
Chapter 8
Bounded Distributive Lattices with Two
Subordinations

Sergio Celani and Ramon Jansana

Abstract In this paper we consider the notion of subordination on distributive lat-
tices, equivalent to that of quasi-modal operator for distributive lattices introduced
by Castro and Celani in 2004. We provide topological dualities for categories of
distributive lattices with a subordination and then for some categories of distributive
lattices with two subordinations, structures that we name bi-subordination lattices.
We investigate three classes of bi-subordination lattices. In particular that of positive
bi-subordination lattices.

Keywords Subordination relations on distributive lattices · Contact relations ·
Distributive lattices · Distributive lattices with operators · Quasi-modal operators

8.1 Introduction

Subordination algebras and contact algebras originate in the duality for compact
Hausdorff spaces developed by de Vries (1962) where the algebraic duals of the
spaces are complete Boolean algebras with a proximity relation. The relations on
arbitrary Boolean algebras that satisfy the conditions in the definition of de Vries
proximity relation are known as compingent relations. Deleting some of the con-
ditions we have the subordination relations of Bezhanishvili et al. (2016). These
relations also originate in the Region-based theory of space, where precontact rela-
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tions on a Boolean algebra, as are called in Dimov and Vakarelov (2006c), were
introduced by Düntsch and Vakarelov (2003, 2007) under the name of proximity
relations as a weakening of the relations of the contact algebras studied in Dimov
and Vakarelov (2006a, b). The precontact relations and the subordination relations
of Bezhanishvili et al. (2016) are dual notions (a is related to b in one relation if and
only if a is not related to the complement of b in the other). An equivalent concept to
those of subordination relation and precontact relation is that of quasi-modal opera-
tor introduced by Celani in Celani (2001), where a topological duality for Boolean
algebras with a quasi-modal operator is given.

The definition of subordination relation on aBoolean algebra does notmention the
complement operation and therefore it can be considered for bounded distributive
lattices as well as its equivalent concept of quasi-modal operator. This is done in
Castro and Celani (2004) where the concept of quasi-modal operator for bounded
distributive lattices is studied and a topological Priestley duality is given for bounded
distributive latticeswith twoquasi-modal operators. From the results proved inCastro
and Celani (2004) one easily obtains a duality for bounded distributive lattices with
a subordination.

In this paper we study three kinds of distributive lattices with two subordination
relations that we call bi-subordination lattices: the bi-subordination lattices where
one subordination is included in the other, the bi-subordination lattices where one
subordination is the converse of the other, and the positive bi-subordination lattices
where the relation between one subordination and the other is similar to that between
the box operation and the diamond operator in positive modal algebras. We present
topological dualities for these classes of bi-subordination lattices. In order to be able
to do it we introduce in detail topological dualities for several categories of bounded
distributive lattices with a subordination given by different choices of morphisms
between them. The dual objects are Priestley spaces endowed with a binary relation.
Some of the results we report can be found in Castro and Celani (2004) but for
completeness we decided to present them with full proofs, besides phrasing them in
terms of subordination relations instead of quasi-modal operators.

After the preliminaries section we present in Sect. 8.3 the concepts of subordina-
tion, �-quasi-modal operator and ∇-quasi-modal operator for bounded distributive
lattices aswell as the concept of bi-subordination lattice.Wealso introduce some tools
necessary for the dualities we present in Sect. 8.5. In Sect. 8.4 we discuss some exam-
ples of bi-subordination lattices and define the concept of positive bi-subordination
lattice. In Sect. 8.5 we present the dualities for different categories of subordination
lattices. The objects of the dual categories are Priestley spaces with two binary rela-
tions, one for each subordination. We extend the dualities to bi-subordination lattices
in the natural way. Finally, in Sect. 8.6 we first discus the dualities for positive bi-
subordination lattices that naturally result when we dualize each subordination by a
relation. Then we present a different duality where the objects are Priestley spaces
with a single binary relation in a similar way as one can obtain a Priestley duality
for positive modal algebras by considering only one relation on the Priestley space
dual to the distributive lattice reduct instead of considering one relation for the box
operation and another one for the diamond operator.
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8.2 Preliminaries

In this preliminaries section we introduce the most basic concepts and notation we
need related to posets, lattices, and binary relations. The other concepts assumed to
be known in the paper, like Priestley space, will be introduced when needed.

Let 〈X,≤〉 be a partially ordered set (or poset). A set U ⊆ X is an upset of X
if for every x, y ∈ X , if x ∈ U and x ≤ y, then y ∈ U . The dual notion is that of
downset, that is, a set V ⊆ X is a downset of X if for every x, y ∈ X such that x ∈ V
and y ≤ x , we have y ∈ V .

We assume knowledge of bounded distributive lattices (Balbes andDwinger 1974;
Davey and Priestley 2002; Grätzer 2009). Let L be a bounded distributive lattice.
Recall that a filter of L is a nonempty subset of L that is an upset w.r.t. the order of the
lattice and is closed under the operation of meet. Dually, an ideal of L is a nonempty
subset of L that is a downset w.r.t. the order of the lattice and is closed under the
operation of join. A filter F of L is said to be prime if for every a, b ∈ L such that
a ∨ b ∈ F it holds that a ∈ F or b ∈ F . If L is a Booelan lattice (i.e. a lattice where
every element has a complement) the prime filters are known as ultrafilters. The
filter generated by a set H ⊆ L will be denoted by [H) or by Fg(H) and the ideal
generated by H by (H ] or Ig(H). Given a ∈ L , we write [a) or Fg(a) for the filter
generated by {a} and (a] or Ig(a) for the ideal generated by {a}. The set, and the
lattice, of ideals of L will be denoted by Id(L) and that of its filters by Fi(L).

For every set X , we useP(X) to denote the powerset of X as well as the powerset
lattice and the powerset Booelan algebra of (the subsets of) X .

If X is an arbitrary set and R a binary relation on X , then for every x ∈ X we let

R(x) := {y ∈ X : 〈x, y〉 ∈ R} and R−1(x) := {y ∈ X : 〈y, x〉 ∈ R}

and for every set Y ⊆ X we let

R[Y ] := {y ∈ X : (∃x ∈ Y ) x Ry},
R−1[Y ] := {x ∈ X : (∃y ∈ Y ) x Ry},
�R (Y ) := {x ∈ X : R (x) ⊆ Y } .

Note that

R[Y ] =
⋃

{R(y) : y ∈ Y } and R−1[Y ] = {x ∈ X : R (x) ∩ Y �= ∅} .

Wealso refer to R−1[Y ] by♦R (Y ). Note that then�R(Y ) = [♦R (Y c)]c and♦R(Y ) =
[�R(Y c)]c. Moreover, we denote by R−1 the converse of the relation R, i.e., R−1 =
{〈x, y〉 : yRx}.
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8.3 Subordination Relations and Quasi-modal Operators
on Distributive Lattices

The notion of subordination on a Boolean algebra defined in Bezhanishvili et al.
(2016) is equivalent to the notion of precontact or proximity relation on a Boolean
algebra given in Dimov and Vakarelov (2006c) and Düntsch and Vakarelov (2007). It
can be exported to bounded distributive lattices since it does not involve the operation
of complement.

Definition 1 A subordination on a bounded distributive lattice L is a binary relation
≺ on L satisfying the following conditions for every a, b, c, d ∈ L:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d.

A subordination lattice is a pair 〈L ,≺〉 where L is a bounded distributive lattice and
≺ a subordination on L . A bi-subordination lattice is a triple 〈L ,≺,�〉 where L is
a bounded distributive lattice and ≺, � are subordinations on L .

We will denote by SLat the class of subordination lattices and by BSLat the class
of bi-subordination lattices.

In the case of Boolean algebras, the subordination relations are equivalent to the
quasi-modal operators of Celani (2001). Similarly, on bounded distributive lattices
they are equivalent to the quasi-modal operators on bounded distributive lattices
introduced in Castro and Celani (2004).

Definition 2 (Castro and Celani 2004) A �-quasi-modal operator on a bounded
distributive lattice L is a map � : L → Id(L) satisfying the conditions:

(QM1) �(a ∧ b) = �(a) ∩ �(b), for every a, b ∈ L ,
(QM2) �(1) = L ,

that is, it is a meet-homomorphism (preserving also the top element) from the lattice
L to the lattice of its ideals.

Dually, a ∇-quasi-modal operator on a bounded distributive lattice L is a map
∇ : L → Fi(L) satisfying the conditions:

(QM3) ∇(a ∨ b) = ∇(a) ∩ ∇(b), for every a, b ∈ L ,
(QM4) ∇(0) = L ,

that is, it is a join-homomorphism (preserving also the bottom element) from L to
the dual of the lattice of the filters of L .

Remark 1 A dual modal operator � on a bounded distributive lattice L is a unary
operation on L that is ameet-homomorphism from L to L preserving the top element.
The map that sends every element of L to the principal ideal it generates is an
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embedding from L to the lattice of the ideals of L . Thus we can look at a dual modal
operator � on a bounded distributive lattice L as a meet-homomorphism from L to
the lattice Id(L) of the ideals of L that preserves also the top element and has the
property that the elements of its range are principal ideals. In this way, the concept of
�-quasi-modal operator on a bounded distributive lattice is a natural generalization
of the notion of dual modal operator. Dually, an operator ♦ on a bounded distributive
lattice L is a unary operation on L that is a join-homomorphism from L to L that
preserves the bottom element and since L is dually embeddable into the lattice of
the filters of L by the map that sends every element of L to the principal filter it
generates, an operator ♦ on a bounded distributive lattice L can be seen as a join-
homomorphism from L to the dual lattice of the lattice Fi(L) of the filters of L that
in addition preserves the bottom element. Therefore, the concept of ∇-quasi-modal
operator on a bounded distributive lattice is a natural generalization of the notion of
modal operator.

Quasi-modal operators and subordination relations are strictly connected in the
way we proceed to describe. Recall the well-known fact that any map f : L → P(L)

determines two relations R f , R
+
f ⊆ L × L , one the converse of the other, defined by

the conditions

aR f b iff a ∈ f (b) and aR+
f b iff b ∈ f (a).

Conversely, every relation R ⊆ L × L determines two maps fR, f +
R : L → P(L)

defined by the conditions

fR(a) := R−1(a) = {b ∈ L : bRa} and f +
R (a) := R(a) = {b ∈ L : aRb}.

It is immediate to see that if f : L → P(L), then fR f = f and f +
R+

f
= f and that if

R ⊆ L × L , then R fR = R and R+
f +
R

= R.
We apply these facts to �-quasi-modal operators, ∇-quasi-modal operators and

subordinations on L .
Let f : L → P(L) be a map. It is easy to see that f is a �-quasi-modal operator

if and only if its associated relation R f is a subordination on L , and that f is a
∇-quasi-modal operator if and only if R+

f is a subordination on L .
If � : L → P(L) is a �-quasi-modal operator, then we denote the relation R�

by ≺�. Thus for every a, b ∈ L

a ≺� b iff a ∈ �(b).

Analogously, if ∇ : L → P(L) is a ∇-quasi-modal operator, then we denote the
relation R+

∇ by ≺∇ and we have for every a, b ∈ L

a ≺∇ b iff b ∈ ∇(a).
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Consider now a binary relation R on L . It is easy to see that the function fR :
L → P(L) is a �-quasi-modal operator on L if and only if R is a subordination and
that this holds if and only if f +

R : L → P(L) is a ∇-quasi-modal operator on L .
If ≺ is a subordination on L , then we denote the map f≺ by �≺ and the map f +≺

by ∇≺. Hence, for every a ∈ L

�≺(a) := {b ∈ B : b ≺ a} and ∇≺(a) := {b ∈ B : a ≺ b} .

Since �-quasi-modal operators correspond to subordinations and these to ∇-
quasi-modal operators, the procedures just described above allow us to associate
with every �-quasi-modal operator a ∇-quasi-modal operator and conversely, in the
following way.

Let L be a bounded distributive lattice and� a�-quasi-modal operator on L . The
∇-quasi-modal operator ∇≺�

of the subordination ≺� is then given for each a ∈ L
by

∇≺�
(a) := {b ∈ L : a ∈ �(b)} .

In a similar way, given a ∇-quasi-modal operator ∇, the �-quasi-modal operator
of the subordination ≺∇ is given for each a ∈ L by

�≺∇ (a) := {b ∈ L : a ∈ ∇(b)} .

It immediately follows that �∇≺�
= � and ∇�≺∇ = ∇.

Note that due to the equivalence between subordinations and �-(∇-)modal oper-
ators, Remark 1 shows that subordinations can be taken as generalizations of modal
operators.

Remark 2 If L is a bounded distributive lattice, � a dual modal operator on L and
♦ a modal operator on L , then it is easy to see that the binary relations ≺� and ≺♦
defined on L by setting for every a, b ∈ L

a ≺� b ⇐⇒ a ≤ �b

and
a ≺♦ b ⇐⇒ ♦a ≤ b

are subordinations on L .
The �-quasi-modal operator �≺� associated with ≺� satisfies that �≺�(a) =

(�a] for all a ∈ L . The ∇-quasi-modal operator ∇≺� of ≺� is then given by the
condition b ∈ ∇≺�(a) if and only if a ≤ �b. Therefore, ∇≺�(a) = �−1[[a)] for
every a ∈ B.

Similarly, the∇-quasi-modal operator associatedwith≺♦ satisfies for everya ∈ L
that ∇≺♦(a) = [♦a). The �-quasi-modal operator of ≺♦ is then given for every
a, b ∈ L by the condition b ∈ �≺♦(a) if and only if iff ♦b ≤ a. Thus, for every
a ∈ L we have �≺♦(a) = ♦−1[(a]].
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Being the notions of subordination relation and �-quasi-modal operator equiva-
lent, as well as equivalent to that of∇-quasi-modal operator, we can take any of them
as a primitive notion. We decided to take the notion of subordination as primitive in
this paper; nevertheless we will make use of the associated quasi-modal operators
on some proofs and statements.

