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111.1	 �Introduction

As this piece is written, a PubMed search for “learning 
curve” and “robotic surgery” yields 1222 results. The latest 
study into the effect of 23 years of paediatric fellowship pro-
grams on the robotic learning curve shows that in 17 articles 
comprising 721 procedures, operative time is the most 
reported outcome to measure learning curve and proficiency 
[1]. Furthermore, the literature is replete with examples of 
procedure-specific advances within robotics but less well 
represented by procedure-independent variables. These fac-
tors are often removed from analyses so as not to distort the 
primary outcome measure of console time—the time it takes 
to perform the procedure [2]. When a surgeon begins robotic 
surgery, it can be reasonably assumed that the procedures 
being performed have been previously practised laparoscopi-
cally or in an open fashion, so essentially all that is being 
measured is how slick the surgeon is at using the console. 
The effects of an ever-increasing body of work with simple 
procedure duration curves are that there is limited accurate 
information available on the number of procedures that 
should be performed for the learning curve to have been 
completed and that the effect of the robotic team is negated. 
The solution to this issue is twofold. First, data should be 
interpreted in a different way, with the aim to define when 
the switch from learning to maintenance phases occurs, 
which can in turn aid training programs. Second, it is vital to 
see every robotic case as a team effort, and so data from both 
procedure-dependent and independent sources must be anal-
ysed. The approach we have taken in Leeds is to use CUSUM 
analysis.

111.2	 �CUSUM Analysis

Cumulative Summation curve analysis was first described by 
Page in 1954 [3], as a method to represent data from con-
secutive procedures, transforming the variability of raw data 
into a cumulative sum of differences between each value and 
the mean [4]. The process is straightforward. First, the mean 
of all the values (X1, X2, X3 etc.) is calculated (X). The first 
CUSUM value starts at zero (S0) and subsequent CUSUM 
values are calculated by adding the difference between the 
current value and the average value to the previous CUSUM:

CUSUM CUSUM4 3 4� � � � � �� � �� �X X

If values are above average, CUSUM is positive and the 
slope is upward, whereas if values are below average, 
CUSUM is negative and the slope is downward. Therefore, 
the perfect learning curve would follow a bell-shaped curve 
pattern, shown in Fig. 111.1, with the upward slope (learning 
phase) representing the time during which outcomes 
exceeded the mean and the downward slope (maintenance 
phase) representing the time where the procedure took less 
time than the mean, towards achieving proficiency when the 
graph is continuously declining or maintained at zero.

The asymptote represents the number of cases required to 
achieve competence. Inflections in the curve represent 
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moments of deviation of progression. CUSUM charts can 
therefore be used to take a retrospective look at the data to 
identify time points where progress was interrupted; such 
analysis is extremely difficult in a simple case/duration chart. 
Consider the graph in Fig. 111.2 for the time it takes a person 
to run a given distance 50 times.

The graph shows a general improvement in time consis-
tent with improved fitness and technique. A trendline has 
been added to prove that the runner is getting faster over the 
50 races. However, when the runner looks back on their 
achievement, there are no clues as to whether any factors 
specifically affected races. If we apply CUSUM analysis to 
this data, the graph in Fig. 111.3 appears.

Broadly, this follows a bell-shaped curve, as expected. 
However, the runner notices that the downward curve to 
proficiency is interrupted by an inflection point (arrowed). 
Looking at the date of run 35, they recall this was when they 
sustained a sprained ankle, which affected them for the next 
few runs, before improving steadily once again.

Applying this process to robotic surgery, the benefits of 
the CUSUM curve include the ability to monitor surgical 
performance by smoothing natural data variance, identifying 
when trainees should be becoming competent by the asymp-
tote, and making trends more apparent and to provide early 
and sensitive detection of small process changes by inspect-
ing curve inflection points.

Figure 111.4 shows the robotic time for one surgeon’s 
first 37 pyeloplasties (RS). The trendline shows an improve-
ment in speed at the console.

Converting the same data into a CUSUM curve shows a 
double bell-shaped curve, which was surprising given the 
raw data. The asymptote reveals that competence in the pro-
cedure occurred after 13 cases, but the descending slope was 
interrupted by a major inflection, resulting in another period 
of learning, or adaption, then another maintenance phase 
(Fig. 111.5).

Looking back at around case 21, this correlated with a 
period where some of the pyeloplasties prior to this had 
returned obstructed, requiring redo procedures. It was dis-
covered that the cause of this had been the use of V-lock 
suture, which had caused an intense inflammatory reaction in 
the renal pelvises, a complication which we have since pub-
lished [5]. It had taken a number of weeks to discover the 
cause, during which many variables were investigated, 
including operator technique, and this in turn was clearly 
reflected in the CUSUM curve.

111.3	 �Procedure-Independent Variables

Assessment of the purely surgical components of robotic 
surgery ignores procedure-independent variables and 
appraisal of how well the team works together. Examples of 
such factors include patient positioning, port placement, 
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manipulation of the robot into a suitable position adjacent to 
the patient and docking the robot arms. These ‘soft’ factors 
are vital to the smooth running of a robotic case and rely on 
interactions with the entire surgical team. We postulated that 
these factors may have a learning curve of their own, perhaps 
more important than the console time, as they are more pow-
erfully linked to the development of new practice in the the-
atre. To assess this, we looked at case duration and CUSUM 
curves for the ‘docking time’, which is the time it takes from 
first incision to docking the robot (Fig. 111.6). This is impor-
tant because it occurs in every robotic case, no matter which 
operation is to be performed. The first 137 cases for the same 
surgeon (RS) were analysed, which included pyeloplasty, 
nephrectomy, Mitrofanoff, ureteric reimplantation, detruso-
rotomy, heminephroureterectomy, varicocele ligation, and 
second-stage orchidopexy.

Again, the case duration curve is relatively meaningless 
in comparison to the CUSUM curve, which reveals a learn-
ing curve of 30 cases. It is perhaps not surprising that this 
is greater than the time to competence for an actual robotic 
operation, because the robotic time demands brand new 
technical skills required of the team. The major inflection 
in the graph at case 77 represented a period of time when 

two new operations were introduced (Mitrofanoff with 
detrusorotomy and ureteric reimplant), both requiring dif-
ferent port positioning to the frequently performed proce-
dures. In addition, a new member of the team (AT) began to 
learn the concepts of robotics by performing the placement 
of the ports and docking of the robot for the more basic 
procedures.

111.4	 �Summary

CUSUM analysis allows the data collected to be presented in 
a fashion which allows assessment of progression of learning 
and retrospective interpretation of deviations from that pro-
gression. It allows robotic training programs to be devised 
and pitfalls to be anticipated. The ‘noise’ produced by a sim-
ple duration curve, often utilised to demonstrate temporal 
efficiency, is too great to reveal the subtleties of our practice, 
resulting in little meaningful data being gleaned from them. 
Our experience also highlights the importance of a dedicated 
robotic team, for planning and execution of individual tasks, 
where the need for special training to meet defined standards 
is essential for safe and successful robotic practice [6].
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Fig. 111.6  (a) Docking time. 
(b) CUSUM docking time
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