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Abstract. We introduce the idea of utilizing ensembles of Kernel Mini-
mum Enclosing Balls to detect novel datapoints. To this end, we propose
a novelty scoring methodology that is based on combining outcomes of
the corresponding characteristic functions of a set of fitted balls. We
empirically evaluate our model by presenting experiments on synthetic
as well as real world datasets.

1 Introduction

The notion of novelty discovery (or detection) [6] can be described as a one-
class classification problem (a.k.a data domain description [11]) aiming to learn
certain characteristics of the analyzed datasets to be able to separate novel
datapoints. It finds many applications in numerous scientific and engineering
areas such as fraudulent activity detection in financial applications or detect-
ing rare events in medical monitoring [6]. Although reservoir computing based
approaches [4] have been proposed to a variety of classification and regression
problems, to the best of our knowledge, corresponding methods that are oriented
to tackle one-class problems are scarce. The main contribution of this work is
about utilizing Minimum Enclosing Balls [1] for novelty discovery. Minimum
Enclosing Balls (MEBs) fall into the class of unsupervised representation learn-
ing methods that can be used to extract important characteristics about the
considered datasets [1]. The main idea behind the MEBs is about determining
the smallest ball encapsulating the entire dataset in the data- or feature space,
which can be found by formulating the problem as an inequality constrained con-
vex minimization problem with a dual allowing for invoking the kernel trick and
this dual can be solved using dynamical processes from reservoir computing [1].

Our contribution is based on the decisions of a set of Kernel Minimum Enclos-
ing Balls (KMEBs) by introducing a compound novelty score, which can allow
for, for instance, a majority voting based detection as decision based on sin-
gle balls might be limiting for novelty detection. In addition, our methodology
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can be easily implemented in neuromorphic architectures and is capable of deal-
ing with nonlinear patterns due to kernelization [1,10]. Figure 1 shows an illus-
trative example explaining our idea about detecting the novel datapoints (green
diamond shaped points in Fig. 1a) given a dataset of normal datapoints (black
round points in Fig. 1a), which can neither be detected using euclidean Mini-
mum Enclosing Balls (as seen in Fig. 1b) nor considering probabilistic novelty
detection such as the deviation from the sample data mean [6]. Instead by con-
sidering the characteristic functions of multiple KMEBs (see example in Fig. 1c)
with differently scaled Gaussian kernels we can detect all novel points that the
considered balls might not individually be capable of capturing (compare the
results of Fig. 1d to the others).

(a) datapoints (b) EMEB (c) f(x) for (d) (d) λ = 0.60

(e) λ = 0.55 (f) λ = 0.50 (g) λ = 0.45 (h) λ = 0.40

Fig. 1. A conceptual example illustrating the idea of utilizing Kernel Minimum Enclos-
ing Balls for novelty discovery. (a) shows the data (the inner ring), which is used to
compute the ball, and the novel (green diamond) points. It is important to note that
neither considering the deviation from the mean vector nor computing the euclidean
MEB, which is shown in (b), can in this case isolate the points inside the inner ring.
(c) shows a heat-map of the characteristic function from Eq. 7, where colors orange,
white and blue respectively indicate positive, zero and negative values. (d–h) shows
the dataset and the novel points with the decision boundaries for different Gaussian
Kernel scale values λ. Used individually to detect the novel points, the recall values
for detecting the novelty are respectively 0.935, 0.995 and 1.000 for the balls in (d),
(e) and (f–h). We obtain 1.000 recall when majority-voting over the prediction of the
balls (d–h) (i.e. by considering an ensemble of 5 KMEBs with evenly spaced λ values
over [0.4, 0.6]). (Color figure online)

The remaining of the paper is organized as follows. So as to be self-contained,
in Sect. 2 we will formally define the notion of KMEBs, show how we can com-
pute them following a process akin to the ones used in echo state networks and
finally show how, once computed, the support vectors of balls can be used to
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characterize the interior of the fitted balls. Following that in Sect. 3 we will intro-
duce a new novelty scoring methodology based on the characteristic functions
for novelty discovery. In Sect. 4 we will present empirical results to evaluate our
approach using real world datasets and in Sect. 5 we will conclude our work.

2 An Overview of Kernel Minimum Enclosing Balls

Given a set of m-dimensional data points X = {x1, . . . ,xn} (for xi ∈ R
m) that

are grouped into a column data matrix X = [x1, . . . ,xn] ∈ R
m×n, we aim to find

the m-ball B(c, r) containing each of the given data points in X , where c ∈ R
m

and r ∈ R are respectively the center and the radius of B. Finding MEBs can
be cast as a convex optimization problem

c∗, r∗ = argmin
c, r

r2

s. t.
∥
∥xi − c

∥
∥
2 − r2 ≤ 0 i ∈ [1, . . . , n].