In Castro and Celani (2004) the authors introduce and study quasi-modal lattices
which consist of a bounded distributive lattice together with both a �-quasi-modal
operator and a ∇-quasi-modal operator. Thus they consider in disguise bounded
distributive lattices with two subordinations, i.e., bi-subordination lattices.

We proceed to introduce in the remaining part of this section some tools that are
essential to the presentation of the results in the paper.

8.3.1 Two Maps on the Power Set of a Subordination Lattice
Determined by the Subordination Relation

Given a bounded distributive lattice with a subordination we define two maps on the
poset of all subsets of the lattice determined by the subordination and present the
properties we need. One is a modal operator and the other its dual. Using them we
will define two relations on the set of prime filters of a bounded distributive lattice
with a subordination.

Let L be a bounded distributive lattice and ≺ a subordination on L . The maps
�−1≺ : P(L) → P(L) and ∇−1≺ : P(L) → P(L) are defined by setting for every
C ⊆ L:

1. �−1≺ (C) := {a ∈ L : �≺(a) ∩ C �= ∅},
2. ∇−1≺ (C) := {a ∈ L : ∇≺(a) ⊆ C}.
These two maps are obviously monotone (w.r.t. inclusion), ∇−1≺ distributes over
intersections, �−1≺ over unions, �−1≺ (∅) = ∅, and ∇−1≺ (L) = L . It is easy to see that
for every C ⊆ L ,

�−1
≺ (C) = (∇−1

≺ (Cc))c and ∇−1
≺ (C) = (�−1

≺
(
Cc

)
)c.

Hence, �−1≺ is a modal operator on the powerset lattice P(L) and ∇−1≺ is its dual.
The first two items of the next lemma are proved in Castro and Celani (2004).

Lemma 1 For every filter F, every ideal I , and every prime filter P of L:

1. �−1≺ (F) is a filter,
2. ∇−1≺ (I ) is an ideal,
3.

(∇−1≺ (P)
)c

is an ideal.

Proof We abbreviate all along the proof �≺ by � and ∇≺ by ∇.
(1) Suppose that a, b ∈ �−1 (F). Then�(a) ∩ F �= ∅ and�(b) ∩ F �= ∅. Let c ∈

�(a) ∩ F and d ∈ �(b) ∩ F . Then c ∧ d ∈ F and c ∧ d ∈ �(a) ∩ �(b), because
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these sets are ideals. Hence c ∧ d ∈ �(a ∧ b). Therefore, �(a ∧ b) ∩ F �= ∅ and so
a ∧ b ∈ �−1 (F). Suppose now that a ∈ �−1 (F) and a ≤ b. Then �(a) ∩ F �= ∅.
Since �(a) ⊆ �(b), �(b) ∩ F �= ∅. Hence b ∈ �−1 (F).

(2) Suppose that a, b ∈ ∇−1 (I ). Then∇(a) ⊆ I and∇(b) ⊆ I . Therefore∇(a ∨
b) = ∇(a) ∩ ∇(b) ⊆ I . Hence a ∨ b ∈ ∇−1 (I ). Suppose that a ∈ ∇−1 (I ) and b ≤
a. Then ∇(a) ⊆ I and ∇(a) ⊆ ∇(b). Therefore, ∇(b) ⊆ I . Thus, b ∈ ∇−1 (I ).

(3) Let P be a prime filter of L . First note that since ∇(0) = L and P �= L , we
have ∇(0) � P . Therefore 0 /∈ ∇−1 (P). Suppose now that a, b /∈ ∇−1 (P). Hence
there are c ∈ ∇(a) and d ∈ ∇(b) such that c, d /∈ P . Since P is a prime filter it
follows that c ∨ d /∈ P . But since ∇(a),∇(b) are filters c ∨ d ∈ ∇(a) ∩ ∇(b) =
∇(a ∨ b). Hence ∇(a ∨ b) � P and therefore a ∨ b /∈ ∇−1 (P). Finally, suppose
that a /∈ ∇−1 (P) and b ≤ a. Then ∇(a) � P . But since ∇(a) ⊆ ∇(b), ∇(b) � P
which implies that b /∈ ∇−1 (P). �

8.3.2 The Two Relations on the Set of Prime Filters
of a Lattice Determined by a Subordination

Let L be a bounded distributive lattice and ≺ a subordination on L . We define the
binary relation R�≺ on the set X (L) of the prime filters of L by setting for every
P, Q ∈ X (L)

(P, Q) ∈ R�
≺ ⇐⇒ �−1

≺ (P) ⊆ Q.

In a similar way, we define the binary relation R∇≺ on X (L) by setting for every
P, Q ∈ X (L)

(P, Q) ∈ R∇
≺ ⇐⇒ Q ⊆ ∇−1

≺ (P).

Proposition 1 Let ≺ be a subordination on a bounded distributive lattice L. Then
R�≺ is the converse of the relation R∇≺ .

Proof Suppose that PR�≺ Q, i.e., that {a ∈ L : �≺(a) ∩ P �= ∅} ⊆ Q. To prove that
QR∇≺ P we have to show that P ⊆ {a ∈ L : ∇≺(a) ⊆ Q}. Suppose that a ∈ P and
∇≺(a) � Q. Let b ∈ ∇≺(a) be such that b /∈ Q. Thus b /∈ {a ∈ L : �≺(a) ∩ P �= ∅},
that is, �≺(b) ∩ P = ∅. Note that since b ∈ ∇≺(a), a ∈ �≺(b). Therefore �≺(b) ∩
P �= ∅. Hence b ∈ Q, a contradiction.

Conversely, suppose that QR∇≺ P , so that P ⊆ {a ∈ L : ∇≺(a) ⊆ Q}. To prove
that PR�≺ Q, suppose that �≺(a) ∩ P �= ∅ and let b ∈ �≺(a) ∩ P . Then a ∈ ∇≺(b)
and ∇≺(b) ⊆ Q. Therefore, a ∈ Q. �

Lemma 2 Let L be a bounded distributive lattice and ≺ a subordination on L. The
relations R�≺ and R∇≺ satisfy the following conditions:

1. R�≺ = (⊆ ◦ R�≺ ),

2. R�≺ = (R�≺ ◦ ⊆),

3. R∇≺ = (⊆−1 ◦ R∇≺),

4. R∇≺ = (R∇≺ ◦ ⊆−1).



8 Bounded Distributive Lattices with Two Subordinations 225

Proof (1) The inclusion R�≺ ⊆ (⊆ ◦ R�≺ ) is obvious. To prove the other inclusion
assume that P ⊆ Q′ and Q′R�≺ Q. Then {a ∈ L : �≺(a) ∩ Q′ �= ∅} ⊆ Q. Since P ⊆
Q′,wehave {a ∈ L : �≺(a) ∩ P �= ∅} ⊆ Q, andweare done. (2) follows easily form
the definitions involved. (3) and (4) follow from (2) and (1) respectively using that
R�≺ is the converse of R∇≺ . �

Lemma 2 is basically Lemma 5 in Castro and Celani (2004) and the next lemma
is Lemma 6 in Castro and Celani (2004).

Lemma 3 Let L be a bounded distributive lattice and ≺ a subordination on L. Let
a ∈ L and P ∈ X (L). Then

1. a ∈ �−1≺ (P) iff (∀Q ∈ X (L))(if �−1≺ (P) ⊆ Q, then a ∈ Q),

2. a ∈ ∇−1≺ (P) iff (∃Q ∈ X (L))(Q ⊆ ∇−1≺ (P) and a ∈ Q).

Proof (1) follows from the fact that �−1≺ (P) is a filter. (2) follows from the fact
that ∇−1≺ (P)c is an ideal. The direction from right to left is obvious. Assume that
a ∈ ∇−1≺ (P). Hence a /∈ ∇−1≺ (P)c. Thus since this last set is an ideal, there exist
Q ∈ X (L) such that a ∈ Q and ∇−1≺ (P)c ∩ Q = ∅. Hence Q ⊆ ∇−1≺ (P). �

8.4 Some Kinds of Bi-Subordination Lattices

We are interested in some kinds of bi-subordination lattices L = 〈L ,≺,�〉. In
one kind ≺ ⊆ �, in another � = ≺−1. Finally, we are interested in positive bi-
subordination lattices where the link between the subordinations ≺ and � is similar
to the link between the � and ♦ in positive modal algebras.

Definition 3 Abi-subordination lattice L = 〈L ,≺,�〉 is apositive bi-subordination
lattice if the following conditions hold for all a, b, c ∈ L:

(P1) c ≺ a ∨ b =⇒ (∀d ∈ L)(a � d ⇒ (∃e ∈ L)(e ≺ b & c ≤ e ∨ d))

(P2) a ∧ b � c =⇒ (∀d ∈ L)(d ≺ a ⇒ (∃e ∈ L)(b � e & e ∧ d ≤ c)).

The conditions (P1) and (P2) can be stated in an equivalent form using the oper-
ators �≺ and ∇�. To do it we need to introduce the following operations between
filters and ideals and between ideals and filters of a bounded distributive lattice.

Let L be a bounded distributive lattice, F ∈ Fi(L) and I ∈ Id(L). We define the
following ideal and filter, respectively

F � I :=
⋂

{(I ∪ { f }] : f ∈ F}

and
I ⊕ F :=

⋂
{[F ∪ {i}) : i ∈ I } .
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In terms of the operators �≺ and ∇� the conditions (P1) and (P2) respectively say
that for all a, b ∈ L ,

1. �≺(a ∨ b) ⊆ ∇�(a) � �≺(b),
2. ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b).

We proceed to provide examples of the three kinds of bi-subordination lattices
we are interested in.

Example 1 Let 〈X, τ 〉 be a topological space. The relations ≺ and � defined on
P(X) by

U ≺ V ⇔ U ⊆ int(V )

and
U � V ⇔ cl(U ) ⊆ V

are easily seen to be subordinations. Thus 〈P(X),≺,�〉 is bi-subordination lattice.
We note that the quasi-modal operators �≺ and ∇� satisfy that

�≺(U ) = (int(U )]

and
∇�(U ) = [cl(U ))

for each U ∈ P(X).
If we restrict ≺ and � respectively to the distributive lattices of the open sets

of X and of the closed sets of X we obtain bounded distributive lattices with two
subordinations, which are one included in the other. Indeed, if U, V are closed then

U ≺ V ⇔ U ⊆ int(V ) ⇔ cl(U ) ⊆ int(V ) ⇒ U � V .

Also, if U, V are open, then

U � V ⇔ cl(U ) ⊆ V ⇔ cl(U ) ⊆ int(V ) ⇒ U ⊆ int(V ) ⇔ U ≺ V .

Example 2 Recall that a distributive double p-algebra
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
, see

Katriňák (1973), is a double Stone algebra if a∗ ∨ a∗∗ = 1 and a+ ∧ a++ = 0. In a
double Stone algebra L the following properties are valid:

1. a∗ ≤ a+.
2. a+∗ = a++ ≤ a ≤ a∗∗ = a∗+.
3. (a ∧ b)∗ = a∗ ∨ b∗ and (a ∨ b)+ = a+ ∧ b+.

Double Stone algebras are considered by Katrin̆ák in Katriňák (1974) and in several
papers by the same author. For information on Stone algebras see Grätzer (2009) and
for double Stone algebras see also Balbes and Dwinger (1974).
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If
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
is distributive double p-algebra it is easily seen that the

relation ≺ on L defined by

a ≺ b ⇔ a∗ ∨ b = 1,

is a subordination and that the relation � defined by

a � b ⇔ b+ ∧ a = 0

is also a subordination.
On a double Stone algebra both subordination relations are equal. In fact, a dis-

tributive double p-algebra L is a double Stone algebra if and only if ≺ = �.

Proposition 2 Let
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
be a distributive double p-algebra. Then L is

a double Stone algebra if and only if for every a, b ∈ L,

a∗ ∨ b = 1 ⇔ b+ ∧ a = 0

Proof Suppose that L is a double Stone algebra. Then for every a, b ∈ L we have:

a∗ ∨ b = 1 ⇒ (a∗ ∨ b)+ = 1+

⇔ a∗+ ∧ b+ = 0

⇒ a ∧ b+ = 0

and

a ∧ b+ = 0 ⇒ (a ∧ b+)∗ = 0∗

⇔ (a∗ ∨ b+∗) = 1

⇒ a∗ ∨ b = 1.

Now assume that for every a, b ∈ L , a∗ ∨ b = 1 if and only if b+ ∧ a = 0. Let
a ∈ L . Since a∗+ ∧ a∗ = 0, we obtain that a∗∗ ∨ a∗ = 1. And since a+∗ ∨ a+ = 1
we obtain a++ ∧ a+ = 0. Hence, L is a double Stone algebra. �

The quasi-modal operators �≺ and ∇≺ associated with ≺ have the following
description:

�≺(a) = {
x ∈ L : x∗ ∨ a = 1

}

∇≺(a) = {
x ∈ L : x+ ∧ a = 0

}
.

Proposition 3 Let L be a double Stone algebra. Then the bi-subordination lattice
〈L ,≺,≺〉 is a positive bi-subordination lattice.

Proof We proceed to prove that it satisfies the conditions (P1) and (P2) in
Definition 3. We will work with the equivalent conditions stated in terms of the
delta and nabla operators.
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To prove that the condition (P1) holds, suppose that a, b, c ∈ L are such that
c ∈ �≺(a ∨ b) but c /∈ ∇≺(a) � �≺(b). Then there exists d ∈ ∇≺(a) such that c /∈
(�≺(b) ∪ {d}]. So, there exists P ∈ X (L) such that c ∈ P , �≺(b) ∩ P = ∅ and d /∈
P . Since d ∨ d+ = 1 ∈ P , we get d+ ∈ P , and as d ∈ ∇≺(a), we have d+ ∧ a = 0.
So

0 = 0∗∗ = (d+ ∧ a)∗∗ = d+∗∗ ∧ a∗∗ = d++∗ ∧ a∗∗ = d+++ ∧ a∗∗ = d+ ∧ a∗∗.

