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Abstract. Coordinate-wise minimization is a simple popular method
for large-scale optimization. Unfortunately, for general (non-
differentiable and/or constrained) convex problems it may not find global
minima. We present a class of linear programs that coordinate-wise min-
imization solves exactly. We show that dual LP relaxations of several
well-known combinatorial optimization problems are in this class and
the method finds a global minimum with sufficient accuracy in reason-
able runtimes. Moreover, for extensions of these problems that no longer
are in this class the method yields reasonably good suboptima. Though
the presented LP relaxations can be solved by more efficient methods
(such as max-flow), our results are theoretically non-trivial and can lead
to new large-scale optimization algorithms in the future.

Keywords: Coordinate-wise minimization · Linear programming · LP
relaxation

1 Introduction

Coordinate-wise minimization, or coordinate descent , is an iterative optimization
method, which in every iteration optimizes only over a single chosen variable
while keeping the remaining variables fixed. Due its simplicity, this method is
popular among practitioners in large-scale optimization in areas such as machine
learning or computer vision, see e.g. [32]. A natural extension of the method is
block-coordinate minimization, where every iteration minimizes the objective
over a block of variables. In this paper, we focus on coordinate minimization
with exact updates, where in each iteration a global minimum over the chosen
variable is found, applied to convex optimization problems.

For general convex optimization problems, the method need not converge
and/or its fixed points need not be global minima. A simple example is the
unconstrained minimization of the function f(x, y) = max{x − 2y, y − 2x},
which is unbounded but any point with x = y is a coordinate-wise local mini-
mum. Despite this drawback, (block-)coordinate minimization can be very suc-
cessful for some large-scale convex non-differentiable problems. The prominent
example is the class of convergent message passing methods for solving dual
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linear programming (LP) relaxation of maximum a posteriori (MAP) inference
in graphical models, which can be seen as various forms of (block-)coordinate
descent applied to various forms of the dual. In the typical case, the dual LP
relaxation boils down to the unconstrained minimization of a convex piece-wise
affine (hence non-differentiable) function. These methods include max-sum dif-
fusion [21,26,29], TRW-S [18], MPLP [12], and SRMP [19]. They do not guar-
antee global optimality but for large sparse instances from computer vision the
achieved coordinate-wise local optima are very good and TRW-S is significantly
faster than competing methods [16,27], including popular first-order primal-dual
methods such as ADMM [5] or [8].

This is a motivation to look for other classes of convex optimization problems
for which (block-)coordinate descent would work well or, alternatively, to extend
convergent message passing methods to a wider class of convex problems than the
dual LP relaxation of MAP inference. A step in this direction is the work [31],
where it was observed that if the minimizer of the problem over the current
variable block is not unique, one should choose a minimizer that lies in the
relative interior of the set of block-optimizers. It is shown that any update
satisfying this rule is, in a precise sense, not worse than any other exact update.
Message-passing methods such as max-sum diffusion and TRW-S satisfy this
rule. If max-sum diffusion is modified to violate the relative interior rule, it can
quickly get stuck in a very poor coordinate-wise local minimum.

To be precise, suppose we minimize a convex function f : X → R on a closed
convex set X ⊆ R

n. We assume that f is bounded from below on X. For brevity
of formulation, we rephrase this as the minimization of the extended-valued
function f̄ : Rn → R ∪ {∞} such that f̄(x) = f(x) for x ∈ X and f̄(x) = ∞
for x /∈ X. One iteration of coordinate minimization with the relative interior
rule [31] chooses a variable index i ∈ [n] = {1, . . . , n} and replaces an estimate
xk = (xk

1 , . . . , x
k
n) ∈ X with a new estimate xk+1 = (xk+1

1 , . . . , xk+1
n ) ∈ X such

that1

xk+1
i ∈ ri argmin

y∈R

f̄(xk
1 , . . . , x

k
i−1, y, xk

i+1, . . . , x
k
n),

xk+1
j = xk

j ∀j �= i,

where ri Y denotes the relative interior of a convex set Y . As this is a univariate
convex problem, the set Y = argminy∈R

f̄(xk
1 , . . . , x

k
i−1, y, xk

i+1, . . . , x
k
n) is either

a singleton or an interval. In the latter case, the relative interior rule requires that
we choose xk+1

i from the interior of this interval. A point x = (x1, . . . , xn) ∈ X
that satisfies

xi ∈ ri argmin
y∈R

f̄(x1, . . . , xi−1, y, xi+1, . . . , xn)

for all i ∈ [n] is called a (coordinate-wise) interior local minimum of function f
on set X.
1 In [31], the iteration is formulated in a more abstract (coordinate-free) notation.

