i H u 0 .
| R P B

B [;] = 0 in 9% (5.4b)

with spaces ¥ = H}, (2) x Hy)’(Tayn). A = L*(2) x L*(Iay), 2 =

[Holéz(l" dayn)]* and constraint operator #(u, p) = u| Tayn — P- Here, p denotes a
dummy variable modeling the dynamics on the boundary I'4yn. The constraint (5.4b)
couples the two variables u and p. This example fits into the framework of this paper
with g = 0. Further, the nonlinearity satisfies the assumptions of the convergence
results in Theorems 3.2 and 4.2 due to well-known Sobolev embeddings, see [31,

p. 171].
For the simulation we consider a spatial discretization by bilinear finite elements
on a uniform mesh with mesh size h = 1/128. The initial value of p is chosen

in a consistent manner, i.e., by Mol]"dyn. An illustration of the dynamics is given
in Fig. 1. The convergence results of the exponential Euler scheme of Sect. 3 and
the exponential integrator introduced in Sect. 4 are displayed in Fig. 2 and show
first and second-order convergence, respectively. Note that the smoothness of the
solution implies (;1;,- f@,u@®) € ¥,i =0,1,2, which yields the full convergence
order.

Finally, we note that the computations remain stable for very coarse step sizes t,
since we do not rely on a CFL condition here.
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—1 )
: \/ 1 0f
0.5 0.5
0 o0
y . 0 02 04 , 06 08

Fig. 1 Illustration of the solution (u, p). The left figure shows u at time ¢ = 0.7, whereas the right
figure includes several snapshots of p in the time interval [0, 0.7]. The dashed line shows the initial
value of p. Both results are obtained for mesh size 47 = 1/128 and step size T = 1/100

—
=
5 1072]
5
=1
L)
&8 10
5 —A— exponential Euler
-©- second-order scheme
6| |
10 | -

102 step size T 107!
Fig. 2 Convergence history for the error in x = [u; p], measured in the (discrete) .«7-norm. The

dashed lines show first and second-order rates

5.3 A Non-symmetric Example

In this final example we consider a case for which Assumption 2.2 is not satisfied.
More precisely, we consider the coupled system

0 — eyt — Oxxv = —u>  in (0, 1),
V4 u—dv=—v>  in(0,1)
with initial value

>, sin(kmx)

uo(x) = wo(x) = " s

k=1

and the constraintu(¢, 1)—v(t, 1) = g(t) = €2 —1. At the other boundary point x =
0 we prescribe homogeneous Dirichlet boundary conditions. In this example, the
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. 10

[T

o

2 4

5 107

= h=1/32
s h=1/64

10 —h=1/128
- — h=1/256 ||
10 step size T 1073

Fig. 3 Convergence history for the error in x = [u; v], measured in the (discrete) H 1(0, 1)-norm,
including Dirichlet boundary conditions in x = 0. The graphs show the results of the exponential
Euler scheme (triangle) and the second order scheme (circle) for different values of £, displayed
by its color. The dashed lines illustrate the orders 1 and 3/2, respectively

operator <7 has the form —[dy, 0yy; —id, dxy]. Thus, the non-symmetric part .o/
includes a second-order differential operator which contradicts Assumption 2.2. As
a consequence, non of the convergence results in this paper apply.

The numerical results are shown in Fig. 3, using a finite element discretization
with varying mesh sizes /. One can observe that the exponential Euler scheme still
converges with order 1, whereas the second-order scheme introduced in Sect. 4
clearly converges with a reduced rate. Moreover, the rate decreases as the mesh
size h gets smaller. By linear regression one can approximate the convergence rate as
a value between 1.40 (coarsest mesh, 7 = 1/32) and 1.34 (finest mesh, 7 = 1/256).
Thus, the convergence rate is strictly below 3/2. A deeper analysis with fractional
powers of &/ may predict the exact convergence rate, cf. [17, Th. 4.2 & Th. 4.3].
However, this is a task for future work.

6 Conclusion

In this paper, we have introduced a novel class of time integration schemes
for semi-linear parabolic equations restricted by a linear constraint. For this, we
have combined exponential integrators for the dynamical part of the system with
(stationary) saddle point problems for the ‘algebraic part’ of the solution. This
results in exponential integrators for constrained systems of parabolic type for which
we have proven convergence of first and second order, respectively. The theory is
verified by numerical experiments.

Acknowledgments C. Zimmer acknowledges the support by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) within the SFB 910, project number 163436311.
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in every step, but numerically evaluated by finite differences. Recently, Jax (A
rooted-tree based derivation of ROW-type methods with arbitrary jacobian entries
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derive new order conditions for the avoidance of such order reduction phenomena.
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1 Introduction

Rosenbrock-Wanner (ROW) methods for solving initial value problems of stiff
ordinary differential equations (ODEs) are well known since the late seventies.
Recently, Jens Lang [4] gave an excellent survey on the development of these
methods.

Beside the simple implementation a major advantage of linear implicit ROW
methods is the avoidance of solving nonlinear systems of equations. Instead, s linear
systems must be solved per time step, where s describes the stage number of the
method. A disadvantage in contrast to e.g. implicit Runge-Kutta methods is, that the
Jacobian matrix must be recalculated at each time step. In order to save Jacobian
evaluations W methods were introduced in [17]. In principle they can cope with any
approximation of the Jacobian. In practice and due to stability issues the Jacobian
is held constant for some time steps. In many technical applications the Jacobian
matrix is not exactly known, but is approximated by finite differences. Here, W
methods can also be advantageous, even if the Jacobian matrix is recalculated in
each step.

However, the number of order conditions to be fulfilled is much higher for W
methods than for ROW methods. For example, fourth-order ROW methods must
satisfy 8 conditions, but W methods 21, see reference [1]. Therefore, W methods
usually require a higher number of stages.

When applying ROW schemes to differential algebraic problems (DAEs), addi-
tional order conditions must be met. Roche [13] was able to derive these conditions
using the Butcher tree theory for index-1 problems. Based on these results, a number
of methods were constructed for DAEs. One of the best known methods is rodas
by Hairer and Wanner [1]. It is a stiffly accurate method of order p = 4 with stage
number s = 6.

Ostermann and Roche [8] were able to show that Rosenbrock schemes undergo
order reduction for some problem classes. This occurs e.g. for semidiscretized
parabolic problems and depends on the boundary conditions of the partial differ-
ential equations (PDEs). To avoid this order reduction, additional conditions have
to be fulfilled. These agree with the conditions of Scholz, which he derived for the
Prothero-Robinson model [15].

In [18] the coefficient set of rodas could be modified such that the conditions
of Scholz were fulfilled. The corresponding procedure was called rodasp, where
P stands for the suitability of the methods for semidiscretized PDEs.

Beside rodas and rodasp many other efficient ROW methods exist. Here
only some well known methods are mentioned, that are related to rodas. The
third order method ros3pl [5] with four stages is also stiffly accurate, but fulfills
additional conditions of a W method for ODEs with O(h)-approximations to the
Jacobian. In order to avoid order reduction for the Prothero-Robinson model, Rang
[10] enhanced this method to ros3pr12. Another modification leads to the method
ros34prw [10] fulfilling more order conditions of W methods for ODEs. A more
detailed review on ROW methods is given in reference [4].
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In reference [3] W methods for DAEs were considered. At first only approxi-
mations to the Jacobian matrix for the differential part of the DAEs were allowed.
Recently, Jax [2] could extend these results. DAE systems of the following form are
considered:

v =f(,2; yt) =y, (1.1)
0=2g(y,2); z(to) =z0- (1.2)

Consistent initial values with 0 = g(yo, zo) are assumed and the index-1 condition
guarantees a regular matrix g, in the neighbourhood of the solution, where g,
denotes the Jacobian of function g of partial derivatives with respect to z. The ROW
scheme with stage-number s considered by Roche for equations (1.1,1.2) is defined
as follows:

N N
yi=yo+ Y biki.  n=zo+ Y bk, i=1...s (1.3)
i=1 i=1
ki £ (i wi) (o (o | s~ (K
=h +h g : (1.4)
<0> (g(vi, wi)) |:(gy)0 (82)o jz::l Yij kjlg
i-1 i—1
vi =y0+Z(Xijkj, wj =zo+Zo¢,~jk?1g. (1.5)
j=1 Jj=1

Here, y1, z1 denote approximations to the solution of equations (1.1,1.2) at time
t = to + h. The coefficients of the method are «;;, y;; with y;; = y and weights are
b;. The Jacobian matrices are evaluated at time t = g, e.g. (fy)o = g§ (vo, z0)-

Jax [2] now replaces fy, f;, gy with arbitrary matrices Ay, A;, By, only g;
remains exact. With the Butcher tree theory (see references [1, 13]) transferred
to this case, he can derive new additional order conditions. The total number of
conditions is e.g. n = 26 for such a new method of order p = 3 compared to
n = 13 for a ROW method given by equations (1.3,1.4,1.5).

It is well known that rodas and rodasp suffer from an order reduction to
p = 1 when implemented as a W method with inexact Jacobian. Even with an
implementation as a ROW method with updated Jacobian matrix at every time step,
problems may occur if the Jacobian matrix is calculated using finite differences and
is therefore not exact. The aim of this paper is to improve the fourth order ROW
method rodasp in such a way, that the order p = 2 is still maintained by using
arbitrary approximations Ay, A;, By to the Jacobian matrix. The free parameters
are chosen such that the new conditions of Jax are fulfilled. In [20] the coefficient
set of rodasp is given, but the preprint [18], where the construction of the method
is described, has never been published in a journal. Therefore the construction of
rodasp together with the optimized coefficients is outlined again in this paper.
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Section 2 first summarises all the necessary conditions. In Sect. 3 the new
method rodasp2 is constructed. Since many integrators are implemented and
tested in a MATLAB version, these aspects are treated in Sect. 4. For the efficient
implementation the computation of the Jacobian plays a key role. Strategies
for taking linear components into account and for vectorization are discussed.
Subsequently, numerical tests are carried out and analysed in Sect. 5. The numerical
tests cover problems from network simulation, because ROW methods are proven
to be very well suited for such problems, especially in the context of fluid flow
networks, see reference [19].

2 Order Conditions

We want to construct an L-stable ROW method of order p = 4 for index-1 DAE
systems of type (1.1,1.2). According to [13] the order conditions 1 to 13 stated in
Table 1 have to be fulfilled. The following abbreviations are used:

Bij =aij +yij, with B;; =0 fori < j and ;i =y;i =y, (2.1)

i i—1
Bi=Y Bij, ai=)y aj, B=@pi, W=B"=@y;,.,-
j=1 j=1
(2.2)
The missing quantities in conditions 17 and 18 are explained below in the text.

In order to avoid order reduction to p = 1 when dealing with inexact Jacobians,
we want to fulfill at least the conditions up to order p = 2 in this case. These are the
conditions 14-16 in Table 1 which have been derived in [2]. Note, that nevertheless
the Jacobian g, must be exact.