Then, since d+ ∈ P , a∗∗ /∈ P . So a∗ ∈ P , because L is a Stone algebra, and since
c ∈ P , we get c∗∗ ∈ P . Thus, a∗ ∧ c∗∗ ∈ P . Moreover,

1 = c∗ ∨ a ∨ b ≤ b ∨ a∗∗ ∨ c∗ = b ∨ (a∗ ∧ c∗∗)∗,

so that b ∨ (a∗ ∧ c∗∗)∗ = 1 and therefore a∗ ∧ c∗∗ ∈ �≺(b). Now since �≺(b) ∩
P = ∅, it follows that a∗ ∧ c∗∗ /∈ P , which is a contradiction.

Now, to prove that the condition (P2) holds, suppose that there are elements
a, b, c ∈ L such that c ∈ ∇≺(a ∧ b), but c /∈ �≺(a) ⊕ ∇≺(b). Therefore c+ ∧ (a ∧
b) = 0 and there exists P ∈ X (L) and d ∈ �≺(a) such that c /∈ P , ∇(b) ⊆ P ,
and d ∈ P . So, 1 = d∗ ∨ a, and therefore 1 = 1++ = (d∗ ∨ a)++ = d∗++ ∨ a++ =
d∗ ∨ a++ ∈ P . Since d ∈ P , d+ /∈ P . Therefore, a++ ∈ P . We note that c+ ∈ P ,
because c /∈ P . So, a ∨ c+ ∈ P and therefore, a+ ∨ c++ /∈ P . As c ∈ ∇≺(a ∧ b),

0 = a ∧ b ∧ c+ = a++ ∧ c+ ∧ b

= (a+ ∨ c++)+ ∧ b.

Then a+ ∨ c++ ∈ ∇≺(b) ⊆ P , which is a contradiction.
Thus we have that for every double Stone algebra L the bi-subordination lattice

〈L ,≺,≺〉 is a positive bi-subordination lattice. �

Example 3 This example is given inBezhanishvili (2013) for bounded sublattices of
Boolean algebras. It can be extended to bounded sublattices of bounded distributive
lattices. Let L be a bounded distributive lattice and let S be a bounded sublattice of
L . We consider the relations ≺S and �S defined by

a ≺S b ⇐⇒ (∃c ∈ S) a ≤ c ≤ b

and
a �S b ⇐⇒ (∃c ∈ S) b ≤ c ≤ a.

These two relations are easily seen to be subordination relations and each one is the
converse relation of the other.

The operators associated with the relations ≺S and �S are given by

�≺S (a) = {b ∈ L : S ∩ [b) ∩ (a] �= ∅}
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and
∇�S (a) = {b ∈ L : S ∩ [a) ∩ (b] �= ∅} .

An element a of a bounded lattice L is said to be complemented if there is b ∈ L
such that a ∧ b = 0 and a ∨ b = 1. The set of all complemented elements of L is
called the center of L . The center of L contains 0 and 1.Moreover, if L is distributive,
the complementswhen they exist are unique. This implies that the center of a bounded
distributive lattice L is a bounded sublattice of L and a Boolean lattice.

Proposition 4 Let L be a bounded distributive lattice. If S is a bounded sublattice
of the center of L, then 〈L ,≺S,�S〉 is a positive bi-subordination lattice.

Proof We note that S is a bounded sublattice of the center of L if and only if it is a
Boolean lattice. Thus, P ∩ S is an ultrafilter of S for each prime filter P of L .

Wenote that�−1≺S
(P) ⊆ Q if and only if P ∩ S ⊆ Q, for all P, Q ∈ X (L). Indeed:

If a ∈ P ∩ S, then a ∈ �≺S (a), and so �≺S (a) ∩ P �= ∅ having then that a ∈ Q.
Conversely, if �≺S (a) ∩ P �= ∅, there exists b ∈ �≺S (a) ∩ P and there exits s ∈ S
such that b ≤ s ≤ a. Then s ∈ P ∩ S ⊆ Q, and thus a ∈ Q.

Suppose that there are elements a, b, c ∈ L such that c ∈ �≺S (a ∨ b), but c /∈
∇�S (a) � �≺S (b). So, there exists d ∈ ∇�S (a) such that c /∈ (

�≺S b ∪ {d}]. Then
there exists P ∈ X (L) such that c ∈ P , �≺S b ∩ P = ∅ and d /∈ P . Therefore, there
exists Q ∈ X (L) such that �−1≺S

(P) ⊆ Q and b /∈ Q., i.e., P ∩ S ⊆ Q. As S is a
Boolean lattice, P ∩ S = Q ∩ S. Since c ∈ �≺S (a ∨ b) ∩ P and b /∈ Q, we have
a ∈ Q. And since d ∈ ∇�S (a), there exists e ∈ S such that a ≤ e ≤ y. So, s ′ ∈ Q ∩
S = P ∩ S, and thus d ∈ P , which is impossible. Therefore�≺S (a ∨ b) ⊆ ∇�S (a) �
�≺S b, for all a, b ∈ L . The proof of the inclusion ∇�S (a ∧ b) ⊆ �≺S a ⊕ ∇(b) is
similar. �

8.5 Duality for Subordination Lattices and
Bi-Subordination Lattices

We recall first the Priestley topological duality between bounded distributive lattices
and Priestley spaces (see for example Davey and Priestley 2002) and then we expand
it to subordination lattices and Priestley subordination spaces. The duality for sub-
ordiantion lattices we present can be extracted from that in Castro and Celani (2004)
which is for distributive lattices with a� and a∇ quasi-modal operator and Priestley
spaces with two binary relations. A duality for bi-subordination lattices, which is
basically the duality obtained in Castro and Celani (2004), easily follows from the
duality we describe for subordination lattices. For completeness we opted to give the
details.

A totally order-disconnected topological space is a triple X = 〈X,≤, τX 〉 where
〈X,≤〉 is a poset, 〈X, τX 〉 is a topological space, and given x, y ∈ X such that x � y
there exists a clopen upset U of X such that x ∈ U and y /∈ U. A Priestley space is
a compact and totally order-disconnected topological space.
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If X is a Priestley space, the set of all clopen upsets of X is denoted by D (X).
It is well-known that D (X) = 〈D(X),∪,∩,∅, X〉 is a bounded distributive lattice,
which is a sublattice of the complete lattice Pu (X) of all the upsets of X . The lattice
D(X) is the dual of the Priestley space X .

If L = 〈L ,∨,∧, 0, 1〉 is a bounded distributive lattice, we denote the set of all
prime filters of L by X (L) and recall that we denote the families of all ideals and all
filters of L by Id(L) and Fi(L), respectively. Given a bounded distributive lattice L ,
the representation map is the function σL : L → Pu (X (L)) given for every a ∈ L
by

σL (a) := {P ∈ X (L) : a ∈ L} .

It is a one-to-one lattice homomorphism, i.e. L ∼= σL [L]. Moreover, the topological
space

〈
X (L),⊆, τX (L)

〉
where the topology τX (L) has the set

σ [L] ∪ {X (L) � σ (a) : σ (a) ∈ σ [L]}

as a subbase, is a Priestley space such that the domain of D (X (L)) is σL [L]
and therefore the map σL establishes an isomorphism between L and the lattice
D (X (L)). The Priestley space X (L) := 〈

X (L),⊆, τX (L)

〉
is the dual of L .

Let X be a Priestley space. The map εX : X → X (D(X)) defined for every x ∈ X
by

εX (x) := {U ∈ D(X) : x ∈ U }

is a homeomorphism between the Priestley space X and the Priestley space X (D(X))

of the bounded distributive lattice of the clopen upsets of X and it is also an isomor-
phism between the posets 〈X,≤〉 and 〈X (D(X)),⊆〉.

A homomorphism from a bounded distributive lattice L1 to a bounded distributive
lattice L2 is a map that preserves the infimums of finite sets and the supremums of
finite sets; thus it preserves the bounds. A Priestley morphism from a Priestley space
〈X1,≤1, τ1〉 to a Priestley space 〈X2,≤2, τ2〉 is a continuous map from 〈X1, τ1〉 to
〈X2, τ2〉 that is order preserving w.r.t. the orders ≤1 and ≤2.

Let L1, L2 be bounded distributive lattices and h : L1 → L2 a homomorphism.
The map X (h) : X (L2) → X (L1) defined for every P ∈ X (L2) by

X (h)(P) := h−1[P]

is a continuos and order preserving function, thus a morphism from X (L2) to X (L1).
If X1 and X2 are Priestley spaces and f : X1 → X2 is a Priestley morphism, then

the map D( f ) : D(X2) → D(X1) defined for every U ∈ D(X2) by

D( f )(U ) := f −1[U ]

is a homomorphism from D(X2) to D(X1).
LetPriSpbe the categorywith objects the Priestley spaces and arrows thePriestley

morphisms and let DLat be the cateogry of the bounded distributive lattices with the
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homomorphisms as its arrowss.ThePriestleyduality says that themaps D fromPriSp
to DLat and X from DLat to PriSp given by the definitions above are functors that
establish a dual equivalence between the two categories whit natural transformations
given by the maps σL and εX .

We proceed to expand the duality between DLat and PriSp to a duality between
subordination lattices and Priestley spaces augmented with a binary relation.

We recall some facts we need on Priestley duality. Let L be a bounded distributive
lattice. We denote byOu (X (L)) the set of all open upsets of X (L), which is a lattice
when ordered by inclusion, and by Cd (X (L)) the set of all closed downsets sets
of X (L), which is also a lattice when ordered by inclusion. The map ϕ : Id(L) →
Ou (X (L)) given by

ϕ (I ) := {P ∈ X (L) : P ∩ I �= ∅},

for every I ∈ Id(L) is a lattice isomorphism. Similarly, the function ψ : Fi(L) →
Cd (X (L)) given by

ψ (F) := {P ∈ X (L) : F ⊆ P} ,

for every F ∈ Fi(L) is a dual lattice isomorphism. These functions can be expressed
in terms of σL as follows:

ϕ (I ) =
⋃

{σL (a) : a ∈ I }

for each I ∈ Id(L) and
ψ (F) =

⋂
{σL(a) : a ∈ F}

for each F ∈ Fi(L).
If L = 〈L ,≺〉 is a subordination lattice, the relations R�≺ and R∇≺ on X (L) will

be used to obtain the dual structures of L . We proceed to see the relevant topological
properties that they have on the Priestley space X (L). To this end we first note that
Lemma 3 can be stated using R�≺ and R∇≺ as follows:

Lemma 4 Let L be a bounded distributive lattice and ≺ a subordination on L. Let
a ∈ L and P ∈ X (L). For every P ∈ X (L) and a ∈ L

1. R�≺ (P) ⊆ σL(a) iff a ∈ �−1≺ (P),
2. P ∈ (R∇≺)−1[σL(a)] iff a ∈ ∇−1≺ (P).

The lemma implies the next corollary, which is Lemma 7 in Castro and Celani
(2004).

Corollary 1 Let L be a bounded distributive lattice and ≺ a subordination on L.
Then

1. �R�≺ (σL(a)) = ϕ(�≺(a)),
2. ♦R∇≺ (σL(a)) = ψ(∇≺(a)).
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Proof (1) Let P ∈ X (L). Then P ∈ �R�≺ (σL(a)) if and only if R�≺ (P) ⊆ σL(a).
By Lemma 4 the last condition holds if and only if a ∈ �−1≺ (P), which means that
�≺(a) ∩ P �= ∅. This can be restated saying that P ∈ ϕ(�≺(a)), because �≺(a) is
an ideal.

(2) Let P ∈ X (L). Then P ∈ ♦R∇≺ (σL(a)) if and only if a ∈ ∇−1≺ (P). This holds
if and only if ∇≺(a) ⊆ P , which is equivalent to say that P ∈ ψ(∇≺(a)), because
∇≺(a) is a filter. �

Let X be a Priestley space. A binary relation R on X is point-closed if R(x) is
a closed set for every x ∈ X . We say that R is up point-closed if it is point-closed
and for every x ∈ X the set R(x) is an upset of X . Similarly, we say that R is down
point-closed if it is point-closed and R(x) is a downset of X , for every x ∈ X .

Proposition 5 If L is a bounded distributive lattice and ≺ a subordination on L,
then

1. R�≺ is an up point-closed relation on X (L),
2. �R�≺ (U ) is an open upset for each U ∈ D(X (L)),
3. R∇≺ is a down point-closed relation on X (L),
4. ♦R∇≺ (U ) is a closed upset for each U ∈ D(X (L)).

Proof (1) Let P ∈ X (L). Then R�≺ (P) = {Q ∈ X (L) : �−1≺ (P) ⊆ Q}. Since
�−1≺ (P) is a filter, R�≺ (P) = ψ(�−1≺ (P)). Hence, R�≺ (P) is a closed upset of X (L).

(2) If U ∈ D(X (L)), then U = σL(a) for some a ∈ L . Since �≺(a) is an ideal
and �R�≺ (U ) = ϕ(�≺(a)) we obtain that �R�≺ (U ) is an open upset.

(3) Let P ∈ X (L). Then R∇≺(P) = {Q ∈ X (L) : Q ⊆ ∇−1≺ (P)} = {Q ∈ X (L) :
Q ∩ ∇−1(P)c = ∅}. Therefore R∇(P)c = {Q ∈ X (L) : Q ∩ ∇−1(P)c �= ∅}. Since
∇−1(P)c is an ideal, R∇(P)c = ϕ(∇−1(P)c) and hence it is an open upset. Therefore,
R∇(P)c is a closed downset.

