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Physiology of Haemostasis: 
Plasmin-Antiplasmin System

Nicola J. Mutch and Claire S. Whyte

 Fibrin as a Substrate

Plasmin is a potent trypsin-like serine protease 
that cleaves any substrate after lysyl or arginyl 
bonds. It activates growth factors and prohor-
mones, actions that are outside the scope of this 
review, but its main substrate in vivo is fibrin. 
Many of the cleavage sites in fibrin have been 
revealed by the study of fibrinogen, which, as a 
soluble protein, is easier to analyse (reviewed 
by [1]). The ordered degradation pattern 
(Fig. 5.1) is detailed here as it is essential to our 
understanding of what is measured in assays of 
D-dimer and other fibrin degradation products 
(FDP). The first cut is to the α-chain of fibrino-
gen, releasing the αC fragments; the remainder 
of the molecule is called fragment X (~260 kDa). 
Fragment X is then cut in the α-, β- and γ-chains 
across the coiled coil that connects the central E 
and terminal D domains of fragment X.  The 
cleavage occurs in two steps, first splitting the 
molecule asymmetrically to generate fragment 
Y (~160 kDa) and fragment D (~100 kDa) and 
then cleaving fragment Y into a second frag-
ment D and fragment E (~60 kDa), which con-

tains the amino terminal portion of all six 
polypeptide chains.

Newly formed fibrin is degraded by plasmin 
with the same cleavage pattern as fibrinogen, 
indicating that no major structural reorganization 
occurs during fibrin polymerization [2, 3]. In 
contrast, when fibrin is cross-linked by the trans-
glutaminase factor XIIIa (Fig.  5.1, right), it is 
cleaved at a slower rate and different degradation 
products arise. D-dimer, which consists of two 
fragments D from adjacent fibrin monomers, 
cross-linked via their γ-chains remnants, is gen-
erated. This covalent dimer, bound non- covalently 
to fragment E, is the DD/E complex. This frag-
ment also occurs in long arrays held together by 
uncleaved coiled coils [4]. Larger FDP have the 
capacity to reassociate with one another and with 
fibrin [5], so the substrate for fibrinolysis is not a 
single entity but a complex and dynamic one, in 
which both formation and degradation occur 
simultaneously. The clearance of FDP from the 
circulation is via the kidney and also liver, 
depending on the actual fragment [6, 7].

 Fibrin as a Vital Surface for Plasmin 
Generation and Activity

Fibrin is at the heart of the lytic cascade and plays 
a vital role in “orchestrating its own destruction” 
[1]. This behaviour will be explained by consid-
ering the proteases and inhibitors that regulate 
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the system, stressing throughout the governing 
role of fibrin.

 Plasminogen

Plasminogen is a 92-kDa glycoprotein, abundant 
in plasma (Table 5.1). It is a classic zymogen, a 
single-chain molecule, activated by cleavage of 
one peptide bond to produce plasmin, in which 

the two chains are held together by two disulphide 
bonds. It is composed of several discretely folded 
domains. From the N-terminus, these are the acti-
vation peptide, a pan apple domain, kringles 1–5 
and the protease domain (Fig.  5.2). The crystal 
structure of plasminogen indicates that two chlo-
ride ions in association with the pan apple and 
serine protease domain hold the zymogen in an 
inactive closed conformation [8]. The kringles, 
particularly kringle 1 [8], endow plasminogen 

Fig. 5.1 Plasmin degradation of fibrin(ogen). 
Fibrinogen (top) is a three-domain globular protein with 
extending αC domains. Fibrinogen is degraded asymmet-
rically (left panel). Plasmin initially cleaves the αC 
domains from fibrinogen generating fragment X, which 
consists of all three domains connected by coiled coils, 
but lacks the Aα-chains and the Bβ1–42 sequence. The 
second cleavage occurs across the coiled coil that con-
nects the central E and terminal D domains, generating 
fragment Y, which is composed of the central E domain 
connected by a coiled coil to the D domain. Fibrin is 

formed by cleavage of fibrinopeptide A and B from fibrin-
ogen by thrombin (right panel). Thrombin also activates 
the transglutaminase factor XIII (FXIIIa) which cross- 
links (XL) fibrin longitudinally between the D domains 
and within the α-chain extensions. Cleavage of the two- 
stranded protofibrils by plasmin initially removes the 
cross-linked α-chains, followed by the coiled coils to lib-
erate a series of fibrin degradation products (FDP), the 
smallest being DD/E. Larger complexes, such as DY/YD, 
are also released from cross-linked fibrin and are subse-
quently degraded to the DD/E moiety
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Fig. 5.2 Plasminogen activation. Plasminogen activator 
(PA) cleaves at Arg 561-Val 562, separating the B (light, 
protease or catalytic) and the A (heavy, kringle) chains. 
Glu-plasminogen and Glu-plasmin forms both contain the 
amino-terminal activation peptide from Gln1 to Lys 76 
(shown in red). Plasmin can cleave this activation peptide 
(left side), generating Lys-plasminogen, an intermediate 
form that interacts with fibrin more efficiently and is more 
readily cleaved by tPA and uPA. It is this pathway of plas-

min generation that occurs more readily, as indicated by 
the shading and heavyset arrows. Plasmin can also cleave 
the activation peptide from Glu-plasmin, generating Lys- 
plasmin (right side). The five kringle structures of the 
A-chain modulate binding of plasminogen to both fibrin 
and cell receptors. The catalytic centre contains the typi-
cal Ser-His-Asp residues and is the major site of interac-
tion with its principal inhibitor, α2-antiplasmin

Table 5.1 Plasma balance of the principal proteins of the fibrinolytic system

Protein Mr (kDa) Molar concentration Plasma t1/2 Function
Plasminogen 92 2 μM 2.2 d Zymogen
tPA 68 70 pM 4 min Protease
scuPA 54 40 pM 7 min Function
PAI-1 52 200 pM 8 min Inhibitor