Finally, we want to avoid severe order reduction when applying the method to
the Prothero-Robinson model [9]

y=rxy—g) +g , y0) =g, g smoothand Rer <0 (2.3)

with the exact solution y(#) = g(¢). For y(0) # g(0) and large stiffness ReA < 0
the solution y(¢) attains g(¢) very quickly asymptotically. First, Scholz [15] studied
ROW methods applied to this problem and derived additional order conditions for
the stiff case. The Prothero-Robinson model is an important test problem in the
context of parabolic partial differential equations, too. By semi-discretization of
certain problems in space and diagonalization of the resulting matrix it can be
shown, that a system of equations of type (2.3) will arise, see [18]. Ostermann and
Roche [7, 8] investigated order reduction of Runge-Kutta and ROW methods when
applied to semi-discretized parabolic problems. They could show that the conditions
of Scholz also appear as additional requirements. Rang [10, 11] examined further the
convergence of ROW methods for problem (2.3). He derived new order conditions

which guarantee a global error of size O(};],() with z = A & and different exponents
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::?l?ﬁ}leg;gfrtggi?wdons to No Order Tree Condition
method 11 ° 2bi=1
2 2 S S bipi=1/2
3 3 v Y bie?=1/3
4 > > biBiiBj = 1/6
5 " Zb,-w,-jajz =1
6 4 VY bl =1/4
7 Y b =1/8
8 Y Zb,-ﬂ,-jale/u
9 S LbiBiyBube=1/24
10 Y bioawjrel = 1/4
11 v Y biwije) =1
12 Y biwijajaji B =1/2
13 v Zb,-w,-jajajkwk;a]z =1
4 2 & Y biy;=0
15 :>° > biajjwjrag =1/2
16 e Y biwija; =1
17 3 Co(H)=Y3_AH =0
18 4 C3(H)= Y320 BiH' =0

k and /. In the stiff case large values of |z| are assumed even in the limit case 7 — 0.
Since the conditions of Scholz are included in those of Rang and rodasp has been
derived with the Scholz conditions, we stick to these conditions.

In his paper [15] Scholz could show, that for strong A-stable methods fulfilling
some conditions C1(H) = ... = Cp_1(H) =0 with H = 1_ZVZ the global error is
bounded by C - hP. This theorem is valid for small step sizes & and large stiffness
parameter |A| such that Re(z) < Ao < 0. Note, that condition C;(H) = 0 holds
for every consistent ROW method. According to conditions 17 and 18 in Table 1 we
want to have order p = 4. It should be mentioned that the estimation of the error
constant C of the global error in the paper of Scholz is not sharp. It depends on H
and behaves even like C = ; C for L-stable methods, see [10]. Therefore, for fixed
h asymptotically exact results are obtained for |A| — oo, but for fixed large stiffness
|A| only order p — 1 must be visible in the numerical results.

The coefficients of polynomials C2(H) = Y i_, A;HY, C3(H) = Zf;& B;H!
are defined by, see [15]:

Ag = —N®(=1) + yM(=1) + M(0) (2.4)
Ai=—NOG =D +2yM@i — 1) +y> MG —2) + M(@i) (2.5)

for 0 <i <s
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As =y*M(s —2) (2.6)
By =—-N¥(=1)+ N?(0) 2.7)
Bi=-NG-D+yNPGi-1D+NP@) (2.8)
forO<i<s—1
Bi_i = —-N¥G=2)+yNP(s —2) (2.9)
A N
M) =Y biM;w), NOWw) => 6N W) for o >2 (2.10)
i=1 i=1
with
1 if v<O
B! if V=0
My =1 P . . Q.11)
! Zﬁijl/gjljz"'ﬁjuflju/g;‘l,lf v=1,...,i—2
0 ifv>i—1
1 if v<O
(o) Olig if v=20
o!N.7(v) = . . 2.12
P W Zﬁijl/gjljz"'ﬁjufljua;‘:,1f v=1,...,i—2 )
0 ifv>i—1

and B/ = Zj._:ll Bij. The summation in (2.11), (2.12) is over j, < --- < ji </i.
In order to fulfill conditions 17 and 18 in Table 1, all coefficients A; and B; must
be zero.

An L-stable method is obtained, when |R(z)| < 1 for Re(z) < 0 and R(c0) =0
holds. The stability function is given by

Riz)=14+zbT(I —zB)te, BT =(by,....by), e=(,....,)T. (2.13)
R(z) can also be expressed in terms of M (v) defined in (2.10):

R(z)=) M(i—2)H". (2.14)

i=0

3 Construction of Coefficient Set

The aim is to construct an L-stable method that fulfills all conditions from Table 1.
The construction is very close to that of rodas [1], and rodasp [18]. The first
method meets conditions 1-13 and rodasp in addition conditions 17 and 18. Both



Improvement of Rosenbrock-Wanner Method RODASP 171

are stiffly accurate methods with s = 6 stages. Stiffly accurate ROW-methods are
characterized by

bi =By fori=1,....,s—1, by=y, ay=1. 3.1)

The embedded method of order p = 3 with stage number § = 5 is stiffly accurate
too:

bi=PBs_1; fori=1,...,s=2, bs_1=y, oas_1=1. (3.2)
Moreover

asi = Ps—1,; fori=1,...,5—1 (3.3)

is required with the consequence that the computation of the two last stages

represent Newton-iteration steps, see [1].
If we choose in addition

B, =0 (3.4)
Y ifi=1/2—y (3.5)
Zas—l,iwi/’a? =1 (3.6)

and since stiffly accurate ROW-methods lead to

. 1if j
J=9
biw;; = 3.7

IZ_; iwij 0 otherwise, 3.7
the order conditions are simplified significantly. From (3.1,3.2,3.5) and condition
No.1 from Table 1 we get:

as=ag=1,bs=bs=y, ph=0, Bt=Ps=1—-y.

Conditions No.5, 11, 12, 13, 16 from Table 1 are fulfilled. Moreover, for the
embedded method conditions No.1, 5 are met. The remaining conditions are shown
in Table 2. For the Scholz conditions we require A3 = A4 = As5 = 0 and
B> = By = B4 = Bs = 0, since Ag = A] = A, = Ag = Bp = B; = 0is
already true. The conditions for the embedded method are marked with a hat”.

Thus, we have to solve 23 equations for the 22 unknowns y, o1, 031, 032, ¥41,
42, 043, 452, 053, A4, B31, B32, Bal, Baz, Bas, Bs2, Bss, Bsa, Bez, Be3» Bes» Bes- This
is only possible, when some conditions are redundant. We even can show, that the
embedded method fulfills the Scholz conditions, too.
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Table 2 Equations to be fulfilled for the new method

No Previous No Equation
1 1 bi+by+b3+bs+bs=1—y

2 2 b3By +bafy +bs(1 —y) =y> =2y + )
3 3 bga%+b3a§+b4af+b5 = ; -y
4 4 baPauaBy+bs(y =2y +yH) = -y +3y2 =y + ¢
5 6 b2a3+b3a§+b4az+b5 = i -y
6 7 byasozPs +bs(5 — ) =v? — oy + g
7 8 b3P3203 + baPurad + baPuzad +bs(y —y) =y2 — Iy +
8 9 bs(§ =3y +3r2 =y =y =4y +3y2 =y + ),
9 10 byozazywnas + baos (e wanad + agzwnas + aswized) +bs =, —y
10 2 Bs3Bs + Bsaba = 5 — 2y + 72
13 Bs203 + Bs3saf + Psaci = 3 —
12 4 BsaBusPs = L — 3y +3y2 -3
13 (3.5 asyfs +asafa =5 —y
14 (3.6) (asownn + aszwsy + 0654w42)06§ + (as3w33 + 0ts4w43)0t§ + 0654w440tZ =1
15 17, A3 N®O@)=2yMQ) +y>MQ1) + M(3)
16 17, A4 NO@B)=2yM@3) + y2M(2)
17 17, A5 NO@) =y2M@3)
18 18,B2 NOMD) =yNO1) + ND(©)
19 18,B3 N®®2)=yND2)+ ND@3)
20 18,B4 N®OB)=yND3)+ ND @)
21 18,B5 N® @) = yND@)
2 14 byay + b3z + byas +bs =) —y
23 15 Y biayjwjkay = 1/2

The construction of the new method is according to rodasp, [18]. First, we
choose y = 1/4 according to rodas and a3, o4, ,B:1 as free parameters, see [1].
Then:

(a) bs is determined by No.8.
(b) No.21 is equivalent to

1
6176,365,354,343,33201% = );b6,365,354,343,33201§

and yields ap = 3y.
(c) No.17 is equivalent to

1
2b6ﬁ65ﬁ54f543ﬁ32a§ = y2beBesBsaPas By ,
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it follows
1 2 20/
2,332062 =yB;. (3.8)

(d) Putting No.16 and No.17 into No.20 yields N® (3) = 3y2M (3) + y3 M (2).
MQ2) =) biBijBjxB; = 34 ;yz - ’2/ + 214 is the order condition according
to No.8.

M (3) is defined by

2
MG =y =4yt 43y = 2 )

3 o (3.9)

This can be seen by writing M (3) as
5 5
D biBiBixBui =Y > biBiBixBubl+v YD BijPikbi -
i=1 jk,l i=1 jk

The term on the left side is zero. The right term can be successively computed
by conditions No.8, No.4, No.2, No.1 resulting from Butcher trees without
branches. No.20 is then equivalent to

1
6 (bsBsaBazBa + ybsPsaPar + ybsPsafa + ybaPazf)as

5 21
v+ v —13y3 4 3yhH  (3.10)

1 3 3.1
+ ybsBsafazaz =y (6 —, )

6

and No.16 is equivalent to
1
) (bsBsaBu3 B2 + vbsBsafaz + ybsBssPar + ybaPazfra)as =

1 1 3
= VbsBssBazes + 2y bsPsaufs + 12 (), — v+ v =y G

Putting No.16 multiplied by «, b5 from No.8 and ﬁ54ﬁ43/3§ from No.12
into (3.10) yields

2
Yo o ¥V 3 31 3 2 3
ﬁ54ﬁ43(—2013+60€3)=3/ (6—2V+37/ -y7).

By comparing this equation with No.12 the following expression for B} is
obtained

ﬂ§=j32(— + 7). (3.12)

B32 is then defined by (3.8).
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(e) Expressions for b4,343,3§ and ,354,343,3:; can be obtained from No.4 and No.12.
Division of both terms yields an expression for 8s4 in linear dependence on by4:

BsaBa3 B3
= by . 3.13
Bsa biBish 4 (3.13)

With the help of (3.13), equations No.2, No.3, No.5, No.7 and No.10 define a
linear system for the unknowns b, b3, ba, b4B42 and s3.

Thereby B4 is also defined, and B43 is defined by No.4, Bs4 by No.12, b; by
No.1, @43 by No.6 and B5> by No.13.

(f) Coefficients o572, @53 and as4 have to be computed from No.13 and No.14. The
additional degree of freedom is used to fulfill ) _ as;w; ; = 1. By this condition
the error of the numerical solution is bounded by O (h?8) in case of inconsistent
initial conditions (yg, zp) for DAEs of type (1.1,1.2) with ||(gz_1g)(y0, z0)|| <
8, see [1].

(g) The remaining condition No.9 has to be considered for the computation of o33
and a4p. The additional degree of freedom is exploited to satisfy the extra order-

condition Y biozizoc,- jozjz = 118 for methods of order 6.

By this construction all conditions except No.22, 23 are fulfilled. Therefore, we
use the free parameters o3, o4, ,Bf1 to iterate this process by a nonlinear least-square
method in order to satisfy these conditions. The extra degree of freedom is used to
get a small truncation error. The computed coefficients of the new method named
rodasp?2 are given in Table 3.