(4) IfU ∈ D(X (L)), thenU = σL(a) for some a ∈ L . Hence, since then♦R∇≺ (U )

= ψ(∇≺(a)) and moreover ∇≺(a) is an ideal, ♦R∇≺ (U ) is a closed upset. �

Definition 4 Let X be a Priestley space. We say that a binary relation R on X is
the �-dual of a subordination if R is up point-closed and �R(U ) is an open upset
for every U ∈ D(X). Similarly, we say that a binary relation R on X is the ∇-dual
of a subordination if R is down point-closed and ♦R(U ) is a closed upset for every
U ∈ D(X).

We have two choices to obtain the dual objects of subordination lattices. One is
to consider Priestley spaces X endowed with a binary relation R which is the�-dual
of a subordination and the other is to take Priestley spaces X endowed with a binary
relation which is the ∇-dual of a subordination. In this way we will end up with two
equivalent categories for every choice of morphisms between subordination lattices
we take. We will see that the functor that transforms an object of one category into
an object of the other simply changes the relation to its converse.

For every Priestley space X and binary relation R on X note that R(x) is an upset
for every x ∈ X if and only if (R ◦ ≤) = R, and that R(x) is an downset for every
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x ∈ X if and only if (R ◦ ≤−1) = R. In general, R ⊆ (R ◦ ≤) and R ⊆ (R ◦ ≤−1)

because ≤ is reflexive.

Lemma 5 Let X be a Priestley space and R a binary relation on X.

1. If R is the �-dual of a subordination, then

a. (≤ ◦ R) = (R ◦ ≤) = R,
b. if x ≤ y, then R(y) ⊆ R(x), for all x, y ∈ X.

2. If R is the ∇-dual of a subordination, then

a. (≤−1 ◦ R) = (R ◦ ≤−1) = R,
b. if x ≤ y, then R(x) ⊆ R(y), for all x, y ∈ X.

Proof (1). We first prove (a). Assume that x, y, z ∈ X are such that x ≤ y and
(y, z) ∈ R. This implies that R(x) �= ∅. Otherwise, since R(x) ⊆ ∅ and ∅ ∈ D(X)

we have x ∈ �R(∅). Therefore, y ∈ �R(∅) so that R(y) ⊆ ∅ and this is not possible
since z ∈ R(y). Suppose in search of a contradiction that w � z for all w ∈ R(x).
Then for each w ∈ R(x) there exists Uw ∈ D(X) such that w ∈ Uw and z /∈ Uw. So,
R(x) ⊆ ⋃ {Uw : w ∈ R(x)}. As R(x) is closed, and hence compact, there exists a
finite family {U1, . . . ,Un} such that R(x) ⊆ U1 ∪ · · · ∪Un = U . Thus x ∈ �R(U )

andU ∈ D(X). As�R(U ) is an upset, y ∈ �R(U ). This yields R(y) ⊆ U , and since
(y, z) ∈ R, z ∈ U , which is impossible. Thus there exists w ∈ X such that (x,w) ∈
R and w ≤ z. We conclude that (≤ ◦ R) ⊆ (R ◦ ≤). The inclusion (R ◦ ≤) ⊆ R
follows from the assumption that R(x) is an upset for every x ∈ X . And R ⊆ (≤ ◦ R)

follows from the fact that ≤ is reflexive.
(b) follows from (a). Let x ≤ y and z ∈ R(y), so that (x, z) ∈ ≤ ◦ R. Hence, by

(a), (x, z) ∈ R, i.e., z ∈ R(x).
(2). To prove (a) let x, y ∈ X be such that (x, y) ∈ ≤−1 ◦ R. Then there exists z ∈

X such that z ≤ x and (z, y) ∈ R. It follows that R(x) �= ∅. Otherwise, R(x) ∩ X =
∅ and therefore x /∈ ♦R(X). Thus, since this set is an upset, z /∈ ♦R(X) so that R(z) ∩
X = ∅ which is not possible because y ∈ R(z). Suppose now that w � y for all
w ∈ R(x). Then for eachw ∈ R(x), there existsUw ∈ D(X) such thatw /∈ Ui and y ∈
Uw. So, R(x) ⊆ ⋃ {

Uc
w : w ∈ R(x)

}
. As R(x) is closed, and hence compact, there

exists a finite family {U1, . . . ,Un} such that R(x) ⊆ Uc
1 ∪ · · · ∪Uc

n = Uc. Hence,
x /∈ ♦R(U ). Since U = U1 ∩ · · · ∩Un ∈ D(X), ♦R(U ) is an upset by assumption;
thus z /∈ ♦R(U ). i.e., R(z) ∩U = ∅. But y ∈ R(z) ∩U , which is a contradiction.
Thus there exists w ∈ X such that (x,w) ∈ R and y ≤ w. We conclude that (≤−1

◦ R) ⊆ (R ◦ ≤−1). The inclusion R ◦ ≤−1 ⊆ R follows from the fact that R(x) is a
downset for every x ∈ X . Item (b) follows from (a). �

In the next proof we use Esakia’s lemma (2019) that says that if X is a Priestley
space and R is a point-closed relation on X , then for every down-directed family C
of closed sets of X ,

R−1[
⋂

C] =
⋂

{R−1[U ] : U ∈ C}.

Lemma 6 Let X be a Priestley space and R a binary relation on X.
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1. The following two conditions are equivalent:

a. R is the �-dual of a subordination.
b. For every closed set Y in X, R [Y ] is a closed upset, and for every closed

downset Z of X, R−1 [Z ] is a closed downset of X.

2. The following two conditions are equivalent:

a. R is the ∇-dual of a subordination,
b. For every closed subset Y of X, R [Y ] is a closed downset, and for every closed

upset Z of X, R−1 [Z ] is a closed upset of X.

Proof (1). Assume (a). Let Y be a closed subset of X . If Y = ∅, then since R[Y ] =
∅ we are done. If Y �= ∅, suppose that x /∈ R [Y ]. Then x /∈ R(y) for all y ∈ Y .
Therefore, as R is up point-closed, for each y ∈ Y there exists Uy ∈ D(X) such
that R(y) ⊆ Uy and x /∈ Uy . We fix such an Uy for each y ∈ Y . So, y ∈ �R(Uy),

for every y ∈ Y . Therefore, Y ⊆
⋃{

�R(Uy) : y ∈ Y
}
, and as Y is closed and X

is compact, Y is compact. Using that from the assumption, for every y ∈ Y the set
�R(Uy) is open and the fact that Y is compat, there exist y1, . . . , yn ∈ Y such that

Y ⊆ �R(Uy1) ∪ · · · ∪ �R(Uyn ) ⊆ �R(Uy1 ∪ · · · ∪Uyn ).

We choose y1, . . . , yn ∈ Y with that property and we letUx = Uy1 ∪ · · · ∪Uyn . Then
Y ⊆ �R(Ux ) and therefore R [Y ] ⊆ Ux . Moreover, x /∈ Ux . It easily follows that
R [Y ] =

⋂
{Ux : x /∈ R[Y ]}. Thus, R [Y ] is a closed upset of X .

Let now Z be a closed downset of X . Then

Z =
⋂{

Uc : Z ⊆ Uc and U ∈ D(X)
}
.

Note that the family {Uc : Z ⊆ Uc and U ∈ D(X)} is a downdirected family of
closed sets. Thus by Esakia’s lemma we have

R−1[Z ] =
⋂{

R−1[Uc] : Z ⊆ Uc and U ∈ D(X)
}
.

But by assumption �R(U ) = (R−1 [Uc])c is an open upset for every U ∈ D(X).
Thus R−1 [Uc] is a closed downset for every U ∈ D(X). This implies that R−1 [Z ]
is a closed downset, as desired.

Assume now (b). As X is Hausdorff, for every x ∈ X , {x} is closed. Thus, by (b),
R(x) = R [{x}] is a closed upset. For eachU ∈ D(X)we have�R(U ) = R−1 [Uc]c.
Thus, �R(U ) is an open upset, because Uc is a closed downset.

(2). Assume (a) and let Y be a closed subset of X . If Y = ∅, then since R[Y ] = ∅
we are done. Assume that Y �= ∅ and that x /∈ R [Y ] = ⋃ {R(y) : y ∈ Y }. Then
x /∈ R(y) for all y ∈ Y . As R is point-closed, we have that for every y ∈ Y there
exists Uy ∈ D(X) such that R(y) ∩Uy = ∅ and x ∈ Uy . We fix one such Uy for

every y ∈ Y . So, y ∈ ♦R(Uy)
c, for every y ∈ Y , i.e., Y ⊆

⋃ {
♦R(Uy)

c : y ∈ Y
}
.
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As Y is closed and X is compact, Y is compact. Thus there exists y1, . . . , yn ∈ Y
such that

Y ⊆ ♦R(Uy1)
c ∪ · · · ∪ ♦R(Uyn )

c ⊆ ♦R(Uy1 ∩ · · · ∩Uyn )
c.

Wechoose y1, . . . , yn ∈ Y with that property andwe letUx = Uy1 ∩ · · · ∩Uyn . Then,
Y ⊆ ♦R(Ux )

c and so Y ∩ ♦R(Ux ) = ∅. Therefore, R [Y ] ∩Ux = ∅, i.e., R [Y ] ⊆
Uc

x . Moreover, x ∈ Ux . It easily follows that R [Y ] =
⋂ {

Uc
x : x /∈ R[Y ]}. Thus,

R [Y ] is a closed downset.
Let now Z be a closed upset of X . Then Z = ⋂ {U : Z ⊆ U ∈ D(X)}. Therefore,

R−1 [Z ] = R−1
[⋂

{U ∈ D(X) : Z ⊆ U }
]
.

Note that the set {U : Z ⊆ U ∈ D(X)} is a filter of D(X), thus a downdirected family
of closed sets. By Esakia’s lemma we have

R−1
[⋂

{U ∈ D(X) : Z ⊆ U }
]

=
⋂ {

R−1[U ] : Z ⊆ U ∈ D(X)
}
.

As R−1[U ] = ♦R(U ) is a closed upset for every closed upset U , we obtain that
R−1 [Z ] is a closed upset.

Now we assume (b). As X is Hausdorff, {x} is closed. Thus R(x) = R [{x}] is a
closed downset. For each U ∈ D(X) we get that R−1[U ] is a closed upset, because
U is a closed upset. �

Lemma 7 Let X be a Priestley space and R a binary relation on X. The following
statements are equivalent:

1. R−1 is the �-dual of a subordination,
2. R is the ∇-dual of a subordination.

Proof Assume (2). Note that for every x ∈ X , the set (x] = {y ∈ X : y ≤ x} is a
closed downset. Using (1) in Lemma 5, we have R−1(x) = R−1[{x}] = R−1[(x]].
Then using (1) in Lemma 6 we obtain that R−1(x) is closed and a downset. Now,
givenU ∈ D(X), note that♦R−1(U ) = R[U ]. Using again (1) in Lemma 5we obtain
that ♦R−1(U ) is a closed upset.

The proof of the implication from (1) to (2) is similar, using now (2) in Lemmas
5 and 6. �

Proposition 6 Let X be a Priestley space and R a binary relation on X. If R is
the �-dual of a subordination or the ∇-dual of a subordination, then R is a closed
relation (i.e., a closed set of the product space).

Proof Suppose that R is up point-closed and �R(U ) is an open upset for each
U ∈ D(X). Suppose that 〈x, y〉 /∈ R. Using Lemma 5 it is easy to see that R(x) =
R[[x)]. Moreover, the set [x) is closed, so applying Lemma 6 it follows that R(x)
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is a closed upset. Hence there is U ∈ D(X) such that R(x) ⊆ U and y /∈ U . It
follows that x ∈ �R(U ). Consider now the complement Uc of U , which is a clopen
downset and y ∈ Uc. By Lemma 6, R−1[Uc] is a closed downset and therefore
(R−1[Uc])c an open upset. Note that z ∈ (R−1[Uc])c if and only if R(z) ⊆ U . Let
O := (R−1[Uc])c. Then 〈x, y〉 ∈ O ×Uc and O ×Uc is an open set in the product
topology. We show that R ∩ (O ×Uc) = ∅. If 〈u, v〉 ∈ R ∩ (O ×Uc), then since
u ∈ O we have v ∈ R(u) ⊆ U and v /∈ U , a contradiction.

Now suppose that R is down point-closed and♦R(U ) is a closed downset for each
U ∈ D(X). Then by Lemma 7, R−1 is up point-closed and�R−1(U ) is an open upset
for eachU ∈ D(X). Therefore by the first part of the proof, R−1 is a closed relation.
It is easy to see that the converse of a closed relation is a closed relation. Thus R is
a closed relation. �

Remark 3 A closed relation on a Priestley space need not be up point-closed nor
down point-closed.

We proceed to see how a binary relation on a set determines two subordinations
on its powerset lattice. Thus, a binary relation R on a Priestley space X determines
two subordinations on the lattice of the clopen upsets of X by restricting to this lattice
the subordinations determined by R on the powerset of X .

Let X be a set and R a binary relation on X . Themap�R : P(X) → P(X) is a dual
modal operator and the map ♦R : P(X) → P(X) a modal operator. That is, we have
for allU, V ⊆ X that�R(U ∩ V ) = �R(U ) ∩ �R(V ),�R(X) = X ,♦R(U ∪ V ) =
♦R(U ) ∩ ♦R(V ), and ♦R(∅) = ∅. Considering Remark 2, the relations ≺R and ≺∗

R
defined on P(X) by

U ≺R V ⇐⇒ U ⊆ �R(V )

and
U ≺∗

R V ⇐⇒ ♦R(U ) ⊆ V .

are subordination relations. Note that since ♦R(U ) = �R(Uc)c for every U ⊆ X ,
we have

U ≺R V ⇐⇒ V c ≺∗
R Uc.

