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Preface

The present volume celebrates the outstanding intellectual heritage of Prof.
Mohammad Ardeshir by collecting papers related to the different aspects of his
research interests. Mohammad Ardeshir is a Full Professor of mathematical logic at
the Department of Mathematical Sciences, Sharif University of Technology (SUT),
Tehran, Iran, where he also did parts of his university studies. He completed B.Sc.
in Electrical Engineering (1980), followed by M.Sc. in Mathematics (1990) both at
SUT. He obtained his Ph.D. from Marquette University, Milwaukee, USA (May
1995). His dissertation, entitled Aspects of Basic Logic, was supervised by Wim
Ruitenburg. Ardeshir is internationally known in the first place for his prominent
works in Basic Logic, Algebraic Logic, Constructive Arithmetic, and Constructive
Analysis. His areas of interest are, however, much broader and include topics in the
Intuitionistic Philosophy of Mathematics and History of Philosophy of Logic and
Mathematics in the Medieval Islamic World. Putting his different interests together,
we can see that all the research projects with which Ardeshir has been engaged in
his career lie in the areas where mathematics meets logic and/or philosophy. Hence,
the title of this volume: Mathematics, Logic, and Their Philosophies.

Some of Ardeshir’s most important works are in Basic Logic, which is
Intuitionistic Logic without the modus ponens rule. The technical aspect of this
logic was first introduced by Albert Visser (Visser, 1981). Wim Ruitenburg
(Ruitenburg, 1991) later defended Basic Logic from a philosophical point of view
and provided a sequent calculus for it. Ardeshir, in his Ph.D. thesis (Ardeshir, 1995)
and its subsequent papers (Ardeshir & Ruitenburg, 1998, 2001), explored various
aspects of the proof theory and Kripke semantics of Basic Logic and introduced
several sequent calculi and, most notably, a cut-free axiomatization for it. Another
sequent calculus of Basic Logic with the subformula property was later presented in
(Aghaei & Ardeshir, 2001). One of Adeshir’s other innovations in this area is to
introduce a translation, which embeds Intuitionistic Logic in Basic Logic (Ardeshir,
1999). Ardeshir’s translation is comparable to Gödel’s negative translation, which
embeds Classical Logic in the Intuitionistic Logic. A strict upper bound of the
translation from Intuitionistic Logic into Basic Logic, when it is restricted to the
propositional case, was introduced in (Aghaei & Ardeshir, 2000). Ardeshir’s latest
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contribution to this area, (Ardeshir & Vaezian, 2012), was to introduce a logic,
called U, which is weaker than both Visser’s Basic Logic (Visser, 1981) and
Sambin’s Basic Logic (Battilotti & Sambin, 1999).

Algebraic Logic is another area with which Ardeshir has been engaged since the
time of his Ph.D. Algebraic Logic studies possible relations between Algebra and
Logic. It enables logicians to employ advanced algebraic tools and results to study
Logic. In his Ph.D. dissertation, Ardeshir introduced algebraic models—currently
known as Visser Algebras—for Basic Propositional Logic. Ardeshir also proved
Stone’s Representation Theorem for those algebras. Another achievement of
Ardeshir’s thesis was to put forward a model for Basic Logic based on Heyting
Algebras which are equipped with an additional conjunction-preserving operator.
This part of Ardeshir’s thesis was a source of inspiration for later works in this field.
See, for example, (Alizadeh, 2004; Celani & Jansana, 2005; Suzuki, Wolter, &
Zakharyaschev, 1998). Mainly in collaboration with Wim Ruitenburg and Majid
Alizadeh, Ardeshir’s fruitful works in Algebraic Logic has continued to this day.

The third significant aspect of Ardeshir’s works pertains to his research in
Constructive Arithmetic. Consider a Kripke model for Heyting Arithmetic (HA),
which is Peano Arithmetic (PA) with Intuitionistic Logic as its base logic.
Corresponding to each node of the Kripke model, one may easily define a classical
structure. An immediate question that could be raised is: Is every Kripke model of
HA, locally PA? Equivalently, is this the case that the classical structures assigned
to each node of a Kripke model of HA are models of PA? (van Dalen, Mulder,
Krabbe, & Visser, 1986) gives a positive answer to this question, albeit for a
restricted class of Kripke models called finite-depth models. This positive answer
was later extended, by (Wehmeier, 1996), to the class of x-frame Kripke models.
The positive answer is generalized to the class of the rooted narrow Kripke models
—i.e., finite models with some x-tails—by (Ardeshir & Hesaam, 2002) and to the
class of the semi-narrow Kripke models by (Mojtahedi, 2019). An interesting rel-
evant result, proved by (Ardeshir, Ruitenburg, & Salehi, 2003), is that HA is
strongly complete for the class of end-extension Kripke models. A Kripke model is
end-extension, if for every two nodes u ≼ v in the model, the classical structure
assigned to v is an end-extension of the model assigned to u.

Basic Arithmetic (BA), which is the Basic Logic variant of HA was introduced
by (Ruitenburg, 1998). That BA is closed under a restricted form of Markov
rule—according to which BA ⊢ ¬¬9xA implies BA ⊢ 9xA, for all A without! and
8—was shown by (Ardeshir & Hesaam, 2008). They also introduce a Basic Logic
variant for the seriality axiom schema in modal logic: ⊤ ! ⊥ ) ⊥. The proposi-
tional logic of a first-order theory T is defined to be the set of all propositions A such
that for every substitution a of atomic variables with sentences in the language of T,
we have T⊢ a(A). It can easily be shown that for a theory T over Classical Logic, the
propositional logic of T is Classical Logic. However, things get complicated when it
comes to non-classical first-order theories like HA. It is proved by (de Jongh, 1970)
that the propositional logic of HA is Intuitionistic Logic. In the same vein, it is
shown by (Ardeshir & Mojtahedi, 2014) that the propositional logic of BA is Basic
Logic.
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The provability logic of a first-order theory T is defined as the set of all modal
propositions A such that for every substitution a of propositional variables with
sentences in the language of T, we have T ⊢ a (A), in which □ is interpreted as
provability in T. One of the early remarkable results in this area, proved by
(Solovay, 1976), states that GL := K4+□(□A ! A) ! □A is the provability logic
of PA. A few years later it was shown by (Visser, 1982) that R1-provability logic of
PA is GL plus the completeness principle for atomic variables: p ! □p. R1-pro-
vability logic of PA is a special instance of the provability logic in which we restrict
the substitutions to R1-substitutions. That the arithmetical completeness of the
provability logic of PA is propositionally reducible to that of its R1-provability
logic is shown by (Ardeshir & Mojtahedi, 2015). Another important result of
(Visser, 1982) is that although HA is a sub-theory of PA, the provability logic of
HA is not a sub-theory of the provability logic of PA. Indeed, it was later estab-
lished by (Artemov & Beklemishev, 2004) that the characterization of the prov-
ability logic of HA is remarkably difficult. An outstanding result in this area was
obtained by (Ardeshir & Mojtahedi, 2018). They characterize and prove the
decidability of the R1-provability logic of HA. The R1-provability logic of HA*—
which is the self-completion of the HA introduced by (Visser, 1982)—is charac-
terized in (Ardeshir & Mojtahedi, 2019). Conjoining what we described so far with
Ardeshir’s works in Constructive Analysis, we will have an overall picture of his
contributions to mathematics and logic. Ardeshir has conducted several impressive
research projects in Constructive Analysis, mainly in collaboration with two of his
former Ph.D. students, Zahra Ghafouri and Rasoul Ramezanian.

Now it seems to be time to say a few words about Ardeshir’s engagement with
the philosophy of logic and mathematics. It was thanks to Ardeshir’s writings and
translations that the Intuitionistic Philosophy of Mathematics was introduced to the
Iranian academic community in the last years of the previous century. Ardeshir has
authored, in Persian, several articles about Intuitionism and its founder, L.
E. J. Brouwer (whose big framed photo, hanged on the wall, is the first thing which
catches your eye when you enter Ardeshir’s office at SUT). The faithful soldier of
Intuitionism—as Ardeshir once described himself in a talk at the Iranian Institute of
Philosophy, February 2006—has also translated, from English into Persian, one
book and several articles on Intuitionism. These publications together with his
Mathematical Logic—a Persian textbook which, up until now, has been printed five
times and is the standard textbook of the courses on mathematical logic in various
universities around Iran—have been highly praised by Iranian scholars. A sign
of the national appreciation of Ardeshir’s Persian works is that his Mathematical
Logic was the winner of the 23rd Iran’s Book of the Year Award (2005).

Ardeshir has always had deep interests in Philosophy of Logic and Mathematics
in the Medieval Islamic World. His brilliant paper, “Ibn Sīnā’s Philosophy of
Mathematics” (Ardeshir, 2008), was the first study on this subject and the main
trigger for Mohammad Saleh Zarepour’s Cambridge Ph.D. dissertation (Zarepour,
2019). Ardeshir’s “Brouwer’s Notion of Intuition and Theory of Knowledge by
Presence” is an important—tough unfortunately neglected—work which bridges his
interests in Intuitionism, on the one hand, and Islamic philosophy, on the other.
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The significance of Ardeshir’s career is not fairly recognized unless we consider
his phenomenal role in educating Iranian students. He has taught generations of
students for more than a quarter century and supervised numerous M.Sc. and Ph.D.
students most of whom have become successful scholars. His students will never
forget either his strict work disciplines or his kind, modest, gentle, and wise per-
sonality. It is by no means an exaggeration to say that many Iranian logicians have
been, either directly or indirectly, under the influence of Ardeshir’s works. Putting
all these achievements together leaves no doubt that dedicating a collection of
papers to him is one of the least things we can do to appreciate Ardeshir’s career.

Tehran, Iran Mojtaba Mojtahedi
Villeneuve d’Ascq, France Shahid Rahman
München, Germany Mohammad Saleh Zarepour
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Chapter 1
Equality and Equivalence,
Intuitionistically

Wim Veldman

For Mohammad Ardeshir
Solem enim e mundo tollere videntur qui amicitiam e vita
tollunt.
They take away the sun from the world, surely, those who take
away friendship from life.

Cicero, de Amicitia, XIII 47

Abstract Weshow that the intuitionistic first-order theory of equality has continuum
many complete extensions. We also study the Vitali equivalence relation and show
there are many intuitionistically precise versions of it.

Keywords Brouwer’s continuity principle · Apartness · Toy spread · Decidable
point of a spread · Perhapsive extensions

1.1 Introduction

We want to contribute to L. E. J. Brouwer’s program of doing mathematics
intuitionistically.

We follow his advice to interpret the logical constants constructively.
A conjunction A ∧ B is considered proven if and only if one has a proof of A

and also a proof of B.
A disjunction A ∨ B is considered proven if and only if either A or B is proven.
An implication A → B is considered proven if and only if there is a proof of B

using the assumption A.
A negation ¬A is considered proven if and only if there is a proof of A → 0 = 1.
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2 W. Veldman

An existential statement ∃x ∈ V [P(x)] is considered proven if and only an ele-
ment x0 is produced together with a proof of the associated statement P(x0).

A universal statement ∀x ∈ V [P(x)] is considered proven if and only if a method
is given that produces, given any x in V , a proof of the associated statement P(x).

We also use some axioms proposed by Brouwer: his Continuity Principle, our
Axiom 1, a slightly stronger version of it, the First Axiom of Continuous Choice, our
Axiom 2, and his Thesis on Bars in N , our Axiom 4.

In some of our proofs, we use an Axiom of Countable Choice, our Axiom 3. Intu-
itionistic mathematicians, who accept infinite step-by-step constructions not deter-
mined by a rule, consider this axiom a reasonable proposal.

Finally, we believe that generalized inductive definitions, like our Definition 25,
fall within the compass of intuitionistic mathematics.

Our subject is the (intuitionistic) first-order theory of equality. By considering
structures (X ,=) where X is a subset of Baire space N = ωω and = the usual
equality relation on N , we find that the theory has an uncountable and therefore
astonishing1 variety of elementarily different infinite models and, as a consequence,
an astonishing variety of complete extensions, see Theorem 15. The key observation2

leading to this result is the recognition that, in a spread,3 an isolated point is the same
as a decidable point.4 It follows that the set of the non-isolated points of a spread
is a definable subset of the spread. In spreads that are transparent,5 the set of the
non-isolated points of the spread coincides with the coherence of the spread,6 and the
coherence itself is spread. It may happen that the coherence of a transparent spread
is transparent itself and then the coherence of the coherence also is a definable subset
of the spread. And so on.

Any structure (N , R), where R is an equivalence relation on N , is a model of
the theory of equality. We study the Vitali equivalence relation, see Sect. 1.9, as an
example. This equivalence relation, in contrast to the equality relation on N , is not
stable,7 see Theorem 16.

There is a host of binary relations on N that, from a classical point of view, all
would be the same as the Vitali equivalence relation, see Sects. 1.10 and 1.11, and
especially Definition 25, Corollary 3 and Definition 28. It turned out to be difficult to
find differences between them that are first-order expressible. We did find some such
differences, however, by studying structures (N ,=, R), where R is an intuitionistic
version of the Vitali equivalence relation and = the usual equality, see Sect. 1.12.

1Classically, all infinite models of the first-order theory of equality are elementarily equivalent.
2This observation has been made earlier in Veldman (2001, Sect. 5). The first part of the present
paper elaborates part of Veldman (2001, Sect. 5).
3Every spread is a closed subset of N , see Sect. 1.4.
4See Lemma 3. α ∈ X ⊆ N is a decidable point ofX if and only if ∀β ∈ X [α = β ∨ ¬(α = β)].
5See Definition 8.
6The coherence of a closed set is the set of its limit points, see Definition 7.
7R ⊆ N × N is called stable if ∀α∀β[¬¬αRβ → αRβ], see Definition 22.
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The paper is divided into 13 Sections and consists roughly of two parts. Sec-
tions1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8 lead up to the result that the theory of equality
has continuum many complete extensions, see Theorem 15. Sections1.9, 1.10, 1.11
and 1.12 treat the Vitali equivalence relations. Section1.13 lists some notations and
conventions and may be used by the reader as a reference.

1.2 Intuitionistic Model Theory

Given a relational structure A = (A, R0, R1, . . . , Rn−1), we construct a first-order
language L with basic formulas Ri (x0, x1, . . . , xli−1), where i < n and li is the arity
of Ri . The formulas of L are obtained from the basic formulas by using ∧,∨,→,¬,

∃,∀ in the usual way.
For every formula ϕ = ϕ(x0, x1, . . . , xm−1) of L, for all a0, a1, . . . , am−1 in A,

we define the statement:
A |= ϕ[a0, a1, . . . , am−1]

(A realizes ϕ if x0, x1, . . . , xm−1 are interpreted by a0, a1, . . . , am−1, respectively),
as Tarski did it, with the proviso that connectives and quantifiers are interpreted
intuitionistically.

A formula ϕ of L without free variables will be called a sentence.
A theory (in L) is a set of sentences of L.
Given a theory � in L and a structure A, we define: A realizes � if and only if,

for every ϕ in �, A |= ϕ.
Given a structure B that has the same signature as A, so that the formulas of L

may be interpreted in B as well as in A, we let Th(B), the theory of B, be the set
of all sentences ϕ of L such that B |= ϕ.

A theory � in L will be called a complete theory if and only if there exists a
structure B such that � = Th(B).

This agrees with one of the uses of the expression ‘complete theory’ in classical,
that is: usual, non-intuitionistic, model theory, see Hodges (1993, p. 43). Note that
one may be unable to decide, for a given sentenceϕ and a given structureB, whether
or not B |= ϕ. Intuitionistically, it is not true that, for every complete theory � and
every sentence ϕ, either ϕ ∈ � or ¬ϕ ∈ �.

Complete theories �,� are positively different if one may point out a sentence ψ
such that ψ ∈ � and ¬ψ ∈ �.8

Structures A,B are elementarily equivalent if and only if Th(A) = Th(B) and
(positively) elementarily different if Th(A) is positively different from Th(B).

Let � be a theory in L. A good question is the following:
How many complete theories � can one find extending �?

8 If ψ ∈ � and ¬ψ ∈ �, then ¬ψ ∈ � and ¬¬ψ ∈ �: the relation positively different is symmetric.
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We will say: � admits countably many complete extensions if and only if there
exists an infinite sequence �0,�1, . . . of complete theories extending � such that,
for all m, n, if m 	= n, then �m,�n are (positively) different, and

� admits continuummany complete extensions if and only if there exists a function
α 
→ �α associating to every element α of C = 2ω a complete theory extending �

such that for all α,β, if9 α # β, then �α,�β are (positively) different.
A main result of this paper is that the first-order theory of equality admits contin-

uum many complete extensions.

1.3 Equality May Be Undecidable

The first-order theory EQ of equality consists of the following three axioms:

1. ∀x[x = x],
2. ∀x∀y[x = y → y = x] and
3. ∀x∀y∀z[(x = y ∧ y = z) → x = z].

A model of EQ is a structure of the form (V, R), where V is a set and R is
an equivalence relation on V , possibly, but not necessarily, the equality relation
belonging to V .

Classically, every complete extension of EQ is realized in one of the structures
from the list: ({0},=), ({0, 1},=), ({0, 1, 2},=), . . . and (ω,=). This shows that,
classically, EQ admits of (no more than) countably many complete extensions.

Intuitionistically, however, we have to observe that all structures on this list satisfy
the sentence

∀x∀y[x = y ∨ ¬(x = y)],
that is: the equality relation, on each of these sets, is a decidable relation.

Turning to the setN , we note that, if we define an element α ofN by stipulating:

∀n[α(n) 	= 0 ↔ ∀i < 99[d(n + i) = 9]],

where d : N → {0, 1, . . . , 9} is the decimal expansion of π, then, at this moment,
we have no proof of:

α = 0 ∨ ¬(α = 0).

This is because, if α = 0, then ¬∃n∀i < 99[α(n + i) = 9], and, if ¬(α = 0),
then ¬¬∃n∀i < 99[d(n + i) = 9], and we have no proof of either alternative.

This example showsus that the statement∀α[α = 0 ∨ ¬(α = 0)], for a construc-
tive mathematician, who interprets the disjunction strongly, is a reckless statement.10

9α # β ↔ α ⊥ β ↔ ∃n[α(n) 	= β(n)], see Sect. 1.13.
10A statement is reckless if the classical mathematician holds it is true while the intuitionistic
mathematician, at this point of time, has no proof for his constructive reading of it.
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The following axiom, used by Brouwer,11 implies that the statement
∀α[α = 0 ∨ ¬(α = 0)] even leads to a contradiction.

Axiom 1 (Brouwer’s Continuity Principle)
For all R ⊆ N × ω, if ∀α∃n[αRn], then ∀α∃m∃n∀β[αm � β → βRn].
An immediate consequence is:

Lemma 1 (Brouwer’s Continuity Principle, the case of disjunction)
For all P0, P1 ⊆ N , if ∀α[α ∈ P0 ∨ α ∈ P1], then

∀α∃m[∀β[αm � β → β ∈ P0] ∨ ∀β[αm � β → β ∈ P1]].
Proof Define R := {(α, n) | n < 2 ∧ α ∈ Pn} and apply Axiom 1. �
Theorem 1 (i) (N ,=) |= ∀x¬∀y[x = y ∨ ¬(x = y)].
(ii) (N ,=) |= ¬∀x∀y[x = y ∨ ¬(x = y)].
Proof (i) Let α be given and assume: ∀β[α = β ∨ ¬(α = β)].

Using Lemma 1, find m such that
either ∀β[αm � β → α = β] or ∀β[αm � β → ¬(α = β)].
Consider β := αm ∗ 〈α(m) + 1〉 ∗ 0 (for the first alternative) and β := α (for
the second one) and conclude that both alternatives are false.

(ii) This is an immediate consequence of (i).
�

Definition 1 For each n, we let ψn be the sentence
∃x0∃x1 . . . ∃xn[∧i< j<n ¬(xi = x j )].
Tin f := EQ ∪ {ψn | n ∈ ω}.

ψn expresses that a set has at least n + 1 elements.
Note that, in classical mathematics, Tin f has only one complete extension.
Intuitionistically, however, Tin f has (at least) two positively different complete

extensions, Th
(
(N ,=)

)
and Th

(
(ω,=)

)
.

The next Theorem reflects the fact that, in classical model theory, all models of
Tin f are elementarily equivalent.

Theorem 2 The theory Tin f ∪ {∀x∀y[x = y ∨ ¬(x = y)]} has only one complete
extension.

Proof For each n, consider the first n variables of our language: x0, x1, . . . , xn−1.
A formula ε = ε(x0, x1, . . . , xn−1) is called an equality type if and only if it is of
the form

∧
i< j<n σi j where each σi j either is the formula xi = x j or the formula

¬(xi = x j ).12 One may prove: for all structures (V0, R0), (V1, R1), both realizing
Tin f ∪ {∀x∀y[x = y ∨ ¬(x = y)]}, for each formula ϕ = ϕ(x0, x1, . . . , xn−1), for
each equality type ε = ε(x0, x1, . . . , xn−1), (V0, R0) |= ∀x0∀x1 . . . ∀xn−1[ε → ϕ] if

11See Veldman (2001).
12Inconsistent equality types may be annoying but do not cause difficulties.
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and only if (V1, R1) |= ∀x0∀x1 . . . ∀xn−1[ε → ϕ]. The proof is by induction on the
complexity of the formula ϕ.

It follows that any two models (V0, R0), (V1, R1), both realizing
Tin f ∪ {∀x∀y[x = y ∨ ¬(x = y)]}, are elementarily equivalent. �

From here on, we restrict attention to infinite models of EQ, that is, to models of
Tin f . The hackneyed question to make a survey of models that are finite, or at least
not infinite, and of models for which one can not decide if they are finite or infinite,
is left for another occasion. That the job is not an easy one will be clear to readers
of Veldman (1995).

1.4 Spreads

Definition 2 Let β be given. β is called a spread-law, Spr(β), if and only if
∀s[β(s) = 0 ↔ ∃n[β(s ∗ 〈n〉) = 0]].

For every β, we define: Fβ := {α | ∀n[β(αn) = 0]}.
X ⊆ N is closed if and only if ∃β[X = Fβ].
X ⊆ N is a spread if and only if ∃β[Spr(β) ∧ X = Fβ].
If Spr(β) and β(〈 〉) 	= 0, then Fβ = ∅.
If Spr(β) and β(〈 〉) = 0, then Fβ is inhabited.13 One may define α such that

∀n[α(n) = μp[β(αn ∗ 〈p〉) = 0]] and observe: ∀n[β(αn) = 0], that is: α ∈ Fβ .
Is every closed set a spread?
Define β such that ∀s[β(s) = 0 ↔ ¬∀i < 99[d(n + i) = 9]], where

d : N → {0, 1, . . . , 9} is the decimal expansion of π.
IfFβ is a spread, that is ∃γ[Spr(γ) ∧ Fγ = Fβ], then either Fβ is inhabited and

¬∃s∀i < 99[d(s + i) = 9] or Fβ = ∅ and ¬¬∃s∀i < 99[d(s + i) = 9].
For this β, the statement ‘Fβ is a spread’ thus turns out to be reckless.
Brouwer’s Continuity Principle enables one to obtain a stronger conclusion.

Theorem 3 ¬∀β∃γ[Spr(γ) ∧ Fγ = Fβ].
Proof Assume: ∀β∃γ[Spr(γ) ∧ Fγ=Fβ].

Then ∀β[∃α[α ∈ Fβ] ∨ ¬∃α[α ∈ Fβ]]. Using Lemma 1, findm such that either
∀β[0m � β → ∃α[α ∈ Fβ]] or ∀β[0m � β → ¬∃α[α ∈ Fβ]].

Both alternatives are false, as we see by considering β = 0m ∗ 1 (for the first
alternative), and β = 0 (for the second one). �
Lemma 2 (Brouwer’s Continuity Principle extends to spreads)

Let β be given such that Spr(β). Then, for all R ⊆ N × ω,
if ∀α ∈ Fβ∃n[αRn], then ∀α ∈ Fβ∃m∃n∀γ ∈ Fβ[αm � γ → γRn].

13X ⊆ N is inhabited if and only if ∃α[α ∈ X ].
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Proof Assume: Spr(β). If β(〈 〉) 	= 0, then Fβ = ∅ and there is nothing to prove.
Assume β(〈 〉) = 0. Define σ such that σ(〈 〉) = 〈 〉 and, for all s, for all n,

1. if β(s ∗ 〈n〉) = 0, then σ(s ∗ 〈n〉) = s ∗ 〈n〉, and,
2. if β(s ∗ 〈n〉) 	= 0, then σ(s ∗ 〈n〉) = σ(s) ∗ 〈μp[β(

σ(s) ∗ 〈p〉) = 0]〉.
Note: ∀s[β(

σ(s)
) = 0] and ∀s∀t[s � t → σ(s) � σ(t)].

Define ρ : N → N such that ∀α∀n[σ(αn) � ρ|α].
Note: ∀α[ρ|α ∈ Fβ] ∧ ∀α ∈ Fβ[ρ|α = α].
The function ρ is called a retraction of N onto Fβ .

Now assume: ∀α ∈ Fβ∃n[αRn]. Conclude: ∀α∃n[(ρ|α)Rn].
Let α in Fβ be given. Using Axiom 1, find m, n such that

∀γ[αm � γ → (ρ|γ)Rn]. Conclude: ∀γ ∈ Fβ[αm � γ → γRn].
We thus see: ∀α ∈ Fβ∃m∃n∀γ ∈ Fβ[γm � α → γRn]. �
Recall that, for all α,β, α # β ↔ α ⊥ β ↔ ∃n[α(n) 	= β(n)], and

α = β ↔ ∀n[α(n) = β(n)] ↔ ¬(α # β), and α 	= β ↔ ¬∀n[α(n) = β(n)].
The constructive apartness relation # is more useful than the negative inequality

relation 	=.
Markov’s Principle, in the form: ∀α[¬¬∃n[α(n) = 0] → ∃n[α(n) = 0]],14 is

equivalent to the statement that the two relations coincide: ∀α∀β[α 	= β → α # β].
The intuitionistic mathematician does not accept Markov’s Principle.

Definition 3 We let AP = AP(x, y) be the formula ∀z[¬(z = x) ∨ ¬(z = y)].
The following theorem reformulates a well-known fact.

Theorem 4 (Apartness is definable) For all β such that Spr(β),
for all α, δ in Fβ , α # δ if and only if (Fβ,=) |= AP[α, δ].
Proof First, assumeα # δ. Find n such thatαn 	= δn. Note: for every γ inFβ , either:
γn 	= αn and γ # α, or: γn 	= δn and γ # δ. Conclude: (Fβ,=) |= AP[α, δ].

Next, assume (Fβ,=) |= AP[α, δ], that is ∀γ ∈ Fβ[γ 	= α ∨ γ 	= δ].
Applying Lemma 2, find m such that either ∀γ ∈ Fβ[αm � γ → γ 	= α]

or ∀γ ∈ Fβ[αm � γ → γ 	= δ]. The first alternative is clearly wrong (take γ := α).
The second alternative implies: αm ⊥ δ (if αm � δ, one could take γ := δ), and
thus: α # δ. �
Definition 4 For eachn,we letψ+

n be the sentence∃x0∃x1 . . . ∃xn[∧i< j<n AP(xi , x j )].
T+
in f := EQ ∪ {ψ+

n | n ∈ ω}.
ψ+
n expresses that a set has at least n + 1 elements that are mutually apart.

Every model of T+
in f realizes Tin f . In the second part of the paper we will meet a

structure that realizes Tin f but not T
+
in f , see Theorem 17 in Sect. 1.9.

The theory T+
in f ∪ {∀x∀y[x = y ∨ ¬(x = y)]} has only one complete

extension, the same as the one and only complete extension of
Tin f ∪ {∀x∀y[x = y ∨ ¬(x = y)]}, see Theorem 2.

14A. A. Markov enuntiated this principle for primitive recursive α only.
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1.5 Spreads with a Decidable Equality

Definition 5 We let D = D(x) be the formula: ∀y[x = y ∨ ¬(x = y)].
Definition 6 Assume Spr(β) and α ∈ Fβ .

α is an isolated point of Fβ if and only if ∃n∀γ ∈ Fβ[αn � γ → α = γ], or,
equivalently, ∃n∀s[(αn � s ∧ β(s) = 0

) → s � α].
α is a decidable point of Fβ if and only if ∀γ ∈ Fβ[α = γ ∨ ¬(α = γ)], or,

equivalently, (Fβ,=) |= D[α].
I(Fβ) is the set of the isolated points of Fβ .

Cantor called I(Fβ) the adherence of Fβ .

Lemma 3 Assume Spr(β).

(i) For each α in Fβ , α is an isolated point of Fβ if and only if α is a decidable
point of Fβ .

(ii) I(Fβ) is a definable subset of Fβ .

Proof (i) Let α be an isolated point of Fβ .
Find n such that ∀γ ∈ Fβ[αn � γ → α = γ].
Note: for each γ in Fβ , either αn � γ and α = γ, or αn ⊥ γ and α 	= γ.
Conclude: ∀γ ∈ Fβ[α = γ ∨ ¬(α = γ)], that is: α is a decidable point of Fβ .
Now assume: α is a decidable point of Fβ , that is:
∀γ ∈ Fβ[α = γ ∨ ¬(α = γ)].
Apply Lemma 2 and find m such that either ∀γ ∈ Fβ[αm � γ → α = γ] or
∀γ ∈ Fβ[αm � γ → ¬(α = γ)]. As the second alternative does not hold (take
γ = α), conclude: ∀γ ∈ Fβ[αm � γ → α = γ], and: α is an isolated point of
Fβ .

(ii) Using (i), note: I(Fβ) = {α ∈ Fβ | (Fβ,=) |= D[α]}.
�

Definition 7 Assume Spr(β) and α ∈ Fβ .
α is a limit point of Fβ if and only if ∀n∃δ ∈ Fβ[αn � δ ∧ α ⊥ δ], or, equiva-

lently, ∀n∃s[αn � s ∧ β(s) = 0 ∧ α ⊥ s].
L(Fβ) is the set of the limit points of Fβ .

Cantor called L(Fβ) the coherence of Fβ .

Lemma 4 ∀β[Spr(β) → L(Fβ) ⊆ Fβ \ I(Fβ)], that is:
in all spreads, every limit point is a non-isolated point.

Proof Obvious. �
Theorem 5 The following are equivalent:

(i) Markov’s Principle: ∀α[¬¬∃n[α(n) = 0] → ∃n[α(n) = 0]].
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(ii) ∀β[Spr(β) → Fβ \ I(Fβ) ⊆ L(Fβ)], that is:
in all spreads, every non-isolated point is a limit point.

Proof (i) ⇒ (ii). Let β be given such that Spr(β). Assume α is not an isolated point
of Fβ , that is: ¬∃n∀s[(αn � s ∧ β(s) = 0

) → s � α].
Let n be given.

Define δ such that ∀s[δ(s) = 0 ↔ (αn � s ∧ β(s) = 0 ∧ s ⊥ α)].
Then ¬∀s[δ(s) 	= 0] and: ¬¬∃s[δ(s) = 0].
UsingMarkov’s Principle, we conclude: ∃s[δ(s) = 0].
We thus see: ∀n∃s[αs � s ∧ β(s) = 0 ∧ s ⊥ α], and: α is a limit point of Fβ .
(ii) ⇒ (i). Let us assume: ∀β[Spr(β) → Fβ \ I(Fβ) ⊆ L(Fβ)],
Let α be given such that ¬¬∃n[α(n) = 0].

Define β such that
∀s[β(s) = 0 ↔ ∀m < length(s)[s(m) 	= 0 → ∃n ≤ m[α(n) = 0]]].

Note: Spr(β) and 0 ∈ Fβ , and: if ∃n[α(n) = 0], then 0 is a limit point of Fβ .
Conclude: if 0 is an isolated point of Fβ , then ¬∃n[α(n) = 0].
As ¬¬∃n[α(n) = 0], conclude: 0 is not an isolated point of Fβ .
By our assumption, 0 thus is a limit point of Fβ .
Find s such that β(s) = 0 and s ⊥ 0. Conclude: ∃n ≤ length(s)[α(n) = 0].
Conclude: ∀α[¬¬∃n[α(n) = 0] → ∃n[α(n) = 0]], that is: Markov’s Principle.�
We thus see that the converse of Lemma 4, being equivalent toMarkov’s Principle,

is not an intuitionistic theorem.
We could not answer the question if, in general, L(Fβ) is a definable subset of

(Fβ,=). In some special cases, however, it is, and the following definition is useful.

Definition 8 Assume Spr(β). Fβ is called transparent if and only if there exists γ
such that Spr(γ) and Fγ = L(Fβ) and ∀α ∈ Fβ[∃n[γ(αn) 	= 0] → α ∈ I(Fβ)].

Note that, for each β such that Spr(β), if Fβ is transparent, then
Fβ \ I(Fβ) ⊆ L(Fβ). The statement that every spreadFβ is transparent thus is seen
to imply Markov’s Principle.

In Sect. 1.7 we will see many examples of transparent spreads.
The fact that not every spread is a transparent spread is one of the reasons that

Brouwer did not succeed in finding a nice intuitionistic version of Cantor’s Main
Theorem,15 see Brouwer (1919).

Definition 9 Let β satisfy Spr(β) and let ϕ be given.
We define: ϕ : Fβ → ω if and only if ∀α ∈ Fβ∃p[ϕ(αp) 	= 0].
If ϕ : Fβ → ω, then we define, for each α in Fβ , ϕ(α) as the number z such that

ϕ(αq) = z + 1, where q = μp[ϕ(αp) 	= 0].
We define: ϕ is an injective map from Fβ into ω, notation: ϕ : Fβ ↪→ ω,

if and only if ϕ : Fα → ω and ∀α ∈ Fβ∀δ ∈ Fβ[α # δ → ϕ(α) 	= ϕ(δ)].

15Cantor’s Main Theorem nowadays is called the Perfect Set Theorem: every closed subset of N
is the union of a perfect set and an at most countable set.
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We define: ϕ : Fβ → N if and only if ∀n[ϕn : Fβ → ω].
If ϕ : Fβ → N , then we define, for each α inFβ , ϕ|α as the element δ ofN such

that ∀n[δ(n) = ϕn(α)].
We define: ϕ is an injective map from Fβ into N , notation: ϕ : Fβ ↪→ N ,

if and only if ϕ : Fα → N and ∀α ∈ Fβ∀δ ∈ Fβ[α # δ → ϕ|α # ϕ|δ].
For every X ⊆ N , Fβ embeds into X if and only if there exists an injective map

from Fβ into X .

The following axiom is, at least at first sight, a little bit stronger than Brouwer’s
Continuity Principle.

Axiom 2 (First Axiom of Continuous Choice) For all R ⊆ N × ω,
if ∀α∃n[αRn], then ∃ϕ : N → ω∀α[αRϕ(α)].
Lemma 5 (The First Axiom of Continuous Choice extends to spreads) Let β be
given such that Spr(β). Then, for all R ⊆ Fβ × ω,
if ∀α ∈ Fβ∃n[αRn], then ∃ϕ : Fβ → ω∀α ∈ Fβ[αRϕ(α)].
Proof Assume: Spr(β) and β(〈 〉) = 0. As in the proof of Lemma 2, define
ρ : N → Fβ such that ∀α[ρ|α ∈ Fβ] ∧ ∀α ∈ Fβ[ρ|α = α].

Now assume ∀α ∈ Fβ∃n[αRn]. Conclude: ∀α∃n[(ρ|α)Rn].
Applying Axiom 2, find ϕ : N → ω such that ∀γ[(ρ|γ)Rϕ(γ)].
Conclude: ϕ : Fβ → ω and ∀γ ∈ Fβ[γRϕ(γ)]. �

Theorem 6 Assume Spr(β). (Fβ,=) |= ∀x[D(x)] if and only if ∃ϕ[ϕ : Fβ ↪→ ω].
Proof First assume: (Fβ,=) |= ∀x[D(x)]. Then, by Lemma 3,
∀α ∈ Fβ∃n∀γ ∈ Fβ[αn � γ → α = γ]. Using Lemma 5, find ϕ : Fβ → ω such that
∀α ∈ Fβ∀γ ∈ Fβ[αϕ(α) � γ → α = γ].
Define ψ : Fβ → ω such that ∀α ∈ Fβ[ψ(α) = αϕ(α)]. Clearly, ψ : F� ↪→ ω.

Now assume: ϕ : Fβ ↪→ ω. Note: ∀α ∈ Fβ∀δ ∈ Fβ[α = δ ↔ ϕ(α) = ϕ(δ)].
Also: ∀α ∈ Fβ∀δ ∈ Fβ[ϕ(α) = ϕ(δ) ∨ ¬(

ϕ(α) = ϕ(δ)
)].

Therefore: ∀α ∈ Fβ∀δ ∈ Fβ[α = δ ∨ ¬(α = δ)]. Conclude: (Fβ,=) |= ∀x
[D(x)]. �
Definition 10 Assume Spr(β). Fβ is enumerable if and only if either Fβ = ∅ or
∃δ[∀n[δn ∈ Fβ] ∧ ∀α ∈ Fβ∃n[α = δn]].
Lemma 6 Assume Spr(β). Fβ is enumerable if and only if ∃ϕ[ϕ : Fβ ↪→ ω].
Proof Assume Fβ is enumerable and β(〈 〉) = 0.
Find δ such that ∀n[δn ∈ Fβ] and ∀α ∈ Fβ∃n[α = δn].
Using Lemma 5, find ϕ : Fβ → ω such that ∀α ∈ Fβ[α = δϕ(α)].
Note: ϕ : Fβ ↪→ ω.

Now assume: ϕ : Fβ ↪→ ω.
We make a preliminary observation.
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Let s, n be given such that β(s) = 0 and ϕ(s) = n + 1 and ∀t � s[ϕ(t) = 0].
Note: ∀α ∈ Fβ[s � α → ϕ(α) = n] and, therefore:
∀α ∈ Fβ∀δ ∈ Fβ[(s � α ∧ s � δ) → α = δ].

Now let γ be the element of Fβ satisfying ∀n[γ(n) := μp[β(γn ∗ 〈p〉) = 0]].
Define δ such that, for all s, if β(s) = 0 and ϕ(s) 	= 0 and ∀t � s[ϕ(t) = 0], then
s � δs and δs ∈ Fβ , and if not, then δs = γ.

Note: ∀s[δs ∈ Fβ] and ∀α ∈ Fβ∃s[α = δs]. �
Corollary 1 Assume Spr(β).
(Fβ,=) |= ∀x[D(x)] if and only if Fβ is enumerable.

Proof Use Theorem 6 and Lemma 6. �

1.6 Spreads with Exactly One Undecidable Point

Definition 11 We let τ2 be the element of C satisfying: ∀s[τ2(s) = 0 ↔
∀i < length(s)[s(i) < 2 ∧ (

i + 1 < length(s) → s(i) ≤ s(i + 1)
)]]. We define:

T2 := Fτ2 .

Note: τ2 is a spread-law and T2 is a spread.
Let us take a closer look at T2.
Observe: ∀α[α ∈ T2 ↔ ∀i[α(i) ≤ α(i + 1) < 2]].
For each n, we define n∗ := 0n ∗ 1.
The infinite sequence 0, 0∗, 1∗, 2∗, . . . is a list of elements of T2 and a classical

mathematician might think it is the list of all elements of T2. The intuitionistic
mathematician knows better. He defines α in T2 such that

∀n[α(n) = 1 ↔ ∃k ≤ n∀i < 99[d(k + i) = 9]],

where d : N → {0, 1, . . . , 9} is the decimal expansion of π. As yet, one has no proof
of the statement ‘α = 0’, as this statement implies: ∀k∃i < 99]d(k + i) = 9]. As
yet, one also has no proof of the statement: ‘∃n[α = n∗]’ as this statement implies:
∃n∀i < 99[d(n + i) = 9]. The statement that α occurs in the above list is a reckless
one.

For each n, n∗ is an isolated and a decidable point of T2, and 0 is a non-isolated
and an undecidable point of T2. It follows, by Lemma 3 and Corollary 1, that T2 is
not an enumerable spread. In particular, the statement that the list 0, 0∗, 1∗, 2∗, . . . is
a complete list of the elements of T2, leads to a contradiction, as appears again from
the following Theorem.

Theorem 7 (i) ¬∀α ∈ T2[α = 0 ∨ ∃n[α = n∗]].
(ii) ∀α ∈ T2[α # 0 → ∃n[α = n∗]].
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Proof (i) Assume∀α ∈ T2[α = 0 ∨ ∃n[α = n∗]]. UsingLemma2, findm, n such
that either ∀α ∈ T2[0m � α → α = 0] or ∀α ∈ T2[0m � α → α = n∗]. Note
that both alternatives are false.
Conclude: ¬∀α ∈ T2[α = 0 ∨ ∃n[α = n∗]].

(ii) Let α in T2 be given such that α # 0. Define n := μm[α(m + 1) ⊥ 0]. Note:
α(n + 1) = 0n ∗ 〈1〉 and α = n∗.

Definition 12 Assume Spr(β). Fβ is almost-enumerable if and only if either
Fβ = ∅ or ∃δ[∀n[δn ∈ Fβ] ∧ ∀α ∈ Fβ∀ε∃n[αε(n) = δnε(n)]].

This definition deserves some explanation. IfFβ is almost-enumerable and inhab-
ited, we are able to come forward with an infinite sequence δ0, δ1, . . . of ele-
ments of Fβ such that, for every α in Fβ , every attempt ε to prove that α is
apart from all elements of the infinite sequence δ0, δ1, . . ., (ε expresses the guess:
∀n[αε(n) ⊥ δnε(n)]), will positively fail.

Almost-enumerable spreads are studied in Veldman (2018, Sect. 9), where they
are called almost-countable located and closed subsets of N .

Theorem 8 T2 is almost-enumerable.

Proof Define δ such that δ0 = 0 and, for each n, δn+1 = n∗ = 0n ∗ 1.
Note: ∀n[δn ∈ T2]. Let ε be given. Ifαε(0) = δ0ε(0), we are done. If not, thenα ⊥ 0
and we may determine n such that α = δn+1 and αε(n + 1) = δn+1ε(n + 1). �
Axiom 3 (Second Axiom of Countable Choice)

For every R ⊆ N × N , if ∀n∃α[nRα], then ∃α∀n[nRαn].
Theorem 9 (i) (T2,=) |= ∃x[¬D(x) ∧ ∀y[AP(x, y) → D(y)]].
(ii) For all β such that Spr(β),

if (Fβ,=) |= ∃x[¬D(x) ∧ ∀y[AP(x, y) → D(y)]], then Fβ embeds into T2.

Proof (i) 0 is not an isolated point of T2, and, therefore, not a decidable point of
T2. Also, by Theorem 7 (ii), ∀α ∈ T2[α # 0 → ∃n[α = n∗]], and, for each n, for
eachα inT2,α = n∗ ↔ 0n ∗ 〈1〉 � α, so onemay decide:α = n∗ or¬(α = n∗),
and: n∗ is a decidable point of T2.
We thus see: (T2,=) |= ¬D(x) ∧ ∀y[AP(x, y) → D(y)][0], and are done.

(ii) Assume: Spr(β) and (Fβ,=) |= ∃x[¬D(x) ∧ ∀y[AP(x, y) → D(y)]].
Find α in Fβ such that α is not an isolated point of Fβ .
Note: for each s such that β(s) = 0, the set Fβ ∩ s := {δ ∈ Fβ | s � δ} is a
spread, and, if s ⊥ α, thenFβ ∩ s consists of isolated points ofFβ ∩ s only, and
thus, by Theorem 6, embeds into ω.
Using Axiom 3, we find ϕ such that, for each s, if β(s) = 0 and there exist n, i
such that s = αn ∗ 〈i〉 and i 	= α(n), then ϕs : Fβ ∩ s ↪→ ω.
We now define ψ : Fβ → T2 such that ψ|α = 0 and, for each δ in Fβ , if δ # α,

then ψ|δ = 0
(
δn,ϕδn(δ)

) ∗ 1 where n := μi[δi ⊥ α]. �
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1.7 More and More Undecidable Points: The Toy Spreads

Definition 13 For each n, we let τn be the element of C satisfying: ∀s[τn(s) = 0 ↔
∀i < length(s)[s(i) < n ∧ (

i + 1 < length(s) → s(i) ≤ s(i + 1)
)]].

We also define: Tn := Fτn .

For each n, τn is a spread-law and Tn and Tn = {α | ∀i[α(i) ≤ α(i + 1) < n]} is
a spread.

In this paper, the spreads T0, T1, . . . will be called the toy spreads.
Note: T0 = ∅ and T1 = {0}.

Definition 14 For each s 	= 〈 〉, we let s† be the element ofN satisfying s � s† and
∀i ≥ length(s)[s†(i) = s†(i − 1)].

Note that, for each n, for each s, if s 	= 〈 〉 and τn(s) = 0, then s† ∈ Tn .

Theorem 10 For each n > 0, Tn is almost-enumerable.

Proof Let n > 0 be given. Define δ such that, for each s, if s 	= 〈 〉 and τn(s) = 0,
then δs = s†, and if not, then δs = 0.

We claim: ∀α ∈ Tn∀ε∃s[αε(s) = δsε(s)].
We establish this claim by proving, for each k < n,

∀α ∈ Tn[∃i[α(i) ≥ k] → ∀ε∃s[αε(s) = δsε(s)]], andwe do so by backwards induc-
tion, starting with the case k = n − 1.

The case k = n − 1 is treated as follows. If ∃i[α(i) = n − 1], find
i0 := μi[α(i) = n − 1] and consider s := α(i0 + 1).
Note: α = s† = δs and, therefore, for every ε: αε(s) = δsε(s).

Now assume k < n − 1 is given such that
∀α ∈ Tn[∃i[α(i) ≥ k + 1] → ∀ε∃s[αε(s) = δsε(s)]].

We have to prove: ∀α ∈ Tn[∃i[α(i) = k] → ∀ε∃s[αε(s) = δsε(s)]].
Let α be given such that ∃i[α(i) = k]. Let also ε be given.
Define i0 := μi[α(i) = k] and define s := α(i0 + 1).
There are two cases to consider.
Case (i): αε(s) = s†ε(s) = δsε(s). We are done.
Case (ii): αε(s) ⊥ s†ε(s). Then ∃i < ε(s)[α(i) ≥ k + 1].
Using the induction hypothesis, we conclude: ∃s[αε(s) = δsε(s)]. �

Theorem 11 (i) For each n, for all α in Tn, α ∈ I(Tn) if and only if ∃m[α(m) +
1 = n].

(ii) For each n, Tn+1 \ I(Tn+1) = Tn = L(Tn+1).
(iii) For each n, Tn = {α ∈ Tn+1 | (Tn+1,=) |= ¬D[α]}.
Proof The proof uses Lemma 3 and is left to the reader. �
Definition 15 We define an infinite sequence D0, D1, . . . of formulas, as follows.

D0 := ∀y[x = y ∨ ¬(x = y)],
D1 := ¬D0(x) ∧ ∀y[¬D0(y) → (

x = y ∨ ¬(x = y)
)],
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D2 := ¬D0(x) ∧ ¬D1(x) ∧
∀y[(¬D0(y) ∧ ¬D1(y)

) → (
x = y ∨ ¬(x = y)

)],
and, more generally for each m > 0,
Dm := ∧

i<m ¬Di (x) ∧ ∀y[(∧i<m ¬Di (y)
) → (

x = y ∨ ¬(x = y)
)].

We also define, for each m > 0, sentences ψm and ρm , as follows:
ψm := ∃x[Dm(x)] and ρm := ∃x[Dm(x) ∧ ∀y[Dm(y) → y = x]].

Definition 16 Assume Spr(β).
α inFβ is a limit point of order 0 of Fβ if and only if α is an isolated point of Fβ .
For each m, α is a limit point of order m + 1 of Fβ if and only if,

for each p, there exists a limit point γ of order m such that αp � γ and α ⊥ γ.

Assume n > 0 and α ∈ Tn . Note the following:
1. (Tn,=) |= D0[α] if and only if α is an isolated point of Tn if and only if either:

n = 1 or: n > 1 and ∃p[α(p) = n − 1].
2. (Tn,=) |= ¬D0[α] if and only if α is a limit point (of order 1) of Tn if and only

if n > 1 and α ∈ Tn−1.
3. (Tn,=) |= D1[α] if and only if α is an isolated point among the limit points (of

order 1) of Tn if and only if n > 1 and α ∈ Tn−1 and ∃p[α(p) = n − 2].
4. (Tn,=) |= ¬D0 ∧ ¬D1[α], if and only if α is a limit point of order 2 of Tn if

and only if n > 2 and α ∈ Tn−2.
5. For each m > 0, (Tn,=) |= D2[α] if and only if α is an isolated point among the

limit points of order 2 if and only if n > 2 and α ∈ Tn−2 and ∃p[α(p) = n − 3].
6. For eachm > 0, (Tn,=) |= ∧

i<m ¬Di [α] if and only if α is a limit point of order
m of Tn if and only if n > m and α ∈ Tn−m .

7. For each m > 0, (Tn,=) |= Dm[α] if and only if α is an isolated point among
the limit points of order m if and only if n > m and α ∈ Tn−m and ∃p[α(p) =
n − m − 1].

8. For each m > 0, Tn |= ψm if and only if Tn contains an isolated point of Tn−m if
and only if n > m.

9. For each m > 0, Tn |= ρm if and only if Tn contains exactly one isolated point of
Tn−m if and only if Tn−m = {0} if and only if n = m + 1.

After these preliminary observations, the following Theorem is easy to under-
stand:

Theorem 12 (i) For each n, Tn is a transparent16 spread and,
if n > 0, then I(Tn) = {α ∈ Tn | ∃p[α(p) + 1 = n]} and L(Tn) = Tn−1.

(ii) For all n, for all m > 0, Tn = {α ∈ Tn+m | (Tn+m,=) |= ∧
i<m ¬Di [α]}.

(iii) For all m, {0} = T1 = {α ∈ Tm+1 | (Tm+1,=) |= ∧
i<m ¬Di [α]}.

(iv) For all n > 0, for all m > 0, (Tn,=) |= ψm if and only if m + 1 ≤ n.
(v) For all n > 0, for all m > 0, (Tn,=) |= ρm if and only if m + 1 = n.

Proof Use the preliminary observations preceding this Theorem. �

16See Definition 8.
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Corollary 2 For all n,m, if n 	= m, then there exists a sentence ψ such that (Tm,=)

|= ψ and (Tn,=) |= ¬ψ.

1.8 Finite and Infinite Sums of Toy Spreads

1.8.1 A Main Result

Definition 17 Assume Spr(β), Spr(γ).
We define: Fβ � Fγ := {〈0〉 ∗ δ | δ ∈ Fβ} ∪ {〈1〉 ∗ δ | δ ∈ Fγ}.
For each m, we define: m ⊗ Fβ := {〈i〉 ∗ δ | i < m, δ ∈ Fβ}.
We also define: ω ⊗ Fβ := {〈i〉 ∗ δ | i ∈ ω, δ ∈ Fβ}.
Note that Fβ � Fγ , m ⊗ Fβ and ω ⊗ Fβ are spreads again.
We also define, for all m, n > 0, sentences ψn

m and ρnm , as follows:
ψn
m := ∃x0∃x1 . . . ∃xn−1[∧i< j<n[AP(xi , x j ) ∧ ∧

i<n

∧
j<m ¬Dj (xi )].

and ρnm := ∃x0∃x1 . . . ∃xn−1[∧i< j<n[AP(xi , x j ) ∧ ∧
i<n

∧
j<m ¬Dj (xi ) ∧

∀z[∧ j<m ¬Dj (z) → ∨
i<n z = xi ]].

The sentence ψn
m expresses: ‘there exist (at least) n limit points of order m that

are mutually apart’.
The sentence ρnm expresses: ‘there exist exactly n limit points of order m that are

mutually apart’.

Theorem 13 (i) For all m, n, p, q > 0,
(n ⊗ Tm,=) |= ψ

q
p if and only if either: p + 1 < m or: p + 1 = m and q ≤ n.

(ii) For all m, n, p, q > 0, (n ⊗ Tm,=) |= ρ
q
p if and only if p + 1 = m and n = q.

(iii) For all m, p, q > 0, (ω ⊗ Tm,=) |= ψ
q
p if and only if p < m.

Proof (i) Note the following:
If p + 1 < m and n > 0, then Tm and also n ⊗ Tm contain infinitely many limit

points of order p that are mutually apart.
If p + 1 = m and n > 0, then n ⊗ Tm contains exactly n limit points of order p

that are mutually apart: the points 〈i〉 ∗ 0, where i < n, so (n ⊗ Tm,=) |= ψ
q
p if and

only if q ≤ n.
If p < m, then ω × Tm contains infinitely many limit points of order p that are

mutually apart.
The proofs of (i), (ii) and (iii) follow easily from these observations. �

Definition 18 For each k, for each s inωk , we define:Vs = ⋃
i<k{〈i〉 ∗ δ | δ ∈ Ts(i)}.

Definition 19 Let F0,F1 ⊆ N and assume ϕ : F0 → F1.
ϕ is a (surjective)map fromF0 ontoF1 if and only if ∀β ∈ F1∃α ∈ F0[ϕ|α = β].
F0 is equivalent toF1, notation:F0 ∼ F1, if and only if there existsϕ : F0 → F1

that is both injective17 and surjective.

17See Definition 9.
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Theorem 14 (i) For each m, Tm ⊕ Tm+1 ∼ Tm+1.
(ii) For all m, n, if m < n, then Tm ⊕ Tn ∼ Tn.
(iii) For all k, for all s in ωk , there exist m, n such that Vs ∼ n ⊗ Tm.

Proof (i) Let m be given. Define ϕ : Tm ⊕ Tm+1 → Tm+1 such that, for all δ in Tm ,
ϕ|〈0〉 ∗ δ = 〈1〉 ∗ S ◦ δ, and, for each δ in Tm+1, ϕ|〈1〉 ∗ δ = 〈0〉 ∗ δ. Clearly, ϕ
is a one-to-one function mapping Tm ⊕ Tm+1 onto Tm+1.

(ii) Let m be given. We use induction on n. The case n = m + 1 has been treated in
(i). Now let n be given such that m < n and Tm ⊕ Tn ∼ Tn .
ThenTm ⊕ Tn+1 ∼ Tm ⊕ (Tn ⊕ Tn+1) ∼ (Tm ⊕ Tn) ⊕ Tn+1 ∼ Tn ⊕ Tn+1 ∼ Tn+1.

(iii) We use induction on k. If s ∈ ω0, then s = 〈 〉 and ∅ = Vs = 0 ⊗ T1.
Now let k be given such that,
for all s in ωk , there exist m, n such that Vs = n ⊗ Tm .
Let s = t ∗ 〈p〉 in ωk+1 be given. Find m, n such that Vt = n ⊗ Tm .
Note: Vs ∼ Vt ⊕ Tp and consider several cases.
Case (1): t = 〈 〉. Then Vs = 1 ⊗ Tp.
Case (2): t 	= 〈 〉 and p < m. Then, by (ii): Vs ∼ Vt ∼ n ⊗ Tm .
Case (3): t 	= 〈 〉 and p = m. Then: Vs ∼ Vt ⊕ Tm ∼ (n + 1) ⊗ Tm .
Case (4): t 	= 〈 〉 and p > m. Then, by (ii):

Vs ∼ Vt ⊕ Tp ∼ Tm ⊕ . . . ⊕ Tm︸ ︷︷ ︸
n

⊕Tp ∼ Tp ∼ 1 ⊗ Tp.

�
Definition 20 For each α, we define: Vα := ⋃

i {〈i〉 ∗ δ | δ ∈ Tα(i)}.
Theorem 15 (EQ has continuum many complete extensions18)

(i) For each α, I(Vα) = ⋃
i {〈i〉 ∗ δ | δ ∈ Tα(i) ∧ ∃p[δ(p) + 1 = α(i)]}.

(ii) For all α, for all n, (Vα,=) |= ψn if and only if ∃i[α(i) > n].
(iii) For all α, for all n, (Vα,=) |= ρn if and only if

∃i[α(i) = n + 1 ∧ ∀ j[α( j) = n + 1 → i = j]].
(iv) For all ζ, η in [ω]ω, if ζ ⊥ η and ζ(0) = η(0) = 2,

then there exists a sentence ψ such that (Vζ ,=) |= ψ and (Vη,=) |= ¬ψ.

Proof (i) Use Theorem 12 (i).
(ii) Note that, for each α, for each n, (Vα,=) |= ψn if and only if Vα contains a limit

point of order n if and only if ∃i[α(i) > n].
(iii) Note that, for eachα, for each n, (Vα,=) |= ρn if and only ifVα contains exactly

one limit point of order n if and only if
∃i[α(i) = n + 1 ∧ ∀ j[α( j) = n + 1 → i = j]].

(iv) Using (iii), note that, for all ζ in [ω]ω , if ζ(0) > 1, then ∀n[(Vζ ,=) |= ρn if
and only if ∃p[ζ(p) = n + 1].

18Note that there exists an embedding ρ : C ↪→ {ζ ∈ [ω]ω | ζ(0) = 2}.
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Conclude that, for all ζ, η in [ω]ω, for all p, if ζ(0) = η(0) = 2 and ζ ⊥ η and
p := μi[ζ(i) 	= η(i)] and ζ(p) < η(p), then¬∃i[η(i) = ζ(p)], and, therefore,
(Vζ ,=) |= ψζ(p)−1 and (Vη,=) |= ¬ψζ(p)−1.

�

1.8.2 Finitary Spreads Suffice

Definition 21 Assume Spr(β). β is called a finitary spread-law or a fan-law if and
only if ∃γ∀s[β(s) = 0 → ∀n[β(s ∗ 〈n〉) = 0 → n ≤ γ(s)]].

X ⊆ N is a fan if and only if there exists a fan-law β such that X = Fβ .

Note that the toy spreads T0, T1, . . . are fans.
The set Vα, however, is a spread but, in general, not a fan.

Define, for each α, V∗
α := ⋃

n 0n ∗ 〈1〉 ∗ Tα(n).19

Note that, for each α, V∗
α is a fan.

One may prove a statement very similar to Theorem 15 (iv):
For all ζ, η in [ω]ω , if ζ ⊥ η and ζ(0) = η(0) = 2, then there exists a sentence

ψ such that (V∗
ζ ,=) |= ψ and (V∗

η ,=) |= ¬ψ.

1.8.3 Comparison with an Older Theorem

The first-order theory DLO of dense linear orderings without endpoints is formu-
lated in a first-order language with binary predicate symbols = and � and consists
of the following axioms:

1. ∀x[x � x],
2. ∀x∀y∀z[(x � y ∧ y � z) → x � z],
3. ∀x∀y[(¬(x � y) ∧ ¬(y � x)

) → x = y].
4. ∀x∀y[x � y → ∀z[x � z ∨ z � y]],
5. ∀x∃y[x � y] ∧ ∀x∃y[y � x],
6. ∀x∀y[x � y → ∃z[x � z ∧ z � y]], and
7. axioms of equality.

(R,=R,<R) realizes DLO .
Let DLO− be the theory one obtains from DLO by leaving out axiom (4). If one

defines a relation<′
R onR by: ∀x∀y[x <′

R y ↔ ¬¬(x <R y)], then (R,=R,<′
R)

realizes DLO− but not DLO .
In Veldman and Janssen (1990, Theorem 2.4) one constructs a function α 
→ Aα

associating to each element α of 2ω = C a subset Aα of the setR of the real numbers

19For each X ⊆ N , X := {α | ∀n∃β ∈ X [αn � β]} is the closure of X .⋃
n 0n ∗ 〈1〉 ∗ Tα(n), in general, is not a spread, but its closure is.
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such that, for each α in C, Aα is dense in (R,<R), and, for all α,β in C, if α ⊥ β,
then there exists a sentence ψ such that (Aα,<R) |= ψ and (Aβ,<R) |= ¬ψ.

Note: each structure (Aα,<R) realizes DLO . The (intuitionistic) theory DLO
thus has continuum many complete extensions.20

One may obtain the result of Theorem 15 (iv) for subsets of R as well as for
subsets of N . Define an infinite sequence U0,U1, . . . of subsets of R by:

U0 := ∅ and U1 := {0R}, and for each m > 0, Um+1 = ⋃
n

1
2n+1 + 1

2n+2 ·R Um .21

For each m, one may define ϕ : Tm → Um such that ϕ is surjective and satisfies:
∀δ ∈ Tm∀ζ ∈ Tm[δ ⊥ ζ ↔ ϕ|δ #R ϕ|ζ].

It follows that, for each m, the structures (Tm,=) and (Um,=R) are elementarily
equivalent.

Define, for each α in [ω]ω, Aα := ⋃
n n +R Uα(n).

Note: for all α,β in [ω]ω , if α ⊥ β, then there exists a sentence ψ such that
(Aα,=R) |= ψ and (Aβ,=R) |= ¬ψ.

We thus obtain a result similar to Veldman and Janssen (1990, Theorem 2.4), this
time using not the ordering relation <R but only the equality relation =R.

Note that, for all α,β inR, α =R β ↔ (¬(α <R β) ∧ ¬(β <R α)
)
.

Conclude: the relation =R is definable in the structure (R,<R).
Conclude: for all subsets T ,U of R, if there exists a sentence ψ such that

(T ,=R) |= ψ and (U ,=R) |= ¬ψ, then there also exists a sentence ψ∗ such that
(T ,<R) |= ψ∗ and (U ,<R) |= ¬ψ∗.

The conclusion of Veldman and Janssen (1990, Theorem 2.4) might have been
obtained as a corollary of Theorem 15 (iv).

1.9 The Vitali Equivalence Relation

For all α,β, we define

α ∼V β ↔ ∃n∀m > n[α(m) = β(m)].

The relation ∼V will be called the Vitali equivalence relation.
This is because the relation ∼V on N resembles the relation ∼Q on the set R of

the real numbers defined by:

x ∼Q y ↔ ∃q ∈ Q[x −R y = q].

The relation ∼Q has played an important rôle in classical set theory.
If one constructs, using the axiom of choice, within the interval [0, 1], a transver-

sal for this equivalence relation, that is: a complete set of mutually inequivalent

20Classically, Th
(
(Q,<)

)
is the one and only complete extension of DLO .

21For each X ⊆ R, X := {x ∈ R | ∀n∃y ∈ X [|x − y| < 1
2n ]} is the closure of X .
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representatives, one obtains a set that is not Lebesgue measurable. This discovery is
due to G. Vitali.

Note: (N ,∼V ) |= EQ.
The following theorem brings to light an important difference between (N ,=)

and (N ,∼V ).

Definition 22 A proposition P is stable if and only if ¬¬P → P .
A binary relation ∼ on N is stable if and and only if

∀α∀β[¬¬(α ∼ β) → α ∼ β].22
Theorem 16 (Equality is stable but the Vitali equivalence relation is not stable)

(i) (N ,=) |= ∀x∀y[¬¬(x = y) → x = y].
(ii) (N ,∼V ) |= ∀x¬∀y[¬¬(x = y) → x = y].
Proof (i) Note: for all α,β, α = β ↔ ¬(α # β), and, therefore:

¬¬(α = β) ↔ ¬¬¬(α # β) ↔ ¬(α # β) ↔ α = β.
(ii) Let γ be given.

Consider Fγ := {α | ∀m∀n[(α(m) 	= γ(m) ∧ α(n) 	= γ(n)
) → m = n].

Fγ is the set of all α that differ at at most one place from γ.
Note that Fγ is a spread.
We have two claims.
First claim: ∀α ∈ Fγ[¬¬(α ∼V γ)].
The proof is as follows. Let α in Fγ be given. Distinguish two cases.
Case (1). ∃n[α(n) 	= γ(n)]. Find n such that α(n) 	= γ(n) and conclude:
∀m > n[α(m) = γ(m)] and α ∼V γ.
Case (2). ¬∃n[α(n) 	= γ(n)]. Conclude: ∀n[α(n) = γ(n)] and α ∼V γ.
We thus see: if ∃n[α(n) 	= γ(n)] ∨ ¬∃n[α(n) 	= γ(n)], then α ∼V γ.
As ¬¬(∃n[α(n) 	= γ(n)] ∨ ¬∃n[α(n) 	= γ(n)]), also ¬¬(α ∼V γ).
Second claim: ¬∀α ∈ Fγ[α ∼ γ].
In order to see this, assume: ∀α ∈ Fγ[α ∼ γ], that is:
∀α ∈ F∃n∀m > n[α(m) = γ(m)]. Using Lemma 2, find p, n such that
∀α ∈ Fγ[γ p � α → ∀m > n[α(m) = γ(m)]]. Define m := max(p, n + 1)
and define α such that ∀n[α(n) 	= γ(n) ↔ n = m]. Note: γ p � α and m > n
and α(m) 	= γ(m). Contradiction.
Combining our two claims, we see:
not: for all α, if ¬¬(α ∼V γ) then α ∼V γ.
Conclude: (N ,∼V ) |= ∀x¬∀y[¬¬(x = y) → x = y].

�
It follows from Theorem 16 that there is no relation #V on N satisfying the

requirements of an apartness relation23 with respect to ∼V :

22The term ‘stable’ has been introduced by D. Van Dantzig, who hoped to be able to reconstruct
‘classical’, non-intuitionistic mathematics within the stable part of intuitionistic mathematics, see
van Dantzig (1947).
23See Troelstra and van Dalen (1988, p. 256).
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(i) ∀α∀β[¬(α #V β) ↔ α ∼V β]
(ii) ∀α∀β[α #V β → β #V α]
(iii) ∀α∀β[α #V β → ∀γ[α #V γ ∨ γ #V β]].

The existence of an apartness #V would imply, by the first one of these require-
ments, that ∼V is a stable relation, as, for any proposition P , ¬¬¬P ↔ ¬P .

The next Theorem now is no surprise:

Theorem 17 (N ,∼V ) |= ∀x∀y[¬AP(x, y)].
Proof Let α,β be given.

Assume (N ,∼V ) |= AP[α,β], that is, ∀γ[γ �V α ∨ γ �V β].
Applying Lemma 1, find p such that

either ∀γ[αp � γ → γ �V α] or ∀γ[αp � γ → γ �V β].
The first of these two alternatives is wrong, as αp � α ∧ α ∼V α.
Conclude: ∀γ[αp � γ → γ �V β].
Define γ such that αp � γ and ∀i > p[γ(i) = β(i)].
Note: αp � γ ∧ γ ∼V β.
Contradiction.
Conclude: (N ,=V ) |= ¬AP[α,β].
We thus see: (N ,=V ) |= ∀x∀y[¬AP(x, y)]. �
Clearly, the relation defined by the formula AP in the structure (N ,∼V ) fails to

satisfy the first requirement for an apartness relation with respect to ∼V .
It follows from Theorem 17 that (N ,∼V ), while realizing Tin f , does not realize

T+
in f , see Definitions 1 and 4.

1.10 A First Vitali Variation

There are many intuitionistic versions of the classical Vitali equivalence relation.
This is obvious to someone who knows that there are many variations upon the
notion of a finite and decidable subset ofN, see Veldman (1995) and Veldman (2005,
Sect. 3).

Definition 23 We define an infinite sequence ∼0
V ,∼1

V , . . . of relations on N such
that ∼0

V = ∼V and, for each i ,

α ∼i+1
V β ↔ ∃n∀m > n[α(m) 	= β(m) → α ∼i

V β].

We also define:
α ∼ω

V β ↔ ∃i[α ∼i
V β].

Theorem 18 (i) ∀i∀n∀s ∈ ωn∀t ∈ ωn∀α∀β[s ∗ α ∼i
V t ∗ β ↔ α ∼i

V β].
(ii) ∀i∀α∀β[α ∼i

V β → α ∼i+1
V β].

(iii) ∀i∀γ¬∀α[α ∼i+1
V γ → α ∼i

V γ].
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(iv) ∀i∀ j∀α∀β∀γ[(α ∼i
V β ∧ β ∼ j

V γ) → α ∼i+ j
V γ].

(v) ∼ω
V is an equivalence relation on N .

Proof (i) One proves this easily by induction.
(ii) Obvious.
(iii) Let γ be given.

For each i , define Fγ
i := {α | ∀s ∈ [ω]i+1∃ j < i + 1[α ◦ s( j) = γ ◦ s( j)]}.

Note: for each i , Fγ
i is a spread, and Fγ

i � Fγ
i+1.

For each i , Fγ
i consists of all α that assume at most i times a value different

from the value assumed by γ. In particular, F0
γ = {γ}.

Note: for all i,m,α,β,
if m = μn[α(n) 	= γ(n)] and α = α(m + 1) ∗ β, then α ∈ Fγ

i+1 ↔ β ∈ Fγ
i .

We have two claims.
First claim: ∀i∀α ∈ Fγ

i [α ∼i
V γ].

We prove this claim by induction.
The starting point of the induction is the observation:
∀α ∈ Fγ

0 [α = γ], so ∀α ∈ Fγ
0 [α ∼0

V γ].
Now assume i is given such that ∀α ∈ Fγ

i [α ∼i
V γ].

Assume α ∈ Fγ
i+1 and ∃n[α(n) 	= γ(n)]. Find n such that α(n) 	= γ(n). Find

β such that α = α(n + 1) ∗ β, and note: β ∈ Fγ
i and thus, by the induction

hypothesis, β ∼i
V γ. Conclude, using (i): α ∼i

V γ.
We thus see:
∀α ∈ Fγ

i+1[∃n[α(n) 	= γ(n)] → α ∼i
V γ], that is: ∀α ∈ Fγ

i+1[α ∼i+1
V γ].

This completes the proof of the induction step.
Second claim: ∀i¬∀α ∈ Fγ

i+1[α ∼i
V γ].

We again use induction.
We first prove: ¬∀α ∈ Fγ

1 [α ∼V γ]. Assume ∀α ∈ Fγ
1 [α ∼V γ], that is:

∀α ∈ F1∃n∀m > n[α(m) = γ(m)].
Note: γ ∈ Fγ

1 and F1
γ is a spread.

Using Lemma 2, find p, n such that
∀α ∈ F1[γ p � α → ∀m > n[α(m) = γ(m)].
Definem := max(n + 1, p) and defineα such that ∀n[α(n) = γ(n) ↔ n 	= m].
Note: α ∈ F1 and γ p � α and α(m) 	= γ(m) and m > n. Contradiction.
Conclude: ¬∀α ∈ Fγ

1 [α ∼V γ].
Now let i be given such that ¬∀α ∈ Fγ

i+1[α ∼i
V γ].

We want to prove: ¬∀α ∈ Fγ
i+2[α ∼i+1

V γ].
Assume: ∀α ∈ Fγ

i+2[α ∼i+1
V γ], that is:

∀α ∈ Fγ
i+2∃n∀m > n[α(m) 	= γ(m) → α ∼i+1

V γ]. Using Lemma 2, find p, n
such that ∀α ∈ Fγ

i+2[(γ p � α ∧ m > n ∧ α(m) 	= γ(m)) → α ∼i
V γ].

Define m := max(n + 1, p). Let β in Fγ
i+1 be given. Define α such that m =

μn[α(n) 	= γ(n)] and ∀n > m[α(n) = β(n)]. Note: α ∈ Fγ
i+2

and α(m) 	= γ(m) and m > n, so α ∼i
V γ, and, therefore, by (i), β ∼i

V γ. We
thus see: ∀β ∈ Fγ

i+1[β ∼i
V γ] and, by the induction hypothesis, obtain a contra-

diction.
This completes the proof of the induction step.
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Taking our first and second claim together, we obtain the conclusion:
∀γ∀i¬∀α[α ∼i+1

V γ → α ∼i
V γ].

(iv) We have to prove:
for all i , for all j , ∀α∀β∀γ[(α ∼i

V β ∧ β ∼ j
V γ) → α ∼i+ j

V γ].
We use induction on i + j and distinguish four cases.
Case (1): i = j = 0. Assume α ∼0

V β and β ∼0
V γ. Find n, p such that

∀m > n[α(m) = β(m)] and ∀m > p[β(m) = γ(m)]. Define q := max(n, p)
and note: ∀m > q[α(m) = γ(m)]. Conclude: α ∼0

V γ.
Case (2): i = 0 and j > 0. Assume α ∼0

V β and β ∼ j
V γ. Find n, p such that

∀m > n[α(m) = β(m)] and ∀m > p[β(m) 	= γ(m) → β ∼ j−1
V γ].

Define q := max(n, p).
Assume m > q and note: if α(m) 	= γ(m), then β(m) 	= γ(m) and β ∼ j−1

V γ.
Using the induction hypothesis, conclude: α ∼ j−1

V γ.
We thus see: ∀m > q[α(m) 	= γ(m) → α ∼ j−1

V γ], that is: α ∼ j
V γ.

Case (3): i > 0 and j = 0. Assume α ∼i
V β and β ∼0

V γ. Find n, p such that
∀m > n[α(m) 	= β(m) → α ∼i−1

V β] and ∀m > p[β(m) = γ(m)].
Define q := max(n, p).
Assume m > q and note: if α(m) 	= γ(m), then α(m) 	= β(m) and α ∼i−1

V β.
Using the induction hypothesis, conclude: α ∼i−1

V γ.
We thus see: ∀m > q[α(m) 	= γ(m) → α ∼i−1

V γ], that is: α ∼i
V γ.

Case (4): i > 0 and j > 0. Assume α ∼i
V β and β ∼ j

V γ. Find n, p such that
∀m > n[α(m) 	= β(m) → α ∼i−1

V β] and
∀m > p[β(m) 	= γ(m) → β ∼ j−1

V γ]. Define q := max(n, p).
Assume m > q and α(m) 	= γ(m). Then either: α(m) 	= β(m) and α ∼i−1 β,
and, by the induction hypothesis, α ∼i+ j−1

V γ, or: β(m) 	= γ(m) and β ∼ j−1 γ
and, by the induction hypothesis, α ∼i+ j−1 γ.
We thus see: ∀m > q[α(m) 	= γ(m) → α ∼i+ j−1 γ]. Conclude: α ∼i+ j γ.

(v) is an easy consequence of (iv).

The next Theorem shows that the structures (N ,∼V ) and (N ,∼ω
V ) have a property

in common.

Theorem 19 (∼ω
V is not stable)

(N ,∼ω
V ) |= ∀x¬∀y[¬¬(x = y) → x = y].

Proof Let γ be given.
We repeat a definition we gave in the proof of Theorem 18 (iii).
For each i , Fγ

i := {α | ∀s ∈ [ω]i+1∃ j < i + 1[α ◦ s( j) = γ ◦ s( j)]}.
In the proof of Theorem 18 (iii), we saw: ∀i∀α ∈ Fγ

i [α ∼i
V γ].

Conclude: ∀i∀α ∈ Fγ
i [α ∼ω

V γ].
We now define: Fγ

ω := {α | ∀i[i = μn[α(n) 	= γ(n)] → α ∈ Fi+1]}.
Like each Fγ

i , Fγ
ω is a spread, and γ ∈ Fγ

ω .
We have two claims.
First claim: ∀α ∈ Fγ

ω [¬¬(α ∼ω
V γ)].

The argument is as follows. Let α in Fγ
ω be given and distinguish two cases.
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Case (1): ¬∃n[α(n) 	= γ(n)]. Then α = γ and α ∼ω
V γ.

Case (2): ∃n[α(n) 	= γ(n)]. Find i := μn[α(n) 	= γ(n)].
Note: α ∈ Fγ

i+1 and α ∼ω
V γ.

As ¬¬(∃n[α(n) 	= γ(n)] ∨ ¬∃n[α(n) 	= γ(n)]), also ¬¬(α ∼ω
V γ).

Second claim: ¬∀α ∈ Fγ
ω [α ∼ω

V γ].
In order to see this, assume: ∀α ∈ Fγ

ω [α ∼ω
V γ], that is: ∀α ∈ Fω∃i[α ∼i

V γ].
Using Lemma 2, find p, i such that ∀α ∈ Fγ

ω [γ p � α → α ∼i
V γ].

Define q := max(p, i + 1). Let α in Fγ
q be given. Define β such that

∀n < q[β(n) = γ(n)] and β(q) 	= γ(q) and ∀n > q[β(n) = α(n)].
Note: β ∈ Fq+1 and q = μn[β(n) 	= γ(n)], and, therefore, β ∈ Fγ

ω .
As γq � β, we conclude: β ∼i

V γ.
As β ∼0

V α, also α ∼i
V γ.

We thus see: ∀α ∈ Fq [α ∼i
V γ].

As q > i , this contradicts the Second claim in the proof of Theorem 18 (iii).
Taking our two claims together, we conclude:
∀γ¬∀α ∈ Fγ

ω [¬¬(α ∼ω
V γ) → α ∼ω

V γ].
Conclude: (N ,∼ω

V ) |= ∀x¬∀y[¬¬(x = y) → x = y]. �
We did not succeed in finding a sentence ψ such that (N ,∼V ) |= ψ and

(N ,∼ω
V ) |= ¬ψ.

1.11 More and More Vitali Relations

In Veldman (1995), Veldman (1999) and Veldman (2005, Sect. 3), one studies the set

Fin := {α | α ∼V 0} = {α | ∃n∀m > n[α(m) = 0]}.

For each α, α ∈ Fin if and only if Dα := {m | α(m) 	= 0} is a finite subset of N.
For each i , the set {α | α ∼i

V 0} is called, in Veldman (1999) and Veldman (2005),
the i-th perhapsive extension of the set Fin. It is shown, in Veldman (1995), Veldman
(1999) and Veldman (2005), that the process of building perhapsive extensions of
Fin can be carried on into the transfinite.

In a similar way, the Vitali equivalence relation ∼V admits of transfinitely many
extensions.

The relation ∼ω
V is only a first extension of ∼V . Let us consider a second one.

Recall: ∀α∀β[α ∼ω
V↔ i[α ∼i

V β]].
Definition 24 We define an infinite sequence ∼ω+0

V =∼ω
V ,∼ω+1

V ,∼ω+2
V , . . . of rela-

tions on N , such that, for each i > 0,

α ∼ω+i+1
V β ↔ ∃n∀m > n[α(m) 	= β(m) → α ∼ω+i

V β].

We also define:
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α ∼ω+ω
V β ↔ ∃i[α ∼ω+i

V β].

One may prove analogues of Theorems 18 and 19 and conclude:
∼ω+ω

V is an equivalence relation onN , properly extending ∼ω
V , that, like ∼V and

∼ω
V , is not stable in the sense of Theorem 19.
One may continue and define ∼ω+ω+ω

V , and ∼ω+ω+ω+ω
V and so on.

The process of building such extensions leads further into the transfinite, as fol-
lows.

Definition 25 Let R be a binary relation on N .
We define a binary relation R+ on N by:

αR+β ↔ ∃n∀m > n[α(m) 	= β(m) → αRβ].

We let E be the least class of binary relations on N such that

(i) the Vitali equivalence relation ∼V belongs to E , and,
(ii) for every R in E , also R+ ∈ E , and,
(iii) for every infinite sequence R0, R1, . . . of elements of E , also

⋃
i Ri ∈ E .

The elements of E are the extensions of the Vitali equivalence relation.

Note that <ω
V and <ω+ω

V are in E .
In general, a relation R in E is not transitive. One may prove, for instance, that

the relation <1
V , while belonging to E , is not transitive.

The next Theorem shows that E contains many transitive relations.

Theorem 20 (E contains many transitive relations)

(i) ∼V is transitive.
(ii) Given any transitive R in E , there exists a transitive T in E such that R+ ⊆ T .
(iii) Given any infinite and increasing sequence R0 ⊆ R1 ⊆ . . . of transitive relations

in E , also
⋃

i Ri is a transitive relation in E .

Proof (i) Obvious.
(ii) We take our inspiration from Theorem 18 (iv) and (v).

Let a transitive R in E be given.
Define an infinite sequence R0, R1, . . . of elements of E such that R0 = R and,
for each i , Ri+1 = (Ri )+.
One may prove: for all i , for all j , ∀α∀β∀γ[(αRiβ ∧ βRiγ) → αRi+ jγ], as
it is done for the special case R =∼V in the proof of Theorem 18 (iv).
Define T := ⋃

i R
i and note: T ∈ E , R+ ⊆ T and T is transitive.

(iii) Note: for every increasing sequence R0 ⊆ R1 ⊆ . . . of transitive relations onN ,
also

⋃
i Ri is transitive.

Theorem 20 will gain significance after Corollary 3, which shows that, for every
R in E , R ⊆ R+ and ¬(R+ ⊆ R).

We did not succeed in proving that every R in E extends to a transitive T in E .
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Definition 26 A binary relation R on N is shift-invariant if and only if
∀α∀β[αRβ ↔ (α ◦ S)R(β ◦ S)].
Lemma 7 Every R in E is shift-invariant.

Proof The proof is a straightforward exercise in induction on E . Note:
(I) ∼V is shift-invariant.
(II) For every binary relation R onN , if R is shift-invariant, then R+ is shift-invariant.
(III) For every infinite sequence R0, R1, . . . of binary relations on N , if each Rn is

shift-invariant, then
⋃

i Ri is shift-invariant.
Conclude: every R in E is shift-invariant. �

Definition 27 We let E∗ be the least class of binary relations on N such that

(i) the Vitali equivalence relation ∼V belongs to E∗, and
(ii) for every infinite sequence R0, R1, . . . of elements of E∗, also (

⋃
i Ri )

+ ∈ E∗.

Lemma 8 E∗ ⊆ E and, for all R in E , there exists T in E∗ such that R ⊆ T .

Proof The proofs of the two statements are straightforward, by induction on E∗ and
E , respectively. �
Theorem 21 For each R in E∗, R ⊆ R+ and ¬(R+ ⊆ R).

Proof For each R in E , we define FinR := {α | αR0}.24
We prove for each R in E∗ there exists a fan F such that

F ⊆ FinR+ and ¬(F ⊆ FinR).
We do so by induction on E∗.
(I) Define F := {α | ∀m∀n[(α(m) 	= 0 ∧ α(n) 	= 0) → m = n]}.
Note that F is a fan.
For eachα inF , for each n, ifα(n) 	= 0 then:∀m > n[α(m) = 0] andα ∈ Fin∼V .

Conclude: for each α ∈ F , if ∃n[α(n) 	= 0], then α ∈ Fin∼V , that is: α ∈ Fin(∼V )+ .
Conclude: F ⊆ Fin(∼V )+ .

NowassumeF ⊆ Fin∼V , that is:∀α ∈ F∃n∀m > n[α(m) = 0].UsingLemma2,
find p, n such that ∀α ∈ F[0p � α → ∀m > n[α(m) = 0]].
Define q := max(p, n + 1) and consider α := 0q ∗ 〈1〉 ∗ 0. Contradiction.

Conclude: ¬(F ⊆ Fin∼V ).
(II) Let R0, R1, . . . be an infinite sequence of elements of E .
Let F0,F1, . . . be an infinite sequence of fans such that,

for each n, Fn ⊆ Fin(Rn)+ and ¬(Fn ⊆ FinRn ).
Consider R := (

⋃
i Ri )

+.
Define F := {α | ∀n[n = μi[α(i) 	= 0] → ∃β ∈ Fn′ [α = α(n + 1) ∗ β]}.25
Note that F is a fan.

24In Veldman (1995), X ⊆ N is called a notion of finiteness if Fin ⊆ X ⊆ Fin¬¬. For every R in
E , FinR is a notion a finiteness.
25For each n, n = (n′, n′′), see Sect. 1.13.
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We now prove: F ⊆ FinR+ and ¬(F ⊆ FinR).
Note that, for each α ∈ F , for each n, if n = μi[α(i) 	= 0], then there exists β in

Fn′ such that α = α(n + 1) ∗ β.
As, for each n, Fn ⊆ Fin(Rn)+ ⊆ Fin⋃

i (Ri )+ , and
⋃

i (Ri )
+ ⊆ (⋃

i Ri
)+ = R

and R is shift-invariant, conclude: ∀α ∈ F[∃n[α(n) 	= 0] → α ∈ FinR], that is:
F ⊆ FinR+ .

Now assume F ⊆ FinR , that is:
∀α ∈ F∃n∀m > n[α(m) 	= 0] → ∃i[α ∈
FinRi ]]. Using Lemma 2, find p, n such that
∀α ∈ F[0p � α → ∀m > n[α(m) 	= 0 → ∃i[α ∈ FinRi ]].

Define q := max(p, n + 1) and note: ∀α ∈ F[0q ∗ 〈1〉 � α → ∃i[α ∈ Fi ]].
Using Lemma 2 again, find r, i such that ∀α ∈ F[0q ∗ 〈1〉 ∗ 0r � α → α ∈ Fi ].
Find n ≥ q + r + 1 such that n′ = i and define t := n − (q + 1).
Note: t ≥ r and conclude: ∀β ∈ Fi [0q ∗ 〈1〉 ∗ 0t ∗ 〈1〉 ∗ β ∈ FinRi ].
As Ri is shift-invariant, conclude: Fi ⊆ FinRi .
Contradiction, as ¬(Fi ⊆ FinRi ).
Conclude: ¬(F ⊆ FinR). �

Corollary 3 For each R in E , R ⊆ R+ and ¬(R+ ⊆ R).

Proof Assume we find R in E such that R = R+.
Conclude, by induction on E : for all U in E , U ⊆ R.
Using Lemma 8, find T in E∗ such that R ⊆ T .
By Theorem 21, T ⊆ T+ and ¬(T+ ⊆ T ).
On the other hand, T+ ⊆ R ⊆ T .
Contradiction. �

Definition 28 We define binary relations ∼¬¬
V and ∼almost

V on N , as follows.
For all α,β, α ∼¬¬

V β ↔ ¬¬∃n∀m > n[α(n) = β(n)] ↔ ¬¬(α ∼V β), and
α ∼almost

V β ↔ ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = β ◦ ζ(n)].
α ∼almost

V β if and only if the set {n | α(n) 	= β(n)} is almost∗-finite in the sense
used in Veldman (2005, Section 0.8.2).

The following axiom is a form of Brouwer’s famous Thesis on bars in N , see
Veldman (2006).

Axiom 4 (The Principle of Bar Induction)
For all B,C ⊆ N, if

∀α∃n[αn ∈ B] and B ⊆ C and ∀s[s ∈ C ↔ ∀n[s ∗ 〈n〉 ∈ C]], then 〈 〉 ∈ C ,
or, equivalently,
for all B,C ⊆ [ω]<ω, if ∀ζ ∈ [ω]ω∃n[ζn ∈ B] and B ⊆ C and

∀s ∈ [ω]<ω[s ∈ C ↔ ∀n[s ∗ 〈n〉 ∈ [ω]<ω → s ∗ 〈n〉 ∈ C]], then 〈 〉 ∈ C .

Theorem 22 (i) ∼¬¬
V and ∼almost

V are equivalence relations on N .
(ii) For all R in E , ∼V ⊆ R ⊆ ∼¬¬

V .
(iii) For all R in E , R ⊆ ∼almost

V .
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(iv) ∀α∀β[α ∼almost
V β → ∃R ∈ E[αR β].

(v) ∀α∀β[α ∼almost
V β → α ∼¬¬

V β].
Proof (i) One easily proves that ∼¬¬

V is an equivalence relation. One needs the fact
that, for all propositions P, Q, (¬¬P ∧ ¬¬Q) → ¬¬(P ∧ Q).

We prove that ∼almost
V is a transitive relation.

Let α,β, γ be given such that α ∼almost
V β and β ∼almost

V γ.
Let ζ in [ω]ω be given. Find η in [ω]ω such that ∀n[α ◦ ζ ◦ η(n) = β ◦ ζ ◦ η(n)].

Find p such that β ◦ ζ ◦ η(p) = γ ◦ ζ ◦ η(p).
Define n := η(p) and note: α ◦ ζ(n) = γ ◦ ζ(n).

We thus see: ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = γ ◦ ζ(n)], that is: α ∼almost
V γ.

(ii) The proof is by (transfinite) induction on E . We only prove: for all R in E ,
R ⊆ ∼¬¬

V as the statement: for all R in E , ∼V ⊆ R is very easy to prove.
(I) Our starting point is the trivial observation: ∀α∀β[α ∼V β → ¬¬(α ∼V β)].
(II) Now let R in E be given such that ∀α∀β[αRβ → ¬¬(α ∼V β)].
We have to prove: ∀α∀β[αR+β → ¬¬(α ∼V β)].
We do so as follows.
Let α,β be given such that αR+β.

Find n such that ∀m > n[α(m) 	= β(m) → αRβ] and consider two special cases.
Case (1): ∃m > n[α(m) 	= β(m). Then αR β, and, therefore: ¬¬(α ∼V β).
Case (2): ¬∃m > n[α(m) 	= β(m). Then ∀m > n[α(m) = β(m)] and α ∼V β.
In both cases, we find: ¬¬(α ∼V β).
Conclude26: ¬¬(α ∼V β).
(III) Now let R0, R1, . . . be an infinite sequence of elements of E such that, for

all n, ∀α∀β[αRnβ → ¬¬(α ∼V β)].
Define R := ⋃

n Rn and note: ∀α∀β[αRβ → ¬¬(α ∼V β)].
(iii) The proof is by (transfinite) induction on E .
(I) Our starting point is the observation: ∀α∀β[a ∼0

V β → α ∼almost
V β].

We prove this as follows:
Let α,β be given such that α ∼0

V β. Find n such that ∀m > n[α(m) = β(m)].
Note: ∀ζ ∈ [ω]ω][ζ(n + 1) > n ∧ α ◦ ζ(n + 1) = β ◦ ζ(n + 1)].
Conclude: α ∼almost

V β.
(II) Now let R in E be given such that ∀α∀β[αRβ → α ∼almost

V β].
We have to prove: ∀α∀β[aR+β → α ∼almost

V β].
We do so as follows.
Let α,β be given such that αR+β.

Find n such that ∀m > n[α(m) 	= β(m) → αRβ]. Let ζ in [ω]ω be given. Consider
ζ(n + 1) and note ζ(n + 1) > n. There now are two cases.

Either α ◦ ζ(n + 1) = β ◦ ζ(n + 1) or α ◦ ζ(n + 1) 	= β ◦ ζ(n + 1).
In the first case we are done, and in the second case we conclude αRβ, and, using

the induction hypothesis, find p such that α ◦ ζ(p) = β ◦ ζ(p).
In both cases we conclude: ∃q[α ◦ ζ(q) = β ◦ ζ(q)].
We thus see: ∀ζ ∈ [ω]ω∃q[α ◦ ζ(q) = β ◦ ζ(q)], that is α ∼almost

V β.

26using the scheme: if P → Q and ¬P → Q, then ¬¬Q.
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Clearly then: ∀α∀β[[αR+β → α ∼almost
V β].

(III) Now let R0, R1, . . . be an infinite sequence of elements of E such that, for
all n, ∀α∀β[αRnβ → α ∼almost

V β].
Define R := ⋃

n Rn and note: ∀α∀β[αRβ → α ∼almost
V β].

(iv) Let α,β be given such that α ∼almost β, that is:
∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = β ◦ ζ(n)].
Using Axiom 4, we shall prove: there exists R in E such that αRβ.

Define B := ⋃
k{s ∈ [ω]k+1 | α ◦ s(k) = β ◦ s(k)} and note: B is a bar in [ω]ω,

that is: ∀ζ ∈ [ω]ω∃n[ζn ∈ B].
Define C := ⋃

k{s ∈ [ω]k | ∃n < k[α ◦ s(n) = β ◦ s(n)] ∨ ∃R ∈ E[αRβ]}.
Note: C = ⋃

k{s ∈ [ω]k | ∀n < k[α ◦ s(n) 	= β ◦ s(n)] → ∃R ∈ E[αRβ]}.
Note: B ⊆ C and: C is monotone, that is:

∀s ∈ [ω]<ω[s ∈ C → ∀n[s ∗ 〈n〉 ∈ [ω]<ω → s ∗ 〈n〉 ∈ C]].
We still have to prove that C is what one calls inductive or hereditary.
Let s in [ω]<ω be given such that ∀n[s ∗ 〈n〉 ∈ [ω]<ω → s ∗ 〈n〉 ∈ C].

We want to prove: s ∈ C .
Find k such that s ∈ [ω]k . In case ∃n < k[α ◦ s(n) = β ◦ s(n)], s ∈ C and we are

done, so we assume: ∀n < k[α ◦ s(n) 	= β ◦ s(n)].
Find a sequence27 R0, R1, . . . of elements of E such that, for each n,

if s ∗ 〈n〉 ∈ [ω]ω and α(n) 	= β(n), then αRnβ.
Define R := (

⋃
i Ri )

+ and note: R ∈ E .
We claim: αRβ.
We establish this claim as follows.
Define p such that, if k = 0, then p := 0 and, if k > 0, then p := s(k − 1) + 1.
Assume we find n ≥ p such that α(n) 	= β(n).
Note: s ∗ 〈n〉 ∈ [ω]k+1 and ∀i < k + 1[α ◦ (s ∗ 〈n〉)(i) 	= β ◦ (s ∗ 〈n〉)(i)] and

s ∗ 〈n〉 ∈ C . Conclude: αRnβ and α(
⋃

i Ri )β.
We thus see: ∀n ≥ p[α(n) 	= β(n) → α(

⋃
i Ri )β].

Conclude: α(
⋃

i Ri )
+β, that is: αRβ, and, therefore: s ∈ C .

We thus see that C is inductive.
Using Axiom 4, we conclude: 〈 〉 ∈ C , that is: ∃R ∈ E[αRβ].
(v) Let α,β be given such that α ∼almost β, that is:

∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = β ◦ ζ(n)].
Using Axiom 4, we prove: ¬¬∃p∀n > p[α(n) = β(n)].

Define B := ⋃
k{s ∈ [ω]k+1 | α ◦ s(k) = β ◦ s(k)} and note: B is a bar in [ω]ω,

that is: ∀ζ ∈ [ω]ω∃n[ζn ∈ B]. Define
C := ⋃

k{s ∈ [ω]k | ∃n < k[α ◦ s(n) = β ◦ s(n)] ∨ ¬¬∃p∀n > p[α(n) = β(n)]}.
Note: C = ⋃

k{s ∈ [ω]k | ∀n < k[α ◦ s(n) 	= β ◦ s(n)] → ¬¬∃p∀n > p[α(n) = β(n)]}.
Note: B ⊆ C and C is monotone, that is:

∀s ∈ [ω]<ω[s ∈ C → ∀n[s ∗ 〈n〉 ∈ [ω]<ω → s ∗ 〈n〉 ∈ C]].
We still have to prove that C is inductive.

27This application of countable choice may be reduced to Axiom 3. One may define B ⊆ N and a
coding mapping α 
→ Rα such that E = {Rα | α ∈ B}.
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Let s in [ω]<ω be given such that ∀n[s ∗ 〈n〉 ∈ [ω]<ω → s ∗ 〈n〉 ∈ C]].
We want to prove: s ∈ C .

Find k such that s ∈ [ω]k . In case ∃n < k[α ◦ s(n) = β ◦ s(n)], s ∈ C , and we
are done, so we assume ∀n < k[α ◦ s(n) 	= β ◦ s(n)].

Define q such that q := 0 if k = 0 and q := s(k − 1) if k > 0.
Consider two special cases:
Case (1): ∃n > q[α(n) 	= β(n)].

Find suchn, note: s ∗ 〈n〉 ∈ [ω]ω and∀i < k + 1[α ◦ (s ∗ 〈n〉)(i) 	= β ◦ (s ∗ 〈n〉)(i)]
and s ∗ 〈n〉 ∈ C , and conclude: ¬¬∃p∀n > p[α(n) = β(n)].

Case (2): ¬∃n > q[α(n) 	= β(n)], and, therefore, ∀n > q[α(n) = β(n)].
In both cases, we find: ¬¬∃p∀n > p[α(n) = β(n)].
Conclude28: ¬¬∃p∀n > p[α(n) = β(n)], and: s ∈ C .
We thus see that C is inductive.
Using Axiom 4, we conclude: 〈 〉 ∈ C , and, therefore,
¬¬∃p∀n > p[α(n) = β(n)], that is: ¬¬(α ∼V β). �

Corollary 4 (i) (N ,∼¬¬
V ) |= ∀x∀y[¬¬(x = y) → x = y].

(ii) For each R in E , (N , R) |= ∀x¬∀y[¬¬(x = y) → x = y].
Proof (i) Obvious, as, for any proposition P , ¬¬¬¬P ↔ ¬¬P .
(ii) Assume R ∈ E .

We first prove: (N , R) |= ¬∀x∀y[¬¬(x = y) → x = y].
Assume ∀α∀β[¬¬(αRβ) → αRβ].
Note: ∀α∀β[α ∼V β → αRβ] and, therefore: ∀α∀β[¬¬(α ∼V β) → ¬¬(αRβ)].
Conclude: ∼¬¬

V ⊆ R.
By Theorem 22 (ii), R+ ⊆∼¬¬

V , so R+ ⊆ R. This contradicts Corollary 3.
The stronger statement announced in the Theorem may be proven in a similar
way. Inspection of he proof of Theorem 22 enables one to conclude:
(N , R) |= ¬∀y[¬¬(x = y) → x = y][0].
One easily generalizes this conclusion to:
for each α, (N , R) |= ¬∀y[¬¬(x = y) → x = y][α].
Conclude: (N , R) |= ∀x¬∀y[¬¬(x = y) → x = y]. �

Markov’s Principle has been mentioned in Sect. 1.4. Markov’s Principle is not
accepted in intuitionistic mathematics, but the following observation still is of inter-
est.

Corollary 5 The following are equivalent.

(i) Markov’s Principle: ∀α[¬¬∃n[α(n) = 0] → ∃n[α(n) = 0]].
(ii) ∼¬¬

V ⊆ ∼almost
V .

(iii) ∼almost
V is stable.

28Using the scheme: If P → Q and ¬P → Q, then ¬¬Q.
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Proof (i) ⇒ (ii). Assume ¬¬(α ∼V β), that is ¬¬∃n∀m > n[α(m) = β(m)].
Let ζ ∈ [ω]ω be given.
Assume: ¬∃n[α ◦ ζ(n) = β ◦ ζ(n)].
Then ∀n[ζ(n + 1) > n ∧ α ◦ ζ(n) 	= β ◦ ζ(n)], so ∀n∃m > n[α(m) 	= β(m)].

Contradiction.
Conclude: ¬¬∃n[α ◦ ζ(n) = β ◦ ζ(n)] and, by Markov’s Principle,

∃n[α ◦ ζ(n) = β ◦ ζ(n)].
We thus see ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = β ◦ ζ(n)], that is: α ∼almost

V β.
(ii) ⇒ (iii). By Theorem 22 (v), ∼almost

V ⊆ ∼¬¬
V . Therefore: (∼almost

V )¬¬ ⊆ ∼¬¬
V .

Using (ii), we conclude: (∼almost
V )¬¬ ⊆ ∼almost

V , that is: ∼almost
V is stable.

(iii) ⇒ (i). Let α be given such that ¬¬∃n[α(n) 	= 0].
Define β such that ∀m[β(m) = 0 ↔ ∃n ≤ m[α(n) = 0]].
Note: ¬¬(β ∼V 0) and, therefore: ¬¬(β ∼almost

V 0).
Conclude, using (iii), β ∼almost

V 0.
Define ζ such that ∀n[ζ(n) = n].
Find m such that β ◦ ζ(m) = β(m) = 0 and, therefore, ∃n ≤ m[α(n) = 0].
We thus see: ∀α[¬¬∃n[α(n) = 0] → ∃n[α(n) = 0]], that is: Markov’s

Principle. �

1.12 Equality and Equivalence

We did not succeed in finding a sentence ψ such that (N ,∼V ) |= ψ and
(N ,∼ω

V ) |= ¬ψ. We now want to compare the structures (N ,=,∼V ) and
(N ,=,∼ω

V ). We need a first order language with two binary relation symbols:= and
∼. The symbol = will denote the equality relation and the symbol ∼ will denote, in
the first structure, the relation ∼V and, in the second structure, the relation ∼ω

V . The
reader hopefully will not be confused by the fact that, in the earlier sections, where
we used the first order language with a single binary relation symbol, =, the symbol
= denoted the relations ∼V and ∼ω

V .
The next Theorem makes us see that equality is decidable on each equivalence

class of ∼V whereas, on each equivalence class of ∼ω
V , it is not decidable.

Theorem 23 (i) (N ,=,∼V ) |= ∀x∀y[x ∼ y → (x = y ∨ ¬(x = y))].
(ii) (N ,=,∼ω

V ) |= ∀x¬∀y[x ∼ y → (x = y ∨ ¬(x = y))].
Proof (i) Let γ,α be given such that γ ∼V α.

Find n such that ∀m > n[γ(m) = α(m)] and distinguish two cases.
Either γ(m + 1) = α(m + 1) and γ = α, or γ(m + 1) 	= α(m + 1) and ¬(γ =
α).
Conclude: ∀γ∀α[γ ∼V α → (γ = α ∨ ¬(γ = α))].

(ii) Let γ be given.
Consider Fγ

1 := {α | ∀m∀n[(α(m) 	= γ(m) ∧ α(n) 	= γ(n)) → m = n]}.
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Note: Fγ
1 is a spread. Also: ∀α ∈ Fγ

1 [γ ∼1
V α] 29 and, therefore,

∀α ∈ Fγ
1 [γ ∼ω

V α]. Assume ∀α ∈ Fγ
1 [γ = α ∨ ¬(γ = α)]. Applying Lemma

1, find p such that either ∀α ∈ Fγ
1 [γ p � α → γ = α]or ∀α[γ p � α → ¬(γ =

α)], and note that both alternatives are false.
Conclude: ∀γ¬∀α[γ ∼ω

V α ∨ ¬(γ = α)].
�

Lemma 9 (∼¬¬
V )+ ⊆ ∼¬¬

V and (∼almost
V )+ ⊆ ∼almost

V .30

Proof Assume α(∼¬¬
V )+β.

Find n such that ∀m > n[α(m) 	= β(m) → α ∼¬¬
V β].

Note: if ∃m > n[α(m) 	= β(m)], thenα ∼¬¬
V β, and if¬∃m > n[α(m) 	= β(m)],

then ∀m > n[α(m) = β(m)] and α ∼V β and also α ∼¬¬
V β.

Conclude: ¬¬(α ∼¬¬
V β), and, therefore, α ∼¬¬

V β.
Assume α(∼almost

V )+β.
Find n such that ∀m > n[α(m) 	= β(m) → α ∼almost

V β].
Let ζ in [ω]ω be given. Note: ζ(n + 1) > n.
Either: α ◦ ζ(n + 1) = β ◦ ζ(n + 1)
or: α ∼almost

V β and ∃p[α ◦ ζ(p) = β ◦ ζ(p)].
We thus see: ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = β ◦ ζ(n)], that is: α ∼almost

V β. �
Lemma 10 For every shift-invariant binary relation R on N ,

R+ ⊆ R if and only if (N ,=, R) |= ∀x∀y[(AP(x, y) → x ∼ y
) → x ∼ y].

Proof First assume R+ ⊆ R.
Assume α # β → αRβ.
Then: ∀m > 0[α(m) 	= β(m) → αRβ], so: αR+β, and, therefore: αRβ.
We thus see: (N ,=, R) |= ∀x∀y[(AP(x, y) → x ∼ y

) → x ∼ y].
Now assume (N ,=, R) |= ∀x∀y[(AP(x, y) → x ∼ y

) → x ∼ y].
Assume αR+β. Find n such that ∀m > n[α(m) 	= β(m) → αRβ].
Define γ, δ such that ∀m[γ(m) = α(n + 1 + m) ∧ δ(m) = β(n + 1 + m)].
Note: γ # δ → αRβ, and, as R is shift-invariant, also: γ # δ → γRδ, and, there-

fore: γRδ, and also: αRβ.
We thus see: R+ ⊆ R. �

Corollary 6 (i) (N ,=,∼¬¬
V ) |= ∀x∀y[(AP(x, y) → x ∼ y

) → x ∼ y].
(ii) (N ,=,∼almost

V ) |= ∀x∀y[(AP(x, y) → x ∼ y
) → x ∼ y].

(iii) For each R in E , (N ,=, R) |= ¬∀x∀y[(AP(x, y) → x ∼ y
) → x ∼ y].

Proof Use Lemmas 9 and 10 and Corollary 3. �

29See the proof of Theorem 18 (iii).
30Following the terminology in Veldman (1995), a binary relation R on N should be called per-
hapsive if R+ ⊆ R.
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1.13 Notations and Conventions

We use m, n, . . . as variables over the set ω = N of the natural numbers.
For every P ⊆ N such that ∀n[P(n) ∨ ¬P(n)], for all m,
m = μn[P(n)] ↔ (

P(m) ∧ ∀n < m[¬P(n)]).
(m, n) 
→ J (m, n) is a one-to-one surjective mapping from ω × ω onto ω.
K , L : ω → ω are its inverse functions, so ∀n[J(

K (n), L(n)
) = n].

For each n, n′ := K (n) and n′′ := L(n).
(n0, n1, . . . , nk−1) 
→ 〈n0, n1, . . . , nk−1〉 is a one-to-one surjective mapping from

the set of finite sequences of natural numbers to the set of the natural numbers.
〈n0, n1, . . . , nk−1〉 is the code of the finite sequence (n0, n1, . . . , nk−1).
s 
→ length(s) is is the function that, for each s, gives the length of the finite

sequence coded by s.
s, n 
→ s(n) is the function that, for all s, n, gives the value of the finite sequence

coded by s at n. If n ≥ length(s), then s(n) = 0.
For all s, k, if length(s) = k, then s = 〈s(0), s(1), . . . s(k − 1)〉.
0 = 〈 〉 codes the empty sequence of natural numbers,

the unique finite sequence s such that length(s) = 0.
ωk := {s | length(s) = k}.
[ω]k := {s ∈ ωk | ∀i[i + 1 < k → s(i) < s(i + 1)]}.
[ω]<ω := ⋃

k[ω]k .
For all s, k, t, l, if s ∈ ωk and t ∈ ωl , then s ∗ t is the element u of ωk+l such that

∀i < k[u(i) = s(i)] and ∀ j < l[u(k + j) = t ( j)].
s � t ↔ ∃u[s ∗ u = t].
s � t ↔ (s � t ∧ s 	= t).
We use α,β, . . . as variables over Baire space, the set ωω := N of functions from

N to N.
(α, n) 
→ α(n) is the function that associates to all α, n, the value of α at n.
For all α,β, α ◦ β is the element γ of N such that ∀n[γ(n) = α

(
β(n)

)].
2ω := C := {α | ∀n[α(n) < 2]} is Cantor space.
For all α, for all k, for all s in ωk , α ◦ s is the element t of ωk satisfying

∀n < k[t (k) = α
(
s(k)

)].
For each s, k, if s ∈ ωk , then, for each α, s ∗ α is the element β of N such that

∀i < k[β(i) = s(i)] and ∀i[β(k + i) = α(i)].
For each s, for each X ⊆ N , s ∗ X := {s ∗ α | α ∈ X }.
For eachα, for eachn,αn is the element ofN satisfying∀m[αn(m) = α

(
J (n,m)

)].
For each m, m ∈ N is the element of N satisfying ∀n[m(n) = m].
S is the element of N satisfying ∀n[S(n) = n + 1].
∀n[α′(n) = (

α(n)
)′ ∧ α′′(n) = (

α(n)
)′′].

αn := 〈α(0),α(1), . . . α(n − 1)〉.
s � α ↔ ∃n[αn = s].
α ⊥ β ↔ α # β ↔ ∃n[α(n) 	= β(n)].
[ω]ω := {ζ ∈ N | ∀i[ζ(i) < ζ(i + 1)]}.
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Q, the set of the rationals, may be defined as a subset of ω, with accompanying
relations =Q, <Q, ≤Q and operations +Q,−Q, ·Q.

R := {α | ∀n[α′(n) ∈ Q ∧ α′′(n) ∈ Q] ∧ ∀n[α′(n) ≤Q α′(n + 1) ≤Q

α′′(n + 1) ≤Q α′′(n)] ∧ ∀m∃n[α′′(n) −Q α′(n) <Q
1
2m ]}.

For all α,β inR,
α <R β ↔ ∃n[α′′(n) <Q β′(n)] andα =R β ↔ (¬(α <R β) ∧ ¬(β <R α)

)
.

Operations +R,−R are defined straightforwardly.
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Chapter 2
Binary Modal Companions
for Subintuitionistic Logics

Dick de Jongh and Fatemeh Shirmohammadzadeh Maleki

Abstract The weak subintuitionistic logic WF, for which no standard unary modal
companion is known, is found to have a strict implication logic as its binary modal
companion. It is also shown that for all modal logics extending the weak logic EN,
classical modal logic with necessitation, a strict implication logic exists which is
essentially equivalent to it. This logic extends a basic strict implication logic plus an
axiomU, and conversely each such logic corresponds to amodal logic extending EN.
Among other things this means that any subintuitionistic logic which has a modal
companion has a strict implication companion as well.

Keywords Subintuitionistic logic · Modal logic · Classical modal logic ·
Intermediate logic · Modal companion · Strict implication

2.1 Introduction

Subintuitionistic logics as a themewere first studied by Corsi (1987), who introduced
a basic system F. The system F, which cannot prove formulas like A → (B → A)

and A → (B → A ∧ B), has Kripke frames in which no assumption of preservation
of truth is made and which are neither reflexive nor transitive. She also introduced
Gödel-type translations of these systems into modal logic. Restall (1994) defined
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a similar system SJ (see also de Jongh and Shirmohammadzadeh Maleki (2017)).
Basic logic BPC, a much studied extension of F, had already been introduced before
by Visser (1981) in a study mainly focussed on a further extension FPC of BPC
with a provability interpretation. The systemBPC has irreflexive Kripke frames with
transitivity and preservation. A considerable amount work in the area, especially on
BPC, has been done by Ardeshir in cooperation with members of his school and
with W. Ruitenburg (see e.g. Ardeshir (1995), Ardeshir and Ruitenburg (1998)).

In our papers de Jongh and Shirmohammadzadeh Maleki (2018, 2019), Shirmo-
hammadzadeh Maleki and de Jongh (2016) we introduced a basic logic WF much
weaker than F, and we developed two types of neighborhood semantics for this logic
and its extensions. In de Jongh and Shirmohammadzadeh Maleki (2018) we dis-
cussed the strength of the various subintuitionistic logics by investigating which part
of intuitionistic logic IPC they are able to prove. A translation from IPC into BPC
discovered by Ardeshir (1999) played an important role.

Furthermore, we discovered modal companions for a number of logics extending
WFN, an extension ofWF by a rule. The logicWF did not lend itself to our treatment
because its semantics is too different from the usual neighborhood semantics for
modal logic. In the present paper we looked for a binary modal companion for WF
instead of the usual unary one. This explorationwas successful aswewill show. It also
lead us to investigate the notion of binary modal logic, its neighborhood semantics
and its relation to ordinary unary modal logic, and more specifically what we call
classical strict implication logic, for which we give a complete basic system E2

Imp.
In fact, we show that all extensions L of the weak logic EN (classical modal logic
with necessitation) have a unique counterpart logic L∗ with a strict implication. All
logics extending E2

Imp plus an axiom U are such a counterpart L∗, each is mutually
interpretable with L , shares with it the usual logical properties and functions as a
modal companion to the same subintuitionistic logics. This result exhibits which
conditional logics can be represented in ordinary unary modal logic, at least if one
restricts one’s attention to modal logics extending EN, which indeed does seem to
be a bare minimum.

2.2 Neighborhood Semantics for Modal
and Subintuitionistic Logics

In this section we will give in Sect. 2.2.1 an introduction to the usual neighborhood
semantics for modal logic followed in Sect. 2.2.2 by a quick survey of our neighbor-
hood semantics for subintuitionistic logics and a summary of the results previously
obtained by us.
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2.2.1 Neighborhood Semantics for Modal Logic

Definition 2.1 Themodal language L�(At) is the smallest set of formulas gener-
ated by the following grammar, where p ∈ At :

p | ¬A | A ∧ B | �A.

The sublanguage Lc(At) of L�(At) containing its formulas without � is the
language of (classical) propositional logic. We add to Lc(At) the symbols →, ↔, �
and ⊥ as symbols defined in the usual way.

Definition 2.2 A pair F= 〈W, N 〉 is a Neighborhood Frame of modal logic if W
is a non-empty set and N is a function from W into P(P(W )).
In aNeighborhoodModelM = 〈W, N , V 〉, V : At → P(W ) is a valuation function
on the set of propositional variables At .

Definition 2.3 Let M = 〈W, N , V 〉 be a neighborhood model and w ∈ W .
Truth of a propositional formula in a world w is defined inductively as follows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w � A,
3. M, w |= A ∧ B ⇔ M, w |= A and M, w |= B,
4. M, w |= �A ⇔ AM ∈ N (w),

where AM denotes the truth set of A.

We consider the following axiom schemas and rules.

PC Any axiomatization of propositional calculus
N ��
RE

A ↔ B

�A ↔ �B

MP
A A → B

B

Nec
A

�A
E is the smallest classical modal logic containing all instances of PC which is closed
under the rules MP and RE . The logic EN extends E by adding the axiom scheme
N , or by adding the rule Nec (Pacuit 2017).

Theorem 2.1

1. The logic E is sound and strongly complete with respect to the class of all neigh-
borhood frames (Pacuit 2017).

2. The logic EN is sound and strongly complete with respect to the class of
neighborhood frames that contain the unit, i.e. for all w ∈ W, W ∈ N (w)

(Pacuit 2017).
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2.2.2 Neighborhood Semantics for Subintuitionistic Logics

Definition 2.4 The language of intuitionistic propositional logic L(At) is the
smallest set of formulas generated by the following grammar, where p ∈ At :

p | A ∧ B | A ∨ B | A → B | ⊥

As usual we consider L(At) to be an extension of Lc(At), so we will write →
for both intuitionistic and classical implication. From the context it should be clear
which is meant. To L(At) the the symbols ¬ and ↔ are added as defined symbols
in the usual manner. Again this should not create confusion with the symbols of
classical propositional logic.

Definition 2.5 An NB-Neighborhood Frame F= 〈W, NB〉 for subintuitionistic
logic consists of a non-empty set W , and a function NB from W into P((P(W ))2)

such that:

∀w ∈ W, ∀X,Y ∈ P(W ) (X ⊆ Y ⇒ (X,Y ) ∈ NB(w)).

In an NB-Neighborhood ModelM = 〈W, NB, V 〉, V : At → P(W ) is a valuation
function on the set of propositional variables At .

Definition 2.6 Let M = 〈W, NB, V 〉 be an NB-neighborhood model.
Truth of a propositional formula in a world w is defined inductively as follows.

1. M, w � p ⇔ w ∈ V (p);
2. M, w � A ∧ B ⇔ M, w � A and M, w � B;
3. M, w � A ∨ B ⇔ M, w � A or M, w � B;
4. M, w � A → B ⇔ (

AM, BM
) ∈ NB(w);

5. M, w �⊥ .

A is valid in M, M � A, if for all w ∈ W, M, w � A, and A is valid in F, F� A if
for all M on F, M � A. We write � A if M � A for all M. Also we define � � A
iff for all M, w ∈ M, ifM, w �� then M, w � A.

Definition 2.7 WF is the logic given by the following axiom schemas and rules,

1. A → A ∨ B 2. B → A ∨ B 3. A → A
4. A ∧ B → A 5. A ∧ B → B 6. A A→B

B

7. A→B A→C
A→B∧C 8. A→C B→C

A∨B→C 9. A→B B→C
A→C

10. A
B→A 11. A↔B C↔D

(A→C)↔(B→D)
12. A B

A∧B
13. A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C) 14. ⊥→ A

� �WF A iff there is a derivation of A from� using the rules 7, 8, 9, 10, 11 only when
there are no assumptions, and the rule 6, MP, only when the derivation of A → B
contains no assumptions.
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For a discussion of the definition of � �WF A see Definition 4 of de Jongh and
Shirmohammadzadeh Maleki (2019) and its introduction.

Theorem 2.2 (Weak Deduction Theorem, Shirmohammadzadeh Maleki and de
Jongh (2016) Theorem 2.19)
A �WF B iff �WF A → B.
A1, . . . , An �WF B iff �WF A1 ∧ · · · ∧ An → B.

Theorem 2.3 The logicWF is sound and strongly complete with respect to the class
of NB-neighborhood frames.

We now define a second type of neighborhood semantics for subintuitionistic
logics,N-neighborhood frames andmodels. In fact these are exactly the same frames
and models as for modal logic, except of course for the truth definition. This may be
confusing but it enables us to compare the logics very comfortably.

Definition 2.8 F= 〈W, N 〉 is anN-Neighborhood Frame of subintuitionistic logic
if W is a non-empty set, N is a function from W into P(P(W )), and for each
w ∈ W, W ∈ N (w).
Valuation V : At → P(W ) makes M = 〈W, N , V 〉 an N-Neighborhood Model.
Truth of a propositional formula in a world w is defined inductively as follows.

1. M, w � p ⇔ w ∈ V (p);
2. M, w � A ∧ B ⇔ M, w � A and M, w � B;
3. M, w � A ∨ B ⇔ M, w � A or M, w � B;
4. M, w � A → B ⇔ {v | v � A ⇒ v � B} = AM ∪ BM ∈ N (w);
5. M, w �⊥ .

A formula A is valid in M, M � A, if for all w ∈ W, M, w � A, and A is valid in
F, F � A if for all M on F, M � A. We write � A if M� A for all M. Also we
define � � A iff for allM, w ∈M, ifM, w � � then M, w � A.

The question whether validity in NB-neighborhood frames and N-neighborhood
frames is the samewas resolved inde JonghandShirmohammadzadehMaleki (2019).
The difference resides in the rule N. To the system WF we add this rule to obtain the
logic WFN:

A → B ∨ C C → A ∨ D A ∧ C ∧ D → B A ∧ C ∧ B → D

(A → B) ↔ (C → D)
(N)

Theorem 2.4 (Weak Deduction Theorem, de Jongh and Shirmohammadzadeh
Maleki (2019) Theorem 8)
A�WFN B iff �WFN A → B.
A1, . . . , An �WFN B iff �WFN A1 ∧ · · · ∧ An → B.

Theorem 2.5 (Completeness of WFN, de Jongh and Shirmohammadzadeh Maleki
(2019) Theorem 12) The logic WFN is sound and strongly complete with respect to
the class of N-neighborhood frames.
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We consider the translation � from L(At), the language of intuitionistic proposi-
tional logic, toL�(At), the language of modal propositional logic (see Corsi (1987),
de Jongh and Shirmohammadzadeh Maleki (2018)). It is given by:

1. p� = p;
2. ⊥� = ⊥;
3. (A ∧ B)� = A� ∧ B�;
4. (A ∨ B)� = A� ∨ B�;
5. (A → B)� = �(A� → B�).

Note that in (5.) above the first → is a symbol from L whereas the second →
is a defined symbol of Lc. This need not cause confusion since from the context in
which → occurs it will always be clear in which language it occurs.

Theorem 2.6 (de Jongh and Shirmohammadzadeh Maleki (2018), Theorem 5.17)
For all formulas A,

�WFN A iff �EN A�.

As one says, EN is amodal companion of WFN. For WF the question how to pro-
vide it with a modal companion was left open in de Jongh and Shirmohammadzadeh
Maleki (2018). It is not easy to imagine a modal logic which weakens EN but leaves
N in.

2.3 A Complete Basic System for Strict Implication

In this section we define a neighborhood semantics for modal logic with a binary
operator and we introduce a basic system which is sound and complete for this
semantics. One might not consider it to be quite proper to call this basic system a
system of strict implication since it allows extensions to systems for counterfactuals
but it is the best we have come up with.

Definition 2.9 The strict implication language L⇒(At) is the smallest set of for-
mulas generated by the following grammar, where p ∈ At :

p | ¬A | A ∧ B | A ⇒ B.

As in the case the modal language the language Lc(At) is a sublanguage of
L⇒(At), andwe again have the usual defined symbols. TheNB-neighborhood frames
and models of subintuitionistic logic can be used as frames and models for strict
implication logic, again with a different truth definition.

Definition 2.10 A pair F = 〈W, NB〉 is called a Neighborhood Frame of strict
implication logic if W is a non-empty set and NB is a neighborhood function from
W into P((P(W ))2) such that
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∀w ∈ W, ∀X,Y ∈ P(W ), (X ⊆ Y ⇒ (X,Y ) ∈ NB(w)).

If we delete the final requirement on the neighborhood function we obtain a more
general semantics for binary modal logic, but in this article we focus on implication
because this is all we are interested in at this point. Generally, our results will stand
when we delete this condition. The results will then concern not EN but E.

Definition 2.11 A Neighborhood Model of strict implication logic is a tupleM =
〈W, NB, V 〉, where 〈W, NB〉 is a neighborhood frame of strict implication logic and
V : At → P(W ) a valuation function.

Definition 2.12 Let M = 〈W, NB, V 〉 be a neighborhood model for strict impli-
cation logic and w ∈ W . Truth of a propositional formula in a world w is defined
inductively as follows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w � A,
3. M, w |= A ∧ B ⇔ M, w |= A and M, w |= B,
4. M, w |= A ⇒ B ⇔ (

AM, BM
) ∈ NB(w),

where AM denotes the truth set of A.

Definition 2.13 A formula A is valid in a model M= 〈W, NB, V 〉, M |= A, if for
all w ∈ W, M, w |= A. If all models force A, we write |= A and call A valid. A
formula A is valid on a frame F = 〈W, NB〉, F |= A if A is valid in every model
based on that frame. We write � |= A, A is a valid consequence of �, if, for each
model M= 〈W, NB, V 〉 and w ∈ W , ifM, w |= �, then M, w |= A.

The definitions above mean that a model M= 〈W, NB, V 〉 will simultaneously
be a model for the subintuitionistic language and for the strict implication language.
This will enable us to compare the languages and the systems formulated in them
directly in Sect. 2.4. We will then, to avoid confusion, use different symbols for the
two notions of |=.

In this section we will be interested in the following axiom schemas and rules.

E2 A ↔ B C ↔ D

(A ⇒ C) ↔ (B ⇒ D)

Imp
A → B

A ⇒ B

Definition 2.14 E2
Imp is the smallest set of formulas containing all instances of PC

closed under the rules E2, Imp and MP . We call it Classical Strict Implication
Logic.

If one leaves out the rule Imp, then one obtains what one might call Classical
Binary Modal Logic. In fact, this logic occurs as CK in Chellas (1975). We won’t
discuss it here, but as said, basically our results will extend to that more general
case. We will now prove the completeness of E2

Imp in a rather standard way (compare
Shirmohammadzadeh Maleki and de Jongh (2016)).
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Definition 2.15 Let WE2
Imp

be the set of all E2
Imp-maximally consistent sets of for-

mulas. Given a formula A, we define the set [[A]] as follows,

[[A]] =
{
� | � ∈ WE2

Imp
, A ∈ �

}
.

Lemma 2.1 Let C and D are formulas. Then

(a) [[C ∧ D]] = [[C]] ∩ [[D]].
(b) [[C ∨ D]] = [[C]] ∪ [[D]].
(c) If [[C]] ⊆ [[D]] then � C → D.

(d) [[C]] = [[D]] iff � C ↔ D.

Proof The proofs are easy. ��
Definition 2.16 The Canonical model ME2

Imp = 〈WE2
Imp

, NBE2
Imp

, V 〉 of E2
Imp is

defined by:

1. For each � ∈ WE2
Imp

and all formulas A and B,

NBE2
Imp

(�) = {([[A]], [[B]]) | A ⇒ B ∈ �} ∪ {(X,Y ) | X ⊆ Y } .

2. If p ∈ At , then V (p) = [[p]] =
{
� | � ∈ WE2

Imp
and p ∈ �

}
.

In the completeness proof we need to be sure that, if ([[A]], [[B]]) ∈ NBE2
Imp

(�),
then A ⇒ B ∈ �.

Lemma 2.2 If NBE2
Imp

: WE2
Imp

→ P((P(WE2
Imp

))2) is a function such that for each
� ∈ WE2

Imp
, NBE2

Imp
(�)= {([[A]], [[B]]) | A ⇒ B ∈ �} ∪ {(X,Y ) | X ⊆ Y }. Then

([[A]], [[B]])∈NBE2
Imp

(�) implies A ⇒ B ∈ �.

Proof Assume ([[A]], [[B]]) ∈ NBE2
Imp

(�). This gives us two possibilities:

1. For some C , D, [[A]] = [[C]], [[B]] = [[D]], C ⇒ D ∈ �,
2. [[A]] ⊆ [[B]].

If (1), then by Lemma 2.1, we have � A ↔ C and � B ↔ D. Hence by rule
E2 we will have � (A ⇒ B) ↔ (C ⇒ D). By assumption, C ⇒ D ∈ �. Hence,
A ⇒ B ∈ �.

If (2), then by Lemma 2.1, we have � A → B. Then by rule Imp we will have
� A ⇒ B. Hence, A ⇒ B ∈ �. ��
Theorem 2.7 (Truth Lemma) For any consistent formula D, ifM is the canonical
model of E2

Imp, then DM = [[D]].
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Proof We only consider the D := A ⇒ B case, the other cases are as usual. Let
� ∈ WE2

Imp
, then,

� |= A ⇒ B ⇐⇒ (AM, BM) ∈ NBE2
Imp

(�)

(by induction hypothesis) ⇐⇒ ([[A]], [[B]]) ∈ NBE2
Imp

(�)

(by Lemma 2.2) ⇐⇒ A ⇒ B ∈ �. ��
Theorem 2.8 The classical strict implication logic E2

Imp is sound and strongly com-
plete with respect to the class of neighborhood frames.

Proof Soundness is straightforward. For strong completeness, suppose� is a consis-
tent set of the classical strict implication logic E2

Imp. By Lindenbaum’s Lemma there

is a maximal consistent set �∗ extending �. Then by Lemma 2.7, ME2
Imp , �∗ |= �,

and we have shown that each consistent set has a model. ��

2.4 Modal Companions

We consider the translation ⇒ from L, the language of intuitionistic propositional
logic, to L⇒, the language of classical strict implication logic. It is given by:

1. p⇒ := p;
2. ⊥⇒ := ⊥;
3. (A ∧ B)⇒ := A⇒ ∧ B⇒;
4. (A ∨ B)⇒ := A⇒ ∨ B⇒;
5. (A → B)⇒ := (A⇒ ⇒ B⇒).

As said abovewe can use neighborhoodmodels to interpret subintuitionistic formulas
and modal or strict implication formulas simultaneously. We distinguish these uses
by writing � for truth for subintuitionistic formulas and |= for truth for classical
strict implication formulas.

Lemma 2.3 LetM = 〈W, NB, V 〉 be a neighborhood model. Then for all w ∈ W,

M, w � A iff M, w |= A⇒.

Proof The proof is by induction on A. The atomic case holds by induction and the
conjunction and disjunction cases are easy. We only check the implication case. So
let A = C → D, then

M, w � C → D ⇐⇒ (CM, DM) ∈ NB(w)

(by induction hypothesis) ⇐⇒ ((C⇒)M, (D⇒)M) ∈ NB(w)

⇐⇒ M, w |= C⇒ ⇒ D⇒
⇐⇒ M, w |= (C → D)⇒. ��

Theorem 2.9 For all formulas A,

�WF A iff �E2
Imp

A⇒.
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Proof By Theorem 2.8 and Lemma 2.3. ��
Lemma 2.4 If �E2

Imp
A ⇒ B then �E2

Imp
A → B.

Proof Suppose that there is a modelM = 〈W, NB, V 〉 and a pointw ∈ W such that
M, w �E2

Imp
A → B. Then,M, w |=E2

Imp
A andM, w �E2

Imp
B, therefore AM

� BM.

LetF′ beF augmentedbya g such that NB(g) = {(X,Y ) | X ⊆ Y } andM′ = 〈F′, V ).
Since AM

� BM and henceM′, g �E2
Imp

A ⇒ B, we have�E2
Imp

A ⇒ B. ��
The following theorem, proved by using the Weak Deduction Theorem (2.2) and

Lemmas 2.9 and 2.4, shows that the translation works under assumptions.

Theorem 2.10 � �WF A iff �⇒ �E2
Imp

A⇒.

Proof B1, . . . , Bk �WF A ⇔ �WF B1 ∧ · · · ∧ Bk → A ⇔
�E2

Imp
(B1 ∧ · · · ∧ Bk → A)⇒ ⇔ �E2

Imp
(B⇒

1 ∧ · · · ∧ B⇒
k ⇒ A⇒) ⇔

�E2
Imp

B⇒
1 ∧ · · · ∧ B⇒

k → A⇒ ⇔ B⇒
1 , . . . , B⇒

k �E2
Imp

A⇒. ��

2.5 Translations

In this section wewill show thatE2
Imp andEN are very closely related by translations.

The first section will treat formulas, the second will extend this to logics, and in the
third we will show what happens to axiomatizations.

2.5.1 Translations Between E2
Imp and EN

Definition 2.17 The mapping ∗ from L� to L⇒ is defined by

1. (p)∗ := p,
2. (¬A)∗ := ¬A∗,
3. (A ∧ B)∗ := A∗ ∧ B∗,
4. (�A)∗ := � ⇒ A∗.

Theorem 2.11 If �EN A, then �E2
Imp

A∗.

Proof We use induction on the derivation of A. We only consider the rules Nec and
E . First rule A

�A :

1. �E2
Imp

A∗ by induction hypothesis
2. �E2

Imp
� → A∗ by 1

3. �E2
Imp

� ⇒ A∗ by 2 and rule Imp
4. �E2

Imp
(�A)∗ by 3
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Rule A↔B
�A↔�B :

1. �E2
Imp

A∗ ↔ B∗ by induction hypothesis
2. �E2

Imp
� ↔ �

3. �E2
Imp

(� ⇒ A∗) ↔ (� ⇒ B∗) by 1, 2 and rule E2

4. �E2
Imp

(�A)∗ ↔ (�B)∗ by 3

��
Definition 2.18 The mapping � from L⇒ to L� is defined by

1. (p)� := p,
2. (¬A)� := ¬A�,
3. (A ∧ B)� := A� ∧ B�,
4. (A ⇒ B)� := �(A� → B�).

Theorem 2.12 If �E2
Imp

A, then �EN A�.

Proof We use induction on the derivation of A. We only consider the rules Imp and
E2. First, rule A→B

A⇒B :

1. �EN (A → B)� by induction hypothesis
2. �EN A� → B� by 1
3. �EN �(A� → B�) by 2 and rule Nec
4. �EN (A ⇒ B)� by 3

Rule
A ↔ B C ↔ D

(A ⇒ C) ↔ (B ⇒ D)
:

1. �EN A� ↔ B� by induction hypothesis
2. �EN C� ↔ D� by induction hypothesis
3. �EN (A� → C�) ↔ (B� → D�) by 1, 2
4. �EN �(A� → C�) ↔ �(B� → D�) by 3 and rule RE
5. �EN (A ⇒ C)� ↔ (B ⇒ D)� by 4
6. �EN ((A ⇒ C) ↔ (B ⇒ D))�

��
We can combine the * and �-translations:

Lemma 2.5 �EN A ↔ A∗�.

Proof By induction on A. The atomic case holds by definition and the conjunction
and disjunction cases are trivial.

Assume A = �B, we need to show that � �B ↔ (�B)∗�. By definition, (�B)∗�

is equal to (� ⇒ B∗)�, which is equal to �(� → B∗�), which is �(B∗�). Then this
is equal to �B, by the induction hypothesis. ��
Theorem 2.13 If �E2

Imp
A∗ then �EN A.
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Proof Assume �E2
Imp

A∗, then by Lemma 2.12, �EN A∗�. Again, by Lemma 2.5, we
conclude that �EN A. ��
Corollary 2.1

1. �EN A iff �E2
Imp

A∗

2. � �EN A iff �∗ �E2
Imp

A∗.

Proof (1) By combining Theorem 2.13 with Theorem 2.11.
(2) By applying the weak deduction theorem to (1). ��

We call a translation a faithful interpretation if provability is preserved in both
directions. So, with this terminology we can say that Corollary 2.1 states that ∗ is a
faithful interpretation of EN into E2

Imp.
Contrary to this result about ∗ it is not so that � is a faithful interpretation of

E2
Imp into EN. Clearly �EN ((� ⇒ (p → q)) ↔ (p ⇒ q))�, but if we consider the

neighborhood frame F = 〈W, NB〉 with
W = {w, v}, NB(w) = {({v} , {w})} ∪ {(X, Y ) | X ⊆ Y } ,

NB(v) = {(X, Y ) | X ⊆ Y } ,

and the valuation V (p) = {v}, V (q) = {w}, then it is easy to show that w � (� ⇒
(p → q)) ↔ (p ⇒ q), that is �E2

Imp
(� ⇒ (p → q)) ↔ (p ⇒ q).

2.5.2 Translations Between Extensions of E2
ImpU and EN

To make � a faithful interpretation we have to extend E2
Imp by an axiom. Let us

introduce the axiom U: (� ⇒ (A → B)) ↔ (A ⇒ B). It characterizes the class of
frames closed under equivalence. E2

ImpU is the system E2
Imp with the axiom U.

Definition 2.19 Neighborhood frame F = 〈W, NB〉 is closed under equivalence if
for all w ∈ W , (X, Y ) ∈ NB(w) if and only if (W, X ∪ Y ) ∈ NB(w).

Lemma 2.6 The formula (� ⇒ (p → q)) ↔ (p ⇒ q) characterizes the class of
neighborhood frames F = 〈W, NB〉 satisfying closure under equivalence.
Proof Let F be closed under equivalence andM = 〈W, NB, V 〉 be any model based
on F. We have to prove for all w ∈ W , w |= (� ⇒ (p → q)) ↔ (p ⇒ q). This is
easy, because:

w |= � ⇒ (p → q) iff (W, V (p) ∪ V (q)) ∈ NB(w)

by the equivalence condition iff (V (p), V (q)) ∈ NB(w)

iff w |= p ⇒ q.

For the other direction, we use contraposition. Suppose that the class is not closed
under equivalence. Then there is a frame F andw ∈ F such that (X,Y ) ∈ NB(w) but
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(W, X ∪ Y ) /∈ NB(w). Consider the valuation V such that, V (p) = X and V (q) =
Y . Then, w |= p ⇒ q and w � � ⇒ (p → q). Therefore F � (p ⇒ q) → (� ⇒
(p → q)). Similarly to this we can show that if (W, X ∪ Y ) ∈ NB(w) and (X,Y ) /∈
NB(w) then F � (� ⇒ (p → q)) → (p ⇒ q). ��

The translations ∗ and � have semantical meaning as well of course. This
is especially useful in the case of extensions of E2

ImpU. That is because NB-
neighborhood models satisfying closure under equivalence are essentially equivalent
to N-neighborhood models (see de Jongh and Shirmohammadzadeh Maleki (2019)).
We state the crucial lemmas from that paper.

Lemma 2.7 Let 〈W, N 〉 be an N-neighborhood frame. Then there exists an
equivalent NB-neighborhood frame 〈W, NB〉. This NB-frame is closed under N-
equivalence, i.e., if (X,Y ) ∈ NB(w) and (X,Y ) ≡ (X ′,Y ′), then (X ′,Y ′) ∈ NB(w).
In addition, for all X,Y, w, if X ⊆ Y , then (X,Y ) ∈ N B(w).

Proof The proof is straightforward by considering, for each w ∈ W ,
NB(w) = {

(X,Y ) | X ∪ Y ∈ N (w)
}
. ��

Lemma 2.8 Let 〈W, NB〉 be an NB-neighborhood frame closed under
N-equivalence. Then there exists an equivalent N-neighborhood frame 〈W, N 〉.
Proof The proof is straightforward by considering, for each w ∈ W ,

N (w) = {
X ∪ Y | (X,Y ) ∈ NB(w)

}
. ��

This allows us to interpret strict implication formulas in N-neighborhood mod-
els and modal formulas in NB-neighborhood models for E2

ImpU. We just state the
consequences here without working out the details completely.

Lemma 2.9

1. For any N-neighborhood model M for modal logic and any modal formula
A(p1, . . . , pn), AM = (A∗)M.

2. For any neighborhood model for strict implication logic which is closed under
N-equivalence and any strict implication formula A(p1, . . . , pn), AM = (A�)M.

This lemma extends to the Kripke model case when we define w |= A ⇒ B as,
for all v such that wRv, if w |= A, then w |= B (see Definition 2.22).

Lemma 2.10

1. For any Kripke modelM for modal logic and any modal formula A(p1, . . . , pn),
AM = (A∗)M.

2. For any Kripke model M for strict implication logic and any strict implication
formula A(p1, . . . , pn), AM = (A�)M.

Theorem 2.14 If �E2
ImpU

A, then �EN A�.
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Proof By Theorem 2.12, we just need to show that �EN U� and this is easy. Because
(� ⇒ (A → B))� ↔ (A ⇒ B))� is equal to�(� → (A� → B�) ↔ �(A� → B�),
which is provable in EN. ��
Lemma 2.11 �E2

ImpU A ↔ A�∗.

Proof By induction on A. The atomic case holds by definition and the conjunction
and disjunction cases are trivial.

Assume A = C ⇒ D, we need to show that�E2
ImpU (C ⇒ D) ↔ (C ⇒ D)�∗. By

definition, (C ⇒ D)�∗ is equal to (�(C� → D�))∗, which is equal to (� ⇒ (C�∗ →
D�∗)), and by axiom U is equal to (C�∗ ⇒ D�∗). Then this is equal to (C ⇒ D), by
the induction hypothesis. ��
Theorem 2.15 If �EN A� then �E2

ImpU A.

Proof Assume �EN A�, then by Theorem 2.11 �E2
ImpU A�∗. Again, by Lemma 2.11

we conclude that �E2
ImpU A. ��

Corollary 2.2 �E2
ImpU A iff �EN A�.

Proof By combining Theorem 2.15 with Theorem 2.14. ��
So, we have that � is a faithful translation of E2

ImpU into EN. We will now see that

the classes of logics extending EN and E2
ImpU are closely related as well. A logic

extending EN will be a set of formulas containing EN closed under its rules and
uniform substitution. A logic extending E2

ImpU is similarly defined.

Definition 2.20

1. Suppose that L is a logic extending EN. We define L∗ as the closure of
{A∗|A ∈ L} ∪ {U} under the rules of E2

Imp.

2. Suppose that L is a logic extending E2
ImpU. We define L� as the closure of

{
A�|A ∈ L

}
under the rules of EN.

Lemma 2.12 If L is a logic extending EN, and A ∈ L∗, then A� ∈ L.

Proof Suppose A ∈ L∗, then there is a finite number of B∗
1 , ..., B

∗
n , with Bi ∈ L , 1 ≤

i ≤ n, such that B∗
1 ∧ · · · ∧ B∗

n �E2
ImpU A and so �E2

ImpU B∗
1 ∧ · · · ∧ B∗

n → A. By

Lemma 2.14 we have �EN B∗�
1 ∧ · · · ∧ B∗�

n → A�. Again, by Lemma 2.5, we con-
clude that �EN B1 ∧ · · · ∧ Bn → A�. Since B1 ∧ · · · ∧ Bn ∈ L , we have A� ∈ L . ��
Theorem 2.16 If L is a logic extending EN, then L = L∗�.

Proof First we prove L ⊆ L∗�. Assume A ∈ L then A∗ ∈ L∗ and A∗� ∈ L∗�. By
Lemma 2.5 �EN A ↔ A∗�. Hence A ∈ L∗�.

For the opposite direction assume A ∈ L∗�. Then there exist B�
1, ..., B

�
n , with

Bi ∈ L∗, 1 ≤ i ≤ n, such that B�
1 ∧ · · · ∧ B�

n �EN A. By Lemma 2.12 each B�

i is in
L . Therefore A ∈ L . ��
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This theorem basically means that each logic extending EN is represented by a
logic extending E2

ImpU , by L∗. We can now directly see by an analogous proof that
for extensions ofE2

ImpUwe can reverse the order of the translations in Theorem 2.16.

Theorem 2.17 If L is a logic extending E2
ImpU, then L = L�∗.

The two theorems together mean that there is a 1-1-correspondence between the
logics extending EN and extending E2

ImpU. To find the corresponding logic on the
opposite side one only has to check the derivability via the translations on both direc-
tions. By the semanticmeaning of the translations completeness of the corresponding
logic then immediately follows for the same semantics. In fact, this holds for all the
usual logical properties since the logics are essentially the same. Also, if one has a
unary modal companion one finds in that manner a binary one and vice versa. Of
course, this is restricted to logics extending EN or extending E2

ImpU respectively.

As an illustration we show directly that the new system E2
ImpU is a modal com-

panion of WFN . First a very straightforward proposition.

Proposition 2.1 For all subintuitionistic formulas A, A� is identical to A⇒�.

Theorem 2.18 E2
ImpU is a modal companion of WFN.

Proof We can reason completely syntactically in this case. From Theorem 2.6 we
know that EN is a modal companion of WFN: WFN � A iff EN � A�. Thus, by
Proposition 2.1, WFN � A iff EN � A⇒�. Applying Corollary 2.2 we then immedi-
ately get the desired conclusion: WFN � A iff E2

ImpU � A⇒. ��

2.5.3 Translations, Axiomatizations and Standard Modal
Logics

In this subsection we consider what happens if a logic extending EN is axiomatized
by an axiom A. Then A does not function as a single sentence but it represents all its
uniform substitution instances.

Theorem 2.19 (EN + A)∗ = E2
ImpU + A∗.

Proof Obviously E2
ImpU + A∗ ⊆ (EN + A)∗. So, we just show the opposite inclu-

sion. Assume (EN + A)∗ � B. Then there are substitution instances A1, . . . An of
A such that EN proves A1 ∧ · · · ∧ An → B. It is a trivial fact of translations and
substitution that (A1)

∗, . . . (An)
∗ are substitution instances of A∗. So, E2

ImpU + A∗

proves B∗. So, also (EN + A)∗ ⊆ E2
ImpU + A∗. ��

In other words, if L is a logic extending EN axiomatized over EN by A, then L∗
is the logic axiomatized over E2

ImpU by A∗.
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We now apply the results we have obtained to logics having Kripke models. We

will find the strict implication variants
−→
K ,

−→
KT,

−→
K4 and

−→
S4 as the unique correspon-

dents of the logics K, KT, K4 and S4 obtained from the following schemas.

K �(A → B) → (�A → �B)

T �A → A
4 �A → ��A

Definition 2.21 A Kripke frame F is a pair 〈W, R〉, where W is a nonempty set
and R is a binary relation on W . A Kripke Model M based on a frame F is a tuple
〈W, R, V 〉 where V : At → 2W is called a valuation function.

Definition 2.22 (Truth in KripkeModels) LetM = 〈W, R, V 〉 be a Kripke model
and w ∈ W . Truth of a propositional formula in a world w is defined inductively as
follows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w � A,
3. M, w |= A ∧ B ⇔ M, w |= A and M, w � B,
4. M, w |= A ⇒ B ⇔ for each w′ ∈ W with wRw′, ifM, w′ |= A, then M, w′ |= B.

By Theorem 2.19 it is almost immediate that:

Theorem 2.20

1.
−→
K = E2

ImpUK∗,

2.
−→
KT = E2

ImpUK∗T∗,

3.
−→
K4 = E2

ImpUK∗4∗,

4.
−→
S4 = E2

ImpUK∗T∗4∗.

Proof We only need to note that EN follows from K. ��
Let us just list the ∗-translations here:

K∗ = (� ⇒ (p → q)) → ((� ⇒ p) → (� ⇒ q))

T∗ = (� ⇒ p) → p
4∗ = (� ⇒ p) → ((� ⇒ (� ⇒ p))

We do immediately get completeness of each of the systems
−→
K ,

−→
KT,

−→
K4,

−→
S4 for

their Kripke frames and all the regular properties of their correspondents. Surely,

these logics can be given more elegant axiomatizations. For example,
−→
K can also be

axiomatized as E2
Imp + ((A → B) ⇒ (C → D)) → ((A ⇒ B) → (C ⇒ D)).

Also, we immediately get

Theorem 2.21

1.
−→
K is a strict implication companion of F,

2.
−→
K4 is a strict implication companion of BPC,

3.
−→
S4 is a strict implication companion of IPC.

Similarly we obtain that also the correspondent
−−→
wK4 ofwK4 is a strict implication

companion of BPC because wK4 is a modal companion of BPC (see Sano and Ma
(2015)).
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2.6 Conclusion

We looked for a binary modal companion of the weak subintuitionistic logic WF
and found it in the strict implication logic E2

Imp. During this search we established
also that any extension of the weak modal logic EN can just as well be represented
as an equivalent strict implication logic, satisfying a new axiom U and conversely.
Among other things this implies that any sub- or superintuitionistic logic which has
a standard modal companion has a strict implication companion as well. This is
grounded in the fact that E2

ImpU is a strict implication companion of WFN. A next
research goal would be the opposite direction: to find sub- and superintuitionistic
logics corresponding to strict implication logics. This of course can only work if the
strict implication logics satisfy the rules E2 and Imp and the axiomU . Most of them
do satisfy the rules E2 and Imp (see Nute (1984)). Whether such logics satisfy the
axiomU is another matter. Logics with Kripke models do satisfyU , but certainly the
interpretability logics IL and its extensions (see e.g. Japaridze and de Jongh (1998))
do not qualify, since�A is not definable as� ⇒ A, but as¬A ⇒ ⊥. Also, logics for
counterfactuals (see Lewis (1973), Veltman (1973)) do not satisfy axiom U . These
may be approached differently.
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Chapter 3
Extension and Interpretability

Albert Visser

Abstract In this paper we study the combined structure of the relations of theory-
extension and interpretability between theories for the case of finitely axiomatised
theories. We focus on two main questions. The first is definability of salient notions
in terms of the structure. We show, for example, that local tolerance, locally faith-
ful interpretability and the finite model property are definable over the structure.
The second question is how to think about ‘good’ properties of theories that are
independent of implementation details and of ‘bad’ properties that do depend on
implementation details. Our degree structure is suitable to study this contrast, since
one of our basic relations, to wit theory-extension, is dependent on implementation
details and the other relation, interpretability, is not. Nevertheless, we can define new
good properties using bad ones. We introduce a new notion of sameness of theories
i-bisimilarity that is second-order definable over our structure. We define a notion
of goodness in terms of this relation. We call this notion being capital. We illustrate
that some intuitively good properties, like being a complete theory, are not capital.
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3.1 Introduction

The notion of first-order theory is surprisingly successful in logic. It is central in
both proof theory and model theory. However, it clearly has its disadvantages. For
example, we cannot define the notion of finiteness in a first-order way.1 Moreover,
the usual representations of first-order theories do not reflect mathematical practice
well. For one thing, they are insufficiently abstract. In practice, we switch, as a matter
of course, from one representation of the basic concepts to another one. Predicate
logic however insists on a fixed signature. This rigidity could be called the tyranny
of signature.

