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1 Introduction

Based on the theory of combinatorial species (see e.g. [1]), Flajolet and Sed-
jewick [4] wrote a reference book on combinatorial analysis. In particular in the
first part, they provided a list of basic constructions for exponential generating
functions. Mainly, complex combinatorial structures are obtained by combin-
ing the following three combinatorial classes: Set,Seq, and Cyc. For instance,
they described surjections (Seq(Set)), set partitions (Set(Set)), alignments
(Seq(Cyc)) and permutations (Set(Cyc)). In this article, we focus on the later
one because it has the remarkable property of having the same generating func-
tion as the combinatorial class of sequences. More precisely, our starting point
consists in giving an explicit bijection between the class of set-of-cycles and
the class of sequences (see Sect. 3.4). Our goal is to study an example of a
class defined inductively by a combinatorial class equation. We chose the equa-
tion Set(Cyc(C)) = C because the underlying combinatorics reveal a world
rich in interpretation and provide fruitful perspectives. In particular, this equa-
tion reveals an isomorphism between sets of necklaces of planar labelled trees,
forests of labelled trees, and rooted labelled trees (see Sect. 4). At the heart
of the equation we study here are the Catalan numbers. They are involved in
the enumeration of numerous classes of combinatorial objects of prime impor-
tance in computer science, e.g. Dyck paths, binary trees, non-crossing partitions
etc. [4,5,16]. Notice that more than 60 possible enumerations are listed in [16]
and the enumerated objects lead to several applications in computer science,
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such as sorting techniques based on binary trees [6]. In our case, Catalan num-
bers are representing ordered trees. The article ends with Sect. 4.4, where we
propose other recursive tree-like combinatorial classes.

2 Background and Notations

We recall here well known definitions and results concerning combinatorial
classes and generating functions. The material contained in this section mainly
refers to [4].

2.1 Combinatorial Classes

In the most general context, a combinatorial class is a triplet (O,P, ω) where
O is the discrete set of the combinatorial objects we want to enumerate, P is
the discrete set of the properties in regard to which you want to enumerate our
objects, and ω : O → P is a map such that for every p ∈ P the preimage ω−1(p)
is finite, which is a minimal requirement in order to be able to enumerate the
objects of O with respect to the properties of P.

We consider the restricted context where P = N and the preimage of 0
contains only one element. More formally, a combinatorial class is a pair C =
(O, ω) where ω : O → N is such that card(ω−1(n)) < ∞ for any integer n. For
the sake of simplicity, and when there is no ambiguity, we use the same name for
a class and the set of its objects. Then, we denote by |μ| the degree (or weight)
ω(μ) of μ ∈ C and we set Cn = {μ ∈ C | ω(μ) = n}. If #(ω−1(0)) = 1 then we
denote by ε the unique element of C of weight 0. We also set C+ := C \ {ε}.

2.2 Labelled Combinatorial Classes

Recall that the symmetric group Sn is the group of bijections of {1, . . . , n}. It
is a group of order n! whose each element is denoted by the word of its images.
For instance, the cycle sending 1 to 2, 2 to 3, and 3 to 1 is denoted by 231.
Obviously, the set of permutations is closed by composition and all its elements
are invertible.

Formally, a labelled combinatorial class is a combinatorial class endowed with
a sequence (ρn)n∈N of representations ρn of the symmetric group Sn (i.e. an
application associating a map ρn(σ) : Cn → Cn to each permutation σ ∈ Sn in
such a way that ρn(σ ◦ σ′) = ρn(σ) ◦ ρn(σ′)). An equivalent way (see e.g. [4]) to
define labelled combinatorial class consists in considering that each element of
Cn is a graph whose vertices are labelled by numbers from 1 to n; the image of
a permutation by the underlying representation is just the permutation of the
labels.

Let (C, ω) and (C′, ω′) be two labeled combinatorial class. If the sets C and
C′ are disjoint, then we define the class C � C′ = (C ∪ C′, ω′′) with ω′′(e) = ω(e)
if e ∈ C and ω(e) = ω′(e) if e ∈ C′. One extends to the case where C ∩ C′ �= ∅ by
replacing C′ by a copy which is disjoint of C in the definition of C � C′.
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We also define C � C′, i.e., the combinatorial class such that the elements of
(C � C′)n are the pairs (e, e′) where e is obtained by relabeling an element of Ci

and e′ is obtained by relabeling an element of C′
j , with i + j = n such that the

set of the labels in (e, e′) is {1, . . . , n} and each relabeling preserves the initial
order on the vertices. The degree of (e, e′) in C � C′ is the sum of the degree
of the respective preimage of e and e′ in C and C′. As a special case, for each
labeled class C, we denote C• = •� C, where • is the class of the unique element
of which, denoted also by •, has degree 1.