Remark 4 It is well known, and easy to check, that the maps ♦R−1 and �R form an
adjoint pair, that is, for every U, V ⊆ X , U ⊆ �R(V ) if and only if ♦R−1(U ) ⊆ V .
Therefore, U ≺R V if and only if U ≺∗

R−1 V . Hence, ≺R = ≺∗
R−1 and, similarly,

≺∗
R = ≺R−1 .

If X is a Priestley space and R a binary relation on X , the subordinations ≺R and
≺∗

R on P(X) restrict to subordinations on the sublattice D(X) of P(X). Therefore,
give a Priestley space X and a binary relation R on X we have two natural ways to
obtain a subordination on D(X).

In the next twopropositionswe proceed to find a necessary and sufficient condition
that R has to satisfy in order that the homeomorphism ε : X → X (D(X)) is an
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isomorphism between 〈X, R〉 and 〈X (D(X)), R�≺R
〉 and a necessary and sufficient

condition to be an isomorphism between 〈X, R〉 and 〈X (D(X)), R∇
≺∗

R
〉.

Proposition 7 Let X be a Priestley space and R a binary relation on X. The fol-
lowing statements are equivalent:

1. R is the �-dual of a subordination.
2. for every x, y ∈ X, x Ry if and only if εX (x)R�≺R

εX (y).

Proof We omit the subscript X in εX all along the proof.
(1) ⇒ (2). Assume that x Ry. We have to prove that �−1≺R

(ε(x)) ⊆ ε(y). Suppose
that U ∈ �−1≺R

(ε(x)). Hence, �≺R (U ) ∩ ε(x) �= ∅. Thus, there is V ∈ D(X) such
that V ⊆ �R(U ) and x ∈ V . Therefore, R(x) ⊆ U . This implies that y ∈ U and
so U ∈ ε(y). Conversely, suppose that ε(x)R�≺R

ε(y) and x �Ry. Then, since R(x)
is a closed upset, there is V ∈ D(X) such that y /∈ V and R(x) ⊆ V . Hence, V /∈
ε(y) and x ∈ �R(V ). Thus, V /∈ �−1≺R

(ε(x)), which means that�≺R (V ) ∩ ε(x) = ∅.
But �R(V ) is an open upset. So �R(V ) = ⋃{U ∈ D(X) : U ⊆ �R(V )}. Hence,
there is U ∈ D(X) such that x ∈ U and U ⊆ �R(V ). Therefore, V ∈ �−1≺R

(ε(x)).
Since V /∈ ε(y), it follows that ε(x) �R�≺R

ε(y). (2) ⇒ (1). Let x, y ∈ X be such that
y ∈ Cl(R(x)) and y /∈ R(x). Then, by (2), ε(y) /∈ R�≺R

(ε(x)). Therefore, there exist
U ∈ D(X) such that�≺R (U ) ∩ ε(x) �= ∅ and y /∈ U . Let V ∈ �≺R (U ) ∩ ε(x). Then
V ∈ D(X), V ⊆ �R(U ), and x ∈ V . Therefore R(x) ⊆ U . Hence, y /∈ Cl(R(x)), a
contradiction. Thus R is point-closed. Now to prove that it is an upset, suppose that
y ∈ R(x) and y ≤ z. Since ε is an order isomorphism, ε(y) ⊆ ε(z). Moreover, since
x Ry, by the assumption (2) we have �−1≺ (ε(x)) ⊆ ε(y). Thus, �−1≺ (ε(x)) ⊆ ε(z).
This, again by the assumption (2), implies that x Rz.

Now let U ∈ D(X). Using (2), the definitions involved, and the fact that ε is
a bijection, it is easy to see that �R�≺ (ε[U ]) = ε[�R(U )]. Hence, considering that
�R�≺R

(ε[U ]) is an open upset of X (D(X)), because ≺R is a subordination on D(X),
and the fact that ε is an order isomorphism and a homeomorphism we obtain that
�R(U ) is an open upset. �

The next proposition is proved in Castro and Celani (2004).

Proposition 8 Let X be a Priestley space and R a binary relation on X. The
following are equivalent:

1. R is the ∇-dual of a subordination,
2. for every x, y ∈ X, x Ry if and only if εX (x)R∇

≺∗
R
εX (y).

Proof As in the last proof, we omit the subscript X in εX .
(1) ⇒ (2). Suppose that x Ry. We have to prove that ε(y) ⊆ ∇−1

≺∗
R

(ε(x)). Suppose

that U ∈ ε(y). To prove that U ∈ ∇−1
≺∗

R
(ε(x)) we have to show that ∇≺R (U ) ⊆ ε(x).

To this end suppose that U ≺∗
R V which means that ♦R(U ) ⊆ V . Since y ∈ U and

x Ry, x ∈ ♦R(U ). Therefore, V ∈ ε(x) and we are done. Conversely, suppose that
x �Ry. Then since R(x) is a closed downset there is U ∈ D(X) such that y ∈ U
and R(x) ∩U = ∅. Then x /∈ ♦R(U ) and U ∈ ε(y). Since ♦R(U ) is a closed upset,
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there exists V ∈ D(X) such that ♦R(U ) ⊆ V and x /∈ V . Then V ∈ ∇≺∗
R
(U ) and

therefore ∇≺∗
R
(U ) � ε(x), which implies that U /∈ ∇−1

≺∗
R

(ε(x)). Hence we obtain that

ε(x) �R∇
≺∗

R
ε(y).

(2) ⇒ (1). Let x, y ∈ X be such that y ∈ Cl(R(x)) and y /∈ R(x). Then, by (2),
ε(y) /∈ R∇

≺∗
R
(ε(x)). Therefore, there existU ∈ D(X) such that y ∈ U and ∇≺∗

R
(U ) �

ε(x). Let then V ∈ ∇≺∗
R
(U ), namely that ♦R(U ) ⊆ V , and such that x /∈ V . Hence,

x /∈ ♦R(U ) and so R(x) ∩U = ∅. Since R(x) is a closed downset and y ∈ U , y /∈
Cl(R(x)), a contradiction. Thus R(x) is closed. Now to prove that R(x) is a downset,
suppose that y ∈ R(x) and z ≤ y. Then ε(z) ⊆ ε(y). By the assumption (2), since
x Ry we have ε(x)R∇

≺∗
R
ε(y), namely ε(y) ⊆ ∇−1

≺∗
R

(ε(x)). It follows that ε(z)R∇
≺∗

R
ε(y)

and therefore that z ∈ R(x).
Now let U ∈ D(X). Using (2), the definitions involved, and the fact that ε is

a bijection, it is easy to see that ♦R∇
≺∗
R

(ε[U ]) = ε[♦R(U )]. Hence, considering that

♦R∇
≺∗
R

(ε[U ]) is a closed upset of X (D(X)), because ≺∗
R is a subordination on D(X),

and the fact that ε is an order isomorphism and a homeomorphism we obtain that
♦R(U ) is a closed upset. �

Proposition 9 Let L be a bounded distributive lattice and ≺ a subordination on L.
The representation isomorphism σL : L → D(X (L)) satisfies for every a, b ∈ L the
following two conditions:

b ≺ a ⇐⇒ σL(b) ≺R�≺ σL(a) and b ≺ a ⇐⇒ σL(b) ≺∗
R∇≺

σL(a).

In terms of the associated�-quasi-modal operators the conditions say that for every
a ∈ L, �≺R�≺

(σL(a)) = σL [�≺(a)] and ∇≺∗
R∇≺

(σL(b)) = σL [∇≺(b)].

Proof First note that by Corollary 1, �R�≺ (σL(a)) = ϕ(�≺(a)) and ♦R∇≺ (σL(a)) =
ψ(∇≺(a)). Now for every b ∈ L ,

σL(b) ≺R�≺ σL(a) ⇔ σL(b) ⊆ �R�≺ (σL(a))

⇔ σL(b) ⊆ ϕ(�≺(a))

⇔ b ∈ �≺(a)

⇔ b ≺ a.

The equivalence before the last one holds because if b ∈ �≺(a), then by the definition
of ϕ, σL(b) ⊆ ϕ(�≺(a)), and if b /∈ �≺(a), then there exists P ∈ X (L) such that
b ∈ P and �≺(a) ∩ P = ∅, which implies that P /∈ ϕ(�≺(a)) and hence we have
that σL(b) � ϕ(�≺(a)). This proves the first condition.

To prove the second condition we have for every b ∈ L ,
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σL(b) ≺∗
R∇≺

σL(a) ⇔ ♦R∇≺ (σL(b)) ⊆ σL(a)

⇔ ψ(∇≺(b)) ⊆ σL(a)

⇔ a ∈ ∇≺(b)

⇔ b ≺ a.

The equivalence before the last one holds because if a ∈ ∇≺(b), then by the definition
of ψ , ψ(∇≺(b)) ⊆ σL(a), and if a /∈ ∇≺(b), then, since ∇≺(b) is a filter, there exists
P ∈ X (L) such that a /∈ P and ∇≺(b) ⊆ P , which implies that P ∈ ψ(∇≺(b)) and
hence we have ψ(∇≺(b)) � σL(a). �

Definition 5 We say that a pair 〈X, R〉 is a Priestley �-subordination space (a
Priestley �-space, for short) if X is a Priestley space and R is the �-dual of a
subordination. Similarly, we say a pair 〈X, R〉 is a Priestley ∇-subordination space
(a Priestley ∇-space, for short) if X is a Priestley space and R is the ∇-dual of a
subordination.

Proposition 5 establishes that if L = 〈L ,≺〉 is a subordination lattice, then
〈X (L), R�≺〉 is a Priestley �-subordination space and 〈X (L), R∇≺〉 is a Priestley
∇-subordination space. Moreover, Proposition 9 shows that the map σL is an
isomorphism between the subordination lattices 〈L ,≺〉 and 〈D(X (L)),≺R�≺ 〉 and
between 〈L ,≺〉 and 〈D(X (L)),≺∗

R∇≺
〉. Conversely, Proposition 7 shows that if 〈X, R〉

is a Priestley �-subordination space, then 〈D(X),≺R〉 is a subordination lattice
such that the map εX an isomorphism between 〈X, R〉 and 〈X (D(X)), R�≺R

〉 and
Proposition 8 shows that if 〈X, R〉 is a Priestley ∇-subordination space, then
〈D(X),≺∗

R〉 is a subordination lattice such that the map εX an isomorphism between
〈X, R〉 and 〈X (D(X)), R∇

≺∗
R
〉.

To complete the duality we have to introduce the morphisms. We will consider
three kinds of morphisms on subordination lattices and four kinds of morphisms on
Priestley spaces with a binary relation.

Definition 6 Let L1 and L2 be subordination lattices. A subordination homomor-
phism from L1 to L2 is a homomorphism h : L1 → L2 such that for every a, b ∈ L1,
if a ≺1 b, then h(a) ≺2 h(b). A subordination homomorphism h from L1 to L2 is
strong if for every a ∈ L1 and c ∈ L2, if c ≺2 h(a), then there exists b ∈ L1 such
that b ≺1 a and c ≤ h(b). We say that it is dually strong if for every a ∈ L1 and
c ∈ L2, if h(a) ≺2 c, then there exists b ∈ L1 such that a ≺1 b and h(b) ≤ c.

Remark 5 It is easy to see that if ≺ is a subordination on a lattice L , then ≺−1 is a
subordination on the dual lattice L∂ of L . The condition that defines dually strong
subordination homomorphism in the definition above is then the same as that for
strong subordination homomorphism but between L1 and 〈L∂

2,≺−1
2 〉.

Definition 7 Let X1 and X2 be Priestley spaces with binary relations R1 and R2

respectively. A Priestley morphism f : X1 → X2 is stable if for every x, y ∈ X1

such that x R1y we have f (x)R2 f (y), and it is strongly stable if in addition for
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every x ∈ X1 and y ∈ X2, if f (x)R2y, then there exists z ∈ X1 such that x R1z and
f (z) ≤2 y. Moreover, we say that f is reversely strongly stable if it is stable and
for every x ∈ X1 and y ∈ X2, if yR2 f (x), then there exists z ∈ X1 such that zR1x
and f (z) ≤2 y. Also we say that f is dually strongly stable if it is stable and for
every x ∈ X1 and y ∈ X2, if yR2 f (x), then there exists z ∈ X1 such that zR1x and
y ≤2 f (z).

The strongly stable Priestley morphisms are the morphisms considered in the
duality for quasi-modal distributive lattices given in Castro and Celani (2004).

