
69© Springer Nature Switzerland AG 2021 
S. H. Faderl et al. (eds.), Acute Leukemias, Hematologic Malignancies, 
https://doi.org/10.1007/978-3-030-53633-6_4

Selection of Patients for Individual 
Acute Myeloid Leukemia Therapies
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4.1  Introduction

In 2019, an estimated 21,450 people developed 
acute myeloid leukemia (AML) in the United 
States alone [1]. Until recently, treatment options 
were relatively limited, and decision-making fol-
lowed an algorithm that has been invariant for 
several decades [2, 3]. If the person was felt to be 
medically fit, cure was considered possible: some 
form of intensive chemotherapy would be offered 
followed by further courses of chemotherapy 
and/or allogeneic hematopoietic cell transplanta-
tion (HCT) if a complete remission (CR) was 
obtained. On the other hand, if the person was 
felt to be medically unfit, cure was considered 
rare: in this situation, some form of nonintensive, 
“palliative” chemotherapy would be offered, 
most typically low-dose cytarabine or, more 
recently, single-agent treatment with an azanu-
cleoside (e.g., azacytidine or decitabine) or 
AML-directed therapy is forgone altogether. 
Over the last few years, the U.S. Food and Drug 

Administration (FDA) has approved eight new 
drugs for AML, most of them being “targeted” 
therapeutics: midostaurin, gemtuzumab, ozo-
gamicin, enasidenib, CPX-351, ivosidenib, gil-
teritinib, glasdegib, and venetoclax [4]. With 
these, the treatment options have substantially 
increased, and the line between intensive and 
non-intensive therapies has become blurrier. Still, 
although outcomes have gradually improved, 
AML remains difficult to cure. Many affected 
individuals will die from consequences of leuke-
mia or treatment-associated complications, and 
only a minority will be long-term survivors [2–
4]. There is thus ongoing need for new therapeu-
tics in AML and need to identify patients most 
suitable for participation in a clinical trial. With 
an increasing number of available standard AML 
therapeutics and ongoing need for new drugs, 
treatment decision-making has become more 
complex: should my patient receive standard 
AML therapy, and if so, with what regimen? Or is 
my patient better served participating in the test-
ing of an investigational drug? The ability to 
accurately predict the efficacy of individual treat-
ments in individual patients would greatly 
improve clinical management as it could form the 
foundation for evidence-based decision-making 
regarding the most appropriate treatment. This 
review will summarize and appraise efforts taken 
so far to develop tools to predict the risks and 
benefits of AML therapies for individual patients, 
focusing on non-transplant treatments.

R. B. Walter (*) 
Clinical Research Division, Fred Hutchinson Cancer 
Research Center, Seattle, WA, USA 

Division of Hematology, Department of Medicine, 
University of Washington, Seattle, WA, USA 

Department of Laboratory Medicine and Pathology, 
University of Washington, Seattle, WA, USA 

Department of Epidemiology,  
University of Washington, Seattle, WA, USA
e-mail: rwalter@fredhutch.org

4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53633-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-53633-6_4#DOI
mailto:rwalter@fredhutch.org


70

4.2  Outcomes of Interest 
with AML Therapy

Arguably, the most desirable AML therapy is the 
one that effectively eliminates leukemia cells and 
restores normal hematopoietic cell function with-
out treatment-associated morbidity and mortality 
but with maintenance of a high quality of life 
(QOL). Also arguably, we are far away from hav-
ing such a therapy available. In fact, even though 
the value of successful AML therapy was quickly 
recognized once the first chemotherapeutics for 
acute leukemia became available [5], the pre-
sumption that potential risks are not commensu-
rate with potential benefits often leads physicians 
and/or patients to shy away from AML-directed 
therapy, at least for older people. This is indicated 
by recent estimates that less than half of Americans 
aged >65 years with newly diagnosed AML, and 
as few as 10–20% of those aged >80 years, receive 
specific chemotherapy, and only a minority does 
so in specialized cancer centers [6, 7].

At least in the era of non-targeted AML ther-
apy, multiagent chemotherapy was felt to be a 
pivotal component of a curative treatment strat-
egy [2–4]. Although cautious interpretation of 
findings is warranted, data from the U.S. and 
European population-based registry data suggest 
value of intensive chemotherapy not just for 
younger patients but also for older individuals up 
to age 80  years or perhaps beyond [7, 8]. 
Considering that AML primarily affects older 
people, many of whom will have comorbidities 
that could limit drug tolerance, it is therefore not 
surprising that most efforts have focused on 
developing models to estimate the fitness to toler-
ate intensive multiagent chemotherapy. With 
continued improvements in supportive care, how-
ever, our abilities to support patients throughout 
the periods of disease/treatment-related cytope-
nias have progressively increased and early 
deaths with intensive chemotherapy have signifi-
cantly decreased [9–11]. Likewise, non-relapse 
mortality with allogeneic HCT has substantially 
declined over time [12]. Thus, intensive therapies 
can now be given more safely to treat AML, even 
in older adults. With this, primary failure of AML 
therapy or disease recurrence after a period of 

remission—the two outcomes that constitute 
“therapeutic resistance”—has become the princi-
pal life-limiting problem in AML.