The present paper is a study within one paradigm of abstracting away from sig-
nature, the degrees of interpretability. Here we only think of theories modulo inter-
pretability. This approach, however, has a striking disadvantage—at least as far as
current knowledge goes. It is difficult to express intuitive salient notions in terms of
the degree structure. We can do somewhat better, e.g., by switching to categories of
theories and interpretations. See e.g. Visser (2006).

In the present paper, we follow a different strategy to enhance the expressive
power of degree structures. We enrich our structures with the (signature dependent)
notion of theory extension. As we will see, even if theory extension is bad from the
standpoint of the need to abstract away from signature, it still can help us to define
good notions.

We study degrees of interpretability enriched with theory extension for finitely
axiomatised theories. Thus, our study has some connectionwith the study of sentence
algebras. Sentence algebras are studied, e.g., in Hanf (1975) and de Myers (1989).
The degrees of interpretability for finitely axiomatised theories, are studied in, e.g.,
Švejdar (1978), Lindström (1979, 1984a, b, 2003), Bennet (1986), Friedman (2007),
Visser (2012, 2014).2

We consider the structure of consistent, finitely axiomatised theories with as rela-
tions extension-in-the-same-language and parameter-free, multi-dimensional, piece-
wise interpretability. As will become apparent from the paper, this structure seems
to be best suited to the treatment of local notions. We show, for example, that locally
faithful interpretability, local tolerance and the finite model property are definable in
the structure. With respect to faithful interpretability and sequentiality, we have the
partial negative result that they are not definable in a certain fragment of the first-
order language over the structure. The question of definability in the full language
remains open.

Thebest notion of sameness between theories is, inmyopinion,bi-interpretability.
This notion preserves many good mathematical properties of theories that are as
diverse as finite axiomatisability, decidability and κ-categoricity. Bi-interpretability
is however not definable in the framework of our paper.We replace bi-interpretability

1This weakness is also a strength, since it gives us e.g. non-standard models of arithmetic.
2In a sense, the fundamental paper Mycielski et al. (1990) also belongs to this list, since chapters,
i.e. degrees of local interpretability, can be viewed as ideals of the degrees of global interpretability
for finitely axiomatised theories.
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by a cruder notion, to wit (local) i-bisimilarity. We study the concept of ‘good
property’ derived from i-bisimilarity. We call this idea of goodness being capital.
We illustrate what i-bisimilarity in the context of our degree structure can and cannot
do. E.g., we show that the notions of complete theory, of sequential theory and of
faithful interpretability are not capital, where they are definitely goodwhenmeasured
by our best notion of sameness: bi-interpretability.

3.2 Preliminaries

In this section, we give basic definitions and discuss some basic facts.

3.2.1 Signatures, Formulas, Theories

Signatures will be finite in this paper. A signature is given by a finite set of predicate
symbols and an arity function that assigns an arity in ω to each symbol. To avoid hav-
ing to deal with class-many signatures, we restrict the predicate symbols to elements
of a fixed countable list P0, P1, . . . .

For any signature �, we take L� to be the set of sentences of that signature. We
assign a finitely axiomatised theory I� to �. This is the theory of identity for �

including the axiom ∃x x = x .
We will use A, B, C , … as variables ranging over consistent finitely axiomatised

theories of finite signature. We take the theory of identity I� as part of predicate
logic CQC� of signature �. Still we insist that I� is also syntactically present in
a theory. The reason for this somewhat strange stipulation is that we allow identity
to be translated to some other relation than identity. Hence, we need the axioms of
identity to be interpreted.3

We use ϕ, ψ as ranging over sentences. We suppose that theories and sentences
have built-in signature, so that we can read out the signature from the sentence. So,
e.g. ∃x P(x) is a different sentence depending on whether it occurs in a language
of signature with only the predicate symbol P or whether there is, e.g., a second
predicate symbol Q.

A basic relation between theories is extension. By this we mean: extension-in-
the-same-language. More precisely B is an extension A when�A = �B and B � A.
We write A ⊆ B for: B extends A in the same language.

A second basic relation is interpretability or �. We will explain this in Sect. 3.2.2
and in Appendix 3.8.

3The unnaturality is caused by the fact that, on the one hand, we treat identity as a logical relation,
and, on the other hand, unlike other logical relations, we do not translate it to itself. The truly
coherent way of proceeding would be to work without identity as part of the logic and with a free
logic. This way would greatly simplify things. In this paper, however, we stick to the traditional
framework and do the sometimes boring homework to treat identity.
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A special theory we will consider is the arithmetical theory S1
2. See, e.g., Buss

(1986) or Hájek and Pudlák (1993, Chap. V). The theoryS1
2 is finitely axiomatisable.

See Hájek and Pudlák (1993, Chap. V(e)). Let the signature of the language of S1
2

beA.

3.2.2 Translations and Interpretations

In this subsection, we give a brief informal explanation of what translations and
interpretations are. For all details, the reader is referred to Appendix 3.8.

A translation maps a language to a language. The basic idea is very simple: the
translation commutes with the logical connectives. In spite of the apparent simplicity,
there is some work to do to give a full and correct definition of a translation. There
are two reasons. The first is that we have to get nasty details concerning renaming
of variables out of the way. The second is that we want to add a number of features.
The idea in this paper is to ignore the problem of the variables. It is clear that it
can be taken care of in some appropriate way. We will however have a lot to say in
Appendix 3.8 about the extra features. The features are these:

• Our translations do not necessarily translate identity to identity. Identity may go
to a formula that is intended to represent an equivalence relation.

• Our translations are relativised.Wewill relativise the translations of the quantifiers
to prespecified domains.

• Our translations are more dimensional. This means that one object of the domain
of quantification of the translated language may be represented as a sequence of
objects in the translating language. In amore syntactic formulation: one variable of
the translated language is associated with a sequence of variables in the translating
language.

• We allow piecewise translations. This means that our domains can be built up
from various pieces. These pieces may be of different dimensions. Moreover, even
if they are of the same dimension, a sequence of elements shared by two pieces
may, in the context of the first piece, represent a different object of the translated
language than the object represented by the sequence in the context of the second
piece.

! Nota Bene
In general, translations may have parameters. In this paper, however, we only
consider the parameter-free case.

We use τ , τ ′,μ, ν, . . . to range over translations. We write ϕτ for the τ -translation
of ϕ.
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The notion of translation yields the notion of interpretation. If we have theoriesU
and V , thenU interprets V orU � V or V �U iffU � ϕτ , for all theorems ϕ of V .
We say that U and V are mutually interpretable or U �� V iff U � V and V �U .

3.2.3 The Structure

Wewill study the structureEI of extension and interpretability. Its objects are finitely
axiomatised consistent theories A, B, … The structure has two relations ⊆ and �.
Here ⊆ is a partial ordering, � is a partial pre-ordering and ⊆ is a subrelation of �.

The structure EI is countable since we restricted the symbols from our signatures
to symbols from a fixed countable list.

? Question
How does EI as we defined it relate to EI

+, the analogous structure where we
allow class-many signatures? In some sense nothing new should happen, but,
since we are interested both in first- and in second-order properties, a careful
analysis of the relevant notion of sameness is needed.

We will be interested in properties P(A0, . . . , An−1) of finitely axiomatised consis-
tent theories that can be formulated in terms of the structure. In various ways these
properties can be divided in good and bad properties. Given a notion of sameness for
theories∼we say that P is∼-invariant if P preserves∼, in other words, if A0 ∼ B0,
…, An−1 ∼ Bn−1 and P(A0, . . . , An−1), then P(B0, . . . , Bn−1).

I believe in the intuitive thesis that the right notion of sameness between the-
ories is bi-interpretability. In other words, preservation of ∼bii is true goodness.
Bi-interpretability is more flexible than the very strict notion of synonymy, but still
preservesmanymathematically interesting properties like categoricity and decidabil-
ity. There are two more salient notions iso-congruence and sentential or elementary
congruence. See Appendix 3.8.6. All of these notions have an important property
that mutual interpretability andmutual faithful interpretability lack. Suppose A ∼ B,
where ∼ is synonymy or bi-interpretability or iso-congruence or sentential congru-
ence. Suppose we add a new axiom ϕ to A. Then, we can add a matching axiom ψ to
B such that (A + ϕ) ∼ (B + ψ).4 Of course, since our relations ∼ are equivalence
relations, we also have the converse: if we add a ψ to B, there is a matching ϕ for A.
Thus ∼ is a bisimulation with respect to ⊆. There is a crudest notion below mutual
interpretability or �� that has this property, to wit i-bisimilarity.5

4For a proof of this claim, see Appendix 3.8.6.6.
5The notion should really be called: local i-bisimilarity. However, since this paper is about local
notions, we omit the ‘local’.
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An i-bisimulation is a relation B on EI such that (i) B is a subrelation of �� and
(ii) B is a bisimulation w.r.t. ⊆. We remind the reader that B is a bisimulation w.r.t.
⊆ iff, it has both the forward or zig property and the backward or zag property: if
A B B, then

zig for all A′ ⊇ A, there is a B ′ ⊇ B, such that A′ B B ′;
zag for all B ′ ⊇ B, there is an A′ ⊇ A, such that A′ B B ′.

The theories A and B are i-bisimilar or A ≈ B iff, there an i-bisimulation B, such
that A B B. We note that ≈ is the maximal i-bisimulation. Since i-bisimulations
contain the identity relation and are closed under converse and composition, we find
that ≈ is an equivalence relation.

We note that each of synonymy, bi-interpretability, iso-congruence and sentential
congruence is both a bisimulation and a sub-relation of ��. Hence each of these
relations is a sub-relation of ≈.

Example 3.1 We consider the theory EQ of pure equality and the theory 1 in the
language of pure equality with an axiom that states that there is precisely one object.
Let INF be the theory in the language of pure equality with axioms that state ‘there
are at least n objects’ for each n. We note that:

• If both T andU have a finite model, then T andU are mutually interpretable. (See
Remark 3.5.)

• Any finite extension of EQ has a finite model.
• 1 and INF are not mutually interpretable.

It follows that 1 ≈ EQ. So,

a. A ≈ B does not imply that A and B are mutually faithfully interpretable.
b. If we also allow infinitely axiomatised theories, then 1 andEQ are not i-bisimilar

in the modified sense, since 1 and INF are not mutually interpretable.
c. If we replace ⊆ by �, then 1 and EQ are not i-bisimilar in the modified sense,

since we can not strictly extend 1.

The example is somewhat trifling. The reader may well feel the wish to tweak the
framework a bit to exclude the example. We note however that, if we omit piecewise
interpretations, then a slightly modified version of the example still works; similarly,
for the case where we exclude theories with finite models. What happens when we
restrict ourselves to one-dimensional interpretations?We take this up in Example 3.8.
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? Question
We define A ≈0 B iff A �� B and A ≈n+1 B iff A �� B and, for all A′ ⊇ A,
there is a B ′ ⊇ B, such that A′ ≈n B ′, and for all B ′ ⊇ B, there is an A′ ⊇ A,
such that A′ ≈n B ′. Clearly,≈n+1 is a subrelation of≈n , and≈ is a subrelation
of the intersection ≈ω of the ≈n . Are all these inclusions strict?

We see that the notion of i-bisimularity has a �1
1-description over EI. We call a

property capital if it is ≈-invariant.
We note that all capital properties are also ∼-invariant where ∼ is synonymy,

bi-interpretability, iso-congruence and sentential equivalence, since each of these
relations is a sub-relation of ≈. The converse does not hold: as we will see being
a complete theory is not capital but it is ∼-invariant for sentential congruence and,
ipso facto, for all more refined equivalence relations.

We introduce a fragmentF of first-order formulas overEI such that every formula
ϕ in F defines a capital property. We define ∃A′ ⊇A . . . by ∃A′ (A ⊇ A′ ∧ . . .) and
we define ∀A′ ⊇A . . . by the formula ∀A′ (A ⊇ A′ → . . .). Here we assume that A′
and A are distinct variables. The fragmentF is defined as the smallest set of formulas
such that⊥,� and A � B are inF , and, ifϕ andψ are inF , then so are¬ϕ, (ϕ ∧ ψ),
(ϕ ∨ ψ), (ϕ → ψ), ∀Aϕ, ∃Aϕ, ∀A⊇B ϕ, and ∃A⊇B ϕ, where, in the last two cases,
A and B are distinct.

We claim that every formula in F defines a capital relation. The proof is by
induction of the formulas in F . We treat the case of the reverse bounded existential
quantifier. Suppose ϕ(A,C ) defines a capital relation. Here the C cover all occur-
rences of free variables in ϕ except A and A represents all occurrences of the free
variable A. We claim that the relation given by ∃A⊇B ϕ(A,C ) is again capital.
Here B may be one of the C. We assume that A and B are distinct. It is clearly
sufficient to consider the case where we replace one occurrence of D by D′ with
D ≈ D′, since more complicated replacements can be constructed as a number of
such simpler replacements. Each such replacement is unproblematic as long as we
do not replace the first occurrence of B. Suppose we replace the first occurrence of
B by B ′, where B ≈ B ′. For any A ⊇ B, we can find A′ ⊇ B ′ with A ≈ A′. Hence,
by the induction hypothesis, ϕ(A,C) iff ϕ(A′,C). It follows that ∃A⊇B ϕ(A,C )

iff ∃A′ ⊇B ′ ϕ(A′,C ) and, by renaming of the bound variable A′ to A, we have
∃A⊇B ϕ(A,C ) iff ∃A⊇B ′ ϕ(A,C ).

? Question
Is everyEI-definable capital property definable by a formula fromF ? See also
Question 5.
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3.2.4 Some Salient Notions

We introduce a number of salient notions relevant to our framework. These notions
are generalisations and localisations of the notions introduced by Per Lindström and
Giorgi Japaridze for extensions of PA. See Japaridze and de Jongh (1998, Sect. 11).
Because of our restriction to finitely axiomatised theories our framework seems to
be primarily suitable for the study of local versions of the various notions. The first
two concepts, to wit the logic ��

A of A and admissible inference over A, will play no
essential role in this paper. We just add them to make our list reasonably complete.

We remind the reader of the fact that I�A is built in in A. This is the reason that
I only occurs in the first item.

• ��
A := {ϕ ∈ L� | for all τ : � → �A such that A � Iτ

� we have A � ϕτ }.
��

A is the logic of A for �.
• B ∼ A ϕ iff, �B = �ϕ and, for all τ : �B → �A, if A � Bτ , then A � ϕτ .
The relation ∼ A represents admissible inference over A.

• A interprets B or A � B iff, for some τ , A � Bτ .
• A weakly interprets B or A tolerates B or A � B iff, for some translation τ , we
have that A + Bτ is consistent.

• A is locally tolerant iff A � B, for each B.
• A is essentially locally tolerant iff, for each A′ ⊇ A, we have A′ � B, for each B.
• A co-interprets B or A � B if, for some τ , for all ϕ, if B � ϕτ , then A � ϕ.6

• A locally co-interprets B or A �loc B if, for allϕ, there is a τ such that, if B � ϕτ ,
then A � ϕ.

• A faithfully interprets B or A �faith B iff, there is a τ , such that, for all ϕ, we have:
B � ϕ iff A � ϕτ .

• A locally faithfully interprets B or A �lofa B iff, for all ϕ with B � ϕ, there is a τ
such that A � Bτ and A � ϕτ .

3.3 Characterisations

Our salient local notions have various characterisations. In this section we collect
those characterisations that are ‘theory-free’, i.e. for which we do not need results
like the Interpretation Existence Lemma (see e.g. Visser (2018)). More theoretically
involved characterisations will be treated in Sect. 3.6.

6In our formulations we will always implicitly assume that the ϕ we quantify over are of the right
signature. In this case the hidden assumption is that �ϕ = �A.
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3.3.1 The Logic of a Theory, Admissibility and
Interpretability

We give various characterisations of the logic of a theory, of admissible rules and of
interpretability. We repeat the relevant definitions.

• ��
A := {ϕ ∈ L� | for all τ : � → �A such that A � Iτ

� we have A � ϕτ }.
• B ∼ A ϕ iff, �B = �ϕ and, for all τ : �B → �A, if A � Bτ , then A � ϕτ .
• A interprets B iff, for some τ , A � Bτ .

Theorem 3.1

1. ��
A = {ϕ ∈ L� | I� ∼ ϕ}.

2. ϕ ∈ ��
A iff, ϕ ∈ L�, and, for all τ : � → �A, we have A � (

∧I� → ϕ)τ .
3. ϕ /∈ ��

A iff A � (I� ∧ ¬ϕ).

Proof Claim (1) is trivial.
We prove Claim (2). Suppose ϕ ∈ ��

A and τ : � → �A. Let τ0 : � → �A be
defined as follows. The translation τ0 is 1-dimensional, δτ (x) := �, and τ0 sends
any predicate symbol including identity to �.7 We define τ � := τ 〈Iτ

�〉τ0.8 Clearly,
A � Iτ �

� . Hence, A � ϕτ �

. We may conclude that A � (
∧I� → ϕ)τ . The converse

is immediate.
Claim (3) is immediate from Claim (2). ��

The characterisation of Theorem 3.1(2) is very useful. We will employ it without
mentioning that we apply the theorem.

Theorem 3.2 A � B iff B � A ⊥.

Proof We remind the reader that ‘A’ ranges over consistent finitely axiomatised
theories. We have:

B � A ⊥ ⇔ ∃τ (A � Bτ and A � ⊥τ )

⇔ A � B ��
Theorem 3.3 Suppose B and ϕ have signature �. We have:

B ∼�

A ϕ ⇔ (B ∼�

A ⊥ or B ���
A

ϕ).

Proof The right-to-left direction is trivial. We prove left-to-right. Suppose we have

B ∼�

A ϕ. In case we have B ∼�

A ⊥, we are done. Otherwise there is a τ0 such that
A � Bτ0 . Consider any translation τ : � → �A. Let τ � := τ 〈Bτ 〉τ0. We clearly have
A � Bτ ∗

and, hence, A � ϕτ ∗
. It follows that A + Bτ � ϕτ . ��

7It would be more natural to use a 0-dimensional translation, but I wanted to avoid any suspicion
that our argument depends on some special etheric feature of the notion of translation.
8τ 〈Iτ

�〉τ0 is the translation that is τ if Iτ
� and that is τ0 otherwise. See Appendices 3.8.2 and 3.8.5

for the official definitions.
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Example 3.2 A general version of the second incompleteness theorem tells us that

A � (S1
2 + con(A)). (See, e.g., Visser (2011).) Thus, (S1

2 + con(A)) ∼A
A ⊥. On

the other hand, all sequential A interpret S1
2 faithfully. (See. e.g., Visser (2005).) For

these theories we have S1
2 + con(A) ��A

A
⊥. So, the first disjunct of Theorem 3.3 is

essential.

3.3.2 Weak Interpretability and Local Cointerpretability

We first repeat the definitions of weak interpretability and of local cointerpretability.

• A � B iff, for some translation τ , we have that A + Bτ is consistent.
• A �loc B iff, for all ϕ, there is a τ such that, if B � ϕτ , then A � ϕ.

Theorem 3.4 A � B iff ∃C ⊇AC � B.

Proof Suppose A � B. Then for some τ , the theory A + Bτ is consistent. Hence
A ⊆ C := A + Bτ and C � B.

Conversely, suppose A ⊆ C and C � B. Let τ witness the interpretability of B
in C . Then certainly A + Bτ is consistent. ��
We note that the formula ∃C ⊇AC � B is in F and hence weak interpretability is
a capital relation. Our next order of business is to show that local cointerpretability
can also be defined in the fragment F . Local cointerpretability is preservation of the
tolerated. Thus, local cointerpretability is a capital relation.

Theorem 3.5 A �loc B iff, for all C, if A � C, then B � C.

Proof Suppose A �loc B. Consider any C and suppose A � C . Then, for some σ,
we have A � (¬C)σ . Taking ϕ := ¬Cσ in the definition of A �loc B, we find, for
some τ , that B � (¬C)στ . It follows that B � C .

Suppose that, for all C , if A � C , then B � C . Consider any ϕ. We take C :=
(I�A ∧ ¬ϕ). Suppose A � ϕ, then A � (I�A → ϕ), since A � I�A . Hence, A � C .
It follows that B � C , so, for some τ , we have B � (I�A → ϕ)τ , and, a fortiori,
B � ϕτ . ��
We can write Theorem 3.5 a bit differently. If we define �A� := {C | A � C}. Then,
A �loc B iff �A� ⊆ �B�.

Here is another characterisation in F that is easy to remember.

Theorem 3.6 A �loc B iff, for all A′ ⊇ A, there is a B ′ ⊇ B, such that B ′ � A′.

Proof We use Theorem 3.5. Suppose that, for all C , if A � C , then B � C . Suppose
A′ ⊇ A. Then, the identity interpretationwitnesses that A � A′. It follows that B � A′.
Hence, for some τ , we have B ′ := B + (A′)τ is consistent. Clearly B ′ ⊇ B and
B ′ � A′.
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Conversely suppose that, for all A′ ⊇ A, there is a B ′ ⊇ B, such that B ′ � A′.
Suppose ρ witnesses that A � C . Then A′ := A + Cρ is consistent. It follows that
there is a B ′ ⊇ B such that B ′ � A′. Suppose B ′ � A′ is witnessed by σ. We may
conclude that B + Cρσ is consistent, so B � C . ��
We prove a number of further equivalents of cointerpretability.

Theorem 3.7 The following are equivalent:

1. A �loc B.
2. For all �, we have: ��

B ⊆ ��
A .

3. �
�A
B ⊆ �

�A
A .

4. �
�A
B ⊆ A.

Proof We prove: (1) ⇒ (2). Suppose A �loc B. Let � be any signature. Consider
any ϕ ∈ ��

B . So, for all σ : � → �B , B � (I� → ϕ)σ . Consider any ρ : � → �A.
Let τ be the witness of A �loc B for (I� → ϕ)ρ. We have (τ ◦ ρ) : � → �B and
hence B � (I� → ϕ)ρτ . It follows that A � (I� → ϕ)ρ. Thus, ϕ in ��

A .
We get (2) ⇒ (3) by universal instantiation.
We get (3) to (4), since, trivially �

�A
A ⊆ A.

We prove (4) ⇒ (1). Suppose �
�A
B ⊆ A. We note that A �loc B iff, for all ϕ, if

(for all τ : �B → �A, we have B � ϕτ ), then A � ϕ.
Suppose, for all τ : �B → �A, we have B � ϕτ . Then, a fortiori, for all τ : �B →

�A, we have B � I�B → ϕτ . Thus, ϕ ∈ �
�A
B . Hence, A � ϕ. ��

Remark 3.1 We consider the following to notions.

• A �mod B iff, there is a τ such that, for every modelM of A, there is a model N
of B, such that M is elementarily equivalent to τ̃ (N).

• A �lomo B iff, for every modelM of A, there is a τ and there is a modelN of B,
such that M is elementarily equivalent to τ̃ (N).

It is easily seen that �mod coincides with �. Also, if A �lomo B, then A �loc B. The
converse direction, however, fails. We have, for example, EQ �loc 1. On the other
hand, EQ ��lomo 1.

Finally, note that, if we replace elementary equivalence by isomorphism in the
above definitions we obtain two further notions that are prima facie different.

3.3.3 (Locally) Faithful Interpretability

We remind the reader that:

• A �lofa B iff,
for all ϕ such that B � ϕ, there is a τ , such that A � Bτ and A � ϕτ .

We start with an immediate observation.
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Theorem 3.8 A �lofa B iff, for all ϕ, if B ∼ A ϕ, then B � ϕ.

Proof We have:

A �lofa B ⇔ ∀ϕ (B � ϕ ⇒ ∃τ (A � Bτ and A � ϕτ ))

⇔ ∀ϕ (∀τ (A � Bτ ⇒ A � ϕτ ) ⇒ B � ϕ)

⇔ ∀ϕ (B ∼ A ϕ ⇒ B � ϕ) ��
The following theorem shows that A �lofa B is definable in F and, hence, capital.

Theorem 3.9 A �lofa B iff (A � B and B �loc A).

Proof We use the characterisation of Theorem 3.6.
Suppose A �lofa B. By putting ϕ := ⊥ in the definition of �lofa, we see that

A � B.
Consider any B ′ ⊇ B. Suppose B ′ is axiomatised by ϕ. Since B ′ is consistent,

it follows that B � ¬ϕ. So there is a τ such that A � Bτ and A � (¬ϕ)τ . We may
conclude that A � B and that A′ := A + ϕτ is consistent. Clearly, A′ � B ′. We may
conclude B �loc A.

Suppose A � B and B �loc A. Let τ0 witness A � B. Suppose B � ϕ. If follows
that B ′ := B +¬ϕ is consistent. Then, for some A′ ⊇ A we have A′ � B ′. Let τ
be the witness of A′ � B ′. We take τ � := τ 〈(B ′)τ 〉τ0. Clearly, A � Bτ �

. Suppose
A � ϕτ �

. Then, A + (B ′)τ � ϕτ , since under the assumption (B ′)τ , the translations
τ and τ � coincide. On the other hand, A + (B ′)τ � ¬ϕτ , so A + (B ′)τ � ⊥. But
A + (B ′)τ ⊆ A′ and A′ is consistent. So, we have a contradiction. Ergo, A � ϕτ �

.��
We note that Theorem 3.9 in combination with the various characterisations of �loc

gives us many alternate characterisations for �lofa.
The nice decoupling into interpretability and cointerpretability also works in the

non-local case—at least as long as the theories we consider are finite.

Theorem 3.10 A �faith B iff (A � B and B � A).

Proof From-left-to-right is easy. We treat from-right-to-left. Suppose τ0 witnesses
A � B and τ1 witnesses B � A. Let τ � := τ1〈Bτ1〉τ0. Clearly A � Bτ �

. Suppose
A � ϕτ �

. Then A + Bτ1 � ϕτ1 . It follows that B � (B → ϕ), so B � ϕ. ��
We note that faithful interpretability is not capital since 1 ≈ EQ but 1 does not
faithfully interpret EQ. Since � is capital, we find that � is not capital.

Remark 3.2 We pick up the thread of Remark 3.1. We define A �lomo B iff A � B
and B �lomo A. We note that �faith is a sub-relation of �lomo and �lomo is a sub-
relation of �lofa.

On the other hand, we have EQ �lofa 1, but EQ ��lomo 1. Let C be the theory of
linear dense orderings without endpoints. It is easy to see that EQ �lomo C . On the
other hand, since C is a complete theory, EQ ��faith C .9 So both inclusions are strict.

9This insight is trivial since we do not work with parameters: parameter-free faithful interpretability
preserves completeness from the interpreting theory to the interpreted theory. The insight still holds
whenwe do allow parameters. In this case one uses that, in the unique countablemodel ofC (modulo
isomorphism), the parameters only have finitely many constellations modulo automorphism.
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The notion of faithfulness one obtains by combining interpretability with model
theoretic cointerpretability with isomorphism was studied by Szczerba (1976).

3.3.4 Local Tolerance

We remind the reader of two definitions.

• A is locally tolerant iff ∀B A � B.
• A is essentially locally tolerant iff ∀B⊇A ∀C B � C .

We note that both notions are capital. We give two important characterisations of
local tolerance.

Theorem 3.11 The following are equivalent:

i. A is locally tolerant.
ii. For all B, if A � B, then A �lofa B.
iii. A �lofa CQC2, where CQC2 is predicate logic for a binary relation symbol.

These characterisations are the local versions of well-known characterisations of
tolerance. See e.g. Visser (2005). In Sect. 3.6, we will add a further characterisation.

Proof (i) ⇒ (ii). Suppose A is locally tolerant and A � B. Let τ0 witness A � B.
Suppose B � ϕ. Let B ′ := B +¬ϕ.We have A � B ′. Let τ1 be thewitness of A � B ′.
We define τ � := τ1〈(B ′)τ1〉τ0. Clearly, A � Bτ �

. Suppose A � ϕτ �

. In that case, we
must have A + (B ′)τ1 � ⊥. Quod non.

(ii)⇒ (iii). This is immediate from the fact that A � CQC2.
(iii)⇒ (i). We can do this in two ways. First, we can use a theorem from Hodges

(1993) that any theory B is bi-interpretable with a theory B̃ in the signature of one
binary relation. Since CQC2

� ¬B̃, it follows that A + (B̃)τ is consistent, for some
τ . So, A � B̃, and, hence, A � B.

Alternatively, we can use the fact that we have an interpretation ofS1
2 in adjunctive

set theoryAS, which is a theory in one binary relation. Say this is witnessed by ν. We
want a�1-sound translation here: say, when we interpretAS in the hereditarily finite
sets, then ν gives us an isomorphic copy of the natural numbers. Consider any theory
B. We easily show that A � (AS+ (S1

2 + con(B))ν) —noting that the theory that
is tolerated is true in the hereditarily finite sets. Since, (AS+ (S1

2 + con(B))ν) �
(S1

2 + con(B)). and (S1
2 + con(B)) � B, it follows that A � B. ��

Remark 3.3 The above resultmatches preciselywithwhatweknowabout tolerance.
A theory A is tolerant iff, for all (possibly not finitely axiomatised) theories X , we
have A � X . Alternatively, A is tolerant iff it tolerates S1

2 plus all true �1-sentences.
Then, the following are equivalent:

i. A is tolerant.
ii. For all B, if A � B, then A �faith B.
iii. A �faith CQC2.
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The reader is referred to Visser (2005) for explanation and proofs.

Finally, we remind the reader that A �loc B iff �A� ⊇ �B�, where we define �C� :=
{D | C � D}. Hence, a theory is locally tolerant iff it is minimal w.r.t.�loc. Thus, we
have:

Theorem 3.12 A is locally tolerant iff, for all B, we have A �loc B.

In Sect. 3.5.2, we will see a characterisation of the maximal elements of �loc: these
are precisely the theories with the finite model property.

3.4 Disjoint Sum is a Capital Operation

The disjoint sum of two theories is more or less what you expect it to be: make the
signatures disjoint, relativise both theories to newly introduced domains and take
the union. The disjoint sum is introduced and discussed in Appendix 3.8.7. In this
section, we show that � preserves ≈.

Theorem 3.13 � is a capital operation.

Proof Suppose A0 ≈ B0 and A1 ≈ B1. We want to show that (A0 � A1) ≈ (B0 �
B1).

We define C B D iff, for some k > 0, and, for some ϕ00, . . . ,ϕ0(k−1) in the
language of A0, and for some ϕ10, . . . ,ϕ1(k−1) in the language of A1, and for some
ψ00, . . . ,ψ0(k−1) in the language of B0, and some ψ10, . . . ,ψ1(k−1) in the language
of B1, we have:

• C = ((A0 � A1) + ∨
i<k(ϕ0i ∧ ϕ1i )),

• D = ((B0 � B1) + ∨
i<k(ψ0i ∧ ψ1i )),

• for all j < 2 and i < k, we have (A j + ϕ j i ) is consistent and (Bj + ψ j i ) is con-
sistent and (A j + ϕ j i ) ≈ (Bj + ψ j i ).

We first show that (A0 � B0) B (A1 � B1). This is immediate from A0 ≈ B0 and
A1 ≈ B1, by taking k := 1 and ϕ00 := �, ϕ10 := �, ψ00 := � and ψ10 := �.

We check that C B D implies C �� D. Suppose C B D. We have witnessing
ϕ j i and ψ j i . with (A j + ϕ j i ) ≈ (Bj + ψ j i ), and, hence, (A j + ϕ j i ) �� (Bj + ψ j i ).
Suppose τ j i witnesses (A j + ϕ j i ) � (Bj + ψ j i ). Then τ �

i := τ0i � τ1i witnesses

((A0 � A1) + (ϕ0i ∧ ϕ1i )) = ((A0 + ϕ0i ) � (A1 + ϕ1i ))

� ((B0 + ψ0i ) � (B1 + ϕ1i ))

= ((B0 � B1) + (ψ0i ∧ ψ1i ))

Let:

ν := τ �
0 〈ϕ00 ∧ ϕ10〉(τ �

1 〈ϕ01 ∧ ϕ11〉(· · · 〈ϕ0(k−2) ∧ ϕ1(k−2)〉τ �
k−1) · · · ).
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Then ν witnesses:

C = ((A0 � A1) +
∨

i<k

(ϕ0i ∧ ϕ1i )) � ((B0 � B1) +
∨

i<k

(ψ0i ∧ ψ1i )) = D.

Similarly, in the other direction.
We check the forward property. The backward property is, of course, analogous.

Suppose C B D and let, as before ϕ j i and ψ j i be the witnessing formulas. Suppose
C ′ ⊇ C . Since C ′ ⊇ (A0 � A1), we have by Theorem 3.34, that C ′ = (A0 � A1) +∨

�<n(χ0� ∧ χ1�), where the χ0� are in the A0-language and the χ1� are in the A1-
language. Since,

∨
i<k(ϕ0i ∧ ϕ1i ) is also in C , we have by propositional logic:

C ′ = (A0 � A1) +
∨

i<k,�<n

((ϕ0i ∧ χ0�) ∧ (ϕ1i ∧ χ1�)).

By our assumption, we have (A j + ϕ j i ) ≈ (Bj + ψ j i ). Moreover, we have (A j +
ϕ j i ) ⊆ (A j + (ϕ j i ∧ χ j�)). Hence, by the forward property for ≈, there is a ν1i�
such that:

(Bj + ψ j i ) ⊆ (Bj + ν j i�) and (A j + (ϕ j i ∧ χ j�)) ≈ (Bj + ν1i�).

Thus, we can take D′ := (B0 � B1) + ∨
i<k,�<n(ν0i� ∧ ν1i�). Clearly, we have C ′ B

D′. ��

? Question
Let S(A, B,C) be the relation A � B ≈ C . Is S EI-definable? Is S F -
definable?

3.5 Faithful Interpretability and Locally Faithful
Interpretability

Locally faithful interpretability looks to me like a fairly natural notion. Still I have
not seen it formulated before. In the present section, we provide a few basic insights
concerning the new notion. Finally, we briefly indicate the connection of faithful
interpretability and locally faithful interpretability with the forward property.

Wehave seen that local faithful interpretability is capital.On the other hand,Exam-
ple 3.1 shows that faithful interpretability is not capital. So, faithful interpretability
and locally faithful interpretability are extensionally distinct notions.
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We note that we have A �lofa A. Suppose A ≈ B, then, since �lofa is capital,
we find A �lofa B. Thus, we may conclude that i-bisimilarity implies mutual local
faithful interpretability.

3.5.1 Decidability

We have the following theorem.

Theorem 3.14 The relation �lofa preserves decidability, i.e., if A �lofa B and A is
decidable, then B is decidable.

Proof Suppose A �lofa B and A is decidable. Is ϕ a theorem of B? On the positive
side we enumerate the theorems of B until we find a proof of ϕ; on the negative side
we run through translations τi : �B → �A and decide whether A � Bτi and A � ϕτi .
Eventually, one of the parallel processes must yield an answer. ��
Unfortunately, our argument fails when we switch to infinitely axiomatised theories.
So, in the infinite case, ordinary faithful interpretability seems to be in better shape.

? Question
Is there an example of U �lofa V (or even A �lofa V ), where U is decidable
and V is not?

We note that it follows that decidability is a capital property.

? Question
Is decidability first-order or even second-order definable in EI?

Example 3.3 Let A := (∀x ∀y x = y ∨ ∧
S1
2). We have 1 � A, but not 1 �lofa A,

since A is not decidable. This gives us a separating example between �lofa and �.

3.5.2 The Finite Model Property

A basic property of theories is the finite model property or FMP. A theory A has the
finite model property iff, for every ϕ with A � ϕ, there is a finite modelM such that
M |= A and M |= ¬ϕ.

There are many theories with the finite model property that also have an infinite
model. The theory of pure identity EQ or CQC0 is one example of these. Another
example is the theory of discrete linear orderings with endpoints.
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Theorem 3.15 The theory of discrete linear orderings with endpoints has the finite
model property.

Proof All infinite models of this theory are of the form ω + ζ · α + ω∗, where ζ is
the order type of the integers and α is an arbitrary order type. By a Fraïssé style
argument all these models are elementarily equivalent.10

If a sentence ϕ is true in all models, then certainly it is true in all finite models.
Conversely, if ϕ is true in all finite models, by compactness, it is true in a least one
infinite model, and, hence, in all models. ��
Theorem 3.16 The following are equivalent.

i. A has the finite model property.
ii. 1 ≈ A.
iii. 1 ��lofa A.
iv. 1 is mutually locally cointerpretable with A.

Proof We need two simple observations. First, any A with the finite model property
ismutually interpretablewith1. Any theory interprets1. SupposeM is a finitemodel
of A. Since, we allow piecewise interpretations, we can transform our finite model
into an interpretation of A in 1.

Secondly, the finite model property is preserved over⊆. Suppose A has the finite
model property. Consider any B ⊇ A and suppose B � ϕ. Then, A � B → ϕ. So
there is a finitemodelM of A such thatM |= ¬ (B → C), soM |= B andM |= ¬ϕ.
We may conclude that B has the finite model property.

(i) ⇒ (ii). We define D B E iff D = 1 and E ⊇ A. By the above observations,
B is a i-bisimulation. Hence 1 ≈ A.

(ii)⇒ (iii).We have already seen that i-bisimilarity impliesmutual locally faithful
interpretability.

(iii) ⇒ (iv). From A ��lofa 1, we have that A and 1 are mutually locally cointer-
pretable.

(iv) ⇒ (i). Suppose A �loc 1. Suppose A � ϕ. Then A � (A + ¬ϕ). It follows
that 1 � (A +¬ϕ). Hence 1+ (A +¬ϕ)τ is consistent, for some τ . Since, 1 is
complete it follows that 1 � (A +¬ϕ)τ . Thus, τ defines a finite internal model of
A +¬ϕ in the unique model of 1. Thus, A has the finite model property. ��
It follows that the finite model property is a capital, F -definable, property.

We end this subsection with the observation that the theories with the finite model
property are precisely the theories that are maximal with respect to �loc. So:

Theorem 3.17 A has the finite model property iff, for all B, we have A �loc B.

10I am grateful to the anonymous referee for this very short proof.
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3.5.3 Separating Examples

In this section, we provide separating examples between a number of salient notions.
Some of the examples we already covered before but it is pleasant to repeat them for
the sake of overview.

Example 3.4 i-Bisimilarity does not imply mutual faithful interpretability.We have
seen that 1 ≈ EQ. However, it is impossible that 1 �faith EQ, since for any τ such
that 1 � Iτ

0, necessarily there is an n such that 1 proves the τ -translation of there
are at most n elements. So, faithful interpretability is not capital.

? Question
Is faithful interpretability first-order or even second-order definable over EI?

Example 3.5 Mutual faithful interpretability does not imply i-Bisimilarity. Let A
be sequential. It is easy to see that the theories A and A � A are mutually faith-
fully interpretable and, a fortiori, mutually locally faithfully interpretable. By Theo-
rem 3.19, there are A0 ⊇ A and A1 ⊇ A such that A0 �� A1 and A1 �� A0. We have:
(A � A) ⊆ (A0 � A1). Suppose there were an A′ ⊇ A with A′ �� (A0 � A1). Then,
since A′ is sequential and, hence, connected,11 it follows that Ai � A′, for some i .
But this would give us: Ai � A′ � (A0 � A1) � A1−i . Quod non.We may conclude
that A �≈ (A � A).

We show that mutual faithful interpretability is incomparable to ≈.

Example 3.6 Mutual faithful interpretability is not mutual locally faithful inter-
pretability and mutual locally faithful interpretability is not i-bisimilarity. We note
that both ��faith and ≈ are subrelations of ��lofa Hence, Example 3.4 also separates
��lofa and ��faith. Example 3.5 separates ��lofa and ≈.

Example 3.7 Interpretability does not imply locally faithful interpretability. Let A
be the theory of dense linear orderings without end-points and let B be CQCA, i.e.
predicate logic for the signature of arithmetic. Clearly, we have A � B. On the other
hand, for any interpretation τ such that A � Bτ , we have A � (¬∧

Q)τ , whereQ is
Robinson’s Arithmetic, since A is decidable andQ is essentially undecidable. Thus,
A ��lofa B.

Example 3.8 Local faithful interpretability does not imply faithful interpretability.
We already showed that 1 �lofa EQ but 1 ��faith EQ.

It might be thought that our example leans on very specific features of piecewise or
many-dimensional interpretations. However, we can improve our example in order to

11See Sect. 3.7.
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get the witnessing interpretations for A �lofa B one-dimensional and without pieces.
We take A the theory of a linear discrete ordering with an initial point without
endpoint, i.e., the theory of the ordering of the natural numbers. This is a complete
finitely axiomatisable theory. See Enderton (2001, Sect. 3.2). We take B the theory
of discrete linear order with both initial point and endpoint. By Theorem 3.15, the
theory B has the finite model property. Clearly, the theory of any finite model of B
can be interpreted in A by a one-dimensional interpretation. It follows that, A �lofa B
using only one-dimensional interpretations. However, since A is complete, there can
be no faithful interpretation of A in B.

3.5.4 The Forward Property

We have, by Theorems 3.6 and 3.10, the following characterisation of �lofa.

• A �lofa B iff A � B and, for all A′ ⊇ A, there is a B ′ ⊇ B, such that A′ � B ′.

We note that this characterisation is reminiscent of the forward property for �lofa. It
is, so to speak, the first step towards the forward property. It turns out that faithful
interpretability does have the forward property with respect to �.

Theorem 3.18 The relation �faith has the forward property.

Proof Suppose K : A �faith B and A ⊆ A′. We claim that A′ �faith (B + (A′)τK ).
Clearly, K ′ : A′ � (B + (A′)τK ), where K ′ is based on τK . Suppose B + (A′)τK �
ϕτK . Then by faithfulness: A′ = A + A′ � ϕ. Hence, K ′ is faithful. We note that it
also follows that B + (A′)τK is consistent. So, we can take B ′ := (B + (A′)τK ). ��
We define the obvious analogue of ≈ for the forward property.

• A relation S is an i-simulation iff (i) S is a subrelation of � and (ii) S has the
forward or zig property: if A S B and A′ ⊇ A, then, there is a B ′ ⊇ B, such that
A S B.

• B simulates A, or A is simulated by B, or A � B iff, there is a simulation S such
that A S B.

• A ∼= B iff A � B and A 	 B.

Trivially. � and ∼= are capital.
We note that ≈ is a subrelation of ∼=. In Sect. 3.7, we will provide an example

that ∼= and ≈ do not coincide.
We note that EQ � 1, but not EQ �faith 1. Hence, �faith is strictly contained in

�.
InAppendix 3.8.6.6we show that faithful retractions in the categories INTi , for i ≤

3, have the forward property. So we could define A � B as the maximal simulation
that is a subrelation of ��. This relation would contain the faithful retractions of INT3

(and, a fortiori, the faithful retractions of INTi for i ≤ 3). We note that the induced
equivalence relation of � is precisely ≈.
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3.6 Arithmetic

In the present section, we collect a number of characterisations and results connected
with the arithmetical theory S1

2.

3.6.1 Incomparable Theories

We need a sufficient store of incomparable extensions of given finitely axiomatised
theories. The following theorem provides these.

Theorem 3.19 Suppose A and B both tolerate S1
2. Then, there are A� ⊇ A and

B� ⊇ B, that are incomparable w.r.t. �, i.e., A� �� B� and B� �� A�.

Proof Suppose τ witnesses that A tolerates S1
2 and ν witnesses that B tolerates S1

2.
We take A′ := A + (S1

2)
τ and B ′ := B + (S1

2)
ν . By the Gödel Fixed Point Lemma,

we find R such that:

S1
2 � R ↔ ((A′ + Rτ ) � (B ′ + ¬ Rν)) ≤ ((B ′ + ¬ Rν) � (A′ + Rτ )).

We take A� := A′ + Rτ and B� := B ′ + ¬ Rν . Suppose A� � B�. It follows that R
or R⊥. In case we have R, we find, by �1-completeness, that A′ � ⊥. Quod non. If
we have R⊥, it follows by the fixed point equation that (B ′ + ¬ Rτ ) � (A′ + Rν).
By �1-completeness, we have B ′ � ⊥. Quod non. We may conclude that A� �� B�.

The proof that B� �� A� is similar. ��

3.6.2 Characterisations

We can connect our previous characterisations to arithmetical ones using two basic
insights. We employ complexity measure ρwhich is depth of quantifier alternations.
The formula conn(A) refers to consistency for n-provability. Here we only allow n-
proofs, i.e., proofs involving formulas of complexity ≤ n. See also Appendix 3.8.1.

For the notion of sequentiality, see Appendix 3.9.

I. (S1
2 + conn(A)) � A, where n ≥ ρ(A).

II. If A is sequential, then A � (S1
2 + conn(A)), where n ≥ ρ(A).

In (I), the translation that realises the interpretation is the Henkin translation η. The
proof of (I) is described in great detail in Visser (2018). The proof of (II) is described
in great detail in Visser (2019).

We have the following basic insight.

Theorem 3.20 Suppose A is sequential. Then, A � B iff A � (S1
2 + conρ(B)(B)).
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Proof Suppose A is sequential and A � B. Then A + Bτ is consistent, for some
τ . But A + Bτ is sequential, hence it interprets S1

2 + conρ(B)(B). We can see this
by noting that for any n ≥ ρ(A + Bτ ), we have (A + Bτ ) � (S1

2 + conn(A + Bτ )).
On the other hand, for sufficiently large n, we have S1

2 � 
B,ρ(B)⊥ → 
A+Bτ ,n⊥.
So it follows that (A + Bτ ) � (S1

2 + conρ(B)B). Thus, we may conclude that A �
(S1

2 + conρ(B)B).
The other direction is immediate by Basic Insight (I). ��

If we are interested in local tolerance, we do not need the assumption of sequentiality.

Theorem 3.21 A is locally tolerant iff, for all true �1-sentences P, we have A �
(S1

2 + P).

Proof From-left-to-right is just specialisation. From-right-to-left, we may conclude
A � B, from the fact that A � (S1

2 + conn(B)). ��
We can characterise interpretability as local �1-conservativity in case either the
target theory or the source theory is sequential.

Theorem 3.22 Suppose B is sequential. Then, A � B iff, for all �1-sentences P,
iff B � (S1

2 + P), then A � (S1
2 + P).

Proof Suppose A � B. Then, trivially, for all �1-sentences P , iff B � (S1
2 + P),

then A � (S1
2 + P).

Conversely, suppose, for all �1-sentences P , iff B � (S1
2 + P), then A � (S1

2 +
P).

Suppose B is sequential. Then, we have B � (S1
2 + conρ(B)(B)) and, hence, A �

(S1
2 + conρ(B)(B)) � B. ��

We remind the reader of the Friedman Characterisation.

Theorem 3.23 Suppose A is sequential. Then,
A � B iff (EA + conρ(A)(A)) ⊇ (EA + conρ(B)(B)).

Here EA is Elementary Arithmetic or I�0 + Exp. In the context of this paper the
following characterisation is relevant.

Theorem 3.24 Suppose A is sequential. The following are equivalent:

a. A � B.
b. For all n ≥ ρ(B), there is an m ≥ ρ(A), such that

(S1
2 + conm(A)) ⊇ (S1

2 + conn(B)).
c. There is an m ≥ ρ(A), such that (S1

2 + conm(A)) ⊇ (S1
2 + conρ(B)(B)).

Proof (a) ⇒ (b). Suppose τ witnesses A � B. We can use τ to transform, in the
context of S1

2, an n-inconsistency proof of B into an m-inconsistency proof of A,
wherem is roughly n + ρ(τ ). Here ρ(τ ) is the maximum of ρ(δτ ) and the ρ(Pτ ). The
main point is that ρ(ϕτ ) will be ρ(ϕ) + ρ(τ ) plus some fixed standard overhead.

(b) ⇒ (c). This is just specialisation.
(c) ⇒ (a). We have: A � (S1

2 + conm(A)) ⊇ (S1
2 + conρ(B)(B)) � B. ��
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3.6.3 Local (In)tolerance

We start with a question.

? Question
Let’s say that a theory is self-confident iff it is mutually interpretable with
a sequential theory. Does every locally tolerant theory have a self-confident
extension? If not, does every tolerant theory have a self-confident extension?

It is easy to give examples of theories that are locally intolerant. For example, every
decidable theory is locally intolerant since it does not tolerate S1

2. It is unknown
whether there is a theory that tolerates S1

2 but still is locally intolerant.

? Question
Is there a locally intolerant theory A with A � S1

2?

In this subsection, we take a small step in thinking about this question by proving
the following theorem.

Theorem 3.25 Suppose A is locally intolerant. Then, it has an extension B such that
S1
2 ��A

B

B,ρ(B)⊥. So, B believes in its own restricted inconsistency in the strongest

possible way.

Proof Suppose, A is locally intolerant. This tells us that there exists a false �1-
sentence S, such that, for all τ : A → �A, we have A + (S1

2)
τ � Sτ . In other words,

S1
2 ��A

A
S.

We show that there is a B ⊇ A, such that, for all τ : A → �A, we have B +
(S1

2)
τ � 
τ

B,ρ(B)⊥. In other words, S1
2 ��B 
B,ρ(B)⊥.

In case S1
2 is not interpretable in A, we are easily done, taking B := A. Suppose

ν witnesses S1
2 � A. We find R such that S1

2 � R ↔ S ≤ 
A,m Rν . Here we take
m to be max(ρ(A), ρ(R)) + 1. We note that the complexity of R only depends on
the complexity of S plus some fixed constant derived from the complexity of the
provability predicate and the overhead of the fixed point construction.

Consider any τ : A → �A. We work in α := A + (S1
2)

τ . We allow α to be incon-
sistent. We take a cut I of τ , such that α � ∀x ∈ I 22

x ∈ δτ and α � (T1
2)

I . We
have, ex hypothesis, α � SI . Hence, α � (R ∨ R⊥)I . We have, by verifiable �1-
completeness, using that I is sufficiently ‘deep’, α � RI → 
τ

A,m R
ν and, by the

fixed-point equation, α � (R⊥)I → 
I
A,m R

ν . Hence, A + (S1
2)

τ � 
τ
A,m R

ν .
We take B := A +¬ Rν . If B would be inconsistent, we would have A � Rν .

Hence, by cut-elimination, A �m Rν . So, for some standard p, we may conclude
that A � p wit 
ν

A,m R
ν . It follows that A � ∨

q≤p(q wit S)ν . Since ¬ S, we have
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∧
q≤p ¬ q wit S, and, hence, by �1-completeness, A � ∧

q≤p(¬ q wit S)ν . So, A is
inconsistent. Quod non.

Clearly, for any τ , we have B + (S1
2)

τ � 
τ
B,ρ(B)⊥, noting that ρ(B) ≥ m. ��

Our result shows that a sequential A must be locally tolerant. If a sequential A were
locally intolerant, then there would be a sequential B that proves 
B,ρ(B)⊥ for all
interpretations of S1

2 in B. But we know there is an interpretation of S1
2 on which we

have conρ(B)(B).12 This is a weaker result than the result proved byHarvey Friedman
and, independently, by Jan Krajíček. See, e.g., Smoryński (1985), Krajíček (1987)
and Visser (2005). However, the aim of this subsection was more than just reproving
that earlier theorem.

3.7 Sequential Theories

In the present section we discuss a number of properties of sequential theories visible
over our framework. We have the following Basic Insights.

Theorem 3.26 Suppose A is sequential.

a. For every B there is a sequential C with C � B.
b. If A ⊆ B, then B is sequential.
c. A is connected, i.e., suppose A � B � C, then A � B or A � C.
d. If A �� B, then B is tolerant, and, a fortiori, locally tolerant.
e. If B is sequential and A � B, then there is an A′ ⊇ A such that A′ �� B.

Proof

Ad (a) This can be seen in twoways.We can formC := seq(B) as follows.We add a
unary predicate� and a binary predicate∈ to the language of B.We relativise
B to� and we add AS. Alternatively, we can take C := (S1

2 + conρ(B)(B)).
Ad (b) This is a triviality.
Ad (c) This is a non-trivial result. Itwas first proved byPudlák (1983).An essentially

different proofwas given by Stern (1989). For a discussion of the significance
of this result: see Mycielski et al. (1990).

Ad (d) Tolerance simply means that for any possible infinitely axiomatised theory
X , there is a τ such that B + X τ is consistent. Alternatively, tolerance means
that B faithfully interprets predicate logic in the language with one binary
predicate.
The fact that any sequential theory is tolerant was proved by Harvey Fried-
man (see Smoryński (1985)) and, independently, Jan Krajíček (see Krajíček
(1987)). The strengthening involving mutual interpretablity was noted in
Visser (2005).

Ad (e) This insight is one of the central results of Visser (2014). ��

12This argument does not work for self-confident theories, where a theory C is self-confident if
C � (S1

2 + conρ(C)(C)). So, one may wonder whether it can be adapted to accommodate these?
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The property of being mutually interpretable with a sequential theory can be given
the following form. A theory A is self-confident if A � (S1

2 + conρ(A)(A)). It is easy
to see that the self-confident theories are precisely the theories that are mutually
interpretable with a sequential theory. (Warning: This last result holds only in the
finitely axiomatised case.) Thus, Basic Insight (d) tells us that all self-confident
theories are locally tolerant, and we even know that all such theories are tolerant.
We note that self-confidence is definitely a capital notion. Example 3.5 illustrates
that, while sequentiality is upwards closed under ⊆, self-confidence is not upwards
closed under ⊆.

Basic Insight (e) can be connected to our framework in an interesting way.

Theorem 3.27 Suppose A and B are sequential, then A ≈ B iff A �� B.

Proof From-left-to-right, is immediate, since �� is capital. We prove the right-to-
left direction. Let B be �� restricted to the sequential theories. Suppose A and B are
sequential and A �� B and A ⊆ A′. Then, A′ � B. Then, by (d), there is a B ′ ⊇ B
such that A′ �� B ′. Thus, we have the forward property. Similarly, we have the
backward property. Trivially, B is a subrelation of ��. We may conclude that B is a
i-bisimulation. Hence B is a subrelation of ≈. ��
Example 3.9 It is easily seen that, for any theory A, we have A ≈ (A � 1). Since,
1 ≈ EQ, it follows that A ≈ (A � EQ). It is easy to see that A � EQ cannot be
sequential. Thus, we have, for sequential A, that A ≈ (A � EQ) and A � EQ is not
sequential. Hence, sequentiality is not capital.

Example 3.10 We note that, for sequential A, we have A �� (A � A). It follows
that A ��faith (A � A).13 By Theorem 3.19, there are A0 and A1 extending A such
that A0 �� A1 and A1 �� A0. So, (A0 � A1) ⊇ (A � A), Since any A′ extending A
is sequential by Basic Insight (b), no such A′ can be mutually interpretable with
(A0 � A1) by Basic Insight (c). So, A �≈ (A � A). Thus, there are theories B that
are mutually faithfully interpretable with a sequential theory A, but that are not
i-bisimilar to it.

? Question
Are the sequential theories closed under sentential congruence? And, if not,
are they closed under iso-congruence? We already know that the sequential
theories are closed under bi-interpretability.

We have the following theorem.

Theorem 3.28 Suppose B is sequential. Then, A � B iff A � B.

13This is immediate by the Friedman-Krajíček result (see Smoryński (1985), Krajíček (1987), Visser
(2005)).
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Proof We define C S D iff C � D and D is sequential. We show that S has the
forward property. Suppose C S D. Then C � D and D is sequential. Let C ′ ⊇ C .
Since D is locally tolerant, there is a D′ ⊇ D such that D′ � C ′.

Alternatively, we know by the results of Visser (2005), that A � B iff A �faith B.
Theorem 3.18 tells us that�faith is a subrelation of�, which is in its turn a subrelation
of �. ��
We note that in the first proof of Theorem 3.28 we just used the fact that sequential
theories are essentially locally tolerant. So, in fact, we have proved: if B is essentially
locally tolerant, then A � B iff A � B.

Example 3.11 Suppose A is sequential. We have already seen that A �≈ (A � A).
On the other hand, we have A � (A � A), and, hence A 	 (A � A). It is clear that
the mapping A  → (A � A) has the forward property. Hence A ∼= (A � A).

Alternatively, we could simply note that, by Theorem 3.28, A ∼= B iff A �� B,
for sequential A. Moreover, by the results of Visser (2005), we have that A �� B iff
A ��faith B, for sequential A. So we can apply Example 3.10.

Let [A]∼ be the equivalence class of∼. Let SEQ be the class of sequential theories.
Our knowledge at this point is summarised by the following theorem.

Theorem 3.29 Suppose A is sequential Then:

([A]�� ∩ SEQ) = ([A]≈ ∩ SEQ) � [A]≈ � [A]∼= = [A]��faith = [A]��lofa = [A]��.

Proof Suppose A is sequential. Let’s number the claims of the theorem.

([A]�� ∩ SEQ)
(1)= ([A]≈ ∩ SEQ)

(2)
� [A]≈

(3)
� [A]∼= (4)= [A]��faith (5)= [A]��lofa (6)= [A]��.

Claim 1 is Theorem 3.27. The non-identity in Claim 2 is Example 3.9. The non-
identity in Claim 3 is by Example 3.11. The identities 5 and 6 follow since by the
results of Visser (2005), we have A �� B iff A ��faith B in case A is sequential.
Moreover, ��lofa is between ��faith and ��. Finally, by Theorem 3.28 in combination
with identities 5 and 6, we have identity 4. ��
Remark 3.4 We can do a bit of reverse meta-mathematics and rederive earlier
insights from Theorem 3.27.

We note that the fact that sequential theories are locally tolerant is immediate from
Theorem 3.27. Consider any sequential A. Our theory is mutually interpretable with
S1
2 + conρ(A)(A). Hence, A ≈ (S1

2 + conρ(A)(A)). By Theorem 3.21, it is clear that
S1
2 + conρ(A)(A) is locally tolerant. Since local tolerance is a capital property, we

find that A is locally tolerant. I do not see how we to derive Basic Insight (d) in full
from Theorem 3.27 without self-referential arguments.

We show that Basic Insight (e) follows from Theorem 3.27. Suppose A and B are
sequential and A � B. By Theorem 3.24, there is an m ≥ ρ(B), such that
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(S1
2 + conm(B)) ⊇ (S1

2 + conρ(A)(A)).

Since A ≈ (S1
2 + conρ(A)(A)) and B ≈ (S1

2 + conm(B)), we are easily done. ��
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3.8 Appendix: Basics

In this appendix, we provide detailed definitions of translations, interpretations and
morphisms between interpretations.

3.8.1 Theories and Provability

Theories in this paper are one-sorted theories of first order predicate logic of finite
relational signature. We take identity to be a logical constant. Our official signatures
are relational, however, via the term-unwinding algorithm,we can also accommodate
signatures with functions. For most purposes in the present paper a theory can be
identified with a deductively closed set of sentences of the given language. The
exception is the few places where we use Rosser style arguments.

Our main focus will be on finitely axiomatised theories, but in this appendix, we
will develop the material also for the infinitely axiomatised case.

We will sometimes use the modal notation 
Aϕ for provA( �ϕ� ). We will also
consider restricted provability. This is provability where we restrict the formulas
occurring in the proof to formulas of complexity n, for some given n. Our measure
of complexity is depth of quantifier alternations. This measure is defined officially
as follows: ρ := ρ∃, where:

• ρ∃(A) := ρ∀(A) = 1, if A is atomic.
• ρ∃(¬ B) := ρ∀(B), ρ∀(¬ B) := ρ∃(B).
• ρ∃(B ∧ C) := max(ρ∃(B), ρ∃(C)), ρ∀(B ∧ C) := max(ρ∀(B), ρ∀(C)).
• ρ∃(B ∨ C) := max(ρ∃(B), ρ∃(C)), ρ∀(B ∨ C) := max(ρ∀(B), ρ∀(C)).
• ρ∃(B → C) := max(ρ∀(B), ρ∃(C)), ρ∀(B → C) := max(ρ∃(B), ρ∀(C)).
• ρ∃(∃v B) := ρ∃(B), ρ∀(∃v B) := ρ∃(B) + 1.
• ρ∃(∀v B) := ρ∀(B) + 1, ρ∀(∀v B) := ρ∀(B).

We write 
A,nϕ for provability restricted to formulas ψ with ρ(ψ) ≤ n.
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3.8.2 Translations

Translations are the heart of our interpretations. In fact, they are often confused with
interpretations, but we will not do that officially. In practice it is often convenient to
conflate an interpretation and its underlying translation. The distinction is essential
when we consider categories of theories and interpretations.

To formulate the notion of translation it is pleasant to allow in the target language
lambda terms of the form λx0 . . . xn−1.ϕ(x0, . . . , xn−1), where A is a formula. We
will call a term of this form an n-term. We think of such terms modulo α-conversion
(renaming of bound variables) as is usual in λ-calculus.

As a start. we define more-dimensional, one-sorted, one-piece relative transla-
tions without parameters. We will later indicate how to modify the definition to get
piecewise translations and interpretations. We do not treat the case where we add
parameters.

Let � and � be one-sorted signatures. A translation τ : � → � is given by a
triple 〈m, δ, F〉. Here δ will be a closed m-term. The mapping F associates to each
relation symbol R of � with arity n a closed m × n-term of signature �.

We demand that predicate logic proves F(R)(x0, . . . , xn−1) → (δ(x0) ∧ . . .

δ(xn−1)). Of course, given any candidatem × n-term F(R) not satisfying the restric-
tion, we can obviously modify it to satisfy the restriction.

We translate �-formulas to �-formulas as follows.

• (R(x0, . . . , xn−1))
τ := F(R)(x0, . . . , xn−1).

Here we demand that the sequences xi are fully disjoint if the original variables
are xi are different.
The single variable xi of the source language needs to have no obvious connection with the

sequence of variables xi of the target language that represents it. We need some conventions to

properly handle the association xi  → xi .14

• (·)τ commutes with the propositional connectives;
• (∀x ϕ)τ := ∀x (δ(x) → ϕτ );
• (∃x ϕ)τ := ∃x (δ(x) ∧ ϕτ ).

Here are some convenient conventions and notations.

• We write δτ for ‘the δ of τ ’ and Fτ for ‘the F of τ ’.
• We write Rτ for Fτ (R).
• We write x ∈ δ for: δ(x).

14There are several ways of handling such conventions. First we can work with a fixed global
association between the xi and the xi . Secondly, we can make such an association local and carry it
around as an extra argument of the translation. Thirdly, we can throw away the mechanism of using
variable-names and work in a language that works with explicit links between places. Fourthly, we
can sidestep the problem byworking inmany-sorted languages and, for every k, adding sequences of
length k (of various sorts). This construction can be viewed as a representation of more dimensional
interpretations as arrows in a Kleisli category. Regrettably, each way of proceeding needs some
work and produces some awkwardness somewhere. In this paper, we will assume that these details
are taken care of by one strategy or by another.
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There are some natural operations on translations. The identity translation id := id�

is one-dimensional and it is defined by:

• δid := λx .(x = x),
• Rid := λx.Rx.

We can compose relative translations as follows. Suppose τ is an m-dimensional
translation from� to�, and ν is a k-dimensional translation from� to	. We define
the m × k-dimensional interpretation τν or ν ◦ τ as follows.

• Wesuppose thatwith the variable x weassociate under τ the sequence x0, . . . , xm−1

and under ν we send xi to xi .
δτν(x0, . . . , xm−1) := δν(x0) ∧ . . . ∧ δν(xm−1) ∧ (δτ (x0, . . . , xm−1))

ν ,
• Let R be n-ary. Suppose that under τ we associate with xi the sequence xi,0, . . . ,
xi,m−1 and that under ν we associate with xi, j the sequence xi, j . We take:
Rτν(x0,0, . . . xn−1,m−1) =

δτ (x0,0) ∧ . . . ∧ δτ (xn−1,m−1) ∧ (Rτ (x0,0, . . . xn−1,m−1))
ν .

We canmake a disjunctive interpretation as follows. Suppose τ and ν are translations
from � to �. We assume that τ is k-dimensional and ν is m-dimensional. Let ϕ be
a �-sentence. We introduce a max(k,m)-dimensional interpretation τ 〈ϕ〉ν.

We first ‘lift’ one of the interpretations by padding to get the dimensions equal.15

Suppose, e.g., that k < m. Then we define the auxiliary translation τ ′ as follows:
• δτ ′(xz) :↔ δτ (x),
• Pτ ′(x0z0, . . . , xn−1zn−1) := Pτ (x0, . . . , xn−1).

Here the dimensionof the z ism − k. In this caseν ′ := ν. Ifm < k the construction
is similar.

Suppose the results of the padding operation are τ ′ and ν ′. We define τ 〈ϕ〉ν as
follows:

• δτ 〈ϕ〉ν(x) := ((ϕ ∧ δτ ′(x)) ∨ (¬ϕ ∧ δν ′(x))).
• Rτ 〈ϕ〉ν(x0, . . . , xn−1) :=

((ϕ ∧ Rτ ′(x0, . . . , xn−1)) ∨ (¬ϕ ∧ Rν ′(x0, . . . , xn−1))).
Here the x aremax(k,m)-dimensional.

An m-dimensional translation τ preserves identity if

x =τ y :=
∧

i<m

(δτ (xi ) ∧ δτ (yi ) ∧ xi = yi ).

An m-dimensional translation τ is unrelativized if δτ (x) := �. An m-dimensional
translation τ is direct if it is unrelativised and preserves identity. Note that all these
properties are preserved by composition (modulo provable equivalence in predicate
logic).

Consider amodelMwith domainM of signature� and k-dimensional translation
τ : � → �. Let N := δMτ := {m ∈ Mk | M |= δτm}. Suppose N is not empty. Let

15As we will see the padding can be avoided by using piecewise interpretations.
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E be the equivalence relation on N defined inM by=τ . Then τ specifies an internal
modelN ofM with domain N/E and withN |= R([m0]E , . . . , [mn−1]E ) iffM |=
Rτ (m0, . . . ,mn−1). We will write τ̃ (M) for the internal model ofM given by τ . We
treat the mapping τ ,M  → τ̃M as a partial function that is defined precisely if δMτ
is non-empty. Let Mod or (̃·) be the function that maps τ to τ̃ . We have:

Mod(τ ◦ ρ)(M) = (Mod(ρ) ◦Mod(τ ))(M).

So, Mod behaves contravariantly.

3.8.3 Relative Interpretations

A translation τ supports a relative interpretation of a theory U in a theory V , if, for
all U -sentences ϕ, we have U � ϕ ⇒ V � ϕτ . Note that this automatically takes
care of the theory of identity and assures us that δτ is inhabited. We will write
K = 〈U, τ , V 〉 for the interpretation supported by τ . We write K : U → V for: K
is an interpretation of the form 〈U, τ , V 〉. If M is an interpretation, τM will be its
second component, so M = 〈U, τM , V 〉, for some U and V .

Par abus de langage, we write ‘δK ’ for: δτK ; ‘RK ’ for: RτK ; ‘A
K ’ for: AτK , etc.

Here are the definitions of three central operations on interpretations.

• Suppose U has signature �. We define:
IDU : U → U is 〈U, id�,U 〉.

• Suppose K : U → V and M : V → W . We define:
M ◦ K : U → W is 〈U, τM ◦ τK ,W 〉.

• Suppose K : U → (V + ϕ) and M : U → (V +¬ϕ). We define:
K 〈ϕ〉M : U → V is 〈U, τK 〈ϕ〉τM , V 〉.

It is easy to see that we indeed correctly defined interpretations between the theories
specified.

3.8.4 Global and Local Interpretability

We can view interpretability as a generalisation of provability. When we take this
standpoint, we write:

• U � V (or V �U ) for: ∃K K : V → U , or:U interprets V (or: V is interpretable
in U ).

• U �� V for: (U � V and V �U ), or: U and V are mutually interpretable.

A closely related notion is local interpretability. We define

• U locally interprets V orU �loc V iff, for every finitely axiomatised subtheory V0

of V we have U � V0.
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• We write V �loc U and U ��loc V with the obvious meanings.

If we want to stress the contrast between local and ordinary interpretability, we call
ordinary interpretability global interpretability. We will write �glob, etcetera.

The degrees of of global interpretability are DEGglob and the degrees of local
interpretability are DEGloc.

Example 3.12 Let 2 be the theory in the language of identity that says that there
are precisely two elements. Let INF be the theory in the language of identity that
has for every n and axiom saying ‘there are at least n elements’. Then, 2 �loc INF
but 2 ��glob INF. We will see that when we admit piecewise interpretability, we may
replace 2 by 1 in this observation.

3.8.5 Piecewise Translations and Interpretations

In this subsection we introduce piecewise translations and interpretations. For some
further information on piecewise translations and interpretations see Visser (2012).

Before explaining what piecewise translations and interpretations are, we state
some of their advantages.

• Many constructions are conceptually cleaner when we use piecewise translations
and interpretations. Specifically, we avoid a lot of padding. As a consequence the
heuristics for a construction is usually easier to grasp.

• The unnatural difference between one-element and at-least-two-element domains
disappears.

We will show, in Appendix 3.8.8, that, in case our interpreting theory proves that
there are at least two elements, piecewise translations can be simulated by translations
without pieces.

The idea of piecewise translations is that we can build up the domain from a
number of pieces that may or may not be of the same dimension and that may or
may not overlap.

A piecewise translation is a tuple 〈X, f, δ, F〉. Here X is a non-empty set of pieces
and f is a function from X to ω. The function f gives us the arity of the domain
associated to each piece. We use a, b, … to range over pieces.

The term δa is a f a-term. Suppose P is n-ary. Let g be a function from
{0, . . . , n − 1} to X . Then Fg(P) is a ( f g0+ f g1+ · · · + f g(n − 1))-term.

Here are the clauses to lift our translation to the full language.

• Consider an n-ary predicate symbol P . Let j be a function from the set {0, . . . , n −
1} to variables. Say j (i) = xi . Suppose h is a function from {x0, . . . , xn−1} to X .
(Here we allow that, for some i and j , the variables xi and x j are the same.) We
define:

(R(x0, . . . , xn−1))
τ ,h := Fh◦ j (R)(x0, . . . , xn−1).



3 Extension and Interpretability 83

Here xi has length f h(xi ). We demand that the sequences xi are fully disjoint if
the original variables are xi are different.16

• Suppose h is a function from the free variables of (ϕ ∧ ψ) to pieces. Then, (ϕ ∧
ψ)τ ,h = (ϕτ ,h�FV(ϕ) ∧ ψτ ,h�FV(ψ)).
Similarly, for the other propositional connectives.

• (∀x ϕ)τ ,h := ∧
a∈X ∀xa (δa(xa) → ϕτ ,h[x :=a]).

Here xa is the sequence of variables we associate to x for the piece a. Similarly,
for the existential quantifier.

We can now define the notion of piecewise interpretation in the usual way using
piecewise translations.

We give three important examples of howpiecewise interpretationworks. A fourth
example is given in Appendix 3.8.7.

Example 3.13 LetU be any theory and let 2+ be the theory of two named elements,
say c and d. We show that U � 2+. We write ε for the empty sequence. We define:

• X := {0, 1},
• f (i) := 0,
• δi (ε) := �,
• Fi j (=)(ε, ε) := �, if i = j

Fi j (=)(ε, ε) := ⊥, otherwise,
• F0(C)(ε) := �, F1(C)(ε) := ⊥,
• F0(D)(ε) := ⊥, F1(D)(ε) := �,

We leave the easy verification that we did indeed define an interpretation of 2+ to
the reader. We see that our interpretation is, in a sense, entirely independent of (the
language of) U . We note that the interpretation would have worked even if we had
started from a free logic. Thus, piecewise interpretation truly makes creatio ex nihilo
possible.

Remark 3.5 We can use a similar construction to show that the theory of any finite
model is interpretable in any theory. It follows that any two theories U and V such
that both U and V have a finite model are mutually interpretable.

Example 3.14 We define the operation � on theories as follows. The signature of
U0 �U1 is the disjoint union of the signatures of U0 and U1, plus two new unary
predicate �0 and �1. We keep identity out of this construction. Identity simple
remains identity. The axioms of U0 �U1 are:

16We treat identity as any relation. Note that, in this way, we allow identity across pieces. We could
also opt to stipulate that the pieces always be disjoint. For an appropriate notion of definable isomor-
phism, an interpretation with non-disjoint pieces is always definably isomorphic to an interpretation
with only disjoint pieces.
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• The theory of identity for the extended signature,
• P(x0, . . . , xn−1) → ∧

j<n �i (x j ), if P is derived from the signature of Ui ,
• the axioms of Ui relativised to �i ,
• ∀x (�0(x) ∨�1(x)),
• ∀x ¬ (�0(x) ∧�1(x)).

Suppose τ0 witnesses V �U0 and τ1 witnesses V �U1. We construct a translation
ν := [τ0, τ1] that witnesses V � (U0 �U1).

• Xν := X τ0 ⊕ X τ1 := ({0} × X τ0) ∪ ({1} × X τ1),
• δν,(i,a) := δτi ,a,
• Suppose P is derived from an n-ary predicate of Ui . Then:

Fν,h(P) := F τi ,π1◦h(P) if (π0 ◦ h)(k) = i , for all k < n,
Fν,h(P) := λx0 · · · xn−1 · ⊥, otherwise.
Here x j is a sequence of variables corresponding to the piece π1(h( j)).

We note that we can redo Example 3.14, by noting that, for any U , we have U � 1.
Hence, U � 1 � 1.

Example 3.15 We define the operation ν := τ0〈ϕ〉τ1 using pieces.

• Xν := X τ0 ⊕ X τ1 ,
• δν,(0,a)(x) := (ϕ ∧ δτ0,a(x)),

δν,(1,a)(x) := (¬ϕ ∧ δτ1,a(x)),
• Suppose P is derived from an n-ary predicate of Ui . Then:

Fν,h(P)(x0, . . . , xn−1) := (ϕ ∧ Pπ1◦h
τ0

(x0, . . . , xn−1)),
if (π0 ◦ h)(k) = 0, for all k < n,

Fν,h(P)(x0, . . . , xn−1) := (¬ϕ ∧ Pπ1◦h
τ1

(x0, . . . , xn−1)),
if (π0 ◦ h)(k) = 1, for all k < n,

Fν,h(P)(x0, . . . , xn−1) := ⊥, otherwise.

The definition of direct for piecewise translations is simply that every piece has an
unrelativised domain and as identity the pointwise identity of the components of the
sequences representing the elements.

Regrettably there is no worked out treatment of piecewise interpretations with
parameters.

We discuss the connection between piecewise and piece-free interpretations more
closely in Appendix 3.8.8. Appendix 3.8.6 is needed for the proper perspective on
Appendix 3.8.8.

3.8.6 Five Categories

We do not automatically get a category of theories and interpretations from the
machinery we built up until now. For example, IDU ◦ IDU will not be strictly speak-
ing identical with IDU . We will obtain a category, when we divide out a suitable
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equivalence among interpretations. Below we will consider five kinds of equiva-
lence that will give us five different categories. One important point of the categories
is that isomorphism in each of them defines a salient notion of sameness of theories.

We treat our categories in the case where we do not have parameters, nor pieces.
To add these features, we have to adapt our definitions a bit. We sketch the addition
of pieces via the Kleisli construction in Appendix 3.8.8.

3.8.6.1 Provable Equivalence of Interpretations

Two interpretations are provably equivalent when the target theory thinks they are
the same. Specifically, two interpretations K , M : U → V are provably equivalent
if they have the same dimension, say m, and:

• V � ∀x (δK (x) ↔ δM(x)),
• V � ∀x0, . . . , xn−1∈δK (RK (x0, . . . , xn−1) ↔ RM(x0, . . . , xn−1)).

Modulo this identification, the operations identity and composition give rise to a cate-
gory INT0,where the theories are objects and the interpretations arrows. Isomorphism
in this category is synonymy or definitional equivalence. This is the strictest notion
of identity between theories in the literature. It was first introduced by de Bouvère
(1965a, b).

Let MOD be the category with as objects classes of models, where the models in
each class have the same signature, and as morphisms all functions between these
classes. We define Mod(U ) as the class of all models of U . Suppose K : U → V .
Then,Mod(K ) is the function fromMod(V ) toMod(U ) given by:M  → K̃ (M) :=
τ̃K (M). It is clear that Mod is a contravariant functor from INT0 toMOD.

3.8.6.2 Definable Isomorphism of Interpretations

For many applications provable equivalence is too strict. A better notions is provable
isomorphism or i-isomorphism.

Consider K , M : U → V . Suppose K ism-dimensional and M is k-dimensional.
An i-isomorphism between interpretations K , M : U → V is given by an m + k-
term F in the language of V . We demand that V verifies that “F is an isomorphism
between K and M”, or, equivalently, that, for each modelM of V , the function FM
is an isomorphism between K̃ (M) and M̃(M).

We spell out the syntactical definition of an i-isomorphism F : K ⇒ M .

• V � x F y → (x ∈ δK ∧ y ∈ δM).
• V � (x =K u ∧ u F v ∧ v =M y) → x F y.
• V � ∀x ∈ δK ∃y ∈ δM x F y.
• V � (x0Fy0 ∧ . . . xn−1Fyn−1) → (RK (x0, . . . , xn−1) ↔ RM(y0, . . . , yn−1)).

Here the last item includes identity in the role of R !
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Two interpretations K , M : U → V , are i-isomorphic iff there is an i-isomorphism
between K and M . Wilfrid Hodges calls this notion: homotopy. See Hodges (1993),
p. 222.

We can also define the notion of being i-isomorphic semantically. The interpreta-
tions K , M : U → V , are i-isomorphic iff there is an F such that, for all V -models,
M, the relation FM is an isomorphism between K̃ (M) and M̃(M).

The default in this paper is that theories have finite signature: In this case we
have a third characterisation. The interpretations K , M : U → V , are i-isomorphic
iff, for every V -modelM, there is anM-definable isomorphism between K̃ (M) and
M̃(M). This characterisation follows by a simple compactness argument.

Clearly, if K and M are provably equivalent in the sense of the previous sub-
subsection, they will be i-isomorphic. The notion of i-isomorphism give rise to a
category of interpretations modulo i-isomorphism. We call this category INT1.

Isomorphism in INT1 is bi-interpretability. Bi-interpretability is a very good
notion of sameness that preserves such diverse properties as finite axiomatisabil-
ity and κ-categoricity.

3.8.6.3 Isomorphism

Our third notion of sameness of the basic list is that K and M are the same if,
for all models M of V , the internal models K̃ (M) and M̃(M) are isomorphic.
We will simply say that K and M are isomorphic. Clearly, i-isomorphism implies
isomorphism. We call the associated category INT2. Isomorphism in INT2 is iso-
congruence.

3.8.6.4 Elementary Equivalence

The fourth notion is to say that two interpretations K and M are the same if, for each
M, the internal models K̃ (M) and M̃(M) are elementary equivalent. We will say
that K and M are elementary equivalent.

By the Completeness Theorem, we easily see that this notion can be alternatively
defined by saying that K is elementary equivalent to M iff, for allU -sentences A, we
have V � AK ↔ AM . It is easy to see that isomorphism implies elementary equiv-
alence. We call the associated category INT3. Isomorphism in INT3 is elementary
congruence or sentential congruence.

3.8.6.5 Identity of Source and Target

Finally, we have the option of abstracting away from the specific identity of inter-
pretations completely, simply counting any two interpretations K , M : U → V the
same. The associated category is INT4. This is the structure of degrees of (global)
interpretability DEGglob. Isomorphism in INT4 is mutual interpretability.
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3.8.6.6 Sections, Faithful Retractions and Isomorphisms

We remind the reader of the following. Consider a category C. Suppose f : x → y
and g : y → x and g ◦ f = idx . In this case, we call f a section or split monomor-
phism. We call g a retraction or split epimorphism. The object x is in this situation
a retract of y.

We have:

Theorem 3.30 Sections in INTi , for i = 0, 1, 2, 3 are faithful interpretations.

Proof Since a section in INTi for i ≤ 3, is automatically a section in INT3. It is
sufficient to prove out claim for INT3. Suppose K : U → V is a section with inverse
M : V → U . We have:

V � ϕτK ⇒ U � ϕτK τM

⇒ U � ϕ ��
The section relation has the forward or zig property w.r.t. theory-extension in INTi ,
for i = 0, 1, 2, 3. This is illustrated by the following diagram.

Theorem 3.31 Let i ∈ {0, 1, 2, 3}. The section relation in INTi has the forward or
zig property with respect to theory extension.

Proof Suppose K : U → V is a section in INTi . Let M be an inverse of K , so
M : V → U and M ◦ K = IDU in INTi . Suppose U ⊆ U ′. We define

V ′ := {ϕ ∈ sent�V | U ′ � ϕτM }.

Clearly, we have an interpretation M ′ : V ′ → U ′ based on τM . We have:

U ′ � ψ ⇒ U ′ � ψτK τM

⇒ V ′ � ψτK

Hence there is an interpretation K ′ based on τK such that K ′ : U ′ → V ′.
We note that the further properties needed to be a retraction in one of our cate-

gories are trivially upwards preserved fromU, K , M, V toU ′, K ′, M ′, V ′, since the
corresponding interpretations are based on the same translations. E.g., in the case
of INT2, suppose M is a model of U ′. Consider the inner model M∗ := τ̃K τ̃M(M)

Since M is a model of U , it follows that M∗ is isomorphic toM. ��
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The above construction has an important disadvantage: it does not prima facie pre-
serve finite axiomatisation. Even ifU , V andU ′ are finitely axiomatised, why should
V ′ be finitely axiomatised? The next result fares better in this respect: faithful retrac-
tions also have the forward property and here finiteness is preserved.

Theorem 3.32 Let i ∈ {0, 1, 2, 3}. The relation of being a faithful retraction in INTi

has the forward or zig property with respect to theory extension. Moreover, the result
is preserved when we restrict ourselves to finitely axiomatised theories.

Proof Suppose K : U → V is a faithful retraction in INTi . Let M be an inverse of
K , so M : V → U and K ◦ M = IDV in INTi . Suppose U ⊆ U ′. We define:

V ′ := V + {ϕτK ∈ sent�V | U ′ � ϕ}.

Clearly, we have an interpretation K ′ : U ′ → V ′ based on τK .
Suppose V ′ � ϕτK . Then, for some χ, we have U ′ � χ and V + χτK � ϕτK . By

the faithfulness of K , we find: U + χ � ϕ. Ergo U ′ � ϕ. So K ′ is faithful.
Suppose V ′ � ψ. Then, V + ϕτK � ψ, for some ϕ such that U ′ � ϕ. It follows

that V + ϕτK � ψτM τK , since we are in INTi with i ≤ 3. By the faithfulness of K , we
have U + ϕ � ψτM . Hence, U ′ � ψτM . So there is an interpretation M ′ based on τM
such that M ′ : V ′ → U ′.

We note that the further properties needed to be a retraction in one of our categories
are upwards preserved fromU, K , M, V toU ′, K ′, M ′, V ′, since the corresponding
interpretations are based on the same translations.

Finally, if V andU ′ are finite, then, so is V ′. Specifically, if B := V and A′ := U ′,
then B ′ := V ′ := B + (A′)τK . ��
Theorem 3.33 Let i ∈ {0, 1, 2, 3}. The relation of being isomorphic in INTi is a
bisimulation with respect to theory extension. Moreover, the result is preserved when
we restrict ourselves to finitely axiomatised theories.

Proof We note that all relevant arrows are sections in INT3 and, hence, faithful. We
can use the proof of the previous theorem to prove the zig and the zag property.
To see that the pairs of interpretations we found do indeed form isomorphisms, we
note that the further properties needed to be an isomorphism in one of our categories
are upwards preserved fromU, K , M, V toU ′, K ′, M ′, V ′, since the corresponding
interpretations are based on the same translations. ��

3.8.7 Sums

We show how to treat the notion of sum in the case where we allow piecewise
interpretations.

The sum U0 �U1 of theories U0 and U1 is defined in Example 3.14. Suppose
Ki : Ui → W , for i < 2. In Example 3.14, we defined the interpretation [K0, K1] :
U0 �U1 → W .
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We note that U0 �U1 is synonymous with U1 �U0 and (U0 �U1) �U2 is syn-
onymous with U0 � (U1 �U2) and that both are synonymous with the ternary sum
�(U0,U1,U2) which is defined in the obvious way using �0, �1 and �2.

We show that � is the sum in the categories INTi for 1 ≤ i ≤ 4 where we also
include piecewise interpretability. We remind the reader of the sum diagram.

The arrows in j interpretsUj inU0 �U1 by relativisation to� j . We note that, by our
conventionswe should take x =in j y iff� j (x) ∧� j (y) ∧ x = y. The other predicate
symbols do not need this addition. We leave it to the reader to verify that [K0, K1]
is indeed the unique arrow satisfying the diagram.

In the case that we do not allow piecewise interpretations, we can simulate our
construction for the case that we restrict ourselves to theoriesW that prove that there
are at least two elements. See also Appendix 3.8.8.

There is an alternative construction of a sum U0 ⊕U1 in Mycielski et al. (1990)
or Stern (1989). This alternative construction is for many purposes more convenient.

We have the following basic theorem.

Theorem 3.34 Consider the theory W := U � V . Consider any formula Axy in the
language of W. Then, there are formulas Bix in the language of U and formulas C jy
in the language of V , such that Axy is equivalent to a Boolean combination of B in0

i x
and C in1

j y in the theory W + ∧
k xk ∈ �0 + ∧

� y� ∈ �1.

Proof The proof of the theorem is by a simple induction on A. ��
An important notion that is defined in terms of the notion of sum is connectedness.
We say that a theoryW is connected if, for any theoriesU and V , if (U � V ) �loc W ,
then U �loc W or V �loc W . The following fundamental theorem is due to Pudlák
(1983). It was reproved with a markedly different proof by Stern (1989). For more
context, see also Mycielski et al. (1990).

Theorem 3.35 Every sequential theory is connected.

The notion of sequentiality is introduced in Appendix 3.9.

3.8.8 Adding Pieces

Many features of interpretations can be added via the Kleisli and the co-Kleisli
construction. SeeMacLane (1971).We could, for example, startwith a category for 1-
dimensional direct interpretations and use the co-Kleisli construction to add domains,
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non-trivial identity and parameters. We can use the Kleisli construction to add more-
dimensionality for each dimensionm and to add piecewise interpretations.We sketch
the addition of pieces using this road using theKleisli construction. Regrettably, there
is no place where the full result is worked out in detail.

Let 2+ be the theory of two named elements. Let’s say the named elements are 0
and 1. We define a functor 
 : INTpiece

1 → INTnpiece
1 . The first category is with and

the second without pieces.17 We take 
(U ) := U � 2+. Suppose K is a piecewise
interpretation based on τ = 〈X, f, δ, F〉. We define 
(K ) as follows.

• Let s be the minimum number such that 2s ≥ |X |. We takem
(K ) := max({ f (a) |
a ∈ X}) + s.

• The domain δ
(K ) is specified as follows. We first number the pieces in X starting
the count with 0. We represent each piece by a binary string of length s corre-
sponding to its associated number. Say this string is σ(a). Let ζ(a) be a sequence
of m
(K ) − f (a) − s − 1 zero’s. For each piece a in X , we add elements to the
domain of the following form:

(

σ(a)
︷ ︸︸ ︷
0, 1, . . . , 1, 0,

element of δaK
︷ ︸︸ ︷
d0, . . . , d fK (a)−1,

ζ(a)
︷ ︸︸ ︷
0, 0 . . . , 0, 0).

• P
(K )(x0, . . . , xn−1), whenever each xi is of the form σ(ai )di ı(ai ), where di is in
δai
K and Ph

K (d0, . . . ,dn−1), where h(i) := ai .

We note that our translation is not uniquely specified since it depends on the choice
of the numbering of X . However, on the level of interpretations in INTnpiece

1 , this
choice is ‘erased’, since all choices give i-isomorphic interpretations.

In the other direction we define the functor π. We take π(V ) := V . More-
over, π(M) will be given by: Xπ(M) := {0}, fπ(M)(0) := mM , δ0π(M)(x) := δM(x),
Ph

π(M)(x0, . . . , xn−1) := PM(x0, . . . , xn−1). So, π is simply representing a non-
piecewise interpretation as a one-piece interpretation.

We find that 
 is a right adjoint of π. The Kleisli construction allows us to define
an isomorphic copy of INTpiece

1 inside INTnopiece
1 by taking as arrows piece-free

interpretations K : U → 
(V ).
One can show that π ◦ 
 is the identity endofunctor of INTpiece

1 . This tells us
approximately that 
(K ) and K are i-isomorphic.

We note that if U proves that there are at least two elements, then U is bi-
interpretable withU � 2+. This means that as soon as the interpreting theory proves
that there are at least two elements, piecewise interpretations contribute, in a sense,
nothing new.

17We have to adapt the notion of definable isomorphism to handle the pieces. For piecewise inter-
pretations K andM . An i-isomorphism F will be built up from partial isomorphisms between pieces
a of K and b of M .
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3.9 Appendix: Sequential Theories

Sequential theories are theories of sequences where the possible length of the
sequence is internally determined. The presence of sequences provides many good
properties for such theories. For example, sequential theories are locally reflexive
due to the presence of partial satisfaction predicates. We refer the reader to Visser
(2013) for more information about sequential and poly-sequential theories.

Even if the basic idea of sequentiality involves sequences and ipso facto numbers,
sequentiality has a surprisingly simple definition. The theory AS is given by:

AS1. � ∃x ∀y y /∈ x
AS2. � ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y))

A theory is poly-sequential if it directly interprets AS. A theory is a sequential if
it directly interprets AS via a 1-dimensional interpretation. Using these definitions,
one may obtain the desired numbers and sequences by a substantial bootstrap.

Since direct interpretations are closed under composition, each theory that directly
interprets a (poly-)sequential theory is itself a poly-sequential theory. Obviously, the
identical embedding of a theory in an extension-in-the-same-language is direct. Ergo,
being a (poly-)sequential theory is preserved under extension-in-the-same-language.
Poly-sequentiality is also preserved under INT1-retractions.

Theorem 3.36 Let U be a poly-sequential theory and suppose that V is a retraction
in INT1 of U. Then, V is a poly-sequential theory.
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Chapter 4
Residuated Expansions
of Lattice-Ordered Structures

Majid Alizadeh and Hiroakira Ono

Abstract In this paper, residuated expansions of lattice-ordered structures are
explored, in particular, of both lattice-ordered groupoids and lattices with impli-
cation. Here, a residuated expansion is an expansion in which the law of (left) resid-
uation between fusion and implication holds. Thus, residuated expansions discussed
here take the form of (left) residuated lattice-ordered groupoids. A necessary and
sufficient condition is given for a lattice-ordered groupoid and also for a lattices with
implication to be expandable to a (left) residuated one. Then, our attention is focused
to the case where these lattice-ordered structures are bounded and distributive. Each
of these structures is shown to be embedded into a residuated one in most cases.
Weak Heyting algebras are algebras for subintuitionistic logics, which are special
bounded distributive lattices with implication. By applying the above result to them,
it is shown that every weak Heyting algebra can be embedded into the canonical
residuated expansion. This establishes a close link between weak Heyting algebras
and the residuated ones, which is examined inmore detail for the finite embeddability
property and the amalgamation property.
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4.1 Introduction

In the present paper, we discuss residuated expansions of lattice-ordered groupoids
and latticeswith implication.A residuated expansion of either of these lattice-ordered
structures is an expansion in which the law of residuation between fusion and impli-
cation holds always. Thus, a residuated expansion of a lattice-ordered groupoid has
an additional operation, called an implication, for which basic conditions for lattices
with implication hold. On the other hand, a residuated expansion of a lattice with
implication has an additional operation, called a fusion, for which basic conditions
for lattice-ordered groupoids hold. In this way, residuated expansions can combine
these two classes of lattice-ordered structures. We do not assume that a given fusion
is commutative. This means that we need to consider the laws of both left and right
residuation which will induce two implications, and they must be distinguished in
general. On the other hand, in each of our lattices with implication, we assume
the existence of a single implication. As there is an apparent symmetry between two
implications induced by the law of residuation, we can choose either of themwithout
loss of generality. In the present paper we are mostly concerned with left residuations
and hence with left residuated expansions in our paper.1 The main aim of our paper is
to present and discuss properties of lattice-ordered structures, including some known
results, from a perspective of residuated expansions.

A basic question on residuated expansions is obviously whether or not and how an
implication can be introduced into a given lattice-ordered groupoid, and also whether
or not and how a fusion can be introduced into a given lattice with implication so that
the law of residuation holds in the expansion. We make a survey and examine known
results related to these questions in Sects. 4.2 and 4.3. By considering residuated
expansions, we can clarify close connections between lattice-ordered groupoids and
lattices with implication. For example, integrality and contractivity of lattice-ordered
groupoids are known as key notionswhenwe study substructural features ofmonoids
and groupoids (for non-associative substructural logics). (See e.g. Galatos et al.
2007). Then with the help of the law of residuation, these notions can be alternatively
expressed as familiar conditions in the language of lattices with implication (see Sect.
4.4). Such connections will play an important role in later sections.

From Sect. 4.5 we will concentrate on residuated expansions of bounded distribu-
tive lattice-ordered structures. Section 4.5 will be devoted to representation theorems
of both lattice-ordered groupoids and lattices with implication, assuming that they
are bounded and distributive. Our representation theorems are obtained by using
frames with ternary relations. We owe the idea to Celani (2004) though we take a
slightly different approach. These representations together with results obtained in
Sects. 4.2 and 4.3 will give us a general embedding theorem of these lattice-ordered
structures into residuated ones. This embedding result will be effectively applied in
Sects. 4.6 and 4.7. We will take up weak Heyting algebras in Sect. 4.6 as special
bounded distributive lattices with implication. As a consequence of our embedding
theorem, we can show that every weak Heyting algebra can be embedded into its

1 Sometimes, we call it simply residuated expansions when no confusions will occur.
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canonical extension, which in turn is expanded to a residuated one, which we call
canonical residuated expansion. The result holds also for Visser algebras.

In Sect. 4.7, we consider some subvarieties of the variety WH of all weak Heyt-
ing algebras and also subvarieties of the variety reWH of all left residuated weak
Heyting algebras. First we show that reWH is conservative over WH. That is, no
new valid equation can be produced by residuated expansions as long as the equa-
tion contains no fusion.2 This suggests that these two varieties may share common
algebraic properties. We will see this for the finite embeddability property and the
amalgamation property. It is shown that all of these varieties under consideration in
this section have the finite embeddability property, and therefore their decision prob-
lems are decidable. Also, it is shown that all of these varieties have the amalgamation
property, by using the techniques developed in Sect. 4.5.

4.2 Expansions of Lattice-Ordered Groupoids into
Residuated Ones

In the following, we assume familiarity with basic notions and results on lattice-
ordered structures. (See Davey and Priestley 2002 for general information.) The
first class of lattice-ordered structures which we are going to discuss is the class of
lattice-ordered groupoids. Residuated lattice-ordered groupoids have been discussed
already in connection with non-associative substructural logics. (See e.g. Celani
2004; Galatos and Ono 2010.)

An algebra A = 〈A, ·,≤〉 is a partially ordered groupoid if it satisfies:

1. 〈A,≤〉 is a poset,
2. · is a binary operation on A which is compatible with ≤, i.e.,

x ≤ z and y ≤ w imply x · y ≤ z · w.

Such an operation · is called a fusion. The second condition in the above says that a
fusion ismonotone in both coodinates with respect to≤. An algebraA = 〈A,∧,∨, ·〉
is a lattice-ordered groupoid if it satisfies:

1. 〈A,∧,∨〉 is a lattice,
2. · is a binary operation on A such that 〈A, ·,≤〉 is a partially ordered groupoid,

where ≤ is the order which is associated with the lattice 〈A,∧,∨〉.
We notice that the compatibility of fusion with the order ≤ in any lattice-ordered

groupoid can be expressed also as follows. Here, (wld) and (wrd) mean weak left
and weak right distributivity of join over fusion, respectively. For all x, y, z ∈ A,

(wld) (x · z) ∨ (y · z) ≤ (x ∨ y) · z,
(wrd) (z · x) ∨ (z · y) ≤ z · (x ∨ y).

2Similar topics are discussed in §3.1 of Restall (2006).
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Definition 1 An algebra A = 〈A,∧,∨,→, ·〉 is a left residuated lattice-ordered
groupoid (abbreviated as a left Relog) if

1. 〈A,∧,∨, ·〉 is a lattice-ordered groupoid,
2. → is a binary operation on A which satisfies that x · y ≤ z iff y ≤ x → z for

every x, y, z ∈ A. (the law of left residuation).

An algebra A = 〈A,∧,∨,�, ·, 〉 is a right residuated lattice-ordered groupoid
(abbreviated as a right Relog) if

1. 〈A,∧,∨, ·〉 is a lattice-ordered groupoid,
2. the binary operation� satisfies that x · y ≤ z iff x ≤ y � z for every x, y, z ∈ A.

(the law of right residuation).

It is easy to see that the following right distributivity (rd), a stronger form of (wrd),
holds in every left Relog. For all x, y, z,

(rd) z · (x ∨ y) = (z · x) ∨ (z · y).
Similarly, the following left distributivity (ld), a stronger form of (wld), holds in
every right Relog. For all x, y, z,

(ld) (x ∨ y) · z = (x · z) ∨ (y · z).
Operations → and � are sometimes called left implication and right implication
(induced by a fusion ·), respectively.3 We note that the law of left (right) residu-
ation determines left (right) implication uniquely. It is easy to see that right (left)
monotonicity of fusion follows from the law of left (right) residuation, respectively.

Definition 2 An algebra A = 〈A,∧,∨,→,�, ·〉 is a residuated lattice-ordered
groupoid (abbreviated as a Relog) when both the law of left residuation for →
and the law of right residuation for � hold.

A left (or, right) Relog is bounded when the lattice 〈A,∧,∨〉 has the smallest
element ⊥ and the greatest 
, distributive when the lattice 〈A,∧,∨〉 is distribu-
tive, and is complete if the lattice 〈A,∧,∨〉 is complete. As there is an apparent
symmetry between left Relogs and right Relogs, we will mostly discuss left Relogs
in the following, not repeating the same discussions on right Relogs. So, the term
‘implication’ refers the left implication in the following when no confusions will
occur.

In every left Relog, the monotonicity of → in the consequent and the antimono-
tonicity of → in the antecedent hold. That is, for all x, y, z,

• if x ≤ y then z → x ≤ z → y,
• if x ≤ y then y → z ≤ x → z.

They can be expressed also as the following inequalities, respectively. For all x, y, z,

3x → z and y � z are sometimes expressed as x\z and z/y, and are read as left and right divisions,
respectively.
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(im) x → (y ∧ z) ≤ (x → y) ∧ (x → z),
(ij) (y ∨ z) → x ≤ (y → x) ∧ (z → x).

As amatter of fact, the above first inequality can be replaced by the following equality
in every left Relog;

(eim) x → (y ∧ z) = (x → y) ∧ (x → z).

For, if w ≤ (x → y) ∧ (x → z) then both x · w ≤ y and x · w ≤ z hold. Hence x ·
w ≤ y ∧ z. Thus w ≤ x → (y ∧ z). This with (im) implies that x → (y ∧ z) is the
greatest lower bound of {x → y, x → z}. Therefore (eim) holds. On the other hand,
this is not the case for the second inequality. We can show that in any left Relog the
equality

(eij) (y ∨ z) → x = (y → x) ∧ (z → x)

holds always iff the following left distributivity of join over fusion

(ld) (y ∨ z) · w = (y · w) ∨ (z · w)

holds always. We notice first that (y ∨ z) · w is an upper bound of {y · w, z · w},
by the monotonicity of fusion. Now we assume that (eij) holds and moreover that
v is any upper bound of {y · w, z · w}. By the law of left residuation, w is a lower
bound of {y → v, z → v}. Then, w ≤ (y ∨ z) → v follows from (eij), as it says that
(y ∨ z) → v is the greatest lower bound of {y → v, z → v}, Therefore, (y ∨ z) · w ≤
v holds. This means that (y ∨ z) · w is the least upper bound of {y · w, z · w}. Hence,
(ld) holds. In the same way, we can show that (ld) implies (eij). In general, we have
the following lemma. (See e.g. Chap. 3 of Galatos et al. (2007) for the proof.)

Lemma 1 The following statements hold for every left Relog A.

1. For each c ∈ A and each {xi }i ⊆ A, if
∨

i xi exists then
∨

i (c · xi ) exists and is
equal to c · (

∨
i xi ).

2. For each c ∈ A and each {xi }i ⊆ A, if
∧

i xi exists then
∧

i (c → xi ) exists and
is equal to c → (

∧
i xi ).

3. Suppose that
∨

j y j exists for {y j } j ⊆ A. Then,
∧

j (y j → d) exists and is equal
to (

∨
j y j ) → d for all d ∈ A iff

∨
j (y j · e) exists and is equal to (

∨
j y j ) · e for

all e ∈ A.

The similar situation happens for rightRelogs, inwhich the lawof right residuation
holds. Inequalities (im) and (ij) for � hold always, and (im) for � can be replaced
by (eim) for �. On the other hand, the equality (eij) for �, i.e., (y ∨ z) � x =
(y � x) ∧ (z � x) is shown to be equivalent to the right distributivity (rd) of join
over fusion. Obviously, for every right Relog, these facts can be stated in general
like Lemma 1, by replacing → by � and also by replacing distribution of join over
fusion with respect to the first (second) argument by the second (first) argument,
respectively, anywhere in the above lemma.

We will discuss next when a given lattice-ordered groupoid can be expanded
to a left residuated one. The following lemma gives us a necessary and sufficient
condition for a given lattice-ordered groupoid to be expandable. This was discussed
e.g. in Sect. 3.1 of Restall (2006) and also in Kowalski and Ono (2010).
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Theorem 2 LetA = 〈A,∧,∨, ·〉 be any lattice-ordered groupoid. Then, there exists
a binary operation → on A such that the algebra A′ = 〈A,∧,∨,→, ·〉 forms a left
Relog if and only if the following two conditions (i) and (ii) hold in A.

(i) Whenever
∨

xi exists,
∨

(c · xi ) exists always and is equal to c · (
∨

xi ) for all
c.

(ii) For all a, b ∈ A,
∨{x ∈ A | a · x ≤ b} exists.

Proof Let us suppose first that the law of left residuation holds between · and →
in our left Relog A′. To show (i), let y be

∨
xi for any given xi ’s. Then for each c

we have c · xi ≤ c · y for every i by using the monotonicity of ·. This means that
c · y is an upper bound of {c · xi }i . Let d be an arbitrary upper bound of {c · xi }i .
Then xi ≤ c → d for each i , and hence y = ∨

xi ≤ c → d holds, which implies
c · y ≤ d. Therefore, c · y (= c · (

∨
xi )) is the least upper bound of {c · xi }i . Thus

the first condition (i) holds. For the second condition (ii), let D = {x ∈ A | a · x ≤ b}
for given a, b. Clearly, a → b ∈ D and moreover x ≤ a → b for any x ∈ D. This
means that a → b is the least upper bound of D. That is,

∨{x ∈ A | a · x ≤ b} exists,
and is equal to a → b.

To show the converse direction, let us define a binary operation → on A by the
condition that for all a, b ∈ A, a → b = ∨

D with D = {x ∈ A | a · x ≤ b}. Here,
the existence of

∨
D is guaranteed by our assumption (ii). It remains to show that

the law of left residuation holds between · and →. Suppose that a · c ≤ b. Then
c ∈ D and hence c ≤ ∨

D = a → b. Conversely suppose that c ≤ a → b = ∨
D.

By using the monotonicity of ·, and the condition (i), we have a · c ≤ a · ∨ D =∨
w∈D(a · w) ≤ b.Wenote that the above conditions (i) and (ii) imply that the element∨{x ∈ A | a · x ≤ b} in (ii) is in fact equal to max{x ∈ A | a · x ≤ b} for all a, b. �

Because of the law of left residuation, such a left RelogA′ is uniquely determined
by a given lattice-ordered groupoid A as long as it satisfies these two conditions.
We call A′, the left residuated expansion (or, simply residuated expansion, when
no confusions will occur) of the lattice-ordered groupoid A. Clearly, the next result
immediately follows from Theorem 2.

Corollary 3 A complete lattice with implication A = 〈A,∧,∨,→〉, has the left
residuated expansion if andonly if

∨
v∈D(c · v) = c · (

∨
D) for all c ∈ Aandall D ⊆

A. In particular, a finite lattice-ordered groupoid has the left residuated expansion
if and only if the equality (rd) holds in it.

Obviously, any lattice can be identified with a lattice-ordered groupoid in which
the fusion is equal to the meet. In such a case, the equality (rd) expresses the distribu-
tive law. Then the second statement of Corollary 3 means a well-known fact, which
says that for any finite lattice, it is distributive if and only if it can be expanded to an
algebra in which the law of left residuation with respect to meet holds, i.e., it can be
expanded to a Heyting algebra. Note that since the operation ‘meet’ is commutative,
the law of left residuation is the same as the law of residuation.
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4.3 Left Residuated Expansions of Lattices with
Implication

The other class of lattice-ordered structures we discuss in the present paper is the
class of lattices with implication. It is necessary to clarify what kind of lattices with
implication we will consider in the present paper, as similar structures are already
introduced and discussed, e.g., in Celani (2004).

Definition 3 AnalgebraA = 〈A,∧,∨,→〉 is a latticewith implication, if 〈A,∧,∨〉
is a lattice and → is a binary operation on A which satisfies

1. if x ≤ y then z → x ≤ z → y (the monotonicity in the consequent),
2. if x ≤ y then y → z ≤ x → z (the antimonotonicity in the antecedent).

Such an operation → is called, an implication on A.

As mentioned in the previous section, the two conditions for an implication in the
above definition can be expressed also by the following inequalities.

(im) x → (y ∧ z) ≤ (x → y) ∧ (x → z),
(ij) (y ∨ z) → x ≤ (y → x) ∧ (z → x).

It is clear that the fusion-free reduct of the left residuated expansion of a given lattice-
ordered groupoid forms a latticewith implication. Now suppose that a latticeswith an
implication→ is given. Similarly as in the previous section, we consider a necessary
and sufficient condition, under which a fusion can be introduced so that the law of
left residuation holds for it with this →.4

The proof of the following lemma goes mostly in parallel with the proof of The-
orem 2, as shown below.

Theorem 4 Let A = 〈A,∧,∨,→〉 be any lattice with implication →. Then, there
exists a binary operation · on A such that 〈A,∧,∨,→, ·〉 forms a left Relog if and
only if the following two conditions (i) and (ii) hold in A:

(i) Whenever
∧

xi exists,
∧

(c → xi ) exists always and is equal to c → ∧
xi for

all c ∈ A.
(ii) For all a, b ∈ A,

∧{x ∈ A | a ≤ b → x} exists.
Proof We suppose first that the law of left residuation holds between · and →. To
show (i), let y = ∧

xi for any given xi ’s. Then for each c we have c → y ≤ c → xi
for every i by the monotonicity of → in the consequent. Thus, c → y is a lower
bound of {c → xi }i . Let d be an arbitrary lower bound of {c → xi }i . Then c · d ≤ xi
for each i , and hence c · d ≤ y holds, which implies d ≤ c → y. Therefore, c → y is
the greatest lower bound of {c → xi }i . So the first condition (i) holds. For the second

4Alternatively, it is possible to discuss conditions when the law of right residuation holds. But, this
is a matter of choice, and it is easy to transfer results on the former to those on the latter, and vice
versa.
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condition (ii), let E = {x ∈ A | a ≤ b → x} for given a, b. Clearly, b · a ∈ E and
moreover b · a ≤ z for any z ∈ E . This means that b · a is the greatest lower bound
of E . Hence,

∧{x ∈ A | a ≤ b → x} exists, and is equal to b · a.
To show the converse direction, we introduce a binary operation · by the condition

that for any a, b ∈ A, the element b · a is defined to be∧
E , where E = {x ∈ A | a ≤

b → x}. Our assumption (ii) guarantees the existence of
∧

E . We show now that the
law of left residuation holds between · and →. Suppose that b · a ≤ c. Since

∧
E

exists, by our assumption (i)
∧

w∈E (b → w) exists and is equal to b → ∧
E . Thus

a ≤ ∧
w∈E (b → w) = b → ∧

E = b → (b · a) ≤ b → c, by the monotonicity of
→ in the consequent. Conversely, if a ≤ b → c then c ∈ E . As b · a is a lower bound
of E , obviously the inequality b · a ≤ c holds. We note here that the conditions (i)
and (ii) imply that the element

∧{x ∈ A | a ≤ b → x} in (ii) is in fact equal to
min{x ∈ A | a ≤ b → x} for all a, b.

It remains to show that the fusion · which we introduced here satisfies the mono-
tonicity, so as for 〈A,∧,∨, ·〉 to be a lattice-ordered groupoid. The left residuation
obviously implies the right monotonicity of fusion. To show the left monotonic-
ity of fusion, suppose that b ≤ b′. For a given a, take an arbitrary x ∈ A such that
a ≤ b′ → x holds. Since we assume the antimonotonicity of → in the antecedent,
b′ → x ≤ b → x , which implies a ≤ b → x holds. This shows the set inclusion
{x ∈ A | a ≤ b′ → x} ⊆ {x ∈ A | a ≤ b → x}. Therefore, b · a = ∧{x ∈ A | a ≤
b → x} ≤ ∧{x ∈ A | a ≤ b′ → x} = b′ · a. Thus we have the left monotonicity of
fusion. �

It is easily shown that the left RelogA∗ = 〈A,∧,∨,→, ·〉 is determined uniquely
by a given lattice with implication A = 〈A,∧,∨,→〉, if exists, which is called the
left residuated expansion of a lattice with implication A.

Corollary 5 A complete lattice with implication A = 〈A,∧,∨,→〉, has the left
residuated expansion if and only if

∧
w∈E (b → w) = b → ∧

E holds for all b ∈ A
and all E ⊆ A. In particular, a finite lattice with implication has the left residuated
expansion if and only if the equality (eim) x → (y ∧ z) = (x → y) ∧ (x → z) holds
in it.

It is easy to see that as long as a finite lattice with implication is linearly ordered,
the equality (eim) holds always. Thus,we can conclude that anyfinite linearly ordered
lattice with implication has always the left residuated expansion.

4.4 Links Between Lattices with Implication and
Lattice-Ordered Groupoids

The law of left (and right) residuation can connect lattices with implication with
lattice-ordered groupoids, if it holds.We can observe substructural features of impli-
cation through this link. Here, we will consider some typical cases which will play
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an important role in later sections.5 We consider first integrality which is usually
expressed by two inequalities x · y ≤ x and x · y ≤ y (see e.g. Galatos et al. 2007).
We have the following lemma immediately.

Lemma 6 The following statements hold in every Relog A.

1. For any given x ∈ A, x · y ≤ x for all y ∈ A (left integral) iff y ≤ x → x for
all y ∈ A iff x ≤ y � x for all y ∈ A. Thus, when the greatest element 
 exists
in A, the two conditions in the if-clause can be replaced by x → x = 
 and
x ≤ 
 � x, respectively.

2. For any given y ∈ A, x · y ≤ y for all x ∈ A (right integral) iff y ≤ x → y for
all x ∈ A iff x ≤ y � x for all x ∈ A. Thus, when the greatest element 
 exists
in A, the two conditions in the if-clause can be replaced by y ≤ 
 → y and
y � y = 
, respectively.

We note here that the condition x → x = 
 can be expressed alternatively as
the condition x ≤ y ⇒ x → y = 
. The next result follows immediately from
Lemma 6.

Corollary 7 In every left Relog with the greatest element
, x · y ≤ x ∧ y holds for
all x, y (integrality) iff both x → x = 
 and x ≤ 
 → x holds for all x. A similar
statement holds also for every right Relog, if → is replaced by �.

For weaker forms of integrality, we can show the following.

Lemma 8 In each left Relog A, the following two statements hold.

1. z · (x · y) ≤ z · x for all x, y, z ∈ A (weak left integral (1)) iff y ≤ (z → x) →
(z → x) for all x, y, z ∈ A,

2. z · (x · y) ≤ z · y for all x, y, z ∈ A (weak right integral (1)) iff z → x ≤ y →
(z → x) for all x, y, z ∈ A.

Similarly, in each right Relog A, the following two statements hold.

3. (x · y) · z ≤ x · z for all x, y, z ∈ A (weak left integral (2)) iff z � x ≤ y �
(z � x) for all x, y, z ∈ A.

4. (x · y) · z ≤ y · z for all x, y, z ∈ A (weak right integral (2)) iff y ≤ (z � x) �
(z � x) for all x, y, z ∈ A,

Proof We will give a proof of the first statement, since the remaining cases can
be proved similarly. Assume that z · (x · y) ≤ z · x for all x, y, z ∈ A. For any
u, v,w ∈ A, w · ((w → u) · v) ≤ w · (w → u) ≤ u holds by using our assumption.
From this, it follows immediately that v ≤ (w → u) → (w → u), by using the law of
left residuation. Conversely, suppose that y ≤ (z → s) → (z → s). Assume more-
over that z · x ≤ s. Then x ≤ z → s. By using the antimonotonicity of → in the
antecedent, we have y ≤ x → (z → s). Thus, z · (x · y) ≤ s holds. By taking z · x
for s, we get the required inequality. �

5A general discussion on related topics in this section is developed in Sect. 2.4 of Ma and Zhao
(2017) for distributive cases.
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Next, consider contractivity, which sometimes is called square-increasingness,

Lemma 9 In each Relog A, the following three statements are mutually equivalent.

1. x ∧ (x → y) ≤ y for all x, y ∈ A,
2. x ≤ x · x for all x ∈ A (contractive),
3. x ∧ (x � y) ≤ y for all x, y ∈ A.

Proof We give a proof of the equivalence of the first two statements. The proof
of the equivalence of the third to the second goes in the same way. Suppose that
the first statement holds. If x · x ≤ u then x ≤ x → u. Therefore x = x ∧ x ≤ x ∧
(x → u) ≤ u by our assumption. Thus x ≤ u. By taking x · x for u, we have the
second. Conversely, suppose that the second statement holds. If w ≤ x ∧ (x → y),
then w ≤ x and x · w ≤ y hold. Using the assumption and the monotonicity, w ≤
w · w ≤ x · w ≤ y. Thus, we have w ≤ y, from which the first statement follows. �

We note that in any lattice-ordered groupoid, the second condition in the above
lemma can be replaced by the condition that x ∧ y ≤ x · y for all y, z.
Lemma 10 In each left Relog A the following two statements are mutually equiva-
lent.

1. x · y ≤ (x · y) · y for all x, y ∈ A (weak right contractive),
2. (x → y) ∧ (y → z) ≤ x → z for all x, y, z ∈ A.

Similarly, in each right Relog, the following two statements are mutually equivalent.

3. y · x ≤ y · (y · x) for all x, y ∈ A (weak left contractive),
4. (x � y) ∧ (y � z) ≤ x � z for all x, y, z ∈ A.

Proof Suppose that the first statement holds. If w ≤ (x → y) ∧ (y → z), then
both x · w ≤ y and y · w ≤ z. Therefore, x · w ≤ (x · w) · w ≤ y · w ≤ z by using
our assumption and the monotonicity for fusion. Hence, w ≤ x → z. Thus we
have the second statement. Conversely, suppose that the second statement holds.
If (x · y) · y ≤ z then y ≤ (x · y) → z. As y ≤ x → (x · y) holds always by the
law of left residuation, y = y ∧ y ≤ (x → (x · y)) ∧ ((x · y) → z) ≤ (x → z) by
2. Hence, x · y ≤ z follows from y ≤ x → z. Thus we have the first. The equiva-
lence between the third and the fourth statements can be proved similarly. �

The following lemma shows when the law of residuation with respect to meet
holds in a bounded lattice with implication. From this, we can derive related results
for weak Heyting algebras in Celani and Jansana (2005). (Weak Heyting algebras
are discussed in Sect. 4.6.)

Lemma 11 The following equivalences hold in any bounded lattice with implica-
tion.

1. Suppose that the equation (eim): (x → y) ∧ (x → z) = x → (y ∧ z) holds for
all x, y, z in a given bounded lattice with implication. Then, x ∧ y ≤ z implies
x ≤ y → z for all x, y, z iff both x ≤ 
 → x and x → x = 
 for all x,
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2. x ≤ y → z implies x ∧ y ≤ z for all x, y, z iff x ∧ (x → y) ≤ y for all x, y.

Proof We give a proof only of the if-part of the first statement. Suppose that x ∧
y ≤ z for given x, y, z. Then, x ≤ 
 → x ≤ y → x = (y → x) ∧ (y → y) = y →
(x ∧ y) ≤ y → z. �

Corollary 12 A bounded lattice with implication is a Heyting algebra iff it satisfies
all conditions (eim), x ≤ 
 → x, x → x = 
 and x ∧ (x → y) ≤ y, where 
 is
the greatest element.

Recall that a lattice with implication having the smallest element is a Heyting
algebra iff the law of residuation holds in it. Also we notice that the condition (eim)
follows from the law of residuation.We can see that (eim) is a necessary condition for
a lattice with implication to have the left residuated expansion (Theorem 4), condi-
tions x ≤ 
 → x and x → x = 
 (integrality) implies x · y ≤ x ∧ y (Corollary 7),
and the condition x ∧ (x → y) ≤ y (contractivity) implies x ∧ y ≤ x · y (a remark
just below Lemma 9).

4.5 Representation and Left Residuated Expansion of
Bounded Distributive lattice-Ordered Structures

To develop the study of residuated expansions of lattice-ordered structures further,
we focus our attention particularly on bounded, distributive case. For this purpose,
we discuss representation theorem of these structures, using frames with ternary
relation. They have been studied already in e.g. Dunn and Hardegree (2001), Celani
(2004), Ma and Zhao (2017), Shkatov and van Alten (2019). Here we will follow
above all (Celani 2004) by S. Celani but in a slightly modified form.6

Definition 4 A frame is a structure 〈W,≤,U 〉, where 〈W,≤〉 is a nonempty poset
and U is a ternary relation on W satisfying that

(�) if U (x, y, z), x ′ ≤ x, y′ ≤ y and z ≤ z′, then U (x ′, y′, z′).

Suppose that a frame 〈W,≤,U 〉 is given. LetUp(W ) be the collection of upward-
closed subsets of W (with respect to ≤). Obviously, both X ∩ Y and X ∪ Y belong
to Up(W ) if X,Y ∈ Up(W ). Moreover, 〈Up(W ),∩,∪〉 is shown to be a bounded
distributive lattice. For X,Y ∈ Up(W ), we introduce two operations ◦U and ⇒U .

• X ◦U Y = {w ∈ W | there exists x ∈ X, y ∈ Y such that U (x, y,w)},
• X ⇒U Y = {w ∈ W | for all x, y ∈ W such thatU (x,w, y), if x ∈ X then y ∈ Y }.

6For general information on ternary frames, see e.g. Restall (2006).
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Due to our assumption (�) on ternary relations of frames, we can show that both
X ◦U Y and X ⇒U Y belong toUp(W ) whenever X,Y ∈ Up(W ). We can omit the
subscript U of ◦ or ⇒, when a ternary relation U under consideration is clear from
the context.

Lemma 13 Foragiven frameM = 〈W,≤,U 〉, defineMG tobeanalgebra 〈Up(W ),

∩,∪, ◦〉. Then, MG is a bounded distributive lattice-ordered groupoid satisfying
both (ld) and (rd). In fact, it is complete (as a lattice) which satisfies that for any
Y ∈ Up(W ) and any {Xi }i ⊆ Up(W ),

• ⋃
i (Y ◦ Xi ) = Y ◦ (

⋃
i Xi ),

• ⋃
i (Xi ◦ Y ) = (

⋃
i Xi ) ◦ Y ,

• Y ◦ ∅ = ∅ ◦ Y = ∅.
Lemma 14 For a given frameM = 〈W,≤,U 〉, defineMI to be an algebra 〈Up(W ),

∩,∪,⇒〉. Then,MI is a bounded distributive lattice with weak implication satisfying
both (eim) and (eij). In fact, it is complete (as a lattice) which satisfies that for any
Y ∈ Up(W ) and any {Xi }i ⊆ Up(W ),

• Y ⇒ (
⋂

i Xi ) = ⋂
i (Y ⇒ Xi ),

• (
⋃

i Xi ) ⇒ Y = ⋂
i (Xi ⇒ Y ),

• W ⇒ W = W.

We note that both MG and MI are complete and satisfy the conditions in Theo-
rems 2 and 4, respectively. Therefore, either of them can be extended to left Relogs.
This fact can be confirmed also in a way as Celani did (see Lemma 2.7 of Celani
2004), as shown below. For the time being, we consider any frameMV,U of the form
〈W,≤, V,U 〉 with two ternary relations V and U , both of which satisfies (�). Con-
sider an algebra (MV,U )R = 〈Up(W ),∩,∪,⇒V , ◦U 〉, which can be regarded as a
combination of two algebras MG and MI .

Lemma 15 The law of left residuation holds between ◦U and⇒V in 〈Up(W ),∩,∪,

⇒V , ◦U 〉, i.e., for any X,Y, Z ∈ Up(W ), X ◦U Y ⊆ Z ⇔ Y ⊆ X ⇒V Z if and only
if ternary relations U and V are equal.

Proof By our definition, X ◦U Y ⊆ Z holds iff for all w ∈ W (U (x, y,w) for some
x ∈ X and some y ∈ Y implies w ∈ Z ), iff

(∗) for all w ∈ W , all x ∈ X and all y ∈ Y , (U (x, y,w) implies w ∈ Z ).

On the other hand, Y ⊆ X ⇒V Z holds iff for all y ∈ Y and all x,w ∈ W such that
V (x, y,w), if x ∈ X then w ∈ Z , iff

(∗∗) for all w ∈ W , all x ∈ X and all y ∈ Y , (V (x, y,w) implies w ∈ Z ).

Clearly, when U = V , (∗) is equivalent to (∗∗). Conversely, suppose that for
given X,Y ∈ Up(W ), (∗) is equivalent to (∗∗) for any Z ∈ Up(W ). Clearly, both
{z | U (x, y, z)} and {z | V (x, y, z)} are upward-closed subsets of W for any fixed
x ∈ X, y ∈ Y . By taking each of them for Z in these statements (∗) and (∗∗), the
equality U = V can be derived. �
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Corollary 16 For a given frame M = 〈W,≤,U 〉, the algebra MR defined by
〈Up(W ),∩,∪,⇒U , ◦U 〉 is a bounded distributive left Relog which is the left resid-
uated expansion of both MG and MI .

Now we discuss representation of bounded distributive lattice-ordered structures.
Let us suppose that a bounded distributive latticeA = 〈A.∧,∨〉 is given. To simplify
our presentation, we assume in the following that;

• Ag is any lattice-ordered groupoidwhich satisfies (ld), (rd) and x · ⊥ = ⊥ · x = ⊥,
• Ai is any lattice with implication which satisfies (eim), (eij) and 
 = 
 → 
,
• the lattice reduct of each of Ag and Ai is A.

Conditions onAg andAi in the above will be necessary. In fact, in our representation
theorems (Theorems 20 and 21), we use algebras induced by frames with ternary
relations in which infinite analogues of these conditions are satisfied, as shown in
Lemmas 13 and 14.

Let us proceed to our proof by following mostly the arguments of Sect. 4.2 of
Celani (2004), but with a more detailed examination.7 In the following, F p(A)

denotes the set of prime filters of the lattice A. Clearly, 〈F p(A),⊆〉 forms a poset.
We will introduce two ternary relationsU A and V A on F p(A), which are defined as
follows. For all P, F, Q ∈ F p(A),

• U A(P, F, Q) ⇔ for all x, y, if x ∈ P and y ∈ F then x · y ∈ Q,
• V A(P, F, Q) ⇔ for all x, y, if x ∈ P and x → y ∈ F then y ∈ Q.

For a given bounded distributive lattice-ordered groupoidAg satisfying that (ld), (rd)
and x · ⊥ = ⊥ · x = ⊥, define (Ag)∗ to be the frame 〈F p(A),⊆,U A〉. Also, for a
given bounded distributive lattice with implication Ai satisfying that (eim), (eij) and

 = 
 → 
, define (Ai )∗ to be the frame 〈F p(A),⊆, V A〉. Obviously, both U A

and V A satisfy the condition (�) of frames. The following is easily seen.

Lemma 17 The equality U A = V A holds, when A is a lattice reduct of a left Relog,
That is, for all prime filters P, F, Q of A, x ∈ P and y ∈ F implies x · y ∈ Q for
all x, y ∈ A if and only if x ∈ P and x → y ∈ F implies y ∈ Q for all x, y ∈ A.

The following two lemmas can be shown by using the prime filter theorem of
distributive lattices. In the proof of Lemma 18, the conditions (ld) and (rd) are used
in showing the only-if part.

Lemma 18 Suppose that Ag is a lattice-ordered groupoid satisfying (ld) and (rd).
For any prime filter Q of A, and any a, b ∈ A,

• a · b ∈ Q ⇔ there exist prime filters a ∈ P and b ∈ F such that U A(P, F, Q).

Lemma 19 Suppose that Ai is a lattice with implication satisfying (eim), (eij) and

 = 
 → 
. For any prime filter F of A, and any a, b ∈ A,

7There are some, but inessential, differences between algebras discussed in the present section and
Celani’s lattices with fusion and with implication in Celani (2004).
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• a → b ∈ F ⇔ for all prime filters P and Q such that V A(P, F, Q), if a ∈ P
then b ∈ Q.

Proof The only-if part is trivial by the definition of V A. Here, we give a brief outline
of a proof of the if part. By taking the contraposition, we suppose that a → b /∈ F .
Let Ka = {x ∈ A | a → x ∈ F} and Ib = {x ∈ A | x ≤ b}. We can show that Ka

is a nonempty filter. For, 
 = 
 → 
 ≤ a → T and thus a → T ∈ F . Therefore,

 ∈ Ka . The set Ka is shown to be a filter, by using (eim). Also, Ka ∩ Ib = ∅, by
our assumption a → b /∈ F . Now by using the prime filter theorem of distributive
lattices, we have that there exists a prime filter Q such that Ka ⊆ Q and b /∈ Q.

For a given such a prime filter Q, let H be the set of all filters H such that (i)
a ∈ H and (ii) for all y ∈ A and all z ∈ H , z → y ∈ F implies y ∈ Q. Then H is
nonempty as the principal filter Fa generated by a belongs to it. AsH is an inductive
set, there exists a maximal element P ∈ H by Zorn’s lemma. To show that P is a
prime filter, we assume that there are c, d ∈ A such that c ∨ d ∈ P but c, d /∈ P . Let
P(c) and P(d) are filters generated by P ∪ {c} and P ∪ {d}, respectively. Since P
is maximal inH and c, d /∈ P , there exist

• y1 ∈ A and z1 ∈ P such that (z1 ∧ c) → y1 ∈ F and y1 /∈ Q,
• y2 ∈ A and z2 ∈ P such that (z2 ∧ d) → y2 ∈ F and y2 /∈ Q.

Let z = z1 ∧ z2 and y = y1 ∨ y2. As P is a filter and Q is a prime filter, both y ∈ A
and z ∈ P hold, and moreover they satisfy that (z ∧ c) → y, (z ∧ d) → y ∈ F and
y /∈ Q. By (eij) and the law of distributivity, (z ∧ (c ∨ d)) → y ∈ F . On the other
hand, z ∧ (c ∨ d) ∈ P by our assumption. This contradicts the assumption that P
belongs to H . Thus, P must be prime. It means that V A(P, F, Q) holds for prime
filters P and Q such that a ∈ P but b /∈ Q. This completes our proof. �

We have now representation theorems for lattice-ordered groupoids and also for
lattices with implication. Let us take a lattice-ordered groupoid Ag and a lattice
with implication Ai such that each of them has the lattice reduct A and satisfies
either of conditions mentioned above. We construct two frames (Ag)∗ and (Ai )∗,
respectively, each of whose underlying set is F p(A). Let us consider two complete,
bounded distributive lattices ((Ag)∗)G and ((Ai )∗)I , obtained from these frames.
Taking either Ag or Ai for B, define a mapping h from B to Up(F p(B)) by h(a) =
{F ∈ F p(B) | a ∈ F} for each a ∈ A. We note thatUp(F p(B)) is the underlying set
of the algebra (B∗)K where K is eitherG or I . FromLemmas 18 and 19, it follows that
h is a homomorphism in either case. Moreover, by prime filter theorem, we have that
h is in fact an injective isomorphism. This completes our proof of the representation
theorems. Furthermore, by combining Theorems 2 and 4 together with Lemmas 13
and 14, respectively, we have the following results on left residuated expansions.

Theorem 20 Every bounded distributive lattice-ordered groupoidC satisfying (ld),
(rd) and x · ⊥ = ⊥ · x = ⊥ can be embedded into a complete, bounded distributive
lattice-ordered groupoid (C∗)G, which satisfies both (ld) and (rd) and moreover
has the left residuated expansion. Thus, every bounded distributive lattice-ordered
groupoid satisfying (ld) and (rd) can be embedded into a left Relog.
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Theorem 21 Every bounded distributive lattice with implicationD satisfying (eim),
(eij) and
 = 
 → 
 can be embedded into a complete, bounded distributive lattice
with implication (D∗)I , which satisfies (eim), (eij) and 
 = 
 → 
 and moreover
has the left residuated expansion. Thus, every bounded distributive lattice with impli-
cation satisfying (eim), (eij) and 
 = 
 → 
 can be embedded into a left Relog.

In particular, we have also the following representation theorem for left Relogs.

Theorem 22 Every bounded distributive left RelogE satisfying (eij) and
 = 
 →

 can be embedded into a complete, bounded distributive left Relog (E∗)R which
satisfies (eij) and 
 = 
 → 
.

Proof In fact, UE = V E holds by Lemma 17, and therefore (E∗)R is a complete,
bounded distributive left Relog by Corollary 16. The mapping h defined as above is
no other than an embedding E into (E∗)R . Here, we remind you of the fact that (eim)
holds in any left Relog. �

We say that (C∗)G in Theorem 20 is the canonical extension of a bounded dis-
tributive lattice-ordered groupoid C. Similarly, (D∗)I in Theorem 21 (and (E∗)R
in Theorem 22) is the canonical extension of a bounded distributive lattice with
implication D (and of a bounded distributive left Relog E, respectively).

4.6 Left Residuated Weak Heyting Algebras

The class of all lattices with implication includes many important subclasses of
algebras for subintuitionisitc logics.We take some examples fromCelani and Jansana
(2005) and apply our Theorem 21. An algebra A of the form 〈A,∧,∨,→,⊥,
〉 is
called a weak Heyting algebra (abbreviated as a WH-algebra), when 〈A,∧,∨,→
,⊥,
〉 is a bounded distributive lattice with implication → satisfying (eim), (eij)
and moreover the following two equations:

1. (x → y) ∧ (y → z) ≤ x → z,
2. x → x = 
.

An RWH-algebra is a WH-algebra which satisfies the following inequality.8

3. x ∧ (x → y) ≤ y.

A Visser algebra is a WH-algebra satisfying the following inequality9:

4. x ≤ 
 → x .

8Due to Celani and Jansana (2005), where ‘R’ comes from ‘reflexive’.
9Sometimes, this algebra is called a basic algebra. The present name came from Visser (1981).
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When a given algebra A is a left residuated expansion of a WH-algebra, A is
called a left residuated WH-algebra. Similarly, left residuated RWH-algebras and
left residuated Visser algebras can be defined. We notice that in every left residuated
WH-algebra, the equality (eim) holds always, and also (eij) is equivalent to (ld).

As an immediate consequence of Corollary 5, we have that every finite WH-
algebra can expanded to a left residuated WH-algebra. On the other hand, this is
not always the case for infinite WH-algebras, even if they are linearly ordered and
complete (see also a remark just below Corollary 5).

Theorem 23 There is a complete, linearly ordered Visser algebra that cannot be
expanded to a left residuated Visser algebra.

Proof Let C = [0, 1] ∪ {ω,
}, where [0, 1] is the unit interval of the reals with the
natural order. We assume moreover that r < ω < 
 for every r such that 0 ≤ r ≤ 1.
Clearly, C forms a complete distributive lattice. Define an operation → on C by

u → v =

⎧
⎪⎨

⎪⎩


 if u ≤ v or v = ω

ω if u > v and 0 < v ≤ 1

1 if u > v and v = 0.

One can show that C = 〈C,min,max,→, 0,
〉 is a Visser algebra. Let D = C −
{0}. It is clear that ∧

D = 0. Hence 
 → ∧
D = 
 → 0 = 1. On the other hand,∧

u∈D(
 → u) = ω. It says that the condition (i) in Theorem 4 fails in C. Thus, C
cannot be extended to a left residuated Visser algebra. �

On the other hand, we can show that every WH-algebra can be embedded into a
left residuatedWH-algebra, as a corollary of Theorem21.We note that the first half of
the statement of Theorem 21 is shown already in Celani and Jansana (2005), in which
the notion ofWH-frameswas introduced. Here, aWH-frame is a structure 〈W,≤, R〉,
where 〈W,≤〉 is a poset and R is a binary relation onW such that (≤ ◦ R) ⊆ R. Let
Up(W ) be the collection of upward-closed subsets of W (with respect to ≤). For
X,Y ∈ Up(W ), let

X ⇒ Y = {w ∈ W | ∀u ∈ W (wRu and u ∈ X =⇒ u ∈ Y )}.

In fact, every WH-frame 〈W,≤, R〉 is a special case of a frame (for lattices with
implication) 〈W,≤, V 〉 in our sense, in which V (u,w, v) holds only when v = u for
every u,w, v ∈ W . In such a case, wRu is defined by V (u,w, u). The condition (≤
◦R) ⊆ R follows from the condition (�) for the ternary relation V . An RWH-frame is
aWH-frame 〈W,≤, R〉 such that R is reflexive. A V-frame is aWH-frame 〈W,≤, R〉
such that R ⊆ ≤. Notice that (R ◦ R) ⊆ R holds in each V-frame, and hence R must
be transitive. When R is equal to ≤, the frame 〈W,≤, R〉 is essentially the same as
the intuitionistic frame 〈W,≤〉. Like Lemma 14, we can show the following.

Lemma 24 For every WH-frameM = 〈W,≤, R〉,MI = 〈Up(W ),∩,∪,⇒,∅,W 〉
is a complete WH-algebra.
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When R is reflexive, it is easy to see that for all X,Y ∈ Up(W ), the inclusion
X ∩ (X ⇒ Y ) ⊆ Y holds. For, ifw ∈ X andw ∈ X ⇒ Y thenw ∈ Y aswRw holds.
Hence,MI becomes a RWH-algebra. On the other hand, whenM = 〈W,≤, R〉 is a
V-frame, the inclusion X ⊆ W ⇒ X holds for any X ∈ Up(W ). For, if u ∈ X and
uRz then u ≤ z. Since X ∈ Up(W ), z ∈ X . As z ∈ W holds always, this means that
X ⊆ W ⇒ X holds. Thus, MI becomes a Visser algebra. Hence,

Corollary 25 For everyRWH-frame (V-frame)M = 〈W,≤, R〉,MI = 〈Up(W ),∩,

∪,⇒,∅,W 〉 is a complete RWH-algebra (Visser algebra, respectively).

Next, suppose that a WH-algebra A is given. Define a binary relation RA on
F p(A) by FRAP ⇔ V A(P, F, P) for all F, P ∈ F p(A). That is;

FRAP ⇔ for all x, y such that x → y ∈ F, if x ∈ P then y ∈ P.

Lemma 26 For every WH-algebra A, the algebra A∗ = 〈F p(A),⊆, RA〉 is a WH-
frame. IfA ismoreover anRWH-algebra (aVisser algebra), thenA∗ is anRWH-frame
(a V-frame, respectively).

Proof We will show the second statement of this proposition. Suppose first that
A is an RWH-algebra. Let F be any prime filter. If x → y ∈ F and x ∈ F then
x ∧ (x → y) ∈ F . As x ∧ (x → y) ≤ y holds always in A, we have y ∈ F . Thus,
FRAF holds for any prime filter F , and hence A∗ is an RWH-frame.

Next suppose that A is a Visser algebra and that FRAP holds for prime filters F
and P . If a ∈ F then 
 → a ∈ F , since a ≤ 
 → a holds. As 
 ∈ P and FRAP ,
the element a must be in P . Thus FRAP implies F ⊆ P . Hence, A∗ is a V-frame.

�

From Lemmas 26, 24, Corollaries 25 and 16, we can derive the following.

Theorem 27 Every WH-algebra A can be embedded into a complete WH-algebra
(A∗)I by a mapping h defined by h(a) = {F ∈ F p(A) | a ∈ F} for each a ∈ A.
Moreover (A∗)I can be expanded to the left residuated WH-algebra (A∗)R. The
same statement holds also for RWH-algebras and for Visser algebras.

The left residuated WH-algebra (A∗)R in Theorem 27 is called the canonical
residuated expansion of a WH-algebra A. From results in Sect. 4.4, we can get a
substructural characterization of some subclasses of left residuated WH-algebras.

Corollary 28 1. An algebra A is a left residuated WH-algebra iff it is a bounded
distributive weak right contractive and left integral left Relog satisfying (ld):
(x ∨ y) · z = (x · z) ∨ (y · z) for all x, y, z, i.e., a bounded distributive left Relog
satisfying x · y ≤ (x · y) · y and x · y ≤ x for all x, y, in addition to (ld).

2. An algebra A is a left residuated RWH-algebra iff it is a bounded distributive
contractive left Relog satisfying (ld).

3. An algebra A is a left residuated Visser algebra iff it is a bounded distributive
weak right contractive and integral left Relog satisfying (ld).
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The third statement of the above corollary was already shown in Ma and Lin
(2014), though their approach is quite different from ours. Since left and right resid-
uated Visser algebras are considered in it, our condition (ld) becomes redundant as
it holds always in any right Relog (see Sect. 4.1).

4.7 Conservative Extensions, Finite Embeddability
Property and Amalgamation Property

A class V of algebras of the same type is called a variety if V is closed under
homomorphic images, subalgebras and direct products. ByBirkhoff’s theorem on the
equivalence between varieties and equational classes, every variety can be regarded
as the class of all algebras which are models of some set E of equations.10 Note
that any inequality s ≤ t in the language of lattices can be expressed as an equation
s ∧ t = s. (For the simplicity’s sake, here we use same symbols for syntactic objects
like terms and equality symbols as those for mathematical objects.) Hence, the class
of all lattice-ordered groupoids, all left Relogs, all lattices with implication, all WH-
algebras, all RWH-algebras and all Visser algebras are varieties by their definition.
It is easy to see that the law of left resiuation can be expressed by two inequalities
y ≤ x → ((x · y) ∨ z) and x · (y ∧ (x → z)) ≤ z. Therefore, the classes of all left
residuated WH-algebras, all left residuated RWH-algebras and all left residuated
Visser algebras are also varieties.As a corollary ofTheorem27,wehave the following
result on conservative extensions, which says that the law of residuation does not
produce any new equality in the original language.

Corollary 29 Suppose that s and t are arbitrary terms in the languageL consisting
of ∧,∨,→,⊥,
 (but without fusion). Then the equality s = t is satisfied in the
variety WH of all WH-algebras iff it is satisfied in the variety reWH of all left
residuated WH-algebras. This equivalence holds also between the variety of all
RWH-algebras (of all Visser algebras) and the variety of all left residuated RWH-
algebras (of all left residuated Visser algebras, respectively).

Proof The only-if part is trivial, as every left residuated WH-algebra is also a WH-
algebra. For the if part, suppose that s = t is not valid in a WH-algebra A for given
terms s and t . Then there exists an assignment f on A such that f (s) is not equal to
f (t) in A. By Theorem 27, A is embedded into its canonical residuated expansion
B by an injective isomorphism h. Let g is an assignment on B defined by g(x) =
h( f (x)) for each variable x . Then g(s) = h( f (s)) and g(t) = h( f (t)). As h is an
isomorphism, g(s) cannot be equal to g(t) in B. Hence, s = t is not satisfied in the
variety of all left residuated WH-algebras. �

For the case of the variety of Visser algebras, the above result was essentially
obtained in Ma and Lin (2014). On the other hand, Theorem 27 makes the proof

10For general information on varieties and equational classes, consult (Burris and Sankappanavar
1981).
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much simpler. The above result will suggest that each subvariety of the variety reWH
shares various properties with the subvariety of the varietyWH corresponding to it.
Results on finite embeddability property and amalgamation property in the following
may affirm such observations.

We will show next the finite embeddability property of some subvarieties of the
variety reWH, including reWH itself.

Definition 5 A given class K of algebras (of the same finite type) has the finite
embeddability property (FEP) if for every finite partial subalgebra B of an algebra
A in K there exists a finite algebra D in K into which B is embedded.

Our results below can be obtained by applying the method developed in Haniková
andHorčík (2014), in which the FEP of the varietyBRDG of all bounded distributive
Relogs is shown.11 So, first we will give a brief sketch of the proof in the paper
Haniková and Horčík (2014) of the FEP. But for our purpose, we will modify it
and show the FEP of the variety of all bounded distributive left Relogs, instead. Let
A = 〈A,∧A,∨A,→A, ·A,
A,⊥A〉 be a bounded distributive left Relog and B be
a finite partial subalgebra of A. To get a required algebra D(A,B) into which B
is embedded, first we construct the bounded sublattice D = 〈D,∧D,∨D,
D,⊥D〉,
generated by the set B ∪ {
A,⊥A} in A. It is easy to see that D is a finite bounded
distributive lattice, satisfying that 
D = 
A and ⊥D = ⊥A. Next define a closure
operator γ and an interior operator σ by

γ (a) =
∧

{b ∈ D | a ≤A b} and σ(a) =
∨

{b ∈ D | b ≤A a}.

We notice that, since both
A and⊥A belong toD, γ (a) and σ(a) are always exist. It
is obvious that for everya ∈ Dwehavea = γ (a) = σ(a). Now,wedefine operations
→D and ·D on D by a →D b = σ(a →A b) and a ·D b = γ (a ·A b) for all a, b ∈ D.
Let us define the algebra D(A,B) by 〈D,∧D,∨D,→D, ·D,
D,⊥D〉. Then, we can
show that the law of left residuation holds in D(A,B), by using the fact that A is a
left Relog. (See Sect. 4.3 of Haniková and Horčík (2014) for the details.) This means
that the algebraD(A,B) is in fact a finite bounded distributive left Relog. Obviously,
the identity map is the required embedding. In this way, the FEP of the variety of all
bounded distributive left Relogs can be shown.

As for the FEP of the variety reWH, we take an arbitrary left residuated WH-
algebra for A, instead. The remaining argument goes in the same way. But in this
case, we need to show thatD(A,B) is a left residuatedWH-algebra. By Corollary 28,
it is enough to show that D(A,B) satisfies weak right contractivity, left integral-
ity and (ld). First we show that a ·D b ≤D (a ·D b) ·D b, for all a, b ∈ D. As A is
weak right contractive, a ·A b ≤A (a ·A b) ·A b holds. Since γ is a closure opera-
tor, a ·A b ≤ γ (a ·A b) and hence a ·A b ≤A γ (a ·A b) ·A b. Thus, a ·D b = γ (a ·A
b) ≤D γ (γ (a ·A b) ·A b) = (a ·D b) ·D b. Similarly, as a ·A b ≤ a holds in A for

11See also Farulewski (2008) for the FEP of BRDG.
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a, b ∈ D, we can show that a ·D b = γ (a ·A b) ≤D γ A(a) = a. Thus,D(A,B) is left
integral. Lastly, suppose that A satisfies (ld). Then, for a, b, c ∈ D, (a ∨D b) ·D c =
γ ((a ∨A b) ·A c) = γ ((a ·A c) ∨A (b ·A c)) ≥ γ (a ·A c) ∨D γ (b ·A c). On the other
hand, by the definition, γ (a ·A c) = ∧{d ∈ D | a ·A c ≤A d} and γ (b ·A c) = ∧{e ∈
D | b ·A c ≤A e}. Therefore, by using the distributivity,

• γ ((a ·A c) ∨A (b ·A c)) = ∧{g ∈ D | (a ·A c) ∨A (b ·A c) ≤A g} ≤ ∧{d ∨D e ∈
D | a ·A c ≤A d and b ·A c ≤A e} = γ (a ·A c) ∨D γ (b ·A c) = (a ·D c) ∨D (b ·D
c).

Consequently, D(A,B) is a left residuated WH-algebra.

Theorem 30 The variety reWH has the finite embeddability property.

Similarly, we can show that D(A,B) is contractive (integral) when A is con-
tractive (integral, respectively). Thus, we have also the following with the help of
Corollary 28.12

Theorem 31 Both the variety of all left residuated RWH-algebras and the variety
of all left residuated Visser algebras have the finite embeddability property.

From these two theorems together with Theorem 27 we can derive also the fol-
lowing. (See Sect. 4.5 of Celani and Jansana (2005) for a related result.)

Theorem 32 The variety WH, and also the varieties of all RWH-algebras and all
Visser algebras have the finite embeddability property.

Proof We will give a proof for the case of WH. Let A be a WH-algebra and B be a
finite partial subalgebra ofA. By Theorem 27,A can be embedded into its canonical
residuated expansion A†. Then, B can be regarded as a finite partial subalgebra of
A†. By the above proof of Theorem 30, we can infer that D(A†,B) is a finite (left
residuated) WH-algebra into which B is embedded. �

Our last topic is the amalgamation property. We will explain below how the
amalgamation property of the variety reWH can be obtained from the amalgamation
property of the varietyWH. The amalgamation property of the latter is already shown
in Celani and Jansana (2005). To clarify the connection between the amalgamation
property ofWH and that of reWH, we will outline here an alternative proof of them,
which is based on the idea developed in Maksimova (1977) for the variety of all
Heyting algebras, and also in Alizadeh and Ardeshir (2006) for the variety of all
Visser algebras.

Definition 6 A given class K of algebras has the amalgamation property (AP) if
for all algebras A0,A1 and A2 in K and for all embeddings f1 : A0 −→ A1 and
f2 : A0 −→ A2, there exist an algebra B in K , embeddings g1 : A1 −→ B and g2 :
A2 −→ B such that g1 ◦ f1 = g2 ◦ f2.

12A related result on the variety of all residuated Visser algebras is shown in Ma and Lin (2014).
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We give here a brief sketch of a proof of AP of WH. As a matter of fact, our
argument has many parallels with discussions in §5 on the representation theorem of
bounded distributive latticeswith implication. Compare the following proof alsowith
the proofs of Lemma 26 and Theorem 27. For further details, consult Maksimova
(1977) and Alizadeh and Ardeshir (2006).