α2- Antiplasmin 70 1 μM 3 d Inhibitor

TAFI (pro- CpU) 60 75 nM 10 mina Inhibitor
C1-inhibitor 105 1.7 μM 3 d Inhibitor

α2- Macroglobulin 725 3 μM 2–3 d Inhibitor

PAI-2 46/70 <70 pM – Inhibitor
Factor XII 80 375 nM 2–3 d Zymogen
Prekallikrein 88 450 nM 7–10 d Zymogen
HMW kininogen 110 600 nM 9 h Cofactor

aActivated form
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with the capacity to bind to cells and other pro-
teins; the most relevant to this chapter are fibrin, 
α2AP and TAFI.  Such binding has profound 
effects on plasminogen activation. Plasminogen is 
primarily produced by the liver and is classified as 
an acute-phase protein [9]. Cells other than hepa-
tocytes can produce plasminogen, for example, 
eosinophils, kidney, cornea, brain and adrenal 
medulla; such plasminogen is more likely to have 
local effects acting on substrates other than fibrin 
[10–13]. Human deficiency of plasminogen is 
uncommon, but when it occurs, it is often in asso-
ciation with fibrin deposition, for instance, in lig-
neous conjunctivitis [14].

Native plasminogen has several variants, in 
terms of limited proteolysis, degree of glycosyl-
ation and genetic polymorphism. For the purposes 
of this review, we will consider only the two main 
variants, Glu-plasminogen, the full- length form, 
and Lys-plasminogen, which has been processed to 
a variable extent at the N-terminus by trace plasmin. 
These two forms differ markedly in how efficiently 
they are activated (Fig. 5.2). Glu-plasminogen is a 
relatively closed structure [15], whereas Lys-
plasminogen is more flexible and open; it binds to 
the plasminogen activator approximately tenfold 
more effectively [16–18]. Lys-plasminogen also 
binds to fibrin with higher affinity than Glu- 
plasminogen. The same is true of binding to plas-
minogen receptors, a group of proteins that are 
exposed on cell surfaces and bind to plasminogen 
via lysine residues [19]. Thus, through several 
mechanisms, Lys-plasminogen is activated more 
readily, especially on the fibrin or cell surface [20].

 Plasminogen Activators

The principal plasminogen activators are tPA and 
uPA, while the contact pathway plays a role in 
some contexts. Activation of plasminogen is 
always by cleavage of Arg561-Val562 bond, 
yielding the two-chain active form, plasmin. It 
may be helpful to consider the life cycle of a plas-
minogen activator in terms of synthesis and 
release into the circulation, neutralization by 

inhibitors and clearance from the circulation by 
receptor-mediated mechanisms.

tPA is produced by endothelial and other cells 
as a single chain but is exceptional in that it is an 
active serine protease and not a true zymogen 
[21]. It circulates at low concentrations, mostly in 
complex with its primary inhibitor, PAI-1 [22, 
23]. The plasma half-life is very short (Table 5.1) 
and shows a circadian rhythm, with lowest levels 
at night. Plasma tPA can be increased approxi-
mately fourfold under experimental conditions 
by venous occlusion or by drugs that induce acute 
endothelial release, such as bradykinin, hista-
mine and β-adrenergic agents [24, 25]. Exercise 
also augments adrenalin-mediated tPA release, 
but also decreases clearance from the circulation 
[26]. Both tPA and tPA-PAI-1 complex are 
cleared by the low-density lipoprotein-related 
protein receptor (LRP) system [27].

tPA contains a finger domain and two kringle 
domains; the finger domain is the basis for its 
affinity to fibrin [28, 29]. This characteristic is 
crucial because tPA is a poor plasminogen acti-
vator in solution and requires fibrin to function 
as a cofactor in the reaction. Fibrinogen is not 
able to accelerate plasminogen activation by 
tPA, as the sites are encrypted in the precursor 
form [30]. Single-chain and two-chain tPA bind 
to fibrin in a comparable way [31] with plasmin-
ogen increasing the affinity of tPA for fibrin 
some 20-fold [32], as a result of ternary complex 
formation. In the absence of fibrin, the KM values 
range from 9 to 100 μM plasminogen [33–35]. In 
most studies, this KM value is three- to fourfold 
lower with two- chain tPA than with the single-
chain form, a difference that essentially disap-
pears in the presence of fibrin, when both forms 
of tPA yield KM values ranging from 0.16 to 
1.1 μM plasminogen [33, 35]. These concentra-
tions are readily achieved in blood (Table 5.1). 
One clear reason for the experimental range in 
these data is that the kinetics are non-linear [34, 
36, 37], with a dual-phase activation. Starting 
with Glu-plasminogen and tPA in the presence 
of fibrin, the initial KM of 1.05 μM plasminogen 
was observed. Following plasmin formation and 
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generation of partially digested fibrin, binding of 
both plasminogen and tPA increased [38–42], so 
that the KM was decreased to 0.07 μM plasmino-
gen, with no change in kcat [37].

uPA is synthesized by several cell types, par-
ticularly those with a fibroblast-like morphology, 
but also by epithelial cells [43], monocytes and 
macrophages [44, 45]. uPA can activate solution- 
phase plasminogen; it does not require fibrin as a 
cofactor. This behaviour, which is in marked con-
trast with tPA, is sometimes interpreted to suggest 
that uPA is unimportant in fibrinolysis and cer-
tainly it has roles in other processes, such as extra-
cellular matrix degradation, cell migration, wound 
healing, inflammation, embryogenesis and inva-
sion of tumour cells and metastasis [46, 47].

uPA has three domains: an epidermal growth 
factor (EGF) domain, a kringle and a protease 
domain. The uPA kringle has no affinity for 
fibrin. Its main binding, via the EGF domain 
located in the amino-terminal fragment, is with a 
specific uPA receptor, uPAR, described later in 
this chapter. uPA is expressed in its single-chain 
(sc) form, which has trace proteolytic activity; 
full activity requires cleavage of Lys158-Ile159 
[48]. This can be achieved by several enzymes, 
the most relevant being plasmin [49, 50], factor 
XIIa and kallikrein [51]. Normal plasma contains 
scuPA at relatively stable concentrations of 
2–4 ng per mL [52, 53] with little circadian fluc-
tuation [54]. While endothelium is not a major 
source of uPA, there are reports of increased uPA 
following venous stasis [53], DDAVP infusion 
[55] and strenuous physical exercise [56], proba-
bly explained by decreased clearance from the 
circulation by receptor-mediated mechanisms. 
Under normal circumstances ,uPA activity is not 
detected in plasma, but both leukocyte-associated 
and free scuPA are elevated in leukaemia [57] 
and other disorders, including liver disease [58]. 
If generated, uPA is rapidly cleared from plasma, 
in a manner that depends on hepatic blood flow 
[59]. The LRP system binds and internalizes 
scuPA and uPA-PAI-1 complexes [27, 60, 61]. 
The asialoglycoprotein receptor, on parenchymal 
liver cells, also removes nonsialated uPA from 
the circulation [59].