4.3  Brief Statistical 
Considerations

When considering approaches to estimating out-
comes with AML therapy, it is important to dis-
tinguish between association and prediction (or 
classification) models. Association models, as the 
name implies, aim to identify associations 
between covariates and patient outcomes. 
Common measures of association in clinical 
studies are odds ratios and hazard ratios, which 
are interpreted as an average effect in the study 
population [13]. In contrast, prediction models 
aim to evaluate the ability of one or more covari-
ates to predict outcomes for individual patients. 
Common measures of prediction models are sen-
sitivity, specificity, positive predictive value, neg-
ative predictive value, and the area under the 
receiver operating characteristic curve (AUC) 
[14]. A strong association is usually necessary 
but not sufficient for a model to be able to predict 
well [15]. For a binary outcome (e.g., early death/
no early death), the AUC measure can take values 
between 0.5 and 1.0, with an AUC of 0.5 being 
analogous to a coin flip and an AUC of 1.0 denot-
ing perfect prediction. It is commonly accepted 
that AUCs of 0.6–0.7, 0.7–0.8, and 0.8–0.9 indi-
cate poor, fair, and good predictive ability, 
respectively [16–18].

4.4  Predicting AML Therapy- 
Related Mortality

Most approaches to predict the toxicity of AML 
therapy have focused on deaths within 28–30 days 
(sometimes within 60 days) of beginning chemo-
therapy. A rationale behind this is the observation 
that weekly death rates sharply decline after 
4 weeks, suggesting patients who die in this time 
frame are qualitatively different from those who 
do not [19]. However, considering early death to 
be equivalent to treatment-related mortality 
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(TRM) is flawed because deaths may be related 
to disease-associated myelosuppression or organ 
dysfunction or—as recently shown in an institu-
tional trial using reduced-intensity CPX-351 
[20]—early progression of AML rather than be a 
direct consequence of the therapy given. Thus, in 
many patients, early deaths may occur despite 
rather than because of the AML therapy. A 
cleaner way to assess treatment-related toxicities 
might be to model early deaths with post- 
remission therapy for patients who have attained 
full hematologic recovery with prior courses of 
treatment although the nature of the therapy 
given and the patients receiving it will limit the 
conclusions that could be drawn from such 
models.

Over the years, many factors have been asso-
ciated with early death, including age and covari-
ates such as albumin and creatinine that may 
serve as surrogates for biological (rather than 
chronological) age. Such factors allow building 
of multicomponent scores reflective of the prob-
ability of early death with AML therapy. Several 
scoring systems aimed at identifying patients at 
high early death risk after intensive chemother-
apy have been developed [19, 21–27]. Some of 
these systems reach good predictive ability with 
AUC values above 0.8. While they differ in the 
details, they all indicate the accuracy of predict-
ing early death is optimized when a combination 
of factors rather than just one factor (such as age 
or performance status) is considered. This obser-
vation underlies the recommendation by the 
European LeukemiaNet and the National 
Comprehensive Cancer Network to consider age 
in the context of other covariates when consider-
ing the appropriateness of intensive AML therapy 
[3, 28].

Although not perfect, existing models to pre-
dict early death offer an empiric approach of 
selecting patients who will not die early after 
receiving intensive chemotherapy. It is plausible 
that models could be improved by integrating 
additional covariates such as comorbidities not 
captured in current models, additional informa-
tion on patient demographics (e.g., educational 
level), site of treatment, among others [4]. To 
what degree comprehensive geriatric assessments 

could improve early death predictions after AML 
therapy is currently unknown but important to 
determine. It is becoming more and more clear 
that geriatric assessments provide a framework 
for an individual patient’s fitness for therapy and 
can help in personalized decision-making [29]. 
Several studies have demonstrated geriatric 
assessments provide information that, indepen-
dently, is associated with survival in older patients 
with AML [30–32]. and it is possible such infor-
mation could improve multicomponent early 
death prediction models. As a consequence of the 
progressively declining rates of early death with 
intensive AML therapy and increasing number of 
available treatments re-calibrating existing sys-
tems (to account for changes in the supportive 
care pattern) and developing new systems is 
becoming increasingly more challenging as 
larger and larger datasets of similarly-treated 
patients will be required to model early death 
mathematically.