Since we focus only on coordinate-wise minimization here, we use a more concrete
notation.
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Some classes of convex problems are solved by coordinate-wise minimization
exactly. E.g., for unconstrained minimization of a differentiable convex function,
it is easy to see that any fixed point of the method is a global minimum; moreover,
it has been proved that if the function has unique univariate minima, then any
limit point is a global minimum [4, §2.7]. The same properties hold for convex
functions whose non-differentiable part is separable [28]. Note that these classical
results need not assume the relative interior rule [31].

Therefore, it is natural to ask if the relative interior rule can widen the
class of convex optimization problems that are exactly solved by coordinate-wise
minimization. Leaving convergence aside2, more precisely we can ask for which
problems interior local minima are global minima. A succinct characterization
of this class is currently out of reach. Two subclasses of this class are known
[18,26,29]: the dual LP relaxation of MAP inference with pairwise potential
functions and two labels, or with submodular potential functions.

In this paper, we restrict ourselves to linear programs (where f is linear and
X is a convex polyhedron) and present a new class of linear programs with
this property. We show that dual LP relaxations of a number of combinatorial
optimization problems belong to this class and coordinate-wise minimization
converges in reasonable time on large practical instances. Unfortunately, the
practical impact of this result is limited because there exist more efficient algo-
rithms for solving these LP relaxations, such as reduction to max-flow. It is open
whether there exist some useful classes of convex problems that are exactly solv-
able by (block-)coordinate descent but not solvable by more efficient methods.
There is a possibility that our result and the proof technique will pave the way
to such results.

2 Reformulations of Problems

Before presenting our main result, we make an important remark: while a con-
vex optimization problem can be reformulated in many ways to an ‘equivalent’
problem which has the same global minima, not all of these transformations are
equivalent with respect to coordinate-wise minimization, in particular, not all
preserve interior local minima.

Example 1. One example is dualization. If coordinate-wise minimization
achieves good local (or even global) minima on a convex problem, it can get
stuck in very poor local minima if applied to its dual. Indeed, trying to apply
(block-) coordinate minimization to the primal LP relaxation of MAP inference
(linear optimization over the local marginal polytope) has been futile so far.

Example 2. Consider the linear program min{x1 + x2 | x1, x2 ≥ 0}, which has
one interior local minimum with respect to individual coordinates that also cor-
responds to the unique global optimum. But if one adds a redundant constraint,
2 We do not discuss convergence in this paper and assume that the method converges to

an interior local minimum. This is supported by experiments, e.g., max-sum diffusion
and TRW-S have this property. More on convergence can be found in [31].
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namely x1 = x2, then any feasible point will become an interior local minimum
w.r.t. individual coordinates, because the redundant constraint blocks changing
the variable xi without changing x3−i for both i ∈ {1, 2}.

Example 3. Consider the linear program

min
m∑

j=1

zj (1a)

zj ≥ aT
ijx + bij ∀i ∈ [n], j ∈ [m] (1b)

z ∈ R
m, x ∈ R

p (1c)

which can be also formulated as

min
m∑

j=1

n
max
i=1

(aT
ijx + bij) (2a)

x ∈ R
p. (2b)

Optimizing over the individual variables by coordinate-wise minimization in (1)
does not yield the same interior local optima as in (2). For instance, assume that
m = 3, n = p = 1 and the problem (2) is given as

min (max{x, 0} + max{−x,−1} + max{−x,−2}) , (3)

where x ∈ R. Then, when optimizing directly in form (3), one can see that all
the interior local optima are global optimizers.