Contact activation is a distinct process 
resulting from the interactions of four proteins, 
factor XII (FXII), prekallikrein (PK), factor XI 
(FXI) and high-molecular-weight kininogen 
(HK). Negatively charged surfaces such as poly-
phosphate [62, 63], RNA [64], misfolded pro-
teins [65] and collagen [66] stimulate reciprocal 
activation of FXII to FXIIa and of PK to kalli-
krein (PKa) in association with its non-enzy-
matic cofactor, HK. The process is accelerated 
by zinc ions which induce a conformational 
change in FXII [67–71] and HK [72–74], 
thereby augmenting surface interactions. The 
downstream targets of these proteases have been 
debated as this pathway is associated with coag-
ulation via cleavage of FXI to yield FXIa, 
inflammation by generation of bradykinin from 
HK and fibrinolysis.

Of note, while FXII is classified as a coagula-
tion factor, it is structurally related to tPA, uPA 
and plasminogen [75, 76] and can function in 
plasminogen activation by different mecha-
nisms. FXIIa directly activates plasminogen 
(Fig.  5.3) albeit relatively poorly compared to 
tPA and uPA [77–79]. However, the reaction is 
markedly enhanced by negatively charged sur-
faces such as dextran sulphate [80] and impor-
tantly by platelet- derived polyphosphate [81]. 
Circulating plasma concentrations of FXII are 
four orders of magnitude higher than tPA and 
uPA and, combined with the increase in plasma 
half-life, suggest that in certain environments or 
conditions, in  vivo FXIIa could be a relevant 
plasminogen activator [82].

PKa generated by FXII-dependent [51, 83] 
and FXII-independent [84] pathways is a kineti-
cally favourable activator of scuPA (Fig.  5.3) 
which in turn activates plasminogen. Finally, 
the vasoactive peptide bradykinin, described 
above in the inflammatory arm of the contact 
pathway, also indirectly impacts fibrinolysis by 
stimulating tPA release from endothelial cells 
[85, 86]. These three functionally distinct mech-
anisms implicate the contact pathway as a mod-
ulator of plasminogen activation, but further 
studies are necessary to unravel its contribution 
in different milieu.
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 Inhibitors of Plasmin Generation 
and Activity

The proteases of the system are controlled by 
inhibitors, most of which act directly on the pro-
teases and form inactive complexes with them. 
PAI-1 and α2AP are members of the serpin fam-
ily, which inhibit plasminogen activators and 
plasmin, respectively, via a reactive centre loop 
that mimics the protease substrate (reviewed by 
[87]). A second mode of action, exemplified by 
TAFIa, is modulation of the generation of fibrino-
lytic activity.

PAI-1 is the principal inhibitor of tPA and 
uPA and inhibits both with second-order rate 
constants greater than 107 M−1 S−1, close to the 
diffusion limit [88]. It does not inhibit scuPA, 
which is largely inactive, but it does associate 
with scuPA non-covalently [89]. It is an unusual 
serpin in that it spontaneously loses activity by 
insertion of its reactive centre loop into the core 
of the molecule [90]. This inactive form was orig-
inally termed “latent”, which unfortunately gives 
an impression that the latent material is physio-
logically activated. Reactivation is indeed possi-
ble, but only by chemical denaturation and 

Fig. 5.3 Significant players in the fibrinolytic system. 
scuPA, single-chain urokinase plasminogen activator; 
sctPA, single-chain tissue plasminogen activator; α2AP, 
α2-antiplasmin; α2M, α2-macroglobulin; C1-INH, 
C1-inhibitor; PAI-1, plasminogen activator inhibitor 1; 
PAI-2, plasminogen activator inhibitor 2; TAFI, thrombin- 

activatable fibrinolysis inhibitor; FXIIa, activated factor 
XII; PK, prekallikrein; PKa, kallikrein. Activation of plas-
minogen to plasmin usually occurs on a surface, either 
fibrin or a cell membrane. Once formed, plasmin degrades 
fibrin as described in Fig. 5.1
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refolding [91]. It was characterized originally as 
a product of endothelial cells but it is synthesized 
by most cells in culture, including megakaryo-
cytes [92], endothelial cells [93], hepatocytes 
[94] and adipocytes [95–97]. PAI-1 is synthe-
sized in its active form and circulates in plasma in 
complex with vitronectin, which stabilizes the 
active form substantially lengthening its plasma 
half-life [98].