Table 3 Coefficients for new method rodasp2

y =0.25 ap =7.500000000000000e—01 Sy =0

o3] =3.688749816109670e—01 B3] =—9.184372116108780e—02
by =Be1 a3 =—4.742684759792117e—02 f3 = —2.624106318888223e—02
by =Pfer @4 =4.596170083041160e—01 4 = —5.817702768270960e—02

by = fe3 o4y =2.724432453018110e—01 B4 =—1.382129630513952e—01
by = Bes 043 =—2.123145213282008e—01 f43 = 5.517478318046004e—01
bs = fes 51 =2.719770298548111e+00  fs5; = —6.315720511779359e—01
be=y  as0=1.358873794835473e+00 5o = —3.326966988718489e—01
053 = —2.838824065018641e+00 fs3 =1.154688683864917e+00
by =Bs1 ass=—2.398200283649438e—01 P54 =5.595800661848674e—01
by=Ppsy g =—6.315720511779362e—01 f¢ =1.464968119068509e—01
by =Ps3 g =—3.326966988718489e—01 B¢ =8.896159691002870e—02
by =Pss g3 =1.154688683864918e+00 fg3 =1.648843942975147e—01
bs=y g =5.595800661848674e—01 g4 =4.568000540284631e—01
o065 =2.500000000000000e—01  Bgs = —1.071428571428573e—01
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For the stability function we get

—4(77* + 82% — 9622 — 1927 + 768)

Rz = 3(z — 4)

It can be shown that thereby the method is A-stable an hence L-stable.

4 Implementation Issues

In contrast to implicit Runge-Kutta or BDF schemes, ROW methods must recom-
pute the Jacobian matrix J in every time step. Therefore, it is essential to do this
computation as efficient as possible. Usually, the user is not willing or even not
able to supply an analytical Jacobian and the integrator must compute a numerical
approximation by finite differences. When nothing is known about the structure
of J, this computation requires n evaluations of the right-hand side of the DAE-
system (1.1,1.2). This system is usually summarized into its linear implicit form

My = f(t,y), y(to) = yo .1

with singular n x n matrix M and right-hand side f consisting of both functions
f and g from equations (1.1,1.2). The application of a ROW scheme to non-
autonomous systems like (4.1) is given in [1]. A common way to compute J is
given below in MATLAB notation.

fo = £(t,y);
for i=1:n
vyl = vy; vyl(i) = y1(i) + del;
J(:,1) = ( £(t,yl) - £0 )/del;
end

The first function evaluation of f is required for the integrator as well, independent
of J. By each of the subsequent evaluations a whole column of J is computed and
del is an appropriate increment for the finite difference approximation. For problems
with large dimension n of equations it is therefore important to provide the integrator
with the pattern of non zeros of J, which is often sparse. By this knowledge several
components of y can be altered at once and large reduction of function evaluations
may be possible. E.g. for a tridiagonal matrix J only three function evaluations are
necessary regardless of dimension 7.

Further reductions are possible when at least parts of J are constant, i.e. function
f(t,y) has linear components with respect to some components of y. Then the
corresponding entries of J must be calculated only once in the first time step. In
order to supply the integrator with such information, beside the JPATTERN option,
the user can specify columns and/or rows of J which are constant.
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Finally, in MATLAB vectorization can be applied. In this case, the function
which evaluates f (¢, y) must be modified, such that a whole matrix y instead of
a vector can be given as input parameter and the resulting output value of function
f(t,y) is a matrix as well. By this option only one function call to f is required in
order to compute the whole Jacobian J.

5 Numerical Tests

This section discusses numerical results obtained with the new method rodasp?2.
The results of rodas and rodasp are used for comparison. Also odel5s, the
standard BDF integrator for DAEs in MATLAB [16] is used.

In the first example, the order of the methods is determined numerically. It is the
DAE problem

y =z (5.1
0=y2+z72—1 (5.2)

with initial conditions y(0) = 0, z(0) = 1 and analytical solution y(¢) = sin(¢),
z(t) = cos(t). In Table 4 the numerical results are summarized. The problem was
solved in the time interval ¢ € [0, 1] with constant time steps & = %‘,} ,n=0,...,6.
For the three methods rodas, rodasp, rodasp2 and its embedded methods
the absolute error err = max(|y(1) — sin(1)|, |y(2) — cos(1)|) and the numerical

obtained order p of convergence is shown. The problem was solved with the exact

Jacobian J = 01 and with the inexact Jacobian Jijexqer = 00 LAl

2y 2z 02z
results are in agreement with the theoretical expectations. For the exact Jacobian all
methods reach the order p = 4 and p = 3 for their embedded formulas. When using
the inexact Jacobian, rodasp2 suffers an order reduction to p = 2, while the other
methods show a reduction to p = 1.

The second example treats the Prothero-Robinson equation (2.3) with function
g() = 10 — (10 + r)e™" and stiffness A = —1 and A = —10° in time interval
t € [0, 2], see [15]. The calculations were carried out with the exact Jacobian matrix.
The results are presented in the same manner as in Table 4. Again, the theoretical
expectations are confirmed. rodas shows an order reduction to p = 1 in case of
high stiffness, whereas the order reduction of rodasp and rodasp?2 is only to
p = 3. Additionally to Table 5 it can be shown, that due to their stiffly accuracy
all methods show asymptotic convergence with | il regarding high stiffness for fixed
step size h.
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Table 4 Numerical results for DAE problem (5.1, 5.2)

J exact

h
1.00e—01
5.00e—02
2.50e—02
1.25e—02
6.25¢e—03
3.13e—03
1.56e—03

1.00e—01
5.00e—02
2.50e—02
1.25e—02
6.25¢e—03
3.13e—03
1.56e—03
J inexact
h

1.00e—01
5.00e—02
2.50e—02
1.25e—02
6.25e—03
3.13e—03
1.56e—03

1.00e—01
5.00e—-02
2.50e—02
1.25e—02
6.25e—03
3.13e—03
1.56e—03

rodasp2

err p
7.94e—06

3.93e—07 4.34
1.70e—08 4.53
7.24e—10 4.56
3.25e—11 4.48
1.60e—12 4.35
8.84e—14 4.18
Embedded methods
6.43e—05

6.56e—06 3.29
6.39¢e—07 3.36
6.46e—08 3.31
6.98e—09 3.21
7.98e—10 3.13
9.50e—11 3.07
rodasp2

err p
6.35e—03

1.77e—03 1.84
4.69¢e—04 1.92
1.20e—04 1.96
3.05e—05 1.98
7.69e—06 1.99
1.93e—06 1.99
Embedded methods
1.69e—02

1.10e—02 0.62
6.14e—03 0.83
3.24e—03 0.92
1.66e—03 0.96
8.41e—04 0.98
4.23e—04 0.99

rodasp
err
2.91e—05
1.51e—06
6.69¢e—08
2.88¢—09
1.30e—10
6.44e—12
3.46e—13

241e—04
2.53e—05
2.50e—06
2.54e—07
2.75e—08
3.15e—09
3.75e—10
rodasp
err
7.53e—03
3.86e—03
2.14e—03
1.07e—03
5.31e—04
2.63e—04
1.31e—04

3.90e—02
9.60e—03
1.86e—03
3.27e—04
2.02e—04
1.33e—04
8.05e—05

4.27
4.49
4.54
4.47
4.34
4.22

3.25
3.34
3.30
3.21
3.13
3.07

0.96
0.85
0.99
1.02
1.01
1.01

2.02e
2.37e
2.51e
0.69¢
0.60e
0.72¢

rodas

err
8.93e—06
4.46e—07
1.88e—08
7.47e—10
3.05e—11
1.35e—12
6.58¢—14

8.00e—05
8.64e—06
8.84e—07
9.30e—08
1.03e—08
1.20e—09
1.45¢e—10
rodas

err
7.32e—03
2.12e—03
1.53e—03
1.03e—03
6.02e—04
3.26e—04
1.69¢e—04

2.36e—01
2.94e—02
1.15e—-02
5.85e—03
3.15e—03
1.63e—03
8.27e—04

177

4.32
4.57
4.65
4.61
4.49
4.36

3.21
3.29
3.25
3.17
3.10
3.06

1.79
0.46
0.57
0.77
0.88
0.94

3.01
1.35
0.98
0.89
0.95
0.97

The third and fourth examples are PDE problems. First, the parabolic problem

u

Jt

Pu (x4 3G —x)

9x2

(1+1)2

2
141

, tel0,0.1],

x €0, 1]

(5.3)
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Table 5 Numerical results for Prothero-Robinson problem (2.3) for different stiffness parame-

ters A

r=-1 rodasp2 rodasp rodas

h err p err )4 err p
1.00e—01 1.25e—07 1.19e—07 6.77e—07

5.00e—02 7.90e—09 3.98 7.65e—09 3.96 3.20e—08 4.40
2.50e—02 4.97e—10 3.99 4.85e—10 3.98 1.48e—09 4.43
1.25e—02 3.11e—11 4.00 3.05e—11 3.99 7.16e—11 4.37
6.25e—03 1.94e—12 4.00 1.91e—12 4.00 3.73e—12 4.26

Embedded methods

1.00e—01 1.12e—07 9.85e—08 5.08e—05

5.00e—02 3.43e—08 1.71 3.33e—08 1.57 7.12e—06 2.83
2.50e—02 5.69¢e—09 2.59 5.63e—09 2.56 9.54e—07 2.90
1.25e—02 8.06e—10 2.82 8.0le—10 2.81 1.24e—07 2.95
6.25e—03 1.07e—10 291 1.07e—10 291 1.58e—08 2.97
r=—10° rodasp2 rodasp rodas

h err p err p err p
1.00e—01 7.46e—11 2.6le—11 1.76e—08

5.00e—02 9.22e—12 3.02 3.33e—12 2.97 1.14e—08 0.626
2.50e—02 1.15e—12 3.01 4.19e—13 2.99 6.30e—09 0.856
1.25e—02 1.43e—13 3.00 5.11e—14 3.04 3.28e—09 0.942
6.25e—03 1.91e—14 291 4.88e—15 3.39 1.66e—09 0.985

Embedded methods

1.00e—01 2.26e—10 2.10e—10 1.63e—07

5.00e—02 2.76e—11 3.03 2.57e—11 3.03 7.55e—08 1.11
2.50e—02 3.41e—12 3.01 3.18e—12 3.02 3.62e—08 1.06
1.25e—-02 4.24e—13 3.01 3.96e—13 3.01 1.77e—08 1.03
6.25e—03 5.46e—14 2.96 5.11e—14 2.95 8.72e—09 1.02

is considered, see [18]. Initial values and inhomogeneous boundary conditions are
taken from the analytical solution

x4+ )G —x)

u(x,t) = 144

Since u(x,t) is quadratic with respect to x, the space discretization of (5.3)
by standard finite differences does not introduce a numerical error. In Table 6
the numerical results are given. The problem was solved by using n, = 1000
discretization points x; in space with time steps 7 = 0‘,11 ,n=20,...,7. The error at

time 7.4 = 0.1 is measured by

1 &
err = u(Xi, tena) — ¥i)?
n D @i, tena) = ¥i)

i=1
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Table 6 Numerical results for parabolic problem (5.3)

rodasp2 rodasp rodas
h err )4 err )4 err )4
1.00e—01 1.01e—06 9.71e—07 3.49¢—06
5.00e—02 6.48e—08 3.97 6.24e—08 3.96 2.53e—07 3.79
2.50e—-02 4.11e—09 3.98 3.99e—09 3.97 3.19e—08 2.99
1.25e—02 2.61e—10 3.98 2.54e—10 3.97 9.87e—09 1.69
6.25¢e—03 1.65e—11 3.98 1.6le—11 3.98 2.50e—09 1.98
3.13e—03 1.04e—12 3.98 1.02e—12 3.98 5.70e—10 2.13
1.56e—03 6.66e—14 3.97 6.55e—14 3.97 1.25e—10 2.19
7.81e—04 5.78e—15 3.53 5.72e—15 3.52 2.67e—11 2.22
Embedded methods
1.00e—01 1.73e—06 1.66e—06 5.69¢e—05
5.00e—02 3.36e—07 2.37 3.31e—07 2.33 9.21e—06 2.63
2.50e—02 5.08e—08 2.73 5.05e—08 2.71 1.57e—06 2.55
1.25e—02 6.96e—09 2.87 6.94e—09 2.86 2.86e—07 2.46
6.25e—03 9.10e—10 2.94 9.09e—10 293 5.47e—08 2.39
3.13e—03 1.16e—10 2.97 1.16e—10 2.97 1.09e—08 2.33
1.56e—03 1.47e—11 2.98 1.47e—11 2.98 2.21e—09 2.30
7.81e—04 1.85e—12 2.99 1.85e—12 2.99 4.57e—10 2.28

where y; denotes the numerical solution in space point x; at time f.,4. Methods
rodasp and rodasp2 do not suffer from order reduction, whereas the order of
rodas is reduced to approximately p = 2.25. This is in agreement to the theory of
Ostermann and Roche [8] for parabolic problems.