Without loss of generality we can assume that the WH-algebra A0 is a common
subalgebra of bothWH-algebrasA1 andA2, and also that both f1 and f2 are inclusion
maps. Using A1 and A2, we define a WH-frame M below, from which the required
WH-algebra B is obtained. Let us define M = 〈W,≤, V 〉 by
• W = {(F1, F2)|Fi ∈ F p(Ai ) for i = 1, 2 such that F1 ∩ A0 = F2 ∩ A0},
• (F1, F2) ≤ (P1, P2) iff F1 ⊆ P1 and F2 ⊆ P2,
• V ((P1, P2), (F1, F2), (Q1, Q2)) iff V1(P1, F1, Q1) and V2(P2, F2, Q2),

where Vi (Pi , Fi , Qi ) is defined by

Vi (Pi , Fi , Qi ) ⇔ for all x, y ∈ Ai if x ∈ Pi and x → y ∈ Fi then y ∈ Qi

for i = 1, 2 (see §5). Then, it can be shown that M is in fact a WH-frame. Define
the algebra B as MI . Then, B is a WH-algebra by Lemma 24. Now, let gi be the
mapping from Ai to B, defined by gi (a) = {(F1, F2) ∈ W ; a ∈ Fi } for each a ∈ Ai ,
for i = 1, 2. Then, we can show that both g1 and g2 are (WH-)embeddings, and
moreover that g1 ◦ f1 = g2 ◦ f2 holds. (We note that for each a ∈ A0, a ∈ F1 holds if
and only if a ∈ F2, whenever (F1, F2) ∈ W .) In this way, the amalgamation property
of the variety WH is shown.

The proof of AP of reWH goes almost the same as above. The only exception
is that we take MR instead of MI for B. Since both A1 and A2 are left residuated,
by Lemma 17 Vi (P, F, Q) is equivalent to Ui (P, F, Q), where Ui (P, F, Q) is the
condition defined by

Ui (Pi , Fi , Qi ) ⇔ if x ∈ P and y ∈ F then x · y ∈ Q for all x, y ∈ Ai .

(We use the letter ‘V ’ (possibly,with subscripts) to express conditions on implication,
while the letter ‘U ’ (possibly, with subscripts) to express conditions on fusion.)
What we need to add is to show that the mapping gi preserves also the fusion, i.e.,
gi (x · y) = gi (x) ◦ gi (y) for all x, y ∈ Ai for i = 1, 2. We will show this for i = 1
in the following. First we show that g1(x) ◦ g1(y) ⊆ g1(x · y) for all x, y ∈ A1.
Take any G = (P, Q) ∈ g1(x) ◦ g1(y). Then there exist G1 = (P1, P ′

1) ∈ g1(x) and
G2 = (P2, P ′

2) ∈ g2(x) such that V (G1,G2,G). This implies that U1(P1, P2, P).
Since x ∈ P1 and y ∈ P2, we have x · y ∈ P . This means that G ∈ g1(x · y).

Next we show that g1(x · y) ⊆ g1(x) ◦ g1(y) for all x, y ∈ A1. LetG = (P, Q) ∈
g1(x · y), i.e., x · y ∈ P . Then there exist prime filters P1 and P2 of A1 such that
x ∈ P1, y ∈ P2 andU1(P1, P2, P). Put Q j = [Pi ∩ A0)A2 , that is, the filter generated
by Pj ∩ A0 in A2 for j = 1, 2. It is clear that for each j , Pj ∩ A0 = Q j ∩ A0. To
show thatU2(Q1, Q2, Q) holds,we need to show that c · d ∈ Q under the assumption
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that c ∈ Q1 and d ∈ Q2 where c, d ∈ A2. By the definition of Q1 and Q2, there exist
a1, . . . , am ∈ P1 ∩ A0 and b1, . . . , bn ∈ P2 ∩ A0 such that

∧
ai ≤ c and

∧
b j ≤ d.

Let c′ = ∧
ai and d ′ = ∧

b j . Since both P1 and P2 are filters andA0 is a subalgebra
of bothA1 andA2, c′ itself belongs to P1 ∩ A0 and also d ′ belongs to P2 ∩ A0. From
U1(P1, P2, P), it follows that c′ · d ′ ∈ P . As A0 is a left residuated WH-algebra in
the present case, c′ · d ′ ∈ A0. Hence c′ · d ′ ∈ P ∩ A0 = Q ∩ A0 ⊆ Q. On the other
hand, as c′ · d ′ ≤ c · d, also c · d belongs to Q. Thus,U2(Q1, Q2, Q) holds. But, this
is still not enough since it is uncertain that both Q1 and Q2 are prime filters. So, let
us define the set � by

• {(F1, F2)| both F1 and F2 are filters of A2, P1 ∩ A0 = F1 ∩ A0, P2 ∩ A0 = F2 ∩
A0 and U2(F1, F2, Q)}.

Then, � is non-empty since (Q1, Q2) ∈ �. By Zorn’s lemma, � has a maximal ele-
ment, which we denote (F∗

1 , F∗
2 ). We can show that both F∗

1 and F∗
2 are prime filters

of A2 as follows. To the contrary, suppose that F∗
1 is not prime. Then there exist u and

v such thatu ∨ v ∈ F∗
1 butu, v /∈ F∗

1 . LetGu (andGv) be thefilter generated by the set
F∗
1 ∪ {u} (and F∗

1 ∪ {v}, respectively). From U2(F∗
1 , F∗

2 , Q), by the condition (�) in
Definition 4 it follows that bothU2(Gu, F∗

2 , Q) andU2(Gv, F∗
2 , Q) hold. Because of

the maximality of (F∗
1 , F∗

2 ) in�, each of Gu ∩ A0 and Gv ∩ A0 includes F∗
1 ∩ A0 as

a proper subset. Thus, there exist t and s such that t ∈ (Gu ∩ A0) \ (F∗
1 ∩ A0) and s ∈

(Gv ∩ A0) \ (F∗
1 ∩ A0). It is clear that t ∨ s ∈ A0. Since t ∈ Gu and s ∈ Gv, there

exist a, b ∈ F∗
1 such that a ∧ u ≤ t and b ∧ v ≤ s. Then (a ∧ u) ∨ (b ∧ v) ≤ t ∨ s.

Meanwhile, (a ∧ u) ∨ (b ∧ v) is equal to (a ∨ b) ∧ (a ∨ v) ∧ (u ∨ b) ∧ (u ∨ v),
which is a conjunction of elements of F∗

1 , and hence t ∨ s must be in F∗
1 and hence

in F∗
1 ∩ A0, which is equal to P1 ∩ A0. As P1 is a prime filter, either of t and s

must be in P1 ∩ A0, and hence in F∗
1 ∩ A0. This contradicts the choice of elements

t and s. Thus we can conclude that F∗
1 is a prime filter. Similarly, we can show

that F∗
2 is a prime filter. Now we have that (P1, F∗

1 ) ∈ g1(x), (P2, F∗
2 ) ∈ g1(y),

U1(P1, P2, P) and U2(F∗
1 , F∗

2 , Q), Hence, U ((P1, F∗
1 ), (P2, F∗

2 ), (P, Q)) holds.
Thus, G = (P, Q) ∈ g1(x) ◦ g1(y).

Theorem 33 The varieties WH and reWH have the amalgamation property.

By using the same argument as above, and in addition using also Lemma 26,
Corollary 25 and Theorem 27, we have also the following. We note that the first and
the third results are shown already in Celani and Jansana (2005) and Alizadeh and
Ardeshir (2006), respectively.

Theorem 34 The varieties of all RWH-algebras, all left residuated RWH-algebras,
all Visser algebras and all left residuated Visser algebras have the amalgamation
property.
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4.8 Concluding Remarks

In the present paper, we have introduced a framework of discussing lattice-ordered
groupoids togetherwith latticeswith implication.Our key notion is residuated expan-
sions of both classes of lattice-ordered structures. As shown in Sect. 4.5, this frame-
work runs particularly well for bounded distributive case. Since fusion induced by a
residuated expansion of important classes of lattices with implication is often non-
associative and non-commutative, we have focused our attention mostly to only left
residuated expansions but it is not difficult to extend our framework to left and right
residuated expansions. In Sects. 4.6 and 4.7, we took up and discussedWH-algebras,
RWH-algebras, Visser algebras and their left residuated expansions. It will not be
hard to extend results in these sections to any other class of bounded distributive lat-
ticeswith implication, as long as it is closed under canonical extensions andmoreover
canonical residuated expansions.

Results on algebraic properties of varieties of (residuated) latticeswith implication
shown in Sect. 4.7 will suggest to introduce the notion of the residuated expansion
of a given logic. We are now developing such a logical study in connection with
subintuitionistic logics and logics of strict implication, which will be announced in
a separate paper.
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Chapter 5
Everyone Knows that Everyone Knows
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and Malvin Gattinger

Abstract A gossip protocol is a procedure for sharing secrets in a network. The
basic action in a gossip protocol is a telephone call wherein the caller and the callee
exchange all the secrets they know. An agent who knows all secrets is an expert.
The usual termination condition is that all agents are experts. Instead, we explore
some protocols wherein the termination condition is that all agents know that all
agents are experts. We call such agents super experts. Additionally, we model that
agents who already know that all agents are experts, do not make and do not answer
calls. We also model that such protocols are common knowledge among the agents.
We investigate conditions under which such gossip protocols terminate, both in the
synchronous case, where there is a global clock, and in the asynchronous case, where
there is not. We show that a protocol with missed calls can terminate faster than the
same protocol without missed calls.
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5.1 Introduction

The great 7th century lexicographer Al Khalil Ibn Ahmad wrote this famous epigraph:

—Men who know and know that they know, they are expert, follow them;
—Men who know and do not know that they know, they are asleep, wake them;
—Men who do not know and know that they do not know, they search for guidance, lead them;
—Men who do not know and do not know that they do not know, they are ignorant, shun them.

This contribution is on gossip protocols that terminate when everyone knows that everyone

knows all secrets. It is dedicated to a man who knows that he knows.

The gossip problem addresses how to spread secrets among a group of agents by
pairwise message exchanges, in other words: telephone calls. We assume that each
agent holds a single secret, that when calling each other, the agents exchange all
the secrets they know, and that the goal of the information dissemination is that all
agents know all secrets. In gossip terminology, an agent who knows all secrets is
an expert (unlike in the citation above, where an expert is a man who knows that
he knows). The situation can be represented by a graph or network where the nodes
are the agents and where, when two nodes are linked, the agents can call each other.
We say that they know their (telephone) numbers. The linked nodes are pairs in the
binary number relation. Similarly, we can represent the secrets that the agents know
in a binary secret relation.

There are many variations of the problem. It goes back to the early 1970s (Baker
and Shostak 1972; Tijdeman 1971). In this ‘classical’ setting (for an overview, see
Hedetniemi et al. (1988)) only secrets are exchanged, and the focus is on minimum
execution length of protocols executed by a central scheduler. Later publications
assume that the scheduling is distributed (Kermarrec and Steen 2007). Fairly recent
developments focus on gossip protocols with epistemic preconditions for calls (Apt
et al. 2015; Attamah et al. 2014). For example, agents may only call another agent
once, or only if they do not know the other agent’s secret, etc.

In the problem of dynamic gossip (van Ditmarsch et al. 2017, 2019) the agents
do not only exchange all the secrets they known but also all the telephone numbers
they know. This results in network expansion: not only the secret relation but also
the number relation is expanded after a call. The network is then dynamic, which
explains the term.However, if the number relation is a complete digraph (the universal
relation), i.e., when all agents know all telephone numbers, then the dynamic and
classical gossip problem coincide. Here we will assume complete digraphs and thus
not investigate dynamic gossip.

Another way to load the messages beyond merely exchanging secrets is to
exchange knowledge about secrets. This approach is taken in Herzig and Maffre
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(2017): in a call the two agents may exchange all the secrets they know. But once
this is done (and more), they may also exchange the information ‘everyone knows
all the secrets’. This requires that the number of agents is known. And once that
is done, they may exchange the information ‘everyone knows that everyone knows
all the secrets’, and so on. They thus achieve higher-order shared knowledge of all
secrets (all the agents know that all the agents know, …).

In this contribution we also investigate gossip protocols that achieve such higher-
order knowledge. However, unlike Herzig and Maffre (2017) we do not achieve this
by loading the messages with epistemic features. We continue to exchange the same
basic information as in the classical gossip problem, i.e. only secrets. Instead we
make three modifications:

• Agents who know that everyone is an expert no longer make calls.
• Agents who know that everyone is an expert no longer answer calls.
• The protocol terminates when everyone knows that everyone is an expert.

An agent who knows that everyone is an expert is a super expert. Hence in our new
setting, super experts do not make and do not answer calls and the goal is to turn
all agents into super experts. Finally, we assume that all these new conditions are
common knowledge among the agents.

In the remainder of this introductory sectionwegradually developdetailed running
examples to motivate our approach and discuss first results.

Let there be four agents a, b, c, d. Each agent holds a single secret to share.
Consider the call sequence ab; cd; ac; bd. In a call, agents exchange all secrets they
know. After the call ab, agents a and b both know two secrets, and similarly after
the call cd, agents c and d both know two secrets. Therefore, after the subsequent
call ac, agents a and c both know all four secrets: they are experts. Similarly, after
the final call bd, b and d are experts. So, after ab; cd; ac; bd, all agents are experts.

In fact, the agents know a bit more than that. After call ac agent a is not only
herself an expert but she also knows that agent c is an expert, and agent c also knows
that agent a is an expert. (We typically use alternating pronouns: a is female, b is
male, c is female, and so on.) Similarly, after call bd, agent b also knows that d is
an expert, and d also knows that b is an expert. Can the agents continue calling each
other until they all know that they are all experts, i.e., until they all know that they
all know all secrets? Yes, they can. Let us first consider agent a. In order to get to
know that everyone knows all secrets, a has to make two further calls: ab and ad.
Let us suppose these calls are made, and in that order. First, note that before and
after those calls the agents involved are already experts, so no factual information
is exchanged. However, the agents still learn about each other that they are experts.
Hence, after ab, agent a knows that b is an expert and after ad she knows that d is
an expert. As she also knows this from herself, a therefore now knows that everyone
is an expert. Let us now consider agent b. In call bd he learnt that d is an expert, and
in the additional call ab he learnt that a is an expert. And again he obviously knows
from himself that he is an expert. Therefore, in order to get to know that everyone
is an expert, b only needs to make one additional call, bc, and b then knows that
everyone is an expert. Similarly, after yet another call cd, c knows that everyone
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is an expert, which can be observed by highlighting the calls wherein c learns that
another agent is an expert, as follows: ab; cd;acacac; bd; ab; ad;bcbcbc;cdcdcd . We caught two
birds in one throw, because after that final call cd also agent d knows that all agents
are experts: ab; cd; ac;bdbdbd; ab;adadad; bc;cdcdcd .

This contribution is about gossip protocols with the termination condition that
everyone knows that everyone knows all secrets. To our knowledge this setting has
not been studied in detail before. In particular it differs from Herzig and Maffre
(2017) because we do not allow agents to exchange more information than merely
their secrets.

As a first idea to motivate our new call rules, suppose any agent who is an expert
no longer makes calls and no longer answers calls. A call that is not answered we
name a missed call (even though in this case not answering is intentional). Given this
new rule, can everyone still become an expert? Yes. For example, after the already
mentioned call sequence ab; cd; ac; bd all agents are experts, and all calls were
answered. However, now consider the sequence ab; ac; ad. After this, agents a and
d are experts. Agents b and c can now no longer become experts: if either were to
call a or d, this would be a missed call. Note that agents do not learn any secrets
from a missed call. Hence in this case b and c can never learn the secret of d: they
can still call each other, and after additional call bc or cb agents b and c would both
know three secrets but not all four secrets, they are not experts. The protocol cannot
terminate.

We could additionally assume common knowledge among the agents that amissed
call means that the agent not answering the call is an expert. But that does not make
a big difference. After a missed call as above agents b and c would thus know that
a and d are experts. But, for example, that agent b knows that a knows the secret of
d, does not make b himself know the secret of d. They cannot use that knowledge to
become experts themselves. We conclude that this first idea of a condition for missed
calls is not very satisfactory.

In this contribution we therefore employ the idea of missed calls in a different
way. Let us suppose that an agent who knows that everyone is an expert no longer
makes calls and no longer answers calls. This requirement is harder to fulfil than the
previous requirement that an agent who is an expert stops making and answering
calls.

We can already satisfy the stronger termination requirement that everyone knows
that everyone is an expert without such missed calls, for example, with the already
given sequence ab; cd; ac; bd; ab; ad; bc; cd. Admittedly, this is not entirely obvi-
ous. Please consider the above explanation again, and observe it is also the case that
after the subsequence ab; cd; ac; bd; ab; ad only agent a knows that everyone is an
expert, and in the subsequent call bc only agent b learns that, and only in the final
call cd agents c and d simultaneously learn that. No call is made to an agent who
knows that all agents know all secrets. Therefore, there are no missed calls.

However, now consider the call sequence ab; cd; ac; bd; ab; ad; ba; ca; da. All
final three calls are missed calls, because a already knows that everyone is an expert.
What do b, c, and d respectively learn from these calls? Well, nothing whatsoever,
as just like above we did not make any assumptions so far about the meaning of a
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missed call in this new context. Therefore, after those calls we can still make the
additional calls bc; cd in order to satisfy that everyone knows that everyone is an
expert.

Let us now, as above, additionally assume that it is common knowledge among
the agents that a missed call means that the agent not answering the call knows that
all agents are experts. Now, unlike above, that makes a big difference. Given the
sequence ab; cd; ac; bd; ab; ad; ba; ca; da, in the three final missed calls ba, ca,
and da, respectively, agents b,c,d then learn from a that all agents are experts, so
that after the entire sequence all agents know that all agents are experts. Again, we
are done. Before we continue, let us make two more observations. Firstly, if the three
missed calls had been ordinary calls, the termination condition would not yet have
been met. For example, agent d would then not know that agent c knows all secrets.
Additional calls would have been needed. Secondly, although the sequence with
three missed calls is one call longer than the previous sequence that also realizes the
knowledge objective, in general there are terminating sequences with missed calls
that are shorter than any other terminating sequence without missed calls, as we will
prove later.

The modelling solution for missed calls, that is novel, is similar to a modelling
solution for making protocols common knowledge, presented in van Ditmarsch et al.
(2019). We incorporated both together in this contribution. This also allows us to
investigate how we can achieve that everyone knows that everyone is an expert with
the constraints of some protocols known from the literature, such as the protocol
wherein you are only allowed once to be involved in a call (as the agent making
or receiving the call) (van Ditmarsch et al. 2019). For example, consider again the
sequence ab; ac; ad after which agents a and d are experts. As agent a may no longer
be involved in any subsequent call, it is impossible for her to get to know that everyone
is an expert. So, common knowledge of a protocol comes with additional constraints.
It may also come with additional advantages: in this case we can sometimes achieve
common knowledge of termination under synchronous conditions, i.e., if all agents
know how many calls have been made, even if they were not involved themselves in
all those calls. We will report some such cases.

Outline In Sect. 5.2 we define gossip protocols and different frameworks for execut-
ing gossip protocols. Section5.3 presents some detailed examples for the protocol
wherein any call is allowed, not surprising called ANY. In Sect. 5.4 we provide more
general results involving other protocols, namely the CMO protocol (for ‘Call Me
Once’: a call between two agents may only occur once) and the PIG protocol (for
‘Possible Information Growth’: a call is allowed if the caller considers it possible
that the caller or callee will learn a new secret in that call).

5.2 Definitions

Suppose a finite set of agents A = {a, b, c, . . . } is given. We assume that two agents
can always call each other, i.e., a complete network connects all the agents. Let
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S ⊆ A2 be a binary relation such that we read Sxy (for (x, y) ∈ S) as “agent x
knows the secret of agent y.” For the identity relation S = {(x, x) | x ∈ A} we
write I .

The agents communicate with each other through telephone calls. During a call
between two agent x and y, they exchange all the secrets that they knew before the
call. So if a call takes place the binary relation S will be changed.

A call or telephone call is a pair (x, y) of agents x, y ∈ A for which we write
xy; agent x is the caller and agent y is the callee. An agent x is involved in a call
yz iff y = x or z = x . A call sequence is defined by induction: the empty sequence
ε is a call sequence. If σ is a call sequence and xy is a call, then σ ; xy is a call
sequence. Informally, we occasionally consider infinite call sequences. Let S be the
secret relation between agents and σ a call sequence. The result of applying σ to S
is defined recursively as:

• Sε = S;
• Sσ ;xy = Sσ ∪ {(x, y), (y, x)} ◦ Sσ .

We use |σ | for the length of a call sequence, σ [i] for the i th call of the sequence,
σ |i for the first i calls of the sequence, and σx for the subsequence of σ that only
contains calls involving x .

For a given set of agents A a gossip state is a pair (S, σ ), where S is a secret
relation and σ a call sequence. A gossip state is initial if S = I and σ = ε. In this
contribution we only consider gossip states (I, σ ), in which case we often omit I
(we recall that I is the identity secret relation where every agent only knows its own
secret).

The following twoDefinitions 1 and2 are given by simultaneous induction (double
recursion). This is because the language contains a primitive formula KP

a ϕ that
assumes a protocol P, where the protocol conditions Pxy that occur in a protocol P
are formulas.1

Definition 1 (Language) For a given finite set of agents A the languageL of protocol
conditions is given by the following B N F :

ϕ := � | Sab | Cab | ¬ϕ | (ϕ ∧ ϕ) | KP
a ϕ | [π ]ϕ

π := ?ϕ | ab | (π;π) | (π ∪ π) | π∗

where a, b range over A. We will use the usual abbreviations for implication, dis-
junction and for dual modalities, and often omit parentheses.

The atomic formula Sab reads as ‘agent a has the secret of b’, whereas Cab
reads ‘a call from a to b has been executed in the past’. The formula KP

a ϕ reads
‘agent a knows that ϕ is true given protocol P’, where ‘given protocol P’ means
‘given that protocol P is common knowledge among the agents’. For the ‘make any
call’ protocol ANY (see below) with all protocol conditions Pab = �, we write Kaϕ

instead of KANY
a ϕ. Expression [π ]ϕ reads as ‘after executing the programπ ,ϕ is true’.

1This is well-defined, see van Ditmarsch et al. (2019) for a justification of a similar semantics.
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We also defined the abbreviation Eϕ := ∧
a∈A KP

a ϕ and read it as ‘everyone knows
ϕ’ (given protocol P— this is left implicit); Eϕ is also known as shared knowledge
of ϕ. Program iteration is defined as: π1 := π , and for n > 1, πn+1 := πn;π .

Agent a is expert if she knows all the secrets, formally
∧

b∈A Sab. Everyone is an
expert is represented by the formula Eexp := ∧

a∈A

∧
b∈A Sab. Agent a is a super

expert if she knows that everyone is an expert, formally KP
a Eexp. For ‘everyone

knows that everyone is an expert’ (i.e., everyone is a super expert), E Eexp, we write
E2

exp.
This usage of the E operator can be informally justified as follows. Instead of

‘agent a has the secret of b’, to represent Sab, it is also often thought of as ‘agent
a knows the secret of b’. Assuming for this paragraph that a secret of b were a
propositional variable pb, agent a knowing the secret of b then means that agent a
knows whether pb, in a formula, Ka pb ∨ Ka¬pb. The semantics we present later
enforces that Sab implies Ka Sab (if a knows the secret of b, she knows that she
knows the secret of b), and that ¬Sab implies Ka¬Sab (if a does not know the
secret of b, she knows that she does not know the secret of b), which corresponds
to the positive and negative introspection properties of knowledge. And indeed,
these also apply to the description Ka pb ∨ Ka¬pb and its negation. Also, Eexp for
‘everyone knows all the secrets’ is equivalent to

∧
a∈A Ka

∧
b∈A Sab, which justifies

the usage of ‘everyone knows’ in its intuitive description. This therefore also justifies
the ‘everyone knows that everyone knows’ and the upper index 2 in E2

exp.

Definition 2 (Protocol) A protocol P is a program defined by

P := (
⋃

a 
=b∈A

(?(¬KP
a Eexp ∧ Pab); ab))∗; ?E2

exp

where for all a 
= b ∈ A, Pab ∈ L is the protocol condition for call ab of protocol P.

Some informal explanations are in order to explain this protocol definition. The
usual, expected, definition for gossip protocols would have been

(?¬Eexp;
⋃

a 
=b∈A

(?Pab; ab))∗; ?Eexp

where we note that this corresponds to “while ¬Eexp do
⋃

a 
=b∈A(?Pab; ab),” in
words: “while not everyone is an expert, choose different agents a and b that satisfy
the condition Pab and let a call b.”

As our termination condition is stronger, this should then become

(?¬E2
exp;

⋃

a 
=b∈A

(?Pab; ab))∗; ?E2
exp

Then, as we do not want super experts to make calls, we need to strengthen the
protocol condition as in
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(?¬E2
exp;

⋃

a 
=b∈A

(?(¬KP
a Eexp ∧ Pab); ab))∗; ?E2

exp

Finally, as
∧

a∈A KP
a Eexp is E2

exp, it is not hard to see that the same call sequences are
allowedwhenwe remove thefirst test on¬E2

exp ,which leads to the aboveDefinition 2.
The following two Definitions 3 and 4 are also given by simultaneous induction.

To define ≈P
a (or ∼P

a ), we need |=, and to define |=, we need ≈P
a .

2

Definition 3 (Synchronous and asynchonous epistemic relation) Let A be a set of
agents and a ∈ A. We define the synchronous accessibility relation ≈P

a between
gossip states inductively as follows:

• ε ≈P
a ε,

• if σ ≈P
a τ , a /∈ {b, c, d, e}, σ |= ¬KP

b Eexp ∧ Pbc and τ |= ¬KP
d Eexp ∧ Pde then

σ ; bc ≈P
a τ ; de

• if σ ≈P
a τ , Sσ

b = Sτ
b , σ |= ¬KP

a Eexp ∧ Pab, τ |= ¬KP
a Eexp ∧ Pab, and (σ |= KP

b
Eexp iff τ |= KP

b Eexp), then σ ; ab ≈P
a τ ; ab

• if σ ≈P
a τ , Sσ

b = Sτ
b , σ |= ¬KP

b Eexp ∧ Pba , τ |= ¬KP
b Eexp ∧ Pba , and (σ |= KP

a
Eexp iff τ |= KP

a Eexp), then σ ; ba ≈P
a τ ; ba

The asynchronous accessibility relation ∼P
a between gossip states is the same as the

relation ≈P
a except that the second clause is replaced by

• if σ ∼P
a τ , a /∈ {b, c}, and σ |= ¬KP

b Eexp ∧ Pbc, then σ ; bc ∼P
a τ and σ ∼P

a τ ; bc

Note that ≈P
a and ∼P

a are equivalence relations. For ∼ANY
a we write ∼a and for

≈ANY
a we write ≈a .
We recall that we identify initial gossip states (I, σ ) with call sequences σ . The

above definitions incorporate common knowledge that (i) protocol P is used and (ii)
agents stop making calls once they know all agents are experts (once they are super
experts). This is as in van Ditmarsch et al. (2019).

However, our semantics also has the additional feature “σ |= KP
b Eexp iff τ |=

KP
b Eexp” in the relations. This extra condition models that agents no longer answer

calls if they know that all agents are experts (if they are super experts). It has the
effect that after a missed call ab any state τ wherein agent b does not know that
all agents are experts is no longer considered possible by agent a. In other words,
in that case we have σ ; ab 
≈P

a τ ; ab. Given the subsequent semantics, this means
that KP

a KP
b Eexp, and therefore also KP

a Eexp. The dual effect of this semantics for
missed calls is that when b answers a call ab by a, any state τ wherein agent b would
have been a super expert is no longer considered possible by a. In particular, when
a learns that b already knew all secrets before the call, she learns that b was not yet
a super expert at the time. Of course, b may have become a super expert in the call
ab.

The clause for the missed call ba to agent a is somewhat (but not entirely) similar
to the clause for the missed call ab from agent a.

2This is also well-defined, see again (van Ditmarsch et al. 2019) for a justification of a similar
semantics.
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Informally, the synchronous accessibility relation encodes that agents not involved
in a call are still aware that a call has taken place, as considered in Apt et al. (2015),
Attamah et al. (2014). This also implies that all agents know how many calls have
taken place, i.e., there is a global clock. The asynchronous accessibility relation does
not make any such assumption. Then, agents are only aware of the calls in which
they are involved. Any information on other calls has to be deduced from the secrets
they obtain from their calling partners.

Definition 4 (Semantics) Let call sequenceσ and formulaϕ ∈ L be given.Wedefine
σ |= ϕ by induction on ϕ.

σ |= � iff always
σ |= Sab iff I σ ab
σ |= Cab iff ab ∈ σ

σ |= ¬ϕ iff σ 
|= ϕ

σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ

σ |= KP
a ϕ iff τ |= ϕ for all τ such that σ ≈P

a τ

σ |= [π ]ϕ iff τ |= ϕ for all τ such that σ [[π ]]τ

where
σ [[?ϕ]]τ iff σ |= ϕ and τ = σ

σ [[ab]]τ iff τ = σ ; ab
σ [[π;π ′]]τ iff there is ρ such that σ [[π ]]ρ and ρ[[π ′]]τ
σ [[π ∪ π ′]]τ iff σ [[π ]]τ or σ [[π ′]]τ
σ [[π∗]]τ iff there is n ∈ N such that σ [[πn]]τ

The inductive clause for KP
a ϕ above is for the synchronous setting. For the asyn-

chronous setting we replace σ ≈P
a τ by σ ∼P

a τ in that clause. For simplicity we do
not use a separate symbol for the asynchronous semantics — it will always be clear
from the context what ‘ �’ stands for. A formula is valid iff for all call sequences σ ,
σ |= ϕ, in which case we also write |= ϕ.

We assume that all our protocols are symmetric, which means that for all a 
=
b ∈ A and c 
= d ∈ A, simultaneously replacing a by c and b by d in the protocol
condition Pab yields Pcd . Moreover, we only consider protocols that are epistemic,
which means that |= Pab ↔ KP

a Pab.
Some elementary properties of the semantics that we list without proof, are as

follows. Here a, b ∈ A, protocols P, P′, and ϕ ∈ L are all arbitrary.

• |= KP
a ϕ → KP

a KP
a ϕ, and |= ¬KP

a ϕ → KP
a ¬KP

a ϕ. Intuitively, KP
a has two of the

standard properties of knowledge, namely positive and negative introspection.
• KP

a ϕ → ϕ is not valid. In fact, whenever σ is not P-permitted as defined below,
then σ |= KP

a ⊥.
• |= Pab → P′

ab implies |= KP′
a ϕ → KP

a ϕ; a corollary is that |= Kaϕ → KP
a ϕ;

• |= Sab ↔ Ka Sab and |= ¬Sab ↔ Ka¬Sab;
• σ |= KP

b Eexp implies σ |= [ab]KP
a KP

b Eexp. That is, if b is a super expert and a
calls b, then a learns that b is a super expert from the missed call ab.



126 R. Ramezanian et al.

We continue with some terminology on protocol termination. In some of this sub-
sequent terminology we need to consider infinite call sequences. We denote poten-
tially infinite call as σ∞.

If σ |= Pab ∧ ¬KP
a Eexp we say that call ab isP-permitted after σ . AP-permitted

call sequence is a call sequence consisting of P-permitted calls. An infinite call
sequence σ∞ is P-permitted if any prefix σ∞|i (where i ∈ N) is P-permitted.

A P-permitted sequence σ∞ is P-fair iff either σ∞ is finite or for all x 
= y ∈ A,
if for all i there is j > i such that xy is P-permitted in σ∞| j then for all i there is
j > i such that σ∞[ j] = xy.

A call sequenceσ is super successful if afterσ all the agents are super experts. (For
the termination condition Eexp, the corresponding terminology is that call sequence
σ is successful if after σ all the agents are experts, see van Ditmarsch et al. (2019).)
A sequence σ is P-maximal (or P-terminal, or terminating) iff it is P-permitted
and if for any x, y ∈ A, σ ; xy is not P-permitted. An infinite call sequence σ∞ is
P-maximal if any prefix σ∞|i is P-permitted. A protocol P is super successful iff all
P-maximal sequences are super successful (and thus finite). A protocol P is fairly
super successful iff all fair P-maximal sequences are super successful.

Let us give some further intuitions to explain these definitions. The notion of
fairness is needed because already very simply protocols allow infinite execution
sequences. For example, the protocol ANY (wherein you can make any call) has
execution sequences ab; ab; . . . . We call this unfair because only call ab occurs
in this sequence, but not, for example, ba, or if there is another agent c, any of
ca, ac, bc, cb. All of these are permitted at any stage. Therefore, in any fair ANY-
sequence all of these should occur arbitrarily often. Indeed, the protocol ANY is not
super successful, but it is fairly super successful (van Ditmarsch et al. 2019).

After these technical requirements, we continue with some detailed examples of
the semantics.

5.3 Examples

All examples in this section are for the protocol ANY. We recall that for all x 
= y ∈
A, ANYxy = �. Therefore, we can write Ka (= KANY

a ) everywhere instead of KP
a .

Three agents, make any call, asynchronous

Let A = {a, b, c}, let the protocol be ANY, and let the environment be asyn-
chronous. Consider the call sequence ab; ac; ab; cb.

• After the prefix ab; ac, agents a and c are experts.
• After the prefix ab; ac; ab, agents a and b know that all agents are experts. Agent

a already knew that c is an expert and in call ab also learns that b now is an expert.
Therefore, she knows that all agents are experts: ab; ac; ab |= Ka Eexp. In the call
ab, agent b learns that a is an expert. Because in the first call ab agent a did not
know the secret of c yet, but now gives it to b, agent b can infer that the call ac



5 Everyone Knows that Everyone Knows 127

must have taken place before the second call ab. As in that call ac agent c became
an expert, agent b also knows that agent c is an expert. Therefore also agent b
knows that all agents are experts: ab; ac; ab |= Kb Eexp.

• Now consider the entire sequence ab; ac; ab; cb. Call cb is a missed call: agent b
will not answer agent c’s call, because b already knows that all agents are experts.
Therefore, agent c learns in that call that all agents are experts: ab; ac; ab; cb |=
Kc Eexp. We now have that ab; ac; ab; db |= E2

exp.

Possibly of interest is that if the last call had been answered by b, then c would
also have learnt that all agents are experts. This is because in agent c’s prior call ac,
agent a did not know the secret of b yet. Therefore agent c can infer that call ab
must have taken place before the final call cb. As in that call ab agent a became an
expert, agent c also knows that agent a is an expert. Therefore agent c knows that all
agents are experts. A crucial assumption here is that caller and callee not only learn
what the union is of the set of secrets they each held before the call, but that they
also learn what set of secrets the other agent held before the call. This is known as
the “inspect-then-merge” form of observation (Apt et al. 2018).

It is remarkable thatwe can come to this conclusion for the asynchronous situation.
This is because there are three agents only. Such scenario’s for small numbers of
agents (although not for the alternative termination condition E2

exp, or involving
missed calls) are also discussed in Apt et al. (2018).

Four agents, make any call, asynchronous Let now A = {a, b, c, d}, let the pro-
tocol be ANY, and let the environment be asynchronous. A terminating sequence
ab; cd; ac; bd; ab; ad; bc; cd consisting of eight callswas already given in the intro-
ductory Sect. 5.1. In that section it was already justified that we obtain E2

exp by this
sequence without any missed call. Asynchronously, we cannot realize E2

exp for four
agents in less than eight calls. In the next examples we show that for larger numbers
of agents there are shorter terminating sequences in the synchronous situation.

Four agents, make any call, synchronous Let again A = {a, b, c, d}, let the proto-
col beANY, but let now the environment be synchronous.We claim that after the five
call sequence ab; cd; ac; bd; ba agent b already knows that all agents are experts,
which can only be obtained after a six call sequence in the asynchronous case. This
illustrates the difference between the synchronous and the asynchronous situation.

Let us consider agent b. Clearly, after prefix ab; cd; ac; bd agents b is an expert.
He does not know between who the second and third calls were, but he knows
that no call between a and d took place. However, he is uncertain whether agent
a already is an expert. For example, an alternative sequence considered possible
by b is ab; cd; cd; bd. This uncertainty is resolved in the fifth call. Consider the
sequence ab; cd; ac; bd; ab. This reveals to b that a must have been involved in the
second or third call of the sequence, and, given b’s call bd, that this cannot be the
second call. As a is already an expert in the call ab, this reveals that the third call
must have been between a and c. Agent b now only consider possible the sequence
ab; cd; ac; bd; ab (where the calls not involving him could also have been in the
other direction). Therefore, agent b knows that all agents are experts.
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We were not able to reach E2
exp for four agents with less than eight calls, for

example, as an extension of the above sequence.

Six agents, make any call, asynchronous In this example we show that with missed
calls we can obtain shorter termination sequences than without.

Let there now be six agents a, b, c, d, e, f . Let us first assume a semantics without
missed calls, but still with termination condition E2

exp. A standard solution to obtain
Eexp is ae; a f ; ab; cd; ac; bd; ae; a f . It consists of eight calls. This is the minimum
(for n ≥ 4 agents, 2n − 4 calls are needed to reach Eexp (Tijdeman 1971)). Note that
after any of the final four calls ac; bd; ae; a f , the involved agents are experts. For
n agents, to obtain E2

exp we need
(n
2

)
calls after which the calling agents are experts.

This is because each agent has to verify for all other agents that they know all secrets,
hence all pairs need to occur as calls. This gives us

(n
2

)
. But, of course, four of those

already occurred at the end of the sequence obtaining Eexp, as above. In the case of 6
agents, where

(6
2

) = 15, we therefore need 8 + 15 − 4 = 19 calls. For example, one
possible terminating sequence is this:

ae; a f ; ab; cd; ac; bd; ae; a f ; ab; ad;bababa; bc; bd; b f ; cd; ce; c f ; ed; e f

Let us now consider our new semantics with missed calls. The above sequence is
no longer permitted. For example, before the call ba in bold a is already a super
expert and thus will not answer the call. After the call ba also b is a super expert and
will stop making calls, hence bc; bd; b f are no longer permitted. Thus, in our new
setting, a simpler sequence with 15 instead of 19 calls is terminating:

ae; a f ; ab; cd; ac; bd; ae; a f ; ab; ad; ba; ca; da; ea; f a

In this sequence first a becomes a super expert and then all other agents call agent a.
The final five calls ba; ca; da; ea; f a are all missed calls in which b to f become
super experts.

We conjecture that not only in this example but for any n ≥ 4 agents at least
n − 2 + (n

2

)
calls are needed.

Firstly, note that given a graph with n nodes without any connections, such as the
graph for the initial secrets relation S, at least n − 1 links are needed to connect n
nodes (this may be by way of one agent calling all n − 1 other agents, but there are
many other ways, such as in the above sequence). Therefore, after n − 2 calls no
agent will be an expert. Call n − 1 is the first call wherein two agents may become
experts.

Secondly, under asynchronous conditions and without any knowledge of the pro-
tocol, and given that there are at least 4 agents, whenever two agents become expert
in a call, they are uncertain whether the agents not involved in that call are already
experts. It therefore seems (which we wish to prove in future research) that they need
to call all other agents to confirm that. As this holds for all agents, on this assump-
tion all calls ab for a, b ∈ A need therefore to occur: this is the number

(n
2

)
already

mentioned above. This would also mean that in general, for n agents, using the new
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semantics with missed calls at least O(n) additional calls are needed to reach E2
exp,

whereas without missed calls at least O(n2) calls are needed.
Yet more examples are found in the introductory section. The reader may wish

to go through these examples again, and validate them with the semantics of the
previous section.

5.4 The Protocols CMO and PIG

5.4.1 The Protocol CMO

TheCall Me Once (CMO) protocolwas introduced invanDitmarsch et al. (2019) (and
is reminiscent of Doerr et al. (2014)), wherein it was shown that for the termination
condition Eexp the protocol CMO is successful in weakly connected graphs, and
therefore also in the fully connected graphs that are implicit in our contribution. The
protocol condition for CMO is that you are allowed to call an agent if you have not
yet been involved in a call with that agent. Formally we define it as follows.

Protocol (CMO—Call Me Once) The Call Me Once protocol is defined by the
condition Pxy := ¬Cxy ∧ ¬Cyx. �
As any two agents x, y out of |A| = n agents are only allowed to call each other once
(either as xy or as yx), the maximum number of calls before termination is therefore(n
2

) = n(n−1)
2 .

In this section we show that CMO is not (always) super successful if the protocol
is not common knowledge among the agents or if the conditions are asynchronous.

Theorem 1 Let |A| ≥ 4. The protocol CMO is not super successful if the protocol
is not common knowledge or if the setting is asynchronous.

Proof We need to consider two cases: (i) the protocol is not common knowledge,
and (i i) the setting is asynchronous. For both cases we have to show that CMO is
not (always) super successful.

Case (i). Let the protocol not be commonknowledge.Given A = {a1, a2, . . . , an},
let ρ be a maximal CMO sequence between agents {a1, a2, . . . , an−1}. We may
assume (from van Ditmarsch et al. (2019)) that after ρ all agents a1, a2, . . . , an−1

know all their secrets (so they are experts except that none of them knows the secret
of an). Now define the call sequence σ by having agent an call all other agents after
ρ:

σ := ρ; ana1; ana2; . . . ; anan−1

We note that σ is again a maximal CMO sequence. After σ , all agents are experts,
and agent an is the only agent who knows that all the agents are expert. Let i, j < n
and i 
= j . Now consider the following call sequence τ where an only calls a j (many
times) and qi (once, at the same moment as in σ :
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τ := ρ;
i−1 times

︷ ︸︸ ︷
ana j ; ana j ; . . . ana j ; anai ;

n−i−1 times
︷ ︸︸ ︷
ana j ; ana j . . . ana j

We then have that σ ≈ai τ and that τ 
|= Eexp. Therefore, σ |= ¬Kai Eexp. As σ is
maximal and not super successful, CMO is not super successful.

Case (i i). Let now the setting be asynchronous. Consider again the call sequence
ρ and σ from the case (i). The sequence ρ; anai is CMO permitted, and σ ∼CMO

ai

ρ; anai . After ρ; anai , only agents an and ai are experts but none of the remaining
agents. Therefore, σ |= ¬Kai Eexp. As σ is maximal and not super successful, CMO
is not super successful.

Let us illustrate Theorem 1 with an example. Let A = {a, b, c, d} and consider
the sequence σ := ab; ac; bc; da; db; dc. This sequence isCMO-permitted,CMO-
terminal, and satisfies Eexp.

First, assume that the setting be asynchronous but that the protocol CMO is
common knowledge. Consider the prefix ab; ac; bc; da of σ . Note that σ ∼CMO

a
ab; ac; bc; da, as a is not involved in the final two calls. Now observe that after
ab; ac; bc; da agents b and c do not know the secret of d (ab; ac; bc; da |= ¬Sbd ∧
¬Scd), so that ab; ac; bc; da 
|= Eexp. From that and ab; ac; bc; da; db; dc ∼CMO

a
ab; ac; bc; da it follows that σ 
|= Ka Eexp, which implies σ 
|= E2

exp, so that σ is not
super successful.

Next, assume that the protocol is not common knowledge (but still assume the
more informative synchronous setting). Then σ ≈b ab; ac; bc; da; db; da, where in
the call sequence on the right side we replaced the final call dc in σ by da. This
sequence is not CMO-permitted, as call da occurs twice. After ab; ac; bc; da; db;
da, agent c does not know the secret of d, therefore ab; ac; bc; da; db; da 
|= Eexp.
From that andσ ≈b ab; ac; bc; da; db; da then follows thatσ 
|= Kb Eexp, and there-
fore σ 
|= E2

exp, so that again σ is not super successful.
The other direction of Theorem 1 is false, which can be shown by yet another

example for the four-agent case. However, under certain additional conditions, which
woulddefine a slightly different gossip protocol,we conjecture that the other direction
is true:

The (changed) protocol CMO is super successful if the protocol is common knowledge and
the setting is synchronous.

For four agents, this seems to be the case if the first two calls are between pairs
of disjoint agents. Such results seem of interest, as we may then even be able to
obtain that the agents have common knowledge that everybody is expert, a stronger
condition than the E2

exp of our investigation. Such commonknowledge that everybody
is expert may, possibly, also be obtainable by allowing ‘skip’ calls after termination
in the synchronous case: even when the goal E2

exp has been achieved, it may be that
some agents do not know that this has been achieved, and consider it possible that
other agents can only become super experts after yet another call (or more calls).
Such a ‘skip’ call would then function as a ‘clock tick’: it may be informative to
agents that one more unit of time has passed. Without a skip, no such information
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growth can take place, as the protocol has already terminated, and as (also in the
synchronous case) the unit of time between calls is unknown. We intend to report
this in future research.

5.4.2 The Protocol PIG

The Possible InformationGrowth (PIG) protocol has been investigated inAttamah et
al. (2014), van Ditmarsch et al. (2017). In this protocol agent x will call agent y if she
considers it possible that either herself or the agent y being called will learn at least
one new secret in the call. As usual, the termination condition studied in Attamah et
al. (2014), van Ditmarsch et al. (2017) is Eexp, whereas we are now interested again
in E2

exp. Do we have to adjust the protocol to also achieve this stronger termination
condition? Interestingly enough, we do not have to change anything, as we will see
in Theorem 2 below. We thus define the PIG protocol as follows.

Protocol (PIG — Possible Information Growth) The Possible Information Growth
protocol is defined by the condition

Pxy := K̂x

∨

z∈A

((Sxz ∧ ¬Syz) ∨ (¬Sxz ∧ Syz))

Intuitively, the call xy is permitted if x considers it possible that there is a secret z
that x but not y knows, or vice versa. �

The PIG protocol has infinite executions for four or more agents. Under asyn-
chronous conditions for example, ab; ab; ab; . . . is PIG-permitted, because ab is
indistinguishable for agent a from ab; ac, thus ab is again PIG-permitted. Then,
ab; cd; ab ∼PIG

a ab; cd; ab; ac, thus ab is again PIG-permitted, and so on. Some-
what similarly, under synchronous conditions, the sequence ab; cd; ab; cd; ab;
cd; . . . is PIG-permitted, as after any even number of calls agent a considers it
possible that agent b was involved in the last call and would thus have learnt a new
secret in that call. Therefore, each odd call can again be call ab. Termination results
for the PIG protocol are therefore restricted to fair call sequences.

Theorem 2 The protocol PIG is fairly super successful.

Proof If agent a considers it possible that she or another agent knowdifferent secrets,
then clearly agent a considers it possible that not all agents know all secrets. This
implies that agent a does not know that all agents know all secrets,¬Ka Eexp (strictly,
¬KPIG

a Eexp, but with the validity Kaϕ → KPIG
a ϕ and contraposition this implies

¬Ka Eexp). Which is, as we may recall, the strengthened protocol condition in the
protocols in our contribution. We then recall that E2

exp is satisfied if no agent satisfies
¬Ka Eexp anymore.

The remainder of the argument is now as usual for fair executions, where we will
also see that missed calls play no role (so that it applies to our setting).
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Let σ∞ be a (possibly infinite) fair maximal PIG sequence. Towards a contradic-
tion suppose the protocol does not terminate after each finite prefix of σ∞. Consider
the following two cases.

• The sequence σ∞ is finite. Let x be an agent who is not a super expert. If x is not
even an expert and y ∈ A \ Sσ∞

x then the call xy is PIG permitted after σ∞, this
contradicts with the maximality of σ∞. If x is an expert and she does not know that
y is an expert, then again the call xy is PIG permitted after σ∞, which contradicts
the maximality of σ∞.

• The sequence σ∞ has infinite length. Then there is a finite prefix τ � σ∞, such
that for all sequences τ � ρ � σ∞ we have Sτ = Sρ . Consider the following two
cases.

– Sτ 
= A2. Then there are x, y ∈ A such that y ∈ A \ Sτ
x . So the call xy is per-

mitted after τ but it is not executed. This contradicts the fairness assumption.
– Sτ = A2. Then there are x, y ∈ A such that after every prefix of σ∞, agent x
does not know that y is expert. This means for any sequence ρ with τ � ρ � σ∞
there is a sequence π such that ρ ∼PIG

x π (or, for the less general synchronous
situation, ρ ≈PIG

x π ) and A = Sπ
x 
= Sπ

y . Therefore the call xy is permitted
after all such ρ but it is never executed, again this contradicts the fairness
assumption. �

We close this part on the PIG protocol with an example. Let A = {a, b, c, d},
assume that the agents execute the PIG protocol but that this is not common knowl-
edge, and let the setting be asynchronous. Consider the call sequence ab; cd; ac; bd;
ab; ad; cb; cd. After the prefix ab; cd; ac; bd all the agents are already experts.
However, as they do not know that the others are experts, they will now make addi-
tional calls. After the next four calls ab; ad; cb; cd all agents know that all the agents
are experts. Thus, the PIG protocol terminates after σ .

In fact, we recall this example from the introduction, but for the protocol ANY
wherein we can make any call, as the condition ¬Ka Eexp ∧ �, i.e., ¬Ka Eexp, and
which is here equivalent to

∨
c 
=a∈A PIGac, is satisfied.
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Chapter 6
Fuzzy Generalised Quantifiers for
Natural Language in Categorical
Compositional Distributional Semantics

Mǎtej Dostál, Mehrnoosh Sadrzadeh, and Gijs Wijnholds

Abstract Recentwork on compositional distributionalmodels shows that bialgebras
over finite dimensional vector spaces can be applied to treat generalised quantifiers
for natural language. That technique requires one to construct the vector space over
powersets, and therefore is computationally costly. In this paper, we overcome this
problem by considering fuzzy versions of quantifiers along the lines of Zadeh, within
the category of many valued relations. We show that this category is a concrete
instantiation of the compositional distributional model. We show that the semantics
obtained in thismodel is equivalent to the semantics of the fuzzy quantifiers of Zadeh.
As a result, we are now able to treat fuzzy quantification without requiring a powerset
construction.

Keywords Category theory · Many valued relations · Fuzzy sets · Generalised
quantifiers · Distributional semantics · Vector space models · Natural language data

6.1 Introduction

Distributional semantics is inspired by the idea of Firth that words can be represented
by the company they keep (Firth 1957). This idea was formalised by computational
linguistics and by information retrieval researchers; they represented words by the
contexts in which they often occurred. Rubenstein and Goodenough introduced the
concept of a co-occurrencematrix: amatrixwhose columns are context words, whose
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rows are target words, and whose entries are [a function of] the number of times the
target and context words occurred together in a window of a fixed size (Rubenstein
and Goodenough 1965). Later Salton, Wong and Yang employed similar ideas to
indexwords in a document (Salton et al. 1975). In either setting, aword is represented
by a vector: the row associated to it in a co-occurrence matrix, which is a vector in
the vector space spanned by the context words. This representation has been applied
to natural language tasks such as word similarity, disambiguation, and entailment
(Rubenstein and Goodenough 1965; Curran 2004; Turney 2006; Schuetze 1998;
Weeds et al. 2004; Geffet and Dagan 2005; Kotlerman et al. 2010) and information
retrieval tasks, such as clustering, indexing, and search (Salton et al. 1975; Landauer
and Dumais 1997; Lin 1998).

A challenge to distributional semantics was that its underlying hypothesis did
make sense for words, but no longer for complex language units such as sentences.
In an attempt to extend distributional semantics from words to sentences, Clark and
Pulman put forward the idea of tracing the parse tree of a sentence, forming the
tensor product of words and their grammatical roles, and representing the sentence
by the resulting vector (Clark and Pulman 2007). Due to the high dimensionality
of the resulting space (in which the vector of the sentence lives), this idea itself
did not lead to tangible applications and experimental results in language tasks. It
was however followed up by a series of related work, referred to by compositional
distributional semantics, based on the principle of compositionality of Frege, that
the meaning of a sentence is a function of the meanings of its parts. The approaches
within this field, mapped the grammatical structure of sentences to linear maps that
acted on the representations of the words therein, for example see the work of Baroni
and Zamparelli (2010), Maillard et al. (2014), Krishnamurthy and Mitchell (2013),
Lewis and Steedman (2013), Coecke et al. (2010). These models provided concrete
vector constructions and were tested on natural language tasks such as sentence sim-
ilarity, disambiguation, and entailment (Baroni et al. 2014; Grefenstette et al. 2013;
Grefenstette and Sadrzadeh 2015; Kartsaklis and Sadrzadeh 2013, 2016; Bankova
et al. 2016). They were however mostly focused on elementary fragments of lan-
guage and left the treatment of logical operations such as conjunction, disjunction,
and quantification to further work. Recently, quantification was tackled in Hedges
and Sadrzadeh (2019), Sadrzadeh (2016) based on a model that sits within the setting
of Coecke et al. (2010). This setting is based on theory of compact closed categories
(Kelly and Laplaza 1980). It was shown that the bialgebras over these categories
(McCurdy 2012; Bonchi et al. 2014) can be used to model the generalised quanti-
fiers ofBarwise andCooper (1981).An instantiation of the abstract setting to category
of sets and relations provided an equivalent semantics to the set theoretic semantics
of generalised quantifiers.

This paper stems from a theoretical question and a practical concern. On the
theoretical side we have a model for forming vectors for quantified sentences in dis-
tributional semantics (Hedges and Sadrzadeh 2019). On the practical side, the vector
space instantiation of this model relies on vector spaces being spanned by a power set
object; this leads to an exponential increase in the size of the vector space and thus
implementing it becomes computationally costly. On the other hand, there is thework
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of Zadeh in fuzzy quantifiers for natural language (Zadeh 1983), which similar to
previous work provides a quantitative interpretation for the generalised quantifiers of
Barwise and Cooper. Fuzzy sets have been applied to a variety of different domains,
including to computational linguistics and information retrieval, for example see
Novák (1992), Cock et al. (2000), Zadeh (1996), Bezdek and Harris (1978). Given
the mathematical equivalence between fuzzy sets and vectors, the question arises
whether there is a connection between the two settings of vector representations of
quantified sentences and their fuzzy set counterparts. In this paper we answer the
question in positive and thus provide pathways to address the practical concern. As
a result, we can now work with the fuzzy set counterparts of compositional distri-
butional vectors and avoid the pitfall of having to compute within an exponentially
sized vector space.

The outline of the paper is as follows:we recall basic definitions of compact closed
categories and bialgebras over them and review how Rel and V-Rel are examples
thereof. We then go through the fact that the categoryV-Rel of sets and many valued
relations models fuzzy sets and a logic over them. We define in V-Rel the many val-
ued versions of the abstract quantifier interpretations of the setting of previous wok,
where we worked with non-fuzzy sets and quantifiers (Hedges and Sadrzadeh 2019).
We show how Zadeh’s fuzzy quantifiers can be recast categorically in this setting
and prove that Zadeh’s fuzzy semantics of quantified sentences is equivalent to their
corresponding bialgebraic treatment.Whereas Zadeh’s developments are not, at least
explicitly, based on the grammatical structure of sentences, this result indicates that
they do inherently follow the same composition principles as the ones employed in
compositional distributional semantics. We conclude our theoretical contributions
by remarking on how the degrees of truth obtained in the fuzzy interpretations relate
to the absolute truth values of previous work. Overall, we have taken a step forward
towards implementing and experimenting with quantifiers in distributional seman-
tics, we, however, leave experimenting with this model to another paper.

This paper builds on the developments of a previous technical report (Dostal and
Sadrzadeh 2016).

6.2 Dedication

In 2001, the second author of this article defended her masters thesis under the
supervision of Mohammed Ardeshir in Sharif University of Technology, Tehran,
Iran. The content of the thesis was based on Brouwer’s interpretation of Intuitionistic
Logic and the motivation behind it came from a mathematical logic course taught
by Ardeshir on Gödel’s incompleteness results, his work on intuitionistic logic, and
his translation of intiotionistic logic to modal logic S4. The material taught in that
course encouraged the second author to study the relationship between modal and
constructive logics, work on a notion of constructive knowledge in epistemic logic
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(Marion and Sadrzadeh 2004; Sadrzadeh 2003), and on dynamics of belief update
in logics based on monoids and lattices, including Heyting Algebras (Sadrzaadeh
2006; Dyckhoff et al. 2013).

The connection between this article and Areshir’s work is through the relation-
ship between intuitionistic logic and many valued logics. Gödel’s observation that
intuitionistic loigic cannot be characterised by finite truth tables (Gödel 1932), led to
the axiomatisaiton suggested by Dummett in what is nowadays known as the Gödel-
Dummett logic (1959). Many valued or fuzzy logics formalise the theory of fuzzy
sets, put forwards by Zadeh (1965). Fuzzy sets assign a degree of membership to
the elements of a set. This degree is usually a real number in the unit interval [0, 1].
The degree of membership is used to define a truth-value between 0 and 1 for the
formulae of a many valued logic. In these logics, 0 is still false and 1 is still true, a
number between the two is a degree of truth.

Algebraically speaking, a many valued logic is put together by a bounded lattice
and a monoid. The Gödel-Dummett logic has alternatively been seen as a many
valued logic where the monoid multiplication is idempotent and thus it coincides
with the lattice operation of least upper bound.

6.3 Generalised Quantifiers in Natural Language

We briefly review the theory of generalised quantifiers in natural language as pre-
sented in Barwise and Cooper (1981). Consider the fragment of English generated
by the following context free grammar:

S → NP VP
VP → V NP
NP → Det N
NP → John, Mary, something, …
N → cat, dog, man, …
VP → sneeze, sleep, …
V → love, kiss, …
Det → some, all, no, most, almost all, several, …

A model for the language generated by this grammar is a pair (U, [[ ]]), where U
is a universal reference set and [[ ]] is an inductively defined interpretation function
presented below.

1. [[ ]] on terminals:

a. The interpretation of a determiner d generated by ‘Det → d’ is a map with
the following type:

[[d]] : P(U ) → PP(U )

It assigns to each A ⊆ U , a family of subsets of U . The images of these
interpretations are referred to asgeneralisedquantifiers. For logical quantifiers,
they are defined as follows:
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[[some]](A) = {X ⊆ U | X ∩ A �= ∅}
[[every]](A) = {X ⊆ U | A ⊆ X}

[[no]](A) = {X ⊆ U | A ∩ X = ∅}
[[n]](A) = {X ⊆ U | | X ∩ A |= n}

A similar method is used to define non-logical quantifiers, for example “most
A” is defined to be the set of subsets of U that has ‘most’ elements of A, “few
A” is the set of subsets of U that contain ‘few’ elements of A, and similarly
for ‘several’ and ‘many’.
Generalising the two cases above, provides us with the following definition
for any generalised quantifier d:

[[d]](A) = {X ⊆ U | X has d elements of A}

b. The interpretation of a terminal y ∈ {np, n, vp} generated by either of the rules
‘NP → np, N → n, VP → vp’ is [[y]] ⊆ U . That is, noun phrases, nouns and
verb phrases are interpreted as subsets of the reference set.

c. The interpretation of a terminal y generated by the ruleV→y is [[y]] ⊆ U ×U .
That is, verbs are interpreted as binary relations over the reference set.

2. [[ ]] on non-terminals:

a. The interpretation of expressions generated by the rule ‘NP → Det N’ is as
follows:

[[Det N]] = [[d]]([[n]]) where X ∈ [[d]]([[n]]) iff
X ∩ [[n]] ∈ [[d]]([[n]]) for Det → d and N → n

b. The interpretations of expressions generated by other rules are as usual:

[[V NP]] = [[v]]([[np]])
[[NP VP]] = [[vp]]([[np]])

Here, for R ⊆ U ×U and A ⊆ U , by R(A) we mean the forward image of R
on A, that is R(A) = {y | (x, y) ∈ R, for x ∈ A}. To keep the notation unified,
for R a unary relation R ⊆ U , we use the same notation and define R(A) =
{y | y ∈ R, for x ∈ A}, i.e. R ∩ A.

The expressions generated by the rule ‘NP → Det N’ satisfy a property referred to
by living on or conservativity, defined below.

Definition 1 For a terminal d generated by the rule ‘Det → d’, we say that [[d]](A)

lives on A whenever X ∈ [[d]](A) iff X ∩ A ∈ [[d]](A), for A, X ⊆ U . Whenever
this is the case, the quantifier [[d]] is called a conservative quantifier.
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Barwise and Cooper argue that conservativity is a property of natural language quan-
tifiers. This is certainly the case for the quantifiers generated from the grammar given
above. Thus for the rest of the paper, we are assuming that our quantifiers are conser-
vative. The ‘meaning’ of a sentence in this setting is its truth value. This is defined
for any general sentence as follows:

Definition 2 A sentence is true iff [[NP VP]] �= ∅ and false otherwise.

For the special cases of quantified subject and object phrases of interest to this paper,
a truth value is defined as follows:

Definition 3 1. A sentence of the form ‘DetNVP’ is true iff [[Det N VP]] = [[vp]] ∩
[[n]] ∈ [[Det N]] and false otherwise.

2. A sentence of the form ‘NP V Det N’ is true iff [[NP V Det N]] = [[n]] ∩
[[v]]([[np]]) ∈ [[Det N]] and false otherwise.

As examples, first consdier sentence ‘some men sneeze’ with a quantifier at the
subject phrase. This sentence is true iff [[sneeze]] ∩ [[men]] ∈ [[some men]], that is,
whenever the set of things that sneeze and are men is a non-empty set. Part of
this meaning is obtained by following the inductive definition of [[ ]] and part of it
by applying Definition 3. The inductive case 2.b tells us that the semantics of this
sentence is [[NP VP]] = [[sneeze]]([[some men]]),where [[NP]] is obtainedby case 2.a
and by unfolding it to [[Det N]]. These unfoldings,when used inDefinition 3, provides
uswith the suggestedmeaning above, that is true iff [[vp]] ∩ [[n]] ∈ [[Det N]] and false
otherwise. Similarly, as an example of a sentence with a quantified phrase at its object
position, consider ‘John liked some trees’ . This is true iff [[trees]] ∩ [[like]]([[John]]) ∈
[[some trees]], that is, whenever, the set of things that are liked by John and are trees
is a non-empty set. Similarly, the sentence ‘John liked five trees’ is true iff the set of
things that are liked by John and are trees has five elements in it.

6.4 Category Theoretic Definitions

This subsection briefly reviews compact closed categories and bialgebras. For a
formal presentation, see Kelly and Laplaza (1980), Kock (1972),McCurdy (2012). A
compact closed categoryC has objects A, B, morphisms f : A → B, and amonoidal
tensor A ⊗ B that has a unit I ; that is, we have A ⊗ I ∼= I ⊗ A ∼= A. Furthermore,
for each object A there are two objects Ar and Al and the following morphisms:

A ⊗ Ar εrA−→ I
ηrA−→ Ar ⊗ A

Al ⊗ A
εlA−→ I

ηlA−→ A ⊗ Al

These morphisms satisfy the following equalities, where 1A is the identity morphism
on object A:
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(1A ⊗ εlA) ◦ (ηl
A ⊗ 1A) = 1A

(εrA ⊗ 1A) ◦ (1A ⊗ ηr
A) = 1A

(εlA ⊗ 1A) ◦ (1Al ⊗ ηl
A) = 1Al

(1Ar ⊗ εrA) ◦ (ηr
A ⊗ 1Ar ) = 1Ar

These express the fact that Al and Ar are the left and right adjoints, respectively, of
A. A self adjoint compact closed category is one in which for every object Awe have
Al ∼= A ∼= Ar .

Given two compact closed categories C and D, a strongly monoidal functor
F : C → D is defined as follows:

F(A ⊗ B) = F(A) ⊗ F(B) F(I ) = I

One can show that this functor preserves the compact closed structure, that is we
have:

F(Al) = F(A)l F(Ar ) = F(A)r

A bialgebra in a symmetric monoidal category (C,⊗, I, σ ) is a tuple (X, δ, ι, μ, ζ )

where, for X an object of C, the triple (X, δ, ι) is an internal comonoid; i.e. the
following are coassociative and counital morphisms of C:

δ : X → X ⊗ X ι : X → I

Moreover (X, μ, ζ ) is an internalmonoid; i.e. the following are associative and unital
morphisms:

μ : X ⊗ X → X ζ : I → X

Morphisms δ and μ satisfy four equations (McCurdy 2012):

ι ◦ μ = ι ⊗ ι

δ ◦ ζ = ζ ⊗ ζ

δ ◦ μ = (μ ⊗ μ) ◦ (idX ⊗σX,X ⊗ idX ) ◦ (δ ⊗ δ)

ι ◦ ζ = id I

Informally, the co-multiplication δ copies the information contained in one object
into two objects, and the multiplication μmerges the information of two objects into
one.

Example Sets and Relations. An example of a compact closed category isRel, the
category of sets and relations. Here, ⊗ is cartesian product with the singleton set
as its unit I = {�}, and Al = A = Ar . Hence Rel is self adjoint. Given a set S with
elements si , s j ∈ S, the epsilon and eta maps are given as follows:
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εl = εr : S × S � {�} given by

(si , s j )ε� ⇐⇒ si = s j

ηl = ηr : {�} � S × S given by

�η(si , s j ) ⇐⇒ si = s j

These relations hold iff the first and second elements of the pair they are acting
on are the same, i.e. whenever si = s j , we related � to the pair (si , s j ) via η maps
and relate the pair to the � via an epsilon map. They are designed to sift out pairs that
are reflexive.

For an object in Rel of the form W = P(U ), Hedges and Sadrzadeh (2019) gave
W a bialgebra structure by taking

δ : S � S × S given by

Aδ(B,C) ⇐⇒ A = B = C

ι : S � {�} given by

Aι� ⇐⇒ (always true)

μ : S × S � S given by

(A, B)μC ⇐⇒ A ∩ B = C

ζ : {�} � S given by

�ζ A ⇐⇒ A = U

It was shown in Hedges and Sadrzadeh (2019) that the four axioms of a bialgebra
hold for the above definitions. In order to obtain an intuition, the δ map relates a
subset A of the universe U to a pair of subsets (B,C) iff these three subsets are
the same, i.e. iff A = B = C . This relation only holds when the set in its first input
is the same as the pairs of sets in its second input, where as ι is meant to be the
relation that always holds. The relation μ is more sophisticated, it is meant to enable
the formalism to perform the set intersection operation, so given a pair of subsets
of universe A and B, and another subset thereof C , the relation μ holds iff C is the
intersection of A and B. The unit of this map, i.e. ζ only holds when its input subset
A is actually the whole universe, the unit of intersection A ∩U = A.

In the next section we show how the category of sets and many valued relations
is also an example of a self adjoint compact closed category with bialgebras over
it. In fact both Rel and category of sets and many valued relations are also dagger
compact closed and have other desirable properties, e.g. being partial order enriched,
for elaborations on these properties see Marsden and Genovese (2017).
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6.5 Category of Sets and Many Valued Relations

Definition 4 (Commutative quantale) A commutative quantale V is a complete lat-
tice (V,

∧
,
∨

) with the structure of a commutative monoid (V, •,e) such that the
tensor is monotone and distributes over arbitrary joins.

More in detail, V being a complete lattice means that V is partially ordered by
≤ and every subset V ′ ⊆ V has an infimum (or meet) and a supremum (or join),
denoted by

∧
V ′ and

∨
V ′ respectively. From this it follows that V contains the

greatest element� and the lowest element⊥. The fact that (V, •,e) is a commutative
monoid means that • is commutative, associative, and e is the identity element:

v • e = v = e • v

The monotonicity of the tensor requires that v • w ≤ v′ • w holds for v ≤ v′, and
distributivity of tensor over arbitrary joins means that the following equality is sat-
isfied: (

∨

i

xi

)

• y =
∨

i

(xi • y)

Definition 5 (Complete Heyting algebra) A complete Heyting algebra V is a com-
mutative quantale where • = ∧ and e = �. In other words, it is a complete lattice
(V,

∧
,
∨

) where the meet operation distributes over arbitrary joins:

(
∨

i

xi

)

∧ y =
∨

i

(xi ∧ y)

Definition 6 (Gödel chain) We say that a complete Heyting algebra V is a Gödel
chain if the ordering relation ≤ of the underlying lattice of V is a linear order, that
is, for two elements v �= v′ it either holds that v ≤ v′ or v′ ≤ v.

Example Instances of commutative quantales:

1. The real interval [0, 1] with the usual lattice structure (given by computing
suprema and infima), the tensor being the meet and the unit being 1, is a complete
Heyting algebra, moreover a Gödel chain.

2. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being
defined as

a • b = max(0, a + b − 1)

is a commutative quantale.
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3. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being
defined as

a • b = a · b

(multiplication) is a commutative quantale.
4. As a very special case, the 2-element Boolean algebra is a commutative quantale.

Definition 7 (Many-valued relation) For a given quantaleV, amany-valued relation
R : A � B is a function R : A × B → V . We view this function as a V-valued
matrix.Wecompose two relations R : A � B and S : B � C to get a relation S ◦ R :
A � C such that

(S ◦ R)(a, c) =
∨

b∈B
(R(a, b) • S(b, c))

holds in V.

Definition 8 (The category ofV-relations) The collection of all sets and of V-
relations between sets is a category. There is an identity V-relation idA for every
set A:

idA(a, a′) =
{
e if a = a′

⊥ otherwise

An easy computation yields that V-relation composition is associative. We denote
the category of all sets and V-relations as V-Rel.

Remark 1 The associativity of V-relation composition follows from complete dis-
tributivity of V. For V-relations over finite sets, only finite distributivity of tensor
over joins would be needed.

Example Some examples of V-Rel for various choices of V:

1. When V is the 2-element Boolean algebra, V-Rel is the category Rel of sets and
(ordinary) relations.

2. WhenV is the real interval [0, 1]withGödel operationsmin andmax, the category
V-Rel has sets as objects, and the composition of morphisms (V-relations) acts
as follows. Given two V-relations R : A � B and S : B � C (so two functions
R : A × B → [0, 1] and S : B × C → [0, 1]), the composite S ◦ R : A � C is
given by

(S ◦ R)(a, c) = max
b∈B min(R(a, b), S(b, c)).

Given yet another V-relation T : C � D, the composite T ◦ S ◦ R is then com-
puted as follows:

(T ◦ S ◦ R)(a, d) =
max

b∈B,c∈C min(R(a, b), S(b, c), T (c, d)).



6 Fuzzy Generalised Quantifiers for Natural Language … 145

Remark 2 Observe that there is an inclusion functor

(̃−) : Rel → V-Rel

for any V with more than one element. Indeed, let the functor act as an identity on
objects, and assign to a relation R : A � B theV-valued relation R̃ : A � B defined
as follows:

R̃(a, b) =
{
e if R(a, b)holds,

⊥ otherwise.

An easy computation yields that ĩ dA = idA and that ˜S ◦ R = S̃ ◦ R̃.

Lemma 1 The category V-Rel is a self adjoint compact closed category with the
tensor being the cartesian product × and the unit I being the singleton set {�}.
Proof Let us define the epsilon maps εS : S × S � I for each S as follows

εS((a, b), �) =
{
e if a = b

⊥ otherwise

and define the eta maps ηS : I � S × S similarly:

ηS(�, (a, b)) =
{
e ifa = b

⊥ otherwise

Since with these definitions the epsilon and eta maps are the images of the epsilon
and eta maps from Rel under the inclusion functor (̃−) : Rel → V-Rel, the axioms
of a compact closed category hold in V-Rel. It remains to show that ε and η are
natural; but this is straightforward.

Remark 3 Let us fix a set U . Very similarly to the case of Rel, we can define
a bialgebra over the set S = P(U ) in V-Rel by the following data. The relation
δ : S � S × S is defined as

δ(A, (B,C)) =
{
e ifA = B = C

⊥ otherwise.

The relation μ : S × S � S is defined as

μ((A, B),C) =
{
e ifA ∩ B = C

⊥ otherwise.
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The relation ι : S � I is defined as

ι(A, �) = efor everyA.

The relation ζ : I � S is defined as

ζ(�, A) =
{
e ifA = U

⊥otherwise.

In fact, we obtain the structure of a bialgebra over P(U ) in V-Rel by taking the
bialgebra structure over P(U ) in Rel and applying the inclusion functor (̂−).

6.6 Fuzzy Sets and Fuzzy Quantifiers

In this section we review definitions of fuzzy sets and quantifiers, as done by Zadeh
(1983). A fuzzy set is a set whose elements have a corresponding weight associated
to them. For a set A, the weight μi of element ui is interpreted as the degree of
membership of ui in A. The fuzzy set A is represented symbolically by the following
sum:

A = μ1u1 + μ2u2 + · · · + μnun

standing for the following set of pairs of weights and elements:

{(μ1, u1), (μ2, u2), . . . , (μn, un)}

The sum above denotes a union operation on sets containing single μi ui elements,
whereμi ui stands for the pair (μi , ui ). Non-fuzzy, aka crisp, sets are special instances
of fuzzy ones, where for every ui of the set, we have μi = 1, in other words:

A = u1 + u2 + · · · + un

The absolute cardinality of a fuzzy set is defined via the notion of sigma-count,
defined below:

	Count (A) = 	n
i=1μi

This is the arithmetic sum of the degrees of membership in A; it is, if needed,
rounded to the nearest integer. Terms whose degrees of membership fall below a
certain threshold, may be omitted from the sum. This is to avoid a situation where
a large number of terms with low degrees become equivalent to a small number of
terms with high degrees. Following Zadeh, we denote the absolute cardinality of a
non-fuzzy set by Count (A). Observe that, under the interpretation of a non-fuzzy
set as a special instance of a fuzzy set, we have that Count (A) = 	Count (A).
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The relative cardinality of a fuzzy set is a possibility distribution over the cardi-
nality of that set, denoted as follows


	Count (A)

The quantified sentences Zadeh considers are built from two basic forms: “There
are Q A’s” and “Q A’s are B’s”. Each of these propositions induces a possibility dis-
tribution. Zadeh provides the following insights for the analysis of these quantified
propositions. “There are Q A’s” implies that the probability of event A is a fuzzy
probability equal to Q. “Q A’s are B’s” implies that the conditional probability of
event B given event A is a fuzzy probability which is equal to Q. Most statements
involving fuzzy probabilities may be replaced by semantically equivalent proposi-
tions involving fuzzy quantifiers. The connection between this two, Zadeh reports,
plays an important role in expert systems and fuzzy temporal logic and has been
developed in previous work of Zadeh (Barr and Feigenbaum 1982).

According to Zadeh, fuzzy quantifiers should be treated as fuzzy numbers. A
fuzzy number provides a fuzzy characteristic of the absolute or relative cardinality
of one or more fuzzy or non-fuzzy sets. As an example, consider the fuzzy quantifier
“most” in the proposition “Most big men are kind”. This proposition is interpreted
as a fuzzily defined proportion of the fuzzy set “kind men” in the fuzzy set “big
men”. If our sentence was “Vickie has several credit cards”, then “several” would
be a fuzzy characterisation of the cardinality of the non-fuzzy set “Vickie’s credit
cards”. The notion of the cardinality of a fuzzy set helps us compute the proposition
“Vickie has several credit cards”. Here, “most” is a fuzzy characterisation of the
relative cardinality of the fuzzy set “kind men” in the fuzzy set “big men”. It might
not always be clear how a constituent fuzzy number relates to a fuzzy quantifier, but
we will not go in details of these here, for examples see Zadeh (1983).

The fuzzy semantics of a proposition p is interpreted as “the degree of truth of
p”, or the possibility of p. In order to compute this, we translate p into a possibility
assignment equation, which is denoted as follows


(X1,...,Xn) = F

where F is a fuzzy subset of the universe of discourse U and 
(X1,...,Xn) is the joint
possibility distribution over (explicit or implicit) variables X1, . . . , Xn of p. For
instance, the proposition “Vickie is tall” is translated as follows:


Height (V ickie) = T ALL

Here, T ALL is a fuzzy subset of the real line, Height (V ickie) is a variable implicit
in “Vickie is tall”, and 
Height (V ickie) is the possibility distribution of this variable.
The above possibility assignment equation implies that

Poss{Height (V ickie) = u} = μT ALL(u)
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where Poss{X = u} the possibility that X is u, for u a specified value. The above
thus states that “the possibility that height of Vickie is u is equal to μT ALL(u), that
is, is the grade of membership of u in the fuzzy set T ALL . Quantified sentences
are translated in a similar way. For instance, “Vickie has several credit cards”, is
translated to the following:


Count (Credit−Cards(V ickie)) = SEVERAL

Suppose that 4 is compatible with the meaning of “several” with degree 0.8, then the
above implies that, for instance, the possibility that Vickie has 4 credit cards is

Poss{Count (Credit-Cards(V ickie)) = 4} = 0.8

In order to analyse sentences of the general forms “There are Q A’s” and ‘Q A’s are
B’s”, Zadeh assumes that they are semantically equivalent to the following:

There are Q A′s � 	Count (A) is Q

Q A′s are B ′s � Poportion(B|A) is Q

Here, Poportion(B|A) is the proportion of elements of B that are in A, aka the
relative cardinality of B in A, formally defined as follows:


Poportion(B|A) := 	Count (A ∩ B)

	Count (A)

Both Proportion(B|A) and 	Count (A) may be fuzzy or non-fuzzy counts. Zadeh
then formalises the above counts as possibility assignment equations as follows

	Count (A) is Q � 
	Count (A) = Q

Proportion(B|A) is Q � 
Proportion(B|A) = Q

In the spirit of truth-conditional semantics, the weight of each of the elements of
the set can be interpreted as the degree of truth of the proposition denoted by the
element. This weight is Q(	Count (A)) for sentences of the form “There are Q A’s”
and Q(Proportion(B|A)) for sentences of the form “Q A’s are B’s”.

Writing μA(u) for the degree of membership of u in the fuzzy set A, we define
the intersection of two fuzzy sets A and B as

A ∩ B = 	i min(μA(ui ), μB(ui )) ui

where i is understood to range over all the elements in A and B (when an element
is in A but not in B it will still be represented in A with a degree of 0). A similar
version without the 	 is used to define it for the non-fuzzy case.
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Example Let’s say we have a universe

U = {u1, u2, u3, u4, u5}

and fuzzy sets for “kind people” and “big men” as follows:

K P = 0.5u1 + 0.8u2 + 0.2u3 + 0.6u4
BM = 0.8u1 + 0.3u2 + 0.1u3 + 0.9u4 + 1u5

The quantified sentence “Most big men are kind”, is translated to the following
possibility assignment equation:


Proportion(K P|BM) = MOST

The intersection of K P and BM is computed as follows:

K P ∩ BM = 0.5u1 + 0.3u2 + 0.1u3 + 0.6u4

The proportion of big men that are kind is computed as follows:

Proportion(K P|BM) = 	Count (BM ∩ K P)

	Count (BM)
= 0.5 + 0.3 + 0.1 + 0.6

0.8 + 0.3 + 0.1 + 0.9 + 1
= 1.5

3.1

Suppose that proportions between 0.6 and 0.7 are compatible with the meaning of
MOST with degree 0.75. Then, since 1.5

3.1 = 0.48, the degree of truth of our sentence
is below 0.75. For the crisp quantifier ALL , the sentence “All big men are kind” is,
since only the proportion 1 is compatible with the meaning of ALL with degree 1,
which is not the case here.

Possibility distributions are encodable into vectors and indeed the possibility
distributions of fuzzy quantifiers are learnt by Zadeh via a test-score procedure where
as vectors by sampling from a database of related data.

6.7 Fuzzy Quantified Sentences in V-Rel

A non-fuzzy generalised quantifier d is interpreted as a relation �d� over the power
set of the universe of discourse P(U ), where it relates a subset A ⊆ U to subsets
ui ⊆ U , based on the cardinalities of A and ui , as defined in Sect. 6.3. The fuzzy
version of this quantifier is interpreted as a many valued relation over P(U ), where,
in fuzzy set notation, it relates A to subsets ui ⊆ U and assigns to each such subset
a degree of membership μi . The result is a fuzzy set whose weights come from
a possibility distribution over the relative cardinalities of A and ui ’s. In Zadeh’s
notation:
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�d�(Proportion(ui |A)) = μi (6.1)

We translate the above in the language ofV-Rel, referring to the categorical version of
the fuzzy generalised quantifier by �d�, which is a mapwith the type P(U ) � P(U ).
This is the map which was denoted by Q in the fuzzy generalised quantifier setting.
In order to be coherent with the categorical semantics of sets and relations, we use
the notation �d� for it. Recall that in the categorical generalised quantifier theory, a
quantifier was represented by �d�. In what follows, we first define �d� as a gener-
alised fuzzy quantifier in the categorical setting of many valued relations, this is in
Definition 9. Then, in Definition 11, extend it to quantified sentences of the fragment
of language generated by the preliminary grammar of Sect. 6.3.

Definition 9 For V = [0, 1] and given a fuzzy generalised quantifier for which we
have assumed 
Proportion(B|A) = �d�, we define its V-Rel encoding to be the many
valued relation �d� : P(U ) � P(U ), with values coming from the possibility dis-
tribution of �d�, defined as follows:

�d�(A, B) = μi for μi = [[d]](Proportion(B|A))

In order to obtain a many valued relation in V-Rel, we need a numerical value
assigned to subsets A and B of universe. This number is nothing but the weight of
[[d]](Proportion(B|A)), denoted by μi in Eq.6.1. If for any reason this number is
unattainable, e.g. when B and A are not related to each other at all, we assign the ⊥
to it.

Remark 4 Conservativity of a quantifier d in V-Rel is defined as follows:

[[d]](A, B) = [[d]](A, A ∩ B)

and is implied by its conservativity in Rel. This is because

Proportion(A ∩ B|A) =	Count (A ∩ B ∩ A)

	Count (A)

= 	Count (A ∩ B)

	Count (B)
= Proportion(B|A)

The absolute quantifiers such as “every” and “some” can still be interpreted in this
setting, by defining them as follows:

�every�(A, B) =
{
e ifA ⊆ B,

⊥ otherwise.

�some�(A, B) =
{
e if A ∩ B �= ∅,

⊥ otherwise.
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The fuzzy version of a model generated by the grammar of Sect. 6.3, becomes as
follows:

Definition 10 A fuzzy model (U, � �) f is one where for A ⊆ U we have:

�A� := μ1u1 + μ2u2 + · · · + μnun for ui ∈ U

The fuzzy semantics of expressions of the grammar are many valued versions of
those of (U, � �). For reasons of space, we only give them in V-Rel notation.

The following definition explains the many valued semantics of a sentence in our
example grammar is computed.

Definition 11 AV-Rel fuzzy model is the tuple (V-Rel, P(U ), I, � �) for which we
have the following interpretation:

1. A terminal x of either category N,NP, or VP is interpreted as a many valued
relation whose value is the degree to which a subset A of the universe is [[x]].
This is the relative sigma count of the subset A in [[x]], that is:

��x�A := Proportion(A|[[x]])

2. A terminal x of category V is interpreted as a many valued relation whose value
is the degree to which its image on a subset A of universe is a subset B of the
universe, that is the relative sigma count of B in [[x]](A) :

�[[x]](A, B) = Proportion(B|[[x]](A))

where [[x]](A) is the application of [[x]] to A, resulting in a set 	n
i=1μi b where

the subscripts of the μ’s vary over elements of fuzzy sets A and [[v]], so we have

max
ai

min(μA(ai ), μ[[v]](ai , bi ))

Here, μA and μ[[v]] are degrees of memberships of elements of fuzzy sets A and
[[v]], respectively.

Given this definition, we compute the many valued semantics of quantified sentences
and show that they are equivalent to the fuzzy quantifier definitions of Zadeh. Note
that for U the universe of reference, the relative cardinality of A in U is the same as
the cardinality of A. Thus ”There are Q A’s” has the same fuzzy meaning as “Q U’s
are A’s”.

Proposition 1 The many valued semantics of a sentence with a quantified subject
“d np vp” is the same as its fuzzy quantifier semantics in V-Rel

Proof The many valued semantics of “d np vp” is computed in four steps, according
to the four composed morphisms of its V-Rel semantics:

ε ◦ ([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])
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In the first step, we compute the following map

[[np]] ⊗ [[vp]] : {�} ⊗ {�} � P(U ) ⊗ P(U )

For A, B ⊆ U , the value returned by this map is

(�, �)([[np]] ⊗ [[vp]])(A, B) = min
(
�[[np]]A, �[[vp]]B)

In the second step, we compute the following map

(δ ⊗ id) ◦ ([[np]] ⊗ [[vp]]) : {�} ⊗ {�} � P(U ) ⊗ P(U ) ⊗ P(U )

For C, D, E ⊆ U , it returns the following value

(�, �)(δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])((C, D), E)

which is equal to

max
(A,B)

min
(
(�, �)([[np]] ⊗ [[vp]])(A, B), (A, B)(δ ⊗ id)((C, D), E)

)

The maximum value of the above term is realised for (A, B)’s for which we have
A = C = D and B = E , in which case this value becomes equal to the following

min
(
�[[np]]A, �[[vp]]B)

This is since the δ and id maps return e in their best case and e is the unit of the min
operation.

In the third step, we compute the following map:

([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]]) : {�} ⊗ {�} � P(U ) ⊗ P(U )

The value generated by this map is

(�, �)([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])(F,G)

equal to

max
((C,D),E)

min
(
(�, �)(δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])((C, D), E), (C, (D, E))([[d]] ⊗ μ)(F,G)

)

The maximum of the above is realised for the C, D, E that make G = D ∩ E true,
in which case this value becomes equal to

max
(A,B)

min
(
�[[np]]A, �[[vp]]B, A[[d]]F)
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In the fourth step we compute the full map

ε ◦ ([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]]) : {�} ⊗ {�} � {�}

the value generated by which is

(�, �) ε ◦ ([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])�

which is equal to

max
(F,G)

min
(
(�, �)([[d]] ⊗ μ) ◦ (δ ⊗ id) ◦ ([[np]] ⊗ [[vp]])(F,G), (F,G)ε �

)

Themaximumof this term is realisedwhenwe have F = G, inwhich case it becomes
equal to

max
(A,B)

min
(
�[[np]]A, �[[vp]]B, A[[d]]A ∩ B

)

By applying Definition 11, the above unfolds as follows

max
(A,B)

min
(
Proportion([[np]], A), Proportion([[vp]], B), [[d]][Proportion(A ∩ B|A)]

)

where we are assuming 
Proportion(A∩B|A) = d. Since our quantifiers are conserva-
tive, we apply the simplifications computed in Remark 4, then given that the first two
terms of the above maxmin are maximised when A = [[np]], B = [[vp]], the above
simplifies to the following

max
(A,B)

min
(	Count ([[np]] ∩ [[np]])

	Count ([[np]]) ,
	Count ([[vp]] ∩ [[vp]])

	Count ([[vp]]) , [[d]]
[	Count (A ∩ B)

	Count (A)

])

which simplifies to

[[d]]
[	Count ([[np]] ∩ [[vp]])

	Count ([[np]])
]

Again, here we are assuming that 
Proportion([[vp]]|[[np]]) = d. Observe now that this
equals the following

[[d]][Proportion([[vp]]|[[np]])] for 
Proportion([[vp]]|[[np]]) = d

which is the same as Zadeh’s fuzzy quantifier semantics of “d np’s are vp’s”.

Example Given Definition 10, the statement “several cats sleep” will be interpreted
as

max
(A,B)

min
(

� [[cats]]A, �[[sleep]]B, A[[several]]A ∩ B
)
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This will be maximised for A = [[cats]], B = [[sleep]] and when assuming that

Proportion(A∩B|A) = several, in which case the value of the statement will become

[[several]]
[	Count ([[cats]] ∩ [[sleep]])

	Count ([[cats]])
]

To compute this concretely, suppose that the fuzzy sets [[cats]] and [[sleep]] are
defined as follows:

[[cats]] = 0.2c1 + 0.3c2 + 0.8c3
[[sleep]] = 0.5c1 + 0.4c2 + 0.4c3

Then the value for “several cats sleep” will be

[[several]]
[	Count (0.2c1 + 0.3c2 + 0.4c3)

0.2c1 + 0.3c2 + 0.8c3

]

= [[several]]
[0.9

1.3

]

Suppose that the possibility distribution [[several]] will map low values to low values
and very high values to low values, but intermediate values would be mapped to
a high number as they still represent “several”. Thus the proportion 9

13 , which is a
high number, will evaluate to a high number. Thus the many valued relation of this
statement will be high (a number close to 1). For examples of possibility distributions
of some other fuzzy quantifiers, see Zadeh (1983).

Proposition 2 The many valued semantics of a sentence with quantified object “np
v d np’” is the same as its fuzzy quantifier semantics in V-Rel.

Proof After several steps of computation similar to those done in the proof of Propo-
sition 1, we obtain the following value for the semantics of “np v d np’”

max
(A,B,C)

min
(

� [[np]]A, �[[v]](A, B), �[[np′]]C,C[[d]]B ∩ C
)

By applying Definition 11 and maximising the proportions, the above unfolds to

max
(A,B,C)

min

(

[[d]]
[	Count ([[v]][[[np]]] ∩ [[np′]])

	Count ([[np′]])
])

for 
Proportion(C |D) = d. Then the number computed above is the same as the one
obtained from [[d]] [

Proportion([[v]][[[np]]]|[[np′]])], which is the same as the fuzzy
quantifier semantics of “d np”s are v-np’s”.

An example of this case is “Mice eat several plants” which has the same semantics
as “Several plants are eaten by mice”. Suppose we have fuzzy sets
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[[mice]] = 0.7c1 + 0.6c2 + 0.2c3
[[eat]] = 0.5(c1, c1) + 0.8(c1, c3) + 0.2(c2, c1)

& + 0.3(c2, c3) + 0.9(c3, c3)

[[plants]] = 0.2c1 + 0.3c2 + 0.6c3

Then the semantics we get is

[[several]]
[	Count ([[eat]]([[mice]]) ∩ [[plants]])

	Count ([[plants]])
]

The application of the verb to its subject gives

[[eat]]([[mice]]) = 0.5c1 + 0.7c3

As a result, the whole expression now evaluates to

[[several]]
[ 	Count (0.2c1 + 0.6c3)

	Count (0.2c1 + 0.3c2 + 0.6c3)

]

= [[several]]
[0.8

1.1

]

This will yield another relatively high value for the many valued semantics of
this sentence, as Proportion([[eat]]([[mice]])|[[plants]]) certainly indicates a case
of “several” mice eating plants.

Corollary 1 The many valued semantics of a sentence with a quantified subject and
a quantified object “d np v d’ np’” is the same as its fuzzy quantifier semantics in
V-Rel

Proof The proof is obtained by applying Propositions 1 and 2. After several steps
of computation, we obtain that the many valued semantics of “d np v d’ np’” is

max
(A,B),(C,D)

min
(

� [[np]]A, A[[d]]A ∩ B, �[[v]](B, D), �[[np′]]C,C[[d ′]]C ∩ D
)

The above unfolds and simplifies as before. When the maximum of the min set is
realised, we obtain equivalence with the following

[[v]][[[d]][[[np]]], [[d ′]][[[np′]]]]

for 
Proportion([[ṽ]]|[[d ′]][[[np′]]]) = d ′ and 
Proportion([[v]][[[np]]]|[[np]]) = d and where [[ṽ]]
is the image of v on “d np”, given by

[[ṽ]] = [[v]][[[d]]([[np]])]
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An example of this case is “Several mice eat most plants” which has the same
semantics as “most plants are eaten by several mice”. Given that the fuzzy sets
representing mice and plants are as before and taking the same fuzzy relation for
[[eat]], we compute the meaning of this sentence. Suppose further that [[most]] is a
possibility distribution that assigns the value 0 to numbers below 0.5, and gradually
increasing the value for numbers from 0.5 to 1.

First, we compute the application of the quantifiers to their respective noun
phrases:

[[several]][[[mice]]] =
argmax

B

(
[[several]]

[	Count ([[mice]] ∩ B)

	Count ([[mice]])
])

If we assume that “several” has the highest value for 0.4, then it would for instance
assign to the set 0.4[[mice]] the value 	i0.4μi ui for μi ui in [[mice]]. The second
application gives

[[most]][[[plants]]] =
argmax

A

(
[[most]]

[ A ∩ [[plants]]
	Count ([[plants]])

])

This will set A = [[plants]], given that 1 has the highest probability of being “most”.
The value of the whole sentence will be the verb applied to the quantified subject

and object, hence we obtain

[[eat]]
[
[[several]][[[mice]]], [[most]][[[plants]]]

]

=[[eat]]
[
0.4[[mice]], [[plants]]

]

=max
a,b

min(μ0.4[[mice]](a), μ[[eat]](a, b), μ[[plants]](b))

=max
(
min(0.28, 0.5, 0.2),min(0.28, 0.8, 0.6),

min(0.24, 0.2, 0.2),min(0.24, 0.3, 0.6),

min(0.08, 0.9, 0.6)
)

=max(0.2, 0.28, 0.2, 0.24, 0.08)

=0.28

This means that the extent to which several mice eat most plants is 28%.
We conclude this section by defining the notion of a degree of truth for sentences

in V-Rel and noting that in the absolute case, it is the same as the truth value of the
sentence in Rel.
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Definition 12 A quantified sentence s has a degree of truth r iff [[s]] = r in
(V-Rel,P(U ), {�}, [[ ]]).
Remark 5 Suppose [[s]] = 1 in (V-Rel,P(U ), {�}, [[ ]]) and consider a sentence of
the form “d np v”; as proved in Proposition 1 and by the above definition, this is the
case iff we have [[d]][Proportion([[vp]]/[[np]])] = 1 for 
Proportion([[vp]]/[[np]]) = d.
This means that the proportion of elements of [[vp]] that are in [[np]] is d. Recall
that our quantifiers are conservative, thus the proportion of elements of [[vp]] ∩ [[np]]
that are in [[np]] is also d, which means [[vp]] ∩ [[np]] ∈ [[d]][[[np]]], and accord-
ing to Definition 2 this makes the sentence “d np vp” have truth value true. In
Hedges and Sadrzadeh (2019), authors showed that this is equivalent to [[s]] = t in
(Rel,P(U ), {�}, [[ ]]). The other direction holds in a similar fashion: suppose [[s]] = t
in (Rel,P(U ), {�}, [[ ]]), this is iff (as shown in Hedges and Sadrzadeh (2019)), the
interpretation of “d np vp” is true in Rel, which is iff [[vp]] ∩ [[np]] ∈ [[d]][[[np]]],
which by generalised quantifier theory means that [[vp]] ∩ [[np]] has d elements of
[[np]], which will then make [[d]][Proportion([[vp]]/[[np]])] to be 1. The case for
sentences of the form “np v d np” and “d np v d’ np” are similar.

6.8 Conclusions and Future Work

In recent work Hedges and Sadrzadeh (2019) showed how one can reason about
generalised quantifiers using bialgebras over the category of sets and relations over
a fixed powerset object (powerset of a universe of discourse). They developed an
abstract categorical semantics and instantiated it to category of sets and relations.
Via the Set-to-Vector Space andRelation-to-LinearMap embedding, they transferred
this semantics from sets and relations to vectors and linear maps. Their resulting
vectorial semantics, however, is hard to reason with and costly to implement, a fault
mainly due to the fact that in order to keep the maps linear, they had to work with
vector spaces over powerset objects.

The reason for transferring the formal semantics of natural language from sets and
relations to vector spaces and linear maps in compositional distributional semantics
is to allow for quantitative reasoning in terms of the statistical data provided in
distributional semantics. Another way to work with quantities and distributions of
data is to move to a fuzzy setting, as done in Zadeh (1983). But then the question
arises whether these two semantics are the same. This is the question to which this
paper answers in positive. Concretely, in this paperwe have shown that the categorical
version of fuzzy sets, that is category V-Rel of sets and many valued relations, is
compact closed and defined over it the required bialgebras.We developed, within this
category, a many valued version of the abstract compact closed categorical semantics
of Hedges and Sadrzadeh (2019) with Zadeh’s fuzzy quantifiers and showed that the
two semantics amount to the same degrees of truth for quantified sentences. As a
result, in order to do quantification in compositional distributional semantics, one is
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not restricted to working with vector spaces over powerset objects and furthermore,
fuzzy quantification is now also added to the existing setting.

A practical question that arises is what the empirical statistical consequences of
embedding FdVect in V-Rel are. In order to answer this question, we have to work
alongside intuitions such as “a distributional vector for a target wordw yields a fuzzy
set whose degrees of membership are the degrees of co-occurrences of w with a set
of context words c, or the degrees of similarity ofw to c, or the degrees of contextual
relevance of w to c”, or other similar readings. Formally, one has to work alongside
the following diagram and with category of matrices over reals; these are equivalent
to V-Rel and a special case of category of FdVect.

Rel embeds in

generalises to

FdVect

restricts to

V-Rel Mat(R)

Building on the above ideas and implementing our model on real data and exper-
imenting with it constitutes future work.

Another future direction is to build on the above intuitions and use the logic of
fuzzy sets to develop a logic for distributional data. The quantified vectorial setting
of Hedges and Sadrzadeh (2019) did not allow for a natural notion of logic: the
main vector space, which was spanned by a power set object, did not have a natural
interpretation of union and intersection of basis vectors in terms of basic set theoretic
operations. A fuzzy setting, however, gives rise to a fuzzy logic and provides seman-
tics for coordination in natural language, via operations such fuzzy conjunction and
disjunction, e.g. see Novák (1992). Exploring the theoretical corollaries of this fact
and experimenting with them constitutes future work.
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Chapter 7
Implication via Spacetime

Amirhossein Akbar Tabatabai

Abstract In this paper we intend to study implications in their most general form,
generalizing different classes of implications including the Heyting implication, sub-
structural implications and weak strict implications. Following the topological inter-
pretation of the intuitionistic logic, we will introduce non-commutative spacetimes
to provide a more dynamic and subjective interpretation of an intuitionistic propo-
sition. These combinations of space and time are natural sources for well-behaved
implications and we will show that their spatio-temporal implications represent any
other reasonable abstract implication. Then to provide a faithful well-behaved syntax
for abstract implications, we will develop a logical system for the non-commutative
spacetimes for which we will present both topological and Kripke semantics. These
logics unify sub-structural and sub-intuitionist logics by embracing them as their
special fragments.

Keywords Weak implications · Sub-intuitionistic logics · Sub-structural logics ·
Temporal logics · Topological semantics

7.1 Introduction

I remember that back in 1980, as an undergraduate, I was disappointed in logic, and was
thinking of shifting to topology. Then Van Dalen came along and gave a course at the
University of Amsterdam on sheaves and their relation to logic (the first such course in
Holland), and subsequently organised a stimulating seminar on the subject. A course of
lectures on Kripke-Joyal semantics by Michael Fourman formed part of this seminar. I was
immediately fascinated by the subject, and still am. (Moerdijk 1995)

Replacing topologywith algebraic geometry and categorical logicwith Brouwer’s
liberating revolution, I can hardly imagine a more vivid explanation of Mohammad
Ardeshir’s eye-opening influence on my life, both academic and personal, than what
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Ieke Moerdijk is drawing in Dirk van Dalen festschrift. Through Ardehsir’s fascinat-
ing explanation of the intutionistic philosophy and its huge impact on the everyday
practice of mathematics, I found the realm of constructive mathematics and its impli-
cations haunting and hence decided to leave not only my possible future in algebraic
geometry but the whole discipline of everyday mathematics, altogether. However,
a true revolution knows no border and Brouwer’s was no exception. Starting from
the second half of the last century, the anti-realistic interpretation of mathematics
has emerged unexpectedly and as a technical inevitable necessity in the mainstream
mathematics, first in algebraic geometry through Alexander Grothendieck’s inex-
haustible quest for the generalized space and then in higher geometry, homotopy
theory and the so-called homotopical mathematics. Following this historical thread,
my fascination for intuitionism andmore specifically the intuitionistic implication, is
now slowly bringing me back to algebraic geometry again, where intuitionismmight
play its most deserved technical role. In this introduction I intend to explain how
such a seemingly unrelated notion of space can be useful to understand intuitionism
and hence intuitionistic implications. Far better, I will explain how intuitionism and
geometry, interpreted in its most general sense, are nothing but the two sides of the
same coin.

To establish this connection, we have to first understand the spatial interpretation
of the notion of construction. For that purpose, let us start with the easier notion of
constructibility rather than the explicit constructions, themselves. Thismeans that we
are interested in propositions and the provability relation between them rather than
the actual proofs. Let us start with the creative subject’s mind that may have many
possible states. These statesmay encodemany different data including the knowledge
that she possesses in that mental state. It generally consists of all the constructions to
which she has some reasonable access. For an intuitionist, a proposition is simply an
entity that in every state of the creative subject’s mind, it possesses a truth value and
if the proposition happens to be true at some point, it must be possible to verify this
truth in a finite number of steps. The truth value checks whether the proposition is
derivable from the knowledge in a given state or not. Interpreting the knowledge as the
story that has been told, a true proposition is exactly what the story can imply. Note
that the finite verifiability condition is different from the decidability of a proposition
in a mental state. For instance, let the knowledge content of a mental state be the
axioms of Peano arithmetic. Then if something is not derivable from this theory,
there is no a priory way to verify that.

The key point in the connection between intuitionism and topology is the set of
these finitely verifiable propositions. This set has exactly the structure of the open
subsets of a topological space and conversely, for any topological space, the set of its
open subsets can be interpreted as the set of finitely verifiable propositions in a given
theory.1 To explain how to interpret the set of all finitely verifiable propositions as

1Technically, this holds for a pointfree version of topological spaces that are called locales. However,
for the sake of simplicity, in this introduction we limit ourselves only to topological spaces.
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the open subsets of a topological space, let us explain the three main structures that
this set possess. Let S be the set of all possible mental states. Then a proposition
can be identified by a subset of S, consisting of all the mental states for which
the proposition holds. First, note that these subsets are ordered by the partial order
A � B that encodes the situation that the truth of A in any state implies the truth
of B in the same state. The second structure is the finite meets of the poset, called
conjunctions. The reason is that if both A and B are finitely verifiable propositions,
then so is A ∧ B. Because, if A ∧ B holds in a state, there are finite verifications for
both of them and the combination of these verifications is also finite. Note that the
same claim is not necessarily true for infinite conjunctions, because, if the infinite
conjunction is true, we need possibly infinite number of verifications that may exceed
any possible finite memory. The last and the third structure is the arbitrary joins
called disjunctions. For some set I , if Ai is finitely verifiable for any i ∈ I , then so
is

∨
i∈I Ai . Because, if

∨
i∈I Ai holds in a state, then one of them must hold and

since it has a finite verification, the verification also works for the whole disjunction.
Note that the semi-decidability condition and the existential nature of validity allows
arbitrary disjunctions while it prohibits infinite conjunctions.2 These ingredients are
nothing but the conditions on a topology of a topological space. Therefore, the set
of all finitely verifiable propositions is actually the set of opens of the space of the
mental states. Therefore, it should not be surprising that intuitionistic propositional
logic is sound and complete with respect to its topological interpretation that reads
a proposition as an open subset of a given topological space; see (McKinsey and
Tarski 1944). In this sense, intuitionism may be interpreted as the logic of space as
opposed to the classical logic that corresponds to the logic of sets or discrete spaces.
Compare the set of all opens of a space to the opens of a discrete space, namely the
Boolean algebra of all subsets.

Now let us leave the truncated constructibility to address the actual explicit con-
structions. In this move, for any state we need a Set-like world to encode the con-
structions of the propositions and not just their truth values. In this setting, the three
structures that we have explained transform to the following higher order notions:
First, a poset transforms into a category whose objects and morphisms are proposi-
tions and the constructions between them. Secondly, for conjunctions we need the
categorical version of finite meets, i.e., finite limits. And finally, for disjunctions we
have to bring categorical joins, i.e., small colimits. Together with some technical

2The reader may argue that using infinite sets and sequences may be somewhat problematic in the
intuitionistic tradition. That is a very reasonable objection but at the same time it is also worth
noting that the real meaning of the set I and the sequence of propositions {Ai }i∈I is somehow open
to meta-mathematical interpretations and therefore they can be chosen completely constructively.
For instance, the set I can be just the set of natural numbers and the sequence {Ai }i∈I can be
a computable sequence of finite subsets. More mathematically, it means that everything in the
argument is internalized in an elementary topos that formalizes what the intuitionist means by a set.
For instance, the effective topos for the Russian school may be a reasonable choice for the universe.
Having all said, the main point here is that while the conjunctions must be finite, the disjunctions
can be arbitrary and this arbitrariness is something up to interpretation.
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conditions, this new space is nothing but a Grothendieck topos. In this sense, the
generalized notion of space is canonically conceivable from the pure intuitionis-
tic conception of a proposition—a truly borderless revolution, indeed! Moreover, it
implies that we should not be surprised that Grothendieck topoi or their elementary
version can serve as the models for intuitionistic set theories or type theories, since
the latter is simply the syntactic axiomatization of the constructions that the former
formalizesmodel-theoretically. Unfortunately, this paper does not have enough space
to explain all the details of this interpretation. However, we strongly encourage the
reader to pursue this logical/philosophical path to geometry and read any geometrical
construction by keeping an eye on the foregoing interpretation. This briefly explained
connection between constructivism and the different incarnations of the notion of
space is a very well-established tradition and here we only had time to see the tip
of the iceberg. To see how this connection may lead to some useful interpretations
in topos theory, higher geometry and even computer science, see (Joyal and Tierney
1984), (Anel and Joyal 2019), (Abramsky 1987, Abramsky 1991), (Abramsky and
Vickers 1993) and (Vickers 1989).

Now, considering propositions as the open subsets of a (new) space,we are ready to
address the complex, ubiquitous and hard to comprehend notion of implication. First
note that any sophisticated anti-realistic philosophy needs an act of internalization;
the way by which the creative subject internalizes her own notion of construction to
be able to bring them to her consideration as the object of the study and not just its
instrument. This internalization is actually what the implication is developed for. It
transforms the provability order between propositions, A � B, a meta-mathematical
property, into the validity of another proposition, i.e., A→ B. In the case we also
care about the explicit constructions, the implication or in this case the function
space, implements the same idea to transform the set of constructions from A to B
to the constructions of A→ B.

What is an internalizer? For the sake of simplicity, let us limit ourselves only to
the constructibility case. Therefore, we have the provability order which we intend
to internalize. There are many different structures that we can expect an implication
to internalize. For instance, the order is reflexive, i.e., A � A for any proposition A
and it is transitive, i.e., “A � B and B � C implies A � C” for any propositions A,
B, and C . The internalizations for these basic properties are � A→ A and

(A→ B) ∧ (B → C) � (A→ C),

for any propositions A, B, and C . The order has also all finite conjunctions meaning
that for any two propositions B and C , there exists a proposition B ∧ C such that for
any A we have “A � B ∧ C iff “A � B and A � C”” whose internalization is:

A→ (B ∧ C) = (A→ B) ∧ (A→ C),
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and for all finite disjunctions it means the existence of A ∨ B such that for any C we
have “A ∨ B � C iff “A � C and B � C”” whose internalization is:

(A ∨ B) → C = (A→ C) ∧ (B → C)

As we can observe by the foregoing instances, there can be many structures or prop-
erties that we may want to internalize and depending on that, there can be many
different possible implications. The usual Heyting implications in posets, exponen-
tial objects in categories, the many-valued, the relevant and the linear implications
and the monoidal internal hom structures in monoidal categories are only some of
these many implications. See (Mac Lane 1998), (Borceux 1994a), (Restall 2002).
There are also somenon-substructural internalizations.Oneof the early examples that
also motivated the present work was introduced first in (Visser 1981b) and (Visser
1981a) and re-emerged in a more philosophically motivated form in (Ruitenburg
1991) to address the impredicativity problem of the implication. This implication
is morally the Heyting implication without its modus ponens rule; see (Ardeshir
1995), (Ardeshir and Ruitenburg 2001), (Ardeshir and Ruitenburg 1998), (Celani
and Jansana 2001). The emergence of these weak implications then set the scene for
a plethora of other and sometimes even weaker implications emerging philosoph-
ically (Ruitenburg 1992); algebraically (Restall 1994); (Celani and Jansana 2005);
(Alizadeh and Ardeshir 2006a); (Alizadeh 2009); (Alizadeh and Ardeshir 2006b);
(Alizadeh and Ardeshir 2012); (Alizadeh and Ardeshir 2004); (Ardeshir and Ruiten-
burg 2018); proof theoretically (Corsi 1987); (Došen 1993); (Suzuki 1999); (Sasaki
1999); via provability interpretations (Visser 2002); (Iemhoff 2003); (Iemhoff et al.
2005) and relational semantics (Ardeshir andHesaam2008); (Litak andVisser 2018),
almost everywhere in the logical realm. Apart from the philosophically oriented rea-
sons, the weak implications raise also some independent mathematical interests. In
their propositional form, they appear in different logical disciplines including prov-
ability logic (Visser 1981b) and preservability logic (Visser 2002); (Iemhoff 2003);
(Iemhoff et al. 2005), (Litak and Visser 2018). In their higher categorical form, they
capture some type constructors called arrows by the functional programming com-
munity. Arrows were first introduced in (Hughes 2000) to encode some natural types
of function-like entities that are not really functions. For instance, the type of all
partial functions from A to B, for the given types A and B is such an arrow type.
Categorically speaking, they generalizemonads, used elegantly to formalize the com-
putational effects in (Moggi 1991). For the categorical formalizations of arrows see
(Jacobs et al. 2009) and for more information on their role in programming and type
theory see (Paterson 2003) and (Lindley et al. 2011).

Coming back to the spatial interpretation, we are facing a question: If the notion
of space is powerful enough to formalize constructions, why not using them to also
understand implications and exponentials? For this purpose, we have to bring in
another important intuitionistic notion, different from the usual constructions. This
notion is time. Assume that the mental states encode not only the current knowledge
of the mind, but also the relevant temporal data including the actual moment that the
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mental state occupies in the time line. To encode this temporal structure, we add a
temporal modality, ∇, to construct a proposition ∇A from a proposition A, meaning
“A holds at some point in the past”. First note that ∇A is a proposition itself. Since,
if ∇A holds in a mental state, there is some point in the past in which A holds. But
A is a proposition and hence has a finite verification at that point. Therefore, it is
easy to bring that verification to the current mental state and save it as some temporal
information of the past. Secondly, ∇ is clearly monotone and union preserving. The
reason for the latter is the existential nature of ∇. More precisely, if ∇(

∨
i∈I Ai )

holds at some state, then there exists some point in the past in which
∨

i∈I Ai holds.
Hence, one of Ai ’s must hold in that point which implies ∇Ai holds at the current
state. The converse is similar and easy. This completes the data we need for the
temporal modality.

Back to the implications, using∇ as the temporal modality, it is possible to design
an implication that brings the temporal structure to the scene. Define the implication
by

A→∇ B =
⋃
{C | ∇C ∧ A � B}. (∗)

By this definition and the fact that ∇ preserves all disjunctions, it is not hard to
prove

∇C ∧ A � B iff C � A→∇ B, (∗∗)

which can be read as a pair of the introduction-elimination rules that defines the
implication. Note that the definition (∗) has been dictated by the equivalence (∗∗) in
a uniqueway. The introduction-elimination rules state that A→∇ B is a consequence
of C if the fact that C constructed before plus the truth of A at this moment implies
the truth of B. Note that the only role that ∇ plays is delaying the implication.
Philosophically speaking, it is the machinery to ensure a delay between constructing
an implication and using it. For instance, based on the introduction-elimination rules,
we know that ∇(A→∇ B) ∧ A � B while there is no reason to have (A→∇ B) ∧
A � B. The former means that A→∇ B holds (constructed) before and hence, at
this moment we can argue that in the presence of A, we can use the implication
to show B. While in the latter case, A→∇ B is just constructed and it can not be
applicable at the moment. Now, identifying the set of propositions by the opens of a
topological space, we have amathematical formalization of the foregoing discussion.
It is enough to have a topological space and a monotone and union preserving map
∇ : O(X) → O(X) encoding the temporal modality. Calling such a data a spacetime,
we can ensure that all spacetimes have their canonical implications, as defined above.
Admittedly, these implications define a special class of all possible implications.
However, we will show that any reasonable implication is actually representable
by these temporal implications. The advantage of a temporal implication is the full
introduction-elimination rules that it possesses. These rulesmake a naturalmachinery
for internalization and leads to a very well-behaved implication as opposed to the
arbitrary selection of structures that an implication may randomly internalize. In
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sum, our motto is that the study of the notion of time can almost be the study of the
notion of implication. In this paper and in its sequel, we intend to follow this motto
to investigate the general notion of implication via its incarnations in the above-
mentioned spacetimes. Here, we will focus on the algebraic side of the story and
leave the full general categorical setting and its categorical spacetimes as the more
structured Grothendieck topoi to the forthcoming work.

The structure of the present paper is as follows. In Sect. 7.2, we will present a
rather intense section on preliminaries to make the paper self-contained and hence
accessible for a wider range of audience. In Sect. 7.3 quantales will be presented as
the natural generalization of the notion of space. We will also discuss how to capture
a more subjective formalization of finitely verifiable propositions in which even
observing the truth of a proposition changes the mental state. In Sect. 7.4, we will
define an abstract implication as an order internalizing operation. Then in Sect. 7.5,
we will develop a generalized version of spacetimes via quantales as developed
in Sect. 7.3. Section7.6 is devoted to the representation theorems to show that a
considerable class of abstract implications are essentially the implications of the
generalized spacetimes. In Sect. 7.7, we will continue by developing a series of sub-
structural logics for spacetimes and we will study their topological semantics. Their
Kripke semantics will be introduced in Sect. 7.8. And finally, in Sect. 7.9, we will
show how to embed the sub-intuitionistic logics, the logics of weak implications into
these more well-behaved logics of spacetime.

7.2 Preliminaries

In this section wewill review some basic facts and some useful constructions, includ-
ing the notions of poset, adjunction, the monoidal posets, quantales and some com-
pletion techniques. These are very well-known facts and constructions. However,
for the sake of completeness and being accessible to a wider range of audience, we
prefer to briefly explain some necessary parts here. For more information, see (John-
stone 1982), (Vickers 1989) and (Borceux 1994b) on locales and completions and
(Rosenthal 1990) on quantales.

Definition 1 By amonoidM = (M,⊗, e), wemean a setM equippedwith a binary
multiplication function⊗ : M × M → M and an element e ∈ M such that themulti-
plication is associative, i.e., for allm, n, k ∈ M wehave (m ⊗ n)⊗ k = m ⊗ (n ⊗ k)
and e is the identity element, i.e., for all m ∈ M we have e ⊗ m = m = m ⊗ e. If
M = (M,⊗M , eM) and N = (N ,⊗N , eN ) are two monoids, by a homomorphism
f :M→ N wemean a structure preserving function f : M → N , i.e., f (eM) = eN
and for any m, n ∈ M , f (m ⊗M n) = f (m)⊗N f (n).

Definition 2 By a poset we mean a pair A = (A,≤), where A is a set and ≤ is a
reflexive, anti-symmetric and transitive binary relation over A. ByAop we mean the
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opposite poset of A, consisting of A with the opposite order. When there is no risk
of confusion, we denote Aop simply by Aop. By a downset of A, we mean a subset
of A that is ≤-downward closed, i.e., a subset S such that if a ≤ b and b ∈ S, then
a ∈ S. By an upset we mean a ≤-upward closed subset, i.e., a subset S such that if
a ≤ b and a ∈ S, then b ∈ S.

By the join (the meet) of a subset S ⊆ A, we mean the greatest lower bound
(the least upper bound) of S in A, if it exists. We denote it by

∨
S (

∧
S). If S has

at most two elements a, b ∈ A, we use the notation a ∨ b for the join (a ∧ b for
the meet) and we denote the join of the empty set by 0 (the meet of the empty set
by 1). A poset is called join semi-lattice or finitely cocomplete (meet-semilattice
or finitely complete) if the join (meet) of all finite subsets of A exist. It is called
cocomplete (complete) if the join (meet) of all subsets of A exist. And finally by a
map between two posets A = (A,≤A) and B = (B,≤B), denoted by f : A→ B,
we simply mean an order preserving function f : A→ B meaning f (a) ≤B f (b)
for any a ≤A b. An order-preserving map is called an embedding if for any a, b ∈ A,
the inequality f (a) ≤B f (b) implies a ≤A b.

Remark 1 Note that any cocomplete poset is also complete and vice versa. It is
easy to see that if (A,≤) is cocomplete and S ⊆ A then

∨{x ∈ A|∀s ∈ S (x ≤ s)}
exists and serves as the meet

∧
S. The converse is similar.

Definition 3 LetA = (A,≤A) andB = (B,≤B) be two posets and f : A→ B and
g : B→ A be two maps. The map f is called a left adjoint for g (or equivalently g
is a right adjoint for f ), if for all a ∈ A and b ∈ B,

f (a) ≤B b iff a ≤A g(b)

In such situation the pair ( f, g) is called an adjunction and it is denoted by f  g :
B→ A or simply f  g.

Remark 2 Note that given f  g : B→ A, we have f g(b) ≤B b, for all b ∈ B
because g(b) ≤B g(b). Similarly, a ≤A g f (a), for all a ∈ A. Moreover, in any
adjunction situation, we have f g f = f . The reason is that since for any a, a ≤A

g f (a), by applying f on both sides we have f (a) ≤B f g f (a). On the other hand,
f g(b) ≤B b, for all b ∈ B. Hence, for b = f (a)we have f g( f (a)) ≤B f (a). There-
fore, f g f (a) = f (a). Similarly, g f g = g.

Theorem 1 (Adjoint Functor Theorem for Posets) LetA = (A,≤A) be a complete
poset and B = (B,≤B) be a poset. Then an order preserving map f : A→ B has
a right (left) adjoint iff it preserves all joins (meets).

Proof See (Borceux 1994a). �
Definition 4 A monoidal poset is a structure A = (A,≤,⊗, e) where (A,≤) is a
poset and (A,⊗, e) is a monoid whose multiplication is compatible with the order,
i.e., ⊗ is order-preserving in each of its arguments. A monoidal poset is called
distributive if its poset is a join-semilattice and its multiplication distributes over all
finite joins in each of its arguments.
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Definition 5 LetA = (A,≤A,⊗A, eA) andB = (B,≤B,⊗B, eB) be twomonoidal
posets. By a laxmonoidal map f : A→ Bwemean an order preserving function f :
A→ B such that f (eA) ≥ eB and for any a, b ∈ A we have f (a ⊗A b) ≥ f (a)⊗B

f (b). A map is called oplax monoidal if it is order preserving and the last two
inequalities are in the reverse order, i.e., f (eA) ≤ eB and for any a, b ∈ A we have
f (a ⊗A b) ≤ f (a)⊗B f (b).Amap is called strictmonoidal if it is both laxmonoidal
and oplax monoidal. It is called strict monoidal embedding if it is strict monoidal
and if f (a) ≤ f (b) implies a ≤ b, for any a, b ∈ A.

Theorem 2 LetA = (A,≤A,⊗A, eA) and B = (B,≤B,⊗B, eB) be two monoidal
posets, f : A→ B be an oplax monoidal (lax monoidal) map and g : B→ A be
its right (left) adjoint. Then g is lax monoidal (oplax monoidal).

Proof We prove the case when f is oplax and f  g. The other case is similar.
Since f is oplax we have f (eA) ≤B eB from which and by using the adjunction we
have eA ≤A g(eB). For the other condition, note that by the Remark 2, the adjunction
implies f (g(a)) ≤B a and f (g(b)) ≤B b. By the fact that f is oplax, we have

f (g(a)⊗ g(b)) ≤B f (g(a))⊗ f (g(b)) ≤B a ⊗ b

and by the adjunction again, we have g(a)⊗ g(a) ≤B g(a ⊗ b), which completes
the proof. �

Definition 6 Amonoidal posetX is called a quantale if its order is cocomplete and
its multiplication distributes over all joins on both sides. A quantale is a locale if its
monoidal structure is the meet structure of the poset. In other words, a locale is a
cocomplete poset whose meet distributes over all of its joins.

Remark 3 Note that quantales are also complete. This provides the enough structure
to interpret conjunctions in a quantale, as we will see later.

Here are some prototypical examples of locales and quantales that help to develop
the intuition:

Example 1 Let S = (S,≤) be a cocomplete poset and define X as the set of all join
preserving functions f : S→ S with the pointwise order ≤X . Then
X = (X,≤X , ◦, id) is a quantale where ◦ is the usual composition and id : S→ S
is the identity map.

Example 2 Let X be a set and R be a set of binary relations over X that includes the
equality and is closed under composition and arbitrary union. Then
X = (R,⊆, ◦,=) is a quantale where ◦ is the relation composition.

Example 3 Let X be a topological space. Then X = (O(X),⊆,∩, X) is a locale
where O(X) is the set of all open subsets of X .
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Example 4 LetM = (M,⊗, e) be a monoid. Consider I (M) as the set of all ideals
ofM, i.e., the subsets of M closed under arbitrary left and right multiplication. Then
(I (M),⊆, ·, M) is a quantale where

I · J = {i ⊗ j |i ∈ I, j ∈ J }

The reason is that the union of any set of ideals is an ideal again and themultiplication
clearly distributes over the union.

Remark 4 Note that if X is a quantale, then for any fixed a ∈X , the functions
la, ra :X →X mapping x into a ⊗ x and x ⊗ a, respectively, preserve all joins
and since the poset is cocomplete, by the adjoint functor theorem, Theorem 1, they
both have right adjoints. Because of some technical reasons, we are only interested in
la . Therefore, it will be useful to have a name and a notation for la’s right adjoint. We
denote it by a ⇒ (−) andwe call the binary operator⇒, the canonical implication of
the qunataleX . Spelling out the adjunction conditions, it means that for any a, b, c ∈
X , we have a ⊗ b ≤ c iff b ≤ a ⇒ c. Note that if X is a locale, its canonical
implication is just the usual Heyting implication of X .

Definition 7 Let X ,Y be two quantales. Then by a lax/oplax/strict geometric
morphism f :X → Y , we mean a lax/oplax/strict monoidal join preserving map
f :X → Y .

Example 5 Let X and Y be two topological spaces, O(X) and O(Y ) be the poset of
all open subsets of X and Y , respectively and f : X → Y be a continuous function.
Then f −1 : O(Y ) → O(X) is a strict geometric morphism.

It is worth mentioning that over locales, any join preserving map f :X →X
is an oplax geometric morphism because f is order preserving which implies f (a ∧
b) ≤ f (a) ∧ f (b).

Example 6 Let X and Y be two sets and f : X → Y be a function. Then f induces a
lax geometric morphism f ∗ : P(Y × Y ) → P(X × X) by f ∗(R) = F−1(R), where
F : X × X → Y × Y and F(x, x ′) = ( f (x), f (x ′)). The map f ∗ is clearly union
preserving. Moreover, for any two relations R, S ⊆ Y × Y , we have F−1(R) ◦
F−1(S) ⊆ F−1(R ◦ S), because, if (x, x ′) ∈ F−1(R) ◦ F−1(S) then there is z ∈
X such that (x, z) ∈ F−1(S) and (z, x ′) ∈ F−1(R). Therefore, ( f (x), f (z)) ∈ S
and ( f (z), f (x ′)) ∈ R which implies ( f (x), f (x ′)) ∈ R ◦ S from which (x, x ′) ∈
F−1(R ◦ S).

The function f also induces an oplax geometric morphism. Define f∗ : P(X ×
X) → P(Y × Y ) by f∗(R) = F[R] as the F-image of R. This is also union
preserving. Moreover, we have f∗(R ◦ S) ⊆ f∗(R) ◦ f∗(S), because, if (y, y′) ∈
F[R ◦ S] then there is x, x ′, z ∈ X such that y = f (x), y′ = f (x ′), (x, z) ∈ S
and (z, x ′) ∈ R. Therefore, ( f (x), f (z)) ∈ F[S] and ( f (z), f (x ′)) ∈ F[R]. Hence,
(y, y′) = ( f (x), f (x ′)) ∈ f∗(R) ◦ f∗(S).
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Example 7 Let M = (M,⊗M , eM) and N = (N ,⊗N , eN ) be two monoids and
f :M→ N be a homomorphism. Consider I (M) and I (N), defined in Example 4.
Then f induces a lax geometric morphism f ∗ : I (N)→ I (M) by f ∗(I ) = f −1(I ).
It is clearly union preserving. Moreover, we have f ∗(I ) f ∗(J ) ⊆ f ∗(I J ) because
if x ∈ f ∗(I ) f ∗(J ) then there are y ∈ f ∗(I ) and z ∈ f ∗(J ) such that x = y ⊗M z.
Since f is a homomorphism we have f (x) = f (y)⊗N f (z) ∈ I J . Therefore, x ∈
f ∗(I J ). The homomorphism f also induces an oplax geometric morphism defined
by f∗ : I (M)→ I (N) by f∗(I ) = N f [I ]N , where f [I ] is the image of I and
N f [I ]N is the generated ideal of the image of I . This map clearly preserves union.
Moreover, f∗(I J ) ⊆ f∗(I ) f∗(J ), because if x ∈ f∗(I J ), then there are m, n ∈ N ,
i ∈ I and j ∈ J such that x = m ⊗N f (i ⊗M j)⊗N n. Since f is a homomorphism
we have x = m ⊗N f (i)⊗N f ( j)⊗N n ∈ f∗(I ) f∗(J ).

In the rest of this section, we will recall some of the main completion techniques
for the monoidal posets.Wewill address the details of constructions as we need them
later in some other constructions of the paper.

Theorem 3 (Downset and Ideal Completions) LetA = (A,≤,⊗, e) be a monoidal
poset. Then there exists a quantale D(A), called the downset completion ofA and a
strict monoidal embedding i : A→ D(A). IfA has all finite joins and distributive,
then there exists another quantale I (A), called the ideal completion ofA and a finite
join-preserving strict monoidal embedding i : A→ I (A). IfA has all finite meets,
then in both cases i preserves all finite meets.

Proof First let us explain the downset completion thatworks formonoidal posets that
do not necessarily have the join structure. Later we will also address the joins and the
distributive case. DefineX = D(A) as the set of all downsets of Awith the inclusion
as its order. Since downsets are closed under arbitrary union and intersection, they
are the joins and the meets of the poset, respectively. Define the map i : A→X by
i(a) = {x ∈ A|x ≤ a} and the monoidal structure of X by eX = i(e) and

I ⊗X J = {x ∈ A| ∃i ∈ I∃ j ∈ J (x ≤ i ⊗ j)},

for any downsets I and J . Note that I ⊗X J is also a downset. Moreover, it is not
hard to prove that this multiplication is associative with the identity element eX
and it distributes over all unions. Therefore, (X ,⊗X , eX ) is actually a quantale.
Moreover, i is a strict monoidal map because by definition, eX = i(e) and

i(a)⊗X i(b) = {x ∈ A|∃i ≤ a∃ j ∈ b (x ≤ i ⊗ j)} = {x ∈ A|x ≤ a ⊗ b}.

Finally, note that i is clearly an embedding, because,

i(a) ⊆ i(b) iff {x ∈ A|x ≤ a} ⊆ {x ∈ A|x ≤ b} iff a ≤ b,

and if A has all finite meets, i preserves them because, i(1) = {x ∈ A|x ≤ 1} = A
and



172 A. Akbar Tabatabai

x ∈ i(a) ∩ i(b) iff (x ∈ a and x ∈ b) iff x ≤ a ∧ b iff x ∈ i(a ∧ b),

which implies i(a) ∩ i(b) = i(a ∧ b).
Now, let us move to the distributive case, where A = (A,≤,⊗, e) has all finite

joins. Then the foregoing function i does not necessarily preserve the join structure
of A. To handle this issue, we have to change X a little bit: Define Y = I (A) as
the poset of all ideals of A, i.e., all downsets I ⊆ A such that 0 ∈ I and a ∨ b ∈ I ,
for any a, b ∈ I . We want to show that Y with the join

∨

i∈N
Ii = {x ∈ A|∃x1, . . . xn ∈

⋃

i∈N
Ii (x ≤

n∨

j=1
x j )}

and the same monoidal structure as of X ’s is a quantale and the previous function
i is again an embedding that also preserves all finite joins. First, it is not hard to
prove that

∨
maps ideals to ideals and is actually the join of the family {Ii }i∈N in

the inclusion order over ideals. Secondly, note that the original i : A→X actually
lands into the set of idealsY , because, {x ∈ A|x ≤ a} is closed under all finite joins.
Note also that i preserves all finite joins because,

i(a) ∨ i(b) = {x ∈ A|∃i ≤ a∃ j ≤ b (x ≤ i ∨ j)} = {x ∈ A|x ≤ a ∨ b}.

Since the intersection of ideals is also an ideal, the meet structure for ideals is
also the intersection. Hence, the same argument for meet preservation by i works
here, as well. Thirdly, note that the defined ⊗ on X maps ideal to ideals, mean-
ing that if I and J are ideals then so is I ⊗ J . To prove this claim, first note
that 0⊗ 0 ≤ 0⊗ e = 0 from which 0⊗ 0 = 0 and hence 0 ∈ I ⊗ J . Secondly,
assume that x, y ∈ I ⊗ J . We want to show that x ∨ y ∈ I ⊗ J . By definition,
there exist i, i ′ ∈ I and j, j ′ ∈ J such that x ≤ i ⊗ j and y ≤ i ′ ⊗ j ′. By mono-
tonicity of⊗ we have x ≤ (i ∨ i ′)⊗ ( j ∨ j ′) and y ≤ (i ∨ i ′)⊗ ( j ∨ j ′) and hence
x ∨ y ≤ [(i ∨ i ′)⊗ ( j ∨ j ′)]. Since both I and J are closed under finite joins,
i ∨ i ′ ∈ I and j ∨ j ′ ∈ J and hence, x ∨ y ∈ I ⊗ J .

Finally, we show that the multiplication distributes over joins, i.e.,

∨

n∈N
(In ⊗ J ) = (

∨

n∈N
In)⊗ J and I ⊗ (

∨

n∈N
Jn) =

∨

n∈N
(I ⊗ Jn).

We will prove the left equality. The right one is similar. There are two directions
to prove.

∨
n∈N (In ⊗ J ) ⊆ (

∨
n∈N In)⊗ J is clear by monotonicity. For the other

direction, assume x ∈ (
∨

n∈N In)⊗ J . By definition, there exist y ∈∨
n∈N In and

j ∈ J such that x ≤ y ⊗ j . Again by definition, there exist i1, i2, . . . , ik ∈⋃
n∈N In

such that y ≤ i1 ∨ . . . ∨ ik . By distributivity, we have

x ≤ (i1 ⊗ j) ∨ (i2 ⊗ j) ∨ . . . ∨ (ik ⊗ j).
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But since each ir is in at least one Imr , we have

ir ⊗ j ∈ (Imr ⊗ J ) ⊆
∨

n∈N
(In ⊗ J ).

Since
∨

n∈N (In ⊗ J ) is closed under finite joins, we have x ∈∨
n∈N (In ⊗ J ). �

Remark 5 Note that in the both downset and ideal completions, if the monoidal
structure of A is just the meet structure, i.e., ⊗ = ∧ and e = 1, then ⊗X is the
intersection because

I ⊗X J = {x ∈ A| ∃i ∈ I∃ j ∈ J (x ≤ i ∧ j)} = I ∩ J,

which is themeet ofX and also eX is i(1)which is the top element 1X = i(1) = A.

Theorem 4 (Lifting Monoidal Maps) Let A = (A,≤A,⊗A, eA) and B = (B,≤B,

⊗B, eB) be two monoidal posets and f : A→ B be a lax (oplax) monoidal map.
Then there exists a lax (oplax) geometric map f! : D(A)→ D(B) such that f!i A =
iB f , where iA and iB are the canonical embeddings of the downset completions
of A and B, respectively. Moreover, if both A and B have all finite joins and are
distributive, and if f : A→ B is finite join preserving, then the same holds for some
map f! : I (A) → I (B).

Proof First let us prove the downset case.Wewill address the ideal case later. Define

f!(I ) = {x ∈ A| ∃i ∈ I (x ≤B f (i))}.

This set is clearly a downset, hence f! is well-defined. Moreover, note that

f!(i A(a)) = {x ∈ A| ∃i ≤A a (x ≤B f (i))} = {x ∈ A|(x ≤B f (a))} = iB( f (a)).

The map f! obviously preserves all unions. We have to prove that if f is lax (oplax),
then so is f!. Assume f is lax monoidal. The other case is similar. We have to
prove that iB(eB) ⊆ f!(i A(eA)) and f!(I )⊗ f!(J ) ⊆ f!(I ⊗ J ), for any downsets
I and J of A. For the first, assume x ∈ iB(eB), then x ≤B eB ≤B f (eA). Hence,
x ∈ f!(i A(eA)). For the second, if x ∈ f!(I )⊗ f!(J ), then there are y ∈ f!(I ) and
z ∈ f!(J ) such that x ≤ y ⊗ z. Since y ∈ f!(I ) and z ∈ f!(J ) there are i ∈ I and j ∈
J such that y ≤ f (i) and z ≤ f ( j). Hence, x ≤ f (i)⊗ f ( j) ≤ f (i ⊗ j), which
implies x ∈ f!(I ⊗ J ).

For the ideal completion case, we define the same f!. However, we have to check
whether it is ideal and join preserving. It is an ideal because, 0 ≤ f (0) and since
0 ∈ I we have 0 ∈ f!(I ). Moreover, if x, y ∈ f!(I ) then there are i, j ∈ I such that
x ≤ f (i) and y ≤ f ( j). Since f is monotone, we have x ∨ y ≤ f (i ∨ j). Since I
is an ideal we have i ∨ j ∈ I and hence x ∨ y ∈ f!(I ). Furthermore, we have to
check that f! is join preserving. For that matter, we have to show f!(

∨
n∈N In) =∨

n∈N f!(In). From right to left is easy by monotonicity of f!. For the left to right,
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assume x ∈ f!(
∨

n∈N In).Hence, there are i1, . . . , ik ∈⋃
n∈N In such that x ≤ f (i1 ∨

. . . ∨ ik). Since f is join preserving we have x ≤ f (i1) ∨ . . . ∨ f (ik) which implies
that x ∈∨

n∈N f!(In). �

Upset and Filter Completions. Using two ideal completions in an appropriate way
leads to a very useful construction that we call the upset construction. The details
follow. LetA = (A,≤,⊗, e) be amonoidal poset and denote the downset qunatale of
A by D(A) and the opposite ofA, the same structure with the reverse order, byAop.
Then by the downset completion for Aop, there exists a strict monoidal embedding
i : Aop → D(Aop) or equivalently i : A→ D(Aop)op. It is useful to observe that
D(Aop) is nothing but the poset of all upsets of A with the multiplication:

P ⊗ Q = {x ∈ A|∃y ∈ P∃z ∈ Q (x ≥ y ⊗ z)}.

Denote this poset byU (A).Nowweuse the sameoperation again to embed D(Aop)op

into D(D(Aop)op). Combining these two embeddings, we reach a strict monoidal
embedding of A into D(D(Aop)op) which we call the upset completion of A.
Spelling out the construction of the upset completion, the set consists of all the upsets
of the upsets ofAwith the inclusion as its order and the following multiplication for
any upsets of upsets X and Y :

X ⊗ Y = {P ∈ U (A)|∃Q ∈ X∃R ∈ Y (P ⊇ Q ⊗ R)}.

Moreover, the embedding is simply expressible by i(a) = {P ∈ U (A)|a ∈ P}.

In the case that themonoidal poset is ameet semi-latticeA = (A,≤,∧, 1), there is
another construction that is called the canonical constructionC(A) and an embedding
i : A→ C(A) that respects all finite meets. A non-empty upset of A is called a filter
if it is closed under all finite meets. Denote the class of all filters ofA by F(A) and
then define C(A) as the poset of all upsets of filters and use the same i as defined
before. The embedding i : A→ C(A) preserves all finite meets. First note that all
filters include 1, thus

i(1) = {P ∈ F(A)|1 ∈ P} = F(A).

Secondly, note that the filters are closed under meets. Hence,

i(a ∧ b) = {P ∈ F(A)|a ∧ b ∈ P} = {P ∈ F(A)|a ∈ P and b ∈ P} = i(a) ∩ i(b).

In caseA has all finite joins and it is distributive, it is also possible to change the
canonical construction so that i also preserves the finite joins. The construction is as
follows: A filter is called prime if it is proper and for any a, b ∈ A, the assumption
a ∨ b ∈ P implies either a ∈ P or b ∈ P . Denote the set of all prime filters by
P(A). If we change C(A) to the poset of all upsets of P(A) with the same i , then
i preserves both finite joins and finite meets. The reasoning for the meet is the same
as before. For the joins, since prime filters are proper, we have 0 /∈ P , which implies
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i(0) = {P ∈ P(A)|0 ∈ P} = ∅ and

i(a ∨ b) = {P ∈ P(A)|a ∨ b ∈ P} = {P ∈ P(A)|a ∈ P or b ∈ P} = i(a) ∪ i(b).

7.3 Intuitionism via Quantales

In the Introduction, we have seen that any finitely verifiable proposition can be
interpreted as an open subset of a topological space. In this interpretation, the corre-
sponding open subset captures the set of all the mental states in which the proposition
actually holds. More operationally, a finitely verifiable proposition A is just an obser-
vation that reads a mental state and finds the truth value of A in that state, in the
same way that a physical quantity like the speed or the temperature can be seen as
an observation that reads a physical state to find the value of the quantity.

Reading propositions as observations suggests thatwe silently believe in some sort
of an independent objectivemind. Let us assume that the creative subject observes her
mental state to check the validity of a proposition. It seems that this introspection only
observes a mental state and extracts some needed information from it but it does not
affect themental state at all. The situation is similar to the classical assumption that the
physical observations do not affect the physical phenomenon that they are observing.
It measures a quantity ideally without distorting the picture or interfering with any
other observation. Thismay be the case whenwe interpret the knowledge content of a
mental state as a set of propositions and the validity of a proposition as its provability.
Then it is just a real factual situation and it is not important what, when and in what
order we are observing the validity of the propositions. However, it is totally possible
to imagine a more subjective, more dynamic and more interactive formalization of
knowledge. One possible scenario to showhownatural such a situation could be is the
following: Interpret the knowledge content of a mental state as a set of propositions
as before but change the validity from provability to immediate provability. It means
that a valid proposition is either in the set or provable in one step via some given
provingmethods from the set. Observing a proposition in this scenario clearly affects
the mental state. If a proposition holds in a mental state, it is provable in at most
one step. Then since the creative subject thinks about the proposition and finds out
the proof, it is totally reasonable to assume that she then modifies her knowledge
to add this new proposition to the set she had before. The observation process is
also interactive. In each step, there could be many one-step provable propositions
and hence it could be important to choose which way she wants to proceed. This
choice may change her path forever. It is also non-commutative because A may be
immediately provable and its presence makes B also immediately provable while the
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proposition B is not immediately provable without using A. Hence, proving A after
B may not be even possible.

This is only one possible scenario. Now let us find a more formal way to express
not only this scenario but its essential dynamic, interactive and non-commutative
nature. We will begin by a toy example to be prepared to find the algebraic abstract
formalization later. Let S be the set of all the mental states and identify a proposition
not by a subset of S but by a binary relation A ⊆ S × S that includes (s, t) if the
proposition A holds in the state s, its truth is verifiable in a finite number of steps
and this verification changes the mental state s to t . Using this example, we can also
identify the previous static interpretation of knowledge as the non-state-changing
relations, i.e., the relations like Awith the property that if (s, t) ∈ A then s = t . These
A’s are simply identifiable by the subset {s ∈ S|(s, s) ∈ A} of themental states where
they are valid. This is simply our previous proposition-as-subset formalization.

To formalize the calculus of this new interpretation of finitely verifiable propo-
sitions, we try to provide an algebraic axiomatization reflecting the main intuitive
properties of this toy example. Here again we have three main structures. The first
obvious structure is the order between the propositions encoding how a proposition
implies another one. This order in our toy example is the inclusion order between the
binary relations. Secondly, propositions has a natural notion of composition. Philo-
sophically speaking, for any two propositions A and B, we can imagine A ⊗ B as the
composition of observations, first applying B and then A. A ⊗ B changes the state s
to t if there exists a state r such that B holds in s andmaps s to r where A holds and A
changes this r to t . In our toy example composition is simply the composition of rela-
tions. Note that this composition is clearly associative and has an identity element.
The identity element is simply the do-nothing observation. In our toy example it is the
equality relation over S.Moreover, note that in the static interpretation of propositions
when A and B are encoded by subsets {s ∈ S|(s, s) ∈ A} and {s ∈ S|(s, s) ∈ B}, their
composition A ⊗ B will be {s ∈ S|(s, s) ∈ A} ∩ {s ∈ S|(s, s) ∈ B}which is nothing
but the intersection. This shows how this dynamic approach really generalizes the
static topological interpretation of the Introduction.

Finally, let us address the finiteness condition. Note that the poset of propositions
is cocomplete as we explained in the Introduction, simply because for any set I ,
if all Ai ’s are all finitely verifiable, then their disjunction

∨
i∈I Ai is also finitely

verifiable. The main point is that for verifying a disjunction it is enough to verify
one of them. How does a disjunction act on the states? It just combines the actions
of all Ai ’s, since observing the validity of

∨
i∈I Ai is just observing one of Ai ’s and

hence it changes a states s to one of the states that one of Ai ’s may dictate. The
disjunction in our toy example is just the union of relations. Moreover, note that the
composition distributes over all joins because doing the observation B after “at least
one of Ai ’s” is nothing different than doing one of “Ai ’s before B”. The same also
goes for the other argument of the multiplication. Therefore, to make a calculus for
finitely verifiable propositions in its dynamic interactive sense, we need a cocom-
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plete monoidal poset whose multiplication distributes over all joins on both sides.
This is nothing but a quantale. Note that if we collapse the monoidal structure to the
meet structure as in the non-state-changing-observation interpretation dictates, then
the quantale turns into a locale, the point-free version of a topological space. Inter-
preting locales as the calculus of non-state-changing observations were developed
in (Abramsky 1987, Abramsky 1991), and (Vickers 1989). This generalization to
quantales has its roots even in (Mulvey 1986) where quantales first appeared to pro-
vide an algebraic formalization for non-commutative C∗-algebras. However, in its
explicit form, the state-changing interpretation is developed in (Abramsky and Vick-
ers 1993) and has been important in the connection between the quantales and their
categorical monoidal versions on the one hand and the formalization of processes
and observations in computer science and quantum physics on the other.

7.4 Abstract Implications

Philosophically speaking, an implication is a conditional proposition internalizing the
provability order of the poset of all propositions. Traditionally, the internalization has
been implemented via Heyting implications or in a more general setting of monoidal
posets via residuations for right and left multiplications. We argue that this tradition
is far more restricting than what a basic internalization task demands. As we have
seen already in Introduction, internalizations can take place in many different levels
to internalize many different structures. For instance, if we have a meet-semilattice,
the implication may internalize the basic structures of reflexivity and transitivity via
the axioms a → a = 1 and

(a → b) ∧ (b→ c) ≤ (a → c),

or it can go one step further to also internalize the finite meet structure via

a → (b ∧ c) = (a → b) ∧ (a → c),

or in the case that the meet-semilattice has all finite joins, the join structure via

(a ∨ b) → c = (a → c) ∧ (b→ c).

We propose that the minimum reasonable conditions for any internalization is the
inernalization of reflexivity of the order and its transitivity. However, it does not need
to be over meet-semilattices. We can use a more general setting where we only have
a monoidal poset:

Definition 8 Let A = (A,≤,⊗, e) be a monoidal poset. By an implication on A,
denoted by the symbol→, we mean a function from Aop × A to A such that it is
order preserving in its both arguments and:
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(i) e ≤ a → a,
(i i) (a → b)⊗ (b→ c) ≤ (a → c),

The structureA = (A,≤,⊗, e,→) is called a strong algebra if→ is an implication.
And if A = (A,≤A,⊗A, eA,→A) and B = (B,≤B,⊗B, eB,→B) are two strong
algebras, by a strong algebra morphism we mean a strict monoidal map f : A→ B
that also preserves→, i.e., f (a →A b) = f (a)→B f (b), for any a, b ∈ A.

Remark 6 Based on the order preservability of the implications in their second
arguments, it is possible to strengthen the axiom (i) by the following more general
axiom: (i ′): If a ≤ b then e ≤ a → b.

Remark 7 Different versions of strong algebras are defined in the literature under
many different names. Usually, the definitions use lattices and the meet structure
as the monoidal structure, i.e., ⊗ = ∧ and e = 1. They also start with relatively
more internalization axioms, including the internalization of finite meets and finite
joins, as mentioned above. These algebras are the natural algebraic models for sub-
intuitionistic logics. See for instance (Restall 1994); (Celani and Jansana 2005);
(Ardeshir and Ruitenburg 2018); (Alizadeh and Ardeshir 2006a); (Alizadeh 2009);
(Alizadeh and Ardeshir 2006b) and (Alizadeh and Ardeshir 2012) for the alge-
braic notions and (Ardeshir 1995); (Ardeshir and Ruitenburg 1998); (Alizadeh and
Ardeshir 2004) and (Restall 1994) for their role in sub-intuitionistic logics.

Example 8 By a left residuated algebra we mean a monoidal poset
A = (A,≤,⊗, e) with a binary operation ⇒ such that x ⊗ y ≤ z is equivalent to
y ≤ x ⇒ z, for all x, y, z ∈ A. As a special case, a finitely complete and finitely
cocomplete left residuated algebra with the meet structure as its monoidal structure
is called a Heyting algebra. Spelling out, a Heyting algebra is a finitely complete
and finitely cocomplete poset H = (H,≤,∧,∨, 1, 0) with a binary operation ⇒
such that x ∧ y ≤ z is equivalent to y ≤ x ⇒ z, for all x, y, z ∈ H . It is clear that
⇒ in any left residuated algebra is an implication. Note that ifX is a quantale, then
(X ,⇒X ) is a left residuated algebra where⇒X is the canonical implication of
X . Therefore,⇒X is also an implication.

7.4.1 Constructing New Implications from the Old

There are some simple methods to make new implications from the old. Two of these
methods play an important role in our future investigations. Here we will explain
them. See also (Ardeshir and Ruitenburg 2018).

The First Method. For the first method, let A = (A,≤,⊗, e,→) be a strong
algebra and F : A→ A be a monotone function (not necessarily lax or oplax). Then
A = (A,≤,⊗, e,→F ) where a →F b = F(a)→ F(b) is a strong algebra. Since
→ is an implication, we have e ≤ F(a)→ F(a). The other axiom is trivial, because
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(F(a)→ F(b))⊗ (F(b) → F(c)) ≤ (F(a)→ F(c))

The Second Method. Let A = (A,≤,⊗, e,→) be a strong algebra and let G :
A→ A be a lax monoidal map. Then the structure A = (A,≤,⊗, e,→G) where
a →G b = G(a → b) is also a strong algebra. The reason is the following. Since→
is an implication, then e ≤ a → a. Since G is monotone G(e) ≤ G(a → a). Since
G is lax we have e ≤ G(e) which implies e ≤ G(a → a). For the second axiom,
since G is lax and→ is an implication, we have

G(a → b)⊗ G(b→ c) ≤ G((a → b)⊗ (b→ c)) ≤ G(a → c)

Later in Theorem 8, we will prove a representation theorem to show that any impli-
cation is essentially the result of applying these two methods on the canonical impli-
cation of a quantale.