2.3 The Exponential Generating Function of a Combinatorial Class

The exponential generating function (EGF) of a combinatorial class C is the
exponential generating function of the numbers Cn = #(Cn), in other words

SC(x) =
∑

n≥0

Cn
xn

n!
=

∑

μ∈C

x|μ|

|μ|! .

We say that two classes are isomorphic if their EGF are equal

C ≡ C′ ⇔ SC = SC′ ⇔ ∀n ∈ N, Cn = C ′
n.

Classically, we have [4]

SC�C′ = SC + SC′ and SC�C′ = SCSC′ .

2.4 Labelled Sequences

If C+ is a labelled combinatorial class such that C+
0 = ∅ then we define, up to an

equivalence, the class Seq(C+) of labelled sequences by the equation

Seq(C+) ≡ [ ] � (C+ � Seq(C+)),

where [ ] denotes the class having a single element ε which is degree 0.
It is easy to show that such a class exists and that its associated exponential

generating function is

SSeq(C+)(x) =
1

1 − SC+(x)
.

From a combinatorial point of view, the elements of Seq(C+)n are k-tuple
[μ1, . . . , μk] where each μi is obtained by an order preserving relabelling of
an element of C+

ji
,in such a way that the whole set of labels in [μ1, . . . , μk]

is {1, . . . , n} (as a consequence one has
∑k

i=1 ji = n). So to any element
s = [μ1, . . . , μk] ∈ Seq(C+)n we associate an ordered partition Π = [Π1, . . . , Πk]
of size n such that each Πi is the set of the labels of μi.

Let us be a little more precise. A labelled list of elements of C+ is a list
L = [μ1, μ2, . . . , μk] ∈ Seq(C+) with each μi associated to a set Ωi of non-
negative integers with card(Ωi) = |μi| and Ωi ∩ Ωj = ∅ for all i, j. A standard
labelled list of elements of C+ is a labelled list L of elements of C+ such that the
set of all the labels of L is {1, . . . , |L|}.
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2.5 Labelled Sets and Labelled Cycles

We consider the labelled combinatorial classe Set(C+) such that Set(C+)n is the
quotient of the set Seq(C+)n by the relation [μ1, . . . , μk] ≡S [μσ(1), . . . , μσ(k)]
for any permutation σ ∈ Sk. Straightforwardly, each element of Set(C) can
be represented by a set of (order preserved) relabelled elements of C+. The
exponential generating function

SSet(C+)(x) = exp{SC+(x)}.

is easily deduced from the construction.
If one consider the equivalence relation generated by [μ1, . . . , μk] ≡C

[μ2, . . . , μk, μ1], the one obtains an other labelled combinatorial class Cyc(C+)
whose elements can be represented by necklace of (order preserved) relabelled
elements of C+. We denote a necklace by (μ1, . . . , μk) = (μ2, . . . , μk, μ1). Again,
the generating series

SCyc(C+)(x) = log
{

1
1 − SC+(x)

}
.

is deduced from the construction.

3 Set Partitions and Related Constructions

3.1 Three Constructions Based on Set Partitions

A set partition of size n is a set π = {π1, . . . , πk} such that π1 ∪ · · · ∪ πk =
{1, . . . , n} and πi ∩ πj = ∅ for any two indices 1 ≤ i �= j ≤ k. The set of
set partitions Sp endowed with the size is a combinatorial classes satisfying
Sp ≡ Set(Set(•)+), and so, SSp

(x) = exp(exp(x) − 1). The numbers Spn =
1, 1, 2, 5, 15, 52, 203, 877, 4140 . . . are the well known Bell numbers (see sequence
A000110 in [15]).

If C+ is a labeled combinatorial class such that C+
0 = 0 and P ≡ Set(C+) then

the definitions above allows to associate to each element p = {p1, . . . , pk} ∈ Pn

a set partitions π(p) = {labels(p1), . . . , labels(pk)} of size n where for each
1 ≤ i ≤ k, labels(pi) denotes the set of the labels of pi.