4.5  Predicting Non-fatal 
Toxicities of AML Therapy

In contrast to the many efforts spent on trying to 
predict early death after intensive AML therapy, 
understanding the degree to which non-fatal tox-
icities can be predicted has not been of major 
interest, and it is not understood which patient 
characteristics are most strongly associated with 
occurrence of such toxicities. One recent study 
has examined these questions using data from 
260 adults age 18–60  years with AML treated 
with 7+3 on a contemporary cooperative study 
group (SWOG) Phase 3 trial [33]. The following 
baseline covariates were assessed: age at study 
registration, gender, performance status, pre- 
study white blood cell (WBC) counts, pre-study 
platelets counts, pre-study hemoglobin (HGB), 
pre-study bone marrow blast percentage, second-
ary vs. de novo AML, cytogenetic risk, and 
NPM1 as well as FLT3-ITD mutation status. In 
univariate models, no individual covariate was a 
strong predictor of toxicity. Only three pairs of 
toxicity/covariate had an AUC >0.65: older age 
predicting increased risk of endocrine 
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 abnormalities (AUC  =  0.67), higher baseline 
WBC predicting increased risk for bleeding 
(AUC = 0.67), and higher baseline HGB predict-
ing increased risk of neurologic toxicity 
(AUC = 0.69). As incidence allowed, multivari-
able models were evaluated which showed 
increased AUCs compared to univariate models, 
but no multivariable model had an AUC larger 
than 0.70. Within the limitation that not all 
covariates important to predict toxicities may be 
captured in cooperative group datasets and that 
patients with significant organ dysfunction were 
excluded from trial participation, these findings 
indicate that there is a poor ability to predict 
commonly occurring grade 3 and higher toxici-
ties that occur with multiagent AML 
chemotherapy.

4.6  Predicting the Efficacy 
of AML Therapy

At the cohort level, many disease characteristics, 
in particular cytogenetic and molecular abnor-
malities, have been associated with measures of 
therapeutic efficacy, e.g., achievement of com-
plete remission (CR), relapse rates, event/disease- 
free survival, or overall survival [2–4]. 
Forecasting efficacy of therapy for individual 
people with AML, on the other hand, has proved 
relatively difficult. Using data from over 4500 
adults treated with conventional intensive AML 
chemotherapy, it was found that there was only a 
fair ability to predict failure to achieve CR with 
the initial 1–2 courses of chemotherapy or to 
have a short relapse-free survival if CR was 
obtained. Various models that included basic 
patient characteristics (age, performance status) 
and commonly available disease characteristics 
(white blood cell count, secondary disease, cyto-
genetic risk, and NPM1 as well as FLT3-ITD 
mutation status) had AUCs typically ranging 
from 0.71 to 0.78 [34]. This finding of only a fair 
ability to predict CR is consistent with a study by 
Krug et al. who observed AUCs of 0.72 and 0.68 
with multivariable models in their study cohort 
[24]. These relatively low AUCs suggest caution 
to avoid overestimating our ability to predict 

resistance following standard therapy of AML, 
which is closer to a coin-flip than certainty in 
many instances when commonly utilized factors 
are considered.

To some degree, inclusion of additional dis-
ease characteristics can refine prediction of thera-
peutics. For example, data from a larger number 
of additional commonly occurring mutations 
improved the predictive accuracy of simpler 
models minimally (from AUCs of 0.70–0.76 to 
0.72–0.80 in a cohort of 298 patients treated uni-
formly on a cooperative study trial) [35]. 
Moreover, a score derived from expression data 
from 17 genes associated with stemness of leuke-
mia cells (17-gene LSC score, “LSC17”)—yield-
ing an AUC of 0.78 for the prediction of failure to 
achieve CR after initial induction therapy—
improved a multicomponent prediction model for 
this endpoint from an AUC of 0.73 to an AUC of 
0.82 [36]. However, it is likely that even highly 
sophisticated genetic models will come short of 
high accuracy. Data from a comprehensive 
genetic analysis of over 1500 patients suggested 
that genomic features—while being the most 
powerful predictors—accounted for only about 
two thirds of the observed variation in survival. 
One third of this variation was attributed to 
demographics, clinical, and treatment variables 
[37].