Example 9 Let H = (H,≤,∧,∨, 1, 0,⇒) be a Heyting algebra. Then for some
a ∈ H , consider Ma(x) = a ∧ x and Ja : H → H as Ja(x) = a ∨ x . Then since
Ma and Ja are monotone, the following operations are implications: [x →Ma y =
(x ∧ a ⇒ y ∧ a)] and [x →Ja y = (x ∨ a ⇒ y ∨ a)].
Example 10 Let X be a topological space, f : X → X be a continuous function and
O(X) be the locale of all open subsets of X . Since f −1 : O(X) → O(X) preserves
all unions, by the adjoint functor theorem, Theorem 1, it has a right adjoint. Call
it g : O(X) → O(X). Since g is a right adjoint, it preserves all meets. Therefore,
it is lax monoidal. Therefore, the operation U → V = g(U ⇒ V ), where⇒ is the
Heyting implication on O(X) is an implication by the second construction.

Definition 9 Let A = (A,≤,⊗, e,→) be a strong algebra. It internalizes its
monoidal structure if for all a, b, c ∈ A:

a → b ≤ c ⊗ a → c ⊗ b

A is called closed if it has the left residuation, i.e., the operation⇒ such that a ⊗
b ≤ c iff b ≤ a ⇒ c, for any a, b, c ∈ A. A strong algebra internalizes the closed
monoidal structure if it is closed, it internalizes the monoidal structure and for all
a, b, c ∈ A:

a ⊗ b→ c ≤ b→ (a ⇒ c)

Remark 8 For strong algebras forwhich themonoidal structure is themeet structure,
internalizing the monoidal structure simply means a → (b ∧ c) = (a → b) ∧ (a →
c), for all a, b, c ∈ A. First note that we always have a → (b ∧ c) ≤ (a → b) ∧
(a → c) because,→ is order preserving in its second argument. Now, assume that
A internalizes its monoidal structure, then we have

(a → b) ≤ (a ∧ a → a ∧ b) and (a → c) ≤ (b ∧ a → b ∧ c)
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implying

(a → b) ∧ (a → c) ≤ (a ∧ a → a ∧ b) ∧ (b ∧ a → b ∧ c) ≤ (a → b ∧ c)

Therefore, (a → b) ∧ (a → c) ≤ a → (b ∧ c) and hence

a → (b ∧ c) = (a → b) ∧ (a → c)

Conversely, since c ∧ a ≤ c we have c ∧ a → c = 1. Moreover, c ∧ a ≤ a implies
(a → b) ≤ (c ∧ a) → b. Hence,

(a → b) ≤ [(c ∧ a)→ c] ∧ [(c ∧ a)→ b] = (c ∧ a → c ∧ b)

Example 11 Let X be a set and f : X → X be a function. Consider P(X), the poset
of all subsets of X and F : P(X) → P(X) defined by F(A) = f [A], where f [A] is
the image of A. Since F is monotone, A→F B = F(A)⇒ F(B) is an implication,
where⇒ is the usual Boolean implication on P(X). In a special case, if we choose
X and f such that f is surjective and for some subsets of X such as A, B we have
f [A ∩ B] �= f [A] ∩ f [B], then→F does not internalize themonoidal structure (the
meet) because,

[1→F (A ∩ B)] = [F(1)⇒ F(A ∩ B)] = F(A ∩ B)

[(1→F A) ∩ (1→F B)] = [(F(1)⇒ F(A)) ∩ (F(1)⇒ F(B))] = [F(A) ∩ F(B)]

are not equal. There are many such arrangements. For instance, take X = N, f (n) =
� n2 � and A = 2N and B = 2N+ 1 as the set of even and odd natural numbers,
respectively. Then A ∩ B = ∅ and hence f [A ∩ B] = ∅, while 0 ∈ f [A] ∩ f [B].
This example provides an implication that does not internalize themonoidal structure.

7.5 Non-commutative Spacetimes

As we have discussed in Sect. 7.3, quantales provide a natural formalization for a
more subjective notion of intuitionistic proposition. However, to address the full
intuitionistic picture, along the constructibility formalized by the order, we also need
to formalize the independent notion of time. How can we formalize such a temporal
structure? The answer is themodality∇ thatwe introduced in the Introduction. Recall
that ∇a must be read as the proposition “a hold at some point in the past”.

Definition 10 A pair S = (X ,∇) is called a non-commutative spacetime if X is
a quantale and ∇ :X →X is an oplax geometric map, i.e., a monotone and join
preserving map such that ∇e ≤ e and ∇(a ⊗ b) ≤ ∇a ⊗∇b, for all a, b ∈X . A
non-commutative spacetime is called a spacetime if its monoidal structure is a meet
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structure. Spelling out,S = (X ,∇) is a spacetime ifX is a locale and∇ :X →X
is just a join preserving map. Note that the oplax condition is a consequence of
monotonicity of ∇ and the fact that 1 is the greatest element.

Remark 9 Our notion of spacetime is similar to dynamic topological spaces studied
in (Kremer and Mints 2007). However, in spacetimes, we are interested in the com-
bination of both adjoints rather than the� as the right adjoint of∇, alone. Moreover,
we depart from topological spaces and the inverse image of continuous functions to
quantales and oplax join preserving maps. The latter is extremely more general than
the former.

Example 12 Assume that X is a topological space and f : X → X is a continuous
function. ThenS = (O(X), f −1) is a spacetime whereO(X) is the locale of the open
subsets of X .

Example 13 By a Kripke frame, we mean a tupleK = (W,≤, R) where (W,≤) is
a poset and R ⊆ W ×W is a relation compatible with the order ≤, meaning that for
all u, v, u′, v′ ∈ W , if (u, v) ∈ R, u′ ≤ u and v ≤ v′ then (u′, v′) ∈ R. For anyKripke
frameK , define∇K : U (W,≤) → U (W,≤) as∇K (U ) = {v ∈ W |∃u ∈ U R(u, v)}
whereU (W,≤) is the poset of all upsets of (W,≤). Themap∇K is triviallymonotone
and join preserving. For the latter, note that w ∈⋃

i∈I ∇Ui iff ∃i ∈ I (w ∈ ∇Ui ) iff

∃i ∈ I∃u ∈ W ((u,w) ∈ R ∧ (u ∈ Ui ))

iff ∃u ∈ W (u ∈
⋃

i∈I
Ui ∧ (u,w) ∈ R) iff w ∈ ∇(

⋃

i∈I
Ui ).

Therefore, SK = (U (W,≤),∇K ) is a spacetime. Note that if we take equality =W

for ≤, it transform any usual Kripke frame (W, R) with arbitrary R to a spacetime.
Philosophically speaking, in an arbitrary Kripke frame, W can be interpreted as the
set of the creative subject’s mental states, ≤ as an encoding of the order on the
knowledge content of states and R as an encoding of the order of time on the states.
Note that by this interpretation, the compatibility condition between ≤ and R is
nothing but the compatibility between knowledge and time.

Example 14 Let X be a set, f : X → X be a function and P(X × X) be the quan-
tale of all binary relations over X . Consider f∗ : P(X × X) → P(X × X) defined
as f∗(R) = {( f (x), f (y))|x, y ∈ X and (x, y) ∈ R}. By Example 6, the map f∗ is
an oplax geometric morphism and hence (P(X, X), f∗) is a non-commutative space-
time.

Example 15 Let M = (M,⊗, e) be a monoid, I (M) be the quantale of its ide-
als and f : M → M be an endomorphism. Consider f∗ : I (M)→ I (M) defined
as f∗(I ) = M f [I ]M = {m ⊗ f (i)⊗ n|i ∈ I,m, n ∈ M}. By Example 7, the map
f∗ is an oplax geometric morphism and hence (I (M), f∗) is a non-commutative
spacetime.
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Any non-commutative spacetime has its own canonical implication. It is con-
structible via the second method we have explained in Sect. 7.4.1. This implication
is nothing but the usual implication, delayed by the passage of time. The main point
of these canonical implications is the full adjunctions that they present. This means
that the structure is complete enough to fully capture the behaviour of the implica-
tion. Throughout the rest of this paper, we will see how this completeness makes the
non-commutative spacetimes and their implications extremely well-behaved.

Theorem 5 LetS = (X ,∇) be a non-commutative spacetime. Then there exists an
implication→S:X op ×X →X such that

a ⊗∇b ≤ c iff b ≤ a →S c

Proof SinceX is a quantale and ∇ :X →X is a join preserving monotone map,
by the adjoint functor theorem, Theorem 1, it has a right adjoint� :X →X . Now,
define a →S b = �(a ⇒ b) where⇒ is the canonical implication ofX . This map
has the desired property since

a ⊗∇b ≤ c iff ∇b ≤ a ⇒ c iff b ≤ �(a ⇒ c)

Moreover, note that � is the right adjoint of ∇. Therefore, since ∇ is oplax, by
Theorem 2, � must be lax monoidal and hence by the second construction method
for implications, the operation→S must be an implication. �

It is worth defining an elementary version of the previous adjunction situation.
This is similar to how Heyting algebras provide an elementary version of locales:

Definition 11 Let (A,≤,⊗, e) be a monoidal poset and∇ : A→ A and→: Aop ×
A→ A be two order preserving functions. Then the structure
A = (A,≤,⊗, e,∇,→) is called a temporal algebra if for any a, b, c ∈ A, we have
a ⊗∇b ≤ c iff b ≤ a → c. A temporal algebra is called distributive if (A,≤,⊗, e)
is a distributive monoidal poset. A temporal algebra is called a left residuated alge-
bra if ∇ is the identity map. A strong algebra (A,≤,⊗, e,→) is called a reduct
of a temporal algebra if there exists ∇ : A→ A such that (A,≤,⊗, e,∇,→) is a
temporal algebra. And finally, if A = (A,≤A,⊗A, eA,∇A,→A) and B = (B,≤B,

⊗B, eB,∇B,→B) are two temporal algebras, by a temporal algebra morphism
we mean a strict monoidal map f : A→ B that also preserves ∇ and →, i.e.,
f∇A = ∇B f and f ((−) →A (−)) = f (−)→B f (−).

Interpreting a temporal algebraA = (A,≤,⊗, e,∇,→) as the world of proposi-
tions and∇a as “a happened at some point in the past”, a → bmust be interpreted as
“a implies b at any point in the future.” Therefore, it is reasonable to assume that the
combination ∇(→) forgets the temporal delay and provides a usual left residuation.
This is almost true. It is almost, because ∇ is the approximate inverse of→, namely
its adjoint rather than its real inverse and hence∇(→) can not be the real identity but
its best approximation. To make the adjunction pair a real inverse pair, it is enough to
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move from A to ∇[A] = {∇a|a ∈ A}, as we will see in the next theorem. (See also
Remark 2.) In this sense we can claim that a temporal algebra (with meet structure
for the monoidal part) is a refined version of the usual left residual algebra (Heyting
algebra).

Theorem 6 Let A = (A,≤,⊗, e,∇,→) be a temporal algebra and ∇ preserves
all finite multiplications. Then, the structure ∇A = (∇[A],≤,⊗, e,∇,→′) is a left
residuated algebra where ∇[A] = {∇x |x ∈ A} and a →′ b = ∇(a → b), for any
a, b ∈ ∇[A]. Moreover, ifA is finitely complete (finitely cocomplete), so is∇A. The
same is also true for completeness. Finally, if the monoidal structure ofA is the meet
structure, ∇A is a Heyting algebra.

Proof Since∇ preserves themonoidal structure, the set∇[A] is closed under all finite
multiplications. Therefore, the only thing to prove is the adjunction a ⊗ (−)  (a →′
(−)), for anya ∈ ∇[A]. Itmeans a ⊗ b ≤ c iff b ≤ ∇(a → c), for all a, b, c ∈ ∇[A].
From left to right, since b ∈ ∇[A], there exists b′ ∈ A such that b = ∇b′. Since
a ⊗∇b′ ≤ c we have b′ ≤ a → c which implies b = ∇b′ ≤ ∇(a → c). From right
to left, if b ≤ ∇(a → c) then a ⊗ b ≤ a ⊗∇(a → c) ≤ c.

Note that if A has also all (finite) joins or all (finite)meets, so does∇[A]. For joins,
since ∇ has a right adjoint and preserves all joins, ∇[A] is closed under all (finite)
joins. Therefore, ∇[A] has also all (finite) joins. For meet, the situation is a bit more
complex.Wewill address the binarymeet. The rest is similar. For anya, b ∈ ∇[A],we
claim that ∇�(a ∧ b) ∈ ∇[A] is the meet of a and b in ∇A. Because, ∇�(a ∧ b) ≤
(a ∧ b) ≤ a and similarly for b we also have ∇�(a ∧ b) ≤ b . If for some c ∈ ∇[A]
we have c ≤ a and c ≤ b, then c ≤ a ∧ b and hence ∇�c ≤ ∇�(a ∧ b). Since c ∈
∇[A], there exists c′ ∈ A such that c = ∇c′. Hence, ∇�c = ∇�∇c′ = ∇c′ = c.
Thus, c ≤ ∇�(a ∧ b). �

Definition 12 LetS = (X ,∇S) andT = (Y ,∇T )be twonon-commutative space-
times. By a geometric map f : S→ T , we mean a strict geometric morphism
f :X → Y such that f∇S = ∇T f . A geometric map is called logical if it also
preserves the implication, i.e., f [(−)→S (−)] = f (−) →T f (−).

Example 16 Let K = (W,=W , R) and L = (V,=V , S) be two Kripke frames. A
map p : W → V is called a p-morphism if (u, v) ∈ R implies (p(u), p(v)) ∈ S,
for any u, v ∈ W and for any w ∈ W and s, t ∈ V if p(w) = s and (s, t) ∈ S, then
there exists u ∈ W such that p(u) = t and (w, u) ∈ R. A map p : W → V is a p-
morphism iff p−1 : SLop → SKop is a geometric morphism, whereKop = (W, Rop)

and (v, u) ∈ Rop iff (u, v) ∈ R and similarly for L. We only prove the left to right
direction. The other direction is similar. First note that p−1 preserves all unions and all
finite intersections. Therefore, the only thing we have to prove is the preservability of
∇, i.e., p−1∇Lop = ∇Kop p−1. LetU be a subset of V . Then if u ∈ ∇Kop p−1(U ), then
there existsw ∈ W such that (w, u) ∈ Rop or equivalently (u,w) ∈ R and p(w) ∈ U .
Since p is a p-morphism we have (p(u), p(w)) ∈ S which means (p(w), p(u)) ∈
Sop. Hence, p(u) ∈ ∇Lop (U ) which implies u ∈ p−1∇Lop (U ). Conversely, if u ∈
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p−1∇Lop (U ), we have p(u) ∈ ∇Lop (U ) from which, there exists v ∈ U such that
(v, p(u)) ∈ Sop or equivalently (p(u), v) ∈ S. Since p is a p-morphism, there exists
w ∈ W such that p(w) = v and (u,w) ∈ R. Hence, (w, u) ∈ Rop from which, u ∈
∇Kop (p−1(U )).

Theorem 7 Let S and T be two non-commutative spacetimes and f : S→ T be
a geometric morphism with a left adjoint f!. Then f is logical iff f!( f b ⊗∇T a) =
b ⊗∇S f!a.

Proof Using the adjunctions x ⊗∇T (−)  x →T (−), y ⊗∇S(−)  y →S (−)

and f!  f we have

f!( f b ⊗∇T a) ≤ c iff f b ⊗∇T a ≤ f c iff a ≤ f b→T f c

and
b ⊗∇S f!a ≤ c iff f!a ≤ b→S c iff a ≤ f (b→S c)

These equivalences imply exactly what we wanted. Because, if f!( f b ⊗∇T a) =
b ⊗∇S f!a, then the left hand sides of the above lines are equivalent which implies
the equivalence of the right hand sides from which f b→T f c = f (b→S c). The
converse is similar. �

Sometimes, it would be reasonable to investigate the pure spatial behaviour of a
non-commutative space, meaning the properties that hold for all possible time struc-
tures or more formally all possible ∇’s over a fixed space. The following corollary
provides a method to transfer these properties along certain geometric morphisms.
We will use this corollary when we have a suitable syntax for non-commutative
spacetimes to formally address what we mean by a “property”.

Corollary 1 Let S = (X ,∇S) be a non-commutative spacetime, Y be a quantale
and f :X → Y be a strict geometric embedding with a left adjoint f!. Then there
exists ∇ onY such that T = (Y ,∇) is a non-commutative spacetime and f : S→
T is a logical morphism.

Proof Define ∇ = f∇S f!. Since f! is a left adjoint and both f and ∇S preserves all
joins, the operator ∇ is also join preserving. Moreover, since f is strict monoidal, its
left adjoint, f! is oplax, by Theorem 2. Therefore, ∇ as a composition of three oplax
monoidal maps is also oplax. To prove the geometricity of f : (X ,∇S)→ (Y ,∇),
since f!  f , by Remark 2, f f! f = f . Since f is an embedding we have f! f = id.
Therefore,∇ f = f∇S f! f = f∇S. Hence f : (X ,∇S)→ (Y ,∇) is geometric. To
prove it is logical, by Theorem 7 we have to show that f!(∇a ⊗ f b) = f!( f∇Sa ⊗
f b). Since f is strict monoidal, the right hand side is equivalent to f! f (∇Sa ⊗ b).
Since f! f = id, the latter is equivalent to ∇S f!a ⊗ b. Hence, the geometric map
f : (X ,∇S) → (Y ,∇) is logical. �
Corollary 1 is useful in case the quantales are the open posets of topological

spaces and the space forX is an Alexandroff space. Recall that a topological space
is Alexandroff if any arbitrary intersection of its open subsets is also open.
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Corollary 2 Let X be a topological space, Y be an Alexandroff space, f : X → Y
be a continuous surjection and S = (O(Y ),∇Y ) be a spacetime. Then there exists
∇X : O(X) → O(X) such that T = (O(X),∇X ) is a spacetime and f −1 : S→ T
is a logical morphism.

Proof Since the spaceY isAlexandroff,O(Y ) is closedunder all intersections. There-
fore, since f −1 preserves arbitrary intersections it also preserves arbitrary meets.
Hence, by the adjoint functor theorem, Theorem 1, it has a left adjoint f!. More-
over, note that f : X → Y is surjective which means that f −1 : O(Y ) → O(X) is an
embedding. Hence, it is enough to use Corollary 1. �

7.6 Representation Theorems

In this section we will present some quantale-based representations for different
classes of strong algebras. The main motive is embedding an abstract strong alge-
bra in a quantale in a way that the implication presents a possible well-behaved left
adjunction. We call this process resolving the implication. In a technical sense, these
left adjoints make the implications easier to handle as it is usual all over mathe-
matics. However, resolutions have a very philosophical role, as well. We know that
adjunctions are the algebraic term for the usual proof theoretical situation in which
we have a pair of introduction and elimination rules for a logical connective that we
try to capture. For instance, think about the intuitionistic implication and its natural
deduction rules. Following Gentzen, a connective is fully captured if it enjoys a pair
of introduction and elimination rules. In this sense, resolving an implication is an
attempt to fully identify an abstract implication as a logical connective.

Having all said, resolving all the implications is unfortunately impossible.Wewill
explain the reason later in this section. We will also see some necessary and partially
sufficient conditions to make resolutions possible. But first let us begin by a general
yet weak resolution-type result. We will prove that any strong algebra is embeddable
in a quantale equipped with an implication. The implication is not necessarily a non-
commutative spacetime implication but it is a substitution of it. We can think of the
implication as the result of the application of the two construction methods that we
explained before, applied on the canonical implication of the quantale.

Let A = (A,≤,⊗, e,→) be a strong algebra. A priory, there is no reason to
assume that the structureA has the power (enough elements or structure) to resolve
the implication and find an adjunction-type situation. However, if we extend the
domain to also include the relative elements,meaning themonotone functions Aop →
A, then we can provide the following characterization for the implication:

c ≤ a → b iff (x → a)⊗ c ≤ (x → b)
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where x is a variable and the right-hand side consists of the functions for which the
order and the monoidal structure are both defined pointwise. The reason is simple.
From left to right, note that

c ≤ a → b implies (x → a)⊗ c ≤ (x → a)⊗ (a → b) ≤ (x → b)

and from right to left, it is enough to put x = a to have

c = e ⊗ c ≤ (a → a)⊗ c ≤ a → b

Note that while this adjunction-type characterization handles all the elements of A,
it can not handle the functions that it adds. To solve this problem we simply need
infinitely many of such variables:

Theorem 8 For any strong algebra A there exists a non-commutative spacetime
S = (X ,∇), a monotone map F :X →X and a strict monoidal embedding i :
A→X such that i(a →A b) = F(i(a)) →S F(i(b)).

Proof Define E as the set of all monotone functions f : (�n∈NAop) → Awith finite
support, i.e., all order preservingmaps that depend only on somefinitelymany of their
arguments. Define ≤E as the pointwise order on E and use ⊗E and eE to represent
the pointwise monoidal structure of E . Then the structure E = (E,≤E ,⊗E , eE ) is
clearly a monoidal poset. Define j : A→ E by mapping any element a ∈ A to the
constant function with the value a. Since the structure of E is defined pointwise, it
is clear that j is a strict monoidal embedding.

Define the shift map r : �n∈NAop → �n∈NAop by r(〈an〉∞n=0) = 〈an+1〉∞n=0. Then
define s : E → E as the coordinate shift map induced by r , i.e., s( f ) = f ◦
r . Spelling out, s sends the function f (〈xn〉∞n=0) to f (〈xn+1〉∞n=0). This map is
clearly strictly monoidal. Moreover, define l : E → E mapping f (〈xn〉∞n=0) �→
(x0 → f (〈xn+1〉∞n=0)). Now use the downset completion on E = (E,≤E ,⊗E , eE )

to construct our X . Let k : E→X be the canonical strict monoidal embedding
from the downset completion. Define

∇ I = s! = { f ∈ E |∃g ∈ I ( f ≤E s(g))}

and
F(I ) = { f ∈ E |∃g ∈ I [ f ≤E l(s(g))]}

The map F is clearly monotone and mapping downsets to downsets. By Theorem 4,
∇ preserves the joins and it is oplax because s is oplax. Therefore, S = (X ,∇) is a
non-commutative spacetime. We claim that i = k j : A→X is the strict monoidal
embedding that we are looking for. The only thing to prove is that i(a →A b) =
F(i(a))→S F(i(b)). To prove that, we show

J ⊆ i(a → b) iff F(i(a))⊗∇ J ⊆ F(i(b)), (∗)
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for any downset J of E . First to simplify the proof, note that for any c ∈ A

f ∈ F(i(c)) iff f ≤ (x0 → c)

The reason is that f ∈ F(i(c)) iff there exists a function f ′ ∈ i(c) such that f ≤
(x0 → s( f ′)). This is equivalent to f ≤ (x0 → c).

Now to prove (∗), for left to right, if J ⊆ i(a → b) and f ∈ F(i(a))⊗∇ J by the
definition of themultiplication ondownsets, there exist g ∈ F(i(a)) and h ∈ ∇ J such
that f ≤ g ⊗E h. By the above point, since g ∈ F(i(a)) we have g ≤ (x0 → a). By
definition of ∇ there exists h′ ∈ J such that h ≤ s(h′). Since h′ ∈ J ⊆ i(a → b) we
have h′ ≤ a → b and hence h ≤ s(a → b) = a → b. Therefore, g ⊗E h ≤ (x0 →
a)⊗E (a → b) ≤ x0 → b. Therefore, by the above-mentioned point we have g ⊗E

h ∈ F(i(b)) and since f ≤ g ⊗E h and F(i(b)) is a downset, we have f ∈ F(i(b)).
For the converse, assume F(i(a))⊗∇ J ⊆ F(i(b)) and we want to show that J ⊆
i(a → b). Assume f ∈ J . Then by the definition of ∇, we have s( f ) ∈ ∇ J . More-
over, by the above mentioned point we have (x0 → a) ∈ F(i(a)). Hence, (x0 →
a)⊗E s( f ) ∈ F(i(a))⊗X ∇ J . Therefore, (x0 → a)⊗E s( f ) ∈ F(i(b)). Hence,
(x0 → a)⊗E s( f ) ≤ (x0 → b). Since the order of E is pointwise, put x0 = a and
keep the other variables intact. Since s( f ) does not depend on x0, it does not change
after the substitution. Hence, (a → a)⊗E s( f ) ≤ (a → b). Since e ≤ a → a, we
have s( f ) ≤ a → b = s(a → b). Since s is an embedding, f ≤ a → b and hence
f ∈ i(a → b). �

Although, the previous theorem provides a weak resolution for any abstract impli-
cation, it can only resolve it up to a factor F which breaks the full adjunction situation.
This F is inevitable, simply because it is impossible to embed any implication into a
non-commutative spacetime. The reason is that for any non-commutative spacetime
S = (X ,∇), its implication,→S, internalizes the closed monoidal structure of S,
i.e., for all a, b, c ∈X we have

a →S b ≤ c ⊗ a →S c ⊗ b

because by the associativity and the adjunction

c ⊗ a ⊗∇(a →S b) ≤ c ⊗ b

Therefore, if we seek an embedding into a non-commutative spacetime we have
to restrict our domain to the implications that internalize their monoidal structure.
Unfortunately, we do not know if this necessary condition is also sufficient. How-
ever, if the multiplication has left residuation and the implication internalizes the
closed monoidal structure, we will have the following representation. Here our main
ingredient is the ternary frames introduced first in (Routley and Meyer 1973) as the
Kripke models for the relevant logics.
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Theorem 9 For any strong algebraA whose multiplication has left residual andA
internalizes its closed monoidal structure, there exists a non-commutative spacetime
S = (X ,∇) and a strong algebra embedding i : A→ S.
Proof Recall that U (A) is the poset of all upsets of A with inclusion. Define R as
a ternary relation over U (A) as: (P, Q, R) ∈ R iff for all a, b ∈ A if a → b ∈ P
and a ∈ Q then b ∈ R. Note that the relation R is order-reversing in its first two
argumentswhile it is order preserving in its third argument.ConsiderX = U (U (A))

and i : A→X by defining i(a) = {P ∈ U (A)| a ∈ P}. As we have observed in
Preliminaries, this i is clearly a strict monoidal embedding. Our strategy is first
defining an implication onX and showing how i maps the implication ofA to this
implication and then finding an oplax ∇ such that X ⊗∇(−)  (X → (−)) for any
X ∈X .

For any upsets of U (A) such as X and Y define X → Y as:

{P ∈ U (A)| ∀Q, R ∈ U (A), if (P, Q, R) ∈ R and Q ∈ X then R ∈ Y }

Since R is order-reversing in its first argument, X → Y is an upset. To prove that i
maps the implication of A into this implication, i.e., i(a → b) = i(a) → i(b), we
need to address the following two directions:

For i(a → b) ⊆ i(a) → i(b), if P ∈ i(a → b) then a → b ∈ P . To show that
P ∈ i(a)→ i(b), assume for some Q, R ∈ U (A) we have (P, Q, R) ∈ R and
Q ∈ i(a). Thenby the definition of i wehavea ∈ Q and sincea → b ∈ P , by the def-
inition ofRwehaveb ∈ R implying R ∈ i(b). Conversely, for i(a) → i(b) ⊆ i(a →
b), if P ∈ i(a) → i(b) define Q = {x ∈ A|x ≥ a} and R = {y ∈ A|a → y ∈ P}.
We have (P, Q, R) ∈ R because if x → y ∈ P and x ∈ Q then x ≥ a and hence
x → y ≤ a → ywhich implies a → y ∈ P . Therefore, by definition y ∈ R. Finally,
Since a ∈ Q we have Q ∈ i(a) and since (P, Q, R) ∈ R we have R ∈ i(b) which
implies b ∈ R. By definition of R it means that a → b ∈ R.

To complete the proof, we have to introduce an oplax ∇ and show that for any
upsets of U (A) such as X,Y, Z we have X ⊆ Y → Z iff Y ⊗∇X ⊆ Z . Define ∇
as:

∇X = {R ∈ U (A)| ∃P, Q ∈ U (A) [(P, Q, R) ∈ R, (P ∈ X) and (e ∈ Q)]}

Since R is order-preserving in its third argument, ∇ is an upset. To prove the adjunc-
tion condition and the fact that it is oplax, we need a claim first:

(i) For any upsets P, Q, R, S ∈ U (A), if (P, Q, R) ∈ R then (P, S ⊗ Q, S ⊗
R) ∈ R.

(ii) For any upsets P, Q, R ∈ U (A), if (P, Q, R) ∈ R then (P, E, Q ⇒ R) ∈ R
where E = {x ∈ A|x ≥ e} and⇒ is the canonical implication of the quantale
U (A).

(iii) For any upsets P1, P2, Q, R ∈ U (A), if (P1 ⊗ P2, Q, R) ∈ R and e ∈ Q,
then there are upsets Q1, Q2, R1, R2 ∈ U (A) such that e ∈ Q1, e ∈ Q2,
(P1, Q1, R1) ∈ R, (P2, Q2, R2) ∈ R and R1 ⊗ R2 ⊆ R.
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Proof of theClaim.For (i), if x → y ∈ P and x ∈ S ⊗ Q then there are z ∈ S,w ∈ Q
such that x ≥ z ⊗ w. Since x ≥ z ⊗ w and x → y ∈ P we have z ⊗ w→ y ∈ P .
Since, A internalizes its closed monoidal structure we have

z ⊗ w→ x ≤ w→ (z ⇒A x)

where ⇒A is the left residual of multiplication in A. Since P is an upset, w→
(z ⇒A x) ∈ P . Since (P, Q, R) ∈ R and w ∈ Q we have z ⇒A x ∈ R. Since z ∈ S
and z ⊗ (z ⇒A x) ≤ x we have x ∈ S ⊗ R.

For (i i), assume x → y ∈ P and x ≥ e then we have to show that y ∈ Q ⇒ R.
Equivalently, it means Y ⊆ Q ⇒ R where Y = {x ∈ A|x ≥ y}. The latter is equiv-
alent to Q ⊗ Y ⊆ R because ⇒ is the left residual in U (A). Assume z ∈ Q ⊗ Y .
Therefore, there exist w ∈ Q and u ≥ y such that z ≥ w ⊗ u implying z ≥ w ⊗ y.
Since A internalizes its monoidal structure, we have

x → y ≤ w ⊗ x → w ⊗ y

Hence, w ⊗ x → w ⊗ y ∈ P . Since e ≤ x we have w = w ⊗ e ≤ w ⊗ x . By w ∈ Q
we havew ⊗ x ∈ Q. Since (P, Q, R) ∈ Rwe havew ⊗ y ∈ R. Since z ≥ w ⊗ y we
conclude z ∈ R that completes the proof.
To prove (i i i), if (P1 ⊗ P2, Q, R) ∈ R and e ∈ Q, then define Q1 = Q2 = {x ∈
A|x ≥ e} and Ri = {x ∈ A|e→ x ∈ Pi } for i ∈ {1, 2}. By definition it is clear that
(P1, Q1, R1) ∈ R and (P2, Q2, R2) ∈ R, because if u → v ∈ Pi and u ≥ e then e→
v ∈ Pi which by definition means v ∈ Ri . Finally, to prove R1 ⊗ R2 ⊆ R, assume
z ∈ R1 ⊗ R2. Therefore, there are x ∈ R1 and y ∈ R2 such that z ≥ x ⊗ y. Since
x ∈ R1 and y ∈ R2 we have e→ x ∈ P1 and e→ y ∈ P2. Therefore, (e→ x)⊗
(e→ y) ∈ P1 ⊗ P2. Since A internalizes its monoidal structure we have

e→ y ≤ (x ⊗ e→ x ⊗ y) = (x → x ⊗ y)

Therefore,

(e→ x)⊗ (e→ y) ≤ (e→ x)⊗ (x → x ⊗ y) ≤ e→ x ⊗ y

Hence, e→ x ⊗ y ∈ P1 ⊗ P2. Since e ∈ Q and (P, Q, R) ∈ R we have x ⊗ y ∈ R
and since z ≥ x ⊗ y we have z ∈ R.

Now let us come back to prove that ∇ is a join preserving oplax map. We have
to show that ∇i(e) ⊆ i(e) and for any upsets of U (A) such as X,Y we have
∇(X ⊗ Y ) ⊆ ∇X ⊗∇Y . For the first one, if R ∈ ∇i(e), by definition there exist
upsets P and Q such that (P, Q, R) ∈ R, e ∈ Q and P ∈ i(e). Therefore, e ∈ P .
Since e ≤ e, we have e ≤ e→ e. Since P is an upset we have e→ e ∈ P . Then
since e ∈ Q and (P, Q, R) ∈ R we have e ∈ R which means that R ∈ i(e). For
∇(X ⊗ Y ) ⊆ ∇X ⊗∇Y , assume R ∈ ∇(X ⊗ Y ) then again by definition there exist
upsets P ∈ X ⊗ Y and Q such that e ∈ Q and (P, Q, R) ∈ R. Since P ∈ X ⊗ Y ,
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there are P1 ∈ X and P2 ∈ Y such that P1 ⊗ P2 ⊆ P . Since R is order revers-
ing in its first argument and (P, Q, R) ∈ R we have (P1 ⊗ P2, Q, R) ∈ R. By the
part (i i i) of the claim, there are upsets Q1, Q2, R1, R2 such that e ∈ Q1, e ∈ Q2,
(P1, Q1, R1) ∈ R and (P2, Q2, R2) ∈ R and R1 ⊗ R2 ⊆ R. Hence, by definition
R1 ∈ ∇X and R2 ∈ ∇Y and since R1 ⊗ R2 ⊆ R we have R ∈ ∇X ⊗∇Y . There-
fore, ∇(X ⊗ Y ) ⊆ ∇X ⊗∇Y .

For the adjunction conditions, i.e., X ⊆ Y → Z iff Y ⊗∇X ⊆ Z , we need to
address the following two directions. For left to right, if X ⊆ Y → Z and P ∈ Y ⊗
∇X we have to show that P ∈ Z . Since P ∈ Y ⊗∇X , by definition there exist Q, R
such that Q ⊗ R ⊆ P and Q ∈ Y and R ∈ ∇X . Again by definition since R ∈ ∇X
there exist P ′, Q′ such that (P ′, Q′, R) ∈ R, P ′ ∈ X and e ∈ Q′. Since e ∈ Q′ for
any q ∈ Q we have q = q ⊗ e ∈ Q ⊗ Q′. Therefore, Q ⊆ Q ⊗ Q′. Since Q ∈ Y
we have Q ⊗ Q′ ∈ Y . Since (P ′, Q′, R) ∈ R by the part (i) of the Claim, we have
(P ′, Q ⊗ Q′, Q ⊗ R) ∈ R and since P ′ ∈ X ⊆ Y → Z and Q ⊗ Q′ ∈ Y , we have
Q ⊗ R ∈ Z . Finally since Z is an upset and Q ⊗ R ⊆ P we have P ∈ Z .

For right to left, if Y ⊗∇X ⊆ Z and P ∈ X we want to show that P ∈ Y → Z .
Pick Q and R such that (P, Q, R) ∈ R and Q ∈ Y . We have to show that R ∈ Z .
By the part (i i) of the Claim, since (P, Q, R) ∈ R we have (P, E, Q ⇒ R) ∈ R
where e ∈ E . Hence, by definition of ∇, we have Q ⇒ R ∈ ∇X and hence Q ⊗
(Q ⇒ R) ∈ Y ⊗∇X . Since Y ⊗∇X ⊆ Z we have Q ⊗ (Q ⇒ R) ∈ Z . Finally,
since Q ⊗ (Q ⇒ R) ⊆ R and Z is an upset we have R ∈ Z . �

Fortunately, if the monoidal structure is just the meet structure, it is possible to
show that the internalization of the monoidal structure is sufficient for resolution.
Moreover, it is possible to show that the quantale is actually a locale or even better
an Alexandroff space:

Theorem 10 For any (distributive) strong algebraA = (A,≤,∧, 1,→) that inter-
nalizes its monoidal structure [not necessarily its closed structure if it has any] (and
its join structure), there exists a Kripke frameK and a (join preserving) strong alge-
bra embedding i : A→ SK . Moreover, ifA is a reduct of a (distributive) temporal
algebra, i also preserves ∇.
Proof See Theorem 17. �

And finally, in case that we already have a nice left adjoint for the implication, it
is possible to make the algebra cocomplete, preserving the temporal structure. This
will be useful in topological completeness theorem, Theorem 14.

Theorem 11 Let A = (A,≤,⊗, e,∇,→) be a (distributive) temporal algebra.
Then there exists a non-commutative spacetimeS = (X ,∇) and a (join preserving)
temporal algebra embedding i : A→ S. Moreover, if A has all finite meets, then i
also preserves them.

Proof See Theorem 13. �
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7.7 Logics of Spacetime

In the previous section we presented some methods to represent some classes of
implications via a diamond-type modality ∇, encoding the abstract notion of time.
In this section we bring the adjunction into the syntax of logic to provide a more
expressible language to address non-standard weak implications. Later, we will see
how this new language provides a conservative extension for some weak implica-
tion logics including Visser-Ruitenburg’s basic logic, introduced in (Visser 1981b)
and (Ruitenburg 1991). However, the fully captured implications of these new log-
ics make the non-standard implications more suitable for foundational studies. We
will present an embedding of a fragment of full Lambek calculus, (Galatos et al.
2007), i.e., {�,⊥,∧,∨,⊗, 1, \} into our logic and full intuitionistic logic into our
logic equipped with the structural rules. Therefore, the logics of spacetime can be
interpreted as a unification of sub-structural and sub-intuitionist logics.

Let L∇ be the usual language of propositional logic equipped with a new unary
modal operator ∇. To introduce some formal systems in this language, consider the
following set of sequent-style rules in which the left side of a sequent is a sequence
of formulas and if � = 〈Ai 〉ni=0 by ∇� we mean 〈∇Ai 〉ni=0:
Axioms:

A⇒ A ⇒ 1 ∇1⇒ 1 � ⇒ � �,⊥, � ⇒ A

Cut:

� ⇒ A �, A, � ⇒ B
cut

�,�,� ⇒ B

Conjunction Rules:

�, A, � ⇒ C
L∧

�, A ∧ B, � ⇒ C
�, B, � ⇒ C

L∧
�, A ∧ B, � ⇒ C

� ⇒ A � ⇒ B
R∧

� ⇒ A ∧ B

Disjunction Rules:

�, A, � ⇒ C �, B, � ⇒ C
L∨

�, A ∨ B, � ⇒ C
� ⇒ A

R∨
� ⇒ A ∨ B

� ⇒ B
R∨

� ⇒ A ∨ B

Rule for 1:

�,� ⇒ A
L1

�, 1, � ⇒ A

Multiplication Rules:

�, A, B, � ⇒ C
L⊗

�, A ⊗ B, � ⇒ C
� ⇒ A � ⇒ B R⊗

�,� ⇒ A ⊗ B
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Modal Rules:

A⇒ B ∇∇A⇒ ∇B
∇A,∇B ⇒ C

Oplax∇(A ⊗ B)⇒ C

Implication Rules:

� ⇒ A �, B, � ⇒ C
L →

�,�,∇(A→ B),� ⇒ C
A,∇� ⇒ B

R →
� ⇒ A→ B

Nowdefine the logic of spacetime,STL, as the logic of the proof system consisting
of all the axioms, cut and propositional rules. The provability of a sequent � ⇒ A
in STL is denoted by STL � � ⇒ A or � �STL A.

By the basic rule schemes {N , H, P, F,wF}, we mean one of the following
schemes:

Rule Schemes:

� ⇒ A N∇� ⇒ ∇A
� ⇒ ∇A

P
� ⇒ A

� ⇒ A
F

� ⇒ ∇A
∇A⇒ ⊥

wF
A⇒ ⊥

�, {Ai → Bi }i∈I ⇒ C
H∇�, {∇Ai → ∇Bi }i∈I ⇒ ∇C

Also consider the structural rules:

Structural Rules:

�,� ⇒ B
Lw

�, A, � ⇒ B
�, A, A, � ⇒ B

Lc
�, A, � ⇒ B

�, A, B, � ⇒ C
Le

�, B, A, � ⇒ C

For any R ⊆ {N , H, P, F,wF}, by the logic STL(R) we mean the logic of all rules
of STL plus the rules of R. By iSTL(R) we mean STL(R) with all structural rules.
And finally we denote STL({P, F}) by FLl and iSTL({P, F}) by IPC.
Remark 10 Note that in the presence of all the structural rules, the connective
⊗ collapses to ∧ and the constant 1 is reduced to �. Therefore, it is possible to
axiomatize the structural logics of spacetime by eliminating the connective ⊗ and 1
from the language and the axiom⇒ 1 and the rules L⊗, R⊗, L1 and Oplax from
the system.

Remark 11 Note that in the presence of both (F) and (P), the connective ∇ triv-
ializes to identity. Therefore, in such logics and more specifically in FLl and IPC,
it is possible to formalize the logics without the axiom ∇1⇒ 1 and the rules ∇ and
Oplax , by eliminating∇ in the implication rules. In such a situation, the implication
rules become the usual left implication rules in FL. This explains our terminology.
In fact, our logic is exactly the fragment of FL excluding the right implication and
0 from both the language and the rules. For IPC, it is easy to see that the system
becomes the original system LJ for intuitionistic propositional logic if we forget the
collapsed ⊗. See Remark 10.
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Remark 12 Note that the following sequents are provable in the system. First
∇(A ⊗ B)⇒ ∇A ⊗∇B stating the oplax condition for ∇:

∇A⇒ ∇A ∇B ⇒ ∇B ⊗R∇A,∇B ⇒ ∇A ⊗∇B
Oplax∇(A ⊗ B) ⇒ ∇A ⊗∇B

Secondly, STL proves the distributivity of multiplication over disjunction, on both
sides, i.e. (A ⊗ B) ∨ (A ⊗ C)⇒ A ⊗ (B ∨ C) and A ⊗ (B ∨ C) ⇒ (A ⊗ B) ∨
(A ⊗ C). The first is a simple consequence of monotonicity of ⊗. For the second:

A, B ⇒ A ⊗ B
A, B ⇒ A ⊗ B ∨ A ⊗ C

A,C ⇒ A ⊗ C
A,C ⇒ A ⊗ B ∨ A ⊗ C

A, (B ∨ C)⇒ A ⊗ B ∨ A ⊗ C
L⊗

A ⊗ (B ∨ C) ⇒ A ⊗ B ∨ A ⊗ C

Thirdly, the system proves the sequent A ⊗∇(A→ B)⇒ B:

A⇒ A B ⇒ B
L →

A,∇(A→ B)⇒ B
L⊗

A ⊗∇(A→ B) ⇒ B

Therefore, the sequents A,∇B ⇒ C and B ⇒ A→ C are equivalent. From left to
right is just one application of the rule R →. From right to left, by the rule∇, we have
∇B ⇒ ∇(A→ C). Using cut with A,∇(A→ C) ⇒ C we reach what we wanted.
Note that this adjunction situation simply implies that ∇ preserves all disjunctions,
i.e., ∇⊥ ⇒ ⊥, ∇(A ∨ B)⇒ ∇A ∨ ∇B and ∇A ∨ ∇B ⇒ ∇(A ∨ B). Fourthly, the
system proves the sequent A→ B ⇒ C ⊗ A→ C ⊗ B:

C ⇒ C
A⇒ A B ⇒ B

L →
A,∇(A→ B) ⇒ B

R⊗
C, A,∇(A→ B) ⇒ C ⊗ B

L⊗
C ⊗ A,∇(A→ B)⇒ C ⊗ B

R →
A→ B ⇒ C ⊗ A→ C ⊗ B

Remark 13 Note that the defined extensions of the system STL can be also axiom-
atized with some axioms instead of rules. For (N ) the axioms are ⇒ ∇1 and
∇A ⊗∇B ⇒ ∇(A ⊗ B). These are provable by the rule (N ) because:

⇒ 1
(N )⇒ ∇1

A⇒ A B ⇒ B
R⊗

A, B ⇒ A ⊗ B
(N )∇A,∇B ⇒ ∇(A ⊗ B)
L⊗∇A ⊗∇B ⇒ ∇(A ⊗ B)

The converse is also true. For the empty �, if⇒ A, then by (L1), we have 1⇒ A.
By ∇ we have ∇1⇒ ∇A. Hence, by ⇒ ∇1 we have ⇒ ∇A. For � with at least
one element, by induction, it is possible to use the axiom to prove that

⊗
(∇�) ⇒

∇(
⊗

�), where by
⊗

� we mean
⊗n

i=0 Ai when � = 〈Ai 〉ni=0. Hence,



194 A. Akbar Tabatabai

⊗
(∇�)⇒ ∇(

⊗
�)

� ⇒ A
L⊗⊗

� ⇒ A
∇∇(

⊗
�)⇒ ∇A

cut⊗
(∇�)⇒ ∇A

∇� ⇒ ∇A
where the double line means the existence of an easy omitted proof tree there. There-
fore, since∇1⇒ 1 and∇(A ⊗ B) ⇒ ∇A ⊗∇B are already provable in STLwith-
out (N ), the rule (N ) just states the strictness of ∇, i.e., for any sequence �, the
sequents

⊗
(∇�) and∇(

⊗
�) are equivalent. This justifies the name of the rule, (N ),

that stands for normality, reflecting the normality condition of the usual conjunction-
preserving modalities. For (H), note that this rule implies the rule (N ) for I = ∅. It
also implies that ∇A→ ∇B ⇒ ∇(A→ B) because:

A→ B ⇒ A→ B
H∇A→ ∇B ⇒ ∇(A→ B)

Therefore, H implies (⇒ ∇1), (∇A ⊗∇B ⇒ ∇(A ⊗ B)) and (∇A→ ∇B ⇒
∇(A→ B)). These are enough to prove (H) because the first part implies the rule
(N ) and then

{∇Ai → ∇Bi }i∈I ⇒⊗
i∈I ∇(Ai → Bi )

�, {Ai → Bi }i∈I ⇒ C
(N )∇�, {∇(Ai → Bi )}i∈I ⇒ ∇C
L⊗∇�,

⊗
i∈I ∇(Ai → Bi )⇒ ∇C

∇∇�, {∇Ai → ∇Bi }i∈I ⇒ ∇C
Moreover, in the presence of (H) or even (N ) we also have:

A,∇(A→ B)⇒ B
(N )∇A,∇∇(A→ B) ⇒ ∇B
R →∇(A→ B) ⇒ ∇A→ ∇B

Therefore, the rule (H) is equivalent to the strictness of ∇ and the equivalence
between∇(A→ B) and∇A→ ∇B. Wewill see that these conditions when applied
on a locale of the open subsets of a topological space is equivalent to the condition
that∇ be the inverse image of a homeomorphism. This justifies the name of the rule,
(H). For (P) and (F), they are equivalent to ∇A⇒ A and A⇒ ∇A, respectively.
(P) stands for past and (F) for future, reflecting the temporal nature of the modality
∇. We will see the details in Sect. 7.8. Finally, (wF) is equivalent to 1→⊥⇒ ⊥.
It is provable via (wF) because

⇒ 1 1,∇(1→⊥) ⇒ ⊥
cut∇(1→⊥) ⇒ ⊥

(wF)

1→⊥⇒ ⊥
Conversely, if we have the axiom 1→⊥⇒ ⊥, then

∇A⇒ ⊥
L1

1,∇A⇒ ⊥
R →

A⇒ 1→⊥ 1→⊥⇒ ⊥
cut

A⇒ ⊥
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In this rule, (wF) stands for “weak future”, since the rule (F) clearly implies (wF).
The reason is that (F) implies A⇒ ∇A. Hence, using cut∇A⇒ ⊥ implies A⇒ ⊥.
Definition 13 (Topological Semantics) Let S = (X ,∇S) be a non-commutative
spacetime and V : L∇ →X an assignment. A tuple (S, V ) is called a topological
model for the language L∇ if:

• V (1) = e, V (⊥) = 0 and V (�) = 1,
• V (A ∧ B) = V (A) ∧ V (B),
• V (A ∨ B) = V (A) ∨ V (B),
• V (A ⊗ B) = V (A)⊗ V (B),
• V (∇A) = ∇SV (A),
• V (A→ B) = V (A)→S V (B).

We say (S, V ) � � ⇒ A when
⊗

γ∈� V (γ ) ≤ V (A) and S � � ⇒ A when for all
V , (S, V ) � � ⇒ A. For a class C of non-commutative spacetimes, we write C �
� ⇒ A if for any S ∈ C we have S � � ⇒ A. Moreover, if for some fixed X and
for all (X ,∇) in some class Cwe have (X ,∇) � � ⇒ A, we writeX �C � ⇒ A.
If X is O(X) for some topological space, we simplify it more to X �C � ⇒ A.
Furthermore, we omit the symbol⇒ whenever � is empty.

Definition 14 Let A = (A,≤,⊗, e,→,∇) be a temporal algebra. Then for any
rule scheme R ∈ {N , H, P, F,wF}, we sayA satisfies R if:

(N ) ∇ preserves all finite multiplications,
(H) ∇ preserves all the structure including the implication,
(P) For any a ∈ A we have ∇a ≤ a,
(F) For any a ∈ A we have a ≤ ∇a,
(wF) A has zero and for any a ∈ A, if ∇a = 0 then a = 0.

Definition 15 For any set of rule schemes R ⊆ {N , H, P, F,wF}, by the class
ST(R) we mean the class of all non-commutative sapcetimes (X ,∇) that satisfies
all the rule schemes in R. The class iST(R) is defined similarly for spacetimes.

Remark 14 Note that the condition (H) implies that ∇ is an isomorphism with the
inverse � = e→ (−). The proof is the following. Since ∇e = e we have

e→ ∇a = ∇e→ ∇a = ∇(e→ a)

but since ∇  e→ (−), we have ∇(e→ a) ≤ a ≤ e→ ∇a. Hence, ∇(e→ a) =
a = e→ ∇a. This means that ∇ and � are inverses of each other over A.

Remark 15 Note that for non-commutative spacetimes, the conditions (N ) and
(H) are equivalent to “∇ is a strict geometric morphism” and “∇ is a strict geo-
metric isomorphism”, respectively. The reason for the first one is that ∇ has a right
adjoint and hence preserves all joins. Hence, the only geometricity condition is the
preservation of multiplications. For the second, we have to show that if ∇ is a strict
geometric isomorphism, then it also preserves the implication. Let S = (X ,∇) be
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a non-commutative spacetime where ∇ is a strict geometric isomorphism. Then, to
reduce the risk of confusion, let us denote ∇ by f . We know that f has an inverse.
Call it g. Since they are inverses, we have g  f . Then since f preserves ∇, it
can be seen as a geometric map between non-commutative spaces, i.e., f : S→ S.
Finally, by Theorem 7, to prove it is logical meaning that it respects the implica-
tion, it is enough to check that g( f b ⊗∇a) = b ⊗∇ga. Since f = ∇ is strict and
g f = id = f g we have g( f b ⊗ f a) = g f (b ⊗ a) = b ⊗ f ga. Therefore, f = ∇
preserves the implication.

Theorem 12 (Soundness) For any set of rule schemes R ⊆ {N , H, P, F,wF}, if
STL(R) � � ⇒ A then ST(R) � � ⇒ A. Specially, if � �iSTL(R) A then iST(R) �
� ⇒ A.

Proof Since the logics are just the syntactical elementary representations of the
structure of the non-commutative spacetimes, the soundness theorem is clear and we
will leave the details to the reader. There are only four points to make. First about the
ruleOplax and the axiom∇1⇒ 1.They are clearly validwhenever the interpretation
of ∇ is oplax. Hence, they are valid in our topological interpretation. Secondly,
consider the rule R →. If � ⇒ A→ B is proved by A,∇� ⇒ B, then by induction
hypothesis, for any non-commutative spacetime S = (X ,∇S) and any V : L∇ →
X we have: V (A)⊗⊗

γ∈� ∇SV (γ ) ≤ V (B). Since ∇S is oplax, we have V (A)⊗
∇S(

⊗
γ∈� V (γ )) ≤ V (B). By adjunction,wehave

⊗
γ∈� V (γ ) ≤ V (A)→S V (B).

Therefore, the rule R → is also valid. Thirdly, note that all the rule schemes are
equivalent to some axioms and those axioms are exactly the corresponding conditions
on the non-commutative spacetimes. Hence, their validity is evident. Finally, note
that for the spacetimes⊗ = ∧ and e = 1. Therefore, it is clear that all the structural
rules are valid. �

To prove the completeness theorem, we need the Lindenbaum construction
together with a completion technique. For the former, set L = STL(R). DefineB(L)

to be the set of all formulas of the language L∇ with the equivalence relation ≡ as
A ≡ B iff L � A⇒ B and L � B ⇒ A. It is clear that (B(L)/ ≡,�) is a monoidal
poset with all finite meets and all finite joins. Moreover it is also a distributive tem-
poral algebra with its canonical ∇ and → such that [A] ⊗ ∇(−) is a left adjoint
to [A] → (−). See Remark 12. For the completion technique we have the follow-
ing representation theorem, presented in Sect. 7.6. Here we present it in a slightly
stronger form to also address the rule schemes.

Theorem 13 LetA = (A,≤A,⊗A, eA,∇A,→A) be a (distributive) temporal alge-
bra. Then there exists a non-commutative spacetime S = (X ,∇) and a (join pre-
serving) temporal algebra embedding i : A→ S. Moreover, if the algebra has all
finite meets, i preserves them and if A satisfies a rule scheme R ⊆ {N , H, P, F},
then so does S. The same is also true for (wF) ifA is distributive.

Proof First, let us address the case inwhich the temporal algebra does not necessarily
have all the joins. Let X = D(A) be the downset completion ofA and define



7 Implication via Spacetime 197

∇ I = (∇A)! = {x ∈ A|∃i ∈ I (x ≤ ∇Ai)}

First, observe that ∇ maps downsets to downsets. Secondly, note that by Theorem 4,
∇ is join preserving and since ∇A is oplax, (∇A)! is also oplax. Therefore, ∇ has a
right adjoint by adjoint functor theorem, Theorem 1. Now let us provide the explicit
adjoint. Define

I → J = {x ∈ A| ∀i ∈ I (i ⊗∇Ax ∈ J )}

Again observe that→ maps downsets to downsets. Then note that for any I ∈X ,
the map I ⊗∇(−)  (I → (−)) because for any I, J, K ∈X we have

I ⊗∇ J ⊆ K iff I ⊆ J → K

For the left to right, note that if i ∈ I , then for any j ∈ J , we have i ⊗∇ j ∈ I ⊗
∇ J ⊆ K and hence i ⊗∇ j ∈ K . Hence, I ⊆ J → K . Conversely, if I ⊆ J → K
and x ∈ I ⊗∇ J , then there exist i ∈ I and j ∈ J such that x ≤ i ⊗∇ j . Since
i ∈ I ⊆ J → K , by the definition of the implication we have i ⊗∇ j ∈ K . Hence,
x ∈ K .

Finally, define i(a) = {x ∈ A|x ≤ a}. Then byTheorem3, themap i is amonoidal
poset’s embedding that preserves finitemeets (if they exist).Moreover, byTheorem4,
i also preserves ∇ i.e., i∇Aa = ∇i(a), for any a ∈ A. For implication:

i(a → b) = {x ∈ A|x ≤ a → b} = {x ∈ A|a ⊗∇x ≤ b} =

{x ∈ A|∀y ≤ a (y ⊗∇x ≤ b)} = i(a) → i(b)

Now, let us move to the distributive case. In this case, we have to move from
the downset completion to the ideal completion with the same monoidal structure.
By Theorem 4, since ∇ is join preserving so does (∇A)!. Moreover, the same i as
before is a join preserving monoidal embedding that respects ∇ and finite meets
(if they exist). The only thing we have to check is the stability of the ideals under
the implication. This implies that the previous proofs for adjunction I ⊗∇(−) 
(I → (−)), for any ideal I and preservability of implication under i work again.
First note that 0 ∈ I → J because for any i ∈ I , we have i ⊗∇0 = i ⊗ 0 = 0 ∈ J .
The last equality is the consequence of distributivity of A. And secondly, note that
if x, y ∈ I → J , then for all i ∈ I , we have i ⊗∇x ∈ J and i ⊗∇ y ∈ J . Since J
is an ideal, ∇ preserves joins and A is distributive, we have

[i ⊗∇x] ∨ [i ⊗∇ y] = [i ⊗∇(x ∨ y)] ∈ J

which proves that I → J is an ideal.
Finally, for the rule schemes, we have to show that the previous downset or ideal

construction respects the rule schemes. For all schemes, except (wF), it is enough to
prove the scheme for all downsets. The scheme for the ideals is just its special case.
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For (N ), note that ∇A is lax and hence by Theorem 4, (∇A)! is also lax. Being lax
is nothing but satisfying (N ).

For (H), note that if A satisfies (H), by Remark 14, ∇ and � are inverses of
each other overA. This fact lifts also to S. It is enough to prove that for any ideal I ,
we have ∇�I = I = �∇ I . We prove I ⊆ ∇�I . The rest is similar. Assume i ∈ I ,
then i = ∇�i . For the sake of readability, let j = �i . Then∇ j = i .We have j ∈ �I
because e ⊗∇ j = i ∈ I . Therefore, i = ∇ j ∈ ∇�I . Finally, since∇ has an inverse
and is join preserving and strict, it will be a strict geometric isomorphism. The claim
follows from Remark 15.

For (P), we have ∇ I ⊆ I because if x ∈ ∇ I , then there exists i ∈ I such that
x ≤ ∇i . Since ∇i ≤ i , we have x ≤ i ∈ I which implies x ∈ I . For (F), we have
I ⊆ ∇ I , because for any i ∈ I we have i ≤ ∇i which implies i ∈ ∇ I . Finally, for
(wF), if ∇ I = {0} and i ∈ I , we have ∇i ∈ ∇ I = {0} which implies ∇i = 0. Since
A satisfies (wF), we have i = 0 that proves I = {0}. �

Theorem 14 (Completeness) For any rule scheme R ⊆ {N , H, P, F,wF}, there
exists a non-commutative spacetime S ∈ ST(R) such that if S � � ⇒ A then
� �STL(R) A. The same is also true for iST(R) and iSTL(R).

Proof Since the Lindenbaum algebra for STL(R) is clearly a finitely complete dis-
tributive temporal algebra, by Theorem 13, there exists a non-commutative space-
time S = (X ,∇) and a finite meet and finite join preserving temporal embedding
i : B(L)→ S. Define V (p) = i([p]). It is easy to check that for all formulaC ∈ L∇ ,
we have V (C) = i([C]). Since (S, V ) � � ⇒ A we have

⊗
γ∈� V (γ ) ≤ V (A).

Hence,
⊗

γ∈� i([γ ]) ≤ i([A]). Since i preserves the monoidal structure and is an
embedding,

⊗
γ∈�[γ ] ≤ [A] or equivalently � �STLR) A. For the structural version,

note that by Remark 5, the ideal construction in Theorem 13, applied on a monoidal
poset with meet structure as its monoidal structure, produces a locale for X . �

Oneof themain advantages of the spacetime logics over theusual sub-intuitionistic
logics is their complete pairs of introduction-elimination rules. This well-behaved
nature may find some evidence by the following translation that interprets the seem-
ingly more powerful logics into the weaker ones. The translation is the syntactical
version of Theorem 6. It helps to import what we have in sub-structural and intu-
itionistic tradition to the spacetime logics. It also shows that STL and iSTL are in
some sense more powerful than the usual FLl and IPC, respectively. In this sense the
former refine the timeless spatial structure of the latter by bringing themore temporal
and hence more expressive power.

Definition 16 Define the translation (−)∇ : L→ L∇ as the following, where L =
{∧,∨,�,⊥, 1,⊗,→}:
• p∇ = ∇�p, ⊥∇ = ⊥, �∇ = ∇�� and 1∇ = 1.
• (A ∧ B)∇ = ∇�(A∇ ∧ B∇).
• (A ∨ B)∇ = A∇ ∨ B∇ .
• (A ⊗ B)∇ = A∇ ⊗ B∇ .
• (A→ B)∇ = ∇(A∇ → B∇).
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Theorem 15 For any � ∪ {A} ⊆ L,
(i) � �FLl A iff �∇ �STL(N ) A∇ .
(ii) � �IPC A iff �∇ �iSTL(N ) A∇ (Originally proved in (Akbar Tabatabai et al.

2017)).

Proof We will prove (i), the proof for (i i) is the same. For that matter, we will
first prove a claim that for any formula A ∈ L, there exists a formula A′ ∈ L∇ such
that A∇ �STL(N ) ∇A′ and ∇A′ �STL(N ) A∇ . The proof for the claim is by induction
on the structure of A. For atomic cases, considering the fact that ∇⊥ is equivalent
to ⊥, there is nothing to prove. The claim for conjunction and implication is clear
by definition of the translation. Finally, for ⊗ and ∨, note that the translation (−)∇
commutes with these connectives. Therefore, if there exist A′ and B ′ for A∇ and
B∇ , respectively, for A ⊗ B it is enough to consider A′ ⊗ B ′. The reason is that ∇
commutes with ⊗ because of (N ). For ∨ the same strategy works. Therefore, the
existence of A′ is proved. This property implies the following useful fact: For any
B ∈ L∇ , if�∇ �STL(N ) B, then�∇ �STL(N ) ∇�B. The reason is the following. Since
the formula

⊗
�∇ is equivalent to (

⊗
�)∇ and the latter is also equivalent to∇C for

someC ∈ L∇ , it is enough to prove the claim for∇C . Now, since∇C �STL(N ) B, by
(L1)we have 1,∇C �STL(N ) B. By implication introductionwe haveC �STL(N ) �B
and hence by the rule (∇), we have ∇C �STL(N ) ∇�B.
Coming back to the proof of the theorem, for the soundness part it is enough to use an
induction on the FLl-proof length of � ⇒ A. For axioms, all cases are clear, except
� ⇒ �. For this case we have to prove �∇ � ∇�� which is clear from what we
observed above.

For the conjunction rule (R∧), assume� ⇒ A ∧ B is proved via� ⇒ A and� ⇒
B. Then by IH, we have �∇ ⇒ A∇ and �∇ ⇒ B∇ . Then �∇ ⇒ A∇ ∧ B∇ . There-
fore, by what we have above �∇ ⇒ ∇�(A∇ ∧ B∇). For the conjunction rule (L∧),
assume �, A ∧ B, � ⇒ C is proved via �, A, � ⇒ C . Then by IH, �∇, A∇ , �∇ ⇒
C∇ . Then �∇, A∇ ∧ B∇, �∇ ⇒ C∇ . Since ∇�(A∇ ∧ B∇) ⇒ A∇ ∧ B∇ , we have
�∇, (A ∧ B)∇, �∇ ⇒ C∇ .

For implication rule (R →), assume � ⇒ A→ B is proved via A, � ⇒ B.
Then by IH, we have A∇, �∇ ⇒ B∇ . Since �∇ is equivalent to (

⊗
�)∇ , it is also

equivalent to ∇C for some C . We have A∇,∇C ⇒ B∇ . Hence, C ⇒ (A∇ → B∇).
Hence, by (∇) we have ∇C ⇒ ∇(A∇ → B∇). Since

⊗
�∇ is equivalent to ∇C ,

we have �∇ ⇒ ∇(A∇ → B∇). For implication rule (L →), assume �,�, (A→
B),� ⇒ C is proved via � ⇒ A and �, B, � ⇒ C . Then by IH, �∇ ⇒ A∇ and
�∇, B∇, �∇ ⇒ C∇ . Hence, �∇, �∇ ,∇(A∇ → B∇),�∇ ⇒ C∇ .

For completeness, note that if �∇ ⇒ A∇ is provable in STL(N ), then it is also
provable in the greater logic FLl = STL(N , P, F). Since for any B ∈ L, the formu-
las B∇ and B are equivalent in STL(N , P, F), the sequent � ⇒ A is also provable
in FLl . �
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7.8 Kripke Models

In this section we will focus on the structural logics of spacetime and their Kripke
semantics. This semantics is essentially the usual Kripke semantics for the intuition-
istic modal and implication logics (Simpson 1994; Fischer-Servi 1977 and Litak and
Visser 2018). However, to also address ∇, we will add a natural forcing condition
using the same accessibility relation that the model uses for �. In this sense, the
structural logics of spacetime are actually the result of a faithful extension of the
language and logics to have a better reflection of the Kripke models into the pure
syntax.

Definition 17 By a Kripke model for the language L∇ , we mean a tuple
K = (W,≤, R, V ) where (W,≤) is a poset, R ⊆ W ×W is a relation over W (not
necessarily transitive or reflexive) compatible with ≤, i.e., for all u, u′, v, v′ ∈ W if
(u, v) ∈ R and u′ ≤ u and v ≤ v′ then (u′, v′) ∈ R and V : At (L∇) → U ((W,≤))

where At (L∇) is the set of atomic formulas of L∇ and U ((W,≤)) is the set of all
upsets of (W,≤). Define the forcing relation as usual using the relation R and for the
∇ let u � ∇A if there exists v ∈ W such that (v, u) ∈ R and v � A. A Kripke model
is called normal if there exists an order preserving function π : W → W such that
(u, v) ∈ R iff u ≤ π(v). It is clear that if this π exists, it would be unique. Finally, a
sequent� ⇒ A is valid in a Kripkemodel if for allw ∈ W , ∀B ∈ � (w � B) implies
w � A.

Lemma 1 (Monotonicity Lemma) For any formula A ∈ L∇ , any Kripke model
K = (W,≤, R, V ) and any u, v ∈ W, if u ≤ v and u � A then v � A.

Proof The proof is a routine induction on the structure of A. The only case to
mention is when A = ∇B. Then if u � ∇B, there exist u′ ∈ W such that (u′, u) ∈ R
and u′ � B. Since u ≤ v and R is compatible with≤, we have (u′, v) ∈ R. Therefore,
v � ∇A. �

Remark 16 Note that in a normal Kripke model w � ∇A iff π(w) � A. One direc-
tion is clear, for the other, if there exists u ∈ W such that (u,w) ∈ R and u � A,
then since u ≤ π(w), by the monotonicity lemma we have π(w) � A. This means
that the normal Kripke models are the models in which we have a canonical way to
witness the existential quantifier in the forcing condition of ∇.
Definition 18 For any rule scheme in the set {N , H, P, F,wF}, we define a corre-
sponding condition on a Kripke model as:

(N ) The model is normal.
(H) The model is normal and its π is a poset isomorphism.
(P) R ⊆ ≤. For a normal model, it is equivalent to ∀w ∈ W (π(w) ≤ w).
(F) R is reflexive, i.e., for all w ∈ W we have (w,w) ∈ R. For a normal model,

is equivalent to ∀w ∈ W (w ≤ π(w)).
(wF) R is serial, i.e., for all u ∈ W there exists v ∈ W such that (u, v) ∈ R.

For a normal model, it is equivalent to ∀u ∈ W∃v ∈ W (u ≤ π(v)).
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Moreover, if R ⊆ {N , H, P, F,wF}, by a K(R)-Kripke model we mean a model
satisfying the conditions corresponding to all the schemes in R.
Theorem 16 (Soundness) For any rule scheme R ⊆ {N , H, P, F,wF}, the logic
iSTL(R) is sound for all K(R)-Kripke models.

Proof Our strategy is reducing the soundness for Kripke models to soundness for
topological models. It is also possible to prove it directly. However, we follow this
strategy to also show how Kripke models must be considered as the special case
of the topological models. For that purpose, we show how to assign a topological
model to a Kripke model with the same valid sequents. Moreover, we will show that
this construction respects the schema conditions. LetK = (W,≤, R, V ) be a Kripke
model. Define the spacetime SK = (U (W,≤),∇K ) as in Example 13 by

∇K P = {w ∈ W |∃u ∈ P such that (u,w) ∈ R}

For any formula B ∈ L∇ define [B] as the set {w ∈ W |w � B}. By the monotonicity
lemma, [B] is an upset of W . If we define the topological valuation V̄ (p) = V (p),
it is easy to see that V̄ (B) = [B] for any formula B ∈ L∇ . Hence, for any sequent
� ⇒ A, it is valid in (U (W,≤),∇K , V̄ ) iff

∧
γ∈� V̄ (γ ) ⊆ V̄ (A) iff

⋂
γ∈�[γ ] ⊆ [A]

which is nothing but the validity of � ⇒ A in K .
It is remaining to prove the preservation of the schema conditions. First note

that for (N ), the existence of π means that ∇K = π−1. Therefore, ∇ preserves all
intersections and hence is a strict geometric map. For (H), since π is an order
isomorphism, it has an inverse ρ. Then π−1, ρ−1 : U (W,≤) → U (W,≤) are each
other’s inverses. Hence, ∇K = π−1 : U (W,≤) → U (W,≤) is a strict geometric
isomorphism. For (P), we have ∇K P ⊆ P . The reason is that if w ∈ ∇K P , there
exist u ∈ W such that (u,w) ∈ R and u ∈ P . Since R ⊆ ≤, we have u ≤ w. Since P
is an upset we have w ∈ P . For (F), we have P ⊆ ∇K P because ifw ∈ P then since
(w,w) ∈ R we have w ∈ ∇K P . And finally, for (wF), if ∇K P = ∅, then P = ∅
because if w ∈ P then since R is serial, there exists u ∈ W such that (w, u) ∈ R
which means that u ∈ ∇K P = ∅. This is a contradiction and hence P = ∅. �

Definition 19 LetA = (A,≤,∧, 1,→) be a strong algebra where (A,≤) is finitely
cocomplete. ThenA is called join internalizing if (a ∨ b→ c) = (a → c) ∧ (b→
c), for every a, b, c ∈ A.

For completeness,we need the following representation theorem, presented before
as Theorem 10. The proof is essentially the canonical extension construction in
(Celani and Jansana 2001) expanded to also cover both weaker and stronger cases. In
fact, in (AkbarTabatabai et al. 2017),wemodified this construction to also address the
operator∇. Since (AkbarTabatabai et al. 2017) is not accessible yet,we restate the full
details andwe add the proofs for some other cases that are absent in (Akbar Tabatabai
et al. 2017).

Theorem 17 For any strong algebra A = (A,≤,∧, 1,→) that internalizes its
monoidal structure [not necessarily its closed monoidal structure if it has any],
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there exists a Kripke frame K and a strong algebra embedding i : A→ SK . More-
over, if A is distributive and its implication internalizes the joins, the map i can be
chosen join preserving, as well. Finally, ifA is a reduct of a temporal algebra, i also
preserves ∇ and for any rule scheme R ⊆ {N , H, P, F,wF}, if A satisfies R, then
so does K .

Proof We split the proof to four cases depending on the presence of joins and ∇.
For all cases, we need the following constructions. Recall that F(A) is the poset of
all filters ofA and define R as a binary relation over F(A) as: (P, Q) ∈ R iff for all
a, b ∈ A if a → b ∈ P and a ∈ Q then b ∈ Q.

Case I. In this case both joins and ∇ are not necessarily present. Define W =
F(A) and its order as the equality on W . Then it is clear that K1 = (W,=,R) is a
Kripke frame in the sense of Example 13. Consider i : A→ U (W,= W ) defined
by i(a) = {P ∈ F(A)| a ∈ P}. As we observed in the Preliminaries, i is clearly a
meet-semilattice embedding. Note that for any X and Y as the upsets of (W,= W ),
the implication in SK1 is defined by:

X → Y = {P ∈ F(A)|∀Q ∈ F(A) if (P, Q) ∈ R and Q ∈ X then Q ∈ Y }

To prove that i preserves the implication, i.e., i(a → b) = i(a) → i(b), we have to
check the following two directions:

To prove i(a → b) ⊆ i(a) → i(b), if P ∈ i(a → b) then a → b ∈ P . Then
assume (P, Q) ∈ R and Q ∈ i(a). Hence, a ∈ Q and since a → b ∈ P , by the
definition of R, we have b ∈ Q, meaning Q ∈ i(b). Therefore, P ∈ i(a) → i(b).
Conversely, if P ∈ i(a) → i(b), then consider Q = {x ∈ A|a → x ∈ P}. Since A
internalizes its meet structure, by Remark 8, we have

(a → x) ∧ (a → y) = (a → x ∧ y)

which means that Q is a filter. Moreover, a ∈ Q because a → a = 1 ∈ P . Note that
(P, Q) ∈ R because if x → y ∈ P and x ∈ Q, then a → x ∈ P and since

(a → x) ∧ (x → y) ≤ (a → y)

and P is a filter, we have a → y ∈ P which means y ∈ Q. Therefore, (P, Q) ∈ R.
Now, since a ∈ Q we have Q ∈ i(a). Since P ∈ i(a) → i(b) and (P, Q) ∈ R we
have Q ∈ i(b), meaning b ∈ Q which by the definition of Q means a → b ∈ P .

Case II. In this case, again joins are not necessarily present. However, the algebra
A is a reduct of a temporal algebra. Therefore, there exists ∇ : A→ A such that
for any a ∈ A, a ∧ ∇(−)  (a →−). First note that the relation R on F(A) is
also definable by ∇ as (P, Q) ∈ R iff ∇[P] = {∇x |x ∈ P} ⊆ Q. The reason is the
following: If (P, Q) ∈ R and x ∈ P , since x ≤ 1→ ∇x and P is a filter, 1→
∇x ∈ P . Therefore, by 1 ∈ Q and (P, Q) ∈ R we have ∇x ∈ Q. Hence, ∇[P] ⊆
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Q. Conversely, if ∇[P] ⊆ Q, given a → b ∈ P and a ∈ Q we have ∇(a → b) ∈
∇[P] ⊆ Q and since a ∧ ∇(a → b) ≤ b we have b ∈ Q. Therefore, (P, Q) ∈ R.

Defining R in terms of ∇ has the advantage to make R monotone also in its
second argument, i.e, if (P, Q) ∈ R and Q ⊆ Q′, then (P, Q′) ∈ R. For this part,
pick W = F(A) as before and change the order on W to ⊆. Since R is compatible
with ⊆, the tuple K2 = (W,⊆,R) is a Kripke frame. Moreover, note that i(a) for
any a ∈ A is an upset with respect to⊆. For the preservation of the implication, since
it does not depend on the order on W , the argument for the previous case also works
here. Therefore, we only have to show that i preserves∇, i.e., i(∇a) = ∇i(a). If P ∈
i(∇a), then∇a ∈ P . PickQ = {x ∈ A|x ≥ a}. This is clearly afilter and (Q, P) ∈ R
because ∇[Q] ⊆ ∇{x ∈ A|x ≥ a} ⊆ P because ∇a ∈ P . Therefore, there exists Q
that includes a and (Q, P) ∈ R. Therefore, P ∈ ∇i(a). Conversely, if P ∈ ∇i(a),
then there exists Q such that a ∈ Q and (Q, P) ∈ R. Therefore, ∇a ∈ ∇[Q] ⊆ P
and hence ∇a ∈ P . Therefore, P ∈ i(∇a).

Case III. Now, we move to the case where A is distributive and the implication
internalizes the finite joins while ∇ is not necessarily present. Here, we want to
construct a Kripke frame and a join preserving map i . For that matter, as we observe
in Preliminaries, it is sufficient to change W from the set of filters ofA to the set of
all prime filters of A, denoted by P(A). The same i works as an embedding and it
preserves both finite meets and finite joins. Define R as before and K3 = (P(A),=
W ,R). The only thing to check is whether i preserves both implication and ∇, again.

For the implication, by the definition of R and as we had in Case I, i(a → b) ⊆
i(a) → i(b) is clear. For the converse, assume a → b /∈ P but P ∈ i(a) → i(b).
Define Q = {x ∈ A|a → x ∈ P}. The problem is that this Q is not necessarily prime.
The strategy is extending it to a suitable prime filter. Since a → b /∈ P then b /∈ Q.
Define

� = {S ∈ F(A) | (P, S) ∈ R, a ∈ S and b /∈ S}.

The set � is non-empty because Q ∈ �, as we have checked in Case I. Moreover,
in � any chain has an upper bound because if for all i ∈ I we have (P, Si ) ∈ R
then (P,

⋃
i∈I Si ). The reason is the following: If x → y ∈ P and x ∈⋃

i∈I Si then
for some i ∈ I we have x ∈ Si . Since (P, Si ) ∈ R, we have y ∈ Si from which
y ∈⋃

i∈I Si . Therefore, by Zorn’s lemma, � has a maximal element M . We will
prove that M is prime. First note that 0 /∈ M because if so, M = A which contradicts
with b /∈ M . Now for the sake of contradiction, let us assume that x ∨ y ∈ M and
x, y /∈ M . Then we claim that either for all m ∈ M we have (m ∧ x → b) /∈ P or
for all m ∈ M we have (m ∧ y → b) /∈ P . The reason is that if for some m, n ∈ M
both (m ∧ x → b) ∈ P and (n ∧ y → b) ∈ P happen, we would have (m ∧ n ∧
x → b) ∈ P and (m ∧ n ∧ y → b) ∈ P . Then by distributivity and the fact that the
implication internalizes the finite joins, we reach

[m ∧ n ∧ (x ∨ y) → b] = [(m ∧ n ∧ x → b) ∧ (m ∧ n ∧ y → b)] ∈ P
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and since [m ∧ n ∧ (x ∨ y)] ∈ M and (P, M) ∈ Rwe have b ∈ M which is a contra-
diction.Hence,w.l.o.g.we can assume that for allm ∈ M wehave (m ∧ x → b) /∈ P .
Then define

N = {z ∈ A| ∃m ∈ M (m ∧ x → z ∈ P)}

First, note that M ⊆ N , because for any m ∈ M we have m ∧ x → m = 1 ∈ P .
Similarly, we have x ∈ N . Therefore, N is a proper extension of M because x /∈ M .
Secondly, note that N is a filter because 1 = [(1 ∧ 1)→ 1] ∈ P which implies 1 ∈ N
and if z,w ∈ N then there are m, n ∈ M such that (m ∧ x → z) ∈ P and (n ∧ x →
w) ∈ P . Therefore, (m ∧ n ∧ x → z) ∈ P and (m ∧ n ∧ x → w) ∈ P . Since P is a
filter and A internalizes its monoidal structure, by Remark 8, we have

(m ∧ n ∧ x) → (z ∧ w) ∈ P

Since M is a filter we have m ∧ n ∈ M which implies z ∧ w ∈ N . Thirdly, note that
we have (P, N ) ∈ R because if z → w ∈ P and z ∈ N there existsm ∈ M such that
m ∧ x → z ∈ P which implies m ∧ x → w ∈ P meaning that w ∈ N . And finally,
note that b /∈ N , because for all m ∈ M we have m ∧ x → b /∈ P . Hence, N ∈ �

while it is a proper extension of M . This contradicts with the maximality of M which
implies that M is prime. Finally, since a ∈ M and b /∈ M , we have M ∈ i(a) and
M /∈ i(b). Since (P, M) ∈ R, this contradicts with P ∈ i(a) → i(b).

Case IV. In this case, the algebra A is assumed to be a reduct of a distributive
temporal algebra and we have to show that i also preserves the ∇ operator, i.e.,
i(∇a) = ∇i(a). Define R as before and K4 = (P(A),⊆,R). As we have seen in
Case II, R is compatible with ⊆ and hence K4 is a Kripke frame. Again, since the
implication does not depend on the order, the proof of preservability of implication
in the Case III works here, as well. The only thing to check is whether i preserves
∇. As we have observed in Case II, ∇i(a) ⊆ i(∇a) is an easy consequence of the
definition of R. To show i(∇a) ⊆ ∇i(a), if Q ∈ i(∇a) then ∇a ∈ Q. Define

� = {S ∈ F(A)| (S, Q) ∈ R, a ∈ S and 0 /∈ S}

It is clear that P = {x ∈ A|x ≥ a} ∈ �, because a ∈ P , since ∇a ∈ Q, we have

∇[P] = {∇x |x ≥ a} ⊆ Q

and 0 /∈ P because if 0 ∈ P then 0 ≥ a which implies a = 0 and hence∇a = 0 ∈ Q
which is impossible since Q is proper. Since P ∈ �, the set � is non-empty. Any
chain in � has an upper bound because if for all i ∈ I we have (Si , Q) ∈ R then
∇[Si ] ⊆ Q from which ∇[⋃i∈I Si ] =

⋃
i∈I ∇[Si ] ⊆ Q and hence (

⋃
i∈I Si , Q) ∈

R. By Zorn’s lemma, � has a maximal element. Call it M . We will prove that M is
prime which completes the proof. First note that M ∈ � which implies that 0 /∈ M .
Hence, M is proper. Now assume x ∨ y ∈ M and x /∈ M , y /∈ M . The filters Mx and
My generated by M ∪ {x} and M ∪ {y} are proper extensions of M . Therefore, they
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are not in � which means that either one of them includes zero or we have both
∇Mx � Q and ∇My � Q. The first is impossible because if 0 ∈ Mx , then there is
m ∈ M such that m ∧ x ≤ 0. Since A is distributive, we have

m ∧ (x ∨ y) = (m ∧ x) ∨ (m ∧ y) = m ∧ y

Since x ∨ y ∈ M andM is a filter, we havem ∧ (x ∨ y) ∈ M which impliesm ∧ y ∈
M . Therefore, since m ∧ y ≤ y we have y ∈ M which is a contradiction. A similar
argument also works for the case 0 ∈ My . Hence, we are in the case that ∇Mx � Q
and ∇My � Q.
Therefore, there are z,w ∈ A such that∇z,∇w /∈ Q and z ∈ Mx andw ∈ My . Hence,
there are m, n ∈ M such that m ∧ x ≤ z and n ∧ y ≤ w. Therefore, ∇(m ∧ x) /∈ Q
and ∇(n ∧ y) /∈ Q. Since M is a filter, m ∧ n ∈ M and since x ∨ y ∈ M , we have

m ∧ n ∧ (x ∨ y) = (m ∧ n ∧ x) ∨ (m ∧ n ∧ y) ∈ M

which by (M, Q) ∈ R implies ∇[(m ∧ n ∧ x) ∨ (m ∧ n ∧ y)] ∈ Q and hence

∇(m ∧ n ∧ x) ∨ ∇(m ∧ n ∧ y) ∈ Q

and since Q is prime, either ∇(m ∧ n ∧ x) ∈ Q or ∇(m ∧ n ∧ y) ∈ Q. If ∇(m ∧
n ∧ x) ∈ Q then since ∇(m ∧ n ∧ x) ≤ ∇(m ∧ x) we have ∇(m ∧ x) ∈ Q which
is a contradiction. A similar argument also works for the other case. Hence, M is
prime. Finally, since a ∈ M and (M, Q) ∈ R we have Q ∈ ∇i(a) which completes
the proof.

Finally, we have to address the preservability of the validity of the rule schemes.
For (N ), ifA satisfies the scheme (N ),∇ commutes with all finite meets. We want to
find an order preserving function π(P) such that (P, Q) ∈ R iff P ⊆ π(Q). Define
π(P) = ∇−1[P]. It is clearly order preserving. Note that (P, Q) ∈ R is equivalent
to∇[P] ⊆ Q which is equivalent to P ⊆ π(Q). The only thing to show is that π(P)

is actually a filter if we are in Case II and it is a prime filter if we are in Case IV. First,
∇−1[P] is clearly an upset. Since 1 = ∇1 and P is a filter, we have 1 ∈ ∇−1[P].
Moreover, if x, y ∈ ∇−1[P] then ∇x,∇ y ∈ P . Since P is a filter and ∇x ∧ ∇ y =
∇(x ∧ y), we have∇(x ∧ y) ∈ P and hence x ∧ y ∈ ∇−1[P]. Moreover, ifA has all
finite joins, then ∇−1[P] is prime because if x ∨ y ∈ ∇−1[P], then ∇(x ∨ y) ∈ P .
Since∇ has a right adjoint, it commuteswith all joins and hence∇x ∨ ∇ y ∈ P . Since
P is prime, either∇x ∈ P or∇ y ∈ P . Therefore, either x ∈ ∇−1[P] or y ∈ ∇−1[P].
Moreover, 0 /∈ ∇−1[P] because otherwise, ∇0 = 0 ∈ P which is impossible, since
P is prime.

For (H), note that ∇ and � as two operators over the Lindenbaum algebra are
inverse of each other. Hence, ∇−1 as an operation over all filters or prime filters
is an isomorphism. For (P), given (P, Q) ∈ R, we have P ⊆ Q. Because, given
a ∈ P and the fact that (P, Q), we have∇[P] ⊆ Q which implies∇a ∈ ∇[P] ⊆ Q.
Hence, ∇a ∈ Q. Finally, we have a ∈ Q Since ∇a ≤ a. For (F), we have to show
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(P, P) ∈ R. The reason is that we have ∇[P] ⊆ P , because for any a ∈ P , we have
a ≤ ∇a which implies ∇a ∈ P .

(∗) [Wedenote this part by (∗) for the future reference.] Finally, for (wF), first note
that this rule scheme is also expressible by implication via 1→ 0 = 0. The reason is
that if we have (wF), then by adjunction ∇(1→ 0) ≤ 0 from which ∇(1→ 0) = 0
and by (wF) we have 1→ 0 = 0. Conversely, if 1→ 0 = 0 and ∇a = 0, then
a ≤ 1→ ∇a = 1→ 0 = 0 fromwhicha = 0.Now let us prove that even in theCase
III where∇ is not present, and we have a distributive join internalizing strong algebra
A = (A,≤,∧, 1,→) if 1→ 0 = 0, then the definedR is serial. This generality will
be useful later in the last section. For the proof, let P be a prime filter.We have to find
a prime filter M such that (P, M) ∈ R. Define Q = {x ∈ A|1→ x ∈ P}. Similar to
what we had in the four cases above, Q is a filter and (P, Q) ∈ R. Note that 0 /∈ Q,
because otherwise, 1→ 0 = 0 ∈ P which is impossible. Define

� = {S ∈ F(A) | (P, S) ∈ R and 0 /∈ S}.

The set � is non-empty because Q ∈ �. Moreover, in � any chain has an upper
bound. The proof is similar to the Case III. Hence, by Zorn’s lemma,� has amaximal
element. Similar to the proof of the Case III, this M is prime which completes the
proof. �

Theorem 18 (Completeness)For any rule schemeR ⊆ {N , H, P, F,wF}, the logic
iSTL(R) is complete with respect to the class of all K(R)-Kripke models.

Proof Since the Lindenbaum algebra of the logic iSTL(R) is clearly a distributive
join internalizing temporal algebra, then if we apply Theorem 17 on it, it produces
a Kripke frame K = (W,≤, R) and an embedding i . Then define V : At (L∇) →
U (W,≤) by V (p) = i([p]) where [p] is the equivalence class of p in the Lin-
denbaum algebra. It is routine to check that {w ∈ W | w � B} = i([B]) for any for-
mula B ∈ L∇ . Therefore, if � ⇒ A is valid in all K(R)-Kripke models including
(W,≤, R, V ), we will have i([�]) ⊆ i([A]). Since i is an embedding, it implies
[�] ≤ [A] which simply means that iSTL(R) � � ⇒ A. �

Lemma 2 In Corollary 1, ifS satisfies any rule scheme in {F,wF}, then so doesT .

Proof Note thatwedefined∇ = f∇S f!. IfS ∈ ST(wF), thenT ∈ ST(wF)because
for any a ∈ Y , if ∇a = 0, then f∇S f!a = 0. Since f is an embedding, ∇S f!a = 0.
SinceS ∈ ST(wF), we have f!a = 0. Then f!a ≤ 0 implies a ≤ f (0). But f (0) = 0
because f is join preserving. Hence, a = 0. For (F), if S ∈ ST(F), then we have
∇S f!a ≥ f!a fromwhich∇a = f∇S f!a ≥ f f!a ≥ a. The last inequality is from the
adjunction f!  f . Hence, T ∈ ST(F). �

Theorem 19 Let X be a topological space, Y be an Alexandroff space and f :
X → Y be a continuous surjection. Then for any ∇Y over O(Y ) and any valuation
V : At (L∇)→ O(Y ), there exist ∇X over O(X) and a valuation U : At (L∇) →
O(X) such that for any sequent � ⇒ A, we have (O(X),∇X ,U ) � � ⇒ A iff
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(O(Y ),∇Y , V ) � � ⇒ A. Moreover, for any class C ∈ {iST(F), iST(wF)},
if (O(Y ),∇Y ) ∈ C then (O(X),∇X ) ∈ C. Hence, if X �C � ⇒ A then Y �C � ⇒ A.

Proof Let ∇Y : O(Y ) → O(Y ) be a join preserving map and V : At (L∇) → O(Y ).
By Corollary 2, since f is a continuous surjection and Y is Alexandroff, there
exists a join preserving map ∇X : O(X) → O(X) such that f −1 : (O(Y ),∇Y ) →
(O(X),∇X ) becomes a logical morphism. Therefore, f −1 commutes with all con-
nectives of the language L∇ . DefineU (p) = f −1(V (p)). For any formula B ∈ L∇ ,
it is evident that U (B) = f −1(V (B)). Now note that (O(X),∇X ,U ) � � ⇒ A iff
U (�) ⊆ U (A) iff f −1(V (�)) ⊆ f −1(V (A)). Since f is surjective, f −1 is an embed-
ding. Thus, the last is equivalent to V (�) ⊆ V (A) iff (O(Y ),∇Y , V ) � � ⇒ A.
Finally, note that if for any class C from the classes iST(F) and iST(wF), if
(O(Y ),∇Y ) ∈ C then (O(X),∇X ) ∈ C, from Lemma 2. �

The following theorem uses the Kripke completeness to show that for the topo-
logical completeness theorem and for logics iST, iST(F) and iST(wF), even one
fixed and large enough discrete space is sufficient. This means that despite the intu-
itionistic logic, IPC, these logics can not understand the difference between discrete
sets (complete for classical logic) and topological spaces (complete for intuitionistic
logic).

Theorem 20 (Topological Completeness Theorem, Strong version) Let X be a set
with cardinality at least 2ℵ0 . Consider X as a discrete space. Then:

(i) If X �iST A then iSTL � A.
(ii) If X �iST(F) A then iSTL(F) � A.
(iii) If X �iST(wF) A then iSTL(wF) � A.

Proof For (i), let K = (W,≤, R, V ) be the Kripke model in the proof of Kripke
completeness theorem. Note that U (W,≤) is Alexandroff. The cardinality of this
space is at most 2ℵ0 , since the Lindenbaum algebra is countable. Hence, there exists
a surjective function f : X → Y . Since X is discrete, f is also continuous. Therefore,
the claim follows from the last part of Theorem 19. The proofs for the other parts
are similar. �

Remark 17 Note that the Theorem 20 is not true without the size condition. Inter-
estingly, it is not true for a singleton set X = {0}. The reason is that in this space we
always have p ∨ ¬p. There are only two possibilities for ∇ : {0, 1} → {0, 1}. Since
∇0 = 0, we have either ∇1 = 0 or ∇1 = 1. In the second case, ∇ collapses to iden-
tity and hence p ∨ ¬p is valid because validity is just the boolean validity. In the first
case, since∇1 = 0, we have (∇1 ∩ V (p)) = 0 ≤ 0which implies 1 ≤ (V (p)→ 0).
Hence, (V (p) → 0) = 1 fromwhich [(V (p)→ 0) ∪ V (p)] = 1. However, p ∨ ¬p
is not provable in neither of the logics iST, iST(F) and iST(wF), because all of
them are sub-logics of IPC.
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7.9 Sub-intuitionistic Logics

Sub-intuitionistic logics are the propositional logics of the weak implications. They
are usually defined by weakening certain axioms and rules for the intuitionistic
implication including the modus ponens rule and the implication introduction rule
in the natural deduction system. As we have mentioned before, the logics of space-
time are also designed for the same purpose. In this section we will show how the
structural logics of spacetime provide a well-behaved conservative extension for sub-
intuitionistic logics. Moreover, we will also use spacetimes to provide a topological
semantics for these logics.

First let us review some important sub-intuitionistic logics, introduced in (Visser
1981b), (Visser 1981a), (Restall 1994), (Celani and Jansana 2001), (Ardeshir and
Hesaam 2008), (Ruitenburg 1991), (Corsi 1987), (Okada 1987), and (Došen 1993)
and investigated extensively in (Ardeshir and Ruitenburg 1998), (Ardeshir 1995),
(Alizadeh and Ardeshir 2006a), (Alizadeh 2009), (Alizadeh and Ardeshir 2006b),
(Alizadeh and Ardeshir 2012), (Alizadeh and Ardeshir 2004), (Celani and Jansana
2005), (Sasaki 1999), and (Suzuki 1999). To complete the list we also define one new
logic, EKPC and we will explain its behaviour later. Consider the following rules of
the usual natural deduction system on sequents in the form � � A, where � ∪ {A}
is a finite set of formulas in the usual propositional language, i.e., {�,⊥,∧,∨,→}:
Propositional Rules:

�
� � � � � ⊥ ⊥

� � A

� � A ∨ B �, A � C �, B � C ∨E
� � C

� � Ai
(i = 0, 1) ∨I

� � A0 ∨ A1

� � A0 ∧ A1
(i = 0, 1) ∧E

� � Ai

� � A � � B ∧I
� � A ∧ B

A � B → I
� � A→ B

Formalized Rules:

� � A→ B � � A→ C (∧I ) f
� � A→ B ∧ C

� � A→ C � � B → C (∨E) f
� � A ∨ B → C

� � A→ B � � B → C tr f
� � A→ C

Additional Rules:

� � � → ⊥
E

� � ⊥
� � A � � A→ B

MP
� � B

� � A Cur
� � � → A
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The logic KPC is defined as the logic of the system of all the propositional and
formalized rules. BPC is defined as KPC+ Cur ; EKPC as KPC plus the rule E ;
EBPC as BPC plus the rule E ; KTPC as KPC plus the rule MP and finally IPC is
defined as BPC plus the rule MP .

Remark 18 First note that in the algebraic terminology, the rules state that the
connective→ is an implication that internalizes both the monoidal structure, i.e., the
meet and the finite joins. Secondly, note that in defining the consequence relation
� for sub-intuitionistic logics, we mostly follow (Celani and Jansana 2001), where
KPC andKTPC are calledwKσ andwKσ (MP). Here, we follow the modal naming
tradition to call themKPC andKTPC since, they are sound and completewith respect
to the class of all and reflexive Kripke models, respectively. The final point to make
is on the axiomatization of BPC. This logic can be also defined as KPC plus the
relaxed version of→ I as defined in (Ardeshir 1995):

�, A � B
� � A→ B

To prove the equivalence, it is clear that the rule Cur is provable by this more
strong version of→ I . Moreover, it is easy to show that the new systemwith this rule
admits theweakening rule.Hence, the original→ I is provable. For the converse, first
we will show that using the rule Cur , C � D→ C is provable, for all the formulas
C and D. First use Cur on C to prove C � � → C and since D � �, we have
C � D→�. By formalized tr , we have C � D→ C . Coming back to the proof
of the converse part, assume �, A � B. It is easy to see that

∧
� ∧ A � B and then

�∧
� ∧ A→ B, by the original version of→ I . By the foregoing point and the

formalized∧I , we can prove∧
� � A→∧

� ∧ A, which implies
∧

� � A→ B,
by tr f . Therefore, � � A→ B.

Definition 20 By a propositional Kripke model for the usual propositional language
Lp, we mean a tuple K = (W, R, V ), where W is a set, R ⊆ W ×W is a binary
relation over W (not necessarily transitive or reflexive) and V : At (Lp) → P(W ),
where At (Lp) is the set of atomic formulas of Lp and P(W ) is the powerset of W .
A propositional Kripke model is called persistent if V (p) is R-upward closed, i.e.,
if u ∈ V (p) and (u, v) ∈ R then v ∈ V (p). The model is called serial if R is serial,
i.e., for all u ∈ W there exists v ∈ W such that (u, v) ∈ R. It is called reflexive if R
is reflexive, i.e., (w,w) ∈ R, for all w ∈ W . It is called transitive if R is transitive,
i.e., for all u, v,w ∈ W if (u, v) ∈ R and (v,w) ∈ R then (u,w) ∈ R. It is called a
rooted tree if it has an element r such that for any w �= r we have (r,w) ∈ R, it is
transitive and for any u, v,w ∈ W , if (u,w), (v,w) ∈ R and u �= v then exactly one
of the cases (u, v) ∈ R or (v, u) ∈ R happens. The forcing relation for a propositional
Kripkemodel is defined as usual using the relation R for implication, i.e.,u � A→ B
if for any v ∈ W that (u, v) ∈ R, if v � A then v � B. A sequent � ⇒ A is valid in
a propositional Kripke model if for all w ∈ W , ∀B ∈ � (w � B) implies w � A.

Theorem 21 (Soundness-Completeness for Sub-intuitionistic Logics)

(i) KPC is sound and complete with respect to the class of all propositional Kripke
models (Celani and Jansana 2001).
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(i i) EKPC is soundand completewith respect to the class of all serial propositional
Kripke models.

(i i i) KTPC is sound and complete with respect to the class of all reflexive propo-
sitional Kripke models (Celani and Jansana 2001).

(iv) BPC is sound and complete with respect to the class of all transitive persistent
propositional rooted Kripke trees. If � = ∅, the finite rooted transitive trees are
sufficient (Ardeshir and Ruitenburg 1998).

(v) EBPC is sound and complete with respect to the class of all transitive serial
persistent propositional rooted Kripke trees. If � = ∅, the finite rooted transitive
serial trees are sufficient (Ardeshir and Hesaam 2008).

(vi) IPC is sound and complete with respect to the class of all transitive reflexive
persistent propositional rooted Kripke trees. If � = ∅, the finite rooted transitive
reflexive persistent trees are sufficient.

Proof We have to prove the case of EKPC. For soundness, note that the rule E is
valid in all serial Kripke models. Let (W, R, V ) be such a model. If

� � � → ⊥
E

� � ⊥
and for some u ∈ W , u � �, then by the validity of the premise, u � �→ ⊥. Since
R is serial, there exists v ∈ W such that (u, v) ∈ R. Hence, v � ⊥, which is impossi-
ble. Hence, u � � from which u � � ⇒ ⊥. For completeness, use the Lindenbaum
algebra for EKPC. This algebra is clearly a distributive join internalizing strong
algebra that satisfies 1→ 0 = 0. Therefore, by part (∗) in the proof of Theorem
17, it is possible to embed the algebra into its canonical Kripke model with a serial
relation R. Note that the Kripke frame from the proof of Theorem 17 is in the form
(W,=W , R). Therefore, since the validity for ∇-free sequents in any model of the
form (W,=W , R, V ) is equivalent to its validity in the propositional Kripke model
(W, R, V ), the completeness follows. �

Note that the language Lp is a fragment of the full language L∇ . Therefore, it is
meaningful to use spacetimes and Kripke models (not propositional Kripke models
we have just defined) as models for sub-intuitionistic logics.

Theorem 22 (Embedding Theorem) Assume � ∪ {A} ⊆ Lp, where Lp is the usual
language of propositional logic. Then:

(i) � �KPC A iff � �iSTL A iff iST � � ⇒ A iff K � � ⇒ A.
(ii) � �EKPC A iff � �iSTL(wF) A iff iST(wF) � � ⇒ A iff K(wF) � � ⇒ A.
(iii) � �KTPC A iff � �iSTL(F) A iff iST(F) � � ⇒ A iff K(F) � � ⇒ A.
(iv) � �BPC A iff � �iSTL(P) A iff iST(P) � � ⇒ A iff K(P) � � ⇒ A.
(v) � �EBPC A iff � �iSTL(P,wF) A iff iST(P,wF) � � ⇒ A iff K(P,wF) �

� ⇒ A.
(vi) � �IPC A iff � �iSTL(P,F) A iff iST(P, F) � � ⇒ A iff K(P, F)

� � ⇒ A.
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Proof Let us start with the embedding of the sub-intuitionist logics into the logics
of spacetime. This part is just the syntactical version of the algebraic fact that the
connective→ in a temporal algebra is really an implication which internalizes both
the monoidal structure and the finite joins. However, to show the proof theoretical
flavour of the system, let us present the proof trees for all sub-intuitionistic rules. This
hopefully shows the more natural adjoint-based approach to implication compared
to the sub-intuitionistic proposal.

To prove the embedding, we use induction on the length of the sub-intuitionistic
proof. Note that all the axioms and the propositional rules except→ I are available
in the basic system iSTL. Therefore, it remains to prove the formalized rules and
the rule→ I . This is what we will do in the following proof trees. Note that by a
double line rule, we mean the existence of an easy omitted proof tree between the
upper part and the lower part of the double line and by the label S together with a
double line, we mean that the omitted tree is a simple combination of the structural
rules. For the formalized ∧I , we have:

∇(A→ B), A⇒ B
S∇(A→ B),∇(A→ C), A⇒ C

∇(A→ C), A⇒ C
S∇(A→ B),∇(A→ C), A⇒ C
R∧∇(A→ B),∇(A→ C), A⇒ B ∧ C

∇[(A→ B) ∧ (A→ C)], A⇒ B ∧ C
R →

(A→ B) ∧ (A→ C) ⇒ A→ (B ∧ C)

(A→ B), (A→ C) ⇒ A→ (B ∧ C)

and for the formalized ∨I , we have:
∇(A→ C), A⇒ C

S∇(A→ C),∇(B → C), A⇒ C

∇(B → C), B ⇒ C
S L∨∇(A→ C),∇(B → C), B ⇒ C

∇(A→ C),∇(B → C), A ∨ B ⇒ C

∇[(A→ C) ∧ (B → C)], A ∨ B ⇒ C
R →

(A→ C) ∧ (B → C) ⇒ A ∨ B → C

(A→ C), (B → C) ⇒ A ∨ B → C

for the formalized tr , we have:

∇(A→ B), A⇒ B ∇(B → C), B ⇒ C
cut∇(A→ B),∇(B → C), A⇒ C

∇[(A→ B) ∧ (B → C)], A⇒ C
→ I

(A→ B) ∧ (B → C) ⇒ A→ C

(A→ B), (B → C) ⇒ A→ C

And finally for→ I we have:

⇒ �

A⇒ B
LW∇�, A⇒ B
R →� ⇒ A→ B
cut⇒ A→ B
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Nowwe have to show that the additional rules are provable by their corresponding
additional rules in the logics of spacetime. For Cur , we will use its characterization
based on→ I as mentioned in the Remark 18.

∇(
∧

�) ⇒ ∇(
∧

�)
P∇(

∧
�)⇒∧

�

�, A⇒ B
∧

�, A⇒ B
cut∇(

∧
�), A⇒ B

R →∧
� ⇒ A→ B

� ⇒ A→ B

For MP and E we have:

A→ B ⇒ A→ B
F

A→ B ⇒ ∇(A→ B) A,∇(A→ B) ⇒ B
L →

A, A→ B ⇒ B

�,∇(�→ ⊥)⇒ ⊥
∇(�→ ⊥) ⇒ ⊥

wF�→ ⊥⇒ ⊥
This completes the embedding part of the theorem. To complete the equivalences,

it is enough to close the circle by coming back from the validity in the Kripke
models to provability in the sub-intuitionistic logics. For KPC, by Theorem 21, it is
sufficient to prove � ⇒ A is valid in all propositional Kripke models. Let (W, R, V )

be a propositional Kripkemodel. Consider the tuple (W,=, R, V ), where the order is
just equality. This tuple is aKripkemodel, since R is compatiblewith the equality and
V maps atomic formulas to =-upward closed subsets of W that are just all subsets.
Since � ⇒ A is valid in all Kripke models, it is valid in (W,=, R, V ). However,
the forcing in this model and the original propositional model is the same for ∇-
free formulas. Therefore, � ⇒ A is also valid in (W, R, V ). For (i i) and (i i i) the
argument is similar. For (iv), again by Theorem21, it is sufficient to prove the validity
of� ⇒ A in all transitive persistentKripke trees. Let (W, R, V )be such a tree.Define
≤R as the reflexive extension of R, i.e., R ∪ {(w,w) ∈ W 2|w ∈ W }. Since the model
is a tree, ≤R is a partial order. Since, R is transitive, R is also compatible with ≤R

and hence (W,≤R, R, V ) is a Kripke frame. Moreover, note that R ⊆ ≤R and if a
set is R-upward closed, it is also ≤R upward closed. Therefore, (W,≤R, R, V ) is a
K(P)-Kripke model and hence � ⇒ A is valid in (W,≤R, R, V ). Again since the
validity of � ⇒ A in (W, R, V ) is the same as validity in (W,≤R, R, V ) for ∇-free
formulas, the theorem follows. The remained cases are similar to (iv). �

In the presence of the rule Cur , it is also possible to strenghten the topological
completeness to capture the logics via one arbitrary infinite fixed Hausdorff space.
For that matter, we need the following topological lemma:

Lemma 3 Let X be an infinite Hausdorff space. Then every finite rooted tree is a
surjective continuous image of X.

Proof Let us first prove the following claims:

Claim I. For any natural numbers N and K , there exists a natural number M =
MN ,K such that for any Hausdorff space X with cardinality greater than or equal to
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M , there are K many open mutually disjoint subspaces of X each of which has at
least N elements.

Proof of the Claim I. We prove the claim by induction on N . For N = 1, pick
M1,K = K and prove the claim by induction on K . For K = 1, it is enough to pick
the whole space as the open subset. To prove the claim for K + 1, by IH, since
M1,K+1 = K + 1 ≥ K , it is possible to find at least K non-empty mutually disjoint
open subsets {Ui }Ki=1. Pick {xi }Ki=1 as some elements such that xi ∈ Ui . It is possible
because they are not empty. Since the space has at least K + 1 elements, there should
be some point x /∈ {xi }Ki=1. Now, use the Hausdorff condition to find a sequence
{Vi }K+1i=1 of non-empty mutually disjoint open subsets. The argument is as follows.
For any 1 ≤ i ≤ K , there exist disjoint open subsets Ai and Bi such that x ∈ Ai and
xi ∈ Bi . For any 1 ≤ i ≤ K , take Vi = Ui ∩ Bi and also define VK+1 =⋂K

i=1 Ai .
They are clearly open non-empty subsets that are mutually disjoint.

Now, if we have the claim for N , we want to prove it for N + 1. By IH we know
that there exists M ′ that works for N and K ′ = 2K . We claim that M = M ′ works
for N + 1 and K . If X has at least M ′ elements, then there are at lest 2K mutually
disjoint opens such that each of them has at least N elements. If we arrange these
2K , to K pairs and compute their unions, then we have K opens, each of which
contains at least 2N elements, which is greater than or equal to N + 1.

Claim II. For any natural number n, there exists a natural numberm such that for
any Hausdorff space with at least m elements and any finite rooted tree with at most
n elements, there exists a continuous surjection from the space to the tree.

Proof of the Claim II. We will prove the claim by induction on n. For n = 1 pick
m = 1 and use the constant function. For n + 1, by IH, we know that for n there
exists anm ′. Pickm as the number in the claim 1, for N = m ′ and K = n. Therefore,
the space X has at least n opens each of which contains at least m ′ elements. Call
them {Ui }ni=1. Since the tree has n + 1 elements, there are at most n branches for
the root such that each of them has at most n nodes. Call these branches {Tj }rj=1 for
some r ≤ n. By IH, we can find a surjective continuous function fi : Ui → Ti for
any 1 ≤ i ≤ r . Now define f : X → T as the extension of the union of fi ’s such that
it sends any x /∈⋃r

i=1Ui to the root of the tree. The function is clearly surjective. For
continuity, note that any open subset of the tree is an upward-closed subset which
means that it is either equal to T or is a union of the upward-closed subsets of the
Ti ’s. For the first case, f −1(T ) = X which is open. For the second case, it is implied
from the continuity of fi and the condition that Ui is open.

To prove the theorem, let T be a rooted tree with n elements. Then by Claim II,
there exists a boundm such that for any Hausdorff space X with at leastm elements,
there exists a continuous surjection from X to the tree. The theorem follows from
the fact that X is infinite and hence has at least m elements. �
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Definition 21 Let R ⊆ {P, F,wF} and X be a topological space. By X �g
R A,

we mean that for any spacetime (O(X),∇) and any V : At (Lp) → O(X), if
(O(X),∇, V ) � iSTL(R) then (O(X),∇, V ) � A.

Theorem 23 (Topological Completeness Theorem, Strong version) Let X be an
infinite Hausdorff space. Then:

(i) If X �g
P A then BPC � A.

(ii) If X �g
P,wF A then EBPC � A.

(iii) If X �g
P,F A then IPC � A.

Proof The proof is a truth transformation sequence starting from a propositional
Kripke tree, going to an appropriate Kripke model and then to a suitable spacetime
to finally land in a spacetime over X , using Theorem 19. More precisely, for (i), let
(W, R, V ) be a finite transitive rooted tree. To prove BPC � A, by Theorem 21, it is
enough to show that (W, R, V ) � A. As we have seen in the proof of Theorem 22, it
is possible to define the Kripke modelK = (W,≤R, R, V ) such thatK � iSTL(P)

and the validity of ∇-free formulas in (W, R, V ) and K are equivalent. Therefore,
it is enough to proveK � A. By Example 13, it is possible to turn the Kripke model
K to the spacetime SK equipped with a valuation V̄ , again with the same validity
for every sequents. Hence, we will show that (SK , V̄ ) � A. By Lemma 3, there
exists a surjective continuous function f : X → W where W is considered with the
upset topology by the order ≤R . By Theorem 19 and the fact that the order topology
is Alexandroff, there are ∇ : O(X) → O(X) and U : At (L∇)→ O(X) such that
the validity of any sequent in (SK , V ) and (O(X),∇,U ) are the same. Hence, it
is enough to prove (O(X),∇,U ) � A. Since, (O(X),∇,U ), the topological model
(SK , V̄ ) and the KripkemodelK have the same validity andK � iSTL(P), we have
(O(X),∇,U ) � iSTL(P). Finally, since, X �g

P A, we have (O(X),∇,U ) � A. The
proofs for (i i) and (i i i) are exactly the same. �
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Chapter 8
Bounded Distributive Lattices with Two
Subordinations

Sergio Celani and Ramon Jansana

Abstract In this paper we consider the notion of subordination on distributive lat-
tices, equivalent to that of quasi-modal operator for distributive lattices introduced
by Castro and Celani in 2004. We provide topological dualities for categories of
distributive lattices with a subordination and then for some categories of distributive
lattices with two subordinations, structures that we name bi-subordination lattices.
We investigate three classes of bi-subordination lattices. In particular that of positive
bi-subordination lattices.

Keywords Subordination relations on distributive lattices · Contact relations ·
Distributive lattices · Distributive lattices with operators · Quasi-modal operators

8.1 Introduction

Subordination algebras and contact algebras originate in the duality for compact
Hausdorff spaces developed by de Vries (1962) where the algebraic duals of the
spaces are complete Boolean algebras with a proximity relation. The relations on
arbitrary Boolean algebras that satisfy the conditions in the definition of de Vries
proximity relation are known as compingent relations. Deleting some of the con-
ditions we have the subordination relations of Bezhanishvili et al. (2016). These
relations also originate in the Region-based theory of space, where precontact rela-
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tions on a Boolean algebra, as are called in Dimov and Vakarelov (2006c), were
introduced by Düntsch and Vakarelov (2003, 2007) under the name of proximity
relations as a weakening of the relations of the contact algebras studied in Dimov
and Vakarelov (2006a, b). The precontact relations and the subordination relations
of Bezhanishvili et al. (2016) are dual notions (a is related to b in one relation if and
only if a is not related to the complement of b in the other). An equivalent concept to
those of subordination relation and precontact relation is that of quasi-modal opera-
tor introduced by Celani in Celani (2001), where a topological duality for Boolean
algebras with a quasi-modal operator is given.

The definition of subordination relation on aBoolean algebra does notmention the
complement operation and therefore it can be considered for bounded distributive
lattices as well as its equivalent concept of quasi-modal operator. This is done in
Castro and Celani (2004) where the concept of quasi-modal operator for bounded
distributive lattices is studied and a topological Priestley duality is given for bounded
distributive latticeswith twoquasi-modal operators. From the results proved inCastro
and Celani (2004) one easily obtains a duality for bounded distributive lattices with
a subordination.

In this paper we study three kinds of distributive lattices with two subordination
relations that we call bi-subordination lattices: the bi-subordination lattices where
one subordination is included in the other, the bi-subordination lattices where one
subordination is the converse of the other, and the positive bi-subordination lattices
where the relation between one subordination and the other is similar to that between
the box operation and the diamond operator in positive modal algebras. We present
topological dualities for these classes of bi-subordination lattices. In order to be able
to do it we introduce in detail topological dualities for several categories of bounded
distributive lattices with a subordination given by different choices of morphisms
between them. The dual objects are Priestley spaces endowed with a binary relation.
Some of the results we report can be found in Castro and Celani (2004) but for
completeness we decided to present them with full proofs, besides phrasing them in
terms of subordination relations instead of quasi-modal operators.

After the preliminaries section we present in Sect. 8.3 the concepts of subordina-
tion, �-quasi-modal operator and ∇-quasi-modal operator for bounded distributive
lattices aswell as the concept of bi-subordination lattice.Wealso introduce some tools
necessary for the dualities we present in Sect. 8.5. In Sect. 8.4 we discuss some exam-
ples of bi-subordination lattices and define the concept of positive bi-subordination
lattice. In Sect. 8.5 we present the dualities for different categories of subordination
lattices. The objects of the dual categories are Priestley spaces with two binary rela-
tions, one for each subordination. We extend the dualities to bi-subordination lattices
in the natural way. Finally, in Sect. 8.6 we first discus the dualities for positive bi-
subordination lattices that naturally result when we dualize each subordination by a
relation. Then we present a different duality where the objects are Priestley spaces
with a single binary relation in a similar way as one can obtain a Priestley duality
for positive modal algebras by considering only one relation on the Priestley space
dual to the distributive lattice reduct instead of considering one relation for the box
operation and another one for the diamond operator.



8 Bounded Distributive Lattices with Two Subordinations 219

8.2 Preliminaries

In this preliminaries section we introduce the most basic concepts and notation we
need related to posets, lattices, and binary relations. The other concepts assumed to
be known in the paper, like Priestley space, will be introduced when needed.

Let 〈X,≤〉 be a partially ordered set (or poset). A set U ⊆ X is an upset of X
if for every x, y ∈ X , if x ∈ U and x ≤ y, then y ∈ U . The dual notion is that of
downset, that is, a set V ⊆ X is a downset of X if for every x, y ∈ X such that x ∈ V
and y ≤ x , we have y ∈ V .

We assume knowledge of bounded distributive lattices (Balbes andDwinger 1974;
Davey and Priestley 2002; Grätzer 2009). Let L be a bounded distributive lattice.
Recall that a filter of L is a nonempty subset of L that is an upset w.r.t. the order of the
lattice and is closed under the operation of meet. Dually, an ideal of L is a nonempty
subset of L that is a downset w.r.t. the order of the lattice and is closed under the
operation of join. A filter F of L is said to be prime if for every a, b ∈ L such that
a ∨ b ∈ F it holds that a ∈ F or b ∈ F . If L is a Booelan lattice (i.e. a lattice where
every element has a complement) the prime filters are known as ultrafilters. The
filter generated by a set H ⊆ L will be denoted by [H) or by Fg(H) and the ideal
generated by H by (H ] or Ig(H). Given a ∈ L , we write [a) or Fg(a) for the filter
generated by {a} and (a] or Ig(a) for the ideal generated by {a}. The set, and the
lattice, of ideals of L will be denoted by Id(L) and that of its filters by Fi(L).

For every set X , we useP(X) to denote the powerset of X as well as the powerset
lattice and the powerset Booelan algebra of (the subsets of) X .

If X is an arbitrary set and R a binary relation on X , then for every x ∈ X we let

R(x) := {y ∈ X : 〈x, y〉 ∈ R} and R−1(x) := {y ∈ X : 〈y, x〉 ∈ R}

and for every set Y ⊆ X we let

R[Y ] := {y ∈ X : (∃x ∈ Y ) x Ry},
R−1[Y ] := {x ∈ X : (∃y ∈ Y ) x Ry},
�R (Y ) := {x ∈ X : R (x) ⊆ Y } .

Note that

R[Y ] =
⋃

{R(y) : y ∈ Y } and R−1[Y ] = {x ∈ X : R (x) ∩ Y �= ∅} .

Wealso refer to R−1[Y ] by♦R (Y ). Note that then�R(Y ) = [♦R (Y c)]c and♦R(Y ) =
[�R(Y c)]c. Moreover, we denote by R−1 the converse of the relation R, i.e., R−1 =
{〈x, y〉 : yRx}.
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8.3 Subordination Relations and Quasi-modal Operators
on Distributive Lattices

The notion of subordination on a Boolean algebra defined in Bezhanishvili et al.
(2016) is equivalent to the notion of precontact or proximity relation on a Boolean
algebra given in Dimov and Vakarelov (2006c) and Düntsch and Vakarelov (2007). It
can be exported to bounded distributive lattices since it does not involve the operation
of complement.

Definition 1 A subordination on a bounded distributive lattice L is a binary relation
≺ on L satisfying the following conditions for every a, b, c, d ∈ L:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d.

A subordination lattice is a pair 〈L ,≺〉 where L is a bounded distributive lattice and
≺ a subordination on L . A bi-subordination lattice is a triple 〈L ,≺,�〉 where L is
a bounded distributive lattice and ≺, � are subordinations on L .

We will denote by SLat the class of subordination lattices and by BSLat the class
of bi-subordination lattices.

In the case of Boolean algebras, the subordination relations are equivalent to the
quasi-modal operators of Celani (2001). Similarly, on bounded distributive lattices
they are equivalent to the quasi-modal operators on bounded distributive lattices
introduced in Castro and Celani (2004).

Definition 2 (Castro and Celani 2004) A �-quasi-modal operator on a bounded
distributive lattice L is a map � : L → Id(L) satisfying the conditions:

(QM1) �(a ∧ b) = �(a) ∩ �(b), for every a, b ∈ L ,
(QM2) �(1) = L ,

that is, it is a meet-homomorphism (preserving also the top element) from the lattice
L to the lattice of its ideals.

Dually, a ∇-quasi-modal operator on a bounded distributive lattice L is a map
∇ : L → Fi(L) satisfying the conditions:

(QM3) ∇(a ∨ b) = ∇(a) ∩ ∇(b), for every a, b ∈ L ,
(QM4) ∇(0) = L ,

that is, it is a join-homomorphism (preserving also the bottom element) from L to
the dual of the lattice of the filters of L .

Remark 1 A dual modal operator � on a bounded distributive lattice L is a unary
operation on L that is ameet-homomorphism from L to L preserving the top element.
The map that sends every element of L to the principal ideal it generates is an
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embedding from L to the lattice of the ideals of L . Thus we can look at a dual modal
operator � on a bounded distributive lattice L as a meet-homomorphism from L to
the lattice Id(L) of the ideals of L that preserves also the top element and has the
property that the elements of its range are principal ideals. In this way, the concept of
�-quasi-modal operator on a bounded distributive lattice is a natural generalization
of the notion of dual modal operator. Dually, an operator ♦ on a bounded distributive
lattice L is a unary operation on L that is a join-homomorphism from L to L that
preserves the bottom element and since L is dually embeddable into the lattice of
the filters of L by the map that sends every element of L to the principal filter it
generates, an operator ♦ on a bounded distributive lattice L can be seen as a join-
homomorphism from L to the dual lattice of the lattice Fi(L) of the filters of L that
in addition preserves the bottom element. Therefore, the concept of ∇-quasi-modal
operator on a bounded distributive lattice is a natural generalization of the notion of
modal operator.

Quasi-modal operators and subordination relations are strictly connected in the
way we proceed to describe. Recall the well-known fact that any map f : L → P(L)

determines two relations R f , R
+
f ⊆ L × L , one the converse of the other, defined by

the conditions

aR f b iff a ∈ f (b) and aR+
f b iff b ∈ f (a).

Conversely, every relation R ⊆ L × L determines two maps fR, f +
R : L → P(L)

defined by the conditions

fR(a) := R−1(a) = {b ∈ L : bRa} and f +
R (a) := R(a) = {b ∈ L : aRb}.

It is immediate to see that if f : L → P(L), then fR f = f and f +
R+

f
= f and that if

R ⊆ L × L , then R fR = R and R+
f +
R

= R.
We apply these facts to �-quasi-modal operators, ∇-quasi-modal operators and

subordinations on L .
Let f : L → P(L) be a map. It is easy to see that f is a �-quasi-modal operator

if and only if its associated relation R f is a subordination on L , and that f is a
∇-quasi-modal operator if and only if R+

f is a subordination on L .
If � : L → P(L) is a �-quasi-modal operator, then we denote the relation R�

by ≺�. Thus for every a, b ∈ L

a ≺� b iff a ∈ �(b).

Analogously, if ∇ : L → P(L) is a ∇-quasi-modal operator, then we denote the
relation R+

∇ by ≺∇ and we have for every a, b ∈ L

a ≺∇ b iff b ∈ ∇(a).
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Consider now a binary relation R on L . It is easy to see that the function fR :
L → P(L) is a �-quasi-modal operator on L if and only if R is a subordination and
that this holds if and only if f +

R : L → P(L) is a ∇-quasi-modal operator on L .
If ≺ is a subordination on L , then we denote the map f≺ by �≺ and the map f +≺

by ∇≺. Hence, for every a ∈ L

�≺(a) := {b ∈ B : b ≺ a} and ∇≺(a) := {b ∈ B : a ≺ b} .

Since �-quasi-modal operators correspond to subordinations and these to ∇-
quasi-modal operators, the procedures just described above allow us to associate
with every �-quasi-modal operator a ∇-quasi-modal operator and conversely, in the
following way.

Let L be a bounded distributive lattice and� a�-quasi-modal operator on L . The
∇-quasi-modal operator ∇≺�

of the subordination ≺� is then given for each a ∈ L
by

∇≺�
(a) := {b ∈ L : a ∈ �(b)} .

In a similar way, given a ∇-quasi-modal operator ∇, the �-quasi-modal operator
of the subordination ≺∇ is given for each a ∈ L by

�≺∇ (a) := {b ∈ L : a ∈ ∇(b)} .

It immediately follows that �∇≺�
= � and ∇�≺∇ = ∇.

Note that due to the equivalence between subordinations and �-(∇-)modal oper-
ators, Remark 1 shows that subordinations can be taken as generalizations of modal
operators.

Remark 2 If L is a bounded distributive lattice, � a dual modal operator on L and
♦ a modal operator on L , then it is easy to see that the binary relations ≺� and ≺♦
defined on L by setting for every a, b ∈ L

a ≺� b ⇐⇒ a ≤ �b

and
a ≺♦ b ⇐⇒ ♦a ≤ b

are subordinations on L .
The �-quasi-modal operator �≺� associated with ≺� satisfies that �≺�(a) =

(�a] for all a ∈ L . The ∇-quasi-modal operator ∇≺� of ≺� is then given by the
condition b ∈ ∇≺�(a) if and only if a ≤ �b. Therefore, ∇≺�(a) = �−1[[a)] for
every a ∈ B.

Similarly, the∇-quasi-modal operator associatedwith≺♦ satisfies for everya ∈ L
that ∇≺♦(a) = [♦a). The �-quasi-modal operator of ≺♦ is then given for every
a, b ∈ L by the condition b ∈ �≺♦(a) if and only if iff ♦b ≤ a. Thus, for every
a ∈ L we have �≺♦(a) = ♦−1[(a]].
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Being the notions of subordination relation and �-quasi-modal operator equiva-
lent, as well as equivalent to that of∇-quasi-modal operator, we can take any of them
as a primitive notion. We decided to take the notion of subordination as primitive in
this paper; nevertheless we will make use of the associated quasi-modal operators
on some proofs and statements.

In Castro and Celani (2004) the authors introduce and study quasi-modal lattices
which consist of a bounded distributive lattice together with both a �-quasi-modal
operator and a ∇-quasi-modal operator. Thus they consider in disguise bounded
distributive lattices with two subordinations, i.e., bi-subordination lattices.

We proceed to introduce in the remaining part of this section some tools that are
essential to the presentation of the results in the paper.

8.3.1 Two Maps on the Power Set of a Subordination Lattice
Determined by the Subordination Relation

Given a bounded distributive lattice with a subordination we define two maps on the
poset of all subsets of the lattice determined by the subordination and present the
properties we need. One is a modal operator and the other its dual. Using them we
will define two relations on the set of prime filters of a bounded distributive lattice
with a subordination.

Let L be a bounded distributive lattice and ≺ a subordination on L . The maps
�−1≺ : P(L) → P(L) and ∇−1≺ : P(L) → P(L) are defined by setting for every
C ⊆ L:

1. �−1≺ (C) := {a ∈ L : �≺(a) ∩ C �= ∅},
2. ∇−1≺ (C) := {a ∈ L : ∇≺(a) ⊆ C}.
These two maps are obviously monotone (w.r.t. inclusion), ∇−1≺ distributes over
intersections, �−1≺ over unions, �−1≺ (∅) = ∅, and ∇−1≺ (L) = L . It is easy to see that
for every C ⊆ L ,

�−1
≺ (C) = (∇−1

≺ (Cc))c and ∇−1
≺ (C) = (�−1

≺
(
Cc

)
)c.

Hence, �−1≺ is a modal operator on the powerset lattice P(L) and ∇−1≺ is its dual.
The first two items of the next lemma are proved in Castro and Celani (2004).

Lemma 1 For every filter F, every ideal I , and every prime filter P of L:

1. �−1≺ (F) is a filter,
2. ∇−1≺ (I ) is an ideal,
3.

(∇−1≺ (P)
)c

is an ideal.

Proof We abbreviate all along the proof �≺ by � and ∇≺ by ∇.
(1) Suppose that a, b ∈ �−1 (F). Then�(a) ∩ F �= ∅ and�(b) ∩ F �= ∅. Let c ∈

�(a) ∩ F and d ∈ �(b) ∩ F . Then c ∧ d ∈ F and c ∧ d ∈ �(a) ∩ �(b), because
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these sets are ideals. Hence c ∧ d ∈ �(a ∧ b). Therefore, �(a ∧ b) ∩ F �= ∅ and so
a ∧ b ∈ �−1 (F). Suppose now that a ∈ �−1 (F) and a ≤ b. Then �(a) ∩ F �= ∅.
Since �(a) ⊆ �(b), �(b) ∩ F �= ∅. Hence b ∈ �−1 (F).

(2) Suppose that a, b ∈ ∇−1 (I ). Then∇(a) ⊆ I and∇(b) ⊆ I . Therefore∇(a ∨
b) = ∇(a) ∩ ∇(b) ⊆ I . Hence a ∨ b ∈ ∇−1 (I ). Suppose that a ∈ ∇−1 (I ) and b ≤
a. Then ∇(a) ⊆ I and ∇(a) ⊆ ∇(b). Therefore, ∇(b) ⊆ I . Thus, b ∈ ∇−1 (I ).

(3) Let P be a prime filter of L . First note that since ∇(0) = L and P �= L , we
have ∇(0) � P . Therefore 0 /∈ ∇−1 (P). Suppose now that a, b /∈ ∇−1 (P). Hence
there are c ∈ ∇(a) and d ∈ ∇(b) such that c, d /∈ P . Since P is a prime filter it
follows that c ∨ d /∈ P . But since ∇(a),∇(b) are filters c ∨ d ∈ ∇(a) ∩ ∇(b) =
∇(a ∨ b). Hence ∇(a ∨ b) � P and therefore a ∨ b /∈ ∇−1 (P). Finally, suppose
that a /∈ ∇−1 (P) and b ≤ a. Then ∇(a) � P . But since ∇(a) ⊆ ∇(b), ∇(b) � P
which implies that b /∈ ∇−1 (P). �

8.3.2 The Two Relations on the Set of Prime Filters
of a Lattice Determined by a Subordination

Let L be a bounded distributive lattice and ≺ a subordination on L . We define the
binary relation R�≺ on the set X (L) of the prime filters of L by setting for every
P, Q ∈ X (L)

(P, Q) ∈ R�
≺ ⇐⇒ �−1

≺ (P) ⊆ Q.

In a similar way, we define the binary relation R∇≺ on X (L) by setting for every
P, Q ∈ X (L)

(P, Q) ∈ R∇
≺ ⇐⇒ Q ⊆ ∇−1

≺ (P).

Proposition 1 Let ≺ be a subordination on a bounded distributive lattice L. Then
R�≺ is the converse of the relation R∇≺ .

Proof Suppose that PR�≺ Q, i.e., that {a ∈ L : �≺(a) ∩ P �= ∅} ⊆ Q. To prove that
QR∇≺ P we have to show that P ⊆ {a ∈ L : ∇≺(a) ⊆ Q}. Suppose that a ∈ P and
∇≺(a) � Q. Let b ∈ ∇≺(a) be such that b /∈ Q. Thus b /∈ {a ∈ L : �≺(a) ∩ P �= ∅},
that is, �≺(b) ∩ P = ∅. Note that since b ∈ ∇≺(a), a ∈ �≺(b). Therefore �≺(b) ∩
P �= ∅. Hence b ∈ Q, a contradiction.

Conversely, suppose that QR∇≺ P , so that P ⊆ {a ∈ L : ∇≺(a) ⊆ Q}. To prove
that PR�≺ Q, suppose that �≺(a) ∩ P �= ∅ and let b ∈ �≺(a) ∩ P . Then a ∈ ∇≺(b)
and ∇≺(b) ⊆ Q. Therefore, a ∈ Q. �

Lemma 2 Let L be a bounded distributive lattice and ≺ a subordination on L. The
relations R�≺ and R∇≺ satisfy the following conditions:

1. R�≺ = (⊆ ◦ R�≺ ),

2. R�≺ = (R�≺ ◦ ⊆),

3. R∇≺ = (⊆−1 ◦ R∇≺),

4. R∇≺ = (R∇≺ ◦ ⊆−1).
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Proof (1) The inclusion R�≺ ⊆ (⊆ ◦ R�≺ ) is obvious. To prove the other inclusion
assume that P ⊆ Q′ and Q′R�≺ Q. Then {a ∈ L : �≺(a) ∩ Q′ �= ∅} ⊆ Q. Since P ⊆
Q′,wehave {a ∈ L : �≺(a) ∩ P �= ∅} ⊆ Q, andweare done. (2) follows easily form
the definitions involved. (3) and (4) follow from (2) and (1) respectively using that
R�≺ is the converse of R∇≺ . �

Lemma 2 is basically Lemma 5 in Castro and Celani (2004) and the next lemma
is Lemma 6 in Castro and Celani (2004).

Lemma 3 Let L be a bounded distributive lattice and ≺ a subordination on L. Let
a ∈ L and P ∈ X (L). Then

1. a ∈ �−1≺ (P) iff (∀Q ∈ X (L))(if �−1≺ (P) ⊆ Q, then a ∈ Q),

2. a ∈ ∇−1≺ (P) iff (∃Q ∈ X (L))(Q ⊆ ∇−1≺ (P) and a ∈ Q).

Proof (1) follows from the fact that �−1≺ (P) is a filter. (2) follows from the fact
that ∇−1≺ (P)c is an ideal. The direction from right to left is obvious. Assume that
a ∈ ∇−1≺ (P). Hence a /∈ ∇−1≺ (P)c. Thus since this last set is an ideal, there exist
Q ∈ X (L) such that a ∈ Q and ∇−1≺ (P)c ∩ Q = ∅. Hence Q ⊆ ∇−1≺ (P). �

8.4 Some Kinds of Bi-Subordination Lattices

We are interested in some kinds of bi-subordination lattices L = 〈L ,≺,�〉. In
one kind ≺ ⊆ �, in another � = ≺−1. Finally, we are interested in positive bi-
subordination lattices where the link between the subordinations ≺ and � is similar
to the link between the � and ♦ in positive modal algebras.

Definition 3 Abi-subordination lattice L = 〈L ,≺,�〉 is apositive bi-subordination
lattice if the following conditions hold for all a, b, c ∈ L:

(P1) c ≺ a ∨ b =⇒ (∀d ∈ L)(a � d ⇒ (∃e ∈ L)(e ≺ b & c ≤ e ∨ d))

(P2) a ∧ b � c =⇒ (∀d ∈ L)(d ≺ a ⇒ (∃e ∈ L)(b � e & e ∧ d ≤ c)).

The conditions (P1) and (P2) can be stated in an equivalent form using the oper-
ators �≺ and ∇�. To do it we need to introduce the following operations between
filters and ideals and between ideals and filters of a bounded distributive lattice.

Let L be a bounded distributive lattice, F ∈ Fi(L) and I ∈ Id(L). We define the
following ideal and filter, respectively

F � I :=
⋂

{(I ∪ { f }] : f ∈ F}

and
I ⊕ F :=

⋂
{[F ∪ {i}) : i ∈ I } .
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In terms of the operators �≺ and ∇� the conditions (P1) and (P2) respectively say
that for all a, b ∈ L ,

1. �≺(a ∨ b) ⊆ ∇�(a) � �≺(b),
2. ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b).

We proceed to provide examples of the three kinds of bi-subordination lattices
we are interested in.

Example 1 Let 〈X, τ 〉 be a topological space. The relations ≺ and � defined on
P(X) by

U ≺ V ⇔ U ⊆ int(V )

and
U � V ⇔ cl(U ) ⊆ V

are easily seen to be subordinations. Thus 〈P(X),≺,�〉 is bi-subordination lattice.
We note that the quasi-modal operators �≺ and ∇� satisfy that

�≺(U ) = (int(U )]

and
∇�(U ) = [cl(U ))

for each U ∈ P(X).
If we restrict ≺ and � respectively to the distributive lattices of the open sets

of X and of the closed sets of X we obtain bounded distributive lattices with two
subordinations, which are one included in the other. Indeed, if U, V are closed then

U ≺ V ⇔ U ⊆ int(V ) ⇔ cl(U ) ⊆ int(V ) ⇒ U � V .

Also, if U, V are open, then

U � V ⇔ cl(U ) ⊆ V ⇔ cl(U ) ⊆ int(V ) ⇒ U ⊆ int(V ) ⇔ U ≺ V .

Example 2 Recall that a distributive double p-algebra
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
, see

Katriňák (1973), is a double Stone algebra if a∗ ∨ a∗∗ = 1 and a+ ∧ a++ = 0. In a
double Stone algebra L the following properties are valid:

1. a∗ ≤ a+.
2. a+∗ = a++ ≤ a ≤ a∗∗ = a∗+.
3. (a ∧ b)∗ = a∗ ∨ b∗ and (a ∨ b)+ = a+ ∧ b+.

Double Stone algebras are considered by Katrin̆ák in Katriňák (1974) and in several
papers by the same author. For information on Stone algebras see Grätzer (2009) and
for double Stone algebras see also Balbes and Dwinger (1974).
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If
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
is distributive double p-algebra it is easily seen that the

relation ≺ on L defined by

a ≺ b ⇔ a∗ ∨ b = 1,

is a subordination and that the relation � defined by

a � b ⇔ b+ ∧ a = 0

is also a subordination.
On a double Stone algebra both subordination relations are equal. In fact, a dis-

tributive double p-algebra L is a double Stone algebra if and only if ≺ = �.

Proposition 2 Let
〈
L ,∨,∧,∗ ,+ , 0, 1

〉
be a distributive double p-algebra. Then L is

a double Stone algebra if and only if for every a, b ∈ L,

a∗ ∨ b = 1 ⇔ b+ ∧ a = 0

Proof Suppose that L is a double Stone algebra. Then for every a, b ∈ L we have:

a∗ ∨ b = 1 ⇒ (a∗ ∨ b)+ = 1+

⇔ a∗+ ∧ b+ = 0

⇒ a ∧ b+ = 0

and

a ∧ b+ = 0 ⇒ (a ∧ b+)∗ = 0∗

⇔ (a∗ ∨ b+∗) = 1

⇒ a∗ ∨ b = 1.

Now assume that for every a, b ∈ L , a∗ ∨ b = 1 if and only if b+ ∧ a = 0. Let
a ∈ L . Since a∗+ ∧ a∗ = 0, we obtain that a∗∗ ∨ a∗ = 1. And since a+∗ ∨ a+ = 1
we obtain a++ ∧ a+ = 0. Hence, L is a double Stone algebra. �

The quasi-modal operators �≺ and ∇≺ associated with ≺ have the following
description:

�≺(a) = {
x ∈ L : x∗ ∨ a = 1

}

∇≺(a) = {
x ∈ L : x+ ∧ a = 0

}
.

Proposition 3 Let L be a double Stone algebra. Then the bi-subordination lattice
〈L ,≺,≺〉 is a positive bi-subordination lattice.

Proof We proceed to prove that it satisfies the conditions (P1) and (P2) in
Definition 3. We will work with the equivalent conditions stated in terms of the
delta and nabla operators.
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To prove that the condition (P1) holds, suppose that a, b, c ∈ L are such that
c ∈ �≺(a ∨ b) but c /∈ ∇≺(a) � �≺(b). Then there exists d ∈ ∇≺(a) such that c /∈
(�≺(b) ∪ {d}]. So, there exists P ∈ X (L) such that c ∈ P , �≺(b) ∩ P = ∅ and d /∈
P . Since d ∨ d+ = 1 ∈ P , we get d+ ∈ P , and as d ∈ ∇≺(a), we have d+ ∧ a = 0.
So

0 = 0∗∗ = (d+ ∧ a)∗∗ = d+∗∗ ∧ a∗∗ = d++∗ ∧ a∗∗ = d+++ ∧ a∗∗ = d+ ∧ a∗∗.

Then, since d+ ∈ P , a∗∗ /∈ P . So a∗ ∈ P , because L is a Stone algebra, and since
c ∈ P , we get c∗∗ ∈ P . Thus, a∗ ∧ c∗∗ ∈ P . Moreover,

1 = c∗ ∨ a ∨ b ≤ b ∨ a∗∗ ∨ c∗ = b ∨ (a∗ ∧ c∗∗)∗,

so that b ∨ (a∗ ∧ c∗∗)∗ = 1 and therefore a∗ ∧ c∗∗ ∈ �≺(b). Now since �≺(b) ∩
P = ∅, it follows that a∗ ∧ c∗∗ /∈ P , which is a contradiction.

Now, to prove that the condition (P2) holds, suppose that there are elements
a, b, c ∈ L such that c ∈ ∇≺(a ∧ b), but c /∈ �≺(a) ⊕ ∇≺(b). Therefore c+ ∧ (a ∧
b) = 0 and there exists P ∈ X (L) and d ∈ �≺(a) such that c /∈ P , ∇(b) ⊆ P ,
and d ∈ P . So, 1 = d∗ ∨ a, and therefore 1 = 1++ = (d∗ ∨ a)++ = d∗++ ∨ a++ =
d∗ ∨ a++ ∈ P . Since d ∈ P , d+ /∈ P . Therefore, a++ ∈ P . We note that c+ ∈ P ,
because c /∈ P . So, a ∨ c+ ∈ P and therefore, a+ ∨ c++ /∈ P . As c ∈ ∇≺(a ∧ b),

0 = a ∧ b ∧ c+ = a++ ∧ c+ ∧ b

= (a+ ∨ c++)+ ∧ b.

Then a+ ∨ c++ ∈ ∇≺(b) ⊆ P , which is a contradiction.
Thus we have that for every double Stone algebra L the bi-subordination lattice

〈L ,≺,≺〉 is a positive bi-subordination lattice. �

Example 3 This example is given inBezhanishvili (2013) for bounded sublattices of
Boolean algebras. It can be extended to bounded sublattices of bounded distributive
lattices. Let L be a bounded distributive lattice and let S be a bounded sublattice of
L . We consider the relations ≺S and �S defined by

a ≺S b ⇐⇒ (∃c ∈ S) a ≤ c ≤ b

and
a �S b ⇐⇒ (∃c ∈ S) b ≤ c ≤ a.

These two relations are easily seen to be subordination relations and each one is the
converse relation of the other.

The operators associated with the relations ≺S and �S are given by

�≺S (a) = {b ∈ L : S ∩ [b) ∩ (a] �= ∅}
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and
∇�S (a) = {b ∈ L : S ∩ [a) ∩ (b] �= ∅} .

An element a of a bounded lattice L is said to be complemented if there is b ∈ L
such that a ∧ b = 0 and a ∨ b = 1. The set of all complemented elements of L is
called the center of L . The center of L contains 0 and 1.Moreover, if L is distributive,
the complementswhen they exist are unique. This implies that the center of a bounded
distributive lattice L is a bounded sublattice of L and a Boolean lattice.

Proposition 4 Let L be a bounded distributive lattice. If S is a bounded sublattice
of the center of L, then 〈L ,≺S,�S〉 is a positive bi-subordination lattice.

Proof We note that S is a bounded sublattice of the center of L if and only if it is a
Boolean lattice. Thus, P ∩ S is an ultrafilter of S for each prime filter P of L .

Wenote that�−1≺S
(P) ⊆ Q if and only if P ∩ S ⊆ Q, for all P, Q ∈ X (L). Indeed:

If a ∈ P ∩ S, then a ∈ �≺S (a), and so �≺S (a) ∩ P �= ∅ having then that a ∈ Q.
Conversely, if �≺S (a) ∩ P �= ∅, there exists b ∈ �≺S (a) ∩ P and there exits s ∈ S
such that b ≤ s ≤ a. Then s ∈ P ∩ S ⊆ Q, and thus a ∈ Q.

Suppose that there are elements a, b, c ∈ L such that c ∈ �≺S (a ∨ b), but c /∈
∇�S (a) � �≺S (b). So, there exists d ∈ ∇�S (a) such that c /∈ (

�≺S b ∪ {d}]. Then
there exists P ∈ X (L) such that c ∈ P , �≺S b ∩ P = ∅ and d /∈ P . Therefore, there
exists Q ∈ X (L) such that �−1≺S

(P) ⊆ Q and b /∈ Q., i.e., P ∩ S ⊆ Q. As S is a
Boolean lattice, P ∩ S = Q ∩ S. Since c ∈ �≺S (a ∨ b) ∩ P and b /∈ Q, we have
a ∈ Q. And since d ∈ ∇�S (a), there exists e ∈ S such that a ≤ e ≤ y. So, s ′ ∈ Q ∩
S = P ∩ S, and thus d ∈ P , which is impossible. Therefore�≺S (a ∨ b) ⊆ ∇�S (a) �
�≺S b, for all a, b ∈ L . The proof of the inclusion ∇�S (a ∧ b) ⊆ �≺S a ⊕ ∇(b) is
similar. �

8.5 Duality for Subordination Lattices and
Bi-Subordination Lattices

We recall first the Priestley topological duality between bounded distributive lattices
and Priestley spaces (see for example Davey and Priestley 2002) and then we expand
it to subordination lattices and Priestley subordination spaces. The duality for sub-
ordiantion lattices we present can be extracted from that in Castro and Celani (2004)
which is for distributive lattices with a� and a∇ quasi-modal operator and Priestley
spaces with two binary relations. A duality for bi-subordination lattices, which is
basically the duality obtained in Castro and Celani (2004), easily follows from the
duality we describe for subordination lattices. For completeness we opted to give the
details.

A totally order-disconnected topological space is a triple X = 〈X,≤, τX 〉 where
〈X,≤〉 is a poset, 〈X, τX 〉 is a topological space, and given x, y ∈ X such that x � y
there exists a clopen upset U of X such that x ∈ U and y /∈ U. A Priestley space is
a compact and totally order-disconnected topological space.
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If X is a Priestley space, the set of all clopen upsets of X is denoted by D (X).
It is well-known that D (X) = 〈D(X),∪,∩,∅, X〉 is a bounded distributive lattice,
which is a sublattice of the complete lattice Pu (X) of all the upsets of X . The lattice
D(X) is the dual of the Priestley space X .

If L = 〈L ,∨,∧, 0, 1〉 is a bounded distributive lattice, we denote the set of all
prime filters of L by X (L) and recall that we denote the families of all ideals and all
filters of L by Id(L) and Fi(L), respectively. Given a bounded distributive lattice L ,
the representation map is the function σL : L → Pu (X (L)) given for every a ∈ L
by

σL (a) := {P ∈ X (L) : a ∈ L} .

It is a one-to-one lattice homomorphism, i.e. L ∼= σL [L]. Moreover, the topological
space

〈
X (L),⊆, τX (L)

〉
where the topology τX (L) has the set

σ [L] ∪ {X (L) � σ (a) : σ (a) ∈ σ [L]}

as a subbase, is a Priestley space such that the domain of D (X (L)) is σL [L]
and therefore the map σL establishes an isomorphism between L and the lattice
D (X (L)). The Priestley space X (L) := 〈

X (L),⊆, τX (L)

〉
is the dual of L .

Let X be a Priestley space. The map εX : X → X (D(X)) defined for every x ∈ X
by

εX (x) := {U ∈ D(X) : x ∈ U }

is a homeomorphism between the Priestley space X and the Priestley space X (D(X))

of the bounded distributive lattice of the clopen upsets of X and it is also an isomor-
phism between the posets 〈X,≤〉 and 〈X (D(X)),⊆〉.

A homomorphism from a bounded distributive lattice L1 to a bounded distributive
lattice L2 is a map that preserves the infimums of finite sets and the supremums of
finite sets; thus it preserves the bounds. A Priestley morphism from a Priestley space
〈X1,≤1, τ1〉 to a Priestley space 〈X2,≤2, τ2〉 is a continuous map from 〈X1, τ1〉 to
〈X2, τ2〉 that is order preserving w.r.t. the orders ≤1 and ≤2.

Let L1, L2 be bounded distributive lattices and h : L1 → L2 a homomorphism.
The map X (h) : X (L2) → X (L1) defined for every P ∈ X (L2) by

X (h)(P) := h−1[P]

is a continuos and order preserving function, thus a morphism from X (L2) to X (L1).
If X1 and X2 are Priestley spaces and f : X1 → X2 is a Priestley morphism, then

the map D( f ) : D(X2) → D(X1) defined for every U ∈ D(X2) by

D( f )(U ) := f −1[U ]

is a homomorphism from D(X2) to D(X1).
LetPriSpbe the categorywith objects the Priestley spaces and arrows thePriestley

morphisms and let DLat be the cateogry of the bounded distributive lattices with the
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homomorphisms as its arrowss.ThePriestleyduality says that themaps D fromPriSp
to DLat and X from DLat to PriSp given by the definitions above are functors that
establish a dual equivalence between the two categories whit natural transformations
given by the maps σL and εX .

We proceed to expand the duality between DLat and PriSp to a duality between
subordination lattices and Priestley spaces augmented with a binary relation.

We recall some facts we need on Priestley duality. Let L be a bounded distributive
lattice. We denote byOu (X (L)) the set of all open upsets of X (L), which is a lattice
when ordered by inclusion, and by Cd (X (L)) the set of all closed downsets sets
of X (L), which is also a lattice when ordered by inclusion. The map ϕ : Id(L) →
Ou (X (L)) given by

ϕ (I ) := {P ∈ X (L) : P ∩ I �= ∅},

for every I ∈ Id(L) is a lattice isomorphism. Similarly, the function ψ : Fi(L) →
Cd (X (L)) given by

ψ (F) := {P ∈ X (L) : F ⊆ P} ,

for every F ∈ Fi(L) is a dual lattice isomorphism. These functions can be expressed
in terms of σL as follows:

ϕ (I ) =
⋃

{σL (a) : a ∈ I }

for each I ∈ Id(L) and
ψ (F) =

⋂
{σL(a) : a ∈ F}

for each F ∈ Fi(L).
If L = 〈L ,≺〉 is a subordination lattice, the relations R�≺ and R∇≺ on X (L) will

be used to obtain the dual structures of L . We proceed to see the relevant topological
properties that they have on the Priestley space X (L). To this end we first note that
Lemma 3 can be stated using R�≺ and R∇≺ as follows:

Lemma 4 Let L be a bounded distributive lattice and ≺ a subordination on L. Let
a ∈ L and P ∈ X (L). For every P ∈ X (L) and a ∈ L

1. R�≺ (P) ⊆ σL(a) iff a ∈ �−1≺ (P),
2. P ∈ (R∇≺)−1[σL(a)] iff a ∈ ∇−1≺ (P).

The lemma implies the next corollary, which is Lemma 7 in Castro and Celani
(2004).