(1)

Upon evaluating the Lagrangian and the KKT conditions, the negated dual
of (1), allows for the kernel trick (as the data only occurs in form of inner
products [1]) and can be written as the minimization problem

μ∗ = argmin
μ

μᵀK μ − μᵀk

s. t.
n∑

i=1

μi = 1 ∧ μj ≥ 0 ∀ j ∈ [1, . . . , n],
(2)

where K ∈ R
n×n is a kernel matrix, k contains its diagonal (i.e. k = diag[K])

and μ ∈ R
n contains Lagrange multipliers. The kernel matrix K in (2) is built

by considering a Mercer kernel K : Rm×R
m → R such that Kij = K(xi,xj). An

example kernel function that we considered throughout our work is the Gaussian
kernel that for scale parameter λ is defined as K(xi,xj) = exp

(

−‖xi−xj‖2

2λ2

)

.
Considering (2), we note that finding Kernel Minimum Enclosing balls boils

down to finding optimal μ, which resides in the standard simplex Δn−1 and
minimizes a convex function L(μ) = μᵀk − μᵀK μ. Optimization settings of
this kind can be easily solved iteratively using the Frank-Wolfe algorithm [3],
which itself can be implemented as a recurrent neural network (see examples
from [1,2,8,10]). To this end, at each iteration t, the Frank-Wolfe algorithm
evaluates the gradient of the negated dual Lagrangian L(μ) from (2), which
amounts to ∇L(μ) = 2Kμ − k, and finds the vertex of Δn−1 for the update,
that minimizes

νt = argmin
vj∈Rn

vᵀ
j

[

2Kμt − k
] ≈ gβ

(

2Kμt − k
)

, (3)

where νt ∈ R
n represent the current solution at t, vj is the jth standard vector

vj = [δj1, δj2, . . . , δjp]T } (here δji represents the Kronecker delta) and, finally,
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gβ(x) represents the soft-min operator. This operator is the smooth approxima-
tion of argmin·, whose the ith entry defined as

(

gβ(x)
)

i
= e−βxi

∑
j e−βxj

and has the

limit
lim

β→∞
gβ(x) = argmin

vj∈Rn

vᵀ
j x = vi. (4)

Given that we can define the convergent iterative Frank-Wolfe updates [1] as

μt+1 ← (1 − ηt)μt + ηt gβ

(

2Kμt − k
)

, (5)

where ηt ∈ [0, 1] is a monotonically decreasing step size. Rearranging the right-
most expression in (5) as gβ

(

2Kμt−k
)

= gβ

(

2Kμt+K̄1̄
)

, where K̄ = diag(k)
and 1̄ is the vector of −1s defined as 1̄ = [−1, . . . ,−1]T , allows us to interpret
and implement these updates in terms of echo state networks [4]. That is, we
can describe this machinery as a structurally constrained echo state network, in
which we have the fixed input vector 1̄ containing −1s, the input weight matrix
K̄, n reservoir neurons with gβ(·) and 2K respectively being the nonlinear
activation function and the reservoir weight matrices and ηt acting as a leaking
rate for updating the Lagrange multipliers. Once optimal Lagrange multipliers
have been found using the updates from (5), we can determine the kernelized
radius and the squared magnitude of the center of the fitted ball B respectively
as r∗ =

√

μᵀ
∗k − μᵀ

∗K μ∗ and cᵀ
∗c∗ = μᵀ

∗K μ∗, which will allow us to define a
characteristic function defining the interior of B [1]. Namely, using these equali-
ties we can represent the inequality ‖x−c∗‖2 ≤ r2∗ to check whether an arbitrary
point x ∈ R

m within the ball B by considering

f(x) =
√

K(x,x) − 2 k̄
ᵀ
μ∗ + μᵀ

∗K μ∗ −
√

μᵀ
∗k − μᵀ

∗K μ∗, (6)

where k̄ ∈ R
n is defined as k̄i = K(x,xi) [1]. That is, f(x) > 0 holds if x is

outside of the ball B, whereas, f(x) ≤ 0 is the case when x is inside the ball B.
Though, f(x) = 0 only holds for the points with nonzero Lagrange multipliers
that are the support vectors of B and can be defined as S = {xi |∀ i ∈
[1, . . . , n] ∧ μi∗ > 0}. It is worth noting that, we can simplify (6) by grouping
the l ≤ n points in S into a column data matrix S = [s1, . . . , sl] ∈ R

m×l, putting
their corresponding multipliers in σ ∈ R

l, letting Q ∈ R
l×l be the kernel matrix

for the support vectors (i.e. Qij = K(si, sj)) and q ∈ R
l to contain its diagonal

(i.e. q = diag[Q]), which yields a simpler characteristic function

f(x) =
√

K(x,x) − 2 k̄
ᵀ
σ + σᵀQ σ −

√

σᵀq − σᵀQ σ (7)

where as in (6), k̄ ∈ R
l is evaluated as k̄j = K(x, sj) and we note that the term√

σᵀq − σᵀQ σ (which indeed amounts to r∗) is does not depend on x.