PAI-1 plasma concentrations are approxi-
mately 20 ng per mL [99–101] but reported val-
ues range, even in normal individuals, from 
barely detectable to 40 ng per mL. The variations 
may be circadian; PAI-1 plasma concentration 
peaks in the morning [102–104], and in addition, 
PAI-1 is an acute-phase protein [105]. 
Understanding its behaviour in response to stress 
is complicated by the fact that it is synthesized by 
a wider range of cells than the classic acute-phase 
proteins and that it is responsive to many stimuli. 
Some variations in PAI-1 measurements may be 
methodological. It is necessary to exclude plate-
lets and their release products in analysis of 
plasma PAI-1, since platelets are the major pool 
(more than 95%) of circulating PAI-1 antigen 
[106]. PAI-1  in plasma is in excess over tPA 
(Table 5.1); therefore, most of the tPA is in com-
plex with PAI-1. Immunological assays of either 
protein generally measure both free and com-
plexed forms, requiring care in interpretation. 
Gram-negative septicaemic patients have dramat-
ically elevated plasma PAI-1 concentrations, as 
much as 50-fold over normal, and are associated 
with high mortality [107]. High circulating PAI-1 
is associated with a range of disease, including 
cardiovascular disease [108, 109] and cancer 
[110]. The causal significance remains unclear, 
and it seems that high PAI-1 does not indepen-
dently predict disease when factors like obesity, 
diabetes and elevated triglycerides are taken into 
account [111]. There is a guanine insertion/dele-
tion polymorphism at position 675 in the PAI-1 
promoter [112], which is associated with differ-
ences in circulating PAI-l [113], but the predic-
tive power of this polymorphism appears to be 
low [111, 114]. Deficiency of PAI-1 in humans is 
rare but it causes a lifelong bleeding disorder, 
characteristically after a delay, consistent with 

normal clotting but premature lysis of haemo-
static plugs at sites of vascular trauma [115–118]. 
Fibrinolytic inhibitors such as tranexamic acid 
decrease plasminogen activation and therefore 
are effective in normalizing haemostatic function 
in such patients [117, 118].

α2AP is the principal inhibitor of plasmin, the 
term fast-acting being used to stress the rapid 
inhibition, with a second-order rate constant of 
4 × 107 per M per second [119]. Its plasma con-
centration is 1 μM, about half the molar concen-
tration of plasminogen; it has to be remembered 
that plasma plasminogen is seldom, if ever, 
entirely converted to plasmin, so the inhibitor is 
usually in excess. It is synthesized in the liver and 
consequently decreased in patients with advanced 
impairment of hepatic function. The t1/2 of the 
native inhibitor is approximately 3 days, whereas 
the covalent plasmin/α2AP (PAP) complex is 
cleared with a t1/2 of approximately 0.5 days [120].

α2AP circulates in several forms, depending 
on limited proteolysis at N- and C-termini. The 
processing of the inhibitor has little impact on the 
inhibitory capacity of α2AP which depends on 
the reactive centre loop. Newly produced α2AP 
(Met form) has 12 residues at the N-terminus that 
can be cleaved to yield N-terminal Asn [121] by 
an antiplasmin cleaving enzyme (APCE) [122]. 
Both forms are equally represented in plasma 
[123]. The N-terminal cleavage is important 
because it reveals Gln2, in the processed, Asn 
form, the Gln2 being cross-linked to Lys 303 of 
the fibrin(ogen) Aα-chain by FXIIIa [124, 125]. 
In contrast, in the Met form, Gln2 is blocked 
[126]. Fibrin to which α2AP is cross-linked resists 
lysis by plasmin, and this observation was central 
to the discovery of the first human deficiency of 
α2AP [124]. Consistent with this, antibodies that 
react specifically with cross-linked α2AP stimu-
late lysis of fibrin [127].

Comparison of α2AP with other members of 
the serpin family reveals that it has a C-terminal 
extension of some 50 residues [121]. This full- 
length form and a shortened form are both 
detectable in normal human plasma [128]. The 
full-length form binds plasminogen but the 
processed form, which is still a potent inhibitor 
of plasmin, cannot bind plasminogen [129]. 
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The enzyme responsible for this C-terminal 
cleavage has not yet been characterized. The ratio 
of two forms, plasminogen binding to non-bind-
ing, is approximately 2:1 in plasma. This was still 
true even in advanced liver cirrhosis [58], despite 
the impaired synthesis of α2AP in these patients.

Binding of α2AP to plasminogen competes 
with the plasminogen-fibrin interaction, as it 
occurs via the same lysine binding site (Fig. 5.4). 
Plasmin formed on fibrin is therefore relatively 
protected from the action of α2AP [130], a key 
finding in the control of fibrinolysis [130]. The 
experimental basis for this concept used lysine 
analogues, in the presence of which α2AP was 
about 100 times less effective in inhibiting plas-
min [119]. The exact Lys residues responsible for 
binding the C-terminal region of α2AP to plas-
minogen are not conclusively defined. Studies 
have shown a major effect of Lys452, but that 
other internal Lys residues “tether” the kringles 
[131, 132]. A different study, in which Lys resi-

dues were systematically mutated, suggested that 
Lys436 had the greatest effect [133].

Thrombin-activatable fibrinolysis inhibitor 
(TAFIa; also known as carboxypeptidase B, U, R 
[134] and CPB2 gene product [135]) removes 
C-terminal lysyl residues from fibrin, which, as 
previously stressed, are important in the binding 
of plasminogen [136]. TAFI is produced as a 
zymogen (or procarboxypeptidase) and is acti-
vated by the thrombin/thrombomodulin complex 
[137] or by plasmin in the presence of glycosami-
noglycans [138]. Its activation by thrombin makes 
it an important molecular link between fibrinoly-
sis and coagulation [139]. TAFI is produced in the 
liver but there is considerable variation in normal 
circulating concentrations [136, 140] and only a 
fraction need be activated for full physiological 
impact [137]. Its activity is controlled by its insta-
bility, with an effective plasma half-life of only 
about 10 min [141]. The function of TAFIa was 
shown in clot lysis assays; potato tuber carboxy-