Proposition 10 Let L1, L2 be subordination lattices. For every map h : L1 → L2

the following conditions are equivalent:

1. h is a (strong) subordination homomorphism from L1 to L2,
2. the dual map X (h) is a (strongly) stable Priestley morphism from the Priestley

�-space 〈X (L2), R�≺2
〉 to the Priestley �-space 〈X (L1), R�≺1

〉,
3. the dual map X (h) is a (reversely strongly) stable Priestley morphism from the

Priestley ∇-space 〈X (L2), R∇≺2
〉 to the Priestley ∇-space 〈X (L1), R∇≺1

〉.
Proof (1) ⇒ (2). Assume that h is a subordination homomorphism from L1 to
L2. Suppose that 〈P, Q〉 ∈ R�≺2

. Then �−1≺2
(P) ⊆ Q. We prove that �−1≺1

(h−1[P]) ⊆
h−1[Q]. Suppose that a ∈ �−1≺1

(h−1[P]). Then �≺1(a) ∩ h−1[P] �= ∅. Let then b ∈
�≺1(a) ∩ h−1[P]. Thus b ≺1 a and h(b) ∈ P . Hence h(b) ≺2 h(a) and we obtain
that h(b) ∈ �≺1(h(a)) ∩ P . Thus, h(a) ∈ �−1≺2

(P). It follows that b ∈ h−1[Q]. If h
is in addition strong, then suppose that P ∈ X (L2) and Q ∈ X (L1) are such that
h−1[P]R�≺1

Q, i.e., �−1≺1
(h−1[P]) ⊆ Q. We prove that �−1≺2

(P) ∩ (h[L1 \ Q]] = ∅.
On the contrary, let a ∈ L2 and b ∈ L1 \ Q be such that a ∈ �−1≺2

(P) and a ≤2 h(b).
Then �≺2(a) ∩ P �= ∅. So, let c ≺2 a be such that c ∈ P . It follows that c ≺2 h(b).
Since h is strong, there exists d ∈ L1 such that d ≺1 b and c ≤2 h(d). Thus h(d) ∈ P
and d ∈ h−1[P], therefore �≺1(b) ∩ h−1[P] �= ∅. Hence b ∈ �−1≺1

(h−1[P]) and so
b ∈ Q, a contradiction. By the Prime filter theorem there is P ′ ∈ X (L2) such that
�−1≺2

(P) ⊆ P ′ and h−1[P ′] ⊆ Q. Hence, there is P ′ ∈ X (L2) such that PR�≺2
P ′ and

h−1[P ′] ⊆ Q. This shows that X (h) is strong.
(2) ⇒ (1). Suppose now that X (h) is a stable Priestley morphism from the space

〈X (L2), R�≺2
〉 to 〈X (L1), R�≺1

〉 and suppose that a, b ∈ L1 are such that a ≺1 b. If
h(a) ⊀2 h(b), then, since h(a) /∈ �≺2(h(b)) and �≺2(h(b)) is an ideal, there is P ∈
X (L2) such that h(a) ∈ P and P ∩ �≺2(h(b)) = ∅. Hence, h(b) /∈ �−1≺2

(P). Since
�−1≺2

(P) is a filter, there is Q ∈ X (L2) such that �−1≺2
(P) ⊆ Q and h(b) /∈ Q. Thus,

PR�≺2
Q. The stability of X (h) implies that h−1[P]R�≺1

h−1[Q]. Since b /∈ h−1[Q],
we have b /∈ �−1≺1

(h−1[P]). And since a ∈ h−1[P] it follows that a /∈ �≺1(b), which
is not possible because by assumption a ≺1 b. If X (h) is in addition strongly stable,
to prove that h is strong assume that a ∈ L1 and c ∈ L2 are such that c ≺2 h(a).
Consider the ideal I of L2 generated by h[�≺1(a)]. Assume that c /∈ I . Then let P ∈
X (L2) be such that c ∈ P and I ∩ P = ∅. Thus �≺1(a) ∩ h−1[P] = ∅. It follows
thata /∈ �−1≺1

(h−1[P]). Thus there exists Q ∈ X (L1) such that�−1≺1
(h−1[P]) ⊆ Q, so

that h−1[P]R�≺1
Q and a /∈ Q. Since X (h) is strongly stable, there exists P ′ ∈ X (L2)
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such that PR�≺2
P ′ and h−1[P ′] ⊆ Q. Since c ∈ P and c ≺2 h(a), h(a) ∈ �−1≺2

(P);
therefore, h(a) ∈ P ′ and a ∈ h−1[P ′]. Hence a ∈ Q, a contradiction. We conclude
that c ∈ I . Therefore there exists b ∈ �≺1(a) such that c ≤2 h(b) and we are done.

The equivalence between (3) and (2) can be proved using Proposition 1. �

Proposition 11 Let 〈X1, R1〉 and 〈X2, R2〉 be two Priestley�-subordination spaces
and f : X1 → X2 a map. Then f is a (strongly) stable Priestley morphism if and
only if the map D( f ) : D(X2) → D(X1) is a (strong) subordination homomorphism
from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.
Proof From Priestley duality we have that f is a Priestley morphism if and only if
D( f ) : D(X2) → D(X1) is a homomorphism. Moreover, for every x ∈ X1 it holds
that X (D( f ))(ε1(x)) = ε2( f (x)). Thus, using Propositions 7 and 10 we have that
f is (strongly) stable if and only is D( f ) a (strong) subordination homomorphism.

�

In a similar way we have:

Proposition 12 Let 〈X1, R1〉 and 〈X2, R2〉 be two Priestley∇-subordination spaces
and f : X1 → X2 a map. Then f is a (reversely strongly) stable Priestley morphism
if and only if the map D( f ) : D(X2) → D(X1) is a (strong) subordination homo-
morphism from 〈D(X2),≺∗

R2
〉 to 〈D(X1),≺∗

R1
〉.

Proof From Priestley duality we have that f is a Priestley morphism if and only
if D( f ) : D(X2) → D(X1) is a homomorphism. And moreover for every x ∈ X1 it
holds that X (D( f ))(ε1(x)) = ε2( f (x)). Thus, using Propositions 8 and 10 we have
that f is (reversely strongly) stable if and only if D( f ) is a (strong) subordination
homomorphism. �

Lemma 8 Let 〈X1, R1〉 and 〈X2, R2〉 bePriestley�-subordination spaces. APriest-
ley morphism f : X1 → X2 is dually strongly stable if and only if for every
U ∈ D(X2),

♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].

Proof Assume that f is a Priestley morphism that is dually strongly stable from
〈X1, R1〉 to 〈X2, R2〉. Let U ∈ D(X2). If x ∈ ♦R−1

1
( f −1[U ]), then there exists

y ∈ f −1[U ] such that x R−1
1 y. Therefore yR1x and, since f is stable, f (y)R2 f (x).

Since f (y) ∈ U it follows that f (x) ∈ ♦R−1
2

(U ) and hence x ∈ f −1[♦R−1
2

(U )]. Con-
versely, if x ∈ f −1[♦R−1

2
(U )], we have f (x)R−1

2 y for some y ∈ U , so that yR2 f (x).
Applying that f is dually strongly stable, there is z ∈ X1 such that zR1x and
y ≤2 f (z). Since U is an upset, z ∈ f −1[U ]. Hence, since x R−1

1 z we obtain that
x ∈ ♦R−1

1
( f −1[U ]).

Suppose now that for every U ∈ D(X2), ♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].
Assume that x, y ∈ X1 are such that x R1y and f (x) �R2 f (y), so that f (x) /∈
R−1
2 ( f (y)). Since R−1

2 ( f (y)) is a closed set and a downset, there existsU ∈ D(X2)

such that R−1
2 ( f (y)) ⊆ Uc and f (x) ∈ U , and therefore x ∈ f −1[U ]. Hence, y ∈
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♦R−1
1

( f −1[U ]). The assumption implies that f (y) ∈ ♦R−1
2

(U ), a contradiction with

R−1
2 ( f (y)) ⊆ Uc. This shows that f is stable. To prove that f is dually strong

assume that x ∈ X1 and y ∈ X2 are such that yR2 f (x). LetU ∈ D(X2) be such that
y ∈ U . Then x ∈ f −1[♦R−1

2
(U )] and therefore x ∈ ♦R−1

1
( f −1[U ]). This implies that

R−1
1 (x) is nonempty. Suppose that R−1

1 (x) ∩ f −1[↑y] = ∅. For every z ∈ R−1
1 (x),

since y �2 f (z), let Uz ∈ D(X2) be such that y ∈ Uz and f (z) /∈ Uz so that z ∈
f −1[Uc

z ]. Then R−1
1 (x) ⊆ ⋃{ f −1[Uc

z ] : z ∈ R−1
1 (x)}. Since R−1

1 (x) = R−1
1 [(x]],

because R1 ◦ ≤1 = R1 and (x] is a closed downset, we have that R−1
1 (x) is a

closed downset. Therefore R−1
1 (x) is compact. Thus there are z1, . . . , zn ∈ R−1

1 (x)
with R−1

1 (x) ⊆ f −1[Uc
z1] ∪ · · · ∪ f −1[Uc

zn ]. Let U = Uz1 ∩ · · · ∩Uzn . Then U ∈
D(X2), f −1[Uc

z1 ] ∪ · · · ∪ f −1[Uc
zn ] = f −1[Uc], and y ∈ U . Therefore, R−1

1 (x) ∩
f −1[U ] = ∅. If follows that x /∈ ♦R−1

1
( f −1[U ]) but since yR2 f (x) and y ∈ U ,

x ∈ f −1[♦R−1
2

(U )], a contradiction. �

Proposition 13 Let L1, L2 be subordination lattices and h : L1 → L2 a map. If h
is a dually strong subordination homomorphism from L1 to L2, then the dual map
X (h) is a dually strongly stable Priestley morphism from the Priestley �-space
〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉.

Proof Suppose that h : L1 → L2 is a dually strong subordination homomorphism.
Since it is a subordination homomorphism we know that X (h) is a stable Priest-
ley morphism from 〈X (L2), R�≺2

〉 to 〈X (L1), R�≺1
〉. To prove that X (h) is dually

strongly stable assume that QR�≺1
h−1[P]. Then �−1≺1

(Q) ⊆ h−1[P]. Let I be the
ideal generated by

⋃
a∈L2\P �≺2(a) and let F be the filter generated by h[Q]. We

claim that F ∩ I = ∅. Assume the contrary and let d ∈ F ∩ I . Then let b ∈ Q such
that h(b) ≤2 d and let a ∈ L2 \ P and c ∈ �≺2(a) such that d ≤2 c. It follows that
h(b) ≺2 a. Then by (1) there exists e ∈ L1 such that b ≺1 e and h(e) ≤2 a. Since
b ∈ Q we have e ∈ �−1≺1

(Q) and therefore e ∈ h−1[P]. Thus, h(e) ∈ P and hence
a ∈ P , a contradiction. We conclude that F ∩ I = ∅. Let then P ′ ∈ X (L2) be such
that F ⊆ P ′ and I ∩ P ′ = ∅. It follows that �−1≺2

(P ′) ⊆ P and Q ⊆ h−1[P ′]. Thus
P ′R�≺2

P and Q ⊆ h−1[P ′]. �

Proposition 14 Let 〈X1, R1〉, 〈X2, R2〉 be Priestley �-subordination spaces and
f : X1 → X2 a Priestley morphism that is dually strongly stable from 〈X1, R1〉 to
〈X2, R2〉 if and only if D( f ) : D(X2) → D(X1) is a dually strong subordination
homomorphism from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.
Proof Assume that f is a Priestley morphism that is dually strongly stable from
〈X1, R1〉 to 〈X2, R2〉. We know from Lemma 8 that for every U ∈ D(X2),

♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].

We show that D( f ) is a subordination homomorphism from the subordination lattice
〈D(X2),≺R2〉 to 〈D(X1),≺R1〉. Suppose thatU, V ∈ D(X2) are such thatU ≺R2 V .
By Remark 4 we have ♦R−1

2
(U ) ⊆ V . Then f −1[♦R−1

2
(U )] ⊆ f −1[V ]. Therefore,
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♦R−1
1

( f −1[U ]) ⊆ f −1[V ] and using Remark 4 again we have f −1[U ] ≺R1 f −1[V ].
Now we prove that D( f ) is dually strong. Suppose that U ∈ D(X2) and V ∈
D(X1) are such that f −1[U ] ≺R1 V . Thus, using Remark 4, ♦R−1

1
( f −1[U ]) ⊆ V

and therefore f −1[♦R−1
2

(U )] ⊆ V . The set ♦R−1
2

(U ) is a closed upset. Therefore
there is a family {Uj : j ∈ J } ⊆ D(X2) such that ♦R−1

2
(U ) = ⋂

j∈J U j and hence
f −1[⋂ j∈J U j ] ⊆ V . Thus

⋂
j∈J f −1[Uj ] ⊆ V . Since the sets f −1[Uj ] are closed

and V is open, by compactness of the space follows that there exists a finite J ′ ⊆ J
such that

⋂
j∈J ′ f −1[Uj ] ⊆ V . Let U ′ = ⋂

j∈J ′ Uj . Then f −1[U ′] ⊆ V and since
♦R−1

2
(U ) ⊆ U ′ we obtain, using Remark 4, that U ≺R2 U

′. Hence, we conclude
that D( f ) : D(X2) → D(X1) is a dually strong subordination homomorphism from
〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.

Conversely, assume that D( f ) : D(X2) → D(X1) is a dually strong subordi-
nation homomorphism from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉. Then Proposition 13
implies that X (D( f )) is a dually strongly stable Priestley morphism from the
Priestley�-s-space 〈X (D(L1)), R�≺R1

〉 to thePriestley�-s-space 〈X (D(L2)), R�≺R2
〉.

Using Proposition 7 and Priestley duality it easily follows that f is a dually strongly
stable Priestley morphism from 〈X1, R1〉 to 〈X2, R2〉. �

Proposition 15 Let L1, L2 be subordination lattices and h : L1 → L2 a map. Then
h is a dually strong subordination homomorphism from L1 to L2 if and only if the
dual map X (h) is a dually strongly stable Priestley morphism from the Priestley
�-space 〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉.

Proof The implication from left to right is Proposition 13. To prove the other impli-
cation, if X (h) is a dually strongly stable Priestley morphism from the Priestley
�-space 〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉, then by Proposition

14, D(X (h)) is a dually strong subordination homomorphism from the subordination
lattice 〈D(X (L2)),≺R�≺2

〉 to 〈D(X (L1)),≺R�≺1
)〉. By Proposition 9 the map σLi is an

isomorphism between 〈Li ,≺i 〉 and 〈D(X (Li )),≺R�≺i
〉 for i = 1, 2. Using Priestley

duality, it follows that h is a dually strong subordination homomorphism from L1 to
L2. �

We consider the following categories:

• �PriSp: the category of Priestley�-subordination spaces with the stable Priestley
morphisms as its arrows.