3 An Ensemble Approach for Novelty Discovery

Having explained how KMEBs are defined and can be computed so that we can
determine their interior, we will now turn our attention to novelty discovery
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by combining the characteristic functions of a set of balls. We note that, the
characteristic function from (7) for a given ball B can be used to label the
points outside of the ball to be the novel points. In this case a query point x is
considered novel if f(x) > 0 and not novel for f(x) ≤ 0. Although this approach
can capture novel points it might result in very restrictive or too general decision
boundaries that respectively might result in detecting every query point to be
novel or not novel (see Fig. 1d for the latter case). Both problems, however, can
be avoided if we generalize this approach by combining the decisions of multiple
balls. One approach for such a combination can be based on uniform voting [7].
That is, given a set of u KMEBs P = {B1, . . . ,Bu}, that are trained considering
a different setting, and fi(·) and �·� respectively indicating the characteristic
function from (7) for ball Bi and the Iverson bracket, we can assign the novelty
score of a query point x by evaluating z(x) =

∑u
i=1 �fi(x) > 0� and, for

instance, label x to be novel if z(x) ≥ ⌈
u
2

⌉

(i.e. x is outside of the majority of
the balls in P for an odd u) and not novel if z(x) <

⌈
u
2

⌉

. In the next section,
we will empirically evaluate this methodology to detect novelty by showing two
conceptual examples on benchmarking datasets.

Table 1. Novelty prediction results in terms of recall (RC), precision (PR), as well as
the harmonic mean and geometric mean of both (respectively referred as F1 and GM)
for (a) the CBLC Face and (b) the MNIST datasets to respectively detect non-face
images from face images and the images of digit 0 from the ones of 1. We benchmarked
methods to detect novelty that consider the deviation from the sample mean (MDEV),
matrix factorization (MF), euclidean MEBs (EMEB) and the ensemble of kernelized
MEBs (EKMEB). The superior prediction results indicate that EKMEB can indeed
be used for novelty discovery.

Method RC PR F1 GM

MDEV 0.686 1.000 0.813 0.828

MF 0.711 0.999 0.831 0.843

EMEB 0.790 0.999 0.882 0.889

EKMEB 0.974 0.998 0.986 0.986

(a) MNIST dataset

Method RC PR F1 GM

MDEV 0.043 1.000 0.082 0.207

MF 0.215 0.998 0.354 0.463

EMEB 0.095 1.000 0.173 0.308

EKMEB 1.000 0.949 0.974 0.974

(b) CBLC Faces

4 Empirical Results

We evaluated our method on the MNIST [5] and CBCL-face (bit.ly/2KwOVV6)
datasets. For the former we trained models on the digit 1 aiming to obtain
the 0s, whereas for the latter we leaned balls on faces to detect non-face novel
images. So as to evaluate the precision of the detections, we divided the training
data into 90/10 splits and the latter split is combined with the novel points,
which resulted in training/evaluation datsets of cardinality values 6067/6598
and 2186/4791 for respectively the MNIST and CBCL-face datasets. We note
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that for both examples, we constructed ensembles of KMEBs (i.e. distinct P
sets) with the Gaussian Kernel, whose scale values, in our case, were evenly
spaced over specified intervals (as in Fig. 1) by considering u = 5 KMEBs with λ
ranging in [40, 60]. We also normalized the datasets to have zero mean and unit
variance and always considered β = ∞ for the softmin function (see (4)).

In Table 1, we compare our method against thresholding the tested points
considering the maximum deviation from the sample mean vector [6], euclidean
MEBs [1] (where we consider points outside of the ball as novel) and matrix fac-
torization (MF) [8] based reconstruction to validate the use of kernel methods.
For the first method, we label points in the test set as novel if the euclidean dis-
tance is larger than the furthest point to the sample mean. For the last method,
we factorize the matrix with the number of latent factors k = 50 using the alter-
nating least squares method [9] and learn a threshold value based on the worst
reconstruction error (l2-norm). Unseen points with reconstruction error exceed-
ing this threshold are considered novel. Table 1a and Table 1b respectively depict
the prediction results for the MNIST and CBCL datasets, where we observe the
superiority of ensemble KMEBs to detect novel datapoints.

5 Conclusion and Future Work

In this work, we introduced the idea of using ensemble of KEMBs for novelty dis-
covery. We showed how we can construct ensembles of KEMBs and introduced
a voting-based approach to detect novel data points. Our empirical evaluation
yielded superior results over the use of mean deviation, euclidean MEBs and
matrix factorization approaches. Our future work involves studying different ball
selection as well as novelty determination strategies and extending the scope of
the applications. Another line of future work is related to physical implementa-
tion of our methodology and in resource-constrained devices for applications in
industrial domains such as for predictive maintenance.
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