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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem having a host of valuable
practical applications in operations research. The CVRP is strongly NP-
hard both in its general case and even in very specific settings (e.g., on the
Euclidean plane). The problem is APX-complete for an arbitrary metric
and admits Quasi-Polynomial Time Approximation Scheme (QPTAS)
in the Euclidean space of any fixed dimension (and even PTAS, under
additional constraints). In this paper, we significantly extend the class
of metric settings of the CVRP that can be approximated efficiently.
We show that the metric CVRP admits QPTAS any time, when it is
formulated in a metric space of a fixed doubling dimension d > 1 and is
restricted to have an optimal solution of at most polylog n routes.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the well-known combi-
natorial optimization problem having a lot of valuable practical applications in
operations research. The problem was introduced by Dantzig and Ramser in
their seminal paper [8] as a mathematical model for routing the fleet of gasoline
trucks servicing a network of gas stations from a bulk terminal.

Since then, the field of the algorithmic design for the CVRP is developed in a
number of research directions as follows. The first direction is based on a reduc-
tion of the problem in question to some appropriate mixed integer program and
finding an optimal solution of this program using some of the well-known branch-
and-price methods [25]. Recently, a significant success was achieved in develop-
ment such algorithms and computational hardware [11,21]. Unfortunately, due
to strongly NP-hardness of the CVRP, instances of this problem that are man-
aged to be solved efficiently within this approach still remain quit modest.

Another direction is closely related to involving a wide range of heuristic
algorithms and meta-heuristics including the local search [2], VNS [22], Tabu
search [23], evolutionary and bioinspired methods [19], and their combinations [7,
18].
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These algorithms often demonstrate an amazing performance finding close-
to-optimal or even exact solutions to really huge instances of the CVRP coming
from practice. Unfortunately, an absence of any theoretical guarantees implies
additional computational expenses related to numerical evaluation of their accu-
racy and possible tuning during the transition to any novel class of instances. In
addition, there are known cases when such a tuning is impossible at all, e.g. for
the security reasons.

The third research direction is related to the design of approximation algo-
rithms with theoretic performance guarantees and dates back to seminal papers
of Haimovich and Rinnooy Kan [10], and Arora [3]. It is known that the CVRP
is strongly NP-hard even on the Euclidean plane [20]. The problem is hardly
approximable in general case, APX-complete for an arbitrary metric [4] and
admits Quasi-Polynomial Time Approximation Schemes (QPTAS) in finite-
dimensional Euclidean spaces [9]. For the planar CVRP with restricted capac-
ity growth, there are known several Polynomial Time Approximation Schemes
(PTAS), among them the PTAS proposed in [1] is the most general. The app-
roach introduced in [10] is managed to extend to a number of modifications of
the planar CVRP including the CVRP formulated in the Euclidean space of
any fixed dimension [15,17], the case of multiple depots [12,16], the CVRP with
Time Windows [13], and non-unit customer demand [14].

Thus, until now, the class of instances of the metric problems approximable
by PTAS or QPTAS was exhausted by the Euclidean settings of the problem
except maybe some special cases investigated in [6] Meanwhile, in recent papers
by Talwar [24] and Bartal et al. [5] such a class for the closely related Traveling
Salesman Problem (TSP) was substantially extended to include the instances of
the problem in a metric space of an arbitrary fixed doubling dimension.

In this paper, we propose the first QPTAS for the CVRP formulated in such
a space. Our contribution is as follows.

Theorem 1. For the CVRP in a metric space of an arbitrary doubling dimen-
sion d > 1, an (1 + O(ε))-approximate solution can be found by a random-

ized approximation algorithm within time poly n · (
m2n

)m2·polylog n, where m =

O

((
d(log n−log ε)

ε

)d
)

. The algorithm can be derandomized efficiently.

The rest of the paper is structured as follows. In Sect. 2, we recall the state-
ment of the CVRP. Then, in Sect. 3 we propose a short overview of the pro-
posed approximation scheme. Finally, at Conclusion, we summarize the results
obtained and overview some possible directions for the future work.

2 Problem Statement

In the classic Capacitated Vehicle Routing Problem (CVRP), we are given by a
set of customers X = {x1, . . . , xn} having the same unit demand, which should
be serviced by a vehicle located at some dedicated point y that is called depot.
All vehicles have the same capacity q and visit the customers by cyclic routes,
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each of them departs from and arrives to the depot y. The goal is to provide a
collection of the capacitated routes visiting each customer once and minimizing
the total transportation costs.

Let V = X ∪ y. An instance of the CVRP is specified by a complete undi-
rected edge-weighted graph G = (V,E,w) and an integer q ≥ 3. The sym-
metric weighting function w : E → R+, to any edge {u, v} ∈ E, assigns the
direct transportation cost w(u, v). A simple cycle π = y, xi1 , xi2 , . . . , xis , y in
the graph G is referred to a feasible route, if it satisfies the capacity con-
straint, i.e. visits at most q customers. For the route π, its cost w(π) =
w(y, xi1) + w(xi1 , xi2) + · · · + w(xis−1 , xis) + w(xis , y). The goal is to find a
family of feasible routes Π = {π1, . . . , πk} of the least total transportation cost
that covers the total customer demand.

In this paper, we consider a restriction of the metric CVRP with the following
additional constraints:

(i) for some d > 1, the weighting function w is a metric of doubling dimension
d, i.e. for an arbitrary v ∈ V and R > 0, there exist nodes v1, . . . , vM ∈ V ,
such that the metric ball B(v,R) ⊆ ⋃M

j=1 B(vj , R/2) and M ≤ 2d.
(ii) the problem is supposed to have an optimal solution, whose number of routes

does not exceed polylog n.