Similar observations can even be made for the hyperbolic problem, [14]:

u _ du  I=X o 101]. xel0.1] (5.4)
= — X .
ot ax  (A+0n?2° T ’

Again, initial values and left boundary condition are taken from the analytical
solution

14+x

ulx,t) = L+

Discretization in space is made by using the first order upwind finite difference
and n, = 1000 space points and the error is measured in the same way as in the
parabolic problem. Here, time steps & = 1&2" ,n =0,...,7 are applied. Method
rodas shows an order reduction to approximately p = 3.25, all other methods
including the embedded formulas show no order reduction.

In practical applications, all methods are used with variable time step control.
Therefore, the numerical results obtained with step size control for the parabolic
and hyperbolic problem are shown in Fig. 1. For different tolerances atol = rtol =
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13 Parabolic problem 2 Hyperbolic problem
~o—rodasp2 o rodaspz
1 ——rodasp —=—rodasp
. rodas A5 rodas
208
& g
@ @
E 0.6 - £ 1
E — =
204 /’ 2 T
0.5
" v.'—t——)'{/d/ _.-—/n
0 LT Y .
6 7 8 g 10 11 12 5 & 7 8 ] 10 11 12 13
accuracy (mescd) accuracy (mescd)

Fig. 1 Numerical results (runtime versus accuracy) for parabolic problem (5.3) and hyperbolic
problem (5.4)

10’(4”11), m =0, ..., myquy the achieved accuracy and the CPU runtime is plotted.
For the parabolic problem (5.3) m,;,x = 24 and for the hyperbolic problem (5.4)
Mmax = 26 is used. The accuracy is measured as the mixed error significant digits
value (mescd):

|y{rue _ y(zuml
mescd = —logy | rtol - max ' L e ;
i atol +rtol - |y _
=lend

where yl? "¢ denotes the analytical solution u(x;, feng) and y" the corresponding
numerical solution. The mescd value should reflect the value g of the tolerance
rtol = 1074, see [6].

Due to the order reduction of rodas the differences between the standard and
embedded method are small, which leads to difficulties in the step size control. This
results in the increased computing times of rodas compared to the other methods
shown in Fig. 1. Although the results of rodasp and rodasp?2 are very similar in
Tables 6 and 7, the new method rodasp?2 is slightly more efficient.

With ROW methods good results could be achieved in the network simulation,
see [19]. Therefore the next numerical tests refer to such problems. First, the water
tube system described in [6] is considered. It is a an index-2 system of 49 non-linear
DAEs of type (4.1). In Fig. 2, the effects of the optimized implementation described
in Sect. 4 are first considered. The results of the MATLAB standard integrator
odel5s are compared with those of rodasp with and without optimizations. The
optimizations refers to the vectorization of the right side f (¢, y) of the DAE System.
In addition, 13 columns of the Jacobian matrix of function f(¢, y) are linear and
need to be evaluated only once. It can be shown that these optimization measures
lead to a significant increase in performance. The comparison between the different
rodas methods in Fig. 2 shows no significant differences here.

Next, an electrical circuit is considered. The two transistor amplifier was
originally treated in [12] and is also part of the test set [6]. It is a system of
eight stiff DAEs of index-one of type (4.1). Consistent initial values must be
carefully determined. In addition, large nonlinearities occur due to the modelling
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Table 7 Numerical results for hyperbolic problem (5.4)

rodasp2 rodasp rodas
h err p err P err p
1.00e—01 8.16e—07 8.25e—07 1.45e—06
5.00e—02 5.03e—08 4.02 5.05e—08 4.03 7.04e—08 4.37
2.50e—02 3.12e—09 4.01 3.12e—09 4.02 5.59e—-09 3.65
1.25e—02 1.94e—10 4.01 1.94e—10 4.01 6.43e—10 3.12
6.25¢e—03 1.21e—11 4.00 1.21e—11 4.00 7.45e—11 3.11
3.13e—03 7.57e—13 4.00 7.57e—13 4.00 8.11e—12 3.20
1.56e—03 4.74e—14 4.00 4.72e—14 4.00 8.65¢e—13 3.23
7.81e—04 2.82e—15 4.07 2.8le—15 4.07 8.76e—14 3.30
Embedded methods
1.00e—01 8.27e—06 8.27e—06 2.22e—05
5.00e—02 1.11e—06 2.90 1.11e—06 2.90 2.83e—06 2.97
2.50e—02 1.44e—07 2.94 1.44e—07 2.94 3.63e—07 2.97
1.25e—02 1.84e—08 2.97 1.84e—08 2.97 4.68e—08 2.95
6.25e—03 2.33e—09 2.98 2.33e—09 2.98 6.10e—09 2.94
3.13e—03 2.92e—10 2.99 2.92e—10 2.99 8.02e—10 2.93
1.56e—03 3.67e—11 3.00 3.67e—11 3.00 1.06e—10 2.92
7.81e—04 4.59e—12 3.00 4.59e—12 3.00 1.40e—11 2.92

Water network Water network

5 —o—rodasp optimized ::zﬁ:s?
- —=—rodasp ok "
g4 ode15s g foce
= 2
o3 &
§ £
22 Sos

-
' — —
—
0 - 0 =N
2 3 4 5 6 T 8 9 10 4 5 [ 7 8 9 10
accuracy (mescd) accuracy (mescd)

Fig. 2 Numerical results (runtime versus accuracy) for water tube system described in [6].
Left: Comparison of odel5s and rodasp with or without optimized implementation. Right:
Comparison of the different rodas methods

of the transistors. The results in Fig. 3 show that rodasp2 performs better than
rodas and rodasp. Using the analytical Jacobian matrix, the accuracy of rodas
is slightly higher compared to rodasp2. However, if the numerically calculated
Jacobian matrix is used, this accuracy advantage disappears.
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e Two transistor amplifier g Two transistor amplifier
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accuracy (mescd) accuracy (mescd)

Fig. 3 Numerical results (runtime versus accuracy) for two transistor amplifier described in [6,
12]. Left: Analytical Jacobian matrix. Right: Numerically computed Jacobian matrix

Table 8 Numerical efforts for convection diffusion problem (5.5). NSUCC = number of success-
ful time steps, NFAIL = number of failed steps, NFCN = number of function evaluations, CPU =
CPU time

NSsucCcC NFAIL NFCN CPU
odel5s 1672 18 3279 1.7
rodasp2 413 10 2941 1.7

Finally, the new method rodasp2 is compared again with ode15s. A convec-
tion diffusion problem is considered:
8%
0x2

dc

o (5.5)

dc
= —u(t) + D
0x

with ¢ € (0, 10800], x € [0, 10°], initial value c(x, 0) = exp(—10~%(x — 10000)?)
and boundary conditions c(0,¢) = 0, c(105, t) = 0. Diffusion coefficient and
velocity are given by D = 100, u(t) = 15 for t < 5400 and u(t) = —15 for
t > 5400. The space interval is discretized by n = 1000 space points and the
second order derivative is approximated by standard second order central finite
differences. The convection term was discretized with a WENO scheme of fifth
order. The ODE system resulting from the semidiscretization in space was solved
with the standard tolerances rtol = atol = 10™*. In Table 8 the numerical efforts
for both methods ode15s and rodasp2 are given. It turns out that both methods
are similarly efficient in terms of computing times. However, if one compares the
quality of the solution in Fig. 4, rodasp2 gives better results.
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Fig. 4 Numerical results for convection diffusion problem. Above: Solution at different times.
Below: Zoom into solutions obtained at r = 10800, left with ode15s, right with rodasp2

6 Conclusion

A disadvantage of Rosenbrock-Wanner methods for solving index-one DAEs is that
the Jacobian matrix has to be re-evaluated in every time step. Jax [2] was able to
derive new order conditions for Rosenbrock-Wanner methods with the help of the
Butcher tree theory, so that this disadvantage is mostly eliminated. Only the part
(g2)0 in equation (1.4) has to be updated.

In this paper, the rodasp method could be modified on the basis of Jax’s new
conditions. If the exact Jacobian matrix is used in each time step, the new method
rodasp? is still a 4th-order scheme with all the properties of rodasp. In the
case of the inexact Jacobian matrix, the order reduction could be limited to p = 2
instead of p = 1. Various numerical tests have shown that the new method is
efficient. By specific additional measures for the efficient evaluation of the Jacobian
matrix, further computing time reductions can be achieved. These measures are
e.g. vectorization or the avoidance of repeated evaluation of linear components.
Thus, the new rodasp2 method can be an alternative to the MATLAB standard
integrators.
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Example programs and the new method rodasp2 are given as supplementary

material or can be requested from the author.
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Abstract This paper introduces a modified version of the recently proposed data-
driven Loewner framework to compute reduced order models (ROMs) for a class
of semi-explicit differential algebraic equation (DAE) systems, which include the
semi-discretized linearized Navier—Stokes/Oseen equations. The modified version
estimates the polynomial part of the original transfer function from data and incor-
porates this estimate into the Loewner ROM construction. Without this proposed
modification the transfer function of the Loewner ROM is strictly proper, i.e., goes
to zero as the magnitude of the frequency goes to infinity, and therefore may have
a different behavior for large frequencies than the transfer function of the original
system. The modification leads to a Loewner ROM with a transfer function that has
a strictly proper and a polynomial part, just as the original model. This leads to
better approximations for transfer function components in which the coefficients in
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1 Introduction

This paper introduces a modified version of the data-driven Loewner framework
to compute reduced order models (ROMs) for a class of semi-explicit differential
algebraic equation (DAE) systems, which includes systems arising from semi-
discretized linearized Navier—Stokes/Oseen equations . The improvement is in the
estimation of the polynomial part of the transfer function from measurements and
in the incorporation of this estimate into the Loewner ROM construction, which in
many cases leads to ROMs with better approximation properties.

Most ROM approaches first compute subspaces that contain the important
dynamics of the system and then generate a ROM by applying a Galerkin or Petrov—
Galerkin projection of the original full order model (FOM) onto these subspaces.
These projection based ROM approaches include balanced truncation, interpolation
based methods, proper orthogonal decomposition, reduced basis methods, and
others. See, e.g., the books [1, 3, 5, 9, 12]. All of these ROM approaches require
explicit access to the system matrices to apply the projection and generate the ROM.
In contrast, the Loewner framework computes a ROM directly from measurements
of the transfer function and does not require explicit knowledge of the system
matrices. Thus, the Loewner framework can be applied even if the mathematical
model of the system is not available, e.g., because proprietary software is used
or measurements are generated directly from the physical system. The Loewner
framework is described, e.g., in the book [3, Chapter 4] and in the recent survey [2].