Corollary 1 Let L be a bounded distributive lattice and ≺ a subordination on L.
Then

1. �R�≺ (σL(a)) = ϕ(�≺(a)),
2. ♦R∇≺ (σL(a)) = ψ(∇≺(a)).
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Proof (1) Let P ∈ X (L). Then P ∈ �R�≺ (σL(a)) if and only if R�≺ (P) ⊆ σL(a).
By Lemma 4 the last condition holds if and only if a ∈ �−1≺ (P), which means that
�≺(a) ∩ P �= ∅. This can be restated saying that P ∈ ϕ(�≺(a)), because �≺(a) is
an ideal.

(2) Let P ∈ X (L). Then P ∈ ♦R∇≺ (σL(a)) if and only if a ∈ ∇−1≺ (P). This holds
if and only if ∇≺(a) ⊆ P , which is equivalent to say that P ∈ ψ(∇≺(a)), because
∇≺(a) is a filter. �

Let X be a Priestley space. A binary relation R on X is point-closed if R(x) is
a closed set for every x ∈ X . We say that R is up point-closed if it is point-closed
and for every x ∈ X the set R(x) is an upset of X . Similarly, we say that R is down
point-closed if it is point-closed and R(x) is a downset of X , for every x ∈ X .

Proposition 5 If L is a bounded distributive lattice and ≺ a subordination on L,
then

1. R�≺ is an up point-closed relation on X (L),
2. �R�≺ (U ) is an open upset for each U ∈ D(X (L)),
3. R∇≺ is a down point-closed relation on X (L),
4. ♦R∇≺ (U ) is a closed upset for each U ∈ D(X (L)).

Proof (1) Let P ∈ X (L). Then R�≺ (P) = {Q ∈ X (L) : �−1≺ (P) ⊆ Q}. Since
�−1≺ (P) is a filter, R�≺ (P) = ψ(�−1≺ (P)). Hence, R�≺ (P) is a closed upset of X (L).

(2) If U ∈ D(X (L)), then U = σL(a) for some a ∈ L . Since �≺(a) is an ideal
and �R�≺ (U ) = ϕ(�≺(a)) we obtain that �R�≺ (U ) is an open upset.

(3) Let P ∈ X (L). Then R∇≺(P) = {Q ∈ X (L) : Q ⊆ ∇−1≺ (P)} = {Q ∈ X (L) :
Q ∩ ∇−1(P)c = ∅}. Therefore R∇(P)c = {Q ∈ X (L) : Q ∩ ∇−1(P)c �= ∅}. Since
∇−1(P)c is an ideal, R∇(P)c = ϕ(∇−1(P)c) and hence it is an open upset. Therefore,
R∇(P)c is a closed downset.

(4) IfU ∈ D(X (L)), thenU = σL(a) for some a ∈ L . Hence, since then♦R∇≺ (U )

= ψ(∇≺(a)) and moreover ∇≺(a) is an ideal, ♦R∇≺ (U ) is a closed upset. �

Definition 4 Let X be a Priestley space. We say that a binary relation R on X is
the �-dual of a subordination if R is up point-closed and �R(U ) is an open upset
for every U ∈ D(X). Similarly, we say that a binary relation R on X is the ∇-dual
of a subordination if R is down point-closed and ♦R(U ) is a closed upset for every
U ∈ D(X).

We have two choices to obtain the dual objects of subordination lattices. One is
to consider Priestley spaces X endowed with a binary relation R which is the�-dual
of a subordination and the other is to take Priestley spaces X endowed with a binary
relation which is the ∇-dual of a subordination. In this way we will end up with two
equivalent categories for every choice of morphisms between subordination lattices
we take. We will see that the functor that transforms an object of one category into
an object of the other simply changes the relation to its converse.

For every Priestley space X and binary relation R on X note that R(x) is an upset
for every x ∈ X if and only if (R ◦ ≤) = R, and that R(x) is an downset for every
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x ∈ X if and only if (R ◦ ≤−1) = R. In general, R ⊆ (R ◦ ≤) and R ⊆ (R ◦ ≤−1)

because ≤ is reflexive.

Lemma 5 Let X be a Priestley space and R a binary relation on X.

1. If R is the �-dual of a subordination, then

a. (≤ ◦ R) = (R ◦ ≤) = R,
b. if x ≤ y, then R(y) ⊆ R(x), for all x, y ∈ X.

2. If R is the ∇-dual of a subordination, then

a. (≤−1 ◦ R) = (R ◦ ≤−1) = R,
b. if x ≤ y, then R(x) ⊆ R(y), for all x, y ∈ X.

Proof (1). We first prove (a). Assume that x, y, z ∈ X are such that x ≤ y and
(y, z) ∈ R. This implies that R(x) �= ∅. Otherwise, since R(x) ⊆ ∅ and ∅ ∈ D(X)

we have x ∈ �R(∅). Therefore, y ∈ �R(∅) so that R(y) ⊆ ∅ and this is not possible
since z ∈ R(y). Suppose in search of a contradiction that w � z for all w ∈ R(x).
Then for each w ∈ R(x) there exists Uw ∈ D(X) such that w ∈ Uw and z /∈ Uw. So,
R(x) ⊆ ⋃ {Uw : w ∈ R(x)}. As R(x) is closed, and hence compact, there exists a
finite family {U1, . . . ,Un} such that R(x) ⊆ U1 ∪ · · · ∪Un = U . Thus x ∈ �R(U )

andU ∈ D(X). As�R(U ) is an upset, y ∈ �R(U ). This yields R(y) ⊆ U , and since
(y, z) ∈ R, z ∈ U , which is impossible. Thus there exists w ∈ X such that (x,w) ∈
R and w ≤ z. We conclude that (≤ ◦ R) ⊆ (R ◦ ≤). The inclusion (R ◦ ≤) ⊆ R
follows from the assumption that R(x) is an upset for every x ∈ X . And R ⊆ (≤ ◦ R)

follows from the fact that ≤ is reflexive.
(b) follows from (a). Let x ≤ y and z ∈ R(y), so that (x, z) ∈ ≤ ◦ R. Hence, by

(a), (x, z) ∈ R, i.e., z ∈ R(x).
(2). To prove (a) let x, y ∈ X be such that (x, y) ∈ ≤−1 ◦ R. Then there exists z ∈

X such that z ≤ x and (z, y) ∈ R. It follows that R(x) �= ∅. Otherwise, R(x) ∩ X =
∅ and therefore x /∈ ♦R(X). Thus, since this set is an upset, z /∈ ♦R(X) so that R(z) ∩
X = ∅ which is not possible because y ∈ R(z). Suppose now that w � y for all
w ∈ R(x). Then for eachw ∈ R(x), there existsUw ∈ D(X) such thatw /∈ Ui and y ∈
Uw. So, R(x) ⊆ ⋃ {

Uc
w : w ∈ R(x)

}
. As R(x) is closed, and hence compact, there

exists a finite family {U1, . . . ,Un} such that R(x) ⊆ Uc
1 ∪ · · · ∪Uc

n = Uc. Hence,
x /∈ ♦R(U ). Since U = U1 ∩ · · · ∩Un ∈ D(X), ♦R(U ) is an upset by assumption;
thus z /∈ ♦R(U ). i.e., R(z) ∩U = ∅. But y ∈ R(z) ∩U , which is a contradiction.
Thus there exists w ∈ X such that (x,w) ∈ R and y ≤ w. We conclude that (≤−1

◦ R) ⊆ (R ◦ ≤−1). The inclusion R ◦ ≤−1 ⊆ R follows from the fact that R(x) is a
downset for every x ∈ X . Item (b) follows from (a). �

In the next proof we use Esakia’s lemma (2019) that says that if X is a Priestley
space and R is a point-closed relation on X , then for every down-directed family C
of closed sets of X ,

R−1[
⋂

C] =
⋂

{R−1[U ] : U ∈ C}.

Lemma 6 Let X be a Priestley space and R a binary relation on X.
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1. The following two conditions are equivalent:

a. R is the �-dual of a subordination.
b. For every closed set Y in X, R [Y ] is a closed upset, and for every closed

downset Z of X, R−1 [Z ] is a closed downset of X.

2. The following two conditions are equivalent:

a. R is the ∇-dual of a subordination,
b. For every closed subset Y of X, R [Y ] is a closed downset, and for every closed

upset Z of X, R−1 [Z ] is a closed upset of X.

Proof (1). Assume (a). Let Y be a closed subset of X . If Y = ∅, then since R[Y ] =
∅ we are done. If Y �= ∅, suppose that x /∈ R [Y ]. Then x /∈ R(y) for all y ∈ Y .
Therefore, as R is up point-closed, for each y ∈ Y there exists Uy ∈ D(X) such
that R(y) ⊆ Uy and x /∈ Uy . We fix such an Uy for each y ∈ Y . So, y ∈ �R(Uy),

for every y ∈ Y . Therefore, Y ⊆
⋃{

�R(Uy) : y ∈ Y
}
, and as Y is closed and X

is compact, Y is compact. Using that from the assumption, for every y ∈ Y the set
�R(Uy) is open and the fact that Y is compat, there exist y1, . . . , yn ∈ Y such that

Y ⊆ �R(Uy1) ∪ · · · ∪ �R(Uyn ) ⊆ �R(Uy1 ∪ · · · ∪Uyn ).

We choose y1, . . . , yn ∈ Y with that property and we letUx = Uy1 ∪ · · · ∪Uyn . Then
Y ⊆ �R(Ux ) and therefore R [Y ] ⊆ Ux . Moreover, x /∈ Ux . It easily follows that
R [Y ] =

⋂
{Ux : x /∈ R[Y ]}. Thus, R [Y ] is a closed upset of X .

Let now Z be a closed downset of X . Then

Z =
⋂{

Uc : Z ⊆ Uc and U ∈ D(X)
}
.

Note that the family {Uc : Z ⊆ Uc and U ∈ D(X)} is a downdirected family of
closed sets. Thus by Esakia’s lemma we have

R−1[Z ] =
⋂{

R−1[Uc] : Z ⊆ Uc and U ∈ D(X)
}
.

But by assumption �R(U ) = (R−1 [Uc])c is an open upset for every U ∈ D(X).
Thus R−1 [Uc] is a closed downset for every U ∈ D(X). This implies that R−1 [Z ]
is a closed downset, as desired.

Assume now (b). As X is Hausdorff, for every x ∈ X , {x} is closed. Thus, by (b),
R(x) = R [{x}] is a closed upset. For eachU ∈ D(X)we have�R(U ) = R−1 [Uc]c.
Thus, �R(U ) is an open upset, because Uc is a closed downset.

(2). Assume (a) and let Y be a closed subset of X . If Y = ∅, then since R[Y ] = ∅
we are done. Assume that Y �= ∅ and that x /∈ R [Y ] = ⋃ {R(y) : y ∈ Y }. Then
x /∈ R(y) for all y ∈ Y . As R is point-closed, we have that for every y ∈ Y there
exists Uy ∈ D(X) such that R(y) ∩Uy = ∅ and x ∈ Uy . We fix one such Uy for

every y ∈ Y . So, y ∈ ♦R(Uy)
c, for every y ∈ Y , i.e., Y ⊆

⋃ {
♦R(Uy)

c : y ∈ Y
}
.
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As Y is closed and X is compact, Y is compact. Thus there exists y1, . . . , yn ∈ Y
such that

Y ⊆ ♦R(Uy1)
c ∪ · · · ∪ ♦R(Uyn )

c ⊆ ♦R(Uy1 ∩ · · · ∩Uyn )
c.

Wechoose y1, . . . , yn ∈ Y with that property andwe letUx = Uy1 ∩ · · · ∩Uyn . Then,
Y ⊆ ♦R(Ux )

c and so Y ∩ ♦R(Ux ) = ∅. Therefore, R [Y ] ∩Ux = ∅, i.e., R [Y ] ⊆
Uc

x . Moreover, x ∈ Ux . It easily follows that R [Y ] =
⋂ {

Uc
x : x /∈ R[Y ]}. Thus,

R [Y ] is a closed downset.
Let now Z be a closed upset of X . Then Z = ⋂ {U : Z ⊆ U ∈ D(X)}. Therefore,

R−1 [Z ] = R−1
[⋂

{U ∈ D(X) : Z ⊆ U }
]
.

Note that the set {U : Z ⊆ U ∈ D(X)} is a filter of D(X), thus a downdirected family
of closed sets. By Esakia’s lemma we have

R−1
[⋂

{U ∈ D(X) : Z ⊆ U }
]

=
⋂ {

R−1[U ] : Z ⊆ U ∈ D(X)
}
.

As R−1[U ] = ♦R(U ) is a closed upset for every closed upset U , we obtain that
R−1 [Z ] is a closed upset.

Now we assume (b). As X is Hausdorff, {x} is closed. Thus R(x) = R [{x}] is a
closed downset. For each U ∈ D(X) we get that R−1[U ] is a closed upset, because
U is a closed upset. �

Lemma 7 Let X be a Priestley space and R a binary relation on X. The following
statements are equivalent:

1. R−1 is the �-dual of a subordination,
2. R is the ∇-dual of a subordination.

Proof Assume (2). Note that for every x ∈ X , the set (x] = {y ∈ X : y ≤ x} is a
closed downset. Using (1) in Lemma 5, we have R−1(x) = R−1[{x}] = R−1[(x]].
Then using (1) in Lemma 6 we obtain that R−1(x) is closed and a downset. Now,
givenU ∈ D(X), note that♦R−1(U ) = R[U ]. Using again (1) in Lemma 5we obtain
that ♦R−1(U ) is a closed upset.

The proof of the implication from (1) to (2) is similar, using now (2) in Lemmas
5 and 6. �

Proposition 6 Let X be a Priestley space and R a binary relation on X. If R is
the �-dual of a subordination or the ∇-dual of a subordination, then R is a closed
relation (i.e., a closed set of the product space).

Proof Suppose that R is up point-closed and �R(U ) is an open upset for each
U ∈ D(X). Suppose that 〈x, y〉 /∈ R. Using Lemma 5 it is easy to see that R(x) =
R[[x)]. Moreover, the set [x) is closed, so applying Lemma 6 it follows that R(x)
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is a closed upset. Hence there is U ∈ D(X) such that R(x) ⊆ U and y /∈ U . It
follows that x ∈ �R(U ). Consider now the complement Uc of U , which is a clopen
downset and y ∈ Uc. By Lemma 6, R−1[Uc] is a closed downset and therefore
(R−1[Uc])c an open upset. Note that z ∈ (R−1[Uc])c if and only if R(z) ⊆ U . Let
O := (R−1[Uc])c. Then 〈x, y〉 ∈ O ×Uc and O ×Uc is an open set in the product
topology. We show that R ∩ (O ×Uc) = ∅. If 〈u, v〉 ∈ R ∩ (O ×Uc), then since
u ∈ O we have v ∈ R(u) ⊆ U and v /∈ U , a contradiction.

Now suppose that R is down point-closed and♦R(U ) is a closed downset for each
U ∈ D(X). Then by Lemma 7, R−1 is up point-closed and�R−1(U ) is an open upset
for eachU ∈ D(X). Therefore by the first part of the proof, R−1 is a closed relation.
It is easy to see that the converse of a closed relation is a closed relation. Thus R is
a closed relation. �

Remark 3 A closed relation on a Priestley space need not be up point-closed nor
down point-closed.

We proceed to see how a binary relation on a set determines two subordinations
on its powerset lattice. Thus, a binary relation R on a Priestley space X determines
two subordinations on the lattice of the clopen upsets of X by restricting to this lattice
the subordinations determined by R on the powerset of X .

Let X be a set and R a binary relation on X . Themap�R : P(X) → P(X) is a dual
modal operator and the map ♦R : P(X) → P(X) a modal operator. That is, we have
for allU, V ⊆ X that�R(U ∩ V ) = �R(U ) ∩ �R(V ),�R(X) = X ,♦R(U ∪ V ) =
♦R(U ) ∩ ♦R(V ), and ♦R(∅) = ∅. Considering Remark 2, the relations ≺R and ≺∗

R
defined on P(X) by

U ≺R V ⇐⇒ U ⊆ �R(V )

and
U ≺∗

R V ⇐⇒ ♦R(U ) ⊆ V .

are subordination relations. Note that since ♦R(U ) = �R(Uc)c for every U ⊆ X ,
we have

U ≺R V ⇐⇒ V c ≺∗
R Uc.

Remark 4 It is well known, and easy to check, that the maps ♦R−1 and �R form an
adjoint pair, that is, for every U, V ⊆ X , U ⊆ �R(V ) if and only if ♦R−1(U ) ⊆ V .
Therefore, U ≺R V if and only if U ≺∗

R−1 V . Hence, ≺R = ≺∗
R−1 and, similarly,

≺∗
R = ≺R−1 .

If X is a Priestley space and R a binary relation on X , the subordinations ≺R and
≺∗

R on P(X) restrict to subordinations on the sublattice D(X) of P(X). Therefore,
give a Priestley space X and a binary relation R on X we have two natural ways to
obtain a subordination on D(X).

In the next twopropositionswe proceed to find a necessary and sufficient condition
that R has to satisfy in order that the homeomorphism ε : X → X (D(X)) is an
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isomorphism between 〈X, R〉 and 〈X (D(X)), R�≺R
〉 and a necessary and sufficient

condition to be an isomorphism between 〈X, R〉 and 〈X (D(X)), R∇
≺∗

R
〉.

Proposition 7 Let X be a Priestley space and R a binary relation on X. The fol-
lowing statements are equivalent:

1. R is the �-dual of a subordination.
2. for every x, y ∈ X, x Ry if and only if εX (x)R�≺R

εX (y).

Proof We omit the subscript X in εX all along the proof.
(1) ⇒ (2). Assume that x Ry. We have to prove that �−1≺R

(ε(x)) ⊆ ε(y). Suppose
that U ∈ �−1≺R

(ε(x)). Hence, �≺R (U ) ∩ ε(x) �= ∅. Thus, there is V ∈ D(X) such
that V ⊆ �R(U ) and x ∈ V . Therefore, R(x) ⊆ U . This implies that y ∈ U and
so U ∈ ε(y). Conversely, suppose that ε(x)R�≺R

ε(y) and x �Ry. Then, since R(x)
is a closed upset, there is V ∈ D(X) such that y /∈ V and R(x) ⊆ V . Hence, V /∈
ε(y) and x ∈ �R(V ). Thus, V /∈ �−1≺R

(ε(x)), which means that�≺R (V ) ∩ ε(x) = ∅.
But �R(V ) is an open upset. So �R(V ) = ⋃{U ∈ D(X) : U ⊆ �R(V )}. Hence,
there is U ∈ D(X) such that x ∈ U and U ⊆ �R(V ). Therefore, V ∈ �−1≺R

(ε(x)).
Since V /∈ ε(y), it follows that ε(x) �R�≺R

ε(y). (2) ⇒ (1). Let x, y ∈ X be such that
y ∈ Cl(R(x)) and y /∈ R(x). Then, by (2), ε(y) /∈ R�≺R

(ε(x)). Therefore, there exist
U ∈ D(X) such that�≺R (U ) ∩ ε(x) �= ∅ and y /∈ U . Let V ∈ �≺R (U ) ∩ ε(x). Then
V ∈ D(X), V ⊆ �R(U ), and x ∈ V . Therefore R(x) ⊆ U . Hence, y /∈ Cl(R(x)), a
contradiction. Thus R is point-closed. Now to prove that it is an upset, suppose that
y ∈ R(x) and y ≤ z. Since ε is an order isomorphism, ε(y) ⊆ ε(z). Moreover, since
x Ry, by the assumption (2) we have �−1≺ (ε(x)) ⊆ ε(y). Thus, �−1≺ (ε(x)) ⊆ ε(z).
This, again by the assumption (2), implies that x Rz.

Now let U ∈ D(X). Using (2), the definitions involved, and the fact that ε is
a bijection, it is easy to see that �R�≺ (ε[U ]) = ε[�R(U )]. Hence, considering that
�R�≺R

(ε[U ]) is an open upset of X (D(X)), because ≺R is a subordination on D(X),
and the fact that ε is an order isomorphism and a homeomorphism we obtain that
�R(U ) is an open upset. �

The next proposition is proved in Castro and Celani (2004).

Proposition 8 Let X be a Priestley space and R a binary relation on X. The
following are equivalent:

1. R is the ∇-dual of a subordination,
2. for every x, y ∈ X, x Ry if and only if εX (x)R∇

≺∗
R
εX (y).

Proof As in the last proof, we omit the subscript X in εX .
(1) ⇒ (2). Suppose that x Ry. We have to prove that ε(y) ⊆ ∇−1

≺∗
R

(ε(x)). Suppose

that U ∈ ε(y). To prove that U ∈ ∇−1
≺∗

R
(ε(x)) we have to show that ∇≺R (U ) ⊆ ε(x).

To this end suppose that U ≺∗
R V which means that ♦R(U ) ⊆ V . Since y ∈ U and

x Ry, x ∈ ♦R(U ). Therefore, V ∈ ε(x) and we are done. Conversely, suppose that
x �Ry. Then since R(x) is a closed downset there is U ∈ D(X) such that y ∈ U
and R(x) ∩U = ∅. Then x /∈ ♦R(U ) and U ∈ ε(y). Since ♦R(U ) is a closed upset,
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there exists V ∈ D(X) such that ♦R(U ) ⊆ V and x /∈ V . Then V ∈ ∇≺∗
R
(U ) and

therefore ∇≺∗
R
(U ) � ε(x), which implies that U /∈ ∇−1

≺∗
R

(ε(x)). Hence we obtain that

ε(x) �R∇
≺∗

R
ε(y).

(2) ⇒ (1). Let x, y ∈ X be such that y ∈ Cl(R(x)) and y /∈ R(x). Then, by (2),
ε(y) /∈ R∇

≺∗
R
(ε(x)). Therefore, there existU ∈ D(X) such that y ∈ U and ∇≺∗

R
(U ) �

ε(x). Let then V ∈ ∇≺∗
R
(U ), namely that ♦R(U ) ⊆ V , and such that x /∈ V . Hence,

x /∈ ♦R(U ) and so R(x) ∩U = ∅. Since R(x) is a closed downset and y ∈ U , y /∈
Cl(R(x)), a contradiction. Thus R(x) is closed. Now to prove that R(x) is a downset,
suppose that y ∈ R(x) and z ≤ y. Then ε(z) ⊆ ε(y). By the assumption (2), since
x Ry we have ε(x)R∇

≺∗
R
ε(y), namely ε(y) ⊆ ∇−1

≺∗
R

(ε(x)). It follows that ε(z)R∇
≺∗

R
ε(y)

and therefore that z ∈ R(x).
Now let U ∈ D(X). Using (2), the definitions involved, and the fact that ε is

a bijection, it is easy to see that ♦R∇
≺∗
R

(ε[U ]) = ε[♦R(U )]. Hence, considering that

♦R∇
≺∗
R

(ε[U ]) is a closed upset of X (D(X)), because ≺∗
R is a subordination on D(X),

and the fact that ε is an order isomorphism and a homeomorphism we obtain that
♦R(U ) is a closed upset. �

Proposition 9 Let L be a bounded distributive lattice and ≺ a subordination on L.
The representation isomorphism σL : L → D(X (L)) satisfies for every a, b ∈ L the
following two conditions:

b ≺ a ⇐⇒ σL(b) ≺R�≺ σL(a) and b ≺ a ⇐⇒ σL(b) ≺∗
R∇≺

σL(a).

In terms of the associated�-quasi-modal operators the conditions say that for every
a ∈ L, �≺R�≺

(σL(a)) = σL [�≺(a)] and ∇≺∗
R∇≺

(σL(b)) = σL [∇≺(b)].

Proof First note that by Corollary 1, �R�≺ (σL(a)) = ϕ(�≺(a)) and ♦R∇≺ (σL(a)) =
ψ(∇≺(a)). Now for every b ∈ L ,

σL(b) ≺R�≺ σL(a) ⇔ σL(b) ⊆ �R�≺ (σL(a))

⇔ σL(b) ⊆ ϕ(�≺(a))

⇔ b ∈ �≺(a)

⇔ b ≺ a.

The equivalence before the last one holds because if b ∈ �≺(a), then by the definition
of ϕ, σL(b) ⊆ ϕ(�≺(a)), and if b /∈ �≺(a), then there exists P ∈ X (L) such that
b ∈ P and �≺(a) ∩ P = ∅, which implies that P /∈ ϕ(�≺(a)) and hence we have
that σL(b) � ϕ(�≺(a)). This proves the first condition.

To prove the second condition we have for every b ∈ L ,
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σL(b) ≺∗
R∇≺

σL(a) ⇔ ♦R∇≺ (σL(b)) ⊆ σL(a)

⇔ ψ(∇≺(b)) ⊆ σL(a)

⇔ a ∈ ∇≺(b)

⇔ b ≺ a.

The equivalence before the last one holds because if a ∈ ∇≺(b), then by the definition
of ψ , ψ(∇≺(b)) ⊆ σL(a), and if a /∈ ∇≺(b), then, since ∇≺(b) is a filter, there exists
P ∈ X (L) such that a /∈ P and ∇≺(b) ⊆ P , which implies that P ∈ ψ(∇≺(b)) and
hence we have ψ(∇≺(b)) � σL(a). �

Definition 5 We say that a pair 〈X, R〉 is a Priestley �-subordination space (a
Priestley �-space, for short) if X is a Priestley space and R is the �-dual of a
subordination. Similarly, we say a pair 〈X, R〉 is a Priestley ∇-subordination space
(a Priestley ∇-space, for short) if X is a Priestley space and R is the ∇-dual of a
subordination.

Proposition 5 establishes that if L = 〈L ,≺〉 is a subordination lattice, then
〈X (L), R�≺〉 is a Priestley �-subordination space and 〈X (L), R∇≺〉 is a Priestley
∇-subordination space. Moreover, Proposition 9 shows that the map σL is an
isomorphism between the subordination lattices 〈L ,≺〉 and 〈D(X (L)),≺R�≺ 〉 and
between 〈L ,≺〉 and 〈D(X (L)),≺∗

R∇≺
〉. Conversely, Proposition 7 shows that if 〈X, R〉

is a Priestley �-subordination space, then 〈D(X),≺R〉 is a subordination lattice
such that the map εX an isomorphism between 〈X, R〉 and 〈X (D(X)), R�≺R

〉 and
Proposition 8 shows that if 〈X, R〉 is a Priestley ∇-subordination space, then
〈D(X),≺∗

R〉 is a subordination lattice such that the map εX an isomorphism between
〈X, R〉 and 〈X (D(X)), R∇

≺∗
R
〉.

To complete the duality we have to introduce the morphisms. We will consider
three kinds of morphisms on subordination lattices and four kinds of morphisms on
Priestley spaces with a binary relation.

Definition 6 Let L1 and L2 be subordination lattices. A subordination homomor-
phism from L1 to L2 is a homomorphism h : L1 → L2 such that for every a, b ∈ L1,
if a ≺1 b, then h(a) ≺2 h(b). A subordination homomorphism h from L1 to L2 is
strong if for every a ∈ L1 and c ∈ L2, if c ≺2 h(a), then there exists b ∈ L1 such
that b ≺1 a and c ≤ h(b). We say that it is dually strong if for every a ∈ L1 and
c ∈ L2, if h(a) ≺2 c, then there exists b ∈ L1 such that a ≺1 b and h(b) ≤ c.

Remark 5 It is easy to see that if ≺ is a subordination on a lattice L , then ≺−1 is a
subordination on the dual lattice L∂ of L . The condition that defines dually strong
subordination homomorphism in the definition above is then the same as that for
strong subordination homomorphism but between L1 and 〈L∂

2,≺−1
2 〉.

Definition 7 Let X1 and X2 be Priestley spaces with binary relations R1 and R2

respectively. A Priestley morphism f : X1 → X2 is stable if for every x, y ∈ X1

such that x R1y we have f (x)R2 f (y), and it is strongly stable if in addition for
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every x ∈ X1 and y ∈ X2, if f (x)R2y, then there exists z ∈ X1 such that x R1z and
f (z) ≤2 y. Moreover, we say that f is reversely strongly stable if it is stable and
for every x ∈ X1 and y ∈ X2, if yR2 f (x), then there exists z ∈ X1 such that zR1x
and f (z) ≤2 y. Also we say that f is dually strongly stable if it is stable and for
every x ∈ X1 and y ∈ X2, if yR2 f (x), then there exists z ∈ X1 such that zR1x and
y ≤2 f (z).

The strongly stable Priestley morphisms are the morphisms considered in the
duality for quasi-modal distributive lattices given in Castro and Celani (2004).

Proposition 10 Let L1, L2 be subordination lattices. For every map h : L1 → L2

the following conditions are equivalent:

1. h is a (strong) subordination homomorphism from L1 to L2,
2. the dual map X (h) is a (strongly) stable Priestley morphism from the Priestley

�-space 〈X (L2), R�≺2
〉 to the Priestley �-space 〈X (L1), R�≺1

〉,
3. the dual map X (h) is a (reversely strongly) stable Priestley morphism from the

Priestley ∇-space 〈X (L2), R∇≺2
〉 to the Priestley ∇-space 〈X (L1), R∇≺1

〉.
Proof (1) ⇒ (2). Assume that h is a subordination homomorphism from L1 to
L2. Suppose that 〈P, Q〉 ∈ R�≺2

. Then �−1≺2
(P) ⊆ Q. We prove that �−1≺1

(h−1[P]) ⊆
h−1[Q]. Suppose that a ∈ �−1≺1

(h−1[P]). Then �≺1(a) ∩ h−1[P] �= ∅. Let then b ∈
�≺1(a) ∩ h−1[P]. Thus b ≺1 a and h(b) ∈ P . Hence h(b) ≺2 h(a) and we obtain
that h(b) ∈ �≺1(h(a)) ∩ P . Thus, h(a) ∈ �−1≺2

(P). It follows that b ∈ h−1[Q]. If h
is in addition strong, then suppose that P ∈ X (L2) and Q ∈ X (L1) are such that
h−1[P]R�≺1

Q, i.e., �−1≺1
(h−1[P]) ⊆ Q. We prove that �−1≺2

(P) ∩ (h[L1 \ Q]] = ∅.
On the contrary, let a ∈ L2 and b ∈ L1 \ Q be such that a ∈ �−1≺2

(P) and a ≤2 h(b).
Then �≺2(a) ∩ P �= ∅. So, let c ≺2 a be such that c ∈ P . It follows that c ≺2 h(b).
Since h is strong, there exists d ∈ L1 such that d ≺1 b and c ≤2 h(d). Thus h(d) ∈ P
and d ∈ h−1[P], therefore �≺1(b) ∩ h−1[P] �= ∅. Hence b ∈ �−1≺1

(h−1[P]) and so
b ∈ Q, a contradiction. By the Prime filter theorem there is P ′ ∈ X (L2) such that
�−1≺2

(P) ⊆ P ′ and h−1[P ′] ⊆ Q. Hence, there is P ′ ∈ X (L2) such that PR�≺2
P ′ and

h−1[P ′] ⊆ Q. This shows that X (h) is strong.
(2) ⇒ (1). Suppose now that X (h) is a stable Priestley morphism from the space

〈X (L2), R�≺2
〉 to 〈X (L1), R�≺1

〉 and suppose that a, b ∈ L1 are such that a ≺1 b. If
h(a) ⊀2 h(b), then, since h(a) /∈ �≺2(h(b)) and �≺2(h(b)) is an ideal, there is P ∈
X (L2) such that h(a) ∈ P and P ∩ �≺2(h(b)) = ∅. Hence, h(b) /∈ �−1≺2

(P). Since
�−1≺2

(P) is a filter, there is Q ∈ X (L2) such that �−1≺2
(P) ⊆ Q and h(b) /∈ Q. Thus,

PR�≺2
Q. The stability of X (h) implies that h−1[P]R�≺1

h−1[Q]. Since b /∈ h−1[Q],
we have b /∈ �−1≺1

(h−1[P]). And since a ∈ h−1[P] it follows that a /∈ �≺1(b), which
is not possible because by assumption a ≺1 b. If X (h) is in addition strongly stable,
to prove that h is strong assume that a ∈ L1 and c ∈ L2 are such that c ≺2 h(a).
Consider the ideal I of L2 generated by h[�≺1(a)]. Assume that c /∈ I . Then let P ∈
X (L2) be such that c ∈ P and I ∩ P = ∅. Thus �≺1(a) ∩ h−1[P] = ∅. It follows
thata /∈ �−1≺1

(h−1[P]). Thus there exists Q ∈ X (L1) such that�−1≺1
(h−1[P]) ⊆ Q, so

that h−1[P]R�≺1
Q and a /∈ Q. Since X (h) is strongly stable, there exists P ′ ∈ X (L2)
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such that PR�≺2
P ′ and h−1[P ′] ⊆ Q. Since c ∈ P and c ≺2 h(a), h(a) ∈ �−1≺2

(P);
therefore, h(a) ∈ P ′ and a ∈ h−1[P ′]. Hence a ∈ Q, a contradiction. We conclude
that c ∈ I . Therefore there exists b ∈ �≺1(a) such that c ≤2 h(b) and we are done.

The equivalence between (3) and (2) can be proved using Proposition 1. �

Proposition 11 Let 〈X1, R1〉 and 〈X2, R2〉 be two Priestley�-subordination spaces
and f : X1 → X2 a map. Then f is a (strongly) stable Priestley morphism if and
only if the map D( f ) : D(X2) → D(X1) is a (strong) subordination homomorphism
from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.
Proof From Priestley duality we have that f is a Priestley morphism if and only if
D( f ) : D(X2) → D(X1) is a homomorphism. Moreover, for every x ∈ X1 it holds
that X (D( f ))(ε1(x)) = ε2( f (x)). Thus, using Propositions 7 and 10 we have that
f is (strongly) stable if and only is D( f ) a (strong) subordination homomorphism.

�

In a similar way we have:

Proposition 12 Let 〈X1, R1〉 and 〈X2, R2〉 be two Priestley∇-subordination spaces
and f : X1 → X2 a map. Then f is a (reversely strongly) stable Priestley morphism
if and only if the map D( f ) : D(X2) → D(X1) is a (strong) subordination homo-
morphism from 〈D(X2),≺∗

R2
〉 to 〈D(X1),≺∗

R1
〉.

Proof From Priestley duality we have that f is a Priestley morphism if and only
if D( f ) : D(X2) → D(X1) is a homomorphism. And moreover for every x ∈ X1 it
holds that X (D( f ))(ε1(x)) = ε2( f (x)). Thus, using Propositions 8 and 10 we have
that f is (reversely strongly) stable if and only if D( f ) is a (strong) subordination
homomorphism. �

Lemma 8 Let 〈X1, R1〉 and 〈X2, R2〉 bePriestley�-subordination spaces. APriest-
ley morphism f : X1 → X2 is dually strongly stable if and only if for every
U ∈ D(X2),

♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].

Proof Assume that f is a Priestley morphism that is dually strongly stable from
〈X1, R1〉 to 〈X2, R2〉. Let U ∈ D(X2). If x ∈ ♦R−1

1
( f −1[U ]), then there exists

y ∈ f −1[U ] such that x R−1
1 y. Therefore yR1x and, since f is stable, f (y)R2 f (x).

Since f (y) ∈ U it follows that f (x) ∈ ♦R−1
2

(U ) and hence x ∈ f −1[♦R−1
2

(U )]. Con-
versely, if x ∈ f −1[♦R−1

2
(U )], we have f (x)R−1

2 y for some y ∈ U , so that yR2 f (x).
Applying that f is dually strongly stable, there is z ∈ X1 such that zR1x and
y ≤2 f (z). Since U is an upset, z ∈ f −1[U ]. Hence, since x R−1

1 z we obtain that
x ∈ ♦R−1

1
( f −1[U ]).

Suppose now that for every U ∈ D(X2), ♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].
Assume that x, y ∈ X1 are such that x R1y and f (x) �R2 f (y), so that f (x) /∈
R−1
2 ( f (y)). Since R−1

2 ( f (y)) is a closed set and a downset, there existsU ∈ D(X2)

such that R−1
2 ( f (y)) ⊆ Uc and f (x) ∈ U , and therefore x ∈ f −1[U ]. Hence, y ∈
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♦R−1
1

( f −1[U ]). The assumption implies that f (y) ∈ ♦R−1
2

(U ), a contradiction with

R−1
2 ( f (y)) ⊆ Uc. This shows that f is stable. To prove that f is dually strong

assume that x ∈ X1 and y ∈ X2 are such that yR2 f (x). LetU ∈ D(X2) be such that
y ∈ U . Then x ∈ f −1[♦R−1

2
(U )] and therefore x ∈ ♦R−1

1
( f −1[U ]). This implies that

R−1
1 (x) is nonempty. Suppose that R−1

1 (x) ∩ f −1[↑y] = ∅. For every z ∈ R−1
1 (x),

since y �2 f (z), let Uz ∈ D(X2) be such that y ∈ Uz and f (z) /∈ Uz so that z ∈
f −1[Uc

z ]. Then R−1
1 (x) ⊆ ⋃{ f −1[Uc

z ] : z ∈ R−1
1 (x)}. Since R−1

1 (x) = R−1
1 [(x]],

because R1 ◦ ≤1 = R1 and (x] is a closed downset, we have that R−1
1 (x) is a

closed downset. Therefore R−1
1 (x) is compact. Thus there are z1, . . . , zn ∈ R−1

1 (x)
with R−1

1 (x) ⊆ f −1[Uc
z1] ∪ · · · ∪ f −1[Uc

zn ]. Let U = Uz1 ∩ · · · ∩Uzn . Then U ∈
D(X2), f −1[Uc

z1 ] ∪ · · · ∪ f −1[Uc
zn ] = f −1[Uc], and y ∈ U . Therefore, R−1

1 (x) ∩
f −1[U ] = ∅. If follows that x /∈ ♦R−1

1
( f −1[U ]) but since yR2 f (x) and y ∈ U ,

x ∈ f −1[♦R−1
2

(U )], a contradiction. �

Proposition 13 Let L1, L2 be subordination lattices and h : L1 → L2 a map. If h
is a dually strong subordination homomorphism from L1 to L2, then the dual map
X (h) is a dually strongly stable Priestley morphism from the Priestley �-space
〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉.

Proof Suppose that h : L1 → L2 is a dually strong subordination homomorphism.
Since it is a subordination homomorphism we know that X (h) is a stable Priest-
ley morphism from 〈X (L2), R�≺2

〉 to 〈X (L1), R�≺1
〉. To prove that X (h) is dually

strongly stable assume that QR�≺1
h−1[P]. Then �−1≺1

(Q) ⊆ h−1[P]. Let I be the
ideal generated by

⋃
a∈L2\P �≺2(a) and let F be the filter generated by h[Q]. We

claim that F ∩ I = ∅. Assume the contrary and let d ∈ F ∩ I . Then let b ∈ Q such
that h(b) ≤2 d and let a ∈ L2 \ P and c ∈ �≺2(a) such that d ≤2 c. It follows that
h(b) ≺2 a. Then by (1) there exists e ∈ L1 such that b ≺1 e and h(e) ≤2 a. Since
b ∈ Q we have e ∈ �−1≺1

(Q) and therefore e ∈ h−1[P]. Thus, h(e) ∈ P and hence
a ∈ P , a contradiction. We conclude that F ∩ I = ∅. Let then P ′ ∈ X (L2) be such
that F ⊆ P ′ and I ∩ P ′ = ∅. It follows that �−1≺2

(P ′) ⊆ P and Q ⊆ h−1[P ′]. Thus
P ′R�≺2

P and Q ⊆ h−1[P ′]. �

Proposition 14 Let 〈X1, R1〉, 〈X2, R2〉 be Priestley �-subordination spaces and
f : X1 → X2 a Priestley morphism that is dually strongly stable from 〈X1, R1〉 to
〈X2, R2〉 if and only if D( f ) : D(X2) → D(X1) is a dually strong subordination
homomorphism from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.
Proof Assume that f is a Priestley morphism that is dually strongly stable from
〈X1, R1〉 to 〈X2, R2〉. We know from Lemma 8 that for every U ∈ D(X2),

♦R−1
1

( f −1[U ]) = f −1[♦R−1
2

(U )].

We show that D( f ) is a subordination homomorphism from the subordination lattice
〈D(X2),≺R2〉 to 〈D(X1),≺R1〉. Suppose thatU, V ∈ D(X2) are such thatU ≺R2 V .
By Remark 4 we have ♦R−1

2
(U ) ⊆ V . Then f −1[♦R−1

2
(U )] ⊆ f −1[V ]. Therefore,
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♦R−1
1

( f −1[U ]) ⊆ f −1[V ] and using Remark 4 again we have f −1[U ] ≺R1 f −1[V ].
Now we prove that D( f ) is dually strong. Suppose that U ∈ D(X2) and V ∈
D(X1) are such that f −1[U ] ≺R1 V . Thus, using Remark 4, ♦R−1

1
( f −1[U ]) ⊆ V

and therefore f −1[♦R−1
2

(U )] ⊆ V . The set ♦R−1
2

(U ) is a closed upset. Therefore
there is a family {Uj : j ∈ J } ⊆ D(X2) such that ♦R−1

2
(U ) = ⋂

j∈J U j and hence
f −1[⋂ j∈J U j ] ⊆ V . Thus

⋂
j∈J f −1[Uj ] ⊆ V . Since the sets f −1[Uj ] are closed

and V is open, by compactness of the space follows that there exists a finite J ′ ⊆ J
such that

⋂
j∈J ′ f −1[Uj ] ⊆ V . Let U ′ = ⋂

j∈J ′ Uj . Then f −1[U ′] ⊆ V and since
♦R−1

2
(U ) ⊆ U ′ we obtain, using Remark 4, that U ≺R2 U

′. Hence, we conclude
that D( f ) : D(X2) → D(X1) is a dually strong subordination homomorphism from
〈D(X2),≺R2〉 to 〈D(X1),≺R1〉.

Conversely, assume that D( f ) : D(X2) → D(X1) is a dually strong subordi-
nation homomorphism from 〈D(X2),≺R2〉 to 〈D(X1),≺R1〉. Then Proposition 13
implies that X (D( f )) is a dually strongly stable Priestley morphism from the
Priestley�-s-space 〈X (D(L1)), R�≺R1

〉 to thePriestley�-s-space 〈X (D(L2)), R�≺R2
〉.

Using Proposition 7 and Priestley duality it easily follows that f is a dually strongly
stable Priestley morphism from 〈X1, R1〉 to 〈X2, R2〉. �

Proposition 15 Let L1, L2 be subordination lattices and h : L1 → L2 a map. Then
h is a dually strong subordination homomorphism from L1 to L2 if and only if the
dual map X (h) is a dually strongly stable Priestley morphism from the Priestley
�-space 〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉.

Proof The implication from left to right is Proposition 13. To prove the other impli-
cation, if X (h) is a dually strongly stable Priestley morphism from the Priestley
�-space 〈X (L2), R�≺2

〉 to the Priestley �-space 〈X (L1), R�≺1
〉, then by Proposition

14, D(X (h)) is a dually strong subordination homomorphism from the subordination
lattice 〈D(X (L2)),≺R�≺2

〉 to 〈D(X (L1)),≺R�≺1
)〉. By Proposition 9 the map σLi is an

isomorphism between 〈Li ,≺i 〉 and 〈D(X (Li )),≺R�≺i
〉 for i = 1, 2. Using Priestley

duality, it follows that h is a dually strong subordination homomorphism from L1 to
L2. �

We consider the following categories:

• �PriSp: the category of Priestley�-subordination spaces with the stable Priestley
morphisms as its arrows.

• �PriSps : the category of Priestley�-subordination spaceswith the strongly stable
Priestley morphisms as its arrows.

• �PriSpds : the category of Priestley �-subordination spaces with the dually
strongly stable Priestley morphisms as its arrows.

• ∇PriSp: the category of Priestley∇-subordination spaces with the stable Priestley
morphisms as its arrows.

• ∇PriSps : the category of Priestley ∇-subordination spaces with the reversely
strongly stable Priestley morphisms as its arrows.

• SLat: the category of the subordination lattices with the subordination homomor-
phisms as its arrows.
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• SLats : the category of the subordination lattices with the strong subordination
homomorphisms as its arrows.

• SLatds : the category of the subordination lattices with the dually strong subordi-
nation homomorphisms as its arrows.

Remark 6 The categories �PriSp and ∇PriSp are equivalent as well as the cate-
gories �PriSps and ∇PriSps . The functors that witness the equivalence are defined
as follows. The functor from �PriSp to ∇PriSp maps a Priestley �-subordination
space 〈X, R〉 to the Priestley ∇-subordination space 〈X, R−1〉, and the functor from
∇PriSp to �PriSp does the same. For morphisms the functors leave the functions
as they are. The same happens with �PriSps and ∇PriSps .

The results above show that the functor D from the categoryPriSp to the category
DLat can be expanded to a functor from�PriSp toSLat, to a functor from�PriSps

to SLats and to a functor from �PriSpds to SLatds by mapping any �-Priestley
space 〈X, R〉 to its subordination lattice 〈D(X),≺R〉 and every morphism in the
corresponding categoryof spaces to its Priestley dual.Also the results above show that
the functor X fromDLat toPriSp can be expanded to a functor fromSLat to�PriSp,
to a functor from SLats to �PriSps , and to a functor from SLatds to �PriSpds

by sending a subordination lattice 〈L ,≺〉 to the Priestley �-subordination space
〈X (L), R�≺〉 and every morphism in the corresponding category of subordination
lattices to its Priestley dual. Doing it, we have that the two categories in the pairs
(�PriSp, SLat), (�PriSps , SLats), and (�PriSpds , SLatds) are dually equivalent.

In a similar way, the functor D from PriSp to DLat can be expanded to a functor
from ∇PriSp to SLat and to a functor from �PriSps to SLats by mapping any
∇-Priestley space 〈X, R〉 to its subordination lattice 〈D(X),≺∗

R〉. The functor X
from DLat to PriSp can also be expanded to a functor from SLat to ∇PriSp and
to a functor from SLats to ∇PriSps that sends a subordination lattice 〈L ,≺〉 to the
Priestley ∇-subordination space 〈X (L), R∇≺〉. The morphisms are mapped in each
case to their Priestley duals.

From the dualities discussed above for categories of subordination lattices we can
obtain dualities for categories of bi-subordination lattices in the natural way. Let us
introduce the dual objects of bi-subordination lattices.

Definition 8 We say that a triple 〈X, R, S〉 is a Priestley bi-subordination space if
X is a Priestley space and R and S are binary relations on X each one of which is
the �-dual of a subordination.

Note that 〈X, R, S〉 is a Priestley bi-subordination space if and only if 〈X, R, S−1〉
is a quasi-modal space in the terminology of Castro and Celani (2004).

By combining the properties of subordination homomorphism, strong subordina-
tion homomorphism and dually strong subordination homomorphism we can con-
sider several categories of bi-subordination lattices by taking asmorphismsmaps that
are of one of these kinds for the first subordination and of another for the second.
Similarly, we can consider several categories of Priestley bi-subordination spaces.
Once we fix a choice of morphisms for a category of bi-subordination lattices we
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can consider the category of Priestley bi-subordination spaces with the correspond-
ing choice of morphisms and in this way we obtain two categories that are dually
equivalent.

For example, the category of bi-subordination lattices with morphisms the lattice
homomorphisms that are a subordination homomorphismw.r.t. the first subordination
and a strong subordination homomorphism w.r.t. the second subordination is dually
equivalent to the category of Priestley bi-subordination spaces with the Priestley
morphisms that are a stable morphism w.r.t. the first relation and a strongly stable
morphism w.r.t. the second relation.

Nowwe turn to discuss the duals of the bi-subordination latticeswith the properties
we considered in the examples given in Sect. 8.3.

First we consider the bi-subordination lattices where the first subordination is
included in the second. They include the bi-subordinations lattices in Example 1.

Proposition 16 Let 〈L ,≺,�〉 be a bi-subordination lattice. Then

≺ ⊆ � ⇐⇒ R� ⊆ R≺,

(where R� = R�� and R≺ = R�≺ ).

Proof Assume that ≤ ⊆ �. Suppose that P, Q ∈ X (L) are such that PR�Q. To
prove that PR≺Q, suppose that a ∈ �−1≺ (P). Then �≺(a) ∩ P �= ∅. So, let b ∈
�≺(a) ∩ P . Then b ≺ a and therefore b � a. Therefore, b ∈ ��(a) ∩ P and so
a ∈ �−1≺ (P). Since PR�Q it follows that a ∈ Q. We conclude that �−1≺ (P) ⊆ Q,
which by definition implies that PR�Q.

Assume now that R� ⊆ R≺, that a ≺ b, and that it is not the case that a � b. Then
a /∈ ��(b). Therefore there exists P ∈ X (L) such that a ∈ P and P ∩ ��(b) = ∅.
Then b /∈ �−1

� (P). Let then Q ∈ X (L) such that �−1
� (P) ⊆ Q and b /∈ Q. So we

have PR�Q and hence, by the assumption, PR≺Q, namely �−1≺ (P) ⊆ Q. Since
a ∈ �≺(b) ∩ P , b ∈ �−1≺ (P). Therefore b ∈ Q, a contradiction. We conclude that
a � b. Hence, ≺ ⊆ �. �

The proposition allows us to consider categories of Priestley bi-subordination
spaces where the first relation is included in the second and obtain dualities for the
categories of bi-subordination lattices with the first subordination included in the
second.

Nowwe can consider the bi-subordination latticeswhere the second subordination
is the converse of the first. They include the bi-subordination lattices in Example 3.

Let L = 〈L ,≺,�〉be a bi-subordination lattice such that� is the converse relation
of ≺. Then, since for every a, b ∈ L

σ(a) ≺R≺ σ(b) ⇔ σ(a) ⊆ �R≺(σ (b))

and
σ(a) ≺R� σ(b) ⇔ σ(a) ⊆ �R�(σ (b)),
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we have
σ(a) ⊆ �R≺(σ (b)) ⇔ σ(b) ⊆ �R�(σ (a)).

This suggest considering the Priestley bi-subordination spaces 〈X, R1, R2〉where R1

and R2 satisfy for all clopen upsets U, V the following condition:

U ⊆ �R1(V ) ⇔ V ⊆ �R2(U ).

Using this observation we can obtain dualities for the categories of bi-subordination
lattices with each subordination being the converse of the other by takin as duals of
these bi-subordination lattices the Priestley bi-subordination spaces that satisfy the
above condition.

In the next section we discuss the dualities for positive bi-subordination lattices.

8.6 Positive Bi-Subordination Lattices

In this section we present first the dualities for positive subordination lattices that
follow from the general facts described in the previous section. Then we present a
different duality where positive subordination lattices are represented by a Priestley
space endowed with a single binary relation.

The conditions that define positive bi-subordination lattices in Definition 3 can
be characterized by properties of the relations associated with the subordinations as
shown in the next two propositions.

Proposition 17 Let 〈L ,≺,�〉 be a bi-subordination lattice. The following condi-
tions are equivalent:

1. �≺(a ∨ b) ⊆ ∇�(a) � �≺(b), for all a, b ∈ L,
2. R�≺ = (RL◦ ⊆),

where RL = R�≺ ∩ R∇
�.

Proof (1) ⇒ (2). To prove the inclusion (RL◦ ⊆) ⊆ R�≺ , note that (RL◦ ⊆) ⊆
R�≺◦ ⊆ and that by Lemma 2, R�≺ ◦ ⊆ = R�≺ . To prove the other inclusion, sup-
pose that P, Q ∈ X (L) are such that �−1≺ (P) ⊆ Q. We recall, by Lemma 1, that the
set �−1≺ (P) is a filter of L . Consider the ideal

(
Qc ∪ ∇−1

� (P)c
]
. We prove that

�−1
≺ (P) ∩ (

Qc ∪ ∇−1
� (P)c

] = ∅. (8.1)

We assume the contrary. Then let c ∈ �−1≺ (P), b /∈ Q and a /∈ ∇−1
� (P) such that

c ≤ a ∨ b. We note that as b /∈ Q, we have b /∈ �−1≺ (P) and hence

�≺(b) ∩ P = ∅. (8.2)

Also, as a /∈ ∇−1
� (P), there exists d ∈ L such that
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d ∈ ∇�(a) and d /∈ P. (8.3)

Since c ≤ a ∨ b, and �≺ is monotonic, �≺(c) ⊆ �≺(a ∨ b), and thus �≺(a ∨ b) ∩
P �= ∅, i.e., there exists e ∈ �≺(a ∨ b) such that e ∈ P . Since by the hypothesis,
�≺(a ∨ b) ⊆ ∇�(a) � �≺(b) we have e ∈ ∇�(a) � �≺(b) and as d ∈ ∇�(a), there
existsw ∈ �≺(b) such that e ≤ d ∨ w. Since e ∈ P and d /∈ P , it follows thatw ∈ P;
hence�≺(b) ∩ P �= ∅, in contradiction with (8.2). Thus, we obtain (8.1). Then there
exists D ∈ X (L) such that

�−1
≺ (P) ⊆ D ⊆ ∇−1

� (P) and D ⊆ Q.

This implies that (P, Q) ∈ (RL◦ ⊆).
(2) ⇒ (1)Assume that there exists c ∈ �≺(a ∨ b) such that c /∈ ∇�(a) � �≺(b).

Then there exists d ∈ ∇�(a) such that c /∈ (�≺(b) ∪ {d}]. Therefore there exists P ∈
X (L) satisfying that c ∈ P , �≺(b) ∩ P = ∅, and d /∈ P . So, there exists Q ∈ X (L)

such that �−1≺ (P) ⊆ Q and b /∈ Q. By hypothesis, there exists D ∈ X (L) such that
�−1≺ (P) ⊆ D ⊆ ∇−1

� (P) and D ⊆ Q. As c ∈ �≺(a ∨ b) ∩ P and�−1≺ (P) ⊆ D, we
get that a ∨ b ∈ D ⊆ Q, but since b /∈ Q, it follows that b /∈ D. Therefore, a ∈ D
and hence a ∈ ∇−1

� (P), which means that ∇�(a) ⊆ P . Since d ∈ ∇�(a), it follows
that d ∈ P , which is a contradiction. �
Proposition 18 Let 〈L ,≺,�〉 be a bi-subordination lattice. The following condi-
tions are equivalent:

1. ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b), for all a, b ∈ L,
2. R∇

� = (RL◦ ⊆−1),

where RL = R�≺ ∩ R∇
�.

Proof (1) ⇒ (2) The inclusion (RL◦ ⊆−1) ⊆ R∇
� follows from Lemma 2. To prove

the other inclusion, assume that P, Q ∈ X (L) are such that Q ⊆ ∇−1
� (P). By

Lemma 1, the set ∇−1
� (P)c is an ideal of L . Consider the filter

[
�−1(P) ∪ Q

)
.

We prove that. [
�−1

≺ (P) ∪ Q
) ∩ ∇−1

� (P)c = ∅. (8.4)

Suppose the contrary. Then let a ∈ �−1≺ (P), b ∈ Q and c /∈ ∇−1
� (P) such that

a ∧ b ≤ c. Since ∇� is antimonotonic, ∇�(c) ⊆ ∇�(a ∧ b), and since c /∈ ∇−1
� (P),

∇�(c) � P; hence ∇�(a ∧ b) � P . Thus, let d ∈ ∇�(a ∧ b) be such that d /∈ P .
By hypothesis, ∇�(a ∧ b) ⊆ �≺(a) ⊕ ∇�(b), so d ∈ �≺(a) ⊕ ∇�(b). Since a ∈
�−1≺ (P), there exists e ∈ �≺(a) ∩ P . Then there existsw ∈ ∇�(b) such that e ∧ w ≤
d. Since b ∈ Q ⊆ ∇−1

� (P), we have ∇�(b) ⊆ P . Thus w ∈ P , and hence, since then
e ∧ w ∈ P , we have d ∈ P , which is a contradiction. Therefore, (8.4) is valid. Then
there exists D ∈ X (L) such that

�−1
≺ (P) ⊆ D ⊆ ∇−1

� (P) and Q ⊆ D,

i.e., (P, Q) ∈ (RL◦ ⊆−1).
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(2) ⇒ (1) Assume (2) and suppose that a, b, c ∈ L are such that c ∈ ∇�(a ∧
b). Suppose that c /∈ �≺(a) ⊕ ∇�(b). Then there exists d ∈ �≺(a) such that c /∈
[∇�(b) ∪ {d}) . Then there exists P ∈ X (L) such that ∇�(b) ⊆ P , d ∈ P and c /∈
P . By Lemma 3 there exists Q ∈ X (L) such that Q ⊆ ∇−1

� (P) and b ∈ Q. By
hypothesis, there exists D ∈ X (L) such that �−1≺ (P) ⊆ D ⊆ ∇−1

� (P) and Q ⊆ D.
As d ∈ �≺(a) ∩ P,wehave a ∈ D, and as b ∈ Q, we get that a ∧ b ∈ D. So,∇�(a ∧
b) ⊆ P , but this implies that c ∈ P , which is impossible. Therefore, ∇�(a ∧ b) ⊆
�≺(a) ⊕ ∇�(b). �

Corollary 2 Let 〈L ,≺,�〉 be a bi-subordination lattice. Then L is a positive bi-
subordination lattice if and only if the following two conditions hold

1. R�≺ = (RL◦ ⊆),
2. R∇

� = (RL◦ ⊆−1),

where RL = R�≺ ∩ R∇
�. Equivalently, if and only if

1. R�≺ = (RL◦ ⊆),
2. (R�

�)−1 = (RL◦ ⊆−1),

where RL = R�≺ ∩ (R�
�)−1.

The corollary motivates the next definition.

Definition 9 A Priestley bi-subordination space 〈X, R1, R2〉 is positive if R1 and R2

satisfy the following conditions:

1. R1 = (R1 ∩ R−1
2 ) ◦ ≤,

2. R−1
2 = (R1 ∩ R−1

2 ) ◦ ≤−1.

From the results obtained up to nowwe easily can prove the next two propositions.

Proposition 19 Let L be a bi-subordination lattice. Then L is a positive subordi-
nation lattice if and only if the Priestley bi-subordination space

〈
X (L), R�≺ , R�

�
〉
is

positive.

Proof It follows from Corollary 2. �

Proposition 20 A Priestley bi-subordination space 〈X, R1, R2〉 is positive if and
only if 〈D(X),≺R1 ,≺R2〉 is a positive subordination lattice.

Proof It follows from Proposition 7, Corollary 2, and Proposition 9. �

As for other classes of bi-subordination lattices, once we fix as objects the positive
subordination lattices we obtain different categories by taking as arrows maps that
are of one kind of morphism (subordination homomorphism, strong subordination
homomorphism and dually strong subordination homomorphism) for the first subor-
dination and of another for the second. Then, moving to the corresponding categories
of positive Priestley bi-subordination spaces, the results in Sect. 8.4 provide us with
the corresponding duality results.
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Now we turn to find a category of Priestley spaces with a single binary relation
dually equivalent to the category of the positive subordination lattices with arrows
the maps that are a subordination homomorphism for both subordinations and also
a category of Priestley spaces with a single binary relation dually equivalent to
the category of the positive subordination lattices with arrows the maps that are a
strong subordination homomorphism for the first subordination and a dually strong
subordination homomorphism for the second subordination.

Proposition 21 If L = 〈L ,≺,�〉 is a positive bi-subordination lattice, a ∈ L, and
P ∈ X (L), then using the relation RL = R�≺ ∩ R∇

� = R�≺ ∩ (R�≺ )−1 we have:

1. �≺(a) ∩ P = ∅ iff there exists Q ∈ X (L) such that (P, Q) ∈ RL and a /∈ Q.
2. ∇�(a) ⊆ P iff there exists Q ∈ X (L) such that (P, Q) ∈ RL and a ∈ Q.

Proof (1) Assume that �≺(a) ∩ P = ∅. By Lemma 3 there exists Q ∈ X (L) such
that PR�≺ Q and a /∈ Q. By Corollary 2, there exists Q′ ∈ X (L) such that PRLQ′
and Q′ ⊆ Q. The converse follows from the fact that RL ⊆ R�≺ .

The proof of (2) is similar. �

Lemma 9 If 〈X, R1, R2〉 is a positive Priestley bi-subordination space and
R = R1 ∩ R−1

2 , then

1. R(x) is a closed subset of X, for each x ∈ X,
2. R = (R ◦ ≤) ∩ (R ◦ ≤−1),
3. �R(U ) = �R1(U ), for each U ∈ D(X),
4. ♦R(U ) = ♦R−1

2
(U ), for each U ∈ D(X).

Proof The proof of (1) is immediate because both R1(x) and R−1
2 (x) are closed sets.

For (2) we note that as R1 = (R1 ∩ R−1
2 ) ◦ ≤ = R ◦ ≤ and R−1

2 = (R1 ∩ R−1
2 ) ◦

≤−1 = R ◦ ≤−1, then R = R1 ∩ R−1
2 = (R ◦ ≤) ∩ (R ◦ ≤−1).

For the proof of (3) assume that x ∈ �R(U ). If x /∈ �R1(U ), then there exists
y ∈ X such that (x, y) ∈ R1 but y /∈ U . As R1 = R ◦ ≤, there exist z ∈ X such
that (x, z) ∈ R and z ≤ y. So, since x ∈ �R(U ), we have z ∈ U , and since U is an
upset, y ∈ U , which is a contradiction. Suppose now that x ∈ �R1(U ). Note that
R ⊆ R ◦ ≤ = R1. Therefore R(x) ⊆ R1(x). It follows that x ∈ �R(U ).

To prove (4) assume that x ∈ ♦R(U ). Then R(x) ∩U �= ∅. Therefore, R−1
2 (x) ∩

U �= ∅ and so x ∈ ♦R−1
2

(U ). Conversely, if x ∈ ♦R−1
2

(U ), let y ∈ R−1
2 (x) ∩U . Then,

since R−1
2 = (R1 ∩ R−1

2 ) ◦ ≤−1, there is u ∈ (R1 ∩ R−1
2 )(x) such that y ≤ u. Since

U is an upset, it follows that u ∈ R(x) ∩U ; therefore x ∈ ♦R(U ). �

Proposition 22 Let 〈X, R〉 be a relational structure such that X is a Priestley space
and R is a binary relation on X satisfying the following conditions:

1. For every x ∈ X, R(x) is a closed set,
2. R = (R ◦ ≤) ∩ (R ◦ ≤−1),
3. �R(U ) is an open upset for every U ∈ D(X), and ♦R(U ) is closed upset for

every U ∈ D(X).
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Then the structure
〈
X, R1, (R2)

−1
〉
is a positive bi-subordination space, where R1

and R2 are defined as R1 = R ◦ ≤ and R2 = R ◦ ≤−1, respectively.

Proof We prove that R1(x) is a closed set and an upset. If it is empty it is clear. If it is
nonempty, suppose that y /∈ R1(x). Then, since R1 = R ◦ ≤, for each z ∈ R(x) we
have z � y. Also R(x) is nonempty. So, for each z ∈ R(x) there exists Uz ∈ D(X)

such that z ∈ Uz , and y /∈ Uz . Then, R(x) ⊆ ⋃ {Uz : z ∈ R(x)} and since R(x) is
closed, there exists a finite subfamily

{
Uz1 , . . . ,Uzn

}
of {Uz : z ∈ R(x)} such that

R(x) ⊆ Uz1 ∪ · · · ∪Uzn . Let U = Uz1 ∪ · · · ∪Uzn . It is clear that y /∈ U and that U
is an upset. Therefore, R1(x) ⊆ U . Thus we have proved that for each y /∈ R1(x)
there exists U ∈ D(X) such that R1(x) ⊆ U and y /∈ U . It follwos that R1(x) is
closed and the definition of R1 implies that it is an upset. Similarly, we can prove
that R2(x) is a closed downset.

Now we prove that for every U ∈ D(X), �R(U ) = �R1(U ) and ♦R(U ) =
♦R2(U ). Since everyU ∈ D(X) is an upset, it easily follows that for everyU ∈ D(X)

and x ∈ X , R(x) ⊆ U if and only if (R ◦ ≤)(x) ⊆ U . Hence, �R(U ) = �R1(U )

for every U ∈ D(X). Moreover, for every U ∈ D(X) it also holds that ♦R(U ) =
♦R2(U ). Indeed, since R2 = R ◦ ≤−1, for every x ∈ X and U ∈ D(X), since U is
an upset it follows that R(x) ∩U �= ∅ if and only if R2(x) ∩U �= ∅. Therefore
♦R(U ) = ♦R2(U ).

Using the fact we have just proved, (3) of the assumption implies that R1 is the
�-dual of a subordination and R2 is the∇-dual of a subordination. Therefore, R−1

2 is
the�-dual of a subordination. Then (2) of the assumption implies that R = R1 ∩ R2.
Therefore R1 = R ◦ ≤ = (R1 ∩ R2) ◦ ≤ and R2 = R ◦ ≤−1 = (R1 ∩ R2) ◦ ≤−1. It
follows form the definition of positive bi-subordination space that

〈
X, R1, (R2)

−1
〉
is

a positive bi-subordination space. �

Definition 10 A positive Priestley space is a pair 〈X, R〉 where X is a Priestley
space and R is a relation on X that satisfies the conditions of Proposition 22.

By the above results, if 〈X, R〉 is a positive Priestley space, then the structure〈
X, R1, (R2)

−1
〉
defined as in Proposition 22 is a positive Priestley bi-subordination

space such that the pair 〈X, R1 ∩ R2〉 satisfies the conditions in Proposition 22.
Conversely, if 〈X, R1, R2〉 is a positive Priestley bi-subordination space, then the
structure

〈
X, R1 ∩ R−1

2

〉
satisfies the conditions in Proposition 22, and therefore it is

a positive Priestley space such that the triple
〈
X, (R1 ∩ R−1

2 ) ◦ ≤, (R1 ∩ R−1
2 ) ◦ ≤−1

〉

is a positive Priestley bi-subordination space where R1 = (R1 ∩ R−1
2 ) ◦ ≤ and

R2 = (R1 ∩ R−1
2 ) ◦ ≤−1. Thus, we have that there exists a bijective correspondence

between positive Priestley bi-subordination spaces and positive Priestley spaces.

Definition 11 Let 〈X, R〉 and 〈Y, S〉 be positive Priestley spaces. A Priestley mor-
phism f : X → Y from 〈X, R〉 to 〈Y, S〉 is stable if for every x, y ∈ X such that
x Ry it holds that f (x)S f (y) and it is doubly strongly stable if it is stable and for
all x ∈ X and all y ∈ Y , if f (x)Sy then there exist z1, z2 ∈ X such that x Rz1, x Rz2
and f (z1) ≤ y ≤ f (z2).
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Proposition 23 Let 〈X, R〉 and 〈Y, S〉 be positive Priestley spaces and consider
the relations R1 = R ◦ ≤, R2 = R ◦ ≤−1, S1 = S ◦ ≤, and S2 = S ◦ ≤−1. Then f :
X → Y is a (doubly strongly) stable Priestley morphism from 〈X, R〉 to 〈Y, S〉 if
and only if f is a (strongly) stable morphism from 〈X, R1〉 to 〈Y, S1〉 and a (dually
strongly) stable morphism from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Proof Let f : X → Y be a Priestleymorphism. Suppose that f is stable from 〈X, R〉
to 〈Y, S〉. To prove that f is stable from 〈X, R1〉 to 〈Y, S1〉 suppose that x, y ∈ X are
such that x R1y. Then let z ∈ X be such that x Rz and z ≤ y. Hence, by the assumption
of stability, f (x)S f (z) and since f is a Priestley morphism f (z) ≤ f (y). Therefore
f (x)S1 f (y). A similar proof shows that f is stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Assume now that f is doubly strongly stable. We proceed to prove that f is strongly
stable from 〈X, R1〉 to 〈Y, S1〉. Assume that x ∈ X and y ∈ Y are such that f (x)S1y.
Then there is u ∈ Y such that f (x)Su and u ≤ y. Thus, since f is double strongly
stable there are z1, z2 ∈ X such that x Rz1, x Rz2 and f (z1) ≤ u ≤ f (z2). Then, as
u ≤ y, x Rz1 and f (z1) ≤ y. This shows that f is strongly stable from 〈X, R1〉 to
〈Y, S1〉. We now show that f is dually strongly stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Suppose now that x ∈ X and y ∈ Y are such that f (x)S2y. Then there is u ∈ Y such
that f (x)Su and y ≤ u. Since f is double strongly stable there are z1, z2 ∈ X such
that x Rz1, x Rz2 and f (z1) ≤ u ≤ f (z2). Then, as y ≤ u, x Rz2 and y ≤ f (z2). Thus
we obtain that f is dually strongly stable from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉.

Conversely, assume that f is a stable morphism from 〈X, R1〉 to 〈Y, S1〉 and a
stable morphism from 〈X, R2〉 to 〈Y, S2〉. To prove that f is stable from 〈X, R〉 to
〈Y, S〉, suppose that x, y ∈ X are such that x Ry. Note that since 〈X, R〉 and 〈Y, S〉
are positive Priestley spaces R = R1 ∩ R2 and S = S1 ∩ S2. Hence, x R1y and x R2y.
Therefore the assumption implies that f (x)S1 f (y) and f (x)S2 f (y). Thus we have
f (x)S f (y). Suppose now that f is a strongly stablemorphism from 〈X, R1〉 to 〈Y, S1〉
and a dually strongly stablemorphism from 〈X, R−1

2 〉 to 〈Y, S−1
2 〉. Assume that x ∈ X

and y ∈ Y are such that f (x)Sy. Then f (x)S1y and f (x)S2y. Thus, let z1, z2 ∈ X
such that x R1z1 and f (z1) ≤ y and x R2z2 and y ≤ f (z2). Let then u1, u2 ∈ X such
that x Ru1, u1 ≤ z1, x Ru2, and z2 ≤ u2. Then x Ru1, x Ru2 f (u1) ≤ f (z1) ≤ y, and
y ≤ f (z2) ≤ f (u2). We obtain the desired conclusion. �

Let PBiSLat be the category with objects the positive subordination lattices and
arrows the maps between them that are a subordination homomorphismw.r.t. the two
subordinations. LetPBiSLats be the categorywith objects the positive subordination
lattices and arrows the maps between them that are a strong subordination homomor-
phism w.r.t. the first subordination and a dual strong subordination homomorphism
w.r.t. the second. Similarly, let PPriSp be the category with objects the positive
Priestley spaces and arrows the stable Priestley morphisms and let PPriSps be the
category with objects the positive Priestley spaces and arrows the doubly strongly
stable Priestley morphisms. From the results above the next theorem follows.

Proposition 24 The categories PBiSLat and PPriSp are dually equivalent as well
as the categories PBiSLats and PPriSps.
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Chapter 9
Hard Provability Logics

Mojtaba Mojtahedi

Abstract Let PL(T, T ′) and PL
�1

(T, T ′) respectively indicate the provability logic
and �1-provability logic of T relative in T ′. In this paper we characterise the
following relative provability logics: PL

�1
(HA, N), PL

�1
(HA,PA), PL

�1
(HA∗, N),

PL
�1

(HA∗,PA), PL(PA,HA), PL
�1

(PA,HA), PL(PA∗,HA), PL
�1

(PA∗,HA),
PL(PA∗,PA), PL

�1
(PA∗,PA), PL(PA∗, N), PL

�1
(PA∗, N) (see Table9.3). It turns

out that all of these provability logics are decidable. The notion of reduction for
provability logics, first informally considered in (Ardeshir and Mojtahedi 2015). In
this paper, we formalize a generalization of this notion (Definition 9.4.1) and pro-
vide several reductions of provability logics (see Diagram 9.5). The interesting fact
is that PL

�1
(HA, N) is the hardest provability logic: the arithmetical completenesses

of all provability logics listed above, as well as well-known provability logics like
PL(PA,PA), PL(PA, N), PL

�1
(PA,PA), PL

�1
(PA, N) and PL

�1
(HA,HA), are all

propositionally reducible to the arithmetical completeness of PL
�1

(HA, N).

Keywords Provability logic · Relative provability logic · Standard model ·
Heyting arithmetic HA · Peano arithmetic PA · Intuitionistic logic · Rreduction
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back to 2003 when, in the second semester of my undergraduate studies, I attended
his course on the foundations of mathematics. I was impressed by his knowledge and
by the style of his teaching which encouraged me to attend most of his other courses
during my undergraduate and graduate studies. I still vividly remember how deeply
I was fascinated by his graduate course on Gödel’s incompleteness theorems in Fall
2006. It was this course which made me determine to do my Ph.D. in mathematical
logic and under the supervision of Dr. Ardeshir. His influence on me is not restricted
to my academic work, as he has been a source of inspiration on many aspects of my
life; and that is why dedicating this paper to him is the least thing I can do to thank
him.

9.2 Introduction

There are two excellent surveys on provability logic: (Beklemishev and Visser 2006;
Artemov andBeklemishev 2004). To be self-contained, I bring some selected subjects
from them here, and then review some related recent results on this subject.

The provability interpretation for the modal operator �, first considered by Kurt
Gödel (Gödel 1933), intending to provide a semantics for Heyting’s formalization
of the intuitionistic logic, IPC. On the other hand, and again by celebrated Gödel’s
incompleteness results (Gödel 1931), for a recursively enumerable theory T and a
sentence in the language of T , one may formalize “A is provable in T ” via a simple
(�1) formula ProvT (�A�) in the first-order language of arithmetic, in which �A�
is the Gödel number of A. Let PL(T, T ′) and PL

�1
(T, T ′) respectively indicate the

provability logic and�1-provability logic of T relative in T ′ (Definition 9.3.2). Here
is a list of results on provability logics with arithmetical flavour:

1. ¬�⊥ /∈ PL(PA,PA) (Gödel 1931).
2. �(�A → A) → �A ∈ PL(PA,PA) (Löb 1955).
3. A ∈ PL(HA,HA) for a nonmodal proposition A, iff A is valid in the intuitionistic

logic IPC (de Jongh 1970; de Jongh et al. 2011).
4. GL = PL(PA,PA) and GLS = PL(PA, N) = PL(PA,ZF) (Solovay 1976), in

which GL is Gödel-Löb logic, as defined in Definition 9.3.6.
5. �(A ∨ B) → (�A ∨�B) /∈ PL(HA,HA) (Myhill 1973; Friedman 1975).
6. �(A ∨ B) → �(�. A ∨ �. B) ∈ PL(HA,HA), in which �. A is a shorthand for

A ∧�A (Leivant 1975).
7. iGLCT = PL(PA∗,PA∗) (Visser 1981, 1982), in which iGLCT is as defined in

Definition 9.3.6.
8. �¬¬�A → ��A ∈ PL(HA,HA) and �(¬¬�A → �A) → �(�A ∨
¬�A) ∈ PL(HA,HA) (Visser 1981, 1982).

9. Rosalie Iemhoff 2001 introduced a uniform axiomatization of all known axiom
schemas of PL(HA,HA) in an extended language with a bimodal operator �. In
her Ph.D. dissertation (Iemhoff 2001), Iemhoff raised a conjecture that implies
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directly that her axiom system, iPH, restricted to the normal modal language, is
equal to PL(HA,HA) (Iemhoff 2001).

10. PL{	,⊥}(HA,HA) is decidable (Visser 2002). In other words, Visser introduced
a decision algorithm for A ∈ PL(HA,HA), for all A not containing any atomic
variable.

11. PL
�1

(HA,HA) = iHσ (Definition 9.3.30) is decidable (Ardeshir and Mojtahedi
2018; Visser and Zoethout 2019).

12. PL
�1

(HA∗,HA∗) = iH∗
σ (Definition 9.3.30) is decidable,Ardeshir andMojtahedi

(2019).

As it is known in the literature (Troelstra and vanDalen 1988), HeytingArithmetic
HA, enjoys disjunction property: if HA 
 A ∨ B, then either HA 
 A or HA 
 B.
Regrettably, HA is not able to prove this (Friedman 1975; Myhill 1973). Hence
such properties, are not reflected in the provability logic of HA, as a valid principle
�(A ∨ B) → (�A ∨�B). A natural question arises here: is there any other valid
rule?

One way to systematically answer this question, is to characterise the truth prov-
ability logic of HA. In the case of classical arithmetic PA, Robert Solovay in his
original ingenious paper (Solovay 1976), characterised the truth provability logic of
PA. He showed that the only extra valid axiom is the soundness principle �A → A,
which is known to be true and unprovable in PA. In this paper we show that, in the
�1-provablity logic of HA, the same thing happens: The truth �1-provability logic
of HA is decidable and only has the extra axiom schema �A → A. The disjunc-
tion property, which we mentioned before, will be deduced from Leivant’s principle
�(A ∨ B) → �(�A ∨�B) and the soundness principle.

The author of this paper in his joint paper with (Ardeshir and Mojtahedi 2015),
showed that the arithmetical completeness of the modal logic GL is reducible to the
arithmetical completeness of GL+ p → �p for �1 interpretations. The reduction
involves only a propositional argument. In this paper, I show that all relative prov-
ability logics, discussed in this paper, are reducible to the truth �1-provability logic
of HA (see Diagram 9.5). So, in a sense, PL

�1
(HA, N) is the hardest among them.

With the handful propositional reductions, we will characterise several relative
provability logics for HA, PA, HA∗ and PA∗, the self-completions of HA and PA
(Visser 1982).

9.3 Definitions and Preliminaries

Thepropositional non-modal languageL0 contains atomic variables,∨,∧,→,⊥ and
the propositional modal language L� has an additional operator �. In this paper, the
atomic propositions (in the modal or non-modal language) include atomic variables
and ⊥. For an arbitrary proposition A, Sub(A) is defined to be the set of all sub-
formulae of A, including A itself. We take Sub(X) :=⋃A∈X Sub(A) for a set of
propositions X . We use �. A as a shorthand for A ∧�A and ¬A for A →⊥. The



256 M. Mojtahedi

logic IPC is the intuitionistic propositional non-modal logic over the usual proposi-
tional non-modal language. The theory IPC� is the same theory IPC in the extended
language of the propositional modal language, i.e. its language is the propositional
modal language and its axioms and rules are same as IPC. Because we have no
axioms for � in IPC�, it is obvious that �A for each A, behaves exactly like an
atomic variable inside IPC�. First-order intuitionistic logic is denoted by IQC and
the logicCQC is its classical closure, i.e. IQC plus the principle of excluded middle.
For a set of sentences and rules � ∪ {A} in the propositional non-modal, proposi-
tional modal or first-order language, � 
 A means that A is derivable from � in the
system IPC, IPC�, IQC, respectively. For an arithmetical formula, �A� represents
the Gödel number of A. For an arbitrary arithmetical theory T with a �0(exp)-set
of axioms, as far as we work in strong enough theories which is the case in this
paper, we have the �0(exp)-predicate ProofT (x, �A�), that is a formalization of “x
is the code of a proof for A in T ”. Note that by (inspection of the proof of) Craig’s
theorem, every recursively enumerable theory has a �0(exp)-axiomatization. We
also have the provability predicate ProvT (�A�) := ∃x ProofT (x, �A�). The set of
natural numbers is denoted by ω := {0, 1, 2, . . .}.
Definition 9.3.1 Suppose T is a�0(exp)-axiomatized theory and σ is a substitution
i.e. a function from atomic variables to arithmetical sentences.We define the interpre-
tation σT which extends the substitution σ to all modal propositions A, inductively:

• σT (A) := σ(A) for atomic A,
• σT distributes over ∧,∨,→,
• σT (�A) := ProvT (�σT (A)�).

We call σ a �-substitution (in some theory T ), if for every atomic A, σ(A) ∈ �

(T 
 σ(A) ↔ A′ for some A′ ∈ �). We also say that σT is a �-interpretation if σ is
a �-substitution.

Definition 9.3.2 The relative provability logic of T in some sufficiently strong the-
ory U restricted to a set of first-order sentences �, is defined to be a modal propo-
sitional theory PL

�
(T, U ) such that PL

�
(T, U ) 
 A iff for all arithmetical substitu-

tions σ in �, we have U 
 σT (A). We make this convention: PL
�
(T, N) indicates

PL
�
(T,Theory(N)), in which Theory(N) is the set of all true sentences in the

standard model of arithmetic.

Define NOI (No Outside Implication) as the set of modal propositions A, such that
any occurrence of → is in the scope of some �. To be able to state an extension
of Leivant’s Principle, we need a translation on the modal language which we call
Leivant’s translation.

Definition 9.3.3 Define the Leivant’s translation (.)l , inductively on modal propo-
sitions:

• Al := A for atomic or boxed A,
• (A ∧ B)l := Al ∧ Bl ,
• (A ∨ B)l := �. Al ∨ �. Bl ,
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• (A → B)l is defined by cases: If A ∈ NOI, we define (A → B)l := A → Bl ,
otherwise we define (A → B)l := A → B.

Definition 9.3.4 Let us inductively define the box translation (.)� and some variants
of it:

• A�↑ := A� := �. A and A�↓ := A for atomic A or A := 	,⊥,
• (�A)�↑ := �A and (�A)� := (�A)�↓ := �A�,
• (.)�↑, (.)� and (.)�↓ commute with ∧ and ∨,
• (B → C)�↑ := �. (B�↑ → C�↑), (B → C)� := �. (B� → C�) and (B →

C)�↓ := B�↓ → C�↓.

Remark 9.3.5 For every A we have A� = (A�↓)�↑. Also iK4 
 A� ↔ (A�↑)�↓.

Proof Both statements are proved easily by induction on the complexity of A, and
we leave them to the reader. �

Definition 9.3.6 Define the following list of axiom schemas:

• i : A, for every theorem A of IPC�,
• K : �(A → B) → (�A → �B),
• 4 : �A → ��A,
• The Löb’s axiom, Löb or L : �(�A → A) → �A,
• The Completeness Principle, CP or C : A → �A.
• Restriction of Completeness Principle to atomic variables,CPa orCa : p → �p,
for atomic p.

• The reflection principle, S : �A → A.
• The complete reflection principle, S∗ : �A → A�.
• The Principle of Excluded Middle, PEM or P : A ∨ ¬A.
• Leivant’s Principle, Le : �(B ∨ C) → �(�B ∨ C) (Leivant 1975).
• Extended Leivant’s Principle, Le+ : �A → �Al (Ardeshir andMojtahedi 2018).
• Trace Principle, TP : �(A → B) → (A ∨ (A → B)) (Visser 1982).
• For an axiom schema A, the axiom schema A indicates the box of every axiom
instance of A. Also A indicates A ∧ A.

All modal systems which will be defined here, only have one inference rule:
modus ponens B B→A

A . Also, celebrated modal logics, like K4, which have the
necessitation rule of inference, A

� A , by abuse of notation, are considered herewith the
same name andwith the same set of theorems, howeverwithout the necessitation rule.
The reason for this alternate definition of systems, is quite technical. Of course one
may define them with the necessitation rule, but at the cost of loosing the uniformity
of definitions. So in the rest of this paper, all modal systems, are considered with the
modus ponens rule of inference. Note that in the presence of the axiom schema 4,
one may finitely axiomatize logics such as iK4 and extensions, without necessitation
rule.

Consider a list A1, . . . ,An of axiom schemas and also L is a modal logic. The
notation A1A2 . . .An (LA1A2 . . .An) will be used in this paper for a modal system
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containing all axiom instances of all axiom schemas Ai (and all axioms of L), and
is closed under modus ponens. This general notation makes things uniform and easy
to remember for later usage. However, we make the following exceptions:

• iGL := iKL,
• GL := iKLP.

We also gathered the list of axioms and theories in Tables9.1 and 9.3.

Lemma 9.3.7 For every modal proposition A, we have iK4 
 A� ↔ �. A�.

Proof Use induction on the complexity of A. �

Lemma 9.3.8 For every modal proposition A, we have iK4+ �. CP 
 A ↔ A�

and iK4+�CP 
 A ↔ A�↓.

Proof Note that the first assertion implies the second one. To prove the equivalence
of A and A� in iK4+ �. CP, one must use induction on the complexity of A. All
cases are simple and left to the reader. �

Lemma 9.3.9 For every modal proposition A, we have iGL 
 A implies iGL 

A�↑ ∧ A�↓ ∧ A�. The same holds for iGLCa.

Proof Use induction on the complexity of proof iGL 
 A. �

Lemma 9.3.10 Let A be some proposition and E ∈ sub(A�). Then iK4+ CPa 

E�↑ → �. E.

Proof Use induction on the complexity of E . All cases are trivial except for E =
F� → G�. In this case we have E�↑ = �. ((F�)�↑ → (G�)�↑). One may observe
that (A�)�↑ ↔ A� is valid in iK4 and hence we have iK4 
 E�↑ ↔ �. E . �

9.3.1 Preliminaries from Arithmetic

The first-order language of arithmetic contains three functions (successor, addition
andmultiplication), one predicate symbol and a constant: (S,+, · ,≤, 0). First-order
intuitionistic arithmetic (HA) is the theory over IQC with the axioms:

Q1 Sx �= 0,
Q2 Sx = S(y) → x = y,
Q3 x + 0 = x ,
Q4 x + Sy = S(x + y),
Q5 x .0 = 0,
Q6 x .Sy = (x .y)+ x ,
Q7 x ≤ y ↔ ∃z z + x = y,
Ind: For each formula A(x):
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Ind(A, x) := UC[(A(0) ∧ ∀x(A(x) → A(Sx))) → ∀x A(x)]
In which UC(B) is the universal closure of B.

Peano Arithmetic PA, has the same axioms of HA over CQC.

Notation 9.3.11 From now on, when we are working in the first-order language of
arithmetic, for a first-order sentence A, the notations �A and �+A are shorthand
for ProvHA (�A�) and ProvPA (�A�), respectively. Let i�1 be the theory HA, where
the induction principle is restricted to �1-formulae. We also define HAx to be the
theory with axioms of HA, in which the induction principle is restricted to formulae
satisfying at least one of the following conditions:

• �1-formulas,
• formulae with Gödel number less than x .

We define PAx similarly. Also define �x A and �+
x A to be provability predicates in

HAx and PAx , respectively.

Lemma 9.3.12 For every formula A, we have PA 
 ∀x �+(�+
x A → A) and HA 


∀x �(�x A → A).

Proof The case of PA is well known (Hájek and Pudlák 1993). For the case HA, see
(Smoryński 1973) or (Visser 2002, Theorem 8.1). �

Lemma 9.3.13 HA proves all true �1 sentences. Moreover this argument is for-
malizable and provable in HA, i.e. for every �1-formula A(x1, . . . , xk) we have
HA 
 A(x1, . . . , xk) → �A(ẋ1, . . . , ẋk).

Proof It is a well-known fact that any true (in the standard model N) �1-sentence is
provable in HA (Visser 2002). Moreover this argument is constructive and formal-
izable in HA. �

Lemma 9.3.14 For any �0(exp)-formula A(x̄), we haveHA 
 ∀x̄(A(x̄) ∨ ¬A(x̄)).

Proof This is well-known in the literature (Troelstra and van Dalen 1988). �

Lemma 9.3.15 Let A, B be �1-formulae such that PA 
 A → B. Then HA 

A → B.

Proof Observe that every implication of �1-sentences in HA is equivalent to a �2

sentence and use the �2-conservativity of PA over HA (Troelstra and van Dalen
1988)(3.3.4). �

Definition 9.3.16 For a first-order theory T and first-order arithmetical formula A,
the Beeson-Visser translation AT is defined as follows:

• AT := A for atomic A,
• (.)T commutes with ∧,∨ and ∃,
• (A → B)T := (AT → BT ) ∧ ProvT (�AT → BT �)
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• (∀x A)T := ∀x AT ∧ ProvT (�∀x AT �).

HA∗ and PA∗ were first introduced in (Visser 1982). These theories are defined as

HA∗ := {A | HA 
 AHA} and PA∗ := {A | PA 
 APA}.

Visser in (Visser 1982) showed that the (�1-)provability logic of PA∗ is iGLCT,
i.e. iGLCT 
 A iff for all arithmetical substitution σ, PA∗ 
 σPA∗ (A). That means
that

PL(PA∗) = PL
�1

(PA∗) = iGLCT.

Lemma 9.3.17 For any arithmetical �1-formula A

1. HA 
 A ↔ AHA,
2. HA 
 A ↔ APA.

Proof See (Visser 1982, 4.6.iii). �
Lemma 9.3.18 For every arithmetical sentence A we have

• HA 
 ProvHA (�A�) → ProvHA∗ (�A�),
• HA∗ 
 A → ProvHA∗ (�A�),
• PA∗ 
 A → ProvPA∗ (�A�).

Proof For the first item, consider some A such that HA 
 A. By induction on the
proof of A in HA, one may prove that HA 
 AHA. Moreover this argument is for-
malizable and provable in HA. We refer the reader to (Visser 1982) for details.
For the proof of second and third items, one may use induction on the complexity of
A, and we leave the routine induction to the reader. �
Lemma 9.3.19 For any �1-substitution σ and each propositional modal sentence
A, we have HA 
 (σHA∗ (A))HA ↔ σPA∗ (A�↑) and PA 
 (σPA∗ (A))PA ↔ σPA∗ (A�↑).

Proof Use induction on the complexity of A. All cases are easily derived by Lemma
9.3.17. �
Lemma 9.3.20 For any �1-substitution σ and each propositional modal sentence
A, we have HA 
 σHA (A�) ↔ (σHA∗ (A))HA and HA 
 σPA (A�) ↔ (σPA∗ (A))PA.

Proof Use induction on the complexity of A. All cases are easily derived by Lemma
9.3.17. �
Lemma 9.3.21 For any �1-substitution σ and each propositional modal sentence
A, we have HA 
 σHA (A�↓) ↔ σHA∗ (A) and HA 
 σPA(A�↓) ↔ σPA∗ (A).

Proof We use induction on the complexity of A. All cases are easy, except for boxed
case, which holds by Lemma 9.3.20. �
Lemma 9.3.22 For any �1-substitution σ and each propositional modal sentence
A, we have HA 
 σPA (A�↓) ↔ σPA∗ (A).

Proof We use induction on the complexity of A. All cases are easy, except for boxed
case, which holds by Lemma 9.3.20. �
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9.3.1.1 Kripke Models of HA

A first-order Kripke model for the language of arithmetic is a tripleK = (K ,�,M)

such that:

• The frame of K, i.e. (K ,�), is a non-empty partially ordered set,
• M is a function from K to the first-order classical structures for the language of
the arithmetic, i.e.M(α) is a first-order classical structure, for each α ∈ K ,

• For any α � β ∈ K ,M(α) is a weak substructure of M(β).

For anyα ∈ K andfirst-order formula A ∈ Lα (the language of arithmetic augmented
with constant symbols ā for each a ∈ |M(α)|), we define K,α � A (or simply α �
A, if no confusion is likely) inductively as follows:

• For atomic A, K,α � A iff M(α) |= A. Note that in the structure M(α), ā is
interpreted as a,

• K,α � A ∨ B iff K,α � A or K,α � B,
• K,α � A ∧ B iff K,α � A and K,α � B,
• K,α � A → B iff for all β � α, K,β � A implies K,β � B,
• K,α � ∃x A iff K,α � A[x : ā], for some a ∈ |M(α)|,
• K,α � ∀x A iff for all β � α and b ∈ |M(β)|, we have K,β � A[x : b̄].
It is well-known in the literature (Troelstra and van Dalen 1988) thatHA is complete
for first-order Kripke models.

Lemma 9.3.23 Let K = (K ,�,M) be a Kripke model of HA and A be an arbitrary
�1-formula. Then for each α ∈ K , we have α � A iff M(α) |= A.

Proof Use induction on the complexity of A to show that for each α ∈ K , we have
α � A iffM(α) |= A. In the inductive step for→ and ∀, use Lemma 9.3.14. �

9.3.1.2 Interpretability

Let T and S be two first-order theories. Informally speaking, we say that T interprets
S (T � S) if there exists a translation from the language of S to the language of T
such that T proves the translation of all of the theorems of S. For a formal definition
see (Visser 1998). It is well-known that for recursive theories T and S containing
PA, the assertion T � S is formalizable in first-order language of arithmetic. For two
arithmetical sentences A and B, we use the notation A � B to mean that PA + A
interprets PA + B. The following theorem due to Orey, first appeared in (Feferman
1960).

Theorem 9.3.24 For recursive theories T and S containing PA, we have:

PA 
 (T � S) ↔ ∀x �TCon(Sx ),

in which Sx is the restriction of the theory S to axioms with Gödel number ≤ x and
Con(U ) := ¬�U⊥.
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Proof See (Feferman 1960), p. 80 or (Berarducci 1990). �

Convention. From Theorem 9.3.24, one can easily observe that PA 
 (A � B) ↔
∀x �+(A → ¬�+

x ¬B). So from now on, A � B means its �2-equivalent
∀x �+(A → ¬�+

x ¬B), even when we are working in weaker theories like HA,
for which the above theorem (Theorem 9.3.24) doesn’t hold. We remind the reader
that �+ stands for provability in PA.

9.3.1.3 Smoryński’s Method for Constructing Kripke Models of HA

With the general method of constructing Kripke models for HA, invented by
Smoryński (Smoryński 1973), interpretability of theories containing PA plays an
important role in constructing Kripke models of HA.

Definition 9.3.25 A tripleI := (K ,�, T ) is called an I-frame iff it has the following
properties:

• (K ,�) is a finite tree,
• T is a function from K to arithmetical r.e. consistent theories containing PA,
• if β � γ, then Tβ interprets Tγ ( Tβ � Tγ ).

Theorem 9.3.26 For every I-frame I := (K ,�, T ) there exists a first-order Kripke
modelK = (K , c,M) such thatK � HA and moreoverM(α) |= Tα, for any α ∈ K .
Note that both of the I-frame and Kripke model are sharing the same frame (K ,�).

Proof See (Smoryński 1973, pp. 372–377). For more detailed proof of a generaliza-
tion of this theorem, see (Ardeshir and Mojtahedi 2014, Theorem 4.8) �

9.3.2 The NNIL Formulae and Related Topics

The class of No Nested Implications to the Left, NNIL formulae in a propositional
language was introduced in (Visser et al. 1995), and more explored in (Visser 2002).
The crucial result of (Visser 2002) is providing an algorithm that as input, gives a
non-modal proposition A and returns its best NNIL approximation A∗ from below,
i.e., IPC 
 A∗ → A and for allNNIL formulae B such that IPC 
 B → A, we have
IPC 
 B → A∗. Also for all �1-substitutions σ, we have HA 
 σHA(�A ↔ �A∗)
(Visser 2002).

The precise definition of the class NNIL of modal propositions is NNIL := {A |
ρA ≤ 1}, in which the complexity measure ρ, is defined inductively as follows:

• ρ(�A) = ρ(p) = ρ(⊥) = ρ(	) = 0, for an arbitrary atomic variables p and
modal proposition A,

• ρ(A ∧ B) = ρ(A ∨ B) = max(ρA, ρB),
• ρ(A → B) = max(ρA + 1, ρB),
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Definition 9.3.27 For any two modal propositions A and B, we define [A]B by
induction on the complexity of B:

• [A]B = B, for atomic or boxed B,
• [A](B1 ◦ B2) = [A](B1) ◦ [A](B2) for ◦ ∈ {∨,∧},
• [A](B1 → B2) = A′ → (B1 → B2), in which A′ = A[B1 → B2 | B2], i.e.,
replace each outer occurrence of B1 → B2 (by outer occurrence we mean that
it is not in the scope of any �) in A by B2,

For a set X of modal propositions, we also define [A]X :=∨B∈X [A]B.

9.3.2.1 The NNIL-Algorithm

For each modal proposition A, the proposition A∗ is defined inductively as follows
(Visser 2002):

1. A is atomic or boxed, take A∗ := A.
2. A = B ∧ C , take A∗ := B∗ ∧ C∗.
3. A = B ∨ C , take A∗ := B∗ ∨ C∗.
4. A = B → C , we have several sub-cases. In the following, an occurrence of E in

D is called an outer occurrence, if E is neither in the scope of an implication nor
in the scope of a boxed formula.

(a) C contains an outer occurrence of a conjunction. In this case, there is some
formula J (q) such that

• q is a propositional variable not occurring in A.
• q is outer in J and occurs exactly once.
• C = J [q|(D ∧ E)].
Now set C1 := J [q|D], C2 := J [q|E] and A1 := B → C1, A2 := B → C2

and finally, define A∗ := A∗1 ∧ A∗2.
(b) B contains an outer occurrence of a disjunction. In this case, there is some

formula J (q) such that

• q is a propositional variable not occurring in A.
• q is outer in J and occurs exactly once.
• B = J [q|(D ∨ E)].
Now set B1 := J [q|D], B2 := J [q|E] and A1 := B1 → C, A2 := B2 → C
and finally, define A∗ := A∗1 ∧ A∗2.

(c) B =∧ X and C =∨ Y and X, Y are sets of implications, atomics or boxed
formulas. We have several sub-cases:
(i) X contains an atomic variable or a boxed formula E . We set D :=∧

(X \ {E}) and take A∗ := E∗ → (D → C)∗.
(ii) X contains 	. Define D :=∧(X \ {	}) and take A∗ := (D → C)∗.
(iii) X contains ⊥. Take A∗ := 	.
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(iv) X contains only implications. For any D = E → F ∈ X , define

B↓D :=
∧

((X \ {D}) ∪ {F}).

Let Z := {E | E → F ∈ X} ∪ {C} and define:

A∗ :=
∧
{((B↓D) → C)∗|D ∈ X} ∧

∨
{([B]E)∗ | E ∈ Z}

Lemma 9.3.28 If IPC� 
 A → B then IPC� 
 A∗ → B∗.

Proof See (Ardeshir and Mojtahedi 2018, Theorem. 4.5). �

9.3.2.2 The TNNIL-Algorithm

Definition 9.3.29 TNNIL (Thoroughly NNIL) is the smallest class of propositions
such that

• TNNIL contains all atomic propositions,
• if A, B ∈ TNNIL, then A ∨ B, A ∧ B,�A ∈ TNNIL,
• if all→ occurring in A are contained in the scope of a� (or equivalently A ∈ NOI)
and A, B ∈ TNNIL, then A → B ∈ TNNIL.

Alternatively, one may define TNNIL and NOI, as follows: (A defines TNNIL and
B defines NOI)

• A ::= At | 	 | ⊥ | (A ∧ A) | (A ∨ A) | (B → A).
• B ::= At | 	 | ⊥ | (B ∧ B) | (B ∨ B).

In which At varies in the set of all atomic variables.
Let TNNIL� indicate the set of all the propositions like A(�B1, . . . ,�Bn), such

that A(p1, . . . , pn) is an arbitrary non-modal proposition and B1, . . . , Bn ∈ TNNIL.

Here we define A+ to be the TNNIL-formula approximating A. Informally speak-
ing, to find A+, we first compute A∗ and then replace all outer boxed formula �B
in A by �B+. More precisely, we define A+ by induction on the maximum num-
ber of nesting �’s. Suppose that A′(p1, . . . , pn) and �B1, . . . ,�Bn are such that
A = A′[p1|�B1, . . . , pn|�Bn], where A′ is a non-modal proposition and p1, . . . , pn

are fresh atomic variables (not occurred in A). It is clear that each Bi has less number
of nesting �’s and then we can define A+ := (A′)∗[p1|�B+

1 , . . . , pn|�B+
n ].

For a modal proposition A, let B(p1, . . . , pn) is the unique (modulo permuta-
tion of pi ) non-modal proposition such that A := B(�C1, . . . ,�Cn). Then define
A− := B(�C+

1 , . . . ,�C+
n ). Next we may define the theory iHσ as follows:



9 Hard Provability Logics 265

Definition 9.3.30 We define Visser’s axiom schema

V := A ↔ A−

Then define the following modal systems:

• iHσ := iGLLe+V,
• iH∗∗

σ := {A : iHσ 
 A�},
• iH∗

σ := {A : iHσ 
 A�↓}.
Remark 9.3.31 The definitions of iHσ in (Ardeshir and Mojtahedi 2018, Sect. 4.3)
and iH∗∗

σ in (Ardeshir and Mojtahedi 2019, Definition 3.16) (which were called iH∗
σ

there) are presented in some other equivalent way. For the sake of simplicity of
definitions, we preferred Definition 9.3.30 here. To see an axiomatization for iH∗∗

σ ,
we refer the reader to (Ardeshir and Mojtahedi 2019).

Lemma 9.3.32 IPC� 
 (A+ ∧ (A → B)+) → B+.

Proof By definition of (.)+, for everyC we haveC+ = (C−)∗. Since IPC� 
 (A− ∧
(A → B)−) → B−, by Lemma 9.3.28 we have IPC� 
 (A− ∧ (A → B)−)∗ →
(B−)∗. Then we have IPC� 
 (A+ ∧ (A → B)+) → B+ by the argument at the
beginning of proof. �

Lemma 9.3.33 Let A be a modal proposition. Then iK4 
 A�↑ ↔ �. A�↑.

Proof Use induction on the complexity of A. �

Lemma 9.3.34 For arbitrary A ∈ TNNIL� we have iK4+ CPa 
 �. Al ↔ �. A�↑.

Proof We use induction on the complexity of A:

• A is atomic: then Al = A and A�↑ = �. A. Hence by CPa we have the desired
equivalency.

• A is boxed: (�A)l = �A = (�A)�↑.
• A = B ∧ C : then (B ∧ C)l = Bl ∧ Cl and (B ∧ C)�↑ = B�↑ ∧ C�↑. Hence by
induction hypothesis we have the desired result.

• A = B ∨ C : then (B ∨ C)l = �. Bl ∨ �. Cl and (B ∨ C)�↑ = B�↑ ∨ C�↑. Using
Lemma 9.3.33 we have iK4 
 (B ∨ C)�↑ ↔ (�. B�↑ ∨ �. C�↑) and hence induc-
tion hypothesis implies the desired result.

• A = B → C and B ∈ NOI: then (B → C)l = B → Cl and (B → C)�↑ =
�. (B�↑ → C�↑). Observe that

1. iK4 
 �. �. E ↔ �. E for any A,
2. iK4+ CPa 
 B�↑ ↔ B,
3. iK4 
 �. (B → E) ↔ �. (B → �. E) for any B ∈ NOI and arbitrary E .
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We have the following equivalences in iK4+ CPa:

�. A�↑ ↔ �. (B�↑ → C�↑) by first observation

�. (B�↑ → C�↑) ↔ �. (B → C�↑) by second observation

�. (B → C�↑) ↔ �. (B → �. C�↑) by third observation

�. (B → �. C�↑) ↔ �. (B → �. Cl) by induction hypothesis

�. (B → �. Cl) ↔ �. (B → Cl) by third observation

�

Lemma 9.3.35 For A ∈ TNNIL� we have iK4+ Le+ + CPa 
 A ↔ A�↓.

Proof Use induction on the complexity of A. The only nontrivial case is when
A = �B. We have the following equivalences in iK4+ Le+ + CPa:

(�B)�↓ ↔ �(B�) by definition

�(B�) ↔ �
(
(B�↓)�↑

)
by Remark 3.5

�
(
(B�↓)�↑

)
↔ �(B�↑) by induction hypothesis

�(B�↑) ↔ �Bl by Lemma 3.34

�Bl ↔ �B by the axiom schemaLe+

�

Theorem 9.3.36 For any TNNIL-proposition A, iGLC 
 A implies iGLLe+ 
 A.

Proof See (Ardeshir and Mojtahedi 2018) Theorem 4.24. �

Theorem 9.3.37 For any TNNIL�-proposition A, iGLCPCa 
 A implies
iGLLe+P 
 A. Also iGLCSPCa 
 A implies iGLLe+SP 
 A.

Proof Both statements proved by induction on proofs. The only non-trivial case is
when A is an axiom instance of the form �A such that iGLC 
 A. In this case,
Theorem 9.3.36 implies iGLLe+ 
 A. Hence by necessitation which is available in
iGLLe+ we have iGLLe+ 
 �A. Hence iGLLe+P 
 A and iGLLe+SP 
 A. �

9.3.3 Intuitionistic Modal Kripke Semantics

Let us first review results and notations from (Iemhoff 2001) which will be used
here. Assume two binary relations R and S on a set. Define α(R;S)γ iff there exists
some β such that αRβ and βSγ. We use the binary relation symbol � always as a
reflexive relation and ≺ for the irreflexive part of �, i.e. u ≺ v holds iff u � v and
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u �= v. Moreover we use the mirror image of a relational symbol for its inverse, e.g.
� for ≺−1 and so on.

A Kripke model K, for intuitionistic modal logic, is a quadruple (K ,�,	, V ),
such that K is a set (we call its elements as nodes), (K ,≺) is a partial ordering, 	
is a binary relation on K such that (� ; 	) ⊆ 	, and V is a binary relation between
nodes and atomic variables such that αV p and α�β implies βV p. Then we can
extend V to the modal language with 	 corresponding to � and � for intuitionistic
→. More precisely, we define � inductively as an extension of V as follows:

• K,α � p iff αV p, for atomic variable p,
• K,α � A ∨ B iff K,α � A or K,α � B,
• K,α � A ∧ B iff K,α � A and K,α � B,
• K,α � ⊥ and K,α � 	,
• K,α � A → B iff for all β�α, K,β � A implies K,β � B,
• K,α � �A iff for all β with α 	 β, we have K,β � A.

Also we define the local truth in this way:

• K,α |= p iff αV p, for atomic variable p,
• K,α |= A ∨ B iff K,α |= A or K,α |= B,
• K,α |= A ∧ B iff K,α |= A and K,α |= B,
• K,α �|=⊥ and K,α |= 	,
• K,α |= A → B iff either K,α �|=A or K,α |= B,
• K,α |= �A iff for all β with α 	 β, we have K,β � A.

The classical truth K,α |=c A is defined similar to K,α |= A, except for the boxed
case:

• K,α |=c �A iff for all β 
 α we have K,β |=c A.

For a boolean interpretation I , we also define the local I -truth K,α, I |= A and
the classical I -truth K,α, I |=c A, similar to K,α |= A, and K,α |= A, except for
atomic variables p which we define:

• K,α, I |= p iff I |= p iff K,α, I |=c p.

Remark 9.3.38 Note that when we consider the classical truth for a Kripke model
K = (K ,	,�, V ), we are ignoring the � from K and it would collapse to the well
known Kripke semantics for the classical modal logic Kc := (K ,�, V ). The same
argument holds for the classical I -truth, except for the valuation V , which should
be modified according to I . More precisely, K,α, I |=c A iff KI

c ,α |= A, in which
KI

c := (K ,	, V I
α ) is a classical Kripke semantics for classical modal logic with

β V I
α p ⇔ (β �= α ∧ β V p) ∨ (β = α ∧ I |= p)

In the rest of paper, we may simply write α � A for K,α � A, if no confusion is
likely. By an induction on the complexity of A, one can observe that α � A implies
β � A for all A and α�β. We define the following notions.
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• If α�β, β is above α and α is beneath β. If α 	 β, β is a successor of α. We
say that β is an immediate successor of α, if α 	 β and there is no γ such that
α 	 γ 	 β.

• We say that α is 	-branching, if the set of immediate successors of α is not
singleton.

• A Kripke model is finite if its set of nodes is finite.
• (α	) indicates the set of successors ofα, and (α≺) and (α�) are defined similarly.
• α is classical, if (α≺) = ∅.
• α is quasi-classical, if (α≺) = (α	).
• α is complete if (α	) ⊆ (α≺). Also we say that α is atom-complete if α � p and

α 	 β implies β � p, for every atomic variable p.
• Let ϕ indicate some property for nodes in K and X ⊆ K . We say that K is X -

ϕ, if every α ∈ X has the property ϕ. If X = {α}, we may use α-ϕ instead. We
say that K has the property ϕ, or simply “is ϕ”, if it is K -ϕ. For example if
we set Suc :=⋃α∈K (α	), Suc-classical means that every 	-accessible node is
classical.

• K is called neat iff α 	 γ and α � β � γ implies α 	 β or β 	 γ.
• K is called brilliant iff (	 ;�) ⊆	 (Iemhoff 2001). Note that α 	 ;� β iff there
is some δ such that α 	 δ � β.

• We say thatK has tree frame, if (K ,≺ ∪ 	) is tree. A tree is a partial order (X,<)

such that for every x ∈ X , the set {y ∈ X : y ≤ x} is finite linearly ordered.
• K is called semi-perfect iff it is (1) with finite tree frame, (2) brilliant, (3) neat and
(4) 	 is irreflexive and transitive. We say that K is perfect if it is semi-perfect and
complete. Note that every quasi-classical Kripke model with finite tree frame is
perfect.

• We say that a Kripke model K is A-sound at α (α is A-sound), if for every boxed
subformula �B of A we have
K,α |= �B → B.

• Suppose X is a set of propositions that is closed under sub-formulae (we call such
X adequate). An X -saturated set of propositions � with respect to some logic L ,
is a consistent subset of X such that

– For each A ∈ X , � 
L A implies A ∈ �.
– For each A ∨ B ∈ X , � 
L A ∨ B implies A ∈ � or B ∈ �.

Lemma 9.3.39 Let �L A and let X be an adequate set. Then there is an X-saturated
set � such that � � A.

Proof See (Iemhoff 2001). �

Theorem 9.3.40 iGLC is sound and complete for perfect Kripke models. Also
iGLCT is sound and complete for perfect quasi-classical Kripke models.

Proof See (Ardeshir andMojtahedi 2018, Theorem4.26) for iGLC and (Visser 1982,
Lemma 6.14) for iGLCT. �
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Since iGLC and iGLCT have finite model property, as it is expected, we can easily
deduce the decidability of iGLC and iGLCT:

Corollary 9.3.41 iGLC and iGLCT are decidable.

Proof For iGLC see (Ardeshir and Mojtahedi 2018, Corollary 4.27). iGLCT is sim-
ilar and left to the reader. �

Lemma 9.3.42 Let A be a modal proposition and K = (K ,�,	, V ) be a semi-
perfect Kripke model. Then for every quasi-classical node α ∈ K we have

K,α � A� ⇐⇒ K,α |= A�

Proof We use induction on the complexity of A. The only non-trivial case is when
A = B → C . Let K,α � �. (B� → C�). If K,α � �(B� → C�) then evidently
K,α �|=�(B� → C�) andwe are done. IfK,α � B� → C�, then there exists some
β � α such thatK,β � B� andK,β � C�. Sinceα is quasi classical, hence β 
 α
or β = α. If β 
 α, we have K,α �|=�(B� → C�) and we are done. Otherwise,
K,α � B� andK,α � C� and hence by induction hypothesis we haveK,α |= B�

andK,α �|=C� andwe are done. For the otherway around, letK,α �|=�. (B� → C�).
IfK,α �|=�(B� → C�), evidently we haveK,α � �(B� → C�) andwe are done.
Otherwise, let K,α �|= B� → C�. Then K,α |= B� and K,α �|=C�. Induction
hypothesis implies K,α � B� and K,α � C� and hence K,α � �. (B� → C�).
�

Corollary 9.3.43 Let A be a modal proposition and K is a semi-perfect quasi-
classical Kripke model. Then for every node α we have

K,α � A� ⇐⇒ K,α |= A� ⇐⇒ K,α |=c A�

K,α |= A�↓ ⇐⇒ K,α |=c A�↓ and K,α, I |= A�↓ ⇐⇒ K,α, I |=c A�↓

Proof By Lemma 9.3.42, for every node αwe haveK,α � A� iffK,α |= A�. One
can easily observe by induction on the height of the node α ∈ K that K,α � A� iff
K,α |=c A�. �

Corollary 9.3.44 Let A be a modal proposition and K is a semi-perfect quasi-
classical Kripke model. Then for every node α we have

K,α � A ⇐⇒ K,α |= A�↑

Proof Observe that K,α |= B�↓ ↔ B, K,α � B� ↔ B and B� = (B�↑)�↓.
Hence by Corollary 9.3.43 we haveK,α � A iffK,α � A� iffK,α |= (A�↑)�↓ iff
K,α |= A�↑. �
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9.3.3.1 The Smoryński Operation

In this subsection, we define the Smoryński operation on Kripke models (Smoryński
1985). Given a Kripke modelK = (K ,�,	, V ) and some fixed node α ∈ K , define
K′ := (K ′,�′,	′, V ′) as the Kripke model constituted by adding one fresh node α′
to K. All nodes of K′ other than α′, forces the same atomic variables and have the
same accessibility relationships as they did in K. Also α′ imitates all relationships
of α. More precisely K′ is constituted as follows:

• K ′ := K ∪ {α′}, in which α′ /∈ K ,
• β �′ γ iff β � γ for every β, γ ∈ K ,
• β 	′ γ iff β 	 γ for every β, γ ∈ K ,
• β V ′ p iff β V p for every β ∈ K ,
• α′ V ′ p iff α V p,
• α′ �′ β iff (α � β or β = α′). Also β �′ α′ iff β = α,
• α′ 	′ β iff α � β. Also β �	′ α′ for every β ∈ K ′.

Then we define K(n) and αn inductively:

• K(0) := K and α0 := α,
• K(n+1) := (K(n)

)′
and αn+1 is defined as the fresh node which is added to K(n) in

the definition of
(
K(n)

)′
.

Lemma 9.3.45 Let K be a Kripke model which is A�↓-sound at the quasi-classical
node α. Then for every subformula B of A�↓ and arbitrary boolean interpretation I
we have

1. K,α |= B iff K′,α′ |= B.
2. K,α, I |= B iff K′,α′, I |= B.
3. α′ is quasi-classical and K′ is A�↓-sound at α′.
4. If K is semi-perfect, perfect or quasi-classical, then K′ is so.

Proof 1. Use induction on the complexity of B. All cases are trivial, except for the
case B = �C�. If α′ |= �C�, evidently α |= �C� as well. If α |= �C�, then
by A�↓-soundness,α |= C�, and by Lemma 9.3.42,α � C�. Henceα′ |= �C�.

2. Similar to first item and left to the reader.
3. The fact that α′ is quasi-classical can easily be observed by the definition of K′

and left to the reader. The A�↓-soundness, is derived from first item.
4. Easy and left to the reader.

�

9.4 Reduction of Arithmetical Completenesses

Let us define [[A; T, U ;�]] as the set of all �-substitutions σ such that U � σT (A).
Hence PL

�
(T, U ) = {A : [[A; T, U ;�]] = ∅}. For an arithmetical substitution σ, let
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[[σ]] indicate the propositional closure of σ, i.e. the smallest set X of arithmetical
substitutions with the following conditions:

• σ ∈ X ,
• if α ∈ X , τ is some L�-substitution and T is some recursively axiomatizable
arithmetical theory, then αT ◦ τ ∈ X .

Note that the substitution αT ◦ τ is defined on atomic variable p in this way: αT ◦
τ (p) := αT (τ (p)).

Let V0 be a modal theory. We define the arithmetical �-completeness of V0 with
respect to T relative in U as follows:

AC
�
(V0; T, U ) ≡ A ∈ PL

�
(T, U )impliesV0 
 A, for everyA ∈ L�

Similarly we define the arithmetical �-soundness AS
�
(V0; T, U ) as follows:

AS
�
(V0; T, U ) ≡ V0 
 A impliesA ∈ PL

�
(T, U ), for everyA ∈ L�

When � is the set of all arithmetical sentences, we may omit the subscript � in the
notations PL

�
(T, U ), AC

�
(V0; T, U ) and AS

�
(V0; T, U ).

Note that PL
�
(T, U ) = V0 iff AC

�
(V0; T, U ) and AS

�
(V0; T, U ).

In the following definition, we formalize reduction of the arithmetical complete-
ness of V0 to V ′

0
.

Definition 9.4.1 Let T and T ′ be consistent recursively axiomatizable and U and
U ′ be strong enough arithmetical theories. Also let � and �′ be sets of arith-
metical sentences and V0 , V ′

0
be modal theories. We say that f, f̄ propositionally

reduces AC
�′ (V ′

0
; T ′, U ′) to AC

�
(V0; T, U ), with the notation AC

�
(V0; T, U ) ≤Prop

f, f̄

AC
�′ (V ′

0
; T ′, U ′), if:

R0. f : L� −→ L� and f̄ = { f̄ A}A is a family of functions,
R1. V0 
 f (A) implies V ′

0

 A,

R2. for every A ∈ L�, f̄ A is a function on arithmetical substitutions and

f̄ A : [[ f (A); T, U ;�]] −→ [[A; T ′, U ′;�′]] and for everyσ : f̄ A(σ) ∈ [[σ]].

We say thatAC
�′ (V ′

0
; T ′, U ′) is propositionally reducible toAC

�
(V0; T, U ), with the

notation
AC

�
(V0; T, U ) ≤Prop AC

�′ (V ′
0
; T ′, U ′),

if there exists some f, f̄ such that AC
�
(V0; T, U ) ≤Prop

f, f̄
AC

�′ (V ′
0
; T ′, U ′).

Following theorems are what one expect from the reduction:

Theorem 9.4.2 The reduction of arithmetical completenesses is a transitive reflexive
relation.
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Proof The reflexivity is trivial and left to the reader. For the transitivity, let

AC
�
(V0; T, U ) ≤Prop

f, f̄ AC
�′ (V ′

0
; T ′, U ′) ≤Prop

g,ḡ AC
�′′ (V ′′

0
; T ′′, U ′′)

and observe that
AC

�
(V0; T, U ) ≤Prop

h,h̄ AC
�′′ (V ′′

0
; T ′′, U ′′)

in which h := f ◦ g and h̄ A := ḡA ◦ f̄g(A)
. �

Theorem 9.4.3 AC
�
(V0; T, U ) ≤Prop

f, f̄
AC

�′ (V ′
0
; T ′, U ′) and AC

�
(V0; T, U ) implies

AC
�′ (V ′

0
; T ′, U ′).

Proof Let V ′
0

� A. Then by R1 in Definition 9.4.1, V0 � f (A). Hence by
AC

�
(V0; T, U ), there exists some �-substitution σ such that U � σT ( f (A)), or in

other words σ ∈ [[ f (A); T, U ;�]]. Hence by R2 we have f̄ A(σ) ∈ [[A; T ′, U ′;�′]],
which implies A /∈ PL

�′ (T
′, U ′). �

Remark 9.4.4 Note that the requirement f̄ A(α) ∈ [[α]], was not used in the proof of
arithmetical completeness of V0 in Theorem 9.4.3. The only use of this condition is to
restrict the way one may compute f̄ A(α) from α: only propositional substitutions are
allowed to be composed with α to produce f̄ A(α). If we remove this restriction from
the definition, we would have a trivial reduction: every arithmetical completeness
would be reducible to everyone.

Corollary 9.4.5 If AC
�
(V0; T, U ) ≤Prop

f, f̄
AC

�′ (V ′
0
; T ′, U ′) and AC

�
(V0; T, U ), then

we have
V0 
 f (A) ⇐⇒ V ′

0

 A

Proof The direction⇐= holds by definition. For the other way around, use Theorem
9.4.3. �

Remark 9.4.6 Note that V0 
 A ⇐⇒ V ′
0

 f (A) is not enough for reduction of

arithmetical completenesses. This is simply because f does not have anything to do
with arithmetical substitutions. So one may not be able to translate an arithmetical
refutation fromPL

�′ (T
′, U ′) to a refutation fromPL

�
(T, U ), via propositional trans-

lations. If we remove R2 and replace R1 by V0 
 A ⇐⇒ V ′
0

 f (A) in Definition

9.4.1,AC
�
(V0; T, U ) would be reducible to every arithmetical completeness via the

following vicious reduction:

f (A) :=
{
	 : if V0 
 A

⊥ : otherwise

Notation 9.4.7 In the rest of the paper, we are going to characterise several prov-
ability logics. Our main tool for proving their arithmetical completeness is the
reduction of arithmetical completenesses and using Theorem 9.4.3. The notation
PL

�
(T, U ) ≤Prop PL

�′ (T
′, U ′) is a shorthand for
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AC
�
(PL

�
(T, U ); T, U ) ≤Prop AC ′

�
(PL

�′ (T
′, U ′); T ′, U ′)

Theorem 9.4.8 Let PL
�
(T, U ) ≤Prop

f, f̄
PL

�′ (T
′, U ′) for some computable function f .

Then the decidability of PL
�
(T, U ) implies the decidability of PL

�′ (T
′, U ′).

Proof Direct consequence of Corollary 9.4.5 and computability of f . �

9.4.1 Two Special Cases

In later applications, always we consider two simple cases of reduction f, f̄ (Defi-
nition 9.4.1) to provide new arithmetical completenesses:

• Substitution: in this case,we let f (A) as someL�-substitution, possibly depending
on A. Also f̄ A(σ) := σ

T ′ ◦ τ . This kind of reductions, in this paper are only used
to reduce provability logics to their �1-provability logics, which are labelled with
τ in Diagram9.5.

• Identity: in this case we consider f̄ A as the identity function and f (A) is some
propositional translation like (.)�, (.)�↓, (.)¬↑, (.)† and �(.). See Diagram9.5.

9.5 Relative �1-provability Logics for HA

In this section, we will characterise PL
�1

(HA, N), i.e. the truth �1-provability logic
ofHA, andPL

�1
(HA,PA), i.e. the�1-provability logic ofHA, relative toPA.We also

show that PL
�1

(HA, N) is hardest among the �1-provability logics of HA relative in
HA,PA, N (see Diagram9.1).

PL�1
(HA, N) PL�1

(HA,HA) PL�1
(HA,PA)

�(.)

9.5.20

(.)¬↑

9.5.19

Diagram 9.1 Reductions for relative provability logics of HA

9.5.1 Kripke Semantics

Lemma 9.5.1 For every A we have
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iGLC 
 A ⇐⇒ iGL 

⎡

⎣�.
∧

E∈sub(A)

(E → �E)

⎤

⎦→ A

Proof For the simplicity of notations, in this proof, let

ϕ := �.
∧

E∈sub(A)

(E → �E)

and 
 indicate derivablity in iGL+ ϕ.
One side is trivial. For the other way around, assume that iGL � ϕ → A. We will

construct some perfect Kripke modelK = (K ,	,�, V ) such thatK,α � A, which
by soundness of iGLC for finite brilliant models with 	⊆≺, we have the desired
result. The proof is almost identical to the proof of Theorem 9.3.40 in (Ardeshir and
Mojtahedi 2018, Theorem 4.26), but to be self-contained, we repeat it here.

Let Sub(A) be the set of sub-formulae of A. Then define

X := {B,�B | B ∈ Sub(A)}

It is obvious that X is a finite adequate set. We defineK = (K ,�,	, V ) as follows.
Take K as the set of all X -saturated sets with respect to iGL+ ϕ, and � is the subset
relation over K . Define α 	 β iff for all �B ∈ X , �B ∈ α implies B ∈ β, and also
there exists some �C ∈ β \ α. Finally define αV p iff p ∈ α, for atomic p.

It only remains to show that K is a finite brilliant Kripke model with 	⊆≺
which refutes A. To this end, we first show by induction on B ∈ X that B ∈ α
iff α � B, for each α ∈ K . The only non-trivial case is B = �C . Let �C /∈ α.
We must show α � �C . The other direction is easier to prove and we leave it to
reader. Let β0 := {D ∈ X | α 
 �D}. If β0,�C 
 C , since by definition of β0, we
have α 
 �β0 and hence by Löb’s axiom, α 
 �C , which is in contradiction with
�C /∈ α. Hence β0,�C � C and so there exists some X -saturated set β such that
β � C , β ⊇ β0 ∪ {�C}. Hence β ∈ K andα 	 β. Then by the induction hypothesis,
β � C and hence α � �C .

Since iGL+ ϕ � A, by Lemma 9.3.39, there exists some X -saturated set α ∈ K
such that α � A, and hence by the above argument we have α � A.

K trivially satisfies all the properties of finite brilliant Kripke model with 	⊆≺.
As a sample, we show that why 	⊆≺ holds. Assume α 	 β and let B ∈ α. If
B = �C for some C , then by definition, C ∈ β and since C → �C is a conjunct in
ϕ, we have β 
 �C and we are done. So assume B is not a boxed formula. Then by
definition of X , we have �B ∈ X and since B → �B is a conjunct in ϕ, we have
α 
 �B and hence by definition of 	, it is the case that B ∈ β. This shows α ⊆ β
and hence α � β. But α is not equal to β, because α 	 β implies existence of some
�C ∈ β \ α. Hence α ≺ β, as desired. �

Lemma 9.5.2 For any proposition A, if iGLC 
 A� then iGL+ CPa +�CP 

A�.
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Proof Let iGLC 
 A. Hence by Lemma 9.5.1 for some finite set X of subformulas
of A� we have

iGL 
 �.
(
∧

E∈X

E → �E

)

→ A�

Lemma 9.3.9 implies

iGL 
 �
(
∧

E∈X

E → �E

)

∧
(
∧

E∈X

�. (E�↑ → �E)

)

→ A�

By Lemma 9.3.10 we have iGL+ CPa +�CP 
 A�. �

Theorem 9.5.3 iGLCPCa is sound and complete for local truth at quasi-classical
nodes in perfect Kripke models. More precisely, we have iGLCPCa 
 A iffK,α |= A
for every perfect Kripke model K and the quasi-classical node α.

Proof The soundness part easily derived by the soundness of iGLC and left to the
reader.

Since local truth atα is not affected by changing the set of�-accessible nodes from
α, it is enough to prove the completeness part only for the perfect Kripke models.
Let iGLCPCa � A. Let A′ be a boolean equivalent of A which is a conjunction
of implications E → F in which E is a conjunction of a set of atomics or boxed
propositions and F is a disjunctionof atomics or boxedproposition.Evidently such A′
exists for every A. Hence iGLCPCa � A′. Then theremust be some conjunct E → F
of A′ such that iGLCPCa � (E → F)�, E is a conjunction of atomic and boxed
propositions and F is a disjunction of atomic and boxed propositions. Hence iGL+
CPa +�CP � (E → F)� and by Lemma 9.5.2 we have iGLC � (E → F)�. By
Theorem9.3.40, there exists some perfect KripkemodelK = (K ,�,	, V ) such that
K,α � (E → F)� for some α ∈ K . Since iGLC is sound for K, we have K,α �

E → F . Hence there exists some β � α such that K,β � E and K,β � F . Then
by definition of local truth we have K,β |= E and K,β �|=F . Then K,β �|=E → F .
Hence K,β �|=A, as desired. �

Corollary 9.5.4 iGLCPCa is decidable.

Proof Direct consequence of the proof of Theorem 9.5.3 and decidability of iGLC
(Corollary 9.3.41). �

Theorem 9.5.5 iGLCSPCa 
 A�↓ iffK,α |= A�↓ for every perfect Kripke models
K and quasi-classical A�↓-sound nodes α.

Proof Both directions are non-trivial and proved contra-positively. For the soundness
part, assume that K,α �|=A�↓ for some perfect Kripke model K := (K ,�,	, V )

which is A�↓-sound at the quasi-classical node α ∈ K . Since derivability is finite, it
is enough to show that for every finite set � of modal propositions we have
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iGLCPCa �

∧

B∈�

(�B → B) → A�↓.

By Theorem 9.5.3 and Lemma 9.3.45, it is enough to find some number i such that

K(i),αi �|=
∧

B∈�

(�B → B) → A�↓.

Let us define ni and mi as the number of propositions in the sets Ni := {B ∈ � :
K(i),αi |= B ∧�B} and Mi := {B ∈ � : K(i),αi |= �B ∧ ¬B}, respectively.
We use induction as follows. As induction hypothesis, assume that for any number
i with ni < k there is some 0 ≤ j ≤ 1+ ni such that

K(i+ j),αi+ j �|=
∧

B∈�

(�B → B) → A�↓ (9.1)

Let ni = k. If mi = 0, we may let j = 0 and by Lemma 9.3.45 we have Eq. (9.1) as
desired. So let B ∈ � such that K(i),αi |= �B ∧ ¬B. We have two sub-cases:

• mi+1 = 0: observe in this case that Eq. (9.1) holds for j = 1.
• mi+1 > 0: in this case we have ni+1 < k and hence by application of the induction
hypothesis with i := i + 1, we get some 0 ≤ j ′ ≤ 1+ ni+1 such that

K(i+1+ j ′),αi+1+ j ′ �|=
∧

B∈�

(�B → B) → A�↓

Hence if we let j := j ′ + 1 we have 0 ≤ j ≤ 1+ ni and eq. (9.1), as desired.

For the completeness part, assume that iGLCSPCa � A�↓. Hence

iGLCPCa �

⎛

⎝
∧

�B∈Sub(A)

(�B → B)

⎞

⎠→ A�↓

Hence Theorem 9.5.3 implies the desired result. �

Corollary 9.5.6 iGLCSPCa is decidable.

Proof First observe that by Theorem 9.5.5, 9.5.3, we have iGLCSPCa 
 A�↓ iff

iGLCPCa 

∧

�B∈Sub(A�↓)

(�B → B) → A�↓.

Hence the decidability of iGLCPCa (Corollary 9.5.4) implies the decidability of
iGLCSPCa. �
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9.5.2 Arithmetical Interpretations

The following theorem is the main result in (Ardeshir and Mojtahedi 2018):

Theorem 9.5.7 iHσ is the �1-provability logic of HA, i.e. iHσ 
 A iff for all �1-
substitution σ we have HA 
 σHA (A). Moreover iHσ is decidable.

Here we present some essential facts and definitions from (Ardeshir and Moj-
tahedi 2018). Let us fix some perfect Kripke model K0 = (K0,	0,�0, V0) with
quasi-classical root α0 and its extensionK := K′

0 = (K ,�,	, V ) by the Smoryński
operation with the new quasi-classical root α1 (which was called α0 in (Ardeshir and
Mojtahedi 2018)) and define a recursive function F , called Solovay function, as we
did in (Ardeshir and Mojtahedi 2018). We have the following definitions and facts
from (Ardeshir and Mojtahedi 2018): (later we refer to them simply as e.g. “item
1”):

1. The function F is provably total inHA and hence wemay use the function symbol
F inside HA and stronger theories.

2. The �1-substitution σ is defined in this way:

σ(p) :=
∨

K,α�p

∃x (F(x) = α)

3. Define L = α as ∃x ∀y ≥ x F(y) = α.
4. PA 
 ∃x (F(x) = α) →∨

β�α L = β (Ardeshir and Mojtahedi 2018, Lemma
5.2)

5. For a modal proposition A when we use A in a context which it is expected to be
some first-order formula, like HA 
 A, we should replace A with the first-order
sentence σHA (A).

6. For every A ∈ sub(�) ∩ TNNIL andα ∈ K0 such thatK0,α � A, we haveHA 

∃x F(x) = α → A (Ardeshir and Mojtahedi 2018, Lemma 5.18 & 5.19)

7. For each B ∈ Sub(�) ∩ TNNIL and α ∈ K such that α � �B,

HA 
 L=α → ¬�B.

8. N |= L = α1 and PA + L = α is consistent for every α ∈ K (Ardeshir and Moj-
tahedi 2018, Corollaries 5.20 & 5.24 and Lemma 5.23).

Lemma 9.5.8 For every A ∈ NOI ∩ sub(�) such that K,α1 � A, we have

HA 
 A ↔
∨

α∈K and K,α�A

∃x F(x) = α

Proof First observe that by �2-conservativity of PA over HA (Lemma 9.3.15), it is
enough to prove this lemma in PA instead of HA. Then by “item 4”, it is enough to
show that
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PA 
 A ↔
∨

α∈K and K,α�A

L = α

We use induction on the complexity of A. Since A ∈ NOI we do not consider the→
case in the induction steps:

• A is atomic: by definition of the arithmetical substitution, we have

σ(A) =
∨

α∈K andK,α�A

∃x F(x) = α.

• A = B ◦ C and ◦ ∈ {∨,∧}: easy and left to the reader.
• A = �B: first note that by “item 6”, PA 
 ∃x F(x) = α → A for every α � A
(here actually we need α1 � A). Hence

PA 

∨

α∈K and K,α�A

∃x F(x) = α → A

For the other direction, it is enough (by “item 4”) to show that for everyβ ∈ K such
that K,β � A we have PA 
 A → L �= β or equivalently PA 
 L = β → ¬A,
which holds by “item 7”. �

�

Lemma 9.5.9 For every A ∈ sub(�) and α ∈ K0, we have

{
K,α |= A =⇒ HA 
 L = α → A

K,α �|=A =⇒ HA 
 L = α → ¬A

Proof We use induction on the complexity of A. All cases are simple and we only
treat the case A = �B here. IfK,α |= �B, by definition,K,α � �B and hence by
“item 6” we have the desired result. If also K,α �|=�B, by definition, K,α � �B
and hence by “item 7” we have the desired result. �

Lemma 9.5.10 Let K be A�↓-sound at α0 for some A�↓ ∈ sub(�). Then for every
B ∈ sub(A�↓) we have

⎧
⎪⎨

⎪⎩

K,α1 |= B =⇒ HA 
 L = α1 → B

K,α1 �|=B =⇒ HA 
 L = α1 → ¬B

K,α1 � B =⇒ HA 
 B

Proof We prove this by induction on the complexity of B ∈ sub(A�↓).

• B is atomic, conjunction or disjunction: easy and left to the reader.
• B = E → F : it is easy to show the first two derivations and we leave them to the
reader. For the third one, assume thatK,α1 � E → F . IfK,α1 � F we have the
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desired result by induction hypothesis. So let K,α1 � F and Hence K,α1 � E .
Hence by Lemma 9.5.8, we have HA 
 E →∨

α�E ∃x F(x) = α. On the other
hand by “item6”wehaveHA 
∨α�E ∃x F(x) = α → F . HencewehaveHA →
E → F .

• B = �C�: LetK,α1 |= �C�. Then by Lemma 9.3.45 we haveK,α1 |= C� and
hence by Lemma 9.3.42 K,α1 � C�. Then by induction hypothesis HA 
 C�

and hence HA 
 L = α1 → �C�.
For the second derivation, LetK,α1 �|=�C�. Then by “item 7”we have the desired
result.
For the third derivation, let K,α1 � �C�. Then by Lemma 9.3.42 we have
K,α1 |= �C� and hence Lemma 9.3.45 implies K,α1 |= C� and then again by
Lemma 9.3.42 K,α1 � C�. Then by induction hypothesis HA 
 C� and hence
HA 
 �C�.

�

9.5.3 Arithmetical Completeness

Definition 9.5.11 Define the following modal systems:

• iHσP := iHσ plus P,
• iHσSP := iHσP plus S,
• iHσP

∗ := {A ∈ L� : iHσP 
 A�↓},
• iHσSP

∗ := {A ∈ L� : iHσSP 
 A�↓}.
Obviously iHσSP

∗ and iHσP
∗ are closed under modus ponens.

Theorem 9.5.12 iHσP = PL
�1

(HA,PA), i.e. iHσP is the relative �1-provability
logic of HA in PA.

Proof The soundness easily deduced by use of the soundness of the iHσ for arith-
metical interpretations in HA (see Theorem 6.3 in (Ardeshir and Mojtahedi 2018)).

For the otherway around, let iHσP � A. Then iHσP � A− inwhich A− ∈ TNNIL�

and iHσ 
 A ↔ A−. Then iGLLe+P � A− and hence by Theorem 9.3.37 we have
iGLCPCa � A−. By Theorem 9.5.3, there is some perfect Kripke model K0 with
the quasi-classical root α0 such that K0,α0 �|=A−. Let σ be the �1-substitution as
provided in Sect. 9.5.2 for the Kripke model K0 and its Smoryński extension K
with� := {A−}. Then by Lemma 9.5.9 we haveHA 
 L = α0 → σHA (¬A−). Since
iHσ 
 A ↔ A−, by soundness part of Theorem 9.5.7 we have HA 
 L = α0 →
σHA (¬A). Hence by “item 8” we may deduce PA � σHA (A), as desired. �

Theorem 9.5.13 iHσSP = PL
�1

(HA, N), i.e. iHσSP is the truth �1-provability
logic of HA.

Proof The soundness easily deduced by use of the soundness of the iHσ for arith-
metical interpretations in HA (see Theorem 6.3 in (Ardeshir and Mojtahedi 2018)).
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For the other way around, let iHσSP � A. Then by Lemma 9.3.35 we have
iHσSP � (A−)�↓ in which (A−)�↓ ∈ TNNIL� and iHσ 
 A ↔ (A−)�↓. Then
iGLLe+SP � (A−)�↓ and hence byTheorem9.3.37we have iGLCSPCa � (A−)�↓.

By Theorem 9.5.5, there is some perfect Kripke modelK0 with the quasi-classical
(A−)�↓-sound root α0 such that K0,α0 �|=(A−)�↓. Let σ be the �1-substitution as
provided in Sect. 9.5.2 for the Kripke model K0 and its Smoryński extension K with
� := {(A−)�↓}. Then by Lemma 9.5.10 we have HA 
 L = α1 → σHA (¬(A−)�↓).
Since iHσ 
 A ↔ (A−)�↓, by soundness part of the Theorem 9.5.7 we have HA 

L = α1 → σHA (¬A). Hence by “item 8” we may deduce N�|=σHA (A), as desired. �

9.5.4 Reductions

In this subsection we will show that

PL
�1

(HA, N) ≤Prop
PL

�1
(HA,HA) ≤Prop

PL
�1

(HA,PA)

First some definition:

Definition 9.5.14 For A ∈ L� we define A¬↑ and A¬ as follows:

• (A ◦ B)¬ := ¬¬(A¬ ◦ B¬) and (A ◦ B)¬↑ := ¬¬(A¬↑ ◦ B¬↑) for ◦ ∈ {∨,∧,→
},

• (�A)¬ := ¬¬�A¬ and (�A)¬↑ := ¬¬�A,
• p¬ := p¬↑ := ¬¬p for atomic p.

For an arithmetical formula A we have these additional clauses for the definition of
A¬:

• (∀x A)¬ := ¬¬∀x A¬,
• (∃x A)¬ := ¬¬∃x A¬.

Lemma 9.5.15 For every formula A, we have PA 
 A iff HA 
 A¬.

Proof The direction from right to left is trivial. For the other way around,
one may use induction on the proof PA 
 A. For details see
(Troelstra and van Dalen 1988). �

Lemma 9.5.16 For every �1-formula A, we have HA 
 A¬ ↔ ¬¬A.

Proof Easy by use of the decidability of �0-formulas in HA (Lemma 9.3.14). �

Lemma 9.5.17 For every A ∈ L�, we have iHσP 
 A iff iHσ 
 A¬↑.

Proof The direction from right to left holds by the classically valid A ↔ A¬↑. For
the other way around, one must use induction on the length of the proof iHσP 
 A.
All cases are easy and left to the reader. �
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PL�1
(HA∗, N) PL�1

(HA∗,HA∗) PL�1
(HA∗,HA) PL�1

(HA∗,PA)

PL�1
(HA, N) PL�1

(HA,HA) PL�1
(HA,PA)

�(.)

9.6.7

(.)¬↑

9.6.6

(.)�↑

9.6.5

(.)�↓ 9.6.1

�(.)

9.5.20

(.)�↓ 9.6.3

(.)¬↑

9.5.19

(.)�↓ 9.6.2

Diagram 9.2 Reductions for relative provability logics of HA∗

Lemma 9.5.18 For every A ∈ L�, recursively axiomatizable theory T and any �1-
substitution σ, we have HA 
 (σT (A))¬ ↔ σT (A¬↑).

Proof We use induction on the complexity of A. All cases are simple. For atomic
and boxed cases, use Lemma 9.5.16. �

Theorem 9.5.19 iHσ = PL
�1

(HA,HA) ≤Prop
PL

�1
(HA,PA) = iHσP.

Proof By Theorems 9.5.12 and 9.5.7 we have iHσP = PL
�1

(HA,PA) and PL
�1

(HA,HA) = iHσ. We must show AC
�1

(iHσ;HA,HA) ≤Prop
f, f̄

AC
�1

(iHσP;HA,PA).

Given A ∈ L�, define f (A) := A¬↑ and observe by Lemma 9.5.17 we have R1 (see
Definition 9.4.1). Also define f̄ A as the identity function. Then by Lemmas 9.5.18,
9.5.15 the condition R2 holds. �

Theorem 9.5.20 iHσSP = PL
�1

(HA, N) ≤Prop
PL

�1
(HA,HA) = iHσ .

Proof By Theorems 9.5.7, 9.5.13 we have iHσ = PL
�1

(HA,HA) and PL
�1

(HA, N)

= iHσSP. We must show AC
�1

(iHσSP;HA, N) ≤Prop
f, f̄

AC
�1

(iHσ;HA,HA). Given

A ∈ L�, define f (A) = �A and f̄ A as the identity function.

R1. Let iHσSP 
 �A. By soundness of iHσSP = PL
�1

(HA, N), for every �1-
substitution σ we have N |= σHA(�A) and hence HA 
 σHA(A). Then by arith-
metical completeness of PL

�1
(HA,HA), we have iHσ 
 A.

One also may prove this item with a direct propositional argument. For simplic-
ity reasons, we chose the indirect way.

R2. Let N�|=σHA(�A). Then HA � σHA(A), as desired. �

9.6 Relative �1-provability Logics for HA∗

Theσ1-provability logic ofHA
∗,PL

�1
(HA∗,HA∗), is already characterised (Ardeshir

andMojtahedi 2019). In this section,we characterise the�1-provability logic ofHA
∗,

relative in PA and N. We also show that reductions in (Diagram 9.2) holds.
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Each arrow in the above diagram, indicates a reduction of the completeness of
the left hand side to the right one. Note that the diagram of the first row is already
known by Theorems 9.5.19 and 9.5.20.

Theorem 9.6.1 iHσSP = PL
�1

(HA, N) ≤Prop
PL

�1
(HA∗, N) = iHσSP

∗. (See Def-
inition 9.5.11)

Proof By Theorem 9.5.13 we have PL
�1

(HA, N) = iHσSP. It is enough to
prove the arithmetical soundness AS

�1
(iHσSP

∗;HA∗, N) and the reduction
AC

�1
(iHσSP;HA, N) ≤Prop AC

�1
(iHσSP

∗;HA∗, N).
AS

�1
(iHσSP

∗;HA∗, N): Let iHσSP
∗ 
 A and σ is a �1-substitution. Then

iHσSP 
 A�↓, and then by arithmetical soundness of iHσSP Theorem 9.5.13, we
have N |= σHA(A�↓). Hence Lemma 9.3.21 implies N |= σHA∗ (A), as desired.

For the proof of AC
�1

(iHσSP;HA, N) ≤Prop
f, f̄

AC
�1

(iHσSP
∗;HA∗, N), define

f (A) := A�↓ and f̄ A as the identity function.

R1. Let iHσSP 
 A�↓. Then by definition we have iHσSP
∗ 
 A.

R2. Let N�|=σHA∗ (A�↓). Hence by Lemma 9.3.21 N�|=σHA(A), as desired. �

Theorem 9.6.2 iHσP = PL�1
(HA,PA) ≤Prop

PL�1
(HA∗,PA) = iHσP∗. (See Definition

9.5.11).

Proof Similar to the proof of Theorem 9.6.1 and left to the reader. �

Theorem 9.6.3 iHσ = PL�1
(HA,HA) ≤Prop

PL�1
(HA∗,HA) = iH∗σ . (See Definition

9.3.30).

Proof Similar to the proof of theorem 9.6.1 and left to the reader. �

Lemma 9.6.4 For every A ∈ L� we have iH∗∗
σ 
 A iff iH∗

σ 
 A�↑. (See Definition
9.3.30).

Proof We have the following equivalents: iH∗∗
σ 
 A iff iHσ 
 A� iff (by Remark

9.3.5) iHσ 
 (A�↑)�↓ iff iH∗
σ 
 A�↑. �

Theorem 9.6.5 iH∗
σ = PL

�1
(HA∗,HA) ≤Prop

PL
�1

(HA∗,HA∗) = iH∗∗
σ .

Proof By Theorem 9.6.3 we have PL
�1

(HA∗,HA) = iH∗
σ . It is enough to

prove the arithmetical soundness AS
�1

(iH∗∗
σ ;HA∗,HA∗) and the reduction

AC
�1

(iH∗
σ;HA∗,HA) ≤Prop AC

�1
(iH∗∗

σ ;HA∗,HA∗).
AS

�1
(iH∗∗

σ ;HA∗,HA∗): Let iH∗∗
σ 
 A and σ is a �1-substitution. Then iHσ 
 A�,

and then by arithmetical soundness of iHσ Theorem 9.5.7, we have HA 
 σHA(A�).
Hence Lemma 9.3.20 implies HA 
 σHA∗ (A)HA, which implies HA∗ 
 σHA∗ (A).
For the proof of AC

�1
(iHσSP;HA, N) ≤Prop

f, f̄
AC

�1
(iHσSP

∗;HA∗, N), define

f (A) := A�↑ and f̄ A as the identity function.

R1. Let iH∗
σ 
 A�↑. Then by Lemma 9.6.4 we have iH∗∗

σ 
 A, as desired.
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R2. Let HA � σHA∗ (A�↑). Hence by Lemma 9.3.19 we have HA � (σHA∗ (A))HA,
which implies HA∗ � σHA∗ (A), as desired. �

Theorem 9.6.6 iH∗
σ = PL

�1
(HA∗,HA) ≤Prop

PL
�1

(HA∗,PA) = iHσP
∗.

Proof iHσP
∗ = PL

�1
(HA∗,PA) and iH∗

σ = PL
�1

(HA∗,HA), byTheorems 9.6.2 and
9.6.3 holds. Given A, define f (A) := A¬↑ and f̄ A as the identity function.

R1. By definition of iHσP
∗, we have iHσP

∗ 
 A iff iHσP 
 A�↓. The latter, by
Lemma 9.5.17 is equivalent to iHσ 
 (A�↓)¬↑. Since (A�↓)¬↑ = (A¬↑)�↓, the
latter is equivalent to iH∗

σ 
 A¬↑.
R2. By Lemmas 9.5.18, 9.5.15. �

Theorem 9.6.7 iHσSP
∗ = PL

�1
(HA∗, N) ≤Prop

PL
�1

(HA∗,HA∗) = iH∗∗
σ .

Proof By Theorems 9.6.1 and 9.6.5 we have PL
�1

(HA∗, N) = iHσSP
∗ and iH∗∗

σ =
PL

�1
(HA∗,HA∗). We must show AC�1

(iHσSP∗;HA∗, N) ≤Prop
f, f̄

AC�1
(iH∗∗σ ;HA∗,HA∗).

Given A ∈ L�, define f (A) = �A and f̄ A as the identity function.