An ordered partition of size n is a sequence Π = [Π1, . . . , Πk] of non empty
sets such that {Π1, . . . , Πk} is a set partition of {1, . . . , n}. The set of ordered
partitions Op endowed with the size is a combinatorial classes satisfying Op ≡
Seq(Set(•)+) and SOp(x) = 1

2−exp(x) .
The numbers Opn = 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, . . . are the Fubini

numbers (see sequence A000670 in [15]). If L ≡ Seq(C+) then the definitions
above allows to associate to each element 	 = [	1, . . . , 	k] ∈ Ln a set partition
Π(	) = [labels(	1), . . . , labels(	k)] of size n.

A cyclic partition of size n is a necklace p = (p1, . . . , pk) such that {p1, . . . , pk}
is a set partition of size n. The set of ordered partitions Cp endowed with the
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size is a combinatorial classes satisfying Cp ≡ Cyc(Set(•)+) and SCp(x) =
log( 1

2−exp(x) ).
The numbers Cpn = 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, . . . are listed in

sequence A000670 [15]. If N e ≡ Cyc(C+) then the above definitions allow us
to associate to each element c = (c1, . . . , ck) ∈ (Ne)n a cyclic partition p(c) =
(labels(c1), . . . , labels(ck)) of size n.

3.2 An Explicit Isomorphism

From the generating series we have Set(Cp) ≡ Op. Indeed, this equality trans-
lates in terms of generating function as exp

(
log

(
1

2−ex

))
= 1

2−ex . In order
to understand a more general identity introduced later in the paper, we make
explicit this bijection. Assume that c = {c(1), . . . , c(k)} ∈ Set(Cp). If c(i) =
(c(i)1 , . . . , c

(i)
hi

) then we consider σi the only circular permutation on the indices

{1, . . . , hi} such that min
⋃

j labels(c
(i)
(j)) = min labels(c(i)

σ−1
i (1)

). In other

words, if 	i = [	(i)1 , . . . , 	
(i)
hi

] = [c(i)σi(1)
, . . . , c

(i)
σi(hi)

] then min
⋃

j labels(	
(i)
(j)) =

min labels(	(i)1 ). Now, consider the unique permutation ρ ∈ Sk such that

min labels(c(ρ
−1(1))) > min labels(c(ρ

−1(2))) > · · · > min labels(c(ρ
−1(k)))

and set

stol(c) = [	(ρ(1))1 , . . . , 	
(ρ(1))
hρ(1)

, . . . , 	
(ρ(k))
k , . . . , 	

(ρ(k))
hρ(k)

] ∈ Op. (1)

For instance,

stol({({11}, {2, 5}, {10}), ({6}, {1, 3, 4}, {7, 9}), ({8, 12})}) =
[{8, 12}, {2, 5}, {10}, {11}, {1, 3, 4}, {7, 9}, {6}].

Let 	 = [	1, . . . , 	k] ∈ Op and 1 = i0 ≤ · · · ≤ ih−1 < ih = k + 1 ∈ {1, . . . , k + 1}
be the set of indices satisfying

min
⋃

i<ij+1

labels(	i) > min
⋃

i≥ij

labels(	i) (2)

with h maximal.
For instance, the indices associated to [{8, 12}, {2, 5}, {10}, {11}, {1, 3, 4},

{7, 9}, {6}] are 1 ≤ 2 ≤ 5 < 8. We define

ltos(	) = {c1, . . . , ck} ∈ Set(Cp), (3)

where cj denotes the necklace (	ij−1 , . . . , 	ij−1). For instance,

ltos([{8, 12}, {2, 5}, {10}, {11}, {1, 3, 4}, {7, 9}, {6}]) =
{({1, 3, 4}, {7, 9}, {6}), ({2, 5}, {10}, {11}), ({8, 12})}.

It is easy to check that ltos(stol(c)) = c and stol(ltos(	)) = 	. So we have

Proposition 1. The map stol is an isomorphism of combinatorial classes and
ltos is its reverse map.
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3.3 About Lyndon Words

Recall that the free monoid (e.g. [9]) Σ∗ on a set Σ is the monoid whose elements
are all the finite sequences endowed with the catenation product · that consists
of pasting one sequence to the right of another. The empty sequence plays the
role of the identity element. For instance, in the free monoid {a, b}∗ we have
[a, b, a, a, b] · [b, a, a] = [a, b, a, a, b, b, a, a]. In literature, brackets and commas are
often omitted; the elements of a free monoid are then noted as juxtapositions of
letters called words (the empty word, noted by ε, corresponds to the sequence [ ]).
The name of the free monoid comes from the fact that it fulfills the universal
property, that is every monoid having a generating set in bijection with Σ is
isomorphic to a quotient of Σ∗.