The Loewner framework computes a ROM directly from transfer function mea-
surements in such a way that the ROM transfer function approximately interpolates
the transfer function of the original FOM at the measurements. However, the
Loewner ROM generated with the original approach has a strictly proper transfer
function. In particular, the ROM transfer function goes to zero as the magnitude of
the frequency goes to infinity. In contrast, the transfer function of the original model
may have a polynomial part which is bounded away from zero, or is even unbounded
as the magnitude of the frequency goes to infinity. In this case, this substantially
different behavior of transfer functions generates substantial differences away from
the measurements, which means that the ROM may not capture important features
of the original problem. As mentioned before, this paper shows how to estimate
the polynomial part from transfer function measurements and how to incorporate
these estimates into the Loewner ROM construction to generate better ROMs. In
principle, there is no difference between the computation of a Loewner ROM for an
ordinary differential equation (ODE) system and for a DAE system. However, for
ODE systems the structure of the ODE system allows one to directly identify the
polynomial part, especially assessing whether it is non-zero. Unfortunately, this is
more involved for DAE systems. For theoretical purposes we derive the analytical
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forms of the strictly proper and polynomial parts of the transfer function for our class
of semi-explicit DAE systems. If available, the analytical form of the polynomial
part of the transfer function could be used. However this requires access to the
system matrices. As an alternative, we propose to estimate the polynomial part of
the transfer function from measurements. We then show how to incorporate this
estimate into the Loewner ROM construction to generate better ROMs. This paper
specifically focuses on the structure of semi-explicit DAE systems arising, e.g., from
semi-discretized Oseen equations and complements [7].
The class of semi-explicit DAE systems is given by

d d
E11dtV(t) = A v() +App(®) + By og(?) +B1,1dtg(l), te0,7),

(1.1a)
0=A"v(t) +Byog), 1€ (0,7),
(1.1b)
v(0) =0, (1.1c)
d
y(®) = C1v(1) + Cop(1) + Dog(r) + Dy dtg(t) 1€(0,7).
(1.1d)

Here v, p are the states (velocities and pressures in the Oseen system), g are the
inputs, and y are the outputs. The matrix E;; € R™*™ is symmetric positive
definite, Aj; € R, AIT2 e R n, < ny,is a matrix with rank n,,
Bl,(), Bl,l € anxng’ Bz,o € Rnpxng’ C, e Rnyxnv’ C e Rnyxnp’ and Do, Dy €
R™*"¢ See, e.g., the books [6, 10]. Derivatives jt g of the inputs appear in the semi-
discretized equations, e.g., when inputs on the partial differential equation (PDE)
level are given as Dirichlet conditions on the velocities (e.g., the input corresponds
to suction/blowing actuation on the boundary).
Often it will be convenient to define n = n,, +np,

_ [ v® _[Eun1 0 A Ap
o) () ) e

Bio B
Bo={_" B =" = 1.2b
0 (BZ’O), | ( ; ) c=(cc), (1.20)

and write (1.1) in the compact notation

Ejt x(1) = Ax(¢) + Bog(?) + B jtg(t), te(0,7), (1.3a)

Ex(0) =0, (1.3b)

y() = Cx(t) + Dog(t) + Dy ddt g(), te (0, 7). (1.3¢)
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This paper is organized as follows. In the next Sect.2 we derive the analytical
representations of the strictly proper and polynomial parts of the transfer function.
Section 3 reviews the Loewner approach. Our approach for estimating the polyno-
mial part of the transfer function from data is introduced in Sect. 4. Section 5 applies
the Loewner approach with identification of the polynomial part of the transfer
function to the Oseen equation.

2 Transfer Function

As mentioned before, the Loewner framework constructs a ROM such that its
transfer function approximates the transfer function of the FOM. The transfer
function H(s) of the FOM additively splits into a so-called strictly proper part
Hgp:(s), which is a rational function in s with [[Hgp(s)]| — 0 as |s] — oo,
and a polynomial part Hyoly(s). Depending on the transfer function measurements
available it can be difficult to obtain a good approximation of the combined transfer
function

H(s) = C(sE—A) "' (Bo+sB1) + Do +sD; @.1)
associated with (1.3), and in these cases a separate approximation of the strictly

proper and of the polynomial part can yield much better results. This section
computes Hgp (s) and Hyoly (s).

2.1 Transfer Function of an ODE System

First consider (1.3) with an invertible matrix E, i.e., consider an ODE system. Since
(SE—A) 'Bo+sB))=(sE—A)"'By+AE 'B; + GE—A)E'B))
= (SE—A) '(Bo+ AE"'B) + E"'By,
the transfer function (2.1) can be written as

H(s) = C(sE—A)~ By + AE"'B;)+ CE"'B; + Do + 5D .

-
=Hgpr (s) Hpoly (5)
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If E is invertible, the strictly proper part and the polynomial part of the transfer
function can be determined directly from the matrices in (1.3). Specifically, the
polynomial part is at most linear,

Hpoly(s) =Po+sP;  with Py=CE 'B; +Dy, P; =Dy,

and the polynomial part is zero if By, Do, D; are zero.

2.2 Transfer Function of the Semi-Explicit DAE System

Now consider (1.1). Because the corresponding E in (1.2) is singular, the represen-
tation (2.1) does not directly expose the strictly proper part and the polynomial part
of the transfer function. We proceed as in [8] and transform (1.1) into an ODE

system.
We write
V(1) = vo(r) + vg(0), (2.2)
where
vo(t) = —Ej A(ALE A1) 'Baog(t) (2.3)

is a particular solution of (1.1b) and vq(¢) satisfies 0 = A1T2V()(l‘). Furthermore, we
define the projection

m=1-ApALEAn)'ALE .
It can be verified that IT> = I, HE,; = E; I7, null() = range(A12) and
range(IT) = null(AszEfll), i.e., IT is an Ejj-orthogonal projection. For (1.1)
derived from a finite element discretization, IT is a discrete version of the Leray
projector [4]. The properties of IT imply that
ALvo(t) =0 ifandonlyif M7 vo(t) = vo(t). (2.4)

Inserting (2.2), (2.3) into (1.1) gives
d
ElldtVO(t) =A11vo(t) + Ap2p(t) + B3g(r)

- _ d
+ (Bui+ A@ALE A1) "Bao) | 8() (2.52)

0 =ATvo(0), (2.5b)
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vo(0) = — vz (0), (2.5¢)

¥(0) =Civo(t) + C2p(1) + (Do = CIE Az(ALE] A) " Boo) 8()
o L) (2.50)
1dtg s .
where
B3 ;=B — A11El_llA12(A1T2E1_11A12)_1132,0- (2.6)

Next we express p in terms of vp and project onto the constraint (2.5b).
Specifically, we multiply (2.5a) by AszEl_ll, then use (2.5b) and finally solve the

resulting equation for p to get

p(t) = — (ALE A1) AT E [ A11vo(0)
— (ALE[An)'ALE B3 g(r)

- _ _ d
— ALE A1) (ALEBL +Bao) | 8(0). @7

Now we insert (2.7) into (2.5d), apply (2.4), and use HAlz(AszEﬁlAlz)_l =0to
write (2.5) as

d d
nE, o’ PAIG) =IA 7 vy(1) + MB3g(r) + B | 580, 10,1,

(2.8a)
vy (0) = — O7v,(0), (2.8b)
~ d
y(1) =C3H T vo(r) + Py g(t) + Py -0} 1€ (0,T),
(2.8¢)
where B3 is given by (2.6) and

C;:=C; — C(ALE[ A 'ALE Ay, (2.9a)

Py =Dy — CiE;'AALEA12) By
~ C(ALE[ A1) 'ATLE'B;, (2.9b)

P; :=D; — C;(ALE'A1n) " (ALE['B11 + B2). (2.9¢)
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The system (2.8) is a dynamical system in the n, — n, dimensional subspace
null(IT) and (2.8a,b) has to be solved for IT” v = v. This can be made more explicit
by decomposing

n=ee’ (2.10a)
with @/, @, € R"*" ") satisfying

efe, =1 (2.10b)

Substituting this decomposition into (2.8) shows that Vo = @lTvo e R™™" must
satisfy

d . ~
O/E1O, | To(t) =0 A110,%(1)
T T d
+ 0, ng(t)—i-@,Bmdtg(t), te(0,7), (2.11a)
Y0(0) = — O] v,(0), (2.11b)
~ =~ d
y(@) =C30,vo(t) +Pog(t) + Py dt gt), te,7). (2.11¢c)
The systems (1.1) and (2.11) are equivalent. Again we refer to [8] for details.
Specifically, the transfer function of (1.1) is identical to the transfer function of
(2.11). Since the (n, — np) x (ny — np) matrix @rTEu@, has full rank, we can
proceed as in Sect. 2.1 to read off the strictly proper part and the polynomial part of
the transfer function from the system representation (2.11),
H(s) = Hgpr(s) + Hpoly (s), (2.12a)

where

T T -1
Hyn(s) =C30, (s O/ENO, - 07 A0, )

-1
X (@,TB3 +07A,0,(07E,,0,) @,TBM), (2.12b)
Hpoly () =C30,(07E110,) ' @7B 1 + Py +sPi. (2.12¢)
Py

Thus the polynomial part of the transfer function of (1.1) is again at most linear, but
the matrices Py and P; are more involved.

If the system matrices E1q, ... in (1.1) are available then the matrices in (2.6) and
(2.9) and the matrices Py and P in (2.12¢) can be computed using results already
applied in [8]. We summarize these results next. However, if one does not have
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access to the system matrices Eq1, ... one needs to estimate the polynomial parts
Py and P; from transfer function measurements, as we will describe in Sect. 4.

2.3 Computational Details

EnAp )\ (Xi)_( 0 EinnAp ) (X2)_(0 2.13)
Al 0 Z Bo/  \AL 0 7, G )’ '

then X = Bl (ALE[A)'ALE], Z] = —ByoALE'An)7!, and
X' = cIALEA)T'ALE]!, 2] = —Cy(ALE;/A1)~". Hence, the
matrices in (2.6) and (2.9) can be written as

If

B3 =B o—A1X|, C;=C; —XJAy,
and

l~’0=Do—C1X1 —XgBy,, P, =D —X2TB1,1+Z%"B2,0.

E11 A12 X3 Bll
=" L), 2.14
(Afz"><zz> (0> e

then Py in (2.12¢) can be written as

If

Py = i;() + C5X;.

In fact, A1T2X3 = 0 implies X3 = nrx; = @r@lTX3 by (2.4) and (2.10a). Hence,

with X3 = @lTX3 the first block in (2.14) reads E110,X3 + A;2Z3; = By 1.

Since null(@7) = null(IT) = range(A}2), OTE(10,X; = @B, ;. This gives
,1 ~

C;0,(0E;10,) 0B, = C;0,X3 = C3Xs.

3 Loewner Framework Applied to the Oseen Equations

We review the Loewner framework applied to (1.3). The presentation is standard
and follows the recent tutorial paper [2] and book [3, Chapter 4]. In the next Sect. 4
we modify it to better account for the presence of a polynomial part in the transfer
function (2.12).
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The Loewner framework (LF) is a data-driven model identification and reduction
technique that was originally introduced in [11] and was continuously developed,
improved and extended to different problems and system classes during the last
decade. It is an interpolation-based method that produces ROMs that (approxi-
mately) interpolate the transfer function corresponding to the underlying FOM at
the given interpolation frequencies. Unlike other interpolation-based methods the
LF computes the ROM from measurements of the transfer function rather than by
projection of the original system.