However, when one introduces the variables z ∈ R
3 and applies coordinate-

wise minimization on the corresponding problem (1), then there are interior local
optima that are not global optimizers, for example x = z1 = z2 = z3 = 0, which
is an interior local optimum, but is not a global optimum.

On the other hand, optimizing over blocks of variables {z1, . . . , zm, xi} for
each i ∈ [p] in case (1) is equivalent to optimization over individual xi in formu-
lation (2).

3 Main Result

The optimization problem with which we are going to deal is in its most general
form defined as

min
( m∑

i=1

max{wi − ϕi, 0} + aT ϕ + bT λ +
p∑

j=1

max{vj + AT
:jϕ + BT

:jλ, 0}
)

(4a)

ϕ
i
≤ ϕi ≤ ϕi ∀i ∈ [m] (4b)

λi ≤ λi ≤ λi ∀i ∈ [n], (4c)
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where A ∈ R
m×p, B ∈ R

n×p, a ∈ R
m, b ∈ R

n, w ∈ R
m, v ∈ R

p, ϕ ∈ (R ∪
{−∞})m, ϕ ∈ (R∪{∞})m, λ ∈ (R∪{−∞})n, λ ∈ (R∪{∞})n (assuming ϕ < ϕ

and λ < λ). We optimize over variables ϕ ∈ R
m and λ ∈ R

n. A:j and Ai: denotes
the j-th column and i-th row of A, respectively.

Applying coordinate-wise minimization with relative-interior rule on the
problem (4) corresponds to cyclic updates of variables, where each update cor-
responds to finding the region of optima of a convex piecewise-affine function
of one variable on an interval. If the set of optimizers is a singleton, then the
update is straightforward. If the set of optimizers is a bounded interval [a, b], the
variable is assigned the middle value from this interval, i.e. (a + b)/2. If the set
of optima is unbounded, i.e. [a,∞), then we set the variable to the value a + Δ,
where Δ > 0 is a fixed constant. In case of (−∞, a], the variable is updated to
a − Δ. The details for the update in this setting are in Appendix A in [10].

Theorem 1. Any interior local optimum of (4) w.r.t. individual coordinates is
its global optimum if

– matrices A,B contain only values from the set {−1, 0, 1} and contain at most
two non-zero elements per row

– vector a contains only elements from the set (−∞,−2] ∪ {−1, 0, 1, 2} ∪ [3,∞)
– vector b contains only elements from the set (−∞,−2] ∪ {−1, 0, 1} ∪ [2,∞).

In order to prove Theorem 1, we formulate problem (4) as a linear program
by introducing additional variables α ∈ R

m and β ∈ R
p and construct its dual.

The proof of optimality is then obtained (see Theorem2) by constructing a dual
feasible solution that satisfies complementary slackness.

The primal linear program (with corresponding dual variables and constraints
on the same lines) reads

min
∑

i∈[m]

αi +
∑

i∈[p]

βi + aT ϕ + bT λ max f(z, y, s, r,q, x) (5a)

βj − AT
:jϕ − BT

:jλ ≥ vj xj ≥ 0 ∀j ∈ [p] (5b)

αi + ϕi ≥ wi si ≥ 0 ∀i ∈ [m] (5c)
ϕi ≥ ϕ

i
yi ≥ 0 ∀i ∈ [m] (5d)

ϕi ≤ ϕi zi ≤ 0 ∀i ∈ [m] (5e)
λi ≥ λi qi ≥ 0 ∀i ∈ [n] (5f)

λi ≤ λi ri ≤ 0 ∀i ∈ [n] (5g)

ϕi ∈ R si + zi + yi − AT
i:x = ai ∀i ∈ [m] (5h)

λi ∈ R ri + qi − BT
i: x = bi ∀i ∈ [n] (5i)

βj ≥ 0 xj ≤ 1 ∀j ∈ [p] (5j)
αi ≥ 0 si ≤ 1 ∀i ∈ [m], (5k)

where the dual criterion is

f(z, y, s, r, q, x) = ϕT z + ϕT y + wT s + λ
T
r + λT q + vT x (6)
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and clearly, at optimum of the primal, we have