4.7  Predicting the QOL Impact 
of AML Therapy

QOL is severely reduced in people diagnosed 
with AML and is affected over time as a patient 
goes through AML-directed therapy successfully 
or unsuccessfully [38]. Current evidence indi-
cates that different treatments will affect the QOL 
in different ways. For example, QOL may further 
decrease early after receiving intensive chemo-
therapy but then improve, whereas it may be sta-
ble initially with non-intensive treatment but 
worsen over time. QOL considerations therefore 
need to play an important role in the daily care of 
AML patients. Undoubtedly, QOL is linked to 
treatment toxicities and efficacy, but there will be 
some elements that are independent. For  example, 
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for two therapies that are equally toxic and effec-
tive, there might be strong preference to receive 
this treatment at home (e.g., as oral medication) 
or in the clinic rather than requiring administra-
tion in the hospital. To date, no efforts have been 
made to predict QOL (or, rather, changes in 
QOL) with different types of AML therapy. One 
barrier to modeling QOL endpoints in AML is 
the lack of a disease-specific QOL instrument 
that can efficiently capture the major QOL defi-
cits in this population. Efforts to correct this defi-
ciency are ongoing [39].

4.8  Outcome Prediction 
in the Era of Targeted AML 
Therapy and Rapidly 
Evolving Treatment 
Algorithms

With recent regulatory approval of several small 
molecule inhibitors and one antibody–drug con-
jugate, we have now entered the era of targeted 
therapy in AML. Unlike the treatments that target 
PML-RARA in acute promyelocytic leukemia 
(APL), however, so far none of the existing tar-
geted AML drugs has near-perfect efficacy even 
in patients selected by the presence of docu-
mented abnormalities in the drug target. In a dis-
ease as heterogeneous as AML where genetic 
abnormalities typically appear to work in concert 
rather than single handedly to drive the leukemic 
process, they never may. Thus, having good tools 
available that can help select individual therapies 
will remain as important as it is today. To what 
degree relevant outcomes with targeted AML 
therapies can be predicted is not known. It will 
take a considerable amount of time to gather 
large-enough datasets that allow development 
and validation of such models.

Since outcome prediction models are reflec-
tive of the time when they were developed, cap-
turing not only the anti-AML therapy given but 
also the supportive care provided, they are—by 
default—outdated at the time they are introduced 
into clinical use. That is true even if the general 
therapeutic strategy does not substantially 
change. Fortunately, after many years of no 

change, we have now seen rapid introduction of 
several new drugs for AML.  With every addi-
tional drug approved for clinical use, there will 
be more treatments and treatment combinations 
available to choose from. As seen today by the 
shift away from low-dose cytarabine or azanucle-
oside monotherapy to lower-intensity doublet (or 
triplet) therapies, some treatments may become 
quickly obsolete and replaced by others. Constant 
shifts in treatment paradigms pose a real chal-
lenge for physicians and patients interested in 
empiric approaches to help choose the most 
appropriate treatment given the time it takes to 
establish a validated treatment selection tool. 
Rather than estimating outcomes with the treat-
ment of interest, they may be left with estimating 
outcomes with “older” treatments and, indirectly, 
have to use that information to decide whether it 
is worth pursuing an alternative treatment. 
Similar to how we might think about deciding 
between “standard” and investigational therapy.

4.9  Conclusion

There is no shortage in the scoring systems aimed 
to identify patients at high risk of either early 
death or treatment resistance after conventional 
intensive AML therapy. They offer an empiric 
approach of selecting patients who will do well 
with standard AML chemotherapy. However, 
there are important caveats physicians and 
patients need to be aware of when utilizing these 
tools. First and foremost, the accuracy of these 
prediction models is imperfect even at the time of 
their development, highlighting our limitations in 
comprehensively capturing and mathematically 
describing the factors relevant for outcomes of 
AML therapies. As the rather small improve-
ments in accuracy between relatively simple and 
complex resistance models indicate, it is very 
unlikely that we will reach perfect (or near- 
perfect) prediction accuracy, at least not when 
trying to forecast the results with conventional 
AML therapy. Second, scoring systems are likely 
not agnostic to the type of AML therapy given. 
Especially at times when newly approved drugs 
become available for routine use and the standard 
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of care approach changes, existing models are no 
longer capturing the clinical reality. It will take 
great, concerted effort and large patient datasets 
to refine prediction models based on data derived 
from patients receiving new standard therapies. 
And finally, scoring systems are a reflection of 
factors that mattered at the time the patient 
received treatment that contributed to the models. 
Already imperfect at the time of development, 
the models’ accuracy will likely decrease over 
time with changes in AML care. For example, the 
rate of early death following intensive induction 
chemotherapy has declined considerably over the 
last 20 years because of improvement in support-
ive care [9–11]. Thus, early death prediction 
tools—but also resistance prediction tools that 
are affected by non-leukemia-related deaths—
need to be re-assessed and re-calibrated periodi-
cally to account for our increasing ability to keep 
AML patients alive. The task of updating mortal-
ity prediction models will become more and 
more difficult as death rates decline.
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