R1. Let iHσSP
∗ 
 �A. By soundness of iHσSP

∗ = PL
�1

(HA∗, N), for every �1-
substitution σ we have N |= σHA∗ (�A) and hence HA∗ 
 σHA∗ (A). Then by
arithmetical completeness of PL

�1
(HA∗,HA∗), we have iH∗∗

σ 
 A.
One also may prove this item with a direct propositional argument. For simplic-
ity reasons, we chose the indirect way.

R2. If N�|=σHA∗ (�A) evidently we have HA∗ � σHA∗ (A). �

9.7 Relative Provability Logics for PA

In this section, we characterisePL(PA,HA) andPL
�1

(PA,HA), the provability logic

and �1-provability logic of PA relative in HA. We show that PL(PA,HA) = iGLP
and PL

�1
(PA,HA) = iGLPCa. Also we show that all of the six (�1-) provability

logics of PA relative in PA,HA, N are reducible to PL
�1

(HA, N) (see Diagram9.3):
Let us first review some wellspsknown results:

Theorem 9.7.1 We have the following provability logics:

• GL is the provability logic of PA, i.e. PL(PA,PA) = GL (Solovay 1976).
• GLS is the truth provability logic of PA, i.e. PL(PA, N) = GLS (Solovay 1976).
• GLCa is the �1-provability logic ofPA, i.e.PL

�1
(PA,PA) = GLCa (Visser 1982).

• GLSCa is the truth �1-provability logic ofPA, i.e.PL
�1

(PA, N) = GLSCa (Visser
1982).

Definition 9.7.2 A propositional modal substitution τ is called (.)�↓-substitution,
if for every atomic variable p, there is some B such that iK4+ CPa 
 τ (p) ↔ B�↓
and iK4 
 �. B�↓ ↔ B�.
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PL�1
(HA, N) PL�1

(HA,HA) PL�1
(HA,PA)

PL�1
(PA, N) PL�1

(PA,PA) PL�1
(PA,HA)

PL(PA, N) PL(PA,PA) PL(PA,HA)

9.7.11(.)†

�(.)

9.5.20

(.)¬↑

9.5.19

9.7.21

(.)†

9.7.22

(.)†

9.7.6.1 τ

�(.)

9.7.29

9.7.6.2 τ

(.)¬↑

9.7.27

9.7.25 τ

�(.)

9.7.29

Diagram 9.3 Reductions for relative provability logics of PA

Lemma 9.7.3 For every (.)�↓-substitution τ and every modal proposition A, we
have iK4V 
 τ (A�) ↔ τ (A)� and iK4V 
 τ (A�↓) ↔ τ (A)�↓.

Proof First by induction on the complexity of B we show iK4V 
 τ (B�) ↔ τ (B)�.
All cases are easy, except for atomic B, which holds by existence of some C such
that iK4V 
 τ (B) ↔ C�↓ and iK4 
 �. C�↓ ↔ C�.

Then we use induction on the complexity of A to deduce the second assertion of
this lemma. The only non-trivial cases are atomic and boxed cases:

• A is atomic. Since iK4 
 B�↓ ↔ (B�↓)�↓ for every B, and iK4V 
 τ (A) ↔ B�↓,
we have the desired result.

• A = �B. Easily deduced by iK4V 
 τ (B�) ↔ τ (B)�.

�

The following remark, will be helpful for later reductions of provability logics in
Sect. 9.8.

Remark 9.7.4 For every modal proposition A, GL 
 A (GLS 
 A) iff for every
(.)�↓-substitution τ we have GLCa 
 τ (A) (GLSCa 
 τ (A)).

Proof See (Ardeshir and Mojtahedi 2015, Lemmas. 3.1 and 3.3). �

Lemma 9.7.5 For every A ∈ L�,

• GLS 
 �A iff GL 
 A,
• GLSCa 
 �A iff GLCa 
 A.

Proof The proof of second item is similar to the first one. Here we only treat the
first item. Obviously, GL 
 A implies GLS 
 �A. For a direct proof of the other
way around, one may use of Smoryński’s operation. However, now that we enjoy
the arithmetical soundness of PL(PA, N) = GLS, from GLS 
 �A for every σ we
have N |= σPA(�A) and hence PA 
 σPA(A). From the arithmetical completeness of
GL = PL(PA,PA), we get GL 
 A. �
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In the following theorem, we will show that GLSCa is the hardest provability logic
among GL, GLCa, GLS and GLSCa.

Theorem 9.7.6 We have the following reductions:

1. PL
�1

(PA, N) ≤Prop
PL(PA, N),

2. PL
�1

(PA,PA) ≤Prop
PL(PA,PA).

Proof We prove each item separately:

1. We must show that AC
�1

(GLSCa;PA, N) ≤Prop
f, f̄

AC(GLS;PA, N). Consider
some A ∈ L�. If GLS � A, by Remark 9.7.4, there exists some L�-substitution
τ such that GLSCa � τ (A). Let

f (A) :=
{

τ (A) : GLS � A

A : otherwise

Hence R1 (Definition 9.4.1) holds. Also let f̄ A(σ) := σPA ◦ τ , which belongs to
[[σ]]. Then obviously R2 holds.

2. Similar to first item and left to the reader. �

9.7.1 Reducing PL�1 (PA,N) to PL�1 (HA,N)

In this subsection, we illustrate how to reduce the arithmetical completeness of
GLSCa to that of iHσSP. First some definitions and lemmas:

Definition 9.7.7 For a modal proposition A let A→ indicate a classically equivalent
formula of the form

A→ :=
∧

i

(Bi → Ci ) in which Bi =
∧

j

Ei, j and Ci =
∨

j

Fi, j

such that Ei, j , Fi, j are atomic or boxed formulas occurring in A. Then define A‡

as follows: first compute A→ and then replace every outer occurrences of boxed
subformulas �B in A→ with �(B‡). Note that since �B also occurs in A, then
B has lower complexity than A and hence this is a valid inductive definition. Also
define A† as follows:

• (.)† commutes with ∨,∧,→,
• p† = p for atomic p,
• (�A)† = �A‡

Lemma 9.7.8 For every modal proposition A and arithmetical substitution α, we
have

HA 
 αHA(A†) ↔ αPA(A)
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Proof Easy and left to the reader. �

Lemma 9.7.9 For every A ∈ L�, if iHσSP 
 A† then GLSCa 
 A.

Proof Let GLSCa � A. Since in classical logic we have A ↔ A†, then GLSCa �

A†. Hence by AC
�1

(GLSCa;PA, N) from 9.7.1, we have some �1-substitution σ

such that N�|=σPA(A†). Then Lemma 9.7.8 implies N�|=σHA(A†), and hence by arith-
metical soundness of iHσSP (Theorem 9.5.13) we have iHσSP � A†, as desired.
�

Lemma 9.7.10 For every A ∈ L�, if iHσP 
 A† then GLCa 
 A.

Proof Let GLCa � A. Since in classical logic we have A ↔ A†, then GLCa � A†.
Hence by AC

�1
(GLCa;PA,PA) from 9.7.1, we have some �1-substitution σ such

that PA � σPA(A†). Then Lemma 9.7.8 implies PA � σHA(A†), and hence by arith-
metical soundness of iHσP (Theorem 9.5.12) we have iHσP � A†, as desired. �

Theorem 9.7.11 iHσSP = PL
�1

(HA, N) ≤Prop
PL

�1
(PA, N) = GLSCa.

Proof By Theorems 9.5.13, 9.7.1 we have iHσSP = PL
�1

(HA, N) and GLSCa =
PL

�1
(PA, N). For the reduction, let f (A) := A† and f̄ A as the identity function.

R1. If iHσSP 
 A†, by Lemma 9.7.9 we have GLSCa 
 A.
R2. Holds by Lemma 9.7.8. �

9.7.2 Kripke Semantics

Let SucK or simply Suc, when no confusion is likely, indicate the set of all 	-
accessible nodes in the Kripke model K.

Theorem 9.7.12 iGLP is sound and complete for semi-perfect Suc-classical 	-
branching Kripke models.

Proof The soundness is easy and left to the reader. For the completeness, we first
show the completeness for finite brilliant irreflexive transitive Suc-classical Kripke
models. Let iGLP � A. Let

X := {B,¬B, B ∨ ¬B : B ∈ Sub(A)} ∪ {⊥}

and define the Kripke model K = (K ,�,	, V ) as follows:

• K is the family of all X -saturated sets with respect to iGLP.
• α � β iff α ⊆ β.
• α 	 β iff β is a maximally consistent set and {B,�B : �B ∈ α} ⊆ β and there
is some �B ∈ β \ α.
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It is straightforward to show that K is actually a finite brilliant irreflexive Suc-
classical Kripke model, and we leave all of them to the reader.

It is enough to show that K,α � B iff B ∈ α for every α ∈ K and B ∈ X . Then
we may use Lemma 9.3.39 and find some α such that K,α � A. We use induction
on the complexity of B ∈ X . All inductive steps are trivial, except for B = �C . If
�C ∈ α and α 	 β, then by definition, C ∈ β and hence by induction hypothesis
β � C . This implies α � �C . For the other way around, let �C /∈ α. Consider the
set � := {E,�E : �E ∈ α}. If GL 
∧� → (�C → C), then iGL+�PEM 

�(
∧

�) → �C . Since iGLP 
 α → �
∧

� and iGLP 
 �PEM, we have iGLP+
α 
 �C and hence�C ∈ α, a contradiction. Hence we haveGL � (

∧
� ∧�C) →

C . Then byLemma9.3.39 there is some X -saturated setβ ⊇ � ∪ {�C} ∪ {E ∨ ¬E :
E ∈ Sub(A)} such that C /∈ β. Hence β 
 α and β � C . Then α � �C , as desired.

Nextwe use the constructionmethod (Iemhoff 2001), to fulfil the other conditions:
	-branching, neat and tree. Let Kt := (Kt ,�t ,	t , Vt ) as follows:

• Kt is the set of all finite sequences of pairs r := 〈(α0, a0), . . . (αn, an)〉 such that
for any i ≤ n: (1) αi ∈ K , (2) ai ∈ {0, 1}, (3) for i < n either we have αi ≺ αi+1
or αi 	 αi+1. Let f1(r) and f2(r) indicate the left and right elements in the final
element of the sequence r . In other words, we let ( f1(r), f2(r)) be the final element
of the sequence r .

• r �t s iff r is an initial segment of s and f1(r) � f1(s).
• r 	t s iff r is an initial segment of s = 〈(α0, a0), . . . , (αn, an)〉, e.g. r =
〈(α0, a0), . . . , (αk, ak)〉 for some k < n and αi 	 αi+1 for some k ≤ i < n.

• r Vt p iff f1(r) V p.

It is straightforward to show that Kt is semi-perfect 	-branching Suc-classical
Kripke model and for every r ∈ Kt and formula B we have

Kt , r � B ⇐⇒ K, f (r) � B.

�

Theorem 9.7.13 iGLPCa is sound and complete for semi-perfect Suc-classical
atom-complete Kripke models.

Proof The proof is almost identical to the one for Theorem 9.7.12. We only explain
the differences here. Define

X := {B,¬B, B ∨ ¬B : B ∈ Sub(A)} ∪ {⊥} ∪ {�p : p ∈ Sub(A) and p is atomic}

and K , the set of the nodes of Kripke model, is defined as the set of all X -saturated
sets with respect to iGLPCa. We show that every α ∈ K is atom-complete. Let p be
an atomic variable such that α � p. Hence p ∈ α which implies p ∈ Sub(A), and
since iGLPCa 
 p → �p and α is closed under deduction, we have �p ∈ α. Then
α � �p and hence for every β 
 α we have β � p, as desired. �
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9.7.3 Arithmetical Completeness

Theorem 9.7.14 iGLPCa is the relative �1-provability logic of PA in HA, i.e.
PL

�1
(PA,HA) = iGLPCa.

Proof The soundness is straightforward and left to the reader. For the completeness
part, let iGLPCa � A. Then by Theorem 9.7.13, there is some semi-perfect atom-
complete Suc-classical Kripke model K = (K ,�,	, V ) such that K,α0 � A for
someα0 ∈ K .Without loss of generality,wemayassume that K = (α0 �) ∪ (α0 	).
Let K′ = (K ′,�′,	′, V ′) indicate the Smorýnski’s extension of K at α0 with the
fresh node α1. For the simplicity of notations, we may use � and 	 instead of �′
and 	′. Define the recursive function F as follows. Since K ′ is a finite set, we might
assign a unique number ᾱ to each node α and speak about K ′ and its relationships �
and 	 inside the language of arithmetic. For simplicity of notations, we may simply
use α � β and α 	 β corresponding to its equivalent arithmetical formula.

Define F(0) := α1 and

F(n + 1) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β : F(n) 	 β and r(β, n + 1) < n + 1 and (n)0 = β

β : F(n) ≺ β and F(n) �	 β and F(r(β, n + 1)) = α1

and r(β, n + 1) < r(F(n), n + 1) and (n)0 = β

F(n) : otherwise

in which L = β is shorthand for ∃x∀y ≥ x(F(y) = F(x)), (n)0 is the exponent of
2 in n and

r(α, n) := min
({x ∈ N : ∃ t ≤ n ProofPAx

(t, �L �= α�)} ∪ {n})

Note that r(α, n) < n implies�+(L �= α). F is a provably total recursive function in
HA, i.e. F(x) = y could be expressed as a �1-formula in the language of arithmetic
and all of its expected properties are provable inHA. Hence we may use the function
symbol F in the language of arithmetic.

Define the arithmetical substitution σ(p) in this way:

σ(p) :=
∨

K,α�p

∃x F(x) = α

Consider the triple I := (K ∗,�∗, T ) as follows:

• K ∗ := {α ∈ K : �β ∈ K (β 	 α)}.
• α �∗ β iff α � β for every α,β ∈ K ∗. Again, by abuse of notations, we use �
instead of �∗.

• T (α) := PA + (L = α).

By Theorem 9.3.26 and Lemma 9.7.16, we have some first-order Kripke model
K∗ = (K ∗,�,M) such that K∗ � HA and K∗,α |= T (α). By Lemma 9.3.23
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K∗,α � ∃x F(x) = β =⇒ β � α (9.1)

Hence by Lemma 9.3.23, for every α ∈ K ∗

K∗,α � σPA (p) ⇐⇒ K,α � p (9.2)

For every classical node α ∈ K ∗, since the Kripke model above α is just a classical
Kripke model, one may repeat the Solovay’s argument and show that for every modal
proposition B we have

{
K,α � B =⇒ PA 
 L = α → σPA (B)

K,α � B =⇒ PA 
 L = α → ¬σPA (B)
(9.3)

We may use Lemmas 9.7.18, 9.7.19 and Eq.9.2 to conclude

K∗,α � σPA (B) ⇐⇒ K,α � B

for every modal proposition B and α ∈ K ∗. Since K,α0 � A, we have K∗,α �

σPA (A), and hence HA � σPA (A), as desired. �

Lemma 9.7.15 For arbitrary α,β ∈ K ′ we have

1. PA 
 ∃x F(x) = α →∨
α(�∪�)β L = β,

2. PA 
 L = α → ¬�+(L �= β), for every α 	 β,
3. PA 
 (L = α) � (L = β), for every α ≺ β,
4. N |= L = α1,
5. PA 
 L = α → �+(L �= α ∧ ∃x F(x) = α), for every α �= α1.

Proof All proofs are straightforward and left to the reader. �

Lemma 9.7.16 I, as defined in the proof of Theorem 9.7.14, is an I -frame (see
Definition 9.3.25).

Proof Use Theorem 9.3.24 and the items 2,3 and 4, of Lemma 9.7.15. �

Lemma 9.7.17 For every α ∈ K we have PA 
 L = α → �+(
∨

α�β L = β).

Proof It is enough to show that PA 
 L = α → �+(L �= β) for every β � α such
that β �
 α, holds. Consider some β � α with β �
 β. If β = α, by item 5 in Lemma
9.7.15 we have the desired result. So we may let β �= α. We reason inside PA. Let
L = α. Hence for some x we have F(x) = α. Then we reason inside �+. By �1-
completeness ofPA (seeLemma 9.3.13), we have F(x) = α. Assume that L = β. Let
x0 be the first number such that F(x0) = β. Hence for some r such that �+

r (L �= β)

holds, we have F(r) = α1. Then r ≤ x and hence by Lemma 9.3.12 we may deduce
L �= β, in contradiction with L = β. �
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Lemma 9.7.18 For every α in K and proposition B we have

K,α � �B =⇒ PA 
 L = α → σPA (�B) (9.4)

Proof Let K,α � �B. Hence for every β 
 α we have K,β � B. Since every
β 
 α is classical, by Eq.9.3 we have PA 
∨α�β L = β → σPA (B). Hence PA 

�+(

∨
α�β L = β) → σPA (�B). Lemma 9.7.17 implies PA 
 L = α → σPA (�B).

�
Lemma 9.7.19 For every α in K and proposition B we have

K,α � �B =⇒ PA 
 L = α → ¬σPA (�B) (9.5)

Proof Let K,α � �B. Hence for every β 
 α we have K,β � B. Since
every β 
 α is classical, by Eq.9.3 we have PA 
 L = β → ¬σPA (B).
Hence PA 
 σPA (B) → L �= β and then PA 
 �+σPA (B) → �+L �= β and PA 

¬�+L �= β → ¬�+σPA (B). Hence item 2 of Lemma 9.7.15 implies PA 
 L =
α → ¬�+σPA (B). �

9.7.4 Reductions

Lemma 9.7.20 For every A ∈ L�, if iHσ 
 A† then iGLPCa 
 A.

Proof Let iGLPCa � A. Since in iK4+�PEM we have A ↔ A†, then iGLPCa �

A†. Hence by AC
�1

(iGLPCa;PA,PA) from Theorem 9.7.14, we have some �1-
substitution σ such that HA � σPA(A†). Then Lemma 9.7.8 implies HA � σHA(A†),
and hence by arithmetical soundness of iHσ (Theorem 9.5.7) we have iHσ � A†, as
desired. �
Theorem 9.7.21 iHσ = PL

�1
(HA,HA) ≤Prop

PL
�1

(PA,HA) = iGLPCa.

Proof The soundness of iGLPCa is straightforward and left to the reader.
Also by Theorem 9.5.7, we have PL

�1
(HA,HA) = iHσ . So, it is enough to show

AC
�1

(iHσ;HA,HA) ≤Prop
f, f̄

AC
�1

(iGLPCa;PA,HA).

Define f (A) := A† and f̄ A as the identity function.

R1. Use Lemma 9.7.10.
R2. Use Lemma 9.7.8. �
Theorem 9.7.22 iHσP = PL

�1
(HA,PA) ≤Prop

PL
�1

(PA,PA) = GLCa.

Proof We already have GLCa = PL
�1

(PA,PA) and PL
�1

(HA,PA) = iHσP by

Theorem 9.5.12,9.7.1. So, it is enough to show AC
�1

(iHσP;HA,PA) ≤Prop
f, f̄

AC
�1

(GLCa;PA,PA).
Define f (A) := A† and f̄ A as the identity function.
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R1. Let iHσP 
 A†. By Lemma 9.7.10 we have GLCa 
 A.
R2. Use Lemma 9.7.8. �
The arithmetical completeness of iGLP will be reduced to the one for iGLPCa via
the following lemma. This argument is similar to the one explained in (Ardeshir and
Mojtahedi 2015). One may use a direct proof for the arithmetical completeness of
iGLP, similar to what we do for iGLPCa. However this is not enough for our later
use in Sect. 9.8 of the arithmetical completeness of iGLP.

Lemma 9.7.23 For every modal proposition A, iGLP 
 A iff for every propositional
modal (.)�↓-substitution τ (Definition 9.7.2) we have iGLPCa 
 τ (A).

Proof One direction holds since iGLP is closed under substitutions and is included
in iGLPCa. For the other way around, let iGLP � A. By Theorem 9.7.12, there
is some Suc-classical, semi-perfect 	-branching Kripke model K = (K ,�,	, V )

such that K � A. For every α ∈ K , let p
α
be a fresh atomic variable such that for

every α �= β we have p
α
�= p

β
. For every α ∈ K , define Aα via induction on the

≺-height of α (the maximum number n such that a sequence α = α0 ≺ . . . ≺ αn

exists). So as induction hypothesis, let Aβ for every β � α is defined.

A+α :=
∨

α≺β

Aβ , Aα := p
α
∧
∧

α�β

�¬�. p
β
→ A+α

Let K̄ = (K ,�,	, V̄ ), in which α V̄ p iff p = p
β
for some β(� ∪ 	)α. Define

τ (p) :=
∨

K,α�p

Aα

Then by induction on the complexity of the modal proposition B, we show

K,α � B ⇐⇒ K̄,α � τ (B)

• B is atomic variable: For every α ∈ K such that K,α � B, by Lemma 9.7.24
we have K̄,α � Aα and hence K̄,α � τ (p). Also if K̄,α � τ (B), then for some
β ∈ K we have K,β � B and K̄ ,α � Aβ . Hence by Lemma 9.7.24 we have
β � α, which implies K,α � B, as desired.

• All the other cases are trivial and left to the reader.

Then we have K̄ � τ (A). Obviously the Kripke model K̄ inherits all properties from
K andmoreover it is atom-complete. Hence by soundness part of the Theorem9.7.13,
iGLPCa � τ (A), as desired. �
Lemma 9.7.24 Let K̄ and Aα, as defined in the proof of Lemma 9.7.23. For every
α,β ∈ K we have K̄,α � Aβ iff α � β.

Proof We use induction on the≺-height of β. As induction hypothesis, let for every
β � β0 and α ∈ K we have K̄,α � Aβ iff β � α. Note that by induction hypothesis
we have K̄,β � A+β0

iff β � β0.
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• (α � β0 implies K̄,α � Aβ0 ): It is enough to show that K̄,β0 � Aβ0 . Then for evey
α � β0 we have K̄,α � Aβ0 , as desired. By definition of K̄, we have K̄,β0 � p

β0
.

Consider some γ # β0. Again by definition of K̄, we have K̄,β0 � �¬p
γ
and for

every δ � β0 we have K̄, δ � A+β0
. Hence K̄,β0 � �¬p

γ
→ A+β0

. This argument

shows that K̄,β0 � Aβ0 , as desired.
• (K̄,α � Aβ0 implies α � β0): Let K̄,α � Aβ0 . Since K̄,α � p

β0
, we have β0(�

∪ 	)α. If β0 � α, we are done. So let β0 �� α and β0 	 α. Hence for arbitrary
γ # β0 we have K̄,α � ¬�¬p

γ
. This by Suc-classicality, implies that there is

some δ 
 α such that K̄, δ � p
γ
. Then we have γ(� ∪ 	)δ. By Suc-classicality,

we have γ � δ. Since K̄ is with tree frame, we have either α � γ or γ � α. On
the other hand, since K̄ is 	-branching, there must be some γ 
 β0 which is
	-incomparable with α, a contradiction with our previous argument. �

Theorem 9.7.25 iGLPCa = PL
�1

(PA,HA) ≤Prop
PL(PA,HA) = iGLP.

Proof The arithmetical soundness of iGLP is straightforward and left to the reader.
Also by Eq.9.7.21 we have PL

�1
(PA,HA) = iGLPCa. It remains to show

AC
�1

(iGLP;PA,HA) ≤Prop

f, f̄ AC(iGLP;PA,HA)

Let A ∈ L� such that iGLP � A. Then by Lemma 9.7.23 there is some substitution
τ such that iGLPCa � τ (A). Define the function f as follows:

f (A) :=
{

τ (A) : iGLP � A

whatever you like : otherwise

Also let f̄ A(σ) := σPA ◦ τ . Then one may easily observe that R0, R1 and R3 holds
for this f, f̄ . �

Lemma 9.7.26 For A ∈ L�, if iGLPCa 
 A¬↑ then GLCa 
 A.

Proof Let iGLPCa 
 A¬↑. Then GLCa 
 A¬↑ and since A¬↑ is classically equiv-
alent to A we have GLCa 
 A. �

Theorem 9.7.27 iGLPCa = PL
�1

(PA,HA) ≤Prop
PL

�1
(PA,PA) = GLCa.

Proof By Theorems 9.7.1 and 9.7.21 we have GLCa = PL
�1

(PA,PA) and

PL
�1

(PA,HA) = iGLPCa. We must show AC
�1

(iGLPCa;PA,HA) ≤Prop
f, f̄

AC
�1

(GLCa;PA,PA). Given A ∈ L�, define f (A) := A¬↑ and f̄ A as the identity
function.

R1. If iGLPCa 
 A¬↑, then by Lemma 9.7.26 we have GLCa 
 A.
R2. Holds by Lemmas 9.5.18, 9.5.15. �

Theorem 9.7.28 GLSCa = PL
�1

(PA, N) ≤Prop
PL

�1
(PA,HA) = iGLPCa.
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Proof By Theorems 9.7.1 and 9.7.25 we have PL
�1

(PA, N) = GLSCa and

iGLPCa = PL
�1

(PA,HA). We must show AC
�1

(GLSCa;PA, N) ≤Prop
f, f̄

AC
�1

(iGLP;PA,HA). Given A ∈ L�, define f (A) = �A and f̄ A as the identity
function.

R1. Let GLSCa 
 �A. By soundness of iHσSP = PL
�1

(HA, N), for every �1-
substitution σ we have N |= σHA(�A) and hence HA 
 σHA(A). Then by arith-
metical completeness of PL

�1
(HA,HA), we have iHσ 
 A.

One also may prove this item with a direct propositional argument. For simplic-
ity reasons, we chose the indirect way.

R2. Let N�|=σHA(�A). Then HA � σHA(A), as desired. �
Theorem 9.7.29 GLSCa = PL

�1
(PA, N) ≤Prop

PL
�1

(PA,PA) = GLCa.

Proof By Theorem 9.7.1 we have GLCa = PL�1
(PA,PA) and PL�1

(PA, N) = GLSCa.

We must showAC
�1

(GLSCa;PA, N) ≤Prop
f, f̄

AC
�1

(GLCa;PA,PA). Given A ∈ L�,

define f (A) = �A and f̄ A as the identity function.

R1. Let GLSCa 
 �A. By soundness of GLSCa = PL
�1

(PA, N), for every �1-
substitution σ we have N |= σPA(�A) and hence PA 
 σPA(A). Then by arith-
metical completeness of PL

�1
(PA,PA), we have GLCa 
 A.

One alsomay prove this itemwith a direct propositional argument, usingKripke
semantics. For simplicity reasons, we chose the indirect way.

R2. Let N�|=σPA(�A). Then PA � σPA(A), as desired. �
Theorem 9.7.30 GLS = PL

�1
(PA, N) ≤Prop

PL
�1

(PA,PA) = GL.

Proof Similar to the proof of Theorem 9.7.29 and left to the reader. �

9.8 Relative Provability Logics for PA∗

In this section, we characterise several relative provability logics for PA∗ via reduc-
tions. All reductions are shown at once in theDiagram 9.4. The head of arrow reduces
to its tail, via some simple reduction (Sect. 9.4.1). The translation f in the reduction,
is shown over the arrow lines and the number which appears under arrow, is the
corresponding theorem.

9.8.1 Kripke Semantics

In the following lemma, we will show that the axioms CP and TP are local over
iGL, i.e. whenever we can deduce some proposition A from CP+ TP in iGL, then
we may deduce it by those instances of CP and TP which use the subformulas of A:
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PL�1
(PA, N) PL�1

(PA,PA) PL�1
(PA,HA)

PL�1
(PA∗, N) PL�1

(PA∗,PA∗) PL�1
(PA∗,PA) PL�1

(PA∗,HA)

PL(PA∗, N) PL(PA∗,PA∗) PL(PA∗,PA) PL(PA∗,HA)

9.8.18(.)�↓

�(.)

9.7.29

9.8.14(.)�↓

(.)¬↑

9.7.27

9.8.16(.)�↓

9.8.32τ

9.8.23

�(.)

9.8.30τ

9.8.21

(.)�↑

9.8.27τ

9.8.19

(.)¬↑

9.8.25τ

9.8.33

�(.)

Diagram 9.4 Reductions for relative provability logics of PA∗

Lemma 9.8.1 For every A, if iGLCT 
 A then

iGL 
 �.
⎡

⎣
∧

E→F∈sub(A)

�(E → F) → (E ∨ (E → F)) ∧
∧

E∈sub(A)

(E → �E)

⎤

⎦→ A

Proof For the simplicity of notations, in this proof, let

ϕ := �.
∧

E→F∈sub(A)

�(E → F) → (E ∨ (E → F)) ∧ �.
∧

E∈sub(A)

(E → �E)

and 
 indicate derivablity in iGL+ ϕ.
One side is trivial. For the other way around, assume that iGL � ϕ → A. We will
construct some finite Kripke model K = (K ,	,�, V ) with 	=≺ such that K,α �

A, which by soundness of iGLCT for finite Kripke models with ≺=	, we have
the desired result. The proof is almost identical to the proof of Theorem 9.3.40 in
(Ardeshir and Mojtahedi 2018, Theorem 4.26). To be self-contained, we elaborate it
here.

Let Sub(A) be the set of sub-formulae of A. Then define

X := {B,�B | B ∈ Sub(A)}

It is obvious that X is a finite adequate set. We defineK = (K ,�,	, V ) as follows.
Define

• K as the set of all X -saturated sets with respect to iGL+ ϕ,
• α 	 β iff {D : �D ∈ α} ⊆ β and α � β,
• α � β iff α 	 β or α = β,
• αV p iff p ∈ α, for atomic p.
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K trivially satisfies all the properties of finite Kripke model with 	=≺. So we
must only show that K � A. To this end, we first show by induction on B ∈ X
that B ∈ α iff α � B, for each α ∈ K . The only non-trivial cases are B = �C and
B = E → F .

• B = �C : Let �C /∈ α. We must show α � �C . The other direction is easier to
prove andwe leave it to reader. Letβ0 := {D ∈ X |α 
 �D}. Ifβ0,�C 
 C , since
by definition of β0, we have α 
 �β0 and hence by Löb’s axiom, α 
 �C , which
is in contradiction with �C /∈ α. Hence β0,�C � C and so there exists some X -
saturated set β such that β � C , β ⊇ β0 ∪ {�C}. Hence β ∈ K and α 	 β. Then
by the induction hypothesis, β � C and hence α � �C .

• Let E → F /∈ α. Then F /∈ α. If E ∈ α, by induction hypothesis we have α � E
andα � F , and henceα � E → F , as desired. Sowemay let E /∈ α. Defineβ0 :=
{D : �D ∈ α}. Ifα 
∧β0 → (E → F), thenα 
 �(E → F) andhence byTP,
either we haveα 
 E orα 
 E → F , a contradiction. Sowemay letα �

∧
β0 →

(E → F), and use Lemma 9.3.39 to find β ⊇ β0 ∪ α ∪ {E} as some X -saturated
node inK. Hence α 	 β which implies α ≺ β and by induction hypothesis β � E
and β � F , which implies α � E → F , as desired.

Since iGL+ ϕ � A, by Lemma 9.3.39, there exists some X -saturated setα ∈ K such
that α � A, and hence by the above argument we have α � A. �

Lemma 9.8.2 For arbitrary proposition A

iGLCT 
 A� implies iGL+�CP+ TP 
 A�.

Proof Let iGLCT 
 A�. Hence by Lemma 9.8.1 the following is derivable in iGL

⎡

⎢
⎢
⎣�.

G
︷ ︸︸ ︷∧

B∈sub(A�)

B → �B ∧�.
H

︷ ︸︸ ︷∧

E→F∈sub(A�)

�(E → F) → (E ∨ (E → F))

⎤

⎥
⎥
⎦→ A�

Hence by Lemma 9.3.9 iGL 
 G�↑ ∧ H�↑ → A�. By Lemma 9.3.10, iK4 
 G�↑.
Also (�G)�↑ = �G which is an instance of �CP. Let us consider some arbitrary
conjunct �(E → F) → (E ∨ (E → F)) in H . Since E → F is a subformula of
A�, we have E = E�

0 and F = F�
0 . Hence inside iK4, the H�↑ is equivalent to

some instance of TP. Hence iGL+�CP+ TP 
 A�. �

Theorem 9.8.3 iGLCT is sound and complete for semi-perfect Suc-quasi-classical
Kripke models.

Proof The soundness is easy and left to the reader. For the completeness, we first
show the completeness for finite brilliant irreflexive transitive Suc-quasi-classical
Kripke models. Let iGLCT � A. Let

X := {B,�B : B ∈ Sub(A)}

and define the Kripke model K = (K ,�,	, V ) as follows:
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• K is the family of all X -saturated sets with respect to iGLCT.
• α 	 β iff α �= β and {B,�B : �B ∈ α} ⊆ β and β is X -saturated with respect
to iGLCT.

• α ≺ β iff α � β and either α 	 β or γ �	 α, for every γ ∈ K .
• α V p iff p ∈ α.

It is straightforward to show that K is a finite brilliant irreflexive transitive Suc-
quasi-classical Kripkemodel.We leave them to the reader.We only show thatK,α �
B iff B ∈ α for every α ∈ K and B ∈ X . Then by Lemma 9.3.39 one may find some
α ∈ K such that K,α � A, as desired.

Use induction on the complexity of B ∈ X . All inductive steps are trivial, except
for:

• B = �C : If�C ∈ α andα 	 β, then by definition,C ∈ β and hence by induction
hypothesis β � C . This implies α � �C . For the other way around, let �C /∈ α.
Consider the set� := {E,�E : �E ∈ α}. If iGLCT 
∧� → (�C → C), then
iGLCT 
 �(

∧
�) → �C . Since iK4+ α 
 �(

∧
�), we may deduce iGLCT +

α 
 �C , a contradiction. Hence iGLCT � (
∧

� ∧�C) → C . By Lemma 9.3.39,
there exists some X -saturated set β ⊇ � ∪ {�C}with respect to iGLCT such that
C /∈ β. Hence β ∈ K and α 	 β and C /∈ β. Induction hypothesis implies that
β � C and hence α � �C .

• B = C → D: If C → D ∈ α and α � β and β � C , by induction hypothesis
C ∈ β and hence D ∈ β. Again by induction hypothesis we have β � D. This
shows that α � C → D. For the other way around, let C → D /∈ α. We have two
cases:

– There is some γ 	 α: Hence α is X -sturated w.r.t iGLCT. Let� := {E : �E ∈
α}. We have tow subcases:

· If iGLCT +�+ α 
 C → D, then iGLCT +�α+�� 
 �(C → D). By
the completeness principle, we have iGLCT + α 
 �(C → D). By TP we
have iGLCT + α 
 C ∨ (C → D). Since α is X -saturated with respect to
iGLCT, we have eitherC ∈ α orC → D ∈ α. The latter is impossible, hence
C ∈ α. Again by X -saturatedness of α, we can deduce D /∈ α. Hence by
induction hypothesis we have α � C and α � D, which implies α � C →
D, as desired.

· If iGLCT +�+ α � C → D, then by Lemma 9.3.39 there exists some X -
saturated β ⊇ α ∪� ∪ {C} w.r.t iGLCT (and a fortiori iGLCT) such that
D /∈ β. Induction hypothesis implies β � C and β � D. One may observe
that α ≺ β or α = β, and hence α � C → D, as desired.

– There is no γ 	 α: since iGLCT + α � C → D, by Lemma 9.3.39, there exists
some X -saturate setβ ⊇ α ∪ {C}with respect to iGLCT such that D /∈ β. Hence
by induction hypothesis β � C and β � D. One may observe that β � α and
hence α � C → D.

Next we use the constructionmethod (Iemhoff 2001) to fulfil the other conditions:
being neat and tree. Let Kt := (Kt ,�t ,	t , Vt ) as follows:



9 Hard Provability Logics 297

• Kt is the set of all finite sequences r := 〈α0, . . . αn〉 such that for any i < n
either we have αi ≺ αi+1 or αi 	 αi+1. Let f (r) indicate the final element of
the sequence r .

• r �t s iff r is an initial segment of s and f (r) � f (s).
• r 	t s iff r is an initial segment of s = 〈α0, . . . αn〉, e.g. r = 〈α0, . . . αk〉 for some

k < n and αi 	 αi+1 for some k ≤ i < n.
• r Vt p iff f (r) V p.

It is straightforward to show thatKt is semi-perfectSuc-quasi-classicalKripkemodel
and for every r ∈ Kt and formula B we have

Kt , r � B ⇐⇒ K, f (r) � B.

�

Theorem 9.8.4 iGLCTCa is sound and complete for semi-perfect Suc-quasi-
classical atom-complete Kripke models.

Proof Similar to the proof of Theorem 9.8.3 and left to the reader. �

Theorem 9.8.5 For every proposition A, we have iGLCTP 
 A iff for every quasi-
classical perfect Kripke model K and every boolean interpretation I and arbitrary
node α in K we have K,α, I |= A.

Proof The soundness is easy and left to the reader. For the completeness part, let
iGLCTP � A. Let A′ be a boolean equivalent of A which is a conjunction of impli-
cations E → F in which E is a conjunction of a set of atomics or boxed propositions
and F is a disjunction of atomics or boxed proposition. Evidently such A′ exists for
every A. Hence iGLCTP � A′. Then there must be some conjunct E → F of A′
such that iGLCTP � E → F , E is a conjunction of atomic and boxed propositions
and F is a disjunction of atomic and boxed propositions. Let X E be the set of atomic
conjuncts in E and X F the set of atomic disjuncts in F . Note here that X E and X F are
disjoint sets. Define Ē and F̄ as the replacement of X E and X F by	 and⊥ in E and
F , respectively. Hence Ē → F̄ , does not have any outer atomics and then (Ē → F̄)�

is equivalent in iGL+�CP with Ē → F̄ . Then iGL+ TP+�CP � (E → F)�

and by Lemma 9.8.2 we have iGLCT � Ē → F̄ . Then by Theorem 9.3.40, there is
some perfect, quasi-classical KripkemodelK such thatK,α � Ē → F̄ . Hence there
is some β � α such that K,β � Ē and K,β � F̄ . Let the boolean interpretation I
defined such that:

I (p) :=

⎧
⎪⎨

⎪⎩

true : p ∈ X E

false : p ∈ X F

no matter, true or false : otherwise

One may observe that K,β, I �|=E → F and hence K,β, I �|=A. �
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Theorem 9.8.6 For every proposition A, we have iGLCTPCa 
 A iff for every
quasi-classical perfect Kripke modelK and arbitrary node α inKwe haveK,α |= A.

Proof The proof is very similar to the one for Theorem9.8.5, except for the argument
for X E and X F and Ē and F̄ and the boolean interpretation I , which are unnecessary
here with the presence of the CPa. For readability reasons, we bring the adapted
proof here.

The soundness is straightforward and left to the reader. For the completeness, let
iGLCTPCa � A. Let A′ be a boolean equivalent of Awhich is a conjunction of impli-
cations E → F in which E is a conjunction of a set of atomics or boxed propositions
and F is a disjunction of atomics or boxed proposition. Evidently such A′ exists for
every A. Hence iGLCTPCa � A′. Then there must be some conjunct E → F of A′
such that iGLCTP � E → F , E is a conjunction of atomic and boxed propositions
and F is a disjunction of atomic and boxed propositions. Hence E� → F� is equiv-
alent in iK4+ CPa +�CPwith E → F . Then iGL+ TP+�CP+ CPa � (E →
F)� and by Lemma 9.8.2we have iGLCT � E → F . Then by Theorem 9.3.40, there
is some perfect, quasi-classical Kripke model K such that K,α � E → F . Hence
there is some β � α such that K,β � E and K,β � F . Then K,β �|=E → F and
hence K,β �|=A. �

Theorem 9.8.7 iGLCTS∗P 
 A�↓ iff for every quasi-classical perfect Kripke
model K and every boolean interpretation I and arbitrary A�↓-sound node α in
K we have K,α, I |= A�↓.

Proof Both directions are proved contra-positively. For the soundness part, assume
that K,α, I �|=A�↓ for some boolean interpretation I and quasi-classical perfect
Kripke model K := (K ,�,	, V ) which is A�↓-sound at α ∈ K . Since derivability
is finite, it is enough to show that for every finite set � of modal propositions we
have

iGLCTP �

∧

B∈�

(�B� → B�) → A�↓.

By Theorem 9.8.5 and Lemma 9.3.45, it is enough to find some number i such that

K(i),αi , I �|=
∧

B∈�

(�B� → B�) → A�↓.

Let us define ni and mi as the number of propositions in the sets Ni := {B ∈ � :
K(i),αi , I |= B� ∧�B�} and Mi := {B ∈ � : K(i),αi , I |= �B� ∧ ¬B�},
respectively. We use induction on k and prove the following statement:

ϕ(k) := for everyi, if ni < kthen there is some0 ≤ j ≤ 1+ ni such that

K(i+ j),αi+ j , I |=
∧

B∈�

(�B� → B�) (9.1)
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Then by ϕ(n0 + 1), one may find some number j such that K j ,α j , I |=∧
B∈�(�B� → B�), and by Lemma 9.3.45 we also have K j ,α j , I �|= A�↓, as

desired.
ϕ(0) trivially holds. As induction hypothesis, let ϕ(k) holds and show that ϕ(k +

1) holds as follows. Let some number i such that ni < k + 1. If ni < k, by induction
hypothesis we have the desired conclusion. So let ni = k. If mi = 0, we may let
j = 0 and we have Eq.9.1. So let B ∈ � such that K(i),αi , I |= �B� ∧ ¬B�. We
have two sub-cases:

• mi+1 = 0: observe in this case that Eq.9.1 holds for j = 1.
• mi+1 > 0: in this case we have ni+1 < k and hence by application of the
induction hypothesis with i := i + 1, we get some 0 ≤ j ′ ≤ 1+ ni+1 such that
K(i+1+ j ′),αi+1+ j ′ |=∧B∈�(�B� → B�). Hence if we let j := j ′ + 1 we have
0 ≤ j ≤ 1+ ni and Eq.9.1, as desired.

For the completeness part, assume that iGLCTS∗P � A�↓. Hence

iGLCTP �

⎛

⎝
∧

�B�∈Sub(A�↓)

(�B� → B�)

⎞

⎠→ A�↓

Hence Theorem 9.8.5 implies the desired result. �

Theorem 9.8.8 iGLCTS∗PCa 
 A�↓ iff for every quasi-classical perfect Kripke
model K and arbitrary A-sound node α in K we have K,α |= A.

Proof The proof is similar to the one for Theorem 9.8.7. One must use Theorem
9.8.6 instead of Theorem 9.8.5 in the proof. �

9.8.2 Reductions

Lemma 9.8.9 iGLCT 
 A implies GL 
 A�.

Proof Use induction on the proof iGLCT 
 A. �

Lemma 9.8.10 GL 
 A implies iGLP 
 �A.

Proof Let GL 
 A. Hence iGL 
 �. PEM→ A. Since necessitation is admissible
to iGL, we have iGL 
 �PEM→ �A which implies iGLP 
 �A. �

Definition 9.8.11 For a KripkemodelK = (K ,�,	, V ), let K̃, indicate the Kripke
model derived fromK by making every 	-accessible node as a classical node. More
precisely, we define K̃ := (K , �̃,	, V )) in this way:

α�̃β iff “α is not 	-accessible (α /∈ Suc) and α � β” or
“α is 	-accessible (α /∈ Suc) and α = β”
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Lemma 9.8.12 For every Suc-quasi-classical semi-perfect Kripke model
K = (K ,�,	, V ) and α /∈ Suc and arbitrary proposition A we have

K,α � A�↓ ⇐⇒ K̃,α � A�↓.

Proof First observe that for every α ∈ Suc and every proposition B we have

K̃,α � B ⇐⇒ K̃,α |=c B ⇐⇒ K,α |=c B

Then we may use Corollary 9.3.43 and for α ∈ Suc deduce

K,α � B� ⇐⇒ K̃,α � B�. (9.2)

We use induction on the complexity of A and prove the assertion of the lemma. All
cases are obvious except for the cases A = �B in which we have A�↓ = �B�. We
have

K,α � �B� ⇐⇒ there exists some β 
 α such that K,β � B�

⇐⇒ there exists some β 
 α such that K̃,β � B�

⇐⇒ K̃,α � �B�

in which in the second line we use Eq.9.2. �

Lemma 9.8.13 For every A ∈ L� we have iGLCTPCa 
 A iff GLCa 
 A�↓.

Proof We use induction on the proof iGLCTPCa 
 A and show GLCa 
 A�↓. All
cases are similar to the one for iGLCTP, except for

• A = p → �p: then iK4 
 A�↓ ↔ A and hence GLCa 
 A�↓.

For the otherway around, let iGLCTPCa � A. Then by�CPwehave A�↓ ↔ A, and
then wemay deduce iGLCTPCa � A�↓. By Theorem 9.8.6, there exists some quasi-
classical perfect Kripke model K such that K,α �|=A�↓. Corollary 9.3.43 implies
K,α �|=c A�↓, which by soundness of GLCa for classical Kripke models with the
property of truth-ascending (i.e. if p is true at some node, then it is true also at all
accessible nodes), implies GLCa � A�↓. �

Theorem 9.8.14 GLCa = PL
�1

(PA,PA) ≤Prop
PL

�1
(PA∗,PA) = iGLCTPCa.

Proof The arithmetical soundness of iGLCTPCa is straightforward and left to the
reader. Also GLCa = PL

�1
(PA,PA) holds by Theorem 9.7.1. It is enough here to

show that
AC

�1
(GLCa;PA,PA) ≤Prop

f, f̄ AC
�1

(iGLCTCa;PA∗,PA).

Given A ∈ L�, let f (A) := (A)�↓ and f̄ A as the identity function.
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R1. Lemma 9.8.13.
R2. If PA � σPA(A�↓), for a �1-substitution σ, then by Lemma 9.3.22 we have

PA � σPA∗ (A). �

Lemma 9.8.15 For every A ∈ L� we have iGLCTCa 
 A iff iGLPCa 
 A�↓.

Proof We use induction on the proof iGLCTCa 
 A and show iGLPCa 
 A�↓. All
cases are identical to the corresponding on in the previous proof, except for when
A = p → �p, which trivially we have iGLPCa 
 A�↓.

For the other way around, let iGLCTCa � A. Then by Lemma 9.3.8 we have
A�↓ ↔ A, and hence iGLCTCa � A�↓. By Theorem 9.8.4, there exists some Suc-
quasi-classical semi-perfect atom-complete Kripke model K such that K,α � A�↓,
for some node α. We may assume α /∈ Suc, otherwise eliminate all nodes not in
(α �) ∪ (α 	) and consider this new Kripke model instead of K. Obviously the
new Kripke model still refutes A�↓ at α and is Suc-quasi-classical semi-perfect and
atom-complete. Hence Lemma 9.8.12 implies that K̃,α � A�↓, in which K̃ indicates
the Kripke model derived from K by making every 	-accessible node as a classical
node. Precise definition of K̃ came before Lemma 9.8.12. It is obvious that K̃ is
a Suc-classical semi-perfect atom-complete Kripke model. Hence Theorem 9.7.13
implies iGLPCa � A�↓, as desired. �

Theorem 9.8.16 iGLPCa = PL
�1

(PA,HA) ≤Prop
PL

�1
(PA∗,HA) = iGLCTCa.

Proof The arithmetical soundness of iGLCTCa is straightforward and left to the
reader. Also iGLPCa = PL

�1
(PA,HA) holds by Theorem 9.7.14. It is enough here

to show that

AC
�1

(iGLPCa;PA,HA) ≤Prop

f, f̄ AC
�1

(iGLCTCa;PA∗,HA).

Given A ∈ L�, let f (A) := (A)�↓ and f̄ A as the identity function.

R1. Lemma 9.8.15.
R2. If HA � σPA(A�↓), for a �1-substitution σ, then by Lemma 9.3.22 we have

HA � σPA∗ (A). �

Lemma 9.8.17 For every A ∈ L� we have iGLCTS∗PCa 
 A iff GLSCa 
 A�↓.

Proof We use induction on the proof iGLCTS∗PCa 
 A and showGLSCa 
 A�↓.
All cases are similar to the one for iGLCTS∗P, except for

• A = p → �p: then iK4 
 A�↓ ↔ A and hence GLCa 
 A�↓.

For the other way around, let iGLCTS∗PCa � A. Then by�CPwe have A�↓ ↔ A,
and then wemay deduce iGLCTS∗PCa � A�↓. By Theorem 9.8.8, there exists some
quasi-classical perfect Kripke modelK such thatK,α �|=A�↓ andK is A�↓-sound at
α. Corollary 9.3.43 impliesK,α �|=c A�↓, which by soundness ofGLSCa for classical
Kripke models with the property of truth-ascending (i.e. if p is true at some node,
then it is true also at all accessible nodes), implies GLSCa � A�↓. �
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Theorem 9.8.18 GLSCa = PL
�1

(PA, N) ≤Prop
PL

�1
(PA∗, N) = iGLCTS∗PCa.

Proof The arithmetical soundness of iGLCTS∗PCa is straightforward and left to
the reader. Also PL

�1
(PA, N) = GLSCa holds by Theorem 9.7.1. It is enough here

to show that

AC
�1

(GLSCa;PA, N) ≤Prop

f, f̄ AC
�1

(iGLCTS∗PCa;PA∗, N).

Given A ∈ L�, let f (A) := (A)�↓ and f̄ A as the identity function.

R1. Lemma 9.8.17.
R2. If N�|=σPA(A�↓), for a �1-substitution σ, then by Lemma 9.3.22 we have

N�|=σPA∗ (A). �

Theorem 9.8.19 iGLCTCa=PL
�1

(PA∗,HA) ≤Prop
PL

�1
(PA∗,PA)= iGLCTPCa.

Proof We already have PL
�1

(PA∗,PA) = iGLCTPCa and iGLCTPCa =
PL

�1
(PA∗,PA) by Theorems 9.8.16 and 9.8.14. It is enough here to show that

AC
�1

(iGLCTCa;PA∗,HA) ≤Prop

f, f̄ AC
�1

(iGLCTPCa;PA∗,PA).

Given A ∈ L�, let f (A) := (A)¬↑ and f̄ A as the identity function.

R1. If iGLCTCa 
 A¬↑ then iGLCTPCa 
 A¬↑, and since we have PEM in
iGLCTPCa, we may conclude iGLCTPCa 
 A.

R2. If HA � σPA∗ (A¬↑), for a �1-substitution σ, then by Lemma 9.5.18 we have
HA � (σPA∗ (A))¬. Hence by Lemma 9.5.15 we have PA � σPA∗ (A). �

Lemma 9.8.20 For every A ∈ L�, if iGLCTPCa 
 A�↑, then iGLCT 
 A.

Proof Let iGLCT � A. Hence by Theorem 9.3.40, there is some perfect quasi-
classicalKripkemodelK such thatK,α � A. ThenCorollary9.3.44 impliesK,α �|=A�↑,
and hence by soundness of iGLCTPCa (Theorem 9.8.6) implies iGLCTPCa � A�↑.
�

Theorem 9.8.21 iGLCTPCa = PL
�1

(PA∗,PA) ≤Prop
PL

�1
(PA∗,PA∗) = iGLCT.

Proof The soundness of iGLCT is straightforward and left to the reader. ByTheorem
9.8.14 we have PL

�1
(PA∗,PA) = iGLCTPCa. We must show

AC
�1

(iGLCTPCa;PA∗,PA) ≤Prop

f, f̄ AC
�1

(iGLCT;PA∗,PA∗).

Given A ∈ L�, define f (A) = A�↑ and f̄ A as the identity function.

R1. Lemma 9.8.20.
R2. Let PA � σPA∗ (A�↑). Then by Lemma 9.3.19, PA � σPA∗ (A)PA, and hence by

definition of PA∗, we have PA∗ � σPA∗ (A). �
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Corollary 9.8.22 For every A ∈ L�, we have iGLCT 
 A iff iGLCTPCa 
 A�↑.

Proof Use Corollary 9.4.5, 9.8.21. �

Theorem 9.8.23 iGLCTS∗PCa = PL
�1

(PA∗, N) ≤Prop
PL

�1
(PA∗,PA∗) = iGLCT.

Proof By Theorems 9.8.18 and 9.8.21 we havePL
�1

(PA∗, N) = iGLCTS∗PCa and
PL

�1
(PA∗,PA∗) = iGLCT. We must show

AC
�1

(iGLCTS∗PCa;PA∗, N) ≤Prop

f, f̄ AC
�1

(iGLCT;PA∗,PA∗).

Given A ∈ L�, define f (A) = �A and f̄ A as the identity function.

R1. Let iGLCTS∗PCa 
 �A. By soundness of iGLCTS∗PCa = PL
�1

(PA∗, N),
for every �1-substitution σ we have N |= σPA∗ (�A) and hence PA∗ 
 σPA∗ (A).
Then by arithmetical completeness of iGLCT = PL

�1
(PA∗,PA∗), we have

iGLCT 
 A.
One alsomay prove this itemwith a direct propositional argument, usingKripke
semantics. For simplicity reasons, we chose the indirect way.

R2. Let N�|=σPA∗ (�A). Then PA∗ � σPA∗ (A), as desired. �

Lemma 9.8.24 For every A ∈ L�, we have iGLCT 
 A iff iGLP 
 A�↓.

Proof We use induction on the proof iGLCT 
 A and show iGLP 
 A�↓:

• iGL 
 A: by Lemma 9.3.9 we have iGL 
 A�↓.
• A is an axiom instance of �CP or �TP: Then A = �B and iGLCT 
 B and by
Lemma 9.8.9 we have GL 
 B�. By Lemma 9.8.10 we have iGLP 
 �B�.

• iGLCT 
 B and iGLCT 
 B → A with lower proof length: by induction hypoth-
esis we have iGLP 
 B�↓ and iGLP 
 B�↓ → A�↓, which implies iGLP 
 A�↓,
as desired.

For the other way around, let iGLCT � A. Then by Lemma 9.3.8 we have A�↓ ↔ A,
and hence iGLCT � A�↓. By Theorem 9.8.3, there exists some Suc-quasi-classical
semi-perfect Kripke model K such that K,α � A�↓, for some node α. We may let
α /∈ Suc, otherwise eliminate all nodes not in (α �) ∪ (α 	) and consider this new
Kripkemodel instead ofK. Obviously the newKripkemodel still refutes A�↓ atα and
is Suc-quasi-classical semi-perfect. Hence Lemma 9.8.12 implies that K̃,α � A�↓,
in which K̃ indicates theKripkemodel derived fromK bymaking every	-accessible
node as a classical node. Precise definition of K̃ came before Lemma 9.8.12. It is
obvious that K̃ is aSuc-classical semi-perfect Kripke model. Hence Theorem 9.7.12
implies iGLP � A�↓, as desired. �

Theorem 9.8.25 iGLCTCa = PL
�1

(PA∗,HA) ≤Prop
PL(PA∗,HA) = iGLCT.

Proof The arithmetical soundness of iGLCTCa is straightforward and left to the
reader. By Theorem 9.8.16 we have PL(PA∗,HA) = iGLCTCa. We must show
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AC
�1

(iGLCTCa;PA∗,HA) ≤Prop

f, f̄ AC(iGLCT;PA∗,HA).

Given A ∈ L�, if iGLCT 
 A, define f (A) := 	. If iGLCT � A, by Lemma 9.8.24
we have iGLP � A�↓, and hence by Lemma 9.7.23 there exists some proposi-
tional (.)�↓-substitution τ such that iGLPCa � τ (A�↓). Define f (A) := τ (A) and
f̄ A(σ) := σPA∗ ◦ τ .

R1. Let iGLCT � A. By Lemma 9.8.24 we have iGLP � A�↓ and then Lemma
9.7.23 implies iGLPCa � τ (A�↓), in which τ is as used for the definition of
f (A). Since τ is a (.)�↓-substitution, by Lemma 9.7.3 we have iGLPCa �

(τ (A))�↓. ThenLemma9.8.15 implies that iGLCTCa � τ (A), or in otherwords
iGLCTCa � f (A).

R2. Let HA � σPA∗ ( f (A)) for some �1-substitution σ. By definition of f (A), we
must have iGLCT � A, otherwise f (A) := 	, which contradicts
HA � σPA∗ ( f (A)). Hence f (A) = τ (A) for some propositional (.)�↓
-substitution τ . By Lemma 9.3.21 we have HA � σPA(τ (A)�↓). Since iK4+
CPa is included inPL�1

(PA,HA) = iGLPCa (Theorem 9.7.21), we haveHA �

σPA(τ (A�↓)). This implies thatHA � [ f̄ A(σ)]PA(A�↓) and againbyLemma9.3.21
we have HA � [ f̄ A(σ)]PA∗(A).

�

Lemma 9.8.26 For every A ∈ L�, we have iGLCTP 
 A iff GL 
 A�↓.

Proof We use induction on the proof iGLCTP 
 A and show GL 
 A�↓:

• A = �B and iGLCT 
 B: by Lemma 9.8.9 we have GL 
 B� and hence by
necessitation GL 
 �B�.

• iGL 
 A: by Lemma 9.3.9 we have iGL 
 A�↓.
• A = B ∨ ¬B: Then A�↓ = B�↓ ∨ ¬B�↓ which is valid in GL.
• iGLCTP 
 B and iGLCTP 
 B → A with lower proof length than the one for

A: by induction hypothesis we have GL 
 B�↓ and GL 
 B�↓ → A�↓, which
implies GL 
 A�↓, as desired.

For the other way around, let iGLCTP � A. Then by �CP we have A�↓ ↔ A,
and then we may deduce iGLCTP � A�↓. By Theorem 9.8.5, there exists some
quasi-classical perfect Kripke model K and some boolean interpretation I such that
K,α, I �|=A�↓. Corollary 9.3.43 implies K,α, I �|=c A�↓, which by soundness of GL
for classical Kripke models, implies GL � A�↓. �

Theorem 9.8.27 iGLCTPCa = PL
�1

(PA∗,PA) ≤Prop
PL(PA∗,PA) = iGLCTP.

Proof The arithmetical soundness of iGLCTP is straightforward and left to the
reader. By Theorem 9.8.14 we have PL

�1
(PA∗,PA) = iGLCTPCa. We must show

AC
�1

(iGLCTPCa;PA∗,PA) ≤Prop

f, f̄ AC(iGLCTP;PA∗,PA).
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Given A ∈ L�, if iGLCTP 
 A, define f (A) := 	. If iGLCTP � A, by Lemma
9.8.26wehaveGL � A�↓, andhencebyRemark9.7.4 there exists somepropositional
(.)�↓-substitution τ such thatGLCa � τ (A�↓). Define f (A) := τ (A) and f̄ A(σ) :=
σPA∗ ◦ τ .

R1. Let iGLCTP � A. By Lemma 9.8.26we haveGL � A�↓ and then Remark 9.7.4
impliesGLCa � τ (A�↓), in which τ is as used for the definition of f (A). Since
τ is a (.)�↓-substitution, by Lemma 9.7.3 we have GLCa � (τ (A))�↓. Then
Lemma9.8.13 implies that iGLCTPCa � τ (A), or in otherwords iGLCTPCa �

f (A).
R2. Let PA � σPA∗ ( f (A)) for some �1-substitution σ. By definition of f (A), we

must have iGLCTP � A, otherwise f (A) := 	, which contradicts
PA � σPA∗ ( f (A)).Hence f (A) = τ (A) for somepropositional (.)�↓-substitution
τ . By Lemma 9.3.21 we have PA � σPA(τ (A)�↓). Since iK4+ CPa is included
in PL

�1
(PA,PA) = GLCa (Theorem 9.7.1), by Lemma 9.7.3 we have PA �

σPA(τ (A�↓)). This implies that PA � [ f̄ A(σ)]PA(A�↓) and again by Lemma
9.3.21 we have PA � [ f̄ A(σ)]PA∗ (A). �

Lemma 9.8.28 For every A ∈ L�, we have iGLCT 
 A iff GL 
 A�.

Proof One may use induction on the proof iGLCT 
 A to show that GL 
 A�.
For the other direction, we reason contrapositively. Let iGLCT � A. Since in iGLC
we have A ↔ A�, we have iGLCT � A�. Hence by Theorem 9.3.40 there is some
perfect quasi-classical model K such that K,α � A�. Hence by Corollary 9.3.43
K,α �|=c A�. Since |=c is just a classical semantics for the modal logic GL, by the
soundness ofGL for finite irreflexive Kripke models (Smoryński 1985, Sect. 2.2) we
may deduce GL � A�, as desired. �
Lemma 9.8.29 For every A ∈ L�, we have iGLCT 
 A iff GLCa 
 A�.

Proof There are at least two options for the proof. First is that one repeat a similar
argument of the proof o for Lemma 9.8.28. Second proof follows: By Corollary
9.8.22, iGLCT 
 A iff iGLCTPCa 
 A�↑, andLemma9.8.13 implies iGLCTPCa 

A�↑ iffGLCa 
 (A�↑)�↓. Since iK4 
 A� ↔ (A�↑)�↓, we have the desired result.
�
Theorem 9.8.30 iGLCT = PL

�1
(PA∗,PA∗) ≤Prop

PL(PA∗,PA∗) = iGLCT.

Proof The arithmetical soundness of iGLCT for general substitutions, i.e.
AS(iGLCT;PA∗,PA∗), is straightforward and left to the reader. By Theorem 9.8.21
we have PL

�1
(PA∗,PA∗) = iGLCT. We must show

AC
�1

(iGLCT;PA∗,PA∗) ≤Prop

f, f̄
AC(iGLCT;PA∗,PA∗).

Given A ∈ L�, if iGLCT 
 A, define f (A) := 	. If iGLCT � A, by Lemma 9.8.28
we have GL � A�, and hence by Remark 9.7.4 there exists some propositional
(.)�↓-substitution τ such that GLCa � τ (A�). Define f (A) := τ (A) and f̄ A(σ) :=
σPA∗ ◦ τ .
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R1. Let iGLCT � A. By Lemma 9.8.28 we have GL � A� and then Remark 9.7.4
impliesGLCa � τ (A�), in which τ is as used for the definition of f (A). Since τ
is a (.)�↓-substitution, by Lemma 9.7.3 we haveGLCa � τ (A)�. Then Lemma
9.8.29 implies that iGLCT � τ (A), or in other words iGLCT � f (A).

R2. Let PA∗ � σPA∗ ( f (A)) for some �1-substitution σ. By definition of f (A),
we must have iGLCT � A, otherwise f (A) := 	, which contradicts PA∗ �

σPA∗ ( f (A)). Hence f (A) = τ (A) for some propositional (.)�↓-substitution τ .
ThenwehavePA � σPA∗ (τ (A))PA andbyLemma9.3.20wehavePA � σPA(τ (A)�).
Since iK4+ CPa is included in PL

�1
(PA,PA) = GLCa (Theorem 9.7.1), by

Lemma 9.7.3we havePA � σPA(τ (A�)). This implies thatPA � [ f̄ A(σ)]PA(A�)

and again by Lemma 9.3.20 we have PA � ([ f̄ A(σ)]PA∗ (A))PA. Hence PA∗ �

[ f̄ A(σ)]PA∗ (A). �

Lemma 9.8.31 For every A ∈ L�, we have iGLCTS∗P 
 A iff GLS 
 A�↓.

Proof We use induction on the proof iGLCTS∗P 
 A and show GLS 
 A�↓. All
cases are similar to the one for item 3 above, except for

• A = �B → B�: since iK4 
 A�↓ ↔ (�B� → B�), we may deduce GLS 

A�↓.

For the other way around, let iGLCTS∗P � A. Then by �CP we have A�↓ ↔ A,
and then we may deduce iGLCTS∗P � A�↓. By Theorem 9.8.7, there exists some
quasi-classical perfect Kripke model K and some boolean interpretation I such that
K,α, I �|=A�↓ and K is A�↓-sound at α. Corollary 9.3.43 implies K,α, I �|=c A�↓,
which by soundness of GLS (restricted to sub-formulas of A�↓) for A�↓-sound
classical Kripke models, implies GLS � A�↓. �

Theorem 9.8.32 iGLCTS∗PCa = PL
�1

(PA∗, N) ≤Prop
PL(PA∗, N) = iGLCTS∗P.

Proof The arithmetical soundness of iGLCTS∗P is straightforward and left to the
reader. By Theorem 9.8.18 we have PL

�1
(PA∗, N) = iGLCTS∗PCa. We must show

AC
�1

(iGLCTS∗PCa;PA∗, N) ≤Prop

f, f̄ AC(iGLCTS∗P;PA∗, N).

Given A ∈ L�, if iGLCTS∗P 
 A, define f (A) := 	. If iGLCTS∗P � A, byLemma
9.8.31 we have GLS � A�↓, and hence by Remark 9.7.4 there exists some propo-
sitional (.)�↓-substitution τ such that GLSCa � τ (A�↓). Define f (A) := τ (A) and
f̄ A(σ) := σPA∗ ◦ τ .
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R1. Let iGLCTS∗P � A. By Lemma 9.8.31 we haveGLS � A�↓ and then Remark
9.7.4 impliesGLSCa � τ (A�↓), inwhich τ is as used for the definition of f (A).
Since τ is a (.)�↓-substitution, by Lemma 9.7.3 we have GLSCa � τ (A)�↓.
Then Lemma 9.8.17 implies that iGLCTS∗PCa � τ (A), or in other words
iGLCTS∗PCa � f (A).

R2. LetN�|=σPA∗ ( f (A)) for some�1-substitution σ. By definition of f (A), we must
have iGLCTS∗P � A, otherwise f (A) := 	,which contradictsN�|=σPA∗ ( f (A)).
Hence f (A) = τ (A) for some propositional (.)�↓-substitution τ . We have
N�|=σPA∗ (τ (A)) and by Lemma 9.3.21we have N�|=σPA(τ (A)�↓). Since iK4+
CPa is included in PL

�1
(PA, N) = GLSCa (Theorem 9.7.1), by Lemma 9.7.3

we have N�|=σPA(τ (A�↓)). This implies that N�|=[ f̄ A(σ)]PA(A�↓) and again by
Lemma 9.3.21 we have N�|=[ f̄ A(σ)]PA∗ (A). �

Theorem 9.8.33 iGLCTS∗P = PL(PA∗, N) ≤Prop
PL(PA∗,PA∗) = iGLCT.

Proof By Theorems 9.8.32 and 9.8.30 we have PL(PA∗,PA∗) = iGLCT and
PL(PA∗, N) = iGLCTS∗P. We must show

AC(iGLCTS∗P;PA∗, N) ≤Prop

f, f̄ AC(iGLCT;PA∗,PA∗).

Given A ∈ L�, define f (A) = �A and f̄ A as the identity function.

R1. Let iGLCTS∗P 
 �A. By soundness of iGLCTS∗P = PL(PA∗, N), for every
substitution σ we haveN |= σPA∗ (�A) and hencePA∗ 
 σPA∗ (A). Then by arith-
metical completeness of iGLCT = PL(PA∗,PA∗), we have iGLCT 
 A.

R2. Let N�|=σPA∗ (�A). Then PA∗ � σPA∗ (A), as desired. �

Theorem 9.8.34 iGLCT = PL(PA∗,HA) ≤Prop
PL(PA∗,PA) = iGLCTP.

Proof We already have iGLCT = PL(PA∗,HA) and PL(PA∗,PA) = iGLCTP by
Theorems9.8.27 and9.8.25. It is enoughhere to show thatAC(iGLCTP;PA∗,PA) ≤ f, f̄

AC(iGLCT;PA∗,HA). Given A ∈ L�, let f (A) := (A)¬↑ and f̄ A as the identity
function.

R1. If iGLCT 
 A¬↑ then iGLCTP 
 A¬↑, and since we havePEM in iGLCTPCa,
we may conclude iGLCTPCa 
 A.

R2. If HA � σPA∗ (A¬↑), for a substitution σ, then by Lemma 9.5.18 we have HA �

(σPA∗ (A))¬. Hence by Lemma 9.5.15 we have PA � σPA∗ (A). �



308 M. Mojtahedi

9.9 Conclusion

FromDiagram 9.5, it turns out that the truth�1-provability logic ofHA, is the hardest
provability logic among the provability logics in Table9.3. Closer inspection in the
reductions provided in previous sections, reveals that all propositional reductions,
i.e. the functions f , are computable. Hence by decidability of PL

�1
(HA, N) (Corol-

lary 9.5.6) and Theorem 9.4.8, we have the decidability of all provability logics in
Table9.3.

Corollary 9.9.1 All provability logics in the Table9.3, are decidable.

So far, we have seenmany reductions of provability logics. The reductions, helped
out to prove new arithmetical completeness results, have a more general view of all
provability logics and intuitively say which provability logic is harder. The reader
maywonder what other reductions hold, beyond the transitive closure of the Diagram
9.5. However it seems more likely that no other reductions hold, at the moment we
can not say anything more than that. This question calls for more work.

Conjecture 9.9.2 We conjecture that the following characterizations and reductions
hold:

1. iHσ = PL
�1

(HA,HA) ≤Prop
PL(HA,HA) = iH. Thiswill solve a traditional great

open problem which calls for the characterization and decidability of the prov-
ability logic ofHA with which all this research and also (Ardeshir and Mojtahedi
2018, 2015) started.

2. iHSP = PL(HA, N) ≤Prop
PL(HA,HA) = iH.

3. iHσ P = PL
�1

(HA,PA) ≤Prop
PL(HA,PA) = iHP.

4. iHσSP = PL
�1

(HA, N) ≤Prop
PL(HA, N) = iHSP.

5. iH∗∗
σ = PL

�1
(HA∗,HA∗) ≤Prop

PL(HA∗,HA∗) = iH∗.

Moreover, all reductions are computable and hence all provability logics are conjec-
tured to be decidable. In which

• iH is as defined in (Iemhoff 2001),
• iH∗ as defined in (Ardeshir and Mojtahedi 2019),
• iHP is iH plus P,
• iHSP is iH plus S and P,
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Appendices

Table 9.1 List of axiom schemas

Name(s) Axiom scheme Name(s) Axiom scheme

K �(A → B) → (�A → �B) 4 �A → ��A

Löb, L �(�A → A) → �A CP, C A → �A

S �A → A CPa, Ca p → �p for atomic
variable p

S∗ �A → A� PEM, P A ∨ ¬A

Le �(A ∨ B) → �( �. A ∨ �. B) Le+ �A → �Al

TP, T �(A → B) → (A ∨ (A → B)) i All theorems of IPC�
V A ↔ A−

For an axiom scheme A, let A indicate �A and A indicates A ∧ A

Table 9.2 List of translations

Translation Description Reference

�(.) Modal operator

(.)�↓ Replace every inner (inside some �) subformula B with
B ∧�B

Definition 9.3.4

(.)�↑ Replace every outer (not inside any �) subformula B with
B ∧�B

Definition 9.3.4

(.)¬↑ Insert ¬¬ behind every outer (not inside any �) subformula Definition 9.5.14

(.)† Recursively replaces every subformula �B with �B→,
in which in which B→ is the classically equivalent
proposition of the form

∧
i (
∧

�i →∨
�i ), and �i , �i

only contains atomics or boxed

Definition 9.7.7

τ Not a fixed translation. It is a substitution and for every
reduction which uses τ , it is defined in the proof of its
reference theorem
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Table 9.3 List of all provability logics

Theory Axioms Provability
Logic(s)

Reference

iK4 i,K,4

iGL iK4,L

GL iGL,P PL(PA,PA) (Solovay 1976)

GLCa GL,CPa PL�1
(PA,PA) (Visser 1982)

GLS GL,S PL(PA, N) (Solovay 1976)

GLSCa GLCa,S PL�1
(PA, N) (Visser 1982)

iGLCT iGL,C,T PL(PA∗,PA∗)
PL�1

(PA∗,PA∗)
(Visser 1982)

iHσ iGL,V, Le+ PL�1
(HA,HA) (Ardeshir and Mojtahedi 2018)

(Visser and Zoethout 2019)

iH∗∗σ {A : iHσ 
 A�} PL�1
(HA∗,HA∗) (Ardeshir and Mojtahedi 2019)

iHσP iHσ ,P PL�1
(HA,PA) Theorem 9.5.12

iHσSP iHσ ,S,P PL�1
(HA, N) Theorem 9.5.13

iHσSP∗ {A : iHσSP 

A�↓}

PL�1
(HA∗, N) Theorem 9.6.1

iHσP∗ {A : iHσP 

A�↓} PL�1

(HA∗,PA)

Theorem 9.6.2

iH∗σ {A : iHσ 
 A�↓} PL�1
(HA∗,HA) Theorem 9.6.3

iGLPCa iGL,P,Ca PL�1
(PA,HA) Theorem 9.7.21

iGLP iGL,P PL(PA,HA) Theorem 9.7.25

iGLCTPCa iGL,C,T,P,Ca PL�1
(PA∗,PA) Theorem 9.8.14

iGLCTCa iGL,C,T,Ca PL�1
(PA∗,HA) Theorem 9.8.16

iGLCTS∗PCa iGL,C,T,S∗,P,Ca PL�1
(PA∗, N) Theorem 9.8.18

iGLCTP iGL,C,T,P PL(PA∗,PA) Theorem 9.8.27

iGLCT iGL,C,T PL(PA∗,HA) Theorem 9.8.25

iGLCTS∗P iGL,C,T,S∗,P PL(PA∗, N) Theorem 9.8.32
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PL�1
(HA∗,N) PL�1

(HA∗,HA∗) PL�1
(HA∗,HA) PL�1

(HA∗,PA)

PL�1
(HA,N) PL�1

(HA,HA) PL�1
(HA,PA)

PL�1
(PA,N) PL�1

(PA,PA) PL�1
(PA,HA)

PL�1
(PA∗,N) PL�1

(PA∗,PA∗) PL�1
(PA∗,PA) PL�1

(PA∗,HA)

PL(PA∗,N) PL(PA∗,PA∗) PL(PA∗,PA) PL(PA∗,HA)

PL(PA,N) PL(PA,PA) PL(PA,HA)

�(.)

9.6.7
(.)¬↑
9.6.6

(.)�↑
9.6.5

9.7.11(.)†

(.)�↓ 9.6.1

�(.)

9.5.20

9.7.21

(.)†

(.)�↓ 9.6.3

(.)¬↑
9.5.19

(.)�↓ 9.6.2

9.7.22

(.)†

9.8.18(.)�↓

�(.)

9.7.29

τ 9.7.6.1 τ 9.7.6.2

9.8.14(.)�↓

(.)¬↑
9.7.27

9.8.16(.)�↓

9.7.25τ9.8.32τ

9.8.23
�(.)

9.8.30τ

9.8.21
(.)�↑

9.8.27τ

9.8.19
(.)¬↑

9.8.25τ

9.8.33
�(.)

�(.)

9.7.29

Diagram 9.5 Reductions of all provability logics. Arrows indicate a reduction of the completeness
of the right hand side to the left one. The propositional reduction is shown over the arrow line and
the theorem number proving this, is shown under arrow line. For definitions see Tables9.1, 9.2, and
9.3
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Chapter 10
On PBZ∗–Lattices

Roberto Giuntini, Claudia Mureşan, and Francesco Paoli

Abstract We continue our investigation of paraorthomodular BZ*-lattices (PBZ∗–
lattices), started in Giuntini et al. (2016, 2017, 2018, 2020), Mureşan (2019). We
shed further light on the structure of the subvariety lattice of the variety PBZL

∗ of
PBZ∗–lattices; in particular, we provide axiomatic bases for some of its members.
Further, we show that some distributive subvarieties ofPBZL

∗ are term-equivalent to
well-known varieties of expanded Kleene lattices or of nonclassical modal algebras.
By so doing, we somehow help the reader to locate PBZ∗–lattices on the atlas of
algebraic structures for nonclassical logics.

Keywords PBZ*-lattices · Brouwer-Zadeh lattices · Quantum logic ·
Orthomodular lattices · Nonclassical modal algebras

10.1 Introduction

One of the core topics within the impressive corpus of Mohammad Ardeshir’s con-
tributions to mathematical logic is the algebraic semantics of nonclassical logics. In
particular, Ardeshir and his collaborators intensively investigated the relationships
between Visser’s basic propositional calculus (Visser 1981) and its algebraic coun-
terpart, basic algebras, generalisations of Heyting algebras where only the left-to-
right direction of the residuation equivalence x ∧ y ≤ z ⇐⇒ x ≤ y → z is retained
(Alizadeh and Ardeshir 2006; Ardeshir and Ruitenburg 2001, 1998). Also, in a basic
algebra A there may be a ∈ A such that 1 → a 	= a. Crucially, the introduction of
these structures is notmotivated by abstraction per se: Ardeshir argues that basic alge-
bras can contribute to a deeper understanding of constructive mathematics, whence
they can have a paramount foundational interest.
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The approach that led to the introduction of paraorthomodular BZ*-lattices (PBZ∗
–lattices) (Giuntini et al. 2016, 2017, 2018, 2020;Mureşan 2019) is similar. The key
motivation for this particular generalisation of orthomodular lattices, in fact, comes
from the foundations of quantum mechanics. Consider the structure

E (H) = (
E (H) ,∧s,∨s,

′ ,∼ , O, I
)
,

where:

• E (H) is the set of all effects of a given complex separable Hilbert space H, i.e.,
positive linear operators of H that are bounded by the identity operator I;

• ∧s and ∨s are the meet and the join, respectively, of the spectral ordering ≤s so
defined for all E, F ∈ E (H):

E ≤s F if and only if ∀λ ∈ R : M F (λ) ≤ M E (λ),

where for any effect E , M E is the unique spectral family (Kreyszig 1978,
Chap. 7) such that E = ∫ ∞

−∞ λ d M E (λ) (the integral is here meant in the sense of
norm-converging Riemann-Stieltjes sums (Stroock 1998, Chap. 1));

• O and I are the null and identity operators, respectively;
• E ′ = I − E and E∼ = Pker(E) (the projection onto the kernel of E).

The operations in E (H) are well-defined. The spectral ordering is indeed a lattice
ordering (Olson 1971; de Groote 2005) that coincides with the usual ordering of
effects induced via the trace functional when both orderings are restricted to the set
of projection operators of the same Hilbert space.

APBZ∗–lattice can be viewed as an abstraction from this concrete physicalmodel,
much in the same way as an orthomodular lattice can be viewed as an abstraction
from a certain structure of projection operators in a complex separable Hilbert space.
The faithfulness of PBZ∗–lattices to the physical model whence they stem is further
underscored by the fact that they reproduce at an abstract level the “collapse” of
several notions of sharp physical property that can be observed in E (H).

Referring the reader to Giuntini et al. (2016) for a more detailed discussion of the
previous issues, we now summarise the discourse of the present paper. In Sect. 10.2
we collect some preliminaries, with the twofold aim of fixing the notation to be used
throughout the article and of making the article itself sufficiently self-contained—
although we will occasionally need to refer the reader to results included in the
previous papers on the subject. In Sect. 10.3 we zoom in on some subvarieties of
the variety PBZL

∗ of PBZ∗–lattices. First, we axiomatise the subvariety of PBZL
∗

generated by a particular algebra whose role in the context of PBZL
∗ is analogous

to the role of the benzene ring in the context of ortholattices. Next, we prove that
the subvariety of PBZL

∗ generated by the (unique PBZ∗–lattice over the) 4-element
Kleene chain is the unique antiorthomodular cover of the variety generated by the
(unique PBZ∗–lattice over the) 3-element Kleene chain. Finally, we put to good use
the construction of subdirect products of varieties of PBZ∗–lattices, employing them



10 On PBZ∗–Lattices 315

to characterise some joins of subvarieties of PBZ∗–lattices. Section 10.4 is devoted
to term-equivalence results that establish connections between distributive varieties
of PBZ∗–lattices and some known expansions of Kleene lattices, on the one hand,
and nonclassical modal algebras—i.e., modal algebras whose nonmodal reducts are
generic De Morgan algebras rather than Boolean algebras—on the other. We hope
that these equivalences can help readers to make out the whereabouts of PBZ∗–
lattices in the vast landscape of algebraic structures for nonclassical logic, a territory
whose exploration has been decisively aided by the research work of Mohammad
Ardeshir.

10.2 Preliminaries

For further information on the notions recalled in this section, we refer the reader to
Giuntini et al. (2016, 2017, 2018, 2020), Mureşan (2019).

We denote by N the set of the natural numbers and by N
∗ = N \ {0}. If A is

an algebra, then A will denote its universe. We call trivial algebras the singleton
algebras. For any n ∈ N

∗,Dn will denote the n–element chain, aswell as any bounded
lattice-ordered structure having this chain as a bounded lattice reduct. For any lattice
L, we denote by Ld the dual of L. For any bounded lattices L and M, we denote by
L ⊕ M the ordinal sum of L with M, obtained by glueing together the top element
of L and the bottom element of M, thus stacking M on top of L, and by L ⊕ M the
universe of the bounded lattice L ⊕ M; clearly, the ordinal sum of bounded lattices
is associative.

Let V be a variety of algebras of similarity type τ and C a class of algebras
with τ–reducts. We denote by IV(C), HV(C), SV(C) and PV(C) the classes of the
isomorphic images, homomorphic images, subalgebras and direct products of τ–
reducts of members of C, respectively, and by VV(C) = HVSVPV(C) the subvariety
of V generated by the τ–reducts of the members of C. For any class operator O and
any A ∈ C, the notation OV({A}) will be streamlined to OV(A). If A is an algebra
having a τ–reduct, n ∈ N and κ1, . . . ,κn are constants over τ , then we denote by
ConV(A) the complete lattice of the congruences of the τ–reduct of A, as well as the
set reduct of this congruence lattice, and by ConVκ1,...,κn (A) the complete sublattice
of ConV(A) consisting of the congruences with singleton classes of κA

1 , . . . ,κA
n , as

well as its set reduct. If V is the variety of lattices or that of bounded lattices, then
the subscript V will be eliminated from the previous notations. If C ⊆ V, then we
denote by Si(C) the class of the members of C which are subdirectly irreducible in
V. The lattice of subvarieties of V and its set reduct will be denoted by Subvar(V).

An involution lattice (in brief, I–lattice) is an algebra L = (L ,∧,∨, ·′) of type
(2, 2, 1) such that (L ,∧,∨) is a lattice and ·′ : L → L is an order–reversing operation
that satisfies a′′ = a for all a ∈ L . This makes ·′ a dual lattice automorphism of L,
called involution.

A bounded involution lattice (in brief, BI–lattice) is an algebra L = (L ,∧,∨,

·′, 0, 1) of type (2, 2, 1, 0, 0) such that (L ,∧,∨, 0, 1) is a bounded lattice and
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(L ,∧,∨, ·′) is an involution lattice. A distributive bounded involution lattice is called
a De Morgan algebra.

For any BI–lattice L, we denote by S(L) the set of the sharp elements of L, that
is: S(L) = {x ∈ L : x ∨ x ′ = 1}. A BI–lattice L is called an ortholattice if and only
if all its elements are sharp, and it is called an orthomodular lattice if and only if,
for all a, b ∈ L , a ≤ b implies b = (b ∧ a′) ∨ a.

A pseudo–Kleene algebra is a BI–lattice L that satisfies a ∧ a′ ≤ b ∨ b′ for all
a, b ∈ L . The involution of a pseudo–Kleene algebra is called Kleene complemen-
tation. Distributive pseudo–Kleene algebras are called Kleene algebras or Kleene
lattices.

Clearly, for any bounded lattice L and any BI–lattice K, if Kl is the bounded
lattice reduct of K, then the bounded lattice L ⊕ Kl ⊕ Ld becomes a BI–lattice with
the involution that restricts to the involution of K on K , to a dual lattice isomorphism
from L to Ld on L and to the inverse of this lattice isomorphism on Ld . This BI–
lattice, which we denote by L ⊕ K ⊕ Ld , is a pseudo–Kleene algebra if and only if
K is a pseudo–Kleene algebra.

We denote by BA, OML, OL, KA, PKA, BI and I the varieties of Boolean alge-
bras, orthomodular lattices, ortholattices, Kleene algebras, pseudo–Kleene algebras,
BI–lattices and I–lattices, respectively. Note that BA � OML � OL � PKA � BI

and BA � KA � PKA.
An algebraA having aBI–lattice reduct is said to be paraorthomodular if and only

if, for all a, b ∈ A, if a ≤ b and a′ ∧ b = 0, then a = b. Note that orthomodular lat-
tices are paraorthomodular and that paraorthomodular ortholattices are orthomodular
lattices.

A Brouwer–Zadeh lattice (in brief, BZ–lattice) is an algebra L = (L ,∧,∨, ·′,
·∼, 0, 1) of type (2, 2, 1, 1, 0, 0) such that (L ,∧,∨, ·′, 0, 1) is a pseudo–Kleene
algebra and ·∼ : L → L is an order–reversing operation, called Brouwer comple-
mentation, that satisfies: a ∧ a∼ = 0 and a ≤ a∼∼ = a∼′ for all a ∈ L . In any BZ–
lattice L, we denote by �a = a′∼ and by ♦a = a∼∼ for all a ∈ L . Note that, in any
BZ–lattice L, we have, for all a, b ∈ L: a∼∼∼ = a∼ ≤ a′, (a ∨ b)∼ = a∼ ∧ b∼ and
(a ∧ b)∼ ≥ a∼ ∨ b∼. The class of BZ-lattices is a variety, hereafter denoted byBZL.

We consider the following identities over BZL, out of which SDM (the Strong
De Morgan identity) clearly implies (∗), as well as SK, while J0 implies J2:

(∗) (x ∧ x ′)∼ ≈ x∼ ∨ x ′∼
SDM (x ∧ y)∼ ≈ x∼ ∨ y∼
SK x ∧ ♦y ≤ �x ∨ y

DIST x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
J0 (x ∧ y∼) ∨ (x ∧ ♦y) ≈ x
J2 (x ∧ (y ∧ y′)∼) ∨ (x ∧ ♦(y ∧ y′)) ≈ x

A PBZ∗–lattice is a paraorthomodular BZ–lattice that satisfies identity (∗). In any
PBZ∗–lattice L,

S(L) = {a∼ : a ∈ L} = {a ∈ L : a∼∼ = a} = {a ∈ L : a′ = a∼}
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and S(L) is the universe of the largest orthomodular subalgebra of L, that we denote
by S(L).

We denote by PBZL
∗ the variety of PBZ∗–lattices; note that paraorthomodu-

larity becomes an equational condition under the BZL axioms and condition (∗).
We also denote by DIST = {L ∈ PBZL

∗ : L � DIST}. By the above, OML can be
identified with the subvariety {L ∈ PBZL

∗ : L � x ′ ≈ x∼} of PBZL
∗, by endowing

each orthomodular lattice, in particular every Boolean algebra, with a Brouwer com-
plement equalling its Kleene complement. With the same extended signature, OL

becomes the subvariety {L ∈ BZL : L � x ′ ≈ x∼} of BZL.
A PBZ∗–lattice A with no nontrivial sharp elements, that is with S(A) = {0, 1}, is

called an antiortholattice. A PBZ∗–lattice A is an antiortholattice if and only if it is
endowed with the following Brouwer complement, called the trivial Brouwer com-
plement: 0∼ = 1 and a∼ = 0 for all a ∈ A \ {0}. Every paraorthomodular pseudo–
Kleene algebra with no nontrivial sharp elements becomes an antiortholattice when
endowed with the trivial Brouwer complement. In particular, any BZ–lattice with
the 0 meet–irreducible, and thus any BZ–chain, is an antiortholattice. Moreover,
BZ–lattices with the 0 meet–irreducible are exactly the antiortholattices that satisfy
SDM. Also, if L is a nontrivial bounded lattice and K is a pseudo–Kleene algebra,
then the pseudo–Kleene algebra L ⊕ K ⊕ Ld , endowed with the trivial Brouwer
complement, becomes an antiortholattice, that we will also denote by L ⊕ K ⊕ Ld .

Antiortholattices form a proper universal class, denoted byAOL. Clearly,AOL ∪
OML � PBZL

∗
� BZL � OL. Note, also, that OML ∩ VBZL(AOL) = OML ∩

DIST = BA, hence DIST � VBZL(AOL). We denote by SDM = {L ∈ PBZL
∗ :

L � SDM} and by SAOL = SDM ∩ VBZL(AOL).
If L is a nontrivial bounded lattice and C is a class of bounded lattices, BI–lattices

or pseudo–Kleene algebras, then we denote by L ⊕ C ⊕ Ld the following class of
bounded lattices, BI–lattices or antiortholattices:

L ⊕ C ⊕ Ld = {L ⊕ A ⊕ Ld : A ∈ C}.

10.3 A Study of Some Subvarieties

Throughout this section, the results cited from Mureşan (2019) will be numbered as
in the third arXived version of this paper.

10.3.1 The F8 Problem

There is a long and time-honoured tradition that aims at characterising subvarieties
of varieties of ordered algebras in terms of “forbidden configurations”, harking back
to Dedekind’s celebrated result to the effect that the distributive subvariety of the
variety of lattices is the one whose members do not contain as subalgebras M3 or N5,
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while the modular subvariety is the one whose members do not contain N5. Other
important results in the same vein appear in the theory of ortholattices. For example,
the benzene ring B6:

0

1

a b

b a
B6 :

is a forbidden configuration for the orthomodular subvariety of the variety of ortho-
lattices; more precisely,

OML = {L ∈ OL : B6 /∈ SI(L)} .

Consequently:

Lemma 10.1 (OML, VBI(B6)) is a splitting pair in Subvar (OL).

In this subsection, we intend to give a first, limited application of this method, by
means of a forbidden configuration consisting of a “paraorthomodular analogue” of
B6: the antiortholattice D2 ⊕ B6 ⊕ D2, hereafter denoted by F8, along with any of
its reducts, for the sake of brevity:

0

1

c
a b

b a
c

F8 = D2 ⊕ B6 ⊕ D2

Since it has the 0 meet–irreducible, the antiortholattice F8 satisfies SDM, thus
F8 ∈ SAOL. The question arises naturally as to which subvarieties V of PBZL

∗
are maximal with respect to the property that F8 /∈ SI(V), i.e., F8 /∈ SI(A) for any
A ∈ V. This problem will be referred to as the “F8 problem”. Although we will not
give an answer to this question, we provide a quasiequational characterisation of
paraorthomodular bounded involution lattices that do not contain F8 as a bounded
involution sublattice and we study the varieties of PBZ∗–lattices that contain the
antiortholattice F8.

Clearly, for any L, M ∈ BI, we have: D2 ⊕ M ⊕ D2 ∈ SI(L) if and only if D2 ⊕
M ⊕ D2 ∈ SBI(L). The right-to-left direction is trivial, while, if D2 ⊕ M ⊕ D2 ∈
SI(L) and A = M ∪ {0, 1}, then D2 ⊕ M ⊕ D2

∼=BI A ∈ SBI(L). In particular, for
any A ∈ BZL, we have that F8 ∈ SI(A) if and only if F8 ∈ SBI(A); also, if F8 ∈
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SBZL(A), then F8 ∈ SBI(A), while, if A is an antiortholattice, then F8 ∈ SBZL(A) if
and only if F8 ∈ SBI(A).

Observe what follows:

• no distributive PBZ∗–lattice can contain B6 or F8 as sublattices, in particular as
sub-involution lattices;

• since B6 is a sub-involution lattice of F8 and B6 is not orthomodular, no ortho-
modular lattice can contain F8 as a sub-involution lattice;

• by the above, any subvariety V of PBZL
∗ such that V ⊆ DIST ∪ OML satisfies

F8 /∈ SI(V);
• F8 ∈ SAOL, whence any subvariety V of PBZL

∗ such that SAOL ⊆ V satisfies
F8 ∈ SI(V).

Let us now consider the following quasiidentities in the language of I–lattices:

Q© x ≤ y′ & x ′ ∧ y′ ≤ x ∧ y ⇒ x = y′
Q© ′ x ′ ∧ (x ′ ∧ u)′ ≤ x ∧ (x ′ ∧ u) ⇒ u ≤ x ′

Note that Q© is equivalent to Q©′.

Lemma 10.2 If A ∈ I and a, b ∈ A are such that a ≤ b′ and a′ ∧ b′ ≤ a ∧ b, then
a ∧ a′ = b ∧ b′ = a′ ∧ b′ = a ∧ b.

Proof Let c = a′ ∧ b′. Then c ≤ a ∧ b by the choice of a and b, therefore, since
we also have a ≤ b′ and thus b ≤ a′: a ∧ a′ = a ∧ b′ ∧ a′ = a ∧ c = c; b ∧ b′ =
b ∧ a′ ∧ b′ = b ∧ c = c; a ∧ b = a ∧ b′ ∧ b = a ∧ c = c. �

Lemma 10.3 For any A ∈ PBI, we have:

B6 ∈ SI(A) if and only if F8 ∈ SBI(A).

Proof The right-to-left direction is trivial. Now assume that B6 ∈ SI(A), with B6 =
{c, a, b, a′, b′, c′} ⊆ A, where c = a ∧ b and a < b′. Assume ex absurdo that c = 0,
so that a′ ∧ b′ = 0. Since A is paraorthomodular, it follows that a = b′, and we have
a contradiction. Therefore c 	= 0, so, if we denote by L = {0, c, a, b, a′, b′, c′, 1},
then F8

∼=BI L ∈ SBI(A). �

Proposition 10.4 For any A ∈ I, we have:

A � Q© if and only if B6 /∈ SI(A).

Proof For the direct implication, assume that B6 ∈ S(A), with B6 = {c, a, b, a′,
b′, c′} ⊆ A, where c = a ∧ b and a < b′. Then a ≤ b′ and a′ ∧ b′ = a ∧ b ≤ a ∧ b,
but a 	= b′, hence A � Q©.

For the converse, assume that A � Q©, so that there exist a, b ∈ A with a′ ∧ b′ ≤
a ∧ b and a < b′, so b < a′. Then, by Lemma 10.2, if we denote by c = a′ ∧ b′, then
c = a ∧ b = a ∧ a′ = b ∧ b′. Since a < b′, a ∧ b ≤ a′ ∨ b′; were it the case that a ∧
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b = a′ ∨ b′, we would have that a′ ≤ a′ ∨ b′ = a ∧ b ≤ b, a contradiction. Hence
c′ = (a ∧ b)′ = a′ ∨ b′ > a ∧ b = c. Also, a ∨ b = (a′ ∧ b′)′ = c′, a ∨ a′ = (a ∧
a′)′ = c′ and b ∨ b′ = (b ∧ b′)′ = c′. If we had a ≤ b, then a ≤ b ∧ b′ = c = a ∧
a′ ≤ a, hence c = a ∧ a′ = a < b′ ≤ a′ ∧ b′ = c, andwehave a contradiction again.
Similarly, b � a. Hence a and b are incomparable.Were it a ≤ a′, then c = a ∧ a′ =
a, which would lead to the same contradiction as above. On the other hand, if a′ ≤ a,
then c = a ∧ a′ = a′ > b ≥ b ∧ b′ = c, which gives us another contradiction.Hence
a and a′ are incomparable and so are, analogously, b and b′. Therefore, if we denote
by L = {c, a, b, a′, b′, c′}, then B6

∼=I L ∈ SI(A). �

Theorem 10.5 For any A ∈ PBI, we have:

A � Q© if and only if F8 /∈ SBI(A).

Proof By Lemma 10.3 and Proposition 10.4. �

Example 10.6 Here is an antiortholattice (in particular, a paraorthomodular BI–
lattice) A such that F8 /∈ SBI(A), but F8 ∈ HBZL(A), in particular F8 ∈ SBI((HBZL

(A))) ⊆ SBI(HBI(A)):

a b

c

c

b a
e

d

d

e

0

1

A

The equivalence relation θ with cosets

{0}, {a}, {c, e}, {b, d}, {b′, d ′}, {c′, e′}, {a′}, {1}

belongs to ConBI01(A) ⊂ ConBZL(A) and A/θ ∼= F8, but, as announced above, F8 /∈
SBI(A).

Corollary 10.7 Q© is not an equational condition in PBI or PBZL
∗.

Now let us investigate the subvarieties of PBZL
∗ that contain F8. We consider

the following identity in the language of BZ–lattices:
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D2OL∨ (x ∧ x ′)∼ ∨ (y ∧ y′)∼ ∨ x ∨ x ′ ≈ (x ∧ x ′)∼ ∨ (y ∧ y′)∼ ∨ y ∨ y′

By Giuntini et al. (2018), VBZL(AOL) is axiomatised by J0 relative to PBZL
∗.

By Mureşan (2019), VBZL(D2 ⊕ OL ⊕ D2) is axiomatised by D2OL∨ relative to
SAOL.

We use the following notation from Mureşan (2019): for any k, n, p ∈ N and
any identity t ≈ u, where t (x1, . . . , xk, z1, . . . , z p) and u(y1, . . . , yn, z1, . . . , z p) are
terms in the language of BI having the arities k + p, respectively n + p, and p
common variables z1, . . . , z p, we denote by m(t, u) the following (k + n)–ary term
in the language of BZL:

m(t, u)(x1, . . . , xk, y1, . . . , yn, z1, . . . , z p) =

k∨

i=1

(xi ∧ x ′
i )

∼ ∨
n∨

j=1

(y j ∧ y′
j )

∼ ∨
p∨

h=1

(zh ∧ z′
h)

∼ ∨ t (x1, . . . , xk, z1, . . . , z p).

Note that:
m(u, t)(x1, . . . , xk, y1, . . . , yn, z1, . . . , z p) =

k∨

i=1

(xi ∧ x ′
i )

∼ ∨
n∨

j=1

(y j ∧ y′
j )

∼ ∨
p∨

h=1

(zh ∧ z′
h)

∼ ∨ u(y1, . . . , yn, z1, . . . , z p).

Lemma 10.8 (Mureşan 2019, Corollary 6.14) For any C ⊆ BI and any D ⊆
PKA, VBI(D2 ⊕ C ⊕ D2) = VBI(D2 ⊕ VBI(C) ⊕ D2) and VBZL(D2 ⊕ D ⊕ D2) =
VBZL(D2 ⊕ VBI(D) ⊕ D2).

Proposition 10.9 VBI(F8) = VBI(D2 ⊕ VBI(B6) ⊕ D2)and VBZL(F8) = VBZL(D2 ⊕
VBI(B6) ⊕ D2).

Proof By Lemma 10.8 and the fact that F8 = D2 ⊕ B6 ⊕ D2. �
The following consequence of results from Mureşan (2019) shows that we can

obtain an axiomatisation for VBZL(F8) relative to PBZL
∗ from an axiomatisation

of VBI(B6) relative to OL; note that any such axiomatisation can be written with
nonnullary terms overBI, sinceOL satisfies the identities x ∨ x ′ ≈ 1 and x ∧ x ′ ≈ 0.

Corollary 10.10 {ti ≈ ui : i ∈ I } is an axiomatisation of VBI(B6) relative to OL

such that, for each i ∈ I , the terms ti and ui have nonzero arities if and only if
{m(ti , ui ) ≈ m(ui , ti ) : i ∈ I } ∪ {J0, D2OL∨} is an axiomatisation of VBZL(F8) rel-
ative to PBZL

∗.

Proof By Proposition 10.9, the fact that VBI(B6) ⊆ OL and Mureşan (2019, Theo-
rem 6.38.(i i)). �
Theorem 10.11 (Mureşan 2019, Theorem 6.25) The operator V �→ VBZL(D2 ⊕
V ⊕ D2) is a bounded lattice embedding from the lattice of subvarieties of PKA

to the principal filter generated by VBZL(D3) in the lattice of subvarieties of SAOL.
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Corollary 10.12 (VBZL(D2 ⊕ OML ⊕ D2), VBZL(F8)) is a splitting pair in the lat-
tice of subvarieties of OL.

Proof By Lemma 10.1, Proposition 10.9 and Theorem 10.11. �

Proposition 10.13 • VBI(B6) � VBI(F8) = VBI(Dn ⊕ F8 ⊕ Dn) for any n ∈ N
∗;

• VBZL(F8) � VBZL(D2 ⊕ F8 ⊕ D2) = VBZL(Dn ⊕ F8 ⊕ Dn) for any n ∈ N \
{0, 1, 2}.

Proof By Proposition 10.9, the fact that VBI(B6) ⊆ OL, while D3 ∈ VBI(F8), and
Mureşan (2019, Corollary 6.23), we get that VBI(B6) � VBI(F8) = VBI(D2 ⊕ F8 ⊕
D2) and hence VBI(F8) = VBI(Dn ⊕ F8 ⊕ Dn) for any n ∈ N

∗. This, Theorem 10.11
and again Proposition 10.9 show that VBZL(F8) � VBZL(D2 ⊕ F8 ⊕ D2) = VBZL

(Dn ⊕ F8 ⊕ Dn) for any n ∈ N \ {0, 1, 2}. �

10.3.2 Covers in the Lattice of Subvarieties of PBZL
∗

In this subsection,we continue the study of the lattice Subvar(PBZL
∗) of subvarieties

ofPBZ∗–lattices, started inGiuntini et al. (2016, 2017, 2018, 2020),Mureşan (2019).
We begin by recapitulating a few known results.

Lemma 10.14 (i) (Giuntini et al. 2016, Subsection 5.3) BA is the unique atom of
Subvar(PBZL

∗).
(ii) (Giuntini et al. 2016, Theorem 5.4.(2)) BA = OML ∩ VBZL(AOL).

(iii) (Bruns and Harding 2000, Corollary 3.6) The unique cover of BA in the ideal
(OML] of Subvar(PBZL

∗) is VBZL(MO2).
(iv) (Giuntini et al. 2016, Theorem 5.5) For any L ∈ PBZL

∗ \ OML, we have
D3 ∈ HS(L) ⊆ VBZL((L)), so the unique non–orthomodular cover of BA in
Subvar(PBZL

∗) is VBZL(D3).

By the above, in Subvar(PBZL
∗) VBZL(MO2) and VBZL(D3) are the only covers

of BA, and OML ∨ VBZL(D3) is the unique cover of OML.

Lemma 10.15 (Giuntini et al. 2017, Lemma 3.3.(1)) All subdirectly irreducible
members of VBZL(AOL) belong to AOL.

Lemma 10.16 (Mureşan 2019)

(i) BA = OML ∩ VBZL(AOL) = VBZL(D2) � VBZL(D3) � VBZL(D4) �

VBZL(D5).
(ii) Si(VBZL(D3)) = VBZL(D3) ∩ AOL = IBZL({D1, D2, D3}).

We now prove the main result of this subsection.

Theorem 10.17 The only cover of VBZL(D3) in Subvar(PBZL
∗) included in VBZL

(AOL) is VBZL(D4).
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Proof For any subvarietyW ofVBZL(AOL) such thatVBZL(D3) � W, there exists an
A ∈ Si(W) \ Si(VBZL(D3)) = (W ∩ AOL) \ IBZL({D1, D2, D3}) by Lemma 10.15
and Lemma 10.16.(ii), thus A is an antiortholattice with |A| > 3. Hence, there exists
an a ∈ A \ {0, 1} = A \ SBZL(A) with a 	= a′, so that 0 < a ∧ a′ < a ∨ a′ < 1.
Therefore {0, a ∧ a′, a ∨ a′, 1} is the universe of a subalgebra ofA isomorphic toD4,
i.e., D4 ∈ SBZL(A), thus VBZL(D4) ⊆ VBZL(A) ⊆ W. Since VBZL(D3) � VBZL(D4)

by Lemma 10.16.(i), it follows that VBZL(D4) is the only cover of VBZL(D3) in
Subvar(VBZL(AOL)), which is, of course, a convex sublattice of Subvar(PBZL

∗),
thus VBZL(D4) is a cover of VBZL(D3) in Subvar(PBZL

∗). �

It remains open to determine whether VBZL(D4) is the only cover of VBZL(D3) in
Subvar(PBZL

∗). Recall, also, thatVBZL(D5) = SDM ∩ DIST contains all antiortho-
lattice chains, i.e., all PBZ∗–chains.

Example 10.18 Let us consider the following example of a PBZ∗–lattice from
Giuntini et al. (2018):

H :

d
e

f eg d

f g

0

1

f∼= b c = c b = e∼ a = d∼g∼= a

Note that:

• H � {SDM,SK}, thusOML ∨ VBZL(H) � {SDM,SK} sinceOML � {SDM,SK};
• H � J2, thus H /∈ OML ∨ VBZL(AOL) � J2, in particular H /∈ OML ∨

VBZL(D3);
• D3 ∈ S(H), hence OML ∨ VBZL(D3) ⊆ OML ∨ VBZL(H), therefore OML ∨

VBZL(D3) � OML ∨ VBZL(H) by the above;
• since OML ∨ VBZL(H) � SK and D4 � SK, we have D4 /∈ OML ∨ VBZL(H),
hence D4 does not belong to every proper supervariety of OML ∨ VBZL(D3).

H � {SDM,SK}, H � J2 and OML ∨ VBZL(AOL) � J2, hence H ∈ (SDM ∩
SK) \ (OML ∨ VBZL(AOL)), thus SDM ∩ SK � OML ∨ VBZL(AOL). AOL �

SDM and AOL � SK, thus AOL � SDM and AOL � SK, in particular OML ∨
VBZL(AOL) � SDM ∩ SK. Therefore SDM ∩ SK||OML ∨ VBZL(AOL). Now let
V = VBZL(M O2) ∨ VBZL(D3) ⊆ SDM ∩ SK.D3 /∈ OML, thusV � OML. M O2 /∈
VBZL(AOL), thus V � VBZL(AOL). Finally, V satisfies the modular law, while both
OML and VBZL(AOL) fail it, hence OML � V and VBZL(AOL) � V. Therefore
OML||V||VBZL(AOL).

We list hereafter a few problems that remain open at the time of writing:
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• Is OML ∨ VBZL(D4) a successor of OML ∨ VBZL(D3) in Subvar(PBZL
∗)? Is it

its only successor?
• Is Subvar(PBZL

∗) strongly atomic? If so, then OML ∨ VBZL(H) includes a suc-
cessor of OML ∨ VBZL(D3) which differs from OML ∨ VBZL(D4).

10.3.3 Subdirect Products and Varieties of PBZ∗–lattices

Let V and W be varieties of the same type. Obviously, if V and W are incomparable,
then there exist A ∈ (V ∨ W) \ V and B ∈ (V ∨ W) \ W, so that A × B ∈ (V ∨
W) \ (V ∪ W) and thus V ∪ W � V ∨ W. Recall that the subdirect product of V

and W is the class, denoted by V ×s W, whose members are isomorphic images
of subdirect products of a member of V and a member of W. Clearly, V ∪ W ⊆
V ×s W ⊆ V ∨ W, so that

Si(V) ∪ Si(W) = Si(V ∪ W) ⊆ Si(V ×s W) ⊆ Si(V ∨ W).

For any M ∈ Si(V ×s W), M is a subdirect product of an A ∈ V and a B ∈ W, so
that A is trivial, case in which M ∈ Si(W), or B is trivial, case in which M ∈ Si(V).
Thus Si(V ×s W) ⊆ Si(V) ∪ Si(W), hence Si(V ×s W) = Si(V) ∪ Si(W). Since
V ×s W ⊆ V ∨ W, we get that the following equivalence holds: V ∨ W = V ×s W

if and only if Si(V ∨ W) = Si(V) ∪ Si(W).
Sufficient Maltsev-type conditions for the equivalence V ∨ W = V ×s W to hold

are available in the literature: seePłonka (1971),Kowalski andPaoli (2011),Kowalski
et al. (2013). These contributions are all inspired by the celebrated result by Grätzer,
Lakser and Płonka according to which two independent similar varieties V and
W are such that every member of V ∨ W is isomorphic to the direct product of
a member of V and a member of W (Grätzer et al. 1969). Of course, the notion of
independence is of limited use in the context of PBZ∗–lattices, sinceBA is the unique
atom in Subvar(PBZL

∗) and thus there are no two nontrivial disjoint (hence, no two
independent) varieties of PBZ∗ –lattices. The investigation of subdirect products of
varieties of PBZ∗–lattices, however, can be carried out with more ad hoc methods,
yielding useful information on joins of specific subvarieties.

If V ∨ W = V ×s W and U is a variety of the same type as V and W, then
(U ∩ V) ×s (U ∩ W) ⊆ (U ∩ V) ∨ (U ∩ W) ⊆ U ∩ (V ∨ W) and

Si(U ∩ (V ∨ W)) = Si(U) ∩ Si(V ∨ W)

= Si(U) ∩ (Si(V) ∪ Si(W))

= (Si(U) ∩ Si(V)) ∪ (Si(U) ∩ Si(W))

= Si(U ∩ V) ∪ Si(U ∩ W)

= Si((U ∩ V) ×s (U ∩ W)),

hence U ∩ (V ∨ W) = (U ∩ V) ∨ (U ∩ W) = (U ∩ V) ×s (U ∩ W). For instance,
since OML ∨ VBZL(AOL) = OML ×s VBZL(AOL) (see Lemma 10.21 below), it
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follows that

SDM ∩ (OML ∨ VBZL(AOL)) = (SDM ∩ OML) ∨ (SDM ∩ VBZL(AOL))

= OML ∨ SAOL = OML ×s SAOL.

As a consequence of the above, ifV ∨ W = V ×s W and Subvar(V) and Subvar(W)

are distributive, then Subvar(V ∨ W) is distributive.

Problem 10.19 If V ∨ W = V ×s W, C is a subvariety of V and D is a subvariety of
W, under what conditions does it follow that C ∨ D = C ×s D? Does the condition
that C ∩ D = V ∩ W suffice? A partial answer to this question is given by Lemma
10.20 below.

If V ∨ W = V ×s W and U is a subvariety of V, then U ∨ W is a subvariety of
V ∨ W, so that

Si(U ∨ W) = (U ∨ W) ∩ Si(V ∨ W)

= (U ∨ W) ∩ (Si(V) ∪ Si(W))

= ((U ∨ W) ∩ Si(V)) ∪ ((U ∨ W) ∩ Si(W))

= ((U ∨ W) ∩ Si(V)) ∪ Si(W).

Lemma 10.20 Let V and W be varieties of a similarity type τ , U a subvariety
of V and � a set of identities over τ such that V ∨ W = V ×s W, W � � and
U = {A ∈ V : A � �}. Then:

• U ∨ W = U ×s W = {A ∈ V ∨ W : A � �};
• U = V if and only if U ∨ W = V ∨ W.

Proof Of course, Si(U) ∪ Si(W) ⊆ Si(U ∨ W). For all A ∈ Si(U ∨ W), we have:
A ∈ Si(V ∨ W) = Si(V) ∪ Si(W) and A � �, so that either A ∈ Si(W) or A ∈
Si(V) ⊂ V and A � �, the latter of which implies that A ∈ Si(V) ∩ U = Si(U).
Therefore Si(U ∨ W) = Si(U) ∪ Si(W), thus U ∨ W = U ×s W. We have that:

Si({A ∈ V ∨ W : A � �}) = {A ∈ Si(V ∨ W) : A � �}
= {A ∈ Si(V) ∪ Si(W) : A � �}
= {A ∈ Si(V) : A � �} ∪ Si(W)

= Si({A ∈ V : A � �}) ∪ Si(W)

= Si(U) ∪ Si(W) = Si(U ∨ W),

hence U ∨ W = {A ∈ V ∨ W : A � �}.
Trivially, U = V implies U ∨ W = V ∨ W. Conversely, if V ∨ W = U ∨ W =

{A ∈ V ∨ W : A � �}, then V ∨ W � �, thus V � �, hence U = {A ∈ V : A �
�} = V. �

Lemma 10.21 (Giuntini et al. 2018) All subdirectly irreducible members of
OML ∨ VBZL(AOL) belong to OML ∪ AOL, in particular OML ∨ VBZL(AOL) =
OML ×s VBZL(AOL).
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We can derive from the above the following result from Giuntini et al. (2018):

Proposition 10.22 • OML ∨ SAOL = OML ×s SAOL and OML ∨ VBZL(D3) =
OML ×s VBZL(D3);

• OML ∨ VBZL(D3) � OML ∨ SAOL � OML ∨ VBZL(AOL).

Proof Recall from Giuntini et al. (2017, Corollary 3.3) that VBZL(D3) = {A ∈
VBZL(AOL) : A � {SDM,SK}}. Now apply the fact that OML � {SDM,SK} and
Lemmas10.21 and10.20 to obtainfirst thatOML ∨ SAOL = OML ×s SAOL, then
thatOML ∨ VBZL(D3) = OML ×s VBZL(D3). Recall thatD5 ∈ SAOL \ VBZL(D3),
which is easily noticed from the fact that D5 � SK. The antiortholattice D2

2 ⊕ D2
2 ∈

VBZL(AOL) \ SAOL. Hence VBZL(D3) � SAOL � VBZL(AOL), thus OML ∨
VBZL(D3) � OML ∨ SAOL � OML ∨ VBZL(AOL) by Lemma 10.20 and the
above. �

Let us consider the identities:

WDSDM (x ∧ (y ∨ z))∼ ≈ (x ∧ y)∼ ∧ (x ∧ z)∼
DIST∨∼ (x ∨ x∼) ∧ (y ∨ y∼ ∨ z ∨ z∼) ≈

((x ∨ x∼) ∧ (y ∨ y∼)) ∨ ((x ∨ x∼) ∧ (z ∨ z∼))

WDIST∨∼ ((x ∨ x∼) ∧ (y ∨ y∼ ∨ z ∨ z∼))∼ ≈
(((x ∨ x∼) ∧ (y ∨ y∼)) ∨ ((x ∨ x∼) ∧ (z ∨ z∼)))∼

Note that WDSDM implies WDIST∨∼ and DIST∨∼ implies WDIST∨∼. Also,
recall from Giuntini et al. (2017), Mureşan (2019) that VBZL(D5) = SAOL ∩ DIST.

Proposition 10.23 VBZL(D5) = SAOL ∩ DIST � SAOL, DIST � SAOL ∨ DIST �

VBZL(AOL).

Proof Observe that the identityWDSDMis satisfied both inSAOL and inDIST. The
antiortholattice on M3 ⊕ M3 fails WDSDM, because, if a, b, c are its three atoms,
then (a ∧ (b ∨ c))∼ = a∼ = 0, yet (a ∧ b)∼ ∧ (a ∧ c)∼ = 0∼ ∧ 0∼ = 1. Hence
M3 ⊕ M3 ∈ AOL \ (SAOL ∨ DIST) ⊆ VBZL(AOL) \ (SAOL ∨ DIST). The
antiortholattice D2 ⊕ M3 ⊕ D2 ∈ SAOL \ DIST, while the antiortholattice D2

2 ⊕
D2

2 ∈ DIST \ SAOL, hence SAOL and DIST are incomparable, thus SAOL ∩
DIST � SAOL, DIST � SAOL ∨ DIST. �

Proposition 10.24 • OML ∨ DIST = OML ×s DIST and OML ∨ VBZL(D5) =
OML ×s VBZL(D5);

• OML ∨ VBZL(D3) � OML ∨ VBZL(D5) = OML ∨ (SAOL ∩ DIST) = (OML

∨ SAOL) ∩ (OML ∨ DIST) � OML ∨ SAOL, OML ∨ DIST � OML ∨ SAOL

∨ DIST � OML ∨ VBZL(AOL), in particular the varieties OML ∨ SAOL and
OML ∨ DIST are incomparable.

Proof Note thatOML � DIST∨∼ and that, inAOL, DIST∨∼ is equivalent to DIST,
that is DIST ∩ AOL = {A ∈ AOL : A � DIST∨∼}. The latter, along with the fact
that DIST is a subvariety of VBZL(AOL) and Lemma 10.15, give us:
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Si(DIST) = DIST ∩ Si(VBZL(AOL))

= DIST ∩ Si(AOL)

= Si(DIST ∩ AOL)

= Si({A ∈ AOL : A � DIST∨∼})
= Si({A ∈ VBZL(AOL) : A � DIST∨∼}),

thereforeDIST = {A ∈ VBZL(AOL) : A � DIST∨∼}. By Lemmas 10.21 and 10.20,
it follows thatOML ∨ DIST = OML ×s DIST. By the above,OML � {SDM,DIST∨∼}
and VBZL(D5) = SAOL ∩ DIST = {A ∈ VBZL(AOL) : A � {SDM,DIST∨∼}},
hence OML ∨ VBZL(D5) = OML ×s VBZL(D5) by Lemmas 10.21 and 10.20. By
the above, Propositions 10.22 and 10.23 and again Lemma 10.20, it follows that:

OML ∨ VBZL(D3) � OML ∨ VBZL(D5)

� OML ∨ SAOL, OML ∨ DIST

� OML ∨ VBZL(AOL).

By Lemma 10.20, the above and Proposition 10.22,

OML ∨ VBZL(D5) = OML ∨ (SAOL ∩ DIST)

= OML ∨ {A ∈ VBZL(AOL) : A � {SDM,DIST}}
= {A ∈ OML ∨ VBZL(AOL) : A � {SDM,DIST}}
= {A ∈ OML ∨ VBZL(AOL) : A � SDM}
∩{A ∈ OML ∨ VBZL(AOL) : A � DIST}
= (OML ∨ SAOL) ∩ (OML ∨ DIST),

hence (OML ∨ SAOL) ∩ (OML ∨ DIST) � OML ∨ SAOL, OML ∨ DIST, so
that OML ∨ SAOL and OML ∨ DIST are incomparable. Therefore

OML ∨ SAOL, OML ∨ DIST � OML ∨ SAOL ∨ OML ∨ DIST

= OML ∨ SAOL ∨ DIST.

Since OML � DIST∨∼ and SAOL ∨ DIST � WDSDM, it follows that OML ∨
SAOL ∨ DIST � WDIST∨∼. Note that, in AOL, WDIST∨∼ is equivalent to
WDSDM, hence, by the proof of Proposition 10.23, the antiortholattice M3 ⊕ M3

fails WDIST∨∼. It follows that M3 ⊕ M3 ∈ AOL \ (OML ∨ SAOL ∨ DIST) ⊆
(OML ∨ VBZL(AOL)) \ (OML ∨ SAOL ∨ DIST), therefore OML ∨ SAOL ∨
DIST � OML ∨ VBZL(AOL). �

Lemma 10.25 For any subvariety V of OML ∨ VBZL(AOL), Si(V) = V ∩ Si
(OML ∪ AOL).

Proof By Lemma 10.21. �

Note that, if a PBZ∗–lattice L satisfies the SDM, then 0 is meet–irreducible in the
join–subsemilattice T (L) of L, but the converse does not hold.
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Lemma 10.26 Let A be an antiortholattice without SDM and (Ai )i∈I be a non–
empty family of antiortholattices. Then:

• if A ∈ SBZL(
∏

i∈I Ai ), then the family (Ai )i∈I contains no nontrivial antiortholat-
tice with SDM;

• A ∈ SBZL(
∏

i∈I Ai ) if and only if A ∈ SBZL(
∏

i∈I,Ai �SDM Ai ).

Proof The second statement obviously follows from the first. Now assume that A ∈
SBZL(

∏
i∈I Ai ), let J = { j ∈ I : A j � SDM} and assume ex absurdo that there exists

a k ∈ J such that Ak is nontrivial. We may consider A ⊆ ∏
i∈I Ai . A is an antiortho-

lattice that fails SDM, in particular a nontrivial antiortholattice, hence there exist
a = (ai )i∈I , b = (bi )i∈I ∈ A \ {0} = D(A) = D(

∏
i∈I Ai ) = ∏

i∈I D(Ai ) = ∏
i∈I

((Ai \ {0}) ∪ {1}) such that a ∧ b = 0, so that ak ∧ bk = 0 and ak, bk ∈ D(Ak) =
Ak \ {0}, which contradicts the fact that Ak satisfies the SDM. �

Proposition 10.27 If V is a subvariety of VBZL(AOL), then: V ∨ SAOL = V ×s

SAOL if and only if (V ∨ SAOL) ∩ AOL = (V ∪ SAOL) ∩ AOL.

Proof By the above, V ∨ SAOL = V ×s SAOL if and only if Si(V ∨ SAOL) =
Si(V ∪ SAOL). Since Si(VBZL(AOL)) ⊂ AOL, the right-to-left implication holds.
Now assume that Si(V ∨ SAOL) = Si(V ∪ SAOL), and assume ex absurdo that
there exists an L ∈ ((V ∨ SAOL) ∩ AOL) \ (V ∪ SAOL). Then L ∈ V ×s SAOL,
hence L ∈ SBZL(A × B) for some A ∈ V and some B ∈ SAOL, therefore L ∈
SBZL(A × ∏

j∈J B j ) for some family (B j ) j∈J ⊆ SAOL ∩ AOL. ThusL ∈ SBZL(A)

by Lemma 10.26, so that L ∈ V, a contradiction. Hence (V ∨ SAOL) ∩ AOL ⊆
(V ∪ SAOL) ∩ AOL. �

10.4 Comparison with Other Structures

10.4.1 Distributive Lattices with Two Unary Operations

Bounded distributive lattices expanded both by a De Morgan complementation and
a unary operation with Stone-like properties have been the object of rather intensive
investigations over the past decades. In particular, Blyth et al. (2015) have studied,
under the label of quasi-Stone De Morgan algebras, bounded distributive lattices
with two unary operations that make their appropriate reducts, at the same time,
De Morgan algebras and quasi-Stone algebras (Sankappanavar and Sankappanavar
(1993), Gaitàn (2000), Celani (2011)). Quasi-Stone De Morgan algebras that are
simultaneously Stone algebras and Kleene algebras are known under the name of
Kleene-Stone algebras; they have been studied inGuzmàn (1994) and,more recently,
in the already quoted Blyth et al. (2015). We begin this section by showing that the
variety of antiortholattices generated by the algebra D5 coincides with the variety of
Kleene-Stone algebras.This fact explains the similarity of some results independently
obtained in Blyth et al. (2015), Giuntini et al. (2017), Mureşan (2019).
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Definition 10.28 A quasi-Stone algebra is an algebraA = (A,∧,∨,∼ , 0, 1) of type
(2, 2, 1, 0, 0) such that (A,∧,∨, 0, 1) is a bounded distributive lattice and the unary
operation ∼ satisfies the following conditions for all a, b ∈ A:

QS1 0∼ = 1 and 1∼ = 0; QS4 a ≤ a∼∼;
QS2 (a ∨ b)∼ = a∼ ∧ b∼; QS5 a∼ ∨ a∼∼ = 1
QS3 (a ∧ b∼)∼ = a∼ ∨ b∼∼;

A quasi-Stone algebra A is a Stone algebra if it additionally satisfies SDM.

The following useful lemma contains results to be found in Sankappanavar and
Sankappanavar (1993) and Blyth et al. (2015):

Lemma 10.29 Let A = (A,∧,∨,∼ , 0, 1) be a quasi-Stone algebra. Then:

(i) A satisfies the following conditions for all a, b ∈ A:

QS6 i f a ≤ b, then b∼ ≤ a∼; QS8 a∼∼∼ = a∼;
QS7 a ∧ a∼ = 0; QS9 a ∧ b∼ = 0 i f and only i f a ≤ b∼∼.

(ii) The set B (A) = {a∼ : a ∈ A} = {a ∈ A : a = a∼∼} is a Boolean subuniverse
of A.

Clearly, in case A is a Stone algebra, the condition QS9 can be strengthened to the
pseudocomplementation equivalence:

S1 a ∧ b = 0 if and only if a ≤ b∼ for all a, b ∈ A.

Definition 10.30 A quasi-Stone De Morgan algebra is an algebra A = (A,∧,∨,′ ,
∼, 0, 1) of type (2, 2, 1, 1, 0, 0) such that

(
A,∧,∨,′ , 0, 1

)
is a De Morgan algebra,

(A,∧,∨,∼ , 0, 1) is a quasi-Stone algebra, and a′ ∈ B (A) whenever a ∈ B (A). If(
A,∧,∨,′ , 0, 1

)
is aKleene algebra and (A,∧,∨,∼ , 0, 1) is a (quasi-)Stone algebra,

then A is said to be a Kleene-(quasi-)Stone algebra.

Lemma 10.31 (Blyth et al. 2015) If A is a quasi-Stone De Morgan algebra, then
for all a ∈ A we have that a∼∼ = a∼′∼′.

Recall from Proposition 10.23 that the variety generated by the 5-element
antiortholattice chain D5 is axiomatised relative to PBZL

∗ by the lattice distribu-
tion axiom DIST and the Strong De Morgan law SDM (J0 easily follows from these
assumptions in the context of PBZL

∗). We now show that:

Theorem 10.32 VBZL (D5) coincides with the variety of Kleene-Stone algebras.
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Proof It is readily seen that D5 satisfies all the defining conditions of Kleene-Stone
algebras. Conversely, by the above remark, it will be sufficient to show that Kleene-
Stone algebras satisfy all the axioms of PBZ∗–lattices, since they are clearly dis-
tributive as lattices and satisfy SDM by definition. We confine ourselves to the sole
nontrivial items. (i) The condition (∗),

(
x ∧ x ′)∼ = x∼ ∨ x ′∼ directly follows from

SDM. (ii)We show thata∼∼ = a∼′. ByQS5,a∼ ∨ a∼∼ = 1,whencea∼′ ∧ a∼∼′ = 0.
By S1, a∼∼′ ≤ a∼′∼, whence, given the fact that a∼∼ ∈ B (A),

a∼′ ≤(QS4) a∼′∼∼ ≤(QS6) a∼∼′∼ = a∼∼.

From this inequality, QS6 and QS8 we obtain that a∼ = a∼∼∼ ≤ a∼′∼ and thus, by
Lemma 10.31, a∼∼ = a∼′∼′ ≤ a∼′. The converse inequality follows from S1 and the
fact that a∼ ∈ B (A). (iii) To round up our proof, it will suffice to show that any
Kleene algebra is paraorthomodular. Thus, let a ≤ b and a′ ∧ b = 0. Then a′ ∧ a ≤
a′ ∧ b = 0, whence a is sharp and thus a ∨ a′ = 1. As a ∧ b = a and a′ ∧ b = 0,
distributivity implies that

a = (a ∧ b) ∨ (
a′ ∧ b

) = (
a ∨ a′) ∧ b = 1 ∧ b = b.

�
The question as to whether the distributive subvarietyDIST of VBZL (AOL) coin-

cides with the variety of Kleene-quasi-Stone algebras is of a certain interest. The next
Example answers this problem in the negative.

Example 10.33 The BZ-lattice BZ4 (see Giuntini et al. (2016, Fig. 5)) is a Kleene-
quasi-Stone algebra, yet it is not even a member of PBZL

∗. In fact, call a and a′ its
two atoms. We have that:

(
a ∧ a′)∼ = 0∼ = 1 	= 0 = a∼ ∨ a′∼.

Finally, we prove that the variety generated by the 3-element antiortholattice chain
D3 is a discriminator variety (Werner 1978).

Proposition 10.34 VBZL (D3) is a discriminator variety.

Proof Clearly, it suffices to find a ternary term that realises the discriminator function
on D3. Let first

e (x, y) = (x∼ ∧ ♦y) ∨ (y∼ ∧ ♦x) ∨ (�x ∧ (�y)∼) ∨ (�y ∧ (�x)∼) .

It is a routinary matter to check that for all a, b ∈ D3, eD3 (a, a) = 0 and eD3 (a, b) =
1 if a 	= b. It follows that

t (x, y, z) = (e (x, y) ∨ z) ∧ (
e (x, y)′ ∨ x

)

realises the discriminator function on D3. �
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Observe that the algebra D3 fails to be primal, because it has the nontrivial proper
subuniverse {0, 1}. Nonetheless, upon identifying D3 with the set of rational numbers{
0, 1

2 , 1
}
, the truncated sum operation is definable as follows:

x ⊕ y = min (1, x + y) = (x ∨ ♦y) ∧ (y ∨ ♦x) .

It is easy to check that, upon expanding its signature by this binary operation, D3

becomes an instance of a De Morgan Brouwer-Zadeh MV-algebra (Cattaneo et al.
1998, 1999) and, therefore, generates a subvariety of such. The interest of this remark
lies in the fact that the variety of De Morgan Brouwer-Zadeh MV-algebras is known
to be term-equivalent to other well-known varieties of algebras of logic, includ-
ing Heyting-Wajsberg algebras, Stonean MV-algebras and MV algebras with Baaz
delta (Cattaneo et al. 2004). In the next section, we will see that VBZL (D3) is term-
equivalent to another well-known variety of algebras of logic.

10.4.2 Modal Algebras

The standard examples of modal algebras (monadic algebras or interior algebras, to
name a few examples) were devised as the algebraic counterparts of normal modal
logics, which are extensions of classical propositional logic—therefore, they all have
a Boolean algebra reduct. There is a thriving literature, however, on “nonstandard”
modal algebras based on generic De Morgan algebras: see below for the appropriate
references. The aim of this section is to chart this area of research and locate term-
equivalent counterparts of some distributive subvarieties of PBZ∗–lattices on this
map.We consider algebrasM = (

M,∧,∨,′ ,♦, 0, 1
)
of type (2, 2, 1, 1, 0, 0), where(

M,∧,∨,′ , 0, 1
)
is a De Morgan algebra. We assume that ′ binds stronger than ♦,

to reduce the number of parentheses. The following list of identities will be crucial
for defining the varieties that follow; henceforth, �x is short for

(
♦x ′)′

.

M1 ♦0 ≈ 0
M2 ♦ (x ∨ y) ≈ ♦x ∨ ♦y
M3 x ≤ ♦x
M4 ♦x ≈ ♦♦x
M5 ♦x ∧ (♦x)′ ≈ 0
M6 ♦x ≈ �♦x
M7 ♦

(
x ∧ x ′) ≈ ♦x ∧ ♦x ′

M8 x ′ ∨ ♦x ≈ 1
M9 ♦ (x ∧ y) ≈ ♦x ∧ ♦y
M10 x ∧ x ′ ≈ ♦x ∧ x ′

Definition 10.35 (i) A ♦-De Morgan algebra is an algebra M = (M,∧,∨,′ ,♦,

0, 1) of type (2, 2, 1, 1, 0, 0), where
(
M,∧,∨,′ , 0, 1

)
is a De Morgan algebra

and the identities M1 and M2 are satisfied.
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(ii) A topological quasi-Boolean algebra is a ♦-De Morgan algebra satisfying the
identities M3 and M4.

(iii) A classical ♦-De Morgan algebra is a topological quasi-Boolean algebra sat-
isfying the identity M5.

(iv) A monadic De Morgan algebra is a classical ♦-De Morgan algebra satisfying
the identity M6.

♦-De Morgan algebras and classical ♦-De Morgan algebras were introduced in
dual form by Celani (2011, pp. 253–254). Topological quasi-Boolean algebras were
first investigated by Banerjee and Chakraborty in the context of the theory of rough
sets (Banerjee and Chakraborty 1993). The authors of Saha et al. (2014) also intro-
duce, under the label of topological quasi-Boolean algebras 5, a subvariety of topo-
logical quasi-Boolean algebras that satisfyM6but notM5.Clearly, topological quasi-
Boolean algebras are meant to be a nonclassical counterpart of interior algebras,
while monadic De Morgan algebras can be viewed as a nonclassical counterpart of
monadic algebras. Condition M5, which is of course trivial once our algebras have a
Boolean nonmodal reduct, is there to restore the Boolean behaviour of the nonmodal
operators, when applied to arguments of the form♦x . Observe that all classical♦-De
Morgan algebras satisfy the identity M8 (Celani 2011, Lemma 2.3).

There are several ways to strengthen the defining conditions of classical ♦-De
Morgan algebras with an eye to obtaining varieties with more interesting properties.

(i) A possible avenue is to impose on the possibility operator properties that would
determine a collapse of modality when the underlying structures are Boolean
algebras. For example, tetravalent modal algebras (Monteiro 1963; Loureiro
1983) are classical ♦-De Morgan algebras that satisfy M10, although they are
usually presented in a streamlined axiomatisation containing only the axioms
for De Morgan algebras plus M8 and M10. They form a discriminator variety,
generated by a quasiprimal four-element algebra (see item (iv) of the proof of
Theorem 10.40 below).

(ii) On the other hand, one can enforce what Cattaneo et al. (2011) call a “deviant”
behaviour of the possibility operator, requesting that it distribute not only over
joins, but over meets as well. Involutive Stone algebras ((Cignoli and Gallego
1983); cp. also Cattaneo et al. (2011), where these structures are called MDS5-
algebras), thus, are classical ♦-De Morgan algebras satisfying M9. It is known
that both involutive Stone algebras and tetravalent modal algebras are monadic
De Morgan algebras: see Cignoli and Gallego (1983) and Font and Rius (2000,
Proposition 1.2), respectively.

We now introduce the modal analogue of distributive PBZ∗–lattices.

Definition 10.36 A weak Łukasiewicz algebra is a classical ♦-De Morgan algebra
M = (

M,∧,∨,′ ,♦, 0, 1
)
such that its ♦-free reduct is a Kleene algebra and the

identity M7 is satisfied.

Theorem 10.37 (i) Every weak Łukasiewicz algebra M is a monadic De Morgan
algebra.
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(ii) The variety of weak Łukasiewicz algebras is term-equivalent to DIST.

Proof (i) Let a ∈ M . Using M1, M5, M7 and M4, we have that

0 = ♦0 = ♦
(
♦a ∧ (♦a)′

) = ♦♦a ∧ ♦
(
(♦a)′

) = ♦a ∧ ♦
(
(♦a)′

)
.

Thus (♦a)′ ∨ �♦a = 1, whence, by M5,

♦a = ♦a ∧ (
(♦a)′ ∨ �♦a

) = (
♦a ∧ (♦a)′

) ∨ (♦a ∧ �♦a) = ♦a ∧ �♦a.

Consequently, ♦a ≤ �♦a. The converse inequality follows from M3.
(ii) Let M = (

M,∧,∨,′ ,♦M, 0, 1
)
be a weak Łukasiewicz algebra. We define

f (M) as the algebra
(
M,∧,∨,′ ,∼ f (M) , 0, 1

)
, where for all a ∈ M , a∼ f (M) =(

♦Ma
)′
. Conversely, given a distributive PBZ∗–lattice L = (

L ,∧,∨,′ ,∼L , 0, 1
)
, we

define g (L) as the algebra
(
L ,∧,∨,′ ,♦g(L), 0, 1

)
, where for all a ∈ L , ♦g(L)a =

a∼L∼L. Clearly, f (M) has a Kleene lattice reduct. If a ∈ M , then a ∧ a∼ f (M) =
a ∧ (

♦Ma
)′ ≤ ♦Ma ∧ (

♦Ma
)′ = 0, by M3 and M5. Moreover,

a∼ f (M)∼ f (M) =
(
♦M (

♦Ma
)′)′ = ♦Ma ≥ a,

byM3and item (1). For the same reason,a∼ f (M)′ = (
♦Ma

)′′ = ♦Ma = a∼ f (M)∼ f (M).
Finally, by M2, whenever a ≤ b,

♦Mb = ♦M (a ∨ b) = ♦Ma ∨ ♦Mb,

i.e., ♦Ma ≤ ♦Mb, whence b∼ f (M) = (
♦Mb

)′ ≤ (
♦Ma

)′ ≤ a∼ f (M). In sum, f (M) is
a distributive BZ-lattice. Condition (∗) holds because of M7. Similarly, by reverse-
engineering g (L), it is not hard to show that it is a weak Łukasiewicz algebra. To
round off the proof, observe that for a ∈ L ,

a∼ f (g(L)) = (
♦g(L)a

)′ = a∼L∼L′ = a∼L∼L∼L = a∼L,

♦g( f (M))a = a∼ f (M)∼ f (M) =
(
♦M (

♦Ma
)′)′ = ♦Ma.

Thus, f and g are mutually inverse functions. �

Similar term-equivalence results with subvarieties of PBZL
∗ are obtained in Cat-

taneo et al. (1998) and Cattaneo and Nisticò (1989) for two special subvarieties of
weak Łukasiewicz algebras.

Definition 10.38 (i) (Cattaneo et al. 1998, Definition 4.2) A Łukasiewicz algebra
is a weak Łukasiewicz algebra that satisfies the identity M9.

(ii) (Monteiro 1963) A three-valued Łukasiewicz algebra is a Łukasiewicz algebra
that satisfies the identity M10.
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Clearly, Łukasiewicz algebras are exactly the involutive Stone algebras whose
♦-free reduct is a Kleene lattice. There is a burgeoning literature on three-valued
Łukasiewicz algebras, see e.g., Abad and Figallo (1985), Monteiro (1963), Moisil
(1963). Three-valued Łukasiewicz algebras can be equivalently characterised as
tetravalent modal algebras satisfying M9, in which case, the Kleene identity follows
from the axioms. They are also called pre-rough algebras in the literature (Saha et al.
2014).

Theorem 10.39 (Cattaneo et al. 1998, Theorems 4.3 and 5.7)

(i) The variety of Łukasiewicz algebras is term-equivalent to VBZL (D5).
(ii) The variety of three-valued Łukasiewicz algebras is term-equivalent to VBZL (D3).

Taking into account the remarks at the end of last section, it is evident that
VBZL (D5) and VBZL (D3) have repeatedly resurfaced in many different incarnations,
with different choices of primitives or with different axiomatisations. We collect
many of the observations made thus far in the following result.

Theorem 10.40 The strict inclusions and incomparabilities depicted in the follow-
ing diagram all hold:

♦ Morgan algebras

top

classical ♦

De

ological quasi Boolean algebras

De Morgan algebras

monadic De Morgan algebras

involutive
Stone algebras weak ukasiewicz algebras tetravalent

modal algebras

ukasiewicz algebras

three valued ukasiewicz algebras

Proof All that remains to be proved is that the inclusions are strict and that the
varieties not connected by upward chains are incomparable.

(i) Consider the algebra D2 as a De Morgan algebra, and let ♦0 = ♦1 = 0. This
algebra is a ♦-De Morgan algebra which is not a topological quasi-Boolean
algebra.

(ii) Consider the algebra D3 as a De Morgan algebra, and let ♦x = x for all x ∈
D3 = {0, a, 1}. This algebra is a topological quasi-Boolean algebra which is
not a classical ♦-De Morgan algebra. In fact, ♦a ∧ (♦a)′ = a 	= 0.

(iii) Consider the algebra D2
2 as a De Morgan algebra with universe

{
0, a, a′, 1

}
,

and let ♦x = x for all x ∈ {0, a, 1}, and ♦a′ = 1. This algebra is a topological
quasi-Boolean algebra which is not a monadic De Morgan algebra. In fact,
�♦a = 0 	= a = ♦a.
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(iv) Let B4 be the four-element algebra on {0, a, b, 1} that generates De Morgan
algebras, with a = a′ and b = b′. Let♦0 = 0 and♦x = 1 for all x 	= 0. This is
a tetravalent modal algebra (actually, it generates this variety), hence amonadic
De Morgan algebra, but not an involutive Stone algebra. In fact, ♦ (a ∧ b) =
0 	= 1 = ♦a ∧ ♦b. Having two fixpoints for the involution, it also fails to be
a weak Łukasiewicz algebra, hence a Łukasiewicz algebra or a three-valued
Łukasiewicz algebra.

(v) Consider the algebra D2
2 as a De Morgan algebra with universe

{
0, a, a′, 1

}
,

and let♦0 = 0, and♦x = 1 for all x 	= 0. This algebra is amonadicDeMorgan
algebra which is not a tetravalent modal algebra. In fact, ♦a ∧ a′ = a′ 	= 0 =
a ∧ a′.

(vi) Consider the ordinal sum D2⊕ B4 ⊕ D2 as a De Morgan algebra with universe{
0, a, b, c, a′, 1

}
, with b = b′ and c = c′, and let ♦0 = 0, and ♦x = 1 for

all x 	= 0. This algebra is an involutive Stone algebra which is not a weak
Łukasiewicz algebra (or a Łukasiewicz algebra) since it has two fixpoints for
the involution.

(vii) Consider the ordinal sum D2
2 ⊕ D2

2 as a De Morgan algebra on {0, a, b, c,
b′, a′, 1}, with c = c′, and let♦0 = 0, and♦x = 1 for all x 	= 0. This is a weak
Łukasiewicz algebra which is not an involutive Stone algebra, for ♦ (a ∧ b) =
0 	= 1 = ♦a ∧ ♦b. A fortiori, it fails to be a Łukasiewicz algebra.

(viii) Finally, consider the algebra D4 as a De Morgan algebra on
{
0, a, a′, 1

}
, and

let ♦0 = 0, and ♦x = 1 for all x 	= 0. This is a Łukasiewicz algebra, hence
both an involutive Stone algebra and a weak Łukasiewicz algebra. However,
it fails to be a tetravalent modal algebra (hence a three-valued Łukasiewicz
algebra), for ♦a ∧ a′ = a′ 	= a = a ∧ a′. �
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Mureşan, C. (2019). A note on direct products, subreducts and subvarieties of PBZ∗–lattices. Math-
ematica Slovaca, forthcoming. arXiv:1904.10093v3 [math.RA].

Olson, M. P. (1971). The self-adjoint operators of a von Neumann algebra form a conditionally
complete lattice. Proceedings of the American Mathematical Society, 28, 537–544.

Płonka, J. (1971).Anote on the join and subdirect product of equational classes.Algebra Universalis,
1, 163–164.

Saha, A., Sen, J., & Chakraborty, M. K. (2014). Algebraic structures in the vicinity of pre-rough
algebra and their logics. Information Sciences, 282, 296–320.

Sankappanavar, N. H., & Sankappanavar, H. P. (1993). Quasi-stone algebras. Mathematical Logic
Quarterly, 39, 255–268.

Stroock, D. W. (1998). A Concise Introduction to the Theory of Integration (3rd ed.). Basel:
Birkhäuser.

Visser, A. (1981). A propositional logic with explicit fixed points. Studia Logica, 40, 155–175.
Werner, H. (1978). Discriminator Algebras, Studien zur Algebra und ihre Anwendungen (Vol. 6).
Berlin: Akademie-Verlag.

http://arxiv.org/abs/1904.10093v3


Chapter 11
From Intuitionism to Many-Valued
Logics Through Kripke Models

Saeed Salehi

Abstract Intuitionistic Propositional Logic is proved to be an infinitely many val-
ued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936,
Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes
du Congrés International de Philosophie Scientifique, VI. Philosophie desMathéma-
tiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably
many valued logic. In this paper, we provide alternative proofs for these theorems by
using models of Kripke (J Symbol Logic 24(1):1–14, 1959). Gödel’s proof gave rise
to an intermediate propositional logic (between intuitionistic and classical), that is
knownnowadays asGödel or theGödel-Dummett Logic, and is studied by fuzzy logi-
cians as well. We also provide some results on the inter-definability of propositional
connectives in this logic.

Keywords Intuitionistic propositional logic · Many-Valued logics · Kripke
models · Gödel-Dummett logic · Inter-definability of propositional connectives

11.1 Introduction and Preliminaries

Intuitionism grew out of some of the philosophical ideas of its founding father,
Luitzen Egbertus Jan Brouwer (see e.g. Brouwer 1913); what is known nowadays
as intuitionistic logic is a formalization given by his student Heyting (1930). Kripke
models (originating from Kripke 1959) provided an interesting mathematical inter-
pretation for this formalization. Let us review some preliminaries about thesemodels:
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Definition 1 (Kripke Frames)
A Kripke frame is a partially ordered set; i.e., an ordered pair 〈K ,�〉 where �⊆ K 2

is a reflexive, transitive and anti-symmetric binary relation on K . ✧

Definition 2 (Atoms, Formulas, Languages)
Let At be the set of all the propositional atoms; atoms are usually denoted by letters
p or q. Let � denote the verum (truth) constant.
The language of propositional logics studied here isL = {¬,∧,∨,→,�}.
For any A ⊆ At and B ⊆ L , the set of all the formulas constructed from A bymeans
of B is denoted by L(B, A).
Let Fm denote the set of all the formulas; i.e., L(L ,At). ✧

Definition 3 (Kripke Models)
AKripke model is a tripleK = 〈K ,�,�〉, where 〈K ,�〉 is a Kripke frame equipped
with a persistent binary (satisfaction) relation �⊆ K × At; persistency (of the rela-
tion � with respect to �) means that for all k, k ′ ∈ K and p ∈ At, if k ′ �k � p then
k ′ � p.

The satisfaction relation can be extended to all the (propositional) formulas, i.e.,
to � ⊆ K × Fm, as follows:

◦ k � �.
◦ k � (ϕ∧ψ) ⇐⇒ k � ϕ and k � ψ.
◦ k � (ϕ∨ψ) ⇐⇒ k � ϕ or k � ψ.
◦ k � (¬ϕ) ⇐⇒ ∀k ′ �k(k ′

� ϕ).
◦ k � (ϕ→ψ) ⇐⇒ ∀k ′ �k(k ′ � ϕ ⇒ k ′ � ψ). ✧

Remark 1 (On Persistency and its Converse)
It can be shown that the persistency conditions is inherited by the formulas; i.e.,
for any k, k ′ ∈ K in any Kripke model K = 〈K ,�,�〉 and for any formula ϕ, if
k ′ �k � ϕ then k ′ � ϕ.
Obviously, the converse may not hold (k ′ � ψ and k ′ �k do not necessarily imply
that k � ψ); however, a partial converse holds for negated formulas:

if k ′ �k and k ′ � ¬ϕ, then k � ϕ. ✧

By the soundness and completeness of the intuitionistic propositional logic (IPL)
with respect to finite Kripke models, the tautologies of IPL are the formulas (in Fm)
that are satisfied in all the elements of any finite Kripke model. A super-intuitionistic
and sub-classical logic is the so-called Gödel-Dummett logic (see Dummett 1959),
whose tautologies are the formulas that are satisfied in all the elements of all the
connected finite Kripke models. A kind of Kripke model theoretic characterization
for this logic is given in Safari and Salehi (2018).

Definition 4 (Connectivity)
A binary relation R ⊆ K × K is called connected, when for any k, k ′, k ′′ ∈ K , if
k ′ �k and k ′′ �k, then we have either k ′ �k ′′ or k ′′ �k ′ (cf. Švejdar and Bendová
2000). ✧
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The logic IPL is perhaps the most famous non-classical logic. A natural question
(that according to Gödel 1932 was asked by his supervisor Hans Hahn) was whether
IPL is a finitelymany valued logic or not. Gödel (1932) showed that IPL is not finitely
many valued. Jaśkowski (1936) showed that IPL is indeed a countably (infinite)
many valued logic. In Sect. 11.2 we give alternative proofs for these theorems by
using models of Kripke (1959). Gödel’s proof gave birth to an intermediate logic,
that today is called the Gödel-Dummett logic (GDL). Finally, in Sect. 11.3 we study
the problem of inter-definability of propositional connectives in GDL and IPL.

11.2 ω-Many Values for Intuitionistic Propositional Logic

Let us begin with a formal definition of a many-valued logic. Throughout the paper,
we are dealing with propositional logics only.

Definition 5 (Many-Valued Logics)
A many-valued logic is 〈V , τ ,��,�,V,=>〉, where V is a set of values with a
designated element τ ∈ V (interpreted as the truth) and the functions �� : V →V ,
� : V 2→V , V : V 2→V , and => : V 2→V constitute a truth table on V .
A valuation function is any mapping ν : At → V , which can be extended to all the
formulas, denoted also by ν : Fm → V , as follows:

◦ ν(¬ϕ) = �� ν(ϕ).
◦ ν(ϕ∧ψ) = ν(ϕ) � ν(ψ).
◦ ν(ϕ∨ψ) = ν(ϕ) V ν(ψ).
◦ ν(ϕ→ψ) = ν(ϕ) => ν(ψ).