αi = max{wi − ϕi, 0} ∀i ∈ [m] (7a)

βj = max{vj + AT
:jϕ + BT

:jλ, 0} ∀j ∈ [p]. (7b)

The variables α, β were eliminated from the primal formulation (5) to obtain (4)
due to similar reasoning as in Example 3. We also remark that setting ϕi = ∞
(resp. ϕ

i
= −∞, λi = ∞, λi = −∞) results in zi = 0 (resp. yi = 0, ri = 0,

qi = 0).
Even though the primal-dual pair (5) might seem overcomplicated, such

general description is in fact necessary because as described in Sect. 2, equiv-
alent reformulations may not preserve the structure of interior local minima and
we would like to describe as general class, where optimality is guaranteed, as
possible.

Example 4. To give the reader better insight into the problems (5), we present
a simplification based on omitting the matrix A (i.e. m = 0) and setting λ = 0,
λ = ∞, which results in ri = 0 and variables qi become slack variables in (5i).
The primal-dual pair in this case then simplifies to

min
∑

i∈[p]

βi + bT λ max vT x (8a)

βj − BT
:jλ ≥ vj xj ≥ 0 ∀j ∈ [p] (8b)

βj ≥ 0 xj ≤ 1 ∀j ∈ [p] (8c)

λi ≥ 0 −BT
i: x ≤ bi ∀i ∈ [n]. (8d)

Theorem 2. For a problem (4) satisfying conditions of Theorem1 and a given
interior local minimum (ϕ, λ), the values3

xj =

⎧
⎪⎨

⎪⎩

0 if AT
:jϕ + BT

:jλ + vj < 0
1
2 if AT

:jϕ + BT
:jλ + vj = 0

1 if AT
:jϕ + BT

:jλ + vj > 0
si =

⎧
⎪⎨

⎪⎩

1 if wi > ϕi

0 if wi < ϕi

h[0,1](ai + AT
i:x) if wi = ϕi

ri =

{
0 if λi < λi

h
R

−
0
(bi + BT

i: x) if λi = λc
zi =

{
0 if ϕi < ϕi

h
R

−
0
(ai + AT

i:x − si) if ϕi = ϕi

qi =

{
0 if λi > λi

h
R

+
0
(bi + BT

i: x) if λi = λi

yi =

{
0 if ϕi > ϕ

i

h
R

+
0
(ai + AT

i:x − si) if ϕi = ϕ
i

are feasible for the dual (5) and satisfy complementary slackness with primal (5),
where the remaining variables of the primal are given by (7).

3 We define h[x,y](z) = min{y,max{z, x}} to be the projection of z ∈ R onto the
interval [x, y] ⊆ R. The projection onto unbounded intervals (−∞, 0] and [0,∞) is
defined similarly and is denoted by h

R
−
0

and h
R
+
0

for brevity.
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It can be immediately seen that all the constraints of dual (5) are satisfied
except for (5h) and (5i), which require a more involved analysis. The complete
proof of Theorem2 is technical (based on verifying many different cases) and
given in Appendix B in [10].

4 Applications

Here we show that several LP relaxations of combinatorial problems correspond
to the form (4) or to the dual (5) and discuss which additional constraints
correspond to the assumptions of Theorem1.

4.1 Weighted Partial Max-SAT

In weighted partial Max-SAT, one is given two sets of clauses, soft and hard.
Each soft clause is assigned a positive weight. The task is to find values of binary
variables xi ∈ {0, 1}, i ∈ [p] such that all the hard clauses are satisfied and the
sum of weights of the satisfied soft clauses is maximized.