Fig. 5.4 Localization 
of plasmin(ogen) and 
tPA on fibrin; 
interference by 
α2-antiplasmin. Fibrin 
binds plasmin(ogen) and 
tPA directly and acts as 
a cofactor in 
plasminogen activation, 
thereby augmenting its 
own destruction. 
α2-Antiplasmin (α2AP) 
can bind to 
plasmin(ogen) in 
solution, obstructing 
binding to fibrin. α2AP 
is also cross-linked to 
fibrin, via the action of 
factor XIIIa, which 
prevents plasmin from 
binding to fibrin and 
neutralizes the plasmin 
activity. These events 
hamper plasminogen 
activation on fibrin and/
or inhibit plasmin 
activity, thereby limiting 
fibrin degradation
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peptidase inhibitor relieves the inhibition [139, 
142]. This approach and more sensitive and spe-
cific assays for TAFIa have shown that the car-
boxypeptidase must be maintained at a threshold 
level to be effective in modulating fibrinolysis; 
this level fluctuates in relation to plasmin concen-
tration [143]. Several polymorphisms in the TAFI 
gene have been reported, resulting in four iso-
forms [144, 145]. These isoforms explain the nor-
mal wide range in concentration, but do not 
correlate strongly with disease [145, 146]. 
Thr325Ile polymorphism has been shown to be an 
independent risk factor for ST acute myocardial 
infarction in a Mexican population [147]. Elevated 
TAFI appears to be a mild risk factor for venous 
thrombosis [148], and it also increases in inflam-
mation, correlating with other acute-phase mark-
ers [149]. Contrary to this, patients recently 
suffering a myocardial infarction have been 
shown to have lower levels of TAFI [150].

Increased fibrinolytic activity in haemophilia 
patients is explained by defective TAFI activa-
tion. Most thrombin is formed after clot forma-
tion, mainly by back activation of FXI by 
thrombin, with deficiencies in FXI resulting in a 
mild to moderate tissue-specific bleeding disor-
der (haemophilia C). In the absence of FXI, clots 
lyse more readily [151], which is associated with 
the loss in feedback activation of FXI by throm-
bin [152]. The enhanced generation of thrombin 
augments TAFI activation stabilizing clots 
against premature lysis [153, 154]. In line with 
this, defective TAFI activation in congenital hae-
mophilia A is associated with uPA-mediated joint 
bleeding [155]. Addition of TAFI, thrombomodu-
lin or factor VIII to haemophilia A plasma 
restores normal fibrinolysis [156]. Consistent 
with this, incorporation of anti-factor XI antibod-
ies or inhibition of TAFIa in a rabbit model 
resulted in an almost twofold increase in endog-
enous thrombolytic activity [157].

We described earlier the potential contribution 
of the contact pathway in facilitating  plasminogen 
activation. The role of FXIa in sustaining throm-
bin generation and therefore TAFI activation 
implicates the contact pathway in antifibrinolytic 
as well as profibrinolytic mechanisms. Indeed, 
abnormal clot structure and sensitivity to fibrino-

lysis have been described to help predict the risk 
of bleeding tendency in severe and partial FXI 
deficiency [158, 159].

 Other Inhibitors

In most situations, α2AP, PAI-1 and TAFI are the 
major gatekeepers in the regulation of plasmin 
generation and activity, but there are other inhibi-
tors that may function in specific circumstances, 
which will now be introduced briefly.

PAI-2 is an inhibitor of uPA purified from 
human placenta and the cell line U-937 [160, 
161]. The role of PAI-2 as a PA inhibitor has been 
questioned [162], as mice deficient in PAI-2 do 
not present any major haemostatic abnormalities 
[163]. The intracellular location of this serpin and 
the fact that it is a much poorer inhibitor of uPA 
and tPA [161] have led researchers to believe that 
its functions may lie outside the haemostatic cas-
cade. In the circulation, monocytes are the main 
reservoir of PAI-2 [164] and may increase fibrin 
stability on migration into thrombi, particularly as 
PAI-2 is cross-linked to fibrin [165]. Interestingly, 
deficiency of PAI-2 is found to interfere with 
venous thrombus resolution in mice [166], most 
likely due to the instigated inflammatory response. 
PAI-2 is not normally detected in normal plasma, 
except in pregnancy, where it rises steadily to 
reach approximately 250 ng/mL by the third tri-
mester [167]. In placental dysfunction413,414 and 
intrauterine growth retardation [168–170], the 
rise in plasma PAI-2 is much smaller, highlighting 
its importance in normal foetal development. 
PAI-2 also occurs in plasma of patients with acute 
myeloblastic leukaemia (M4 and M5, [171]) and in 
patients with sepsis [172]. Local PAI-2 activity 
appears to be relevant to a number of cancers, and 
studies on the function of this serpin in these set-
tings may provide further clues to its true biologi-
cal role [173, 174].

α2-Macroglobulin (α2M) is a non-serpin 
inhibitor of wide specificity. This breadth of tar-
gets and its relatively high plasma concentration 
(2.5 g per L, 3 μM) make it an effective stand-in 
inhibitor that contains the activity of many prote-
ases, including plasmin, tPA and uPA [57]. α2M 
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is a tetramer made up of a pair of dimers contain-
ing two reactive sites. When proteases are inhib-
ited by α2M, they generally retain activity towards 
small peptide substrates, but are unable to cleave 
larger targets.

C1-inhibitor is a highly glycosylated serpin 
that directly modulates the activity of C1r and 
C1s proteases of complement C1. It also inhibits 
the contact proteases, FXIIa, FXIa and PKa, as 
well as tPA, plasmin and uPA.  It circulates in 
plasma at a relatively high concentration 
(1.7  μM). When tPA is in excess over PAI-1, 
complex formation with C1-inhibitor is observed 
[23, 58, 175]. Its diverse targets suggest that it 
would function in regulating contact phase–
dependent fibrinolysis and the conversion of 
scuPA to uPA (Fig. 5.3). Indeed, peripheral blood 
mononuclear cells from patients with hereditary 
angioedema (HAE), arising from a deficiency in 
C1-inhibitor, express elevated levels of uPAR 
[176]. HAE is also associated with aberrant fibri-
nolytic activity as a result of dysregulated plas-
min generation and inhibition. Indeed, during 
activation of fibrinolysis, approximately 15% of 
plasmin inhibition is reportedly accounted for by 
C1-inhibitor [177]. The increase in bradykinin 
generation in HAE patients will also augment 
tPA release from the endothelium.

 Regulation of Plasmin Generation 
and Activity

So far, we have highlighted three important con-
cepts: zymogen activation, protease inhibition 
and, crucially, the role of fibrin in promoting acti-
vation of plasminogen and protecting plasmin 
from inhibition. Further discussion requires con-
sideration of particular situations, so we will now 
examine the balance of the various proteases and 
inhibitors in plasma, on platelets, cell surfaces 
and thrombi.