Any pair of sequences under the form u · v and v · u are said conjugate.
In other words, the conjugates of a sequence are all its circular shift. This is
obviously an equivalence relation that preserves the periods, i.e., the conjugate
sequences of u·k are exactly the sequences v·k where v is conjugate to u. In terms
of combinatorial class the free monoid is nothing but Seq(Σ) and its quotient
by conjugation is Cyc(Σ).

Assume that the alphabet Σ is totally ordered by the order <. Then the free
monoid is totaly ordered with the lexicographic order ≺. The minimal element
for the lexicographic order is the empty sequence [ ] and we have [a] · u ≺ [b] · v
if a < b or a = b and u ≺ v.

A Lyndon words a non periodic sequence which is minimal in its conjugacy
class. Their name comes from the mathematician Roger Lyndon who studied
them in 1954 [10]. Nevertheless, it should be noted that they had been introduced
a year earlier by Anatoly Shirshov [14]. Lyndon words play a very important
role for understanding of free groups [2], free associative algebras, and free Lie
algebras [13]. Readers may refer to [11] for a rather complete survey.

Among all the properties of Lyndon’s words, one of the most interesting is
that they play for the free monoid the same role as prime numbers play for inte-
gers. This property is that any sequence factorizes as a unique weakly decreas-
ing catenation of Lyndon words [12]. In other words, the free monoid Σ∗ is in
bijection with the multisets of aperiodic sequences over σ. For instance, if we
assume a < b the sequence u = [a, b, a, b, b, a, b, a, b, a, a, a, b, a, b, a] factorizes as
u = [a, b, a, b, b] · [a, b] · [a, b] · [a, a, a, b, a, b] · [a]. This means that the sequence
u is assimilated to the multiset {(a, a, a, b, a, b), (a, b, a, b, b), (a, b), (a, b), (a)}
(remark the multiplicity of (a, b)). It is interesting to note that this corre-
spondence is precisely the one that is calculated when applying ltos. Indeed,
let 	 = [	1, . . . , 	k] ∈ Op, the alphabet Σ = {	1, . . . , 	k} is totally ordered
by 	i < 	j if and only if min 	i < min 	j . In fact, since each numbers
of {1, . . . , n} appears only one time in the sequence, only the minimal ele-
ments the sets are relevant and all works as if our alphabet be {1, . . . , n}.
For instance, [{8, 12}, {2, 5}, {10}, {11}, {1, 3, 4}, {7, 9}, {6}] is assimilated to
[8, 2, 10, 11, 1, 7, 6]. The indices of Eq. (2), except the larger which is not relevant,
indicate where to catenate in order to apply the complete factorization. In our
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example, we found the indices {1, 2, 5, 8} and, then, we have [8, 2, 10, 11, 1, 7, 6] =
[8] · [2, 10, 11] · [1, 7, 6]. Notice that, since the components are two by two distinct,
the bijection with multisets of cycles class sends the sequences we consider on
set of necklaces. For instance, [8] · [2, 10, 11] · [1, 7, 6] ∼ {(1, 7, 6), (2, 10, 11), (8)}.
We recover the ltos(	) by replacing each integer by the set of which it is the
minimum. In our example we have

{(1, 7, 6), (2, 10, 11), (8)} → {({1, 3, 4}, {7, 9}, {6}), ({2, 5}, {10}, {11}), ({8, 12})}.

Of course, this may seem like a very sophisticated way to revisit the bijection of
the previous section. Nevertheless, this remark is valuable because it will allow
us to link our constructions to notions of algebras (enveloping algebras, Hopf
algebras, Lie algebras of primitive elements etc.) that we will explore in future
works.

3.4 Set of Cycles and Sequences

Let C+ be a labeled combiatorial sequences such that C+
0 = ∅. We define J =

Set(Cyc(C+)) and S = Seq(C+).
Let us show that the map stol allows us to compute an explicit isomorphism

from J to S. We define jtosetC+ : J → Set(Cp) by

jtosetC+({(c(1)1 , . . . , c
(1)
h1

), · · · , (c(k)1 , . . . , c
(k)
hk

)}) =

{(labels(c(1)1 ), . . . , labels(c(1)h1
)), · · · , (labels(c(k)1 ), . . . , labels(c(k)hk

))}.