Let m = ng be the number of inputs and p = n, be the number of outputs, so
that H(s) € CP*™. We assume that given frequencies

wi, rj €C, j=1...,N, (3.1a)
left tangential directions
L; eCP, j=1,...,N, (3.1b)
and right tangential directions
rjeC” j=1...,N, (3.1¢)
we have transfer function measurements

vii=H(u,)) € clxm, w; i =H}j)r; eC’*!, j=1,...,N.
(3.1d)

We seek a ROM of the form!
~d — - ~ d
B’ () =A%) +Bog(t) + B, | g(0). 1€ 0,T), (3.22)
EX(0) = 0, (3.2b)
- ~ —~ ~d
y() = CX(r) + Pog(r) + Py dtg(t), te0,7), (3.2¢)

where E and A are of size r x r with small r, By, By have r rows, and C has
r columns, such that the corresponding transfer function H is an approximate
tangential interpolant to the original transfer function H, i.e., such that

CH(uj) ~ CH(uj) =vi  for j=1,...N, 53
HOojr; ~HG)r; =w; for j=1,...,N.

I'The matrices E and A do not have the block 2 x 2 structure of E and A in (1.2).
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Because of the left and right tangential interpolation conditions {x j}i.V ; € Care
called the left interpolation points, {v j}jy:l C C™ are called the left sample values,
{¢ j}j'v:l C CP are called the left tangential directions and {A j}jy:l C C are called

the right interpolation points, {w j}j.V:1

C C? are called the right sample values,

{r j}?]=1 C C™ are called the right tangential directions.
We assume that the left interpolation points and the right interpolation points are

distinct, i.e. that
{l/vj};v:l N {)\j};\;l = 0.
The measured data are arranged into matrix format as follows>
M = diag(ui, 1o, ..., uy) € CVN A =diag(hy, A2, ..., Ay) € CVV,
L=t 6ty eCr N, R=[rin ry]ec™, (4
V*:[v1v2-~-vN]€(CmXN, W=[W1W2~-~WN]6(CPXN.

The Loewner matrix is given by

vir —{iw; viry—€iwy
H1—A1 H1—AN
L= : : e CNN, (3.5)
VT —ywi o VNIN—LyWN
N —AL IN—AN

Using (3.4) it can be verified that the Loewner matrix (3.5) solves the Sylvester
equation

ML — LA = VR —-LW.

The shifted Loewner matrix is given by

VITrl,ul—E’fwl)q o Viry 1 —4 Wy Ay
H1—A1 H1—AN
Ly = : : e CV*N, (3.6)
VATIUN =L WAL o VANIN N =Ly WN AN
HN—A1 UN—AN

2Note that the matrices V* € C"*N and W € CP*¥ contain transfer function measurements (3.1)
and are not projection matrices.
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Using (3.4) it can be verified that the shifted Loewner matrix (3.6) solves the
Sylvester equation

ML —LsA = MVR — LWA.

If the ‘right’ amount of data is given,® then the ROM computed with the
(classical) Loewner method is (3.2) with

E=-L A=-L,, Bp=V, Bj=0, C=W, Py=P; =0. (3.7)

The ROM (3.2) with (3.7) is in general complex. However, if the data (3. 1) contain
also the conjugate complex data ({;Lj}?/:1 {,u/}j 1 A } _1 = {4 } _1» €tc),
then the complex ROM (3.7) can be transformed into a real ROM W1th the same
transfer function, as shown in [2, p. 360]. The transfer function H corresponding
to (3.7) satisfies the interpolation conditions (3.3) with equality. However while
it satisfies the interpolation conditions (3.3), the transfer function H by design is
strictly proper, H poly = 0, and therefore the error H — H is large, especially for
large frequency. We will address this deficiency in Sect. 4.

Often more data than necessary are provided and the pencil (ILy, L) is singular.
In this case we use the singular value decomposition (SVD) to extract the important
information. Specifically, we compute the (short) SVDs of the augmented Loewner
matrices as

[L L] =Y$X], H: ] = Y,8:X3, (3.8)

where S| = diag(ol(l), .. (1)) e R¥N*N and S, = dlag(a(z), .. (2)) e RVxN

are the matrices with singular values on the diagonal, and Y1, X2 S (CN Ny, X,
€ C*N*N are the matrices of singular vectors.

The size r of the ROM can be chosen as follows. Given a tolerance T > 0 the
truncation order r is the smallest integer such that the normalized singular values
satisfy a( )/o(l) <7, 0'(2)/0(2) <t,j=r+1,...,N

The matrlces Y, X € CV*" are obtained by selecting the first r columns of the
matrices Y1 and X;. The reduced Loewner system is constructed by multiplying the
matrices IL, Ly, V, W with Y* and X to the left and respectively, to the right, as

L=YLX, L;=YLX, V=YV, W=WX (3.9)

3What the ‘right” amount of data is depends on the transfer function. Since we typically have more
data, the case we describe below, we omit specification of the ‘right’ amount of data.
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The ROM computed with the (classical) Loewner method is (3.2) with

o~ o~

E=-0L, A=-1,, Bg=V, Bj=0, C=W, P,=P, =0. (3.10)

As before, if the data {Mj}j.v:l, {Ai}fvzl, {vj }j.V:l, {wj}f.V:l contain also the conjugate
complex data, then the complex ROM (3.2) with (3.10) can be transformed into a
real ROM with the same transfer function, as shown in [2, p. 360].

The transfer function H corresponding to (3.10) satisfies the approximate
interpolation conditions (3.3). However, by design, the transfer function His strictly
proper, H poly = 0, and therefore the error H — H is large, especially for large
frequency. We will address this deficiency next.

4 Accounting for the Polynomial Part of the Transfer
Function

As we have seen in Sect. 2.2, the transfer function is composed of a strictly proper
part and a polynomial part. The exact structure of these parts is shown in (2.12). We
write H(s) = Hgpr(s) + Hpoly (s) with

Hpoly(s) =Py +sPy.

Especially for the DAE system (1.1), the exact form (2.12) of Py, P} € RP*™ is
complicated. Here, as in Sect.3, m = ng is the number of inputs and p = n,
is the number of outputs, so that H(s) € CP*™. Even if all system matrices
in (1.1) were available, the computation of Py, P; € R”*™ from (2.12) is tedious.
More importantly, if only transfer function H(s) measurements are available, it is
impossible to compute Py, P;1 € R?”*™ from (2.12). In this section we explain
how we can estimate Hpoly and account for it in the Loewner framework. The
key assumption is that information about the transfer function is known at high
frequency bands. More precisely, we assume that H(: ) is known for large
positive real numbers w. Here, denote the imaginary unit with 1 = +/—1. Since
lim| |- oo [Hspr ()| = 0, the contribution of the strictly proper part Hgp (s) to the
transfer function H(s) becomes negligible for high frequency ranges.

4.1 Estimation from One and Two Data Points

Assume that the transfer function H(s) is known at one point z  located on the
imaginary axis where n € R and n > 1. Since lim;,_, oo [Hspe (2 7)| = 0,

H@ n) = Hgpe G ) +Po +1 7Py ~ Py +1 7Py
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This gives the estimates
D 5 _ -1
Py = Re (H( n)), P; =7~ Im (H(@ n)). 4.1)

Next, assume that the transfer function H(s) is known for two points :  and 1 6
on the imaginary axis with n, 6 € Rand 8 > n > 1. We have

H(0) — HG 1) = (Hope(1 0) + Po +10P1 ) — (Hype(t ) +Po +1 7Py
= Hipe(t6) —HiuGn) + 00—t )PL~ 10 —i)PL. (42)

Hence, we can estimate P in terms of a divided difference value that appears in
the Loewner matrix with A = 1 n and u = 1 6 (that is approximating the derivative
when 6 — ), as follows

~ HG:6) - H
P, = Re ( (t6) —HG ’7)). (4.32)
10 —17
We also have
10HG@ 0) — 1 nH@ n)
= (16Hpe(i6) +16P) — 67P1) — (1 nHypet 1) + 1 1Po — 1Py
= 1 0Hypr(1 0) — 1 nHapet ) + 6 — 1 )Po + (° — 6°)Py,
which implies
10H@G 0) — 1 nH(G 1 OHpr (1 6) — 1 nHgpe (1
@0) —inHGn) _ spr(2 ) — 1 nHpr( n)JrPOJH(nJFQ)P1
10—11n 10 —1n
~Po+1i(n+0)P.
The previous approximation gives the following estimate for Py,
=~ 6H@ 0) — 1 nH
PozRe(’ (6) =t yHG ")). (4.3b)
10 —17
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Example 4.1 Consider the order n = 3 DAE system

10 10 1 1 -1
] t=[ 25T Joor s 1 o

~ — ~ — ~ ~——— ~ =

En Al A Bio

0=[10]v(t)+[12]g(t),

3
¥() = v+ | ] [P0,
“T o

which is of the form (1.1), with B;; = Do = D; = 0242. For this small example
we can compute the transfer function explicitly, e.g., using the symbolic toolbox in
Matlab applied to (2.1), to get

1 11 -25 -3 -6
Hspr(s)zs_2|:1 1:|, Hpoly(s)=|: 0 3:|+s|:_1 _2]. 4.5)

[ - ~—

=P, =P,

First, we estimate Py and P; in (4.5) from one measurement pair (z n, H(z n))
using (4.1). In this simple example, these errors can be computed analytically
from (4.5) and happen to be nearly identical,

~ 2 11 )
Pyo—Pp=Py—Re(H = =
o —Po =Py —Re (H( n)) n2+4[11] o),

—~ 1 11
P,—P =P, —p 'Im(H = =0mn).
1—P; 1 —n~ ' Im (H(@ n)) '72+4|:11] n™)

The errors for different n are depicted by the black curves with crosses in Fig. 1.

Next, we estimate the values of Py and P; in (4.5) from two measurement pairs
(tn,HG@n)) and (1 6, H( 0)) using the estimates (4.3). Specifically, we use the
second frequency ¢ = 107 or ¢ = 1007. The errors [Py — P0||2 are shown in
the left plot in Fig. 1, while the errors ||P; — P1 |l are shown in the right plot. The
red curves with circles correspond to the estimates (4.3) with 6 = 1017 and green
curves with diamonds correspond to the estimates (4.3) with 8 = 100 n. Again, the
errors behave like 0(77’2). Adding a second frequency 6 = 10% n, k = 1,2, reduces
the error approximately by 107,
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n n

Fig. 1 Errors |[Py — P2 (left plot) and ||Py — Py ||, (right plot) for Py, P} estimated from (4.1)
and (4.3). The black curves with crosses show the error for the estimates obtained from (4.1) for
n e [10°, 10°]. The red curves with circles and green curves with diamonds show the error for
the estimates obtained from (4.3) for n € [10°,10°] and & = 107 (red curves with circles) or
6 = 1007 (green curves with diamonds). The errors behave like O(r]‘z) and adding a second
frequency 6 = 10¥n, k = 1, 2, reduces the error by approximately by 10~%

4.2 Estimation from 2L Data Points—The General Case

Now assume that we have 2L measurements available with sampling points located
in high frequency bands, i.e., on the imaginary axis with high absolute value. We
will extend the formulas in (4.3) to the general case L > 1 using the definitions of
the Loewner matrices in (3.5) and (3.6).