 Plasma Balance

Plasminogen, the central player of the fibrinolytic 
system, circulates at approximately 5 orders of 

magnitude higher than tPA and scuPA (Table 5.1). 
Plasminogen is turned over relatively slowly, 
with a half-life of 2.2 days for Glu-plasminogen 
and 0.8 days for Lys-plasminogen, while tPA and 
scuPA have plasma half-lives of only minutes. 
From this we can infer that the rates of synthesis, 
release and clearance are low for plasminogen 
and much higher for the PA, illustrating the more 
dynamic part of the system. Similar consider-
ations apply to the main inhibitors. PAI-1 is pres-
ent in plasma at only 400  nM, while α2AP 
circulates at 1  μM, and again the plasma half- 
lives are in marked contrast.

Fibrinolytic activity is not normally detectable 
in plasma because plasminogen is a true zymo-
gen, and therefore inactive, while the one active 
PA in plasma, tPA, is normally controlled by an 
excess of PAI-1. Even if the concentration of 
PAI-1 were insufficient for full neutralization, 
then α2AP, C1-inhibitor and α2M would act as 
backup inhibitors. The other potential activator, 
scuPA, is not sufficiently active to initiate the 
process of plasminogen activation, as prior acti-
vation by plasmin or kallikrein is necessary. Any 
trace of plasmin generated in plasma would be 
quickly neutralized by α2AP, again endorsed as 
necessary by other inhibitors, especially α2M. So 
the quiescence of the system, in plasma, is main-
tained by tight control of protease activity, both at 
the level of existence of plasminogen as a zymo-
gen and at the level of control by inhibitors, pri-
marily PAI-1 and α2AP.

 Cellular and Platelet Contributions

While the central role of fibrin in controlling acti-
vation of plasminogen and protection of plasmin 
has been appreciated for several years [130], we 
are now aware that many of the same general 
characteristics apply to cell-based or platelet- 
based fibrinolysis. That is, more efficient activa-
tion of plasminogen occurs on the surface of 
cells, while cell-bound plasmin is protected from 
inhibition by α2AP [178]. Plasminogen binding 
to circulating cells, including monocytes, neutro-
phils and platelets, was first reported in 1985 
[179]. Binding to platelets is now known to occur 
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in distinct locations, dependent on the specific 
subpopulation [180]. The proteins responsible 
for binding vary from cell to cell but include 
PlgRKT, α-enolase, S100A10 (functioning with 
annexin A2), actin, cytokeratin 8 and integrins 
αIIbβ3 and αMβ2 (reviewed by [181]). The binding 
of plasminogen to these receptors tends to be low 
affinity but high capacity, with some cell-surface 
proteins only found on cells undergoing apopto-
sis. Not all these proteins express the C-terminal 
Lys that is expected of a plasminogen-binding 
protein. PlgRKT is a true membrane protein and is 
synthesized with a C-terminal Lys residue. tPA 
binding to cells occurs via annexin II and also 
directly to PlgRKT [181]. Other reports on tPA 
receptors, which have been characterized in less 
detail [182, 183], may be of the same or similar 
molecules.

uPA and scuPA bind to a well-characterized 
receptor, uPAR (CD87), with high affinity (KD 
10−9 to 10−11 M) depending on the cell type [184]. 
uPAR is not a transmembrane protein but is 
attached to membranes via a glycosylphosphati-
dylinositol (GPI) anchor. Binding of uPA to 
uPAR elicits signalling [185], via other intracel-
lular proteins. Other proteins also bind uPAR, 
including vitronectin and integrins in complex 
with caveolin [186]. The uPA/uPAR complex on 
some cells is associated with Endo 180, also 
known as uPAR-associated protein (uPARAP) 
[187], and has a role in collagen IV internaliza-
tion [188]. uPA bound to uPAR is still inactivated 
by PAI-1 but not as fast as in solution [189]. The 
uPA/PAI-1 complex is then internalized, while 
uPAR is recycled to the surface, a process that 
also involves LRP [61, 190]. uPAR has clear 
roles in migration and metastasis. In terms of 
fibrin degradation, we must distinguish between 
activation by scuPA and uPA. In the case of uPA, 
which can freely activate plasminogen in solu-
tion, binding to uPAR seems not to affect plas-
minogen activation, but the activity of scuPA is 
increased by two orders of magnitude when it is 
bound to uPAR on the surface of monocytes [191, 
192]. An elegant experiment in which a uPA vari-
ant was directly anchored to the cell surface 
showed a stimulation of plasminogen activation 
similar to that achieved by binding to uPAR 

[193]. This is consistent with the principal func-
tion of uPAR being one of localization of uPA to 
the cell surface rather than enhancement of cata-
lytic activity. The same co-localization and recip-
rocal activation of scuPA and plasminogen occurs 
on platelets [50], which do not express uPAR, 
indicating there are additional receptors yet to be 
discovered. Other studies show that cellular bind-
ing of plasminogen and (sc)uPA does not have to 
be on the same cells or surface to facilitate fibri-
nolysis [194].

Platelets make several contributions to clot 
stability and lysis. On the profibrinolytic side, 
activated platelets exhibit endogenous plasmin 
activity [180] and surface-bound plasmin, formed 
from local plasminogen, is afforded protection 
from inhibition by α2AP. On the antifibrinolytic 
side, there is the physical barrier to lysis that 
results from clot retraction, added to which plate-
lets have a pool of FXIII [195] that stabilizes 
fibrin. Further, platelets are a source of the three 
main inhibitors of fibrinolysis, PAI-1, α2AP and 
TAFI (Fig.  5.5). These platelet-derived pools 
result from synthesis and packaging of the inhibi-
tors at the megakaryocyte stage. Indeed, it has 
been reported that while platelets are devoid of a 
nucleus, they are capable of synthesizing large 
quantities of PAI-1 [196]. Recent work has illus-
trated that despite our traditional view that PAI-1 
is released from platelets, a considerable amount 
of active PAI-1 is retained on the activated plate-
let membrane [197]. In terms of activity, platelet 
PAI-1 is less active than plasma PAI-1, but plate-
lets still account for some 50% of the total circu-
lating active PAI-1. The platelet pools of α2AP 
and TAFI are not as substantial, accounting for 
less than 1% of the total blood pool [198, 199] 
and may have functional significance in particu-
lar niches. The interaction of platelets and fibrin 
is regulated by the integrin αIIbβ3 and is key to 
the process of clot retraction. A recent elegant 
study has illustrated that the processes of clot 
retraction and fibrinolysis are mechanistically 
coupled indicating their intrinsic interaction 
in vivo to modulate thrombus size [200].