We organize the m soft clauses into a matrix S ∈ {−1, 0, 1}m×p defined as

Sci =

⎧
⎪⎨

⎪⎩

1 if literal xi is present in soft clause c

−1 if literal ¬xi is present in soft clause c

0 otherwise
,

In addition, we denote nS
c =

∑
i[[Sci < 0]] to be the number of negated variables

in clause c. These numbers are stacked in a vector nS ∈ Z
m. The h hard clauses

are organized in a matrix H ∈ {−1, 0, 1}h×p and a vector nH ∈ Z
h in the same

manner.
The LP relaxation of this problem reads

max
∑

c∈[m]

wcsc (10a)

sc ≤ ST
c:x + nS

c ∀c ∈ [m] (10b)

HT
c:x + nH

c ≥ 1 ∀c ∈ [h] (10c)
xi ∈ [0, 1] ∀i ∈ [p] (10d)
sc ∈ [0, 1] ∀c ∈ [m], (10e)

where wc ∈ R
+
0 are the weights of the soft clauses c ∈ [m]. This is a sub-class

of the dual (5), where A = S, B = −H, a = nS , b = 1 − nH , ϕ = 0 (y ≥ 0 are
therefore slack variables for the dual constraint (5h) that correspond to (10b)),
ϕ = ∞ (therefore z = 0), λ = −∞ (therefore q = 0), λ = 0 (r ≤ 0 are slack
variables for the dual constraint (5i) that correspond to (10c)), v = 0.

Formulation (10) satisfies the conditions of Theorem1 if each of the clauses
has length at most 2. In other words, optimality is guaranteed for weighted
partial Max-2SAT.
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Also notice that if we omitted the soft clauses (10b) and instead set v = −1,
we would obtain an instance of Min-Ones SAT, which could be generalized to
weighted Min-Ones SAT. This relaxation would still satisfy the requirements of
Theorem 1 if all the present hard clauses have length at most 2.

Results. We tested the method on 800 smallest4 instances that appeared in
Max-SAT Evaluations [2] in years 2017 [1] and 2018 [3]. The results on the
instances are divided into groups in Table 1 based on the minimal and maximal
length of present clauses. We have also tested this approach on 60 instances of
weighted Max-2SAT from Ke Xu [33]. The highest number of logical variables in
an instance was 19034 and the highest overall number of clauses in an instance
was 31450. It was important to separate the instances without unit clauses (i.e.
clauses of length 1), because in such cases the LP relaxation (10) has a trivial
optimal solution with xi = 1

2 for all i ∈ V .
Coordinate-wise minimization was stopped when the criterion did not

improve by at least ε = 10−7 after a whole cycle of updates for all variables.
We report the quality of the solution as the median and mean relative differ-
ence between the optimal criterion and the criterion reached by coordinate-wise
minimization before termination.

Table 1 reports not only instances of weighted partial Max-2SAT but also
instances with longer clauses, where optimality is no longer guaranteed. Never-
theless, the relative differences on instances with longer clauses still seem not
too large and could be usable as bounds in a branch-and-bound scheme.

Table 1. Experimental comparison of coordinate-wise minimization and exact solu-
tions for LP relaxation on instances from [2] (first 4 rows) and [33] (last row).

Instance Group Specification Results

Min CL Max CL #inst. Mean RD Median RD

≥ 2 any 91 0 0

1 2 123 1.44 · 10−9 1.09 · 10−11

1 3 99 6.98 · 10−3 1.90 · 10−7

1 ≥ 4 487 1.26 · 10−2 2.97 · 10−3

1 2 60 1.59 · 10−9 5.34 · 10−10

4 Smallest in the sense of the file size. All instances could not have been evaluated due
to their size and lengthy evaluation.
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4.2 Weighted Vertex Cover

Dual (8) also subsumes5 the LP relaxation of weighted vertex cover, which reads

min
{ ∑

i∈V

vixi

∣∣∣ xi + xj ≥ 1 ∀{i, j} ∈ E, xi ∈ [0, 1] ∀i ∈ V
}

(11)

where V is the set of nodes and E is the set of edges of an undirected graph.
This problem also satisfies the conditions of Theorem 1 and therefore the corre-
sponding primal (4) will have no non-optimal interior local minima.

On the other hand, notice that formulation (11), which corresponds to dual
(5) can have non-optimal interior local minima even with respect to all subsets
of variables of size |V | − 1, an example is given in Appendix C in [10].

We reported the experiments on weighted vertex cover in [30] where the
optimality was not proven yet. In addition, the update designed in [30] ad hoc
becomes just a special case of our general update here.