We define also jtoseqC+ : J → S such that

jtoseqC+({(c(1)1 , . . . , c
(1)
h1

), · · · , (c(k)1 , . . . , c
(k)
hk

)}) = 	

is the unique permutation of the vector [c(1)1 , . . . , c
(1)
h1

, · · · , c
(k)
1 , . . . , c

(k)
hk

] such that

Π(	) = stol(jtosetC+(({(c(1)1 , . . . , c
(1)
h1

), · · · , (c(k)1 , . . . , c
(k)
hk

)}))).

Let c = {(c(1)1 , c
(1)
2 ), (c(2)1 ), (c(3)1 , c

(3)
2 )} be a set of labelled graphs as shown in

Fig. 1.
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Fig. 1. Five labelled graphs

Then jtosetC+(c) equals

{({3, 7, 5, 20}, {9, 14, 17, 19, 11}), ({1, 18}), ({2, 8, 13}, {4, 16, 12, 15, 10, 6})}.
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Furthermore, Π(l) = stol (jtosetC+(c)) =

[{3, 7, 5, 20}, {9, 14, 17, 19, 11}, {2, 8, 13}, {4, 16, 12, 15, 10, 6}, {1, 18}].

Since stol is one to one, the equality on generating functions allows us to
deduce that jtoseqC+ is an isomorphism of combinatorial classes. The inverse
bijection seqtojC+ : Set(Cp) → J is defined by

seqtojC+(	) = {(c(1)1 , . . . , c
(1)
h1

), · · · , (c(k)1 , . . . , c
(k)
hk

)}

where [c(1)1 , . . . , c
(1)
h1

, · · · , c
(k)
1 , . . . , c

(k)
hk

] is the unique permutation of 	 such that

ltos(Π(	)) = jtosetC+({(c(1)1 , . . . , c
(1)
h1

), · · · , (c(k)1 , . . . , c
(k)
hk

)}).
In the aforementioned example, we deduce the indices of the minimum ele-

ments in Π(l) being 1 < 3 < 5. Hence, ltos(Π(l)) =

= {({1, 18}), ({2, 8, 13}, {4, 16, 12, 15, 10, 6}), ({3, 7, 5, 20}, {9, 14, 17, 19, 11})}
= jtosetC+(c).

We summarize the results of this section in the following theorem.

Theorem 1. The maps which make commuting the following diagram are
explicit isomorphisms of combinatorial classes

Set(Cyc(C+))
jtoseq+C

�
seqtojC+

Seq(C+). (4)

4 Labelled and Unlabelled Trees

We illustrate the previous result by investigating the combinatorial classes R
satisfying

Set(Cyc(R•)) ≡ Seq(R•) ≡ R. (5)

This isomorphism can be translated into the following functional equation:

exp
{

log
{

1
1 − xSR(x)

}}
=

1
1 − xSR(x)

= SR(x). (6)

This equation has a unique solution

SR(x) =
1 − √

1 − 4x

2x
(7)

which is also the ordinary generating function of the Catalan numbers Cn =
1

n+1

(
2n
n

)
[4,16]. Hence, R is unique up to an isomorphism and

Rn =
(2n)!

(n + 1)!
. (8)

The sequence of Rn is

1, 1, 4, 30, 336, 5040, 95040, 2162160 A001761 [15].

http://oeis.org/A001761
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4.1 Labelled Trees from Unlabelled Trees

Definition 1. A tree is a list of trees (possibly empty) connected to a node,
called its root, by an edge (also called branch). Notice that this is a valid recursive
definition which base case is a root together with an empty list. The degree ω(t)
of a tree t is the number of its edges or, equivalently the number of its nodes
which are not its root.

Let D be the set of trees. There are a finite number of trees having a given
degree, so the pair (D, ω) is a (unlabelled) combinatorial class. The number Dn

is known to be the Catalan number Cn (see e.g. [16]). So the ordinary generating
function of the class D, i.e.,

Sord
D (x) =

∑

n≥0

Dnxn, (9)

fulfills the same functional equation (6) as the exponential generating function
of R. So each Rn is in one to one correspondence with Dn × Sn. This suggests
that one can exhibit an explicit realization of the class R by labeling the nodes
which are not the root of each tree t ∈ D by {1, . . . , ω(t)}, without repetition
and in any possible way.