A formula θ is called tautology, when it is mapped to the designated value under any
valuation function; i.e., ν(θ) = τ for any valuation ν. ✧

Theorem 1 appears in Safari (2017) and Safari and Salehi (2019). In the following,
the disjunction operation (∨) is assumed to be commutative and associative.

Lemma 1 (A Tautology in n-Valued Logics)
For any n > 1, the formula

∨∨
i< j�n(pi →pj) is a tautology in any n-valued logic in

which the formula (p→p)∨q is a tautology.

Proof In an n-valued logic, the n + 1 atoms {p0, p1, . . . , pn} can take n values. So,
under a valuation function, there should exist some i < j � n such that pi and p j

take the same value, by the Pigeonhole Principle. Since (p→p)∨q is a tautology,
then the formula

∨∨
i< j�n(pi →pj) should be mapped to the designated value by all

the valuation functions. ❑

The lemma implies that the formula (A→ B) ∨ (A→C) ∨ (B→C) is a tau-
tology in the classical propositional logic; this formula is not a tautology in the
intuitionistic (or even Gödel-Dummett) propositional logic.
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Theorem 1 (Gödel 1932: IPL Is Not Finitely Many Valued)
Intuitionistic propositional logic is not finitely many valued.

Proof By Lemma 1 it suffices to show that for any n > 1,
∨∨

i< j�n(pi →pj) is not
a tautology in IPL. Consider the Kripke model K = 〈K ,�,�〉 with

K = {k, k0, k1, . . . , kn−1},
�= {(ki , k) | i <n} ∪ {(ki , ki ) | i <n} ∪ {(k, k)}, and
� = {(k0, p0), (k1, p1), . . . , (kn−1, pn−1)}.

• k0[[p0]] • k1[[p1]] · · · • kn−1[[pn−1]]

• k[[]]

� ��

For any i < n we have ki � pi , and also ki � p j for any j > i . So, ki � pi →p j for
any i < j � n; which implies that k �

∨∨
i< j�n(pi →pj). ❑

The rest of this section is devoted to proving Jaśkowski’s result (Theorem 2) that
IPL is a countably infinite many valued logic.

Definition 6 (Monotone Functions)
For a Kripke frame (K ,�), a function f : K → {0, 1} is called monotone, when for
any k, k ′ ∈ K , if k ′ �k, then f (k ′)� f (k). We indicate the monotonicity of f by
writing f : (K ,�) → {0, 1}. ✧

Example 1 (fψK )
For any Kripke model K = (K ,�,�) and any formula ψ, the function

f
ψ
K : K → {0, 1}, f

ψ
K(k) =

{
1 if k � ψ

0 if k � ψ

is monotone. ✧

Definition 7 (��,�,V and =>)
For a Kripke frame (K ,�) and monotone functions f, g : (K ,�) → {0, 1}, let

�� f : K → {0, 1} be defined by (�� f )(k) =
{
1 if ∀k ′ �k( f (k ′)=0)

0 if ∃k ′ �k( f (k ′)=1)
,

f � g : K → {0, 1} be defined by ( f � g)(k) = min{ f (k), g(k)},
f V g : K → {0, 1} be defined by ( f V g)(k) = max{ f (k), g(k)},
f =>g : K → {0, 1} be defined by

( f =>g)(k) =
{
1 if ∀k ′ �k( f (k ′)=1⇒g(k ′)=1)

0 if ∃k ′ �k( f (k ′)=1 & g(k ′)=0)
,

for all k ∈ K . ✧
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Definition 8 (Constant Functions)
Let 1K : K → {0, 1} be the constant 1 function, i.e., 1K (k) = 1 for all k ∈ K ; and
let 0K : K → {0, 1} be the constant 0 function: 0K (k) = 0 for all k ∈ K . ✧

It is easy to see that the functions 1K and 0K obey the rules of the classical
propositional logic with the operations ��,�,V and =>. For example, (��1K ) = 0K ,
(1K � 1K ) = 1K , (0K V 1K ) = 1K and (1K =>0K ) = 0K . We omit the proof of the
following straightforward observation.

Lemma 2 (Monotonicity of 1K , 0K ,�� f, f � g, f V g and f =>g)
For any Kripke frame (K ,�), the constant functions 1K and 0K are monotone, and
if f, g : (K ,�) → {0, 1} are monotone, then so are �� f, f � g, f V g and f =>g. ❑

Finally, we can provide the following countably many values for IPL:

Definition 9 (Countably Many Values for IPL)
Enumerate all the finite Kripke frames as (K0,�0), (K1,�1), (K2,�2), . . ., where
Kn ⊂ N for all n ∈ N. Let
V = {〈 f0, f1, f2, . . .〉 | ∀n[ fn : (Kn,�n)→{0, 1}] &

∃N ∈N[(∀n�N fn =1Kn ) or (∀n�N fn =0Kn )]}.
In the other words, the set of values V consists of all the sequences 〈 f0, f1, f2, . . .〉
such that for each n, fn is a monotone function on (Kn,�n), and the sequences are
ultimately constant (from a step onward, fn’s are either all 1Kn or all 0Kn ).
Let τ = 〈1K0 , 1K1 , 1K2 , . . .〉 be the designated element (for truth).
For f = 〈 f0, f1, f2, . . .〉 ∈ V and g = 〈g0, g1, g2, . . .〉 ∈ V , let (cf. Definition 7)

�� f = 〈�� f0,�� f1,�� f2, . . .〉,
f� g = 〈 f0 � g0, f1 � g1, f2 � g2, . . .〉,
fV g = 〈 f0 V g0, f1 V g1, f2 V g2, . . .〉, and
f=>g = 〈 f0=>g0, f1=>g1, f2=>g2, . . .〉. ✧

It can be immediately seen that V is a countable set, and Lemma 2 implies that
V is closed under the operations ��,�,V and =>. Before proving the main theorem,
we make a further definition and prove an auxiliary lemma.

Definition 10 (〈〈α〉〉n , �ν
n and ν�

m )
For a sequence α, let 〈〈α〉〉n denote its n-th element (if any), for any n ∈ N.
(1) Let a valuation ν : At → V be given. The satisfaction relation �ν

n is defined on
any finite Kripke frame (Kn,�n), with Kn ⊂ N (see Definition 9), by the following
for any atom p ∈ At and any k ∈ Kn: k �ν

n p ⇐⇒ 〈〈ν(p)〉〉n(k) = 1.
(2) Let a Kripke model K = (Km,�m,�) on the Kripke frame (Km,�m) be given
(see Definition 9). Define the valuation ν�

m by

ν�
m (p) = 〈1K0 , . . . , 1Km−1 , f

p
K, 1Km+1 , . . .〉

for anyp ∈ At,where fpK : Km → {0, 1} is the function thatwas defined inExample1:
fpK(k) = 1 if k � p, and fpK(k) = 0 if k � p, for any k ∈ Km . ✧
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It is clear that the relation �ν
n ⊆ Kn × At is persistent.

Lemma 3 (On �ν
n and ν�

m )
(1) Let a valuation ν : At → V be given, and the satisfaction relation�ν

n be defined
on (Kn,�n) as in Definition 10. Then for any formula ϕ ∈ Fm and any k ∈ Kn, we
have k �ν

n ϕ ⇐⇒ 〈〈ν(ϕ)〉〉n(k) = 1.
(2) Let a Kripke model K = (Km,�m,�) be given on the frame (Km,�m), and the
valuation ν�

m be defined as in Definition 10. Then for any formula ϕ ∈ Fm and any
k ∈ Km, we have k � ϕ ⇐⇒ 〈〈ν�

m (ϕ)〉〉m(k) = 0.

Proof Both assertions can be proved by induction on ϕ. They are clear for ϕ = �
and hold for atomicϕ ∈ At byDefinition 10. The inductive cases follow immediately
from Definitions 3, 5, 7, and 9. ❑

Theorem 2 (Jaśkowski 1936: IPL Is Countably Many Valued)
Intuitionistic propositional logic is countably infinite many valued.

Proof We show that a formula ϕ ∈ Fm is satisfied in all the elements of all the finite
Kripke models if and only if it is mapped to the designated element under all the
valuation functions:
(1) If ϕ is satisfied in any element of any finite Kripke model, then for any valuation
ν by Lemma 3(1) we have 〈〈ν(ϕ)〉〉n = 1Kn for any n ∈ N, so ν(ϕ) = τ .
(2) If ϕ is not satisfied in some element of some finite Kripke model, then for some
m ∈ N there is a Kripke modelK = (Km,�m,�) such that k � ϕ for some k ∈ Km .
So, by Lemma 3(2) we have 〈〈ν�

m (ϕ)〉〉m(k) = 0, thus ν�
m (ϕ) �= τ . ❑

11.3 Propositional Connectives Inside Gödel-Dummett
Logic

In classical propositional logic (which is a two-valued logic), all the connectives can
be defined by (the so-called complete set of connectives) {¬,∧}, {¬,∨} or {¬,→}
only. In this last section wewill see that no propositional connective is definable from
the others in IPL, and in GDL only the disjunction operation (∨) can be defined by
the conjunction (∧) and implication (→) operations. Most of these facts are already
known (they appear in e.g. Safari and Salehi 2019 and Švejdar and Bendová 2000).
Theorem 3 is from Švejdar and Bendová (2000) with a slightly different proof;
Theorem 4 is from Švejdar and Bendová (2000) with the same proof. All of our
proofs are Kripke model theoretic, as usual.

Theorem 3 (∧ Is Not Definable From the Others in GDL)
In Gödel-Dummett Logic, the conjunction connective (∧) is not definable from the
other propositional connectives.

Proof Consider the Kripke model K = 〈K ,�,�〉 where K = {a, b, c}, � is the
reflexive closure of {(a, b), (c, b)}, and � = {(a, p), (b, p), (b, q), (c, q)}, for atoms
p, q ∈ At.
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• b[[p,q]]

• a[[p]]

�

• c[[q]]

�

We show that for all formulas θ ∈ L(¬,∨,→,�, p, q) we have:
(∗) b � θ =⇒ a � θ or c � θ.

This will prove the desired conclusion, since b � p∧q but a, c � p∧q, and so p∧q
cannot belong to L(¬,∨,→,�, p, q). We prove (∗) by induction on θ. The cases
of θ = �, p, q are trivial, and the induction step of ¬ϕ follows from Remark 1, and
the case of ϕ ∨ ψ is rather easy. So, only the non-trivial case of θ = ϕ→ψ remains.
Suppose that (∗) holds for ϕ and ψ, and assume (for the sake of a contradiction)
that b � ϕ→ψ but a, c � ϕ→ψ. So, a � ϕ and a � ψ; and also c � ϕ and c � ψ.
Whence, by persistency, we should have also b � ϕ, thus b � ψ. So, by the induction
hypothesis (∗ for θ=ψ) we should have either a � ψ or c � ψ; a contradiction. ❑

Theorem 4 (→ Is Not Definable From the Others in GDL)
In Gödel-Dummett Logic, the implication connective (→) is not definable from the
other propositional connectives.

Proof For the Kripke modelK = 〈K ,�,�〉, where K = {a, b, c},� is the reflexive
closure of {(a, b), (c, b)}, and � = {(a, p), (b, p), (b, q)}, for p, q ∈ At,

• b[[p,q]]

• a[[p]]

�

• c[[]]

�

we show that for all the formulas θ ∈ L(¬,∨,∧,�, p, q), the following holds:
(∗) b, c � θ =⇒ a � θ.

This completes the proof since b, c � p→q but a � p→q (by a � p, a � q); thus
we have (p→q) /∈ L(¬,∨,∧,�, p, q). The proof of (∗) is by induction on θ; the
only non-trivial cases to consider are θ = ϕ∨ψ and θ = ϕ∧ψ. Suppose that (∗)

holds for ϕ and ψ; and that b, c � ϕ∨ψ. Then we have either c � ϕ or c � ψ;
by the persistency, the former implies b � ϕ and the latter b � ψ. So, in either
case by the induction hypothesis we have a � ϕ∨ψ. The case of θ = ϕ∧ψ is even
simpler. ❑

The following has been known for a long time; see e.g. Dummett (1959).

Theorem 5 (∨ Is Definable From ∧,→ in GDL)
InGödel-Dummett Logic, the disjunction connective (∨) is definable from some other
propositional connectives.



346 S. Salehi

Proof It is rather easy to see that IPL � (p∨q) −→ [(p→q)→q]∧[(q→p)→p].
Now,we show thatGDL � [(p→q)→q]∧[(q→p)→p] −→ (p∨q) holds. Take an
arbitrary connected Kripke model K = 〈K ,�,�〉, and suppose that for an arbitrary
a ∈ K we have a � [(p→q)→q]∧[(q→p)→p]. We show that a � p∨q. Assume
not; then a � p,q. Therefore, a � (p→q) and a � (q→p), by a � [(p→q)→q]
and a � [(q→p)→p], respectively. So, there are some b, c ∈ K with b, c�a such
that b � p, b � q, c � q, and c � p.

• b[[p]] • c[[q]]

• a[[]]

�
�

By the connectivity of �, we should have either b�c or c�b. Both cases lead to a
contradiction, by the persistency condition. So, the following equivalence

(p∨q) ≡ [(p→q)→q]∧[(q→p)→p]

holds in GDL. ❑

The fact of the matter is that (p∨q) ≡ [(p→q)→q]∧[(q→p)→p] is the only
non-trivial equivalence relation between the propositional connectives in GDL. The
first half of the following theorem was proved in Safari and Salehi (2019).

Theorem 6 (In GDL ∨ Is Not Definable Without Both ∧,→)
In Gödel-Dummett Logic, disjunction (∨) is not definable from the other proposi-
tional connectives, unless both the conjunction and the implication connectives are
present. In the otherwords,∨ is definableneither from {¬,→,�} nor from {¬,∧,�}.
Proof Take the Kripke modelK = 〈K ,�,�〉with K = {a, b, c, d},�= the reflex-
ive closure of {(a, b), (c, d)}, and � = {(b, p), (d, q)}, for p, q ∈ At.

• b[[p]] • d[[q]]

• a[[]]

�

• c[[]]

�

We show that for all θ ∈ L(¬,→,�, p, q) we have
(∗) b, d � θ =⇒ a � θ or c � θ.

Since b, d � p∨q but a, c � p∨q, then it follows that p∨q /∈ L(¬,→,�, p, q).
Now, (∗) can be proved by induction on θ; the only non-trivial case is θ = ϕ→ψ. If
(∗) holds for ϕ and ψ, then if b, d � ϕ→ψ but a � ϕ→ψ and c � ϕ→ψ, then we
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should have a � ϕ and a � ψ, and also c � ϕ and c � ψ. So, by persistency, b � ϕ
and d � ϕ; thus b � ψ and d � ψ. So, by the induction hypothesis (∗ for θ=ψ) we
should have either a � ψ or c � ψ; a contradiction.
Now, for proving p∨q /∈ L(¬,∧,�, p, q), we show that for all the formulas θ in
L(¬,∧,�, p, q) we have

(‡) b, d � θ =⇒ a, c � θ.
Trivially, (‡) holds for θ = �, p, q; so by Remark 1 it only suffices to show that (‡)
holds for θ = ϕ∧ψ, when it holds for ϕ and ψ. Now, if b, d � ϕ∧ψ then b, d � ϕ
and b, d � ψ; so the induction hypothesis (‡ for θ=ϕ,ψ) implies that a, c � ϕ and
a, c � ψ, therefore a, c � ϕ∧ψ. ❑

We end the paper with a Kripke model theoretic proof of a known fact.

Proposition 1 (No Connective Is Definable From the Others in IPL)
In IPL, no propositional connective is definable from the others.

Proof By Theorems 3 and 4, ∧ and → are not definable from the other connectives
even in GDL. The statement¬p /∈ L(∧,∨,→,�, p) can be easily verified by noting
that all the operations on the righthand side are positive. So, it only remains to
show that we have p∨q /∈ L(¬,∧,→,�, p, q) in IPL (cf. Theorem 5). Consider
the Kripke model K = 〈K ,�,�〉 with K = {a, b, c}, �= the reflexive closure of
{(a, b), (a, c)}, and � = {(b, p), (c, q)}, for p, q ∈ At.

• b[[p]] • c[[q]]

• a[[]]

�
�

We show that for all formulas θ ∈ L(¬,∧,→,�, p, q) we have:
(∗) b, c � θ =⇒ a � θ.

This will prove the theorem, since b, c � p∨q but a � p∨q, and so p∨q is not in
L(¬,∧,→,�, p, q) in IPL. Indeed, (∗) can be proved by induction on θ; for which
we consider the case of θ = ϕ→ ψ only. So, suppose that (∗) holds for ϕ and ψ and
that b, c � ϕ→ψ but a � ϕ→ψ. Then we should have a � ϕ and a � ψ; but by
persistency we should have that b, c � ϕ, and so b, c � ψ holds. Now, the induction
hypothesis (∗ for θ=ψ) implies that a � ψ, a contradiction. ❑
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Chapter 12
Non-conditional Contracting Connectives

Luis Estrada-González and Elisángela Ramírez-Cámara

Abstract It has been claimed that contracting connectives are conditionals. Our
modest aim here is to show that the conditional-like features of a contracting con-
nective depend on the defining features of the conditional in a particular logic, yes,
but they also depend on the underlying notion of logical consequence and the struc-
ture of the collection of truth values. More concretely, we will show that under P-
consequence and suitable satisfiability conditions for the conditional, conjunctions
are contracting connectives for some logics without thereby being conditional-ish.

Keywords Contracting connective · Detachable connective · Conditional ·
Conjunction · P-consequence

1We do not intend to endorse (Detachment) as a good definition, much less the right one, of a
detachable connective. If a close connection between conditionals and detachable connectives was
intended, the definition is too broad, as conjunction satisfies (Detachment) in most logics. The
problem is not about specific connectives, though, but rather that as it stands, the definition does not
distinguish between ‘self-detachable’ connectives, like conjunction, for which the other premise
plays no role, and other connectives forwhich the additional premise is essential. Proof-theoretically,
it might be demanded that both A and A � B are effectively used to prove (in L) B or, model-
theoretically, that A � B alone has none of its proper sub-formulas as logical consequences (in L).
These changes would affect some details of the discussion below, for sure—for instance, whether
conditionals are necessarily detachable, and if not, whether what is needed in the definition of a
contracting connective is a detachable connective or a conditional suffices—, but we stick to the
definition in the literature and leave the discussion of a better definition for another occasion.
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12.1 Introduction

Following Beall (2015b), we call a binary connective � in a logic L detachable (in
L) if and only if it satisfies the following condition1:

(Detachment)
A, A � B �L B

A detachable connective typically serves to define a connective ��with the following
properties:

A � B, B � A �L A �� B
A � B �L A �� B
B � A �L A �� B
A �� B �L A � B
A �� B �L B � A

Such a connective is used to formulate naïve principles of the form
F �� c©(. . . S(F̄) . . .), where S(x) is a semantic predicate, ‘x̄’ is a suitable name
of x (e.g. its number in a Gödelization) and c© an n-ary connective.

Now, let � be a detachable connective in L . A binary connective � in a logic L
is called contracting (in L) if and only if the following hold:

(C1) A � B �L A � B
(C2) A, A � B �L B
(C3) A � (A � B) �L A � B

Contracting connectives are notorious for trivializing theories that include naïve
principles quite easily (self-referential vocabulary is omitted for simplicity):

1. A �� (A � ⊥) [Naïve principle]
2. A � (A � ⊥) [1, definition of ‘��’]
3. (A � ⊥) � A [1, definition of ‘��’]
4. (A � (A � ⊥)) [2, C1]
5. A � ⊥ [4, C3]
6. (A � ⊥) � A [3, C1]
7. A [5, 6, C2]
8. ⊥ [5, 7, C2]

It has been claimed that contracting connectives are conditionals. Restall (1993)
says: “An operator satisfying the three conditions [(C1)–(C3)] is said to be a contract-
ing implication.” This is repeated by Rogerson and Butchart (2002). Beall andMurzi
say that “any such� exhibitingC1–C3 is near enough to being conditional-ish”Beall
and Murzi (2013).

Our modest aim in this short note is to show that the conditional-like features of
a contracting connective depend on the defining features of the conditional in a par-
ticular L , yes, but they also depend on the underlying notion of logical consequence
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and the structure of the collection of truth values. More concretely, we will show
that under P-consequence, conjunctions are contracting connectives for some logics
without thereby being conditional-ish.

The plan for the paper is as follows. In Sect. 12.2, we set some preliminaries
for the discussion. Then, Sects. 12.3–12.6 cover a couple of cases in which, with
the appropriate modifications, conjunctions are also contracting connectives in the
examined logics. Finally, Sect. 12.7 rounds up the discussion with some concluding
remarks.

12.2 Setting the Stage

For our purposes, the only detachable connectiveswe are going to consider are among
those that have been proposed, for one reason or another, as suitable conditionals.
What makes them “suitable” will be discussed later. For simplicity, we are going to
use ‘→’ to designate any generic conditional, and when in presence of conditionals
that need to be distinguished or that should be somehow highlighted, we will use
subscripts. Furthermore, we will also use the same collection of truth values in every
case, namely V = {0, ∗, 1} with the ordering 0 < ∗ < 1. Moreover, it will always
be the case that 1 ∈ D+ and 0 ∈ D−, where ‘D+’ and ‘D−’ stand for a collection of
designated and antidesignated values, respectively, certain subsets of V that, as we
will see, are typically understood as generalizations of truth and falsity, and are thus
used to define logical consequence in many-valued settings.

Additionally, we will adopt a very common satisfiability condition for the con-
junction, namely,
σ(A ∧ B) = 1 if and only if σ(A) = σ(B) = 1;
σ(A ∧ B) = 0 if and only if either σ(A) = 0 or σ(B) = 0;
σ(A ∧ B) = ∗ otherwise.
throughout.2

Finally, let us recall the Tarskian notion of logical consequence:

(T-consequence) � � A if and only if σ(A) ∈ D+ whenever for every B such that
B ∈ �, σ(B) ∈ D+

This notion underlies most well-known logics. For classical and some many-valued
logics in which 1 is the only designated value, one can replace “= 1” for “∈ D+” to
easily obtain the even more familiar notion that says that � � A if and only if, when-
ever the premisses are true, the conclusion is also true.3 In any case, (T-consequence)
is meant to encode our understanding of logical consequence as necessary forward

2Although very widespread, this satisfiability condition for conjunction does not encompass all
conjunctions. For example, Bochvar’s (internal) conjunction does not fall into its scope.
3This notion can also be made compatible with logics that take more than one designated value.
However, this requires explanations that are unnecessary and even distracting for our purposes. The
only point we want to get across is that (T-consequence) is a very natural generalization of our usual
definition of validity.
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truth preservation. That (T-consequence) is the (correct/only possible) way of encod-
ing a legitimate notion of logical consequence is seldom questioned, notwithstanding
that this stems from very specific constraints placed on those relations that are to be
counted as logical consequence relations. We will discuss some of these constraints
in more detail in Sect. 12.3, below.

By the same token, taking classical logic as starting point, the truth-functional
account of conditionality arises quite naturally. One can think of the truth-functional
account of conditionality as a sentential forward truth preservation. Because the
unquestioned adoption of classical logic comes with its own set of constraints, our
best approximation at encoding this idea is the truth table for material implication.
This is not to say that we are settling for less, because, as many have already noted
and defended, the truth-functional account of conditionality does get it right in many
important cases. As happens with validity, what we take issue with is the lack of
recognition that this is the best approximation to conditionality, given the features of
the underlying logical framework.

With all those elements in place, one can easily see why conditions (C2) and (C3),
but not (C1), are valid for conjunction in classical andmany other logics. In those log-
ics we have in mind, the elements at play are classical enough, so A → B �L A ∧ B
fails to preserve designatedness, as there is a valuation such that σ(A → B) ∈ D+
when σ(A) ∈ D−, and consequently, σ(A ∧ B) ∈ D−. Even without fully specify-
ing what those elements are, it becomes clear that the usual satisfiability condition
for the conditional might be responsible for the invalidity of (C1).

Thus, a straightforward way of verifying whether conjunctions can be contracting
connectives consists in replacing the detachable (conditional) connective in (C1) for
another (conditional-like) one. Of course, if the use of the same connective on both
sides of the turnstile in (C1) is allowed, then, given that conjunctions technically are
detachable connectives, that they are contracting connectives becomes quite an unin-
teresting matter. However, as mentioned above, a connection between conditionality
and Detachment might be intended. Because of this, we find that it might be rea-
sonable to restrict those connectives on (C1)’s left side of the turnstile to detachable
conditional(-like) connectives while leaving the right side open to the placement of
conjunctions.

12.3 Blamey’s Transplication

To test our hypothesis that the satisfiability conditions for the conditional is what
does most of the work to keep conjunctions from being contracting connectives, we
will substitute the left-hand connective in (C1) for Blamey’s transplication (Blamey
1986). The connective is defined through the following satisfiability conditions:
σ(A →B B) = 1 if and only if σ(A) = σ(B) = 1;
σ(A →B B) = 0 if and only if σ(A) = 1 and σ(B) = 0;
σ(A →B B) = ∗ otherwise.
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Transplication is detachable, so it can be used to define contracting connectives.
Moreover, it is not difficult to verify that transplication itself is a contracting con-
nective. We include the truth tables for more visibility:

A →B B � A →B B A A →B B � B A →B (A →B B) � A →B B
1 1 1 1 1 1 1
∗ ∗ 1 ∗ ∗ ∗ ∗
0 0 1 0 0 0 0
∗ ∗ ∗ ∗ 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 ∗ ∗
∗ ∗ 0 ∗ 1 ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ 0 ∗ ∗

The interesting fact is that in a logic L that includes conjunction and transplica-
tion and is such that its logical consequence is Tarskian over a distribution of truth
values D+ = {1} and D− = {∗, 0}, ∧ is a contracting connective. In particular, (C1)
is valid because there is no σ such that σ(A → B) ∈ D+ when σ(A) /∈ D+. The
corresponding truth tables provide more visibility:

A B A →B B � A ∧ B A A ∧ B � B A ∧ (A ∧ B) � A ∧ B
1 1 1 1 1 1 1 1 1
1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
1 0 0 0 1 0 0 0 0
∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗ 0 0 0 0
0 1 ∗ 0 0 0 1 0 1
0 ∗ ∗ 0 0 0 ∗ 0 ∗
0 0 ∗ 0 0 0 0 0 0

An immediate concern is that conjunction, despite the appearances, is now a
conditional, or that transplication is closer to a conjunction than a conditional. This
worry is unfounded, though. Maybe it would suffice to say that a conditional → is
not a conjunction (nor vice versa) if there is a σ such that σ(A → B) �= σ(A ∧ B),
but we think that a more conceptually principled distinction can be offered, but in
order to do so let us present the objection in a rather strong way.

Given T-consequence and the satisfiability conditions for conjunction, A →B

B � A ∧ B, and this seems evidence enough to hold that transplication is a conjunc-
tion and not a conditional.4 Moreover, both (A →B B) � A and (A →B B) � B,
on the one hand, and (A ∧ B) � A and (A ∧ B) � B hold; but (A →B B) →B A
and (A →B B) →B B, and (A ∧ B) →B A and (A ∧ B) →B B do not hold. This
strongly suggests that transplication is not a conditional at all, and the alleged failure
of Simplification is simply due to the fact that the transplication arrow is just another
conjunction.

4A quick note on notation: so far, we have been using � as a sort of generic turnstile, meant to be
read from left to right, as usual. We will be using A � B as shorthand for ‘A � B and B � A’.
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In fact, Égré et al. (forthcoming) have shown that transplicationplus (T-consequence)
will fail at least one of the following:

– Detachment, A, A → B � B
– Self-identity, � A → A
– Non-symmetry (A → B � B → A) or Non-entailment of conjunction
(A → B � A ∧ B).

This seems devastating enough for the conditional nature of transplication. Nonethe-
less, they have also shown that transplication plus (TT-consequence), that is

(TT-consequence) � � A if and only if 0 /∈ σ(A) whenever for every B such that
B ∈ �, 0 /∈ σ(B)

satisfies Self-identity, Non-symmetry andNon-entailment of conjunction, although it
still fails Detachment. Let us grant for the sake of the argument that Detachment is so
central to conditionality that if a connective satisfies a bunch of other conditional-ish
properties but fails Detachment, it is not really a conditional.

This result for transplication resembles the situationof the conditional inGonzález-
Asenjo’s/Priest’s LP. Beall has stressed several times (see for example Beall 2011,
2015a) that even if Detachment is invalid for the conditional in LP, it is default
valid in the sense that A, A → B � B ∨ (A∧ ∼ A) holds, that is, either Detach-
ment holds or the antecedent is a formula with the value ∗—understood in that
context as “both true and false” because it is taken as designated—which arguably
is not the case in most situations. The second disjunct internalizes in the conclu-
sion, so to speak, the structure of truth values into the object language. In the case
of transplication, the underlying structure of truth values is such that ∗ is under-
stood as “neither true nor false”, because it is not designated, and one actually has
that A, A → B � B∨ ∼(A∨ ∼ A) holds, that is, either Detachment holds or the
antecedent has the value ∗ (again, understood as neither true nor false).

Thus, the moral is that if one wants to judge a connective and tell it apart from
others using not only its truth and falsity conditions, but also appealing to some pre-
theoretical properties that the connective is supposed to meet, the underlying notion
of logical consequence plays a pivotal role.5

So, in order to tell a conditional apart from a conjunction, one could show that
each satisfies enough of the traditional properties associated to them, but the other
fails them while satisfying its own set of traditional properties. This is exactly what
happens with transplication and conjunction here. Although the view is not uncon-
tentious,what one in general expects fromaconditional connective is that it be detach-

5And this is a recurrent lesson in many semantic projects. For one of its more recent appearances
in proof-theoretic semantics, see Dicher and Paoli (2021).
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able, contraposable,6 non-symmetric7 and that it never happens that σ(A → A) = 0,
while a conjunction is typically expected to fail these conditions, with the only excep-
tion being Detachment as defined above. The truth tables below show the invalidity
of Non-symmetry and Contraposition for transplication. Moreover, the validity of
Detachment was shown above and it is very easy to verify that A →B A is never 0:

A →B B � B →B A A →B B � ∼ B →B∼ A
1 ∗ 1 ∗
∗ ∗ ∗ 0
0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 1
∗ 1 ∗ 1

The connective ∧ is not contraposable but is symmetric, as is shown with the
tables below. Furthermore, it is clear that σ(A ∧ A) = 0 when σ(A) = 0.

A ∧ B � B ∧ A A ∧ B � ∼ B∧ ∼ A
1 1 1 0
− − − 0
0 0 0 0
− − − −
− − − −
0 0 0 0
0 0 0 1
0 0 0 −
0 0 0 0

Thus, this example shows that the contracting character of a connective depends
not only on its own satisfiability conditions, but also on those of the detachable
connective used in condition (C1) and the underlying notion of logical consequence.
In the following sections, we will consider some other cases where conjunction
contracts to show that there are more elements, such as the underlying notion of
logical consequence and the structure of truth values, which determine whether a
connective is contracting or not.

6A connective k is contraposable (in L) if and only if, A k B �L∼ B k ∼ A, where∼ is a generic
negation. In order to evaluate contraposition, we make use of the usual generalized satisfiability
condition for negation: σ(∼ A) = 1 if and only if σ(A) = 0, σ(∼ A) = 0 if and only if σ(A) = 1,
and σ(∼ A) = ∗ otherwise. Our choice reflects nothing beyond the decision to stick with basic, not
too deviant, many-valued logical vocabulary. The inclusion of other negation connectives would
certainly make for interesting discussion; however, we are also aware that matters might already be
complicated enough as they stand. Consequently, we think that the introduction of other negation
connectives deserves its own treatment elsewhere.
7A connective c is non-symmetric (in L) if and only if, either A c B �L B c A or B c A �L A c B.
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12.4 The OCO Conditional and P-Logical Consequence

Let us now consider a different logic, one in which D+ = {1, ∗} and D− = {0}, the
underlying notion of consequence is Tarskian and the conditional in this logic is
defined as follows:
σ(A →OC O B) = ∗ if and only if σ(A) = 0;
σ(A →OC O B) = σ(B) otherwise.8
It is not difficult to verify that the OCO conditional is itself a contracting connective
under the assumptions just given. The truth tables allow a quick verification of the
claim:

A →OC O B � A →OC O B A A →OC O B � B A →OC O (A →OC O B) � A →OC O B

1 1 1 1 1 1 1

∗ ∗ 1 ∗ ∗ ∗ ∗
0 0 1 0 0 0 0

1 1 ∗ 1 1 1 1

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0 0

∗ ∗ 0 ∗ 1 ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ 0 ∗ ∗

Because there is a σ such that σ(A →OC O B) ∈ D+ when σ(A) ∈ D− (for the
first clause defining the conditional), (C1) fails for conjunction. Considering a differ-
ent distribution of truth values—like D+ = {1} and D− = {∗, 0}, or even D+ = {1}
and D− = {0}, with ∗ as neither designated nor antidesignated—, will not do the
job by itself. The assumption of (T-consequence) ensures that for each alternative
distribution considered there would still be a σ such that σ(A →OC O B) ∈ D+ and
σ(A ∧ B) /∈ D+, namely σ(A) = ∗ and σ(B) = 1. This is not to say that we will
not need an alternative distribution at all. What we do mean, is that in addition to the
adoption of the non-exhaustive distribution of values we will also need to accommo-
date an alternative notion of logical consequence (and one of the reasons for choosing
the relevant value distribution is because it lets us do just that).

Notice that the latter partition is not bivalent, as it is not exhaustive with respect to
the total collection of values given. This sets the logic we are proposing apart from
most classical and many-valued logics, as those typically require that the partition
on V be both collectively exhaustive and mutually exclusive. This means that here,
unlike what happens in those cases, a value’s not being designated does not entail its
being antidesignated, just like its not being antidesignated does not always entail its
being designated.9

This fact makes an important difference in the definition of logical consequence.
Just like the equivalences between being designated and being not antidesignated,
and vice versa, break down, another rupture of this sort happens when defining

8This conditional was first presented, with different primitives though, by Olkhovikov (2001) and
then independently by Cantwell (2008) and Omori (2016).
9For more on this discussion, see Wansing and Shramko (2008).
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logical consequence. This is because demanding that (T-consequence) be satisfied
stops being equivalent to demanding that the following be satisfied:

(P-consequence) � � A if and only if σ(A) /∈ D− whenever for every B such that
B ∈ �, σ(B) ∈ D+

Themost salient feature of (P-consequence) is that it clearly states something weaker
than (T-consequence). This feature, some might argue, may bring about undesired
consequences that (T-consequence) lacks. For instance, we are aware that construing
the intermediate value as neither designated nor antidesignated leads us to another
of P-consequence’s most striking features. Suppose that σ(p) = 1, σ(q) = ∗ and
σ(r) = 0. Thus, even if q were a P-logical consequence of p and r were a P-
logical consequence of q, r would not be a P-logical consequence of p, because
P-logical consequence requires that if premises are designated, conclusions must be
not antidesignated, which is not the case in this example: P-logical consequence is
not transitive.

Is the non-transitivity of P-consequence enough to argue against its standing as a
logical consequence relation? We think it is not. But instead of attempting to show
that there are good reasons to disregard (P-consequence) in favor of (T-consequence),
one could go back to the origin of the breakdown and argue that allowing the partition
on V to fail collective exhaustiveness is somehow illicit.We find this line of argument
uncompelling, though, as there seems to be motivation for our view.

Intermediate truth values are often interpreted as gaps, and are meant to be some-
thing that is different in kind from truth and falsity. More precisely, gaps can be read
as both a lack of truth that does not imply falsity and a lack of falsity that does not
imply truth. In those cases, leaving values intended to be understood as gappy outside
the sets of designated and antidesignated values should provide a better interpretation
than forcing them to belong to any of the collections that readily lend themselves to
be interpreted as generalizations of truth and falsity. Even if one is unwilling to see
designatedness and antidesignatedness like this, we find it hard to defend the view
that placing an intermediate value in any of the collection does not amount to at least
considering that it is of the same kind as either truth or falsity.

Thus, the breakdown between (T-consequence) and (P-consequence) caused
by the newfound independence of designatedness from antidesignatedness (and
vice versa) merely shows that “forward truth preservation”—as embodied by (T-
consequence) in a classical enough setting—can be broken into two prima facie
equally important, yet non-equivalent components: the avoidance of loss of truth
(T-consequence), and the avoidance of falsity introduction (P-consequence), that are
nonetheless equivalent when further conditions on the structure of truth values, like
collective exhaustiveness of the partitions, are imposed. Therefore, at least techni-
cally, logics with P-logical consequence as a basis are as legitimate qua logics as
non-classical logics are.

Of course, more elaborate motivations could be given along the lines of non-
monotonic logics. For example, P-consequence would allow to logically “jump” to
conclusions less certain than the premises. Something in this spirit is already found in
the works of Cobreros, Egré, Ripley and van Rooij. In Cobreros et al. (2012) they tie
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vagueness to non-transitivity, and show how a consequence relation that allows the
step from strict to tolerant truth allows for a very classical framework that provides a
semantics for vagueness. Then, (Cobreros et al. 2013) builds on the idea of adopting
a non-transitive consequence relation in order to accommodate a transparent truth
predicate within classical logic while avoiding many of the semantic paradoxes.10

Returning to our discussion, assuming P-logical consequence together with the
distribution D+ = {1} and D− = {0},with∗ as neither designatednor antidesignated,
and the OCO conditional standing as the detachable connective in the left hand
side of (C1) results in conjunction being a contracting connective. The problematic
interpretation above, σ(A) = ∗ and σ(B) = 1, is not a counterexample to the P-
logical validity of (C1), because even if σ (A →OC O B) = 1 and σ(A ∧ B) = ∗,
this is not a case in which premise is designated and the conclusion is antidesignated.

A B A →OC O B �P A ∧ B A A ∧ B �P B A ∧ (A ∧ B) �P A ∧ B

1 1 1 1 1 1 1 1 1
1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
1 0 0 0 1 0 0 0 0
∗ 1 1 ∗ ∗ ∗ 1 ∗ 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 0 0 ∗ 0 0 0 0
0 1 ∗ 0 0 0 1 0 0
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ 0 0 0 0 0 0

Again, the worry that conjunction has become conditional-ish, or that the condi-
tional has turned into a conjunction, might surface. And again, this is an ill-founded
worry. The following truth tables show that, although this conditional is symmetric,
it remains contraposable (it was already shown that it is detachable and it is very
easy to verify that there is no σ such that σ(A → A) = 0):

A →OC O B �P B →OC O A A →OC O B �P ∼ B →OC O∼ A
1 1 1 ∗
∗ 1 ∗ 0
0 ∗ 0 0
1 ∗ 1 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ 0 ∗ ∗
∗ 0 ∗ 1
∗ ∗ ∗ 1

10For an even more elaborate defense of the logicality of P-logical consequence and other non-
Tarskian notions of logical consequence, see Estrada-González (2015).
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On the other hand, conjunction is symmetric but not contraposable, as expected (and,
as in every case, there is a σ such that σ(A ∧ A) = 0):

A ∧ B �P B ∧ A A ∧ B �P ∼ B∧ ∼ A
1 1 1 0
∗ ∗ ∗ 0
0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0
0 0 0 1
0 0 0 ∗
0 0 0 0

Thus, although the conditional has some conjunction-like features, it is still different
enough from a conjunction.

12.5 Rogerson and Butchart’s Conditional

Rogerson andButchart’s (henceforth, RB) conditional (Rogerson andButchart 2002)
is defined by the truth table below:

A B A →RB B
1 1 1
1 ∗ 0
1 0 ∗
∗ 1 ∗
∗ ∗ 1
∗ 0 0
0 1 0
0 ∗ ∗
0 0 1

What makes RB interesting is that it is not a contracting connective—it actually
was used to generate counterexamples to Restall’s conjecture that robust contraction
freedom is enough to have non-trivial theories based on naïve principles—, as (C3)
is invalid for it: consider the interpretation σ(A) = ∗ and σ(B) = 1.

However, that result is obtained under the assumption of Tarskian logical con-
sequence and the distribution D+ = {1} and D− = {∗, 0}. With P-logical conse-
quence and the distribution D+ = {1} and D− = {0}, with ∗ as neither designated
nor antidesignated, things are different. In that case, the RB conditional is a contract-
ing connective; here are the tables:
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A →RB B �P A →RB B A A →RB B �P B
1 1 1 1 1
0 0 1 0 ∗
∗ ∗ 1 ∗ 0
∗ ∗ ∗ ∗ 1
1 1 ∗ 1 ∗
0 0 ∗ 0 0
0 0 0 0 1
0 0 0 0 0

A →RB (A →RB B) �P A →RB B
1 1
∗ 0
0 ∗
1 ∗
∗ 1
0 0
0 0
∗ ∗
0 0

Nonetheless, this does not make conjunction contracting, as there is a σ such that
σ(A → B) ∈ D+ when σ(A) ∈ D−, namely σ(A) = σ(B) = 0.

12.6 A Variant of Rogerson and Butchart’s Conditional

However, one could be dissatisfiedwithRogerson andButchart’s conditional because
of the counterintuitiveness of someof its valuations. In particular, the value of A → B
is not 0 when A is 1 and B is 0, but it is when A is 0 and B is 1. By mimicking
from Blamey’s transplication the idea of making the value of a conditional ∗ when
the antecedent is 0 and fixing the valuations mentioned at the end of the previous
section, one get the following conditional:

A B A →RB+ B
1 1 1
1 ∗ 0
1 0 0
∗ 1 ∗
∗ ∗ 1
∗ 0 0
0 1 ∗
0 ∗ ∗
0 0 ∗
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With a distribution of values as in the previous cases and using P-logical conse-
quence, this conditional is contracting; this is shown by the following truth tables:

A →RB+ B �P A →RB+ B A A →RB+ B �P B
1 1 1 1 1
0 0 1 0 ∗
0 0 1 0 0
∗ ∗ ∗ ∗ 1
1 1 ∗ 1 ∗
0 0 ∗ 0 0
∗ ∗ 0 ∗ 1
∗ ∗ 0 ∗ ∗
∗ ∗ 0 ∗ 0

A →RB+ (A →RB+ B) �P A →RB+ B
1 1
0 0
0 0
1 ∗
∗ 1
0 0
∗ ∗
∗ ∗
∗ ∗

Under these assumptions, conjunction is a contracting connective too. Here are
the truth tables for more visibility:

A B A →RB+ B �P A ∧ B A A ∧ B �P B A ∧ (A ∧ B) �P A ∧ B

1 1 1 1 1 1 1 1 1
1 ∗ 0 ∗ 1 ∗ ∗ ∗ ∗
1 0 0 0 1 0 0 0 0
∗ 1 ∗ ∗ ∗ ∗ 1 ∗ ∗
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 0 0 ∗ 0 0 0 0
0 1 ∗ 0 0 0 1 0 0
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ 0 0 0 0 0 0

Once again, it seems that conjunctions and conditionals are different enough to
avoid considering that the conditional has turned into a conjunction or vice versa.
The following truth tables show the features of each connective:
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A →RB+ B �P B →RB+ A A →RB+ B �P ∼ B →RB+∼ A
1 1 1 ∗
0 ∗ 0 0
0 ∗ 0 0
∗ 0 ∗ ∗
1 1 1 1
0 ∗ 0 0
∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ ∗ ∗ 1

A ∧ B �P B ∧ A A ∧ B �P ∼ B∧ ∼ A
1 1 1 0
∗ ∗ ∗ 0
0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0
0 0 0 1
0 0 0 ∗
0 0 0 0

Contraposition fails for conjunction but symmetry holds. (And, oncemore, there is
a case in which A ∧ A is 0.) On the other hand, as in the case of the OCO conditional,
the variant of RB satisfies symmetry, which is a conjunction-like feature, but it is
still different enough from a conjunction. We go further and, just as we did with the
OCO conditional, claim that this connective is still quite conditional-like, as we still
get contraposition and no σ such that σ(A →RB+ A) = 0.

Overall, we have settled with defending that, to conclude that a conjunction is not
a conditional or vice versa, it suffices to show that (a) there is at least one σ such
that σ(A → B) �= σ(A ∧ B); and (b) that each connective has some of the features
that one would expect of each kind of connective. There are many ways that these
criteria could be strengthened. For instance, one could demand the satisfaction of
a specific subset of the features as a minimal condition to be met for a connective
to be considered as belonging to a certain kind. We find this discussion interesting,
and deserving of a much more detailed exposition than we can manage here. Conse-
quently, taking those practical concerns alone into account, we stand by our decision
to defend the weakest claim possible.

12.7 Conclusions

In this paper, we have shown that some authors are inclined to say that only con-
ditionals are contracting connectives because they are assuming a very specific set
of features that the background logic has to have. Indeed, if we restrict ourselves to
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classical logic and some non-classical logics in its neighborhood—all of which share
the supposition that the consequence relation is Tarskian, that the partition on the
collection of truth values is both collectively exhaustive and mutually exclusive, and
include a detachable conditional—then conditionals seem to be the only kind of con-
tracting connectives. By modifying some of those features, namely, the detachable
connective that appears on the left side of (C1), the logical consequence relation and
the structure on the collection of truth values, we have here developed three cases in
which conjunctions are contracting connectives.

Throughout, themain concern has been that our proposedmodifications are always
at risk of coming across as too radical. This is important, because a pervasive worry
is that a radical enough modification will be a step too far outside the realm of logic.
Should that happen, our project would become quite uninteresting, as it would be
easy to argue that while we are discussing some very peculiar abstract structures,
they are of no philosophical or logical interest. Our reply to this concern consisted
in showing that none of the proposed modifications lack motivation in the existing
literature.

In so doing, we revisited some important questions, many of which cannot be
answered in this paper, about the nature of certain connectives, the logicality of
non-transitive consequence relations and the possible need of logically non-bivalent
semantics for many-valued logics. Thus, we are inclined to say that besides succeed-
ing in exhibiting some sufficient conditions for restricting contraction to conditionals
and showing how conjunctions can be contracting connectives, we have also suc-
ceeded in providing good motivation to study all those questions for their own sake.
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Chapter 13
Deflationary Reference and Referential
Indeterminacy

Bahram Assadian

Abstract Indeterminacy of reference appears to be incompatible with the deflation-
ist conceptions of reference: in deflationism, the singular term ‘a’ refers to a, if it
exists, and to nothing else, whereas if the term is referentially indeterminate, it has
a variety of equally permissible reference-candidates: referential indeterminacy and
deflationism cannot both be maintained. In this paper, I discuss the incompatibility
thesis, critically examine the arguments leading to it, and thereby point towards ways
in which the deflationist can explain referential indeterminacy.

Keywords Referential indeterminacy · Deflationism · Singular reference ·
Vagueness · Kilimanjaro

13.1 The Incompatibility Thesis

What does ‘Kilimanjaro’ refer to? It seems that, setting lexical ambiguities aside, it
refers to a particular object: Kilimanjaro. Inflationists about reference think that, if
‘Kilimanjaro’ refers, there has to be some causal or metaphysical relationship that
connects the term to the particular object it refers to. Deflationists declare that ‘Kil-
imanjaro’ refers to Kilimanjaro, but they explain the reference relation by regarding
sentences such as “If Kilimanjaro exists, then ‘Kilimanjaro’ refers to Kilimanjaro
and to nothing else” as constituting an implicit definition of the term ‘refers’; and
after noting that Kilimanjaro exists, they conclude that ‘Kilimanjaro’ refers to Kil-
imanjaro. In their view, thus, ‘Kilimanjaro’ refers to Kilimanjaro not in virtue of
some causal or metaphysical relationship between the term and the dormant volcano
in Africa, but rather, because of how we use ‘refers’ in our language. Referential
indeterminists, on the other hand, declare that ‘Kilimanjaro’ does not refer: since it
is a singular term, it refers, if it does at all, to a uniquely determined object; but noth-
ing in our use of the term determines which object it refers to; so, it does not refer.
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‘Kilimanjaro’, despite appearances, is not a genuine singular term whose semantic
job is to effect reference to a particular object.

This is the battlefield. The tension between the deflationists and the inflationists
is well known. But the dialectical situation between the deflationists and the indeter-
minists has not attracted the attention it deserves. Are the two positions incompatible?
It seems so: one view says that ‘Kilimanjaro’ refers; the other says it doesn’t—or if
you like, one view says that ‘Kilimanjaro’ has a unique referent; the other says that
it has many equally admissible reference-candidates. How could they possibly be
compatible? My aim in this paper is to examine what it means to say that referential
indeterminacy and deflationism are incompatible, what the arguments for the alleged
incompatibility are, and thereby show the extent to which the deflationist can explain
referential indeterminacy.

Let me say some words about each view. The proponent of indeterminacy of
reference holds that facts about our linguistic usage, together with all relevant non-
semantic background facts—for example, facts about our dispositions, intentions,
causal relations with our environment, or whatever we take semantic facts to super-
vene on—do not attach a uniquely determinate semantic-value to singular terms and
predicates of our language. For example, to say that ‘Kilimanjaro’ is a referentially
indeterminate singular term is to say that there are many slightly different entities,
k1, k2, . . . , kn , whose difference is just one tiny atom, such that each one of these pre-
cisely demarcated mountainous regions has an equally good claim to be the referent
of ‘Kilimanjaro’, since there are no linguistic, causal, psychological, geographical,
or sociological features that can pick out one of them as the referent of the word. In
this sense, ‘Kilimanjaro’ is an expression which seems to refer, but for which there
seems to be no fact as to which of these several things it refers to.1

If we endorse referential indeterminacy, there remains a choice about how to use
theword ‘refers’ in our language: one possibility is to say that there is no such thing as
the reference relation. Since there are no facts that could single out a unique referent
for ‘Kilimanjaro’, the assumption that it refers to a particular object is phantasmal.But
the deflationist thinks that this eliminativist stance towards reference is unnecessarily
harsh. She would prefer to use the notion of reference deflationarily, so that, on her
view, ‘Kilimanjaro’ refers toKilimanjaro (and to nothing else), but not in virtue of the
obtaining of a substantial causal or metaphysical relation between ‘Kilimanjaro’ and

1This is a familiar reading of Unger’s (1980) Problem of theMany as an argument for the referential
indeterminacy of the terms purporting to refer to ordinary concrete objects. See McGee (1997) and
McGee and McLaughlin (2000) for a powerful support of this reading, which is anticipated by
Lewis (1993). In this paper, we shall focus only on the referential indeterminacy of singular terms,
and will not discuss indeterminacy in vague expressions that admit borderline cases—for example,
indeterminacy as to whether a given person is in the extension of ‘bald’ or ‘rich’—even though the
central claims to be discussed below also arise for indeterminacy of vague expressions. Also, if you
are not happy with the example of Kilimanjaro, you can instead talk about mathematical singular
terms such as ‘The number 2’. In order for the terms of our arithmetical theory to have determinate
reference, one model of the theory has to be privileged over the others. Yet, as it has been argued
by Benacerraf (1965), there is nothing in our use of arithmetical terms that can privilege one model
over any other. In this sense, ‘The number 2’ is an expression which seems to refer, but for which
there seems to be no fact as to which of things in different models it refers to.
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the dormant volcano inAfrica, but rather, in virtue of themeaning of theword ‘refers’.
(More on this below.) To the deflationist, “‘Kilimanjaro’ refers to Kilimanjaro” is
analytically or definitionally equivalent to ‘Kilimanjaro is identical to Kilimanjaro’.

Deflationism about reference has received different forms and formulations. How-
ever, despite important differences between them, there is a thesis that they all have
in common: there is nomore to reference than is encoded in the disquotation schemas
of this form: for any object a, if a exists, ‘a’ refers to a and to nothing else; and for
any predicate F , if there are Fs, then ‘F’ applies to the Fs and to nothing else. I
shall talk in more detail about the disquotation schemas, but it is important to note
here that the arguments that will be examined in this paper are independent of any
particular version of deflationism.2

It thus seems that referential indeterminacy and deflationism are incompatible.
How could the terms of our language be referentially indeterminate if reference
is understood in accordance with the disquotation schema that encodes, somehow,
determinate reference? Although the incompatibility thesis raises an important chal-
lenge for deflationism and has been in the wind for a while, it has not, curiously,
garnered the attention it deserves.3 There are two main arguments supporting the
incompatibility thesis, which I will label ‘the argument from disquotation’ and ‘the
argument from explanation’. The first says that the deflationist’s disquotation prin-
ciples rule out referential indeterminacy. The second has it that the only way a
deflationist could explain what referential indeterminacy would have to involve—
that is, what it would take for terms to be referentially indeterminate—rules out the
possibility of any term being referentially indeterminate.

Thus, the deflationist should either argue that deflationism indeed provides a suc-
cessful argument against referential indeterminacy, or else, respecting ubiquitous
indeterminacy of reference, try to defuse the arguments for the incompatibility thesis,
and thereby establish the compatibility of her standpoint with referential indetermi-
nacy. Since I think that there is no hope, and even no need, to purify our language
from indeterminacy, I will explore the prospects of the deflationist’s standpoint along
the latter route.

13.2 The Argument from Disquotation

According to the argument from disquotation, the deflationist’s characterization of
reference in terms of the disquotation schema rules out the possibility of referential
indeterminacy. The argument proceeds from the plausible claim that the deflationist
takes reference to be exhausted by the disquotation schema:

(1) (∃!x)(‘τ ’ refers to x) ↔ (∃!x)(τ = x),

2For different versions of deflationism about reference, see Field (1994a, b, 2000), McGee (2005),
and McGee and McLaughlin (2000). And for a useful survey of the space of possibilities, see
Armour-Garb and Beall (2005).
3But see Field (1994a, 1994b, 2000), McGee (2016), and in particular, Taylor (2017).
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which states that for a singular term ‘τ ’, “There is a unique x such that ‘τ ’ refers to
it” is equivalent to ‘There is a unique x such that τ is identical to it’. According to
the deflationist, (1) is valid for all meaningful terms of our language. It is, in effect,
true by stipulation that ‘Kilimanjaro’ refers to Kilimanjaro, and only to Kilimanjaro.
Since, as it is encoded in (1), there is a unique referent for ‘Kilimanjaro’, there can
be no other equally admissible reference-rivals for the term, and so, ‘Kilimanjaro’ is
not referentially indeterminate. In sum: (1) would preclude there being anything else
that ‘Kilimanjaro’ is indeterminate between referring to. So ‘Kilimanjaro’ cannot be
referentially indeterminate.4

Let us present a general formulation of the argument as follows:

(P1) If one is committed to (1), there can be no referential indeterminacy;
(P2) Deflationism is committed to (1);
(C) Therefore, there can be no referential indeterminacy.

The deflationist, however, is in a position to offer ways past this challenge by reject-
ing (P1). She admits that (1) indeed ensures that it is determinate that ‘Kilimanjaro’
refers to Kilimanjaro, but, in her view, that does not settle under what conditions
statements containing it are determinately true: the fact that (1) tells us that it is
determinate that ‘Kilimanjaro’ refers to Kilimanjaro does not preclude there being
things ‘Kilimanjaro’ is indeterminate between referring to. According to the defla-
tionist, (1) allows us to assert that ‘Kilimanjaro’ refers to Kilimanjaro, but, because
of indeterminacy, it does not allow us to assert that it refers to k1 as opposed to
k2, where each is a precisely demarcated mountainous region. (I am assuming that
there are only two reference-candidates; nothing hangs on this other than ease of
presentation.) This just means that (P1) is to be rejected. That is, since

(D) It is determinate that ‘Kilimanjaro’ only refers to Kilimanjaro

is compatible with

(I) It is indeterminate as to whether ‘Kilimanjaro’ refers to k1 or to k2

4Various forms of this argument have been defended by Leeds (1978, 2000, p. 107), Akiba (2002),
and Hill (2014, p. 70). For a detailed critical discussion of this argument, see Taylor (2017). Leeds
argues that in order to explain what it is for a term to be referentially indeterminate, one must
inevitably say that it has more than one equally acceptable referent; but a deflationist can “make no
sense” of the notion of being equally acceptablewhen the referent of the term is “given uniquely” by
the disquotation schema. Hill also argues that the deflationist can easily explain why a proposition
such as The concept of rabbit denotes rabbits can be seen to be true a priori, for the proposition
is “either a component of a definition or a trivial consequence of a definition [i.e. (1)]” (2014,
p. 70). In his view, this suffices to rule out indeterminacy. It should be pointed out that in Hill’s
view, deflationism, first and foremost, rules out indeterminacy concerning concepts, but he men-
tions that his argument can be applied to resist linguistic indeterminacy, too. Akiba proposes that
since deflationism is incompatible with the sort of indeterminacy that is induced by vagueness,
the deflationist can make sense of indeterminacy only by embracing the worldly or ontic view of
vagueness.
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the deflationist will not be committed to denying that ‘Kilimanjaro’ is referentially
indeterminate. She thereby locates the diagnosis of the failure of the argument from
disquotation in the compatibility between (D) and (I).5

The supporter of the argument from disquotation may try to bolster her argument
by noting that (1) entails that “There is something that ‘Kilimanjaro’ determinately
refers to”. The fact that it is determinate that ‘Kilimanjaro’ refers to Kilimanjaro and
to nothing else entails that there is a unique individual to which ‘Kilimanjaro’ refers;
and this is exactly what rules out the referential indeterminacy of ‘Kilimanjaro’.

The deflationist, again, has a convincing rejoinder.6 In fact, in her view, there is no
denying that if Kilimanjaro exists, then ‘Kilimanjaro’ only refers to Kilimanjaro, but
this does not entail that ‘Kilimanjaro’ has a uniquely determinate reference; and this
is exactly where the argument from disquotation fails. The fallacious move from “It
is determinate that ‘Kilimanjaro’ refers to Kilimanjaro” to “There is something that
‘Kilimanjaro’ determinately refers to” is familiar from the behavior of the necessity
operator in certain modal contexts: the inference from ‘It is necessary that someone
wins the match’ to ‘There is someone of whom it is necessary that he wins the
match’ is valid only when the singular term that the variable bound by the existential
quantifier replaces refers to the same object in every possible world in which it
exists. Likewise, as Lewis (1988) has argued, the step from “It is determinate that
‘Kilimanjaro’ refers to Kilimanjaro” to “There is an object of which it is determinate
that ‘Kilimanjaro’ refers to it” is not valid: it is valid only when the singular term that
the variable replaces is referentially determinate: it refers to the same object in every
interpretation of ‘Kilimanjaro’. But this is exactly what the referential indeterminacy
of ‘Kilimanjaro’ rules out.7

To summarize: there are two ways for the deflationist to resist the argument from
disquotation: she can argue for the compatibility between “It is determinate that
‘Kilimanjaro’ refers to Kilimanjaro” and “It is indeterminate as to whether ‘Kili-
manjaro’ refers to k1 or to k2”. She can also point to the fallacious move from “It
is determinate that ‘Kilimanjaro’ refers to Kilimanjaro” to “There is something that

5This argument is due to Field (2000, pp. 4–5).
6I have borrowed the argument of this paragraph from Taylor (2017). See also McGee (2005, pp.
416–417, 2016, pp. 3164–3165).
7This is connected to another argument for the incompatibility thesis, which runs as follows: since
according to deflationism “‘Kilimanjaro’ refers to k iff Kilimanjaro = k”, ‘Kilimanjaro’ could be
taken to be referentially indeterminate only if the right-hand side of the biconditional is an inde-
terminate identity statement, construed de re. That is, indeterminacy of reference is possible as
long as there can be an indeterminacy in identity. However, since, as Evans (1978) demonstrated,
indeterminate identity is incoherent, then so is referential indeterminacy from the deflationary stand-
point. Hence, deflationism fails to make any room for referential indeterminacy. As Lewis (1988)
convincingly shows, though, the main point of Evans’ s argument is that referential indeterminacy
cannot be extended to indeterminate identity statements. For Evans’s argument to have any force
against indeterminate identity, we should assume the referential determinacy of the terms involved.
This does not mean that ‘k = Kilimanjaro’ is not an indeterminate identity statement. It indeed is.
However, for Lewis—and also for our deflationist—to say that it is indeterminate is not to say that
the identity relation is indeterminate, or that the objects themselves are indeterminate. All it could
mean is that ‘Kilimanjaro’ is referentially indeterminate.
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‘Kilimanjaro’ determinately refers to”. There does not seem to be a way to argue
from the disquotation schema to the incompatibility between referential indetermi-
nacy and deflationism. The most one could say is that deflationism is neutral as to
whether singular terms are afflicted by referential indeterminacy: since, in the defla-
tionist’s view, the disquotation schema has the status of a definitional or stipulative
truth, it is determinately true and hence, it is determinate that there is a unique object
to which ‘Kilimanjaro’ refers. But that does not mean that the term has a uniquely
determinate referent; nor does it mean that it does not have a uniquely determinate
referent. The deflationist standpoint is just neutral about referential indeterminacy.

All the same, the above rejoinders to the argument from disquotation are silent as
to how the deflationist is supposed to explain the involved notion of indeterminacy.
We will pursue this theme in the context of the next argument for the incompatibility
thesis.

13.3 The Argument from Explanation

The second argument, the argument from explanation, directs at the conceptual
resources that are available to the deflationist for explaining referential indetermi-
nacy. The argument plausibly proceeds from the thesis that referential indeterminacy
is not a primitive phenomenon, resisting any sort of explanation. This should not be
surprising if we plausibly hold that neither reference nor indeterminacy is primitive.
As Taylor, who has recently defended the argument from explanation, writes

[referential indeterminacy] is not a brute, inexplicable fixture of reality. Something, after all,
must account for the difference between terms that are referentially indeterminate and those
which are not. (Taylor 2017, pp. 62–63)

Given this assumption, the deflationist, just like the non-deflationist, owes us an
explanation as to what referential indeterminacy is, or what it takes for a term to be
referentially indeterminate. However, the only way she could explain what it would
take for terms to be referentially indeterminate rules out the very possibility of any
term being referentially indeterminate.

13.3.1 The Formulation of the Argument

Let us discuss the argument in more detail. Taylor first puts forward the following
thesis to capture how the deflationist explains facts about reference:

The Insubstantiality of Reference. The fact that ‘Barack’ refers to Barry holds in virtue
of (at most) the fact that Barry = Barack and the meaning of ‘refers’. It thus requires no
additional explanationor grounding in termsof facts about causation, dispositions, intentions,
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associated descriptions, relative naturalness, or anything else, except to the extent that these
facts go into explaining the fact that Barry = Barack or the fact that ‘refers’ means what it
does. (2017, p. 54)

Taylor’s own example illustrates the point. Suppose we implicitly define a new two-
place predicate, ‘eviates’, in English according to the following schema:

For all x, ‘a’ eviates x iff x is a proper part of a.

Now, let us ask what explains the fact that ‘England’ eviates London. The answer
is: the fact that London is a proper part of England and the fact that ‘eviates’ means
what it does. There is no further explanation in terms of causal or metaphysical
relations between ‘England’ and London; nor is there any explanation in terms of our
intentions to use ‘England’ to refer to an entity. The suggestion is that the deflationist’s
explanation of the fact that ‘Kilimanjaro’ refers to Kilimanjaro is analogous to the
above explanation of the fact that ‘England’ eviates London.

Taylor goes on to argue that precisely because of her commitment to Insubstan-
tiality of Reference, the deflationist cannot explain what referential indeterminacy
consists in:

Andwhat I’d like to show is that deflationists, given their commitment to [the Insubstantiality
of Reference], simply cannot offer such an explanation – at least not without making RI
[referential indeterminacy] out to be derivative of some other type of indeterminacy. That
is, deflationists have no way of explaining what it would be for there to be direct RI. Hence
they have no way of making sense of such RI. (ibid, p. 63)

But what is Taylor’s argument? As said above, in the deflationist’s view, the disquo-
tation schema (1) holds in virtue of the meaning of ‘refers’. This is because she views
(1) as an implicit definition of ‘refers’. Assuming that τ = x , she holds, on the basis
of Insubstantiality of Reference, that the fact that ‘τ ’ refers to x holds in virtue of the
meaning of ‘refers’ and the fact that τ = x . Let us then encapsulate Insubstantiality
of Reference in the following thesis:

(2) The fact that ‘τ ’ refers to x holds in virtue of the fact that τ = x , and of the fact
that ‘refers’ means what it does in our language.

Taylor’s claim is that it is precisely the deflationist’s commitment to (2) that makes
an explanation of referential indeterminacy impossible: the fact that τ is identical
to x and facts about the meaning of ‘refers’ do not leave any room for referential
indeterminacy, since they always determine, for any given object x and any singular
term ‘τ ’, whether or not x is the referent of ‘τ ’. As a result, the deflationist has no
way of explaining what it would take for ‘τ ’ to be referentially indeterminate.

More precisely, the proponent of the argument from explanation claims that if
referential indeterminacy and deflationism were compatible, the deflationist should
have been able to appeal to (2) in order to explain referential indeterminacy, for
(2) is the only explanation of reference that is available to her. But the deflationist
cannot—for she does not have the resources to—explain referential indeterminacy
in this way.
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To appreciate this point, let us assume, with a view to a reductio, that the deflation-
ist can indeed supply the required explanation: she appeals to (2) and puts forward
the following claim:

(3) Facts about the meaning of ‘refers’ and the identity of Kilimanjaro do not deter-
mine a unique referent for ‘Kilimanjaro’: they neither determine k1 nor k2 as
the referent of ‘Kilimanjaro’.

If (3) is accepted, then both of the following statements must be compatible with the
facts about identity:

(4) ‘Kilimanjaro’ refers to k1.
(5) ‘Kilimanjaro’ refers to k2.

However, given (1), the above two statements, respectively, entail:

(6) Kilimanjaro = k1.
(7) Kilimanjaro = k2.

These latter statements must likewise be compatible with the facts about the identity
ofKilimanjaro.But they are not, sincewehave assumed that k1 and k2 are numerically
distinct; and yet (6) and (7) jointly entail that k1 is identical to k2. Hence, (3) should
be rejected, and since (3) is supposed to explain referential indeterminacy from the
deflationist’s standpoint, its rejection is tantamount to the endorsement of the thesis
that the deflationist cannot explain the referential indeterminacy of ‘Kilimanjaro’. Let
me put the point equivalently as follows: if (6) and (7) are to be compatible with the
identity facts, then it must be the case that k1 be identical to k2. But this contradicts
(3), according to which no particular object can be picked out as the referent of
‘Kilimanjaro’. So, the deflationist has to conclude that there is a particular object
that is picked out as the referent of ‘Kilimanjaro’. This just means that deflationism
is incompatible with referential indeterminacy.

In the following two sections, I will discuss two difficulties for the argument from
explanation; one focuses on the notion of incompatibility; the other on explanation.

13.3.2 Incompatibility

Powerful as it may seem, Taylor’s argument from explanation can be resisted. The
crucial point to note is that the arguments for referential indeterminacy work only
when we assume that the background notion of reference is not deflationary. For
example, the explanation of the claim that ‘Kilimanjaro’ is referentially indetermi-
nate is grounded in the thesis that facts about the way we use ‘Kilimanjaro’ and
all the relevant non-linguistic facts fail to single out a unique referent for the term.
The referential indeterminacy, in this sense, is the result of the fact, if it is one,
that the way the speakers in a community use their language, and also the relevant
non-semantic facts—such as the arrangement of atoms around Kilimanjaro—fail
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to pick out a uniquely determined referent for ‘Kilimanjaro’. The argument for the
referential indeterminacy of ‘Kilimanjaro’ would not work if the background notion
of reference was deflationary reference whose explanation is exhausted by the dis-
quotation schema that implicitly defines the word ‘refers’, and therefore does not
involve any fact about the way in which ‘Kilimanjaro’ is used by the speakers of the
community. So seen, referential indeterminacy arises only when a non-deflationary
conception of reference is already in play.

The argument from explanation demands that the deflationist should be able to
explain referential indeterminacy in terms of the conceptual resources built into the
deflationary conception of reference—for how could she explain it in any other way
if she recognizes no notion of reference beyond the deflationary one? This is an
important question, and we shall come back to it in the next section, but I do not
think that it poses a challenge to the deflationist. For she could say that if we had used
‘refer’ non-deflationarily, reference would have been vulnerable to indeterminacy. If
reference had been taken as an inflationary relation, then referential indeterminacy
could have been explained in the standard way: there is nothing in our thoughts,
linguistic practices, and non-linguistic facts that could single out a unique object as
the referents of our words. And if a deflationary notion of reference were employed
from the outset, referential indeterminacy would not arise.

But doesn’t that just mean that there would be no place for referential indeter-
minacy from the deflationist’s standpoint? The previous paragraph seems to restate
the incompatibility thesis by saying that referential indeterminacy arises only when
a non-deflationary conception of reference is employed.8

As I have set up the stage above, deflationism is motivated by the thesis
that the non-deflationary reference is indeterminate. That is, since reference, non-
deflationarily construed, is indeterminate, the deflationist invites us to use the notion
of reference deflationarily if we still want to keep ‘refers’ in our language. What
various arguments for referential indeterminacy show is that ‘refers’, as is used in
our ordinary thought and talk, cannot express the non-deflationary reference relation.
And since non-deflationary reference is vulnerable to indeterminacy, the deflationist
proposes the deflationary reference as a way of understanding ‘refers’ in ways that
vindicate our ordinary thought and talk.9 In this sense, it will be a truism to say that
referential indeterminacy is incompatible with deflationism. They are incompatible
not because one rules out the other, but because they do not meet each other.

To see the point more closely, let us consider the following formulation of the
argument from explanation:

(i) The deflationist’s putative explanation of referential indeterminacy has to go
through the resources available to her; i.e. facts about identity and the meaning
of ‘refers’.

8See Taylor (2017, footnotes, 26 and 45).
9See Soames (1999) who argues that this was Quine’s (1969) own strategy: the lesson of Quine’s
“inscrutability of reference” is that since the word-world inflationary reference is vulnerable to
indeterminacy, the best we can do is to replace it with a deflationary reference relation.
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(ii) But these facts rule out the possibility of any terms being referentially indeter-
minate.

(iii) Therefore, the deflationist cannot explain referential indeterminacy.

I argued that (i) should be rejected, not because the deflationist can explain referential
indeterminacy in terms of a conception of reference which is not available to her; but
rather, because she is just not committed to the thesis that referential indeterminacy
is to be explained in terms of deflationary reference: indeterminacy is the byprod-
uct of non-deflationary reference. Why should we expect the deflationist to explain
something that does not arise within the realm of her deflationary reference? (i), in
effect, states that the deflationist’s explanation of referential indeterminacy (which is
the byproduct of inflationary reference) must go through resources involving defla-
tionary reference; and this premise can be resisted.

Deflationism, so seen, is the right conclusion to draw from the argument for
referential indeterminacy: if reference is non-deflationary, it is indeterminate. But
there is a sense in which reference is not indeterminate: when we use ‘Kilimanjaro’,
we intend to refer to exactly one object; i.e. Kilimanjaro. Thus, deflationary reference
should be adopted in order to account for our everyday talk about reference. Here is
how McGee has expressed this tension about reference:

There isn’t anything inmy linguistic usage or in the linguistic usage ofmy speech community
that picks out a unique individual as the thing I refer to by “Kilimanjaro” ; this is so even if
we allow the thoughts we express by employing a word to count as part of its “usage,” and
even if we allow “usage” to take account of causal connections between our words and our
environment. Yet, quite unmistakably, there is one and only one individual I refer to when I
use the name “Kilimanjaro,” namely Kilimanjaro itself. (McGee 2005, pp. 409–410)

And the solution he offers is that compatibly with the inflationary notion of reference
suffering from indeterminacy, there is a way of understanding ‘refer’ that accommo-
dates our ordinary thought and talk. This is captured by the deflationary notion of
reference.

Let us then summarize the deflationist’s position: shewould say that on the basis of
the disquotation schema, ‘Kilimanjaro’ refers to Kilimanjaro and to nothing else, but
that does not entail that ‘Kilimanjaro’ is referentially determinate; nor does it entail
that it is not referentially determinate: whether or not it is referentially determinate
depends on what reference-determining facts might constraint our use of ‘Kiliman-
jaro’. If none of these determines a unique referent for ‘Kilimanjaro’, deflationism
cannot narrow down the range of the candidates, either.

13.3.3 Explanation

The argument from explanation faces another challenge. As we said above, accord-
ing to the customary explanation of referential indeterminacy, reference-determining
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facts, generously understood, fail to pick out a unique referent for a given term. How-
ever, to say that the customary explanation is not available to the deflationist does not
mean that there are no other explanations that she may appeal to. If referential inde-
terminacy could be explained independently of the ingredients of a non-deflationary
theory of reference, then its explanation would be available to the deflationist.

A proposal along this line has been developed by Field (2000, 2003). He seems
to admit that the deflationist cannot explain referential indeterminacy in terms of
our linguistic practices having failed to pick out a unique referent for the terms of
our language. For how can she explain it in terms of the ingredients of a theory of
reference if she recognizes no notion of reference beyond the deflationary one? As
a result, she must explain referential indeterminacy independently of a theory of
reference.

Field’s proposal is to understand indeterminacy in terms of non-standard prob-
ability distributions in the speaker’s belief system. On this account, indeterminacy
is, fundamentally, a psychological phenomenon, such that the degree of belief in the
indeterminacy of a sentence is measured by the extent to which the probability of it
and its negation sum to less than 1. That is, for an agent to believe that a sentence
is indeterminate is for her to have degrees of belief in it and its negation that sum to
less than 1; and to believe that a sentence is determinate is to have degrees of belief
in it and its negation that sum to 1.

This account of indeterminacy does not rely on any theory of reference, and is
thus available to anyone who thinks that reference is to be explained only in terms
of the deflationary conception. If indeterminacy of sentences (and derivatively, the
referential indeterminacy of sub-sentential expressions) can be explained along this
line, the deflationist does not need to give up her belief in referential indeterminacy:
she can ground it not in a theory of reference, but in the probability distributions
in our belief system. On this view, there can still fail to be a determinate referent
for ‘Kilimanjaro’, or a determinate extension for ‘bald’, but the indeterminacy in
question is not to be explained in semantic terms. The argument from explanation,
therefore, fails to supply a knock-down argument against the deflationist’s ability to
explain referential indeterminacy.10

The questions of whether Field’s framework is defensible and whether there is
another way to find referential indeterminacy at the ground level independently of
semantics are large and largely unexplored questions. What it is clear, though, is
that any proponent of the argument from explanation has to examine such arguments
before establishing the incompatibility claim.

It should also be noted that by referring to Field’s account, I do not aim to empha-
size on the familiar point that deflationism can explain vagueness as a non-referential
phenomenon. For example, Akiba (2002) argues, from a deflationist standpoint, for

10There are also other theories of indeterminacy that do not explain referential indeterminacy in
the standard way. For example, in his (2018), Andrew Bacon defends a propositional account,
according to which it can be propositionally indeterminate whether a term ‘a’ refers to x—i.e. the
proposition that ‘a’ refers to x is indeterminate—and this indeterminacy is not explained by the
way people use particular words (e.g. ‘refers’, ‘a’, or ‘x’, etc) but in terms of the way they think
about reference, ‘a’, x , etc.
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a metaphysical account of vagueness. The deflationist Horwich (1998) concedes that
vagueness cannot be taken as a referential phenomenon, and defends a version of
epistemicism. Field also treats vagueness as a psychological phenomenon. My point
against the argument from explanation does not rest on the thesis that deflation-
ism can treat vagueness as a non-referential phenomenon, but rather, is based on the
claim that where referential indeterminacy arises, the deflationist will be in a position
to explain it independently of semantic resources; and so her explanation would not
rest on semantic notions such as inflationary reference, which are not available to her.

13.4 Concluding Remarks

The standard account of referential indeterminacy maintains that indeterminacy
arises from the use of terms, and the relevant non-linguistic facts, failing to latch on to
a unique referent. So it seems that deflationism about reference does not make much
room for referential indeterminacy. If it is a definitional—and so, a determinate—
truth that ‘Kilimanjaro’ refers to Kilimanjaro, then it would not be possible for there
being anything else that ‘Kilimanjaro’ is indeterminate between referring to. So there
cannot be indeterminacy of reference.

In Sect. 13.2, we have argued that the deflationist can resist this challenge, and in
Sect. 13.3, we have shown where the argument from explanation fails: the argument
tells us that the deflationist cannot explain referential indeterminacy in terms of
the components of a deflationary conception of reference. But my point is that the
deflationist is just not committed to the thesis that referential indeterminacy is to be
explained in terms of deflationary reference.

In the end, we have stressed on the fact that there are other theories of
indeterminacy—in particular, Field’s—which do not explain referential indetermi-
nacy in terms of our linguistic practices having failed to pick out a unique referent
for ‘Kilimanjaro’, or—in Field’s case—a unique extension for vague predicates such
as ‘bald’. Since the indeterminacy in question is not explained in semantic terms, the
argument from explanation does not put forward an adequate argument against the
deflationist’s ability to explain referential indeterminacy.
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Chapter 14
The Curious Neglect of Geometry
in Modern Philosophies of Mathematics

Siavash Shahshahani

Abstract From ancient times to 19th century geometry symbolized the essence of
mathematical thinking and method, but modern philosophy of mathematics seems
to have marginalized the philosophical status of geometry. The roots of this trans-
formation will be sought in the ascendance of logical foundations in place of intu-
itive primacy as the cornerstone of mathematical certainty in the late 19th century.
Nevertheless, geometry and geometrical thinking, in multiple manifestations, have
continued to occupy a central place in the practice of mathematics proper. We argue
that this, together with advances in the neuroscience of mathematical processes, calls
for an expansion of the present limited remit of the philosophy of mathematics.

Keywords Geometry · Arithmetic · Set ·Manifold · Riemann · Arithmetization ·
Ontology

The term ‘modern’ refers here to philosophical discussions aboutmathematics begin-
ning with the ‘Big Three’ (1) philosophies of early twentieth century, namely Logi-
cism, Intuitionism and Formalism, up to the current discourse. Whereas in earlier
times, Geometry appeared as one of the two founding pillars of mathematics, often
representing the purported true character of the field, it now tends to occupy a
marginal place philosophically in comparison to such areas as set theory or arithmetic.
Notwithstanding the merits of the rather maverick representation of set theory as the
‘geometrization of mathematics’ by mathematician Yuri Manin (2), the consensus
among philosophers of mathematics does not appear to favor a primary role for
geometry or geometric thought. A more indicative sentiment “… a disturbing secret
fear that geometry may ultimately turn out to be no more than the glittering intu-
itional trappings of analysis” was expressed by G. D. Birkhoff in 1938 (3). In this
paper we try to show how the same historical forces that engendered the modern
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discourse in the philosophy of mathematics contributed to the change in the philo-
sophical standing of geometry. The mathematical developments of the second half
of 19th century will necessarily play a prominent role in this brief historical account.

14.1 Origins of Paradigm Change

Classically, mathematics was conceived as the science of magnitudes: arithmetic
dealing with the discrete, and geometry with the continuous. This is explicitly enun-
ciated, e.g., by Aristotle in the books comprising the Organon. In Categoriae he
describes the two categories, and in Analytica Posteriora he warns against mixing of
the two on account of their separate ontological underpinnings (4). Al-Khwarizmi,
the inventor of algebra,writes in the preamble to his treatise, al-Jabrwa al-Muqabala,
that he has come up with a method that is equally effective in dealing with problems
of both natures (5). Nevertheless, medieval philosophical writers, in both Arabic and
Latin traditions, were dismissive of algebra as a proper science, perhaps because of
the suspicious ontological essence of the ‘unknown x’. Even later, Descartes did not
regard his wholesale reduction of geometric problems to the computation of numer-
ical quantities as a demotion of the status of geometry, but simply as the introduction
of the method of ‘analysis’, a tool for discovery and proof (Descartes 1954). Geom-
etry retained its standing as the science of extant physical space and a subject of
philosophical speculation at least until the middle of the 19th century. Kant’s tran-
scendental idealism did not detract from the empirical reality of geometry, it only
redefined geometry as the framework of intuitive spatial construction (Kant 1998,
B37-40, B120).

Several mathematical developments of the second half of 19th century provided
the bases for paradigmatic change in the position of geometry. One is best exem-
plified by B. Riemann’s celebrated Habilitation lecture of 1854 (6) in which he
declares, among other things, that the investigation of the geometry of existing
universe is not a purely mathematical question, but one that belongs to experi-
mental science. Riemann showed how a multidimensional continuum (manifold or
‘Mannigfaltigkeit’) is capable of carrying an infinite number of possible geometries,
the choice to be determined by contingent criteria. Thus, the purely mathematical
study of geometry changed focus from a natural science of extant space (either a
priori as in Kant, or ultimately experience-based) to the wide-open mathematical
exploration of possible geometries.

Earlier, Riemannhad pioneered a geometric approach to complex analysis through
the introduction of what are known today as Riemann surfaces. In that approach
one witnesses the first effective appearance of analysis situs (7), a non-metric form
of geometry, which became the forerunner of algebraic topology in the hands of
Poincaré, Brouwer and their followers. Because the proper language for the rigorous
treatment of the subject was not available then, Riemann’s intuitive approach did not
find universal approval, and a well-known controversy ensued between the followers
of Riemann and those of the more rigorous analytic school of Weierstrass. Among
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other difficulties, Riemann surfaces were beset by the ontological problem of the
absence of a natural habitat in physical space; they were among the early members
of the proliferating list of ‘ideal mathematical objects’, as they were referred to
in German mathematics of the 19th century. The likely interaction with German
idealism has been noted by several authors (see e.g., Laugwitz (1999), Scholz (1982)
and Wagner (2017)).

Another development was the ongoing logical analysis of the deductive structure
of Euclidean geometry. This had a long history going back to attempts at proving
Euclid’s Fifth Postulate and the explorations of non-Euclidean geometries. In the 19th
century, several mathematicians including Bolzano and Pasch initiated a rigorous
approach to Euclidean geometry marked by replacing intuitive and sensible plausi-
bility with logical primacy and simplicity. This movement culminated in Hilbert’s
Grundlagen der Geometrie of 1899, and especially the more complete 1903 edition
of the work. Therein Hilbert demonstrated that elementary Euclidean geometry, far
from being a simple body of propositions encapsulated by five Euclidean axioms,
possesses a rich and complex logical structure which can be broken up into simpler
comprising axiomatic systems (Hilbert 1990). This marks a turning point in the
conception of axiomatics in mathematical practice. As the early advocate Bolzano
had prescribed (8), Hilbert supplanted perceptual and intuitive simplicity by logical
purity and clarity as first principles. The ontological implication was that mathemat-
ical objects would no longer be regarded as perceptible space-time entities, but as
new kinds of objects whose mode of existence stirred up discussion and controversy.

A by-product of these developments was that any rigorous investigation of contin-
uous magnitudes would hinge on the exact formulation of the concept of continuum,
i.e., the systemof real numbers. But delving into the nature of continuousmagnitudes,
already a challenging task for ancients in view of apparent paradoxes it entailed, had
become even more daunting since the introduction of calculus and infinitesimals.
A succession of efforts, notably by Bolzano, Cauchy, Dedekind, Weierstrass and
Peano, finally led to the so-called ‘arithmetization’ of real-number system, i.e., the
ultimate construction of real numbers, hence of continuous magnitudes, from natural
numbers. A consensuswas being reached that natural numbers provided the incontro-
vertible safe haven onwhich all mathematics could be based. This went hand-in-hand
with the growing foundationalist tendencies of the late 19th and early 20th centuries.
Later endeavor of basing the natural number system on set theory further distanced
geometry from the core of what was taking shape as the foundational infrastructure
of mathematics.

14.2 Foundationalist Schools

Webegin our brief account of the treatment of geometry by the threemajor schools of
the philosophy of mathematics in early 20th century by noting that the three shared a
remarkable attitude of abeyance toward geometry, a fact that undoubtedly contributed



382 S. Shahshahani

to subsequent further marginalization and neglect. While the forces of foundation-
alism and arithmetization played a major role in this tendency for all three, separate
examination of the matter in each case may be of some merit. Starting with the logi-
cists, it is doubtful whether this label befits Dedekind as is sometimes claimed (9).
Without getting into the controversy, Dedekind’s relevance to the present discussion
is that his two foundational essays Stetigkeit und irrationale Zahlen and Was sind
und was sollen die Zahlen (10) may be cast as mathematical manifestos of arithme-
tization (for which Dedekind gives original credit to Dirichlet), rather than attempts
at philosophical system making. His declaration in the Preface of the latter tract
that arithmetic (i.e., algebra and analysis) is part of logic is immediately qualified to
mean that “numbers are independent of the notions and intuitions space and time”,
as against Kant. Instead, natural numbers are “free creations of the human mind”
and give rise through a logical mental process to the construction of the continuum.
It is also worth emphasizing that unlike Frege and Russell, Dedekind (the struc-
turalist) does not commit himself to any firm ontology for numbers. Example: A
‘Dedekind cut’ is not itself a real number by Dedekind’s reckoning, but a faithful
representative of the ‘idea’ of a real number. This juxtaposition of subjective “free
creation” and objective “logical process”, so prone to charges of ‘psychologism’ by
the arch-logicist Frege, was not foreign to German idealism and post-Kantianism
of the 19th century, as mentioned earlier. It was probably shared by Dedekind’s
close mathematical companion, Bernhard Riemann. Dedekind did for algebra and
analysis what Riemann had done for geometry: together they liberated mathematics
from the ontological yoke of sensible and physical referents. For Dedekind, the word
‘logic’ seems to be synonymous with the common norms of ‘pure rational thought’,
without any commitments to a formal system of logic. Philosophical pronounce-
ments by Dedekind or Riemann are best regarded as thoughtful musings of philo-
sophically minded mathematicians about their daily activity, a strong tradition of
German science throughout the 19th century and the first half of the 20th. There is no
direct inclusion of geometry in Dedekind’s framework of arithmetization, and there
seems to be no major philosophical reference to geometry in his work. It is known
that he attended Riemann’s various lectures of geometric flavor while they were both
privatdozents atGöttingen, and he played amajor role in publicizingRiemann’swork
after the latter’s death. Even if Dedekind’s representation of the continuum leads one
to believe that he considered geometric discourse logically reducible to numerical
domain, it is doubtful that he considered such an endeavor worthwhile in view of
an explicit statement that “…I see nothing meritorious…in actually performing this
wearisome circumlocution…,” (11) referring here, in general, to re-writing products
of mathematics research in terms of integer arithmetic.

Moving along the logicist thread, although Frege was a realist about the exis-
tence of mathematical objects, he held arithmetical and geometric objects to totally
different modes of existence. He ventured on a project to embed arithmetic in logic
by proposing the first formal definition of natural numbers, an undertaking that came
to an end with the revelation of Russell’s paradox. On the other hand, Frege accepted
Kant’s account of geometry as a synthetic a priori science about existing space and
never seemed to have abandoned the idea of unique space-time referents for geometric
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concepts. This is clearly borne out in his correspondence with Hilbert (Frege 1980)
regarding the latter’s work on the foundations of geometry. The disagreements in the
exchanges about the status of definitions and axioms demonstrate that Frege was out
of step with the emerging Zeitgeist in the field. Tappenden has tried valiantly to inval-
idate this opinion, see Tappenden (1995, 2006), by pointing out Frege’s Göttingen
background, his extensive teaching of complex analysis at Jena in Riemannian style
and even his library borrowing record. But irrespective of any sympathetic leanings
toward Riemann’s geometric treatment of complex analysis, Frege, the mathematics
philosopher, was completely silent about the nature of existence of geometric objects
such asRiemann surfaces or non-Euclideanmanifolds. The disconnectmay be under-
standable in view of Frege’s insistence that what distinguishes mathematics from
games is its applicability to science. Some, but not all, of Riemann’s geometric work
had connections with science at the time, but the ontological status of the geometric
objects in the work remained uncomfortably outside Frege’s domains of reference.
This said, however, one can still confidently assert that there is no evidence that at
any time during his career, Frege intended arithmetization to extend to geometry.

In Russell’s full-blooded logicism, all of mathematics, including geometry to the
extent that it was not the applied geometry of physical space, had to be subdued
under the banner of arithmetic, which in turn was meant to be logicized. In his 1903
The Principles of Mathematics, which was to serve as a philosophical prelude to the
later joint work with A. N. Whitehead, Principia Mathematica, Russell writes:

There is thus no mystery to the continuity of space, and no need of any notions not definable
in Arithmetic. (Russell 1996, paragraph 419)

In particular, he adopted Cantor’s approach to the realization of the continuum of
real numbers and went on to discuss how all known geometries could be constructed
on the basis of this definition. It is true that in an earlier work, An Essay on the
Foundations of Geometry (1897) (Russell 1956), he accepted theKantian conception
of geometry as synthetic and a priori, only replacing Kant’s Euclidean geometry by
Projective Geometry. In that treatise, however, Russell’s focus was on the applied
geometry of existing physical universe, not the geometries of pure mathematics.

The cases of Brouwer and Hilbert, representing respectively the Intuitionist and
Formalist philosophies of mathematics, are especially puzzling. Brouwer’s proper
mathematical work, outside the development of Intuitionist mathematics, was almost
entirely geometric in nature. Not only is his best-known mathematical work in the
geometric realm of analysis situs; his approach is a virtuoso display of exceptional
geometric intuition. Surprisingly, then, he rejects theKantian notion of a priori spatial
intuition but retains the intuition of time, which Kant associated with arithmetic.
Brouwer considers the transition from ‘one-ness’ to ‘two-ity’ to be the source of all
mathematics, as shown by the following excerpt:

Must it be concluded that there is no a priori form of perception of at all for the world
of experience? There is, but only in so far as any experience is perceived as spatial or
non-spatial change, whose intellectual abstraction is the intuition of time or the intuition
of two-in-one. From this intuition of time, independent of experience, all the mathematical
systems, including spaces with their geometries, have been built up … (12)
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Although Brouwer’s intuitionistically constructed continuum is entirely distinct
from that of Dedekind-Cantor-Weierstrass, a version of arithmetization again lurks
in the background. Both Brouwer and Russell base their rejection of Kantian spatial
intuition on a narrow interpretation of Kant to the effect that his conception of space
is decidedly Euclidean. That such an interpretation is founded on an uncharitable
reading of Kant has been pointed out, among others, by Cassirer, see e.g., Biagioli
(2019).

On the face of it, arithmetization is more understandable in connection with
Hilbert’s Formalist program. Hilbert set out to defend the ontology-liberated
and sometimes non-constructive mathematics that had emerged with epicenter at
Göttingen, as well as Cantor’s set theory, against the critics he considered overly
traditional, if not outright reactionary. He envisaged a solid core of contention-free
mathematics surrounded by a large nebula of what was being dubbed as ‘idealistic
mathematics’. The latter contained abstractmathematical constructs not immediately
representable in space-time, propositions dependent on completed infinities and non-
constructive existence proofs. Hilbert was fond to point out that many concepts, such
as imaginary numbers, which had initially met resistance as legitimate mathematical
entities, had over time achieved respectability by finding acceptable representation
and/or providing facility of discourse in traditional mathematics. He aspired to show,
through the use of non-controversial ‘finitary’ methods, that this surrounding enve-
lope will not cause any inconsistency that would blemish the certainty so character-
istic of the core mathematics. An important task was to decide what to include in the
core. A minimal inventory seemed to include finite combinatorial mathematics, as
well as the arithmetic of common integers at least to the extent that no strong form
of mathematical induction, relying on the existence of the completed infinity of inte-
gers, would be used. The very act of delimiting the core beyond contention seemed
to involve seeking a ‘foundation’ for a part of mathematics. A rough consensus
among Hilbert’s followers identified Skolem’s Primitive Recursive Arithmetic as the
core. Although Hilbert did not object to the inclusion of PRA, and formalist efforts
followed this arithmetical thread, he does not seem to have explicitly equated the
core with PRA (13). One could speculate that Hilbert may have had the inclination
to include experience-based elementary geometry in the intuitively certain core of
mathematics just as he included common integers, although it is hard to conceive how
such a project would have been assembled. In fact, there is plenty of evidence that
Hilbert’s ‘world view’ of mathematics extended well beyond what became known
as the Hilbert Program. In connection with geometry, the following excerpt from the
Preface of his Anschauliche Geometrie (14) is telling:

… the common superstition that mathematics is but a continuation, a further development, of
thefine art of arithmetic, of jugglingwith numbers.Our book aims to combat that superstition,
…

It should be pointed out that this book, published in 1932, was based on lectures
Hilbert had given in 1920–21. These were the times Hilbert was in fact engaged
in his foundationalist thoughts. In addition to his earlier work on the foundations of
geometry, Hilbert made important contributions to differential geometry andGeneral
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Relativity, although his work in algebra and analysis is better known. As has been
pointed out (see, e.g., Franks (2009)), Hilbert was primarily a mathematician, and
his forays into the philosophy of mathematics were motivated by putting an end
to philosophical misgivings about the legitimacy of the paradigm change that was
taking shape in mathematics. Although his specific project met disappointment in
Gödel’s incompleteness results, the style of mathematics he was advocating thrived
in the 20th century, and his Program ushered in new areas of research inmathematics.

14.3 Geometry as a Mode of Mathematical Thought

Notwithstanding the dwindling attention paid to geometry in the emerging foun-
dational philosophies of mathematics, geometrical thinking figured prominently in
the mathematical developments of the same period. As pointed out earlier, Riemann
could be identified as the source of two of the strongest currents of 20th centurymath-
ematics, both of geometric flavor. One flowed from the aforementioned Habilitation
tract and its further mathematical elaboration in a paper of 1861 (both unpublished in
his lifetime). These gave rise to tensor calculus andmodern differential geometry. His
earlier work in complex analysis was the first effective appearance of analysis situs,
which became the forerunner of algebraic topology in the hands of Poincaré, Brouwer
and others. The ontological vacuum that afflicted Riemann’s original conception of
Riemann surfaceswas remedied through the use of the language of point-set topology
by Hermann Weyl. Algebraic topology methods became one of the most influential
tools in 20th centurymathematics, among the off-shoots ofwhich one shouldmention
category theory, a field that has been regarded as rival to set theory for the foundation
of mathematics. Riemann surface theory itself, through fusion with other fields and
generalizations, continues to be a centerpiece of mathematical research today.

One could mention as aside here a possible justification for Manin’s earlier-
mentioned characterization of set-theoretic framework for mathematics as a
geometrization. It is well-known that Cantor’s interest in sets initiated with his
attempt to generalize the work of Dirichlet and Riemann on the possible sets of
discontinuities of functions representable by trigonometric series (Grattan-Guinness
1980). Thus, complicated point sets of the real line were Cantor’s early targets of
study; an undertaking of obvious geometric flavor. In fact as mentioned by various
authors, e.g., Ferreiros (2007, p. 72), Cantor’s choice of terminology for a point set
in his early papers was not the GermanMenge (=set), butMannigfaltigkeit (=mani-
fold), a term adopted by Riemann (and in fact of earlier use) to describe abstract
habitats of geometric discourse in mathematics. The visual image of a point set
survives in the mind and the informal practice of mathematicians, especially in fields
such as geometric topology. Moreover, the set language is often presented visually
to beginners through Venn diagrams and similar devices. However, such geometric
semantics has long been usurped, no doubt through necessity, by the logical syntax
of axiomatic set theory.



386 S. Shahshahani

In contrast to pre-Cartesian geometry that stood apart from arithmetic in subject
and method, most of modern geometry/topology is so heavily infused with the
powerful tools of analysis and abstract algebra that it is sometimes difficult to judge
where the ‘real geometry’ resides. No wonder Birkhoff’s lament in the opening para-
graph of this essay, uttered by a mathematician whose initial fame owed much to
proving the so-called ‘Poincaré’s last geometric theorem.’ In fact, this inter-mixing
of disciplines has been the hallmark of mathematics for more than half a century. The
‘foundational fields’, i.e., set theory and mathematical logic, have come to occupy
their separate cornerwhile there is intensive interaction betweenother fields ofmathe-
matics to the extent that most of the current cutting-edge research cannot be assigned
one pure lineage. This estrangement between the foundations and the traditional
body of mathematics has contributed to the alienation of the bulk of mathematical
community fromwhat is currently dubbed as the philosophy ofmathematics. Current
discourse in this field, especially that carried out by academics of analytic tradition,
equates mathematics with set theory and is essentially oblivious to the philosophical
concerns of most practicing mathematicians. This is in stark contrast to the heydays
of early twentieth century when mathematicians of all persuasions were involved in
the then burgeoning debates about the nature and the methodology of mathematics.

Getting back to the subject of the paper, we can now identify three inter-related
factors that have affected the change in the philosophical status of geometry:

1. Geometry started out as a natural science of extant physical space, a physics
stripped of motion. As such it provided a static, stable and perceptually simple
background upon which physics could be based. Developments in mathematics
and science have expanded this into a study of diverse geometries many of which
are not immediately perceptible as space-time entities.

2. The search for logically simple foundations for pure mathematics focused
attention on purportedly primitive notions such as natural numbers and pure
sets. As Hilbert showed, perceptual simplicity of geometry, even of Euclidean
variety, concealed considerable logical complexity. This, and the proliferation of
geometries, disqualified geometry as a logical foundation for pure mathematics.

3. The changing nature of mathematics, especially the synthesis of once disparate
fields, has expanded geometric inquiry, from the study of specific areas histori-
cally identified as geometry, to a style and approach for comprehending complex
mathematical phenomena. Broadly stated, arithmetical mathematics, emanating
from a one-dimensional configuration, is best suited for the syntactic and algo-
rithmic treatment of mathematics and lends itself more naturally to analysis
within existing logical systems. On the other hand, geometric approach to math-
ematical content is a more holistic and semantic form of comprehension tied
ultimately to human perception and intuition. This duality was highlighted
in Poincaré’s semi-philosophical popular trilogy (15), Hilbert’s Anschauliche
Geometrie, and continues to be a subject of discussion in contemporary mathe-
matical community (see Jaffe and Quinn (1994)). While there is no static demar-
cation between the two modes of comprehension, extremes of intuitive approach
have raised alarm flags of subjectivism and psychologism, a predicament that did
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not fare well in the positivist philosophical milieu where the current philosophy
of mathematics originally took shape. It can be argued that the proper medium
for the study of mathematical intuition is cognitive science or neuroscience. Such
studies are being attended to, (16), but are still in the stage of infancy. Future
philosophy of mathematics would have to expand its remit to deal with the fruits
of such research if it is to have relevance to the practice of mathematics.

Notes

(1) The appellation ‘Big Three’ was coined by Stewart Shapiro as the heading of a
part of his book Thinking aboutMathematics: The Philosophy ofMathematics,
Oxford 2000.

(2) See Yuri Manin’s discussion of Sets in his book Mathematics and Physics,
reproduced as Part II of Manin (2000).

(3) The quote is from G. D. Birkhoff’s address ‘Fifty Years of American Mathe-
matics’ in Amer. Math. Soc., Semicentennial Addresses, Vol. 2, pp. 270–315,
reproduced in Birkhoff (1968).

(4) In Organon of Aristotle (2001) see Categoriae 6, 20–35 and Analytica
Posteriora I7, 40.

(5) See Rashed (1994, Chap. I, pp. 9–10).
(6) Über die Hypothesen welche der Geometrie zu Grunde liegen. First English

translation byW.K. Clifford, amoremodern translation can be found in Spivak
(1979).

(7) Analysis situs was originally used by Leibniz apparently as a general term for
transformation geometry; see e.g., V. De Risi’s Geometry and Monadology:
Leibniz’s Analysis Situs and Philosophy of Space (Birkhäuser 2007). In the
19th century the term came to be used for what is now topology.

(8) See excerpts A and B of the work of Bolzano in Ewald (1996, Chap. 6).
(9) For a discussion, see Reck (2013) and Demopoulos and Clark (2007).
(10) English translations of Dedekind’s two essays are now available in one volume

(Dedekind 1963).
(11) See the Preface to the First Edition of the second part of Dedekind (1963,

p. 35).
(12) See Brouwer’s article ‘The Nature of Geometry’ in Brouwer (1975).
(13) Accounts of Hilbert’s philosophy can be found in Ewald (1996, Chap. 24

excerpts), and in his ‘On the Infinite’, reproduced in Philosophy of Math-
ematics: Selected Readings (2nd ed.), ed. by P. Benacerraf and H. Putnam,
Cambridge 1983.

(14) The quote is from the English translation by P. Nemenyi of the book under the
title Geometry and Imagination (Hilbert and Cohn-Vossen 1952).

(15) English translations of Poincaré’s three popular works Science and Hypothesis
(1903), The Value of Science (1905) and Science and Method (1908) appear
as a single volume (Poincaré 2001).
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(16) Pioneering work in this area is carried out, among others, by Stanislas Dehaene
and co-workers. It is reported in Amalric and Dehaene (2016) that “high-
level mathematical reasoning rests on a set of brain areas that do not overlap
with the classical left-hemisphere regions involved in language processing or
verbal semantics.” Perhaps surprisingly, they found no appreciable difference
between geometers and non-geometers tested in the experiments.
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Chapter 15
De-Modalizing the Language

The Case of Physics

Kaave Lajevardi

Abstract With the aim of providing an empiricist-friendly rational reconstruction
of scientists’ modal talk, I represent and defend the following unoriginal idea of
relative modalities, focused on natural ones: the assertion of physical necessity of
ϕ can be understood as the logical provability of ϕ from the background theory of
the context of assertion. I elaborate on my conception of the background theory, and
reply to a number of objections, among which an objection concerning the failure of
factivity.

Keywords Natural modalities · Modal talk in physics · Physical necessity ·
Background theory · Laws of nature · Factivity
Some empiricists, me included, abhor some alethic modalities. Not that I am in
any way opposed to logico-algebraic studies of modal logics (modal logics, in the
plural); rather, what I do dislike is speaking of “modal facts” as if there are facts
which, in any significant and not purely logical sense, transcend experience. For
all I have gathered from friendly and informal chats with an eminent intuitionist, I
surmise that the dislike is shared by some intuitionists.1

My task in this article is not to launch any argument against the metaphysics of the
modern Kripkean orthodoxy. What I intend to do is this. Suppose that an empiricist
has triumphantly fought a metaphysical battle against the realist, and suppose that
our empiricist is now challenged to make sense of modal talk in sciences, given that

1The intuitionist in question is my former teacher, once-colleague, and invaluable friend andmentor
of more than a decade now, logician Mohammad Ardeshir, to whom this article is dedicated and
this volume is presented. Having first encountered Ardeshir’s name through logic when, as a high-
school student, I discovered his mid-1980s translation of Ernest Nagel and James R. Newman’s
Gödel’s Proof , with its gaudy yellow cover, I would have loved my contribution to this volume
to be something in logic; as that didn’t materialize, I chose to re-present a chapter of my doctoral
dissertation. Embellished with a number of comments on the works of several logicians on relative
necessity, I hope a minimal logical flavour can be tasted now.
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she has supposedly cast serious doubts on the coherence of some modalities. This
article is my attempt to meet the challenge in the realm of physics.

More specifically, I will defend a relativistic interpretation of physicists’ talk of ‘it
is necessary that’ and ‘it is possible that’, an interpretation which is both empiricist-
friendly and captures the actual use of assertions such as ‘it is impossible to move
faster than light’. To repeat: it should be kept in mind that my discussion is not
a metaphysical one—I am not concerned with the metaphysical status of physical
statements or the feasibility of a reduction of physical necessity to logical or any other
kind of necessity; my business is to give an account—a ‘rational reconstruction’, if
you will—of the working physicists’ modal talk in physics.

This article is organized as follows. After this introduction, I will (Sect. 15.1)
formulate my thesis of relativistic reading of physical modalities as they occur in the
everyday life of physicists, and I will elaborate on my notion of background theory
to which I reduce the talk of physical modalities. I will then (Sect. 15.2) defend
the thesis against a number of objections. Finally (Sect. 15.3, which is really an
appendix), I will present a very brief history of relativizing modalities.

15.1 Relativizing to the Background Theory

What does a working physicist mean when she says that moving faster than light
is impossible? Enquiring into what someone means by something might, in part,
be a psychological enquiry which I cannot possibly undertake here; what I am
really looking for is a plausible rational reconstruction of physicists’ modal talk.
I aim at providing a way of paraphrasing modal talk in physics, in such a way that
paraphrasing a sentence results in a modality-free sentence which is of the same
truth-value as the paraphrased one. It is my contention that modal claims in physics
can always be understood as dependent on the background theory of the context of
the utterance: in my rational reconstruction, scientific talk of physical possibility is
talking of compatibility with the background theory, and scientific talk of physical
necessity is talking of provability from the background theory (see the Thesis below).
But first I have to clarify the notion of background theory which is in use here.

In modern mathematics today, wemay almost always present portions of standard
set theory as our background theory, but things may not always be that clear-cut in
the case of physics. In any given context, by the physical background theory (or
just the physics, for short) I mean all the explicitly formulated physical principles,
plus all the assumptions about initial conditions, plus all the needed mathematics,
that are used in arguments and derivations.2

2Thuswhat I call a ‘background theory’ is a set of sentences. I am not unaware of some philosophical
debates on how to understand the notion of a scientific theory (as contested by those who favour
the so-called semantic and syntactic views of theories), but such discussions are orthogonal to my
concern here, which is understanding modal talk in the sciences, not theorizing about the notion of
a physical theory or physical modalities.
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Thus in a given context, our physical background theory—as I stipulatively define
it—is the totality of whatever assumptions we use in that context. This may include
some statements of common-sense intuitions, aswell as “a good deal of unformulated
general opinion”, asMonton and van Fraassen (2003, p. 410) put it in their discussion
of counterfactuals.

The background theory may vary from context to context: some general state-
ments, initial conditions, or particular facts might be part of the background theory
in one context and not part of another. To get a clearer image of this notion of back-
ground theory, it might not be amiss to give a non-scientific example. Here is a
case of a shift in context, which is based upon an example given by Russell (1905,
p. 519). Consider these two events: (A) the awarding of the Fields Medal to Paul
J. Cohen, August 1966, and (B) the death of L.E.J. Brouwer, December 1966. Was
it necessary that A happened before B? I think we ordinarily answer this question
in the negative: for aught we know about the relevant facts (including facts about
the driver of the vehicle who ran over Brouwer in Bralicum), there is no significant
connexion between A and B. Yet in a context wherein you and I both know about the
times these events occurred, if we hear someone saying that such and such happened
before Cohen won the medal but after Brouwer died, we may quite reasonably say
that that is impossible because Cohen became a Fields Medalist before Brouwer’s
death. The point is that here we have a context wherein we take the particular fact
into account that A occurred before B—this, together with many other facts such as
the linear ordering of moments of time, is part of the background theory of this little
conversation.

Having such a broad notion of background theory, my notions of provability and
compatibility are strictly and classically logical: p is provable from T iff there is
a proof of p from T in the standard sense of classical first-order logic, and p is
compatible with T iff p is consistent with T in the same sense.

A realist may contend that, independent of what the consequences of our current
theories are and independent ofwhat is or is not logically compatiblewith our physical
theories, moving faster than light is, as a matter of (modal) fact, either physically
possible or physically impossible. Now whether or not there are objective, genuine
modal facts about the world is an issue I do not deal with in this article. What I
am arguing for is that what a scientist does when she examines a physical modal
claim can be rationally reconstructed as her examination of the logical relationship
between a corresponding non-modal claim and her (non-modal) background theory.
Let me display my thesis before arguing for it and considering several objections to
it.

THESIS. In anygiven context, physicalmodal statements can be understood as true
or false relative to a background physical theory (in short: they can be understood
relative to a physics). With respect to a physics T, the assertion of the physical
possibility of ϕ can be understood—insofar as truth-conditions are concerned—
as the assertion of ϕ’s logical compatibility with T; so far as truth-conditions are
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concerned, the assertion of the physical necessity of ϕ can be understood as the
assertion of the provability of ϕ from T.3

Normally, the reference to T is dropped when the context is clear. Also, here ϕ is
assumed to be non-modal; if ϕ is itself modal, paraphrasing takes several steps.

The Thesis obviously satisfies a quite minimal requirement: in their paraphrased
forms, to say that ϕ is physically necessary is, insofar as truth-value is concerned,
equivalent to say that not-ϕ is not physically possible. Also, logical necessities (i.e.,
theorems of logic) come necessary relative to any background theory whatsoever,
and I am happy with this.

The major objective of this article is to defend the above thesis (call it the rela-
tivistic thesis) against the realist’s objections. I will concentrate on the case of neces-
sity and possibility in physics, though I think the relativistic reading is a plausible
rational reconstruction of modal talk in all sciences.4

Disclaimers. Note what the Thesis is not. It is not a thesis to the effect that modal
talk in physics is nonsense; it is not a non-cognitivist thesis either: it actually presents
truth-conditions for modal physical statements. Nor does it say that modal physical
claims are useless or unrelated to the physical world. We certainly are interested in
the logical consequences of our physical theories, because, obviously, if a theory
is approximately true, then so are its consequences (even though the corresponding
approximations may be different). If special relativity holds in the actual world, then
so is its particular consequence that no object moves faster than light; thus, if we
believe in special relativity, then we should believe that any attempt to move faster
than light will be unsuccessful—at least, we should so believe insofar as we know
that this is a logical consequence of that theory.

The Thesis does not say that physical modality is just a matter of what we believe.
For every physics T and for every statement ϕ, either ϕ follows from T or not, and
either ϕ is compatible with T or not; and these facts are independent of the way we
think of them—they are even independent of the fact that anyone ever formulated
T or thought of ϕ. All that the Thesis says is that statements of modalities can be
understood derivatively: their truth-conditions, at least in physicists’s parlance, are
determined by logical relations between theories and sentences. The choice of the
background theory is ours; yet, given any background theory, what is possible or
necessary relative to that theory is independent of our will or wish. As a matter of
mathematical fact, moving faster than light is incompatible with the theory of special

3One last time: the Thesis, and this article as a whole, is about modal talk, not about the nature of
modalities themselves. I may occasionally write as if my topic is modality per se; yet all the way
I mean stating modal facts, asserting them, judging them, etc. Please forgive me if I occasionally
(appear to) slip into discussing modalities themselves.
4A version of the Thesis designed for de-modalizing mathematical discourse works pretty well, or
so I claim. I cannot cover the issue here (see Chap. 4 of my dissertation), and at any rate I prefer
to deal with the more challenging case of modal talk in physics. Wilfrid Hodges (2007) offers a
detailed study of modal talk in mathematics.
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relativity, and this fact was true even before Einstein, even if no intelligent creature
ever lived in the universe.5

No presumption of truth. When a physicist says that such and such is physically
necessary, the Thesis rationally reconstructs her as saying that such and such follows
from her background theory T. In conversations, it might be understood here that the
physicist’s talk presumes her belief that T is true; but this need not be the case. In fact,
perhaps every working physicist who has ever attended a lecture in philosophy of
science, or has ever went to a real-life laboratory, believes that her own (or everybody
else’s) physical background assumptions are less than wholly and completely true.
For all I am interested in here, the physicist may believe that T is (approximately)
true, or just that T is empirically adequate in the sense championed by van Fraassen
(van Fraassen 1980). And there are more options. Fixing T as the background theory,
the physicist may believe that T is false or even empirically inadequate: for some
reason, she might be interested to see how the world would look like if T were true
or if T were empirically adequate. Or she may just give it as an exercise to her
students to show that such and such follows from, say, a patently false assumption
in Aristotelian physics, hence physically necessary relative to Aristotelian physics.

Arguing for the Thesis. In the next section, I will indirectly defend the Thesis
via rejecting a number of objections to it. My only direct or positive argument for it
is by looking at what physicists actually do when they assert that an actually false
sentence ϕ is possible or that a sentenceψ is necessary. And it seems obvious that all
they do is showing that ϕ is compatible with the background theory of the context,
and showing that ψ is derivable from the background theory of the context.6 I will
say a bit more about this in 2.1 and 2.2 below.

15.2 Objections and Replies

Before considering a number of objections to the Thesis, let me examine a case
which, though one may hear it presented as an objection, I think actually supports
the relativistic reading of physical modalities. If the way I explain this particular case

5Ontological honesty requires me to be explicit here: I am a realist about the logical implication (in
the classical sense).
6As for possibility statements, one may discern a weak sense and a strong one. The weak sense
is when the physicist has not yet discovered any incompatibility between ϕ and the background
theory. In the strong sense, which I gather to be possibility simpliciter (and not possibility for-
all-we-know), the compatibility is demonstrated, normally via constructing a model. Thus one may
say that, in the context of relativity-informed cosmology, the possibility of time travelling could be
asserted in the weak sense before 1949, and was first demonstrated in the strong sense by Gödel
(1949).

Incidentally, Hawking’s (1990) introductory note to Gödel’s paper illustrates my Thesis, when
he writes of a solution provided by Gödel to certain Einstein field equations, that this solution “was
the first to be discovered that had the curious property that in it it was possible to travel into the past
… Gödel was the first to show that it was not forbidden by the Einstein equations” (1990, p. 189,
my italics).
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is sound, then my use of it is somehow ironic, because, in a different context (laws
of nature) the kind of story described in this case is oftentimes suggested by a realist
to argue against an empiricist view.

15.2.1 The Case of “Un-Actualized Physical Possibilities”

In a famous example, David Armstrong (1983, pp. 17–18) asks us to suppose that
nowhere in the universe has there ever been a solid lump of gold with a volume
greater than a cubicmile. (Let us call any such huge lumpof gold aHugold.) Suppose,
moreover, that there will never be anyHugold at any place in the future. Nevertheless,
says Armstrong, the existence of a Hugold is not a physical impossibility, as opposed
to the existence of a piece of uranium-235 of the same size (a Huranium), which is
a physical impossibility, as critical-mass considerations show. There is a manifold
of such examples in the literature on laws of nature.

So, let us assume that nowhere at any moment in the whole history of the
universe—past, present, and future—is there either a Hugold or a Huranium. Still,
a difference might be felt: in principle, if we cared to (and if we had enough gold),
we could make a Hugold; on the contrary, no matter how hard we try and how much
uranium we possess, there really cannot be a Huranium.

I think the relativistic reading of physical modalities nicely explains the feeling.
The existence of a huge lump of 235U is ruled out by our accepted physics: critical-
mass considerations, which are incorporated in our physics, are incompatible with
the existence of aHuranium andwe know this; hence the corresponding impossibility
judgement. On the other hand, so far as we are aware of the consequences of our
physics, no such considerations are applicable to a huge lump of gold—the existence
of a Hugold is, to the best of our knowledge, compatible with our physical principles;
hence the corresponding possibility judgement. If we believe our physical principles
to be true, then we have good reason to think that there will be no Huraniums, no
matter what; we do not have such a reason in case of Hugolds.

The realist’s intuition is that even if we know that there is no Hugold in the
whole history of the universe, there still could be one. However, it is not clear to
me how we can make scientific sense of this ‘could’, if it is not to be understood
relativistically. Our reason for asserting the physical impossibility of the existence
of a Huranium is grounded in critical-mass considerations, which are parts of our
physics. We cannot hold both (1) critical-mass considerations, and (2) the statement
that a Huranium exists at some point in the history of the universe, for we know that
they are incompatible. As we have good reasons to keep (1), we reject (2). But if this
is the way we discover, or argue for, impossibility claims (and there seems to be no
other way), it is odd to think that for possibility claims we should seek something
over and above compatibility with the background theory.

The realistmay admit that thewayphysicistsproveordiscover physicalmodalities
is via investigating logical relations between statements and theories, but add that
this does not show that, e.g., to be physically necessary is to be deducible from the
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background theory. Here I am not denying that there might be irreducible physical
modalities; my point is that even if there are such things, scientists do not deal with
them as such. In rationally reconstructing modal talk in science we need not talk
about irreducible modalities, even if there are such things as irreducible modalities.

Onemove the realistmight try at this point is to accept the conclusion of the theory-
dependence of physicalmodalities but insist that some of the principles of our physics
(or some laws of nature) are irreducibly modal, and some irreducible modality is
thereby inherited by physical statements like the impossibility of the existence of a
Huranium. However, again, I do not deny that there might be (irreducibly) modal
features of the physical world; but it seems straightforward to argue that even if
there are such features, the scientist cannot discover them and include them in his
background physics.7 Hence, if my argument is sound, then irreducible physical
modalities are scientifically irrelevant, and irreducible modalities cannot be found
in the principles of our physics either. Apart from that, below in my discussion of
actual physicists’ use I will explain away the appearance of modalities in some of
the principles of physics.

15.2.2 Objection: The Open-Minded Physicist

Suppose a physicist—call him Ramin—says that moving faster than light is physi-
cally impossible. According to the relativistic thesis, this is, so far as truth-conditions
are concerned, nothing but saying that it is a theorem of Ramin’s background physics
that no moving object moves faster than light. Let us also assume that Ramin has
recently checked the details of the relevant argument again, and he is absolutely
certain about its validity: he knows it for a (logical) fact that his physics rules out
speeds greater than c. Now suppose that today he hears news about a recent achieve-
ment of a joint group of physicists and engineers in Berlin with respect to faster-
than-light rockets. The source having been reliable in the past and the Berliners being
world-class scientists and rocket experts, Ramin takes the news seriously—he seri-
ously considers this: moving faster than light is possible. But, according to the Thesis
(the objection concludes), he just can’t: as we stipulated, he still believes that moving
faster than light is incompatible with his physics, hence a physical impossibility. So
there is more to a possibility claim than just consistency with the background theory.

In reply, I think one should distinguish two cases: (α) Ramin hears that the
Berliners have actually observed the phenomenon he considers impossible [allowme
not to be worried about how one could observe that!], or (β) he hears that they have
just theoretically proved that moving faster than light is possible. As the story has it,
in both cases Ramin takes the news seriously; but the implications for the relativistic
thesis might be different. For suppose that the Berliners had just claimed that moving
faster than light was possible (β), without claiming that they had observed—or had
brought into existence—an instance of it. Then it seems clear what Ramin would

7This is what I think I have done in Chap. 5 of my dissertation (2008).
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do. He would ask for their argument and he would peruse it. Given that he is certain
of the correctness of his own proof of the incompatibility between his background
theory and the statement that something moves faster than light, he would enquire
into the Berliners’ background theory. Perhaps their physics does not include all of
his principles or particular assumptions? If that doesn’t explain the tension, he will
try to find mistakes in their argument for the possibility claim. If none of these settle
the disagreement, he might think that perhaps a subset of the union of his and the
Berliners’ physics is inconsistent.8 Another option, still further from the “edge of the
system” (as Quine would put it), is to blame mathematics and logic. But all these are
questions of what follows, or does not follow, from principles and extra assumptions.
Hence if in the story the Berliners are just said to have purely theoretically argued for
the possibility, then this is no threat to the relativistic thesis. It seems that whatever
the ontological status of physical modalities might be, theoretical arguments about
impossibilities and non-actual possibilities are just arguments about incompatibility
and compatibility with our background principles.

Now let us assume, as per (α), that Ramin, our physicist, thinks that a statement ϕ
is physically impossible, and he takes it seriously that ϕ has actually been observed
to be the case. What is going on here? As the objection stipulates, Ramin still thinks
that, as a matter of logical fact, ϕ is incompatible with his background theory T. If T
were a correct description of what is the case in the world, ϕ would not be the case;
now that he has good reason to think that ϕ is the case, he has good reason to think
that part of T is false. If it really turns out to be the case that ϕ has been observed to
be true, then our rational physicist will say that his T is not true. However, he still
retains his belief that ϕ is ruled out by T—despite the falsification of T, this fact
remains true (though, of course, it loses much of its importance). And if, after the
rejection of T, Ramin now wonders about the possibility of another statement ψ as
part of a significant research programme and not just as an exercise in theoretical
physics, we have a change of context, a change of background theory: he is now
thinking of the compatibility, or lack thereof, of ψ with a different, perhaps yet to be
developed, physics T 1.

Perhaps the point of the objection is that just looking through the logical conse-
quences of theories is not a good way of finding real possibilities: if things happen
to be as in the objector’s α-story, then moving faster than light is really possible,
no matter what consequences of our physics are. However, it should be clear that a
tu-quoque reply to the realist is available here: the realist himself has no way other
than a compatibility argument to say that a non-actual ϕ is physically possible. And
as for actual ϕs, there is no disagreement about the fact that they are possible.

8It is not a well-kept secret that not only there are pairs of mutually inconsistent physical theories,
but there are also physical theories which are inconsistent in themselves (see, for instance, Monton
(2011) and Costa andVickers (2002)). Hence a background theory, as I have defined the notion, may
be inconsistent in more than one way. Whenever the background theory of a context is inconsistent,
my account allows assertions of the form ‘it is necessary that ϕ’ and ‘it is necessary that not-ϕ’
relative to that theory. I find this in no way worse than the inconsistency of the background theory
itself.
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15.2.3 Objection: Practical Versus in-Principle

Consider Armstrong’s case again. It is in principle impossible to fabricate a huge
lump of uranium-235, as we know from critical-mass considerations; whereas for a
huge lump of gold, there is no such in-principle impossibility. But suppose we know
that there is not enough gold in the universe to make a lump of gold of the specified
size, and suppose that we augment our background theory with this particular fact.
Now the relativistic thesis would announce that the existence of a Hugold can be
asserted as a physical impossibility with respect to this physics. But surely (the
realist objects) there is no “deep” reason for this—the impossibility of a Hugold
would be just practical. There is an intuitive distinction between the in-principle
and the practical impossibility; but the relativistic thesis is too coarse to make this
distinction—if enough particular facts are included in a background physics, then
the practical versus in-principle distinction is lost. So says the objection.

Concerning impossibilities, the realist has an intuition about the difference
between the “practical” and the “in-principle”, a difference which is presumably
a difference of kind. But how can he, the realist himself, demarcate the two? One
way might be to say that an in-principle impossibility is one that is ruled out by laws
of nature (whatever they are), while a practical impossibility is one which is ruled
out by laws of nature plus some other true assumptions (e.g., assumptions about how
much gold we have). But if this is thought to be what distinguishes the two notions
of physical impossibility, how can we ever know that a logically possible situation
is an in-principle physical impossibility? Well, the realist might say: if we know the
laws of nature, then we know the in-principle impossibilities.

However, I reply, even waiving worries about the antecedent of this conditional,9

the problem is that now the realist’s account of impossibility is really not different
from the relativistic account. Certainly the set of verbalized laws of nature, should
there be such a set, is an excellent candidate for a background physics, and, with
respect to this background theory, the relativistic physical impossibilities are the same
as the realist’s in-principle impossibilities. If we know the laws of nature, then we
can measure impossibilities against them and reserve the unqualified ‘impossible’,
or the qualified ‘impossible in principle’, for whatever that is excluded by laws of
nature; and if a statement is ruled out only by laws of natures plus some particular
facts, wemay call it ‘merely practically impossible’. But now the two accounts—i.e.,
the realist and the relativistic—are really not different in this case, and the realist has
admitted that, with respect to truth-conditions of impossibility claims, modality is a
matter of a logical relationship of a statement with the background theory—only he
thinks that the background theory is something very special. But even in this case
there are no irreducible modalities. (Again, the realist might think that some laws of
nature are themselves modal. Here the realist owes us some examples. I will consider
two putative cases of such laws below; and in a longer version of this article, I would
argue that even if there aremodal features of theworld, presumably describedby some

9See the next footnote for an elaboration of a closely related point.
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genuinely modal laws of nature, such features cannot be discovered scientifically. A
defence of such a claim can be found in Chap. 5 of my (2008).)

So I think the realist owes us an explanation of his intuition, an account of the
in-principle physical impossibility. Not that if he cannot offer a good explanation we
have to quine the intuition; but here the intuition, which is perhaps not backed by a
good theory, need not be shared by the empiricist—to appeal to an intuition about the
difference between the in-principle and the practical is perhaps begging the question
against the empiricist.10

But perhaps one can explain the difference between in-principle and practical
impossibilities in an empiricist-friendlyway, without appealing to irreduciblemodal-
ities. I think the difference is not a difference in kind, and I think determining it is a
pragmatic issue. Quine (1951) argues that nothing in science is absolutely immune
to revision. With no claim of having a worked-out theory of this, I want to suggest
that perhaps the in-principle versus practical distinction is just a matter of degree: the
more central and the less susceptible to revision a background theory T is, the more
of an in-principle character the T-impossible statements are. If it is not that hard to
revise a background T, if the costs of such a revision are not very high, then we think
of what is ruled out by T as not in-principle impossible. Thus revising Einstein’s
special relativity, or totally setting it aside, will be a great change in science; so
moving faster than light is considered to be an in-principle impossibility. On the
contrary, it will not be a big deal if we realize that our estimation of the total amount
of gold in the universe was mistaken; hence the merely practical impossibility of a
Hugold (given that it is part of our physics that there is not enough gold to build a
Hugold).

15.2.4 Objection: Physicists’ Use of Modalities

Let me distance myself for a while from speculation and armchair philosophy, and
look at the actual working physicists. Here is an objection. If the Thesis is true, then,
in a discussion in physics and insofar as truth-conditions are concerned, to say that ϕ
is necessary is just to say thatϕ follows from the background theory of the discussion.

10Another thing that the realist owes us here is an argument to the effect that the practical versus
in-principle distinction is scientifically significant. If the distinction is supposed to be based on the
notion of laws of nature, then we should note that there are reasons to think that it is scientifically
irrelevant—as Nagel puts it (1961, p. 49), “The label ‘law of nature’ (or similar labels such as
‘scientific law,’ ‘natural law,’ or simply ‘law’) is not a technical term defined in any empirical
science; and it is often used, especially in common discourse, with a strong honorific intent but
without a precise import.” Chap. 8 of Mumford (2004) presents a defence of Nagel’s view.

While on the topic of laws of nature, let me quickly add that one may suspect that to the extent
that physicists talk about laws of nature, they are at least tacitly speaking a modal language, for,
presumably, one characteristic feature of laws of nature is their counterfactual support, which is
presumably a modal notion. In my (2011), I offer an empiricist-friendly account of the the issue of
counterfactual support.
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Therefore, in particular, to say of a principle of physics11 that it is necessary, is to add
nothing to the mere assertion of that principle. Given that physicists are no dumbs
and at least some of them have at least an implicit and intuitive knowledge of the
Thesis if it is true, then the occurrence of the necessity operator in the statement of
a principle looks odd, for it adds nothing to the content of the principle. Yet we have
several cases of modal talk in physics texts, specially in the expositions of principles.
Therefore somethings is wrong with the Thesis. [End of the objection.]

It is undeniable that oftentimes we see modal statements in physics texts. For
example, a standard undergraduate textbook states Newton’s first law in a modal
language—this is from Halliday et al. (2005, p. 88, my italics):

If no force acts on a body, the body’s velocity cannot change; that is, the body cannot
accelerate.

However, there are always—so I claim—modality-free formulations of a modally
formulated scientific proposition. Regarding Newton’s second law for instance, here
is the required version, formulated by Isaac Newton (1726, p. 416, my non-italics):

Every body preserves in its state of being at rest or of moving uniformly straight forward,
except insofar as it is compelled to change its state by forces impressed.

I take it for granted that the authors of the two versions are expressing the same
law.

Here is another example, the second law of thermodynamics. In this case the
original formulations are modal. I quote from Bailyn (1994, p. 88), to which I add
emphasis. Thus spoke Rudolf Clausius in 1850:

No process is possible whose sole effect is to transfer heat from a cold body to a hot body.
By sole effect is meant without the rest of the universe changing, or changing in a cycle of
operations.

And William Thomson (Lord Kelvin of Largs), 1851:

It is impossible by means of inanimate material agency to derive mechanical effect from
any portion of matter by cooling it below the temperature of the coldest of the surrounding
objects.

Now it is well known that the second law of thermodynamics admits of many
equivalent formulations. The following is from Baierlein (1999, p. 29, my italics):

If a system with many molecules is permitted to change, then—with overwhelming proba-
bility—the system will evolve to the macrostate of largest multiplicity and will subsequently
remain in thatmacrostate. Stipulation: allow the system to evolve in isolation. (The stipulation
includes the injunction, do not transfer energy to or from the system.)

A quick review of the concepts involved here might be in order, to make sure
that Baierlein’s formulation is not modal. As one would expect, a macrostate—
an abbreviation for ‘macroscopic state of affairs’—is a state described by “a few

11A principle, properly so called—that is to say, an axiom of the background theory in my sense
(which need not be what, in the previous footnote, I reported Nagel’s qualms about).
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gross, large-scale properties”, such as pressure, volume, temperature, and total mass
(p. 27). Amicrostate is one described by “specifying in great detail the location and
momentum of each molecule and atom” (p. 25). The multiplicity of a macrostate
is the number of microstates that correctly describe it. Thus (Baierlein’s example,
p. 27) suppose there are four balls—call them A, B, C, D—and two bowls. The
macrostate all balls are in the left-hand bowl has minimum multiplicity, viz. 1 (the
location of balls within a bowl doesn’t matter). The macrostate the balls are evenly
distributed in the two bowls has the largest multiplicity, viz. 6: each of themicrostates
(AB, CD), (AC, BD), (AD, CB), (BC, AD), (BD, AC), and (CD, AB) corresponds
to it. Finally, though Baierlein does not explicitly define it, it is clear that his notion
of the probability of an event is the familiar, purely combinatorial one—thus (p. 26)
if you toss a “fair” coin a million times, the probability that the number of heads is
within 1 per cent of 500,000 is 1 – 2.7 × 10−23, which is “overwhelmingly” close to
1. There is no modal notion here.

Or, to put the second law more succinctly, let us talk about entropy, which is
basically defined as the logarithm of multiplicity. Now, “for all practical purposes,
the one-line version of the Second Law is this: An isolated macroscopic system will
evolve to themacrostate of largest entropy and will then remain there” (p. 46). Again,
no modality is involved.

It may be instructive to examine a large number of physics texts and try to find
non-modal versions of the statements that are occasionally formulated in a modal
language. It may also be interesting to see if there is a correlation between the
presence of modal discourse, or lack thereof, in a physics text on the one hand, and
the extent to which its author is considered a rigorous author, on the other.12 This,
however, is not what I wanted to do here. I hope I have provided enough empirical
data (about what one can find in physics texts) to confirm my a posteriori claim that
for each physical statement one finds in a physics text, there is a non-modal version
of it. This is of course not unexpected, given that we see no modal operators in the
formulas we find in physics texts.

The advocate of genuine, irreducible physical modalities may object, echoing
Bressan (1974, p. 299), that “the use of modalities (possibility concepts) and the
use of a modal language are not equivalent”. I agree. Yet, if the formulas of physics
texts do not contain boxes and diamonds, then I think it is incumbent on the realist
to argue that, nevertheless, physics deals with irreducible modalities.

12The case of an elementary text in philosophy might be of some interest. While explaining the
difference between necessity and certainty, Elliott Sober gives the example of the second law of
thermodynamics: “Finally, in the nineteenth century, physicists working in the area called thermo-
dynamics proved that perpetual motion machines are impossible” (2005, p. 49, my italics). In his
next chapter, Sober argues against the creationists’ confused application of the second law: “They
claim that this law makes it impossible for order to arise from disorder by natural process” (p. 62).
And what is the second law, again? Now that precision matters more, his formulation is basically
the modality-free one I quoted from Baierlein: Sober writes, “What the Second Law actually says
is that a closed system will (with high probability) move from states of greater order to states of
lesser order” (ibid., with change of emphasis).
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Also note that for the Thesis to be a good rational reconstruction of physical modal
talk, it need not be the case that for every modally formulated physical statement
there is already a textbook non-modal version. The Thesis is not a sociological claim
about the way physicists actually talk (though I think I have provided some evidence
that it is not alien to actual physicists’ talk); rather, the Thesis presents a way to
make sense of their modal talk. Even if I had failed to find Baierlein’s formulation
of the second law of thermodynamics, I still could offer a routine reformulation of
Clausius’s: there is no process, nor will there be one, whose sole effect is to transfer
heat from a cold body to a hot body.

15.2.5 The Failure of Factivity

Following Hale and Leech (2017, p. 4), let us say a necessity operator▢R is factive
iff for every formula ϕ, the conditional▢R ϕ → ϕ is true in the actual world.13 Given
that our background theories are not supposed to be true (see the last paragraph of
Sect. 15.1), it follows that there is no guarantee that whatever is necessary relative
to a background physics is actually true. This may raise eyebrows: is necessity not
supposed to be stronger than truth? Though I have been emphatic that I am concerned
onlywith physicists’modal talk and notwith physicalmodalities per se, the rhetorical
question still has some force—wouldn’t it be odd for someone, in a given context,
to assert the necessity of ϕ without also committing herself to the truth of ϕ?

There are a couple of things I may say in reply. First, from a merely formal point
of view, the failure of the law▢ϕ → ϕ is, in itself, not a defect of any modal system.
This is evidenced by one of the most famous and well-studied modal systems, the
Gödel-Löb provability logic GL. In fact, a simple theorem has it that no instance of
▢ϕ → ϕ is a theorem of GL unless its subsequent is a tautology.14

Secondly, take a physicist who says that a certain ϕ is necessary. My thesis para-
phrases her assertion as asserting that ϕ is a theorem of the background theory T
of her context. Now consider two levels. Level 1 is the reporter’s third-person point
of view—say Galileo is reporting what is considered necessary in an Aristotelean
physics. Surely here the report need not (in fact: must not) be factive—Galileo says
that theAristotelean physicist thinks that heavier objects fall faster by necessity,while
this is not, inGalileo’s point of view, true. Level 2 is the physicist’s first-person report,
and here, too, the account need not be factive. According to van Fraassen’s construc-
tive empiricism (1980), to which I am very sympathetic indeed on other grounds, a
scientist’s acceptance of a theory does not require her to think of the theory as true—
it suffices that she thinks of it as empirically adequate. However, as I understand that

13Hale and Leech’s exact wording is “[…] factive, in the sense that, where ▢C is our relative
necessity operator, ▢C p → p, for every p. In other words, the characteristic axiom of the quite
weak modal logic T holds for ▢C .”
14Boolos (1993:13). Even some instances of the weaker axiom▢ϕ → ♦ϕ are not provable in GL.
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not many philosophers are very fond of constructive empiricism, let me put forward
the following idea:

Thirdly, I am of the opinion that normally, or at least ideally, scientists do not take
their theories to be true—or at least, they are not openly dogmatic enough to announce
their theories to be true. The theories are, in my opinion, merely hypotheses, and one
usual way of testing a theory is to put on trial what is necessitated by it. Thus even
one hundred years after the advent of relativity, physicists still make experiments to
see whether what must be the case if relativity holds, is in fact true. Another aspect
of not believing the background theory to be true is manifested in an old practice
of logicians—a practice continued well through 1940s—to have a theorem whose
official statement would begin by “Theorem (AC). Suppose…”, with the bracketed
acronym making it explicit that the Axiom of Choice was exploited in the proof of
the theorem. Strictly speaking, AC was part of the background theory here, while
our wary logicians used to make it explicit that they are not committed to its truth.

Finally, let me use a picturesque language (which I think is very apt to engender
deep confusions) to justify the lack of factivity. Consider a background theory T to
which the modal talk of our physicist is relativized. Now we may think of ▢Tϕ as
saying that ϕ is true in all possible worlds wherein T holds. If that is the picture,
then why—or why on earth!—should we expect that if ϕ is true in all those worlds
then ϕ is true in the actual world? You may, for whatever reason, think that one
particular type of necessity is not relativisable to another,15 and you may criticize
a given relativisation for just that reason; yet to bring lack of factivity as a further
criticism of a given relativisation is neither fair nor even relevant, in my view.

Appendix to 2.4.: why a simple remedy does not work
She who thinks her account of physical necessity should be factive, might try the
obvious and re-formulate the Thesis by saying that a physicist’s assertion that ‘ϕ
is necessary’ is replaceable, salva veritate, by the assertion that ϕ is true and is a
theorem of the background physics T. As a definition of relative necessity, Hale and
Leech (2017, Sect. 6.1.) criticize this by reference to some technical work of Lloyd
Humberstone’s. Yet I think a simpler criticism is available. A formulation of the
obvious remedy is presented (but not endorsed) in a less technical piece by Hale
(2017, p. 808):

Clearly, whenever we have a more or less definite body of propositions constituting a disci-
pline D, there can be introduced a relative notion of necessity—expressed by ‘It is D-ly
necessary that’—according to which a proposition will be D-ly necessary just in case it is
true and a consequence of D.

So let us consider a view according to which

(H) the sentence ϕ is T-ly necessary iff ϕ is true and ϕ is a (logical) consequence of T.

15Thus Kit Fine (2002) holds that metaphysical, natural, and moral necessities are mutually irrel-
ativisable, and that none of them can be relativized to any other type of necessity. I need not take
positions on Fine’s view here, for I am merely theorizing about physicists’ talk of natural necessity,
not natural necessity itself.
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Given that the possibility ofϕ is logically equivalent to the non-necessity of not-ϕ,
it follows that the advocate of the above account must be committed to

(H*) the sentence ϕ is T-ly possible iff either ϕ is true or ϕ is compatible with T.

Now let T be a theory with at least one false axiom ϕ1. Then not-ϕ1 is true, hence,
by (H*), T-ly possible. Therefore, the above account is committed to saying that the
very negation of each false axiom of T is possible relative to T. This I find very odd
indeed. Thus let P be a theory an axiom of which is that the Earth is the centre of the
universe. This axiom is false, and (H*) implies that the proposition that the Earth is
not the centre of the universe is P-ly possible. Which is bizarre.

15.2.6 Objection: All Laws Are Necessary?

Suppose the background theory is the Newtonian physics, which includes the prin-
ciple (the second law of motion) that F = ma. Let us put the following question to our
physicist: Is it possible that F �= ma? And here is an objection: whereas any reason-
able physicist would answer affirmatively (since, conceivably, F could be equal to
13ma, or there could have been no non-trivial connexion between force and accel-
eration), according to Thesis the answer is negative. Therefore the Thesis is false. A
reply is in order.

First, let me note (rather nitpickingly), that the Thesis, as I stated it, is a rational
reconstruction of physicists’ modal talk, a translation of their modal talk into a non-
modal language, not vice versa. When a physicist says something which contains
‘possibly’ or the like, theThesis rationally reconstructs her as expressing a non-modal
proposition. I am in noway committed to saying that the physicist should, or is in fact
inclined to, go the reverse direction and put a box before the statement of whatever
she infers from her physics, or a diamond before the statement of whatever she knows
that is consistent with her physics. Indeed, I think physicists—qua physicist—are
not very fond of modal language when they write technical papers or give technical
talks.16

But this is just quibbling. For suppose we ask our physicist whether Newton’s
second law is necessary, and suppose that she, as expected by the common sense,
answers that it is not. Then, according to the Thesis, our physicist is saying that
the second law is not a theorem of her physics, and this is patently false. Nor is it
reasonable to say that we have a change of context—it seems that, even with the
Newtonian physics in the background, she is just saying that, intuitively speaking,
the world could have been otherwise, that F could have been unequal to ma. A better
defence is required.

Secondly, there are philosophers of realist persuasion who maintain that true laws
of nature—whatever these laws are, and whether or not Newton’s second law be

16The case of popular, Scientific American type of physics talk needs a separate discussion.
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among them—are in fact metaphysically necessary. But this is a substantial philo-
sophical view, which should not come out as the result of a conceptual analysis of
the notion of physical necessity.

Thirdly, let us delve more deeply into the problem. I ask my physicist friend if it
is possible that F �= ma. Apparently contrary to the Thesis, she says that it is. What
is going on here?

Qua physicist, she is being asked whether it is physically possible that F �= ma,
and the correct answer to the literal question is ‘no’. (Recall that we are assuming
that she is a Newtonian physicist.) However, since the verbatim question put to her
is truly trivial if she knows that I know her to be Newtonian, she thinks that I must
have something else—something “deeper”—inmind, somethingwith ametaphysical
import, namely ‘Could it be the case that the world is governed by a different law (or
by no laws) concerning the relationship between force and acceleration?’, to which,
following common sense, she answers ‘yes’.17

The Thesis is about physical necessity, while the objection has some force only
to the extent that it concerns metaphysical necessity.

15.3 Ways of Relativizing Modalities

15.3.1 À la Montague et Anderson

So far as I know, the idea of relativizing modalities goes back to Anderson (1958)
andMontague (1960). Smiley (1963) is perhaps the earliest in-detail logical analysis
of the idea, for an old review of which I suggest Anderson (1967). In Montague’s
paper, first presented in 1955, the main ideas “are based on the following unoriginal
considerations” (1960, p. 71):

Let� be a sentence. Then it is logically necessary thatΦ is true if and only if� is a theorem
of logic; it is physically necessary that Φ is true if and only if � is deducible from a certain
class of physical laws which is specified in advance; it is obligatory thatΦ is true if and only
if � is deducible from a certain class of ethical laws which is again specified in advance.18

Now I have not counted citations, but I am under the impression that Montague’s
paper is not referred to very frequently in the literature. What is very influential

17She might have added that that is not, strictly speaking, a scientific question—rather, it belongs
either to theology (asking what reason was behind the creator’s actualizing this world, not another
one), or else it is a meaningless question.
18Due to my TeXnical disability, I have replaced Quine corners of the original with boldface italics.

Montague does not attribute the idea to anyone in particular. This is similar to the case of
Boolos, who wrote a book (1993) on the interpretation of ‘necessarily’ as provability from a certain
background theory (portions of Peano Arithmetic). Scrupulous as he is about giving credit for ideas,
he does not tell us where the main idea came from. It seems safe to say that the idea is just part of
the logico-philosophical folklore.
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(though not very easy to read) is van Fraassen’s (1977) which opens with something
about physical necessity:

Are there necessities in nature? The nominalists, and subsequently the empiricists, answered
that all necessities are reducible to logical necessity […]. What is physically necessary is
the same, on this view, as what is logically implied by some tacit antecedent—say, the laws
of physics.

I gather that the idea expressed byMontague and van Fraassen is just what I incor-
porated in the Thesis, specially because neither Montague’s � nor van Fraassen’s
“tacit antecedent” is supposed to be true.19

Given that the idea of reducing the physical necessity to the logical one is not
original with Montague or van Fraassen, I think their contributions were intended to
solve some techno-logical problems in implementing the basic idea, not to defend
the idea that necessity can be understood as provability from a background theory.
Likewise, if there is any novelty in my attempts above, it consists in working
out this familiar idea in the realm of the philosophy of science and scientists’ prac-
tice, and defending it against some realistic intuitions—plus, of course, arguing that
the account need not be factive. Also, as explicitly mentioned by Montague (1960,
p. 71), his meta-theory contains no modality; while this can simply be assumed for a
constructed formal language, in a scientific context one has to argue that there is no
modality in the background theory, which I would have done had I had more space
available here.

15.3.2 À la Hale-Leech

However, this is not the only way of relativizing modalities in the literature. Hale and
Leech (2017), which is a detailed analysis of the notion of relative necessity partly
drawn on the critical and constructive works of Lloyd Humberstone, culminates in
a reformulation of the idea in the following sophisticated way (2017, p. 22), where
the un-indexed box denotes logical necessity

▢ΦA = df. ∃q1…∃qn(Φ(q1) ∧… ∧ Φ(qn) ∧ ▢(q1 ∧… ∧ qn → A)).

The special case of physical necessity is discussed on pages 12–14 of their article,
where on page 14 we have

It is physically necessary that p iff ∃q(ϕ(q) ∧ ▢(q → p)),

19I acknowledge that the word ‘law’ (which occurs in both passages) may, to some ears, mean
something which has a certain recognized status and is true. In the case of physical necessity, the
assumption of truth is explicit in Hale and Leech (2017, p. 13), though somehow buried in the
middle of a page. Not a native English speaker, I myself do not hear any sense of truth in ‘law’, but
that might be a moot point. Also note that, obviously, truth cannot be assumed in non-alethic laws
such as the normative ones mentioned by Montague.
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where ϕ(q) abbreviates the statement that q is a law of nature. (There should be no
worries that here p is said to be logically implied by a single law of nature: take the
conjunction of those laws which are required in the deduction of p, and note (2017,
p. 13n20) that any conjunction of the laws of nature may be reasonably thought to
be a law itself.)

I cannot do justice to all they say in their elegant paper, and I will close with (re-)
expressing a qualm about their formulation. Hale and Leech assume that laws of
physics are true,20 and I am not happy with this. My reason, again, is that I think it
is quite natural to relativize to false theories. Thus, I find it quite natural to say that
such and such is necessary relative to Aristotelean physics—or relative to Ptolemy’s
cosmology, or Christian theology, etc.

To summarize, I have presented and defended a way of paraphrasing physicists’
modal talk which gets rid of modalities. (Salient in my replies to the objections was
that my account of a physicist’s modal talk need not be factive.) If my argument
goes through, we have some reason to think that modalities are not indispensable to
sciences.21
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Chapter 16
On Descriptional Propositions in
Ibn Sı̄nā: Elements for a Logical
Analysis

Shahid Rahman and Mohammad Saleh Zarepour

Abstract Employing Constructive Type Theory (CTT), we provide a logical anal-
ysis of Ibn Sı̄nā’s descriptional propositions. Compared to its rivals, our analysis is
more faithful to the grammatical subject-predicate structure of propositions and can
better reflect the morphological features of the verbs (and descriptions) that extend
time to intervals (or spans of times). We also study briefly the logical structure of
some fallacious inferences that are discussed by IbnSı̄nā. TheCTT-frameworkmakes
the fallacious nature of these inferences apparent.

Keywords Ibn sı̄nā (Avicenna) · Modal syllogistic · Descriptional (was. fı̄)
propositions · Substantial (d

¯
ātı̄) propositions · Constructive type theory · Temporal

logic · Logical fallacies

16.1 Introduction

In his discussions of the various readings of modal propositions, Ibn Sı̄nā’s focus is
mostly on a distinction which was later labelled the distinction between descriptional
(was. fı̄) and substantial (d

¯
ātı̄) readings of amodal proposition.1 Given that for Ibn Sı̄nā

all categorical propositions are either implicitly or explicitly modal, the substantial–

1Hasnawi and Hodges (2017, p. 61) have correctly pointed out that ‘substantial’ is not Ibn Sı̄nā’s
own term. Indeed, as Strobino and Thom (2017, p. 345) have mentioned, it is only in the later stage
of the tradition of Arabic logic that the terminology of ‘substantial’ and ‘descriptional’ became
mainstream. Some of the other names which have been employed to refer to the distinction under
discussion will be mentioned later in the chapter.
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descriptional distinction is in some sense applicable to the readings of all categorical
propositions.2 This distinction is based on how (i.e., under which conditions) the
predicate of a categorical proposition is true of its subject.According to the substantial
reading, the predicate is true of the subject (perhaps with a certain alethic or temporal
modality) as long as the substance of the subject exists. On the other hand, according
to the descriptional reading, the predicate is true of the subject (again, perhaps with
a certain modality) as long as the substance of the subject is truly described by the
subject. To be clearer, consider the following proposition:

(1) Every S is P.3

The difference between the substantial and descriptional readings of (1) can be
articulated as follows:

Substantial Reading of (1): Every S, as long as it exists, is P.
Descriptional Reading of (1): Every S, as long as it is S, is P.