4.3 Minimum st-Cut, Maximum Flow

Recall from [11] the usual formulation of max-flow problem between nodes s ∈ V
and t ∈ V on a directed graph with vertex set V , edge set E and positive edge
weights wij ∈ R

+
0 for each (i, j) ∈ E, which reads

max
∑

(s,i)∈E

fsi (12a)

0 ≤ fij ≤ wij ∀(i, j) ∈ E (12b)
∑

(u,i)∈E

fui −
∑

(j,u)∈E

fju = 0 ∀u ∈ V − {s, t}. (12c)

Assume that there is no edge (s, t), there are no ingoing edges to s and no
outgoing edges from t, then any feasible value of f in (12) is an interior local
optimum w.r.t. individual coordinates by the same reasoning as in Example 2 due
to the flow conservation constraint (12c), which limits each individual variable to
a single value. We are going to propose a formulation which has no non-globally
optimal interior local optima.

5 It is only necessary to transform minimization to maximization of negated objective
in (11).
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The dual problem to (12) is the minimum st-cut problem, which can be
formulated as

max
∑

(i,j)∈E

wijyij (13a)

yij ≤ 1 − xi + xj ∀(i, j) ∈ E, i �= s, j �= t (13b)
ysj ≤ xj ∀(s, j) ∈ E (13c)
yit ≤ 1 − xi ∀(i, t) ∈ E (13d)
yij ∈ [0, 1] ∀(i, j) ∈ E, (13e)
xi ∈ [0, 1] ∀i ∈ V − {s, t}, (13f)

where yij = 0 if edge (i, j) is in the cut and yij = 1 if edge (i, j) is not in the cut.
The cut should separate s and t, so the set of nodes connected to s after the cut
will be denoted by S and T = V −S is the set of nodes connected to t. Using this
notation, xi = [[i ∈ S]]. Formulation (13) is different from the usual formulation
by replacing the variables yij by 1 − yij , therefore we also maximize the weight
of the not cut edges instead of minimizing the weight of the cut edges, therefore
if the optimal value of (13) is O, then the value of the minimum st-cut equals∑

(i,j)∈E wij − O.
Formulation (13) is subsumed by the dual (5) by setting ϕ = 0, ϕ = ∞ and

omitting the B matrix. Also notice that each yij variable occurs in at most one
constraint. The problem (13) therefore satisfies the conditions of Theorem 1 and
the corresponding primal (4) is a formulation of the maximum flow problem, in
which one can search for the maximum flow by coordinate-wise minimization.
The corresponding formulation (4) reads

min
( ∑

(i,j)∈E

max{wij − ϕij , 0} +
∑

(i,j)∈E,i�=s

ϕij+

+
∑

i∈V −{s,t}
max

{ ∑

(j,i)∈E

ϕji −
∑

(i,j)∈E

ϕij , 0
})

(14a)

ϕij ≥ 0 ∀(i, j) ∈ E. (14b)

Results. We have tested our formulation for coordinate-wise minimization on
max-flow instances6 from computer vision. We report the same statistics as with
Max-SAT in Table 2, the instances corresponded to stereo problems, multiview
reconstruction instances and shape fitting problems.

For multiview reconstruction and shape fitting, we were able to run our
algorithm only on small instances, which have approximately between 8 · 105

and 1.2 · 106 nodes and between 5 · 106 and 6 · 106 edges. On these instances, the
algorithm terminated with the reported precision in 13 to 34 min on a laptop.

6 Available at https://vision.cs.uwaterloo.ca/data/maxflow.

https://vision.cs.uwaterloo.ca/data/maxflow
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Table 2. Experimental comparison of coordinate-wise minimization on max-flow
instances, the references are the original sources of the data and/or to the authors
that reformulated these problems as maximum flow. The first 6 rows correspond to
stereo problems, the 2 following rows are multiview reconstruction instances, the last
row is a shape fitting problem.