4.2 Shifted Structure

The class R• is isomorphic to the class Rr of trees with labeled root endowed
with the weight ωr counting the total number of nodes, including the root. More
precisely, for a given n, a tree of (Rr)n+1 is obtained by labelling the root of
a tree in Rn with any of the possible value from the set {1, . . . , n + 1} and
relabel, if necessary, the nodes with respect to the order induced by the initial
permutation.

Example 1. Let t be a rooted labelled tree in R5, and its associated permu-
tation is π = (1, 2, 4, 5, 3). Then the set of all rooted labeled trees where
the root is labeled obtained from t is given by the set of permutations
{(6, 1, 2, 4, 5, 3), (5, 1, 2, 4, 6, 3), (4, 1, 2, 5, 6, 3), (3, 1, 2, 5, 6, 4), (2, 1, 3, 5, 6, 4), (1, 2, 3, 5, 6, 4)}.

In terms of generating function, this operation leads to

SRr
(x) = SR•(x) = xSR(x) =

1 − √
1 − 4x

2

and so

(Rr)n = n!Cn−1 =
(2n − 2)!
(n − 1)!

,

for any n ≥ 1. The sequence of Rrn is given by

1, 2, 12, 120, 1680, 30240 A001813 [15].

We insists on the fact that at this point (Rr)n counts trees having n nodes
including the root.

http://oeis.org/A001761
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4.3 Hanging Trees in Necklaces

A labelled necklace of planar trees is a necklaces on which trees are hung and all
the nodes (comprising the roots) are labeled by {1, . . . , n} where n is the total
numbers of nodes (comprising roots). We denote by N the set of such necklaces.
The cyclic structure comes from the fact that a necklace is invariant by rotation.
The weight ωN (n) of a necklace n is the total number of the nodes, comprising
roots, of the trees it contains. The pair (N , ωN ) is a labeled combinatorial class
that satisfies

N ≡ Cyc(R•). (10)

We depict in Fig. 2 elements of N that are equivalent under cyclic rotation.

1

5

2

4 3

2

4 3 1

55

2

4 3

1

Fig. 2. Three rooted labeled trees equivalent under cyclic rotation

Notices that Labeled necklaces of rooted trees appear under the name of
“planar labelled trees” in the work of Miloudi [8]. To be more precise, he studied
combinatorial class which is straightforwardly isomorphic to N and he proved
Nn = (2n − 3)!/(n − 1)! for any n ≥ 2 and N1 = 1. We recover this result from
the interpretation of (10) in terms of generating function. Indeed,

SCyc(R•)(x) = log
1

1 − 1 − √
1 − 4x

2

= log
2

1 +
√

1 − 4x
= log

1 − √
1 − 4x

2x
.

Hence,
SCyc(R•)(x) = log R(x), (11)

and the exact formula for Nn is obtained by expanding the function as a Taylor
series.

These numbers are also mentioned by Wolfdieter Lang in [15], see the
sequence below

1, 1, 3, 20, 210, 3024, 55440, 1235520, 32432400 A006963.

http://oeis.org/A006963
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We now have all the material to make explicit the isomorphisms suggested by
(5). To this aim we consider jewellery boxes which are sets of necklaces and forests
which are sequences of trees. More formally, in terms of combinatorial classes
we define J = Set(N ) and F = Seq(R•). Let jtof = jtoseqR• : J → F
and its inverse bijection ftoj = seqtojR• : F → J . An explicit isomorphism
rtof : R → F is obtained by removing the root to any tree in R. The reciprocal
isomorphism ftor : F → R consists in connecting all the trees of a given
sequence to an additional node called the root.

All these constructions are summarized in the following result which is a
corollary of Theorem 1.

Corollary 1. The maps which make commuting the following diagram are
explicit isomorphisms of combinatorial classes

J
jtof

�
ftoj

F
ftor

�
rtof

R. (12)

In Fig. 3 we illustrate the bijections from (12) using two examples.