3 Approximation Scheme: An Overview

The main idea of our approximation scheme extends the well-known Arora’s
PTAS for the Euclidean TSP and its generalization proposed in [5] to the TSP
in a metric space of any fixed doubling dimension. The scheme consists of the
following stages.

Accuracy-Driven Rounding. At this stage, given by ε > 0, to the initial instance,
we assign a rounded one, such that each s (1 + ε)-approximate solution of the
latter instance can be transformed in polynomial time to the appropriate (1 +
O(ε))-approximate solution of the former one.

Without loss of generality, we assume that the diameter Δ of the set V is
equal to n/ε (since otherwise we can rescale the initial metric by the factor n

Δε ).
Then, we round each customer x ∈ X to the nearest node ξ ∈ X ′, where X ′

is some metric 1-net of the set X. Finally, we consider an auxiliary instance
of the CVRP, specified by the set X ′ and inheriting all other parameters (y,
q, and w) from the initial one. As a result, in the obtained rounded instance,
each ‘customer’ ξ is counted with a multiplicity equal to the number of x ∈ X
assigned to it and, for any distinct ‘customers’ ξ1 and ξ2, w(ξ1, ξ2) > 1.

Randomized Hierarchical Clustering. Following to [5], we fix a number s ≥ 6
and put L = �logs(n/ε)	. For any level l = 0, . . . , L + 1, we construct an sL−l-
net Nl of the set V ′ = X ′ ∪ {y}. Without loss of generality, we assume that
N0 is a singleton, NL = NL+1 = V ′ and Nl ⊂ Nl+1 for any l. We proceed with
hierarchical clustering of the set V ′ by induction on l. For l = 0, we construct the
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only cluster C0
1 = V ′. Further, let Cl−1

1 , . . . , Cl−1
K be the partition constructed

at level l − 1. To proceed at level l, we partition each cluster Cl−1
j separately.

To make such a partition, we take point by point from the net Nl in a random
order σ and, to each net point νσ(i), we assign a random radius η ∈ [sL−l, 2sL−l)
from the uniform distribution. Then, the i-th subcluster of the cluster Cl−1

j is

Cl
ji = B(νσ(i), η) ∩ Cl−1

j \
⋃

t<i

Cl
jt.

By construction, all clusters at level L + 1 are singletons.
Following to [5], our scheme deals with approximate solutions of some special

kind, which are referred to as net-respecting and light. To define this concept, we
choose the number M as some degree of s, such that M/s < d · L/ε ≤ M . For
any cluster Cl

j , each points from the sL−l/M -net is called portals. As it follows
from the well-known Packing Lemma (see, e.g. [24]), the number m of portals
located in each cluster at an arbitrary level l > 0 does not exceed (8 · M)d =

O

((
d(log n−log ε)

ε

)d
)

. A route is called net-respecting if, for any its edge {u, v}
of length λ, both points u and v belong to the net Nl, where sL−l ≤ ελ < sL−l+1.
Further, for some r > 0, a net-respecting route is called r-light, if it crosses the
border of any cluster Cl

j (of any level l > 0) at most r times.
As it follows from the Structure Theorem [24], with high probability, for

r = m, there exists an approximate solution of the CVRP, consisting of net-
respecting r-light routes, whose total transportation cost is at most (1+ε)·OPT.
Therefore, to approximate the initial instance within the given accuracy, we can
restrict ourselves on such solutions.

Dynamic Programming. For a given randomized clustering, we find the
minimum-cost approximate solution consisting of net-respecting r-light routes
using the dynamic program as follows. Entries of the DP table are defined by
configurations that are assigned to each cluster Cl

j . For any cluster Cl
j , an asso-

ciated configuration C is a list of at most polylog n tuples (p1, p2, qj , depj), each
of them specifies a route segment entering and leaving this cluster at the portals
p1 and p2 respectively, visiting qj customers exactly and passing through the
depot y or not depending on depj .

The table entries are computed bottom-up. Level L + 1 is the base case. Each
configuration at this level can be computed trivially. Then, let Cl be some cluster
at level l, l = 0, . . . , L. To compute any configuration C for the cluster Cl, we
enumerate all combinations of the feasible configurations C1, . . . ,CK associated
with subclusters Cl+1

1 , Cl+1
2 , . . . , Cl+1

K , K = 2O(d) to find such a combination that
is compatible with the configuration C and induces the set of route segments
crossing the cluster Cl (maybe augmented by some routes contained in this
cluster completely) of the minimum total cost. The required solution is obtained
by minimization on the set of feasible configurations for the unique cluster at
level 0.

Following to the approach proposed in [24], we can show that our algorithm
admits an efficient derandomization.
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4 Conclusion

In this paper we announce an approximation scheme for the CVRP in the metric
space of an arbitrary doubling dimension d > 1. Our algorithm is a QPTAS, if
the problem has an optimal solution, whose number of routes does not exceed
polylog n. It is easy to verify that this condition holds, for instance, when q =
Ω(n/polylog n). We postpone the proof of Theorem 1 to the forthcoming paper.

Although, to the best of our knowledge, the proposed algorithm appears
to be the first approximation scheme for the metric CVRP for the spaces of
fixed doubling dimension, the question: ‘Can the QPTAS proposed by A.Das
and C.Mathieu [9] for the Euclidean CVRP be extended to metric spaces of a
fixed doubling dimension without any restriction on the capacity growth?’ still
remains open. We’ll try to bridge this gap in the future work.
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