Instance group or instance Results

Name #inst. Mean RD Median RD

BVZ-tsukuba [7] 16 6.03 · 10−10 1.17 · 10−11

BVZ-sawtooth [7,25] 20 9.83 · 10−11 6.11 · 10−12

BVZ-venus [7,25] 22 3.40 · 10−11 2.11 · 10−12

KZ2-tsukuba [20] 16 2.69 · 10−10 1.77 · 10−10

KZ2-sawtooth [20,25] 20 4.08 · 10−9 1.56 · 10−10

KZ2-venus [20,25] 22 5.21 · 10−9 1.74 · 10−10

BL06-camel-sml [23] 1 1.21 · 10−11

BL06-gargoyle-sml [6] 1 6.29 · 10−12

LB07-bunny-sml [22] 1 1.33 · 10−10

4.4 MAP Inference with Potts Potentials

Coordinate-wise minimization for the dual LP relaxation of MAP inference was
intensively studied, see e.g. the review [29]. One of the formulations is

min
∑

i∈V

max
k∈K

θδ
i (k) +

∑

{i,j}∈E

max
k,l∈K

θδ
ij(k, l) (15a)

δij(k) ∈ R ∀{i, j} ∈ E, k ∈ K, (15b)

where K is the set of labels, V is the set of nodes and E is the set of unoriented
edges and

θδ
i (k) = θi(k) −

∑

j∈Ni

δij(k) (16a)

θδ
ij(k, l) = θij(k, l) + δij(k) + δji(l) (16b)

are equivalent transformations of the potentials. Notice that there are 2 · |E| · |K|
variables, i.e. two for each direction of an edge. In [24], it is mentioned that in
case of Potts interactions, which are given as θij(k, l) = −[[k �= l]], one can add
constraints

δij(k) + δji(k) = 0 ∀{i, j} ∈ E, k ∈ K (17a)

− 1
2 ≤ δij(k) ≤ 1

2 ∀{i, j} ∈ E, k ∈ K (17b)

to (15) without changing the optimal objective. One can therefore use constraint
(17a) to reduce the overall amount of variables by defining

λij(k) = −δij(k) = δji(k) (18)
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subject to 1
2 ≤ λij(k) ≤ 1

2 . The decision of whether δij(k) or δji(k) should
have the inverted sign depends on the chosen orientation E′ of the originally
undirected edges E and is arbitrary. Also, given values δ satisfying (17), it holds
for any edge {i, j} ∈ E and pair of labels k, l ∈ K that max

k,l∈K
θδ

ij(k, l) = 0, which

can be seen from the properties of the Potts interactions.
Therefore, one can reformulate (15) into

min
∑

i∈V

max
k∈K

θλ
i (k) (19a)

− 1
2 ≤ λij(k) ≤ 1

2 ∀(i, j) ∈ E′, k ∈ K, (19b)

where the equivalent transformation in λ variables is given by

θλ
i (k) = θi(k) +

∑

(i,j)∈E′
λij(k) −

∑

(j,i)∈E′
λji(k) (20)

and we optimize over |E′| · |K| variables λ, the graph (V,E′) is the same as graph
(V,E) except that each edge becomes oriented (in arbitrary direction). The way
of obtaining an optimal solution to (15) from an optimal solution of (19) is given
by (18) and depends on the chosen orientation of the edges in E′. Also observe
that θδ

i (k) = θλ
i (k) for any node i ∈ V and label k ∈ K and therefore the optimal

values will be equal. This reformulation therefore maps global optima of (19) to
global optima of (15). However, it does not map interior local minima of (19) to
interior local minima of (15) when |K| ≥ 3, an example of such case is shown in
Appendix D in [10].

In problems with two labels (K = {1, 2}), problem (19) is subsumed by (4)
and satisfies the conditions imposed by Theorem 1 because one can rewrite the
criterion by observing that

max
k∈{1,2}

θλ
i (k) = max{θλ

i (1) − θλ
i (2), 0} + θλ

i (2) (21)

and each λij(k) is present only in θλ
i (k) and θλ

j (k). Thus, λij(k) will have non-
zero coefficient in the matrix B only on columns i and j. The coefficients of
the variables in the criterion are only {−1, 0, 1} and the other conditions are
straightforward.

We reported the experiments on the Potts problem in [30] where the optimal-
ity was not proven yet. In addition, the update designed in [30] ad hoc becomes
just a special case of our general update here.