It is in principle possible that a proposition is true on one of these readings and
false on the other. It is only the context which determines how a proposition must be
read to be true.4 To give an example, consider the following proposition:

(2) Every bachelor is unmarried.

The substantial and descriptional readings of (2) are respectively as follows:

(3) Every bachelor, as long as he exists, is unmarried.

(4) Every bachelor, as long as he is bachelor, is unmarried.

These two propositions have different truth values. Contrary to (3)—which is
false—(4) is true. This is because a bachelor is unmarried only insofar as he is
described as a bachelor. So (4) is true. By contrast, it is in principle possible for
a person who is a bachelor in some period(s) of time to be married in some other
period(s) of time; this is so at least if we assume that ‘as long as’ has a temporal
meaning. In other words, it is not necessary for such a person to be always unmarried.
The mere existence of the substance of this person does not guarantee his being
unmarried. Thus (3) is false. There are, however, other propositions that are true on
the substantial reading. For example, consider the following proposition:

2Street (2002, Sect. 1.1) and Strobino and Thom (2017, Sect. 14.2.1) emphasize that for Ibn Sı̄nā all
propositions have either temporal or alethic modality. Absolute propositions are implicitly modal
and all other propositions are explicitly modal. Lagerlund (2009, p. 233) highlights that even the
absolute propositions can be taken to be descriptional.
3Strictly speaking, there is an important difference between a sentence and the proposition expressed
by it. Accordingly, it is a sentence (rather than a proposition) which can be read in different ways.
So what a substantial (respectively, descriptional) reading of a sentence expresses is a substantial
(respectively, descriptional) proposition. Nonetheless, such a clear difference between sentence and
proposition cannot be detected either in Ibn Sı̄nā’s own discussion of the substantial–descriptional
distinction or in the secondary literature on this issue. So to remain more focused on the main
points we would like to make—and of course for the sake of simplicity—we do not make the
sentence–proposition distinction bold.
4See Hodges and Johnston (2017, p. 1057).
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(5) Every human is animal.

The predicate Animal is true of every human as long as s/he exists. Put otherwise,
what makes it true to say that every human is animal is the mere existence of human
substances. This means that not only the descriptional but also the substantial reading
of (5) is true.5 Indeed, since every human exists if and only if s/he is human, the
substantial and descriptional readings of (5) express one and the same fact.

As Ibn Sı̄nā himself insists, he is the first logician to have focused on the above
distinction and pondered on its fruitfulness for removing some difficulties with Aris-
totle’s syllogistic.6 Since the distinction plays a crucial role in Ibn Sı̄nā’s syllogistic,
it is discussed in several places in his logical oeuvre.7 Moreover, the distinction was
subject to continually heated discussions in Arabic logic after Ibn Sı̄nā. For instance,
the distinction was accepted by Rāzı̄ and Khūnaǧı̄, on the one hand, and was seen
as redundant by Ibn Rushd.8 The substantial sense of propositions corresponds to
what is called the ‘divided’ sense of propositions in the Latin tradition. However,
although the descriptional sense of propositions plays an important role in Arabic
syllogistic, it has no widely discussed counterpart in the Latin tradition.9 These
observations strongly suggest that a comprehensive picture of Arabic syllogistic
from Ibn Sı̄nā onwards cannot be achieved unless we have a clear logical analysis
of the aforementioned distinction. An effective and popular strategy for providing
such an analysis is to look at the different readings of a proposition through the lens
of modern formal logic. Therefore, it is important to find out which formal language
has the best capacity to capture various aspects of this distinction and the insights
behind it. In the literature, several attempts have been made to formalize the different
readings of propositions in the languages of classical predicate or temporal logics.10

In this chapter, we put forward an alternative based on Martin-Löf’s constructive
type theory (CTT).11 Compared to its rivals, our analysis is more faithful to the

5These examples are adopted from El-Rouayheb (2019, p. 24).
6See al-Qiyās (1964, Chapter III.1, p. 126) in which Ibn Sı̄nā complains that previous philosophers
have not paid enough attention to this distinction.
7A famous passage in which Ibn Sı̄nā discusses this distinction can be found in the logic part
of al-Išārāt (1983, Chap. 4.2, pp. 264–266). For translations of this passage see Street (2005,
pp. 259–260) and Ibn Sı̄nā (1984, Chap. 4.2, p. 92). In the logic part of al-Naǧāt (1985, pp. 34–
37)—whose translation can be found in Ahmed (2011, Sect. 48)—Ibn Sı̄nā proposes six different
readings of necessary propositions. The second and the third readings include respectively substan-
tial and descriptional necessities. This distinction is discussed also in al-Qiyās (1964) and Mant.iq
al-Mašriqı̄yı̄n (1910). Translations of some relevant passages from these two works are provided by
Hodges and Johnston (2017, Appendix A.2). They discuss a distinction between d. arūrı̄ and lāzim
propositions in passages from Mant.iq al-Mašriqı̄yı̄n that is tantamount to the distinction between
substantial and descriptional readings of propositions.
8See El-Rouayheb (2017, pp. 72 & 81).
9See Street (2002, p. 133).
10See, among others, Rescher and vander Nat (1974), Hodges and Johnston, and Chatti (2019a,
2019b).
11See Martin-Löf (1984). In what follows, a basic familiarity with CTT is assumed. All the
background requirements can be found in Rahman et al. (2018, Chap. 2).
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grammatical subject-predicate structure of propositions and can better reflect the
morphological features of the verbs (and descriptions) that extend time to intervals
(or spans of times). It is worth noting that our focus will mostly be on the analysis of
the descriptional reading of propositions (which can also be called ‘the descriptional
propositions’ for the sake of brevity).

16.2 On What and How

Thedistinction between substantial and descriptional propositions seems to be related
to Joseph Almog’s famous distinction between what and how a thing is.12 More
precisely, it is relevant to how the subject term of a categorical proposition is true of
its objects in the two different readings we introduced above. The expression ‘a is
S’ can in principle encode two basic forms of predication. The expression encodes
what a is, if S represents an essential feature of a. For instance, if S is a genus of
a or a category to which a belongs, then ‘a is S’ encodes (at least partially) what a
is.13 On the other hand, the expression ‘a is S’ encodes how a is, if S represents an
accidental feature of a. For instance, if S is a description which can be sometimes
but not always true of a, then ‘a is S’ encodes (again, at least partially) how a is.

Returning to the distinction between substantial and descriptional propositions,
it seems that the subject term of a true substantial proposition establishes what its

12See Almog (1991, 1996).
13As pointed out byRanta (1994, p. 55), “themost serious criticism against the type-theoretical anal-
ysis of everyday language comes from intuitionistic thinking” (i.e., from the very same framework
within which CTT is developed). The concern is that although intuitionistic logic is an appro-
priate tool for mathematical reasoning, its application outside mathematics is inappropriate. This
is mainly because, by contrast with mathematical reasoning in which objects are almost always
fully presented, everyday reasoning is usually based on an incomplete presentation of objects. For
example, although a natural number can be fully presented by its canonical expression, giving a full
presentation of a continent seems to be extremely difficult, if not impossible. Stated differently, the
presentations of continents (like many other things) in the natural language is usually incomplete
in the sense that they are usually referred to by expressions which only partially determine what a
continent is. There seems to be no canonical expression of the non-mathematical objects like conti-
nents, humans, trees, etc. One possible way to deal with this concern, as Ranta (1994, pp. 55–56)
suggests, is “to study delimited models of language use, ‘language games’. Such a ‘game’ shows, in
an isolated form, some particular aspect of the use of language, without any pretention to covering
all aspects.” For example, a term like ‘human’, depending on the context, can be partially modelled
by the set of canonical names of the people who are referred to by the term ‘human’ in that specific
context. Accordingly, a set like {John, Mary, Jones, Madeline} can be considered as the interpre-
tation of the term ‘human’ in a certain context. The elements of such a set are fully represented
by the canonical names ‘John’, ‘Mary’, etc. Although we are still far from the full presentation
of humans in flesh and blood, we have a model which enables us to formalize certain fragments
of language in which talking about humans is nothing but talking about those four persons. By
developing such models, we can formalize larger fragments of language. An alternative dialogical
approach for dealing with this concern is put forward by Rahman et al. (2018, Sect. 10.4). This
dialogical alternative is inspired by Martin-Löf (2014).
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objects are. By contrast, the subject term of a true descriptional proposition estab-
lishes how its objects are. For example, ‘a is human’ expresses what a is. But ‘a
is bachelor’ expresses how a is.14 So a reasonable expectation of an accurate anal-
ysis of substantial and descriptional propositions is that it must capture the difference
betweenwhat and how things are. This shows that classical logic cannot be an eligible
candidate for the frameworks in which such an analysis is supposed to be provided.
This is because those different forms of predication cannot be distinguished in clas-
sical logic, where there is only one way to analyse the expression ‘a is S’, namely as
the propositional function S(a). It is, therefore, an advantage of CTT over classical
logic that the language of the former is sensitive to the difference between these two
kinds of predication.

Suppose that ‘a is A’ expresses what a is. This can be captured in the framework
of CTT as a’s being amember of the category (or domain or type) A. The latter notion
can be represented in the language of CTT as follows:

a: A

In this expression ‘:’ can be read as ‘is’ (in the sense of expressing the what) or,
equivalently, as ‘belongs to’. Moreover, suppose that ‘a is B’ expresses how a is. In
other words, the expression describes a as having the property B and this expression
constitutes a proposition. This can be captured in the language of CTT as follows:

B(a): prop

In this expression ‘prop’ represents the category of propositions. Accordingly,
that a is an object of the type A which bears the description B can be expressed by
combining the two previous expressions as follows:

B(a): prop, given a: A.

More generally, B(x) constitutes a proposition when an x that is of the category
A, bear the description B. Formally,

B(x): prop (x: A)

In fact, this expresses the well-formedness of the predicate B(x).15 It determines
the domain upon which the predicate is defined. More explicitly, it clarifies that
B is predicated upon the objects which belong to the set A. In general, the CTT
formation rules for predicates are in accordance with Plato’s observation that how
something is cannot be asserted without presupposing what that thing is.16 Once

14This picture needs to be refined. As we will shortly see, even in the descriptional reading the
whatness of the objects of the subject term is mentioned, albeit only implicitly.
15In CTT, the well-formation is not only syntactic but also semantic. Consider, for example, the
predicate Hungry. The well-formedness of this predicate can be expressed by ‘Hungry(x): prop (x:
Animal)’, which reveals not only the correct syntactical use of that predicate but also the semantic
domain of the objects of which that predicate can be true.
16In their thorough and meticulous discussion of Plato’s Cratylus, Lorenz and Mittelstrass (1967)
highlight the distinction between naming (Ñνoμάζειν)—as establishing what something is—and
stating (λšγειν)—as establishing how something is. They (1967, p. 6) point out that “[t]he subject
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the well-formedness of a predicate has been established, we can produce formal
structures expressing that the predicate is true of some objects. For example, that B
is true of a, which is an arbitrary but fixed element of A, can be expressed by:

B(a)

Similarly, that some or all of the elements ofA areB can be expressed, respectively,
by the following expressions:

(∃x: A) B(x)
(∀x: A) B(x)

In all of the latter three expressions the formation rule B(x): prop (x: A) is
presupposed.17

By employing this machinery, the grammatical structure of categorical propo-
sitions can comprehensively be reflected in the language of CTT and this can be
counted as a significant advantage of CTT over classical logic. Consider the proposi-
tion ‘some students are good’. An oversimplified analysis of this proposition within
the classical logic with unrestricted quantification would be as follows:

(∃x) [Student(x) ∧ Good(x)]

By contrast, in the language of CTT, ‘some students are good’ could be formalized
by this notation:

(∃x: Student) Good(x)

The latter translation restricts Good to the grammatical subject of the proposition
i.e., Student. It singles out the set of those students that are good insofar as they are
students. Quite the contrary, the former translation does not distinguish the subject
and predicate. It coarsely refers to persons who are both good and student, no matter
whether or not that those persons are good at being a student or at something else.
To discuss one of Ibn Sı̄nā’s own examples, consider the following propositions:

(6) Imra↩a al-Qays is good.

(7) Imra↩a al-Qays is a poet.

(8) Imra↩a al-Qays is a good poet.

Ibn Sı̄nā argues that (8) cannot be concluded from the conjunction of (6) and (7).18

For him, such an argument is fallacious. But if we translate these propositions in the
language of classical predicate logic, we cannot see why this argument is fallacious.

has to be effectively determined, i.e., it must be a thing correctly named, before one is going to state
something about it”.
17In CTT, the judgment that the proposition B(a) is true is usually represented by ‘B(a) true’. But
as long as we are considering a proposition itself (without making any judgment that it is true) we
do not really need to add ‘true’.
18Ibn Sı̄nā proposes this example in the logic part of al-Išārāt (1983, Chap. 10.1, pp. 501–502). We
are grateful to Alexander Lamprakis for drawing our attention to this example.
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Suppose that ‘a’ refers to Imra↩a al-Qays, and ‘Poet’ and ‘Good’ represents, respec-
tively, being a poet and being good. An oversimplified translation of (6)–(8) in the
framework of classical logic (with unrestricted domain of quantification) yields:

(6-CL) Good(a)
(7-CL) Poet(a)
(8-CL) Poet(a) ∧ Good(a)

In such a framework, concluding (8-CL) from (6-CL) and (7-CL) is unproblem-
atic. But this is an undesirable result for Ibn Sı̄nā. This shows that such a framework
is not suitable for formalizing Ibn Sı̄nā’s logic. By contrast, in CTT the propositions
(6)–(8) would be translated as follows:

(6-CTT) Good(a): prop, given a: Human.19

(7-CTT) Poet(a): prop, given a: Human.
(8-CTT) Good(a): prop, given a: Poet.

(8-CTT) cannot be concluded from (6-CTT) and (7-CTT); and this is exactly what
Ibn Sı̄nā expects.20

16.3 Substantial and Descriptional Propositions

Consider the following proposition:

(9) Every moving is changing.21

The substantial and descriptional readings of (9) can be stated respectively as
follows:

(10) Every moving, as long as it exists, is changing.

(11) Every moving, as long as it is moving, is changing.

It is not the case that everymoving object, as long as its essence exists, is changing.
Rather, it is changing as long as its essence can be described as moving. A moving
object can in principle stop moving at some time without ceasing to exist. So (9) is
true only if it is read in the descriptional sense as (11), rather than in the substantial
sense as (10). To see how the difference between (10) and (11) can be mirrored in
their formal constructions in the language of CTT, a deeper investigation about the
subject and predicate of these propositions needs to be carried out.

At first sight the subject of (9) is Moving and the predicate is Changing. However,
Moving is a description whose bearer is concealed (mud. mar). Thus it is legitimate

19That Imra↩a al-Qays belongs to the category Human is not explicitly mentioned in (6) and (7).
But it is necessary be added to the picture. See the next section for more details on this issue.
20Notice that if we simply take Good-Poet(x) as a predicate, then from Good-Poet(a) we cannot
infer either that a is good or that a is a poet.
21The example is borrowed from the logic part of al-Išārāt (1983, Chap. 4.2, p. 265).
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to ask what the category of moving objects is. Put otherwise, what is the type of
the things which are supposed in (9) to be Moving?22 (9) itself does not determine
whether moving things are supposed to be, for example, humans, animals, or bodies
(aǧsām) in general. This can be established only by the context in which (9) is stated.
But in any case it is undoubtable that moving things must be considered to be of a
specific category, even if this category is not explicitly mentioned. To preserve the
generality of our analysis we can assume that this category is O. It means that (9)
expresses a fact about those objects of the type O which are moving. Depending
on the context, O can be replaced with the categories like Human, Animal, or, more
generally, Body.

According to this understanding, every element which lies in the scope of the
universal quantifier of (9) has two different aspects. One aspect reveals what it is
(i.e., it belongs to O) and the other reveals how it is (i.e., it is moving). In other
word, if z is an element in the scope of the universal quantifier of (9)—i.e., if z is
one of those objects that are moving—it can be represented as having the canonical
form < x, b(x) > in which x is of the type O and b(x) is a method evidencing that
x can be described as being Moving. b(x) can be seen as a truth-maker or a proof
for the proposition that x is moving.23 The difference between the substantial and
descriptional readings of (6) is rooted in how these two different components are
combined with each other and in the roles each of them plays in the predication. The
descriptional reading of (9)—i.e., (11)—can be formalized in the language of CTT
as follows:

In this translation, left can be interpreted as a projection function which extracts
the left-side element of every z. Similarly, right can be defined as the projection
function which extracts the right-side element of every z. So if z is considered to be
a compositum of the form <x, b(x)> in which x is of the type O and b(x) is a method
evidencing that x can be described as moving, then left(z) = left(<x, b(x)>) = x: O
and right(z) = right(<x, b(x)>) = b(x): Moving(x) (x: O). The above construction
can be seen as involving an anaphora whose head is Moving-O (i.e., it is an object of
the type O that is Moving). The tail of the anaphora is constituted by the projection
function left(z) which picks out those objects of the type O that are described as
moving in the grammatical subject.

Philosophically speaking, in the descriptional reading of (9), the two different
aspects of the subject (i.e., the one which reveals what it is and the one which reveals

22On how and why the bearer of the subject of descriptional propositions is concealed see Schöck
(2008, pp. 350–351).
23A truth-maker is in fact a rudimentary form of what is called proof-object in CTT. See Ranta
(1994, p. 54). However, in the context of this chapter, we assume ‘truth-maker’ and ‘proof-object’
to be synonymous terms. It is also worth mentioning that in the CTT-framework one and the same
true proposition has according to the rule more than one object which makes it true.
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how it is) aremerged into a compound unity, so that each constituent carries the infor-
mation about the other. Now it is this compound unity upon which Changing is pred-
icated. More precisely, the subject is assumed to have a whatness (i.e., its belonging
to O which can also be seen as the substantial component of the subject) and a
howness (i.e., its being moving which can also be seen as the descriptional compo-
nent of the subject). In the descriptional reading these two aspects are combined with
each other to make a new compound whatness (i.e., Moving-O) upon which another
howness (i.e., Changing) is predicated. Such a compound whatness plays no role in
the substantial reading of (9). In (10), the objects uponwhichChanging is going to be
predicated are still selected by the descriptionMoving from the domain of the objects
of type O. Nonetheless, the truth of such a substantial predication is not supposed
to be dependent on whether or not those objects preserve the description Moving.
In general, in the substantial predication the objects of predication are selected by a
description but the truth of the predication does not depend on whether or not those
objects preserve the description. By contrast, in the descriptional reading not only
are the objects of predication selected by the description but also the predication is
true only as long as those objects preserve the description. Given these observations,
our proposal for the translation of the substantial reading of (9)—i.e., (10)—goes as
follows:

Here the descriptionMoving is characterizing the domain of the objects of the type
O upon which Changing is predicated. Nonetheless, the description is not a compo-
nent of the unified whatness upon which Changing is predicated. The subject is not
considered as a compound entity of which the description Moving is an irremov-
able component. Moreover, to highlight the distinction between the substantial and
descriptional reading, instead of left and right, here we use the projection functions
first and second. The main difference between these two couples of the projection
functions is that when one of the functions of the former couple extracts an element
of the pair <x, b(x)> , the selected element carries some piece of information about
the other element. By contrast, what is selected by one of the functions of the latter
couple does not contain any piece of information about the the other element. So
first(z) selects one instantiation of O and forgets about the second component of z.24

To generalize our formalizations, reconsider the proposition (1)—i.e., ‘every S
is P’—and suppose that S is a description whose bearers are of the type D. The
descriptional and substantial reading of this proposition can be formalized as follows:

Substantial Reading of (1): {∀z: (x: D | S(x))} P(first(z))

24To put it in more technical language, if in the proposition ‘every B, as long as it exists, is C’, the
bearers of the description B are of the type A, then first(z): A must be understood as what Sundholm
(1989, p. 10) calls ‘A-injection’.
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Descriptional Reading of (1): {∀z: (∃x: D) S(x)} P(left(z))

Now we can easily see the advantage of this analysis over one of its rivals which
is proposed in the framework of classical predicate logic. Saula Chatti formalizes
the descriptional reading of (1) as follows:

(∀x)[S(x) ⊃ (S(x) ⊃ P(x))] ∧ (∃x)S(x)
As she herself pointed out, the above proposition is equivalent to:

(∀x)(S(x) ⊃ P(x)) ∧ (∃x)S(x)
But this is exactly what classical predicate logic proposes for the formalization of

all A-form absolute propositions. So it cannot reflect how the descriptional reading
of a proposition differs from the other possible readings.25

These formalizations enable us to see better how some seemingly contradictory
propositions, like the two below, can be both true at the same time:

(12) Every sitting dog, as long as it exists, can walk.

(13) Every sitting dog, as long as it is sitting, cannot walk.

In (13) the subject must be taken as a compound entity to which the predicate
Cannot-walk applies. Here the projection function left selects only those dogs that
are sitting. In (12), the function first takes the subject in its substantial sense. This
means that although the subject is analysed into Dog and Sitting, when first selects
a dog, its selection does not carry information on whether or not the dog is sitting.
So the formal translations of (12) and (13) go respectively as follows:

(12-CTT) {∀z (x: Dog | Sitting(x))} Can-walk(first(z))
(13-CTT) {∀z: (∃x: Dog) Sitting(x)} Cannot-walk(left(z))

So far so good. But our conception of the roles Ibn Sı̄nā considers for the substan-
tial–descriptional distinction in different contexts will not be comprehensive until
we understand how the time-parameter and the existence predicate can be added to
the picture.

16.4 Time Parameters

Timeparameters addmore complexities to the structure of descriptional propositions.
But, fortunately, CTT has the capacity to handle them. Reconsider the following
descriptional proposition propositions:

(11) Every moving, as long as it is moving, is changing.

Which is equivalent to:

25See Chatti (2019b, pp. 113–114). Since Ibn Sı̄nā considers existential import for A-form
propositions, Chatti emphasizes that the above formulas must include the conjunct ‘(∃x)S(x)’.



16 On Descriptional Propositions in Ibn Sı̄nā: Elements … 421

(14) Every moving is changing while it is moving.

Now if we add the time parameter, (14) can be read as follows:

(15) Every moving is changing all the time it is moving.

This proposition is usually rendered as an equivalent of the following proposition:

(16) Every (sometime-)moving is changing all the time it is moving.26

Accordingly, (16) is usually formalized as follows:

(16-CL) (∀x)[(∃t)Moving(t,x) ⊃ (∀t)(Moving(t,x) ⊃ Changing(t,x))] ∧
(∃t)(∃x)Moving(t,x)

In this analysis ‘x’ and ‘t’ are variables for respectively the moments of time and
the bearers of the description Moving. ‘Moving(t,x)’ can be naturally read as ‘x is
moving at t’.27 Our analysis is, however, quite different. But before presenting our
proposal, we should first discuss some preliminaries on how temporality can be dealt
with in the framework of CTT.

16.4.1 Preliminaries on Temporal Reference in CTT

16.4.1.1 Time Scales

Usually when we are talking about time, we are talking about a specific time scale.
Depending on the length of the temporal units, we can introduce different time
scales. For instance, we can talk about either years, or months, or days, or hours,
etc. These time scales can be represented as, respectively, Year, Month, Day, etc.28

Each of these time scales is a temporal category. The time scale we are talking about
naturally depends on the context in which the proposition is stated. For example,
when someone is talking about waking up early in the morning, the time scale such a
person considers is probablyDay. But when the president of a university is presenting
statistics about their graduates, her/his time scale is likely to be Year. In general, we
can represent the time scale we are talking about as T.

16.4.1.2 Time Spans

An advantage of the CTT-framework as implemented for time reference is that it
provides the opportunity of considering not onlymoments of time, but also time spans

26Hasnawi and Hodges (2017, p. 61) label such propositions as ‘(a-�)’ which can be considered as
an abbreviation for ‘A-form lāzim’ propositions.
27This formalization is in accordance with what Hodges and Johnston (2017, p. 1061) put forward
following Rescher and vander Nat (1974). The conjunct ‘(∃t)(∃x)Moving(t,x)’ is added to guarantee
the existential import of the proposition.
28For a detailed technical definition of time scales, see Ranta (1994, Sect. 5.1).
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and intervals with a beginning and an end. This is particularly important because
actions like moving, running, etc. do not happen in a moment. Rather they should
be considered as extended events which happen in temporal intervals. Indeed, one
of the main shortcomings of the aforementioned analysis of (16) is that it does not
consider moving and changing as extended events. So it is important to have tools
to express the occurrence of events not only in singular moments of time but also
in temporal intervals. This helps us to formally describe how an object that bears a
specific description in a specific span of time can also bear some other descriptions
in some specific sub-spans of the former span. It is also possible to express how an
object can have the same descriptionwith different qualifications in different spans of
time. For example, an object that is moving in a span of time might be slow-moving
in some parts (or sub-spans) of that span and fast-moving in some others. So it seems
to be crucial to see how a span of time can be defined in the framework of CTT.

The category of the spans of a time scale T can be defined as the Cartesian product
of T and the set of natural numbers N.29 More precisely:

span(T ) = T × N

To make it clearer, a span of the time scale T is a pair whose first element refers to
the beginning point of that span in T and whose second element refers to the number
of temporal units (of the scale T ) which must be added to the beginning point to
form the span under discussion. Stated differently, the second element determines
the length of the span. So if d = <t0, n> : span(T ), d is a span of the time scale T
which begins at t0 and ends at t0 + n. The span d can also be represented as [t0, t0

+ n]: span(T ). As we will shortly see, the following functions are also useful:

left(d) = begin(d) = t0: T
end(d) = t0 + n: T
right(d) = length(d) = n: N

As an example of the spans of time in the time scale Day, consider the following
span:

<14 June 2018, 31> : span(Day)

This span of time begins on 14 July 2018 and extends for 31 days. This is exactly
the interval in which Football World Cup 2018 took place.

It is noteworthy that since 0 is a member of N, every singular moment of the
time scale T can be considered as a span of the length 0. In other word, every t of
the time scale T corresponds to <t, 0> which is a member of span(T ). This shows
that everything expressible by the terminology of singular moments of time is also
expressible by the terminology of time spans, though the other way around does not
hold.

29For a detailed technical definition of time spans, see Ranta (1994, p. 115).
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16.4.1.3 Saturation Versus Enrichment

There are at least two different approaches for dealing with temporal reference in
the CTT-framework.30 More clearly, a proposition which expresses the occurrence
of an event (or fact) in a span of time can be seen in at least two different ways. Such
a proposition can be seen either as an incomplete propositional function that can be
saturated by that specific span of time or as an event (or a fact) that can be timed by a
timing function. These two formal terminologies are translatable into each other. This
means that everything expressible by one of these two approaches is also expressible
by the other. Nonetheless, there is a significant philosophical difference between
these two approaches. In the first approach time is primitive. Temporal entities (i.e.,
singular moments of times or time spans) are independent entities which can be put
as the arguments of propositional functions. So, ontologically speaking, complete
propositions in some sense depend on these temporal entities. By contrast, in the
second approach, events (or facts, or truth-makers of the propositions which express
those events) are primitive individuals which can be put as the arguments of the
timing functions. Thus, in a sense, time is dependent on events. Inspired by François
Recanati’s terminology, we call these two approaches, respectively, ‘saturation’ and
‘enrichment’.31

According to the saturation approach, ‘A occurs at the span d of the time scale T ’
can be formalized as a propositional function A that is saturated by d. So:

A(d): prop (d: span(T ))

By contrast, according to the enrichment approach A itself is a fully saturated
proposition which is made true by different events (or facts) at different time spans.
Equivalently, it has different truth-makers or proofs at different time spans. These
truth-makers can be timed by a timing function. Informally speaking, the timing
function operates upon the set of truth-makers (or justifications, or proofs) of A and
determines the time span in which such a truth-maker is obtained.32 So if x is a truth-
maker of the proposition A (i.e., if x is an event or fact whose occurrence makes
A true), then the timing function τ would determine the span of time in which x is
obtained. So the role of τ can be defined as follows33:

30See Ranta (1994, Sect. 5.4).
31This terminology is borrowed from Recanati (2007a, 2007b).
32Recall that as pointed out before, it is assumed that a proposition has different truth-makers (or
proofs or justifications). In the present context this amounts to the assumption that a proposition
has different truth-makers during different time spans. That a proposition is true in a specific time
span is equivalent to that one of its truth-makers is obtained in that time span.
33See Ranta (1994, p. 108).
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A: prop
τ (x): span(T ) (x: A)

For example, that a human x is running in the time span d can be expressed by
the saturation approach as follows:

Running(x,d): prop (x: Human, d: span(T ))

Quite differently, the same proposition can be formalized by the enrichment
approach as follows:

Running(x): prop (x: Human)
τ (b(x)) = d: span(T ) (x: Human, b(x): Running(x)).34

In this formalization b(x) is a truth-maker or evidence for the proposition
Running(x); and τ is a timing function which determines the time span in which
b(x) is obtained. So in a sense the time span d is eventually defined by that specific
truth-maker of Running(x) that is obtained in that span. In other words, the time span
d is given by the operation of the timing function τ upon the event which makes
Running(x) true. Borrowing Aristotelian terminology, we can say that in the enrich-
ment approach time elements are measurements—i.e., timing operations—of (and,
consequently, dependent on) events.

After explaining these preliminary points, we are now well equipped to analyse
the temporal interpretation of descriptional propositions through both the saturation
and the enrichment approaches.

16.4.2 Descriptional Propositions Relativized by Saturation

Reconsider the proposition (15):

(15) Every moving is changing all the time it is moving.

As we mentioned, moving and changing are extended events which happen in
time spans, rather than in singular moments of time. So it is plausible to restate (15)
in the language of time spans. If we do so, the result would be something like the
following:

(17) Every moving is changing in all the spans in which it is moving.

34In order to avoid notational complexity we omitted one variable within the timing function.
Indeed, strictly speaking, the correct formalization must be τ (x, b(x)) = d: span(T ) (x: Human,
b(x): Running(x)).
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If we suppose again that the bearers of the description Moving are of the type O
and that our time scale is T, then our proposal for the logical analysis of (17), in the
saturation approach, goes as follows:

(17-CTT-S) {∀z: (∃d: span(T )) ((∃x: O) Moving(d,x))}
Changing(left(z),left(right(z))

This can be glossed as:

(17-CTT-S*) Every z that is an element of the set of those objects that are moving
at some time span d is subject to change at the time span in which it is moving.

More precisely, here z is a variable for those time spans d at which some x of the
type O is moving. So z can be considered as a pair of the canonical form <d, <x, b(x)
�. Thus, left(z) gives the first constituent of z which is some time span d at which the
moving thing is moving. The right constituent of z is the pair of the moving object x
and the evidence b(x) which shows that x bears the description Moving at d. In other
words, in the time span d, b(x) is the truth-maker of the proposition that ‘x is moving’.
Hence, while left(z) yields some time span d, left(right(z)) provides the object that
is moving at that time span. This is the object of which the grammatical predicate
Changing is true. To generalize this approach, consider the following proposition:

(18) Every S is P in all the spans in which it is S.

If the bearers of S are of the type D and our time scale is T, then the logical
analysis of (18) in the language of CTT and based on the saturation approach goes
as follows:

(18-CTT-S) {∀z: (∃d: span(T )) ((∃x: D) S(d,x))} P(left(z),left(right(z)))

As we previously mentioned, objects that have a description in a specific span
can be described as having other properties in some specific sub-spans of the former
span. Nowwe are well equipped to formalize some of the propositions which express
such situations. Consider the following example:

(19) Everyone who studies mathematics as an undergraduate spends the first year studying
calculus.

To formalize this proposition we can take our time scale to be Year. We can also
take ‘Math(d,x)’ to represent that x studies mathematics as an undergraduate in the
span d (where d: span(Year) and x: Human). More precisely, we assume that x starts
studying mathematics at begin(d) and graduates at end(d). If so, the first year of d
can be referred to by the following function:
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first-year(d) = < begin(d), 1 > : span(Year)

So first-year(d) refers to the span of time which begins at begin(d) and extends
for 1 year. Now if ‘Calculus(d,x)’ expresses that x studies calculus in d, then the
formal interpretation of (19) would be as follows:

(19-CTT-S) {∀z: (∃d: span(Year) ((∃x: Human) Math(d,x))} Calculus(first-
year(left(z)),left(right(z))

Here again z is the pair < d, < x, b(x) > > in which d is a span of time scale Year, x
is a human, and b(x) is the evidence that x can be described as studying mathematics
at the undergraduate level. To generalize this example, suppose that for every time
span d, the function s-period(d) determines a specific period of d. So first-year is
an instance of this kind of functions. But s-period(d) can be defined to determine,
for example, the first quarter, the second third, or any other specific part of d. Now
consider a proposition of the following general form:

(20) Every S is P in a s-period of the time span in which it is S.

This can be formalized as follows:

(20-CTT-S) {∀z: (∃d: span(T ) ((∃x: D) S(d,x))} P(s-period(left(z)),left(right(z))

Developing this approachwould help us to formalize some other types of temporal
propositions which play a crucial role in the temporal logic of Ibn Sı̄nā. (21) is one
such proposition:

(21) Every (sometime-)S is P sometime while it is S.35

The proposition has been usually formalized as follows:

(21-CL) (∀x)[(∃t)S(t,x) ⊃ (∃t)(S(t,x) ∧ P(t,x))] ∧ (∃t)(∃x)S(t,x)36

To analyse (21) using the saturation approach of CTT, we need to add a time span
quantifier on the predicate side. Accordingly, (21) can be formalized as:

(21-CTT-S) {∀z: (∃d1: span(T ) ((∃x: D) S(d1,x))} (∃d2: span(T )) [S(d2,
left(right(z)) ∧ P(d2,left(right(z))]

Here z must still be considered as a pair of the canonical form <d1, <x, b(x) �.
Informally, (21-CTT-S) says that for every object x of the type D that is S in a time
span d1, there is a time span d2 in which that object is P while it is S. Now we can
turn to the enrichment approach.

35Hasnawi and Hodges (2017, p. 61) label such propositions as ‘(a-m)’, which can be considered
as an abbreviation for ‘A-form muwāfiq’ propositions.
36This formalization is suggested by Hodges and Johnston (2017, p. 1061), following Rescher and
vander Nat(1974). Again, the conjunct ‘(∃t)(∃x)S(t,x)’ is added to preserve the existential import.
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16.4.3 Descriptional Propositions Relativized by Enrichment

As we previously mentioned, in the enrichment approach time elements are not
primitive and have no independent existence. They are dependent on events which
make propositions true. In other words, they are dependent objects—i.e., functions.
Since this philosophical conception of time is closer to how Ibn Sı̄nā understands this
notion, it is more plausible to analyse his temporal propositions based on the enrich-
ment approach (rather than based on the saturation approach in which time elements
are primitive and have independent existent).37 To see how temporal propositions
can be formalized by the enrichment approach, reconsider the proposition (17):

(17) Every moving is changing in all the spans in which it is moving.

In the enrichment approach, this proposition can be formalized as:

(17-CTT-E) {∀z: (∃x: O)(Moving(x)} Changing(left(z)) AT(τ (right(z)))

Here, z is a pair of the canonical form < x, b(x) >. So left(z) = x and right(z)
= b(x). As a result, τ (right(z)) amounts to τ (b(x)). Since b(x) is a truth-maker of
‘x is moving’, τ (b(x)) yields a time span within which x is moving. Finally AT is
an operator that operates upon propositions. Informally speaking, for every span d
and every proposition A, A AT(d) indicates that A is the case within the time span
d. So Changing(left(z)) AT(d) means x is changing within the time span d. Putting
together all of these observations, what (17-CTT-E) says is that every x of the type
O is changing in all the time spans in which it is moving. In other words, if x is
moving in d, it would also be changing in this span. To generalize this formalization,
reconsider (18):

(18) Every S is P in all the spans in which it is S.

If we suppose that the bearers of the description S are of the type D, then (18) can
be analysed as:

(18-CTT-E) {∀z: (∃x: D)(S(x)} P(left(z)) AT(τ (right(z)))

Finally, reconsider (21):

(21) Every (sometime-)S is P sometime while it is S.

To formalize (21) in the enrichment approachwe need to add a temporal quantifier
on the side of predicate. In this respect, there is no difference between this approach
and the saturation approach. (21) can be formally analysed as:

(21-CTT-E) {∀z: (∃x:D)(S(x)} (∃d: span(T ))[τ (right(z))= d ∧ P(left(z)) AT(d))]

Here again z is a pair of the canonical form < x, b(x) > in which x is an object of
the type D and b(x) is a witness (or proof) for that x is S. So τ (right(z)) gives a time

37For Ibn Sı̄nā time is the number or magnitude of motion. Although he does not explicitly talk
about events, his definition of time shows that he does not consider an independent existence for it.
This suffices to convince us that the enrichment approach is preferable to the saturation approach.
For a detailed discussion on Ibn Sı̄nā’s view regarding time, see Lammer (2018, Chap. 6).
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span within which x is S. Accordingly, what (21-CTT-E) says is that for every x of
the type D that is S, there are some spans d in which x is both S and and P.

16.5 Existence With and Without Existence Predicate

According to the ontological system underlying CTT, the fact that a type has been
instantiated amounts to showing that the type is not empty. In other words, we should
understand the instances of types as witnessing the existence. Therefore, we do not
really need to capture the existential import of propositions by adding conjuncts
which guarantee the existence of the subject. This can be counted as another advan-
tage of our analysis over some of the earlier studies.38 If the import is automatically
guaranteed, then a fortiori there is no need to the existence predicate. It is so, at least,
unless the existence predicate is defined in some way that allows us to distinguish
those instantiations that witness existence from those that do not.

It is worth mentioning that associating the instantiation of a type to the existence
of its elements does not prevent us from considering different sorts of existence.
Indeed, each instantiation can be understood as representing the kind of existence
associated to the type they instantiate. For example, the members of the type N (i.e.,
natural numbers) do not have the same form of existence as the members of the type
Man. Each type has its own form of existence depending upon how the process of its
instantiation is defined. Technically speaking, such a process is defined by the rules
that introduce the canonical elements of the type under discussion. For example,
the notion of existence associated with the set of natural numbers is construction by
mathematical induction. By contrast, members of the type Human have a completely
different mode of existence.39

Havingmade these points, if someone still insists on adding the existence predicate
to the picture, there seems to be no technical difficulty in the way of fulfilling this
desire. To give examples we can reconsider the logical analysis provided in (18-CTT-
S):

(18-CTT-S) {∀z: (∃d: span(T )) ((∃x: D) S(d,x))} P(left(z),left(right(z)))

The existence predicate can be added to the side of subject as follows:

(18-CTT-S*){∀z: (∃d: span(T )) ((∃x: D) S(d,x) ∧ Exists(d,x))}
P(left(z),left(right(z)))

If desired, the existence can also be added to the side of the predicate as follows:

(18-CTT-S**) {∀z: (∃d: span(T )) ((∃x: D) S(d,x) ∧ Exists(d,x))}
P(left(z),left(right(z))) ∧ Exists(left(z),left(right(z)))

38See notes 25, 27, and 36.
39The existence of the subject matter of non-mathematical propositions can be presented either by
‘logical games’ or by dialogical verification procedures. See note 13.
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By following the same approach, the existence predicate can be added to the
propositions relativized by enrichment. However, it should be borne in mind that the
existence predicate cannot be introduced rigorously unless we clarify exactly how it
is formed. For example, we can say that the objects of the categoryO exist if and only
if they are temporally and spatially indexed.40 So if the time scale and the category
of location are represented by, respectively ‘T ’ and ‘L’, the existence predicate can
be defined as follows:

Exists(x, y, z): prop (x: O, y: L, z: T ).

Obviously, such a definition of this predicate needs to be embedded into the logical
structure of the preceding sentences. We will leave the task of modifying the formal
structure to the reader.

16.6 Conclusion

In this chapter we provided a new logical analysis of Ibn Sı̄nā’s descriptional propo-
sitions in the framework of CTT. Assuming an anaphoric structure for propositions,
we showed that the grammatical predicate of a descriptional proposition is true of an
anaphoric tail that encodes not only what the object of predication is, but also how
it is. By contrast, in the case of a non-descriptional propositions the anaphoric tail
only encodes what the object of predication is.

Our analysis has at least three advantages over its rivals. First, it better reflects
the grammatical structure of propositions. Second, it is quite flexible for capturing
different temporal features of propositions. In particular, it can enable us to formalize
not only sentences which talk about singular moments of time, but also sentences
which include actions extended in time spans. Third, the existential import of the
universal propositions is automatically guaranteed by the instantiation of the types
about which those propositions talk. So we do not need to consider an additional
conjunct to our translations just to make sure that the existential import is preserved.
Nonetheless, as we saw, there is no obstacle in the way of adding the existence
predicate either to the side of subject or to that of the predicate.

Our main focus in this chapter was on how some propositions can be formalized
in the framework of CTT. We did not touch on how these formal constructions can
be put into the syllogism. This should be postponed to a future project. Nonetheless,
there is an important insight about the theory of the syllogism which can be seen
from here. We showed that the anaphoric structure is quite general and is applicable
even when the temporal dimensions of propositions are completely put aside. But
if we analyse the propositions of a syllogism as such anaphoric structures, then it
would be obvious that the subject-term must always contain a descriptional element
in relation to the individual of a domain shared by the premises. So, in a sense, it is

40An alternative approach is based on the introduction of the notion of ontological dependence. See
Rahman and Redmond (2015).
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assumed by the premises that the kind of the involved object in the inference to be
drawn is known. This is one of the general insights on the theory of the syllogism
which can be acquired from Ibn Sı̄nā.
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Chapter 17
Avicenna on Syllogisms Composed
of Opposite Premises

Behnam Zolghadr

Abstract This article is about Avicenna’s account of syllogisms comprising oppo-
site premises. We examine the applications and the truth conditions of these syllo-
gisms. Finally, we discuss the relation between these syllogisms and the principle of
non-contradiction.

Keywords Avicenna · Syllogism · Opposition · Contradiction · Paraconsistency

17.1 Introduction

In his Prior Analytics, Aristotle explains syllogisms comprising opposite premises,
i.e. contraries or contradictories. That some syllogisms can be composed of opposite
premises might be of no surprise, considering that Aristotelian syllogistic is usually
considered as a paraconsistent logic, in the sense that not everything follows from
a contradiction. In another words, ex contradictionequodlibet- or explosion, as it is
called in contemporary logic- is not a valid argument in Aristotle’s syllogistic.1 Here
is an example:

All men are animals.
Some men are not animals.

All animals are men.

This argument which is valid in classical logic, i.e. in the logic developed
by Fregeand Russell, is not valid in Aristotelian syllogistic. Thus, within Aris-
totelian syllogistic, inconsistencies do not make the theory trivial. However, on
the other hand, considering Aristotle’s extensive defense of the principle of non-
contradiction, it might be surprising that in Aristotelian syllogistic some valid deduc-
tions are composed of opposite premises.Aristotle does not explicitly saymuch about

1For more detail see (Priest 2007, p. 120).
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the applications and metaphysical implications of such syllogisms. On the other
hand, Avicenna in a corresponding section, under the title ‘syllogisms of opposite
premises’, says more about these syllogisms. Avicenna’s account of these syllo-
gisms is the main concern of this article. For not only does he tell us more about
these syllogisms, but also after Avicenna, Arabic logicians mostly read his works on
logic and not those of Aristotle. For this reason, Avicenna’s account of syllogisms
from opposite premises is also important from a historical point of view, i.e. on the
way later Arabic logicians received syllogistic. I have already discussed Avicenna’s
defense of the principle of non-contradiction in another paper.2Avicenna argues that
from some specific contradictions, e.g. in the form of everything is P and not P ,
everything follows, but he does not argue that from an arbitrary contradiction every-
thing follows. This argument and a comparison between Avicenna’s defense of the
principle of non-contradiction and that of Aristotle’s were discussed in that paper.
Here, we are concerned with another aspect of Avicenna’s view on contradictions,
i.e. what follows from opposite premises in a valid syllogism and the way in which
we should understand it in the context of Aristotelianism. Moreover, we are consid-
ering the following questions: What are the truth values of the opposite premises,
and their conclusions? And are these syllogisms in contrast with the principle of non-
contradiction? This latter question is important, because that some syllogisms are
madeof opposite premises is in contrastwith ex contradictionequodlibet.However, as
we will see, in these syllogisms, only contradictions follow from opposite premises.
In what follows, we will discuss these syllogisms and the truth conditions of their
premises.

Thus, the next section is about Aristotle’s account of syllogisms which are
composed of opposites. Aristotle explains to us in what figures and in what moods
such syllogisms can be established. Then, in the third section, we will discuss
Avicenna’s interpretation of Aristotle’s account, as well as his own account. We
will examine the corresponding section from three of his works: Middle Summary
on Logic (al-Muh

˘
tas. ar al-awsat. fil-Mant.iq), The Cure (Šifā) and The Deliverance

(Naǧāt). In this section, we will firstly explore the truth conditions of opposite
premises and, then, the validity of syllogisms from such premises as well as the cases
in which, according to Avicenna, such syllogisms are established bymistake.Wewill
conclude with some remarks on the paraconsistency of Aristotelian syllogistic.

17.2 Aristotle on Syllogisms Composed of Opposite
Premises

As Aristotle explains,3opposite premises include contraries and contradictories.
Contraries are corresponding A-propositions and E-propositions and contradicto-
ries are either corresponding A-propositions and O-propositions or corresponding

2(Zolghadr 2019).
3Prior Analytics, 63b31–63b38. All quotations of Aristotle are from (Barnes 1991).
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E-propositions and I-propositions. Syllogisms from such contrary or contradictory
premises can be made only in the second and the third figures, and these syllogisms
cannot be made in the first figure. Aristotle explains this in two steps. In the first
figure, no affirmative deduction from opposite premises can be made, because one
of the opposite premises must be affirmative and the other must be negative. Other-
wise, they are not opposite. But affirmative deductions are made of only affirmative
premises. Thus, no affirmative deduction can be made from opposite premises. This
is true of other figures as well. In no figure are syllogisms from opposite premises
affirmative. Thus, the conclusion of a syllogism from opposite premises, if any, is
only negative. Aristotle’s second step is to show that in the first figure no negative
deduction can be made from opposite premises. Opposites affirm and deny the same
predicate of the same subject. But in the first figure the middle term which occurs in
both premises is the subject of one and the predicate of the other. As Aristotle put
it4:

And the middle term in the first figure is not predicated of both extremes, but one thing is
denied of it, and it is affirmed of something else and such propositions are not opposed.

However, one might ask whether a similar point can be made of the other figures
as well. In the second figure, the middle term is the predicate of both premises, and
thus the premises have the same predicate. But the subjects are different. So, to have
opposite premises, the subjects of the premises should be one. Similarly, in the third
figure, the subjects of premises are the same, but the predicates are not. Thus, to
have opposite premises, the predicates of the premises should be one. Therefore,
syllogisms from opposite premises are special kinds of syllogisms. In the second
figure, these syllogisms are those in which the major term and the minor term which
are the subjects of premises are the same. In the third figure, these deductions are
those in which the major term and the minor term, which are the predicates of the
premises, are the same. The conclusion of these syllogisms, in both figures, have a
distinctive feature. Since the minor and major terms are the same, the subject and
predicate of the conclusion are the same. We already know that these syllogisms are
negative. Thus, the consequent of syllogisms which are made of opposite premises
is either a universal or affirmative proposition denying something of itself.

As already mentioned, accordingto Aristotle, there is no negative deduction of
opposite premises in the first figure, because the subjects as well as the predicates of
the premises are not the same. In the second and the third figure both subjects and
predicates are not the same. Valid syllogisms in these figures, according to Aristotle,
are special cases in which subjects are the same in the second figure and predicates
are the same in the third figure. Thus, one might consider a similar approach to the
first figure, i.e. syllogisms from opposite premises can be made in the first figure
only if all the terms, including the middle, major and minor, are the same. Yet, it
can be only made in the moods with negative conclusions, i.e. Clarent and Ferio.
However, Aristotle, as we saw, excludes this possibility. The reason might depend
on his theory of predication, according to which, something must be predicated of

4Ibid.
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something else, and thus self-predication is excluded.5 In the first figure, to have
opposite premises, all four terms should be one, and consequently both premises
will be self-predications. If self-predication is excluded from syllogistic, there will
be no syllogism from opposite premises in the first figure. Let us move on to the
second and the third figures.

In the second figure, syllogisms can be made of opposite premises in all four
moods (63b39–64a19). In Cesare and Camestres, premises are contraries, and in
Festino and Baroco, the premises are contradictories. For Cesare, consider:

No C is A.
All Bs are As.
No Bs are Cs.

Let A stands for good and let B and C stand for science. The conclusion will be
‘No science is a science’. Exchanging the major premise for the minor premise we
will have Camestres and the conclusion will be: No Cs are Bs. For Festino, consider:

No Bs are As.
Some Cs are As.

Some Cs are not Bs.

Aristotle’s examples are: Supposition for A and Science for B and C. The
conclusion is: ‘some sciences are not science’.

The last mood of the second figure is Baroco:

All Bs are As.
Some Cs are not A.
Some Cs are not Bs.

Aristotle’s examples are good for A and science for B and C. The conclusion is:
‘some sciences are not science’.

In all these four examples, premises share the same subjects and the same pred-
icates. Moreover, none of the deductions of the second figure is affirmative. As
Aristotle put it (63b39–64a19):

Consequently it is possible that opposites may lead to a conclusion, though not always or
in every mood, but only if the terms subordinate to the middle are such that they are either
identical or related as whole to part. Otherwise it is impossible; for the propositions cannot
anyhow be either contraries or opposites.

In the previous examples, minor and major terms are identical. However, here,
Aristotle mentions that they can be related as whole to part. In Sect. 3.2, we will
discussAvicenna’s commentary on this point, where he offers additional explanation.

Now the third figure. In three moods, i.e. Darapti, Disamis and Datisi in which
both premises are affirmative, syllogisms cannot bemade of opposite premises for the
same reasonwediscussed regarding thefirst figure.But in the other threemoods of the

5See (Gomes and D’Ottaviano 2010) and Categories, 1b9–15, 2b19–22.
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third figure, syllogisms can be made of opposite premises. In Felapton, these syllo-
gisms are made of contrary premises, and in Bocardo and Frison, these syllogisms
are made of contradictory premises.

For Felapton:

All As are Bs.
No As are Cs.

Some Cs are not Bs.

Aristotle examples are: Medicine for A and Science for B and C. The conclusion
will be ‘Some sciences are not science’. For Bocardo and Ferison, respectively:

Some Bs are not As.
All Cs are As.

Some Cs are not Bs.

No Bs are As.
Some Cs are As.

Some Cs are not Bs.

The examples are the same as in the case of Felapton. In both moods, the
conclusions are ‘some sciences are not science’.

Thus, according toAristotle, syllogisms of opposite premises can bemade in seven
moods. The conclusion is always denying something of itself, whether universally
or particularly, which is unacceptable due to the principle of non-contradiction.

A question still remains: How can some syllogisms be made from opposite
premises without violating the principle of non-contradiction? Perhaps the answer
can be found in a distinction Aristotle makes between different kinds of syllogisms
based on the truth of their premises. We will discuss this question in the next section
through Avicenna’s exposition of the subject.

17.3 Avicenna on Opposite Premises

17.3.1 Truth and Opposite Premises

Wewill examine Avicenna’s view on the syllogisms which are composed of opposite
premises, from three of his works: The Cure (Šifā), The Deliverance (Naǧāt) and
Middle Summary on Logic (al-Muh

˘
tas. ar al-awsat. fil-Mant.iq). We find a section

entitled ‘Syllogisms of Opposite Premises’ in every one of these works. The section
from The Cure is in the book of Syllogism (Qı̄yās) which is almost a repetition of
the same section in Middle Summary on Logic (hereafter, MSL).6

6For a comparison between the two sections see editor’s introduction to MSL.
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The section on opposite premises in Deliverance is much shorter than the ones
in The Cure and MSL. There, Avicennaexplains syllogisms composed of opposite
premises as follows7:

A syllogism comprising opposite premises is one composed of two premises that share
terms, but are different with respect to quantity. [Such syllogisms] are widespread only due
to the fact that, in some of the terms, the nouns are substituted, so that [the opposition of the
premises] is not detected. [Thus,] for example, it is not said, ‘Man is a laugher; and man is
not a laugher’. Rather, after saying, ‘Man is a laugher’, they say, ‘Humans are not laughers’.
The result of this syllogism is that a thing is not itself. For example, ‘Man is not human’.

Thus,these syllogisms are widespread when there is a substitution of a noun
with its synonyms, which probably makes the opposition hidden. In this case, such
syllogisms are made because it is not explicit that although one treats them as two
different terms, the two terms have the same meaning. In fact, the terms are one and
make two opposite propositions.8 However, such syllogisms, as Avicenna explains,
are useful and do have some applications. Avicenna continues9:

The sophists (mughālat.ūn) use it only as a way of overcoming [their opponents]. And it is
sometimes [also] used in the service of dialectics when an opponent disagrees [with another]
regarding his point of departure. Thus he gets him to concede a premise; and then he gets
him to concede some others, which yields the contradictory of the one [originally] conceded.
Then the conclusion and its contradictory, [the premise] that was first conceded, are taken
up and a syllogism out of opposite [premises] is constructed. This will conclude that a thing
is not [itself].

Not only sophists use such arguments for their own purposes, these arguments
can also be used by an Aristotelian logician in dialectics and as an ad hominem
argument.10 Our concern, here, is the latter. Avicenna, following Aristotle, advocates
the principle of non-contradiction. One of the implications of this principle is that no
two opposite propositions are true. Thus, one might ask whether this is at odds with
establishing syllogisms which are composed of opposite premises. Avicenna defines
a syllogism as a statement composed of other statements, namely premises, which,
when they are posited, another statement, namely the conclusion, follows necessarily
from them.11 ‘To follow’, as Avicenna explains, means that when the truth of the
premises is granted the truth of the conclusion is inferred. Thus, in order to establish
a syllogism, the premises do not have to be true. Some syllogisms have true premises
but not all syllogisms need to have true premises. In the latter case, the conclusion
follows from the premises only for one who admits the truth of premises while the
premises may not be true in reality (bi hasab al-↩amr).12 It is only in demonstration

7(Ahmed 2010, p. 80).
8See also (Avicenna 1964, p. 524; Avicenna 2017, p. 216).
9(Ahmed 2010, p. 80).
10(Avicenna 1964, p. 524; Avicenna 2017, p. 216).
11(Ahmed 2010, p. 42).
12(Avicenna 2005, p. 40).
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(burhān) that the premises of syllogisms need to be true, while in dialectics, rhetoric
and poetics they can be false.13

Therefore, syllogisms from opposite premises do not necessarily commit us to
accepting the truth of the premises in reality. These syllogisms show only that if one
admits the truth of the premises, the conclusion follows, without any commitment
to the truth of the premises in reality.

17.3.2 Syllogisms from Opposite Premises

Avicenna’s explanation of there being no syllogism from opposite premises in the
first figure is similar to Aristotle’s. Opposite propositions share the same subject
and predicate, which is not so in the first figure.14 As we discussed above, since the
middle term is the subject of one premise and the predicate of the other, we cannot
get opposite premises only by having the minor and major term to be one. The only
exception in the first figure would be the case in which all three terms, i.e. minor,
major and middle, are the same.

In the second figure,15a syllogism obtains from contradictories only if the major
premise is universal. As we saw in Sect. 17.2, these are the two moods Festino and
Baroco. such condition does not apply to the contraries, and they can be obtained in
the moods Cesare and Camestres. Avicenna explains that the two major and minor
terms should be the same, either actually or potentially. Thus, one term can be the
species or the particular of the other term. However, in this case, the syllogism is not
truly one and truly composed of opposite premises. In fact, there are two syllogisms,
one of which is hidden and is truly a syllogism of opposite premises. It is hidden,
because, as Avicenna explains, a judgment about a universal implies that judgment
about the particular under the aforementioned universal, and there is no need to state
it. Consider: ‘all animals are bodies’ and ‘no men are bodies’. One can conclude that
‘no men are men’.

These are the two syllogisms:

All animals are bodies.
All men are animal.
All men are bodies.

No men are bodies.
All men are bodies.
No men are men.

Moreover, depending on how one forms the hidden syllogism, one can also get
the conclusion ‘Some animals are not animals’.

13(Avicenna 1964, p. 4).
14(Avicenna 2017, p. 217).
15The Discussion of the second figure is from (Avicenna 2017, 217).
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Let us move on to the third figure.16 In this figure, syllogisms from opposite
premises can be made only in the moods which have negative conclusions. For in
the other moods the premises are both affirmative, but two opposite premises cannot
be both affirmative. Thus, in Felapton, Bocardo and Ferison such syllogisms can be
made. In all these moods the major premise is the negative one.

Avicenna warns the reader that although it is possible to have true conclusions
from false premises, it is not possible to get true conclusion fromopposite premises17:

One should not think that since truth can follow from false [premises], true [premises] can
also follow from opposite [premises]. For it implies that the object is not itself. And why it
is possible that this can occur in the mind is because it is possible for the man to have false
syllogisms entailing false conclusions and it is common in his rational soul.18

Avicenna, then, explains to us why one might think that true conclusions can
follow from opposite premises and in what cases such mistakes are made.

In some cases, one has some true premise, but via some invalid(fāsid) syllo-
gisms she concludes the opposite of the true premise, or she concludes some other
conclusions which via some other syllogisms entails the opposite of the true premise.
Avicenna’s example is as follows.19 Supposewehave the true premise ‘somenumbers
are odd’. We conclude via some false syllogisms that ‘all numbers are divisible by
two’. This implies that ‘no number is odd’, and then with this conclusion and our
true premise, we conclude ‘some numbers are not numbers’ or ‘some odd numbers
are not odd numbers’. But there are other cases in which the syllogism is valid but
premises are false. Considering these combinations, Avicenna divides such mistakes
into three categories: (1) The premise is true but its opposite follows from invalid
(fāsid) syllogisms. (2) The premise is false but its opposite is obtained from some
syllogisms which can be true or not. (3) There are valid (s. ah. ı̄h. ) syllogism and there
are invalid syllogisms. From the valid one the true conclusion follows and from the
invalid one the false conclusion, which is the opposite of the true conclusion, follows.

Yet, all these occur by means of some deception (hı̄la). Avicenna explains these
deceptions which cause the aforementioned mistakes as follows20:

What causes these [mistakes] is not possible without the occurrence of a deception. Among
those deceptions is accepting the particular which is the contradictory of the universal, such
as accepting “all sciences are suppositions” and “no medicine is supposition”, or accepting
“the complex is not any of its parts” and then negating one of the parts from the complex
and take the complex as the middle term, such as “the white animal is not white”.21

The first shows the case in which the opposition is not explicit. We already
discussed this case in the section on the second figure. The second example, ‘the

16The Discussion of the third figure is from (Avicenna 2017, 218).
17(Avicenna 2017, p. 219).
18 .

19(Avicenna 2017, p. 219).
20(Avicenna 2017, p. 220).

21 .
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white animal is not white’, means that the white animal is not the singular abstract
(muǧarradan wah. da) white, but this condition (of being singular and abstract) has
not been made explicit. The conclusion has been drawn from the non-identity of
white animal with white (as a singular abstract thing), i.e. as Avicenna explained,
the non-identity of a complex with one of its parts.

For another example, consider ‘an alive man is white’, and the conclusion from
it that ‘that man is not white’, which means the man in reality is not white as the
singular abstract. Suppose that man is Zayd. Then, someone might conclude, ‘that
man is not white’, and make a syllogism in the second figure as follows: ‘that man is
not white’ and ‘Zayd is white’, therefore, ‘that man is not Zayd’. But that man is, in
reality, Zayd himself. The contradiction is the result of, on the one hand, referring to
the same subject by two different terms, i.e. ‘that man’ and ‘Zayd’, and, on the other
hand, using one term, i.e. ‘white’, in two different meaning as the predicates of the
two premises.

For a universal example consider22:

All men are rational animals.
No rational animal is rational.

No man is rational.

All these cases in which a syllogism from opposite premises is established show
that opposite premises are not true in reality. These syllogisms might be established
bymistake or for dialectical reasons. AsAristotlementioned, syllogisms can bemade
from opposite premises, however not in every mood and every figure. This lead us
to the paraconsistency of Aristotelian syllogistic.

17.4 Conclusion: Paraconsistency and Syllogistic

Paraconsistent logics are those logics that are not explosive, i.e. those logics in which
explosion is not a valid argument.23 By this criterion, as we saw, Aristotelian syllo-
gistic is paraconsistent. No paraconsistent logic commits one to accepting the truth of
any one contradiction.24 By this understanding of paraconsistency, that Aristotelian
syllogistic is paraconsistent is not at odds with Aristotle’s defense of the principle of
non-contradiction. Avicenna argued that opposite premises of a valid syllogism and
their conclusion cannot be true, and, moreover, that this does not refute the validity

22(Avicenna 2017, p. 220).
23The first argument for explosion was given by William Soissons in the twelfth century. Aristotle
never argued for explosion. For Aristotle not arguing for explosion see (Gottlieb 2015, Sect. 9) and
(Priest 2006, p. 12).
24There is a distinction between dialetheism and paraconsistency. Dialetheism is the view that some
contradictions are true. paraconsistent logics, on the other hand, do not commit one to accept the
truth of any contradiction. If one is a dialetheist, she has to use a paraconsistent logic, but one can
use a paraconsistent logic without being a dialetheist.
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of the syllogism. It is only in demonstration that syllogisms have true premises and
true conclusions. However, there can be valid syllogisms with false premises and
conclusions in dialectics, rhetoric and poetics. In these cases, the truth of the oppo-
site premises is only supposed without being true in reality. Thus, that some valid
syllogisms can be made of opposite premises is not at odds with the principle of
non-contradiction. As we saw, a syllogism from opposite premises always results in
a contradictory conclusion. Therefore, according to syllogistic, only contradiction
follows from contradiction. In other words, if a syllogism can be established from
opposite premises, the conclusion is a contradiction. These contradictory conclusions
are always self-negating, which is necessarily false in the context of Aristotelianism.
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Chapter 18
Is Avicenna an Empiricist?

Seyed N. Mousavian

Abstract I will focus on the following question: “Is Avicenna an empiricist?”. I
will introduceAvicenna’s language of “signification”, “understood content”, “mental
impression” and “conception”. Then, followingKennethP.Winkler, Iwill distinguish
between origin-empiricism (OE) and content-empiricism (CE) and reinterpret the
distinction in Avicenna’s language as OEA and CEA. I will show that Avicenna’s
analysis of the relationship between knowledge, on the one hand, and sensation
and imagination, on the other hand, includes three empiricist themes. I use these
themes to argue that that Avicenna is committed to OEA. Then, I will consider three
“possible” limitations to Avicenna’s origin-empiricism. I will show that a common
empiricist solution, that relies on the compositionality of the “understood content”,
quia demonstration and relative conceptions, has significant limitations. I will argue
that a careful examination of these limitations, and the epistemology of the primary
conceptions, show that Avicenna is not committed to CEA. I will conclude that “Is
Avicenna an empiricist?” has no simple yes-or-no answer. This raises a parallel open
question: “IsAvicenna a rationalist?”, in some sense.After briefly commenting on this
question, I will consider a related, but generally dissociated, question on the reality of
abstraction, namely “Is Avicenna an abstractionist?” I will explain how the common
replies to both questions rely on different incompatibility principles, according to
which emanation from the active intellect is incompatible with apprehension by or
abstraction from sense-perception. I will end by outlining the elements of a reading
of Avicenna that assumes neither of these incompatibility principles.
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18.1 Introduction

In his illuminating paper The Empiricism of Avicenna, Dimitri Gutas concludes that
“it is clear from the foregoing discussion, first, that if Locke’s ‘philosophy of mind
and cognition’ is empiricist, so is Avicenna’s.”1 He puts Avicenna and Locke in
the same category by characterizing their philosophies as being similarly based on
“our immediate experience of ourselves, an empiricism, so to speak, of the self.”2

Analogously, emphasizing that “Avicenna’s appeal to the Active Intellect is part
and parcel of his naturalism,”3 Jon McGinnis concludes: “I believe Avicenna would
happily endorse W. V. O. Quine’s position, ‘Epistemology, or something like it,
simply falls into place as a chapter of psychology and hence of natural science. It
studies a natural phenomenon, viz., a physical human subject’ (Quine 1994, 25).”4

This “empiricist” reading primarily aims at defeating a previously standard reading
of Avicenna according to which “Avicenna is a rationalist,”5 believes in “a priori
concepts” and uses them to construct “a priori proofs” for the existence of God, for
example.6

In this paper, I will focus on one question, namely “Is Avicenna an empiricist?”.
First, in Sect. 18.2, I will introduce Avicenna’s language of “signification”, “under-
stood content”, “mental impression” and “conception”. I will illustrate this language,
in Sect. 18.3, by two examples. In Sect. 18.4, I will borrow, and explain, Kenneth
P. Winkler’s distinction between origin-empiricism (OE) and content-empiricism
(CE). In Sect. 18.5, I reinterpret the distinction inAvicenna’s language, and introduce
OEA (origin-empiricism reinterpreted in Avicenna’s language) and CEA (content-
empiricism reinterpreted in Avicenna’s language) . I will show, in Sect. 18.6, that
Avicenna’s analysis of the relationship between knowledge, on the one hand, and
sensation and imagination, on the other hand, includes three empiricist themes,
namely Sects. 18.6.1, 18.6.2 and 18.6.3. I use these themes to argue that thatAvicenna
is committed to OEA. In Sect. 18.7, I will quickly consider three “possible” limita-
tions to Avicenna’s origin-empiricism. I will show that a common solution to such

1Dimitri Gutas, “The Empiricism of Avicenna,” Oriens 40, 2012, 424.
2Dimitri Gutas, Avicenna and the Aristotelian Tradition: Introduction to Reading Avicenna’s
Philosophical Works, 2nd edition, Leiden, The Netherlands: Brill, 2014, 375.
3Jon McGinnis, “Avicenna’s Naturalized Epistemology and Scientific Methods,” in S. Rahman, T.
Street, H. Tahiri (eds.), The Unity of Science in the Arabic Tradition, Dordrecht: Kluwer Academic
Publishers, 2008, 143.
4McGinnis, Avicenna’s Naturalized Epistemology, 147.
5Michael Marmura, “Some Aspects of Avicenna’s Theory of God’s Knowledge of Particulars,”
Journal of the American Oriental Society 82/3, 1962, 303.
6MichaelMarmura, “Avicenna’s Proof fromContingency for God’s Existence in theMetaphysics of
the Shifā,” Mediaeval Studies 42, 1980, 343). Along the same lines, Goodman claims that according
to “young Ibn Sı̄nā” the undefined elements” signified by being, necessity, simplicity, goodness,
oneness are “a priori givens” (Lenn E. Goodman, Avicenna, New York, NY: Routledge, 2005, 132).
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cases, that relies on the compositionality of the understood content, quia demonstra-
tion and relative conceptions, has significant limitations. In Sect. 18.8, I will argue
that a careful examination of these limitations, and the epistemology of the primary
conceptions, show that Avicenna is not committed to CEA. Therefore, I conclude,
“Is Avicenna an empiricist?” has no simple yes-or-no answer. This raises an open
question: “Is Avicenna a rationalist?”, in some sense. At the end, in Sect. 18.9, after
briefly commenting on this question, I will consider a related, but commonly dissoci-
ated, question on the reality of abstraction, namely “Is Avicenna an abstractionist?”
I will explain how the common replies to these questions rely on two incompatibility
principles, namely INC1 and INC2. I will end by outlining the elements of a reading
of Avicenna that assumes neither INC1 nor INC2.

18.2 Avicenna’s Language

Let us begin by explicating how I translate and interpret Avicenna’s key semantic
and epistemological terms in this context.7 Elsewhere,8 I have argued that ma↪nā has
a technical use according to which it can be translated as signifcandum, given some
proper signification relations. Consider, for example, the following text:

[Text 1] The meaning (ma↪nā) of signification (dalāla) of a vocal expression (lafz. ) is this:
when what is heard from the name (masmū↪u ismin) is imprinted (irtasama)9 in the imag-
ination (al-khayāl), then the ma↪nā is imprinted in the soul (an-nafs) and the soul recog-
nises/realises (ta↪arrafu) that this heard [expression] belongs to this understood [content]
(al-mafhūm). Then, whenever the sense brings it [i.e. what is heard from the name] to the
soul, then it [i.e. the soul] turns/attends (iltafatata ilā) to its ma↪nā.10

A ma↪nā, as imprinted in the soul, can be associated with a vocal expression
such that the soul recognizes/realizes that the impression resulting from hearing the
utterance of the expression belongs to this understood content (al-mafhūm). In Text 1,
Avicenna uses “understood [content]” in a descriptive sense, as “what is conceived”.
He identifies the “ma↪nā imprinted in the soul” with “this understood [content]”
or “such perceiving.” This, I suggest below, is a case of identifying the existence of

7My examples in the next section should clarify my summary of Avicenna’s semantics of ma’nā.
8Seyed N.Mousavian, “Avicenna on the Semantics ofMa’nā,” in Sten Ebbesen, Christina Thomsen
Thörnqvist and Juhana Toivanen (eds.), Forms of Representation in the Aristotelian Tradition:
Concept formation, forthcoming.
9I am following Gutas, Avicenna and the Aristotelian Tradition, 218, in translating irtisām as
imprinting.
10Ibn Sı̄nā, aš-Šifā↩, al-Mant.iq, al-↪Ibāra [The Healing, The Logic, The Interpretation], ed. M. al-
Khud. ayrı̄ (Cairo: al-Hay↩a al-mis.rı̄yya al-↪āmma li-t-ta↪lı̄f wa-n-našr, 1970, 4. All translations are
mine unless otherwise specified. In my language, I use small-caps to refer to ma↪ānı̄, e.g. human
refers to the ma↪nā of “human.” In my translation of Avicenna’s texts, I use italics to refer to ma↪ānı̄.
I also use italics to refer to conceptions and names. I hope that on each occasion, the context of use
disambiguates my use of italics.
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something with the thing itself . Otherwise put, the mental impression is the existence
of the understood content. I will return to this point shortly.

Next, consider the following notorious paragraph from aš-Šifā↩, al-Mant.iq, al-
↪Ibāra:

[Text 2] What is emitted vocally (bi-al-s. awt) signifies what is in the soul, and these are what
are called “[[affections/]]impressions” (āthāran),11 whereas what is in the soul signifies
things (al-umūr), and these are what are called “meanings” (ma↪ānı̄), that is, the things
intended by the soul (maqās. ida li-nafs). In the same way, the impressions too, by analogy
to [[/in relation to]] the expressions (bi-l-qı̄yās ila-l-alfāz. ),

12 are intentions [ma↪ānin].13

According to Text 2, the vocal expression signifies an impression (athar) in the
soul. Given that generally by hearing the utterance of an expression, one primarily
conceives its meaning, not its pronunciation for example, it follows that the “impres-
sion in the soul” signified by the expression is the ma↪nā as imprinted in the soul,
introduced in Text 1. This impression, in turn, signifies the thing (al-amr) intended by
the soul, through some “intentional” act, e.g. the act of using the expression to signify
something. The thing (al-amr), signified through the above signification relations, is
called the “ma↪nā” itself.

I take ma↪nā and amr to be conceptually linked. Ma↪nā stand for any signifi-
candum, properly signified or intended. ‘Properly’ is supposed to qualify the signi-
fication relation(s) involved. An expression accomplishes its semantic function
through two signification relations: First, the relation between the expression and the
‘ma↪nā as imprinted in the soul’: the ma↪nā of the utterance is “essentially intended”
(al-maqs. ūd bid

¯
-d
¯

āt), not accidentally, by that name (fi d
¯

ālik al-ism). Second, the
relation between the ‘ma↪nā as imprinted in the soul’ and the thing (al-amr) itself:
the “signification of what is in the soul vis-à-vis the umūr is a natural signification
(dalālatun t.abı̄↪̄ıyya)”.14 The thing (al-amr) is called “ma↪nā”, if the resulting signi-
fication relation is a proper combination of the above two signification relations. This
picture can schematically be represented as follows (Diagram 18.1, the signification
relations are signified as arrows):

There is another term, namely “conception” (tas. awwur), used both as an infinitive
and a noun, which is primally epistemological and can be explained in terms of being
cognizant/aware (wāqif ) of ma↪nā:

11I may use double brackets to introduce my revisions/insertions to others’ translations. The mental
affections/impressions may be understood as accidents of a nonmaterial substance, namely the
human soul, and/or of a power of the human soul, e.g. the human intellect or the human imagination.
Thus, in this use, “impression” or “affection” have no connotation of being material, though some
impressions, e.g. imaginable forms, are material.
12The phrase “bi-l-qı̄yās ilā”, in this context, should be translated as “in relation to” instead of
“by analogy to”. Likewise, “imtina’ bi-l-qı̄yās ila-l-ghayr” should be translated as “impossibility in
relation to something else”, not “impossibility by analogy to something else.” Thanks to Stephen
Menn for this point (Mousavian, “Avicenna on the Semantics of Ma’nā”).
13Ibn Sı̄nā, aš-Šifā↩, al-Mant.iq, al-↪Ibāra, 2–3. This is a slightly revised version of Deborah Black’s
translation: Deborah Black, “Intentionality in Medieval Arabic Philosophy,” Quaestio 10 (2010):
68.
14Ibn Sı̄nā, aš-Šifā↩, al-Mant.iq, al-↪Ibāra [The Interpretation], 5.
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Diagram 18.1 Signification: understood content and significandum

[Text 3] […] something can be known in two ways: first it can be only conceptualized
such that, given that it has a name, if it [i.e. its name] is uttered (nut.iqa bih) its ma↪nā is
exemplified (tamathala) in the mind, even though there is no truth or falsehood, like when
it is said “human” or it is said “do such and so”, so when you become cognizant/aware of
the ma↪nā you are conversed with, you have conceptualize it. And the second [way in which
something can be known] is [through the] assent (tas. dı̄q) accompanying the conception
[…].15

This is a well-known distinction.16 One can relate these pieces of terminology
together assuming that Avicenna links his philosophy of language to his philosophy
of mind, on a metaphysical background, by means of ma↪ānı̄. Let’s begin from the
extramental realm. A thing (amr) has two aspects: the significandum (al-ma↪nā),
if there are linguistic and mental means to reach the thing (amr) via proper signi-
fication relations, and the existence of this significandum, which is an extramental
entity. (Diagram 18.1, the rightmost column.) Ma↪ānı̄, in turn, are identified by a
set of semantic functions. Ma↪ānı̄ have different modes of existence: namely mental
and extramental. In each mode, they have a specific name, namely, the understood
content (al-mafhūm) and the significandum (al-ma↪nā). The existence of an under-
stood content is a mental impression (an accident in the mind). Otherwise put, an
understood content exists as a mental entity; or, the mental entity is the ontological
“bearer” of the understood content. (Diagram 18.1, the middle column.) From an
epistemological point of view, a conception is acquired by attentively forming the
ma↪nā in the mind. Therefore, a conception has two aspects: the understood content,
or what is understood, and the existence of this content, which is an accident in the
mind, namely a mental impression. The mind17 and extramental realm are linked
together through the sameness of ma↪ānı̄. The understood content is the same signif-
icandum (al-ma↪nā) as imprinted in the mind. The existence of a significandum,

15Ibn Sı̄nā, aš-Šifā↩, al-Mant.iq, al-Madkhal [The Healing, The Logic, The Isagoge]. Ed. Ğ. Š.
Qanawātı̄, M. al-Khud. ayrı̄, A. F. al-Ahwānı̄. Cairo: al-Mat.ba↪a al-amı̄riyya, 1952, 17.
16For an old, but still useful, research on conception and assent in the Arabic philosophical tradition
see: Harry Austryn Wolfson, “The Terms Tas. awwur and Tas. dı̄q in Arabic Philosophy and Their
Greek, Latin, and Hebrew Equivalents,” The Muslim World 33:2, April 1943, 114–128. For a recent
study on the later developments of this doctrine in Mulla Sadra and his commentators, see Joep
Lameer (editor and translator), Conception and Belief in Sadr al-Din Shirazi (Ca 1571–1635),
Tehran: Iranian Institute of Philosophy.
17I use ‘mind’ for the cognitive basis or a power/faculty, in a broad sense, of the human soul, not
necessarily for the human intellect.
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in normal circumstances in which one intends to and succeeds in talking about an
existing extramental entity, is an extramental entity. In other words, a significandum,
in normal circumstances, exists as an extramental entity; or, the extramental entity
is the ontological “bearer” of the significandum.18 Some examples may help.

18.3 Two Examples

First, consider a proper name, e.g. “Zayd”, as a vocal expression. Let’s start from
language and mind. Given that the meaning (I use “meaning” in our language) of
“Zayd” is fixed, an utterance of “Zayd” primarily signifies the ‘ma↪nā of “Zayd” as
imprinted in the soul’, namely ZAYD.19 ZAYD is essentially intended by a proper use
of “Zayd”. The existence of ZAYD is a mental impression, that is an accident in the
mind. ZAYD, in turn, naturally signifies the ma↪nā of “Zayd” itself, namely Zayd.
The existence of Zayd is an extramental individual, that is a particular substance
among concrete particulars or external things (fı̄l-a↪y ān). Zayd, the ma↪nā itself,
is the individual essence of Zayd properly intended by the mind.20 Now let’s return
from the extramental realm to the mind and language. Zayd, the individual, is the
thing (amr). If this thing is brought into a semantic network, via proper signification
relations, then there will be a significandum (ma↪nā), i.e. Zayd. If this ma↪nā is

18Two points are worth emphasizing. First, in the above circumstances, the existence of the signifi-
candum of a name, not the significandum itself, is the existence of the extramental object. In some
circumstances, the extramental object may cease to exist when the name still signifies its signifi-
candum. Second, I will avoid using the term suppositum in my interpretation of ma↪nā for three
reasons: Firstly, syntactically speaking, I do not find the translation appropriate. Secondly, seman-
tically speaking, signification is prior to supposition and ma↪nā has a similar status in Avicenna’s
view: “Signification concerns the first imposition of what a term shall be used to talk about, whereas
supposition concerns uses of a term that already has a signification, and the semantic variations that
may be prompted by the propositional context” (Catarina Dutilh Novaes, “Supposition Theory” in
Henrik Lagerlund (ed.) Encyclopedia of Medieval Philosophy: Philosophy Between 500 and 1500,
Dordrecht, Springer, 1231). Thirdly, historically speaking, in early medieval theories “suppositum”
is understood as the “bearer of form.” (For a helpful discussion of early supposition theories see Sten
Ebbesen, “Early supposition theory (12th–13th century)”, Histoire Épistémologie Langage, tome
3, fascicule 1, 1981. Sémantiques médiévales: Cinq études sur la logique et la grammaire auMoyen
Âge. pp. 35–48.) I may add that, generally, theories of supposition in medieval philosophy are inter-
preted as theories of reference. This interpretation has recently been criticized. (See, for example,
Catarina Dutilh Novaes, Formalizing Medieval Logical Theories—Suppositio, Consequentia and
Obligationes, Berlin, Springer, 2007, Ch. 1.) The debate, however, does not provide support for
translating ma↪nā as suppositum. Whether Avicenna has a theory of supposition, or something to
the same effect, is a separate issue (see Allan Bäck, “Avicenna’s Theory of supposition,” Vivarium
51, 2013: 81–115).
19“The” in “the ma↪nā of ‘Zayd’ as imprinted in the soul” is not intended to imply uniqueness. An
expression may be associated with different ma↪ānı̄, as an extramental individual may be signified
in different ways.
20“The ma↪nā of “Zayd”—if taken as a unique ma↪nā—is the unique essence (d

¯
āt) of Zayd” (Ibn

Sı̄nā, An-Najāt (al-Mant.iq), trans. A. Q. Ahmed, in The Deliverance: Logic (Karachi: Oxford
University Press, 2011, 6), slightly revised.
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imprinted in the soul, then there will be an understood content i.e. ZAYD.21 ZAYD

and Zayd are the same ma↪nā, with two modes of existence. This can be formulated
as follows: ZAYD or Zayd, the ma↪nā, has no fixed ontology. (This formulation,
however, is not necessary for my thesis on Avicenna’s epistemology.)22 If the ma↪nā
exists in external “reality”, then the existence of Zayd is an extramental individual
(a substance). If the ma↪nā exists in the mind, then the existence of ZAYD is a
mental impression (an accident). Avicenna’s epistemology is built on ma↪ānı̄ as
conceived and mental states and attitudes. If one is cognizant/aware of the ma↪nā as
imprinted in the soul, one has formed the/a conception (tas. awwur) of Zayd, that is a
piece of knowledge.23 Conceptions (and assents) are building blocks of Avicenna’s
epistemology.

Here is the second example. In Chapter 8 of Book 3 of The Metaphysics of the
Healing, Avicenna addresses the following objection to his theory of knowledge:
Knowledge of something (existent) is acquiring its form without the matter. There-
fore, knowledge of a(n existent) substance is acquiring the form of the substance
without thematter. The form of a substance is a substance. Knowledge of a substance,
however, is not a substance, rather it is an accident in the mind. But one and the same
thing cannot be both a substance and an accident. Avicenna’s reply goes like this:

[Text 4] We say: The quiddity of the substance is substance in the sense that it is the existent
in concrete particulars/external things (fı̄l-a↪y ān) not in a subject. This description exists for
the quiddity of the intelligible substances for it is a quiddity with the disposition to exist,
not in a subject, in external things. That is, this quiddity is intellectually apprehended of a
thing (amr) whose existence in external things is not in a subject. As for its existence in the
intellect with this description, this is not in its definition inasmuch as it is a substance. That
is, it is not the definition of the substance that it is not in a subject in the intellect; rather,
its definition is that, regardless of whether it is or is not in the intellect, its existence in the
concrete is not in a subject.24

Avicenna appeals to what Stephen Menn calls “neutral quiddity,”25 which can be
generalized to “neutral ma↪nā”, assuming that the quiddities under discussion are

21One might object that Zayd is a particular/individual and thus has no intelligible understood
content (mafhūm). In reply, two points are worth mentioning. First, ma↪ānı̄ (and mafāhı̄m) need not
necessarily be intelligible or universal; they may have different epistemological profiles. Second,
for Avicenna, an individual/particular can be understood in a universal way. Thus understood, an
individual/particular like Zayd can have an intelligible understood content (mafhūm).
22In contemporary language, this can be explained in different ways. I believe that Geach’s theory
of relative identity andMeinong’s principle of independence can provide alternative frameworks for
reconstructing Avicenna’s idea. For a short discussion on this point see Mousavian, “Avicenna on
the Semantics of Ma’nā”, footnotes 13–15. Stephen Menn explains the idea as “Avicenna’s theory
of neutral quiddity” (StephenMenn, “Avicenna’sMetaphysics” in Peter Adamson (ed.) Interpreting
Avicenna; Critical Essays, Cambridge, Cambridge University Press, 2013, 165–169). This directly
relates to the next example above.
23Again, I suppose there are more than one conception of Zayd. Here by “the conception of Zayd”
I mean the conception that is based on the individual essence of Zayd.
24Ibn Sı̄nā, The Metaphysics of The Healing [aš-Šifā↩, al-Ilāhiyyāt], ed. Michael Marmura, Provo:
Brigham Young University (Islamic Translation Series), 107–108, slightly revised.
25Menn, “Avicenna’s Metaphysics”, 169.
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quidditative ma↪ānı̄. If a substance itself, e.g. a human, exists among concrete partic-
ulars, it does not exist in a subject. After all, it is a substance, by assumption. If a
substance is properly signified, it is semantically characterized as a ma↪nā, namely
human. This ma↪nā can be quidditative in the following sense: it is all that is neces-
sary for its exemplification instance (šakhs. ) and no other ma↪nā is such.26 human
is a quiddity. The existence of human is an extramental substance. If human is
intellectually apprehended, then the ma↪nā as imprinted in the soul is the understood
content, namely HUMAN. The existence of HUMAN is a mental impression (an acci-
dent in the mind). HUMAN, as a quiddity in the mind, is a substance in the sense
that “it is intellectually apprehended of a thing (amr) whose existence in external
things is not in a subject”. In other words, this ma↪nā has a “dispositional” char-
acter: when it exists among concrete particulars/external things (fı̄l-a↪y ān), it does
not exist in a subject.27 HUMAN and human are the same ma↪nā with two modes of
existence. This can be formulated as follows: HUMAN or human, the ma↪nā, has no
fixed ontology. (Again, this formulation is not necessary for my thesis on Avicenna’s
epistemology.) If the ma↪nā exists in external “reality”, then the existence of human
is an extramental individual (a substance). If the ma↪nā exists in the mind, then the
existence of HUMAN is a mental impression (an accident). To repeat, Avicenna’s
epistemology is built on ma↪ānı̄ as conceived and mental states and attitudes. The
ma↪nā of “human” as imprinted in the soul, i.e. HUMAN, is an understood content.
If one is cognizant/aware of this ma↪nā, one has formed the conception (tas. awwur)
of human, that is a piece of knowledge.

18.4 What Is Empiricism?

Now we may move to our main question, namely “Is Avicenna an empiricist?” By
‘empiricism’ I mean concept empiricism. Following Winkler,28 let us distinguish
origin-empiricism from content-empiricism as follows:

(OE) Origin-empiricism: For every concept C, the origin of C is experience.

(CE) Content-empiricism: For every concept C, the content of C is characterized by some
experiential conditions.29

26Seyed H. Mousavian, “Mahı̄yyat az Dı̄dgāhe Ibn Sı̄nā” [Avicenna on the Quiddity], Maqālāt wa
Barrisı̄hā 71, 1381/2002, 251.
27Menn, “Avicenna’s Metaphysics”, 166.
28Kenneth P. Winkler, “Kant, the empiricists, and the enterprise of deduction,” in Paul Guyer (ed.),
The Cambridge Companion to Kant’s Critique of Pure Reason, Cambridge University Press, 2010,
48–60.
29This formulation is slightly different from Winkler’s (“Kant, the empiricists, and the enterprise
of deduction,” 50). He uses the notion of experiential terms, in one occasion, and the notion of
implications for experience, in another, and moves between the modal and non-modal character-
izations. I have avoided using ‘experiential terms’ hoping to sidestep the philosophy of language
issues raised by this terminology.
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OE and CE are formulated in our language. For simplicity, I will primarily confine
myself to simple or atomic concepts. By “the origin” I mean “the causal origin” and
by “the origin of C is experience” I mean that some experience of a specific type
essentially contributes to the formation of C.30 For an experience to be the origin of
C, the concept and the experience should be linked properly such that the content
of C applies to the object that is the salient cause of the corresponding experience,
namely an instance (or a reference) ofC.31 For example, if seeingZayd, the individual,
contributes to the experience which leads to the formation of one’s concept of human,
then the content of the concept of human applies to Zayd, who is the salient cause
of this experience.32 It follows, then, that “Zayd is human” is true. Depending on
whether “the” in “the origin of a concept” implies uniqueness or not (in which case,
other causal factors may also contribute to the formation of C), OE finds strong or
weak readings.

The so-called “empiricist” philosophers, e.g. John Locke, can accept OE; accord-
ingly, all concepts are causally based on experience, directly or indirectly.33 OE,
in some form, can also be held by many philosophers who are not categorized as
“empiricist.” For example, Immanuel Kant, as a transcendental idealist, approves
that “As far as time is concerned, then, no cognition in us precedes experience, and
with experience every cognition begins.”34 In contrast, the so-called “rationalist”
philosophers, e.g. Descartes, can reject OE. A rationalist may hold that there are
some “innate” concepts. The origin of an innate concept is the human mind, in the
sense that the concept is “present in the mind”, in some form, from the origination
of the human mind.35 Descartes believes in Cartesian innate ideas, whereas Locke
does not.

Back to CE, by “experiential conditions” I mean some “information”, that essen-
tially contain reference to (actual or counterfactual) experience. By “essentially
contain reference to” I mean that reference to experience is necessary for the char-
acterization of the “information” in question. Depending on whether the content of
a concept is fully or partially characterizable by experiential conditions, CE finds
strong or weak readings. Nonetheless, a rationalist like Descartes, who has a broad

30Thus, Avicenna’s theory of causation is directly relevant to his theory of knowledge. I will return
to this point in Sect. 18.9.3.
31Here by “experience,” I shall mean veridical experience.
32If one is externalist with regard to the content of the concept of human, this content can be the
very property of being a human.
33See, for instance, Locke: “All ideas come from sensation or reflection. […]Whence has it [i.e. the
mind] all the materials of reason and knowledge? To this I answer, in one word, from experience.
In that all our knowledge is founded” (John Locke, An Essay Concerning Human Understanding
(abridged edition), edited by Kenneth P. Winkler. Hackett Publishing Company, 1996, 33). Italics
are in the original.
34Immanuel Kant,Critique of Pure Reason, translated and edited by Paul Guyer andAllenW.Wood.
Cambridge University Press, 1998, 136. The reference was originally found in Winkler, “Kant, the
empiricists, and the enterprise of deduction,” 48.
35René Descartes, The Philosophical Writings of Descartes, vol. 1, translated [with a] general
introduction by John Cottingham, Robert Stoothoff, and Dugald Murdoch, Cambridge University
Press, 1985, 306.
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notion of “experience” which means “whatever reaches the intellect from external
sources or from its own reflexive contemplation,”36 may find CE objectionable. For
him, there are some innate “idea”, e.g. God, whose content is not characterized by
experience; “the content of this idea [i.e. God] is so great as to exceed the capacity
of my mind to construct it.”37 Descartes’ solution for the problem of acquiring this
idea is that “God, in creating me, should have placed this idea in me to be, as it were,
the mark of the craftsman stamped on the work— not that the mark need be anything
distinct from the work itself.”38

18.5 Empiricism Reinterpreted

I depart from the use of “concept” in contemporary ancient and medieval studies
according to which a concept is necessarily a stable, universal, public intelligible
entity.39 A concept may be tolerably unstable and undergo some changes without
losing its identity, or at least I’d like to keep this possibility open. Concepts needn’t
be necessarily universal either: A particular concept, namely a concept that is seman-
tically characterized to purport to refer to a particular individual, is not conceptually
incoherent. Finally, not all concepts need to be public: the possibility of having
essentially private concepts should not be eliminated by our way of using the term
“concept.” Therefore, I shall opt for a minimal conception of “concept”. A concept
is a relatively stable mental entity that has about-ness and is not truth-evaluable; a
concept may be “true of” something (not true simpliciter), in the sense of being about
it.40

By the “content” of a concept I mean the epistemologically significant feature of
the concept. The content of a concept explains the meaning of the expression associ-
ated with the concept. A concept, as a mental entity, is part of a mental state. Mental
states are states of the human mind and necessarily so. The content of a concept is
what one understands (comes to know)41 when one possesses the concept. This is
a rudimentary explanation of “content” and intentionally so.42 A short comparison

36John Cottingham, A Descartes Dictionary. The Blackwell Philosopher Dictionaries. Blackwell,
1993, 59.
37John Cottingham, A Descartes Dictionary, 90.
38René Descartes, The Philosophical Writings of Descartes, vol. 2, translated [with a] general
introduction by John Cottingham, Robert Stoothoff, and Dugald Murdoch. Cambridge University
Press, 1984, 35. John Cottingham, A Descartes Dictionary, 165.
39For such a use of the term see, for example, Christoph Helmig, Forms and Concepts: Concept
Formation in the Platonic Tradition. Göttingen; De Gruyter, 2012, chapter 1.
40Here, in having “relatively stable”, I am following Helmig, Forms and Concepts, 16.
41Here I use “knowledge” in a broad sense.
42Among contemporary analytic philosophers, it’s fair to say, there is no consensus on what the
content of a concept is. For a naturalistic account of the content of a concept in terms of its reference,
see Jerry A. Fodor and Zenon W. Pylyshyn, Minds without Meanings: An Essay on the Content of
Concepts, The MIT Press, 2014. For a contrary view, according to which the content of a concept
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between my use of “content” and Fregean senses may be helpful.43 Tyler Burge, for
example, distinguishes between three functions that the Fregean sense of an expres-
sion is supposed to perform44: (1) the “mode of presentation to the thinker” that
accounts for the information value of the expression, (2) what determines the refer-
ence of the expression, and (3) the reference in “oblique contexts” (for instance, in
“Hammurabi believes that Hesperus is not Phosphorus”, “Hesperus” refers to the
sense of “Hesperus”, not Hesperus itself). In my usage, the content of a concept, as
its epistemologically significant aspect, may perform some semantic functions but it
is not necessary to perform all of the above functions.45 More particularly, for my
purposes, “content” needs to perform the first function. Thus, I borrow Burge’s term
“information value” and apply it to concepts, as mental entities, to explain “con-
tent”. I assume that what “accounts” for the information value of a concept is some
information.

To studyAvicenna’s epistemology from the perspective of empiricism/rationalism
debate, a translation between our language and Avicenna’s is necessary. As I read
Avicenna, he does not have a term that can literally be translated as “concept.” Instead,
one finds at least four technical terms in the vicinity, namely: significandum (ma↪ānı̄),
conception (tas. awwur), understood content (al-mafhūm) and mental impressions
(athar d

¯
ihnı̄).46 The closest term, inmeaning, to “concept” is conception (tas. awwur).

Assuming that a ma↪nā is not necessarily mental but a “concept,” in our language, is
necessarily mental, it follows that ma↪ānı̄ are not necessarily identical with concepts.
Conceptions, for Avicenna, have two aspects: understood content (al-mafhūm) and
mental impression (athar d

¯
ihnı̄). Here are twoworking hypotheses of mine. First, our

use of “content” can be translated as “understood content” (al-mafhūm), in Avicenna,
and “what is conceived” or the “ma↪nā as imprinted in the soul”, in Avicenna, can be

(intension) is “wholly determined by the intrinsic state of the thinker” see, for example, David
Chalmers, Constructing the World, Oxford: Oxford University Press, 2012.
43For an introduction to a systematic comparison between Frege’s logic and Avicenna’s, seeWilfrid
Hodges, “Ibn Sina, Frege, and the Grammar of Meaning,” Al-Mukhatabat 2013: 5/2, 29–60.
44Tylor Burge, “Belief De re”, in Foundations of Mind; Philosophical Essays Volume 2, Oxford;
Oxford University Press, 2007, 59.
45Hodges, in his comparative study between Frege and Avicenna, concludes that “ultimately both
Ibn Sina and Frege rely on a rather chemical notion of meanings that allows us to split meanings
into their elements and build them up into compound structures by putting bonds between them”
(Hodges, “Ibn Sina, Frege, and the Grammar of Meaning,” 60).
46One may disagree with my claim and hold that one of the above terms, or a closely associated
expression in Avicenna’s language, is literally translatable as “concept”, as we use the term. I hope
that this dispute does not have a significant bearing on the philosophical side of the problem, unless
perhaps forcing a new translation of my argument. I tried to broaden the meaning of “concept”, to
cover different kinds of mental representation, and then single out the epistemological aspect of
“concept” as “content.” I should add that at-tas. awwur and al-mafhūm, in Avicenna, are close to
“concept” and “content”, correspondingly. Also, translating at-tas. awwur and al-mafhūm as “con-
ception” and “concept”, respectively, may work if one keeps in mind the wide use of al-mafhūm,
not being restricted to universals, and its primary infinitive sense, as what is conceived. To be more
faithful to the literal meaning of al-mafhūm, however, I translated it as “understood [content]”,
putting “content” in brackets to indicate that this part is not syntactically present in the original
word.



454 S. N. Mousavian

interpreted as “content” in our language. Second, when we talk about “concept”, as a
mental entity, it can be translated as “mental impression” (athar d

¯
ihnı̄) in Avicenna,

and “accident in the mind”, in Avicenna, can be interpreted as “mental entity” in
our language. Recall that the existence of the ‘ma↪nā as imprinted in the soul’ is an
accident in the mind. It is also noteworthy that mental impressions can have different
ontological, as well as epistemological, profiles: intelligible (ma↪qūl), imaginable
(mutakhayyal) and sensible (mah. sūs) ma↪ānı̄. For our purposes, we may only need
to focus on the intelligible ma↪ānı̄.47 Having these translations handy, OE and CE
can be reinterpreted in Avicenna’s language as follows:

(OEA) Origin-empiricism (in Avicenna’s language): For every mental impression M, the
origin of M is experience.

(CEA) Content-empiricism (in Avicenna’s language): For every understood content U, U is
characterized by some experiential conditions.

18.6 Is Avicenna an Origin-Empiricist?

As Gutas explains, Locke and Avicenna are committed to the thesis that “all the
materials of Reason and Knowledge” come “from Experience”:

In the passage from the Išārāt where Avicenna introduces sensation and reflection as the
two aspects of mušāhada, there is no doubt that he is referring to Experience, our direct
apprehension of the outside world and internal self. It is precisely what John Locke referred
to by the term “experience” in his Essay Concerning Human Understanding, Bk. II, Ch. I,
§2: “Whence has [the Mind] all the materials of Reason and Knowledge? To this I answer,
in one word, From Experience: …Our Observation employ’d either about external, sensible
Objects; or about the internal Operations of our Minds, perceived and reflected on by
ourselves […].”48

By “Experience”, here, Gutas refers to the perceptual faculty of experience. Gutas
makes his point clearer when he explains the role of sensation in cognition according
to An-Najāt [The Salvation]: “Sensation then does provide the intellect the raw data
out of which it can form the concepts which lead to definitions and then the primary
propositions” (Gutas 2012, 406).49

Avicenna’s main works include three origin-empiricist themes: (i) sense percep-
tion and imagination assist the intellect in perception (ii) perceiving the intelligibles
needs the mediation of the sensible forms, and (iii) lack of sensation implies lack of
knowledge. Below Iwill quickly examine each theme and its possible interpretations.

47The human intellect, for Avicenna, has no physical organ. The mental impressions associated
with the intelligible ma↪ānı̄ are not physical either. They are accidents in the human intellect, which
is an immaterial substance.
48Dimitri Gutas, “The Empiricism of Avicenna,” Oriens 40; 2012, 429.
49For Avicenna, the primary propositions, e.g. the whole is greater than the part, are the most
foundational premises, epistemologically speaking.
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18.6.1 Sense Perception and Imagination Assist the Intellect

Let’s begin with textual evidence:

[Text 5] In forming concepts, sense perception and imagination (takhayyul) assist the intellect
because sense perception presents to the [internal sense of] imagery (khayāl) things in a
mixture, and imagery [presents them] to the intellect. The intellect then discriminates among
them, breaks them down into parts [i.e., categories], takes up each one of the concepts
individually,50 and arranges [in order] the most particular and the most general, and the
essential and the accidental. Thereupon there are impressed on the intellect, in [a process of]
concept formation, the primary notions (al-ma↪ānı̄ al-ūlā), and then definitions are composed
out of them.51

The expression “things in mixture” is a translation of umūran mukhtalit.atan,
whichmost likely refers to sensible and imaginable “forms”with their particularizing
accidents. In the second sentence, Avicenna says that “the intellect then discrimi-
nates among them, breaks them down into parts”, and Gutas adds in brackets “i.e.
categories”. This may be questionable if by “categories” Gutas means “Aristotelian
categories” and thus intends to conclude that the human intellect at this stage comes
to possess the conceptions of Aristotelian categories. Avicenna, in Text 5, attempts
to explain one of the most foundational mental acts of the human intellect, namely
“forming conceptions” (tas. awwur) and it is not clear how the intellect possessesAris-
totelian categories before forming al-ma↪ānı̄ al-ūlā. This reading, in fact, may be used
to justify a rationalist reading of Avicenna, and thus undermine Gutas’s empiricist
construal. One may note that in “…takes up each one of the concepts individually”,
Gutas uses “concept” as a translation of al-ma↪ānı̄. However, al-ma↪ānı̄, in general,
are not “concepts” or conceptions, as was explained above.52 The middle part of
Text 5 can be read as explaining the more complex mental operations, performed
by the human intellect through the power of estimation, on the sensible and imag-
inable ma↪ānı̄ as imprinted in the soul. The key sentence in Text 5, I suggest, is the
following: “Thereupon there are impressed on the intellect, in [a process of] concept
formation, the primary notions (al-ma↪ānı̄ al-ūlā), and then definitions are composed
out of them.” Let me discuss this sentence in more detail.

“Thereupon there are impressed on the intellect in [a process of] concept forma-
tion”, as a conclusion of the paragraph, suggests that the impressions of the concep-
tions, at this stage, are causally linked to the sensible and imaginable forms already
discriminated and broken down to parts by the intellect at the earlier stages of cogni-
tion.53 This provides evidence for Avicenna’s commitment to OEA. Nothing here,

50The term “concept” is Gutas’s translation of al-ma↪ānı̄. I will discuss this point shortly. The
translation can be acceptable if by al-ma↪ānı̄ here Avicenna means al-ma↪ānı̄ as imprinted in the
mind.
51Ibn Sı̄nā, an-Najāt, ed. M. T. Dānešpažūh, Tehran: Entešārāt-e Dānešgāh-e Tehrān, 1364/1985–
1986, 170. The translation is Gutas’s (2012, 406).
52Also see Mousavian, “Avicenna on the Semantics of Ma’nā.”
53This, of course, does not eliminate the possibility of conceptual link between sensible and
imaginable ma↪ānı̄, on the one hand, and intelligible ma↪ānı̄, on the other hand.
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however, excludes the possibility of contribution of other non-empirical/material
causes, e.g. the active intellect, to the origination of the impressions of al-ma↪ānı̄
al-ūlā.54 As I have already explained,55 there are reasons to believe that by al-ma↪ānı̄
al-ūlā Avicenna does not necessarily, and only, mean the primary conceptions (e.g.
existent, thing, and necessary). Here are two reasons to distinguish between “first”
and “primary” intelligibles (and allow both to cover conceptions as well as assents
(whose “objects” are propositions, or premises).

First, al-ūlā is the feminine form of al-awwal (the first) whose irregular plural
form is al-awā↩il. Al-awwal has a relative adjective as al-awwalı̄ (primary), and al-
awwalı̄yya (feminine), whose regular plural form is al-awwalı̄yyāt. On some occa-
sions, as in relation to propositions, Avicenna does not use al-ūlā (first) and al-awwalı̄
(primary) interchangeably:

[Text 6] The first thing originated in the material intellect (↪aqli hayūlānı̄) by the active
intellect (↪aqli fa↪āl) is the dispositional intellect (↪aqli bi-malaki). And that is the forms
of the first intelligibles (al-ma↪qūlāt al-ūlā) some of which occur (h. as. ala) [in the intellect]
by no experience, no syllogism, and no induction at all, like “the whole is greater than the
part”, and some of which occur [in the intellect] by experience, like “every [chunk of] earth
is heavy”.56

In Text 6, the first intelligible premises or propositions, include, and are not
identical to, the primary intelligible premises such as “the whole is greater than the
part”. Note that a proposition like “every chunk of earth is heavy”, which can only
be known by experience, is also categorized as a “first intelligible.”

Second, the first intelligibles, or the firsts (al-awā↩il) are introduced as being
obtained (tahs. ulu) in the human intellect not by acquisition (iktisāb). This does
not necessarily imply that the firsts are indefinable (if they are conceptions) or
indemonstrable (if they are premises or propositions). Consider, for example:

[Text 7] ‘The firsts [or the first intelligibles] are obtained (tahs. ulu) in the human intellect
not by acquisition (iktisāb) and [the intellect/the soul] does not know [/is not aware of]
wherefrom [they] are obtained and how [they] are obtained in it [i.e. in the intellect/the
soul]’.57

It may well be the case that the first intelligibles, as conceptions, include the
primary conceptions such as existent, thing and necessary, as well as some “empir-
ical” conceptions, such as body and motion.58 It is worth emphasizing that, at the
end of Text 5, Avicenna says that “definitions are composed out of” al-ma↪ānı̄ al-ūlā.
Given that one cannot compose definitions only bymeans of the primary conceptions
such as existent, thing, and necessary, it follows that a wider range of conceptions

54See Sect. 18.9 below.
55Mousavian and Ardeshir (2018, 222–223).
56Ibn Sı̄nā, Al-Mabda↩ wa-l-ma↪ād [The Provenance and Destination], ed. Nūrānı̄, Abdallāh,
Tehran: The Institute of Islamic Studies, 1363/1984, 99.
57Ibn Sı̄nā,At–Ta↪lı̄qāt [The Annotations]. Ed. SeyyedHosseinMousavian. Tehran: Iranian Institute
of Philosophy Press, 2013, 46. See Mousavian and Ardeshir (2018, 215).
58I assume that, for Avicenna, conceptions like body and motion originate in experience.
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are included under “the first intelligibles.” The first intelligibles are called “first” in
the sense of initially being obtained, not acquired through discursive knowledge.59

Let me tentatively conclude that widening the scope of “first intelligibles” bolsters
Avicenna’s origin-empiricist theme expressed in Text 5.

18.6.2 Perceiving the Intelligibles Needs the Mediation
of the Sensible Forms

A clear formulation of this theme can be found in at-Ta↪lı̄qāt:

[Text 8] It is not possible for man to perceive the intelligible-ness of things without the
mediation of their sensible-ness on account of the deficiency of his [rational] soul and his
need for the mediation of the sensible forms in order to perceive the intelligible forms.60

This reference, used by Gutas among others, should be taken with extra care.
Two points are worth emphasizing: First, “things”, in the first sentence, in the above
context refers back to “sensible things”, things that are capable of producing sensible
forms in the human soul, as the previous sentence witnesses: “The soul perceives the
sensible forms bymeans of the senses and it perceives their intelligible forms through
the mediation of their sensible forms.”61 So, dependency on sensible forms, here,
applies to conceptions whose referents are sensible, not necessarily to all concep-
tions. Second, the passage is part of a longer section on the distinction between
humans’ perceiving and separate (or immaterial) substances’. What is most relevant
for explaining this distinction, after Avicenna’s emphasis that “perceiving belongs to
the soul” and is not sensation, is the phenomenon of intellection of the conceptions
of sensible objects, not that of all conceptions. Particularly, conceptions that do not
require the epistemic process of abstraction, in which the particularizing accidents
are separated from sensible and imaginable forms, are not at stake.

The very same point has also been discussed at the first part of the 6th chapter
of the fifth treatise of the psychology of The Healing where Avicenna attempts to
explain the difference between two ways of conceiving intelligibles depending on
whether the form of the intelligible is abstracted by the intellect’s act of abstraction
or the form is abstract in itself.62

To conclude, Text 8 does not aim at explaining the origin of all conceptions
perceivable by the human intellect. And in this regard, it falls short of establishing
Avicenna’s full-fledged commitment to OEA.

59“Discursive knowledge”, here, primarily refers to definitions and demonstrations.
60Ibn Sı̄nā, at-Ta↪lı̄qāt, ed. Mousavian, 31. Translation is Gutas’s (2012, 412).
61Gutas, “The Empiricism of Avicenna,” 412.
62Ibn Sı̄nā,Avicenna’s De anima [aš-Šifā↩, at.-T. abı̄↪̄ıyāt, an-Nafs], London, OxfordUniversity Press,
1959, 239.
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18.6.3 Lack of Sensation Implies Lack of Knowledge

Here is the most succinct formulation of this theme:

[Text 9] Thus, everyone who lacks some sensation (h. iss-um-mā) also lacks some knowledge
(li-↪ilm-im-mā), though sensation is not knowledge.63

Text 9 has two claims: First, a bottom-up principle: if some sensation is missing,
then some knowledge is missing. And second, sensation is not knowledge; they
belong to two different categories. A rationalist may also accept these claims. For
example, she can accept the first claim and explain it as follows. There are two
kinds of intelligibles: some originate in sensation and some do not. With regard to
the first category, if some sensation is missing, then some knowledge is missing.
This, however, does not imply that there is no mental impression whose origin is not
experience. In fact, Text 9 does not imply the following top-down principle: if some
knowledge is missing, then some sensation is missing. The second claim is part of a
rationalist view as well: sensation and knowledge are distinct.

Avicenna discusses the issue in more detail some pages earlier:

[Text 10] It is necessary to know that nothing from intelligibles is sensible and nothing from
sensibles, inasmuch as it is brought before sensation, is intelligible, namely [it] is brought
before intellect’s perception (li-idrāk-il-↪aql), though sensation is some origin (mabda↩-um-
mā) for obtaining (hus. ūl) most of the intelligibles (kathı̄run min-al-ma↪qūlāt).64

Text 10 suggests an empiricist reading of Avicenna: “sensation is some origin
(mabda↩-um-mā) for obtaining [not acquiring] most of the intelligibles”. This can be
read as follows: sensation, at some level of explanation, contributes to the origination
of intelligible conceptions in the human mind. This phrase implicates that sensa-
tion can contribute in different modes, such as immediate vs. mediate, to obtaining
intelligibles. The same sentence can also be read as suggesting that there are other
contributing factors, beside sensation, to the cognitive process of obtaining intelli-
gibles. Note that the disconnection between sensibles and intelligibles, as mutually
exclusive objects of perception, is not explained symmetrically: when no intelligible
is sensible, unqualifiedly, a sensible is not an intelligible, in a qualified way: the
sensible inasmuch as it is brought before sensation is not intelligible. A sensible is
not intelligible in the sense that it has particularizing accidents and particularizing
accidents, as particulars, are not intelligible. Therefore, that which is immediately
presented to sensation is not intelligible. This leaves room for the “sensible” to be
described as “intelligible” under a different mode of consideration, by the intellect.
One point, however, clearly circumscribes the empiricist interpretation. The word
“most of” (kathı̄r), also translatable as “many”, implicates that “the” origin of some
intelligibles may not be sensation. Therefore, it is perfectly consistent with Text 10

63Ibn Sı̄nā, Aš-Šifā↩, al-Mant.iq, al-Burhān, ed. Abū-l-↪Alā ↪Afı̄fı̄, Cairo, al-Mat.ba↪a alamı̄riyya,
1937/1956, 224. Or, in its Latin formulation, nihil est in intellectu quod non prius fuerit in sensu
(“there is nothing in the intellect which was not first in the senses”).
64Ibn Sı̄nā, Aš-Šifā↩, al-Mant.iq, al-Burhān, ed. ↪Afı̄fı̄, 220.
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to suppose that there are two kinds of intelligibles: some that originate in experi-
ence (and these may be described, in some sense, as intelligible) and some that do
not. Alternatively, it may be that by “some origin (mabda↩-um-mā)”, Avicennameans
some formof “immediate origin”which does not include involvement of other intelli-
gibles or arguments for obtaining (hus. ūl)most of the intelligibles. These observations
necessitate a careful look at possible limitations to Avicenna’s origin-empiricism.

18.7 Limitations to Avicenna’s Origin-Empiricism

Let me quickly consider three prima facie problematic cases for Avicenna’s origin-
empiricism: celestial bodies, unseen things and immaterial substances. (I will
examine the primary conceptions such as existence, thing, and necessary in a separate
section.)

18.7.1 Celestial Bodies

Gutas introduces “two concessions” to Avicenna’s “empiricism”:

The first is his admission that in the formation of concepts (tas. awwur) through definitions,
it is possible to arrive at knowledge of concepts of some real existents not through sensation
but intellectively: these are the celestial bodies which can be grasped individually by the
intellect alone because they are the only member of their particular species. However, the
intellective reasoning that establishes the existence of the celestial bodies is ultimately based
on the existence of the necessary existent, which is itself based on the empirical sense that
we exist and that there is existence.65

The problem that celestial bodies raise for Avicenna’s “empiricism” is that one
may come to “grasp them” individually, with no immediate help of sense perception,
and solely by “intellective reasoning”, given Avicenna’s epistemology and meta-
physics. This seems to make “experience” unnecessary for the origination of such
conceptions. Gutas replies that “knowledge” of the existence of the celestial bodies is
based on the knowledge of the necessary existent and that, in turn, is based on expe-
rience. This reply, in the above formulation, however, does not exclude a significant
alternative possibility. For a Cartesian, for instance, the idea of God is innate in at
least two senses: its origin is not experience and it is present in the human mind from
its origination.66 Thus, experience is unnecessary for obtaining the idea of God. An
argument for the existence of God, nonetheless, may contain other ideas that orig-
inate in experience (or are not present in the human mind at its origination). One
might envisage a similar possibility for Avicenna’s conception of a celestial body.
Accordingly, the conception of a celestial body does not originate in experience,

65Gutas, “The Empiricism of Avicenna,” 418–419.
66Cottingham, A Descartes Dictionary, 92.
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though there is some argument for its existence that employs empirical conceptions.
This consideration in itself, however, is not tantamount to a criticism of Gutas’s
claim.

One may try to accommodate the conception of a celestial body into Avicenna’s
“empiricism” not through the analysis of an argument for the existence of a celestial
body, rather through an analysis of its very conception. The conception of a celestial
body is a composite conception. Note that a celestial body itself is a composite
material object. It is composedof a celestial formand somematter. Like othermaterial
objects, therefore, it can be known through composition of other conceptions that,
mediately, are based on experience. Thus, the conception of a celestial body can be
acquired through composition of other conceptions which themselves are based on
experience.67

18.7.2 Unseen Things

Gutas’s “second concession to Avicenna’s empiricism” is “knowledge that humans
can have of what Avicenna calls the “unseen” (al-ghayb)”, including truths from the
future:

Human souls acquire this knowledge directly from their congeners, the souls of the celestial
spheres, through the mediation of the practical intellect of the humans, which transmits
it, and of the internal sense of imagination, which represents it. […] The rational soul, or
the intellect, has the vanguard role both in investigating these phenomena and, once it has
found their cause, resting in the certainty of the knowledge. […] Thus, even in this case of
knowledge of the “unseen” (al-ghayb) whose source is manifestly non-sensory, Avicenna
treats it as knowledge acquired through testing […].68

Experience seemsunnecessary for receivingknowledgeof the “unseen”, including
future events, from celestial spheres. Gutas, defending Avicenna’s “empiricism”,
explains this case by appealing to “testing”, categorized as “experience” byAvicenna:
one “should observe them”, namely the knowledge-claims about unseen matters,
“several times successively in others” to the point that all this becomes experience
(tajriba).”69 Obtaining or receiving some piece of knowledge through “testing” does
not imply that the concepts involved in the process of testing originate in experience,
even if the knowledge itself is certain. Testing and approving may confer certainty
on a piece of knowledge via establishing the reliability of the underlying processes
involved. For example, a mathematical proposition, say Goldbach conjecture namely
“every even integer greater than two is the sum of two prime numbers”, can empiri-
cally be tested and approved by different numerical methods. This testing, however,
hardly provides evidence against a form of mathematical Platonism according to
which mathematical concepts do not originate in experience.

67This proposal may not save Gutas’s reasoning but can support his claim.
68Gutas, “The Empiricism of Avicenna,” 419–420.
69Gutas, “The Empiricism of Avicenna,” 420.
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Again, Avicenna’s commitment to OEA can be defended by appealing to the
compositionality of (the understood contents of) the conceptions of unseen things. A
future event, for example, is presently nonexistent in re. Nonetheless, its conception,
like the conception of an existent event in re, is a composite conception that contains
conceptions of other things that have already been known and are mediately based
on past experience. What is not known about future events, and can only be known
through intellect and testing, is their “existence in future”, not their conceptions.

18.7.3 Immaterial Substances

The immaterial substances, including human intellects/souls, celestial intel-
lects/souls, and the First or God, may also be prima facie problematic cases for
Avicenna’s “empiricism”. The conception of a human soul as self has a distinguished
status if the phenomenon of self-awareness, in some sense, is non-empirical concep-
tual knowledge.70 According to Gutas, “Black would seem to be denying the empir-
ical basis of the phenomenon (“it can hardly be an empirical inference”).”71 Gutas’s
response, in this particular case, is to appeal to a “reflective” sense of self-awareness in
which “reflection […] is another way of knowing through Experience.”72 This reply,
however, cannot save the foundational explanatory role of primitive self-awareness
as always in, or more precisely identical to, the human intellect, “even in sleep or
drunkenness”.

As with celestial intellects/souls, Gutas’s strategy is to show that apparently non-
empirical knowledge of such objects is based on the knowledge of the existence of
the necessary existent or God. Consequently, the problem boils down to problem
of reconciling knowledge of God with Avicenna’s “empiricism”. Given Avicenna’s
emphasis on the modal argument for the existence of God and the fact that this
argument assumes the contingency of material objects, Gutas concludes that this
series of “intellective reasoning” is ultimately based on “Experience” (assuming that
knowledge of the contingency of material objects is obtained through experience).

A celestial intellect and God are not composite objects, like celestial bodies, nor
can their conceptions be derived from the present or past experiences, like unseen
things,73 nor are they immediately knowable, like one’s self. To accommodate such

70If primitive awareness of the self contains no conception of the self, and thus is a form of non-
conceptual knowledge, e.g. knowledge by presence (↪ilm h. ud. ūrı̄), then primitive self-awareness
and Avicenna’s “empiricism” may vacuously be consistent. See Deborah Black, “Avicenna on
Self-Awareness and Knowing that One Knows,” in Shahid Rahman et al. (eds.), Arabic Logic,
Epistemology and Metaphysics: The Interconnections between Logic, Science and Philosophy in
the Arabic Tradition, Dordrecht, Springer, 2008, 65–70.
71Gutas, “The Empiricism of Avicenna,” 404 n. 32.
72Gutas, “The Empiricism of Avicenna,” 404.
73It might be objected that (i) the modal argument for the existence of God is derived from the
present experience of existence, as one of its premises. Therefore, (ii) the conception of God can
be derived from present experience. It might further be claimed that this is Gutas’s point. The move
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cases, Gutas relies on the assumption that “humans know these things by going from
the effect to the cause.”74 It might be tempting to reconstruct this reply in terms of
compositionality of (the understood contents of) the conceptions involved. On such a
proposal, theway toknowacelestial intellect orGod is through“quiademonstration”.
One perceives the (understood content of the) conception of a celestial intellect, for
example, through (the understood content of) a relative conception, e.g. the cause of .
(In general, the derivative conceptions may involve other relations such as similarity
or negation.) Therefore, a celestial intellect which itself cannot be perceived by
(internal or external) senses, is conceivable through a relative conception whose
constituting conceptions are ultimately based on experience. This strategy, however,
faces different problems. To discuss the matter in more detail, we need to turn to
Avicenna’s view on “content-empiricism.”

18.8 Is Avicenna a Content-Empiricist?

The first problem for the above reply is that Avicenna does not introduce conceptions
like intellect or soul as complex/composite conceptions whose understood contents
contain the understood contents of other conceptions:

[Text 11] A simple (bası̄t.) ma↪nā is one such that it is not possible for the intellect (al-‘aql)
to consider in it (ya↪tabiru fih) any combination (at-ta↩alluf ) or composition (at-tarakkub)
of some [other] ma↪ānı̄. Hence, it is not possible to genuinely define it (tah. diduh). And this
is like the intellect (al-‘aql) or the soul (an-nafs).75

If the ma↪nā of “intellect”, i.e. intellect, is simple, then this ma↪nā as conceived
in the mind, i.e. its understood content, does not contain the understood contents of
other conceptions, including conceptions like cause or effect. This is consistent with
what Avicenna says on how we conceive separate/immaterial substances:

[Text 12] Hence, [in the case of] these things [namely, separate/immaterial substances], it
is only the ma↪ānı̄ of their quiddities, not [these things] themselves, that are realized in the
human intellects. These [ma↪ānı̄] are governed by the same rules governing the rest of what is
intellectually apprehended of substances, except in one thing – namely, in that these [latter]
require interpretations (tafsirāt) so as to abstract from them a ma↪nā that is intellectually
apprehended, whereas [the former] require nothing other than the existence of the ma↪nā as
it is, the soul becoming imprinted by it.76

Thus, simple ma↪ānı̄ referred to in Text 11 and Text 12, can be conceived without
combining or composing other ma↪ānı̄ or performing the epistemic processes of

from (i) to (ii), however, is not justified. That there is an argument, with an empirical premise, for the
existence of an entity does not imply that the conception of the entity is empirical. See Sect. 9.7.1
above.
74Gutas, “The Empiricism of Avicenna,” 415.
75Ibn Sı̄nā, at-Ta↪lı̄qāt, ed. Mousavian, 41.
76Ibn Sı̄nā, The Metaphysics of the Healing, ed. Marmura, 110. I have slightly modified
Marmura’s translation. I have substituted ‘intellect’ (in italics) for ‘mind’ (Avicenna’s term is ‘uqūl
al-bašarı̄yya) and ma↪nā and ma↪ānı̄ for idea and ideas respectively.
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abstraction or interpretation (tafsir). Elsewhere,77 Avicenna explains that the only
barrier to knowing such ma↪ānı̄ is the occupation of the human soul with the human
body. These pieces of evidence suggest that the understood content of a simplema↪nā
is not complex and hence should not be identified with the understood content of
some complex, e.g. relative or privative, conception.

Furthermore, the semantics of a different class of simple ma↪ānı̄, namely the
primary conceptions, show that Avicenna is not committed to content-empiricism
(CEA):

[Text 13]We say: Thema↪ānı̄ of “the existent,” “the thing,” and “the necessary” are impressed
in the soul in a primary way. This impression does not require better-known things to bring
it about. [This is similar] to what obtains in the category of assent, where there are primary
principles, found to be true in themselves […]. Similarly, in conceptions of things, there are
things which are principles for conception that are conceived in themselves. If one desires to
indicate them, [such indication] would not, in reality, constitute making an unknown thing
known but would merely consist in drawing attention to them to bring them to mind through
the use of a name or a sign which, in itself, may be less known than [the principles] but
which for some cause or circumstance, happens to be more obvious in its signification. […]
If every conception were to require that [another] conception should precede it, then [such
a] state of affairs would lead either to an infinite regress or to circularity. The things that
have the highest claim to be conceived in themselves are those common to all matters – as,
for example, “the existent,” “the one thing,” and others. For this reason, none of these things
can be shown by a proof totally devoid of circularity or by the exposition of better-known
things.78

The primary conceptions in Avicenna’s philosophy have been subject to many
studies and I cannot even provide a review here.79 For my purposes, I will focus on
one of their most significant features, namely indefinability. In Text 13, Avicenna
introduces the ma↪nā of “existent”, for instance, as being “conceivable in itself”; the

77Ibn Sı̄nā, Avicenna’s De anima, 237.
78Ibn Sı̄nā, The Metaphysics of the Healing, ed. Marmura, 22–23, slightly revised.
79Here are a few references. For a historically insightful study of Avicenna’s primary concep-
tions see Jan A. Aertsen, “Avicenna’s Doctrine of the Primary Notions and its Impact on Medieval
Philosophy,” in Anna Akasoy and Wim Raven (eds.), Islamic Thought in the Middle Ages, Leiden,
Brill, 2008, 21–43. For the influence of Avicenna’s theory of primary conceptions on Aquinas,
see Daniel D. De Haan, “A Mereological Construal of the Primary Notions Being and Thing in
Avicenna and Aquinas,” American Catholic Philosophical Quarterly, Vol. 88, No. 2 (2014), 335–
360. There is a scholarly debate on the conceptual priority of the conception of “being” over the
conception of “thing” in Avicenna. Amos Bertolacci, criticising Aertsen and Robert Wisnovsky,
Avicenna’s Metaphysics in Context, Ithaca, NY: Cornell University Press, 2003, defends this claim
(see Amos Bertolacci, “The Distinction of Essence and Existence in Avicenna’s Metaphysics: The
Text and Its Context,” in Felicitas Opwis and David Reisman (eds.), Islamic Philosophy, Science,
and Religion: Studies in Honor of Dimitri Gutas, Leiden: Brill, 2012, 257–88.) For Avicenna’s
conception of “thing”, see Thérèse-Anne Druart, “‘Shay’ or ‘Res’ as Concomitant of ‘Being’
in Avicenna,” Documenti e Studi sulla Tradizione Filosofica Medievale 12 (2001): 125–42 and
Wisnovsky, Avicenna’s Metaphysics in Context. Some other primary conceptions, e.g. necessity,
call for a different treatment. See, for example, Amos Bertolacci, “‘Necessary’ as Primary Concept
in Avicenna’s Metaphysics,” in Stefano Perfetti (ed.), Conoscenza e contingenza nella tradizione
aristotelica, Pisa: Edizioni ETS, 2008), 31–50.
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mind does not require “better-known things” to conceive it. Therefore, the under-
stood contents of empirical conceptions, and of the relative conceptions constructed
out of them, are not required for apprehending the understood content of the primary
conceptions. This shows that what is understood from the ma↪nā of “existent” i.e. its
understood content, does not contain the understood contents of empirical concep-
tions (recall that “understood content” is the epistemologically significant aspect of
a conception).

In the latter part of Text 13, Avicenna argues, in two steps, that conceptions
like existent and thing are primary: First, not all conceptions need some other
conceptions to precede them in understanding because if it were so, one would
end up either in an infinite regress or in a vicious circle. Either way, “understand-
ing” would be impossible. This step clarifies the meaning of “primacy” in the argu-
ment. Second, the conceptions that have the highest claim to be primary are those
“common to all matters”, namely the conceptions whose extensions include every-
thing.80 The conceptions existent (mawjud) and thing (shay↩) are among the most
common conceptions.81

In the middle part of Text 13, Avicenna discusses an objection and a reply. One
might object that thing can be defined as follows, for example: “The thing is that about
which it is valid/correct [to give] an informative/indicative statement”.82 Hence, the
primary conceptions can be known by some other conceptions and therefore they
are not primary in understanding. Avicenna’s reply goes like this: the conception of
“is valid/correct” (s. ah. ih. ) and that of “informative/indicative statement” (khabar) in
themselves are less-known than the conception of “thing” and, therefore, cannotmake
a genuine definition of “thing” (in fact “thing” is used in the definition of both concep-
tions). In general, conceptions that are in themselves less-known than the primary
conceptions may be used to draw one’s attention to the primary conception and bring
them to the mind because the less-known conceptions can be associated with expres-
sions which are more obvious in signification. Avicenna, here, distinguishes between
the conceptual primacy of a conception and the immediacy of the signification of its
associated expression. This allowsAvicenna to explain how some expressions can, in
some sense, clarify or explicate, the expressions associated with the primary concep-
tions, though the primary conceptions themselves are, epistemologically speaking,
the most fundamental conceptions.

In the last line of Text 13, Avicenna concludes that “none of these things”, namely
the primary conceptions, “can be shown by a proof (bayān) totally devoid of circu-
larity or by the exposition (bayān) of better-known things”. Something has a defini-
tion, only if it can be known by better-known things. If nothing is better-known than
the primary conceptions, then they are neither definable nor explicable. There is no

80The argument is not applicable to the conception necessary, given that it is not “common to all
matters.” For further discussion see Aretsen “Avicenna’s Doctrine of the Primary Notions and its
Impact on Medieval Philosophy,” and Bertolacci, “‘Necessary’ as Primary Concept in Avicenna’s
Metaphysics.”
81See footnote 53. Avicenna, in the same chapter, argues for this latter claim against some early
Muslim theologians (mutikallimun).
82Ibn Sı̄nā, The Metaphysics of the Healing, ed. Marmura, 23, slightly revised.
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argument, including quia demonstration, for them either. Therefore, the understood
contents of the primary conceptions need not be characterized by some experiential
conditions, namely by conceptions whose understood contents are characterized by
the contents of some experiential terms. Therefore, Avicenna is not committed to
CEA.83

18.9 Open Questions

To recap, I introduced two empiricist theses, namely OE (origin-empiricism) and CE
(content-empiricism). I reinterpreted these theses in Avicenna’s language as OEA
and CEA. Avicenna’s analysis of the relationship between knowledge, on the one
hand, and sensation and imagination, on the other hand, includes three empiricist
themes, namely Sects. 18.6.1, 18.6.2 and 18.6.3. I used these themes to argue that
that Avicenna is committed to OEA. There are, however, some prima facie prob-
lematic cases, namely Sects. 18.7.1, 18.7.2 and 18.7.3. I showed that a common
solution to such cases, that relies on the compositionality of the understood content,
quia demonstration and relative conceptions, has significant limitations. A careful
examination of these limitations, and the epistemology of the primary conceptions,
show that Avicenna is not committed to CEA.

As an alternative explanation, for the limitations to Avicenna’s origin-empiricism,
one may appeal to the empirical nature of the development of the human intellect.
It may be argued that the human mind, as an abstract or immaterial entity, is tempo-
rally originated and empirically developed through time.84 Hence, origination of all
conceptions, immediately or mediately, requires experience as a necessary condi-
tion for the development of the intellect to come to the stage of the actual intellect.
Accordingly, experience, via causal relations, contributes to the origination of the
“material” necessary for intellection, though the understood contents of all intel-
ligible conceptions cannot be exhausted by the understood contents of empirical
conceptions.

This alternative explanation for Avicenna’s commitment to “empiricism”, in the
sense ofOEA, raises a similar open question: IsAvicenna a rationalist, in some sense?
After briefly commenting on this question, I will consider a related, but commonly
dissociated, question in the literature on the reality of abstraction, as a cognitive
process in acquiring (some) universals. Finally, I will question two presuppositions
of the common replies to both questions.

83Avicenna’s philosophy of mind and language may be reconstructed along the same lines with
some auxiliary hypotheses. Here is one such hypothesis: if the existence of a ma↪nā among concrete
particulars/external things does not need matter, then the understood content, namely the ma↪nā as
imprinted in the mind, does not “essentially contain reference to” sensory experience because being
material is a prerequisite of being perceivable by external senses.
84Seyed N.Mousavian and Seyed H. Saadat Mostafavi, “Avicenna on the Origination of the Human
Soul,” Oxford Studies in Medieval Philosophy 5, 2017, 41–86.
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18.9.1 Is Avicenna a Rationalist?

SomeAvicenna scholars, e.g.Marmura andGoodman, basedon evidence such asText
13 have attempted to argue that Avicenna is a “rationalist”. Consider, for instance:

Thus, according toAvicenna, there are “primary concepts” – concepts of thewidest generality
that are epistemically prior to the “acquired” concepts, forming a necessary condition for
the latter’s acquisition. They are, moreover, “rational,” not only by the very fact that they are
concepts, but in that they do not require for their apprehension perception of the material
world.85

Marmura claims that the primary conceptions are the necessary condition for
the acquisition of all other conceptions, including empirical conceptions. He, then,
justifies his reasoning by appealing to Text 13:

The sense in which these concepts [namely, the primary conceptions] are “impressed”
(tartasim) in the soul is not explained [in Text 13]. If their analogy with the logical self-
evident truths is pressed, these in the final analysis would have to be direct emanations from
the Active Intellect, the last of the series of intelligences emanating from God.86

Here is my formulation of the above reasoning. The primary conceptions are the
principles for conceiving other conceptions as the logical self-evident truths, namely
the primary propositions, are the principles for giving assent to other truths. The
logical self-evident truths are direct emanations from the Active intellect. Therefore,
by analogy, the primary conceptions are direct emanations from the Active intellect.
Marmura concludes that “they [i.e. primary conceptions] do not require for their
apprehension perception of the material world.”

Goodman expresses a similar view:

Like all rationalists, Ibn Sı̄nā sees that no pure concept can be derived empirically. Thus,
he posits that the ideas of being and necessity are primitives, given to the mind by the
hypostatic Active Intellect. No process can discover them. They cannot be learned. For they
are presupposed in any mental process that would lead to them, and any effort to build them
out of simpler constituents would come to ground rapidly in circularity.87

In contrast, Gutas rejects the above rationalist reading of Avicenna. He does not
accept the assumption that the primary conceptions are direct emanations from the
active intellect:

To our understanding of theway inwhich the primary notions come about in the dispositional
intellect, this passage adds emphatically that they do so without the child intending to attain
them and while he is unaware that in fact he is attaining them. It is important to realize that

85Michael Marmura, “Avicenna on Primary Concepts in theMetaphysics of the Shifā,” in R. Savory
and D. A. Aguis (eds.), Logos Islamikos: Studia Islamica in honorem Georgii Michaelis Wickens,
Toronto: Pontifical Institute of Mediaeval Studies, 1984, 220.
86Marmura, “Avicenna on Primary Concepts in the Metaphysics of the Shifā,” 222 (the brackets are
mine). The criterion “conceptswithwidest generality”may be used to identify semantic “categories”
and/or logical “notions” (see Tarski (1966/1986), for example), depending on how one construes
“widest generality”.
87Goodman, Avicenna, 124.



18 Is Avicenna an Empiricist? 467

these primary notions do not come from the active intellect, nor do they appear as a result
of search and demand on the part of the child.88

To do justice to this debate, different “rationalist” claims should be disambiguated
and the nature of human reason, the epistemic role of the active intellect in human
cognition and the notion of “innateness” for Avicenna should be examined.89 Space
limitation does not allowme to do so here. Therefore, I leave this question open. There
is one point, however, that I would like to add. Both sides of the debate presuppose
the following incompatibility principle:

INC1. If a primary conception is direct emanation from the active intellect, then its
apprehension does not require sense-perception.90

Marmura and Goodman attempt to argue that the antecedent of INC1 is true and
thus by modus ponens, the consequent of INC1 follows, that is the primary concep-
tions “do not require for their apprehension perception of the material world.”91

In reply, Gutas in effect suggests that the antecedent of INC1 is not true, that is
“these primary notions do not come from the active intellect,”92 and hence there
is no modus ponens to derive the consequent of INC1. This style of reasoning,
centered around the question of whether some intelligible conceptions are “directly”
emanated from the active intellect, is sometimes extended to a different problem,
namely “How do we acquire universals?”. For example, Davidson claims that the
“intelligible thoughts, he [Avicenna] has maintained, flow directly from the active
intellect and are not abstracted at all” (Davidson 1992, 93). The reality of abstraction
in Avicenna’s epistemology, nonetheless, is a different problem. Let me explain.

18.9.2 Is Avicenna an Abstractionist?

Dag Hasse summarizes the problem of acquiring universals as follows:

The theory of abstraction is one of the most puzzling parts of Avicenna’s philosophy. What
Avicenna says in many passages about the human intellect’s capacity to derive universal
knowledge from sense-data seems to plainly contradict passages in the same works about
the emanation of knowledge from the active intellect, a separately existing substance. When
he maintains that “considering the particulars [stored in imagination] disposes the soul for
something abstracted to follow upon it from the active intellect”, he appears to combine two
incompatible concepts in one doctrine: either the intelligible forms emanate from above or
they are abstracted from the data collected by the senses, but not both.93

88Gutas, “The Empiricism of Avicenna,” 413.
89The latter question has been investigated, in part, in Seyed N. Mousavian and Mohammad
Ardeshir, “Avicenna on Primary Propositions,” History and Philosophy of Logic 29.3, 2018,
201–231.
90Let us assume that perception of material world is sense-perception.
91Marmura, “Avicenna on Primary Concepts in the Metaphysics of the Shifā,” 220.
92Gutas, “The Empiricism of Avicenna,” 413.
93Dag Nikolaus Hasse, “Avicenna on Abstraction,” inWisnovsky (ed.), Aspects of Avicenna, 2001,
39.
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The issue, in this formulation, is a dichotomy. As a solution, Guts and Hasse hold
that Avicenna is an abstractionist in the sense that “there is only one active power in
the process, the human intellect: it turns towards the imaginable forms and acts upon
them.”94 Davidson and Black, in contrast, hold that “Avicenna explicitly denies any
causal influence of the imagination upon the intellect, that is, he denies the reality of
abstraction as a cognitive process.”95

The question of the reality of abstraction is how to explain the role of the human
soul, particularly sensation and imagination, on the one hand, and that of the active
intellect, as a separate intellect, on the other hand, in acquiring (quidditative) univer-
sals, first and foremost, by the human intellect. This is not identical to the problem
of the origin of the primary conceptions. Both sides of this debate, nonetheless,
presuppose an incompatibility principle that can be formulated as follows:

INC2. If an intelligible form (i.e. a universal) emanates from the active intellect, then it is
not abstracted from sense-perception.

Rahman and Black, among others, have attempted to argue that the antecedent of
INC2 is true and thus, bymodus ponens, the consequent of INC2, or something to the
same effect, follows, namely “The ‘abstraction’ of the form, therefore, for Avicenna
is only a façon de parler.”96 Gutas and Hasse, by contrast, have attempted to show
that the antecedent of INC2 is not true, or has no epistemological significance, and
thus there is no modus ponens to derive the consequent of INC2. If Avicenna’s
“empiricism” is a complex and nuanced view, as I have attempted to argue, one may
wonder if there is a “compatibilist” reading of Avicenna according to which neither
INC1 nor INC2 is presupposed.

18.9.3 Is Avicenna a Compatibilist?

Here, I will try to outline the elements of a positive answer to the last question.
Given the distinction between understood content (al-mafhūm) and mental impres-
sion (athar d

¯
ihnı̄), as two aspects of a conception, it can be argued that “apprehension

of a conception” (used by Marmura in Sect. 9.9.1) is ambiguous. If “apprehension
of a conception” means apprehending the understood content of a conception, then
apprehending the understood content of existent, as a primary conception, does not

94Hasse, “Avicenna on Abstraction,” 63. Gutas sees no epistemological role played by the active
intellect: “What has to be kept in mind is that for Avicenna the concept of the emanation of the
intelligibles from the active intellect has its place in his cosmology and it serves to solve essentially
an ontological problem, not an epistemological one,which is the location of the intelligibles” (Gutas,
“The Empiricism of Avicenna,” 411).
95Deborah Black, “Avicenna and the Ontological and Epistemic Status of Fictional Beings,” Docu-
menti e Studi sulla Tradizione Filosofica Medievale, 8, 1997, 445. The references are recovered
from Hasse, “Avicenna on Abstraction,” 39.
96Fazlur Rahman, Prophecy in Islam: Philosophy and Orthodoxy, George Allen & Unwin, 1958,
reprinted by Routledge, 2008, 15.
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require perception of the material world in the sense that this understood content
is not explicable/definable by better-known conceptions, including the conceptions
obtained through sense-perception. (Recall that the primary conceptions cannot be
acquired through discursive knowledge, that is, they cannot be known through
genuine definitions, though they may be signified by lesser-known expressions.)
However, if “apprehension of a conception” means obtaining the mental impression
of a conception, then obtaining the mental impression of existent is a mental event
that (normally) requires obtaining some other mental impressions, including the
mental impressions of some empirical conceptions. Therefore, INC1 is ambiguous.
INC1 has a reading according to which the understood content of a primary concep-
tion is not conceivable through the understood contents of the conceptions obtained
through sense-perception. I hold that this reading is true and reinforces the view that
Avicenna is not committed to CEA. INC1 also has a reading according to which
obtaining a primary conception as a mental impression, in the human soul, gener-
ically does not require obtaining some other conceptions, particularly sensible and
imaginable forms. Given that Avicenna is committed to OEA, this reading is false.
Recall that the human soul at its origination, which is called the “material intellect”
or “potential intellect,” does not contain any intelligible form, including the primary
conceptions and only at the stage of “dispositional intellect” it comes to possess the
first intelligibles. Therefore, I conclude, INC1 does not hold in general.

INC2 is about the acquisition of the (quidditative) universals, e.g. human, whose
exemplification instances (aškhās) exist amongst concrete particulars (a↪yān) or
external things.97 INC2 may have two readings both of which can be resisted. First,
if “emanation of an intelligible form from the active intellect” implicates origination
of the mental impression of an intelligible form in the human soul, and “it is not
abstracted from sense-perception” means that the mental impression has no causal
origin in sense-perception, then a compatibilist account of the causal origin of the
mental impression, according to which both the active intellect and sense-perception
contribute to the origination o the mental impression, undermines INC2. Conse-
quently, sense-perception is some origin, as a necessary but insufficient part, of a
sufficient complex cause, which incorporates the active intellect, for the acquisition
of themental impression of an intelligible conception, say human, by the human intel-
lect.98 This view can be defended by a compatibilist account of Avicenna’s theory
of causation in the extramental realm according to which both the active intellect, as
the form-giver, and corporal causes, as the agents educing form from the potency of

97Neither the generic, e.g. matter, nor the most common, e.g. existent, ma↪ānı̄ are quidditative.
98I am not attributing Mackie’s INUS theory of causation (John L. Mackie, The Cement of the
Universe: A Study of Causation, Ney York, NY, Oxford University Press, 2002) to Avicenna. The
gist of my suggestion is to identify different elements in Avicenna’s theory of causation such that
the active intellect and sense perception both can fit in with Avicenna’s theory of abstraction.
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matter, can contribute to the process of causation.99 Kara Richardson has developed
and defended such an account:

The distinction between causes of species and causes of individuals suggests that a superior
principle – inmy view,Avicenna’sAgent Intellect – is the cause of a type replicated by tokens
of the type. This view does not entail an Infusion Model of generation. […] If Avicenna’s
claim in Physics 1.10 that ‘that which gives the constitutive form belonging to natural species
is extrinsic to natural things’ refers to an incorporeal cause of the species of natural things,
then this claim is compatiblewith the view that corporeal agents educe form from the potency
of matter in generation.100

It will remain to be seen if this proposal can be developed to a full-fledged theory
of causation within the mental realm.

Now let’s turn to the second reading of INC2. If “emanation of an intelligible
form from the active intellect” implicates making the content of an intelligible form
by the active intellect, and “it is not abstracted from sense-perception” means that the
understood content of the intelligible form is not derived from the understood content
of sense-perception, then a compatibilist account of abstraction, as an epistemological
process, according to which both the active intellect and sense-perception contribute
to the understood content of the intelligible form, undermines INC2.McGinnis (2007,
2013), for instance, developing and defending such an account101:

Once the rational soul has abstracted away the concomitants of matter, the emanation from
the active intellect, that is, its intellectualizing forms, radiates upon and mixes with the
potentially intelligible objectmaking it actually intelligible, analogous to theway that radiant
light mixes with potential color to make it actual color and form rays.102

The “intellectualizing forms” are intelligible accidents such as universality or
essentiality (in predication). According to McGinnis, emanation from the active
intellect as well as a form of abstraction from sense perception both contribute to
characterization of the understood content of an intelligible form. The human intel-
lect abstracts away the concomitants of matter from sense perception and then the
intellectualizing forms are bestowed upon the outcome of this process. Therefore,
without the emanation of the active intellect, an intelligible form is not actually
intelligible.103

99Black’s recent viewmay also be categorized as compatibilist in holding that abstraction is a neces-
sary but not sufficient condition for acquiring a wide range of concepts (see Deborah Black, “How
Do We Acquire Concepts?”, in Jeffrey Hause (ed.), Debates in Medieval Philosophy, Routledge,
2014.
100Kara Richardson, “Avicenna and Aquinas on Form and Generation,” in Dag Nikolaus Hasse
and Amos Bertolacci (eds.), The Arabic, Hebrew and Latin Reception of Avicenna’s Metaphysics,
Göttingen, De Gruyter, 2012, 264.
101I said “may be read” because to fully develop such a compatibilist view one needs to work out
a clear account of the “derivation of understood content.”
102Jon McGinnis, “New Light on Avicenna: Optics and its role in Avicennan Theories of Vision,
Cognition and Emanation,” in Luis Xavier Lopez-Farjeat and Jörg Alejandro Tellkamp (eds.),
Philosophical Psychology in Arabic Thought and the Latin Aristotelianism of the 13th Century,
Paris, Librairie Philosophique J Vrin, 2013, 55.
103A similar view is developed in Jon McGinnis, “Making Abstraction Less Abstract: The Logical,
Psychological, and Metaphysical Dimensions in Avicenna’s Theory of Abstraction,” Proceedings
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I should add that I agree with Hasse that “the distinction between abstract forms
(or essences) and intellectualizing forms (or accidents)”, on which McGinnis’s view
is based, “does not have a textual basis in Avicenna’s psychological works.”104

However, and this is against Hasse’s earlier view,105 I find McGinnis’s move to
allow divine emanation and real abstraction play epistemologically significant roles
in Avicenna’s theory of “abstraction” on the right track. I differ from both McGinnis
and Hasse (2013) on how to make “emanation” and “abstraction” compatible.106

18.10 Conclusion

I argued that Avicenna is an empiricist in one sense, namely OEA, and not an empiri-
cist in another sense, namely CEA. I first introduced Avicenna’s terminology of
“signifcandum” (ma↪nā), “understood content” (al-mafhūm), and “mental impres-
sion” (athar d

¯
ihnı̄). “Conceptions” (tas. awwurāt) were interpreted as having two

aspects: understood content and menta impression. Then, borrowing Winkler’s
(2010) distinction between origin-empiricism (OE) and content-empiricism (CE) and
reinterpreting that distinction in Avicenna’s language, as OEA and CEA, I provided
textual evidence for Avicenna’s commitment to OEA and his lack of commitment to
CEA. Therefore, “Is Avicenna an empiricist?” has no simple yes-or-no answer. This
raises a similar open question: “Is Avicenna a rationalist?”. After briefly commenting
on this question, I considered a related, but commonly dissociated, question on the
reality of abstraction, namely “Is Avicenna an abstractionist?” I explained how the
common replies to these questions rely on two incompatibility principles, namely
INC1 and INC2. I ended by outlining the elements of a reading of Avicenna that
assumes neither INC1 nor INC2.

of the American Catholic Philosophical Association, 80, 2007, 169–83, and subsequently defended
by Thérèse-Anne Druart, “Avicennan Troubles: The Mysteries of Heptagonal House and of the
Phoenix,” Tópicos 42, 2012: 51–73.
104Dag Nikolaus Hasse, “Avicenna’s epistemological optimism,” in Peter Adamson (ed.), Inter-
preting Avicenna: Critical Essays, Cambridge, Cambridge University Press, 2013, 113.
105Hasse, “Avicenna on Abstraction.”
106In the recent literature, on both sides of the debate, some, e.g. Black, “How Do We Acquire
Concepts?” andHasse “Avicenna’s epistemological optimism,” are sympatheticwith a compatibilist
reading. A thorough compatibilist interpretation, however, needs to spell out the epistemological
role of the active intellect in the process of abstraction, or so I believe. For two studies along this line,
in addition to McGinnis’s work, see Tommaso Alpina, “Intellectual Knowledge, Active Intellect
and Intellectual Memory in Avicenna’s Kitāb al-Nafs and Its Aristotelian Background,” Documenti
e studi sulla tradizione filosofica medievale XXV, 2014, 131–183, and Stephen Ogden, “Avicenna’s
Emanated Abstraction,” Philosophers’ Imprint, forthcoming, 1–39.
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Ibn Sı̄nā. (1363/1984). Al-Mabda↩ wa-l-ma↪ād [The provenance and destination]. Ed. Nūrānı̄,
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Iemhoff, R., 165, 254, 255, 266, 268, 287,

296, 308
Ilik, D., xi
Ivan, C, xi

J
Jacobs, B., 165
Jaffe, A., 386
Jansana, R., 102, 107, 108, 112, 114, 165,

178, 201, 208–210, 217

Japaridze, G., 51, 60
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