The set-up is as in Sect.3. The left interpolation points {t 9i},-L=1 and right
interpolation points {z 1} 5.‘:1 are chosen on the imaginary axis 1R with
min{6;}, min{n;} > 1. The goal is to estimate the coefficient matrices Py, P
taking into account all 2L measurements, and not only two of them as in (4.3).

We begin by extending (4.3a) for the estimation of P;. We write the (i, j) entry
of the Loewner matrix L (3.5) with A = 17 and u = 1 6. Instead of the generic
notation L for the Loewner matrix, we now use the notation I to indicate that this
Loewner matrix is computed with data located in high frequency bands, and to later
differentiate it from the Loewner matrix L1 obtained from the remaining data in
low frequency band.

Using the equalities (3.3) and (4.2), it follows that the (i, j) entry of the Loewner
matrix LM (3.5) with A = 1 7 and & = 1 0 has the expression

Lhi virj — 4w GH@O)r; — L HEn)r; H(H(l 0;) —H(@ nj))rj

U 16; — 1 - 10; —1n; L 10; —1n;
. e*<Hspr(l 0;) — Hypr(1 1) + (16; — 1 ﬂj)Pl)r.
o 10; —11; /
Hgp: (1 6;) — Hgpe i 15 ]
= ¢( Spr(lé? ”;"r( "’))rj 4Py = LI 4 6P, (4.6)
ity

- - -
.y hi,spr
TRED
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As in (3.4), the directional vectors £; and r; are collected into matrices
(Lh)* = [el 0 - eL] ccrxl,  Rb= [n ry - rL] ccml. 47
Combining (4.6) and (4.7) gives the approximation formula
[Lhi — hispr 4 phip Rhi A Lhip, RN (4.8)

again obtained by neglecting the contribution of the strictly proper part of the
transfer function at high frequencies.

Provided that L > max{p, m} (recall that here m is the number of inputs and p
is the number of outputs), one can write the estimated linear polynomial coefficient
matrix as follows

P, =Re ((Lhi)ﬁLhi (Rhi)T), (4.92)

where X € CV** is the Moore-Penrose pseudo-inverse of X € C**?.

Similarly to the procedure used for estimating Py, one can extend the formula
in (4.3b) for estimating Py from the shifted Loewner matrix L?i computed from L
sampling points located in high frequency bands as follows

Py = Re ( (L") LY (RM)"). (4.9b)

4.3 The Proposed Procedure

Assume that we have samples of the transfer function evaluated at high frequencies
(to capture the polynomial part) as well as at low frequencies (to capture the strictly
proper part). Algorithm 1 below adapts the Loewner framework for DAE systems by
preserving the polynomial structure of the underlying transfer function. The ROM
constructed with Algorithm 1 has the form

Ejti(t) =AX(1) +Bog(), t€(0,7), (4.10a)
Ex(0) = 0, (4.10b)
@) = CX(t) + Pog(t) + P, jt g(t), t€(0,T). (4.10c)

The derivative jt g(#) is not an explicit input into the dynamics (4.10a), i.e., ﬁl =0,
but its influence on the output is modeled by the feed-through term i’] jtg(t) in
the output equation (4.10c). While some structural details of the ROM (4.10) are
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different from the original FOM (1.3), the transfer function
H(s) = Hype(s) + Hpoly(5) (4.11a)
of the ROM (4.10), now has a strictly proper part and a polynomial part,
Hype(s) = C(sE—A) 'Bo,  Hypoiy(s) = Py + s Py. (4.11b)

Numerical experiments indicate that each of these match the ones of the FOM (2.12)
well, provided enough transfer measurements are available.

Instead of the generic A, u; € C used in Sect. 3 we now specify A; = 1 7; and
wnj =16; in Algorithm 1 with n;, 6; € R.

Algorithm 1 Modified Loewner method with identification of polynomial terms in
transfer function

Input: A data set composed of 2(N + L) sample points, 2(N + L) tangential directions, and

Output: Loewner ROM specified by E K, ﬁ, 6, ﬁo, P;.
1: Split the data into 2N data corresponding to the low frequency range and into 2L data
corresponding to the high frequency range. L
2: Use the 2L data corresponding to the high frequency range to estimate Py, P using (4.9).
3: Adjust the 2N transfer function measurements corresponding to the low frequency range, by
subtracting the estimated polynomial part Hyoy (@) = Pg +1wPy forw € {6;|1 < i <
N}U{n; |1 < j < N} from the original measurement values, i.e., compute

left:  (16;,€;,vi —Hpory(0))"¢;), j=1,...,N,
A (4.39)
right : (1nj,r;,w; —Hpoy(nj)rj), j=1,...,N.

4: Use the 2N data (4.39) to construct data matrices Vio ¢ CNxm wWlo ¢ CP*N g5 in (3.4), and
Loewner matrices L', L;'® € C¥*N as in (3.5) and (3.6).
5: Compute the SVD of the augmented Loewner matrices obtained with L'°, ;' and project as

in (3.9) to construct E = —Ll° = —Y*Ll°X, A = —ﬂ" = —Y*M"X, By = Ve =
YV, C=W"=wex.

5 Numerical Example—Oseen Equations

In this section we apply the Loewner framework to the Oseen equations. The
example specifications are from [8].
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Fig. 2 The channel geometry and coarse grid

5.1 Problem Specification

For completeness we first review the main problem specifications. Let 2 C R? be
the backward facing step geometry shown in Fig. 2. The boundary is decomposed
into segments I}, I'y, I'y, where I, = {8} x (0, 1) is the outflow boundary, inputs
are applied on I, = {0} x (1/2, 1) U{1} x (0, 1/2), and the velocities are set to zero
only =082\ UxUTIy).

We consider the Oseen equations

;t v(x,t) + (a(x)-Vyv(x,t) —vAv(x,t) + Vp(x,t) =0 in 2 x (0, 7),
V-u(x,t) =0 in 2 x (0, 7T),

(=px, I +vVo(x,t)nx) =0 onl, x(0,7T),

v(x,t) =0 only x(0,7T),

v(x,1) =gr(x,t) only x(0,T),
v(x,00=0 in £2,

where v = 1/50is the dynamic viscosity and where n(x) is the unit outward normal
to £2 at x. Here v, p are the velocity and pressure of the fluid respectively, and gr
denotes the boundary input. The advection field a is computed as in [8, Sec. 7.2]
by solving the steady-state Stokes equation with velocity 8(x2 — 1/2)(1 — x2) on
the inflow boundary segment I, = {0} x (1/2, 1) and and zero velocity boundary
conditions on 382 \ (I3, U Ip).

Our boundary inputs are given as in [8] by

ng

gr(x,0) =Y gOyix) 5.1)

k=1
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with n, = 6 boundary control functions y ; : R? — R? given as follows. The first
three functions are defined on the inflow boundary segment {0} x (1/2, 1) and are
given by

yox) = (sm(ZJn(’(C)z - 1/2))) L k=1.2.3:
the remaining three are defined on the backstep boundary segment {1} x (0, 1/2)
and are of the form

Y () = (S‘“(Z{)””>, k=123,
We use a P1 — P2 Taylor-Hood discretization to arrive at the semi-discrete
equations (1.l1a—c). (Note that the B | term has accidentally been dropped in [8,
Sec. 7.2].) We use a mesh that is obtained from a uniform refinement of the coarse
mesh shown in Fig. 2.
We consider the second output from [8, Sec. 7.2], which is the integral of the
stress force on the boundary segment I5ps = (1, 8) x {0},

y() = / (— px,t)I +vVu(x, t))n(x)ds, (5.2)
Tobs

approximated using the weak form (see [8] for details). This leads to (1.1d) with
C; € R?™ Cy € R?*"7, Dy € R¥*, and D; = 0. Note that the output matrices
represent derivatives of the finite element approximations of velocity v and pressure
p and therefore scale with the mesh size #; the finite element approximation of the
output y(7) itself does not.

In summary, the semi-discretized DAE model is of dimension n = n, + n, with
m = ng = 6 inputs and p = n, = 2 outputs.

5.2 Numerical Experiments

We report numerical experiments for a discretization with n, = 12,504 velocity
degrees of freedom and n, = 1,669 pressure degrees of freedom. Other discretiza-
tion sizes gave similar results.
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The polynomial coefficient matrices are explicitly computed using the approach
in Sect. 2.3 and given by (four digits are shown)

| —7.088 —1.124-107% —2.363 —7.731 —4.172-107! —2.724
07| 4.845.10! —2.940-10~% 1.615-10' 4.927-10! 8.727-10~3 1.656-10!

P —5.484.10717 —2.242.10722 —1.828-10"17
' 7.814 1.997-10-5 2.605

—5.576-10717 —4.468-10"1° —1.866-10~""
7.889 3.275-1072 2.632 '

Next we compute the Loewner ROM using the classical Loewner approach (3.7)
and the modified Loewner approach. For the modified Loewner approach we first
modify the transfer function measurements using the true polynomial part ﬁo =Py,
P1 P computed using the approach in Sect. 2.3. Thus the modified Loewner uses
Algorithm 1, with Steps 1 and 2 replaced by the computation of Po =Py, P1 P
using the approach in Sect. 2.3. We assume that we have 2N = 200 measurements
logarithmically spaced in the low frequency range [1072, 10'] 1. The left £ j and
right r; tangential vectors are chosen randomly.

The singular value decay of the Loewner matrices (3.8) computed using mea-
surements in the low frequency range is shown in Fig.3. The ROM size r is
chosen as the largest integer such that o, /oy > t = 10710 and is r = 24 for
the classical Loewner ROM. In the modified Loewner approach we compute the
Loewner matrices from the shifted transfer function measurements (Steps 3+4 in
Algorithm 1). The singular value decay of these Loewner matrices is similar the one
shown in Fig. 3 and are not plotted. The ROM size r is again chosen as the largest
integer such that 0, /o1 > v = 1071 and is » = 23 for the modified Loewner

10°

10° 1 .

g
~
N

1010 .

10-15, 4

20 40 60 80 100 120 140 160 180 200

Fig. 3 Singular value decay of the Loewner matrices (3.8) computed using measurements in the
low frequency range and tolerance © = 107!0 used to determine the ROM size. The normalized
singular values for the two Loewner matrices (3.8) are visually identical
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Fig. 4 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of the reduced system computed with the modified Loewner approach with true Py = Py, P = P,
(red solid line) for various components of the 2 x 6 transfer function. Loewner ROMs computed
using 2N = 200 measurements logarithmically spaced in the low frequency range [10~2, 10'] ¢.
Right plots: corresponding relative errors

ROM. The left plots in Fig. 4 show the absolute values of frequency responses of
the original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of the reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2 x 6 transfer function at 300 logarithmically spaced frequencies w in [1072, 10°] 1.
The right plots in Fig.4 show the corresponding relative errors. We have picked
three transfer function components which well represent the overall behavior of the
Loewner approach.