4.5 Binarized Monotone Linear Programs

In [13], integer linear programs with at most two variables per constraint were
discussed. It was also allowed to have 3 variables in some constraints if one of the
variables occurred only in this constraint and in the objective function. Although
the objective function in [13] was allowed to be more general, we will restrict
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ourselves to linear criterion function. It was also shown that such problems can
be transformed into binarized monotone constraints over binary variables by
introducing additional variables whose amount is defined by the bounds of the
original variables, such optimization problem reads

min wT x + eT z (22a)
Ax − Iz ≤ 0 (22b)

Cx ≤ 0 (22c)
x ∈ {0, 1}n1 (22d)
z ∈ {0, 1}n2 , (22e)

where A,C contain exactly one −1 per row and exactly one 1 per row and all
other entries are zero, I is the identity matrix. We refer the reader to [13] for
details, where it is also explained that the LP relaxation of (22) can be solved
by min-st-cut on an associated graph. We can notice that the LP relaxation of
(22) is subsumed by the dual (5), because one can change the minimization into
maximization by changing the signs in w, e. Also, the relaxation satisfies the
conditions given by Theorem1.

In the paper [13], there are listed many problems which are transformable
to (22) and are also directly (without any complicated transformation) sub-
sumed by the dual (5) and satisfy Theorem1, for example, minimizing the sum
of weighted completion times of precedence-constrained jobs (ISLO formulation
in [9]), generalized independent set (forest harvesting problem in [14]), gener-
alized vertex cover [15], clique problem [15], Min-SAT (introduced in [17], LP
formulation in [13]).

For each of these problems, it is easy to verify the conditions of Theorem1,
because they contain at most two variables per constraint and if a constraint
contains a third variable, then it is the only occurrence of this variable and the
coefficients of the variables in the constraints are from the set {−1, 0, 1}.

The transformation presented in [13] can be applied to partial Max-SAT and
vertex cover to obtain a problem in the form (22) and solve its LP relaxation.
But this step is unnecessary when applying the presented coordinate-wise mini-
mization approach.

5 Concluding Remarks

We have presented a new class of linear programs that are exactly solved by
coordinate-wise minimization. We have shown that dual LP relaxations of sev-
eral well-known combinatorial optimization problems (partial Max-2SAT, vertex
cover, minimum st-cut, MAP inference with Potts potentials and two labels, and
other problems) belong, possibly after a reformulation, to this class. We have
shown experimentally (in this paper and in [30]) that the resulting methods are
reasonably efficient for large-scale instances of these problems. When the assump-
tions of Theorem 1 are relaxed (e.g., general Max-SAT instead of Max-2SAT, or
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the Potts problem with any number of labels), the method experimentally still
provides good local (though not global in general) minima.

We must admit, though, that the practical impact of Theorem1 is limited
because the presented dual LP relaxations satisfying its assumptions can be
efficiently solved also by other approaches. Thus, max-flow/min-st-cut can be
solved (besides well-known combinatorial algorithms such as Ford-Fulkerson) by
message-passing methods such as TRW-S. Similarly, the Potts problem with two
labels is tractable and can be reduced to max-flow. In general, all considered LP
relaxations can be reduced to max-flow, as noted in Sect. 4.5. Note, however, that
this does not make our result trivial because (as noted in Sect. 2) equivalent
reformulations of problems may not preserve interior local minima and thus
message-passing methods are not equivalent in any obvious way to our method.

It is open whether there are practically interesting classes of linear programs
that are solved exactly (or at least with constant approximation ratio) by (block-)
coordinate minimization and are not solvable by known combinatorial algorithms
such as max-flow. Another interesting question is which reformulations in general
preserve interior local minima and which do not.

Our approach can pave the way to new efficient large-scale optimization
methods in the future. Certain features of our results give us hope here. For
instance, our approach has an important novel feature over message-passing
methods: it applies to a constrained convex problem (the box constraints (4b)
and (4c)). This can open the way to a new class of applications. Furthermore,
updates along large variable blocks (which we have not explored) can speed
algorithms considerably, e.g., TRW-S uses updates along subtrees of a graphical
model, while max-sum diffusion uses updates along single variables.
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