76
4

3

1

5 2

6 7
4

3

1

5 2

6 7
4

3

1

5 2

jtof

ftoj

ftor
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Fig. 3. A set of three labelled necklaces of planar trees (leftmost box) in bijection with a
forest of labelled trees (middle box) in bijection with a rooted labelled tree (rightmost
box). In the upper part of the figure the cycles are {({1, 5, 2}), ({3, 4}), ({6}, {7})},
whereas in the lower part the cycles are {({1, 5, 2}), ({3, 4}), ({6}), ({7})}

4.4 Other Recursive Tree-Like Combinatorial Classes

The tree-like structure constructed from sequences is the most rigid one. It
involves rooted trees that are embedded in a plan in such a way that the branches
are always pointing downwards and so, the order of the sequences of the subtrees
is relevant. If we relax the constraint of the orientation of the branches then the
trees become invariant by rotation. In that context, a tree is a non-oriented graph
without cycle with a privileged vertex called a root. Each root can be seen as a
labeled necklace on which the subtrees are hanged, forming a sort of windmill
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(see Fig. 4 for examples). In other words, a tree is either an isolated root or a
root with a cycle of trees. The combinatorial class satisfies the isomorphism

W ≡ • � (• � Cyc(W)) , (13)

and its generating function satisfies

SW(x) = x

(
log

(
1

1 − SW(x)

)
+ 1

)
. (14)

Expanding both sides of the equation and identifying the coefficients, we get a
system, the resolution of which allows us to obtain the first cases of the enumer-
ation:

1, 2, 9, 68, 730, 10164, 173838, 3524688, 82627200, . . . A000169 [15]
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1

Fig. 4. The nine windmills of degree 3.

This is another example of a tree-like structure studied among others in [1].
Notice that no closed form for the generating function is known but there exists
a formula for the coefficients as a combination of Stirling numbers of first kind,

Wn =
n∑

i=0

i!
(n

i

)
sn−1,i, (15)

where sn,i denotes the (unsigned) Stirling number of first kind that counts the
number of permutations of n objects with exactly i cycles. Indeed, from (14),
SW(x) is the inverse of g(x) = x

1−log(1−x) for the composition. The Lagrange
inversion theorem [7] is a classical combinatorial tools allowing us to compute
the Taylor expansion of inverse function. In our case, the direct application of
the Lagrange inversion Theorem implies that

Wn =
(

d

dx

)n−1 (
x

g(x)

)n
∣∣∣∣∣
x=0

=
(

d

dx

)n−1 (
1 + log

(
1

1 − x

))n
∣∣∣∣∣
x=0

(16)

is the coefficient of xn−1 in
(
1 − log

(
1

1−x

))n

multiplied by (n − 1)!. Know-
ing that the exponential generating function of Stirling’s numbers si,k (k fixed)

http://oeis.org/A038037 
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is 1
k ! log

(
1

1−x

)k

=
∑

i si,k
xi

i! , an easy computation allows us to deduce (15)
from (16).

The last example we consider is the one where no more order constraints
are imposed on the sub-trees of the same node. In this context, a tree is a root
with a (possibly empty) set of trees. The trees of this kind can be drawn as
nesting of disjointed discs with numbered surfaces (see some examples in Fig. 5).
Notice that, in these examples nested disk configurations, of degree 3 are as
numerous as the windmills of degree 3 (see Fig. 4). Of course, this is not always
the case and generally, there are fewer nested discs configurations than windmills.
For instance, there are two windmills of degree 4 the roots of which is labeled
by 1 with three sub-windmills of degree 1 while there is only one nested discs
configuration the root of which is labeled by 1 containing three discs (see Fig. 6).
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3 1
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3

2 1

Fig. 5. The nine configurations of nested discs of degree 3.
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Fig. 6. Two windmills and one nested discs configuration.

The combinatorial class satisfies the isomorphism

Npt = • � Set(Npt),

and its generating series satisfies the functional equation

SNpt(x) = xeSNpt(x).

Solving these equation, one finds

SNpt(x) = −W (−x),

where W (x) denotes the Lambert W function that is the principal branch of the
functional inverse of x → xex [3]. The Taylor expansion of W (x) is obtained by
applying Lagrange inversion Theorem and implies Nptn = nn−1. The sequence
of the Nptn’s can also be found in [15]:

1, 2, 9, 64, 625, 7776, 117649, 2097152, . . . A000169.

https://oeis.org/A000169
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moyen des séries. Mémoires de l’Académie Royale des Sciences et Belles-Lettres de
Berlin 24, 251–326 (1770)
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