The modified Loewner approach generally leads to ROMs with transfer functions
that better approximate the true transfer function. The approximation of the
transfer function for large frequencies w is always substantially better when the
modified Loewner approach is used. For the transfer function component Hiw)12
corresponding to input 2 and output 1 the modified Loewner approach leads to a
slightly larger error for frequencies roughly between 10! and 10%. This is due to the
fact that we only use measurements in [1072, 10'] .. If instead we use 2N = 200



206 A. C. Antoulas et al.

Input 2, Output 1
102

Original model — Loewner
— Loewner - r = 31 . 5 —Loewner new A

—Loewner new - r = 33

Transfer Function
5
Relative Error

&

S

102 10° 102 10* 10° 102 10° 102 10* 108
Frequency w Frequency w

Fig. 5 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of reduced system computed with the modified Loewner approach with true Py = Py, P; = P
(red solid line) for the (1, 2) component of the transfer function. Loewner ROMs computed using
2N = 200 measurements logarithmically spaced in the low frequency range [1072, 10?] 1. Right
plots: corresponding relative errors

Table 1 Estimation error for

Freq. range [Py — P P, -P
Py, P; computed using (4.9a) 4. rang IPo oll2 IPs 1ll2

3105 -2 —4
and (4.9b) with 2L = 20 [10°,10°]  6.0161-10 2.7859-10
measurements [1 106] 2.5535-107%  1.1163-107¢
logarithmically spaced in the [1 107] 3.0575-107¢  1.3111-10~8
high frequency range [10°108]  2.8019-10~8  1.2303.10~10

[10/,10/%2] for
f=3,...,7 107,10°]  5.8920-10710  2.6729-10712

Ihe observed estimation error for ﬁo and for
P behaves like O(1072/) and in this example
the P estimation error is two orders of magni-
tude smaller than the P estimation error

measurements logarithmically spaced in the low frequency range [1072, 10?] 1,
we get the frequency response in Fig.5. Approximations for the other transfer
function components are also improved when the modified Loewner approach is
used, but not plotted because of space limitations. However, note that the classical
and modified Loewer ROMs computed using these data are of larger sizes r = 31
and r = 33. (The ROM size r is again chosen as the largest integer such that
o,/01 > T = 10’10.)

Next we estimate the polynomial part using (4.9a) and (4.9b). Assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[10/,10/+2] 1. The left £; and right r; tangential vectors are chosen randomly.
Table 1 shows the estimation error for varying frequency ranges. The observed
estimation error for both Po, P1 behaves like O (10~2/).

In our last experiments we compute the Loewner ROM using the classical
Loewner approach (3.7) and the modified Loewner approach, Algorithm 1. Thus, in
contrast to the experiments shown in Figs. 4 and 5 we now estimate the polynomial
part. Again we assume that we have 2N = 200 measurements logarithmically
spaced in the low frequency range [1072, 10'] ;. In addition we assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range



Model Reduction of Semi-Explicit DAEs Using the Loewner Framework 207

Input 2, Output 1

100 E
Original model 104 - Loewner
g — Loewner-r=24 —Loewner new
k=4 —Loewner new - r =23 5 10%F
£ 402 2
£10 =
S =0 ~
& | o 10%  Zm T T T e e e e
5} ’ 2
< 10 2N Z10?
g z < S
S T N~ ~ =3t
& N 10
6 ~
10 . . > 10 & . . . . |
102 10° 10° 10* 10 102 10° 10° 10* 10°
Frequency w Frequency w

Input 3, Output 1

102 Original model ' Ll ‘ 4 10* K~ Loewner '
— Loewner - r =24 AN 2 f|l—Loewner new A
—Loewner new - r = 23 VRN 5 10
10°
1072
107
10°
10®
2 . . . 10710
1072 10° 10° 10* 10° 102 10 10 10
Frequency w Frequency w

Input 5, Output 2

104 Original model ~ ] 4100~ Loewner ) S = - -
— Loewner-r=24 | 7 {|=——Loewner new -~ 7

——Loewner new - r =23 I 102k

Transfer Function
S
>
Relative Error

o 10%F
= 10-6,

Transfer Function
7/
Relative Error

N 108

10710 . . .
102 10° 10° 10* 10°
Frequency w Frequency w

S,
o

Fig. 6 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated Py, Py
(red solid line) for various components of the 2 x 6 transfer function. Right plots: corresponding
relative errors

[104, 106] 1 to compute estimates ﬁo and /I;l. In all cases the left £; and right r;
tangential vectors are chosen randomly.

The left plots in Fig. 6 show the absolute values of frequency responses of the
original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2 x 6 transfer function at 300 logarithmically spaced frequencies w in [10~2, 10°] 1.
The right plots in Fig. 6 show the corresponding relative errors.

In most cases the modified Loewner approach improves the approximation
properties of the ROM transfer function. For large frequencies w > 1, the
estimation error @ |(§1) jk — (P1) ji| starts to dominate the overall error in transfer
function approximation. The beginning of this can be seen in Fig. 6 for Input 3 and
Output 1, where the error between FOM transfer function and modified Loewner
ROM transfer function begins to grow linearly in @ for @ > 10°. As indicted
by Table 1 the errors ||Py — §0||2, 1Py — /P\l |l2 when 2L measurements at higher
frequencies are available to compute ﬁo, /P\l. Thus while a linear growth in error
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between FOM and ROM transfer function is unavoidable when Pj is present, the
impact can be delayed by using measurements at higher frequencies.

The behavior of modified Loewner ROM for the transfer function component
corresponding to Input 2 and Output 1 is worse than that of the classical Loewner
ROM. Note that this component of the transfer function is substantially smaller
than all other components. Moreover, this component of the transfer function has a
constant polynomial part, i.e.,

H(G )12 = HprG )12+ Po)i2,  (Po)12~ 1074 (P12 =0,

but is estimated by H(t )12 = Hspr(t @)1.2 + (Po)1.2 + ¢ @ (P1)1 2. The errors in
the transfer functions for the modified Loewner and the classical Loewner are nearly
identical in the range [1072, 10']: where measurements were taken, but both ROM
transfer functions have the wrong asymptotics for large frequencies. The difficulty
for the modified Loewner approach is that both (Py)1 2 and (P); 2 are small (in fact
PDi12=0).

The modified Loewner ROM can be improved somewhat by thresholding. If
there is an error estimate o and t1 available such that |(Pg) j x — (Po) ik x| < 1o and
|(Py1) )jk— (P1) j.k| < 71, then for small polynomials components with |(Py) j x| < 7o

or |(P1) jk| = 71, respectively, the estimation error may be as large as the estimated
quantity itself. Hence for components with |(P0) jkl_= o we set (Po) ik =0,
and for components with |(P1) jkl < 11 we set (P1) i,k = 0. Unfortunately,
currently there is no rigorous error estimate tp and 71 available. Motivated by
Table 1 we set 79 = 71 = 10~/ when the polynomial part is estimated from
measurements in the high frequency range [10/, 10/+2] 1. Specifically, since we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[10%,10°] ¢ to compute estimates Po and P1 we set Tp = 1] = 10~4. With
this thresholding (P1)1 r = 0,k = ..6, and (P1)22 = 0. The absolute
values of frequency responses for the (1,2) component of the transfer function and
corresponding relative errors are shown in Fig.7. The error in transfer function

Input 2, Output 1
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H — Loewner-r=24 100 H—Loewner new T N - - =
= ,
<] —Loewner new - r = 23 S ’
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Fig. 7 Left plots: Absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated Py, Py
and thresholding (red solid line) for the (1,2) component of the transfer function. Right plots:
corresponding relative errors
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for the modified Loewner and the classical Loewner are again nearly identical in
the range [1072, 10']: where measurements were taken. For large frequencies the
observed relative error in the transfer function for the modified Loewner approach
is approximately |(Pg)1.2 — (Po)1.2|/[(Po)1,2], whereas the relative error in the
transfer function for the classical Loewner is always asymptotically equal to one.
The fundamental issue is that small polynomial components |(Pp); | <« 1 and
especially |(P1) x| < 1 need to be estimated with even smaller absolute errors.
This is difficult and requires more measurements at higher frequencies.

6 Conclusions

This paper has provided a detailed description of the analytical form of the
transfer function for a class of semi-explicit DAE systems, which includes the
semi-discretized Oseen equations, and it has introduced a modified version of
the data-driven Loewner framework to compute reduced order models (ROMs)
for these DAE systems The algorithmic improvement is in the estimation of the
polynomial part of the transfer function from measurements and in the incorporation
of this estimate into the Loewner ROM construction, which in many cases lead
to ROMs with better approximation properties. The modified Loewner approach
uses measurements of the transfer function at high frequencies to estimate the
polynomial part, and then applies the standard Loewner approach to measurement
contributions from the strictly proper part of the transfer function. In particular, the
split of the transfer function into a strictly proper and a polynomial part is explicit in
the construction of the Loewner ROM to ensure that the resulting ROM transfer
function has the same structure. Numerical experiments on the semi-discretized
Oseen equations indicate that the modified Loewner approach generates ROMs that
better approximate the transfer function if a linear polynomial part is present. In
cases, where the polynomial part is linear with a small linear term, the modified
Loewner approach can introduce a spurious polynomial part, which then leads to
large errors for large frequencies. This can be somewhat avoided by thresholding,
but the estimation of small components in the polynomial parts, especially in
the linear part remains a difficulty. For the modified Loewner approach precise
theoretical error estimates and improvement bounds are not yet available, and are
part of future work.
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Abstract We consider tracking control for multi-input multi-output differential-
algebraic systems. First, the concept of vector relative degree is generalized for
linear systems and we arrive at the novel concept of “truncated vector relative
degree”, and we derive a new normal form. Thereafter, we consider a class of
nonlinear functional differential-algebraic systems which comprises linear systems
with truncated vector relative degree. For this class we introduce a feedback
controller which achieves that, for a given sufficiently smooth reference signal, the
tracking error evolves within a pre-specified performance funnel.
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1 Introduction

Funnel control has been introduced in [23] almost two decades ago. Meanwhile,
plenty of articles have been published in which funnel control from both a theoreti-
cal and an applied perspective are considered, see e.g. [3-5, 9, 10, 16, 17, 20, 26, 29]
to mention only a few.

A typical assumption in funnel control is that the system has a strict relative
degree, which means that the input-output behavior can be described by a differ-
ential equation which has the same order for all outputs. However, multi-input,
multi-output systems that appear in real-world applications do not always have
a strict relative degree. Instead, the input-output behavior is described by a collection
of differential equations of different order for each output, which is referred to as
vector relative degree.

The subject of this article is twofold: First we consider linear (not necessarily
regular) systems described by differential-algebraic equations (DAEs). We general-
ize the notion of vector relative degree as given in [1, Def. 5.3.4] for regular DAE:,
see [24, 27] for systems of ordinary differential equations (ODEs). Furthermore,
we develop a normal form for linear DAE systems which allows to read off this
new truncated vector relative degree as well as the zero dynamics. Thereafter, we
consider a class of nonlinear functional DAE systems which encompasses linear
systems in this normal form, and we introduce a new funnel controller for this
system class.

Our results generalize, on the one hand, the results of [9], where systems with
strict relative degree are considered. On the other hand, concerning funnel control,
the results in this article generalize those of [3, 8] for linear and nonlinear DAE:s,
where the truncated vector relative degree (although this notion does not appear in
these articles) is restricted to be component-wise less or equal to one. Note that [3]
already encompasses the results found in [7] for linear DAE systems with properly
invertible transfer function. DAEs with higher relative degree have been considered
in [6], and even this article is comprised by the present results. Therefore, the present
article can be seen as a unification of the funnel control results presented in the
previous works [3, 6-9] to a fairly general class of nonlinear DAE systems. Parts of
our results have been published in the doctoral thesis [25] by one of the authors.

1.1 Nomenclature

Thoughout this article, R>o = [0, oo) and |x|| is the Euclidean norm of x € R”".
The symbols N denotes the set of natural numbers and Ny = N U {0}. The ring of
real polynomials is denoted b