• �PriSps : the category of Priestley�-subordination spaceswith the strongly stable
Priestley morphisms as its arrows.

• �PriSpds : the category of Priestley �-subordination spaces with the dually
strongly stable Priestley morphisms as its arrows.

• ∇PriSp: the category of Priestley∇-subordination spaces with the stable Priestley
morphisms as its arrows.

• ∇PriSps : the category of Priestley ∇-subordination spaces with the reversely
strongly stable Priestley morphisms as its arrows.

• SLat: the category of the subordination lattices with the subordination homomor-
phisms as its arrows.
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• SLats : the category of the subordination lattices with the strong subordination
homomorphisms as its arrows.

• SLatds : the category of the subordination lattices with the dually strong subordi-
nation homomorphisms as its arrows.

Remark 6 The categories �PriSp and ∇PriSp are equivalent as well as the cate-
gories �PriSps and ∇PriSps . The functors that witness the equivalence are defined
as follows. The functor from �PriSp to ∇PriSp maps a Priestley �-subordination
space 〈X, R〉 to the Priestley ∇-subordination space 〈X, R−1〉, and the functor from
∇PriSp to �PriSp does the same. For morphisms the functors leave the functions
as they are. The same happens with �PriSps and ∇PriSps .

The results above show that the functor D from the categoryPriSp to the category
DLat can be expanded to a functor from�PriSp toSLat, to a functor from�PriSps

to SLats and to a functor from �PriSpds to SLatds by mapping any �-Priestley
space 〈X, R〉 to its subordination lattice 〈D(X),≺R〉 and every morphism in the
corresponding categoryof spaces to its Priestley dual.Also the results above show that
the functor X fromDLat toPriSp can be expanded to a functor fromSLat to�PriSp,
to a functor from SLats to �PriSps , and to a functor from SLatds to �PriSpds

by sending a subordination lattice 〈L ,≺〉 to the Priestley �-subordination space
〈X (L), R�≺〉 and every morphism in the corresponding category of subordination
lattices to its Priestley dual. Doing it, we have that the two categories in the pairs
(�PriSp, SLat), (�PriSps , SLats), and (�PriSpds , SLatds) are dually equivalent.

In a similar way, the functor D from PriSp to DLat can be expanded to a functor
from ∇PriSp to SLat and to a functor from �PriSps to SLats by mapping any
∇-Priestley space 〈X, R〉 to its subordination lattice 〈D(X),≺∗

R〉. The functor X
from DLat to PriSp can also be expanded to a functor from SLat to ∇PriSp and
to a functor from SLats to ∇PriSps that sends a subordination lattice 〈L ,≺〉 to the
Priestley ∇-subordination space 〈X (L), R∇≺〉. The morphisms are mapped in each
case to their Priestley duals.

From the dualities discussed above for categories of subordination lattices we can
obtain dualities for categories of bi-subordination lattices in the natural way. Let us
introduce the dual objects of bi-subordination lattices.

Definition 8 We say that a triple 〈X, R, S〉 is a Priestley bi-subordination space if
X is a Priestley space and R and S are binary relations on X each one of which is
the �-dual of a subordination.

Note that 〈X, R, S〉 is a Priestley bi-subordination space if and only if 〈X, R, S−1〉
is a quasi-modal space in the terminology of Castro and Celani (2004).

By combining the properties of subordination homomorphism, strong subordina-
tion homomorphism and dually strong subordination homomorphism we can con-
sider several categories of bi-subordination lattices by taking asmorphismsmaps that
are of one of these kinds for the first subordination and of another for the second.
Similarly, we can consider several categories of Priestley bi-subordination spaces.
Once we fix a choice of morphisms for a category of bi-subordination lattices we
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can consider the category of Priestley bi-subordination spaces with the correspond-
ing choice of morphisms and in this way we obtain two categories that are dually
equivalent.

For example, the category of bi-subordination lattices with morphisms the lattice
homomorphisms that are a subordination homomorphismw.r.t. the first subordination
and a strong subordination homomorphism w.r.t. the second subordination is dually
equivalent to the category of Priestley bi-subordination spaces with the Priestley
morphisms that are a stable morphism w.r.t. the first relation and a strongly stable
morphism w.r.t. the second relation.

Nowwe turn to discuss the duals of the bi-subordination latticeswith the properties
we considered in the examples given in Sect. 8.3.

First we consider the bi-subordination lattices where the first subordination is
included in the second. They include the bi-subordinations lattices in Example 1.

Proposition 16 Let 〈L ,≺,�〉 be a bi-subordination lattice. Then

≺ ⊆ � ⇐⇒ R� ⊆ R≺,

(where R� = R�� and R≺ = R�≺ ).

Proof Assume that ≤ ⊆ �. Suppose that P, Q ∈ X (L) are such that PR�Q. To
prove that PR≺Q, suppose that a ∈ �−1≺ (P). Then �≺(a) ∩ P �= ∅. So, let b ∈
�≺(a) ∩ P . Then b ≺ a and therefore b � a. Therefore, b ∈ ��(a) ∩ P and so
a ∈ �−1≺ (P). Since PR�Q it follows that a ∈ Q. We conclude that �−1≺ (P) ⊆ Q,
which by definition implies that PR�Q.

Assume now that R� ⊆ R≺, that a ≺ b, and that it is not the case that a � b. Then
a /∈ ��(b). Therefore there exists P ∈ X (L) such that a ∈ P and P ∩ ��(b) = ∅.
Then b /∈ �−1

� (P). Let then Q ∈ X (L) such that �−1
� (P) ⊆ Q and b /∈ Q. So we

have PR�Q and hence, by the assumption, PR≺Q, namely �−1≺ (P) ⊆ Q. Since
a ∈ �≺(b) ∩ P , b ∈ �−1≺ (P). Therefore b ∈ Q, a contradiction. We conclude that
a � b. Hence, ≺ ⊆ �. �

The proposition allows us to consider categories of Priestley bi-subordination
spaces where the first relation is included in the second and obtain dualities for the
categories of bi-subordination lattices with the first subordination included in the
second.

Nowwe can consider the bi-subordination latticeswhere the second subordination
is the converse of the first. They include the bi-subordination lattices in Example 3.

Let L = 〈L ,≺,�〉be a bi-subordination lattice such that� is the converse relation
of ≺. Then, since for every a, b ∈ L

σ(a) ≺R≺ σ(b) ⇔ σ(a) ⊆ �R≺(σ (b))

and
σ(a) ≺R� σ(b) ⇔ σ(a) ⊆ �R�(σ (b)),
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we have
σ(a) ⊆ �R≺(σ (b)) ⇔ σ(b) ⊆ �R�(σ (a)).

This suggest considering the Priestley bi-subordination spaces 〈X, R1, R2〉where R1

and R2 satisfy for all clopen upsets U, V the following condition:

U ⊆ �R1(V ) ⇔ V ⊆ �R2(U ).

Using this observation we can obtain dualities for the categories of bi-subordination
lattices with each subordination being the converse of the other by takin as duals of
these bi-subordination lattices the Priestley bi-subordination spaces that satisfy the
above condition.

In the next section we discuss the dualities for positive bi-subordination lattices.

8.6 Positive Bi-Subordination Lattices

In this section we present first the dualities for positive subordination lattices that
follow from the general facts described in the previous section. Then we present a
different duality where positive subordination lattices are represented by a Priestley
space endowed with a single binary relation.

The conditions that define positive bi-subordination lattices in Definition 3 can
be characterized by properties of the relations associated with the subordinations as
shown in the next two propositions.

Proposition 17 Let 〈L ,≺,�〉 be a bi-subordination lattice. The following condi-
tions are equivalent:

1. �≺(a ∨ b) ⊆ ∇�(a) � �≺(b), for all a, b ∈ L,
2. R�≺ = (RL◦ ⊆),

where RL = R�≺ ∩ R∇
�.

Proof (1) ⇒ (2). To prove the inclusion (RL◦ ⊆) ⊆ R�≺ , note that (RL◦ ⊆) ⊆
R�≺◦ ⊆ and that by Lemma 2, R�≺ ◦ ⊆ = R�≺ . To prove the other inclusion, sup-
pose that P, Q ∈ X (L) are such that �−1≺ (P) ⊆ Q. We recall, by Lemma 1, that the
set �−1≺ (P) is a filter of L . Consider the ideal

(
Qc ∪ ∇−1

� (P)c
]
. We prove that

�−1
≺ (P) ∩ (

Qc ∪ ∇−1
� (P)c

] = ∅. (8.1)

We assume the contrary. Then let c ∈ �−1≺ (P), b /∈ Q and a /∈ ∇−1
� (P) such that

c ≤ a ∨ b. We note that as b /∈ Q, we have b /∈ �−1≺ (P) and hence

�≺(b) ∩ P = ∅. (8.2)

Also, as a /∈ ∇−1
� (P), there exists d ∈ L such that
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d ∈ ∇�(a) and d /∈ P. (8.3)

Since c ≤ a ∨ b, and �≺ is monotonic, �≺(c) ⊆ �≺(a ∨ b), and thus �≺(a ∨ b) ∩
P �= ∅, i.e., there exists e ∈ �≺(a ∨ b) such that e ∈ P . Since by the hypothesis,
�≺(a ∨ b) ⊆ ∇�(a) � �≺(b) we have e ∈ ∇�(a) � �≺(b) and as d ∈ ∇�(a), there
existsw ∈ �≺(b) such that e ≤ d ∨ w. Since e ∈ P and d /∈ P , it follows thatw ∈ P;
hence�≺(b) ∩ P �= ∅, in contradiction with (8.2). Thus, we obtain (8.1). Then there
exists D ∈ X (L) such that

�−1
≺ (P) ⊆ D ⊆ ∇−1

� (P) and D ⊆ Q.

This implies that (P, Q) ∈ (RL◦ ⊆).
(2) ⇒ (1)Assume that there exists c ∈ �≺(a ∨ b) such that c /∈ ∇�(a) � �≺(b).

Then there exists d ∈ ∇�(a) such that c /∈ (�≺(b) ∪ {d}]. Therefore there exists P ∈
X (L) satisfying that c ∈ P , �≺(b) ∩ P = ∅, and d /∈ P . So, there exists Q ∈ X (L)

such that �−1≺ (P) ⊆ Q and b /∈ Q. By hypothesis, there exists D ∈ X (L) such that
�−1≺ (P) ⊆ D ⊆ ∇−1

� (P) and D ⊆ Q. As c ∈ �≺(a ∨ b) ∩ P and�−1≺ (P) ⊆ D, we
get that a ∨ b ∈ D ⊆ Q, but since b /∈ Q, it follows that b /∈ D. Therefore, a ∈ D
and hence a ∈ ∇−1

� (P), which means that ∇�(a) ⊆ P . Since d ∈ ∇�(a), it follows
that d ∈ P , which is a contradiction. �
Proposition 18 Let 〈L ,≺,�〉 be a bi-subordination lattice. The following condi-
tions are equivalent:

1. ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b), for all a, b ∈ L,
2. R∇

� = (RL◦ ⊆−1),

where RL = R�≺ ∩ R∇
�.

Proof (1) ⇒ (2) The inclusion (RL◦ ⊆−1) ⊆ R∇
� follows from Lemma 2. To prove

the other inclusion, assume that P, Q ∈ X (L) are such that Q ⊆ ∇−1
� (P). By

Lemma 1, the set ∇−1
� (P)c is an ideal of L . Consider the filter

[
�−1(P) ∪ Q

)
.

We prove that. [
�−1

≺ (P) ∪ Q
) ∩ ∇−1

� (P)c = ∅. (8.4)

Suppose the contrary. Then let a ∈ �−1≺ (P), b ∈ Q and c /∈ ∇−1
� (P) such that

a ∧ b ≤ c. Since ∇� is antimonotonic, ∇�(c) ⊆ ∇�(a ∧ b), and since c /∈ ∇−1
� (P),

∇�(c) � P; hence ∇�(a ∧ b) � P . Thus, let d ∈ ∇�(a ∧ b) be such that d /∈ P .
By hypothesis, ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b), so d ∈ �≺(a) ⊕ ∇�(b). Since a ∈
�−1≺ (P), there exists e ∈ �≺(a) ∩ P . Then there existsw ∈ ∇�(b) such that e ∧ w ≤
d. Since b ∈ Q ⊆ ∇−1

� (P), we have ∇�(b) ⊆ P . Thus w ∈ P , and hence, since then
e ∧ w ∈ P , we have d ∈ P , which is a contradiction. Therefore, (8.4) is valid. Then
there exists D ∈ X (L) such that

�−1
≺ (P) ⊆ D ⊆ ∇−1

� (P) and Q ⊆ D,

i.e., (P, Q) ∈ (RL◦ ⊆−1).
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(2) ⇒ (1) Assume (2) and suppose that a, b, c ∈ L are such that c ∈ ∇�(a ∧
b). Suppose that c /∈ �≺(a) ⊕ ∇�(b). Then there exists d ∈ �≺(a) such that c /∈
[∇�(b) ∪ {d}) . Then there exists P ∈ X (L) such that ∇�(b) ⊆ P , d ∈ P and c /∈
P . By Lemma 3 there exists Q ∈ X (L) such that Q ⊆ ∇−1

� (P) and b ∈ Q. By
hypothesis, there exists D ∈ X (L) such that �−1≺ (P) ⊆ D ⊆ ∇−1

� (P) and Q ⊆ D.
As d ∈ �≺(a) ∩ P,wehave a ∈ D, and as b ∈ Q, we get that a ∧ b ∈ D. So,∇�(a ∧
b) ⊆ P , but this implies that c ∈ P , which is impossible. Therefore, ∇�(a ∧ b) ⊆
�≺(a) ⊕ ∇�(b). �

Corollary 2 Let 〈L ,≺,�〉 be a bi-subordination lattice. Then L is a positive bi-
subordination lattice if and only if the following two conditions hold

1. R�≺ = (RL◦ ⊆),
2. R∇

� = (RL◦ ⊆−1),

where RL = R�≺ ∩ R∇
�. Equivalently, if and only if

1. R�≺ = (RL◦ ⊆),
2. (R�

�)−1 = (RL◦ ⊆−1),

where RL = R�≺ ∩ (R�
�)−1.