Studies on human thrombi reveal that the 
inhibitors of fibrinolysis, especially PAI-1, accu-
mulate in great excess over proteases [201, 202], 
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providing an explanation as to why established 
thrombi are often resistant to lysis. Observations 
on human thrombi also show they retain substan-
tial amounts of coagulant and fibrinolytic activity 

[203, 204]. Of course, such diverse material is 
taxing to work on in a quantitative way and there 
are obviously differences in venous and arterial 
thrombi and between mural and luminal thrombi. 

Fig. 5.5 The balance of fibrinolysis in the injured vessel 
wall. Schematic representation of the different modes of 
plasmin formation, inhibition and clearance within a dam-
aged vessel wall, with a partially occluding thrombus. 
Solution, cell-surface and fibrin phases of plasmin forma-
tion are represented. Plasminogen circulates at a relatively 
high concentration (2 μM) and is readily incorporated into a 
forming thrombus by virtue of its fibrin binding capacity. 
tPA is largely derived from the endothelium and only circu-
lates at low concentrations with high turnover. tPA- mediated 
plasminogen activation is slow in solution, but is enhanced 
severalfold when bound to its cofactor, fibrin. uPA is found 
in the circulation and is from monocytes and neutrophils. 
uPA does not exhibit fibrin specificity and readily activates 
plasminogen in solution while bound to its cell surface 
receptor, uPAR. Association of uPA with uPAR provides a 
focal point for plasmin generation. Plasmin degrades fibrin 
into fibrin degradation products, represented here as D 
dimer and DD/E complexes. The system is regulated by sev-
eral inhibitors; only the principal ones are shown here for 
clarity. Complexes of active enzyme and inhibitor are rap-

idly cleared from the circulation via a low-density lipopro-
tein receptor. PAI-1 circulates at low concentrations, but a 
large pool is released from platelets upon activation. PAI-1 
can inhibit tPA and uPA in solution and in the presence of 
fibrin or cell surfaces, but this latter process is generally less 
efficient. α2- antiplasmin (α2AP) is abundant in plasma and a 
minor pool is also released from activated platelets. α2AP 
inhibits plasmin generation in solution, but plasmin formed 
on cell or fibrin surfaces is relatively protected. α2AP is 
cross-linked directly onto fibrin localizing it at the site of 
plasmin generation. TAFI is found in plasma and platelets 
and can be cross-linked to fibrin. TAFI is activated by the 
thrombin/thrombomodulin complex or plasmin to generate 
TAFIa which downregulates plasminogen activation on 
fibrin, by removing the C-terminal lysine residues that are 
important for the binding of plasminogen to fibrin. This 
intricate sequence of events and interactions modulate fibrin 
accumulation in the body in a precise and coordinated man-
ner. The many different feedback loops and surfaces 
involved localize reactions thereby preventing excessive 
plasmin generation in the circulation
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Our studies in Chandler model thrombi showed 
that these thrombi lyse spontaneously, with fibri-
nolytic activity that could be ascribed primarily 
to uPA but to a lesser extent to tPA, elastase and 
cathepsin G [205]. This spontaneous generation 
of fibrinolytic activity [204] was dependent on 
polymorphonuclear cells, primarily neutrophils, 
generating local uPA activity on uPAR [205]. 
Plasma α1-antitrypsin was crucial in protecting 
the activity from neutrophil elastase [206]. The 
integrin αMβ2 is important in the generation of 
such local activity [207]. Discovery of a role for 
local uPA in thrombus lysis ran counter to the 
usual proposition that tPA’s role is fibrin degrada-
tion and uPA mediates other cellular events. 
There is, however, compelling support for it from 
a number of other studies, including failure of 
thrombi from uPA gene knockout mice to resolve 
[208]. In that model, the uPA activity was associ-
ated primarily with monocytes, which migrate 
into thrombi [209] and express fibrinolytic activ-
ity [44]. Indeed, monocyte-bound uPA has been 
shown to reduce thrombus size in a model of 
venous thrombosis [210].

 Questions That Remain

 What Initiates Fibrinolysis?

The available evidence suggests that the Glu- 
plasminogen to Lys-plasminogen conversion is 
the initiating event. It has the required features of 
leading to large-scale amplification as the plas-
minogen binding sites on fibrin are revealed by 
partial lysis, and formed plasmin is protected 
from α2AP. Part of the same question is which PA 
is responsible for the first molecules of plasmin 
that allow Glu-plasminogen to be converted to 
Lys-plasminogen? In the context of fibrin, with 
no cells or platelets, it may be tPA, a few mole-
cules of which may be free of PAI-1, that pro-
vides initiation, especially since its single-chain 
form is active and not as readily inactivated by 
PAI-1. This has been suggested by Thorsen 
(1992) in his well-established biphasic lysis 
[211], where a small amount of plasminogen on 
fibrin fibres is activated and then degrades fibrin 

to generate C-terminal lysine residues that bind 
additional plasminogen and perhaps tPA, leading 
to the second faster phase of tPA-mediated fibri-
nolysis [212]. The molecular interactions and 
specific binding sites involved have been exten-
sively reviewed [30]. Experiments using tPA 
variants show that the finger domain of tPA plays 
a more dominant role in the interaction with 
fibrin than the kringle 2 interaction with 
C-terminal lysine residues [213]. This suggests 
that it is the binding of plasminogen to partially 
degraded fibrin, and thus subsequently the open-
ing of the closed to open confirmation, that is the 
crucial step in the rapid second phase of fibrino-
lysis. This central role of plasminogen may sug-
gest that the PA responsible for activation is less 
crucial than previously assumed. Our experi-
ments with TAFI demonstrated a similar delay in 
lysis regardless of the PA used [214] and we 
interpreted this as plasminogen primarily con-
trolling fibrin-bound plasmin generation.