The corollary motivates the next definition.

Definition 9 A Priestley bi-subordination space 〈X, R1, R2〉 is positive if R1 and R2

satisfy the following conditions:

1. R1 = (R1 ∩ R−1
2 ) ◦ ≤,

2. R−1
2 = (R1 ∩ R−1

2 ) ◦ ≤−1.

From the results obtained up to nowwe easily can prove the next two propositions.

Proposition 19 Let L be a bi-subordination lattice. Then L is a positive subordi-
nation lattice if and only if the Priestley bi-subordination space

〈
X (L), R�≺ , R�

�
〉
is

positive.

Proof It follows from Corollary 2. �

Proposition 20 A Priestley bi-subordination space 〈X, R1, R2〉 is positive if and
only if 〈D(X),≺R1 ,≺R2〉 is a positive subordination lattice.

Proof It follows from Proposition 7, Corollary 2, and Proposition 9. �

As for other classes of bi-subordination lattices, once we fix as objects the positive
subordination lattices we obtain different categories by taking as arrows maps that
are of one kind of morphism (subordination homomorphism, strong subordination
homomorphism and dually strong subordination homomorphism) for the first subor-
dination and of another for the second. Then, moving to the corresponding categories
of positive Priestley bi-subordination spaces, the results in Sect. 8.4 provide us with
the corresponding duality results.
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Now we turn to find a category of Priestley spaces with a single binary relation
dually equivalent to the category of the positive subordination lattices with arrows
the maps that are a subordination homomorphism for both subordinations and also
a category of Priestley spaces with a single binary relation dually equivalent to
the category of the positive subordination lattices with arrows the maps that are a
strong subordination homomorphism for the first subordination and a dually strong
subordination homomorphism for the second subordination.

Proposition 21 If L = 〈L ,≺,�〉 is a positive bi-subordination lattice, a ∈ L, and
P ∈ X (L), then using the relation RL = R�≺ ∩ R∇

� = R�≺ ∩ (R�≺ )−1 we have:

1. �≺(a) ∩ P = ∅ iff there exists Q ∈ X (L) such that (P, Q) ∈ RL and a /∈ Q.
2. ∇�(a) ⊆ P iff there exists Q ∈ X (L) such that (P, Q) ∈ RL and a ∈ Q.

Proof (1) Assume that �≺(a) ∩ P = ∅. By Lemma 3 there exists Q ∈ X (L) such
that PR�≺ Q and a /∈ Q. By Corollary 2, there exists Q′ ∈ X (L) such that PRLQ′
and Q′ ⊆ Q. The converse follows from the fact that RL ⊆ R�≺ .

The proof of (2) is similar. �

Lemma 9 If 〈X, R1, R2〉 is a positive Priestley bi-subordination space and
R = R1 ∩ R−1

2 , then

1. R(x) is a closed subset of X, for each x ∈ X,
2. R = (R ◦ ≤) ∩ (R ◦ ≤−1),
3. �R(U ) = �R1(U ), for each U ∈ D(X),
4. ♦R(U ) = ♦R−1

2
(U ), for each U ∈ D(X).

Proof The proof of (1) is immediate because both R1(x) and R−1
2 (x) are closed sets.

For (2) we note that as R1 = (R1 ∩ R−1
2 ) ◦ ≤ = R ◦ ≤ and R−1

2 = (R1 ∩ R−1
2 ) ◦

≤−1 = R ◦ ≤−1, then R = R1 ∩ R−1
2 = (R ◦ ≤) ∩ (R ◦ ≤−1).

For the proof of (3) assume that x ∈ �R(U ). If x /∈ �R1(U ), then there exists
y ∈ X such that (x, y) ∈ R1 but y /∈ U . As R1 = R ◦ ≤, there exist z ∈ X such
that (x, z) ∈ R and z ≤ y. So, since x ∈ �R(U ), we have z ∈ U , and since U is an
upset, y ∈ U , which is a contradiction. Suppose now that x ∈ �R1(U ). Note that
R ⊆ R ◦ ≤ = R1. Therefore R(x) ⊆ R1(x). It follows that x ∈ �R(U ).

To prove (4) assume that x ∈ ♦R(U ). Then R(x) ∩U �= ∅. Therefore, R−1
2 (x) ∩

U �= ∅ and so x ∈ ♦R−1
2

(U ). Conversely, if x ∈ ♦R−1
2

(U ), let y ∈ R−1
2 (x) ∩U . Then,

since R−1
2 = (R1 ∩ R−1

2 ) ◦ ≤−1, there is u ∈ (R1 ∩ R−1
2 )(x) such that y ≤ u. Since

U is an upset, it follows that u ∈ R(x) ∩U ; therefore x ∈ ♦R(U ). �

Proposition 22 Let 〈X, R〉 be a relational structure such that X is a Priestley space
and R is a binary relation on X satisfying the following conditions:

1. For every x ∈ X, R(x) is a closed set,
2. R = (R ◦ ≤) ∩ (R ◦ ≤−1),
3. �R(U ) is an open upset for every U ∈ D(X), and ♦R(U ) is closed upset for

every U ∈ D(X).
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Then the structure
〈
X, R1, (R2)

−1
〉
is a positive bi-subordination space, where R1

and R2 are defined as R1 = R ◦ ≤ and R2 = R ◦ ≤−1, respectively.

Proof We prove that R1(x) is a closed set and an upset. If it is empty it is clear. If it is
nonempty, suppose that y /∈ R1(x). Then, since R1 = R ◦ ≤, for each z ∈ R(x) we
have z � y. Also R(x) is nonempty. So, for each z ∈ R(x) there exists Uz ∈ D(X)

such that z ∈ Uz , and y /∈ Uz . Then, R(x) ⊆ ⋃ {Uz : z ∈ R(x)} and since R(x) is
closed, there exists a finite subfamily

{
Uz1 , . . . ,Uzn

}
of {Uz : z ∈ R(x)} such that

R(x) ⊆ Uz1 ∪ · · · ∪Uzn . Let U = Uz1 ∪ · · · ∪Uzn . It is clear that y /∈ U and that U
is an upset. Therefore, R1(x) ⊆ U . Thus we have proved that for each y /∈ R1(x)
there exists U ∈ D(X) such that R1(x) ⊆ U and y /∈ U . It follwos that R1(x) is
closed and the definition of R1 implies that it is an upset. Similarly, we can prove
that R2(x) is a closed downset.

Now we prove that for every U ∈ D(X), �R(U ) = �R1(U ) and ♦R(U ) =
♦R2(U ). Since everyU ∈ D(X) is an upset, it easily follows that for everyU ∈ D(X)

and x ∈ X , R(x) ⊆ U if and only if (R ◦ ≤)(x) ⊆ U . Hence, �R(U ) = �R1(U )

for every U ∈ D(X). Moreover, for every U ∈ D(X) it also holds that ♦R(U ) =
♦R2(U ). Indeed, since R2 = R ◦ ≤−1, for every x ∈ X and U ∈ D(X), since U is
an upset it follows that R(x) ∩U �= ∅ if and only if R2(x) ∩U �= ∅. Therefore
♦R(U ) = ♦R2(U ).

Using the fact we have just proved, (3) of the assumption implies that R1 is the
�-dual of a subordination and R2 is the∇-dual of a subordination. Therefore, R−1

2 is
the�-dual of a subordination. Then (2) of the assumption implies that R = R1 ∩ R2.
Therefore R1 = R ◦ ≤ = (R1 ∩ R2) ◦ ≤ and R2 = R ◦ ≤−1 = (R1 ∩ R2) ◦ ≤−1. It
follows form the definition of positive bi-subordination space that

〈
X, R1, (R2)

−1
〉
is

a positive bi-subordination space. �

Definition 10 A positive Priestley space is a pair 〈X, R〉 where X is a Priestley
space and R is a relation on X that satisfies the conditions of Proposition 22.

By the above results, if 〈X, R〉 is a positive Priestley space, then the structure〈
X, R1, (R2)

−1
〉
defined as in Proposition 22 is a positive Priestley bi-subordination

space such that the pair 〈X, R1 ∩ R2〉 satisfies the conditions in Proposition 22.
Conversely, if 〈X, R1, R2〉 is a positive Priestley bi-subordination space, then the
structure

〈
X, R1 ∩ R−1

2

〉
satisfies the conditions in Proposition 22, and therefore it is

a positive Priestley space such that the triple
〈
X, (R1 ∩ R−1

2 ) ◦ ≤, (R1 ∩ R−1
2 ) ◦ ≤−1

〉

is a positive Priestley bi-subordination space where R1 = (R1 ∩ R−1
2 ) ◦ ≤ and

R2 = (R1 ∩ R−1
2 ) ◦ ≤−1. Thus, we have that there exists a bijective correspondence

between positive Priestley bi-subordination spaces and positive Priestley spaces.

Definition 11 Let 〈X, R〉 and 〈Y, S〉 be positive Priestley spaces. A Priestley mor-
phism f : X → Y from 〈X, R〉 to 〈Y, S〉 is stable if for every x, y ∈ X such that
x Ry it holds that f (x)S f (y) and it is doubly strongly stable if it is stable and for
all x ∈ X and all y ∈ Y , if f (x)Sy then there exist z1, z2 ∈ X such that x Rz1, x Rz2
and f (z1) ≤ y ≤ f (z2).
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Proposition 23 Let 〈X, R〉 and 〈Y, S〉 be positive Priestley spaces and consider
the relations R1 = R ◦ ≤, R2 = R ◦ ≤−1, S1 = S ◦ ≤, and S2 = S ◦ ≤−1. Then f :
X → Y is a (doubly strongly) stable Priestley morphism from 〈X, R〉 to 〈Y, S〉 if
and only if f is a (strongly) stable morphism from 〈X, R1〉 to 〈Y, S1〉 and a (dually
strongly) stable morphism from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Proof Let f : X → Y be a Priestleymorphism. Suppose that f is stable from 〈X, R〉
to 〈Y, S〉. To prove that f is stable from 〈X, R1〉 to 〈Y, S1〉 suppose that x, y ∈ X are
such that x R1y. Then let z ∈ X be such that x Rz and z ≤ y. Hence, by the assumption
of stability, f (x)S f (z) and since f is a Priestley morphism f (z) ≤ f (y). Therefore
f (x)S1 f (y). A similar proof shows that f is stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Assume now that f is doubly strongly stable. We proceed to prove that f is strongly
stable from 〈X, R1〉 to 〈Y, S1〉. Assume that x ∈ X and y ∈ Y are such that f (x)S1y.
Then there is u ∈ Y such that f (x)Su and u ≤ y. Thus, since f is double strongly
stable there are z1, z2 ∈ X such that x Rz1, x Rz2 and f (z1) ≤ u ≤ f (z2). Then, as
u ≤ y, x Rz1 and f (z1) ≤ y. This shows that f is strongly stable from 〈X, R1〉 to
〈Y, S1〉. We now show that f is dually strongly stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Suppose now that x ∈ X and y ∈ Y are such that f (x)S2y. Then there is u ∈ Y such
that f (x)Su and y ≤ u. Since f is double strongly stable there are z1, z2 ∈ X such
that x Rz1, x Rz2 and f (z1) ≤ u ≤ f (z2). Then, as y ≤ u, x Rz2 and y ≤ f (z2). Thus
we obtain that f is dually strongly stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Conversely, assume that f is a stable morphism from 〈X, R1〉 to 〈Y, S1〉 and a
stable morphism from 〈X, R2〉 to 〈Y, S2〉. To prove that f is stable from 〈X, R〉 to
〈Y, S〉, suppose that x, y ∈ X are such that x Ry. Note that since 〈X, R〉 and 〈Y, S〉
are positive Priestley spaces R = R1 ∩ R2 and S = S1 ∩ S2. Hence, x R1y and x R2y.
Therefore the assumption implies that f (x)S1 f (y) and f (x)S2 f (y). Thus we have
f (x)S f (y). Suppose now that f is a strongly stablemorphism from 〈X, R1〉 to 〈Y, S1〉
and a dually strongly stablemorphism from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉. Assume that x ∈ X

and y ∈ Y are such that f (x)Sy. Then f (x)S1y and f (x)S2y. Thus, let z1, z2 ∈ X
such that x R1z1 and f (z1) ≤ y and x R2z2 and y ≤ f (z2). Let then u1, u2 ∈ X such
that x Ru1, u1 ≤ z1, x Ru2, and z2 ≤ u2. Then x Ru1, x Ru2 f (u1) ≤ f (z1) ≤ y, and
y ≤ f (z2) ≤ f (u2). We obtain the desired conclusion. �

Let PBiSLat be the category with objects the positive subordination lattices and
arrows the maps between them that are a subordination homomorphismw.r.t. the two
subordinations. LetPBiSLats be the categorywith objects the positive subordination
lattices and arrows the maps between them that are a strong subordination homomor-
phism w.r.t. the first subordination and a dual strong subordination homomorphism
w.r.t. the second. Similarly, let PPriSp be the category with objects the positive
Priestley spaces and arrows the stable Priestley morphisms and let PPriSps be the
category with objects the positive Priestley spaces and arrows the doubly strongly
stable Priestley morphisms. From the results above the next theorem follows.

Proposition 24 The categories PBiSLat and PPriSp are dually equivalent as well
as the categories PBiSLats and PPriSps.
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