If a cell membrane is present, then it may be 
scuPA, bound to cellular uPAR or on platelets, 
that yields the initial protease activity. This is 
suggested on the basis of several experimental 
systems, including data showing that the ordered 
addition of scuPA and then tPA [215] is poten-
tially more effective than either agent alone. Our 
own work on Chandler model thrombi underlines 
the importance of the scuPA/uPA system in spon-
taneous lysis [205] but affirms the involvement of 
other proteases, especially tPA [204]. When in 
association with cellular uPAR, scuPA binds 
PAI-1 and other serpins reversibly [89]. This has 
been interpreted in terms of receptor-bound 
scuPA initiating proteolytic activity, with conver-
sion to uPA achieving inhibition thereby regulat-
ing the activity [216].

 How Best to Measure Fibrinolysis?

Fibrinolysis, like other cascade systems, coagula-
tion and complement, can be studied by various 
means. Individual components can be quantified, 
either as antigen or activity, and under defined 
situations can provide clear answers. However, 
the complexities of the system mean that a change 
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in one factor can influence measurements of 
another and therefore it is important to interpret 
results with caution. As an example, tPA activity 
is challenging to measure in plasma, as it is at the 
limit of detection of most assays. Elevated PAI-1 
may depress the activity that is measured. 
Frequently, a manipulation of plasma is neces-
sary to reveal tPA activity, including acidification 
of plasma or preparation of a euglobulin fraction, 
where tPA, plasminogen and fibrinogen are 
retained. Most inhibitors are removed but about 
50% of PAI-1 is retained [100], and these facts 
must be borne in mind for valid interpretation. As 
mentioned previously, circulating tPA is variable, 
whether at the level of synthesis or release; there-
fore, it is vital to consider the time course as each 
sample represents a snapshot. Rapid hepatic 
clearance of tPA and of tPA-PAI-1 complex from 
the circulation rapidly restores the system to nor-
mality, allowing key events to be overlooked.

It is often essential to measure more than one 
analyte for a fuller appreciation of the system. 
Ideally, the aim is to know how much enzyme is 
free and/or active and how much has been con-
verted to a complex, such as tPA-PAI-1. A com-
bination of ELISA and activity assays may 
provide a clear picture, but only if the specificity 
of the ELISA is known in some detail. Ideally, 
measurement of PA would be complemented by 
examining a consequence of the elevation, for 
instance, the fibrin degradation products pro-
duced, which of course reflects the presence of 
the fibrin substrate, or generation of the plasmin- 
α2AP complex. The essential feature of ELISA 
for a complex is the use of antibody to one of the 
proteins, e.g. α2AP, as a capture system and an 
antibody to the second moiety, e.g. plasmin, in 
the detection system. The capture antibody in this 
example will bind free α2AP and α2AP in com-
plex, giving rise to potential competition and 
misrepresentation of the results. This element 
limits the use of these assays to situations where 
the free protein is decreased, for instance, in liver 
disease, where α2AP is lower than normal. Other 
approaches to measuring overall fibrinolytic 
activity in plasma include measurement of a zone 
of lysis on a fibrin plate, clot lysis assays and 
zymography. Recently, a method which com-

bines magnetic immunocapture of leukocyte- 
derived microvesicles and chromogenic 
measurement of plasmin generation has been 
described [217]. These can all be useful but there 
are limitations associated with most individual 
assays. For instance, in plasma clot lysis assays, 
the effects of FXIIIa cannot be reproducibly 
observed [218]. In addition, the overwhelming 
effects of α2AP make it difficult to see inhibition 
by PAI-1. Failure to be alert to such consider-
ations gives rise, in the literature, to many inap-
propriate interpretations about the relative 
importance of particular proteases or inhibitors. 
In all assays, the balance of enzyme to inhibitor 
ought to be as close to physiological as possible. 
When tPA is added, it should be at a low concen-
tration, always remembering that it is a catalyst, 
not a reagent that is consumed. The literature 
abounds with examples where PA are added at 
high concentrations, simply to speed up the assay. 
This distorts a system that is designed to be deli-
cately poised and generates artefacts of the 
experimental system rather than a true reflection 
of what goes on in vivo.

Detailed analysis of the fibrinolytic system is 
only practical for small numbers of samples, but, 
for large clinical cohorts, the aim is to obtain an 
insight from a limited number of assays. Not sur-
prisingly this has promoted the use of overall 
measures of activity, such as global assays of 
fibrinolysis, which have inherent advantages and 
some limitations. Thromboelastography is rapid, 
widely available and easily applicable to large 
sample sizes. However, most studies add tPA as a 
stimulus. In this situation, added enzyme should 
be kept to a minimum, to avoid generating results 
that are far from physiological. Another global 
assay quantified fibrin degradation products after 
collection of blood samples onto thrombin [219]. 
Comparison of samples with and without apro-
tinin gives a measure of global fibrinolytic capac-
ity, an approach that has proved useful clinically 
[220]. It should be noted that thrombin greatly 
enhances endogenous fibrinolytic activity, prob-
ably by inactivation of PAI-1 among other mech-
anisms. This consideration serves as a useful 
aide-mémoire that fibrinolysis is not an indepen-
dent system. As Ratnoff reminds us, “The coagu-
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lation, fibrinolysis, complement and kinin 
pathways are studied separately by scientists for 
their convenience. In life, they form a seamless 
web” [221]. Undoubtedly, we choose our 
approaches and molecules of interest to us, and 
may well ignore other players, by virtue of the 
experimental system used. These choices may be 
convenient, but we must bear in mind the selec-
tion bias introduced into the system.
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